THIRD

**COULSON & RICHARDSON'S** 

# CHEMICAL ENGINEERING

**R K Sinnott** 





**Chemical Engineering Design** 



### Coulson & Richardson's

# **CHEMICAL ENGINEERING**

**VOLUME 6** 

#### Coulson & Richardson's Chemical Engineering

Chemical Engineering, Volume 1, Sixth edition Fluid Flow, Heat Transfer and Mass Transfer J. M. Coulson and J. F. Richardson with J. R. Backhurst and J. H. Harker

Chemical Engineering, Volume 2, Fourth edition Particle Technology and Separation Processes J. M. Coulson and J. F. Richardson with J. R. Backhurst and J. H. Harker

Chemical Engineering, Volume 3, Third edition Chemical & Biochemical Reactors & Process Control Edited by J. F. Richardson and D. G. Peacock

Chemical Engineering, Volume 4/5, Second edition Solutions to the Problems in Volumes 1, 2 & 3 J. R. Backhurst and J. H. Harker

Chemical Engineering, Volume 6, Third edition Chemical Engineering Design R. K. Sinnott

#### Coulson & Richardson's

# CHEMICAL ENGINEERING

# VOLUME 6 THIRD EDITION

## Chemical Engineering Design

#### R. K. SINNOTT

Department of Chemical and Biological Process Engineering
University of Wales Swansea



Butterworth-Heinemann An imprint of Elsevier Science Linacre House, Jordan Hill, Oxford OX2 8DP 200 Wheeler Road, Burlington, MA 01803

First published 1983
Second edition 1993
Reprinted with corrections 1994
Reprinted with revisions 1996
Third edition 1999
Reprinted 2001, 2003

Copyright © 1993, 1996, 1999, R. K. Sinnott. All rights reserved

The right of R. K. Sinnott to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1T 4LP. Applications for the copyright holder's written permission to reproduce any part of this publication should be addressed to the publisher.

Permissions may be sought directly from Elsevier's Science and Technology Rights Department in Oxford, UK: phone: (+44) (0) 1865 843830; fax: (+44) (0) 1865 853333; e-mail: permissions@elsevier.co.uk . You may also complete your request on-line via the Elsevier Science homepage (http://www.elsevier.com), by selecting 'Customer Support' and then 'Obtaining Permissions'.

#### **British Library Cataloguing in Publication Data**

A catalogue record for this book is available from the British Library

#### Library of Congress Cataloguing in Publication Data

A catalogue record for this book is available from the Library of Congress

ISBN 0 7506 4142 8

For information on all Butterworth-Heinemann publications visit our website at www.bh.com

Printed and bound in Great Britain

# **Contents**

| PREI | FACE TO    | THIRD EDITION                                                                        | XV11     |
|------|------------|--------------------------------------------------------------------------------------|----------|
| Prei | ACE TO     | Second Edition                                                                       | xix      |
| Prei | FACE TO    | First Edition                                                                        | xxi      |
| Seri | es Edi     | tors' Preface                                                                        | xxiii    |
| Аск  | NOWLE      | DGEMENT                                                                              | xxv      |
| 1    | Intr       | oduction to Design                                                                   | 1        |
|      | 1.1        | Introduction                                                                         | 1        |
|      | 1.2        | Nature of design                                                                     | 1        |
|      |            | 1.2.1 The design objective (the need)                                                | 3        |
|      |            | 1.2.2 Data collection                                                                | 3        |
|      |            | 1.2.3 Generation of possible design solutions                                        | 3        |
|      |            | 1.2.4 Selection                                                                      | 4        |
|      | 1.3        | The anatomy of a chemical manufacturing process                                      | 5        |
|      |            | 1.3.1 Continuous and batch processes                                                 | 7        |
|      | 1.4        | The organisation of a chemical engineering project                                   | . 7      |
|      | 1.5<br>1.6 | Project documentation                                                                | 10<br>12 |
|      | 1.7        | Codes and standards Factors of safety (design factors)                               | 13       |
|      | 1.7        | Systems of units                                                                     | 13       |
|      | 1.9        | Degrees of freedom and design variables. The mathematical representation of          | 14       |
|      | 1.,        | the design problem                                                                   | 15       |
|      |            | 1.9.1 Information flow and design variables                                          | 15       |
|      |            | 1.9.2 Selection of design variables                                                  | 19       |
|      |            | 1.9.3 Information flow and the structure of design problems                          | 20       |
|      | 1.10       | Optimisation                                                                         | 24       |
|      |            | 1.10.1 General procedure                                                             | 25       |
|      |            | 1.10.2 Simple models                                                                 | 25       |
|      |            | 1.10.3 Multiple variable problems                                                    | 27       |
|      |            | 1.10.4 Linear programming                                                            | 29<br>29 |
|      |            | 1.10.5 Dynamic programming 1.10.6 Optimisation of batch and semicontinuous processes | 29<br>29 |
|      | 1.11       | 1.10.6 Optimisation of batch and semicontinuous processes References                 | 30       |
|      | 1.12       | Nomenclature                                                                         | 31       |
|      | 1.13       | Problems                                                                             | 32       |
| 2    | Fun        | damentals of Material Balances                                                       | 34       |
| -    | _          |                                                                                      |          |
|      | 2.1        | Introduction The assistance of many and assessed                                     | 34       |
|      | 2.2        | The equivalence of mass and energy                                                   | 34       |
|      | 2.3<br>2.4 | Conservation of mass                                                                 | 34<br>35 |
|      | 2.4        | Units used to express compositions<br>Stoichiometry                                  | 36       |
|      | 2.6        | Choice of system boundary                                                            | 37       |
|      | 2.0        | Choice of basis for calculations                                                     | 40       |

vi CONTENTS

|   | 2.8  | Number of independent components                                    | 40         |
|---|------|---------------------------------------------------------------------|------------|
|   | 2.9  | Constraints on flows and compositions                               | 41         |
|   | 2.10 |                                                                     | 42         |
|   | 2.11 | Tie components                                                      | 44         |
|   | 2.12 | Excess reagent Conversion and yield                                 | 46<br>47   |
|   | 2.13 | Recycle processes                                                   | 50         |
|   | 2.14 |                                                                     | 52<br>52   |
|   | 2.16 |                                                                     | 53         |
|   |      | Unsteady-state calculations                                         | 54         |
|   | 2.18 | General procedure for material-balance problems                     | 56         |
|   | 2.19 |                                                                     | 57         |
|   |      | Nomenclature                                                        | 57         |
|   | 2.21 | Problems                                                            | 57         |
| 3 | Fun  | damentals of Energy Balances (and Energy Utilisation)               | 60         |
|   | 3.1  | Introduction                                                        | 60         |
|   | 3.2  | Conservation of energy                                              | 60         |
|   | 3.3  | Forms of energy (per unit mass of material)                         | 61         |
|   |      | 3.3.1 Potential energy                                              | 61         |
|   |      | 3.3.2 Kinetic energy 3.3.3 Internal energy                          | 61         |
|   |      | 3.3.3 Internal energy 3.3.4 Work                                    | 61<br>61   |
|   |      | 3.3.5 Heat                                                          | 62         |
|   |      | 3.3.6 Electrical energy                                             | 62         |
|   | 3.4  | The energy balance                                                  | 62         |
|   | 3.5  | Calculation of specific enthalpy                                    | 67         |
|   | 3.6  | Mean heat capacities                                                | 68         |
|   | 3.7  | The effect of pressure on heat capacity                             | 70         |
|   | 3.8  | Enthalpy of mixtures                                                | 71         |
|   | • •  | 3.8.1 Integral heats of solution                                    | 72         |
|   | 3.9  | Enthalpy-concentration diagrams                                     | 73         |
|   | 3.10 |                                                                     | 75         |
|   | 2 11 | 3.10.1 Effect of pressure on heats of reaction                      | 77         |
|   | 3.11 | Standard heats of formation<br>Heats of combustion                  | 79<br>80   |
|   | 3.12 |                                                                     | 81         |
|   | 5.15 | 3.13.1 Mollier diagrams                                             | 82         |
|   |      | 3.13.2 Polytropic compression and expansion                         | 84         |
|   |      | 3.13.3 Multistage compressors                                       | 90         |
|   |      | 3.13.4 Electrical drives                                            | 91         |
|   | 3.14 | A simple energy balance program                                     | 91         |
|   | 3.15 | Unsteady state energy balances                                      | 95         |
|   | 3.16 |                                                                     | 97         |
|   |      | 3.16.1 Heat exchange                                                | 97         |
|   |      | 3.16.2 Heat-exchanger networks                                      | 97         |
|   |      | 3.16.3 Waste-heat boilers                                           | 98         |
|   |      | 3.16.4 High-temperature reactors                                    | 99         |
|   |      | 3.16.5 Low-grade fuels                                              | 101        |
|   |      | 3.16.6 High-pressure process streams 3.16.7 Heat pumps              | 103<br>106 |
|   | 3.17 | Process integration and pinch technology                            | 107        |
|   | 5.17 | 3.17.1 Pinch technology                                             | 107        |
|   |      | 3.17.2 The problem table method                                     | 111        |
|   |      | 3.17.3 The heat exchanger network                                   | 113        |
|   |      | 3.17.4 Minimum number of exchangers                                 | 117        |
|   |      | 3.17.5 Threshold problems                                           | 119        |
|   |      | 3.17.6 Multiple pinches and multiple utilities                      | 120        |
|   |      | 3.17.7 Process integration: integration of other process operations | 120        |
|   | 3.18 | References                                                          | 123        |

|   |               | CONTENTS                                                                                                                | vii        |
|---|---------------|-------------------------------------------------------------------------------------------------------------------------|------------|
|   | 3.19<br>3.20  | Nomenclature<br>Problems                                                                                                | 124<br>126 |
| 4 | Flow-sheeting |                                                                                                                         | 129        |
|   | 4.1           | Introduction                                                                                                            | 129        |
|   | 4.2           | Flow-sheet presentation                                                                                                 | 129        |
|   |               | 4.2.1 Block diagrams                                                                                                    | 130        |
|   |               | 4.2.2 Pictorial representation                                                                                          | 130        |
|   |               | <ul><li>4.2.3 Presentation of stream flow-rates</li><li>4.2.4 Information to be included</li></ul>                      | 130<br>131 |
|   |               | 4.2.5 Layout                                                                                                            | 135        |
|   |               | 4.2.6 Precision of data                                                                                                 | 135        |
|   |               | 4.2.7 Basis of the calculation                                                                                          | 136        |
|   |               | 4.2.8 Batch processes                                                                                                   | 136<br>136 |
|   |               | 4.2.9 Services (utilities) 4.2.10 Equipment identification                                                              | 136        |
|   |               | 4.2.11 Computer aided drafting                                                                                          | 136        |
|   | 4.3           | Manual flow-sheet calculations                                                                                          | 137        |
|   |               | 4.3.1 Basis for the flow-sheet calculations                                                                             | 138        |
|   | 4.4           | 4.3.2 Flow-sheet calculations on individual units                                                                       | 139<br>164 |
|   | 4.4           | Computer-aided flow-sheeting Full steady-state simulation programs                                                      | 164        |
|   |               | 4.5.1 Information flow diagrams                                                                                         | 167        |
|   | 4.6           | Simple material balance programs                                                                                        | 168        |
|   |               | 4.6.1 The development of a simple material balance program                                                              | 169        |
|   |               | <ul><li>4.6.2 Illustration of the method</li><li>4.6.3 Guide rules for estimating split-fraction coefficients</li></ul> | 172<br>181 |
|   |               | 4.6.4 MASSBAL, a mass balance program                                                                                   | 183        |
|   | 4.7           | References                                                                                                              | 185        |
|   | 4.8           | Nomenclature                                                                                                            | 186        |
|   | 4.9           | Problems                                                                                                                | 186        |
| 5 | Pipi          | ng and Instrumentation                                                                                                  | 192        |
|   | 5.1           | Introduction                                                                                                            | 192        |
|   | 5.2           | The P and I diagram                                                                                                     | 192        |
|   |               | 5.2.1 Symbols and layout 5.2.2 Basic symbols                                                                            | 193<br>193 |
|   | 5.3           | 5.2.2 Basic symbols Valve selection                                                                                     | 193        |
|   | 5.4           | Pumps                                                                                                                   | 197        |
|   |               | 5.4.1 Pump selection                                                                                                    | 197        |
|   |               | 5.4.2 Pressure drop in pipelines                                                                                        | 199        |
|   |               | 5.4.3 Power requirements for pumping liquids 5.4.4 Characteristic curves for centrifugal pumps                          | 203<br>206 |
|   |               | 5.4.5 System curve (operating line)                                                                                     | 206        |
|   |               | 5.4.6 Net positive suction Head (NPSH)                                                                                  | 209        |
|   |               | 5.4.7 Pump and other shaft seals                                                                                        | 211        |
|   | 5.5           | Mechanical design of piping systems                                                                                     | 214        |
|   |               | 5.5.1 Wall thickness: pipe schedule<br>5.5.2 Pipe supports                                                              | 214<br>215 |
|   |               | 5.5.3 Pipe fittings                                                                                                     | 215        |
|   |               | 5.5.4 Pipe stressing                                                                                                    | 215        |
|   |               | 5.5.5 Layout and design                                                                                                 | 216        |
|   | 5.6           | Pipe size selection                                                                                                     | 216        |
|   | 5.7           | Control and instrumentation 5.7.1 Instruments                                                                           | 224<br>224 |
|   |               | 5.7.2 Instrumentation and control objectives                                                                            | 224        |
|   |               | 5.7.3 Automatic-control schemes                                                                                         | 227        |
|   | 5.8           | Typical control systems                                                                                                 | 228        |

viii CONTENTS

|   |      | 5.8.1 Level control                                               | 228        |
|---|------|-------------------------------------------------------------------|------------|
|   |      | 5.8.2 Pressure control                                            | 228        |
|   |      | 5.8.3 Flow control                                                | 228        |
|   |      | 5.8.4 Heat exchangers                                             | 228        |
|   |      | 5.8.5 Cascade control                                             | 230        |
|   |      | 5.8.6 Ratio control                                               | 230        |
|   |      | 5.8.7 Distillation column control                                 | 230        |
|   |      | 5.8.8 Reactor control                                             | 232        |
|   | 5.9  | Alarms and safety trips, and interlocks                           | 234        |
|   | 5.10 | Computers and microprocessors in process control                  | 235        |
|   | 5.11 | References                                                        | 237        |
|   | 5.12 | Nomenclature                                                      | 238        |
|   | 5.13 | Problems                                                          | 239        |
| 6 | Cos  | ting and Project Evaluation                                       | 242        |
|   | 6.1  | Introduction                                                      | 242        |
|   | 6.2  | Accuracy and purpose of capital cost estimates                    | 242        |
|   | 6.3  | Fixed and working capital                                         | 243        |
|   | 6.4  | Cost escalation (inflation)                                       | 244        |
|   | 6.5  | Rapid capital cost estimating methods                             | 246        |
|   |      | 6.5.1 Historical costs                                            | 246        |
|   |      | 6.5.2 Step counting methods                                       | 248        |
|   | 6.6  | The factorial method of cost estimation                           | 249        |
|   |      | 6.6.1 Lang factors                                                | 249        |
|   |      | 6.6.2 Detailed factorial estimates                                | 250        |
|   | 6.7  | Estimation of purchased equipment costs                           | 251        |
|   | 6.8  | Summary of the factorial method                                   | 252        |
|   | 6.9  | Operating costs                                                   | 256        |
|   |      | 6.9.1 Estimation of operating costs                               | 258        |
|   | 6.10 | Economic evaluation of projects                                   | 269        |
|   |      | 6.10.1 Cash flow and cash-flow diagrams                           | 269        |
|   |      | 6.10.2 Tax and depreciation                                       | 271        |
|   |      | 6.10.3 Discounted cash flow (time value of money)                 | 271        |
|   |      | 6.10.4 Rate of return calculations                                | 272        |
|   |      | 6.10.5 Discounted cash-flow rate of return (DCFRR)                | 272        |
|   |      | 6.10.6 Pay-back time                                              | 273        |
|   |      | 6.10.7 Allowing for inflation                                     | 273        |
|   |      | 6.10.8 Sensitivity analysis                                       | 273<br>274 |
|   | 6.11 | 6.10.9 Summary                                                    | 277        |
|   | 6.12 | Computer methods for costing and project evaluation<br>References | 278        |
|   | 6.13 | Nomenclature                                                      | 278        |
|   | 6.14 | Problems                                                          | 279        |
| 7 | Mat  | erials of Construction                                            | 283        |
| ′ |      |                                                                   |            |
|   | 7.1  | Introduction                                                      | 283        |
|   | 7.2  | Material properties                                               | 283        |
|   | 7.3  | Mechanical properties                                             | 284        |
|   |      | 7.3.1 Tensile strength                                            | 284        |
|   |      | 7.3.2 Stiffness                                                   | 284        |
|   |      | 7.3.3 Toughness                                                   | 285        |
|   |      | 7.3.4 Hardness                                                    | 285        |
|   |      | 7.3.5 Fatigue                                                     | 285        |
|   |      | 7.3.6 Creep                                                       | 286        |
|   | 7.4  | 7.3.7 Effect of temperature on the mechanical properties          | 286<br>286 |
|   | 7.4  | Corrosion resistance 7.4.1 Uniform corrosion                      | 286<br>287 |
|   |      | 7.4.1 Uniform corrosion                                           | 287<br>288 |
|   |      | t = t Vigivalii, Carivaliii                                       | /00        |

| CONTENTS | I) |
|----------|----|
| CONTENTS | D  |

|      | 7.4.3 Pitting                                            | 289        |
|------|----------------------------------------------------------|------------|
|      | 7.4.4 Intergranular corrosion                            | 289        |
|      | 7.4.5 Effect of stress                                   | 289        |
|      | 7.4.6 Erosion-corrosion                                  | 290        |
|      | 7.4.7 High-temperature oxidation                         | 290        |
|      | 7.4.8 Hydrogen embrittlement                             | 291        |
| 7.5  | Selection for corrosion resistance                       | 291        |
| 7.6  | Material costs                                           | 292        |
| 7.7  | Contamination                                            | . 293      |
|      | 7.7.1 Surface finish                                     | 294        |
| 7.8  | Commonly used materials of construction                  | 294        |
|      | 7.8.1 Iron and steel                                     | 294        |
|      | 7.8.2 Stainless steel                                    | 295        |
|      | 7.8.3 Nickel                                             | 298        |
|      | 7.8.4 Monel                                              | 298        |
|      | 7.8.5 Inconel                                            | 298        |
|      | 7.8.6 The Hastelloys                                     | 298<br>298 |
|      | 7.8.7 Copper and copper alloys                           | 298        |
|      | 7.8.8 Aluminium and its alloys                           | 299        |
|      | 7.8.9 Lead<br>7.8.10 Titanium                            | 299        |
|      | 7.8.11 Tantalum                                          | 299        |
|      | 7.8.12 Zirconium                                         | 299        |
|      | 7.8.13 Silver                                            | 300        |
|      | 7.8.14 Gold                                              | 300        |
|      | 7.8.15 Platinum                                          | 300        |
| 7.9  | Plastics as materials of construction for chemical plant | 300        |
|      | 7.9.1 Poly-vinyl chloride (PVC)                          | 301        |
|      | 7.9.2 Polyolefines                                       | 301        |
|      | 7.9.3 Polytetrafluroethylene (PTFE)                      | 301        |
|      | 7.9.4 Polyvinylidene (PVDF)                              | 302        |
|      | 7.9.5 Glass-fibre reinforced plastics (GRP)              | 302        |
|      | 7.9.6 Rubber                                             | 302        |
| 7.10 | Ceramic materials (silicate materials)                   | 303        |
|      | 7.10.1 Glass                                             | 303        |
|      | 7.10.2 Stoneware                                         | 303        |
|      | 7.10.3 Acid-resistant bricks and tiles                   | 303        |
|      | 7.10.4 Refractory materials (refractories)               | 304        |
| 7.11 | Carbon                                                   | 304        |
| 7.12 | Protective coatings                                      | 304        |
| 7.13 | Design for corrosion resistance                          | 305        |
| 7.14 | References                                               | 305        |
| 7.15 | Nomenclature                                             | 307<br>307 |
| 7.16 | Problems                                                 | 307        |
| Desi | ign Information and Data                                 | 309        |
| 8.1  | Introduction                                             | 309        |
| 8.2  | Sources of information on manufacturing processes        | 309        |
| 8.3  | General sources of physical properties                   | 311        |
| 8.4  | Accuracy required of engineering data                    | 311        |
| 8.5  | Prediction of physical properties                        | 312        |
| 8.6  | Density                                                  | 313        |
|      | 8.6.1 Liquids                                            | 313        |
|      | 8.6.2 Gas and vapour density (specific volume)           | 314        |
| 8.7  | Viscosity                                                | 315        |
|      | 8.7.1 Liquids                                            | 315        |
|      | 8.7.2 Gases                                              | 319        |
| 8.8  | Thermal conductivity                                     | 319        |
|      | 8.8.1 Solids                                             | 320        |
|      | 882 Liquide                                              | 320        |

X CONTENTS

|   |                                                      | 8.8.3 Gases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 320                                                                                                                        |
|---|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|   |                                                      | 8.8.4 Mixtures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 321                                                                                                                        |
|   | 8.9                                                  | Specific heat capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 321                                                                                                                        |
|   |                                                      | 8.9.1 Solids and liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 321                                                                                                                        |
|   |                                                      | 8.9.2 Gases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 324                                                                                                                        |
|   | 8.10                                                 | Enthalpy of vaporisation (latent heat)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 327                                                                                                                        |
|   |                                                      | 8.10.1 Mixtures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 328                                                                                                                        |
|   | 8.11                                                 | Vapour pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 330                                                                                                                        |
|   | 8.12                                                 | Diffusion coefficients (Diffusivities)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 330                                                                                                                        |
|   |                                                      | 8.12.1 Gases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 330                                                                                                                        |
|   |                                                      | 8.12.2 Liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 332                                                                                                                        |
|   | 8.13                                                 | Surface tension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 334                                                                                                                        |
|   |                                                      | 8.13.1 Mixtures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 334                                                                                                                        |
|   | 8.14                                                 | Critical constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 335                                                                                                                        |
|   | 8.15                                                 | Enthalpy of reaction and enthalpy of formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 338                                                                                                                        |
|   | 8.16                                                 | Phase equilibrium data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 338                                                                                                                        |
|   |                                                      | 8.16.1 Experimental data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 338                                                                                                                        |
|   |                                                      | 8.16.2 Phase equilibria<br>8.16.3 Equations of state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 338<br>340                                                                                                                 |
|   |                                                      | 8.16.3 Equations of state 8.16.4 Correlations for liquid phase activity coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 340                                                                                                                        |
|   |                                                      | 8.16.5 Prediction of vapour-liquid equilibria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 344                                                                                                                        |
|   |                                                      | 8.16.6 K-values for hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 345                                                                                                                        |
|   |                                                      | 8.16.7 Sour-water systems (Sour)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 346                                                                                                                        |
|   |                                                      | 8.16.8 Vapour-liquid equilibria at high pressures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 347                                                                                                                        |
|   |                                                      | 8.16.9 Liquid-liquid equilibria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 348                                                                                                                        |
|   |                                                      | 8.16.10 Choice of phase equilibria for design calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 348                                                                                                                        |
|   |                                                      | 8.16.11 Gas solubilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 349                                                                                                                        |
|   |                                                      | 8.16.12 Use of equations of state to estimate specific enthalpy and density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 349                                                                                                                        |
|   | 8.17                                                 | References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 351                                                                                                                        |
|   | 8.18                                                 | Nomenclature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 355                                                                                                                        |
|   | 8.19                                                 | Problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            |
|   | 0.17                                                 | Trobeins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 356                                                                                                                        |
|   | 0.17                                                 | Trouchs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 330                                                                                                                        |
| _ |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            |
| 9 |                                                      | ety and Loss Prevention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 358                                                                                                                        |
| 9 | Safe                                                 | ety and Loss Prevention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 358                                                                                                                        |
| 9 | <b>Safe</b><br>9.1                                   | ety and Loss Prevention Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>358</b> 358                                                                                                             |
| 9 | <b>Safe</b><br>9.1<br>9.2                            | ety and Loss Prevention Introduction Intrinsic and extrinsic safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 358<br>358<br>359                                                                                                          |
| 9 | <b>Safe</b><br>9.1                                   | ety and Loss Prevention  Introduction Intrinsic and extrinsic safety The hazards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 358<br>358<br>359<br>359                                                                                                   |
| 9 | <b>Safe</b><br>9.1<br>9.2                            | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 358<br>358<br>359<br>359<br>359                                                                                            |
| 9 | <b>Safe</b><br>9.1<br>9.2                            | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 358<br>358<br>359<br>359                                                                                                   |
| 9 | <b>Safe</b><br>9.1<br>9.2                            | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 358<br>358<br>359<br>359<br>359<br>361                                                                                     |
| 9 | <b>Safe</b><br>9.1<br>9.2                            | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 358<br>358<br>359<br>359<br>359<br>361<br>363                                                                              |
| 9 | <b>Safe</b><br>9.1<br>9.2                            | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions 9.3.4 Sources of ignition                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 358 358 359 359 361 363 364                                                                                                |
| 9 | <b>Safe</b><br>9.1<br>9.2                            | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions 9.3.4 Sources of ignition 9.3.5 Ionising radiation                                                                                                                                                                                                                                                                                                                                                                                                                                             | 358<br>358<br>359<br>359<br>361<br>363<br>364<br>366                                                                       |
| 9 | <b>Safe</b><br>9.1<br>9.2                            | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions 9.3.4 Sources of ignition 9.3.5 Ionising radiation 9.3.6 Pressure 9.3.7 Temperature deviations 9.3.8 Noise                                                                                                                                                                                                                                                                                                                                                                                     | 358<br>358<br>359<br>359<br>361<br>363<br>364<br>366                                                                       |
| 9 | <b>Safe</b><br>9.1<br>9.2                            | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions 9.3.4 Sources of ignition 9.3.5 Ionising radiation 9.3.6 Pressure 9.3.7 Temperature deviations 9.3.8 Noise Dow fire and explosion index                                                                                                                                                                                                                                                                                                                                                        | 358<br>358<br>359<br>359<br>361<br>363<br>364<br>366<br>366<br>367<br>368<br>369                                           |
| 9 | <b>Safe</b> 9.1 9.2 9.3                              | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions 9.3.4 Sources of ignition 9.3.5 Ionising radiation 9.3.6 Pressure 9.3.7 Temperature deviations 9.3.8 Noise Dow fire and explosion index 9.4.1 Calculation of the Dow F & EI                                                                                                                                                                                                                                                                                                                    | 358 359 359 359 361 363 364 366 366 367 368 369                                                                            |
| 9 | <b>Safe</b> 9.1 9.2 9.3                              | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions 9.3.4 Sources of ignition 9.3.5 Ionising radiation 9.3.6 Pressure 9.3.7 Temperature deviations 9.3.8 Noise Dow fire and explosion index 9.4.1 Calculation of the Dow F & EI 9.4.2 Potential loss                                                                                                                                                                                                                                                                                               | 358 359 359 359 361 363 364 366 366 367 368 369 369 373                                                                    |
| 9 | <b>Safe</b> 9.1 9.2 9.3                              | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions 9.3.4 Sources of ignition 9.3.5 Ionising radiation 9.3.6 Pressure 9.3.7 Temperature deviations 9.3.8 Noise Dow fire and explosion index 9.4.1 Calculation of the Dow F & EI 9.4.2 Potential loss 9.4.3 Basic preventative and protective measures                                                                                                                                                                                                                                              | 358<br>359<br>359<br>359<br>361<br>363<br>364<br>366<br>366<br>367<br>368<br>369<br>369                                    |
| 9 | <b>Safe</b> 9.1 9.2 9.3                              | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions 9.3.4 Sources of ignition 9.3.5 Ionising radiation 9.3.6 Pressure 9.3.7 Temperature deviations 9.3.8 Noise Dow fire and explosion index 9.4.1 Calculation of the Dow F & EI 9.4.2 Potential loss 9.4.3 Basic preventative and protective measures 9.4.4 Mond fire, explosion, and toxicity index                                                                                                                                                                                               | 358 359 359 359 361 363 364 366 367 368 369 369 373 375                                                                    |
| 9 | <b>Safe</b> 9.1 9.2 9.3                              | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions 9.3.4 Sources of ignition 9.3.5 Ionising radiation 9.3.6 Pressure 9.3.7 Temperature deviations 9.3.8 Noise Dow fire and explosion index 9.4.1 Calculation of the Dow F & EI 9.4.2 Potential loss 9.4.3 Basic preventative and protective measures 9.4.4 Mond fire, explosion, and toxicity index 9.4.5 Summary                                                                                                                                                                                 | 358 359 359 359 361 363 364 366 367 368 369 373 375 376                                                                    |
| 9 | <b>Safe</b> 9.1 9.2 9.3                              | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions 9.3.4 Sources of ignition 9.3.5 Ionising radiation 9.3.6 Pressure 9.3.7 Temperature deviations 9.3.8 Noise Dow fire and explosion index 9.4.1 Calculation of the Dow F & EI 9.4.2 Potential loss 9.4.3 Basic preventative and protective measures 9.4.4 Mond fire, explosion, and toxicity index 9.4.5 Summary Hazard and operability studies                                                                                                                                                  | 358<br>358<br>359<br>359<br>359<br>361<br>363<br>364<br>366<br>367<br>368<br>369<br>373<br>375<br>376<br>377               |
| 9 | <b>Safe</b> 9.1 9.2 9.3                              | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions 9.3.4 Sources of ignition 9.3.5 Ionising radiation 9.3.6 Pressure 9.3.7 Temperature deviations 9.3.8 Noise Dow fire and explosion index 9.4.1 Calculation of the Dow F & EI 9.4.2 Potential loss 9.4.3 Basic preventative and protective measures 9.4.4 Mond fire, explosion, and toxicity index 9.4.5 Summary Hazard and operability studies 9.5.1 Basic principles                                                                                                                           | 358<br>358<br>359<br>359<br>361<br>363<br>364<br>366<br>367<br>368<br>369<br>373<br>375<br>376<br>377<br>379               |
| 9 | <b>Safe</b> 9.1 9.2 9.3                              | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions 9.3.4 Sources of ignition 9.3.5 Ionising radiation 9.3.6 Pressure 9.3.7 Temperature deviations 9.3.8 Noise Dow fire and explosion index 9.4.1 Calculation of the Dow F & EI 9.4.2 Potential loss 9.4.3 Basic preventative and protective measures 9.4.4 Mond fire, explosion, and toxicity index 9.4.5 Summary Hazard and operability studies 9.5.1 Basic principles 9.5.2 Explanation of guide words                                                                                          | 358<br>358<br>359<br>359<br>361<br>363<br>364<br>366<br>366<br>369<br>373<br>375<br>376<br>377<br>379<br>380<br>381        |
| 9 | 9.1<br>9.2<br>9.3                                    | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions 9.3.4 Sources of ignition 9.3.5 Ionising radiation 9.3.6 Pressure 9.3.7 Temperature deviations 9.3.8 Noise Dow fire and explosion index 9.4.1 Calculation of the Dow F & EI 9.4.2 Potential loss 9.4.3 Basic preventative and protective measures 9.4.4 Mond fire, explosion, and toxicity index 9.4.5 Summary Hazard and operability studies 9.5.1 Basic principles 9.5.2 Explanation of guide words 9.5.3 Procedure                                                                          | 358 358 359 359 359 361 363 364 366 366 369 373 375 376 377 379 380 381                                                    |
| 9 | 9.1<br>9.2<br>9.3<br>9.4                             | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions 9.3.4 Sources of ignition 9.3.5 Ionising radiation 9.3.6 Pressure 9.3.7 Temperature deviations 9.3.8 Noise Dow fire and explosion index 9.4.1 Calculation of the Dow F & EI 9.4.2 Potential loss 9.4.3 Basic preventative and protective measures 9.4.4 Mond fire, explosion, and toxicity index 9.4.5 Summary Hazard and operability studies 9.5.1 Basic principles 9.5.2 Explanation of guide words 9.5.3 Procedure Hazard analysis                                                          | 358<br>359<br>359<br>359<br>361<br>363<br>364<br>366<br>366<br>369<br>373<br>375<br>376<br>377<br>379<br>380<br>381<br>382 |
| 9 | 9.1<br>9.2<br>9.3<br>9.4<br>9.5                      | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions 9.3.4 Sources of ignition 9.3.5 Ionising radiation 9.3.6 Pressure 9.3.7 Temperature deviations 9.3.8 Noise Dow fire and explosion index 9.4.1 Calculation of the Dow F & EI 9.4.2 Potential loss 9.4.3 Basic preventative and protective measures 9.4.4 Mond fire, explosion, and toxicity index 9.4.5 Summary Hazard and operability studies 9.5.1 Basic principles 9.5.2 Explanation of guide words 9.5.3 Procedure Hazard analysis Acceptable risk and safety priorities                    | 358 359 359 359 361 363 364 366 367 368 369 369 373 375 376 377 379 380 381 382 387                                        |
| 9 | 9.1<br>9.2<br>9.3<br>9.4<br>9.5<br>9.6<br>9.7<br>9.8 | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions 9.3.4 Sources of ignition 9.3.5 Ionising radiation 9.3.6 Pressure 9.3.7 Temperature deviations 9.3.8 Noise Dow fire and explosion index 9.4.1 Calculation of the Dow F & EI 9.4.2 Potential loss 9.4.3 Basic preventative and protective measures 9.4.4 Mond fire, explosion, and toxicity index 9.4.5 Summary Hazard and operability studies 9.5.1 Basic principles 9.5.2 Explanation of guide words 9.5.3 Procedure Hazard analysis Acceptable risk and safety priorities Safety check lists | 358 358 359 359 359 361 363 364 366 367 368 369 369 373 375 376 377 379 380 381 382 387 388                                |
| 9 | 9.1<br>9.2<br>9.3<br>9.4<br>9.5                      | Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions 9.3.4 Sources of ignition 9.3.5 Ionising radiation 9.3.6 Pressure 9.3.7 Temperature deviations 9.3.8 Noise Dow fire and explosion index 9.4.1 Calculation of the Dow F & EI 9.4.2 Potential loss 9.4.3 Basic preventative and protective measures 9.4.4 Mond fire, explosion, and toxicity index 9.4.5 Summary Hazard and operability studies 9.5.1 Basic principles 9.5.2 Explanation of guide words 9.5.3 Procedure Hazard analysis Acceptable risk and safety priorities                    | 358 359 359 359 361 363 364 366 367 368 369 369 373 375 376 377 379 380 381 382 387                                        |

| CONTENTS | xi                                      |
|----------|-----------------------------------------|
| CONTENTO | • • • • • • • • • • • • • • • • • • • • |

|    | 9.10<br>9.11 | References<br>Problems                                                | 394<br>396 |
|----|--------------|-----------------------------------------------------------------------|------------|
| 10 | Equ          | ipment Selection, Specification and Design                            | 398        |
|    | 10.1         | Introduction                                                          | 398        |
|    | 10.2         | Separation processes                                                  | 399        |
|    | 10.3         | Solid-solid separations                                               | 399        |
|    |              | 10.3.1 Screening (sieving)                                            | 399        |
|    |              | 10.3.2 Liquid-solid cyclones                                          | 402<br>403 |
|    |              | 10.3.3 Hydroseparators and sizers (classifiers) 10.3.4 Hydraulic jigs | 403        |
|    |              | 10.3.5 Tables                                                         | 403        |
|    | ,            | 10.3.6 Classifying centrifuges                                        | 404        |
|    |              | 10.3.7 Dense-medium separators (sink and float processes)             | 404        |
|    |              | 10.3.8 Flotation separators (froth-flotation)                         | 405        |
|    |              | 10.3.9 Magnetic separators                                            | 405        |
|    |              | 10.3.10 Electrostatic separators                                      | 406        |
|    | 10.4         | Liquid-solid (solid-liquid) separators                                | 406        |
|    |              | 10.4.1 Thickeners and clarifiers                                      | 406<br>407 |
|    |              | 10.4.2 Filtration<br>10.4.3 Centrifuges                               | 407        |
|    |              | 10.4.4 Hydrocyclones (liquid-cyclones)                                | 420        |
|    |              | 10.4.5 Pressing (expression)                                          | 424        |
|    |              | 10.4.6 Solids drying                                                  | 424        |
|    | 10.5         | Separation of dissolved solids                                        | 432        |
|    |              | 10.5.1 Evaporators                                                    | 432        |
|    |              | 10.5.2 Crystallisation                                                | 435        |
|    | 10.6         | Liquid-liquid separation                                              | 438        |
|    |              | 10.6.1 Decanters (settlers)                                           | 438<br>443 |
|    |              | 10.6.2 Plate separators<br>10.6.3 Coalescers                          | 443        |
|    |              | 10.6.4 Centrifugal separators                                         | 444        |
|    | 10.7         | Separation of dissolved liquids                                       | 444        |
|    | 1017         | 10.7.1 Solvent extraction leaching                                    | 445        |
|    | 10.8         | Gas-solids separations (gas cleaning)                                 | 446        |
|    |              | 10.8.1 Gravity settlers (settling chambers)                           | 446        |
|    |              | 10.8.2 Impingement separators                                         | 446        |
|    |              | 10.8.3 Centrifugal separators (cyclones)                              | 448        |
|    |              | 10.8.4 Filters                                                        | 456<br>457 |
|    |              | 10.8.5 Wet scrubbers (washing)<br>10.8.6 Electrostatic precipitators  | 457        |
|    | 10.9         | Gas-liquid separators                                                 | 458        |
|    | 10.7         | 10.9.1 Settling velocity                                              | 459        |
|    |              | 10.9.2 Vertical separators                                            | 459        |
|    |              | 10.9.3 Horizontal separators                                          | 461        |
|    | 10.10        | Crushing and grinding (comminution) equipment                         | 463        |
|    | 10.11        | Mixing equipment                                                      | 466        |
|    |              | 10.11.1 Gas mixing                                                    | 466        |
|    |              | 10.11.2 Liquid mixing                                                 | 466<br>474 |
|    | 10.13        | 10.11.3 Solids and pastes 2 Transport and storage of materials        | 474        |
|    | 10.12        | 10.12.1 Gases                                                         | 475        |
|    |              | 10.12.2 Liquids                                                       | 477        |
|    |              | 10.12.3 Solids                                                        | 479        |
|    | 10.13        | Reactors                                                              | 480        |
|    |              | 10.13.1 Principal types of reactor                                    | 481        |
|    |              | 10.13.2 Design procedure                                              | 484        |
|    |              | References                                                            | 484        |
|    |              | Nomenclature Pallace                                                  | 488        |
|    | 10.16        | Problems                                                              | 489        |

xii CONTENTS

| 11 | Sepa  | aration Columns (Distillation, Absorption and Extraction)                                    | 492        |
|----|-------|----------------------------------------------------------------------------------------------|------------|
|    | 11.1  | Introduction                                                                                 | 492        |
|    | 11.2  | Continuous distillation: process description                                                 | 493        |
|    |       | 11.2.1 Reflux considerations                                                                 | 494        |
|    |       | 11.2.2 Feed-point location                                                                   | 495        |
|    |       | 11.2.3 Selection of column pressure                                                          | 495        |
|    | 11.3  | Continuous distillation: basic principles                                                    | 496        |
|    |       | 11.3.1 Stage equations                                                                       | 496        |
|    |       | 11.3.2 Dew points and bubble points                                                          | 497        |
|    |       | 11.3.3 Equilibrium flash calculations                                                        | 498        |
|    | 11.4  | Design variables in distillation                                                             | 500        |
|    | 11.5  | Design methods for binary systems                                                            | 502        |
|    |       | 11.5.1 Basic equations                                                                       | 502        |
|    |       | 11.5.2 McCabe-Thiele method                                                                  | 504        |
|    |       | 11.5.3 Low product concentrations                                                            | 506        |
|    | 11.6  | 11.5.4 The Smoker equations Multicomponent distillation: general considerations              | 511<br>515 |
|    | 11.0  | 11.6.1 Key components                                                                        | 516        |
|    |       | 11.6.2 Number and sequencing of columns                                                      | 517        |
|    | 11.7  | Multicomponent distillation: short-cut methods for stage and reflux requirements             | 517        |
|    | 11.7  | 11.7.1 Pseudo-binary systems                                                                 | 518        |
|    |       | 11.7.2 Smith-Brinkley method                                                                 | 521        |
|    |       | 11.7.3 Empirical correlations                                                                | 523        |
|    |       | 11.7.4 Distribution of non-key components (graphical method)                                 | 526        |
|    | 11.8  | Multicomponent systems: rigorous solution procedures (computer methods)                      | 542        |
|    |       | 11.8.1 Lewis-Matheson method                                                                 | 543        |
|    |       | 11.8.2 Thiele-Geddes method                                                                  | 544        |
|    |       | 11.8.3 Relaxation methods                                                                    | 545        |
|    |       | 11.8.4 Linear algebra methods                                                                | 545        |
|    |       | Batch distillation                                                                           | 546        |
|    | 11.10 | Plate efficiency                                                                             | 546        |
|    |       | 11.10.1 Prediction of plate efficiency                                                       | 547        |
|    |       | 11.10.2 O'Connell's correlation                                                              | 548        |
|    |       | 11.10.3 Van Winkle's correlation                                                             | 551        |
|    |       | 11.10.4 AIChE method                                                                         | 551        |
|    | 11 11 | 11.10.5 Entrainment                                                                          | 555        |
|    |       | Approximate column sizing                                                                    | 556        |
|    | 11.12 | Plate contactors 11.12.1 Selection of plate type                                             | 556<br>559 |
|    |       | 11.12.1 Selection of plate type 11.12.2 Plate construction                                   | 560        |
|    | 11 13 | Plate hydraulic design                                                                       | 564        |
|    | 11.15 | 11.13.1 Plate-design procedure                                                               | 566        |
|    |       | 11.13.2 Plate areas                                                                          | 566        |
|    |       | 11.13.3 Diameter                                                                             | 566        |
|    |       | 11.13.4 Liquid-flow arrangement                                                              | 568        |
|    |       | 11.13.5 Entrainment                                                                          | 568        |
|    |       | 11.13.6 Weep point                                                                           | 568        |
|    |       | 11.13.7 Weir liquid crest                                                                    | 569        |
|    |       | 11.13.8 Weir dimensions                                                                      | 571        |
|    |       | 11.13.9 Perforated area                                                                      | 572        |
|    |       | 11.13.10 Hole size                                                                           | 572        |
|    |       | 11.13.11 Hole pitch                                                                          | 573        |
|    |       | 11.13.12 Hydraulic gradient                                                                  | 574        |
|    |       | 11.13.13 Liquid throw                                                                        | 574        |
|    |       | 11.13.14 Plate pressure drop                                                                 | 574        |
|    | 11.11 | 11.13.15 Downcomer design [back-up]                                                          | 575        |
|    | 11.14 | Packed columns                                                                               | 587        |
|    |       | 11.14.1 Types of packing                                                                     | 589<br>593 |
|    |       | 11.14.2 Packed-bed height 11.14.3 Prediction of the height of a transfer unit (HTU)          | 593<br>596 |
|    |       | 11.14.3 Prediction of the height of a transfer unit (HTU) 11.14.4 Column diameter (capacity) | 602        |

|    |              | CONTENTS                                                                       | xiii       |
|----|--------------|--------------------------------------------------------------------------------|------------|
|    |              | 11.14.5 Column internals                                                       | 609        |
|    |              | 11.14.6 Wetting rates                                                          | 615        |
|    |              | Column auxiliaries                                                             | 616        |
|    | 11.16        | Solvent extraction (liquid-liquid extraction) 11.16.1 Extraction equipment     | 616<br>617 |
|    |              | 11.16.1 Extraction equipment 11.16.2 Extractor design                          | 618        |
|    |              | 11.16.3 Extraction columns                                                     | 623        |
|    |              | 11.16.4 Supercritical fluid extraction                                         | 623        |
|    |              | References                                                                     | 624        |
|    |              | Nomenclature<br>Problems                                                       | 626<br>630 |
| 12 | Heat         | -transfer Equipment                                                            | 634        |
|    | 12.1         | Introduction                                                                   | 634        |
|    | 12.2         | Basic design procedure and theory                                              | 635        |
|    |              | 12.2.1 Heat exchanger analysis: the effectiveness–NTU method                   | 636        |
|    | 12.3         | Overall heat-transfer coefficient                                              | 636<br>638 |
|    | 12.4<br>12.5 | Fouling factors (dirt factors) Shell and tube exchangers: construction details | 640        |
|    | 12.3         | 12.5.1 Heat-exchanger standards and codes                                      | 644        |
|    |              | 12.5.2 Tubes                                                                   | 645        |
|    |              | 12.5.3 Shells                                                                  | 646        |
|    |              | 12.5.4 Tube-sheet layout (tube count)                                          | 647        |
|    |              | 12.5.5 Shell types (passes)                                                    | 649<br>649 |
|    |              | 12.5.6 Baffles 12.5.7 Support plates and tie rods                              | 652        |
|    |              | 12.5.7 Support plates and the rous 12.5.8 Tube sheets (plates)                 | 652        |
|    |              | 12.5.9 Shell and header nozzles (branches)                                     | 653        |
|    |              | 12.5.10 Flow-induced tube vibrations                                           | 654        |
|    | 12.6         | Mean temperature difference (temperature driving force)                        | 654        |
|    | 12.7         | Shell and tube exchangers: general design considerations                       | 659        |
|    |              | 12.7.1 Fluid allocation: shell or tubes 12.7.2 Shell and tube fluid velocities | 659<br>660 |
|    |              | 12.7.3 Stream temperatures                                                     | 660        |
|    |              | 12.7.4 Pressure drop                                                           | 660        |
|    |              | 12.7.5 Fluid physical properties                                               | 661        |
|    | 12.8         | Tube-side heat-transfer coefficient and pressure drop (single phase)           | 662        |
|    |              | 12.8.1 Heat transfer                                                           | 662        |
|    | 12.0         | 12.8.2 Tube-side pressure drop                                                 | 666<br>668 |
|    | 12.9         | Shell-side heat-transfer and pressure drop (single phase) 12.9.1 Flow pattern  | 668        |
|    |              | 12.9.2 Design methods                                                          | 670        |
|    |              | 12.9.3 Kern's method                                                           | 671        |
|    |              | 12.9.4 Bell's method                                                           | 690        |
|    |              | 12.9.5 Shell and bundle geometry                                               | 699        |
|    |              | 12.9.6 Effect of fouling on pressure drop                                      | 702<br>702 |
|    | 12 10        | 12.9.7 Pressure-drop limitations Condensers                                    | 706        |
|    | 12.10        | 12.10.1 Heat-transfer fundamentals                                             | 707        |
|    |              | 12.10.2 Condensation outside horizontal tubes                                  | 707        |
|    |              | 12.10.3 Condensation inside and outside vertical tubes                         | 708        |
|    |              | 12.10.4 Condensation inside horizontal tubes                                   | 713        |
|    |              | 12.10.5 Condensation of steam                                                  | 714        |
|    |              | 12.10.6 Mean temperature difference                                            | 714<br>714 |
|    |              | 12.10.7 Desuperheating and sub-cooling 12.10.8 Condensation of mixtures        | 716        |
|    |              | 12.10.8 Condensation of mixtures 12.10.9 Pressure drop in condensers           | 720        |
|    | 12.11        | Reboilers and vaporisers                                                       | 725        |
|    |              | 12.11.1 Boiling heat-transfer fundamentals                                     | 728        |
|    |              | 12.11.2 Pool boiling                                                           | 729        |

xiv CONTENTS

|    |       |          | Convective boiling                                                      | 732        |
|----|-------|----------|-------------------------------------------------------------------------|------------|
|    |       |          | Design of forced-circulation reboilers Design of thermosyphon reboilers | 737<br>738 |
|    |       |          | Design of kettle reboilers                                              | 730<br>747 |
|    | 12 12 |          | eat exchangers                                                          | 753        |
|    | 12.12 |          | Gasketed plate heat exchangers                                          | 753<br>753 |
|    |       |          | Welded plate                                                            | 761        |
|    |       |          | Plate-fin                                                               | 761        |
|    |       |          | Spiral heat exchangers                                                  | 762        |
|    | 12.13 |          | contact heat exchangers                                                 | 763        |
|    | 12.14 | Finned t | tubes                                                                   | 764        |
|    | 12.15 | Double-  | pipe heat exchangers                                                    | 765        |
|    | 12.16 | Air-coo  | led exchangers                                                          | 766        |
|    | 12.17 |          | eaters (furnaces and boilers)                                           | 766        |
|    |       |          | Basic construction                                                      | 767        |
|    |       |          | Design                                                                  | 768        |
|    |       |          | Heat transfer                                                           | 769        |
|    |       |          | Pressure drop Process-side heat transfer and pressure drop              | 771<br>771 |
|    |       | 12.17.5  | Stack design                                                            | 771        |
|    |       |          | Thermal efficiency                                                      | 772        |
|    | 12.18 |          | unsfer to vessels                                                       | 772        |
|    | 12.10 |          | Jacketed vessels                                                        | 772        |
|    |       |          | Internal coils                                                          | 774        |
|    |       | 12.18.3  | Agitated vessels                                                        | 775        |
|    | 12.19 | Referen  |                                                                         | 779        |
|    | 12.20 | Nomeno   | elature                                                                 | 783        |
|    | 12.21 | Problem  | ns                                                                      | 787        |
| 13 | Mec   | hanical  | Design of Process Equipment                                             | 791        |
| 10 | 13.1  | Introduc |                                                                         | 791        |
|    | 13.1  | 13.1.1   | Classification of pressure vessels                                      | 791<br>792 |
|    | 13.2  |          | e vessel codes and standards                                            | 792        |
|    | 13.3  |          | ental principles and equations                                          | 793        |
|    |       | 13.3.1   | Principal stresses                                                      | 793        |
|    |       | 13.3.2   | Theories of failure                                                     | 794        |
|    |       | 13.3.3   | Elastic stability                                                       | 795        |
|    |       | 13.3.4   | Membrane stresses in shells of revolution                               | 795        |
|    |       | 13.3.5   | Flat plates                                                             | 802        |
|    |       | 13.3.6   | Dilation of vessels                                                     | 806        |
|    | 12.4  | 13.3.7   | Secondary stresses                                                      | 806        |
|    | 13.4  | 13.4.1   | design considerations: pressure vessels                                 | . 807      |
|    |       | 13.4.1   | Design pressure Design temperature                                      | 807<br>807 |
|    |       | 13.4.3   | Materials                                                               | 808        |
|    |       | 13.4.4   | Design stress (nominal design strength)                                 | 808        |
|    |       | 13.4.5   | Welded joint efficiency, and construction categories                    | 809        |
|    |       | 13.4.6   | Corrosion allowance                                                     | 810        |
|    |       | 13.4.7   | Design loads                                                            | 811        |
|    |       | 13.4.8   | Minimum practical wall thickness                                        | 811        |
|    | 13.5  | The des  | ign of thin-walled vessels under internal pressure                      | 812        |
|    |       | 13.5.1   | Cylinders and spherical shells                                          | 812        |
|    |       | 13.5.2   | Heads and closures                                                      | 812        |
|    |       | 13.5.3   | Design of flat ends                                                     | 814        |
|    |       | 13.5.4   | Design of domed ends                                                    | 815        |
|    | 12.6  | 13.5.5   | Conical sections and end closures                                       | 816        |
|    | 13.6  |          | sation for openings and branches                                        | 819<br>822 |
|    | 13.7  | 13.7.1   | of vessels subject to external pressure Cylindrical shells              | 822<br>822 |
|    |       | 13.7.1   | Design of stiffness rings                                               | 822<br>825 |
|    |       | 10.1.4   | Design of suffices thigs                                                | 043        |
|    |       | 13.7.3   | Vessel heads                                                            | 826        |

| CONTENTS | ΧV |
|----------|----|
|----------|----|

| 1.       | 3.8         | Design of vessels subject to combined loading    | 828        |
|----------|-------------|--------------------------------------------------|------------|
|          |             | 13.8.1 Weight loads                              | 832        |
|          |             | 13.8.2 Wind loads (tall vessels)                 | 834        |
|          |             | 13.8.3 Earthquake loading                        | 837        |
|          |             | 13.8.4 Eccentric loads (tall vessels)            | 837        |
|          |             | 13.8.5 Torque                                    | 838        |
| 13       | 3.9         | Vessel supports                                  | 841        |
|          |             | 13.9.1 Saddle supports                           | 842        |
|          |             | 13.9.2 Skirt supports                            | 845        |
|          |             | 13.9.3 Bracket supports                          | 853        |
| 1.       | 3.10        | Bolt flanged joints                              | 855        |
|          |             | 13.10.1 Types of flange, and selection           | 855        |
|          |             | 13.10.2 Gaskets                                  | 856        |
|          |             | 13.10.3 Flange faces                             | 858        |
|          |             | 13.10.4 Flange design                            | 859        |
|          |             | 13.10.5 Standard flanges                         | 863        |
| 1′       | 3 11        | Heat-exchanger tube-plates                       | 864        |
|          |             | Welded joint design                              | 866        |
| 13       | 3 13        | Fatigue assessment of vessels                    | 869        |
|          |             | Pressure tests                                   | 869        |
|          |             | High-pressure vessels                            | 870        |
| 1.       | 5.15        | 13.15.1 Fundamental equations                    | 870        |
|          |             | 13.15.2 Compound vessels                         | 874        |
|          |             | 13.15.3 Autofrettage                             | 876        |
| 1.       | 2 16        |                                                  | 876<br>876 |
|          |             | Liquid storage tanks                             | 877<br>877 |
| 1,       | 3.17        | Mechanical design of centrifuges                 | 877        |
|          |             | 13.17.1 Centrifugal pressure                     |            |
| 1.       | 2 10        | 13.17.2 Bowl and spindle motion: critical speed  | 879        |
|          |             | References                                       | 881        |
|          |             | Nomenclature<br>Problems                         | 884<br>888 |
|          |             |                                                  |            |
| 14 G     | 3ene        | eral Site Considerations                         | 891        |
| 14       | 4.1         | Introduction                                     | 891        |
|          |             | Plant location and site selection                | 891        |
|          |             | Site layout                                      | 893        |
|          |             | Plant layout                                     | 895        |
| •        |             | 14.4.1 Techniques used in site and plant layout  | 896        |
| 14       | 4 5         | Utilities                                        | 899        |
|          |             | Environmental considerations                     | 901        |
| •        | 1.0         | 14.6.1 Waste management                          | 901        |
|          |             | 14.6.2 Noise                                     | 904        |
|          |             | 14.6.3 Visual impact                             | 904        |
|          |             | 14.6.4 Legislation                               | 904        |
|          |             | 14.6.5 Environmental auditing                    | 905        |
| 1,       | 4.7         | References                                       | 906        |
| 1-       | <b>T.</b> / | Retrictes                                        | 700        |
| APPEND   | ых А        | : Graphical Symbols for Piping Systems and Plant | 908        |
| A poesio | D           | : A SIMPLE FLOW-SHEETING PROGRAM MASSBAL         | 917        |
|          |             |                                                  |            |
| APPEND   | oix C       | : Corrosion Chart                                | 927        |
| APPEND   | oix D       | : Physical Property Data Bank                    | 947        |
| APPEND   | ых Е        | : Conversion Factors for Some Common SI Units    | 968        |
|          | T           | : Standard Flanges                               | 970        |

| xvi | CONTENTS |
|-----|----------|
| (VI | CONTENTS |

| Appendix G: Design Projects                                          | 975  |
|----------------------------------------------------------------------|------|
| APPENDIX H: EQUIPMENT SPECIFICATION (DATA) SHEETS                    | 1000 |
| APPENDIX I: ENRGYBAL A SIMPLE ENERGY BALANCE PROGRAM                 | 1012 |
| APPENDIX J: TYPICAL SHELL AND TUBE HEAT EXCHANGER TUBE-SHEET LAYOUTS | 1016 |
| AUTHOR INDEX                                                         | 1021 |
| Subject Index                                                        | 1031 |

#### CHAPTER 1

# Introduction to Design

#### 1.1. INTRODUCTION

This chapter is an introduction to the nature and methodology of the design process, and its application to the design of chemical manufacturing processes.

#### 1.2. NATURE OF DESIGN

This section is a general, somewhat philosophical, discussion of the design process; how a designer works. The subject of this book is chemical engineering design, but the methodology of design described in this section applies equally to other branches of engineering design.

Design is a creative activity, and as such can be one of the most rewarding and satisfying activities undertaken by an engineer. It is the synthesis, the putting together, of ideas to achieve a desired purpose. The design does not exist at the commencement of the project. The designer starts with a specific objective in mind, a need, and by developing and evaluating possible designs, arrives at what he considers the best way of achieving that objective; be it a better chair, a new bridge, or for the chemical engineer, a new chemical product or a stage in the design of a production process.

When considering possible ways of achieving the objective the designer will be constrained by many factors, which will narrow down the number of possible designs; but, there will rarely be just one possible solution to the problem, just one design. Several alternative ways of meeting the objective will normally be possible, even several best designs, depending on the nature of the constraints.

These constraints on the possible solutions to a problem in design arise in many ways. Some constraints will be fixed, invariable, such as those that arise from physical laws, government regulations, and standards. Others will be less rigid, and will be capable of relaxation by the designer as part of his general strategy in seeking the best design. The constraints that are outside the designer's influence can be termed the external constraints. These set the outer boundary of possible designs; as shown in Figure 1.1. Within this boundary there will be a number of plausible designs bounded by the other constraints, the internal constraints, over which the designer has some control; such as, choice of process, choice of process conditions, materials, equipment.

Economic considerations are obviously a major constraint on any engineering design: plants must make a profit.

Time will also be a constraint. The time available for completion of a design will usually limit the number of alternative designs that can be considered.

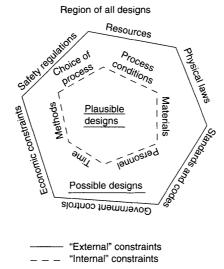



Figure 1.1. Design constraints

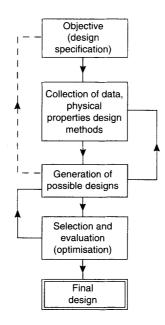



Figure 1.2. The design process

The stages in the development of a design, from the initial identification of the objective to the final design, are shown diagrammatically in Figure 1.2. Each stage is discussed in the following sections.

Figure 1.2 shows design as an iterative procedure; as the design develops the designer will be aware of more possibilities and more constraints, and will be constantly seeking new data and ideas, and evaluating possible design solutions.

#### 1.2.1. The design objective (the need)

Chaddock (1975) defined design as, the conversion of an ill-defined requirement into a satisfied customer.

The designer is creating a design for an article, or a manufacturing process, to fulfil a particular need. In the design of a chemical process, the need is the public need for the product, the commercial opportunity, as foreseen by the sales and marketing organisation. Within this overall objective the designer will recognise sub-objectives; the requirements of the various units that make up the overall process.

Before starting work the designer should obtain as complete, and as unambiguous, a statement of the requirements as possible. If the requirement (need) arises from outside the design group, from a client or from another department, then he will have to elucidate the real requirements through discussion. It is important to distinguish between the real needs and the wants. The wants are those parts of the initial specification that may be thought desirable, but which can be relaxed if required as the design develops. For example, a particular product specification may be considered desirable by the sales department, but may be difficult and costly to obtain, and some relaxation of the specification may be possible, producing a saleable but cheaper product. Whenever he is in a position to do so, the designer should always question the design requirements (the project and equipment specifications) and keep them under review as the design progresses.

Where he writes specifications for others, such as for the mechanical design or purchase of a piece of equipment, he should be aware of the restrictions (constraints) he is placing on other designers. A tight, well-thought-out, comprehensive, specification of the requirements defines the external constraints within which the other designers must work.

#### 1.2.2. Data collection

To proceed with a design, the designer must first assemble all the relevant facts and data required. For process design this will include information on possible processes, equipment performance, and physical property data. This stage can be one of the most time consuming, and frustrating, aspects of design. Sources of process information and physical properties are reviewed in Chapter 8.

Many design organisations will prepare a basic data manual, containing all the process "know-how" on which the design is to be based. Most organisations will have design manuals covering preferred methods and data for the more frequently used, routine, design procedures.

The national standards are also sources of design methods and data; they are also design constraints.

The constraints, particularly the external constraints, should be identified early in the design process.

#### 1.2.3. Generation of possible design solutions

The creative part of the design process is the generation of possible solutions to the problem (ways of meeting the objective) for analysis, evaluation and selection. In this activity the designer will largely rely on previous experience, his own and that of others.

It is doubtful if any design is entirely novel. The antecedence of most designs can usually be easily traced. The first motor cars were clearly horse-drawn carriages without the horse; and the development of the design of the modern car can be traced step by step from these early prototypes. In the chemical industry, modern distillation processes have developed from the ancient stills used for rectification of spirits; and the packed columns used for gas absorption have developed from primitive, brushwood-packed towers. So, it is not often that a process designer is faced with the task of producing a design for a completely novel process or piece of equipment.

The experienced engineer will wisely prefer the tried and tested methods, rather than possibly more exciting but untried novel designs. The work required to develop new processes, and the cost, is usually underestimated. Progress is made more surely in small steps. However, whenever innovation is wanted, previous experience, through prejudice, can inhibit the generation and acceptance of new ideas; the "not invented here" syndrome.

The amount of work, and the way it is tackled, will depend on the degree of novelty in a design project.

Chemical engineering projects can be divided into three types, depending on the novelty involved:

- 1. Modifications, and additions, to existing plant; usually carried out by the plant design group.
- 2. New production capacity to meet growing sales demand, and the sale of established processes by contractors. Repetition of existing designs, with only minor design changes.
- 3. New processes, developed from laboratory research, through pilot plant, to a commercial process. Even here, most of the unit operations and process equipment will use established designs.

The first step in devising a new process design will be to sketch out a rough block diagram showing the main stages in the process; and to list the primary function (objective) and the major constraints for each stage. Experience should then indicate what types of unit operations and equipment should be considered.

Jones (1970) discusses the methodology of design, and reviews some of the special techniques, such as brainstorming sessions and synectics, that have been developed to help generate ideas for solving intractable problems. A good general reference on the art of problem solving is the classical work by Polya (1957); see also Chittenden (1987). Some techniques for problem solving in the Chemical Industry are covered in a short text by Casey and Frazer (1984).

The generation of ideas for possible solutions to a design problem cannot be separated from the selection stage of the design process; some ideas will be rejected as impractical as soon as they are conceived.

#### 1.2.4. Selection

The designer starts with the set of all possible solutions bounded by the external constraints, and by a process of progressive evaluation and selection, narrows down the range of candidates to find the "best" design for the purpose.

The selection process can be considered to go through the following stages:

Possible designs (credible) — within the external constraints.

Plausible designs (feasible) — within the internal constraints.

Probable designs - likely candidates.

Best design (optimum) — judged the best solution to the problem.

The selection process will become more detailed and more refined as the design progresses from the area of possible to the area of probable solutions. In the early stages a coarse screening based on common sense, engineering judgement, and rough costings will usually suffice. For example, it would not take many minutes to narrow down the choice of raw materials for the manufacture of ammonia from the possible candidates of, say, wood, peat, coal, natural gas, and oil, to a choice of between gas and oil, but a more detailed study would be needed to choose between oil and gas. To select the best design from the probable designs, detailed design work and costing will usually be necessary. However, where the performance of candidate designs is likely to be close the cost of this further refinement, in time and money, may not be worthwhile, particularly as there will usually be some uncertainty in the accuracy of the estimates.

The mathematical techniques that have been developed to assist in the optimisation of designs, and plant performance, are discussed briefly in Section 1.10.

Rudd and Watson (1968) and Wells (1973) describe formal techniques for the preliminary screening of alternative designs.

# 1.3. THE ANATOMY OF A CHEMICAL MANUFACTURING PROCESS

The basic components of a typical chemical process are shown in Figure 1.3, in which each block represents a stage in the overall process for producing a product from the raw materials. Figure 1.3 represents a generalised process; not all the stages will be needed for any particular process, and the complexity of each stage will depend on the nature of the process. Chemical engineering design is concerned with the selection and arrangement of the stages, and the selection, specification and design of the equipment required to perform the stage functions.

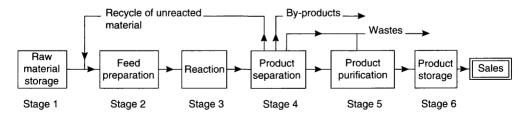



Figure 1.3. Anatomy of a chemical process

#### Stage 1. Raw material storage

Unless the raw materials (also called essential materials, or feed stocks) are supplied as intermediate products (intermediates) from a neighbouring plant, some provision will

have to be made to hold several days, or weeks, storage to smooth out fluctuations and interruptions in supply. Even when the materials come from an adjacent plant some provision is usually made to hold a few hours, or even days, supply to decouple the processes. The storage required will depend on the nature of the raw materials, the method of delivery, and what assurance can be placed on the continuity of supply. If materials are delivered by ship (tanker or bulk carrier) several weeks stocks may be necessary; whereas if they are received by road or rail, in smaller lots, less storage will be needed.

#### Stage 2. Feed preparation

Some purification, and preparation, of the raw materials will usually be necessary before they are sufficiently pure, or in the right form, to be fed to the reaction stage. For example, acetylene generated by the carbide process contains arsenical and sulphur compounds, and other impurities, which must be removed by scrubbing with concentrated sulphuric acid (or other processes) before it is sufficiently pure for reaction with hydrochloric acid to produce dichloroethane. Liquid feeds will need to be vaporised before being fed to gasphase reactors, and solids may need crushing, grinding and screening.

#### Stage 3. Reactor

The reaction stage is the heart of a chemical manufacturing process. In the reactor the raw materials are brought together under conditions that promote the production of the desired product; invariably, by-products and unwanted compounds (impurities) will also be formed.

#### Stage 4. Product separation

In this first stage after the reactor the products and by-products are separated from any unreacted material. If in sufficient quantity, the unreacted material will be recycled to the reactor. They may be returned directly to the reactor, or to the feed purification and preparation stage. The by-products may also be separated from the products at this stage.

#### Stage 5. Purification

Before sale, the main product will usually need purification to meet the product specification. If produced in economic quantities, the by-products may also be purified for sale.

#### Stage 6. Product storage

Some inventory of finished product must be held to match production with sales. Provision for product packaging and transport will also be needed, depending on the nature of the product. Liquids will normally be dispatched in drums and in bulk tankers (road, rail and sea), solids in sacks, cartons or bales.

The stock held will depend on the nature of the product and the market.

#### Ancillary processes

In addition to the main process stages shown in Figure 1.3, provision will have to be made for the supply of the services (utilities) needed; such as, process water, cooling

water, compressed air, steam. Facilities will also be needed for maintenance, firefighting, offices and other accommodation, and laboratories; see Chapter 14.

#### 1.3.1. Continuous and batch processes

Continuous processes are designed to operate 24 hours a day, 7 days a week, throughout the year. Some down time will be allowed for maintenance and, for some processes, catalyst regeneration. The plant attainment; that is, the percentage of the available hours in a year that the plant operates, will usually be 90 to 95%.

Attainment 
$$\% = \frac{\text{hours operated}}{8760} \times 100$$

Batch processes are designed to operate intermittently. Some, or all, the process units being frequently shut down and started up.

Continuous processes will usually be more economical for large scale production. Batch processes are used where some flexibility is wanted in production rate or product specification.

#### Choice of continuous versus batch production

The choice between batch or continuous operation will not be clear cut, but the following rules can be used as a guide.

#### Continuous

- 1. Production rate greater than  $5 \times 10^6$  kg/h
- 2. Single product
- 3. No severe fouling
- 4. Good catalyst life
- 5. Proven processes design
- 6. Established market

#### Batch

- 1. Production rate less than  $5 \times 10^6$  kg/h
- 2. A range of products or product specifications
- 3. Severe fouling
- 4. Short catalyst life
- 5. New product
- 6. Uncertain design

# 1.4. THE ORGANISATION OF A CHEMICAL ENGINEERING PROJECT

The design work required in the engineering of a chemical manufacturing process can be divided into two broad phases.

*Phase 1.* Process design, which covers the steps from the initial selection of the process to be used, through to the issuing of the process flow-sheets; and includes the selection,

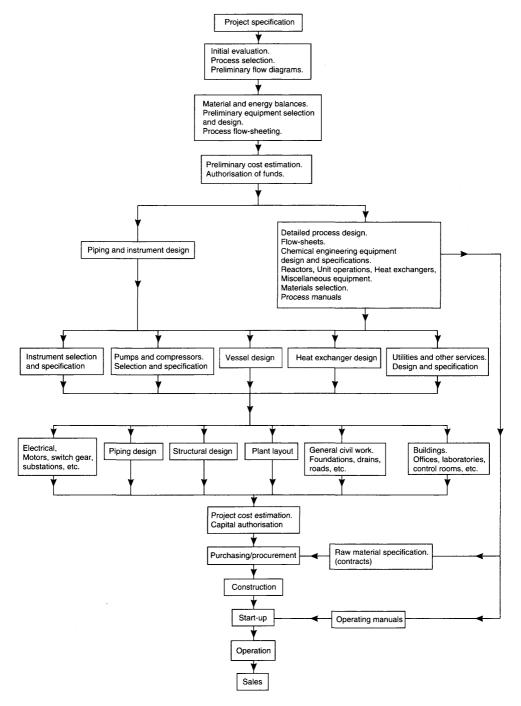



Figure 1.4. The structure of a chemical engineering project

specification and chemical engineering design of equipment. In a typical organisation, this phase is the responsibility of the Process Design Group, and the work will be mainly done by chemical engineers. The process design group may also be responsible for the preparation of the piping and instrumentation diagrams.

Phase 2. The detailed mechanical design of equipment; the structural, civil and electrical design; and the specification and design of the ancillary services. These activities will be the responsibility of specialist design groups, having expertise in the whole range of engineering disciplines.

Other specialist groups will be responsible for cost estimation, and the purchase and procurement of equipment and materials.

The sequence of steps in the design, construction and start-up of a typical chemical process plant is shown diagrammatically in Figure 1.4 and the organisation of a typical project group in Figure 1.5. Each step in the design process will not be as neatly separated from the others as is indicated in Figure 1.4; nor will the sequence of events be as clearly defined. There will be a constant interchange of information between the various design sections as the design develops, but it is clear that some steps in a design must be largely completed before others can be started.

A project manager, often a chemical engineer by training, is usually responsible for the co-ordination of the project, as shown in Figure 1.5.

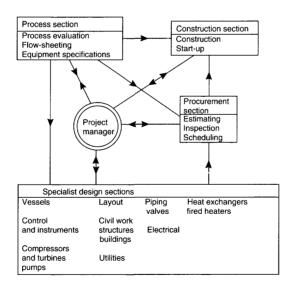



Figure 1.5. Project organisation

As was stated in Section 1.2.1, the project design should start with a clear specification defining the product, capacity, raw materials, process and site location. If the project is based on an established process and product, a full specification can be drawn up at the start of the project. For a new product, the specification will be developed from an economic evaluation of possible processes, based on laboratory research, pilot plant tests and product market research.

The organisation of chemical process design is discussed in more detail by Rase and Barrow (1964) and Baasel (1974).

Some of the larger chemical manufacturing companies have their own project design organisations and carry out the whole project design and engineering, and possibly construction, within their own organisation. More usually the design and construction, and possibly assistance with start-up, is entrusted to one of the international contracting firms.

The operating company will often provide the "know-how" for the process, and will work closely with the contractor throughout all stages of the project.

#### 1.5. PROJECT DOCUMENTATION

As shown in Figure 1.5 and described in Section 1.4, the design and engineering of a chemical process requires the co-operation of many specialist groups. Effective cooperation depends on effective communications, and all design organisations have formal procedures for handling project information and documentation. The project documentation will include:

1. General correspondence within the design group and with:

government departments equipment vendors site personnel

the client

design calculations 2. Calculation sheets

costing

computer print-out

3. Drawings flow-sheets

piping and instrumentation diagrams

layout diagrams plot/site plans equipment details piping diagrams architectural drawings

design sketches

for equipment, such as: 4. Specification sheets

heat exchangers

pumps

5. Purchase orders quotations

invoices

All documents should be assigned a code number for easy cross referencing, filing and retrieval.

#### Calculation sheets

The design engineer should develop the habit of setting out calculations so that they can be easily understood and checked by others. It is good practice to include on calculation

sheets the basis of the calculations, and any assumptions and approximations made, in sufficient detail for the methods, as well as the arithmetic, to be checked. Design calculations are normally set out on standard sheets. The heading at the top of each sheet should include: the project title and identification number and, most importantly, the signature (or initials) of the person who checked the calculation.

#### Drawings

All project drawings are normally drawn on specially printed sheets, with the company name; project title and number; drawing title and identification number; draughtsman's name and person checking the drawing; clearly set out in a box in the bottom right-hand corner. Provision should also be made for noting on the drawing all modifications to the initial issue.

Drawings should conform to accepted drawing conventions, preferably those laid down by the national standards, BS 308. The symbols used for flow-sheets and piping and instrument diagrams are discussed in Chapter 4. Drawings and sketches are normally made on detail paper (semi-transparent) in pencil, so modifications can be easily made, and prints taken.

In most design offices, increasing use is being made of Computer Aided Design (CAD) methods to produce the drawings required for all the aspects of a project: flow-sheets, piping and instrumentation, mechanical and civil work.

#### Specification sheets

Standard specification sheets are normally used to transmit the information required for the detailed design, or purchase, of equipment items; such as, heat exchangers, pumps, columns.

As well as ensuring that the information is clearly and unambiguously presented, standard specification sheets serve as check lists to ensure that all the information required is included.

Examples of equipment specification sheets are given in Appendix H.

#### Process manuals

Process manuals are often prepared by the process design group to describe the process and the basis of the design. Together with the flow-sheets, they provide a complete technical description of the process.

#### Operating manuals

Operating manuals give the detailed, step by step, instructions for operation of the process and equipment. They would normally be prepared by the operating company personnel, but may also be issued by a contractor as part of the contract package for a less experienced client. The operating manuals would be used for operator instruction and training, and for the preparation of the formal plant operating instructions.

#### 1.6. CODES AND STANDARDS

The need for standardisation arose early in the evolution of the modern engineering industry; Whitworth introduced the first standard screw thread to give a measure of interchangeability between different manufacturers in 1841. Modern engineering standards cover a much wider function than the interchange of parts. In engineering practice they cover:

- 1. Materials, properties and compositions.
- 2. Testing procedures for performance, compositions, quality.
- 3. Preferred sizes; for example, tubes, plates, sections.
- 4. Design methods, inspection, fabrication.
- 5. Codes of practice, for plant operation and safety.

The terms STANDARD and CODE are used interchangeably, though CODE should really be reserved for a code of practice covering say, a recommended design or operating procedure; and STANDARD for preferred sizes, compositions, etc.

All of the developed countries, and many of the developing countries, have national standards organisations, responsible for the issue and maintenance of standards for the manufacturing industries, and for the protection of consumers. In the United Kingdom preparation and promulgation of national standards are the responsibility of the British Standards Institution (BSI). The Institution has a secretariat and a number of technical personnel, but the preparation of the standards is largely the responsibility of committees of persons from the appropriate industry, the professional engineering institutions and other interested organisations.

In the United States the government organisation responsible for coordinating information on standards is the National Bureau of Standards; standards are issued by Federal, State and various commercial organisations. The principal ones of interest to chemical engineers are those issued by the American National Standards Institute (ANSI), the American Petroleum Institute (API), the American Society for Testing Materials (ASTM), and the American Society of Mechanical Engineers (ASME) (pressure vessels). Burklin (1979) gives a comprehensive list of the American codes and standards.

The International Organisation for Standardisation (ISO) coordinates the publication of international standards.

In this book reference is made to the appropriate British Standard where relevant. All the published standards are listed, and their scope and application described, in the *British Standards Institute Catalogue*; which the designer should consult.

As well as the various national standards and codes, the larger design organisations will have their own (in-house) standards. Much of the detail in engineering design work is routine and repetitious, and it saves time and money, and ensures a conformity between projects, if standard designs are used whenever practicable.

Equipment manufacturers also work to standards to produce standardised designs and size ranges for commonly used items; such as electric motors, pumps, pipes and pipe fittings. They will conform to national standards, where they exist, or to those issued by trade associations. It is clearly more economic to produce a limited range of standard sizes than to have to treat each order as a special job.

For the designer, the use of a standardised component size allows for the easy integration of a piece of equipment into the rest of the plant. For example, if a standard range of centrifugal pumps is specified the pump dimensions will be known, and this facilitates the design of the foundations plates, pipe connections and the selection of the drive motors: standard electric motors would be used.

For an operating company, the standardisation of equipment designs and sizes increases interchangeability and reduces the stock of spares that have to be held in maintenance stores.

Though there are clearly considerable advantages to be gained from the use of standards in design, there are also some disadvantages. Standards impose constraints on the designer. The nearest standard size will normally be selected on completing a design calculation (rounding-up) but this will not necessarily be the optimum size; though as the standard size will be cheaper than a special size, it will usually be the best choice from the point of view of initial capital cost. Standard design methods must, of their nature, be historical, and do not necessarily incorporate the latest techniques.

The use of standards in design is illustrated in the discussion of the pressure vessel design standards (codes) in Chapter 13.

#### 1.7. FACTORS OF SAFETY (DESIGN FACTORS)

Design is an inexact art; errors and uncertainties will arise from uncertainties in the design data available and in the approximations necessary in design calculations. To ensure that the design specification is met, factors are included to give a margin of safety in the design; safety in the sense that the equipment will not fail to perform satisfactorily, and that it will operate safely: will not cause a hazard. "Design factor" is a better term to use, as it does not confuse safety and performance factors.

In mechanical and structural design, the magnitude of the design factors used to allow for uncertainties in material properties, design methods, fabrication and operating loads are well established. For example, a factor of around 4 on the tensile strength, or about 2.5 on the 0.1 per cent proof stress, is normally used in general structural design. The selection of design factors in mechanical engineering design is illustrated in the discussion of pressure vessel design in Chapter 13.

Design factors are also applied in process design to give some tolerance in the design. For example, the process stream average flows calculated from material balances are usually increased by a factor, typically 10 per cent, to give some flexibility in process operation. This factor will set the maximum flows for equipment, instrumentation, and piping design. Where design factors are introduced to give some contingency in a process design, they should be agreed within the project organisation, and clearly stated in the project documents (drawings, calculation sheets and manuals). If this is not done, there is a danger that each of the specialist design groups will add its own "factor of safety"; resulting in gross, and unnecessary, over-design.

When selecting the design factor to use a balance has to be made between the desire to make sure the design is adequate and the need to design to tight margins to remain competitive. The greater the uncertainty in the design methods and data, the bigger the design factor that must be used.

#### 1.8. SYSTEMS OF UNITS

To be consistent with the other volumes in this series, SI units have been used in this book. However, in practice the design methods, data and standards which the designer will use are often only available in the traditional scientific and engineering units. Chemical engineering has always used a diversity of units; embracing the scientific CGS and MKS systems, and both the American and British engineering systems. Those engineers in the older industries will also have had to deal with some bizarre traditional units; such as degrees Twaddle (density) and barrels for quantity. Desirable as it may be for industry world-wide to adopt one consistent set of units, such as SI, this is unlikely to come about for many years, and the designer must contend with whatever system, or combination of systems, his organisation uses. For those in the contracting industry this will also mean working with whatever system of units the client requires.

It is usually the best practice to work through design calculations in the units in which the result is to be presented; but, if working in SI units is preferred, data can be converted to SI units, the calculation made, and the result converted to whatever units are required. Conversion factors to the SI system from most of the scientific and engineering units used in chemical engineering design are given in Appendix E.

Some license has been taken in the use of the SI system in this volume. Temperatures are given in degrees Celsius (°C); degrees Kelvin are only used when absolute temperature is required in the calculation. Pressures are often given in bar (or atmospheres) rather than in the Pascals (N/m²), as this gives a better feel for the magnitude of the pressures. In technical calculations the bar can be taken as equivalent to an atmosphere, whatever definition is used for atmosphere. The abbreviations bara and barg are often used to denote bar absolute and bar gauge; analogous to psia and psig when the pressure is expressed in pound force per square inch. When bar is used on its own, without qualification, it is normally taken as absolute.

For stress, N/mm<sup>2</sup> have been used, as these units are now generally accepted by engineers, and the use of a small unit of area helps to indicate that stress is the intensity of force at a point (as is also pressure). For quantity, kmol are generally used in preference to mol, and for flow, kmol/h instead of mol/s, as this gives more sensibly sized figures, which are also closer to the more familiar lb/h.

For volume and volumetric flow, m<sup>3</sup> and m<sup>3</sup>/h are used in preference to m<sup>3</sup>/s, which gives ridiculously small values in engineering calculations. Litres per second are used for small flow-rates, as this is the preferred unit for pump specifications.

Where, for convenience, other than SI units have been used on figures or diagrams, the scales are also given in SI units, or the appropriate conversion factors are given in the text. The answers to some examples are given in British engineering units as well as SI, to help illustrate the significance of the values.

Some approximate conversion factors to SI units are given in Table 1.1. These are worth committing to memory, to give some feel for the units for those more familiar with the traditional engineering units. The exact conversion factors are also shown in the table. A more comprehensive table of conversion factors is given in Appendix E.

Engineers need to be aware of the difference between US gallons and imperial gallons (UK) when using American literature and equipment catalogues. Equipment quoted in an

| Quantity               | British<br>Eng. unit                                   | SI unit approx.                                                  | exact                   |
|------------------------|--------------------------------------------------------|------------------------------------------------------------------|-------------------------|
| Energy                 | 1 Btu                                                  | 1 kJ                                                             | 1.05506                 |
| Specific enthalpy      | 1 Btu/lb                                               | 2 kJ/kg                                                          | 2.326                   |
| Specific heat capacity | 1 Btu/lb°F<br>(CHU/lb°C)                               | 4 kJ/kg°C                                                        | 4.1868                  |
| Heat transfer coeff.   | 1 Btu/ft <sup>2</sup> h°F<br>(CHU/ft <sup>2</sup> h°C) | 6 W/m <sup>2</sup> °C                                            | 5.678                   |
| Viscosity              | 1 centipoise<br>1 lb <sub>f</sub> /ft h                | 1 mNs/m <sup>2</sup><br>0.4 mNs/m <sup>2</sup>                   | 1.000<br>0.4134         |
| Surface tension        | 1 dyne/cm                                              | 1 mN/m                                                           | 1.000                   |
| Pressure               | 1 lb <sub>f</sub> /in <sup>2</sup><br>1 atm            | 7 kN/m <sup>2</sup><br>1 bar<br>10 <sup>5</sup> N/m <sup>2</sup> | 6.894<br>1.01325        |
| Density                | 1 lb/ft <sup>3</sup><br>1 g/cm <sup>3</sup>            | 16 kg/m <sup>3</sup><br>1 kg/m <sup>3</sup>                      | 16.0190                 |
| Volume                 | 1 imp gal.                                             | $4.5 \times 10^{-3} \text{ m}^3$                                 | $4.5461 \times 10^{-3}$ |
| Flow-rate              | 1 imp gal/m                                            | $16 \text{ m}^3/\text{h}$                                        | 16.366                  |

Table 1.1. Approximate conversion units

Note:

American catalogue in US gallons or gpm (gallons per minute) will have only 80 per cent of the rated capacity when measured in imperial gallons.

The electrical supply frequency in these two countries is also different: 60 Hz in the US and 50 Hz in the UK. So a pump specified as 50 gpm (US gallons), running at 1750 rpm (revolutions per second) in the US would only deliver 35 imp gpm if operated in the UK; where the motor speed would be reduced to 1460 rpm: so beware.

# 1.9. DEGREES OF FREEDOM AND DESIGN VARIABLES. THE MATHEMATICAL REPRESENTATION OF THE DESIGN PROBLEM

In Section 1.2 it was shown that the designer in seeking a solution to a design problem works within the constraints inherent in the particular problem.

In this section the structure of design problems is examined by representing the general design problem in a mathematical form.

#### 1.9.1. Information flow and design variables

A process unit in a chemical process plant performs some operation on the inlet material streams to produce the desired outlet streams. In the design of such a unit the design calculations model the operation of the unit. A process unit and the design equations

<sup>1</sup> US gallon = 0.84 imperial gallons (UK)

<sup>1</sup> barrel (oil) = 50 US gall  $\approx 0.19 \text{ m}^3 \text{ (exact } 0.1893)$ 

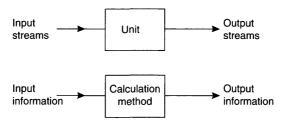



Figure 1.6. The "design unit"

representing the unit are shown diagrammatically in Figure 1.6. In the "design unit" the flow of material is replaced by a flow of information into the unit and a flow of derived information from the unit.

The information flows are the values of the variables which are involved in the design; such as, stream compositions, temperatures, pressure, stream flow-rates, and stream enthalpies. Composition, temperature and pressure are intensive variables: independent of the quantity of material (flow-rate). The constraints on the design will place restrictions on the possible values that these variables can take. The values of some of the variables will be fixed directly by process specifications. The values of other variables will be determined by "design relationships" arising from constraints. Some of the design relationships will be in the form of explicit mathematical equations (design equations); such as those arising from material and energy balances, thermodynamic relationships, and equipment performance parameters. Other relationships will be less precise; such as those arising from the use of standards and preferred sizes, and safety considerations.

The difference between the number of variables involved in a design and the number of design relationships has been called the number of "degrees of freedom"; similar to the use of the term in the phase rule. The number of variables in the system is analogous to the number of variables in a set of simultaneous equations, and the number of relationships analogous to the number of equations. The difference between the number of variables and equations is called the variance of the set of equations.

If  $N_v$  is the number of possible variables in a design problem and  $N_r$  the number of design relationships, then the "degrees of freedom"  $N_d$  is given by:

$$N_d = N_v - N_r \tag{1.1}$$

 $N_d$  represents the freedom that the designer has to manipulate the variables to find the best design.

If  $N_v = N_r$ ,  $N_d = 0$  and there is only one, unique, solution to the problem. The problem is not a true design problem, no optimisation is possible.

If  $N_v < N_r$ ,  $N_d < 0$ , and the problem is over defined; only a trivial solution is possible. If  $N_v > N_r$ ,  $N_d > 0$ , and there is an infinite number of possible solutions. However, for a practical problem there will be only a limited number of feasible solutions. The value of  $N_d$  is the number of variables which the designer must assign values to solve the problem.

How the number of process variables, design relationships, and design variables defines a system can be best illustrated by considering the simplest system; a single-phase, process stream.

#### Process stream

Consider a single-phase stream, containing C components.

| Variable                              | Number           |
|---------------------------------------|------------------|
| Stream flow-rate                      | 1                |
| Composition (component concentrations | c) C             |
| Temperature                           | 1                |
| Pressure                              | 1                |
| Stream enthalpy                       | 1                |
| Total                                 | $1, N_v = C + 4$ |
| Relationships between variables       | Number           |
| Composition <sup>(1)</sup>            | 1                |
| Enthalpy <sup>(2)</sup>               | 1                |
| To                                    | otal, $N_r = 2$  |

Degrees of freedom 
$$N_d = N_v - N_r = (C+4) - 2 = \underline{C+2}$$

- (1) The sum of the mass or mol, fractions, must equal one.
- (2) The enthalpy is a function of stream composition, temperature and pressure.

Specifying (C + 2) variables completely defines the stream.

#### Flash distillation

The idea of degrees of freedom in the design process can be further illustrated by considering a simple process unit, a flash distillation. (For a description of flash distillation see Volume 2, Chapter 11).

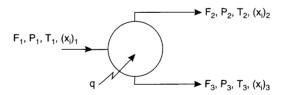



Figure 1.7. Flash distillation

The unit is shown in Figure 1.7, where:

F = stream flow rate,

P = pressure,

T = temperature,

 $x_i = \text{concentration}, \text{ component } i,$ 

q = heat input.

Suffixes, 1 = inlet, 2 = outlet vapour, 3 = outlet liquid.

| Variable                                     | Number         |
|----------------------------------------------|----------------|
| Streams (free variables) <sup>(1)</sup>      | $3(C+2)^{1}$   |
| Still                                        |                |
| pressure                                     | 1              |
| temperature                                  | 1              |
| heat input                                   | 1              |
|                                              | $N_r = 3C + 9$ |
| Relationship                                 | Number         |
| Material balances (each component)           | C              |
| Heat balance, overall                        | 1              |
| v-l-e relationships <sup>(2)</sup>           | C              |
| Equilibrium still restriction <sup>(3)</sup> | 4              |
|                                              | 2C + 5         |

Degrees of freedom 
$$N_d = (3C + 9) - (2C + 5) = C + 4$$

(1) The degrees of freedom for each stream. The total variables in each stream could have been used, and the stream relationships included in the count of relationships.

This shows how the degrees of freedom for a complex unit can be built up from the degrees of freedom of its components. For more complex examples see Kwauk (1956).

- (2) Given the temperature and pressure, the concentration of any component in the vapour phase can be obtained from the concentration in the liquid phase, from the vapour-liquid equilibrium data for the system.
- (3) The concept (definition) of an equilibrium separation implies that the outlet streams and the still are at the same temperature and pressure. This gives four equations:

$$P_2 = P_3 = P$$
$$T_2 = T_3 = T$$

Though the total degrees of freedom is seen to be (C+4) some of the variables will normally be fixed by general process considerations, and will not be free for the designer to select as "design variables". The flash distillation unit will normally be one unit in a process system and the feed composition and feed conditions will be fixed by the upstream processes; the feed will arise as an outlet stream from some other unit. Defining the feed fixes (C+2) variables, so the designer is left with:

$$(C+4)-(C+2)=2$$

as design variables.

#### Summary

The purpose of this discussion was to show that in a design there will be a certain number of variables that the designer must specify to define the problem, and which he can manipulate to seek the best design. In manual calculations the designer will rarely need to calculate the degrees of freedom in a formal way. He will usually have intuitive feel for the problem, and can change the calculation procedure, and select the design variables, as he works through the design. He will know by experience if the problem is correctly specified. A computer, however, has no intuition, and for computer-aided design calculations it is essential to ensure that the necessary number of variables is specified to define the problem correctly. For complex processes the number of variables and relating equations will be very large, and the calculation of the degrees of freedom very involved. Kwauk (1956) has shown how the degrees of freedom can be calculated for separation processes by building up the complex unit from simpler units. Smith (1963) uses Kwauk's method, and illustrates how the idea of "degrees of freedom" can be used in the design of separation processes.

#### 1.9.2. Selection of design variables

In setting out to solve a design problem the designer has to decide which variables are to be chosen as "design variables"; the ones he will manipulate to produce the best design. The choice of design variables is important; careful selection can simplify the design calculations. This can be illustrated by considering the choice of design variables for a simple binary flash distillation.

For a flash distillation the total degrees of freedom was shown to be (C+4), so for two components  $N_d=6$ . If the feed stream flow, composition, temperature and pressure are fixed by upstream conditions, then the number of design variables will be:

$$N'_d = 6 - (C+2) = 6 - 4 = 2$$

So the designer is free to select two variables from the remaining variables in order to proceed with the calculation of the outlet stream compositions and flows.

If he selects the still pressure (which for a binary system will determine the vapour—liquid-equilibrium relationship) and one outlet stream flow-rate, then the outlet compositions can be calculated by simultaneous solution of the mass balance and equilibrium relationships (equations). A graphical method for the simultaneous solution is given in Volume 2, Chapter 11.

However, if he selects an outlet stream composition (say the liquid stream) instead of a flow-rate, then the simultaneous solution of the mass balance and v-l-e relationships would not be necessary. The stream compositions could be calculated by the following step-by-step (sequential) procedure:

- 1. Specifying *P* determines the v-l-e relationship (equilibrium) curve from experimental data.
- 2. Knowing the outlet liquid composition, the outlet vapour composition can be calculated from the v-l-e relationship.
- 3. Knowing the feed and outlet compositions, and the feed flow-rate, the outlet stream flows can be calculated from a material balance.
- 4. An enthalpy balance then gives the heat input required.

The need for simultaneous solution of the design equations implies that there is a recycle of information. Choice of an outlet stream composition as a design variable in

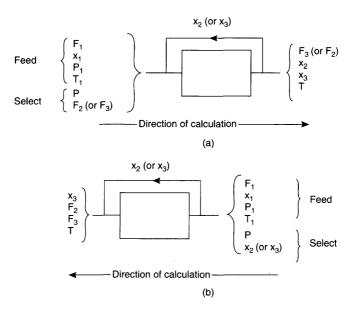



Figure 1.8. Information flow, binary flash distillation calculation (a) Information recycle (b) Information flow reversal

effect reverses the flow of information through the problem and removes the recycle; this is shown diagrammatically in Figure 1.8.

# 1.9.3. Information flow and the structure of design problems

It was shown in Section 1.9.2. by studying a relatively simple problem, that the way in which the designer selects his design variables can determine whether the design calculations will prove to be easy or difficult. Selection of one particular set of variables can lead to a straightforward, step-by-step, procedure, whereas selection of another set can force the need for simultaneous solution of some of the relationships; which often requires an iterative procedure (cut-and-try method). How the choice of design variables, inputs to the calculation procedure, affects the ease of solution for the general design problem can be illustrated by studying the flow of information, using simple information flow diagrams. The method used will be that given by Lee *et al.* (1966) who used a form of directed graph; a biparte graph, see Berge (1962).

The general design problem can be represented in mathematical symbolism as a series of equations:

$$\mathbf{f}_i(v_j) = 0$$

where 
$$j = 1, 2, 3, ..., N_v$$
,  
 $i = 1, 2, 3, ..., N_r$ 

Consider the following set of such equations:

$$f_1(v_1, v_2) = 0$$
  
$$f_2(v_1, v_2, v_3, v_5) = 0$$

$$f_3(v_1, v_3, v_4) = 0$$
  

$$f_4(v_2, v_4, v_5, v_6) = 0$$
  

$$f_5(v_5, v_6, v_7) = 0$$

There are seven variables,  $N_v = 7$ , and five equations (relationships)  $N_r = 5$ , so the number of degrees of freedom is:

$$N_d = N_v - N_r = 7 - 5 = 2$$

The task is to select two variables from the total of seven in such a way as to give the simplest, most efficient, method of solution to the seven equations. There are twenty-one ways of selecting two items from seven.

In Lee's method the equations and variables are represented by nodes on the biparte graph (circles), connected by edges (lines), as shown in Figure 1.9.




Figure 1.9. Nodes and edges on a biparte graph

Figure 1.9 shows that equation  $f_1$  contains (is connected to) variables  $v_1$  and  $v_2$ . The complete graph for the set of equations is shown in Figure 1.10.

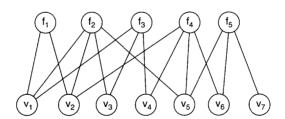



Figure 1.10. Biparte graph for the complete set of equations

The number of edges connected to a node defines the local degree of the node p. For example, the local degree of the  $f_1$  node is 2,  $p(f_1) = 2$ , and at the  $v_5$  node it is 3,  $p(v_5) = 3$ . Assigning directions to the edges of Figure 1.10 (by putting arrows on the lines) identifies one possible order of solution for the equations. If a variable  $v_j$  is defined as an output variable from an equation  $f_i$ , then the direction of information flow is from the node  $f_i$  to the node  $v_j$  and all other edges will be oriented into  $f_i$ . What this means, mathematically, is that assigning  $v_j$  as an output from  $f_i$  rearranges that equation so that:

$$f_i(v_1, v_2, \ldots, v_n) = v_j$$

 $v_i$  is calculated from equation  $f_i$ .

The variables selected as design variables (fixed by the designer) cannot therefore be assigned as output variables from an f node. They are inputs to the system and their edges must be oriented into the system of equations.

If, for instance, variables  $v_3$  and  $v_4$  are selected as design variables, then Figure 1.11 shows one possible order of solution of the set of equations. Different types of arrows are used to distinguish between input and output variables, and the variables selected as design variables are enclosed in a double circle.

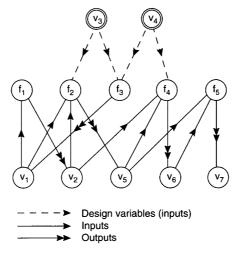



Figure 1.11. An order of solution

Tracing the order of the solution of the equations as shown in Figure 1.11 shows how the information flows through the system of equations:

- 1. Fixing  $v_3$  and  $v_4$  enables  $f_3$  to be solved, giving  $v_1$  as the output.  $v_1$  is an input to  $f_1$  and  $f_2$ .
- 2. With  $v_1$  as an input,  $f_1$  can be solved giving  $v_2$ ;  $v_2$  is an input to  $f_2$  and  $f_4$ .
- 3. Knowing  $v_3$ ,  $v_1$  and  $v_2$ ,  $f_2$  can be solved to give  $v_5$ ;  $v_5$  is an input to  $f_4$  and  $f_5$ .
- 4. Knowing  $v_4$ ,  $v_2$  and  $v_5$ ,  $f_4$  can be solved to give  $v_6$ ;  $v_6$  is an input to  $f_5$ .
- 5. Knowing  $v_6$  and  $v_5$ ,  $f_5$  can be solved to give  $v_7$ ; which completes the solution.

This order of calculation can be shown more clearly by redrawing Figure 1.11 as shown in Figure 1.12.

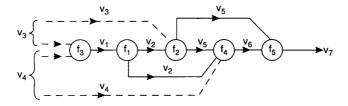



Figure 1.12. Figure 1.11 redrawn to show order of solution

With this order, the equations can be solved sequentially, with no need for the simultaneous solution of any of the equations. The fortuitous selection of  $v_3$  and  $v_4$  as design variables has given an efficient order of solution of the equations.

If for a set of equations an order of solution exists such that there is no need for the simultaneous solution of any of the equations, the system is said to be "acyclic", no recycle of information.

If another pair of variables had been selected, for instance  $v_5$  and  $v_7$ , an acyclic order of solution for the set of equations would not necessarily have been obtained.

For many design calculations it will not be possible to select the design variables so as to eliminate the recycle of information and obviate the need for iterative solution of the design relationships.

For example, the set of equations given below will be cyclic for all choices of the two possible design variables.

$$f_1(x_1, x_2) = 0$$

$$f_2(x_1, x_3, x_4) = 0$$

$$f_3(x_2, x_3, x_4, x_5, x_6) = 0$$

$$f_4(x_4, x_5, x_6) = 0$$

$$N_d = 6 - 4 = 2$$

The biparte graph for this example, with  $x_3$  and  $x_5$  selected as the design variables (inputs), is shown in Figure 1.13.

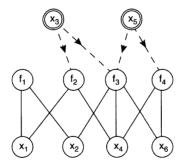



Figure 1.13.

One strategy for the solution of this cyclic set of equations would be to guess (assign a value to)  $x_6$ . The equations could then be solved sequentially, as shown in Figure 1.14, to produce a calculated value for  $x_6$ , which could be compared with the assumed value and the procedure repeated until a satisfactory convergence of the assumed and calculated value had been obtained. Assigning a value to  $x_6$  is equivalent to "tearing" the recycle loop at  $x_6$  (Figure 1.15). Iterative methods for the solution of equations are discussed by Henley and Rosen (1969).

When a design problem cannot be reduced to an acyclic form by judicious selection of the design variables, the design variables should be chosen so as to reduce the recycle of

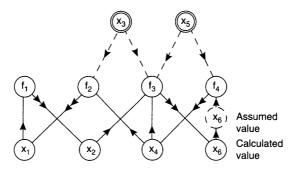



Figure 1.14.

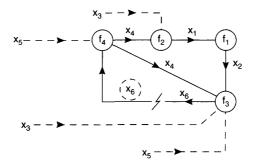



Figure 1.15.

information to a minimum. Lee and Rudd (1966) and Rudd and Watson (1968) give an algorithm that can be used to help in the selection of the best design variables in manual calculations.

The recycle of information, often associated with the actual recycle of process material, will usually occur in any design problem involving large sets of equations; such as in the computer simulation of chemical processes. Efficient methods for the solution of sets of equations are required in computer-aided design procedures to reduce the computer time needed. Several workers have published algorithms for the efficient ordering of recycle loops for iterative solution procedures, and some references to this work are given in the chapter on flow-sheeting, Chapter 4.

### 1.10. OPTIMISATION

Design is optimisation: the designer seeks the best, the optimum, solution to a problem. Much of the selection and choice in the design process will depend on the intuitive

Much of the selection and choice in the design process will depend on the intuitive judgement of the designer; who must decide when more formal optimisation techniques can be used to advantage.

The task of formally optimising the design of a complex processing plant involving several hundred variables, with complex interactions, is formidable, if not impossible. The task can be reduced by dividing the process into more manageable units, identifying the key variables and concentrating work where the effort involved will give the greatest

benefit. Sub-division, and optimisation of the sub-units rather than the whole, will not necessarily give the optimum design for the whole process. The optimisation of one unit may be at the expense of another. For example, it will usually be satisfactory to optimise the reflux ratio for a fractionating column independently of the rest of the plant; but if the column is part of a separation stage following a reactor, in which the product is separated from the unreacted materials, then the design of the column will interact with, and may well determine, the optimisation of the reactor design.

In this book the discussion of optimisation methods will, of necessity, be limited to a brief review of the main techniques used in process and equipment design. The extensive literature on the subject should be consulted for full details of the methods available, and their application and limitations; see Beightler and Wilde (1967), Beveridge and Schechter (1970), Stoecker (1989), Rudd and Watson (1968), Edgar and Himmelblau (1988). The books by Rudd and Watson (1968) and Edgar and Himmelblau (1988) are particularly recommended to students.

## 1.10.1. General procedure

When setting out to optimise any system, the first step is clearly to identify the objective: the criterion to be used to judge the system performance. In engineering design the objective will invariably be an economic one. For a chemical process, the overall objective for the operating company will be to maximise profits. This will give rise to sub-objectives, which the designer will work to achieve. The main sub-objective will usually be to minimise operating costs. Other sub-objectives may be to reduce investment, maximise yield, reduce labour requirements, reduce maintenance, operate safely.

When choosing his objectives the designer must keep in mind the overall objective. Minimising cost per unit of production will not necessarily maximise profits per unit time; market factors, such as quality and delivery, may determine the best overall strategy.

The second step is to determine the objective function: the system of equations, and other relationships, which relate the objective with the variables to be manipulated to optimise the function. If the objective is economic, it will be necessary to express the objective function in economic terms (costs).

Difficulties will arise in expressing functions that depend on value judgements; for example, the social benefits and the social costs that arise from pollution.

The third step is to find the values of the variables that give the optimum value of the objective function (maximum or minimum). The best techniques to be used for this step will depend on the complexity of the system and on the particular mathematical model used to represent the system.

A mathematical model represents the design as a set of equations (relationships) and, as was shown in Section 1.9.1, it will only be possible to optimise the design if the number of variables exceeds the number of relationships; there is some degree of freedom in the system.

# 1.10.2. Simple models

If the objective function can be expressed as a function of one variable (single degree of freedom) the function can be differentiated, or plotted, to find the maximum or minimum.

This will be possible for only a few practical design problems. The technique is illustrated in Example 1.1, and in the derivation of the formula for optimum pipe diameter in Chapter 5. The determination of the economic reflux ratio for a distillation column, which is discussed in Volume 2, Chapter 11, is an example of the use of a graphical procedure to find the optimum value.

## Example 1.1

The optimum proportions for a cylindrical container. A classical example of the optimisation of a simple function.

The surface area, A, of a closed cylinder is:

$$A = \pi \times D \times L + 2\frac{\pi}{4}D^2$$

where D = vessel diameter

L = vessel length (or height)

This will be the objective function which is to be minimised; simplified:

$$f(D \times L) = D \times L + \frac{D^2}{2}$$
 (equation A)

For a given volume, V, the diameter and length are related by:

$$V = \frac{\pi}{4}D^2 \times L$$

and

$$L = \frac{4V}{\pi D^2}$$
 (equation B)

and the objective function becomes

$$f(D) = \frac{4V}{\pi D} + \frac{D^2}{2}$$

Setting the differential of this function zero will give the optimum value for D

$$\frac{-4V}{\pi D^2} + D = 0$$

$$D = \sqrt[3]{\frac{4V}{\pi}}$$

From equation B, the corresponding length will be:

$$L = \sqrt[3]{\frac{4V}{\pi}}$$

So for a cylindrical container the minimum surface area to enclose a given volume is obtained when the length is made equal to the diameter.

In practice, when cost is taken as the objective function, the optimum will be nearer L = 2D; the proportions of the ubiquitous tin can, and oil drum. This is because the cost

will include that of forming the vessel and making the joints, in addition to cost of the material (the surface area); see Wells (1973).

If the vessel is a pressure vessel the optimum length to diameter ratio will be even greater, as the thickness of plate required is a direct function of the diameter; see Chapter 13. Urbaniec (1986) gives procedures for the optimisation of tanks and vessel, and other process equipment.

## 1.10.3. Multiple variable problems

The general optimisation problem can be represented mathematically as:

$$f = f(v_1, v_2, v_3, \dots, v_n)$$
 (1.2)

where f is the objective function and  $v_1, v_2, v_3, \ldots, v_n$  are the variables.

In a design situation there will be constraints on the possible values of the objective function, arising from constraints on the variables; such as, minimum flow-rates, maximum allowable concentrations, and preferred sizes and standards.

Some may be equality constraints, expressed by equations of the form:

$$\Phi_m = \Phi_m(v_1, v_2, v_3, \dots, v_n) = 0 \tag{1.3}$$

Others as inequality constraints:

$$\Psi_p = \Psi_p(v_1, v_2, v_3, \dots, v_n) \le P_p \tag{1.4}$$

The problem is to find values for the variables  $v_1$  to  $v_n$  that optimise the objective function: that give the maximum or minimum value, within the constraints.

# Analytical methods

If the objective function can be expressed as a mathematical function the classical methods of calculus can be used to find the maximum or minimum. Setting the partial derivatives to zero will produce a set of simultaneous equations that can be solved to find the optimum values. For the general, unconstrained, objective function, the derivatives will give the critical points; which may be maximum or minimum, or ridges or valleys. As with single variable functions, the nature of the first derivative can be found by taking the second derivative. For most practical design problems the range of values that the variables can take will be subject to constraints (equations 1.3 and 1.4), and the optimum of the constrained objective function will not necessarily occur where the partial derivatives of the objective function are zero. This situation is illustrated in Figure 1.16 for a two-dimensional problem. For this problem, the optimum will lie on the boundary defined by the constraint y = a.

The method of Lagrange's undetermined multipliers is a useful analytical technique for dealing with problems that have equality constraints (fixed design values). Examples of the use of this technique for simple design problems are given by Stoecker (1989), Peters and Timmerhaus (1991) and Boas (1963a).

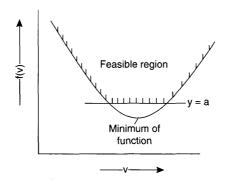



Figure 1.16. Effect of constraints on optimum of a function

#### Search methods

The nature of the relationships and constraints in most design problems is such that the use of analytical methods is not feasible. In these circumstances search methods, that require only that the objective function can be computed from arbitrary values of the independent variables, are used. For single variable problems, where the objective function is unimodal, the simplest approach is to calculate the value of the objective function at uniformly spaced values of the variable until a maximum (or minimum) value is obtained. Though this method is not the most efficient, it will not require excessive computing time for simple problems. Several more efficient search techniques have been developed, such as the method of the golden section; see Boas (1963b) and Edgar and Himmelblau (1988).

Efficient search methods will be needed for multi-dimensional problems, as the number of calculations required and the computer time necessary will be greatly increased, compared with single variable problems; see Himmelblau (1963), Stoecker (1971), Beveridge and Schechter (1970), and Baasel (1974).

Two variable problems can be plotted as shown in Figure 1.17. The values of the objective function are shown as contour lines, as on a map, which are slices through the three-dimensional model of the function. Seeking the optimum of such a function can be

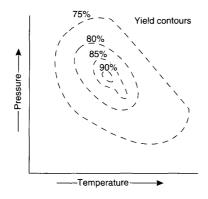



Figure 1.17. Yield as a function of reactor temperature and pressure

likened to seeking the top of a hill (or bottom of a valley), and a useful technique for this type of problem is the *gradient method* (*method of steepest ascent, or descent*), see Edgar and Himmelblau (1988).

## 1.10.4. Linear programming

Linear programming is an optimisation technique that can be used when the objective function and constraints can be expressed as a linear function of the variables; see Driebeek (1969), Williams (1967) and Dano (1965).

The technique is useful where the problem is to decide the optimum utilisation of resources. Many oil companies use linear programming to determine the optimum schedule of products to be produced from the crude oils available. Algorithms have been developed for the efficient solution of linear programming problems and the SIMPLEX algorithm, Dantzig (1963), is the most commonly used.

Examples of the application of linear programming in chemical process plant design and operation are given by Allen (1971), Rudd and Watson (1968), Stoecker (1991), and Urbaniec (1986).

## 1.10.5. Dynamic programming

Dynamic programming is a technique developed for the optimisation of large systems; see Nemhauser (1966), Bellman (1957) and Aris (1963).

The basic approach used is to divide the system into convenient sub-systems and optimise each sub-system separately, while taking into account the interactions between the sub-systems. The decisions made at each stage contribute to the overall systems objective function, and to optimise the overall objective function an appropriate combination of the individual stages has to be found. In a typical process plant system the possible number of combinations of the stage decisions will be very large. The dynamic programming approach uses Bellman's "Principle of Optimality", which enables the optimum policy to be found systematically and efficiently by calculating only a fraction of the possible combinations of stage decisions. The method converts the problem from the need to deal with "N" optimisation decisions simultaneously to a sequential set of "N" problems. The application of dynamic programming to design problems is well illustrated in Rudd and Watson's book; see also Wells (1973) and Edgar and Himmelblau (1988).

# 1.10.6. Optimisation of batch and semicontinuous processes

In batch operation there will be periods when product is being produced, followed by non-productive periods when the product is discharged and the equipment prepared for the next batch. The rate of production will be determined by the total batch time, productive

<sup>†</sup> Bellman's (1957) principle of optimality: "An optimal policy has the property that, whatever the initial state and the initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision."

plus non-productive periods.

Batches per year = 
$$\frac{8760 \times \text{plant attainment}}{\text{batch cycle time}}$$
 (1.5)

where the "plant attainment" is the fraction of the total hours in a year (8760) that the plant is in operation.

Annual production = quantity produced per batch  $\times$  batches per year.

Cost per unit of production = 
$$\frac{\text{annual cost of production}}{\text{annual production rate}}$$
 (1.6)

With many batch processes, the production rate will decrease during the production period; for example, batch reactors and plate and frame filter presses, and there will be an optimum batch size, or optimum cycle time, that will give the minimum cost per unit of production.

For some processes, though they would not be classified as batch processes, the period of continuous production will be limited by gradual changes in process conditions; such as, the deactivation of catalysts or the fouling of heat-exchange surfaces. Production will be lost during the periods when the plant is shut down for catalyst renewal or equipment clean-up, and, as with batch process, there will be an optimum cycle time to give the minimum production cost.

The optimum time between shut-downs can be found by determining the relationship between cycle time and cost per unit of production (the objective function) and using one of the optimisation techniques outlined in this section to find the minimum.

With discontinuous processes, the period between shut-downs will usually be a function of equipment size. Increasing the size of critical equipment will extend the production period, but at the expense of increased capital cost. The designer must strike a balance between the savings gained by reducing the non-productive period and the increased investment required.

#### 1.11. REFERENCES

ALLEN, D. H. (1971) Brit. Chem. Eng. 16, 685. Linear programming models.

ARIS, R. (1963) Discrete Dynamic Programming (Blaisdell).

BAASEL, W. D. (1965) Chem. Eng., NY 72 (Oct. 25th) 147. Exploring response surfaces to establish optimum conditions.

BAASEL, W. D. (1974) Preliminary Chemical Engineering Plant Design (Elsevier).

BEIGHTLER, C. S. and WILDE, D. J. (1967) Foundations of Optimisation (Prentice-Hall).

BELLMAN, R. (1957) Dynamic Programming (Princeton University, New York).

BERGE, C. (1962) Theory of Graphs and its Applications (Wiley).

BEVERIDGE, G. S. G. and SCHECHTER, R. S. (1970) Optimisation: Theory and Practice (McGraw-Hill).

Boas, A. H. (1963a) Chem. Eng., NY 70 (Jan. 7th) 95. How to use Lagrange multipliers.

BoAs, A. H. (1963b) Chem. Eng., NY 70 (Feb. 4th) 105. How search methods locate optimum in univariate problems.

BURKLIN, C. R. (1979) The Process Plant Designers Pocket Handbook of Codes and Standards (Gulf).

CASEY, R. J. and Frazer, M. J. (1984) Problem Solving in the Chemical Industry (Pitman).

Chaddock, D. H. (1975) Paper read to S. Wales Branch, Institution of Mechanical Engineers (Feb. 27th). Thought structure, or what makes a designer tick.

CHITTENDEN, D. H. (1987) Chem. Eng., NY 94 (March 16) 89. "How to solve it" revisited!: Engineering problem solving approach.

DANO, S. (1965) Linear Programming in Industry (Springer-Verlag).

DANTZIG, G. B. (1963) Linear Programming and Extensions (Princeton University Press).

DRIEBEEK, N. J. (1969) Applied Linear Programming (Addison-Wesley).

EDGAR, T. E. and HIMMELBLAU, D. M. (1988) Optimization of Chemical Processes (McGraw-Hill).

HENLEY, E. J. and ROSEN, E. M. (1969) Material and Energy Balance Computations (Wiley).

HIMMELBLAU, D. M. (1963) *Ind. Eng. Chem. Process Design and Development* 2, 296. Process optimisation by search techniques.

JONES, C. J. (1970) Design Methods: Seeds of Human Futures (Wiley).

KWAUK, M. (1956) AIChE Jl 2, 240. A system for counting variables in separation processes.

LEE, W. CHRISTENSEN J. H. and RUDD, D. F. (1966): AIChE Jl 12, 1104. Design variable selection to simplify process calculations.

LEE, W. and RUDD, D. F. (1966) AIChE Jl 12, 1185. On the ordering of recycle calculations.

MITTEN, L. G. and NEMHAUSER, G. L. (1963) Chem. Eng. Prog. 59 (Jan.) 52. Multistage optimization.

NEMHAUSER, G. L. (1966) Introduction to Dynamic Programming (Wiley).

PETERS, M. S. and TIMMERHAUS, K. D. (1991) Plant Design and Economics for Chemical Engineers, 4th edn (McGraw-Hill).

POLYA, G. (1957) How to Solve It, 2nd edn (Doubleday).

RASE H. F and BARROW, M. H. (1964) Project Engineering (Wiley).

RUDD, D. F. and WATSON, C. C. (1968) Strategy of Process Design (Wiley).

SMITH, B. D. (1963) Design of Equilibrium Stage Processes (McGraw-Hill).

STOECKER, W. F. (1989) Design of Thermal Systems 3rd edn (McGraw-Hill).

URBANIEC, K. (1986) Optimal Design of Process Equipment (Ellis Horwood).

Wells, G. L. (1973) Process Engineering with Economic Objective (Leonard Hill).

WILDE, D. J. (1964) Optimum Seeking Methods (Prentice-Hall).

WILLIAMS, N. (1967) Linear and Non-linear Programming in Industry (Pitman).

#### British Standards

3

BS 308 — Engineering Drawing Practice.

Part 1: 1984: Recommendations for general principles.

Liquid outlet, flash distillation

Part 2: 1985: Recommendations for dimensioning and tolerancing of sizes.

Part 3: 1990: Recommendations for geometrical tolerancing.

## 1.12. NOMENCLATURE

|                  |                                                                        | Dimensions in $\mathbf{MLT}\boldsymbol{\theta}$ |
|------------------|------------------------------------------------------------------------|-------------------------------------------------|
| C                | Number of components                                                   | _                                               |
| D                | Diameter                                                               | L                                               |
| F                | Stream flow rate                                                       | $MT^{-1}$                                       |
| f                | General function                                                       | <del>-</del>                                    |
| $f_i$            | General function (design relationship)                                 |                                                 |
| $f_1, f_2 \dots$ | General functions (design relationships)                               |                                                 |
| L L              | Length                                                                 | L                                               |
| $N_d$            | Degrees of freedom in a design problem                                 | _                                               |
| $N'_d$           | Degrees of freedom (variables free to be selected as design variables) | _                                               |
| $N_r$            | Number of design relationships                                         |                                                 |
| $N_v$            | Number of variables                                                    | _                                               |
| P                | Pressure                                                               | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$      |
| $P_p$            | Inequality constraints                                                 | _                                               |
| $q^{'}$          | Heat input, flash distillation                                         | $\mathbf{ML}^{2}\mathbf{T}^{-3}$                |
| $\hat{T}$        | Temperature                                                            | $oldsymbol{	heta}$                              |
| $v_i$            | Variables                                                              | _                                               |
|                  | Variables                                                              | _                                               |
| $x_1, x_2 \dots$ | Variables                                                              |                                                 |
| Φ                | Equality constraint function                                           | _                                               |
| Ψ                | Inequality constraint function                                         |                                                 |
| Suffixes         | • •                                                                    |                                                 |
| 1                | Inlet, flash distillation                                              |                                                 |
| 2                | Vapour outlet, flash distillation                                      |                                                 |

### 1.13 PROBLEMS

- **1.1.** Given that 1 in = 25.4 mm; 1 lbm = 0.4536 kg;  $1 \,^{\circ}$ F = 0.556  $^{\circ}$ C; 1 cal = 4.1868 J; g = 9.807 m s<sup>-2</sup>, calculate conversion factors to SI units for the following terms:
  - i. feet
  - ii. pounds mass
  - iii. pounds force
  - iv. horse power (1 HP = 550 foot pounds per second)
  - v. psi (pounds per square inch)
  - vi. lb  $ft^{-1}$  s<sup>-1</sup> (viscosity)
  - vii. poise (gm cm<sup>-1</sup> s<sup>-1</sup>)
  - viii. Btu (British Thermal Unit)
    - ix. CHU (Centigrade Heat Unit) also known as PCU (Pound Centigrade Unit)
    - x. Btu ft<sup>-2</sup> h<sup>-1</sup>  $\circ$ F<sup>-1</sup> (heat transfer coefficient).
- **1.2.** Determine the degrees of freedom available in the design of a simple heat exchanger. Take the exchanger as a double-pipe exchanger transferring heat between two single-phase streams.
- 1.3. A separator divides a process stream into three phases: a liquid organic stream, a liquid aqueous stream, and a gas stream. The feed stream contains three components, all of which are present to some extent in the separated steams. The composition and flowrate of the feed stream are known. All the streams will be at the same temperature and pressure. The phase equilibria for the three phases is available. How many design variables need to be specified in order to calculate the output stream compositions and flow rates?
- **1.4.** A rectangular tank with a square base is constructed from 5 mm steel plates. If the capacity required is eight cubic metres determine the optimum dimensions if the tank has:
  - i. a closed top
  - ii. an open top.
- **1.5.** Estimate the optimum thickness of insulation for the roof of a house, given the following information. The insulation will be installed flat on the attic floor. Overall heat transfer coefficient for the insulation as a function of thickness, U values (see Chapter 12):

thickness, mm 0 25 50 100 150 200 250 
$$U$$
,  $Wm^{-2} {}^{\circ}C^{-1}$  20 0.9 0.7 0.3 0.25 0.20 0.15

Average temperature difference between inside and outside of house 10 °C; heating period 200 days in a year.

Cost of insulation, including installation, £70/m<sup>3</sup>. Capital charges (see Chapter 6) 15 per cent per year. Cost of fuel, allowing for the efficiency of the heating system, 6p/MJ.

Note: the rate at which heat is being lost is given by  $U \times \Delta T$ , W/m<sup>2</sup>, where U is the overall coefficient and  $\Delta T$  the temperature difference; see Chapter 12.

**1.6.** (US version) Estimate the optimum thickness of insulation for the roof of a house given the following information. The insulation will be installed flat on the attic floor.

Overall heat transfer coefficient for the insulation as a function of thickness, U values (see Chapter 12):

thickness, mm 0 25 50 100 150 200 250 
$$U$$
,  $Wm^{-2} {}^{\circ}C^{-1}$  20 0.9 0.7 0.3 0.25 0.20 0.15

Average temperature difference between inside and outside of house  $12\,^{\circ}$ C; heating period 250 days in a year. Cost of insulation, including installation, \$120/m³. Capital charges (see chapter 6) 20 per cent per year. Cost of fuel, allowing for the efficiency of the heating system, 9c/MJ.

Note: the rate at which heat is being lost is given by  $U \times \Delta T$ , W/m<sup>2</sup>, where U is the overall coefficient and  $\Delta T$  the temperature difference; see Chapter 12.

**1.7.** What is the optimum practical shape for a dwelling, to minimise the heat losses through the building fabric ?

Why is this optimum shape seldom used?

What people do use the optimum shape for their winter dwellings? Is heat retention their only consideration in their selection of this shape?

**1.8.** You are part of the design team working on a project for the manufacture of cyclohexane.

The chief engineer calls you into his office and asks you to prepare an outline design for an inert gas purging and blanketing system for the reactors and other equipment, on shutdown. This request arises from a report into an explosion and fire at another site manufacturing a similar product.

Following the steps given in Figure 1.2, find what you consider the best solution to this design problem.

#### CHAPTER 2

# Fundamentals of Material Balances

#### 2.1. INTRODUCTION

Material balances are the basis of process design. A material balance taken over the complete process will determine the quantities of raw materials required and products produced. Balances over individual process units set the process stream flows and compositions.

A good understanding of material balance calculations is essential in process design.

In this chapter the fundamentals of the subject are covered, using simple examples to illustrate each topic. Practice is needed to develop expertise in handling what can often become very involved calculations. More examples and a more detailed discussion of the subject can be found in the numerous specialist books written on material and energy balance computations. Several suitable texts are listed under the heading of "Further Reading" at the end of this chapter.

The application of material balances to more complex problems is discussed in "Flow-sheeting", Chapter 4.

Material balances are also useful tools for the study of plant operation and trouble shooting. They can be used to check performance against design; to extend the often limited data available from the plant instrumentation; to check instrument calibrations; and to locate sources of material loss.

### 2.2. THE EQUIVALENCE OF MASS AND ENERGY

Einstein showed that mass and energy are equivalent. Energy can be converted into mass, and mass into energy. They are related by Einstein's equation:

$$E = mc^2 (2.1)$$

where E = energy, J,

m = mass, kg,

c = the speed of light in vacuo,  $3 \times 10^8$  m/s.

The loss of mass associated with the production of energy is significant only in nuclear reactions. Energy and matter are always considered to be separately conserved in chemical reactions.

### 2.3. CONSERVATION OF MASS

The general conservation equation for any process system can be written as:

Material out = Material in + Generation - Consumption - Accumulation

For a steady-state process the accumulation term will be zero. Except in nuclear processes, mass is neither generated nor consumed; but if a chemical reaction takes place a particular chemical species may be formed or consumed in the process. If there is no chemical reaction the steady-state balance reduces to

A balance equation can be written for each separately identifiable species present, elements, compounds or radicals; and for the total material.

### Example 2.1

2000 kg of a 5 per cent slurry of calcium hydroxide in water is to be prepared by diluting a 20 per cent slurry. Calculate the quantities required. The percentages are by weight.

### Solution

Let the unknown quantities of the 20% slurry and water be X and Y respectively. Material balance on Ca(OH)<sub>2</sub>

$$\frac{In}{X\frac{20}{100}} = 2000 \times \frac{5}{100} \tag{a}$$

Balance on water

$$X\frac{(100-20)}{100} + Y = 2000\frac{(100-5)}{100}$$
 (b)

From equation (a) X = 500 kg.

Substituting into equation (b) gives Y = 1500 kg

Check material balance on total quantity:

$$X + Y = 2000$$
  
 $500 + 1500 = 2000$ , correct

### 2.4. UNITS USED TO EXPRESS COMPOSITIONS

When specifying a composition as a percentage it is important to state clearly the basis: weight, molar or volume.

The abbreviations w/w and v/v are used to designate weight basis and volume basis.

# Example 2.2

Technical grade hydrochloric acid has a strength of 28 per cent w/w, express this as a mol fraction.

#### Solution

Basis of calculation 100 kg of 28 per cent w/w acid.

Molecular mass: water 18, HCl 36.5

Mass HCl = 
$$100 \times 0.28 = 28 \text{ kg}$$

Mass water =  $100 \times 0.72 = 72 \text{ kg}$ 

kmol HCl =  $\frac{28}{36.5} = 0.77$ 

kmol water =  $\frac{72}{18} = 4.00$ 

Total mols =  $4.77$ 

mol fraction HCl =  $\frac{0.77}{4.77} = 0.16$ 

mol fraction water =  $\frac{4.00}{4.77} = 0.84$ 

Check total  $\frac{6.00}{4.77} = 0.84$ 

Within the accuracy needed for technical calculations, volume fractions can be taken as equivalent to mol fractions for gases, up to moderate pressures (say 25 bar).

Trace quantities are often expressed as parts per million (ppm). The basis, weight or volume, needs to be stated.

$$ppm = \frac{quantity of component}{total quantity} \times 10^6$$

*Note.* 1 ppm =  $10^{-4}$  per cent.

Minute quantities are sometimes quoted in ppb, parts per billion. Care is needed here, as the billion is usually an American billion  $(10^9)$ , not the UK billion  $(10^{12})$ .

# 2.5. STOICHIOMETRY

Stoichiometry (from the Greek *stoikeion*—element) is the practical application of the law of multiple proportions. The stoichiometric equation for a chemical reaction states unambiguously the number of molecules of the reactants and products that take part; from which the quantities can be calculated. The equation must balance.

With simple reactions it is usually possible to balance the stoichiometric equation by inspection, or by trial and error calculations. If difficulty is experienced in balancing complex equations, the problem can always be solved by writing a balance for each element present. The procedure is illustrated in Example 2.3.

# Example 2.3

Write out and balance the overall equation for the manufacture of vinyl chloride from ethylene, chlorine and oxygen.

#### Solution

*Method*: write out the equation using letters for the unknown number of molecules of each reactant and product. Make a balance on each element. Solve the resulting set of equations.

$$A(C_2H_4) + B(Cl_2) + C(O_2) = D(C_2H_3Cl) + E(H_2O)$$

Balance on carbon

$$2A = 2D$$
.  $A = D$ 

on hydrogen

$$4A = 3D + 2E$$

substituting D = A gives E = 
$$\frac{A}{2}$$

on chlorine

$$2B = D$$
, hence  $B = \frac{A}{2}$ 

on oxygen

$$2C = E,$$
  $C = \frac{E}{2} = \frac{A}{4}$ 

putting A = 1, the equation becomes

$$C_2H_4 + \frac{1}{2}Cl_2 + \frac{1}{4}O_2 = C_2H_3Cl + \frac{1}{2}H_2O$$

multiplying through by the largest denominator to remove the fractions

$$4C_2H_4 + 2Cl_2 + O_2 = 4C_2H_3Cl + 2H_2O$$

### 2.6. CHOICE OF SYSTEM BOUNDARY

The conservation law holds for the complete process and any sub-division of the process. The system boundary defines the part of the process being considered. The flows into and out of the system are those crossing the boundary and must balance with material generated or consumed within the boundary.

Any process can be divided up in an arbitrary way to facilitate the material balance calculations. The judicious choice of the system boundaries can often greatly simplify what would otherwise be difficult and tortuous calculations.

No hard and fast rules can be given on the selection of suitable boundaries for all types of material balance problems. Selection of the best sub-division for any particular process is a matter of judgement, and depends on insight into the structure of the problem, which can only be gained by practice. The following general rules will serve as a guide:

- With complex processes, first take the boundary round the complete process and if
  possible calculate the flows in and out. Raw materials in, products and by-products
  out.
- 2. Select the boundaries to sub-divide the process into simple stages and make a balance over each stage separately.
- 3. Select the boundary round any stage so as to reduce the number of unknown streams to as few as possible.

4. As a first step, include any recycle streams within the system boundary (see Section 2.14).

## Example 2.4

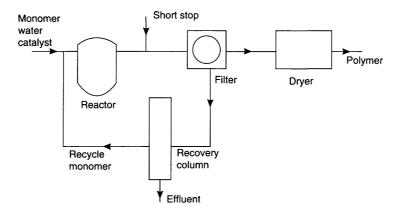
Selection of system boundaries and organisation of the solution.

The diagram shows the main steps in a process for producing a polymer. From the following data, calculate the stream flows for a production rate of 10,000 kg/h.

Reactor, yield on polymer 100 per cent

slurry polymerisation 20 per cent monomer/water

conversion 90 per cent catalyst 1 kg/1000 kg monomer

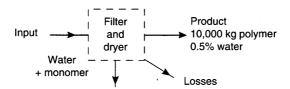

short stopping agent 0.5 kg/1000 kg unreacted monomer

Filter, wash water approx. 1 kg/1 kg polymer

Recovery column, yield 98 per cent (percentage recovered)

Dryer, feed ~5 per cent water, product specification 0.5 per cent H<sub>2</sub>O

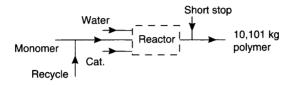
Polymer losses in filter and dryer ∼1 per cent




#### Solution

Only those flows necessary to illustrate the choice of system boundaries and method of calculation are given in the Solution.

Basis: 1 hour


Take the first system boundary round the filter and dryer.



With 1 per cent loss, polymer entering sub-system

$$=\frac{10,000}{0.99} = \underline{10,101 \text{ kg}}$$

Take the next boundary round the reactor system; the feeds to the reactor can then be calculated.



At 90 per cent conversion, monomer feed

$$=\frac{10,101}{0.9}=\frac{11,223 \text{ kg}}{}$$

Unreacted monomer = 11,223 - 10,101 = 1122 kg

Short-stop, at 0.5 kg/1000 kg unreacted monomer

$$= 1122 \times 0.5 \times 10^{-3} = 0.6 \text{ kg}$$

Catalyst, at 1 kg/1000 kg monomer

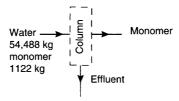
$$= 11,223 \times 1 \times 10^{-3} = 11 \text{ kg}$$

Let water feed to reactor be  $F_1$ , then for 20 per cent monomer

$$0.2 = \frac{11,223}{F_1 + 11,223}$$

$$F_1 = \frac{11,223(1 - 0.2)}{0.2} = \frac{44,892 \text{ kg}}{0.2}$$

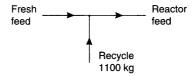
Now consider filter-dryer sub-system again.


Water in polymer to dryer, at 5 per cent (neglecting polymer loss)

$$= 10,101 \times 0.05 = 505 \text{ kg}$$

Balance over reactor-filter-dryer sub-system gives flows to recovery column.

water, 
$$44,892 + 10,101 - 505 = \underline{54,448 \text{ kg}}$$
  
monomer, unreacted monomer,  $\underline{1122 \text{ kg}}$ 


Now consider recovery system



With 98 per cent recovery, recycle to reactor

$$= 0.98 \times 1122 = 1100 \text{ kg}$$

Composition of effluent 23 kg monomer, 54,488 kg water. Consider reactor monomer feed



Balance round tee gives fresh monomer required

$$= 11,223 - 1100 = 10,123 \text{ kg}$$

## 2.7. CHOICE OF BASIS FOR CALCULATIONS

The correct choice of the basis for a calculation will often determine whether the calculation proves to be simple or complex. As with the choice of system boundaries, no all-embracing rules or procedures can be given for the selection of the right basis for any problem. The selection depends on judgement gained by experience. Some guide rules that will help in the choice are:

- 1. Time: choose the time basis in which the results are to be presented; for example kg/h, tonne/y.
- 2. For batch processes use one batch.
- 3. Choose as the mass basis the stream flow for which most information is given.
- 4. It is often easier to work in mols, rather than weight, even when no reaction is involved.
- 5. For gases, if the compositions are given by volume, use a volume basis, remembering that volume fractions are equivalent to mol fractions up to moderate pressures.

### 2.8. NUMBER OF INDEPENDENT COMPONENTS

A balance equation can be written for each independent component. Not all the components in a material balance will be independent.

# Physical systems, no reaction

If there is no chemical reaction the number of independent components is equal to the number of distinct chemical species present.

Consider the production of a nitration acid by mixing 70 per cent nitric and 98 per cent sulphuric acid. The number of distinct chemical species is 3; water, sulphuric acid, nitric acid.

# Chemical systems, reaction

If the process involves chemical reaction the number of independent components will not necessarily be equal to the number of chemical species, as some may be related by the chemical equation. In this situation the number of independent components can be calculated by the following relationship:

## Example 2.5

If nitration acid is made up using oleum in place of the 98 per cent sulphuric acid, there will be four distinct chemical species: sulphuric acid, sulphur trioxide, nitric acid, water. The sulphur trioxide will react with the water producing sulphuric acid so there are only three independent components

Oleum
$$H_2SO_4/H_2O/SO_3$$
 $HNO_3/H_2O$ 

Reaction equation  $SO_3 + H_2O \rightarrow H_2SO_4$ 

No. of chemical species

No. of reactions

No. of independent equations

 $\frac{1}{3}$ 

## 2.9. CONSTRAINTS ON FLOWS AND COMPOSITIONS

It is obvious, but worth emphasising, that the sum of the individual component flows in any stream cannot exceed the total stream flow. Also, that the sum of the individual molar or weight fractions must equal 1. Hence, the composition of a stream is completely defined if all but one of the component concentrations are given.

The component flows in a stream (or the quantities in a batch) are completely defined by any of the following:

- 1. Specifying the flow (or quantity) of each component.
- 2. Specifying the total flow (or quantity) and the composition.
- 3. Specifying the flow (or quantity) of one component and the composition.

## Example 2.6

The feed stream to a reactor contains: ethylene 16 per cent, oxygen 9 per cent, nitrogen 31 per cent, and hydrogen chloride. If the ethylene flow is 5000 kg/h, calculate the individual component flows and the total stream flow. All percentages are by weight.

### Solution

Percentage HCl = 
$$100 - (16 + 9 + 31) = 44$$

Percentage ethylene =  $\frac{5000}{\text{total}} \times 100 = 16$ 

hence total flow =  $5000 \times \frac{100}{16} = 31,250 \text{ kg/h}$ 

so, oxygen flow =  $\frac{9}{100} \times 31,250 = 2813 \text{ kg/h}$ 

nitrogen =  $31,250 \times \frac{31}{100} = 9687 \text{ kg/h}$ 

hydrogen chloride =  $31,250 \times \frac{44}{100} = 13,750 \text{ kg/h}$ 

General rule: the ratio of the flow of any component to the flow of any other component is the same as the ratio of the compositions of the two components.

The flow of any component in Example 2.6 could have been calculated directly from the ratio of the percentage to that of ethylene, and the ethylene flow.

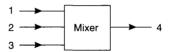
Flow of hydrogen chloride = 
$$\frac{44}{16} \times 5000 = \underline{13,750 \text{ kg/h}}$$

## 2.10. GENERAL ALGEBRAIC METHOD

Simple material-balance problems involving only a few streams and with a few unknowns can usually be solved by simple direct methods. The relationship between the unknown quantities and the information given can usually be clearly seen. For more complex problems, and for problems with several processing steps, a more formal algebraic approach can be used. The procedure is involved, and often tedious if the calculations have to be done manually, but should result in a solution to even the most intractable problems, providing sufficient information is known.

Algebraic symbols are assigned to all the unknown flows and compositions. Balance equations are then written around each sub-system for the independent components (chemical species or elements).

Material-balance problems are particular examples of the general design problem discussed in Chapter 1. The unknowns are compositions or flows, and the relating equations arise from the conservation law and the stoichiometry of the reactions. For any problem to have a unique solution it must be possible to write the same number of independent equations as there are unknowns.


Consider the general material balance problem where there are  $N_s$  streams each containing  $N_c$  independent components. Then the number of variables,  $N_v$ , is given by:

$$N_v = N_c \times N_s \tag{2.3}$$

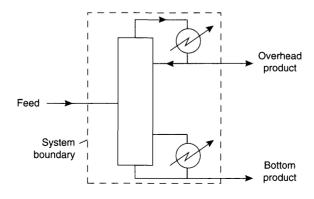
If  $N_e$  independent balance equations can be written, then the number of variables,  $N_d$ , that must be specified for a unique solution, is given by:

$$N_d = (N_s \times N_c) - N_e \tag{2.4}$$

Consider a simple mixing problem



Let  $F_n$  be the total flow in stream n, and  $x_{n,m}$  the concentration of component m in stream n. Then the general balance equation can be written


$$F_1 x_{1,m} + F_2 x_{2,m} + F_3 x_{3,m} = F_4 x_{4,m}$$
 (2.5)

A balance equation can also be written for the total of each stream:

$$F_1 + F_2 + F_3 = F_4 \tag{2.6}$$

but this could be obtained by adding the individual component equations, and so is not an additional independent equation. There are m independent equations, the number of independent components.

Consider a separation unit, such as a distillation column, which divides a process stream into two product streams. Let the feed rate be 10,000 kg/h; composition benzene 60 per cent, toluene 30 per cent, xylene 10 per cent.



There are three streams, feed, overheads and bottoms, and three independent components in each stream.

Number of variables (component flow rates) = 9

Number of independent material balance

equations = 3

Number of variables to be specified for

a unique solution = 9 - 3 = 6

Three variables are specified; the feed flow and composition fixes the flow of each component in the feed.

Number of variables to be specified by designer = 6 - 3 = 3. Any three component flows can be chosen.

Normally the top composition and flow or the bottom composition and flow would be chosen

If the primary function of the column is to separate the benzene from the other components, the maximum toluene and xylene in the overheads would be specified; say, at 5 kg/h and 3 kg/h, and the loss of benzene in the bottoms also specified; say, at not greater than 5 kg/h. Three flows are specified, so the other flows can be calculated.

Benzene in overheads = benzene in feed - benzene in bottoms.

$$0.6 \times 10,000 - 5 = 5995 \text{ kg/h}$$

Toluene in bottoms = toluene in feed - toluene in overheads

$$0.3 \times 10,000 - 5 = 2995 \text{ kg/h}$$

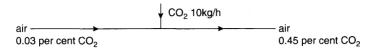
Xylene in bottoms = xylene in feed – xylene in overheads

$$0.1 \times 10,000 - 3 = 997 \text{ kg/h}$$

### 2.11. TIE COMPONENTS

In Section 2.9 it was shown that the flow of any component was in the same ratio to the flow of any other component, as the ratio of the concentrations of the two components. If one component passes unchanged through a process unit it can be used to tie the inlet and outlet compositions.

This technique is particularly useful in handling combustion calculations where the nitrogen in the combustion air passes through unreacted and is used as the tie component. This is illustrated in Example 2.8.


This principle can also be used to measure the flow of a process stream by introducing a measured flow of some easily analysed (compatible) material.

# Example 2.7

Carbon dioxide is added at a rate of 10 kg/h to an air stream and the air is sampled at a sufficient distance downstream to ensure complete mixing. If the analysis shows 0.45 per cent v/v CO<sub>2</sub>, calculate the air-flow rate.

#### Solution

Normal carbon dioxide content of air is 0.03 per cent



Basis: kmol/h, as percentages are by volume.

kmol/h 
$$CO_2$$
 introduced =  $\frac{10}{44} = 0.2273$ 

Let X be the air flow.

Balance on CO<sub>2</sub>, the tie component

$$CO_2$$
 in = 0.0003  $X + 0.2273$   
 $CO_2$  out = 0.0045  $X$   
 $X(0.0045 - 0.0003) = 0.2273$   
 $X = 0.2273/0.0042 = 54$  kmol/h  
 $= 54 \times 29 = 1560$  kg/h

## Example 2.8

In a test on a furnace fired with natural gas (composition 95 per cent methane, 5 per cent nitrogen) the following flue gas analysis was obtained: carbon dioxide 9.1 per cent, carbon monoxide 0.2 per cent, oxygen 4.6 per cent, nitrogen 86.1 per cent, all percentages by volume.

Calculate the percentage excess air flow (percentage above stoichiometric).

### Solution

Reaction: 
$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

*Note*: the flue gas analysis is reported on the dry basis, any water formed having been condensed out.

Nitrogen is the tie component.

Basis: 100 mol, dry flue gas; as the analysis of the flue gas is known, the mols of each element in the flue gas (flow out) can be easily calculated and related to the flow into the system.

Let the quantity of fuel (natural gas) per 100 mol dry flue gas be X.

Balance on carbon, mols in fuel = mols in flue gas

$$0.95 X = 9.1 + 0.2$$
, hence  $X = \underline{9.79 \text{ mol}}$ 

Balance on nitrogen (composition of air  $O_2$  21 per cent,  $N_2$  79 per cent). Let Y be the flow of air per 100 mol dry flue gas.

$$N_2$$
 in air +  $N_2$  in fuel =  $N_2$  in flue gas  
0.79  $Y + 0.05 \times 9.79 = 86.1$ , hence  $Y = \underline{108.4 \text{ mol}}$ 

Stoichiometric air; from the reaction equation 1 mol methane requires 2 mol oxygen,

so, stoichiometric air = 
$$9.79 \times 0.95 \times 2 \times \frac{100}{21} = \underline{88.6 \text{ mol}}$$

Percentage excess air =  $\frac{\text{(air supplied - stoichiometric air)}}{\text{stoichiometric air}} \times 100$ 

$$= \frac{108.4 - 88.6}{88.6} = \underline{22 \text{ per cent}}$$

# 2.12. EXCESS REAGENT

In industrial reactions the components are seldom fed to the reactor in exact stoichiometric proportions. A reagent may be supplied in excess to promote the desired reaction; to maximise the use of an expensive reagent; or to ensure complete reaction of a reagent, as in combustion.

The percentage excess reagent is defined by the following equation:

Per cent excess = 
$$\frac{\text{quantity supplied - stoichiometric}}{\text{stoichiometric quantity}} \times 100$$
 (2.7)

It is necessary to state clearly to which reagent the excess refers. This is often termed the limiting reagent.

# Example 2.9

To ensure complete combustion, 20 per cent excess air is supplied to a furnace burning natural gas. The gas composition (by volume) is methane 95 per cent, ethane 5 per cent. Calculate the mols of air required per mol of fuel.

#### Solution

Basis: 100 mol gas, as the analysis is volume percentage.

Reactions: 
$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

$$C_2H_6 + 3\frac{1}{2}O_2 \rightarrow 2CO_2 + 3H_2O$$
Stoichiometric mols  $O_2$  required =  $95 \times 2 + 5 \times 3\frac{1}{2} = \underline{207.5}$ 
With 20 per cent excess, mols  $O_2$  required =  $207.5 \times \frac{120}{100} = \underline{249}$ 
Mols air (21 per cent  $O_2$ ) =  $249 \times \frac{100}{21} = 1185.7$ 
Air per mol fuel =  $\frac{1185.7}{100} = \underline{11.86 \text{ mol}}$ 

## 2.13. CONVERSION AND YIELD

It is important to distinguish between conversion and yield (see Volume 3, Chapter 1). Conversion is to do with reactants (reagents); yield with products.

### Conversion

Conversion is a measure of the fraction of the reagent that reacts.

To optimise reactor design and to minimise by-product formation, the conversion of a particular reagent is often less than 100 per cent. If more than one reactant is used, the reagent on which the conversion is based must be specified.

Conversion is defined by the following expression:

Conversion = 
$$\frac{\text{amount of reagent consumed}}{\text{amount supplied}}$$

$$= \frac{\text{(amount in feed stream)} - \text{(amount in product stream)}}{\text{(amount in feed stream)}}$$
 (2.8)

This definition gives the total conversion of the particular reagent to all products. Sometimes figures given for conversion refer to one specific product, usually the desired product. In this instance the product must be specified as well as the reagent. This is really a way of expressing yield.

# Example 2.10

In the manufacture of vinyl chloride (VC) by the pyrolysis of dichloroethane (DCE), the reactor conversion is limited to 55 per cent to reduce carbon formation, which fouls the reactor tubes.

Calculate the quantity of DCE needed to produce 5000 kg/h VC.

#### Solution

Basis: 5000 kg/h VC (the required quantity).

Reaction: 
$$C_2H_4Cl_2 \rightarrow C_2H_3Cl + HCl$$
  
mol weights DCE 99, VC 62.5  
kmol/h VC produced =  $\frac{5000}{62.5} = \underline{80}$ 

From the stoichiometric equation, 1 kmol DCE produces 1 kmol VC. Let X be DCE feed kmol/h:

Per cent conversion = 
$$55 = \frac{80}{X} \times 100$$
  
$$X = \frac{.80}{0.55} = \underline{145.5 \text{ kmol/h}}$$

In this example the small loss of DCE to carbon and other products has been neglected. All the DCE reacted has been assumed to be converted to VC.

### **Yield**

Yield is a measure of the performance of a reactor or plant. Several different definitions of yield are used, and it is important to state clearly the basis of any yield figures. This is often not done when yield figures are quoted in the literature, and the judgement has to be used to decide what was intended.

For a reactor the yield (i.e. relative yield, Volume 3, Chapter 1) is defined by:

$$Yield = \frac{\text{mols of product produced} \times \text{stoichiometric factor}}{\text{mols of reagent converted}}$$
 (2.9)

Stoichiometric factor = Stoichiometric mols of reagent required per mol of produced

With industrial reactors it is necessary to distinguish between "Reaction yield" (chemical yield), which includes only chemical losses to side products; and the overall "Reactor yield" which will include physical losses.

If the conversion is near 100 per cent it may not be worth separating and recycling the unreacted material; the overall reactor yield would then include the loss of unreacted material. If the unreacted material is separated and recycled, the overall yield *taken over the reactor and separation step* would include any physical losses from the separation step.

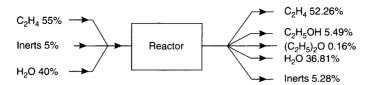
Plant yield is a measure of the overall performance of the plant and includes all chemical and physical losses.

Plant yield (applied to the complete plant or any stage)

$$= \frac{\text{mols product produced} \times \text{stoichiometric factor}}{\text{mols reagent fed to the process}}$$
 (2.10)

Where more than one reagent is used, or product produced, it is essential that product and reagent to which the yield figure refers is clearly stated.

# Example 2.11


In the production of ethanol by the hydrolysis of ethylene, diethyl ether is produced as a by-product. A typical feed stream composition is: 55 per cent ethylene, 5 per cent inerts, 40 per cent water; and product stream: 52.26 per cent ethylene, 5.49 per cent ethanol, 0.16 per cent ether, 36.81 per cent water, 5.28 per cent inerts. Calculate the yield of ethanol and ether based on ethylene.

#### Solution

Reactions: 
$$C_2H_4 + H_2O \rightarrow C_2H_5OH$$
 (a)

$$2C_2H_5OH \rightarrow (C_2H_5)_2O + H_2O$$
 (b)

Basis: 100 mols feed (easier calculation than using the product stream)



*Note*: the flow of inerts will be constant as they do not react, and it can be used to calculate the other flows from the compositions.

| Feed stream | ethylene | 55 mol |
|-------------|----------|--------|
|             | inerts   | 5 mol  |
|             | water    | 40 mol |

Product stream

ethylene = 
$$\frac{52.26}{5.28} \times 5 = 49.49 \text{ mol}$$
  
ethanol =  $\frac{5.49}{5.28} \times 5 = 5.20 \text{ mol}$   
ether =  $\frac{0.16}{5.28} \times 5 = 0.15 \text{ mol}$ 

Amount of ethylene reacted = 55.0 - 49.49 = 5.51 mol Yield of ethanol based on ethylene =  $\frac{5.2 \times 1}{5.51} \times 100 = \underline{94.4}$  per cent

As 1 mol of ethanol is produced per mol of ethylene the stoichiometric factor is 1.

Yield of ether based on ethylene = 
$$\frac{0.15 \times 2}{5.51} \times 100 = \frac{5.44 \text{ per cent}}{25.51}$$

The stoichiometric factor is 2, as 2 mol of ethylene produce 1 mol of ether.

Note: the conversion of ethylene, to all products, is given by:

Conversion = 
$$\frac{\text{mols fed - mols out}}{\text{mols fed}} = \frac{55 - 49.49}{55} \times 100$$
  
=  $\frac{10 \text{ per cent}}{10 \text{ per cent}}$ 

The yield based on water could also be calculated but is of no real interest as water is relatively inexpensive compared with ethylene. Water is clearly fed to the reactor in considerable excess.

# Example 2.12

In the chlorination of ethylene to produce dichloroethane (DCE), the conversion of ethylene is reported as 99.0 per cent. If 94 mol of DCE are produced per 100 mol of ethylene fed, calculate the overall yield and the reactor (reaction) yield based on ethylene. The unreacted ethylene is not recovered.

#### Solution

Reaction: 
$$C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2$$

Stoichiometric factor 1.

Overall yield (including physical losses) = 
$$\frac{\text{mols DCE produced} \times 1}{\text{mols ethylene fed}} \times 100$$
  
=  $\frac{94}{100} \times 100 = \frac{94 \text{ per cent}}{\text{mols otherwise}}$   
Chemical yield (reaction yield) =  $\frac{\text{mols DCE produced}}{\text{mols ethylene converted}} \times 100$   
=  $\frac{94}{99} \times 100 = \frac{94.5 \text{ per cent}}{\text{mols otherwise}}$ 

The principal by-product of this process is trichloroethane.

### 2.14. RECYCLE PROCESSES

Processes in which a flow stream is returned (recycled) to an earlier stage in the processing sequence are frequently used. If the conversion of a valuable reagent in a reaction process is appreciably less than 100 per cent, the unreacted material is usually separated and recycled. The return of reflux to the top of a distillation column is an example of a recycle process in which there is no reaction.

In mass balance calculations the presence of recycle streams makes the calculations more difficult.

Without recycle, the material balances on a series of processing steps can be carried out sequentially, taking each unit in turn; the calculated flows out of one unit become the feeds to the next. If a recycle stream is present, then at the point where the recycle is returned the flow will not be known as it will depend on downstream flows not yet calculated. Without knowing the recycle flow, the sequence of calculations cannot be continued to the point where the recycle flow can be determined.

Two approaches to the solution of recycle problems are possible:

- 1. The cut and try method. The recycle stream flows can be estimated and the calculations continued to the point where the recycle is calculated. The estimated flows are then compared with the calculated and a better estimate made. The procedure is continued until the difference between the estimated and the calculated flows is within acceptable limits.
- 2. The formal, algebraic, method. The presence of recycle implies that some of the mass balance equations will have to be solved simultaneously. The equations are set up with the recycle flows as unknowns and solved using standard methods for the solution of simultaneous equations.

With simple problems, with only one or two recycle loops, the calculation can often be simplified by the careful selection of the basis of calculation and the system boundaries. This is illustrated in Examples 2.4 and 2.13.

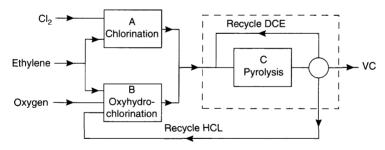
The solution of more complex material balance problems involving several recycle loops is discussed in Chapter 4.

## Example 2.13

The block diagram shows the main steps in the balanced process for the production of vinyl chloride from ethylene. Each block represents a reactor and several other processing units. The main reactions are:

Block A, chlorination

$$C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2$$
, yield on ethylene 98 per cent


Block B, oxyhydrochlorination

$$C_2H_4 + 2HCl + \frac{1}{2}O_2 \rightarrow C_2H_4Cl_2 + H_2O$$
, yields: on ethylene 95 per cent, on HCl 90 per cent

Block C, pyrolysis

$$C_2H_4Cl_2 \rightarrow C_2H_3Cl + HCl$$
, yields: on DCE 99 per cent, on HCl 99.5 per cent

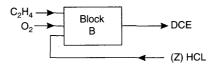
The HCl from the pyrolysis step is recycled to the oxyhydrochlorination step. The flow of ethylene to the chlorination and oxyhydrochlorination reactors is adjusted so that the production of HCl is in balance with the requirement. The conversion in the pyrolysis reactor is limited to 55 per cent, and the unreacted dichloroethane (DCE) separated and recycled.



Using the yield figures given, and neglecting any other losses, calculate the flow of ethylene to each reactor and the flow of DCE to the pyrolysis reactor, for a production rate of 12,500 kg/h vinyl chloride (VC).

#### Solution

Molecular weights: vinyl chloride 62.5, DCE 99.0, HCl 36.5.


VC per hour = 
$$\frac{12,500}{62.5}$$
 = 200 kmol/h

Draw a system boundary round each block, enclosing the DCE recycle within the boundary of step C.

Let flow of ethylene to block A be X and to block B be Y, and the HCl recycle be Z. Then the total mols of DCE produced = 0.98X + 0.95Y, allowing for the yields, and the mols of HCl produced in block C

$$= (0.98X + 0.95Y)0.995 = Z \tag{a}$$

Consider the flows to and product from block B



The yield of DCE based on HCl is 90 per cent, so the mols of DCE produced

$$=\frac{0.90Z}{2}$$

Note: the stoichiometric factor is 2 (2 mol HCl per mol DCE).

The yield of DCE based on ethylene is 95 per cent, so

$$\frac{0.9Z}{2} = 0.95Y$$

$$Z = \frac{0.95 \times 2Y}{0.9}$$

Substituting for Z into equation (a) gives

$$Y = (0.98X + 0.95Y)0.995 \times \frac{0.9}{2 \times 0.95}$$

$$Y = 0.837X$$
(b)

Total VC produced =  $0.99 \times \text{total DCE}$ , so

$$0.99(0.98X + 0.95Y) = 200 \text{ kmol/h}$$

Substituting for Y from equation (b) gives X = 13.8 kmol/h

$$Y = 0.837 \times 113.8 = 95.3 \text{ kmol/h}$$

HCl recycle from equation (a)

$$Z = (0.98 \times 113.8 + 0.95 \times 95.3)0.995 = 201.1 \text{ kmol/h}$$

*Note*: overall yield on ethylene = 
$$\frac{200}{(113.8 + 95.3)} \times 100 = \frac{96 \text{ per cent}}{200 \times 100}$$

# 2.15. **PURGE**

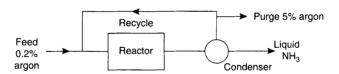
It is usually necessary to bleed off a portion of a recycle stream to prevent the build-up of unwanted material. For example, if a reactor feed contains inert components that are not

separated from the recycle stream in the separation units these inerts would accumulate in the recycle stream until the stream eventually consisted entirely of inerts. Some portion of the stream would have to be purged to keep the inert level within acceptable limits. A continuous purge would normally be used. Under steady-state conditions:

Loss of inert in the purge = Rate of feed of inerts into the system

The concentration of any component in the purge stream will be the same as that in the recycle stream at the point where the purge is taken off. So the required purge rate can be determined from the following relationship:

[Feed stream flow-rate] × [Feed stream inert concentration] = [Purge stream flow-rate] × [Specified (desired) recycle inert concentration]


## Example 2.14

In the production of ammonia from hydrogen and nitrogen the conversion, based on either raw material, is limited to 15 per cent. The ammonia produced is condensed from the reactor (converter) product stream and the unreacted material recycled. If the feed contains 0.2 per cent argon (from the nitrogen separation process), calculate the purge rate required to hold the argon in the recycle stream below 5.0 per cent. Percentages are by volume.

#### Solution

Basis: 100 mols feed (purge rate will be expressed as mols per 100 mol feed, as the production rate is not given).

Process diagram



Volume percentages are taken as equivalent to mol per cent.

Argon entering system with feed =  $100 \times 0.2/100 = 0.2$  mol.

Let purge rate per 100 mol feed be F.

Argon leaving system in purge =  $F \times 5/100 = 0.05F$ .

At the steady state, argon leaving = argon entering

$$0.05F = 0.2$$
$$F = \frac{0.2}{0.05} = \frac{4}{5}$$

Purge required: 4 mol per 100 mol feed.

## 2.16. BY-PASS

A flow stream may be divided and some part diverted (by-passed) around some units. This procedure is often used to control stream composition or temperature.

Material balance calculations on processes with by-pass streams are similar to those involving recycle, except that the stream is fed forward instead of backward. This usually makes the calculations easier than with recycle.

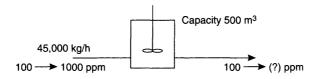
### 2.17. UNSTEADY-STATE CALCULATIONS

All the previous material balance examples have been steady-state balances. The accumulation term was taken as zero, and the stream flow-rates and compositions did not vary with time. If these conditions are not met the calculations are more complex. Steady-state calculations are usually sufficient for the calculations of the process flow-sheet (Chapter 4). The unsteady-state behaviour of a process is important when considering the process start-up and shut-down, and the response to process upsets.

Batch processes are also examples of unsteady-state operation; though the total material requirements can be calculated by taking one batch as the basis for the calculation.

The procedure for the solution of unsteady-state balances is to set up balances over a small increment of time, which will give a series of differential equations describing the process. For simple problems these equations can be solved analytically. For more complex problems computer methods would be used.

The general approach to the solution of unsteady-state problems is illustrated in Example 2.15. Batch distillation is a further example of an unsteady-state material balance (see Volume 2, Chapter 11).


The behaviour of processes under non-steady-state conditions is a complex and specialised subject and beyond the scope of this book. It can be important in process design when assessing the behaviour of a process from the point of view of safety and control.

The use of material balances in the modelling of complex unsteady-state processes is discussed in the books by Myers and Seider (1976) and Henley and Rosen (1969).

# Example 2.15

A hold tank is installed in an aqueous effluent-treatment process to smooth out fluctuations in concentration in the effluent stream. The effluent feed to the tank normally contains no more than 100 ppm of acetone. The maximum allowable concentration of acetone in the effluent discharge is set at 200 ppm. The surge tank working capacity is 500 m³ and it can be considered to be perfectly mixed. The effluent flow is 45,000 kg/h. If the acetone concentration in the feed suddenly rises to 1000 ppm, due to a spill in the process plant, and stays at that level for half an hour, will the limit of 200 ppm in the effluent discharge be exceeded?

#### Solution



Basis: increment of time  $\Delta t$ .

To illustrate the general solution to this type of problem, the balance will be set up in terms of symbols for all the quantities and then actual values for this example substituted.

Let, Material in the tank = M,

Flow-rate = F,

Initial concentration in the tank =  $C_0$ ,

Concentration at time t after the feed concentration is increased = C,

Concentration in the effluent feed =  $C_1$ ,

Change in concentration over time increment  $\Delta t = \Delta C$ ,

Average concentration in the tank during the time increment =  $C_{av}$ .

Then, as there is no generation in the system, the general material balance (Section 2.3) becomes:

$$Input - Output = Accumulation$$

Material balance on acetone.

*Note*: as the tank is considered to be perfectly mixed the outlet concentration will be the same as the concentration in the tank.

Acetone in - Acetone out = Acetone accumulated in the tank

$$FC_1 \Delta t - FC_{av} \Delta t = M(C + \Delta C) - MC$$
$$F(C_1 - C_{av}) = M \frac{\Delta C}{\Delta t}$$

Taking the limit, as  $\Delta t \rightarrow 0$ 

$$\frac{\Delta C}{\Delta t} = \frac{dC}{dt}, \ C_{av} = C$$
$$F(C_1 - C) = M \frac{dC}{dt}$$

Integrating

$$\int_0^t dt = \frac{M}{F} \int_{C_0}^C \frac{dC}{(C_1 - C)}$$
$$t = -\frac{M}{F} \ln \left[ \frac{C_1 - C}{C_1 - C_0} \right]$$

Substituting the values for the example, noting that the maximum outlet concentration will occur at the end of the half-hour period of high inlet concentration.

$$t = 0.5 \text{ h}$$
  
 $C_1 = 1000 \text{ ppm}$   
 $C_0 = 100 \text{ ppm (normal value)}$   
 $M = 500 \text{ m}^3 = 500,000 \text{ kg}$   
 $F = 45,000 \text{ kg/h}$ 

$$0.5 = -\frac{500,000}{45,000} \ln \left[ \frac{1000 - C}{1000 - 100} \right]$$
$$0.045 = -\ln \left[ \frac{1000 - C}{900} \right]$$
$$e^{-0.045} \times 900 = 1000 - C$$
$$C = \underline{140 \text{ ppm}}$$

So the maximum allowable concentration will not be exceeded.

## 2.18. GENERAL PROCEDURE FOR MATERIAL-BALANCE PROBLEMS

The best way to tackle a problem will depend on the information given; the information required from the balance; and the constraints that arise from the nature of the problem. No all embracing, best method of solution can be given to cover all possible problems. The following step-by-step procedure is given as an aid to the efficient solution of material balance problems. The same general approach can be usefully employed to organise the solution of energy balance, and other design problems.

#### **Procedure**

- Step 1. Draw a block diagram of the process.
  - Show each significant step as a block, linked by lines and arrows to show the stream connections and flow direction.
- Step 2. List all the available data.

  Show on the block diagram the known flows (or quantities) and stream compositions.
- Step 3. List all the information required from the balance.
- Step 4. Decide the system boundaries (see Section 2.6).
- Step 5. Write out all the chemical reactions involved for the main products and by-products.
- Step 6. Note any other constraints,

such as: specified stream compositions,

azeotropes,

phase equilibria,

tie substances (see Section 2.11).

The use of phase equilibrium relationships and other constraints in determining stream compositions and flows is discussed in more detail in Chapter 4.

- Step 7. Note any stream compositions and flows that can be approximated.
- Step 8. Check the number of conservation (and other) equations that can be written, and compare with the number of unknowns. Decide which variables are to be design variables; see Section 2.10.

This step would be used only for complex problems.

Step 9. Decide the basis of the calculation; see Section 2.7.

The order in which the steps are taken may be varied to suit the problem.

## 2.19. REFERENCES (FURTHER READING)

#### Basic texts

CHOPEY, N. P. (ed.) Handbook of Chemical Engineering Calculations (McGraw-Hill, 1984). Felder, R. M. and Rousseau, R. W. Elementary Principles of Chemical Processes (Wiley, 1978). HIMMELBLAU, D. M. Basic Principles and Calculations in Chemical Engineering (Prentice-Hall, 1982). Rudd, D. F., Powers, G. J. and Siirola, J. J. Process Synthesis (Prentice-Hall, 1973). Whitwell, J. C. and Toner, R. K. Conservation of Mass and Energy (McGraw-Hill, 1969). WILLIAMS, E. T. and Jackson, R. C. Stoichiometry for Chemical Engineers (McGraw-Hill, 1958).

#### Advanced texts

HENLEY, E. J. and ROSEN, E. M. (1969) Material and Energy Balance Computations (Wiley).

Myrrs A. L. and Seiner W. D. (1976) Introduction to Chemical Engineering and Computer Calc.

MYERS, A. L. and SEIDER, W. D. (1976) Introduction to Chemical Engineering and Computer Calculations (Prentice-Hall).

#### 2.20. NOMENCLATURE

|                  |                                                   | Dimensions in MLT           |
|------------------|---------------------------------------------------|-----------------------------|
| C                | Concentration after time t, Example 2.15          | _                           |
| $C_{\rm av}$     | Average concentration, Example 2.15               | _                           |
| $C_0$            | Initial concentration, Example 2.15               | _                           |
| $C_1$            | Concentration in feed to tank, Example 2.15       | _                           |
| $\Delta C$       | Incremental change in concentration, Example 2.15 |                             |
| $\boldsymbol{F}$ | Flow-rate                                         | $\mathbf{MT}^{-1}$          |
| $F_n$            | Total flow in stream n                            | $\mathbf{M}\mathbf{T}^{-1}$ |
| $F_1$            | Water feed to reactor, Example 2.4                | $\mathbf{M}\mathbf{T}^{-1}$ |
| M                | Quantity in hold tank, Example 2.15               | M                           |
| $N_c$            | Number of independent components                  | _                           |
| $N_d$            | Number of variables to be specified               | <del>_</del>                |
| $N_e$            | Number of independent balance equations           |                             |
| $N_s$            | Number of streams                                 |                             |
| $N_v$            | Number of variables                               | <del>-</del>                |
| t                | Time, Example 2.15                                | T                           |
| $\Delta t$       | Incremental change in time, Example 2.15          | T                           |
| X                | Unknown flow, Examples 2.8, 2.10, 2.13            | $\mathbf{M}\mathbf{T}^{-1}$ |
| $x_{n,m}$        | Concentration of component $m$ in stream $n$      | _                           |
| Y                | Unknown flow, Examples 2.8, 2.13                  | $\mathbf{M}\mathbf{T}^{-1}$ |
| Z                | Unknown flow, Example 2.13                        | $\mathbf{M}\mathbf{T}^{-1}$ |

#### 2.21. PROBLEMS

- **2.1.** The composition of a gas derived by the gasification of coal is, volume percentage: carbon dioxide 4, carbon monoxide 16, hydrogen 50, methane 15, ethane 3, benzene 2, balance nitrogen. If the gas is burnt in a furnace with 20 per cent excess air, calculate:
  - (a) the amount of air required per 100 kmol of gas,
  - (b) The amount of flue gas produced per 100 kmol of gas,

(c) the composition of the flue gases, on a dry basis.

Assume complete combustion.

- **2.2.** Ammonia is removed from a stream of air by absorption in water in a packed column. The air entering the column is at 760 mmHg pressure and 20 °C. The air contains 5.0 per cent v/v ammonia. Only ammonia is absorbed in the column. If the flow rate of the ammonia air mixture to the column is 200 m<sup>3</sup>/s and the stream leaving the column contains 0.05 per cent v/v ammonia, calculate:
  - (a) The flow-rate of gas leaving the column.
  - (b) The mass of ammonia absorbed.
  - (c) The flow-rate of water to the column, if the exit water contains 1% w/w ammonia.
- **2.3.** The off-gases from a gasoline stabiliser are fed to a reforming plant to produce hydrogen.

The composition of the off-gas, molar per cent, is:  $CH_4$  77.5,  $C_2H_6$  9.5,  $C_3H_8$  8.5,  $C_4H_{10}$  4.5.

The gases entering the reformer are at a pressure of 2 bara and 35  $^{\circ}$ C and the feed rate is 2000 m<sup>3</sup>/h.

The reactions in the reformer are:

1. 
$$C_2H_{2n+2} + n(H_2O) \rightarrow n(CO) + (2_n + 1)H_2$$
  
2.  $CO + H_2O \rightarrow CO_2 + H_2$ 

The molar conversion of  $C_2H_{2n+2}$  in reaction (1) is 96 per cent and of CO in reaction (2) 92 per cent.

Calculate:

- (a) the average molecular mass of the off-gas,
- (b) the mass of gas fed to the reformer, kg/h,
- (c) the mass of hydrogen produced, kg/h.
- **2.4.** Allyl alcohol can be produced by the hydrolysis of allyl chloride. Together with the main product, allyl alcohol, di-ally ether is produced as a by-product. The conversion of allyl chloride is typically 97 per cent and the yield to alcohol 90 per cent, both on a molar basis. Assuming that there are no other significant side reactions, calculate masses of alcohol and ether produced, per 1000 kg of allyl chloride fed to the reactor.
- **2.5.** Aniline is produced by the hydrogenation of nitrobenzene. A small amount of cyclo-hexylamine is produced as a by-product. The reactions are:

1. 
$$C_6H_5NO_2 + 3H_2 \rightarrow C_6H_5NH_2 + 2H_2O$$
  
2.  $C_6H_5NO_2 + 6H_2 \rightarrow C_6H_{11}NH_2 + 2H_2O$ 

Nitrobenzene is fed to the reactor as a vapour, with three times the stoichiometric quantity of hydrogen. The conversion of the nitrobenzene, to all products, is 96 per cent, and the yield to aniline 95 per cent.

The unreacted hydrogen is separated from the reactor products and recycled to the reactor. A purge is taken from the recycle stream to maintain the inerts in the recycle stream below 5 per cent. The fresh hydrogen feed is 99.5 per cent pure, the remainder being inerts. All percentages are molar.

For a feed rate of 100 kmol/h of nitrobenzene, calculate:

- (a) the fresh hydrogen feed,
- (b) the purge rate required,
- (c) the composition of the reactor outlet stream.
- **2.6.** In the manufacture of aniline by the hydrogenation of nitrobenzene, the offgases from the reactor are cooled and the products and unreacted nitrobenzene condensed. The hydrogen and inerts, containing only traces of the condensed materials, are recycled.

Using the typical composition of the reactor off-gas given below, estimate the stream compositions leaving the condenser.

Composition, kmol/h: aniline 950, cyclo-hexylamine 10, water 1920, hydrogen 5640, nitrobenzene 40, inerts 300.

2.7. In the manufacture of aniline, the condensed reactor products are separated in a decanter. The decanter separates the feed into an organic phase and an aqueous phase. Most of the aniline in the feed is contained in the organic phase and most of the water in the aqueous phase. Using the data given below, calculate the stream compositions.

Data:

Typical feed composition, including impurities and by-products, weight per cent: water 23.8, aniline 72.2, nitrobenzene 3.2, cyclo-hexylamine 0.8.

Density of aqueous layer 0.995, density of organic layer 1.006. Therefore, the organic layer will be at the bottom.

Solubility of aniline in water 3.2 per cent w/w, and water in aniline 5.15 per cent w/w.

Partition coefficient of nitrobenzene between the aqueous and organic phases:  $C_{\text{organic}}/C_{\text{water}} = 300$ 

Solubility of cyclo-hexylamine in the water phase 0.12 per cent w/w and in the organic phase 1.0 per cent w/w.

**2.8.** In the manufacture of aniline from nitrobenzene the reactor products are condensed and separated into an aqueous and organic phases in a decanter. The organic phase is fed to a striping column to recover the aniline. Aniline and water form an azeotrope, composition 0.96 mol fraction aniline. For the feed composition given below, make a mass balance round the column and determine the stream compositions and flow-rates. Take as the basis for the balance 100 kg/h feed and a 99.9 percentage recovery of the aniline in the overhead product. Assume that the nitrobenzene leaves with the water stream from the base of the column.

Feed composition, weight percentage: water 2.4, aniline 73.0, nitrobenzene 3.2, cyclo-hexylamine trace.

#### CHAPTER 3

# Fundamentals of Energy Balances (and Energy Utilisation)

#### 3.1. INTRODUCTION

As with mass, energy can be considered to be separately conserved in all but nuclear processes.

The conservation of energy, however, differs from that of mass in that energy can be generated (or consumed) in a chemical process. Material can change form, new molecular species can be formed by chemical reaction, but the total mass flow into a process unit must be equal to the flow out at the steady state. The same is not true of energy. The total enthalpy of the outlet streams will not equal that of the inlet streams if energy is generated or consumed in the processes; such as that due to heat of reaction.

Energy can exist in several forms: heat, mechanical energy, electrical energy, and it is the total energy that is conserved.

In process design, energy balances are made to determine the energy requirements of the process: the heating, cooling and power required. In plant operation, an energy balance (energy audit) on the plant will show the pattern of energy usage, and suggest areas for conservation and savings.

In this chapter the fundamentals of energy balances are reviewed briefly, and examples given to illustrate the use of energy balances in process design. The methods used for energy recovery and conservation are also discussed.

More detailed accounts of the principles and applications of energy balances are given in the texts covering material and energy balance calculations which are cited at the end of Chapter 2.

#### 3.2. CONSERVATION OF ENERGY

As for material (Section 2.3), a general equation can be written for the conservation of energy:

Energy out = Energy in + generation - consumption - accumulation

This is a statement of the first law of thermodynamics.

An energy balance can be written for any process step.

Chemical reaction will evolve energy (exothermic) or consume energy (endothermic).

For steady-state processes the accumulation of both mass and energy will be zero.

Energy can exist in many forms and this, to some extent, makes an energy balance more complex than a material balance.

## 3.3. FORMS OF ENERGY (PER UNIT MASS OF MATERIAL)

## 3.3.1. Potential energy

Energy due to position:

Potential energy = 
$$gz$$
 (3.1)

where z = height above some arbitrary datum, m,

 $g = \text{gravitational acceleration } (9.81 \text{ m/s}^2).$ 

## 3.3.2. Kinetic energy

Energy due to motion:

Kinetic energy = 
$$\frac{u^2}{2}$$
 (3.2)

where u = velocity, m/s.

## 3.3.3. Internal energy

The energy associated with molecular motion. The temperature T of a material is a measure of its internal energy U:

$$U = f(T) \tag{3.3}$$

#### 3.3.4. Work

Work is done when a force acts through a distance:

$$W = \int_0^1 F \, \mathrm{d}x \tag{3.4}$$

where F =force, N.

x and l = distance, m.

Work done on a system by its surroundings is conventionally taken as negative; work done by the system on the surroundings as positive.

Where the work arises from a change in pressure or volume:

$$W = \int_{1}^{2} P \, \mathrm{d}v \tag{3.5}$$

where P = pressure, Pa  $(N/m^2)$ ,

 $v = \text{volume per unit mass, m}^3/\text{kg}$ .

To integrate this function the relationship between pressure and volume must be known. In process design an estimate of the work done in compressing or expanding a gas is

often required. A rough estimate can be made by assuming either reversible adiabatic (isentropic) or isothermal expansion, depending on the nature of the process.

For isothermal expansion (expansion at constant temperature):

$$Pv = constant$$

For reversible adiabatic expansion (no heat exchange with the surroundings):

$$Pv^{\gamma} = \text{constant}$$

where  $\gamma = \text{ratio of the specific heats}$ ,  $C_p/C_v$ .

The compression and expansion of gases is covered more fully in Section 3.13.

#### 3.3.5. Heat

Energy is transferred either as heat or work. A system does not contain "heat", but the transfer of heat or work to a system changes its internal energy.

Heat taken in by a system from its surroundings is conventionally taken as positive and that given out as negative.

## 3.3.6. Electrical energy

Electrical, and the mechanical forms of energy, are included in the work term in an energy balance. Electrical energy will only be significant in energy balances on electrochemical processes.

#### 3.4. THE ENERGY BALANCE

Consider a steady-state process represented by Figure 3.1. The conservation equation can be written to include the various forms of energy.

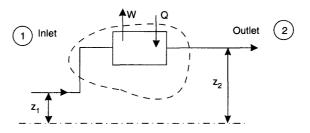



Figure 3.1. General steady-state process

For unit mass of material:

$$U_1 + P_1 v_1 + u_1^2 / 2 + z_1 g + Q = U_2 + P_2 v_2 + u_2^2 / 2 + z_2 g + W$$
 (3.6)

The suffixes 1 and 2 represent the inlet and outlet points respectively. Q is the heat transferred across the system boundary; positive for heat entering the system, negative

for heat leaving the system. W is the work done by the system; positive for work going from the system to the surroundings, and negative for work entering the system from the surroundings.

Equation 3.6 is a general equation for steady-state systems with flow.

In chemical processes, the kinetic and potential energy terms are usually small compared with the heat and work terms, and can normally be neglected.

It is convenient, and useful, to take the terms U and Pv together; defining the term enthalpy, usual symbol H, as:

$$H = U + Pv$$

Enthalpy is a function of temperature and pressure. Values for the more common substances have been determined experimentally and are given in the various handbooks (see Chapter 8).

Enthalpy can be calculated from specific and latent heat data; see Section 3.5.

If the kinetic and potential energy terms are neglected equation 3.6 simplifies to:

$$H_2 - H_1 = O - W (3.7)$$

This simplified equation is usually sufficient for estimating the heating and cooling requirements of the various unit operations involved in chemical processes.

As the flow-dependent terms have been dropped, the simplified equation is applicable to both static (non-flow) systems and flow systems. It can be used to estimate the energy requirement for batch processes.

For many processes the work term will be zero, or negligibly small, and equation 3.7 reduces to the simple heat balance equation:

$$Q = H_2 - H_1 \tag{3.8}$$

Where heat is generated in the system; for example, in a chemical reactor:

$$Q = Q_p + Q_s \tag{3.9}$$

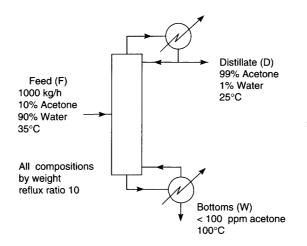
 $Q_s$  = heat generated in the system. If heat is evolved (exothermic processes)  $Q_s$  is taken as *positive*, and if heat is absorbed (endothermic processes) it is taken as *negative*.  $Q_p$  = process heat added to the system to maintain required system temperature.

Hence:

$$Q_p = H_2 - H_1 - Q_s (3.10)$$

 $H_1$  = enthalpy of the inlet stream,

 $H_2$  = enthalpy of the outlet stream.


## Example 3.1

Balance with no chemical reaction. Estimate the steam and the cooling water required for the distillation column shown in the figure.

Steam is available at 25 psig (274 kN/m<sup>2</sup> abs), dry saturated.

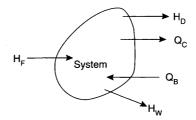
The rise in cooling water temperature is limited to 30°C.

Column operates at 1 bar.



#### Solution

## Material balance


It is necessary to make a material balance to determine the top and bottoms product flow rates.

Balance on acetone, acetone loss in bottoms neglected.

$$1000 \times 0.1 = D \times 0.99$$
  
Distillate,  $D = 101 \text{ kg/h}$   
Bottoms,  $W = 1000 - 101 = 899 \text{ kg/h}$ 

## Energy balance

The kinetic and potential energy of the process streams will be small and can be neglected. Take the first system boundary to include the reboiler and condenser.

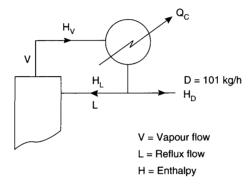


Inputs: reboiler heat input  $Q_B$  + feed sensible heat  $H_F$ .

Outputs: condenser cooling  $Q_C$  + top and bottom product sensible heats  $H_D + H_W$ .

The heat losses from the system will be small if the column and exchangers are properly lagged (typically less than 5 per cent) and will be neglected.

Basis 25°C, 1h.


Heat capacity data, from Volume 1, average values.

Acetone: 25°C to 35°C 2.2 kJ/kg K Water: 25°C to 100°C 4.2 kJ/kg K

Heat capacities can be taken as additive.

Feed, 10 per cent acetone =  $0.1 \times 2.2 + 0.9 \times 4.2 = 4.00$  kJ/kg K Tops, 99 per cent acetone, taken as acetone, 2.2 kJ/kg K Bottoms, as water, 4.2 kJ/kg K.

 $Q_C$  must be determined by taking a balance round the condenser.



Reflux ratio (see Chapter 11)

$$R = \frac{L}{D} = 10$$
  
 $L = 10 \times 101 = 1010 \text{ kg/h}$   
 $V = L + D = 1111 \text{ kg/h}$ 

From vapour-liquid equilibrium data:

boiling point of 99 per cent acetone/water =  $56.5^{\circ}$ C

At steady state:

input = output  

$$H_V = H_D + H_L + Q_C,$$

$$Q_C = H_V - H_D - H_L$$

Hence

Assume complete condensation.

Enthalpy of vapour  $H_V$  = latent + sensible heat.

There are two ways of calculating the specific enthalpy of the vapour at its boiling point.

- (1) Latent heat of vaporisation at the base temperature + sensible heat to heat the vapour to the boiling point.
- (2) Latent heat of vaporisation at the boiling point + sensible heat to raise liquid to the boiling point.

Values of the latent heat of acetone and water as functions of temperature are given in Volume 1, so the second method will be used.

Latent heat acetone at 
$$56.5^{\circ}$$
C (330 K) =  $620 \text{ kJ/kg}$   
Water at  $56.5^{\circ}$ C (330 K) =  $2500 \text{ kJ/kg}$ 

Taking latent heats as additive:

$$H_V = 1111[(0.01 \times 2500 + 0.99 \times 620) + (56.5 - 25)2.2]$$
  
= 786,699 kJ/h

The enthalpy of the top product and reflux are zero, as they are both at the base temperature. Both are liquid, and the reflux will be at the same temperature as the product.

Hence 
$$Q_C = H_V = \frac{786,699 \text{ kJ/h}}{(218.5 \text{ kW})}$$

 $Q_B$  is determined from a balance over complete system

Input Output 
$$Q_B + H_F = Q_C + H_D + H_W$$

$$H_F = 1000 \times 4.00(35 - 25) = 40,000 \text{ kJ/h}$$

$$H_W = 899 \times 4.2(100 - 25) = 283,185 \text{ kJ/h}$$

(boiling point of bottom product taken as 100°C).

hence

$$Q_B = Q_C + H_W + H_D - H_F$$
= 786,699 + 283,185 + 0 - 40,000
=  $\underline{1,029,884 \text{ kJ/h}}$  (286.1 kW)

 $Q_B$  is supplied by condensing steam.

Latent heat of steam (Volume 1) = 2174 kJ/kg at 274 kN/m<sup>2</sup> Steam required =  $\frac{1,029,884}{2174} = \frac{473.7 \text{ kg/h}}{2174}$ 

 $Q_C$  is removed by cooling water with a temperature rise of 30°C

$$Q_C$$
 = water flow × 30 × 4.2  
Water flow =  $\frac{786,699}{4.2 \times 30}$  =  $\frac{6244 \text{ kg/h}}{4.2 \times 30}$ 

#### 3.5. CALCULATION OF SPECIFIC ENTHALPY

Tabulated values of enthalpy are available only for the more common materials. In the absence of published data the following expressions can be used to estimate the specific enthalpy (enthalpy per unit mass).

For pure materials, with no phase change:

$$H_T = \int_{T_d}^T C_p \, \mathrm{d}T \tag{3.11}$$

where  $H_T$  = specific enthalpy at temperature T,

 $C_p$  = specific heat capacity of the material, constant pressure,

 $T_d$  = the datum temperature.

If a phase transition takes place between the specified and datum temperatures, the latent heat of the phase transition is added to the sensible-heat change calculated by equation 3.11. The sensible-heat calculation is then split into two parts:

$$H_T = \int_{T_d}^{T_p} C_{p_1} dT + \int_{T_p}^{T} C_{p_2} dT$$
 (3.12)

where  $T_p$  = phase transition temperature,

 $C_{p_1}$  = specific heat capacity first phase, below  $T_p$ ,

 $C_{p_2}$  = specific heat capacity second phase, above  $T_p$ .

The specific heat at constant pressure will vary with temperature and to use equations 3.11 and 3.12, values of  $C_p$  must be available as a function of temperature. For solids and gases  $C_p$  is usually expressed as an empirical power series equation:

$$C_p = a + bT + cT^2 + dT^3$$
 (3.13a)

or 
$$C_p = a + bT + cT^{-1/2}$$
 (3.13b)

Absolute (K) or relative (°C) temperature scales may be specified when the relationship is in the form given in equation 3.13a. For equation 3.13b absolute temperatures must be used.

## Example 3.2

Estimate the specific enthalpy of ethyl alcohol at 1 bar and 200°C, taking the datum temperature as 0°C.

C<sub>p</sub> liquid 0°C 24.65 cal/mol°C

100°C 37.96 cal/mol°C

$$C_p$$
 gas  $(t^{\circ}\text{C})$  14.66 + 3.758 × 10<sup>-2</sup> $t$  - 2.091 × 10<sup>-5</sup> $t^2$  + 4.740 × 10<sup>-9</sup> $t^3$  cal/mol

Boiling point of ethyl alcohol at 1 bar =  $78.4^{\circ}$ C.

Latent heat of vaporisation = 9.22 kcal/mol.

#### Solution

*Note*: as the data taken from the literature are given in cal/mol the calculation is carried out in these units and the result converted to SI units.

As no data are given on the exact variation of the  $C_p$  of the liquid with temperature, use an equation of the form  $C_p = a + bt$ , calculating a and b from the data given; this will be accurate enough over the range of temperature needed.

$$a = \text{value of } C_p \text{ at } 0^{\circ}\text{C}, \quad b = \frac{37.96 - 24.65}{100} = 0.133$$

$$H_{200^{\circ}\text{C}} = \int_{0}^{78.4} (24.65 + 0.133t) \, dt + 9.22 \times 10^{3} + \int_{78.4}^{200} (14.66 + 3.758 \times 10^{-2}t) \, dt$$

$$- 2.091 \times 10^{-5}t^{2} + 4.740 \times 10^{-9}t^{3} \, dt$$

$$= \int_{0}^{78.4} (24.65t + 0.133t^{2}/2] + 9.22 \times 10^{3} + \int_{78.4}^{200} (14.66t + 3.758 \times 10^{-2}t^{2}/2 - 2.091) \, dt$$

$$\times 10^{-5}t^{3}/3 + 4.740 \times 10^{-9}t^{4}/4]$$

$$= 13.95 \times 10^{3} \text{ cal/mol}$$

$$= 13.95 \times 10^{3} \times 4.18 = \underbrace{58.31 \times 10^{3} \text{ J/mol}}_{\text{mol}}$$

Specific enthalpy = 58.31 kJ/mol.

Molecular weight of ethyl alcohol,  $C_2H_5OH = 46$ Specific enthalpy =  $58.31 \times 10^3/46 = \underline{1268 \text{ kJ/kg}}$ 

#### 3.6. MEAN HEAT CAPACITIES

The use of mean heat capacities often facilitates the calculation of sensible-heat changes; mean heat capacity over the temperature range  $t_1$  to  $t_2$  is defined by the following equation:

$$C_{p_m} = \int_{t_1}^{t_2} C_p \, \mathrm{d}t \div \int_{t_1}^{t_2} \, \mathrm{d}t \tag{3.14}$$

Mean specific heat values are tabulated in various handbooks. If the values are for unit mass, calculated from some standard reference temperature,  $t_r$ , then the change in enthalpy between temperatures  $t_1$  and  $t_2$  is given by:

$$\Delta H = C_{p_{m,t_2}}(t_2 - t_r) - C_{p_{m,t_1}}(t_1 - t_r)$$
(3.15)

where  $t_r$  is the reference temperature from which the values of  $C_{p_m}$  were calculated.

If  $C_p$  is expressed as a polynomial of the form:  $C_p = a + bt + ct^2 + dt^3$ , then the integrated form of equation 3.14 will be:

$$C_{p_m} = \frac{a(t - t_r) + \frac{b}{2}(t^2 - t_r^2) + \frac{c}{3}(t^3 - t_r^3) + \frac{d}{4}(t^4 - t_r^4)}{t - t_r}$$
(3.16)

where t is the temperature at which  $C_{p_m}$  is required.

If the reference temperature is taken at 0°C, equation 3.16 reduces to:

$$C_{p_m} = a + \frac{bt}{2} + \frac{ct^2}{3} + \frac{dt^3}{4} \tag{3.17}$$

and the enthalpy change from  $t_1$  to  $t_2$  becomes

$$\Delta H = C_{p_{m,t_2}} t_2 - C_{p_{m,t_1}} t_1 \tag{3.18}$$

The use of mean heat capacities is illustrated in Example 3.3.

## Example 3.3

The gas leaving a combustion chamber has the following composition:  $CO_2$  7.8, CO 0.6,  $O_2$  3.4,  $H_2O$  15.6,  $N_2$  72.6, all volume percentage. Calculate the heat removed if the gas is cooled from 800 to 200°C.

## Solution

Mean heat capacities for the combustion gases are readily available in handbooks and texts on heat and material balances. The following values are taken from K. A. Kobe, *Thermochemistry of Petrochemicals*, reprint No. 44, Pet. Ref. 1958; converted to SI units, J/mol°C, reference temperature 0°C.

| °C  | N <sub>2</sub> | O <sub>2</sub> | CO <sub>2</sub> | СО    | H <sub>2</sub> O |
|-----|----------------|----------------|-----------------|-------|------------------|
| 200 | 29.24          | 29.95          | 40.15           | 29.52 | 34.12            |
| 800 | 30.77          | 32.52          | 47.94           | 31.10 | 37.38            |

Heat extracted from the gas in cooling from 800 to 200°C, for each component:

$$= M_c(C_{p_{m.800}} \times 800 - C_{p_{m.200}} \times 200)$$

where  $M_c = \text{mols of that component.}$ 

Basis 100 mol gas (as analysis is by volume), substitution gives:

## 3.7. THE EFFECT OF PRESSURE ON HEAT CAPACITY

The data on heat capacities given in the handbooks, and in Appendix A, are, usually for the ideal gas state. Equation 3.13a should be written as:

$$C_p^{\circ} = a + bT + cT^2 + dT^3 \tag{3.19}$$

where the superscript ° refers to the ideal gas state.

The ideal gas values can be used for the real gases at low pressures. At high pressures the effect of pressure on the specific heat may be appreciable.

Edmister (1948) published a generalised plot showing the isothermal pressure correction for real gases as a function of the reduced pressure and temperature. His chart, converted

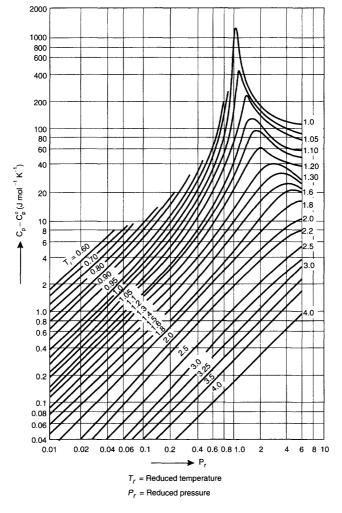



Figure 3.2. Excess heat capacity chart (reproduced from Sterbacek et al. (1979), with permission)

to SI units, is shown as Figure 3.2. Edmister's chart was based on hydrocarbons, but can be used for other materials to give an indication of the likely error if the ideal gas specific heat values are used without corrections.

The method is illustrated in Example 3.4.

## Example 3.4

The ideal state heat capacity of ethylene is given by the equation:

$$C_p^{\circ} = 3.95 + 15.6 \times 10^{-2} T - 8.3 \times 10^{-5} T^2 + 17.6 \times 10^{-9} T^3$$
 J/mol K

Estimate the value at 10 bar and 300 K.

#### Solution

Ethylene: critical pressure 50.5 bar critical temperature 283 K

$$C_p^{\circ} = 3.95 + 15.6 \times 10^{-2} \times 300 - 8.3 \times 10^{-5} \times 300^2 + 17.6 \times 10^{-9} \times 300^3$$
  
=  $\underbrace{43.76 \text{ J/mol K}}_{10}$ 

$$P_r = \frac{10}{50.5} = \underline{0.20}$$

$$T_r = \frac{300}{100} = 1.06$$

$$T_r = \frac{300}{283} = \underline{1.06}$$

From Figure 3.2:

So

$$C_p - C_p^{\circ} \simeq \underline{\underline{5 \text{ J/mol K}}}$$

$$C_p = 43.76 + 5 = \underline{\approx 49 \text{ J/mol K}}$$

The error in  $C_p$  if the ideal gas value were used uncorrected would be approximately 10 per cent.

#### 3.8. ENTHALPY OF MIXTURES

For gases, the heats of mixing are usually negligible and the heat capacities and enthalpies can be taken as additive without introducing any significant error into design calculations; as was done in Example 3.3.

$$C_p(\text{mixture}) = x_a C_{p_a} + x_b C_{p_b} + x_c C_{p_c} + \cdots$$
 (3.20)

where  $x_a$ ,  $x_b$ ,  $x_c$ , etc., are the mol fractions of the components a, b, c.

For mixtures of liquids and for solutions, the heat of mixing (heat of solution) may be significant, and so must be included when calculating the enthalpy of the mixture.

For binary mixtures, the specific enthalpy of the mixture at temperature t is given by:

$$H_{\text{mixture }t} = x_a H_{a,t} + x_b H_{b,t} + \Delta H_{m,t}$$
 (3.21)

where  $H_{a,t}$  and  $H_{b,t}$  are the specific enthalpies of the components a and b and  $-\Delta H_{m,t}$ is the heat of mixing when 1 mol of solution is formed, at temperature t.

Heats of mixing and heats of solution are determined experimentally and are available in the handbooks for the more commonly used solutions.

If no values are available, judgement must be used to decide if the heat of mixing for the system is likely to be significant.

For organic solutions the heat of mixing is usually small compared with the other heat quantities, and can usually be neglected when carrying out a heat balance to determine the process heating or cooling requirements.

The heats of solution of organic and inorganic compounds in water can be large, particularly for the strong mineral acids and alkalies.

## 3.8.1. Integral heats of solution

Heats of solution are dependent on concentration. The integral heat of solution at any given concentration is the cumulative heat released, or absorbed, in preparing the solution from pure solvent and solute. The integral heat of solution at infinite dilution is called the *standard integral heat of solution*.

Tables of the integral heat of solution over a range of concentration, and plots of the integral heat of solution as a function of concentration, are given in the handbooks for many of the materials for which the heat of solution is likely to be significant in process design calculations.

The integral heat of solution can be used to calculate the heating or cooling required in the preparation of solutions, as illustrated in Example 3.5.

## Example 3.5

A solution of NaOH in water is prepared by diluting a concentrated solution in an agitated, jacketed, vessel. The strength of the concentrated solution is 50 per cent w/w and 2500 kg of 5 per cent w/w solution is required per batch. Calculate the heat removed by the cooling water if the solution is to be discharged at a temperature of 25°C. The temperature of the solutions fed to the vessel can be taken to be 25°C.

#### Solution

Integral heat of solution of NaOH – H<sub>2</sub>O, at 25°C

| mols H <sub>2</sub> O/mol NaOH | $-\Delta H_{\rm soln}^{\circ}$ kJ/mol NaOH |
|--------------------------------|--------------------------------------------|
| 2                              | 22.9                                       |
| 4                              | 34.4                                       |
| 5                              | 37.7                                       |
| 10                             | 42.5                                       |
| infinite                       | 42.9                                       |

Conversion of weight per cent to mol/mol:

50 per cent w/w = 
$$50/18 \div 50/40 = 2.22$$
 mol H<sub>2</sub>O/mol NaOH  
5 per cent w/w =  $95/18 \div 5/40 = 42.2$  mol H<sub>2</sub>O/mol NaOH

From a plot of the integral heats of solution versus concentration,

$$-\Delta H_{\text{soln}}^{\circ}$$
 2.22 mol/mol = 27.0 kJ/mol NaOH  
42.2 mol/mol = 42.9 kJ/mol NaOH

Heat liberated in the dilution per mol NaOH

$$= 42.9 - 27.0 = 15.9 \text{ kJ}$$

Heat released per batch = mol NaOH per batch  $\times$  15.9

$$= \frac{2500 \times 10^3 \times 0.05}{40} \times 15.9 = \underline{49.7 \times 10^3 \text{ kJ}}$$

Heat transferred to cooling water, neglecting heat losses,

In Example 3.5 the temperature of the feeds and final solution have been taken as the same as the standard temperature for the heat of solution, 25°C, to simplify the calculation. Heats of solution are analogous to heats of reaction, and examples of heat balances on processes where the temperatures are different from the standard temperature are given in the discussion of heats of reaction, Section 3.10.

## 3.9. ENTHALPY-CONCENTRATION DIAGRAMS

The variation of enthalpy for binary mixtures is conveniently represented on a diagram. An example is shown in Figure 3.3. The diagram shows the enthalpy of mixtures of ammonia and water versus concentration; with pressure and temperature as parameters. It covers the phase changes from solid to liquid to vapour, and the enthalpy values given include the latent heats for the phase transitions.

The enthalpy is per kg of the mixture (ammonia + water)

Reference states: enthalpy ammonia at  $-77^{\circ}C = zero$  enthalpy water at  $0^{\circ}C = zero$ 

Enthalpy-concentration diagrams greatly facilitate the calculation of energy balances involving concentration and phase changes; this is illustrated in Example 3.6.

## Example 3.6

Calculate the maximum temperature when liquid ammonia at 40°C is dissolved in water at 20°C to form a 10 per cent solution.

#### Solution

The maximum temperature will occur if there are no heat losses (adiabatic process). As no heat or material is removed, the problem can be solved graphically in the enthalpy-concentration diagram (Figure 3.3). The mixing operation is represented on the diagram

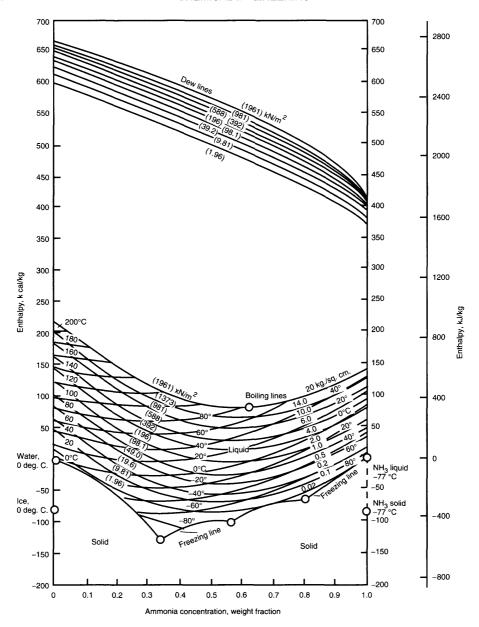
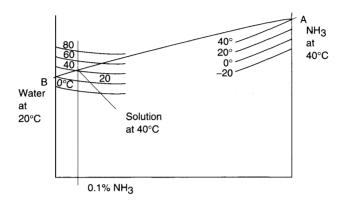




Figure 3.3. Enthalpy-concentration diagram for aqueous ammonia. Reference states: enthalpies of liquid water at  $0^{\circ}$ C and liquid ammonia at  $-77^{\circ}$ C are zero. (Bosniakovic, *Technische Thermodynamik*, T. Steinkopff, Leipzig, 1935)

by joining the point A representing pure ammonia at 40°C with the point B representing pure water at 20°C. The value of the enthalpy of the mixture lies on a vertical line at the required concentration, 0.1. The temperature of the mixture is given by the intersection of this vertical line with the line AB. This method is an application of the "lever rule" for phase diagrams. For a more detailed explanation of the method and further examples see

Himmelbau (1982) or any of the general texts on material and energy balances listed at the end of Chapter 2. The Ponchon-Savarit graphical method used in the design of distillation columns, described in Volume 2, Chapter 11, is a further example of the application of the lever rule, and the use of enthalpy-concentration diagrams.



## 3.10. HEATS OF REACTION

If a process involves chemical reaction, heat will normally have to be added or removed. The amount of heat given out in a chemical reaction depends on the conditions under which the reaction is carried out. The standard heat of reaction is the heat released when the reaction is carried out under standard conditions: pure components, pressure 1 atm (1.01325 bar), temperature usually, but not necessarily, 25°C.

Values for the standard heats of reactions are given in the literature, or may be calculated by the methods given in Sections 3.11 and 3.12.

When quoting heats of reaction the basis should be clearly stated. Either by giving the chemical equation, for example:

$$NO + \frac{1}{2}O_2 \rightarrow NO_2$$
  $\Delta H_r^{\circ} = -56.68 \text{ kJ}$ 

(The equation implies that the quantity of reactants and products are mols)

Or, by stating to which quantity the quoted value applies:

$$\Delta H_r^{\circ} = -56.68 \text{ kJ per mol NO}_2$$

The reaction is exothermic and the enthalpy change  $\Delta H_r^{\circ}$  is therefore *negative*. The heat of reaction  $-\Delta H_r^{\circ}$  is *positive*. The superscript  $^{\circ}$  denotes a value at *standard* conditions and the subscript r implies that a chemical reaction is involved.

The state of the reactants and products (gas, liquid or solid) should also be given, if the reaction conditions are such that they may exist in more than one state; for example:

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g), \ \Delta H_r^{\circ} = -241.6 \text{ kJ}$$

$$\mathrm{H_2(g)} + \frac{1}{2}\mathrm{O_2(g)} \rightarrow \mathrm{H_2O}$$
 (I),  $\Delta H_r^{\circ} = -285.6$  kJ

The difference between the two heats of reaction is the latent heat of the water formed.

In process design calculations it is usually more convenient to express the heat of reaction in terms of the mols of product produced, for the conditions under which the reaction is carried out, kJ/mol product.

Standard heats of reaction can be converted to other reaction temperatures by making a heat balance over a hypothetical process, in which the reactants are brought to the standard temperature, the reaction carried out, and the products then brought to the required reaction temperature; as illustrated in Figure 3.4.

$$\Delta H_{r,t} = \Delta H_r^{\circ} + \Delta H_{\text{prod.}} - \Delta H_{\text{react.}}$$
 (3.22)

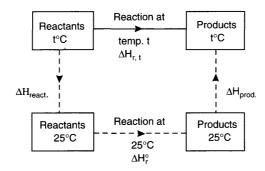



Figure 3.4.  $\Delta H_r$  at temperature t

where  $-\Delta H_{r,t}$  = heat of reaction at temperature t,

 $\Delta H_{\rm react.}$  = enthalpy change to bring reactants to standard temperature,

 $\Delta H_{\text{prod.}}$  = enthalpy change to bring products to reaction temperature, t.

For practical reactors, where the reactants and products may well be at temperatures different from the reaction temperature, it is best to carry out the heat balance over the actual reactor using the standard temperature (25°C) as the datum temperature; the standard heat of reaction can then be used without correction.

It must be emphasised that it is unnecessary to correct a heat of reaction to the reaction temperature for use in a reactor heat-balance calculation. To do so is to carry out two heat balances, whereas with a suitable choice of datum only one need be made. For a practical reactor, the heat added (or removed)  $Q_p$  to maintain the design reactor temperature will be given by (from equation 3.10):

$$Q_p = H_{\text{products}} - H_{\text{reactants}} - Q_r \tag{3.23}$$

where  $H_{\text{products}}$  is the *total* enthalpy of the product streams, including unreacted materials and by-products, evaluated from a datum temperature of 25°C;

 $H_{\text{reactants}}$  is the total enthalpy of the feed streams, including excess reagent and inerts, evaluated from a datum of 25°C;

 $Q_r$  is the total heat generated by the reactions taking place, evaluated from the standard heats of reaction at 25°C (298 K).

$$Q_r = \sum -\Delta H_r^{\circ} \times \text{(mol of product formed)}$$
 (3.24)

where  $-\Delta H_r^{\circ}$  is the standard heat of reaction per mol of the particular product.

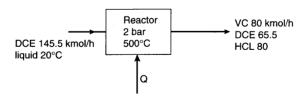
*Note*: A negative sign is necessary in equation 3.24 as  $Q_r$  is positive when heat is evolved by the reaction, whereas the standard enthalpy change will be negative for exothermic reactions.  $Q_p$  will be negative when cooling is required (see Section 3.4).

## 3.10.1. Effect of pressure on heats of reaction

Equation 3.22 can be written in a more general form:

$$\Delta H_{r,P,T} = \Delta H_r^{\circ} + \int_1^P \left[ \left( \frac{\partial H_{\text{prod.}}}{\partial P} \right)_T - \left( \frac{\partial H_{\text{react.}}}{\partial P} \right)_T \right] dP$$

$$+ \int_{298}^T \left[ \left( \frac{\partial H_{\text{prod.}}}{\partial T} \right)_P - \left( \frac{\partial H_{\text{react.}}}{\partial T} \right)_P \right] dT$$
(3.25)


If the effect of pressure is likely to be significant, the change in enthalpy of the products and reactants, from the standard conditions, can be evaluated to include both the effects of temperature and pressure (for example, by using tabulated values of enthalpy) and the correction made in a similar way to that for temperature only.

## Example 3.7

Illustrates the manual calculation of a reactor heat balance.

Vinyl chloride (VC) is manufactured by the pyrolysis of 1,2,dichloroethane (DCE). The reaction is endothermic. The flow-rates to produce 5000 kg/h at 55 per cent conversion are shown in the diagram (see Example 2.13).

The reactor is a pipe reactor heated with fuel gas, gross calorific value 33.5 MJ/m<sup>3</sup>. Estimate the quantity of fuel gas required.



## Solution

Reaction:  $C_2H_4Cl_2(g) \rightarrow C_2H_3Cl(g) + HCl(g)$   $\Delta H_r^{\circ} = 70,224$  kJ/kmol.

The small quantity of impurities, less than 1 per cent, that would be present in the feed have been neglected for the purposes of this example. Also, the yield of VC has been taken as 100 per cent. It would be in the region of 99 per cent at 55 per cent conversion.

Heat capacity data, for vapour phase

$$C_p^{\circ} = a + bT + cT^2 + dT^3$$
 kJ/kmolK 
$$a \qquad b \times 10^2 \qquad c \times 10^5 \qquad d \times 10^9$$
 VC 5.94 20.16 -15.34 47.65 HCl 30.28 -0.761 1.325 -4.305 DCE 20.45 23.07 -14.36 33.83

for liquid phase: DCE at 20°C,  $C_p = 116$  kJ/kmol K,

taken as constant over temperature rise from 20 to 25°C.

Latent heat of vaporisation of DCE at  $25^{\circ}$ C = 34.3 MJ/kmol.

At 2 bar pressure the change in  $C_p$  with pressure will be small and will be neglected. Take base temperature as 25°C (298 K), the standard state for  $\Delta H_r^{\circ}$ .

Enthalpy of feed = 
$$145.5 \times 116(293 - 298) = -84,390 \text{ kJ/h} = -84.4 \text{ MJ/h}$$

Enthalpy of product stream = 
$$\int_{298}^{773} \sum (n_i C_p) dT$$

| Component      | n <sub>i</sub><br>(mol/h) | $n_ia$ | $n_i b \times 10^2$ | $n_i c \times 10^5$ | $n_i d \times 10^9$ |
|----------------|---------------------------|--------|---------------------|---------------------|---------------------|
| VC             | 80                        | 475.2  | 1612.8              | -1227.2             | 3812.0              |
| HCl            | 80                        | 2422.4 | -60.88              | 106.0               | -344.4              |
| DCE            | 65.5                      | 1339.5 | 1511.0              | -940.6              | 2215.9              |
| $\sum n_i C_p$ |                           | 4237.1 | 3063.0              | -2061.8             | 5683.5              |

$$\int_{298}^{773} \sum n_i C_p \, dT$$

$$= \int_{298}^{773} (4237.1 + 3063.0 \times 10^{-2}T - 2061.8 \times 10^{-5}T^2 + 5683.5 \times 10^{-9}T^3) \, dT$$

$$= \underline{7307.3 \text{ MJ/h}}$$

Heat consumed in system by the endothermic reaction =  $\Delta H_r^{\circ} \times$  mols produced

= 
$$70,224 \times 80 = 5,617,920 \text{ kJ/h} = \underline{5617.9 \text{ MJ/h}}$$

Heat to vaporise feed (gas phase reaction)

$$= 34.3 \times 145.5 = 4990.7 \text{ MJ/h}$$

Heat balance:

Output = Input + consumed + 
$$Q$$
  
 $Q = H_{\text{product}} - H_{\text{feed}} + \text{consumed}$   
= 7307.3 - (-84.4) + (5617.9 + 4990.7) = 18,002.3 MJ/h

Taking the overall efficiency of the furnace as 70% the gas rate required

## 3.11. STANDARD HEATS OF FORMATION

The standard enthalpy of formation  $\Delta H_f^{\circ}$  of a compound is defined as the enthalpy change when one mol of the compound is formed from its constituent elements in the standard state. The enthalpy of formation of the elements is taken as zero. The standard heat of any reaction can be calculated from the heats of formation  $-\Delta H_f^{\circ}$  of the products and reactants; if these are available or can be estimated.

Conversely, the heats of formation of a compound can be calculated from the heats of reaction; for use in calculating the standard heat of reaction for other reactions.

The relationship between standard heats of reaction and formation is given by equation 3.26 and illustrated by Examples 3.8 and 3.9

$$\Delta H_r^{\circ} = \sum \Delta H_f^{\circ}$$
, products  $-\sum \Delta H_f^{\circ}$ , reactants (3.26)

A comprehensive list of enthalpies of formation is given in Appendix D.

As with heats of reaction, the state of the materials must be specified when quoting heats of formation.

## Example 3.8

Calculate the standard heat of the following reaction, given the enthalpies of formation:

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$

Standard enthalpies of formation kJ/mol

#### Solution

*Note*: the enthalpy of formation of  $O_2$  is zero.

$$\Delta H_r^{\circ} = \sum \Delta H_f^{\circ}$$
, products  $-\sum \Delta H_f^{\circ}$ , reactants  
=  $(4 \times 90.3 + 6 \times (-241.6)) - (4 \times (-46.2))$   
=  $-903.6$  kJ/mol

Heat of reaction  $-\Delta H_r^{\circ} = \underline{904 \text{ kJ/mol}}$ 

## 3.12. HEATS OF COMBUSTION

The heat of combustion of a compound  $-\Delta H_c^{\circ}$  is the standard heat of reaction for complete combustion of the compound with oxygen. Heats of combustion are relatively easy to determine experimentally. The heats of other reactions can be easily calculated from the heats of combustion of the reactants and products.

The general expression for the calculation of heats of reaction from heats of combustion is

$$\Delta H_r^{\circ} = \sum \Delta H_c^{\circ}$$
, reactants  $-\sum \Delta H_c^{\circ}$ , products (3.27)

*Note*: the product and reactant terms are the opposite way round to that in the expression for the calculation from heats of formation (equation 3.26).

For compounds containing nitrogen, the nitrogen will not be oxidised to any significant extent in combustion and is taken to be unchanged in determining the heat of combustion.

*Caution*. Heats of combustion are large compared with heats of reaction. Do not round off the numbers before subtraction; round off the difference.

Two methods of calculating heats of reaction from heats of combustion are illustrated in Example 3.9.

## Example 3.9

Calculate the standard heat of reaction for the following reaction: the hydrogenation of benzene to cyclohexane.

- (1)  $C_6H_6(g) + 3H_2(g) \rightarrow C_6H_{12}(g)$
- (2)  $C_6H_6(g) + 7\frac{1}{2}O_2(g) \rightarrow 6CO_2(g) + 3H_2O(l)$   $\Delta H_c^{\circ} = -3287.4 \text{ kJ}$
- (3)  $C_6H_{12}(g) + 9O_2 \rightarrow 6CO_2(g) + 6H_2O(l)$   $\Delta H_c^{\circ} = -3949.2 \text{ kJ}$
- (4)  $C(s) + O_2(g) \rightarrow CO_2(g)$   $\Delta H_c^{\circ} = -393.12 \text{ kJ}$
- (5)  $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(1)$   $\Delta H_c^{\circ} = -285.58 \text{ kJ}$

*Note*: unlike heats of formation, the standard state of water for heats of combustion is liquid. Standard pressure and temperature are the same 25°C, 1 atm.

## Solution

#### Method 1

Using the more general equation 3.26

$$\Delta H_r^{\circ} = \sum \Delta H_f^{\circ}$$
, products  $-\sum \Delta H_f^{\circ}$  reactants

the enthalpy of formation of  $C_6H_6$  and  $C_6H_{12}$  can be calculated, and from these values the heat of reaction (1).

From reaction (2)

$$\Delta H_c^{\circ}(C_6H_6) = 6 \times \Delta H_c^{\circ}(CO_2) + 3 \times \Delta H_c^{\circ}(H_2O) - \Delta H_f^{\circ}(C_6H_6)$$

$$3287.4 = 6(-393.12) + 3(-285.58) - \Delta H_f^{\circ}(C_6H_6)$$

$$\Delta H_f^{\circ}(C_6H_6) = -3287.4 - 3215.52 = \underline{71.88 \text{ kJ/mol}}$$

From reaction (3)

$$\Delta H_c^{\circ}(C_6H_{12}) = -3949.2 = 6(-393.12) + 6(-285.58) - \Delta H_f^{\circ}(C_6H_{12})$$

$$\Delta H_f^{\circ}(C_6H_{12}) = 3949.2 - 4072.28 = \underline{-123.06 \text{ kJ/mol}}$$

$$\Delta H_r^{\circ} = \Delta H_f^{\circ}(C_6H_{12}) - \Delta H_f^{\circ}(C_6H_6)$$

$$\Delta H_r^{\circ} = (-123.06) - (71.88) = \underline{-195 \text{ kJ/mol}}$$

Note: enthalpy of formation of H<sub>2</sub> is zero.

#### Method 2

Using equation 3.27

$$\Delta H_r^{\circ} = (\Delta H_c^{\circ}(C_6H_6) + 3 \times \Delta H_c^{\circ}(H_2)) - \Delta H_c^{\circ}(C_6H_{12})$$
$$= (-3287.4 + 3(-285.88)) - (-3949.2) = -\underline{196 \text{ kJ/mol}}$$

Heat of reaction  $-\Delta H_r^{\circ} = \underline{196 \text{ kJ/mol}}$ 

## 3.13. COMPRESSION AND EXPANSION OF GASES

The work term in an energy balance is unlikely to be significant unless a gas is expanded or compressed as part of the process. To compute the pressure work term:

$$-W = \int_{1}^{2} P \, \mathrm{d}v \qquad \qquad \text{(equation 3.5)}$$

a relationship between pressure and volume during the expansion is needed.

If the compression or expansion is isothermal (at constant temperature) then for unit mass of an ideal gas:

$$Pv = \text{constant}$$
 (3.28)

and the work done, 
$$-W = P_1 v_1 \ln \frac{P_2}{P_1} = \frac{\mathbf{R} T_1}{M} \ln \frac{P_2}{P_1}$$
 (3.29)

where  $P_1$  = initial pressure,

 $P_2$  = final pressure,

 $v_1$  = initial volume.

In industrial compressors or expanders the compression or expansion path will be "polytropic", approximated by the expression:

$$Pv^n = \text{constant}$$
 (3.30)

The work produced (or required) is given by the general expression (see Volume 1, Chapter 8):

$$-W = P_1 v_1 \frac{n}{n-1} \left[ \left( \frac{P_2}{P_1} \right)^{(n-1)/n} - 1 \right] = Z \frac{\mathbf{R} T_1}{M} \frac{n}{n-1} \left[ \left( \frac{P_2}{P_1} \right)^{(n-1)/n} - 1 \right]$$
(3.31)

where Z = compressibility factor (1 for an ideal gas),

 $\mathbf{R}$  = universal gas constant, 8.314 JK<sup>-1</sup> mol<sup>-1</sup>,

 $T_1$  = inlet temperature, K,

M =molecular mass (weight) of gas,

W = work done, J/kg.

The value of n will depend on the design and operation of the machine.

The energy required to compress a gas, or the energy obtained from expansion, can be estimated by calculating the ideal work and applying a suitable efficiency value. For reciprocating compressors the isentropic work is normally used  $(n = \gamma)$  (see Figure 3.7); and for centrifugal or axial machines the polytropic work (see Figure 3.6 and Section 3.13.2).

## 3.13.1. Mollier diagrams

If a Mollier diagram (enthalpy-pressure-temperature-entropy) is available for the working fluid the isentropic work can be easily calculated.

$$W = H_1 - H_2 (3.32)$$

where  $H_1$  is the specific enthalpy at the pressure and temperature corresponding to point 1, the initial gas conditions,

 $H_2$  is the specific enthalpy corresponding to point 2, the final gas condition.

Point 2 is found from point 1 by tracing a path (line) of constant entropy on the diagram. The method is illustrated in Example 3.10.

## Example 3.10

Methane is compressed from 1 bar and 290 K to 10 bar. If the isentropic efficiency is 0.85, calculate the energy required to compress 10,000 kg/h. Estimate the exit gas temperature.

## Solution

From the Mollier diagram, shown diagrammatically in Figure 3.5

$$H_1 = 4500 \text{ cal/mol},$$
 $H_2 = 6200 \text{ cal/mol} \text{ (isentropic path)},$ 

$$Isentropic work = 6200 - 4500$$

$$= \underline{1700 \text{ cal/mol}}$$

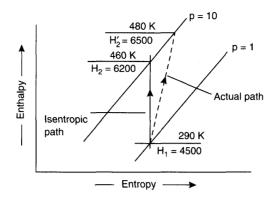



Figure 3.5. Mollier diagram, methane

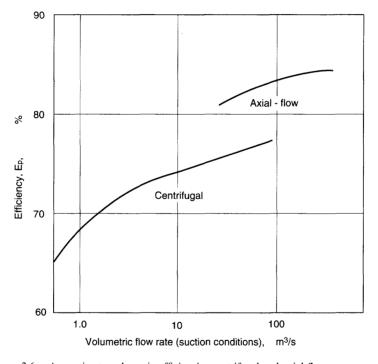



Figure 3.6. Approximate polytropic efficiencies centrifugal and axial-flow compressors

For an isentropic efficiency of 0.85:

Actual work done on gas = 
$$\frac{1700}{0.85} = \frac{2000 \text{ cal/mol}}{2000 \text{ cal/mol}}$$

So, actual final enthalpy

$$H_2' = H_1 + 2000 = \underline{6500 \text{ cal/mol}}$$

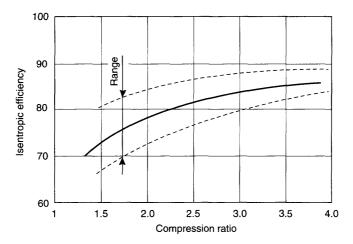



Figure 3.7. Typical efficiencies for reciprocating compressors

From Mollier diagram, if all the extra work is taken as irreversible work done on the gas, the exit gas temperature = 480 K

Molecular weight methane = 16

Energy required = (mols per hour) × (specific enthalpy change)  
= 
$$\frac{10,000}{16}$$
 × 2000 × 10<sup>3</sup>  
= 1.25 × 10<sup>9</sup> cal/h  
= 1.25 × 10<sup>9</sup> × 4.187  
= 5.23 × 10<sup>9</sup> J/h  
Power =  $\frac{5.23 \times 10^9}{3600}$  =  $\frac{1.45 \text{ MW}}{1.25 \times 10^9}$ 

## 3.13.2. Polytropic compression and expansion

If no Mollier diagram is available, it is more difficult to estimate the ideal work in compression or expansion processes. Schultz (1962) gives a method for the calculation of the polytropic work, based on two generalised compressibility functions, X and Y; which supplement the familiar compressibility factor Z.

$$X = \frac{T}{V} \left( \frac{\partial V}{\partial T} \right)_P - 1 \tag{3.33}$$

$$Y = -\frac{P}{V} \left( \frac{\partial V}{\partial P} \right)_T \tag{3.34}$$

His charts for X and Y as functions of reduced temperature and pressure are reproduced as Figures 3.9 and 3.10. The functions are used to determine the polytropic exponent n

for use in equation 3.31; and a polytropic temperature exponent m for use in the following equation:

$$T_2 = T_1 \left(\frac{P_2}{P_1}\right)^m \tag{3.35}$$

where

$$m = \frac{\mathbf{ZR}}{C_p} \left( \frac{1}{E_p} + X \right)$$
 for compression, (3.36)

$$m = \frac{Z\mathbf{R}}{C_p}(E_p + X) \text{ for expansion}$$
 (3.37)

 $E_p$  is the polytropic efficiency, defined by:

for compression 
$$E_p = \frac{\text{polytropic work}}{\text{actual work required}}$$
  
for expansion  $E_p = \frac{\text{actual work obtained}}{\text{polytropic work}}$ 

An estimate of  $E_p$  can be obtained from Figure 3.6.

$$n = \frac{1}{Y - m(1 + X)} \tag{3.38}$$

At conditions well removed from the critical conditions equations 3.36, 3.37 and 3.38 reduce to:

$$m = \frac{(\gamma - 1)}{\gamma E_p} \tag{3.36a}$$

$$m = \frac{(\gamma - 1)E_p}{\gamma} \tag{3.37a}$$

$$n = \frac{1}{1 - m} \tag{3.38a}$$

These expressions can be used to calculate the polytropic work and outlet temperature by substitution in equations 3.31 and 3.35. They can also be used to make a first estimate of  $T_2$  in order to estimate the mean reduced temperature for use with Figures 3.9 and 3.10. The use of Schultz's method is illustrated in Examples 3.11 and 3.16.

## Example 3.11

Estimate the power required to compress 5000 kmol/h of HCl at 5 bar, 15°C, to 15 bar.

#### Solution

For HCl, 
$$P_c = 82$$
 bar,  $T_c = 324.6$  K  
 $C_p^{\circ} = 30.30 - 0.72 \times 10^{-2} T + 12.5 \times 10^{-6} T^2 - 3.9 \times 10^{-9} T^3$  kJ/kmol K

Estimate  $T_2$  from equations 3.35 and 3.36a.

For diatomic gases  $\gamma \simeq 1.4$ .

*Note:*  $\gamma$  could be estimated from the relationship  $\gamma = \frac{C_p}{C_v} = \frac{C_p}{C_p - \mathbf{R}}$ 

At the inlet conditions, the flow rate in m<sup>3</sup>/s

$$= \frac{5000}{3600} \times 22.4 \times \frac{288}{273} \times \frac{1}{5} = 6.56$$

From Figure 3.6  $E_p = 0.73$ 

From equations 3.36a and 3.35 
$$m = \frac{1.4 - 1}{1.4 \times 0.73} = 0.39$$

$$T_2 = 288 \left(\frac{15}{5}\right)^{0.39} = 442 \text{ K}$$

$$T_{r \text{ (mean)}} = \frac{442 + 228}{2 \times 324.6} = 1.03$$

$$P_{r \text{ (mean)}} = \frac{5 + 15}{2 \times 82} = 0.12$$

At 
$$T_{\text{(mean)}}C_p^{\circ} = 29.14 \text{ kJ/kmol K}$$

Correction for pressure from Figure 3.2, 2 kJ/kmol K

$$C_p = 29.14 + 2 \simeq 31 \text{ kJ/kmol K}$$

From Figures 3.8, 3.9 and 3.10 at mean conditions:

$$X = 0.18$$
,  $Y = 1.04$ ,  $Z = 0.97$ 

Z at inlet conditions = 0.98

From equations 3.36 and 3.38

$$m = \frac{0.97 \times 8.314}{31} \left( \frac{1}{0.73} + 0.18 \right) = \underline{0.40}$$

$$n = \frac{1}{1.04 - 0.4(1 + 0.18)} = \underline{\frac{1.76}{1.04 - 0.4(1 + 0.18)}}$$

From equation 3.31

$$W \text{ polytropic} = 0.98 \times 288 \times 8.314 \times \frac{1.76}{1.76 - 1} \left( \left( \frac{15}{5} \right)^{(1.76 - 1)/1.76} - 1 \right)$$

$$= \underbrace{3299 \text{ kJ/kmol}}_{\text{Polytropic work}}$$
Actual work required = 
$$\underbrace{\frac{\text{polytropic work}}{E_{R}}}$$

$$= \frac{3299}{0.73} = \underline{\frac{4520 \text{ kJ/kmol}}{3600}}$$
Power =  $\frac{4520}{3600} \times 5000 = 6275 \text{ kW}$ 
Say,  $\underline{6.3 \text{ MW}}$ 

$$T_2 = 288 \left(\frac{15}{5}\right)^{0.4} = 447 \text{ K}$$

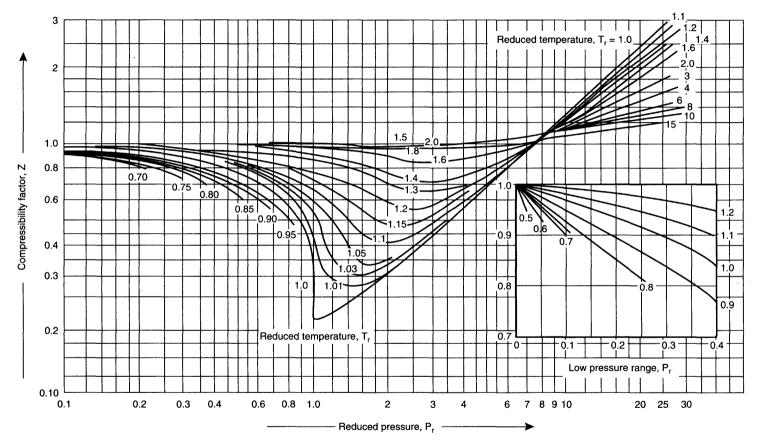



Figure 3.8. Compressibility factors of gases and vapours

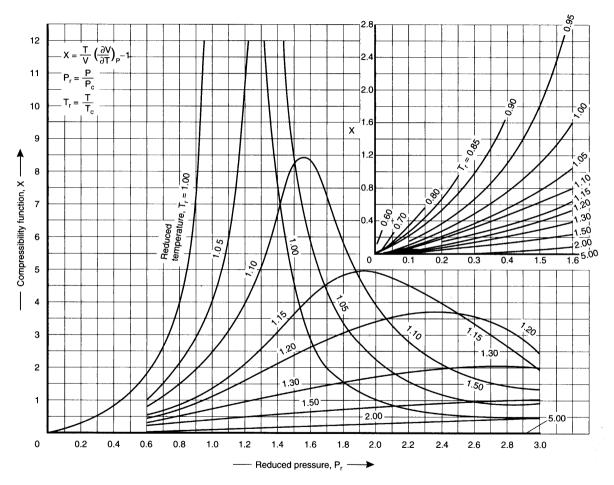



Figure 3.9. Generalised compressibility function X

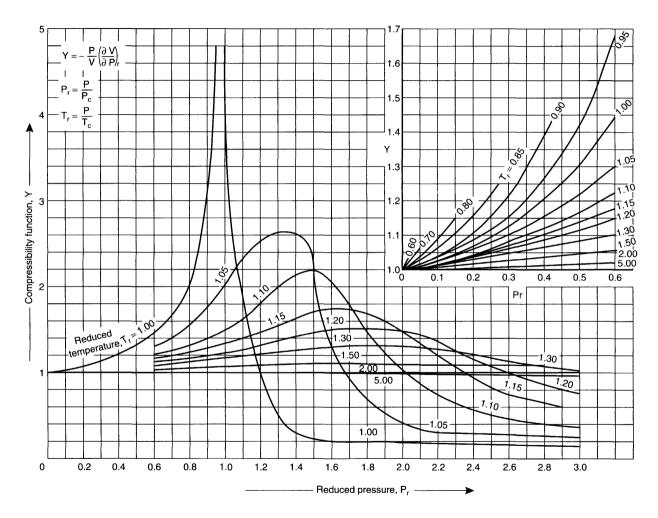



Figure 3.10. Generalised compressibility function Y

## 3.13.3. Multistage compressors

Single-stage compressors can only be used for low pressure ratios. At high pressure ratios, the temperature rise will be too high for efficient operation.

To cope with the need for high pressure generation, the compression is split into a number of separate stages, with intercoolers between each stage. The interstage pressures are normally selected to give equal work in each stage.

For a two-stage compressor the interstage pressure is given by:

$$P_i = \sqrt{(P_1 \times P_2)} \tag{3.39}$$

where  $P_i$  is the intermediate-stage pressure.

## Example 3.12

Estimate the power required to compress 1000 m<sup>3</sup>/h air from ambient conditions to 700 kN/m<sup>2</sup> gauge, using a two-stage reciprocating compressor with an intercooler.

## Solution

Take the inlet pressure,  $P_1$ , as 1 atmosphere =  $101.33 \text{ kN/m}^2$ , absolute.

Outlet pressure,  $P_2$ , = 700 + 101.33 = 801.33 kN/m<sup>2</sup>, absolute.

For equal work in each stage the intermediate pressure,  $P_i$ ,

$$= \sqrt{(1.0133 \times 10^5 \times 8.0133 \times 10^5)} = \underline{2.8495 \times 10^5} \text{ N/m}^2$$

For air, take ratio of the specific heats,  $\gamma$ , to be 1.4.

For equal work in each stage the total work will be twice that in the first stage.

Take the inlet temperature to be 20 °C, At that temperature the specific volume is given by

$$v_1 = \frac{29}{22.4} \times \frac{293}{273} = 1.39 \text{ m}^3/\text{kg}$$

Work done, 
$$-W = 2 \times 1.0133 \times 10^5 \times 1.39 \times \frac{1.4}{1.4 - 1} \left[ \left( \frac{2.8495}{1.0133} \right)^{(1.4 - 1)/1.4} - 1 \right]$$
  
= 338,844 J/kg = 339 kJ/kg

From Figure 3.7, for a compression ratio of 2.85 the efficiency is approximately 84%. So work required

$$= 339/0.84 = \underline{404} \text{ kJ/kg}$$
Mass flow-rate 
$$= \frac{1000}{1.39 \times 3600} = 0.2 \text{ kg/s}$$
Power required 
$$= 404 \times 0.2 = \underline{80 \text{ kW}}$$

#### 3.13.4. Electrical drives

The electrical power required to drive a compressor (or pump) can be calculated from a knowledge of the motor efficiency:

$$Power = \frac{-W \times mass flow-rate}{E_e}$$
 (3.40)

where -W = work of compression per unit mass (equation 3.31), $E_e$  = electric motor efficiency.

The efficiency of the drive motor will depend on the type, speed and size. The values given in Table 3.1 can be used to make a rough estimate of the power required.

| Size(kW) | Efficiency (%) |  |
|----------|----------------|--|
| 5        | 80             |  |
| 15       | 85             |  |
| 75       | 90             |  |
| 200      | 92             |  |
| 750      | 95             |  |
| >4000    | 97             |  |

## 3.14. A SIMPLE ENERGY BALANCE PROGRAM

Manual energy-balance calculations, particularly those in which the specific heat capacities are expressed as polynomial equations (equation 3.13), are tedious and mistakes are easily made. It is worthwhile writing a short computer program for these problems. They can be solved using personal computers and programmable hand calculators. A typical program is listed in Table 3.2. This program can be used to calculate the heat input or cooling required for a process unit, where the stream enthalpies relative to the datum temperature can be calculated from the specific heat capacities of the components (equation 3.11).

The datum temperature in the program is 25°C (298 K), which is the standard for most heat of reaction data. Specific heats are represented by a cubic equation in temperature:

$$C_p = A + BT + CT^2 + DT^3$$

Any unspecified constants are typed in as zero.

If the process involves a reaction the heat generated or consumed is computed from the heat of reaction per kmol of product (at 25°C) and the kmols of product formed.

If any component undergoes a phase change in the unit the heat required is computed from the latent heat (at 25°C) and the quantity involved.

The component specific heat capacity coefficients A, B, C, D are stored as a matrix. If a heat balance is to be made on several units the coefficients for all the components can be typed in at the start, and the program rerun for each unit.

The program listing contains sufficient remark statement for the operation of the program to be easily followed. It is written in GW-BASIC for IBM compatible personal

TABLE 3.2. ENERGY 1, a simple energy balance program

```
10 REM SHORT ENERGY PROGRAM, REWRITTEN IN GWBASIC, MARCH 92
20 PRINT "HEAT BALANCE PROGRAM, BASIS kmol/h, TEMP K, DATUM 298 K"
30 PRINT "INPUT THE NUMBER OF COMPONENTS, MAXIMUM 10"
40 INPUT N1
50 PRINT "INPUT HEAT CAPACITY DATA FOR EQUATION A+BT+CT^2+DT^3"
60 FOR I = 1 TO N1
70 PRINT
80 PRINT "FOR COMPONENT"; I; "INPUT A, B, C, D, INCLUDING ANY ZERO VALUES"
90 INPUT A(I), B(I), C(I), D(I)
100 NEXT I
110 H4=H5=H6=Q1=0
120 PRINT "INPUT THE NUMBER OF FEED STREAMS"
130 INPUT S1
140 \text{ FOR I} = 1 \text{ TO S1}
150 PRINT "FOR FEED STREAM"; I; "INPUT STREAM TEMP AND NUMBER OF COMPONENTS"
160 INPUT T1, N2
170 GOSUB 580
180 PRINT "STREAM SENSIBLE HEAT ="; H4; "kJ/h"
190 REM TOTAL SENSIBLE HEAT FEED STREAMS
200 \text{ H5} = \text{H5} + \text{H4}
210 NEXT I
220 PRINT "INPUT NUMBER OF PRODUCT STREAMS"
230 INPUT S1
240 \text{ FOR I} = 1 \text{ TO S1}
250 PRINT "FOR PRODUCT STREAM": I: "INPUT STREAM TEMP AND NUMBER OF COMPONENTS"
260 INPUT T1, N2
270 GOSUB 580
280 PRINT "STREAM SENSIBLE HEAT ="; H4; "kJ/h"
290 REM TOTAL SENSIBLE HEAT PRODUCT STREAMS
300 \text{ H6} = \text{H6} + \text{H4}
310 NEXT I
320 PRINT "INPUT THE NUMBER OF REACTIONS AND PHASE CHANGES"
330 INPUT N4
340 \text{ IF } N4 = 0 \text{ THEN } 450
350 PRINT "FOR EACH REACTION OR PHASE CHANGE INPUT THE HEAT OF REACTION"
360 PRINT "OR THE LATENT HEAT, kJ/kmol; AND QUANTITY INVOLVED kmol/h"
370 PRINT "REMEMBER: HEAT ENVOLVED: POSITIVE; HEAT ABSORBED: NEGATIVE"
380 FOR I = 1 TO N4
390 PRINT
400 PRINT "NEXT REACTION/PHASE CHANGE: INPUT VALUES"
410 INPUT R, F2
420 H7 = F2*R
430 Q1 = Q1 + H7
440 NEXT I
450 REM HEAT BALANCE
460 Q = H6-H5-Q1
470 IF Q < 0 THEN 500
480 PRINT "HEATING REQUIRED ="; Q; "kJ/h"
490 GOTO 510
500 PRINT "COOLING REQUIRED ="; O; "kJ/h"
510 PRINT "REPEAT CALCULATION WANTED ? TYPE Y FOR YES, N FOR NO"
520 INPUT P$
530 IF P$ = "N" THEN 560
540 PRINT "REPEAT CALCULATION"
550 GOTO 110
560 PRINT "CALCULATIONS FINISHED"
570 STOP
580 REM SUBROUTINE TO CALCULATE STREAM SENSIBLE HEATS
590 PRINT
600 PRINT "FOR EACH COMPONENT, INPUT THE COMPONENT NUMBER AND FLOW-RATE"
610 \text{ H4} = 0
620 FOR I1 = 1 TO N2
630 PRINT "NEXT COMPONENT"
640 INPUT J, F
650 REM HEAT CAPACITY EQUATION SPLIT OVER 2 LINES
660 H1 = A(J)*(T1-298) + B(J)*(T1^2-298^2)/2
670 H2 = C(J)*(T1^3-298^3)/3 + D(J)*(T1^4-298^4)/4
680 \text{ H3} = F*(H1+H2)
690 \text{ H4} = \text{H4+H3}
700 NEXT I1
710 RETURN
```

computers it can be easily adapted for machines using other versions of the BASIC programming language.

The use of the program is illustrated in Example 3.13. It has also been used for other examples in this chapter and in the chapter on flow-sheeting, Chapter 4.

A more extensive program for energy balance calculations, ENRGYBAL. is given in Appendix I. This program includes provision for the setting up of a data bank to contain the thermodynamic data needed for a set of design calculations. The program will calculate the heats of reaction directly from the heats of formation. The data bank can be set up using values from the summary of physical properties given in Appendix D, and other sources (see Chapter 8).

## Example 3.13

# Use of computer program ENERGY 1

A furnace burns a liquid coal tar fuel derived from coke-ovens. Calculate the heat transferred in the furnace if the combustion gases leave at 1500 K. The burners operate with 20 per cent excess air.

Take the fuel supply temperature as  $50^{\circ}$ C (323 K) and the air temperature as  $15^{\circ}$ C (288 K).

The properties of the fuel are:

| Carbon   | 87.5 per cent w/w |
|----------|-------------------|
| Hydrogen | 8.0               |
| Oxygen   | 3.5               |
| Nitrogen | 1.0               |
| Sulphur  | trace             |
| Ash      | balance           |

| Net calorific value         | 39,540 kJ/kg |
|-----------------------------|--------------|
| Latent heat of vaporisation | 350 kJ/kg    |
| Heat capacity               | 1.6 kJ/kg K  |

 $C_n^{\circ}$  of gases, kJ/kmol K,

|    | $C_p = A + BT + CT^2 + DT^3$ |                  |                           |           |            |  |  |  |
|----|------------------------------|------------------|---------------------------|-----------|------------|--|--|--|
| Co | mponent                      | $\boldsymbol{A}$ | $\boldsymbol{\mathit{B}}$ | C         | D          |  |  |  |
| 1  | $CO_2$                       | 19.763           | 7.332E-2                  | -5.518E-5 | 17.125E-9  |  |  |  |
| 2  | $H_2O$                       | 32.190           | 19.207E-4                 | 10.538E-6 | -3.591E-9  |  |  |  |
| 3  | $O_2$                        | 28.06            | -3.674E-6                 | 17.431E-6 | -10.634E-9 |  |  |  |
| 4  | $N_2$                        | 31.099           | -1.354E-2                 | 26.752E-6 | -11.662E-9 |  |  |  |

#### Solution

#### Material balance

Basis: 100 kg (as analysis is by weight).

Assume complete combustion: maximum heat release.

| Reactions: | $C + O_2 \rightarrow CO_2$              |
|------------|-----------------------------------------|
|            | $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ |

| Element | kg   | kmol  | Stoichiometric O <sub>2</sub> kmol | kmol, products        |
|---------|------|-------|------------------------------------|-----------------------|
| C       | 87.5 | 7.29  | 7.29                               | 7.29, CO <sub>2</sub> |
| $H_2$   | 8.0  | 4.0   | 2.0                                | $4.0, H_2O$           |
| $O_2$   | 3.5  | 0.11  |                                    | 0.11                  |
| $N_2$   | 1.0  | 0.04  |                                    | 0.04                  |
| Total   |      | 11.44 | 9.29                               |                       |

 $O_2$  required with 20 per cent excess =  $9.29 \times 1.2 = 11.15$  kmol.

Unreacted  $O_2$  from combustion air = 11.15 - 9.29 = 1.86 kmol.

$$N_2$$
 with combustion air =  $11.15 \times \frac{79}{21} = 41.94$  kmol. Composition of combustion gases:

$$CO_2$$
 = 7.29 kmol  
 $H_2O$  = 4.0  
 $O_2$  0.11 + 1.86 = 1.97  
 $N_2$  0.04 + 41.94 = 41.98

Presentation of data to the program:

 $C_p$  of fuel (component 5), taken as constant,

$$A = 1.6$$
,  $B = C = D = 0$ 

Heat of reaction and latent heat, taken to be values at datum temperature of 298 K. There is no need to convert to kJ/kmol, providing quantities are expressed in kg. For the purposes of this example the dissociation of CO<sub>2</sub> and H<sub>2</sub>O at 1500 K is ignored.

# Computer print-out

Data inputs shown after the symbol (?)

```
RUN
HEAT BALANCE PROGRAM, BASIS kmol/h, TEMP K, DATUM 298 K
INPUT THE NUMBER OF COMPONENTS, MAXIMUM 10
? 5
INPUT HEAT CAPACITY DATA FOR EQUATION A+BT+CT^2+DT^3
FOR COMPONENT 1 INPUT A, B, C, D, INCLUDING ANY ZERO VALUES
? 19.763, 7.332E-2, -5.518E-5, 1.7125E-8
FOR COMPONENT 2 INPUT A, B, C, D, INCLUDING ANY ZERO VALUES
? 32.19, 1.9207E-3, 1.0538E-5, -3.591E-9
FOR COMPONENT 3 INPUT A, B, C, D, INCLUDING ANY ZERO VALUES
? 28.06, -3.67E-6, 1.74E-5, -1.0634E-8
FOR COMPONENT 4 INPUT A, B, C, D, INCLUDING ANY ZERO VALUES
? 31.099, -1.354E-2, 2.6752E-5, -1.1662E-8
FOR COMPONENT 5 INPUT A, B, C, D, INCLUDING ANY ZERO VALUES
```

```
? 1.6, 0 0, 0, 0
INPUT THE NUMBER OF FEED STREAMS
FOR FEED STREAM 1 INPUT STREAM TEMP AND NUMBER OF COMPONENTS
2 323. 1
FOR EACH COMPONENT, INPUT THE COMPONENT NUMBER AND FLOW-RATE
NEXT COMPONENT
? 5, 100
STREAM SENSIBLE HEAT = 4000 kJ/h
FOR FEED STREAM 2 INPUT STREAM TEMP AND NUMBER OF COMPONENTS
? 288, 2
FOR EACH COMPONENT, INPUT THE COMPONENT NUMBER AND FLOW-RATE
NEXT COMPONENT
? 3, 11.15
NEXT COMPONENT
? 4, 41.94
STREAM SENSIBLE HEAT = -15.484.61 \text{ kJ/h}
INPUT NUMBER OF PRODUCT STREAMS
FOR PRODUCT STREAM 1 INPUT STREAM TEMP AND NUMBER OF COMPONENTS
? 1500, 4
FOR EACH COMPONENT, INPUT THE COMPONENT NUMBER AND FLOW-RATE
NEXT COMPONENT
NEXT COMPONENT
? 2, 4.0
NEXT COMPONENT
? 3, 1.97
NEXT COMPONENT
? 4, 41.98
STREAM SENSIBLE HEAT = 2319620 kJ/h
INPUT THE NUMBER OF REACTIONS AND PHASE CHANGES
FOR EACH REACTION OR PHASE CHANGE INPUT THE HEAT OF REACTION
OR THE LATENT HEAT, kJ/kmol; AND QUANTITY INVOLVED kmol/h
REMEMBER: HEAT ENVOLVED: POSITIVE; HEAT ABSORBED: NEGATIVE
NEXT REACTION/PHASE CHANGE: INPUT VALUES
? +39540, 100
NEXT REACTION/PHASE CHANGE: INPUT VALUES
? -350, 100
COOLING REQUIRED = -1587896 kJ/h
REPEAT CALCULATION WANTED ? TYPE Y FOR YES, N FOR NO
CALCULATIONS FINISHED
```

Heat transferred (cooling required) = 1,590,000 kJ/100 kg

*Note:* though the program reports kJ/h, any consistent set of units can be used. For the example the basis used was 100 kg.

## 3.15. UNSTEADY STATE ENERGY BALANCES

All the examples of energy balances considered previously have been for steady-state processes; where the rate of energy generation or consumption did not vary with time and the accumulation term in the general energy balance equation was taken as zero.

If a batch process is being considered, or if the rate of energy generation or removal varies with time, it will be necessary to set up a differential energy balance, similar to the differential material balance considered in Chapter 2. For batch processes the total energy requirements can usually be estimated by taking as the time basis for the calculation 1 batch; but the maximum rate of heat generation will also have to be estimated to size any heat-transfer equipment needed.

The application of a differential energy balance is illustrated in Example 3.13.

#### Example 3.14

## Differential energy balance

In the batch preparation of an aqueous solution the water is first heated to  $80^{\circ}$ C in a jacketed, agitated vessel; 1000 Imp. gal. (4545 kg) is heated from 15°C. If the jacket area is 300 ft<sup>2</sup> (27.9 m<sup>2</sup>) and the overall heat-transfer coefficient can be taken as 50 Btu ft<sup>-2</sup> h<sup>-1</sup> °F<sup>-1</sup> (285 W m<sup>-2</sup> K<sup>-1</sup>), estimate the heating time. Steam is supplied at 25 psig (2.7 bar).

#### Solution

The rate of heat transfer from the jacket to the water will be given by the following expression (see Volume 1, Chapter 9):

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = UA(t_s - t) \tag{a}$$

where dQ is the increment of heat transferred in the time interval dt, and

U = the overall-heat transfer coefficient.

 $t_s$  = the steam-saturation temperature,

t = the water temperature.

The incremental increase in the water temperature dt is related to the heat transferred dQ by the energy-balance equation:

$$dQ = WC_p dt (b)$$

where  $WC_p$  is the heat capacity of the system.

Equating equations (a) and (b)

$$WC_{p}\frac{\mathrm{d}t}{\mathrm{d}t} = UA(t_{s} - t)$$

$$\int_{0}^{t_{B}} \mathrm{d}t = \frac{WC_{p}}{UA} \int_{t}^{t_{2}} \frac{\mathrm{d}t}{(t_{s} - t)}$$

Integrating

Batch heating time

$$\mathbf{t}_B = -\frac{WC_p}{UA} \ln \frac{t_s - t_2}{t_s - t_1}$$

For this example 
$$WC_p = 4.18 \times 4545 \times 10^3 \text{ JK}^{-1}$$
  
 $UA = 285 \times 27 \text{ WK}^{-1}$   
 $t_1 = 15^{\circ}\text{C}, t_2 = 80^{\circ}\text{C}, t_s = 130^{\circ}\text{C}$   
 $\mathbf{t}_B = -\frac{4.18 \times 4545 \times 10^3}{285 \times 27.9} \ln \frac{130 - 80}{130 - 15}$   
 $= 1990\text{s} = 33.2 \text{ min}$ 

In this example the heat capacity of the vessel and the heat losses have been neglected for simplicity. They would increase the heating time by 10 to 20 per cent.

#### 3.16. ENERGY RECOVERY

Process streams at high pressure or temperature, and those containing combustible material, contain energy that can be usefully recovered. Whether it is economic to recover the energy content of a particular stream will depend on the value of the energy that can be usefully extracted and the cost of recovery. The value of the energy will depend on the primary cost of energy at the site. It may be worth while recovering energy from a process stream at a site where energy costs are high but not where the primary energy costs are low. The cost of recovery will be the capital and operating cost of any additional equipment required. If the savings exceed the operating cost, including capital charges, then the energy recovery will usually be worthwhile. Maintenance costs should be included in the operating cost (see Chapter 6).

Some processes, such as air separation, depend on efficient energy recovery for economic operation, and in all processes the efficient utilisation of energy recovery techniques will reduce product cost.

Some of the techniques used for energy recovery in chemical process plants are described briefly in the following sections. The references cited give fuller details of each technique. Miller (1968) gives a comprehensive review of process energy systems; including heat exchange, and power recover from high-pressure fluid streams.

Kenny (1984) reviews the application of thermodynamic principles to energy recovery in the process industries.

# 3.16.1. Heat exchange

The most common energy-recovery technique is to utilise the heat in a high-temperature process stream to heat a colder stream: saving steam costs; and also cooling water, if the hot stream requires cooling. Conventional shell and tube exchangers are normally used. More total heat-transfer area will be needed, over that for steam heating and water cooling, as the overall driving forces will be smaller.

The cost of recovery will be reduced if the streams are located conveniently close.

The amount of energy that can be recovered will depend on the temperature, flow, heat capacity, and temperature change possible, in each stream. A reasonable temperature driving force must be maintained to keep the exchanger area to a practical size. The most efficient exchanger will be the one in which the shell and tube flows are truly countercurrent. Multiple tube pass exchangers are usually used for practical reasons. With multiple tube passes the flow will be part counter-current and part co-current and temperature crosses can occur, which will reduce the efficiency of heat recovery (see Chapter 12).

The hot process streams leaving a reactor or a distillation column are frequently used to preheat the feedstreams.

# 3.16.2. Heat-exchanger networks

In an industrial process there will be many hot and cold streams and there will be an optimum arrangement of the streams for energy recovery by heat exchange. The problem

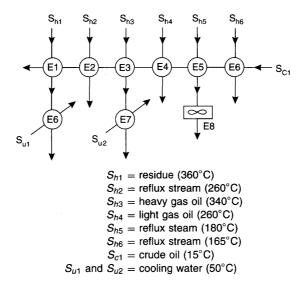



Figure 3.11. Typical heat-exchanger network

of synthesising a network of heat exchangers has been studied by many workers, particularly in respect of optimising heat recovery in crude petroleum distillation. An example of crude preheat train is shown in Figure 3.11. The general problem of the synthesis and optimisation of a network of heat exchangers has been defined by Masso and Rudd (1969).

Consider that there are M hot streams,  $S_{hi}(i = 1, 2, 3, ..., M)$  to be cooled and N cold streams  $S_{cj}(j = 1, 2, 3, ..., N)$  to be heated; each stream having an inlet temperature  $t_f$ , or an outlet temperature  $t_0$ , and a stream heat capacity  $W_i$ . There may also be  $S_{uk}(k = 1, 2, 3, ..., L)$  auxiliary steam heated or water-cooled exchangers.

The problem is to create a minimum cost network of exchangers, that will also meet the design specifications on the required outlet temperature  $t_0$  of each stream. If the strictly mathematical approach is taken of setting up all possible arrangements and searching for the optimum, the problem, even for a small number of exchangers, would require an inordinate amount of computer time. Boland and Linnhoff (1979) point out that for a process with four cold and three hot streams,  $2.4 \times 10^{18}$  arrangements are possible. Most workers have taken a more pragmatic, "heuristic", approach to the problem, using "rules of thumb" to generate a limited number of feasible networks, which are then evaluated.

Porton and Donaldson (1974) suggest a simple procedure that involves the repeated matching of the hottest stream (highest  $t_f$ ) against the cold stream with the highest required outlet temperature (highest  $t_0$ ).

A general survey of computer and manual methods for optimising exchanger networks is given by Nishida *et al.* (1977); see also Siirola (1974).

The design of heat exchanger networks is covered in more detail is Section 3.17.

#### 3.16.3. Waste-heat boilers

If the process streams are at a sufficiently high temperature the heat recovered can be used to generate steam.

Waste-heat boilers are often used to recover heat from furnace flue gases and the process gas streams from high-temperature reactors. The pressure, and superheat temperature, of the stream generated will depend on the temperature of the hot stream and the approach temperature permissible at the boiler exit (see Chapter 12). As with any heat-transfer equipment, the area required will increase as the mean temperature driving force (log mean  $\Delta T$ ) is reduced. The permissible exit temperature may also be limited by process considerations. If the gas stream contains water vapour and soluble corrosive gases, such as HCl or SO<sub>2</sub>, the exit gases temperature must be kept above the dew point.

Hinchley (1975) discusses the design and operation of waste heat boilers for chemical plant. Both fire tube and water tube boilers are used. A typical arrangement of a water tube boiler on a reformer furnace is shown in Figure 3.12 and a fire tube boiler in Figure 3.13. The application of a waste-heat boiler to recover energy from the reactor exit streams in a nitric acid plant is shown in Figure 3.14.

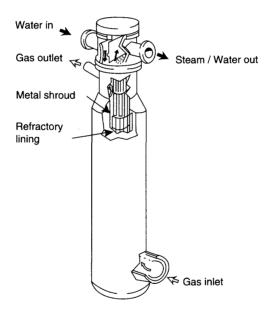



Figure 3.12. Reformed gas waste-heat boiler arrangement of vertical U-tube water-tube boiler (Reprinted by permission of the Council of the Institution of Mechanical Engineers from the Proceedings of the Conference on Energy Recovery in the Process Industries, London, 1975.)

The selection and operation of waste heat boilers for industrial furnaces is discussed in the *Efficient Use of Energy*, Dryden (1975).

# 3.16.4. High-temperature reactors

If a reaction is highly exothermic, cooling will be needed and, if the reactor temperature is high enough, the heat removed can be used to generate steam. The lowest steam pressure normally used in the process industries is 2.7 bar (25 psig) and steam is normally

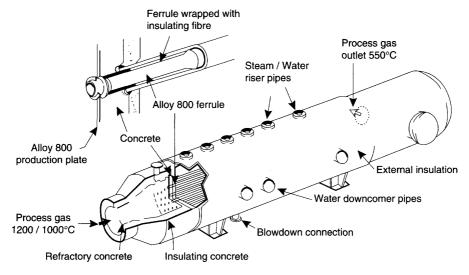



Figure 3.13. Reformed gas waste-heat boiler, principal features of typical natural circulation fire-tube boilers (Reprinted by permission of the Council of the Institution of Mechanical Engineers from the Proceedings of the Conference on Energy Recovery in the Process Industries, London, 1975.)

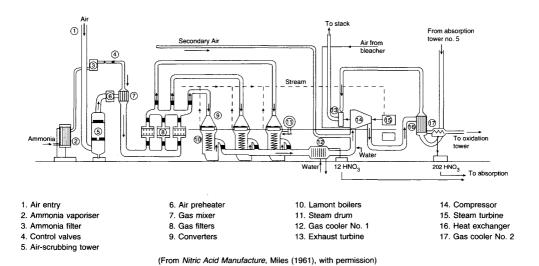



Figure 3.14. Connections of a nitric acid plant, intermediate pressure type

distributed at a header pressure of around 8 bar (100 psig); so any reactor with a temperature above 200°C is a potential steam generator.

Three systems are used:

1. Figure 3.15a. An arrangement similar to a conventional water-tube boiler. Steam is generated in cooling pipes within the reactor and separated in a steam drum.

- 2. Figure 3.15b. Similar to the first arrangement but with the water kept at high pressure to prevent vaporisation. The high-pressure water is flashed to steam at lower pressure in a flash drum. This system would give more responsive control of the reactor temperature.
- 3. Figure 3.15c. In this system a heat-transfer fluid, such as Dowtherm (see Perry and Green (1984) and Singh (1985) for details of heat-transfer fluids), is used to avoid the need for high-pressure tubes. The steam is raised in an external boiler.

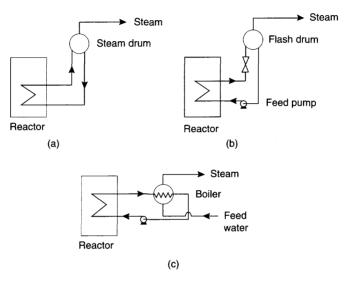



Figure 3.15. Steam generation

# 3.16.5. Low-grade fuels

The waste products from any process (gases, liquids and solids) which contain significant quantities of combustible material can be used as low-grade fuels; for raising steam or direct process heating. Their use will only be economic if the intrinsic value of the fuel justifies the cost of special burners and other equipment needed to burn the waste. If the combustible content of the waste is too low to support combustion, the waste will have to be supplemented with higher calorific value primary fuels.

# Reactor off-gases

The off-gases (vent gas) from reactors, and recycle stream purges are often of high enough calorific value to be used as fuels.

The calorific value of a gas can be calculated from the heats of combustion of its constituents; the method is illustrated in Example 3.14.

Other factors which, together with the calorific value, will determine the economic value of an off-gas as a fuel are the quantity available and the continuity of supply. Waste gases are best used for steam raising, rather than for direct process heating, as this decouples the source from the use and gives greater flexibility.

## Example 3.15

# Calculation of a waste-gas calorific value

The typical vent-gas analysis from the recycle stream in an oxyhydrochlorination process for the production of dichloroethane (DCE) (British patent BP 1,524,449) is given below, percentages on volume basis.

$$O_2$$
 7.96,  $CO_2 + N_2$  87.6,  $CO$  1.79,  $C_2H_4$  1.99,  $C_2H_6$  0.1,  $DCE$  0.54

Estimate the vent gas calorific value.

#### Solution

Component calorific values, from Perry and Chilton (1973)

CO 67.6 kcal/mol = 283 kJ/mol  

$$C_2H_4$$
 372.8 = 1560.9  
 $C_2H_6$  337.2 = 1411.9

The value for DCE can be estimated from the heats of formation.

Combustion reaction:

$$C_2H_4Cl_2(g) + 2\frac{1}{2}O_2(g) \rightarrow 2CO_2(g) + H_2O(g) + 2HCl(g)$$

 $\Delta H_f^{\circ}$  from Appendix D

CO<sub>2</sub> = -393.8 kJ/mol  
H<sub>2</sub>O = -242.0  
HCl = -92.4  
DCE = -130.0  

$$\Delta H_c^{\circ} = \sum \Delta H_f^{\circ}$$
 products  $-\sum \Delta H_f^{\circ}$  reactants  
= [2(-393.8) - 242.0 + 2(-92.4)] - [-130.0]  
= -1084.4 kJ

Estimation of vent gas c.v., basis 100 mols.

| Component | mols/100 mols |   | Calorific value<br>(kJ/mol) |       | Heating value |
|-----------|---------------|---|-----------------------------|-------|---------------|
| СО        | 1.79          | × | 283.0                       | _     | 506.6         |
| $C_2H_4$  | 1.99          |   | 1560.9                      |       | 3106.2        |
| $C_2H_6$  | 0.1           |   | 1411.9                      |       | 141.2         |
| DCE       | 0.54          |   | 1084.4                      |       | 585.7         |
|           |               |   |                             | Total | 4339.7        |

Calorific value of vent gas = 
$$\frac{4339.7}{100}$$
 = 43.4 kJ/mol  
=  $\frac{43.4}{22.4} \times 10^3 = \underline{\underline{1938 \text{ kJ/m}}}(52 \text{ Btu/ft}^3)$  at 1 bar, 0°C

Barely worth recovery, but if the gas has to be burnt to avoid pollution it could be used in an incinerator such as that shown in Figure 3.16, giving a useful steam production to offset the cost of disposal.

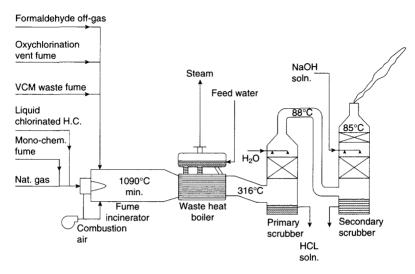



Figure 3.16. Typical incinerator-heat recovery-scrubber system for vinyl-chloride-monomer process waste (Courtesy of John Thurley Ltd.)

# Liquid and solid wastes

Combustible liquid and solid waste can be disposed of by burning, which is usually preferred to dumping. Incorporating a steam boiler in the incinerator design will enable an otherwise unproductive, but necessary operation, to save energy. If the combustion products are corrosive, corrosion-resistant materials will be needed, and the flue gases scrubbed to reduce air pollution. An incinerator designed to handle chlorinated and other liquid and solid wastes is shown in Figure 3.16. This incinerator incorporates a steam boiler and a flue-gas scrubber. The disposal of chlorinated wastes is discussed by Santoleri (1973).

Dunn and Tomkins (1975) discuss the design and operation of incinerators for process wastes. They give particular attention to the need to comply with the current clean-air legislation, and the problem of corrosion and erosion of refractories and heat-exchange surfaces.

# 3.16.6. High-pressure process streams

Where high-pressure gas or liquid process streams are throttled to lower pressures, energy can be recovered by carrying out the expansion in a suitable turbine.

#### Gas streams

The economic operation of processes which involve the compression and expansion of large quantities of gases, such as ammonia synthesis, nitric acid production and air

separation, depends on the efficient recovery of the energy of compression. The energy recovered by expansion is often used to drive the compressors directly; as shown in Figure 3.14. If the gas contains condensible components it may be advisable to consider heating the gas by heat exchange with a higher temperature process stream before expansion. The gas can then be expanded to a lower pressure without condensation and the power generated increased.

An interesting process incorporating an expansion turbine is described by Barlow (1975) who discusses energy recovery in an organic acids plant (acetic and propionic). In this process a thirteen-stage turbo-expander is used to recover energy from the off-gases. The pressure range is deliberately chosen to reduce the off-gases to a low temperature at the expander outlet  $(-60^{\circ}\text{C})$ , for use for low-temperature cooling, saving refrigeration.

The energy recoverable from the expansion of a gas can be estimated by assuming polytropic expansion; see Section 3.13.2 and Example 3.16.

The design of turboexpanders for the process industries is discussed by Block et al. (1982).

## Example 3.16

Consider the extraction of energy from the tail gases from a nitric acid adsorption tower, such as that described in Chapter 4, Example 4.4.

Gas composition, kmol/h:

| $O_2$            | 371.5              |
|------------------|--------------------|
| $N_2$            | 10,014.7           |
| NO               | 21.9               |
| $NO_2$           | Trace              |
| H <sub>2</sub> O | saturated at 250°C |

If the gases leave the tower at 6 atm, 25°C, and are expanded to, say, 1.5 atm, calculate the turbine exit gas temperatures without preheat, and if the gases are preheated to 400°C with the reactor off-gas. Also, estimate the power recovered from the preheated gases.

#### Solution

For the purposes of this calculation it will be sufficient to consider the tail gas as all nitrogen, flow 10,410 kmol/h.

$$P_c = 33.5 \text{ atm}, \quad T_c = 126.2 \text{ K}$$

Figure 3.6 can be used to estimate the turbine efficiency.

Exit gas volumetric flow-rate = 
$$\frac{10,410}{3600} \times 22.4 \times \frac{1}{1.5}$$
  
 $\approx 43 \text{ m}^3/\text{s}$ 

from Figure 3.6  $E_P = 0.75$ 

$$P_r \text{ inlet} = \frac{6}{33.5} = 0.18$$

$$T_r \text{ inlet} = \frac{298}{126.2} = 2.4$$

For these values the simplified equations can be used, equations 3.37a and 3.38a. For  $N_2 \gamma = 1.4$ 

$$m = \frac{1.4 - 1}{1.4} \times 0.75 = 0.21$$
$$n = \frac{1}{1 - m} = \frac{1}{1 - 0.21} = 1.27$$

without preheat 
$$T_2 = 298 \left(\frac{1.5}{6.0}\right)^{0.21} = 223 \text{ K}$$
  
=  $\underline{-50^{\circ}\text{C}}$  (acidic water would condense out)

with preheat 
$$T_2 = 673 \left(\frac{1.5}{6.0}\right)^{0.21} = 503 \text{ K}$$
  
=  $230^{\circ}\text{C}$ 

From equation 3.31, work done by gases as a result of polytropic expansion

$$= -1 \times 673 \times 8.314 \times \frac{1.27}{1.27 - 1} \left\{ \left( \frac{1.5}{6.0} \right)^{(1.27 - 1)/1.27} - 1 \right\}$$

$$= 6718 \text{ kJ/kmol}$$
Actual work = polytropic work ×  $E_p$ 

Actual work = polytropic work 
$$\times E_p$$
  
=  $6718 \times 0.75 = \underline{5039 \text{ kJ/kmol}}$ 

Power output = work/kmol × kmol/s = 
$$5039 \times \frac{10,410}{3600}$$
  
=  $14,571 \text{ kJ/s} = \underline{14.6 \text{ MW}}$ 

# Liquid streams

As liquids are essentially incompressible, less energy is stored in a compressed liquid than a gas. However, it is worth considering power recovery from high-pressure liquid streams (>15 bar) as the equipment required is relatively simple and inexpensive. Centrifugal pumps are used as expanders and are often coupled directly to pumps. The design, operation and cost of energy recovery from high-pressure liquid streams is discussed by Jenett (1968), Chada (1984) and Buse (1985).

## **3.16.7. Heat Pumps**

A heat pump is a device for raising low grade heat to a temperature at which the heat can be utilised. It pumps the heat from a low temperature source to the higher temperature sink, using a small amount of energy relative to the heat energy recovered.

Heat pumps are increasingly finding applications in the process industries. A typical application is the use of the low grade heat from the condenser of a distillation column to provide heat for the reboiler; see Barnwell and Morris (1982) and Meili (1990). Heat pumps are also used with dryers, heat being abstracted from the exhaust air and used to preheat the incoming air. The use of a heat pump with an evaporator is described in Volume 2, Chapter 14.

Details of the thermodynamic cycles used for heat pumps can be found in most textbooks on Engineering Thermodynamics, and in Reay and MacMichael (1988). In the process industries heat pumps operating on the mechanical vapour compression cycle would normally be used. A vapour compression heat pump applied to a distillation column is shown in Figure 3.17a. The working fluid, usually a commercial refrigerant, is fed to the reboiler as a vapour at high pressure and condenses, giving up heat to vaporise the process fluid. The liquid refrigerant from the reboiler is then expanded over a throttle valve and the resulting wet vapour fed to the column condenser. In the condenser the wet refrigerant is dried, taking heat from the condensing process vapour. The refrigerant vapour is then compressed and recycled to the reboiler, completing the working cycle.

If the conditions are suitable the process fluid can be used as the working fluid for the heat pump. This arrangement is shown in Figure 3.17b. The hot process liquid at high

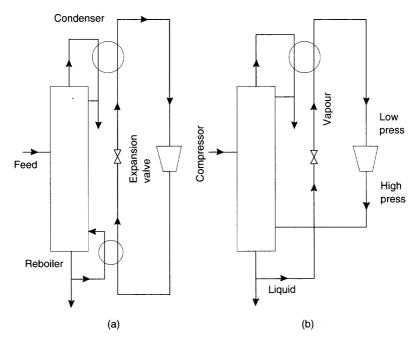



Figure 3.17. Distillation column with heat pump (a) Separate refrigerant circuit (b) Using column fluid as the refrigerant

pressure is expanded over the throttle value and fed to the condenser, to provide cooling to condense the vapour from the column. The vapour from the condenser is compressed and returned to the base of the column. In an alternative arrangement, the process vapour is taken from the top of the column, compressed and fed to the reboiler to provide heating.

The "efficiency" of a heat pump is measured by the coefficient of performance, COP:

$$COP = \frac{\text{energy delivered at higher temperature}}{\text{energy input compressor}}$$

The COP will depend principally on the working temperatures.

The economics of the application of heat pumps in the process industries is discussed by Holland and Devotta (1986). Details of the application of heat pumps in a wide range of industries are given by Moser and Schnitzer (1985).

#### 3.17. PROCESS INTEGRATION AND PINCH TECHNOLOGY

Process integration can lead to a substantial reduction in the energy requirements of a process. In recent years much work has been done on developing methods for investigating energy integration and the efficient design of heat exchanger networks; see Gundersen and Naess (1988). One of the most successful and generally useful techniques is that developed by Bodo Linnhoff and other workers: *pinch technology*. The term derives from the fact that in a plot of the system temperatures versus the heat transferred, a *pinch* usually occurs between the hot stream and cold stream curves, see Figure 3.22. It has been shown that the pinch represents a distinct thermodynamic break in the system and that, for minimum energy requirements, heat should not be transferred across the pinch, Linnhoff and Townsend (1982).

In this section the fundamental principles of the pinch technology method for energy integration will be outlined and illustrated with reference to a simple problem. The method and its applications are described fully in a guide published by the Institution of Chemical Engineers, IChemE (1994); see also Douglas (1988).

# 3.17.1. Pinch technology

The development and application of the method can be illustrated by considering the problem of integrating the utilisation of energy between 4 process streams. Two hot streams which require cooling, and two cold streams that have to be heated. The process data for the streams is set out in Table 3.3. Each stream starts from a source temperature  $T_s$ , and is to be heated or cooled to a target temperature  $T_t$ . The heat capacity of each stream is shown as CP. For streams where the specific heat capacity can be taken as constant, and there is no phase change, CP will be given by:

$$CP = mCp$$

where m = mass flow-rate, kg/s

Cp = average specific heat capacity between  $T_s$  and  $T_t$  kJ kg<sup>-1</sup>°C<sup>-1</sup>

| Stream<br>number | Туре | Heat capacity CP, kW/°C | $^{T_s}_{^{\circ}\mathrm{C}}$ | $^{T_t}_{^{\circ}\mathrm{C}}$ | Heat load<br>kW |
|------------------|------|-------------------------|-------------------------------|-------------------------------|-----------------|
| 1                | hot  | 3.0                     | 180                           | 60                            | 360             |
| 2                | hot  | 1.0                     | 150                           | 30                            | 120             |
| 3                | cold | 2.0                     | 20                            | 135                           | 230             |
| 4                | cold | 4.5                     | 80                            | 140                           | 270             |

Table 3.3. Data for heat integration problem

The heat load shown in the table is the total heat required to heat, or cool, the stream from the source to target temperature.

The four streams are shown diagrammatically below, Figure 3.18:

There is clearly scope for energy integration between these four streams. Two require heating and two cooling; and the stream temperatures are such that heat can be transferred from the hot to the cold streams. The task is to find the best arrangement of heat exchangers to achieve the target temperatures.

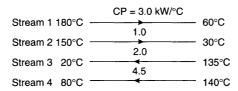



Figure 3.18. Diagrammatic representation of process streams

# Simple two-stream problem

Before investigating the energy integration of the four streams shown in Table 3.3, the use of a temperature-enthalpy diagram will be illustrated for a simple problem involving only two streams. The general problem of heating and cooling two streams from source to target temperatures is shown in Figure 3.19. Some heat is exchanged between the streams in the heat exchanger. Additional heat, to raise the cold stream to the target temperature, is provided by the hot utility (usually steam) in the heater; and additional cooling to bring the hot stream to its target temperature, by the cold utility (usually cooling water) in the cooler.

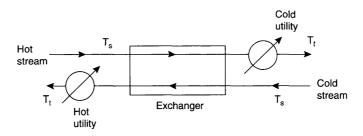



Figure 3.19. Two-stream exchanger problem

In Figure 3.20 the stream temperatures are plotted on the y-axis and the enthalpy change in each stream on the x-axis. For heat to be exchanged a minimum temperature difference must be maintained between the two streams. This is shown as  $\Delta T_{\min}$  on the diagram. The practical minimum temperature difference in a heat exchanger will usually be between 10 and 20°C; see Chapter 12.

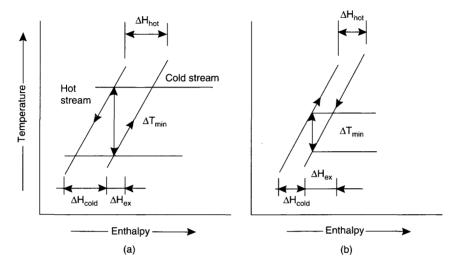



Figure 3.20. Temperature-enthalpy for 2-stream example

The heat transferred between the streams is shown on the diagram as  $\Delta H_{\rm ex}$ , and the heat transferred from the utilities as  $\Delta H_{\rm cold}$  and  $\Delta H_{\rm hot}$ :

$$\Delta H = CP \times (temperature\ change)$$

It can be seen by comparing Figure 3.20a and b that the amount of heating and cooling needed will depend on the minimum temperature difference. Decreasing  $\Delta T_{\min}$  will increase the amount of heat exchanged between the two streams and so decrease the consumption of the hot and cold utilities.

# Four stream problem

In Figure 3.21a the hot streams given in Table 3.3 are shown plotted on a temperature-enthalpy diagram.

As the diagram shows changes in the enthalpy of the streams, it does not matter where a particular curve is plotted on the enthalpy axis; as long as the curve runs between the correct temperatures. This means that where more than one stream appears in a temperature interval, the stream heat capacities can be added to give the composite curve shown in Figure 3.21b.

In Figure 3.22, the composite curve for the hot streams and the composite curve for cold streams are drawn with a minimum temperature difference, the displacement between the curves, of  $10^{\circ}$ C. This implies that in any of the exchangers to be used in the network the temperature difference between the streams will not be less than  $10^{\circ}$ C.

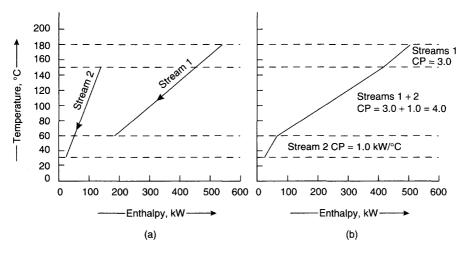



Figure 3.21. Hot stream temperature v. enthalpy (a) Separate hot streams (b) Composite hot streams

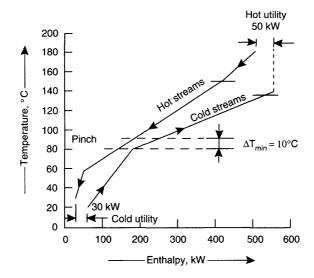



Figure 3.22. Hot and cold stream composite curves

As for the two-stream problem, the displacement of the curves at the top and bottom of the diagram gives the hot and cold utility requirements. These will be the minimum values needed to satisfy the target temperatures. This is valuable information. It gives the designer target values for the utilities to aim for when designing the exchanger network. Any design can be compared with the minimum utility requirements to check if further improvement is possible.

In most exchanger networks the minimum temperature difference will occur at only one point. This is termed the *pinch*. In the problem being considered, the pinch occurs at between 90°C on the hot stream curve and 80°C on the cold stream curve.

## Significance of the Pinch

The pinch divides the system into two distinct thermodynamic regions. The region above the pinch can be considered a heat sink, with heat flowing into it, from the hot utility, but not out of it. Below the pinch the converse is true. Heat flows out of the region to the cold utility. No heat flows across the pinch.

If a network is designed that requires heat to flow across the pinch, then the consumption of the hot and cold utilities will be greater than the minimum values that could be achieved.

## 3.17.2. The problem table method

The problem table is the name given by Linnhoff and Flower to a numerical method for determining the pinch temperatures and the minimum utility requirements; Linnhoff and Flower (1978). Once understood, it is the preferred method, avoiding the need to draw the composite curves and manoeuvre the composite cooling curve using, for example, tracing paper or cut-outs, to give the chosen minimum temperature difference on the diagram. The procedure is as follows:

1. Convert the actual stream temperatures  $T_{\rm act}$  into interval temperatures  $T_{\rm int}$  by subtracting half the minimum temperature difference from the hot stream temperatures, and by adding half to the cold stream temperatures:

hot streams 
$$T_{\rm int} = T_{\rm act} - \frac{\Delta T_{\rm min}}{2}$$
 cold streams  $T_{\rm int} = T_{\rm act} + \frac{\Delta T_{\rm min}}{2}$ 

The use of the interval temperature rather than the actual temperatures allows the minimum temperature difference to be taken into account.  $\Delta T_{\rm min} = 10^{\circ} {\rm C}$  for the problem being considered; see Table 3.4.

| Stream 1 | Actual to | emperature | Interval temperature |       |
|----------|-----------|------------|----------------------|-------|
|          | 180       | 60         | 175                  | 55    |
| 2        | 150       | 30         | 145                  | 25    |
| 3        | 20        | 135        | (25)                 | 140   |
| 4        | 80        | 140        | 85                   | (145) |

Table 3.4. Interval temperatures for  $\Delta T_{\min} = 10^{\circ} \text{C}$ 

- 2. Note any duplicated interval temperatures. These are bracketed in Table 3.4.
- 3. Rank the interval temperatures in order of magnitude, showing the duplicated temperatures only once in the order; see Table 3.5.
  - 4. Carry out a heat balance for the streams falling within each temperature interval: For the nth interval:

$$\Delta H_n = (\Sigma C P_c - \Sigma C P_h) (\Delta T_n)$$

where  $\Delta H_n$  = net heat required in the nth interval

 $\Sigma CP_c = \text{sum of the heat capacities of all the cold streams in the interval}$ 

 $\Sigma CP_h = \text{sum of the heat capacities of all the hot streams in the interval}$ 

 $\Delta T_n$  = interval temperature difference =  $(T_{n-1} - T_n)$ 

See Table 3.6.

Table 3.5. Ranked order of interval temperatures

| Rank      | Interval $\Delta T_n$ °C              | Streams in interval |
|-----------|---------------------------------------|---------------------|
| <br>175°C | · · · · · · · · · · · · · · · · · · · |                     |
| 145       | 30                                    | -1                  |
| 140       | 5                                     | 4-(2+1)             |
| 85        | 55                                    | (3+4)-(1+2)         |
| 55        | 30                                    | 3 - (1 + 2)         |
| 25        | 30                                    | 3-2                 |

Note: Duplicated temperatures are omitted. The interval  $\Delta T$  and streams in the intervals are included as they are needed for Table 3.6.

Table 3.6. Problem table

| Interval | Interval<br>temp. °C | $^{\Delta T_n}$ °C | $\Sigma CP_c - \Sigma CP_h^*$ kW/°C | Δ <i>H</i><br>kW | Surplus or<br>Deficit |
|----------|----------------------|--------------------|-------------------------------------|------------------|-----------------------|
|          | 175                  |                    |                                     |                  |                       |
| 1        | 145                  | 30                 | -3.0                                | -90              | s                     |
| 2        | 140                  | 5                  | 0.5                                 | 2.5              | d                     |
| 3        | 85                   | 55                 | 2.5                                 | 137.5            | d                     |
| 4        | 55                   | 30                 | -2.0                                | -60              | s                     |
| 5        | 25                   | 30                 | 1.0                                 | 30               | d                     |

<sup>\*</sup>Note: The streams in each interval are given in Table 3.5.

5. "Cascade" the heat surplus from one interval to the next down the column of interval temperatures; Figure 3.23a.

Cascading the heat from one interval to the next implies that the temperature difference is such that the heat can be transferred between the hot and cold streams. The presence

| Interval<br>temp. |                            |               |          |          |
|-------------------|----------------------------|---------------|----------|----------|
| 175°C             | 0 kW                       |               | 50 kW    |          |
|                   | -90 kW                     |               | -90 kW   |          |
| 145°C             | 2.5 kW                     | 90 kW         | 2.5 kW   | 140 kW   |
| 140°C             | 137.5 kW                   | 87.5 kW       | 137.5 kW | 135.5 kW |
| 85°C              |                            | -50 kW        |          | 0.0 kW   |
| 55°C              | 60 kW                      | 10 kW         | -60 kW   | 60 kW    |
| 25°C              | 30 kW                      | −20 kW        | 30 kW    | 30 kW    |
|                   | (a)                        |               | (b)      |          |
| From (b) pinch    | occurs at interval tempera | ature = 85°C. |          |          |

Figure 3.23. Heat cascade

of a negative value in the column indicates that the temperature gradient is in the wrong direction and that the exchange is not thermodynamically possible.

This difficulty can be overcome if heat is introduced into the top of the cascade:

6. Introduce just enough heat to the top of the cascade to eliminate all the negative values; see Figure 3.23b.

Comparing the composite curve, Figure 3.22, with Figure 3.23b shows that the heat introduced to the cascade is the minimum hot utility requirement and the heat removed at the bottom is the minimum cold utility required. The pinch occurs in Figure 3.23b where the heat flow in the cascade is zero. This is as would be expected from the rule that for minimum utility requirements no heat flows across the pinch. In Figure 3.23b the pinch temperatures are 80 and 90°C, as was found using the composite stream curves.

It is not necessary to draw up a separate cascade diagram. This was done in Figure 3.23 to illustrate the principle. The cascaded values can be added to the problem table as two additional columns; see example 3.16.

## Summary

For maximum heat recovery and minimum use of utilities:

- 1. Do not transfer heat across the pinch
- 2. Do not use hot utilities below the pinch
- 3. Do not use cold utilities above the pinch

# 3.17.3. The heat exchanger network

# Grid representation

It is convenient to represent a heat exchanger network as a grid; see Figure 3.24. The process streams are drawn as horizontal lines, with the stream numbers shown in square boxes. Hot streams are drawn at the top of the grid, and flow from left to right. The cold streams are drawn at the bottom, and flow from right to left. The stream heat capacities *CP* are shown in a column at the end of the stream lines

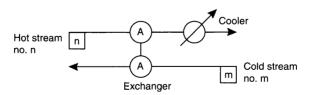



Figure 3.24. Grid representation

Heat exchangers are drawn as two circles connected by a vertical line. The circles connect the two streams between which heat is being exchanged; that is, the streams that would flow through the actual exchanger. Heater and coolers are drawn as a single circle, connected to the appropriate utility.

# Network design for maximum energy recovery

The analysis carried out in Figure 3.22, and Figure 3.23, has shown that the minimum utility requirements for the problem set out in Table 3.3 are 50 kW of the hot and 30 kW of the cold utility; and that the pinch occurs where the cold streams are at 80 and the hot 90°C.

The grid representation of the streams is shown in Figure 3.25. The vertical dotted lines represent the pinch and separate the grid into the regions above and below the pinch.

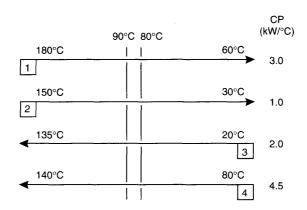



Figure 3.25. Grid for 4 stream problem

For maximum energy recovery (minimum utility consumption) the best performance is obtained if no cooling is used above the pinch. This means that the hot streams above the pinch should be brought to the pinch temperature solely by exchange with the cold streams. The network design is therefore started at the pinch; finding feasible matches between streams to fulfil this aim. In making a match adjacent to the pinch the heat capacity CP of the hot stream should be equal to or less than that of the cold stream. This is to ensure that the minimum temperature difference between the curves is maintained. The slope of a line on the temperature-enthalpy diagram is equal to the reciprocal of the heat capacity. So, above the pinch the lines will converge if  $CP_{\text{hot}}$  exceeds  $CP_{\text{cold}}$  and as the streams start with a separation at the pinch equal to  $\Delta T_{\text{min}}$ , the minimum temperature condition would be violated.

Below the pinch the procedure is the same; the aim being to bring the cold streams to the pinch temperature by exchange with the hot streams. For streams adjacent to the pinch the criterion for matching streams is that the heat capacity of the cold stream must be equal to or greater than the hot stream, to avoid breaking the minimum temperature difference condition.

# The network design above the pinch

$$CP_{\text{hot}} \leq CP_{\text{cold}}$$

1. Applying this condition at the pinch, stream 1 can be matched with stream 4, but not with 3.

Matching streams 1 and 4 and transferring the full amount of heat required to bring stream 1 to the pinch temperature gives:

$$\Delta H_{\text{ex}} = CP(T_s - T_{\text{pinch}})$$
  
$$\Delta H_{\text{ex}} = 3.0(180 - 90) = 270 \text{ kW}$$

This will also satisfy the heat load required to bring stream 4 to its target temperature:

$$\Delta H_{\rm ex} = 4.5(140 - 80) = 270 \text{ kW}$$

2. Stream 2 can be matched with stream 3, whilst satisfying the heat capacity restriction. Transferring the full amount to bring stream 3 to the pinch temperature:

$$\Delta H_{\rm ex} = 1.0(150 - 90) = 60 \text{ kw}$$

3. The heat required to bring stream 3 to its target temperature, from the pinch temperature, is:

$$\Delta H = 2.0(135 - 80) = 110 \text{ kW}$$

So a heater will have to be included to provide the remaining heat load:

$$\Delta H_{\text{hot}} = 110 - 60 = 50 \text{ kW}$$

This checks with the value given by the problem table, Figure 3.23*b*. The proposed network design above the pinch is shown in Figure 3.26.

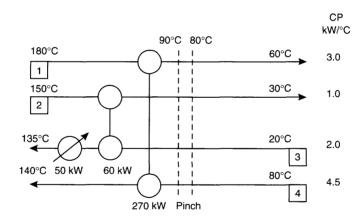



Figure 3.26. Network design above pinch

# Network design below the pinch

$$CP_{\text{hot}} \geq CP_{\text{cold}}$$

- 4. Stream 4 is at the pinch temperature,  $T_s = 80^{\circ}$ C.
- 5. A match between stream 1 and 3 adjacent to the pinch will satisfy the heat capacity restriction but not one between streams 2 and 3. So 1 is matched with 3 transferring the full amount to bring stream 1 to its target temperature; transferring:

$$\Delta H_{\rm ex} = 3.0(90 - 60) = 90 \text{ kW}$$

6. Stream 3 requires more heat to bring it to the pinch temperature; amount needed:

$$\Delta H = 2.0(80 - 20) - 90 = 30 \text{ kW}$$

This can be provided from stream 2, as the match will now be away from the pinch. The rise in temperature of stream 3 will be given by:

$$\Delta T = \Delta H/CP$$

So transferring 30 kW will raise the temperature from the source temperature to:

$$20 + 30/2.0 = 35^{\circ}$$
C

and this gives a stream temperature difference on the outlet side of the exchanger of:

$$90 - 35 = 55^{\circ}C$$

So the minimum temperature difference condition, 10°C, will not be violated by this match.

7. Stream 2 will need further cooling to bring it to its target temperature, so a cooler must be included; cooling required.

$$\Delta H_{\text{cold}} = 1.0(90 - 30) - 30 = 30 \text{ kW}$$

Which is the amount of the cold utility predicted by the problem table. The proposed network for maximum energy recovery is shown in Figure 3.27.

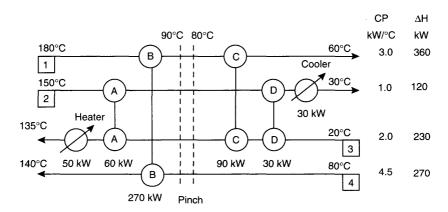



Figure 3.27. Proposed heat exchanger network  $\Delta T_{\text{min}} = 10^{\circ}\text{C}$ 

# Stream splitting

If the heat capacities of streams are such that it is not possible to make a match at the pinch without violating the minimum temperature difference condition, then the heat capacity can be altered by splitting a stream. Dividing the stream will reduce the mass flow-rates in each leg and hence the heat capacities. This is illustrated in Example 3.16.

Guide rules for stream matching and splitting are given in the Institution of Chemical Engineers Guide, IChemE (1994).

## Summary

The heuristics (guide rules) for devising a network for maximum heat recovery are given below:

- 1. Divide the problem at the pinch.
- 2. Design away from the pinch.
- 3. Above the pinch match streams adjacent to the pinch, meeting the restriction:

$$CP_{\text{hot}} \leq CP_{\text{cold}}$$

4. Below the pinch match streams adjacent to the pinch, meeting the restriction:

$$CP_{\text{hot}} > CP_{\text{cold}}$$

- 5. If the stream matching criteria can not be satisfied split a stream.
- 6. Maximise the exchanger heat loads.
- 7. Supply external heating only above the pinch, and external cooling only below the pinch.

## 3.17.4. Minimum number of exchangers

The network shown in Figure 3.27 was designed to give the maximum heat recovery, and will therefore give the minimum consumption, and cost, of the hot and cold utilities.

This will not necessarily be the optimum design for the network. The optimum design will be that which gives the lowest total annual costs: taking into account the capital cost of the system, in addition to the utility and other operating costs. The number of exchangers in the network, and their size, will determine the capital cost.

In Figure 3.27 it is clear that there is scope for reducing the number of exchangers. Exchanger D can be deleted and the heat loads of the cooler and heater increased to bring streams 2 and 3 to their target temperatures. Heat would cross the pinch and the consumption of the utilities would be increased. Whether the revised network would be better, more economic, would depend on the relative cost of capital and utilities. For any network there will be an optimum design that gives the least annual cost: capital charges plus utility and other operating costs. The estimation of capital and operating costs are covered in Chapter 6.

To find the optimum design it will be necessary to cost a number of alternative designs, seeking a compromise between the capital costs, determined by the number and size of the exchangers, and the utility costs, determined by the heat recovery achieved.

For simple networks Holmann (1971) has shown that the minimum number of exchangers is given by:

$$Z_{\min} = N' - 1 \tag{3.41}$$

where  $Z_{\min}$  = minimum number of exchangers needed, including heaters and coolers N' = the number of streams, including the utilities

For complex networks a more general expression is needed to determine the minimum number of exchangers:

$$Z_{\min} = N' + L' - S \tag{3.42}$$

where L' = the number of internal loops present in the network

S = the number of independent branches (subsets) that exist in the network.

A loop exists where a close path can be traced through the network. There is a loop in the network shown in Figure 3.27. The loop is shown in Figure 3.28. The presence of a loop indicates that there is scope for reducing the number of exchangers.

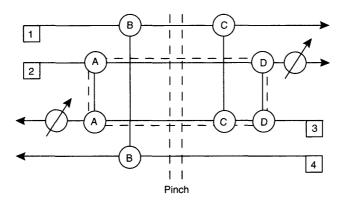



Figure 3.28. Loop in network

For a full discussion of equation 3.42 and its applications see Linnhoff *et al.* (1979), and IChemE (1994).

In summary, to seek the optimum design for a network:

- 1. Start with the design for maximum heat recovery. The number of exchangers needed will be equal to or less than the number for maximum energy recovery.
- 2. Identify loops that cross the pinch. The design for maximum heat recovery will usually contain loops.
- 3. Starting with the loop with the least heat load, break the loops by adding or subtracting heat.
- 4. Check that the specified minimum temperature difference  $\Delta T_{\min}$  has not been violated, and revise the design as necessary to restore the  $\Delta T_{\min}$ .
- 5. Estimate the capital and operating costs, and the total annual cost.
- 6. Repeat the loop breaking and network revision to find the lowest cost design.
- 7. Consider the safety, operability and maintenance aspects of the proposed design.

# Importance of the minimum temperature difference

In a heat exchanger, the heat-transfer area required to transfer a specified heat load is inversely proportional to the temperature difference between the streams; see Chapter 12.

This means that the value chosen for  $\Delta T_{\rm min}$  will determine the size of the heat exchangers in a network. Reducing  $\Delta T_{\rm min}$  will increase the heat recovery, decreasing the utility consumption and cost, but at the expense of an increase in the exchanger size and capital cost.

For any network there will be a best value for the minimum temperature difference that will give the lowest total annual costs. The effect of changes in the specified  $\Delta T_{\min}$  need to be investigated when optimising a heat recovery system.

## 3.17.5. Threshold problems

Problems that show the characteristic of requiring only either a hot utility or a cold utility (but not both) over a range of minimum temperature differences, from zero up to a threshold value, are known as threshold problems. A threshold problem is illustrated in Figure 3.29.

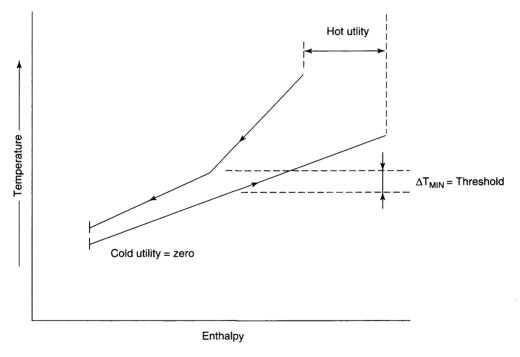



Figure 3.29. Threshold problem

To design the heat exchanger network for a threshold problem, it is normal to start at the most constrained point. The problem can often be treated as one half of a problem exhibiting a pinch.

Threshold problems are encountered in the process industries. A pinch can be introduced in such problems if multiple utilities are used, as in the recovery of heat to generate steam.

The procedures to follow in the design of threshold problems are discussed by Smith (1995) and IChemE (1994).

## 3.17.6. Multiple pinches and multiple utilities

The use of multiple utilities can lead to more than one pinch in a problem. In introducing multiple utilities the best strategy is to generate at the highest level and use at the lowest level. For a detailed discussion of this type of problem refer to Smith (1995) and IChemE (1994).

# 3.17.7. Process integration: integration of other process operations

The use of the pinch technology method in the design of heat exchanger networks has been outlined in Sections 3.17.1 to 3.17.6. The method can also be applied to the integration of other process units; such as, separation column, reactors, compressors and expanders, boilers and heat pumps. The wider applications of pinch technology are discussed in the Institution of Chemical Engineers Guide, IChemE (1994) and by Linnhoff *et al.* (1983), and Townsend and Linnhoff (1982), (1983), (1993).

Some guide rules for process integration:

- 1. Install combined heat and power (co-generation) systems across the pinch; see Chapter 14.
- 2. Install heat engines either above or below the pinch.
- 3. Install distillation columns above or below the pinch.
- 4. Install heat pumps across the pinch; see Section 3.16.7.

# Example 3.17

Determine the pinch temperatures and the minimum utility requirements for the streams set out in the table below, for a minimum temperature difference between the streams of 20°C. Devise a heat exchanger network to achieve the maximum energy recovery.

| Stream |      | Heat capacity | Source   | Target   | Heat    |
|--------|------|---------------|----------|----------|---------|
| number | Type | kW/°C         | temp. °C | temp. °C | load kW |
| 1      | hot  | 40.0          | 180      | 40       | 5600    |
| 2      | hot  | 30.0          | 150      | 60       | 2700    |
| 3      | cold | 60.0          | 30       | 180      | 9000    |
| 4      | cold | 20.0          | 80       | 160      | 1600    |

#### Solution

The construction of the problem table to find the minimum utility requirement and the pinch temperature is facilitated by using a spreadsheet. The calculations in each cell are repetitive and the formula can be copied from cell to cell using the cell copy commands. The spreadsheet AS-EASY-AS (TRIUS Inc) was used to develop the tables for this problem.

First calculate the interval temperatures, for  $\Delta T_{\rm min} = 20^{\circ}{\rm C}$ 

hot streams 
$$T_{\text{int}} = T_{\text{act}} - 10^{\circ}\text{C}$$
  
cold streams  $T_{\text{int}} = T_{\text{act}} + 10^{\circ}\text{C}$ 

|        | Actual te | emp. °C | Interval temp. °C |        |  |
|--------|-----------|---------|-------------------|--------|--|
| Stream | Source    | Target  | Source            | Target |  |
| 1      | 180       | 40      | 170               | 30     |  |
| 2      | 150       | 60      | 140               | 50     |  |
| 3      | 30        | 180     | 40                | 190    |  |
| 4      | 80        | 160     | 90                | (170)  |  |

Next rank the interval temperatures, ignoring any duplicated values. Show which streams occur in each interval to aid in the calculation of the combined stream heat capacities:

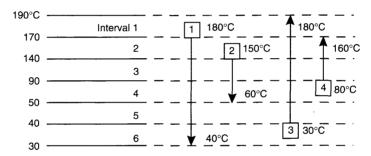



Figure 3.30. Intervals and streams

Now set out the problem table:

| Interval | Interval<br>temp.°C | $\Delta T$ $^{\circ}$ C | $\Sigma CP_{ m c} 	imes \Sigma CP_{ m h} \ { m kW/^{\circ}C}$ | $\Delta H$ kW | Casc  | ade  |
|----------|---------------------|-------------------------|---------------------------------------------------------------|---------------|-------|------|
|          | 190                 |                         | ,                                                             |               | 0     | 2900 |
| 1        | 170                 | 20                      | 60.0                                                          | 1200          | -1200 | 1700 |
| 2        | 140                 | 30                      | 40.0                                                          | 1200          | -2400 | 500  |
| 3        | 90                  | 50                      | 10.0                                                          | 500           | -2900 | 0    |
| 4        | 50                  | 40                      | -10.0                                                         | -400          | -2500 | 400  |
| 5        | 40                  | 10                      | 20.0                                                          | 200           | -2700 | 200  |
| 6        | 30                  | 10                      | -40.0                                                         | -400          | -2300 | 600  |

In the last column 2900 kW of heat have been added to eliminate the negative values in the previous column.

So, the hot utility requirement is 2900 kW and the cold, the bottom value in the column, is 600 kW.

The pinch occurs where the heat transferred is zero, that is at interval number 3, 90°C.

So at the pinch hot streams will be at:

$$90 + 10 = 100^{\circ}$$
C

and the cold at:

$$90 - 10 = 80^{\circ}$$
C

To design the network for maximum energy recovery: start at the pinch and match streams following the rules on stream heat capacities for matches adjacent to the pinch. Where a match is made: transfer the maximum amount of heat.

The proposed network is shown in Figure 3.31.

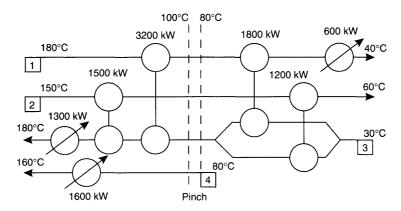



Figure 3.31. Network, example 3.17

The methodology followed in devising this network was:

#### Above pinch

- 1.  $CP_{\text{hot}} \leq CP_{\text{cold}}$
- 2. Can match stream 1 and 2 with stream 3 but not with stream 4.
- 3. Check the heat available in bringing the hot streams to the pinch temperature. stream  $1 \Delta H = 40.0(180 100) = 3200 \text{ kW}$  stream  $2 \Delta H = 30.0(150 100) = 1500 \text{ kW}$
- 4. Check the heat required to bring the cold streams from the pinch temperature to their target temperatures.

stream 3 
$$\Delta H = 60.0(180 - 80) = 6000 \text{ kW}$$
  
stream 4  $\Delta H = 20.0(160 - 80) = 1600 \text{ kW}$ 

- 5. Match stream 1 with 3 and transfer 3200 kW, that satisfies (ticks off) stream 1.
- 6. Match stream 2 with 3 and transfer 1500 kW, that ticks off stream 2.
- 7. Include a heater on stream 3 to provide the balance of the heat required:

$$\Delta H_{\text{hot}} = 6000 - 4700 = 1300 \text{ kW}$$

8. Include a heater on stream 4 to provide heat load required, 1600 kW.

#### Below pinch:

- 9.  $CP_{\text{hot}} \geq CP_{\text{cold}}$
- 10. Note that stream 4 starts at the pinch temperature so can not provide any cooling below the pinch.
- 11. Cannot match stream 1 or 2 with stream 3 at the pinch.
- 12. So, split stream 3 to reduce *CP*. An even split will allow both streams 1 and 2 to be matched with the split streams adjacent to the pinch, so try this:
- 13. Check the heat available from bringing the hot streams from the pinch temperature to their target temperatures.

stream 1 
$$\Delta H = 40.0(100 - 40) = 2400 \text{ kW}$$
  
stream 2  $\Delta H = 30.0(100 - 60) = 1200 \text{ kW}$ 

14. Check the heat required to bring the cold streams from their source temperatures to the pinch temperature:

stream 3 
$$\Delta H = 60.0(80 - 30) = 3000 \text{ kW}$$
  
stream 4 is at the pinch temperature.

- 15. Note that stream 1 can not be brought to its target temperature of  $40^{\circ}$ C by full interchange with stream 3 as the source temperature of stream 3 is  $30^{\circ}$ C, so  $\Delta T_{\text{min}}$  would be violated. So transfer 1800 kW to one leg of the split stream 3.
- 16. Check temperature at exit of this exchanger:

Temp out = 
$$100 - \frac{1800}{40} = 55^{\circ}$$
C, satisfactory

17. Provide cooler on stream 1 to bring it to its target temperature, cooling needed:

$$\Delta H_{\text{cold}} = 2400 - 1800 = 600 \text{ kW}$$

18. Transfer the full heat load from stream 2 to second leg of stream 3; this satisfies both streams.

Note that the heating and cooling loads, 2900 kW and 600 kW, respectively, match those predicted from the problem table.

#### 3.18. REFERENCES

Barlow, J. A. (1975) Inst. Mech. Eng. Conference on Energy Recovery in the Process Industries, London. Energy recovery in a petro-chemical plant: advantages and disadvantages.

BARNWELL, J. and MORRIS, C. P. (1982) Hyd. Proc. 61 (July) 117. Heat pump cuts energy use.

BLOCH, H. P., CAMERON, J. A., DANOWSKY, F. M., JAMES, R., SWEARINGEN, J. S. and WEIGHTMAN, M. E. (1982) Compressors and Expanders: Selection and Applications for the Process Industries (Dekker).

BOLAND, D. and LINNHOFF, B. (1979) Chem. Engr, London No. 343 (April) 222. The preliminary design of networks for heat exchangers by systematic methods.

BUSE, F. (1981) Chem. Eng., NY 88 (Jan 26th) 113. Using centrifugal pumps as hydraulic turbines.

CHADA, N. (1984) Chem. Eng., NY 91 (July 23rd) 57. Use of hydraulic turbines to recover energy.

DOUGLAS, J. M. (1988) Conceptual Design of Chemical Processes (McGraw-Hill).

DRYDEN, I. (ed.) (1975) The Efficient Use of Energy (IPC Science and Technology Press).

DUNN, K. S. and TOMKINS, A. G. (1975) Inst. Mech. Eng. Conference on Energy Recovery in the Process Industries, London. Waste heat recovery from the incineration of process wastes.

EDMISTER, W. C. (1948) *Pet. Ref.* 27 (Nov.) 129 (609). Applications of thermodynamics to hydrocarbon processing, part XIII—heat capacities.

GUNDERSEN, T. and NAESS, L. (1988). Comp. and Chem. Eng., 12, No. 6, 503. The synthesis of cost optimal heat-exchanger networks—an industrial review of the state of the art.

HIMMELBLAU, D. M. (1982) Basic Principles and Calculations in Chemical Engineering (Prentice-Hall).

HINCHLEY, P. (1975) Inst. Mech. Eng. Conference on Energy Recovery in the Process Industries, London. Waste heat boilers in the chemical industry.

HOLMANN, E. C. (1971) PhD Thesis, University of South California, Optimum networks for heat exchangers.

HOLLAND, F. A. and DEVOTTA, S. (1986) Chem. Engr. London, No. 425 (May) 61. Prospects for heat pumps in process applications.

ICHEME (1994) User Guide on Process Integration for Efficient Use of Energy, revised edn (Institution of Chemical Engineers, London).

JENETT, E. (1968) Chem. Eng., NY 75 (April 8th) 159, (June 17th) 257 (in two parts). Hydraulic power recovery systems.

KENNEY, W. F. (1984) Energy Conversion in the Process Industries, Academic Press.

LINNHOFF, B. and FLOWER, J. R. (1978) AIChEJI 24, 633 (2 parts) synthesis of heat exchanger networks.

LINNHOFF, B., MASON, D. R. and WARDLE, I. (1979) Comp. and Chem. Eng. 3, 295, Understanding heat exchanger networks.

LINNHOFF, B., DUNFORD, H. and SMITH R. (1983) Chem. Eng. Sci. 38, 1175. Heat integration of distillation columns into overall processes.

LINNHOFF, B. (1993) Trans IChemE 71, Part A, 503. Pinch Analysis — a state-of-the-art overview.

MASSO, A. H. and RUDD, D. F. (1969) AIChEJI 15, 10. The synthesis of system design: heuristic structures.

MEILI, A. (1990) Chem. Eng. Prog. 86(6) 60. Heat pumps for distillation columns.

MILES, F. D. (1961) Nitric Acid Manufacture and Uses (Oxford U.P.)

MILLER, R. (1968) Chem. Eng., NY 75 (May 20th) 130. Process energy systems.

MOSER, F. and SCHNITZER, H. (1985) Heat Pumps in Industry (Elsevier).

NISHIDA, N., LIU, Y. A. and LAPIDUS, L. (1977) AIChEJl 23, 77. Studies in chemical process design and synthesis.

PERRY, R. H. and CHILTON, C. H. (eds) (1973) Chemical Engineers Handbook, 5th edn (McGraw-Hill).

PERRY, R. H. and GREEN, D. W. (eds) (1984) *Perry's Chemical Engineers Handbook*, 6th edn (McGraw-Hill). PORTON, J. W. and DONALDSON, R. A. B. (1974) *Chem. Eng. Sci.* 29, 2375. A fast method for the synthesis of optimal heat exchanger networks.

REAY, D. A. and MACMICHAEL, D. B. A. (1988) Heat Pumps: Design and Application, 2nd edn (Pergamon Press).

SANTOLERI, J. J. (1973) Chem. Eng. Prog. 69 (Jan.) 69. Chlorinated hydrocarbon waste disposal and recovery systems.

SIIROLA, J. J. (1974) AIChE 76th National Meeting, Tulsa, Oklahoma. Studies of heat exchanger network synthesis.

SINGH, J. (1985) Heat Transfer Fluids and Systems for Process and Energy Applications, Marcel Dekker.

STERBACEK, Z., BISKUP, B. and TAUSK, P. (1979) Calculation of Properties Using Corresponding-state Methods (Elsevier).

SHULTZ, J. M. (1962) *Trans. ASME* **84** (*Journal of Engineering for Power*) (Jan.) 69, (April) 222 (in two parts). The polytropic analysis of centrifugal compressors.

SMITH, R. (1995) Chemical Process Design (McGraw-Hill)

TOWNSEND, D. W. and LINNHOFF, B. (1983) AIChEJI 29, 742. Heat and power networks in processes design.

TOWNSEND, D. W. and LINHOFF, B. (1982) *Chem. Engr., London*, No. 378 (March) 91. Designing total energy systems by systematic methods.

#### 3.19. NOMENCLATURE

Dimensions

|           |                                                    | in <b>MLT</b> $\theta$                                   |
|-----------|----------------------------------------------------|----------------------------------------------------------|
| a         | Constant in specific heat equation (equation 3.13) | $\mathbf{L}^2\mathbf{T}^{-2}\boldsymbol{\theta}^{-1}$    |
| b         | Constant in specific heat equation (equation 3.13) | $\mathbf{L}^2\mathbf{T}^{-2}\boldsymbol{\theta}^{-2}$    |
| CP        | Stream heat capacity                               | $\mathbf{ML}^{2}\mathbf{T}^{-2}\boldsymbol{\theta}^{-1}$ |
| $C_p$     | Specific heat at constant pressure                 | $\mathbf{L}^2\mathbf{T}^{-2}\boldsymbol{\theta}^{-1}$    |
| $C_{p_a}$ | Specific heat component a                          | $\mathbf{L}^2\mathbf{T}^{-2}\boldsymbol{\theta}^{-1}$    |
| $C_{p_b}$ | Specific heat component b                          | $\mathbf{L}^2\mathbf{T}^{-2}\boldsymbol{\theta}^{-1}$    |
| $C_{p_c}$ | Specific heat component c                          | $\mathbf{L}^2\mathbf{T}^{-2}\boldsymbol{\theta}^{-1}$    |
|           |                                                    |                                                          |

|                                              |                                                            | 2- 2: 1                                                              |
|----------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|
| $C_{p_m}$                                    | Mean specific heat                                         | $\mathbf{L}^2\mathbf{T}^{-2}\boldsymbol{\theta}^{-1}$                |
| $C_{p_1}$                                    | Specific heat first phase                                  | $\mathbf{L}^2\mathbf{T}^{-2}\boldsymbol{\theta}^{-1}$                |
| $C_{p_2}$                                    | Specific heat second phase                                 | $\mathbf{L}^2\mathbf{T}^{-2}\boldsymbol{\theta}^{-1}$                |
| $C_v$                                        | Specific heat at constant volume                           | $\mathbf{L}^2\mathbf{T}^{-2}\boldsymbol{\theta}^{-1}$                |
| $C_p^o$                                      | Ideal gas state specific heat                              | $\mathbf{L}^2\mathbf{T}^{-2}\boldsymbol{\theta}^{-1}$                |
| c                                            | Constant in specific heat equation (equation 3.13)         | $L^2T^{-2}\theta^{-3}$ or $L^2T^{-2}\theta^{-1/2}$                   |
| $\Sigma CP_c$                                | Sum of heat capacities of cold streams                     | $\mathbf{ML}^2\mathbf{T}^{-2}\boldsymbol{\theta}^{-1}$               |
| $\Sigma CP_h$                                | Sum of heat capacities of hot streams                      | $\mathbf{ML}^2\mathbf{T}^{-2}\boldsymbol{\theta}^{-1}$               |
| $E_e$ "                                      | Efficiency, electric motors                                | _                                                                    |
| $E_p$                                        | Polytropic efficiency, compressors and turbines            |                                                                      |
| $F^{'}$                                      | Force                                                      | $MLT^{-2}$                                                           |
| g                                            | Gravitational acceleration                                 | $LT^{-2}$                                                            |
| H                                            | Enthalpy                                                   | $\mathbf{ML}^{2}\mathbf{T}^{-2}$                                     |
| $H_a$                                        | Specific enthalpy of component a                           | $L^2T^{-2}$                                                          |
| $H_b$                                        | Specific enthalpy of component b                           | $L^2T^{-2}$                                                          |
| $H_d$                                        | Enthalpy top product stream (Example 3.1)                  | $\mathbf{ML}^{2}\mathbf{T}^{-3}$                                     |
| $H_f$                                        | Enthalpy feed stream (Example 3.1)                         | $\mathbf{ML}^2\mathbf{T}^{-3}$                                       |
| $H_T^{'}$                                    | Specific enthalpy at temperature T                         | $L^2T^{-2}$                                                          |
| $H_{w}$                                      | Enthalpy bottom product stream (Example 3.1)               | $\mathbf{ML}^{2}\mathbf{T}^{-3}$                                     |
| $\Delta H$                                   | Change in enthalpy                                         | $\mathbf{ML}^2\mathbf{T}^{-2}$                                       |
| $\Delta H_{\rm cold}$                        | Heat transfer from cold utility                            | $\mathbf{ML}^{2}\mathbf{T}^{-3}$                                     |
| $\Delta H_{ex}$                              | Heat transfer in exchanger                                 | $\mathbf{ML}^2\mathbf{T}^{-3}$                                       |
| $\Delta H_{\text{hot}}$                      | Heat transfer from hot utility                             | $\mathbf{ML}^{2}\mathbf{T}^{-3}$                                     |
| $\Delta H_n$                                 | Heat available in nth interval                             | $\mathbf{ML}^{2}\mathbf{T}^{-3}$                                     |
| $-\Delta H_{m,t}$                            | Heat of mixing at temperature $t$                          | $\mathbf{L}^2\mathbf{T}^{-2}$                                        |
| $-\Delta H_{r,t}$                            | Heat of reaction at temperature t                          | $\mathbf{L}^{2}\mathbf{T}^{-2}$                                      |
| $-\Delta H_c^{r,t}$<br>$-\Delta H_c^{\circ}$ | Standard heat of combustion                                | $\mathbf{L}^{2}\mathbf{T}^{-2}$                                      |
|                                              | Standard near of combustion Standard enthalpy of formation | $\mathbf{L}^{2}\mathbf{T}^{-2}$                                      |
| $\Delta H_f^{\circ}$                         |                                                            | $\mathbf{L}^{2}\mathbf{T}^{-2}$                                      |
| $-\Delta H_m^{\circ}$                        | Standard heat of mixing                                    | $\mathbf{L}^{2}\mathbf{T}^{-2}$                                      |
| $_L^{-\Delta H_r^\circ}$                     | Standard heat of reaction                                  |                                                                      |
| $\stackrel{L}{L'}$                           | Number of auxiliary streams, heat exchanger networks       | _                                                                    |
| l                                            | Number of internal loops in network  Distance              | L                                                                    |
| M                                            | Number of hot streams, heat-exchanger networks             | _                                                                    |
| M                                            | Molecular mass (weight)                                    |                                                                      |
| m                                            | Polytropic temperature exponent                            | · _                                                                  |
| m                                            | Mass                                                       | M                                                                    |
| m                                            | Mass flow-rate                                             | $\mathbf{MT}^{-1}$                                                   |
| N                                            | Number of cold streams, heat-exchanger networks            | _                                                                    |
| N'                                           | Number of streams                                          | _                                                                    |
| n                                            | Expansion or compression index (equation 3.30)             |                                                                      |
| P                                            | Pressure                                                   | $ML^{-1}T^{-2}$                                                      |
| $P_i$                                        | Inter-stage pressure                                       | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$                           |
| $P_r$                                        | Reduced pressure                                           |                                                                      |
| $P_1$                                        | Initial pressure                                           | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$                                    |
| $P_2$                                        | Final pressure                                             | $ML^{-1} T^{-2}$                                                     |
| Q                                            | Heat transferred across system boundary                    | $\mathbf{ML}^{2}\mathbf{T}^{-2}$ or $\mathbf{ML}^{2}\mathbf{T}^{-3}$ |
| $Q_b$                                        | Reboiler heat load (Example 3.1)                           | $\mathbf{ML}^{2}\mathbf{T}^{-3}$                                     |
| $Q_c$                                        | Condenser heat load (Example 3.1)                          | $ML^2T^{-3}$                                                         |
| $Q_p$                                        | Heat added (or subtracted) from a system                   | $\mathbf{ML}^{2}\mathbf{T}^{-2}$ or $\mathbf{ML}^{2}\mathbf{T}^{-3}$ |
| $\dot{Q_r}$                                  | Heat from reaction                                         | $\mathbf{ML}^{2}\mathbf{T}^{-2}$ or $\mathbf{ML}^{2}\mathbf{T}^{-3}$ |
| $Q_s$                                        | Heat generated in the system                               | $\mathbf{ML}^2\mathbf{T}^{-2}$ or $\mathbf{ML}^2\mathbf{T}^{-3}$     |
| R                                            | Universal gas constant                                     | $\mathbf{L}^2\mathbf{T}^{-2}\boldsymbol{\theta}^{-1}$                |
| S                                            | Number of independent branches                             |                                                                      |
| $\mathbf{S}_{cj}$                            | Cold streams, heat-exchanger networks                      | _                                                                    |
| $S_{hi}$                                     | Hot streams, heat-exchanger networks                       | _                                                                    |
|                                              |                                                            |                                                                      |

| $S_{uk}$           | Auxiliary streams, heat-exchanger networks           | _                                                        |
|--------------------|------------------------------------------------------|----------------------------------------------------------|
| T                  | Temperature, absolute                                | $oldsymbol{	heta}$                                       |
| $T_{\rm act}$      | Actual stream temperature                            | $oldsymbol{	heta}$                                       |
| $T_d$              | Datum temperature for enthalpy calculations          | $oldsymbol{	heta}$                                       |
| $T_{\rm int}$      | Interval temperature                                 | $\boldsymbol{\theta}$                                    |
| $T_n$              | Temperature in nth interval                          | $\boldsymbol{\theta}$                                    |
| $T_p$              | Phase-transition temperature                         | $oldsymbol{	heta}$                                       |
| $T_r$              | Reduced temperature                                  |                                                          |
| $T_s$              | Source temperature                                   | $\boldsymbol{	heta}$                                     |
| $T_t$              | Target temperature                                   | $\boldsymbol{	heta}$                                     |
| $\Delta T_{\min}$  | Minimum temperature difference in heat exchanger     | $\boldsymbol{	heta}$                                     |
| $\Delta T_n$       | Internal temperature difference                      | $\boldsymbol{	heta}$                                     |
| t                  | Temperature, relative scale                          | $oldsymbol{	heta}$                                       |
| t                  | Time                                                 | T                                                        |
| $t_r$              | Reference temperature, mean specific heat            | $\boldsymbol{	heta}$                                     |
| $t_f$              | Inlet-stream temperatures, heat-exchanger networks   | $\theta$                                                 |
| $t_o$              | Outlet-stream temperatures, heat-exchanger networks  | $\theta$                                                 |
| U                  | Internal energy per unit mass                        | $L^2T^{-2}$                                              |
| и                  | Velocity                                             | $LT^{-1}$                                                |
| $\boldsymbol{V}_1$ | Initial volume                                       | $\mathbf{L}^3$                                           |
| $V_2$              | Final volume                                         | $\mathbf{L}^3$                                           |
| v                  | Volume per unit mass                                 | $\mathbf{M}^{-1}\mathbf{L}^3$                            |
| X                  | Compressibility function defined by equation 3.33    | _                                                        |
| x                  | Distance                                             | L                                                        |
| $x_a$              | Mol fraction component a in a mixture                |                                                          |
| $x_b$              | Mol fraction component b in a mixture                | _                                                        |
| $x_c$              | Mol fraction component $c$ in a mixture              | _                                                        |
| Y                  | Compressibility function defined by equation 3.34    |                                                          |
| W                  | Work per unit mass                                   |                                                          |
| $W_i$              | Heat capacity of streams in a heat-exchanger network | $\mathbf{ML}^{2}\mathbf{T}^{-3}\boldsymbol{\theta}^{-1}$ |
| Z                  | Compressibility factor                               |                                                          |
| z                  | Height above datum                                   | L                                                        |
| $Z_{\min}$         | Minimum number of heat exchangers in network         |                                                          |

#### 3.20. PROBLEMS

- **3.1.** A liquid stream leaves a reactor at a pressure of 100 bar. If the pressure is reduced to 3 bar in a turbine, estimate the maximum theoretical power that could be obtained from a flow-rate of 1000 kg/h. The density of the liquid is 850 kg/m<sup>3</sup>.
- **3.2.** Calculate the specific enthalpy of water at a pressure of 1 bar and temperature of 200 °C. Check your value using steam tables. The specific heat capacity of water can be calculated from the equation:

$$C_p = 4.2 - 2 \times 10^{-3}t$$
; where t is in °C and  $C_p$  in kJ/kg. Take the other data required from Appendix D.

- **3.3.** A gas produced as a by-product from the carbonisation of coal has the following composition, mol per cent: carbon dioxide 4, carbon monoxide 15, hydrogen 50, methane 12, ethane 2, ethylene 4, benzene 2, balance nitrogen. Using the data given in Appendix D, calculate the gross and net calorific values of the gas. Give your answer in MJ/m<sup>3</sup>, at standard temperature and pressure.
- **3.4.** In the manufacture of aniline, liquid nitrobenzene at 20 °C is fed to a vaporiser where it is vaporised in a stream of hydrogen. The hydrogen stream is at 30 °C, and the vaporiser operates at 20 bar. For feed-rates of 2500 kg/h nitrobenzene and

366 kg/h hydrogen, estimate the heat input required. The nitrobenzene vapour is not superheated.

**3.5.** Aniline is produced by the hydrogenation of nitrobenzene. The reaction takes place in a fluidised bed reactor operating at 270 °C and 20 bar. The excess heat of reaction is removed by a heat transfer fluid passing through tubes in the fluidised bed. Nitrobenzene vapour and hydrogen enter the reactor at a temperature of 260 °C. A typical reactor off-gas composition, mol per cent, is: aniline 10.73, cyclo-hexylamine 0.11, water 21.68, nitrobenzene 0.45, hydrogen 63.67, inerts (take as nitrogen) 3.66. Estimate the heat removed by the heat transfer fluid, for a feed-rate of nitrobenzene to the reactor of 2500 kg/h.

The specific heat capacity of nitrobenzene can be estimate using the methods given

The specific heat capacity of nitrobenzene can be estimate using the methods given in Chapter 8. Take the other data required from Appendix D.

**3.6.** Hydrogen chloride is produced by burning chlorine with an excess of hydrogen. The reaction is highly exothermic and reaches equilibrium very rapidly. The equilibrium mixture contains approximately 4 per cent free chlorine but this is rapidly combined with the excess hydrogen as the mixture is cooled. Below 200 °C the conversion of chlorine is essentially complete.

The burner is fitted with a cooling jacket, which cools the exit gases to 200 °C. The gases are further cooled, to 50 °C, in an external heat exchanger.

For a production rate of 10,000 tonnes per year of hydrogen chloride, calculate the heat removed by the burner jacket and the heat removed in the external cooler. Take the excess hydrogen as 1 per cent over stoichiometric. The hydrogen supply contains 5 per cent inerts (take as nitrogen) and is fed to the burner at 25 °C. The chlorine is essentially pure and is fed to the burner as a saturated vapour. The burner operates at 1.5 bar.

- **3.7.** A supply of nitrogen is required as an inert gas for blanketing and purging vessels. After generation, the nitrogen is compressed and stored in a bank of cylinders, at a pressure of 5 barg. The inlet pressure to the compressor is 0.5 barg, and temperature 20 °C. Calculate the maximum power required to compress 100 m<sup>3</sup>/h. A single-stage reciprocating compressor will be used.
- **3.8.** Hydrogen chloride gas, produced by burning chlorine with hydrogen, is required at a supply pressure of 600 kN/m², gauge. The pressure can be achieved by either operating the burner under pressure or by compressing the hydrogen chloride gas. For a production rate of hydrogen chloride of 10,000 kg/h, compare the power requirement of compressing the hydrogen supply to the burner, with that to compress the product hydrogen chloride. The chlorine feed will be supplied at the required pressure from a vaporiser. Both the hydrogen and chlorine feeds are essentially pure. Hydrogen will be supplied to the burner one percent excess of over the stoichiometric requirement.

A two-stage centrifugal compressor will be used for both duties. Take the polytropic efficiency for both compressors as 70 per cent. The hydrogen supply pressure is 120 kN/m² and the temperature 25 °C. The hydrogen chloride is cooled to 50 °C after leaving the burner. Assume that the compressor intercooler cools the gas to 50 °C, for both duties.

Which process would you select and why?

**3.9.** Determine the pinch temperature and the minimum utility requirements for the process set out below. Take the minimum approach temperature as 15 °C. Devise a heat exchanger network to achieve maximum energy recovery.

| Stream | Type | Heat capacity | Source   | Target   |
|--------|------|---------------|----------|----------|
| number |      | kW/°C         | Temp. °C | Temp. °C |
| 1      | hot  | 13.5          | 180      | , 80     |
| 2      | hot  | 27.0          | 135      | 45       |
| 3      | cold | 53.5          | 60       | 100      |
| 4      | cold | 23.5          | 35       | 120      |

**3.10.** Determine the pinch temperature and the minimum utility requirements for the process set out below. Take the minimum approach temperature as 15 °C. Devise a heat exchanger network to achieve maximum energy recovery.

| Stream | Type | Heat capacity | Source   | Target              |
|--------|------|---------------|----------|---------------------|
| number |      | kW/°C         | Temp. °C | Temp <sup>o</sup> C |
| 1      | hot  | 10.0          | 200      | 80                  |
| 2      | hot  | 20.0          | 155      | 50                  |
| 3      | hot  | 40.0          | 90       | 35                  |
| 4      | cold | 30.0          | 60       | 100                 |
| 5      | cold | 8.0           | 35       | 90                  |

**3.11.** To produce a high purity product two distillation columns are operated in series. The overhead stream from the first column is the feed to the second column. The overhead from the second column is the purified product. Both columns are conventional distillation columns fitted with reboilers and total condensers. The bottom products are passed to other processing units, which do not form part of this problem. The feed to the first column passes through a preheater. The condensate from the second column is passed through a product cooler. The duty for each stream is summarised below:

| No. | Stream           | Type | Source temp. °C. | Target temp. °C | Duty, kW |
|-----|------------------|------|------------------|-----------------|----------|
| 1   | Feed preheater   | cold | 20               | 50              | 900      |
| 2   | First condenser  | hot  | 70               | 60              | 1350     |
| 3   | Second condenser | hot  | 65               | 55              | 1100     |
| 4.  | First reboiler   | cold | 85               | 87              | 1400     |
| 5.  | Second reboiler  | cold | 75               | 77              | 900      |
| 6.  | Product cooler   | hot  | 55               | 25              | 30       |

Find the minimum utility requirements for this process, for a minimum approach temperature of  $10\,^{\circ}\text{C}.$ 

Note: the stream heat capacity is given by dividing the exchanger duty by the temperature change.

### CHAPTER 4

# Flow-sheeting

### 4.1. INTRODUCTION

This chapter covers the preparation and presentation of the process flow-sheet. The flow-sheet is the key document in process design. It shows the arrangement of the equipment selected to carry out the process; the stream connections; stream flow-rates and compositions; and the operating conditions. It is a diagrammatic model of the process.

The flow-sheet will be used by the specialist design groups as the basis for their designs. This will include piping, instrumentation, equipment design and plant layout. It will also be used by operating personnel for the preparation of operating manuals and operator training. During plant start-up and subsequent operation, the flow-sheet forms a basis for comparison of operating performance with design.

The flow-sheet is drawn up from material balances made over the complete process and each individual unit. Energy balances are also made to determine the energy flows and the service requirements.

Manual flow-sheeting calculations can be tedious and time consuming when the process is large or complex, and computer-aided flow-sheeting programs are being increasingly used to facilitate this stage of process design. Their use enables the designer to consider different processes, and more alterative processing schemes, in his search for the best process and optimum process conditions. Some of the proprietary flow-sheeting programs available are discussed in this chapter. A simple linear flow-sheeting program is presented in detail and listed in the appendices.

In this chapter the calculation procedures used in flow-sheeting have for convenience been divided into manual calculation procedures and computer-aided procedures.

The next step in process design after the flow-sheet is the preparation of Piping and Instrumentation diagrams (abbreviated to P & I diagrams) often also called the Engineering Flow-sheet or Mechanical Flow-sheet. The P & I diagrams, as the name implies, show the engineering details of the process, and are based on the process flow-sheet. The preparation and presentation of P & I diagrams is discussed in Chapter 5. The abbreviation PFD (for Process Flow Diagram) is often used for process flow-sheets, and PID for Piping and Instrumentation Diagrams.

#### 4.2. FLOW-SHEET PRESENTATION

As the process flow-sheet is the definitive document on the process, the presentation must be clear, comprehensive, accurate and complete. The various types of flow-sheet are discussed below.

### 4.2.1. Block diagrams

A block diagram is the simplest form of presentation. Each block can represent a single piece of equipment or a complete stage in the process. Block diagrams were used to illustrate the examples in Chapters 2 and 3. They are useful for showing simple processes. With complex processes, their use is limited to showing the overall process, broken down into its principal stages; as in Example 2.13 (Vinyl Chloride). In that example each block represented the equipment for a complete reaction stage: the reactor, separators and distillation columns.

Block diagrams are useful for representing a process in a simplified form in reports and textbooks, but have only a limited use as engineering documents.

The stream flow-rates and compositions can be shown on the diagram adjacent to the stream lines, when only a small amount of information is to be shown, or tabulated separately.

The blocks can be of any shape, but it is usually convenient to use a mixture of squares and circles, drawn with a template.

### 4.2.2. Pictorial representation

On the detailed flow-sheets used for design and operation, the equipment is normally drawn in a stylised pictorial form. For tender documents or company brochures, actual scale drawings of the equipment are sometimes used, but it is more usual to use a simplified representation. The symbols given in British Standard, BS 1553 (1977) "Graphical Symbols for General Engineering" Part 1, "Piping Systems and Plant" are recommended; though most design offices use their own standard symbols. A selection of symbols from BS 1553 is given in Appendix A. The American National Standards Institute (ANSI) has also published a set of symbols for use on flow-sheets. Austin (1979) has compared the British Standard, ANSI, and some proprietary flow-sheet symbols.

In Europe, the German standards organisation has published a set of guide rules and symbols for flow-sheet presentation, DIN 28004 (1988). This is available in an English translation from the British Standards Institution.

#### 4.2.3. Presentation of stream flow-rates

The data on the flow-rate of each individual component, on the total stream flow-rate, and the percentage composition, can be shown on the flow-sheet in various ways. The simplest method, suitable for simple processes with few equipment pieces, is to tabulate the data in blocks alongside the process stream lines, as shown in Figure 4.1. Only a limited amount of information can be shown in this way, and it is difficult to make neat alterations or to add additional data.

A better method for the presentation of data on flow-sheets is shown in Figure 4.2. In this method each stream line is numbered and the data tabulated at the bottom of the sheet. Alterations and additions can be easily made. This is the method generally used by professional design offices. A typical commercial flow-sheet is shown in Figure 4.3. Guide rules for the layout of this type of flow-sheet presentation are given in Section 4.2.5.

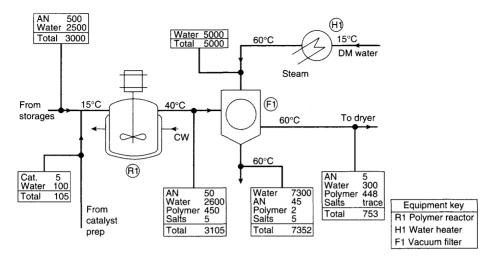
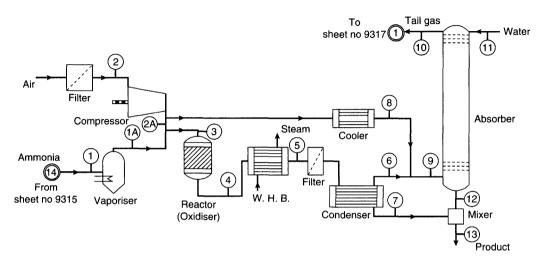



Figure 4.1. Flow-sheet: polymer production

#### 4.2.4. Information to be included

The amount of information shown on a flow-sheet will depend on the custom and practice of the particular design office. The list given below has therefore been divided into essential items and optional items. The essential items must always be shown, the optional items add to the usefulness of the flow-sheet but are not always included.


#### Essential information

- 1. Stream composition, either:
  - (i) the flow-rate of each individual component, kg/h, which is preferred, or
  - (ii) the stream composition as a weight fraction.
- 2. Total stream flow-rate, kg/h.
- 3. Stream temperature, degrees Celsius preferred.
- 4. Nominal operating pressure (the required operating pressure).

# Optional information

- 1. Molar percentages composition.
- 2. Physical property data, mean values for the stream, such as:
  - (i) density, kg/m<sup>3</sup>,
  - (ii) viscosity, mN s/m<sup>2</sup>.
- 3. Stream name, a brief, one or two-word, description of the nature of the stream, for example "ACETONE COLUMN BOTTOMS".
- 4. Stream enthalpy, kJ/h.

The stream physical properties are best estimated by the process engineer responsible for the flow-sheet. If they are then shown on the flow-sheet, they are available for use by the specialist design groups responsible for the subsequent detailed design. It is best that each group use the same estimates, rather than each decide its own values.



Flows kg/h Pressures nominal

| Line no.<br>Stream<br>Component | 1<br>Ammonia<br>feed | 1A<br>Ammonia<br>vapour | 2<br>Filtered<br>air | 2A<br>Oxidiser<br>air | 3 ·<br>Oxidiser<br>feed | 4<br>Oxidiser<br>outlet | 5<br>W.H.B.<br>outlet  | 6<br>Condenser<br>gas | 7<br>Condenser<br>acid | 8<br>Secondary<br>air | 9<br>Absorber<br>feed | 10<br>Tail(2)<br>gas | 11<br>Water<br>feed | 12<br>Absorber<br>acid | 13<br>Product<br>acid | C & R Cor   | nstruction Inc |
|---------------------------------|----------------------|-------------------------|----------------------|-----------------------|-------------------------|-------------------------|------------------------|-----------------------|------------------------|-----------------------|-----------------------|----------------------|---------------------|------------------------|-----------------------|-------------|----------------|
| NH <sub>3</sub>                 | 731.0                | 731.0                   |                      |                       | 731.0                   | Nil                     |                        |                       | _                      | _                     |                       |                      | _                   |                        | _                     | Nitric acid | 60 per cent    |
| O <sub>2</sub>                  |                      | _                       | 3036.9               | 2628.2                | 2628.2                  | 935.7                   | (935.7) <sup>(1</sup>  | 275.2                 | Trace                  | 408.7                 | 683.9                 | 371.5                |                     | Trace                  | Trace                 | 100,000 t   | /v             |
| N <sub>2</sub>                  | _                    | _                       | 9990.8               | 8644.7                | 8644.7                  | 8668.8                  | 8668.8                 | 8668.8                | Trace                  | 1346.1                | 10,014.7              | 10,014.7             | _                   | Trace                  | Trace                 | Client BO   | P Chemicals    |
| NO                              | _                    |                         | _                    | _                     | _                       | 1238.4                  | (1238.4) <sup>(1</sup> | 202.5                 | _                      | _                     | 202.5                 | 21.9                 |                     | Trace                  | Trace                 | SL          | JGO            |
| NO <sub>2</sub>                 |                      | _                       | _                    |                       | _                       |                         | Trace                  | (?) <sup>(1)</sup>    | 967.2                  | _                     |                       | 967.2                | (Trace)(1)          | _                      | Trace                 | Trace       | Sheet no. 9316 |
| HNO <sub>3</sub>                |                      |                         |                      |                       |                         |                         | Nil                    | Nil                   | _                      | 850.6                 |                       |                      | · — ′               | _                      | 1704.0                | 2554.6      | •              |
| H <sub>2</sub> O                |                      |                         | _                    | Trace                 | _                       |                         | 1161.0                 | 1161.0                | 29.4                   | 1010.1                | _                     | 29.4                 | 26.3                | 1376.9                 | 1136.0                | 2146.0      |                |
| Total                           | 731.0                | 731.0                   | 13,027.7             | 11,272.9              | 12,003.9                | 12,003.9                | 12,003.9               | 10,143.1              | 1860.7                 | 1754.8                | 11,897.7              | 10,434.4             | 1376.9              | 2840.0                 | 4700.6                |             |                |
| Press bar                       | 8                    | 8                       | 1                    | 8                     | 8                       | 8                       | 8                      | 8                     | 1                      | 8                     | 8                     | 1                    | 8                   | 1                      | 1                     | Dwg by      | Date           |
| Temp. °C                        | 15                   | 20                      | 15                   | 230                   | 204                     | 907                     | 234                    | 40                    | 40                     | 40                    | 40                    | 25                   | 25                  | 40                     | 43                    | Checked     | 25/7/1980      |

Figure 4.2. Flow-sheet: simplified nitric acid process (Example 4.2) (1) See example

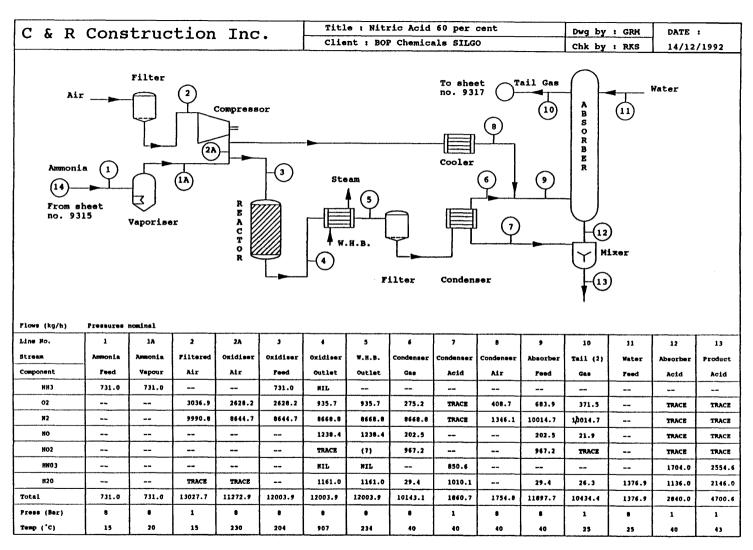



Figure 4.2a. Flow-sheet drawn using FLOSHEET

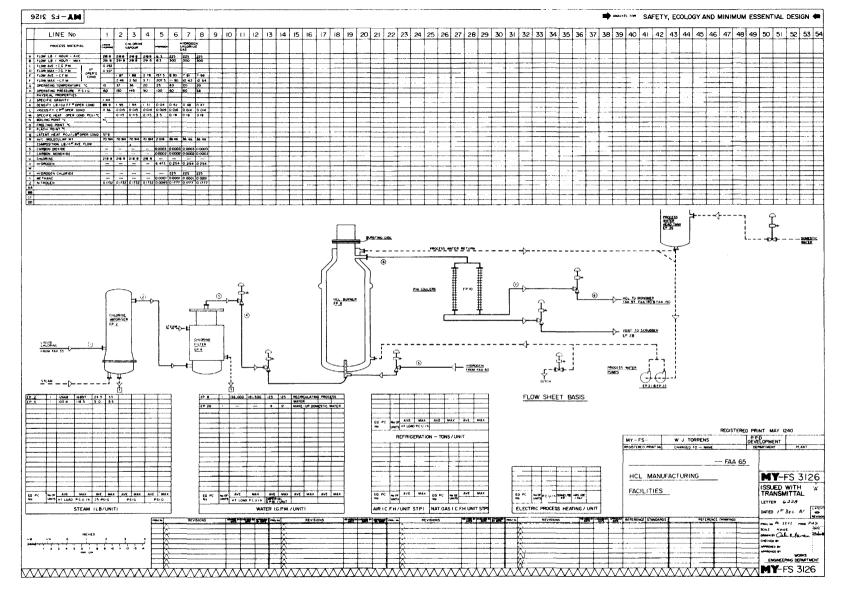



Figure 4.3. A typical flow-sheet

### 4.2.5. Layout

The sequence of the main equipment items shown symbolically on the flow-sheet follows that of the proposed plant layout. Some licence must be exercised in the placing of ancillary items, such as heat exchangers and pumps, or the layout will be too congested. But the aim should be to show the flow of material from stage to stage as it will occur, and to give a general impression of the layout of the actual process plant.

The equipment should be drawn approximately to scale. Again, some licence is allowed for the sake of clarity, but the principal equipment items should be drawn roughly in the correct proportion. Ancillary items can be drawn out of proportion. For a complex process, with many process units, several sheets may be needed, and the continuation of the process streams from one sheet to another must be clearly shown. One method of indicating a line continuation is shown in Figure 4.2; those lines which are continued over to another are indicated by a double concentric circle round the line number and the continuation sheet number written below.

The table of stream flows and other data can be placed above or below the equipment layout. Normal practice is to place it below. The components should be listed down the left-hand side of the table, as in Figure 4.2. For a long table it is good practice to repeat the list at the right-hand side, so the components can be traced across from either side.

The stream line numbers should follow consecutively from left to right of the layout, as far as is practicable; so that when reading the flow-sheet it is easy to locate a particular line and the associated column containing the data.

All the process stream lines shown on the flow-sheet should be numbered and the data for the stream given. There is always a temptation to leave out the data on a process stream if it is clearly just formed by the addition of two other streams, as at a junction, or if the composition is unchanged when flowing through a process unit, such as a heat exchanger; this should be avoided. What may be clear to the process designer is not necessarily clear to the others who will use the flow-sheet. Complete, unambiguous information on all streams should be given, even if this involves some repetition. The purpose of the flow-sheet is to show the function of each process unit; even to show when it has no function.

#### 4.2.6. Precision of data

The total stream and individual component flows do not normally need to be shown to a high precision on the process flow-sheet; at most one decimal place is all that is usually justified by the accuracy of the flow-sheet calculations, and is sufficient. The flows should, however, balance to within the precision shown. If a stream or component flow is so small that it is less than the precision used for the larger flows, it can be shown to a greater number of places, if its accuracy justifies this and the information is required. Imprecise small flows are best shown as "TRACE". If the composition of a trace component is specified as a process constraint, as, say, for an effluent stream or product quality specification, it can be shown in parts per million, ppm.

A trace quantity should not be shown as zero, or the space in the tabulation left blank, unless the process designer *is sure* that it has no significance. Trace quantities can be important. Only a trace of an impurity is needed to poison a catalyst, and trace quantities

can determine the selection of the materials of construction; see Chapter 7. If the space in the data table is left blank opposite a particular component the quantity may be assumed to be zero by the specialist design groups who take their information from the flow-sheet.

#### 4.2.7. Basis of the calculation

It is good practice to show on the flow-sheet the basis used for the flow-sheet calculations. This would include: the operating hours per year; the reaction and physical yields; and the datum temperature used for energy balances. It is also helpful to include a list of the principal assumptions used in the calculations. This alerts the user to any limitations that may have to be placed on the flow-sheet information.

### 4.2.8. Batch processes

Flow-sheets drawn up for batch processes normally show the quantities required to produce one batch. If a batch process forms part of an otherwise continuous process, it can be shown on the same flow-sheet, providing a clear break is made when tabulating the data between the continuous and batch sections; the change from kg/h to kg/batch. A continuous process may include batch make-up of minor reagents, such as the catalyst for a polymerisation process.

### 4.2.9. Services (utilities)

To avoid cluttering up the flow-sheet, it is not normal practice to show the service headers and lines on the process flow-sheet. The service connections required on each piece of equipment should be shown and labelled. The service requirements for each piece of equipment can be tabulated on the flow-sheet.

# 4.2.10. Equipment identification

Each piece of equipment shown on the flow-sheet must be identified with a code number and name. The identification number (usually a letter and some digits) will normally be that assigned to a particular piece of equipment as part of the general project control procedures, and will be used to identify it in all the project documents.

If the flow-sheet is not part of the documentation for a project, then a simple, but consistent, identification code should be devised. The easiest code is to use an initial letter to identify the type of equipment, followed by digits to identify the particular piece. For example, H—heat exchangers, C—columns, R—reactors. The key to the code should be shown on the flow-sheet.

# 4.2.11. Computer aided drafting

Most design offices now use computer aided drafting programs for the preparation of flow-sheets and other process drawings. When used for drawing flow-sheets, and piping and instrumentation diagrams (see Chapter 5), standard symbols representing the process equipment, instruments and control systems are held in files and called up as required.

To illustrate the use of a commercial computer aided design program, Figure 4.2 has been redrawn using the program FLOSHEET and is shown as Figure 4.2a. FLOSHEET is a versatile flow-sheet drafting program, which is available to university and college departments at a nominal cost. It is used by many chemical engineering departments in the UK; see Preece (1986) and Preece and Stephens (1989).

FLOSHEET is part of a suite of programs called PROCEDE<sup>(1)</sup> which has been developed for the efficient handling of all the information needed in process design. It aims to cover the complete process environment, using graphical user interfaces to facilitate the transfer of information, Preece *et al.* (1991). The equipment specification sheets given in Appendix H are from the PROCEDE package.

### 4.3. MANUAL FLOW-SHEET CALCULATIONS

This section is a general discussion of the techniques used for the preparation of flow-sheets from manual calculations. The stream flows and compositions are calculated from material balances; combined with the design equations that arise from the process and equipment design constraints.

As discussed in Chapter 1, there will be two kinds of design constraints:

*External constraints*: not directly under the control of the designer, and which cannot normally be relaxed. Examples of this kind of constraint are:

- (i) Product specifications, possibly set by customer requirements.
- (ii) Major safety considerations, such as flammability limits.
- (iii) Effluent specifications, set by government agencies.

*Internal constraints:* determined by the nature of the process and the equipment functions. These would include:

- (i) The process stoichiometry, reactor conversions and yields.
- (ii) Chemical equilibria.
- (iii) Physical equilibria, involved in liquid-liquid and gas/vapour-liquid separations.
- (iv) Azeotropes and other fixed compositions.
- (v) Energy-balance constraints. Where the energy and material balance interact, as for example in flash distillation.
- (vi) Any general limitations on equipment design.

The flow-sheet is usually drawn up at an early stage in the development of the project. A preliminary flow-sheet will help clarify the designer's concept of the process; and serve as basis for discussions with other members of the design team.

The extent to which the flow-sheet can be drawn up before any work is done on the detailed design of the equipment will depend on the complexity of the process and the information available. If the design is largely a duplication of an existing process, though possibly for a different capacity, the equipment performance will be known and the stream flows and compositions can be readily calculated. For new processes, and

<sup>(1)</sup> PROCEDE is a proprietory systems package developed by Professor P. E. Preece and associates at the University of Wales Swansea. It is marketed by PROCEDE Software Limited, The Abbey, Singleton Park, Swansea, SA2 8PP, United Kingdom.

for major modifications of existing processes, it will only be possible to calculate some of the flows independently of the equipment design considerations; other stream flows and compositions will be dependent on the equipment design and performance. To draw up the flow-sheet the designer must use his judgement in deciding which flows can be calculated directly; which are only weakly dependent on the equipment design; and which are determined by the equipment design.

By weakly dependent is meant those streams associated with equipment whose performance can be assumed, or approximated, without introducing significant errors in the flow-sheet. The detailed design of these items can be carried out later, to match the performance then specified by the flow-sheet. These will be items which in the designer's estimation do not introduce any serious cost penalty if not designed for their optimum performance. For example, in a phase separator, such as a decanter, if equilibrium between the phases is assumed the outlet stream compositions can be often calculated directly, independent of the separator design. The separator would be designed later, to give sufficient residence time for the streams to approach the equilibrium condition assumed in the flow-sheet calculation.

Strong interaction will occur where the stream flows and compositions are principally determined by the equipment design and performance. For example, the optimum conversion in a reactor system with recycle of the unreacted reagents will be determined by the performance of the separation stage, and reactor material balance cannot be made without considering the design of the separation equipment. To determine the stream flows and compositions it would be necessary to set up a mathematical model of the reactor-separator system, including costing.

To handle the manual calculations arising from complex processes, with strong interactions between the material balance calculations and the equipment design, and where physical recycle streams are present, it will be necessary to sub-divide the process into manageable sub-systems. With judgement, the designer can isolate those systems with strong interactions, or recycle, and calculate the flows sequentially, from sub-system to sub-system, making approximations as and where required. Each sub-system can be considered separately, if necessary, and the calculations repeatedly revised till a satisfactory flow-sheet for the complete process is obtained. To attempt to model a complex process without subdivision and approximation would involve too many variables and design equations to be handled manually. Computer flow-sheeting programs should be used if available.

When sub-dividing the process and approximating equipment performance to produce a flow-sheet, the designer must appreciate that the resulting design for the complete process, as defined by the flow-sheet, will be an approximation to the optimum design. He must continually be aware of, and check, the effect of his approximations on the performance of the complete process.

#### 4.3.1. Basis for the flow-sheet calculations

#### Time basis

No plant will operate continuously without shut-down. Planned shut-down periods will be necessary for maintenance, inspection, equipment cleaning, and the renewal of catalysts

and column packing. The frequency of shut-downs, and the consequent loss of production time, will depend on the nature of the process. For most chemical and petrochemical processes the plant attainment will typically be between 90 to 95 per cent of the total hours in a year (8760). Unless the process is known to require longer shut-down periods, a value of 8000 hours per year can be used for flow-sheet preparation.

### Scaling factor

It is usually easiest to carry out the sequence of flow-sheet calculations in the same order as the process steps; starting with the raw-material feeds and progressing stage by stage, where possible, through the process to the final product flow. The required production rate will usually be specified in terms of the product, not the raw-material feeds, so it will be necessary to select an arbitrary basis for the calculations, say 100 kmol/h of the principal raw material. The actual flows required can then be calculated by multiplying each flow by a scaling factor determined from the actual production rate required.

Scaling factor =  $\frac{\text{mols product per hour specified}}{\text{mols product produced per 100 kmol}}$  of the principal raw material

#### 4.3.2. Flow-sheet calculations on individual units

Some examples of how design constraints can be used to determine stream flows and compositions are given below.

#### 1. Reactors

(i) Reactor yield and conversion specified.

The reactor performance may be specified independently of the detailed design of the reactor. The conditions for the optimum, or near optimum, performance may be known from the operation of existing plant or from pilot plant studies.

For processes that are well established, estimates of the reactor performance can often be obtained from the general and patent literature; for example, the production of nitric and sulphuric acids.

If the yields and conversions are known, the stream flows and compositions can be calculated from a material balance; see Example 2.13.

(ii) Chemical equilibrium.

With fast reactions, the reaction products can often be assumed to have reached equilibrium. The product compositions can then be calculated from the equilibrium data for the reaction, at the chosen reactor temperature and pressure; see Example 4.1.

# 2. Equilibrium stage

In a separation or mixing unit, the anticipated equipment performance may be such that it is reasonable to consider the outlet streams as being in equilibrium; the approach to equilibrium being in practice close enough that no significant inaccuracy is introduced

by assuming that equilibrium is reached. The stream compositions can then be calculated from the phase equilibrium data for the components. This approximation can often be made for single-stage gas-liquid and liquid-liquid separators, such as quench towers, partial condensers and decanters. It is particularly useful if one component is essentially non-condensable and can be used as a tie substance (see Section 2.11). Some examples of the use of this process constraint are given in Examples 4.2 and 4.4.

# 3. Fixed stream compositions

If the composition (or flow-rate) of one stream is fixed by "internal" or "external" constraints, this may fix the composition and flows of other process streams. In Chapter 1, the relationship between the process variables, the design variables and design equations was discussed. If sufficient design variables are fixed by external constraints, or by the designer, then the other stream flows round a unit will be uniquely determined. For example, if the composition of one product stream from a distillation column is fixed by a product specification, or if an azeotrope is formed, then the other stream composition can be calculated directly from the feed compositions; see Section 2.10. The feed composition would be fixed by the outlet composition of the preceding unit.

#### 4. Combined heat and material balances

It is often possible to make a material balance round a unit independently of the heat balance. The process temperatures may be set by other process considerations, and the energy balance can then be made separately to determine the energy requirements to maintain the specified temperatures. For other processes the energy input will determine the process stream flows and compositions, and the two balances must be made simultaneously; for instance, in flash distillation or partial condensation; see also Example 4.1.

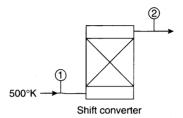
# Example 4.1

An example illustrating the calculation of stream composition from reaction equilibria, and also an example of a combined heat and material balance.

In the production of hydrogen by the steam reforming of hydrocarbons, the classic water-gas reaction is used to convert CO in the gases leaving the reforming furnace to hydrogen, in a shift converter.

$$CO(g) + H_2O(g) \rightarrow CO_2(g) + H_2(g)$$
  $\Delta H_{298}^{\circ} - 41{,}197 \text{ kJ/kmol}$ 

In this example the exit gas stream composition from a converter will be determined for a given inlet gas composition and steam ratio; by assuming that in the outlet stream the gases reach chemical equilibrium. In practice the reaction is carried out over a catalyst, and the assumption that the outlet composition approaches the equilibrium composition is valid. Equilibrium constants for the reaction are readily available in the literature.


A typical gases composition obtained by steam reforming methane is:

If this is fed to a shift converter at  $500^{\circ}$ K, with a steam ratio of 3 mol  $H_2O$  to 1 mol CO, estimate the outlet composition and temperature.

#### Solution

Basis: 100 mol/h dry feed gas.

 $H_2O$  in feed stream =  $3.0 \times 11.0 = 33$  mol.



Let fractional conversion of CO to  $H_2$  be C. Then mols of CO reacted =  $11.0 \times C$ . From the stoichiometric equation and feed composition, the exit gas composition will be:

$$CO = 11.0(1 - C)$$

$$CO_2 = 8.5 + 11.0 \times C$$

$$H_2O = 33 - 11.0 \times C$$

$$H_2 = 76.5 + 11.0 \times C$$

$$K_p = \frac{P_{CO} \times P_{H_2O}}{P_{CO_2} \times P_{H_2}}$$

At equilibrium

The temperature is high enough for the gases to be considered ideal, so the equilibrium constant is written in terms of partial pressure rather than fugacity, and the constant will not be affected by pressure. Mol fraction can be substituted for partial pressure. As the total mols in and out is constant, the equilibrium relationship can be written directly in mols of the components.

$$K_p = \frac{11(1-C)(33-11C)}{(8.5+11C)(76.5+11C)}$$

Expanding and rearranging

$$(K_p 121 - 121)C^2 + (K_p 935 + 484)C + (K_p 650 - 363) = 0$$
 (1)

 $K_p$  is a function of temperature.

For illustration, take T out =  $700^{\circ}K$ , at which  $K_p = 1.11 \times 10^{-1}$ 

$$-107.6C^2 + 587.8C - 290.85 = 0$$
$$C = 0.57$$

The reaction is exothermic and the operation can be taken as adiabatic, as no cooling is provided and the heat losses will be small.

The gas exit temperature will be a function of the conversion. The exit temperature must satisfy the adiabatic heat balance and the equilibrium relationship.

A heat balance was carried over a range of values for the conversion C, using the program Energy 1, Chapter 3. The value for which the program gives zero heat input or

output required (adiabatic) is the value that satisfies the conditions above. For a datum temperature of 25°C:

|    |                 | Str  | eam (mol)         | nol) $C_p^{\circ}$ (kJ/kmol) |           |            |            |  |
|----|-----------------|------|-------------------|------------------------------|-----------|------------|------------|--|
| Co | mponent         | . 1  | 2                 | a                            | b         | С          | d          |  |
| 1  | CO <sub>2</sub> | 8.5  | 8.5 + 11 <i>C</i> | 19.80                        | 7.34 E-2  | -5.6 E-5   | 17.15 E-9  |  |
| 2  | CO              | 11.0 | 11(1-C)           | 30.87                        | -1.29 E-2 | 27.9 E-6   | -12.72 E-9 |  |
| 3  | $H_2O$          | 33.0 | 33 - 11C          | 32.24                        | 19.24 E-4 | 10.56 E-6  | -3.60 E-9  |  |
| 4  | $H_2$           | 76.5 | 76.5 + 11C        | 27.14                        | 9.29 E-3  | -13.81 E-6 | 7.65 E-9   |  |

Data for energy-balance program

| Outlet temp. |                       |      | Mols      | Outlet composition, mol |                 |                  | ol             | Heat required |  |
|--------------|-----------------------|------|-----------|-------------------------|-----------------|------------------|----------------|---------------|--|
| (K)          | $K_p$                 | C    | converted | CO                      | CO <sub>2</sub> | H <sub>2</sub> O | H <sub>2</sub> | Q             |  |
| 550          | $1.86 \times 10^{-2}$ | 0.88 | 9.68      | 1.32                    | 18.18           | 23.32            | 86.18          | -175,268      |  |
| 600          | $3.69 \times 10^{-2}$ | 0.79 | 8.69      | 2.31                    | 17.19           | 24.31            | 85.19          | 76,462        |  |
| 650          | $6.61 \times 10^{-2}$ | 0.68 | 7.48      | 3.52                    | 15.98           | 25.52            | 83.98          | 337,638       |  |

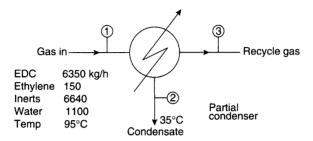
The values for the equilibrium constant  $K_p$  were taken from *Technical Data on Fuel*, Spiers.

The outlet temperature at which Q=0 was found by plotting temperature versus Q to be 580 K.

At 580 K, 
$$K_p = 2.82 \times 10^{-2}$$
. From equation (1)

$$-117.6C^2 + 510.4 + -344.7 = 0,$$
$$C = 0.83$$

# Outlet gas composition


$$CO_2 = 8.5 + 11 \times 0.83 = 17.6$$
  
 $CO = 11(1 - 0.83) = 1.9$   
 $H_2O = 33.0 - 11 \times 0.83 = 23.9$   
 $H_2 = 76.5 + 11 \times 0.83 = 85.6$   
 $129.0 \text{ mol}$ 

In this example the outlet exit gas composition has been calculated for an arbitrarily chosen steam: CO ratio of 3. In practice the calculation would be repeated for different steam ratios, and inlet temperatures, to optimise the design of the converter system. Two converters in series are normally used, with gas cooling between the stages. For large units a waste-heat boiler could be incorporated between the stages. The first stage conversion is normally around 80 per cent.

# Example 4.2

This example illustrates the use of phase equilibrium relationships (vapour-liquid) in material balance calculations.

In the production of dichloroethane (EDC) by oxyhydrochlorination of ethylene, the products from the reaction are quenched by direct contact with dilute HCl in a quench tower. The gaseous stream from this quench tower is fed to a condenser and the uncondensed vapours recycled to the reactor. A typical composition for this stream is shown in the diagram below; operating pressure 4 bar. Calculate the outlet stream compositions leaving the condenser.



The EDC flow includes some organic impurities and a trace of HCl. The inerts are mainly  $N_2$ , CO,  $O_2$  — non-condensable.

#### Solution

In order to calculate the outlet stream composition it is reasonable, for a condenser, to assume that the gas and liquid streams are in equilibrium at the outlet liquid temperature of 35°C.

The vapour pressures of the pure liquids can be calculated from the Antoine equation (see Chapter 8):

| At 35°C (308 K) |          |
|-----------------|----------|
| EDC             | 0.16 bar |
| Ethylene        | 70.7     |
| $H_2O$          | 0.055    |

From the vapour pressures it can be seen that the EDC and water will be essentially totally condensed, and that the ethylene remains as vapour. Ethylene will, however, tend to be dissolved in the condensed EDC. As a first trial, assume all the ethylene stays in the gas phase.

Convert flows to mol/h.

|          | Mol wt.        | kmol/h                   |
|----------|----------------|--------------------------|
| EDC      | 99             | 64                       |
| $C_2H_4$ | 28             | 5.4\ 213.4               |
| Inerts   | 32 (estimated) | $\binom{5.4}{208}$ 213.4 |
| $H_2O$   | 18             | 61                       |

Take the "non-condensables" (ethylene and inerts) as the tie substance. Treat gas phase as ideal, and condensed EDC-water as immiscible.

Partial pressure of non-condensables = (total pressure) – (vapour pressure of EDC + vapour pressure of water) = 
$$4 - 0.16 - 0.055 = 3.79 \text{ bar}$$

Flow of EDC in vapour = 
$$\frac{\text{vapour press. EDC}}{\text{partial press.}} \times \text{flow non-condensables}$$

$$= \frac{0.16}{3.79} \times 213.4 = \frac{9 \text{ kmol/h}}{20}$$
Similarly, flow of H<sub>2</sub>O =  $\frac{0.055}{3.79} \times 213.4 = \frac{3.1 \text{ kmol/h}}{20.055}$ 

So composition of gas streams is

|          | kmol/h | Per cent mol | kg/h |
|----------|--------|--------------|------|
| EDC      | 9      | 4.0          | 891  |
| $H_2O$   | 3.1    | 1.4          | 56   |
| Inerts   | 208    | 92.3         | 6640 |
| $C_2H_4$ | 5.4    | 2.3          | 150  |

### Check on dissolved ethylene

Partial pressure of ethylene = total pressure  $\times$  mol fraction

$$=4 \times \frac{2.3}{100} = 0.092$$
 bar

By assuming EDC and  $C_2H_4$  form an ideal solution, the mol fraction of ethylene dissolved in the liquid can be estimated, from Raoults Law (see Chapter 8).

$$y_A = \frac{x_A P_A^{\circ}}{P}$$

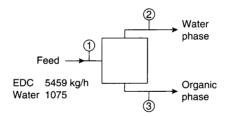
 $y_A = gas phase mol fraction,$ 

 $x_A$  = liquid phase mol fraction,

 $P_A^{\circ} = \text{sat. vapour pressure,}$ 

P = total pressure,

Substituting


$$\frac{2.3}{100} = \frac{x_A 70.7}{4}$$
$$x_A = 1.3 \times 10^{-3}$$

hence quantity of ethylene in liquid = kmol EDC  $\times x_A$ =  $(64 - 9) \times 1.3 \times 10^{-3} = 0.07$  kmol/h so kmol ethylene in gas phase =  $5.4 - 0.07 = \underline{5.33 \text{ kmol/h}}$  This is little different from calculated value and shows that initial assumption that no ethylene was condensed or dissolved was reasonable; so report ethylene in liquid as "trace".

| Materi        | al balance     | Flows (kg/h) |             |  |  |
|---------------|----------------|--------------|-------------|--|--|
| Stream no.:   | 1              | 2            | 3           |  |  |
| Title         | Condenser feed | Condensate   | Recycle gas |  |  |
| EDC           | 6350           | 5459         | 891         |  |  |
| $H_2O$        | 1100           | 1044         | 56          |  |  |
| Ethylene      | 150            | Trace        | 150         |  |  |
| Inerts        | 6640           |              | 6640        |  |  |
| Total         | 14,240         | 6503         | 7737        |  |  |
| Temp.°C       | 95             | 35           | 35          |  |  |
| Pressure bar: | 4              | 4            | 4           |  |  |

# Example 4.3

This example illustrates the use of liquid-liquid phase equilibria in material balance calculations. The condensate stream from the condenser described in Example 4.2 is fed to a decanter to separate the condensed water and dichloroethane (EDC). Calculate the decanter outlet stream compositions.



#### Solution

Assume outlet phases are in equilibrium.

The solubilities of the components at 20°C are:

EDC in water 0.86 kg/100 kg Water in EDC 0.16 kg/100 kg

Note the water will contain a trace of HCl, but as data on the solubility of EDC in dilute HCl are not available, the solubility in water will be used.

As the concentrations of dissolved water and EDC are small, the best approach to this problem is by successive approximation; rather than by setting up and solving equations for the unknown concentrations.

As a first approximation take organic stream flow = EDC flow in.

Then water in EDC = 
$$\frac{0.16}{100} \times 5459 = 8.73 \text{ kg/h}$$
  
So water flow out =  $1075 - 8.73 = 1066.3 \text{ kg/h}$   
and EDC dissolved in the water stream =  $\frac{1066.3}{100} \times 0.86 = 9.2 \text{ kg/h}$   
so, revised organic stream flow =  $5459 - 9.2 = \underline{5449.8 \text{ kg/h}}$   
and quantity of water dissolved =  $\frac{5449.8}{100} \times 0.16 = \underline{8.72 \text{ kg/h}}$   
in the stream

Which is not significantly lower than the first approximation. So stream flows, kg/h, will be:

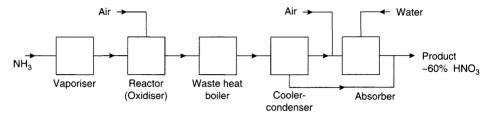
| Stream no. | 1             | 2             | 3             |  |
|------------|---------------|---------------|---------------|--|
| Title      | Decanter feed | Organic phase | Aqueous phase |  |
| EDC        | 5459          | 5449.8        | 9.2           |  |
| $H_2O$     | 1075          | 8.7           | 1066.3        |  |
| Total      | 6534          | 5458.5        | 1075.5        |  |

# Example 4.4

This example illustrates the manual calculation of a material and energy balance for a process involving several processing units.

Draw up a preliminary flow-sheet for the manufacture of 20,000 t/y nitric acid (basis 100 per cent HNO<sub>3</sub>) from anhydrous ammonia, concentration of acid required 50 to 60 per cent.

The technology of nitric acid manufacture is well established and has been reported in several articles:


- 1. R. M. Stephenson: Introduction to the Chemical Process Industries (Reinhold, 1966).
- 2. C. H. Chilton: *The Manufacture of Nitric Acid by the Oxidation of Ammonia* (American Institute of Chemical Engineers).
- 3. S. Strelzoff: Chem. Eng. NY 63(5), 170 (1956).
- 4. F. D. Miles: Nitric Acid Manufacture and Uses (Oxford University Press, 1961).

### Three processes are used:

- 1. Oxidation and absorption at atmospheric pressure.
- 2. Oxidation and absorption at high pressure (approx. 8 atm).
- 3. Oxidation at atmospheric pressure and absorption at high pressure.

The relative merits of the three processes are discussed by Chilton (2), and Strelzoff (3).

For the purposes of this example the high-pressure process has been selected. A typical process is shown in the block diagram.



Schematic (block) diagram; production of nitric acid by oxidation of ammonia

The principal reactions in the reactor (oxidiser) are:

Reaction 1. 
$$NH_3(g) + \frac{5}{4}O_2(g) \rightarrow NO(g) + \frac{3}{2}H_2O(g)$$
  $\Delta H_{298}^{\circ} = -226,334 \text{ kJ/kmol}$ 

Reaction 2. 
$$NH_3(g) + \frac{3}{4}O_2(g) \rightarrow \frac{1}{2}N_2(g) + \frac{3}{2}H_2O(g)$$
  $\Delta H_{298}^{\circ} = -316,776$  kJ/kmol

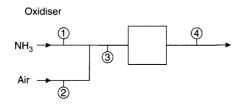
The nitric oxide formed can also react with ammonia:

Reaction 3. 
$$NH_3(g) + \frac{3}{2}NO(g) \rightarrow \frac{5}{4}N_2(g) + \frac{3}{2}H_2O(g)$$
  $\Delta H_{298}^{\circ} = -452,435 \text{ kJ/kmol}$ 

The oxidation is carried out over layers of platinum-rhodium catalyst; and the reaction conditions are selected to favour reaction 1. Yields for the oxidation step are reported to be 95 to 96 per cent.

#### Solution

#### Basis of the flow-sheet calculations


Typical values, taken from the literature cited:

- 1. 8000 operating hours per year.
- 2. Overall plant yield on ammonia 94 per cent.
- 3. Oxidiser (reactor) chemical yield 96 per cent.
- 4. Acid concentration produced 58 per cent w/w HNO<sub>3</sub>.
- 5. Tail gas composition 0.2 per cent v/v NO.

#### Material balances

Basis: 100 kmol NH<sub>3</sub> feed to reactor.

#### Oxidiser



From reaction 1, at 96 per cent yield,

NO produced = 
$$100 \times \frac{96}{100} = 96$$
 kmol  
oxygen required =  $96 \times \frac{5}{4} = 120$  kmol  
water produced =  $96 \times \frac{3}{2} = 144$  kmol

The remaining 4 per cent ammonia reacts to produce nitrogen; production of 1 mol of  $N_2$  requires  $\frac{3}{2}$  mol of  $O_2$ , by either reaction 2 or 1 and 3 combined.

nitrogen produced = 
$$\frac{4}{2}$$
 = 2 kmol  
oxygen required = 2 ×  $\frac{3}{2}$  = 3 kmol

All the oxygen involved in these reactions produces water,

water produced = 
$$3 \times 2 = 6$$
 kmol

So, total oxygen required and water produced;

water = 
$$144 + 6 = 150$$
 kmol oxygen (stoichiometric) =  $120 + 3 = 123$  kmol

Excess air is supplied to the oxidiser to keep the ammonia concentration below the explosive limit (see Chapter 9), reported to be 12 to 13 per cent (Chilton), and to provide oxygen for the oxidation of NO to NO<sub>2</sub>.

Reaction 4. 
$$NO(g) + \frac{1}{2}O_2 \rightarrow NO_2(g)$$
  $\Delta H_{298}^{\circ} = 57,120$  kJ/kmol

The inlet concentration of ammonia will be taken as 11 per cent v/v.

So, air supplied = 
$$\frac{100}{11} \times 100 = 909$$
 kmol

Composition of air: 79 per cent  $N_2$ , 21 per cent  $O_2$ , v/v. So, oxygen and nitrogen flows to oxidiser:

oxygen = 
$$909 \times \frac{21}{100} = 191 \text{ kmol}$$
  
nitrogen =  $909 \times \frac{79}{100} = 718 \text{ kmol}$ 

And the oxygen unreacted (oxygen in the outlet stream) will be given by:

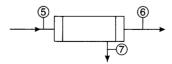
oxygen unreacted = 
$$191 - 123 = 68$$
 kmol

The nitrogen in the outlet stream will be the sum of the nitrogen from the air and that produced from ammonia:

nitrogen in outlet = 
$$718 + 2 = 720$$
 kmol

Summary, stream compositions:

|                 | Feed (3) |        | Out  | let (4) |
|-----------------|----------|--------|------|---------|
|                 | kmol     | kg     | kmol | kg      |
| NH <sub>3</sub> | 100      | 1700   | nil  |         |
| NO              | nil      |        | 96   | 2880    |
| $H_2O$          | trace    |        | 150  | 2700    |
| $O_2$           | 191      | 6112   | 68   | 2176    |
| $N_2$           | 718      | 20,104 | 720  | 20,016  |
| Total           |          | 27,916 |      | 27,916  |


#### **Notes**

- (1) The small amount of water in the inlet air is neglected.
- (2) Some  $NO_2$  will be present in the outlet gases, but at the oxidiser temperature used, 1100 to 1200 K, the amount will be small, typically <1 per cent.
- (3) It is good practice always to check the balance across a unit by calculating the totals; total flow in must equal total flow out.

### Waste-heat boiler (WHB) and cooler-condenser

The temperature of the gases leaving the oxidiser is reduced in a waste-heat boiler and cooler-condenser. There will be no separation of material in the WHB but the composition will change, as NO is oxidised to NO<sub>2</sub> as the temperature falls. The amount oxidised will depend on the residence time and temperature (see Stephenson). The oxidation is essentially complete at the cooler-condenser outlet. The water in the gas condenses in the cooler-condenser to form dilute nitric acid, 40 to 50 per cent w/w.

#### Balance on cooler-condenser



The inlet stream (5) will be taken as having the same composition as the reactor outlet stream (4).

Let the cooler-condenser outlet temperature be 40°C. The maximum temperature of the cooling water will be about 30°C, so this gives a 10°C approach temperature.

If the composition of the acid leaving the unit is taken as 45 per cent w/w (a typical value) the composition of the gas phase can be estimated by assuming that the gas and condensed liquid are in equilibrium at the outlet temperature.

At 40°C the vapour pressure of water over 45 per cent HNO<sub>3</sub> is 29 mmHg (Perry's *Chemical Engineers Handbook*, 5th edn, pp. 3-65). Take the total pressure as 8 atm. The mol fraction of water in the outlet gas stream will be given by the ratio of the vapour pressure to the total pressure:

mol fraction water = 
$$\frac{29}{760 \times 8}$$
 = 4.77 × 10<sup>-3</sup>

As a first trial, assume that all the water in the inlet stream is condensed, then:

water condensed = 
$$150 \text{ kmol} = 2700 \text{ kg}$$

NO<sub>2</sub> combines with this water to produce a 45 per cent solution:

Reaction 5. 
$$3NO_2 + H_2O \rightarrow 2HNO_3 + NO$$

For convenience, take as a subsidiary basis for this calculation 100 kmol of HNO<sub>3</sub> (100 per cent basis) in the condensate.

From reaction 5, the mols of water required to form 100 kmol HNO<sub>3</sub> will be:

$$50 \text{ kmol} = 900 \text{ kg}$$

$$\text{mass of } 100 \text{ kmol } \text{HNO}_3 = 100 \times 63 = 6300 \text{ kg}$$

$$\text{water to dilute this to } 45 \text{ per cent} = \frac{6300 \times 55}{45} = 7700 \text{ kg}$$

So, total water to form dilute acid = 900 + 7700 = 8600 kg. Changing back to the original basis of 100 kmol NH<sub>3</sub> feed:

$$\begin{split} \text{HNO}_3 \text{ formed} &= 100 \times \frac{\text{Water condensed per 100 kmol NH}_3 \text{ feed}}{\text{Total water to form 45 per cent acid, per 100 kmol HNO}_3} \\ &= 100 \times \frac{2700}{8600} = 31.4 \text{ kmol} \end{split}$$

NO<sub>2</sub> consumed (from reaction 5) = 
$$31.4 \times \frac{3}{2} = 47.1$$
 kmol  
NO formed =  $31.4 \times \frac{1}{2} = 15.7$  kmol  
H<sub>2</sub>O reacted = 15.7 kmol

Condensed water not reacted with  $NO_2 = 150 - 15.7 = 134.3$  kmol.

The quantity of unoxidised NO in the gases leaving the cooler-condenser will depend on the residence time and the concentration of NO and NO<sub>2</sub> in the inlet stream. For simplicity in this preliminary balance the quantity of NO in the outlet gas will be taken as equal to the quantity formed from the absorption of NO<sub>2</sub> in the condensate to form nitric acid:

NO in outlet gas 
$$= 15.7$$
 kmol

The unreacted oxygen in the outlet stream can be calculated by making a balance over the unit on the nitric oxides, and on oxygen.

#### Balance on oxides

Total 
$$(NO + NO_2)$$
 entering = NO in stream  $4 = 96$  kmol

Of this, 31.4 kmol leaves as nitric acid, so  $(NO + NO_2)$  left in the gas stream = 96 - 31.4 = 64.6 kmol.

Of this, 15.7 kmol is assumed to be NO, so NO<sub>2</sub> in exit gas = 64.6 - 15.7 = 48.9 kmol.

### Balance on oxygen

Let unreacted  $O_2$  be x kmol. Then oxygen out of the unit will be given by:

$$\begin{split} \left[\frac{\text{NO}}{2} + \text{NO}_2 + x\right]_{\substack{\text{gas} \\ \text{stream (6)}}} &+ \left[\frac{3}{2} \text{HNO}_3 + \frac{\text{H}_2 \text{O}}{2}\right]_{\substack{\text{acid} \\ \text{stream (7)}}} \\ &= \left(\frac{15.7}{2} + 48.9 + x\right) + \left(\frac{3}{2} \times 31.4 + \frac{134.3}{2}\right) = (171 + x) \text{ kmol} \\ \text{Oxygen into the unit} &= \left[\frac{\text{NO}}{2} + \text{O}_2 + \text{H}_2 \text{O}\right]_{\substack{\text{stream (5)}}} \\ &= \frac{96}{2} + 68 + \frac{150}{2} = 191 \text{ kmol} \end{split}$$

Equating O<sub>2</sub> in and out:

unreacted 
$$O_2$$
,  $x_1 = 191 - 171 = 20.0$  kmol

As a first trial, all the water vapour was assumed to condense; this assumption will now be checked.

The quantity of water in the gas stream will be given by:

The total flow of gas (neglecting water) = 804.6 kmol, and the mol fraction of water was estimated to be  $4.77 \times 10^{-3}$ .

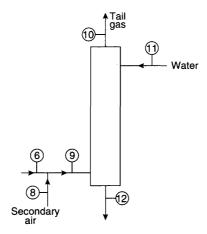
So, water vapour = 
$$4.77 \times 10^{-3} \times 804.6 = 3.8$$
 kmol

And, mols of water condensed = 134.3 - 3.8 = 130.5 kmol.

The calculations could be repeated using this adjusted value for the quantity of water condensed, to get a better approximation, but the change in the acid, nitric oxides, oxygen and water flows will be small. So, the only change that will be made to the original estimates will be to reduce the quantity of condensed water by that estimated to be in the gas stream:

Water in stream (6) 
$$3.8 \text{ kmol} = 68.4 \text{ kg}$$

So, water in stream (7) = 134.3 - 3.8 = 130.5 kmol = 2349 kg.


| C        |        |               |
|----------|--------|---------------|
| Summary, | stream | compositions: |

|                  | G    | as (6)   | Aci   | d (7)  |
|------------------|------|----------|-------|--------|
|                  | kmol | kg       | kmol  | kg     |
| NO               | 15.7 | 471.0    | Trace |        |
| $NO_2$           | 48.9 | 2249.4   | Trace |        |
| $O_2$            | 20.0 | 640      |       |        |
| $\overline{N_2}$ | 720  | 20,160   |       |        |
| HNO <sub>3</sub> |      |          | 31.4  | 1978.2 |
| $H_2O$           | 3.8  | 68.4     | 130.5 | 2349.0 |
| Total            |      | 23,588.4 |       | 4327.2 |

Total, stream (6) + (7) = 23,588.4 + 4327.2 = 27,915.6 kg, checks with inlet stream (4) total of 27,915.

#### Absorber

In the absorber the  $NO_2$  in the gas stream is absorbed in water to produce acid of about 60 per cent w/w. Sufficient oxygen must be present in the inlet gases to oxidise the NO formed to  $NO_2$ . The rate of oxidation will be dependent on the concentration of oxygen, so an excess is used. For satisfactory operation the tail gases from absorber should contain about 3 per cent  $O_2$  (Miles).



From stream (6) composition:

NO in inlet stream to absorber = 15.7 kmol and  $O_2 = 20.0$  kmol

Note: Though the NO/NO<sub>2</sub> ratio in this stream is not known exactly, this will not affect the calculation of the oxygen required; the oxygen is present in the stream either as free, uncombined oxygen or combined in the NO<sub>2</sub>.

So,  $O_2$  required to oxidise the NO in the inlet to stream to  $NO_2$ , from reaction 4, =  $15.7 \times \frac{1}{2} = 7.85$  kmol.

Hence, the "free" oxygen in the inlet stream = 20.0 - 7.85 = 12.15 kmol.

Combining reactions (4) and (5) gives the overall reaction for the absorption of  $NO_2$  to produce  $HNO_3$ .

Reaction 6. 
$$4NO_2 + 2H_2O + O_2 \rightarrow 4HNO_3$$

Using this reaction, the oxygen required to oxidise the NO formed in the absorber can be calculated:

O<sub>2</sub> required to oxidise NO formed = 
$$\{(NO + NO_2) \text{ in stream } (6)\} \times \frac{1}{4}$$
  
=  $(48.9 + 15.7) \times \frac{1}{4} = 16.15 \text{ kmol}$ 

So O<sub>2</sub> required for complete oxidation, in addition to that in inlet gas

$$= 16.15 - 12.15 = 4$$
 kmol

Let the secondary air flow be y kmol. Then the  $O_2$  in the secondary air will be = 0.21 y.kmol. Of this, 4 kmol react with NO in the absorber, so the free  $O_2$  in the tail gases will be = 0.21 y - 4 kmol.

 $N_2$  passes through the absorber unchanged, so the  $N_2$  in the tail gases = the  $N_2$  entering the absorber from the cooler-condenser and the secondary air. Hence:

$$N_2$$
 in tail gas =  $720 + 0.79$  y kmol.

The tail gases are essentially all  $N_2$  and  $O_2$  (the quantity of other constituents is negligible) so the percentage  $O_2$  in the tail gas will be given by:

O<sub>2</sub> per cent = 
$$3 = \frac{(0.21 \text{ y} - 4)100}{(720 + 0.79 \text{ y}) + (0.21 \text{ y} - 4)}$$

from which

$$y = 141.6 \text{ kmol}$$

and the  $O_2$  in the tail gases =  $141.6 \times 0.21 - 4 = 25.7$  kmol and the  $N_2$  in the tail gases = 720 + 111.8 = 831.8 kmol.

Tail gas composition, the tail gases will contain from 0.2 to 0.3 per cent NO, say 0.2 per cent, then:

NO in tail gas = total flow 
$$\times \frac{0.2}{100} = (N_2 + O_2)$$
 flow  $\times 0.002$   
=  $(831.8 + 25.7)0.002 = \underline{1.7 \text{ kmol}}$ 

The quantity of the secondary air was based on the assumption that all the nitric oxides were absorbed. This figure will not be changed as it was calculated from an assumed (approximate) value for the concentration of the  $O_2$  in the tail gases. The figure for  $O_2$  in the tail gases must, however, be adjusted to maintain the balance.

The unreacted  $O_2$  can be calculated from Reactions (4) and (6). 1.7 kmol of NO are not oxidised or absorbed, so the adjusted  $O_2$  in tail gases =  $25.7 + 1.7(\frac{1}{4} + \frac{1}{2}) = \underline{27.0 \text{ kmol}}$ .

The tail gases will be saturated with water at the inlet water temperature, say  $25^{\circ}$ C. Partial pressure of water at  $25^{\circ}$ C = 0.032 atm. The absorber pressure will be approximately 8 atm, so mol fraction water =  $0.032/8 = 4 \times 10^{-3}$  and  $H_2$ O in tail gas =  $857.5 \times 4 \times 10^{-3} = 3.4$  kmol.

Water required, stream (11).

The nitrogen oxides absorbed, allowing for the NO in the tail gases, will equal the HNO<sub>3</sub> formed

$$= (48.9 + 15.7) - 1.7 = 62.9 \text{ kmol} = 3962.7 \text{ kg}$$

Stoichiometric H<sub>2</sub>O required, from reaction 6

$$=\frac{62.9}{4} \times 2 = 31.5 \text{ kmol}$$

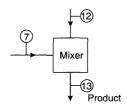
The acid strength leaving the absorber will be taken as 60 per cent w/w. Then, water required for dilution

$$=\frac{3962.7}{0.6}\times0.4=2641.8 \text{ kg}=146.8 \text{ kmol}$$

So, total water required, allowing for the water vapour in the inlet stream (6), but neglecting the small amount in the secondary air

$$= 31.5 + 146.8 + 3.4 - 3.8 = 177.9$$
 kmol

Summary, stream compositions:


| Stream           | Secondary air (8) |        | Inlet (9) |          | Acid (12) |        | Tail gas (10) |          | Water feed (11) |        |
|------------------|-------------------|--------|-----------|----------|-----------|--------|---------------|----------|-----------------|--------|
|                  | kmol              | kg     | kmol      | kg       | kmol      | kg     | kmol          | kg       | kmol            | kg     |
| NO               |                   |        | 15.7      | 471.0    | _         | _      | 1.7           | 51.0     | _               |        |
| $NO_2$           | _                 |        | 48.9      | 2249.4   | trace     |        |               |          |                 | _      |
| $O_2$            | 29.7              | 950.4  | 49.7      | 1590.4   | _         |        | 27.0          | 864      | _               |        |
| $\overline{N_2}$ | 111.8             | 3130.4 | 831.8     | 23,290.0 |           |        | 831.8         | 23,290.4 |                 | _      |
| $HNO_3$          |                   |        | _         |          | 62.9      | 3962.7 | _             | -        |                 |        |
| H <sub>2</sub> O | trace             |        | 3.8       | 68.4     | 146.8     | 2641.8 | 3.4           | 61.2     | 177.9           | 3202.2 |
| Total            |                   | 4080.8 |           | 27,669.2 |           | 6604.5 |               | 24,266.6 |                 | 3202.6 |

Check on totals: Stream (6) + (8) = (9)? 4080.8 + 23,588.4 = 27,669.2

27,669.2 = 27,669.2 checks

Stream 
$$(9) + (11) = (10) + (12)$$
?  $27,669.2 + 3203.2 = 24,266.6 + 6604.5$   
 $30,871.4 = 30,871.1$  near enough.

# Acid produced



From cooler-condenser 
$$HNO_3 = 31.4 \text{ kmol} = 1978.2 \text{ kg}$$
  
 $H_2O = 130.5 \text{ kmol} = 2349.0 \text{ kg}$   
From absorber  $HNO_3 = 62.9 \text{ kmol} = 3962.7 \text{ kg}$   
 $H_2O = 146.8 \text{ kmol} = 2641.8 \text{ kg}$   
Totals  $HNO_3 = 1978.2 + 3962.7 = 5940.9 \text{ kg}$   
 $H_2O = 2349.0 + 2641.8 = 4990.8 \text{ kg}$   
 $10.931.7 \text{ kg}$ 

So, concentration of mixed acids = 
$$\frac{5940.9}{10,931.7} \times 100 = 54$$
 per cent.

Summary, stream composition:

|                  | Acid product (13 |          |  |  |  |
|------------------|------------------|----------|--|--|--|
| Stream           | kmol             | kg       |  |  |  |
| HNO <sub>3</sub> | 94.3             | 5940.3   |  |  |  |
| $H_2O$           | 277.3            | 4990.8   |  |  |  |
|                  |                  | 10,931.7 |  |  |  |

### Overall plant yield

The overall yield can be calculated by making a balance on the combined nitrogen:

Yield = 
$$\frac{\text{mols N}_2 \text{ in HNO}_3 \text{ produced}}{\text{mols N}_2 \text{ in NH}_3 \text{ feed}} = \frac{94.3/2}{100/2} = 94.3 \text{ per cent}$$

*Note*: the acid from the cooler-condenser could be added to the acid flow in the absorber, on the appropriate tray, to produce a more concentrated final acid. The secondary air flow is often passed through the acid mixer to strip out dissolved NO.

# Scale-up to the required production rate

Production rate, 20,000 t/y HNO<sub>3</sub> (as 100 per cent acid). With 8000 operating hours per year

$$kg/h = \frac{20,000 \times 10^3}{8000} = 2500 \text{ kg/h}$$

From calculations on previous basis: 100 kmol NH<sub>3</sub> produces 5940.9 kg HNO<sub>3</sub>.

So, scale-up factor = 
$$\frac{2500}{5940.9} = 0.4208$$

To allow for unaccounted physical yield losses, round off to 0.43

All the stream flows, tabulated, were multiplied by this factor and are shown on the flowsheet, Figure 4.2. A sample calculation is given below:

Stream (6) gas from condenser

|        |       | Mass 100 kmol NH <sub>3</sub> basis |                 | Mass flow for 20,000 t/y |
|--------|-------|-------------------------------------|-----------------|--------------------------|
|        |       | (kg)                                |                 | (kg/h)                   |
| NO     |       | 471                                 |                 | ( 202.5                  |
| $NO_2$ |       | 2249.4                              |                 | 967.2                    |
| $O_2$  |       | 640.0 }                             | $\times 0.43 =$ | 275.2                    |
| $N_2$  |       | 20,160.0                            |                 | 8668.0                   |
| $H_2O$ |       | 68.4 <b>)</b>                       |                 | ( 29.4                   |
|        | Total | 23,588.8                            |                 | 10,143.1                 |

### Energy balance

Basis 1 hour.

### Compressor

Calculation of the compressor power and energy requirements (see Chapter 3).

Inlet flow rate, from flow sheet = 
$$\frac{13,027.7}{29 \times 3600}$$
 = 0.125 kmol/s

Volumetric flow rate

at inlet conditions, 15°C, 1 bar = 
$$0.125 \times 22.4 \times \frac{288}{273} = 2.95 \text{ m}^3/\text{s}$$

From Figure 3.6, for this flow rate a centrifugal compressor would be used,  $E_p = 74$  per cent.

Work (per kmol) = 
$$Z_1 T_1 \mathbf{R} \frac{n}{n-1} \left[ \left( \frac{P_2}{P_1} \right)^{(n-1)/n} - 1 \right]$$
 (3.31)

Outlet temperature, 
$$T_2 = T_1 \left(\frac{P_2}{P_1}\right)^m$$
 (3.35)

As the conditions are well away from the critical conditions for air, equations (3.36a) and (3.38a) can be used

$$m = \frac{(\gamma - 1)}{\gamma E_p} \tag{3.36a}$$

$$n = \frac{1}{1 - m} \tag{3.38a}$$

 $\gamma$  for air can be taken as 1.4

$$m = \frac{1.4 - 1}{1.4 \times 0.74} = 0.39$$
$$n = \frac{1}{1 - 0.39} = 1.64$$

The inlet air will be at the ambient temperature, take as 15°C. With no intercooling

$$T_2 = 288 \times 8^{0.39} = \underline{648 \text{ K}}$$

This is clearly too high and intercooling will be needed. Assume compressor is divided into two sections, with approximately equal work in each section. Take the intercooler gas outlet temperature as  $60^{\circ}$ C (which gives a reasonable approach to the normal cooling water temperature of  $30^{\circ}$ C).

For equal work in each section the interstage pressure

$$=\sqrt{\frac{P_{\text{out}}}{P_{\text{in}}}}=\sqrt{8}=2.83$$

Taking the interstage pressure as 2.83 atm will not give exactly equal work in each section, as the inlet temperatures are different; however, it will be near enough for the purposes of this example.

First section work, inlet 
$$15^{\circ}\text{C} = 1 \times 288 \times 8.314 \times \frac{1.64}{1.64 - 1} \left[ (2.83)^{(1.64 - 1)/1.64} - 1 \right]$$
  
= 3072.9 kJ/kmol

Second section work, inlet 
$$60^{\circ}\text{C} = 1 \times 333 \times 8.314 \times \frac{1.64}{1.64 - 1} \left[ (2.83)^{(1.64 - 1)/1.64} - 1 \right]$$
  
= 3552.6 kJ/kmol

Total work = 
$$3072.9 + 3552.6 = 6625.5$$
 kJ/kmol

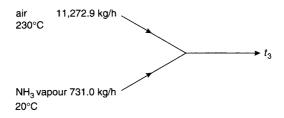
Compressor power = 
$$\frac{\text{work/kmol} \times \text{kmol/s}}{\text{efficiency}} = \frac{6625.5 \times 0.125}{0.74}$$
  
= 1119 kJ/s = 1.12 MW

Energy required per hour =  $1.12 \times 3600 = 4032 \text{ MJ}$ 

Compressor outlet temperature = 
$$333(2.83)^{0.39} = 500 \text{ K}$$

This temperature will be high enough for no preheating of the reactor feed to be needed (Strelzoff).

# Ammonia vaporiser


The ammonia will be stored under pressure as a liquid. The saturation temperature at 8 atm is 20°C. Assume the feed to the vaporiser is at ambient temperature, 15°C.

Heat input required to raise to 20°C and vaporise

$$= 731.0[4.5(20 - 15) + 1186] = 883,413.5 \text{ kJ/h}$$

add 10 per cent for heat losses =  $1.1 \times 883,413.5 = 971,754.9 \text{ kJ/h}$ 

### Mixing tee



 $C_p$  air = 1 kJ/kgK,

C<sub>p</sub> ammonia vapour 2.2 kJ/kgK.

*Note*: as the temperature of the air is only an estimate, there is no point in using other than average values for the specific heats at the inlet temperatures.

Energy balance around mixing tee, taking as the datum temperature the inlet temperature to the oxidiser,  $t_3$ .

$$11,272.9 \times 1(230 - t_3) + 731 \times 2.2(20 - t_3) = 0$$
  
 $t_3 = 204$ °C

#### Oxidiser

The program ENERGY 1 (see Chapter 3) was used to make the balance over on the oxidiser. Adiabatic operation was assumed (negligible heat losses) and the outlet temperature found by making a series of balances with different outlet temperatures to find the value that reduced the computed cooling required to zero (adiabatic operation). The data used in the program are listed below:

$$\Delta H_r^{\circ}$$
 reaction 1 = -226,334 kJ/kmol (per kmol NH<sub>3</sub> reacted)  
 $\Delta H_r^{\circ}$  reaction 2 = -316,776 kJ/kmol (per kmol NH<sub>3</sub> reacted)

All the reaction yield losses were taken as caused by reaction 2.  $NH_3$  reacted, by reaction 1

Flow of NH<sub>3</sub> to oxidiser × reactor yield = 
$$\frac{731.0 \times 0.96}{17}$$
 = 41.3 kmol/h balance by reaction 2 =  $\frac{731.0 \times 0.04}{17}$  = 1.7 kmol/h

Summary, flows and heat capacity data:

| Stream                                 | Feed (3) | Product (4) |       | $C_p^{\circ}$ k | J/kmol K |           |
|----------------------------------------|----------|-------------|-------|-----------------|----------|-----------|
| component                              | kmol/h   | kmol/h      | a     | b               | c        | d         |
| NH <sub>3</sub>                        | 43       | _           | 27.32 | 23.83E-3        | 17.07E-6 | -11.85E-9 |
| $O_2$                                  | 82.1     | 29.2        | 28.11 | -3.68E-6        | 17.46E-6 | -10.65E-9 |
| $N_2^2$                                | 308.7    | 309.6       | 31.15 | -1.36E-2        | 26.80E-6 | -11.68E-9 |
| O <sub>2</sub><br>N <sub>2</sub><br>NO |          | 41.3        | 29.35 | -0.94E-3        | 9.75E-6  | -4.19E-9  |
| $H_2O$                                 | _        | 64.5        | 32.24 | 19.24E-4        | 10.5E-6  | -3.60E-9  |
| Temp. K                                | 477      | $T_4$       |       |                 |          |           |

The outlet temperature  $T_4$  was found to be 1180 K =  $907^{\circ}$ C.

### Waste-heat boiler (WHB)

As the amount of NO oxidised to  $NO_2$  in this unit has not been estimated, it is not possible to make an exact energy balance over the unit. However, the maximum possible quantity of steam generated can be estimated by assuming that all the NO is oxidised; and the minimum quantity by assuming that none is. The plant steam pressure would be typically 150 to 200 psig  $\approx 11$  bar, saturation temperature 184°C. Taking the approach temperature of the outlet gases (difference between gas and steam temperature) to be 50°C, the gas outlet temperature will be = 184 + 50 = 234°C (507 K).

From the flow-sheet, NO entering WHB = 
$$\frac{1238.4}{30}$$
 = 41.3 kmol O<sub>2</sub> entering =  $\frac{935.7}{32}$  = 29.2 kmol/h

If all the NO is oxidised, reaction 4, the oxygen leaving the WHB will be reduced to

$$29.2 - \frac{41.3}{2} = 8.6 \text{ kmol/h}$$
  
 $\Delta H_r^{\circ} = -57,120 \text{ kJ/kmol, NO oxidised}$ 

If no NO is oxidised the composition of the outlet gas will be the same as the inlet. The inlet gas has the same composition as the reactor outlet, which is summarised above. Summarised below are the flow changes if the NO is oxidised:

|                           |              |       | $C_p^{\circ}$ ( | kJ/kmol K) |          |
|---------------------------|--------------|-------|-----------------|------------|----------|
|                           | (kmol/h)     | a     | b               | c          | d        |
| $\overline{\mathrm{O}_2}$ | 7.46         |       | a               | s above    |          |
| NO <sub>2</sub><br>Temp.  | 41.3<br>507K | 24.23 | 4.84 E-2        | -20.81 E-2 | 0.29 E-9 |

Using the program ENERGY 1, the following values were calculated for the heat transferred to the steam:

Steam generated; take feed water temperature as 20°C,

enthalpy of saturated steam at 11 bar = 2781 kJ/kg

enthalpy of water at  $20^{\circ}C = 84 \text{ kJ/kg}$ 

heat to form 1 kg steam = 2781 - 84 = 2697 kJ

$$steam \ generated = \frac{heat \ transferred}{enthalpy \ change \ per \ kg}$$

so, minimum quantity generated = 
$$\frac{9,880,000}{2697}$$
 = 3662 kg/h

maximum = 
$$\frac{12,290,000}{2697}$$
 = 4555 kg/h

*Note*: in practice superheated steam would probably be generated, for use in a turbine driving the air compressor.

#### Cooler-condenser

The sources of heat to be considered in the balance on this unit are:

- 1. Sensible heat: cooling the gases from the inlet temperature of 234°C to the required outlet temperature (the absorber inlet temperature) 40°C.
- 2. Latent heat of the water condensed.
- 3. Exothermic oxidation of NO to NO<sub>2</sub>.
- 4. Exothermic formation of nitric acid.
- 5. Heat of dilution of the nitric acid formed, to 40 per cent w/w.
- 6. Sensible heat of the outlet gas and acid streams.

So that the magnitude of each source can be compared, each will be calculated separately. Take the datum temperature as 25°C.

#### 1. Gas sensible heat

The program ENERGY 1 was used to calculate the sensible heat in the inlet and outlet gas streams. The composition of the inlet stream and the heat capacity data will be the same as that for the WHB outlet given above. Outlet stream flows from flow-sheet, converted to kmol/h:

| Condense | r outlet (6) |
|----------|--------------|
|          | kmol/h       |
| $O_2$    | 8.6          |
| $N_2$    | 309.6        |
| NO       | 6.75         |
| $NO_2$   | 21.03        |
| $H_2O$   | 1.63         |
| Temp.    | 313 K        |

Sensible heat inlet stream (5) = 2.81 GJ/h, outlet stream (6) = 0.15 GJ/h.

#### 2. Condensation of water

Water condensed = (inlet  $H_2O$  – outlet  $H_2O$ ) = (1161 – 29) = 1131.6 kg/h Latent heat of water at the inlet temperature, 230°C = 1812 kJ/kg

The steam is considered to condense at the inlet temperature and the condensate then cooled to the datum temperature.

Heat from condensation = 
$$1131.6 \times 1812 = 2.05 \times 10^6$$
 kJ/h

Sensible heat to cool condensate =  $1131.6 \times 4.18(230 - 25)$ 

=  $0.97 \times 10^6$  kJ/h

Total, condensation and cooling =  $(2.05 + 0.97)10^6$  kJ/h

=  $3.02$  GJ/h

#### 3. Oxidation of NO

The greatest heat load will occur if all the oxidation occurs in the cooler-condenser (i.e. none in the WHB) which gives the worst condition for the cooler-condenser design.

Mols of NO oxidised = mols in – mols out = 
$$41.3 - 6.75 = 34.55$$
 kmol/h  
From reaction 4, heat generated =  $34.55 \times 57,120$   
=  $1.97 \times 10^6$  kJ/h =  $1.97$  GJ/h

#### 4. Formation of nitric acid

$$HNO_3$$
 formed, from flow sheet,  $=\frac{850.6}{63}=13.50$  kmol/h

The enthalpy changes in the various reactions involved in the formation of aqueous nitric acid are set out below (Miles):

$$2NO_2(g) \rightarrow N_2O_4(g)$$
  $\Delta H = -57.32 \text{ kJ}$  (6a)  
 $N_2O_4(g) + H_2O(l) + \frac{1}{2}O_2(g) \rightarrow 2HNO_3(g)$   $\Delta H = + 9.00 \text{ kJ}$  (6b)

$$HNO_3(g) \rightarrow HNO_3(l) \qquad \Delta H = -39.48 \text{ kJ} \qquad (7)$$

Combining reactions 6a, 6b and 7.

Reaction 8. 
$$2\text{NO}_2(g) + \text{H}_2\text{O}(1) + \frac{1}{2}\text{O}_2 \rightarrow 2\text{HNO}_3(1)$$
  
overall enthalpy change =  $-57.32 + 9.00 + 2(-39.48)$   
=  $-127.28 \text{ kJ}$   
heat generated per kmol of  $\text{HNO}_3(1)$  formed =  $\frac{127.28}{2} \times 10^3$   
=  $63,640 \text{ kJ}$   
heat generated =  $13.50 \times 63,640 = 0.86 \times 10^6 \text{ kJ/h}$   
=  $0.86 \text{ GJ/h}$ 

Note, the formation of  $N_2O_4$  and the part played by  $N_2O_4$  in the formation of nitric acid was not considered when preparing the flow-sheet, as this does not affect the calculation of the components flow-rates.

# 5. Heat of dilution of HNO<sub>3</sub>

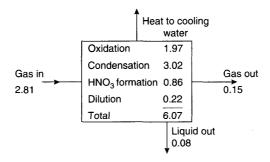
The heat of dilution was calculated from an enthalpy—concentration diagram given in Perry's *Chemical Engineers Handbook*, 5th edn, p. 3.205, Figure 3.42.

The reference temperature for this diagram is 32°F (0°C). From the diagram:

enthalpy of 100 per cent 
$$HNO_3 = 0$$
  
enthalpy of 45 per cent  $HNO_3 = -80$  Btu/lb solution  
specific heat 45 per cent  $HNO_3 = 0.67$ 

So, heat released on dilution, at  $32^{\circ}F = 80 \times 4.186/1.8 = 186$  kJ/kg soln. Heat to raise solution to calculation datum temperature of  $25^{\circ}C = 0.67(25 - 0)4.186 = 70.1$  kJ/kg.

So, heat generated on dilution at  $25^{\circ}\text{C} = 186 - 70.1 = 115.9 \text{ kJ/kg soln.}$ 


Quantity of solution produced by dilution of 1 kmol 100 per cent HNO<sub>3</sub> =  $\frac{63}{45} \times 100$  = 140 kg,

so, heat generated on dilution of 1 kmol = 
$$140 \times 115.9 = 16,226$$
 kJ, so, total heat generated =  $13.5 \times 16,226 = 219,051$  kJ/h =  $0.22$  GJ/h.

#### 6. Sensible heat of acid

Acid outlet temperature was taken as  $40^{\circ}$ C, which is above the datum temperature. Sensible heat of acid =  $0.67 \times 4.186(40 - 25) \times 1860.7 = 78,278$  kJ/h = 0.08 GJ/h

### Heat balance (GJ/h)



Heat transferred to cooling water = 
$$2.81 + 6.07 - 0.15 - 0.08$$
  
=  $8.65$  GJ/h

#### Air cooler

The secondary air from the compressor must be cooled before mixing with the process gas stream at the absorber inlet; to keep the absorber inlet temperature as low as possible. Take the outlet temperature as the same as exit gases from the cooler condenser, 40°C.

Secondary air flow, from flow-sheet, 1754.8 kg/h Specific heat of air 1 kJ/kgK Heat removed from secondary air =  $1754.8 \times 1 \times (230 - 40)$  = 333.412 kJ/h = 0.33 GJ/h

#### Absorber

The sources of heat in the absorber will be the same as the cooler-condenser and the same calculation methods have been used. The results are summarised below:

Sensible heat in inlet gases from cooler-condenser = 0.15 GJ/h Sensible heat in secondary air =  $1754.8 \times 1.0(40 - 25) = 0.018$  GJ/h Sensible heat in tail gases (at datum) = 0Sensible heat in water feed (at datum) = 0

NO oxidised 
$$=\frac{202.5-21.9}{30}=6.02 \text{ kmol/h}$$

Heat generated =  $6.02 \times 57,120 = 0.34$  GJ/h

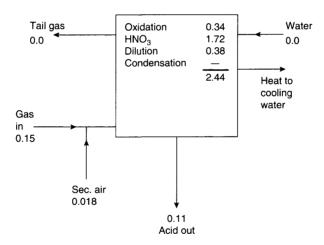
$$HNO_3$$
 formed =  $\frac{1704}{63}$  = 27.05 kmol/h

Heat generated =  $27.05 \times 63,640 = 1.72$  GJ/h

Heat of dilution to 60 per cent at  $25^{\circ}$ C =  $27.05 \times 14,207 = 0.38$  GJ/h

Water condensed = 29.4 - 26.3 = 3.1 kg/h

Latent heat at  $40^{\circ}\text{C} = 2405 \text{ kJ/h}$ 


Sensible heat above datum temperature = 4.18 (40 - 25) = 63 kJ/kg

Heat released =  $3.1(2405 + 63) = 7.6 \times 10^{-3}$  GJ/h (negligible)

Sensible heat in acid out, specific heat 0.64, take temperature out as same as gas inlet,  $40^{\circ}\text{C}$ 

$$= 0.64(40 - 25)4.18 \times 2840 = 0.11$$
 GJ/h

### Heat balance (GJ/h)



Heat transferred to cooling water = 0.15 + 0.018 + 2.44 - 0.11 = 2.5 GJ/h

#### Mixer

Calculation of mixed acid temperature.

Taking the datum as  $0^{\circ}$ C for this calculation, so the enthalpy-concentration diagram can be used directly.

### From diagram:

enthalpy 45 per cent acid at 
$$0^{\circ}$$
C =  $-186$  kJ/kg specific heat =  $0.67$  kcal/kg $^{\circ}$ C enthalpy 60 per cent acid at  $0^{\circ}$ C =  $-202$  kJ/kg specific heat =  $0.64$  kcal/kg $^{\circ}$ C

So, enthalpy 45 per cent acid at  $40^{\circ}\text{C} = -186 + 0.67 \times 4.186(40) = -73.8 \text{ kJ/kg}$  and enthalpy 60 per cent acid at  $40^{\circ}\text{C} = -202 + 0.64 \times 4.186(40) = -94.8 \text{ kJ/kg}$ 

Enthalpy of mixed acid = 
$$\frac{(-73.8 \times 1860.7) + (-94.8 \times 2840.0)}{(1860.7 + 2840.0)}$$
$$= -86.5 \text{ kJ/kg}$$

From enthalpy-concentration diagram, enthalpy of mixed acid (54 per cent) at  $0^{\circ}C = -202$  kJ/kg; specific heat = 0.65 kcal/kg°C so, "sensible" heat in mixed acid above datum of  $0^{\circ}C$ 

$$= -86.5 - (-202) = 115.5 \text{ kJ/kg}$$

and, mixed acid temperature = 
$$\frac{115.5}{0.65 \times 4.186} = 43^{\circ}\text{C}$$

# Energy recovery

In an actual nitric acid plant the energy in the tail gases would normally be recovered by expansion through a turbine coupled to the air compressor. The tail gases would be preheated before expansion, by heat exchange with the process gas leaving the WHB.

## 4.4. COMPUTER-AIDED FLOW-SHEETING

The computer programs available for flow-sheeting in process design can be classified into two basic types:

- 1. Full simulation programs, which require powerful computing facilities.
- 2. Simple material balance programs requiring only a relatively small core size.

The full simulation programs are capable of carrying out rigorous simultaneous heat and material balances, and preliminary equipment design: producing accurate and detailed flow-sheets. In the early stages of a project the use of a full simulation package is often not justified and a simple material balance program is more suitable. These are an aid to manual calculations and enable preliminary flow-sheets to be quickly, and cheaply, produced.

# 4.5. FULL STEADY-STATE SIMULATION PROGRAMS

Complex flow-sheeting programs, that simulate the operation and a complete process, or individual units, have been developed by several commercial software organisations. The names of the principal packages available, and the contact address, are listed in Table 4.1. Many of the commercial programs have been made available by the proprietors to university and college departments for use in teaching, at nominal cost.

Detailed discussion of these programs is beyond the scope of this book. For a general review of the requirements, methodology and application of process simulation programs the reader is referred to the books by: Husain (1986), Wells and Rose (1986), Leesley

#### FLOW-SHEETING

Table 4.1. Simulation packages

| Acronym   | Source                        |
|-----------|-------------------------------|
| ASPEN-10  | Aspen Technology Inc.         |
|           | 251 Vassar St. Cambridge      |
|           | MA 02139, USA                 |
| CHEMCAD   | Chemstations                  |
|           | 10375 Richmond Ave.,          |
|           | Suite 1225, Houston,          |
|           | TX 77402, USA                 |
| DESIGN II | WinSim Inc.                   |
|           | P.O. Box 1885, Houston,       |
|           | TX 77251-1885, USA            |
| FLOWTRAN  | Monsanto (CACHE) see          |
|           | Seader et al. (1987)          |
| HYSYS     | Hypotech Ltd                  |
|           | 300 Hypotech Centre,          |
|           | 1110 Centre Street North,     |
|           | Calgary, Alberta,             |
|           | Canada, T2E 2R2               |
|           | Part of AEA Technology plc    |
|           | 392.7 Harwell. Oxfordshire,   |
|           | OX11 0RA, UK                  |
| PRO/II    | Simulation Sciences Inc.      |
|           | Brea, California.             |
|           | USA                           |
| UNIOPT    | ChemEng Software and Services |
|           | The Old Vicarage, Beaminster, |
|           | Dorset, DTS 3BU, UK           |

Note: The distributor should be contacted for details of the full features of the current versions of these programs. Details of many of the programs can be found on the World Wide Web

(1982), Benedek (1980), Mah and Seider (1980), Westerberg *et al.* (1979) and Crowe *et al.* (1971); and the papers by, Panelides (1988), Hutchinson *et al.* (1973) and Kehat and Sacham (1973) and Johnson (1972).

Process simulation programs can be divided into two basic types:

Sequential-modular programs: in which the equations describing each process unit (module) are solved module-by-module in a stepwise manner; and iterative techniques used to solve the problems arising from the recycle of information.

They simulate the steady-state operation of the process and can be used to draw-up the process flow sheet, and to size individual items of equipment, such as distillation columns.

Equation based programs: in which the entire process is described by a set of differential equations, and the equations solved simultaneously: not stepwise, as in the sequential approach. Equation based programs can simulate the unsteady-state operation of processes and equipment.

The simple flow-sheeting program MASSBAL, given in Appendix B, and described in Section 4.6, is an example of a very basic equation based program.

In the past, most simulation programs available to designers were of the sequential-modular type. They were simpler to develop than the equation based programs, and required only moderate computing power. The modules are processed sequentially, so

essentially only the equations for a particular unit are in the computer memory at one time. Also, the process conditions, temperature, pressure, flow-rate, are fixed in time. But, computational difficulties can arise due to the iterative methods used to solve recycle problems and obtain convergence. A major limitation of modular-sequential simulators is the inability to simulate the dynamic, time dependent, behaviour of a process.

Equation based, dynamic, simulators require appreciably more computing power than steady-state simulators; to solve the thousands of differential equations needed to describe a process, or even a single item of equipment. However, with the development of fast powerful machines this is no longer a restriction. By their nature, equation based programs do not experience the problems of recycle convergence inherent in sequential simulators. But, as temperature, pressure and flow-rate are not fixed and the input of one unit is not determined by the calculated output from the previous unit in the sequence, as with steady-state simulators, equation based programs are more time demanding on computer time. This has led to the development of hybrid programs in which the steady-state simulator is used to generate the initial conditions for the dynamic simulation.

The principal advantage of equation based, dynamic, simulators is their ability to model the unsteady-state conditions that occur at start-up and during fault conditions. Dynamic simulators are being increasingly used for safety studies and in the design of control systems.

The structure of a typical simulation program is shown in Figure 4.4.

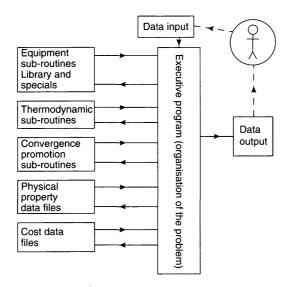



Figure 4.4. A typical simulation program

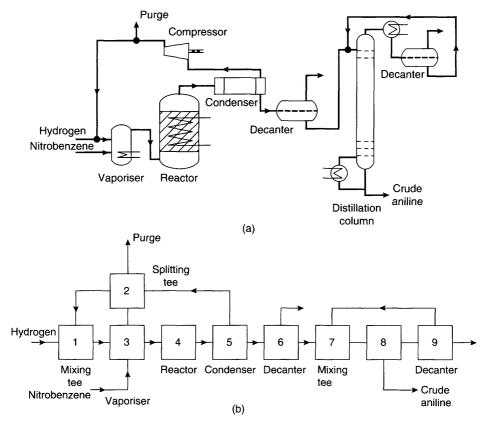
## The program consists of:

- 1. A main executive program; which controls and keeps track of the flow-sheet calculations and the flow of information to and from the sub-routines.
- 2. A library of equipment performance sub-routines (modules); which simulate the equipment and enable the output streams to be calculated from information on the inlet streams.

- 3. A data bank of physical properties. To a large extent the utility of a sophisticated flow-sheeting program will depend on the comprehensiveness of the physical property data bank. The collection of the physical property data required for the design of a particular process, and its transformation into a form suitable for a particular flow-sheeting program can be very time-consuming.
- 4. Sub-programs for thermodynamic routines; such as the calculation of vapour-liquid equilibria and stream enthalpies.
- 5. Sub-programs and data banks for costing; the estimation of equipment capital costs and operating costs. Full simulation flow-sheeting programs enable the designer to consider alternative processing schemes, and the cost routines allow quick economic comparisons to be made. Some programs include optimisation routines. To make use of a costing routine, the program must be capable of producing at least approximate equipment designs.

In a sequential-modular program the executive program sets up the flow-sheet sequence, identifies the recycle loops, and controls the unit operation calculations: interacting with the unit operations library, physical property data bank and the other sub-routines. It will also contain procedures for the optimum ordering the calculations and routines to promote convergence. Kehat and Sacham (1973) discuss and compare the techniques that have been developed for determining the order of calculations in process flow-sheeting calculations.

In an equation based simulators the executive program sets up the flow-sheet and the set of equations that describe the unit operations, and then solves the equations; taking data from the unit operations library and physical property data bank and the file of thermodynamic sub-routines.


Many of the proprietary flow-sheeting packages are now front-ended with a graphical user interface to display the flow-sheet and facilitate the input of information to the package.

# 4.5.1. Information flow diagrams

To present the problem to the computer, the basic process flow diagram, which shows the sequence of unit operations and stream connections, must be transformed into an information flow diagram, such as that shown in Figure 4.5b. Each block represents a calculation module in the simulation program; usually a process unit or part of a unit. Units in which no change of composition, or temperature or pressure, occurs are omitted from the information flow diagram. But other operations not shown on the process flow diagram as actual pieces of equipment, but which cause changes in the stream compositions, such as mixing tees, must be shown.

The lines and arrows connecting the blocks show the flow of information from one subprogram to the next. An information flow diagram is a form of directed graph (a diagraph).

The calculation topology defined by the information diagram is transformed into a numerical form suitable for input into the computer, usually as a matrix.



Note: (1) Modules have been added to represent mixing and separation tees.

- (2) The compressor is omitted.
- (3) The distillation module includes the condenser and reboiler.

Figure 4.5. (a) Process flow diagram: hydrogenation of nitrobenzene to aniline (b) Information flow diagram hydrogenation of nitrobenzene to aniline (Figure 4.5a)

## 4.6. SIMPLE MATERIAL BALANCE PROGRAMS

In the initial stages of the process design and evaluation, when only a rough, approximate, material balance is required, the use of a full simulation program is often not justified. Simpler programs, which calculate only the material balance, have been developed and these can be used as an aid to manual flow-sheeting calculations. They will be particularly useful if the process involves several recycle streams.

Some of the full simulation flow-sheeting packages can also be used to calculate the material balance without simultaneous solution of the energy balance, or use of the equipment design routines. They should be used in this mode for the initial, scouting, flow-sheet calculations, to economise on computing costs.

Simple material balance programs need only a small memory and can be run on personal computers.

# 4.6.1. The development of a simple material balance program

In this section the development and structure of the program MASSBAL is described, and sufficient details of the program are given to enable the reader to use it as an aid to flow-sheeting. The program is listed in Appendix B.

It is based on the theory of recycle processes published by Nagiev (1964). This method, which uses the concept of split-fractions to set up the set of simultaneous equations which define the material balance for the process, has also been used by Rosen (1962) and is described in detail by Henley and Rosen (1969).

# The split-fraction concept

In an information flow diagram, such as that shown in Figure 4.5b, each block represents a calculation module; that is, the set of equations that relate the outlet stream component flows to the inlet flows. The basic function of most chemical processing units (unit operations) is to divide the inlet flow of a component between two or more outlet streams; for example, a distillation column divides the components in the feed between the overhead and bottom product streams, and any side streams. It is therefore convenient, when setting up the equations describing a unit operation, to express the flow of any component in any outlet stream as a fraction of the flow of that component in the inlet stream.

The block shown in Figure 4.6 represents any unit in an information flow diagram, and shows the nomenclature that will be used in setting up the material balance equations.

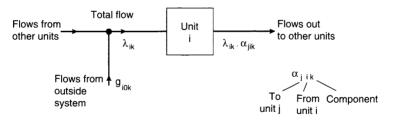



Figure 4.6.

i =the unit number.

 $\lambda_{i,k}$  = the total flow into the unit i of the component k,

 $\alpha_{j,i,k}$  = the *fraction* of the total flow of component k entering unit i that leaves in the outlet stream connected to the unit j; the "split-fraction coefficient",

 $g_{i,0,k}$  = any fresh feed of component k into unit i; flow from outside the system (from unit 0).

The flow of any component from unit i to unit j will equal the flow into unit i multiplied by the split-fraction coefficient.

$$=\lambda_{i,k}\times\alpha_{i,i,k}$$

The value of the split-fraction coefficient will depend on the nature of the unit and the inlet stream composition.

The outlet streams from a unit can feed forward to other units, or backward (recycle).

An information flow diagram for a process consisting of three units, with two recycle streams is shown in Figure 4.7. The nomenclature defined in Figure 4.6 is used to show the stream flows.

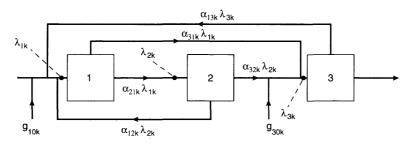



Figure 4.7.

Consider the streams entering unit 1.

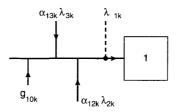



Figure 4.8.

A material balance gives:

$$g_{10k} + \alpha_{13k}\lambda_{3k} + \alpha_{12k}\lambda_{2k} = \lambda_{1k} \tag{4.1}$$

A similar material balance can be written at the inlet to each unit:

unit 2: 
$$\alpha_{21k}\lambda_{1k} = \lambda_{2k}$$
 (4.2)

unit 3: 
$$\alpha_{32k}\lambda_{2k} + g_{30k} + \alpha_{31k}\lambda_{1k} = \lambda_{3k}$$
 (4.3)

Rearranging each equation

$$\lambda_{1k} - \alpha_{12k}\lambda_{2k} - \alpha_{13k}\lambda_{3k} = g_{10k} \tag{4.1a}$$

$$-\alpha_{21k}\lambda_{1k} + \lambda_{2k} = 0 \tag{4.2b}$$

$$-\alpha_{31k}\lambda_{1k} - \alpha_{32k}\lambda_{2k} + \lambda_{3k} = g_{30k}$$
 (4.3c)

This is simply a set of three simultaneous equations in the unknown flows  $\lambda_{1k}$ ,  $\lambda_{2k}$ ,  $\lambda_{3k}$ .

These equations are written in matrix form:

$$\begin{vmatrix}
1 & 2 & 3 \\
1 & 1 & -\alpha_{12k} & -\alpha_{13k} \\
j & 2 & -\alpha_{21k} & 1 & 0 \\
-\alpha_{31k} & -\alpha_{32k} & 1
\end{vmatrix} \times \begin{bmatrix} \lambda_{1k} \\ \lambda_{2k} \\ \lambda_{3k} \end{bmatrix} = \begin{bmatrix} g_{10} \\ 0 \\ g_{30} \end{bmatrix}$$

There will be a set of such equations for each component.

This procedure for deriving the set of material balance equations is quite general. For a process with n units there will be a set of n equations for each component.

The matrix form of the n equations will be as shown in Figure 4.9.

$$\begin{bmatrix} (1 - \alpha_{11k}) - \alpha_{12k} & -\alpha_{13k} & \dots & -\alpha_{1nk} \\ -\alpha_{21k} & (1 - \alpha_{22k}) - \alpha_{23k} & \dots & -\alpha_{2nk} \end{bmatrix} \times \begin{bmatrix} \lambda_{1k} \\ \lambda_{2k} \\ \\ -\alpha_{n1k} & \dots & \dots & \dots & \dots & \dots \end{bmatrix} = \begin{bmatrix} g_{10k} \\ g_{20k} \\ \\ g_{n0k} \end{bmatrix}$$

Figure 4.9. Matrix form of equations for n units

For practical processes most of the split-fraction coefficients are zero and the matrix is sparse.

In general, the equations will be non-linear, as the split-fractions coefficients ( $\alpha$ 's) will be functions of the inlet flows, as well as the unit function. However, many of the coefficients will be fixed by the process constraints, and the remainder can usually be taken as independent of the inlet flows ( $\lambda$ 's) as a first approximation.

The fresh feeds will be known from the process specification; so if the split-fraction coefficients can be estimated, the equations can be solved to determine the flows of each component to each unit. Where the split-fractions are strongly dependent on the inlet flows, the values can be adjusted and the calculation repeated until a satisfactory convergence between the estimated values and those required by the calculated inlet flows is reached.

#### Processes with reaction

In a chemical reactor, components in the inlet streams are consumed and new components, not necessarily in the inlet streams, are formed. The components formed cannot be shown as split-fractions of the inlet flows and must therefore be shown as pseudo fresh-feeds.

A reactor is represented as two units (Figure 4.10). The split-fractions for the first unit are chosen to account for the loss of material by reaction. The second unit divides the reactor output between the streams connected to the other units. If the reactor has only one outlet stream (one connection to another unit), the second unit forming the reactor can be omitted.

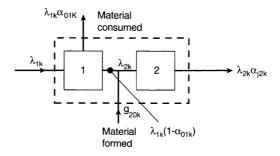



Figure 4.10. Reactor unit

# Closed recycle systems

In some processes, a component may be recycled around two or more units in a closed loop. For example, the solvent in an absorption or liquid extraction process will normally be recovered by distillation and recycled. In this situation it will be necessary to introduce the solvent as a pseudo fresh-feed and the to remove it from the recycle loop by introducing a dummy stream divider, purging one stream.

As, in practice, some of the recycling component will always be lost, the amount purged should be adjusted to allow for any losses that are identified on the flow-sheet.

#### 4.6.2. Illustration of the method

The procedure for setting up the equations and assigning suitable values to the split-fraction coefficients is best illustrated by considering a short problem: the manufacture of acetone from isopropyl alcohol.

# Process description

Reaction: 
$$C_3H_7OH \xrightarrow{\text{heat}} (CH_3)_2CO + H_2$$

Isopropyl alcohol is vaporised, heated and fed to a reactor, where it undergoes catalytic dehydrogenation to acetone. The reactor exit gases (acetone, water, hydrogen and unreacted isopropyl alcohol) pass to a condenser where most of the acetone, water and alcohol condense out. The final traces of acetone and alcohol are removed in a water scrubber. The effluent from the scrubber is combined with the condensate from the condenser, and distilled in a column to produce "pure" acetone and an effluent consisting of water and alcohol. This effluent is distilled in a second column to separate the excess water. The product from the second column is an azeotrope of water and isopropyl alcohol containing approximately 91 per cent alcohol. This is recycled to the reactor. Zinc oxide or copper is used as the catalyst, and the reaction carried out at 400 to 500°C and 40 to 50 psig pressure (4.5 bar). The yield to acetone is around 98 per cent, and the conversion of isopropyl alcohol per pass through the reactor is 85 to 90 per cent.

The process flow diagram is shown in Figure 4.11. This diagram is simplified and drawn as an information flow diagram in Figure 4.12. Only those process units in which there is a difference in composition between the inlet and outlet streams are shown. The

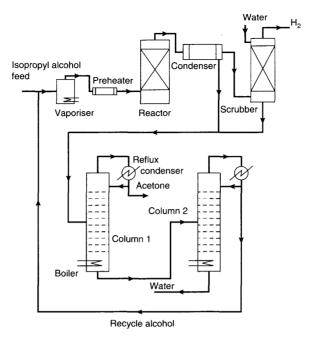



Figure 4.11. Process flow diagram

preheater and vaporiser are not shown, as there is no change in composition in these units and no division of the inlet stream into two or more outlet streams.

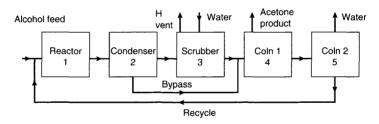



Figure 4.12. Information flow diagram

Figure 4.12 is redrawn in Figure 4.13, showing the fresh feeds, split-fraction coefficients and component flows. Note that the fresh feed  $g_{20k}$  represents the acetone and hydrogen generated in the reactor. There are 5 units so there will be 5 simultaneous equations. The equations can be written out in matrix form (Figure 4.14) by inspection of Figure 4.13. The fresh feed vector contains three terms.

# Estimation of the split-fraction coefficients

The values of the split-fraction coefficients will depend on the function of the processing unit and the constraints on the stream flow-rates and compositions. Listed below are suggested first trial values, and the basis for selecting the particular value for each component.

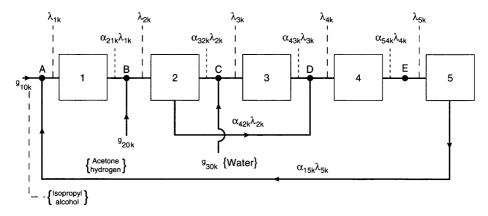



Figure 4.13. Split-fractions and fresh feeds

Figure 4.14. The set of equations

# Component 1, isopropyl alcohol (k = 1)

- Unit 1, Reactor. The conversion per pass is given as 90 per cent, so for each mol entering only 10 per cent leave, hence  $\alpha_{211}$  is fixed at 0.1. For this example it is assumed that the conversion is independent of the feed stream composition.
- Unit 2, Condenser. Most of the alcohol will condense as its boiling point is 82°C. Assume 90 per cent condensed,  $\alpha_{421} = 0.9$  (liquid out) and  $\alpha_{321} = 0.1$  (vapour out). The actual amounts will depend on the condenser design.
- Unit 3, Scrubber. To give a high plant yield, the scrubber would be designed to recover most of the alcohol in the vent stream. Assume 99 per cent recovery, allowing for the small loss that must theoretically occur,  $\alpha_{431} = 0.99$ .
- Unit 4, First column. The fraction of alcohol in the overheads would be fixed by the amount allowed in the acetone product specification. Assume 1 per cent loss to the acetone is acceptable, which will give less than 1 per cent alcohol in the product; fraction in the bottoms 99 per cent,  $\alpha_{541} = 0.99$ .
- Unit 5, Second column. No distillation column can be designed to give complete separation of the components. However, the volatilities for this system are such that a high recovery of alcohol should be practicable. Assume 99 per cent recovery, alcohol recycled,  $\alpha_{151} = 0.99$ .

#### Component 2, Acetone (k = 2)

Unit 1. Assume that any acetone in the feed passes through the reactor unchanged,  $\alpha_{212} = 1$ .

- Unit 2. Most of the acetone will condense (b.p. 56°C) say 80 per cent,  $\alpha_{322} = 0.2$ ,  $\alpha_{422} = 0.8$ .
- Unit 3. As for alcohol, assume 99 per cent absorbed, allows for a small loss,  $\alpha_{432} = 0.99$ .
- Unit 4. Assume 99 per cent recovery of acetone as product,  $\alpha_{542} = 0.01$ .
- Unit 5. Because of its high volatility in water all but a few ppm of the acetone will go overhead, put  $\alpha_{152} = 0.01$ .

Component 3, Hydrogen (k = 3)

- Unit 1. Passes through unreacted,  $\alpha_{213} = 1$ .
- Unit 2. Non-condensable,  $\alpha_{323} = 1$ ,  $\alpha_{423} = 0$ .
- Unit 3. None absorbed,  $\alpha_{433} = 0$ .
- Unit 4. Any present in the feed would go out with the overheads,  $\alpha_{543} = 1$ .
- Unit 5. As for unit 4,  $\alpha_{153} = 1$ .

Component 4, Water (k = 4)

- Unit 1. Passes through unreacted,  $\alpha_{214} = 1$ .
- Unit 2. A greater fraction of the water will condense than the alcohol or acetone (b.p.  $100^{\circ}$ C) assume 95 per cent condensed,  $\alpha_{324} = 0.05$ ,  $\alpha_{423} = 0.95$ .
- Unit 3. There will be a small loss of water in the vent gas stream, assume 1 per cent lost,  $\alpha_{434} = 0.99$ .
- Unit 4. Some water will appear in the acetone product; as for the alcohol this will be fixed by the acetone product specification. Putting  $\alpha_{544} = 0.99$  will give less than 1 per cent water in the product.
- Unit 5. The overhead composition will be close to the azeotropic composition, approximately 9 per cent water. The value of  $\alpha_{154}$  (recycle to the reactor) must be selected so that the overheads from this unit approximate to the azeotropic composition, as a first try put  $\alpha_{154} = 0.05$ .

#### Estimation of fresh feeds

- 1. Isopropyl alcohol, take the basis of the flow sheet as 100 mol feed,  $g_{101} = 100$ .
- 2. Acetone formed in the reaction. The overall yield to acetone is approximately 98 per cent, so acetone formed =  $100 \times \frac{98}{2} = 980$  mol,  $g_{202} = 98$  mol.
- 3. Hydrogen, it is formed in equimolar proportion to acetone, so  $g_{203} = 98$  mol.
- 4. Water, the feed of water to the scrubber will be dependent on the scrubber design. A typical design value for  $mG_m/L_m$  for a scrubber is 0.7 (see Volume 2, Chapter 4). For the acetone absorption this would require a value of  $L_m$  of 200 mol,  $g_{304} = 200$  mol.

#### Matrices

Substituting the values for alcohol (k = 1) into the matrix (Figure 4.14) gives the following set of equations for the flow of alcohol into each unit;

$$\begin{bmatrix} 1 & 0 & 0 & 0 & -0.99 \\ -0.1 & 1 & 0 & 0 & 0 \\ 0 & -0.1 & 1 & 0 & 0 \\ 0 & -0.9 & -0.99 & 1 & 0 \\ 0 & 0 & 0 & -0.99 & 1 \end{bmatrix} \times \begin{bmatrix} \lambda_{11} \\ \lambda_{21} \\ \lambda_{31} \\ \lambda_{41} \\ \lambda_{51} \end{bmatrix} = \begin{bmatrix} 100 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Substitution of the values of the split-fraction coefficients for the other components will give the sets of equations for the component flows to each unit. The values of the split-fraction coefficients and fresh feeds are summarised in Table 4.2.

| α           | k = | 1            | 2     | 3            | 4            |
|-------------|-----|--------------|-------|--------------|--------------|
| 21 <i>k</i> |     | -0.1         | -1    | -1           | -1.0         |
| 32k         |     | -0.1         | -0.2  | -1           | -0.05        |
| 42 <i>k</i> |     | -0.9         | -0.8  | 0            | -0.95        |
| 43k         |     | -0.99        | -0.99 | 0            | -0.99        |
| 54k         |     | -0.99        | -0.01 | -1           | -0.99        |
| 15 <i>k</i> |     | -0.99        | -0.01 | -1           | -0.05        |
|             |     | <b>g</b> 101 | 8202  | <i>g</i> 203 | <i>g</i> 304 |
| Mol         |     | 100          | 98    | 98           | 200          |

Table 4.2. Split-fraction coefficients and feeds

# Solution of the equations

The most convenient way to set up and solve the equations is to use a spreadsheet; but any of the standard procedures and programs available for the solution of linear simultaneous equations can be used; Westlake (1968), Mason (1984).

Most proprietary spreadsheets include a routine for the inversion of matrices and the solution of sets of linear simultaneous equations. By using cell references, with cell copying and cell pointing, it is a simple procedure to set up the split fraction matrices and fresh feed vectors; solve the equations; and use the results to calculate and check the values of any stream composition.

Once the spreadsheet has been set up it is easy to change the values of the split fractions and fresh feeds, and iterate until the design constraints for the problem are satisfied.

The sample problem was solved using an inexpensive, but versatile, spreadsheet package "AS-EASY-AS"<sup>(1)</sup>. The procedure used is illustrated below.

<sup>(1)</sup> As-EASY-AS is copyright software developed by TRUIS Inc. North Andover, Massachusetts, USA.

#### **Procedure**

Step 1: Set up the table of split-fractions and fresh feeds, Figure 4.15.

| A] | <b>A</b> /     | .B/             | ′D/            | E/           | F/     | G/ |
|----|----------------|-----------------|----------------|--------------|--------|----|
| 1  |                |                 |                |              |        |    |
| 2  | MASSBAL E      | EXAMPLE USIN    | NG SPREAD S    | HEET "AS-EAS | SY-AS" |    |
| 3  | TO SOLVE I     | EQUATIONS       |                |              |        |    |
| 4  |                |                 |                |              |        |    |
| 5  |                |                 |                |              |        |    |
| 6  | Split fraction | coefficients ar | nd fresh feeds |              |        |    |
| 7  |                |                 |                |              |        |    |
| 8  | alpha / k      | 1               | 2              | 3            | 4      |    |
| 9  |                |                 |                |              |        |    |
| 10 | 21k            | -0.10           | -1.00          | -1.00        | -1.00  |    |
| 11 | 32k            | -0.10           | -0.20          | -1.00        | -0.05  |    |
| 12 | 42k            | -0.90           | -0.80          | 0.00         | -0.95  |    |
| 13 | 43k            | -0.99           | -0.99          | 0.00         | -0.99  |    |
| 14 | 54k            | -0.99           | 0.01           | -1.00        | -0.99  |    |
| 15 | 15k            | -0.99           | -0.01          | -1.00        | -0.05  |    |
| 16 |                |                 |                |              |        |    |
| 17 |                | g101            | g202           | g203         | g304   |    |
| 18 |                |                 |                |              |        |    |
| 19 | mol            | 100.00          | 98.00          | 98.00        | 200.00 |    |
| 20 |                |                 |                |              |        |    |

Figure 4.15.

Step 2: Set up an identity matrix of the dimensions needed,  $n \times n$ ; a matrix with 1's on the leading diagonal and 0's elsewhere. For this problem there are 5 unis so a  $5 \times 5$  matrix is needed, Figure 4.16.

| Α : | ] | .A/B/           | C/   | D/   | E/   | <b>.F</b> / | G/   | H     |
|-----|---|-----------------|------|------|------|-------------|------|-------|
| 20  |   |                 |      |      |      |             |      |       |
| 21  |   |                 |      |      |      |             |      |       |
| 22  |   | Identity matric |      |      |      |             |      |       |
| 23  |   |                 |      |      |      |             |      |       |
| 24  |   | 1               | 2    | 3    | 4    | 5           | g    | Flows |
| 25  |   |                 |      |      |      |             | -    |       |
| 26  | 1 | 1.00            | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 |       |
| 27  | 2 | 0.00            | 1.00 | 0.00 | 0.00 | 0.00        | 0.00 |       |
| 28  | 3 | 0.00            | 0.00 | 1.00 | 0.00 | 0.00        | 0.00 |       |
| 29  | 4 | 0.00            | 0.00 | 0.00 | 1.00 | 0.00        | 0.00 |       |
| 30  | 5 | 0.00            | 0.00 | 0.00 | 0.00 | 1.00        | 0.00 |       |
| 31  |   |                 |      |      |      |             |      |       |
|     |   |                 |      |      |      |             |      |       |

Figure 4.16.

- Step 3: Make a copy of the identity matrix, one for each component. For this problem there are 4 components so 4 copies are needed.
- Step 4: Copy the appropriate split-fractions and fresh feeds from the table of split-fractions and fresh feeds, Figure 4.15, into the component matrices, Figure 4.17. Copy the cell references, not the actual values. Using the cell references ensures that subsequent changes in the values in the primary table, Figure 4.15, will be copied automatically to the appropriate matrix.

For example, in Figure 4.17 the contents of cell F72 are (F15), not -0.05.

|   | Matrix equation | าร    |       |       |       |        |        |
|---|-----------------|-------|-------|-------|-------|--------|--------|
|   | k = 1           |       |       |       |       |        |        |
|   | 1               | 2     | 3     | 4     | 5     | g      | Flows  |
| 1 | 1.00            | 0.00  | 0.00  | 0.00  | -0.99 | 100.00 | 110.8  |
| 2 | -0.10           | 1.00  | 0.00  | 0.00  | 0.00  | 0.00   | 11.09  |
| 3 | 0.00            | -0.10 | 1.00  | 0.00  | 0.00  | 0.00   | 1.1    |
| 4 | 0.00            | -0.90 | -0.99 | 1.00  | 0.00  | 0.00   | 11.07  |
| 5 | 0.00            | 0.00  | 0.00  | -0.99 | 1.00  | 0.00   | 10.96  |
|   | k = 2           |       |       |       |       |        |        |
|   | K — Z           |       |       |       |       |        |        |
|   | 1               | 2     | 3     | 4     | 5     | g      | Flows  |
| 1 | 1.00            | 0.00  | 0.00  | 0.00  | -0.01 | 0.00   | 0.01   |
| 2 | -1.00           | 1.00  | 0.00  | 0.00  | 0.00  | 98.00  | 98.0   |
| 3 | 0.00            | -0.20 | 1.00  | 0.00  | 0.00  | 0.00   | 19.60  |
| 4 | 0.00            | -0.80 | -0.99 | 1.00  | 0.00  | 0.00   | 97.81  |
| 5 | 0.00            | 0.00  | 0.00  | -0.01 | 1.00  | 0.00   | 0.98   |
|   |                 |       |       |       |       |        |        |
|   | k = 3           |       |       |       |       |        |        |
|   | 1               | 2     | 3     | 4     | 5     | g      | Flows  |
| 1 | 1.00            | 0.00  | 0.00  | 0.00  | -1.00 | 0.00   | 0.00   |
| 2 | -1.00           | 1.00  | 0.00  | 0.00  | 0.00  | 98.00  | 98.00  |
| 3 | 0.00            | -1.00 | 1.00  | 0.00  | 0.00  | 0.00   | 98.00  |
| 4 | 0.00            | 0.00  | 0.00  | 1.00  | 0.00  | 0.00   | 0.00   |
| 5 | 0.00            | 0.00  | 0.00  | -1.00 | 1.00  | 0.00   | 0.00   |
|   | k = 4           |       |       |       |       |        |        |
|   | 1               | 2     | 3     | 4     | 5     | g      | Flows  |
|   |                 |       |       |       |       |        |        |
| 1 | 1.00            | 0.00  | 0.00  | 0.00  | -0.05 | 0.00   | 10.31  |
| 2 | -1.00           | 1.00  | 0.00  | 0.00  | 0.00  | 0.00   | 10.3   |
| 3 | 0.00            | -0.05 | 1.00  | 0.00  | 0.00  | 200.00 | 200.52 |
| 4 | 0.00            | -0.95 | -0.99 | 1.00  | 0.00  | 0.00   | 208.3  |
| 5 | 0.00            | 0.00  | 0.00  | -0.99 | 1.00  | 0.00   | 206.22 |

Figure 4.17.

Step 5: Use the equation solving routine (E-solve with AS-EASY-AS) to solve the equations and put the results, the flows into each unit, into a column headed "flows", column H in Figure 4.17; repeat for each component matrix.

Step 6: Transfer (COPY) the component flows into a table and use the SUM function to total the flows in a column, Figure 4.18. Copy the cell references into the table not the values. Examples, from Figure 4.18:

cell C84 contents: (H40) cell C85 contents: (H41)

cell G84 contents: SUM(C84..F84)

| Α  | ] A    | /B/          | C/                                      | D/     | E/     | F/     |        |
|----|--------|--------------|-----------------------------------------|--------|--------|--------|--------|
| 77 |        |              | *************************************** |        |        |        |        |
| 78 |        |              |                                         |        |        |        |        |
| 9  |        | Flow and Con | npositions                              |        |        |        |        |
| 80 |        |              |                                         |        |        |        |        |
| 31 |        | Component    | 1                                       | 2      | 3      | 4      | Totals |
| 2  | Unit   |              |                                         |        |        |        |        |
| 33 | 1      |              | 110.85                                  | 0.01   | 0.00   | 10.31  | 121.17 |
| 84 | 2      |              | 11.09                                   | 98.01  | 98.00  | 10.31  | 217.41 |
| 85 | 3      |              | 1.11                                    | 19.60  | 98.00  | 200.52 | 319.23 |
| 86 | 4      |              | 11.07                                   | 97.81  | 0.00   | 208.31 | 317.19 |
| 87 | 5      |              | 10.96                                   | 0.98   | 0.00   | 206.22 | 218.16 |
| 38 |        |              |                                         |        |        |        |        |
| 39 |        |              |                                         |        |        |        |        |
| 90 |        | Unit         | 1                                       | 2      | 3      | 4      | 5      |
| 91 |        |              |                                         |        |        |        |        |
| 92 | Comp.% | 1            | 91.48                                   | 5.10   | 0.35   | 3.49   | 5.03   |
| 93 |        | 2            | 0.01                                    | 45.08  | 6.14   | 30.84  | 0.45   |
| 94 |        | 3            | 0.00                                    | 45.08  | 30.70  | 0.00   | 0.00   |
| 95 |        | 4            | 8.51                                    | 4.74   | 62.81  | 65.67  | 94.53  |
| 96 |        |              |                                         |        |        |        |        |
| 97 |        | Total        | 100.00                                  | 100.00 | 100.00 | 100.00 | 100.00 |

Figure 4.18.

Step 7: Set up a table to calculate the percentage composition of the stream into each unit; by copying from the table of component flows. The results are shown in Figure 4.18. Example, from Figure 4.18:

cell C92 contents: (C83/G83) \* 100

Step 8: Set up the calculations for any values which are design constraints. For example, the overheads, recycle flow, from the second column which should approximate to the azeotropic composition; see Table 4.4. The calculations giving the composition of this stream are shown in Figure 4.19a.

| Α ] |                 |            | D/   | E/   | F/    | G/    | Н |
|-----|-----------------|------------|------|------|-------|-------|---|
| 98  |                 |            |      |      |       |       |   |
| 99  |                 |            |      |      |       |       |   |
| 100 |                 |            |      |      |       |       |   |
| 101 | Recycle flow of | omposition |      |      |       |       |   |
| 102 |                 |            |      |      |       |       |   |
| 103 | alpha 1, 5, 4   | = -0.05    |      |      |       |       |   |
| 104 |                 |            |      |      |       |       |   |
| 105 | Component       | 1          | 2    | 3    | 4     | Total |   |
| 106 |                 |            |      |      |       |       |   |
| 107 | Flow            | 10.85      | 0.01 | 0.00 | 10.31 | 21.17 |   |
| 108 | _               |            |      |      |       |       |   |
| 109 | Percent         | 51.26      | 0.05 | 0.00 | 48.70 |       |   |
| 110 |                 |            |      |      |       |       |   |
| 111 |                 |            |      |      |       |       |   |
| 112 |                 |            |      |      |       |       |   |

Figure 4.19a.

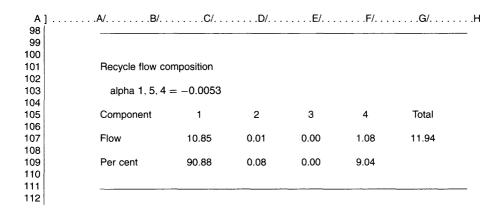



Figure 4.19b.

Step 9: Change the values of the appropriate split fractions, or fresh feeds, in the primary table, Figure 4.15, and observe the changes to the calculated values: which will carry through the spread sheet automatically. Iterate on the values until the desired result is obtained.

#### Comments on the first trial solutions

Table 4.3 shows the feed of each component and the total flow to each unit. The composition of any other stream of interest can be calculated from these values and the split-fraction coefficients. The compositions and flows should be checked for compliance with the process constraints, the split-fraction values adjusted, and the calculation repeated, as necessary, until a satisfactory fit is obtained. Some of the constraints to check in this example are discussed below.

| Unit | Component                     | 1      | 2     | 3    | 4      | Total  |
|------|-------------------------------|--------|-------|------|--------|--------|
| 1    | $\lambda_{1k}$                | 110.85 | 0.01  | 0.0  | 10.31  | 121.17 |
| 2    | $\lambda_{2k}$                | 11.09  | 98.01 | 98.0 | 10.31  | 217.41 |
| 3    | $\lambda_{3k}$                | 1.11   | 19.6  | 98.0 | 200.51 | 319.22 |
| 4    |                               | 11.07  | 97.81 | 0.0  | 208.3  | 317.19 |
| 5    | $\lambda_{5k}$                | 10.96  | 0.98  | 0.0  | 206.22 | 218.16 |
| 5    | $\lambda_{4k} \ \lambda_{5k}$ |        |       |      |        |        |

Table 4.3. Solution of equations, feeds to units

# Recycle flow from the second column

This should approximate to the azeotropic composition (9 per cent alcohol, 91 per cent water). The flow of any component in this stream is given by multiplying the feed to the column  $(\lambda_{5k})$  by the split-fraction coefficient for the recycle stream  $(\alpha_{15k})$ . The calculated flows for each component are shown in Table 4.4.

| Component                  | 1     | 2    | 3   | 4      | Total |
|----------------------------|-------|------|-----|--------|-------|
| $\lambda_{5k}$             | 10.96 | 0.98 | 0.0 | 206.22 |       |
| α <sub>15k</sub><br>Flow   | 0.99  | 0.01 | 1   | 0.05   |       |
| $\alpha_{15k}\lambda_{5k}$ | 10.85 | 0.01 | 0   | 10.31  | 21.17 |
| Per cent                   | 51.3  | 0.05 | 0   | 48.7   |       |

Table 4.4. Calculation of recycle stream flow

Calculated percentage alcohol = 51.3 per cent, required value 91 per cent. Clearly the initial value selected for  $\alpha_{154}$  was too high; too much recycle. Iteration, using the spreadsheet, shows the correct value of  $\alpha_{154}$  to be 0.0053, see Figure 4.19b.

# Reactor conversion and yield

Conversion = 
$$\frac{\text{alcohol in} - \text{alcohol out}}{\text{alcohol in}} = \frac{\lambda_{11} - \lambda_{21}}{\lambda_{11}} = \frac{110.85 - 11.09}{110.85}$$
  
= 90 per cent, which is the value given
$$\text{Yield} = \frac{\text{acetone out}}{\text{alcohol in} - \text{alcohol out}} = \frac{\lambda_{22}}{\lambda_{11} - \lambda_{21}} = \frac{98.01}{110.85 - 11.09}$$
= 98.3 per cent, near enough.

# Condenser vapour and liquid composition

The liquid and vapour streams from the partial condenser should be approximately in equilibrium.

The component flows in the vapour stream =  $\alpha_{32k}\lambda_{2k}$  and in the liquid stream =  $\alpha_{42k}\lambda_{2k}$ . The calculation is shown in Table 4.5.

| Component k                | 1     | 2     | 3    | 4     | Total  |
|----------------------------|-------|-------|------|-------|--------|
| $\lambda_{2k}$             | 11.09 | 98.01 | 98.0 | 10.31 |        |
| $\alpha_{32k}$             | 0.1   | 0.2   | 1    | 0.05  |        |
| Vapour flow                |       |       |      |       |        |
| $\alpha_{32k}\lambda_{2k}$ | 1.11  | 19.6  | 98.0 | 0.52  | 119.23 |
| Per cent                   | 0.9   | 16.4  | 82.2 | 0.4   |        |
| $\alpha_{42k}$             | 0.9   | 0.8   | 0    | 0.95  |        |
| Liquid flow                |       |       |      |       |        |
| $\alpha_{42k}\lambda_{2k}$ | 9.98  | 78.41 | 0    | 9.79  | 98.18  |
| Per cent                   | 10.2  | 79.9  | 0    | 10.0  |        |

Table 4.5. Condenser vapour and liquid compositions

These compositions should be checked against the vapour-liquid equilibrium data for acetone-water and the values of the split-fraction coefficients adjusted, as necessary.

# 4.6.3. Guide rules for estimating split-fraction coefficients

The split-fraction coefficients can be estimated by considering the function of the process unit, and by making use of any constraints on the stream flows and compositions that arise from considerations of product quality, safety, phase equilibria, other thermodynamic relationships; and general process and mechanical design considerations. The procedure is similar to the techniques used for the manual calculation of material balances discussed in Section 4.3.

Suggested techniques for use in estimating the split-fraction coefficients for some of the more common unit operations are given below.

#### 1. Reactors

The split-fractions for the reactants can be calculated directly from the percentage conversion. The conversion may be dependent on the relative flows of the reactants (feed composition) and, if so, iteration may be necessary to determine values that satisfy the feed condition.

Conversion is not usually very dependent on the concentration of any inert components. The pseudo fresh feeds of the products formed in the reactor can be calculated from the specified, or estimated, yields for the process.

#### 2. Mixers

For a unit that simply combines several inlet streams into one outlet stream, the split-fraction coefficients for each component will be equal to 1.  $\alpha_{j,i,k} = 1$ .

#### 3. Stream dividers

If the unit simply divides the inlet stream into two or more outlet streams, each with the same composition as the inlet stream, then the split-fraction coefficient for each component will have the same value as the fractional division of the total stream. A purge stream is an example of this simple division of a process stream into two streams: the main stream and the purge. For example, for a purge rate of 10 per cent the split-fraction coefficients for the purge stream would be 0.1.

# 4. Absorption or stripping columns

The amount of a component absorbed or stripped in a column is dependent on the column design (the number of stages), the component solubility, and the gas and liquid rates. The fraction absorbed can be estimated using the absorption factor method, attributed to Kremser (1930) (see Volume 2, Chapter 12). If the concentration of solute in the solvent feed to the column is zero, or can be neglected, then for the solute component the fraction absorbed =

$$\frac{(L_m/mG_m)^{s+1} - L_m/mG_m}{(L_m/mG_m)^{s+1} - 1}$$

and for a stripping column, the fraction stripped =

$$\frac{(mG_m/L_m)^{s+1} - (mG_m/L_m)}{(mG_m/L_m)^{s+1} - 1}$$

where  $G_m = \text{gas flow rate, kmol m}^{-2} \text{ h}^{-1}$ ,

 $L_m = \text{liquid flow rate, kmol m}^{-2} \text{ h}^{-1},$ 

m = slope of the equilibrium curve,

s = the number of stages.

For a packed column the chart by Çolburn (1939) can be used (see Volume 2, Chapter 11). This gives the ratio of the inlet and outlet concentrations,  $y_1/y_2$ , in terms of the number of transfer units and  $mG_m/L_m$ .

The same general approach can be used for solvent extraction processes.

#### 5. Distillation columns

A distillation column divides the feed stream components between the top and bottom streams, and any side streams. The product compositions are often known; they may be specified, or fixed by process constraints, such as product specifications, effluent limits or an azeotropic composition. For a particular stream, "s", the split-fraction coefficient is given by:

$$\frac{x_{sk}r_s}{x_{fk}}$$

where  $x_{sk}$  = the concentration of the component k in the stream, s,

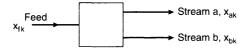
 $x_{fk}$  = the concentration component k in the feed stream,

 $r_s$  = the fraction of the total feed that goes to the stream, s.

If the feed composition is fixed, or can be estimated, the value of  $r_s$  can be calculated from a mass balance.

The split-fraction coefficients are not very dependent on the feed composition, providing the reflux flow-rate is adjusted so that the ratio of reflux to feed flow is held constant; Vela (1961), Hachmuth (1952).

It is not necessary to specify the reflux when calculating a preliminary material balance; the system boundary can be drawn to include the reflux condenser.


For a column with no side streams the fraction of the total feed flow going to the overheads is given by:

$$r_{\text{overheads}} = \frac{x_{fk} - x_{wk}}{x_{dk} - x_{wk}}$$

where x is the component composition and the suffixes f, d, w refer to feed, overheads and bottoms respectively.

# 6. Equilibrium separators

This is a stream divider with two outlet streams, a and b, which may be considered to be in equilibrium.



where  $x_{ak}$  = concentration of component k in stream a,

 $x_{bk}$  = concentration of component k in stream b,

 $x_{fk}$  = concentration of component k in the feed stream.

If the equilibrium relationship can be expressed by a simple equilibrium constant,  $K_k$ , such that:

$$x_{ak} = K_k x_{bk}$$

Then the split-fraction coefficients can be calculated from a material balance.

Split fraction for stream 
$$a = \frac{K_k}{K_k - 1} \frac{(x_{fk} - x_{bk})}{x_{fk}}$$
.

# 4.6.4. MASSBAL, a mass balance program

A simple material balance program, based on the split-fraction concept, is listed in Appendix B. This program can be used to calculate material balances for processes with up to fifty units and twenty components. It will be found to be particularly useful for processes that contain several recycle loops. The procedure for using the program is similar to that illustrated in Section 4.6.2. The process flow diagram is reduced to an information flow diagram showing all the connections between the units, and the values of the component split fractions and any fresh feeds estimated for each unit. These values are typed in and the program calculates and prints out the component flows to each unit.

The program includes a routine to enable the initial estimates of the split-fraction coefficients to be easily changed, and can be run in an interactive manner to find the values that satisfy the design constraints (process specifications and equipment parameters).

The program is written in GWBASIC for use with personal computers. It can easily be adapted for use with other languages. Sufficient comments (REM statements) are included in the listing for the structure and logic of the program to be readily followed.

MASSBAL consists of three separate BASIC programs:

- MM1 —a program to set up the coefficient matrix and fresh feed vector, and file the values:
- MM2 a program to enable the filed values to be altered, as required;
- MM3 a program to solve the set of equations for each component, sum the values, and print out the flows and percentage compositions.

A full set of operating instructions is included in the program listing.

# Self-recycle

The program assumes that there are no self-recycle streams, recycle round a single unit (Figure 4.20). These are unlikely to occur in practical problems. If it is necessary to include a self-recycle loop, it can be shown as two units; or, alternatively, the value of 1 that will be automatically set up by the program on the leading diagonal (assuming no self-recycle) can be changed to  $(1 - \alpha_{iik})$  by typing in this value in the same manner as for the other non-zero coefficients. (*Note*, putting  $\alpha_{iik} = 1$  implies total recycle, and there will be no unique solution to the set of equations.)

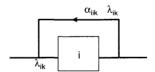



Figure 4.20. Self-recycle

# Dummy units

The program only calculates and prints out the inlet stream flows and composition. Though this will give sufficient information for the flows and compositions of all other process streams to be calculated by hand, a direct print-out of any non-inlet stream can be obtained by inserting a "dummy" unit in the line wanted, with the split-fraction coefficients for the dummy unit set at 1.

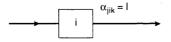



Figure 4.21. Dummy units

The stream flows will be printed out as the inlet stream to the dummy unit (Figure 4.21). Dummy units can also be used to obtain directly the flow and composition of any streams

that leave the system, such as a vent or product stream. There will be no outlet streams from these units.

# Equation solution routine

For all practical material balance problems, the matrix of split-fraction coefficients will be very sparse, as the number of connections between units will only be a fraction of the total possible.

For a process with n units the total number for possible connections will be equal to the dimensions of the matrix,  $n \times n$ , but the actual number will be between 2n and 3n.

To make the most efficient use of computer storage, and to give a quick response time, the efficient sparse matrix solution algorithm developed by D. J. Gunn (1977) (1982) is used in program MM3, but any suitable procedure for the solution of linear simultaneous equations can be used.

In Gunn's procedure the matrix of split-fraction coefficients is represented by three vectors: a vector D containing the non-zero coefficients, in column order within consecutive rows; an integer vector Z, of the same dimensions as D, containing the column address of each non-zero element; and an integer vector L giving the position in the other vectors of the first element in each row. The program MM3 contains a sub-routine that automatically reads the values from the data file into these vectors for the calculation procedure.

## 4.7. REFERENCES

Austin, D. G. (1979) Chemical Engineering Drawing Symbols (George Godwin).

BENEDEK, P. (ed.) (1980) Steady-state Flow-sheeting of Chemical Plants (Elsevier).

CLARK, A. P. (1977) Exercises in Process Simulation Using FLOWTRAN (CACHE Corporation).

COLBURN, A. P. (1939) *Trans. Am. Inst. Chem. Eng.* **35**, 211. The simplified calculation of diffusional processes, general considerations of two-film resistances.

CROWE, C. M., HAMIELEE, A. E., HOFFMAN, T. N., JOHNSON, A. I., SHANNON, P. T. and WOODS, D. R. (1971) *Chemical Plant Simulation* (Prentice-Hall).

DAVIES, C. (1971) Chem. Engr. London. No. 248 (April) 149. Applications of systems engineering techniques to projects in the chemical process industry.

DIN 28004 (1988) Flow sheets and diagrams of process plants, 4 parts (BSI).

GUNN, D. J. (1977) *Inst. Chem. Eng.*, 4th Annual Research Meeting, Swansea, April. A sparse matrix technique for the calculation of linear reactor-separator simulations of chemical plant.

GUNN, D. J. (1982) *IChemE Symposium Series* No. 74, 99, A versatile method of flow sheet analysis for process evolution and modification.

HACHMUTH, K. H. (1952) *Chem. Eng. Prog.* **48** (Oct.) 523, (Nov.) 570, (Dec.) 570 (in three parts). Industrial viewpoints on separation processes.

HENLEY, E. J. and ROSEN, E. M. (1969) Material and Energy Balance Computations (Wiley).

HUSAIN, A. (1986) Chemical Process Simulation (Wiley).

HUTCHINSON, H. P. and LEESLEY, M. E. (1973) Computer Aided Design 5, 228. A balanced approach to process design by computer.

JOHNSON, A. İ. (1972) Brit. Chem. Eng. and Proc. Tech. 17, 28. Computer-aided process analysis and design—a modular approach.

KEHAT, E. and SHACHAM, M. (1973) *Process Design and Development* (formerly *Brit. Chem. Eng.*) **18**, No. 1/2, 35; No. 3, 115 (in two parts). Chemical process simulation programs.

Kremser, A. (1930) Nat. Petroleum News 22 (21 May) 43. Theoretical analysis of absorption columns.

LEESLEY, M. E. (ed.) (1982) Computer Aided Process Plant Design (Gulf).

MAH, S. H. and SEIDER, W. D. (eds) (1980) Foundations of Computer-aided Process Design (2 vols.) (Engineering Foundation/AIChemE).

MASON, J. C. (1984) BASIC Matrix Methods (Butterworths).

NAGIEV, M. F. (1964) The Theory of Recycle Processes in Chemical Engineering (Pergamon).

Pantelides, C. C. (1988) Comp. and Chem. Eng., 12, 745. SpeedUp—recent advances in process engineering.

D' .....

- PREECE, P. E. (1986) Chem. Eng., London, No. 426, 87. The making of PFG and PIG.
- PREECE, P. E. and STEPHENS, M. B. (1989) *IChemE Symposium Series* No. 114, 89, PROCEDE—opening windows on the design process.
- PREECE, P. E., KIFT, M. H. and GRILLS, D. M. (1991) Computer-Orientated Process Design, Proceedings of COPE, Barcelona, Spain, Oct. 14-16, 209, A graphical user interface for computer aided process design.
   ROSEN, E. M. (1962) Chem. Eng. Prog. 58 (Oct.) 69. A machine computation method for performing material
- SEADER, J. D., SEIDER, W. D. and PAULS, A. C. (1987) Flowtran Simulation—An Introduction, 3rd edn (CACHE).
- VELA, M. A. (1961) *Pet. Ref.* **40** (May) 247, (June) 189 (in two parts). Use of fractions for recycle balances. WELLS, G. L. and Rose, L. M. (1986) *The Art of Chemical Process Design* (Elsevier).
- WESTERBURG, A. W., HUTCHINSON, H. P., MOTARD, R. L. and WINTER, P. (1979) Process Flow-sheeting (Cambridge U.P.).
- WESTLAKE, J. R. (1968) A handbook of numerical matrix inversion and solution of linear equations (Wiley).

#### **British Standards**

balances.

BS 1553: ... Specification for graphical symbols for general engineering Part 1: 1977 Piping systems and plant.

## 4.8. NOMENCLATURE

|                                                                                         | Dimensions in <b>MLT</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Molar flow-rate of gas per unit area                                                    | $\mathbf{M}\mathbf{L}^{-2}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Fresh feed to unit i of component k                                                     | $\mathbf{M}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Equilibrium constant for component k                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Liquid flow-rate per unit area                                                          | $\mathbf{M}\mathbf{L}^{-2}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Slope of equilibrium line                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Fraction of total feed that goes to stream s                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Number of stages                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Concentration of component k in stream a                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Concentration of component k in stream b                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Concentration of component k in distillate                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Concentration of component k in feed                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Concentration of component k in bottom product                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Total flow of component k to unit i                                                     | $\mathbf{M}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Split-fraction coefficient: fraction of component $k$ flowing from unit $i$ to unit $j$ | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                         | Fresh feed to unit <i>i</i> of component <i>k</i> Equilibrium constant for component <i>k</i> Liquid flow-rate per unit area Slope of equilibrium line Fraction of total feed that goes to stream <i>s</i> Number of stages  Concentration of component <i>k</i> in stream a  Concentration of component <i>k</i> in stream b  Concentration of component <i>k</i> in distillate  Concentration of component <i>k</i> in feed  Concentration of component <i>k</i> in bottom product  Total flow of component <i>k</i> to unit <i>i</i> |

#### 4.9. PROBLEMS

**4.1.** Monochlorobenzene is produced by the reaction of benzene with chlorine. A mixture of monochlorobenzene and dichlorobenzene is produced, with a small amount of trichlorobenzene. Hydrogen chloride is produced as a byproduct. Benzene is fed to the reactor in excess to promote the production of monochlorobenzene.

The reactor products are fed to a condenser where the chlorobenzenes and unreacted benzene are condensed. The condensate is separated from the non-condensable gases in a separator. The non-condensables, hydrogen chloride and unreacted chlorine, pass to an absorption column where the hydrogen chloride is absorbed in water. The chlorine leaving the absorber is recycled to the reactor.

The liquid phase from the separator, chlorobenzenes and unreacted benzene, is fed to a distillation column, where the chlorobenzenes are separated from the

unreacted benzene. The benzene is recycle to the reactor.

Using the data given below, calculate the stream flows and draw up a preliminary flow-sheet for the production of 1.0 tonne monochlorobenzene per day.

*Hint*: start the material balance at the reactor inlet (after the addition of the recycle streams) and use a basis of 100 kmol/h benzene at this point.

Data

Reactor

Reactions:  $C_6H_6 + Cl_2 \rightarrow C_6H_5 + HCl$   $C_6H_6 + 2Cl_2 \rightarrow C_6H_4 \ Cl_2 + 2HCl$ 

mol ratio  $Cl_2: C_6H_6$  at inlet to reactor = 0.9 overall conversion of benzene = 55.3 per cent yield of monochlorobenzene = 73.6 per cent yield of dichlorobenzene = 27.3 per cent production of other chlorinated compounds can be neglected. *Condenser* 

Assume that all the chlorobenzenes and unreacted benzene condenses. Assume that the vapour pressure of the liquid at the condenser temperature is not significant; i.e. that no chlorobenzene or benzene are carried over in the gas stream. Separator

Assume complete separation of the liquid and gas phases.

Absorber

Assume 100 per cent absorption of hydrogen chloride, and that 98 per cent of the chlorine is recycled, the remainder being dissolved in the water. The water supply to the absorber is set to produce a 30 per cent w/w strength hydrochloric acid.

Distillation column

Take the recovery of benzene to be 95 per cent, and complete separation of the chlorobenzenes.

**4.2.** Methyl tertiary butyl ether (MTBE) is used as an anti-knock additive in petrol (gasoline).

It is manufactured by the reaction of isobutene with methanol. The reaction is highly selective and practically any  $C_4$  stream containing isobutene can be used as a feedstock

$$CH_2 = C(CH_3)_2 + CH_3OH \rightarrow (CH_3)_3 - C - O - CH_3$$

A 10 per cent excess of methanol is used to suppress side reactions.

In a typical process, the conversion of isobutene in the reactor stage is 97 per cent. The product is separated from the unreacted methanol and any  $C_4$ 's by distillation. The essentially pure, liquid, MTBE leaves the base of the distillation column and is sent to storage. The methanol and  $C_4$ 's leave the top of the column as vapour and pass to a column where the methanol is separated by absorption in water. The  $C_4$ 's leave the top of the absorption column, saturated with water, and are used as a fuel gas. The methanol is separated from the water solvent by distillation and recycled to the reactor stage. The water, which leaves the base of the column, is

recycled to the absorption column. A purge is taken from the water recycle stream to prevent the build-up of impurities.

- 1. Draw up an information flow diagram for this process.
- 2. Estimate the split faction coefficients and fresh feeds for each stage.
- 3. Set up the resulting material balance equations, in matrix form.
- 4. Solve the equations using a suitable spread-sheet.
- 5. Adjust the values chosen for the split-fractions and feeds, so the results meet the constraints,
- Draw a flow-sheet for the process.
   Treat the C<sub>4</sub>'s, other than isobutene, as one component.
- 1. Feedstock composition, mol per cent: n-butane = 2, butene-1 = 31, butene-2 = 18, isobutene = 49.
- 2. Required production rate of MTBE, 7000 kg/h.
- 3. Reactor conversion of isobutene, 97 per cent.
- 4. Recovery of MTBE from the distillation column, 99.5 per cent.
- 5. Recovery of methanol in the absorption column, 99 per cent.
- 6. Concentration of methanol in the solution leaving the absorption column, 15 per cent.
- 7. Purge from the water recycle stream, to waste treatment, 10 per cent of the flow leaving the methanol recovery column.
- 8. The gases leave the top of the absorption column saturated with water at 30 °C.
- 9. Both columns operate at essentially atmospheric pressure.
- **4.3.** Water and ethanol form a low boiling point azeotrope. So, water cannot be completely separated from ethanol by straight distillation. To produce absolute (100 per cent) ethanol it is necessary to add an entraining agent to break the azeotrope. Benzene is an effective entrainer and is used where the product is not required for food products. Three columns are used in the benzene process.

Column 1. This column separates the ethanol from the water. The bottom product is essentially pure ethanol. The water in the feed is carried overhead as the ternary azeotrope of ethanol, benzene and water (24 per cent ethanol, 54 per cent benzene, 22 per cent water). The overhead vapour is condensed and the condensate separated in a decanter into, a benzene-rich phase (22 per cent ethanol, 74 per cent benzene, 4 per cent water) and a water-rich phase (35 per cent ethanol, 4 per cent benzene, 61 per cent water). The benzene-rich phase is recycled to the column as reflux. A benzene make-up stream is added to the reflux to make good any loss of benzene from the process. The water-rich phase is fed to the second column.

Column 2. This column recovers the benzene as the ternary azeotrope and recycles it as vapour to join the overhead vapour from the first column. The bottom product from the column is essentially free of benzene (29 per cent ethanol, 51 per cent water). This stream is fed to the third column.

Column 3. In this column the water is separated and sent to waste treatment. The overhead product consists of the azeotropic mixture of ethanol and water (89 per cent ethanol, 11 per cent water). The overheads are condensed and recycled to join the feed to the first column. The bottom product is essentially free of ethanol.

From the compositions given, calculate the stream flows for the production of absolute alcohol from 100 kmol/h raw alcohol feed, composition 89 per cent ethanol, balance water. Take the benzene losses to total 0.1 kmol/h. Draw a preliminary flow-sheet for the process.

All the compositions given are mol percentage.

**4.4.** A plant is required to produce 10,000 tonnes per year of anhydrous hydrogen chloride from chlorine and hydrogen. The hydrogen source is impure: 90 per cent hydrogen, balance nitrogen.

The chlorine is essentially pure chlorine, supplied in rail tankers.

The hydrogen and chlorine are reacted in a burner at 1.5 bar pressure.

$$H_2 + Cl_2 \rightarrow 2HCl$$

Hydrogen is supplied to the burner in 3 per cent excess over the stoichiometric amount. The conversion of chlorine is essentially 100 per cent. The gases leaving the burner are cooled in a heat exchanger.

The cooled gases pass to an absorption column where the hydrogen chloride gas is absorbed in dilute hydrochloric acid. The absorption column is designed to recover 99.5 per cent of the hydrogen chloride in the feed.

The unreacted hydrogen and inerts pass from the absorber to a vent scrubber where any hydrogen chloride present is neutralised by contact with a dilute, aqueous solution, of sodium hydroxide. The solution is recirculated around the scrubber. The concentration of sodium hydroxide is maintained at 5 per cent by taking a purge from the recycle loop and introducing a make up stream of 25 per cent concentration. The maximum concentration of hydrogen chloride discharged in the gases vented from the scrubber to atmosphere must not exceed 200 ppm (parts per million) by volume.

The strong acid from the absorption column (32 per cent HCl) is fed to a stripping column where the hydrogen chloride gas is recovered from the solution by distillation. The diluted acid from the base of this column (22 per cent HCl), is recycled to the absorption column.

The gases from the top of the stripping column pass through a partial condenser, where the bulk of the water vapour present is condensed and returned to the column as reflux. The gases leaving the column will be saturated with water vapour at  $40\,^{\circ}\text{C}$ .

The hydrogen chloride gas leaving the condenser is dried by contact with concentrated sulphuric acid in a packed column. The acid is recirculated over the packing. The concentration of sulphuric acid is maintained at 70 per cent by taking a purge from the recycle loop and introducing a make up stream of strong acid (98 per cent  $H_2SO_4$ ).

The anhydrous hydrogen chloride product is compressed to 5 bar and supplied as a feed to another process.

Using the information provided, calculate the flow-rates and compositions of the main process streams, and draw a flow-sheet for this process.

There is no need to calculate the reflux flow to the distillation column; that will be determined by the column design.

**4.5.** Ammonia is synthesised from hydrogen and nitrogen. The synthesis gas is usually produced from hydrocarbons. The most common raw materials are oil or natural gas; though coal, and even peat can be used.

When produced from natural gas the synthesis gas will be impure, containing up to 5 per cent inerts, mainly methane and argon. The reaction equilibrium and rate are favoured by high pressure. The conversion is low, about 15 per cent and so, after removal of the ammonia produced, the gas is recycled to the converter inlet. A typical process would consist of: a converter (reactor) operating at 350 bar; a refrigerated system to condense out the ammonia product from the recycle loop; and compressors to compress the feed and recycle gas. A purge is taken from the recycle loop to keep the inert concentration in the recycle gas at an acceptable level.

Using the data given below, draw an information flow diagram of the process and calculate the process stream flow-rates and compositions for the production of 600 t/d ammonia. Use either the 'Nagiev' split fraction method, with any suitable spreadsheet; or manual calculations.

Data:

Composition of synthesis gas, mol fraction:

Temperature and operating pressure of liquid ammonia-gas separator, 340 bar and  $-28\,^{\circ}\text{C}$ .

Inert gas concentration in recycle gas, not greater than 15 per cent mol per cent.

- **4.6.** Methyl ethyl ketone (MEK) is manufactured by the dehydrogenation of 2-butanol. A simplified description of the processes listing the various units used is given below:
  - 1. A reactor in which the butanol is dehydrated to produce MEK and hydrogen, according to the reaction:

$$CH_3CH_2CH_3CHOH \rightarrow CH_3CH_2CH_3CO + H_2$$

The conversion of alcohol to MEK is 88 per cent and the yield can be taken as 100 per cent.

- 2. A cooler-condenser, in which the reactor off-gases are cooled and most of the MEK and unreacted alcohol are condensed. Two exchangers are used but they can be modelled as one unit. Of the MEK entering the unit 84 per cent is condensed, together with 92 per cent of the alcohol. The hydrogen is non-condensable. The condensate is fed forward to the final purification column.
- 3. An absorption column, in which the uncondensed MEK and alcohol are absorbed in water.
  - Around 98 per cent of the MEK and alcohol can be considered to be absorbed in this unit, giving a 10 per cent w/w solution of MEK. The water feed to the absorber is recycled from the next unit, the extractor. The vent stream from the absorber, containing mainly hydrogen, is sent to a flare stack.
- 4. An extraction column, in which the MEK and alcohol in the solution from the absorber are extracted into trichloroethylane (TCE). The raffinate, water

- containing around 0.5 per cent w/w MEK, is recycled to the absorption column. The extract, which contains around 20 per cent w/w MEK, and a small amount of butanol and water, is fed to a distillation column.
- 5. A distillation column, which separates the MEK and alcohol from the solvent TCE.
  - The solvent containing a trace of MEK and water is recycled to the extraction column.
- 6. A second distillation column, which produces a pure MEK product from the crude product from the first column. The residue from this column, which contains the bulk of the unreacted 2-butanol, is recycled to the reactor.

For a production rate of 1250 kg/h MEK:

- 1. Draw up an information flow diagram for this process.
- 2. Estimate the split-faction coefficients and fresh feeds for each stage.
- 3. Set up the resulting material balance equations, in matrix form.
- 4. Solve the equations using a suitable spread-sheet.
- 5. Adjust the values chosen for the split-fractions and feeds, so the results meet the constraints,
- 6. Draw a flow-sheet for the process.

## CHAPTER 5

# Piping and Instrumentation

#### 5.1. INTRODUCTION

The process flow-sheet shows the arrangement of the major pieces of equipment and their interconnection. It is a description of the nature of the process.

The Piping and Instrument diagram (P and I diagram) shows the engineering details of the equipment, instruments, piping, valves and fittings; and their arrangement. It is often called the Engineering Flow-sheet or Engineering Line Diagram.

This chapter covers the preparation of the preliminary P and I diagrams at the process design stage of the project.

The design of piping systems, and the specification of the process instrumentation and control systems, is usually done by specialist design groups, and a detailed discussion of piping design and control systems is beyond the scope of this book. Only general guide rules are given. The piping handbook edited by Holmes (1973) is particularly recommended for the guidance on the detailed design of piping systems and process instrumentation and control. The references cited in the text and listed at the end of the chapter should also be consulted.

#### **5.2. THE P AND I DIAGRAM**

The P and I diagram shows the arrangement of the process equipment, piping, pumps, instruments, valves and other fittings. It should include:

- 1. All process equipment identified by an equipment number. The equipment should be drawn roughly in proportion, and the location of nozzles shown.
- 2. All pipes, identified by a line number. The pipe size and material of construction should be shown. The material may be included as part of the line identification number.
- 3. All valves, control and block valves, with an identification number. The type and size should be shown. The type may be shown by the symbol used for the valve or included in the code used for the valve number.
- 4. Ancillary fittings that are part of the piping system, such as inline sight-glasses, strainers and steam traps; with an identification number.
- 5. Pumps, identified by a suitable code number.
- 6. All control loops and instruments, with an identification number.

For simple processes, the utility (service) lines can be shown on the P and I diagram. For complex processes, separate diagrams should be used to show the service lines, so

the information can be shown clearly, without cluttering up the diagram. The service connections to each unit should, however, be shown on the P and I diagram.

The P and I diagram will resemble the process flow-sheet, but the process information is not shown. The same equipment identification numbers should be used on both diagrams.

# 5.2.1. Symbols and layout

The symbols used to show the equipment, valves, instruments and control loops will depend on the practice of the particular design office. The equipment symbols are usually more detailed than those used for the process flow-sheet. A typical example of a P and I diagram is shown in Figure 5.25.

Standard symbols for instruments, controllers and valves are given in the British Standard BS 1646.

Austin (1979) gives a comprehensive summary of the British Standard symbols, and also shows the American standard symbols (ANSI) and examples of those used by some process plant contracting companies.

The German standard symbols are covered by DIN 28004, DIN (1988).

When laying out the diagram, it is only necessary to show the relative elevation of the process connections to the equipment where these affect the process operation; for example, the net positive suction head (NPSH) of pumps, barometric legs, syphons and the operation of thermosyphon reboilers.

Computer aided drafting programs are available for the preparation of P and I diagrams, see the reference to the PROCEDE package in Chapter 4.

# 5.2.2. Basic symbols

The symbols illustrated below are those given in BS 1646.

#### Control valve

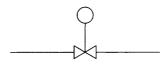



Figure 5.1.

This symbol is used to represent all types of control valve, and both pneumatic and electric actuators.

#### Failure mode

The direction of the arrow shows the position of the valve on failure of the power supply.

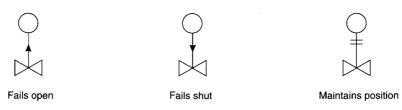



Figure 5.2.

#### Instruments and controllers



Figure 5.3.

Locally mounted means that the controller and display is located out on the plant near to the sensing instrument location. Main panel means that they are located on a panel in the control room. Except on small plants, most controllers would be mounted in the control room.

# Type of instrument

This is indicated on the circle representing the instrument-controller by a letter code (see Table 5.1).

|                                      |                 |                 |                | •                |                            |                           |
|--------------------------------------|-----------------|-----------------|----------------|------------------|----------------------------|---------------------------|
| Property<br>measured                 | First<br>letter | Indicating only | Recording only | Controlling only | Indicating and controlling | Recording and controlling |
| Flow-rate                            | F               | FI              | FR             | FC               | FIC                        | FRC                       |
| Level                                | L               | LI              | LR             | LC               | LIC                        | LRC                       |
| Pressure                             | P               | PΙ              | PR             | PC               | PIC                        | PRC                       |
| Quality, analysis                    | Q               | QI              | QR             | QC               | QIC                        | QRC                       |
| Radiation                            | R               | RI              | ŔŔ             | ŘC               | RIC                        | RRC                       |
| Temperature                          | T               | TI              | TR             | TC               | TIC                        | TRC                       |
| Weight Any other property (specified | W               | WI              | WR             | WC               | WIC                        | WRC                       |
| in a note)                           | X               | XI              | XR             | XC               | XIC                        | XRC                       |

Table 5.1. Letter Code for Instrument Symbols (Based on BS 1646: 1979)

#### Notes:

Consult the standard for the full letter code.

<sup>(1)</sup> The letter A may be added to indicate an alarm; with H or L placed next to the instrument circle to indicate high or low.

<sup>(2)</sup> D is used to show difference or differential; eg. PD for pressure differential.

<sup>(3)</sup> F, as the second letter indicates ratio; eg. FFC indicates a flow ratio controller.

The first letter indicates the property measured; for example, F = flow. Subsequent letters indicate the function; for example,

I = indicating

RC = recorder controller

The suffixes E and A can be added to indicate emergency action and/or alarm functions. The instrument connecting lines should be drawn in a manner to distinguish them from the main process lines. Dotted or cross-hatched lines are normally used.

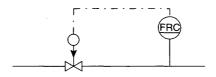



Figure 5.4. A typical control loop

## **5.3. VALVE SELECTION**

The valves used for chemical process plant can be divided into two broad classes, depending on their primary function:

- 1. Shut-off valves (block valves), whose purpose is to close off the flow.
- 2. Control valves, both manual and automatic, used to regulate flow.

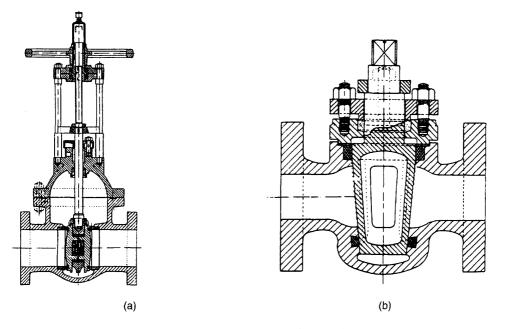
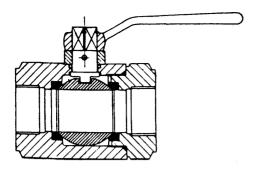




Figure 5.5. (a) Gate valve (slide valve) (b) Plug valve



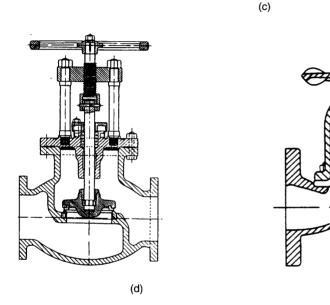



Figure 5.5. (c) Ball valve (d) Globe valve (e) Diaphragm valve

(e)

The main types of valves used are:

Gate Figure 5.5aPlug Figure 5.5bBall Figure 5.5cGlobe Figure 5.5dDiaphragm Figure 5.5eButterfly Figure 5.5f

A valve selected for shut-off purposes should give a positive seal in the closed position and minimum resistance to flow when open. Gate, plug and ball valves are most frequently used for this purpose. The selection of manual values is discussed by Merrick (1986) (1990) and Smith and Vivian (1995).

If flow control is required, the valve should be capable of giving smooth control over the full range of flow, from fully open to closed. Globe valves are normally used, though the

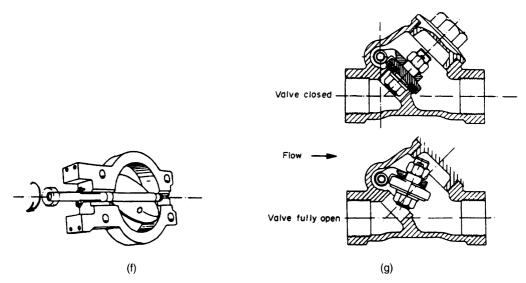



Figure 5.5. (f) Butterfly valve (g) Non-return valve, check valve, hinged disc type

other types can be used. Butterfly valves are often used for the control of gas and vapour flows. Automatic control valves are basically globe valves with special trim designs (see Volume 3, Chapter 7).

The careful selection and design of control valves is important; good flow control must be achieved, whilst keeping the pressure drop as low as possible. The valve must also be sized to avoid the flashing of hot liquids and the super-critical flow of gases and vapours. Control valve sizing is discussed by Chaflin (1974).

Non-return valves are used to prevent back-flow of fluid in a process line. They do not normally give an absolute shut-off of the reverse flow. A typical design is shown in Figure 5.5g.

Details of valve types and standards can be found in the technical data manual of the British Valve and Actuators Manufacturers Association, BVAMA (1991). Valve design is covered by Pearson (1978).

#### 5.4. PUMPS

# 5.4.1. Pump selection

The pumping of liquids is covered by Volume 1, Chapter 8. Reference should be made to that chapter for a discussion of the principles of pump design and illustrations of the more commonly used pumps.

Pumps can be classified into two general types:

- 1. Dynamic pumps, such as centrifugal pumps.
- 2. Positive displacement pumps, such as reciprocating and diaphragm pumps.

The single-stage, horizontal, overhung, centrifugal pump is by far the most commonly used type in the chemical process industry. Other types are used where a high head or other special process considerations are specified.

Pump selection is made on the flow rate and head required, together with other process considerations, such as corrosion or the presence of solids in the fluid.

The chart shown in Figure 5.6 can be used to determine the type of pump required for a particular head and flow rate. This figure is based on one published by Doolin (1977).

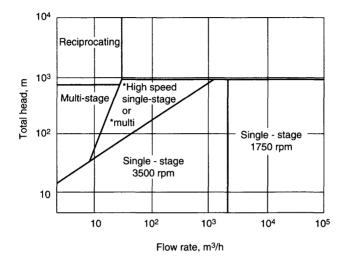



Figure 5.6. Centrifugal pump selection guide. \*Single-stage >1750 rpm, multi-stage 1750 rpm

Centrifugal pumps are characterised by their specific speed (see Volume 1, Chapter 8). In the dimensionless form, specific speed is given by:

$$N_s = \frac{NQ^{1/2}}{(gh)^{3/4}} \tag{5.1}$$

where N = revolutions per second,

 $Q = \text{flow, m}^3/\text{s}$ 

h = head. m.

 $g = \text{gravitational acceleration m/s}^2$ .

Pump manufacturers do not generally use the dimensionless specific speed, but define it by the equation:

$$N_s' = \frac{NQ^{1/2}}{h^{3/4}} \tag{5.2}$$

where  $N_s'$  = revolutions per minute (rpm),

Q = flow, US gal/min,

h = head. ft.

Values of the non-dimensional specific speed, as defined by equation 5.1, can be converted to the form defined by equation 5.2 by multiplying by  $1.73 \times 10^4$ .

The specific speed for centrifugal pumps (equation 5.2) usually lies between 400 and 10,000, depending on the type of impeller. Generally, pump impellers are classified as radial for specific speeds between 400 and 1000, mixed flow between 1500 and 7000, and

axial above 7000. Doolin (1977) states that below a specific speed of 1000 the efficiency of single-stage centrifugal pumps is low and multi-stage pumps should be considered.

For a detailed discussion of the factors governing the selection of the best centrifugal pump for a given duty the reader should refer to the articles by De Santis (1976), Neerkin (1974), Jacobs (1965) or Walas (1983).

Positive displacement, reciprocating, pumps are normally used where a high head is required at a low flow-rate. Holland and Chapman (1966) review the various types of positive displacement pumps available and discuss their applications.

A general guide to the selection, installation and operation of pumps for the processes industries is given by McNaughton (1985).

The selection of the pump cannot be separated from the design of the complete piping system. The total head required will be the sum of the dynamic head due to friction losses in the piping, fittings, valves and process equipment, and any static head due to differences in elevation.

The pressure drop required across a control valve will be a function of the valve design. Sufficient pressure drop must be allowed for when sizing the pump to ensure that the control valve operates satisfactorily over the full range of flow required. If possible, the control valve and pump should be sized together, as a unit, to ensure that the optimum size is selected for both. As a rough guide, if the characteristics are not specified, the control valve pressure drop should be taken as at least 30 per cent of the total dynamic pressure drop through the system, with a minimum value of 50 kPa (7 psi). The valve should be sized for a maximum flow rate 30 per cent above the normal stream flow-rate. Some of the pressure drop across the valve will be recovered downstream, the amount depending on the type of valve used.

Methods for the calculation of pressure drop through pipes and fittings are given in Section 5.4.2 and Volume 1, Chapter 3. It is important that a proper analysis is made of the system and the use of a calculation form (work sheet) to standardise pump-head calculations is recommended. A standard calculation form ensures that a systematic method of calculation is used, and provides a check list to ensure that all the usual factors have been considered. It is also a permanent record of the calculation. Example 5.8 has been set out to illustrate the use of a typical calculation form. The calculation should include a check on the net positive suction head (NPSH) available; see section 5.4.3.

Kern (1975) discusses the practical design of pump suction piping, in a series of articles on the practical aspects of piping system design published in the journal *Chemical Engineering* from December 1973 through to November 1975. A detailed presentation of pipe-sizing techniques is also given by Simpson (1968), who covers liquid, gas and two-phase systems. Line sizing and pump selection is also covered in a comprehensive article by Ludwig (1960).

# 5.4.2. Pressure drop in pipelines

The pressure drop in a pipe, due to friction, is a function of the fluid flow-rate, fluid density and viscosity, pipe diameter, pipe surface roughness and the length of the pipe. It can be calculated using the following equation:

$$\Delta P_f = 8f(L/d_i) \frac{\rho u^2}{2} \tag{5.3}$$

where  $\Delta P_f$  = pressure drop, N/m<sup>2</sup>,

f = friction factor,

L = pipe length, m,

 $d_i$  = pipe inside diameter, m,

 $\rho$  = fluid density, kg/m<sup>3</sup>,

u =fluid velocity, m/s.

The friction factor is a dependent on the Reynolds number and pipe roughness. The friction factor for use in equation 5.3 can be found from Figure 5.7.

The Renolds number is given by 
$$Re = (\rho \times u \times d_i)/\mu$$
 (5.4)

Values for the absolute surface roughness of commonly used pipes are given in Table 5.2. The parameter to use with Figure 5.7 is the relative roughness, given by:

relative roughness, e = absolute roughness/pipe inside diameter

*Note:* the friction factor used in equation 5.3 is related to the shear stress at the pipe wall, R, by the equation  $f = (R/\rho u^2)$ . Other workers use different relationships. Their charts for friction factor will give values that are multiples of those given by Figure 5.7. So, it is important to make sure that the pressure drop equation used matches the friction factor chart.

| Material              | Absolute roughness, mm |
|-----------------------|------------------------|
| Drawn tubing          | 0.0015                 |
| Commercial steel pipe | 0.046                  |
| Cast iron pipe        | 0.26                   |
| Concrete pipe         | 0.3 to 3.0             |

Table 5.2. Pipe roughness

# Miscellaneous pressure losses

Any obstruction to flow will generate turbulence and cause a pressure drop. So, pipe fittings, such as: bends, elbows, reducing or enlargement sections, and tee junctions, will increase the pressure drop in a pipeline.

There will also be a pressure drop due to the valves used to isolate equipment and control the fluid flow. The pressure drop due to these miscellaneous losses can be estimated using either of two methods:

- 1. As the number of velocity heads, K, lost at each fitting or valve. A velocity head is  $u^2/2g$ , metres of the fluid, equivalent to  $(u^2/2)\rho$ , N/m<sup>2</sup>. The total number of velocity heads lost due to all the fittings and valves is added to the pressure drop due to pipe friction.
- 2. As a length of pipe that would cause the same pressure loss as the fitting or valve. As this will be a function of the pipe diameter, it is expressed as the number of equivalent pipe diameters. The length of pipe to add to the actual pipe length is found by multiplying the total number of equivalent pipe diameters by the diameter of the pipe being used.

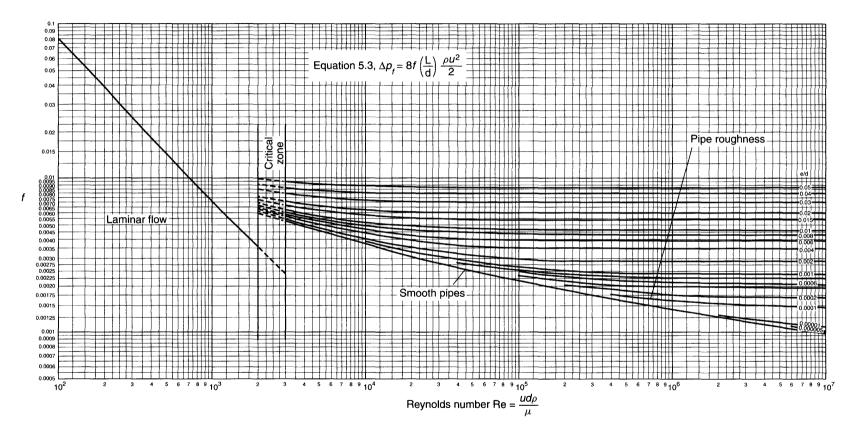



Figure 5.7. Pipe friction versus Reynolds number and relative roughness

| Fitting or valve              | K, number of velocity heads | number of equivalen pipe diameters |  |
|-------------------------------|-----------------------------|------------------------------------|--|
| 45° standard elbow            | 0.35                        | 15                                 |  |
| 45° long radius elbow         | 0.2                         | 10                                 |  |
| 90° standard radius elbow     | 0.6 - 0.8                   | 30-40                              |  |
| 90° standard long elbow       | 0.45                        | 23                                 |  |
| 90° square elbow              | 1.5                         | 75                                 |  |
| Tee-entry from leg            | 1.2                         | 60                                 |  |
| Tee-entry into leg            | 1.8                         | 90                                 |  |
| Union and coupling            | 0.04                        | 2                                  |  |
| Sharp reduction (tank outlet) | 0.5                         | 25                                 |  |
| Sudden expansion (tank inlet) | 1.0                         | 50                                 |  |
| Gate valve                    |                             |                                    |  |
| fully open                    | 0.15                        | 7.5                                |  |
| 1/4 open                      | 16                          | 800                                |  |
| 1/2 open                      | 4                           | 200                                |  |
| 3/4 open                      | 1                           | 40                                 |  |
| Globe valve, bevel seat-      |                             |                                    |  |
| fully open                    | 6                           | 300                                |  |
| 1/2 open                      | 8.5                         | 450                                |  |
| Plug valve - open             | 0.4                         | 18                                 |  |

Table 5.3. Pressure loss in pipe fittings and valves (for turbulent flow)

The number of velocity heads lost, or equivalent pipe diameter, is a characteristic of the particular fitting or type of valve used. Values can be found in handbooks and manufacturers' literature. The values for a selected number of fittings and valves are given in Table 5.3.

The two methods used to estimate the miscellaneous losses are illustrated in Example 5.1.

Pipe fittings are discussed in section 5.5.3, see also Perry *et al.* (1997). Valve types and applications are discussed in section 5.3.

# Example 5.1

A pipeline connecting two tanks contains four standard elbows, a plug valve that is fully open and a gate valve that is half open. The line is commercial steel pipe, 25 mm internal diameter, length 120 m.

The properties of the fluid are: viscosity 0.99 mNM<sup>-2</sup> s, density 998 kg/m<sup>3</sup>. Calculate the total pressure drop due to friction when the flow rate is 3500 kg/h.

## **Solution**

Cross-sectional area of pipe = 
$$\frac{\pi}{4} (25 \times 10^{-3})^2 = 0.491 \times 10^{-3} \text{m}^2$$
  
Fluid velocity,  $u = \frac{3500}{3600} \times \frac{1}{0.491 \times 10^{-3}} \times \frac{1}{998} = 1.98 \text{ m/s}$   
Reynolds number,  $Re = (998 \times 1.98 \times 25 \times 10^{-3})/0.99 \times 10^{-3}$   
 $= 49.900 = 5 \times 10^4$  (5.4)

Absolute roughness commercial steel pipe, Table 5.2 = 0.046 mm

Relative roughness =  $0.046/(25 \times 10^{-3}) = 0.0018$ , round to 0.002 From friction factor chart, Figure 5.7, f = 0.0032

## Miscellaneous losses

| fitting/valve        | number of velocity heads, <i>K</i> | equivalent pipe<br>diameters |  |
|----------------------|------------------------------------|------------------------------|--|
| entry                | 0.5                                | 25                           |  |
| elbows               | $(0.8 \times 4)$                   | $(40 \times 4)$              |  |
| globe valve, open    | 6.0                                | 300                          |  |
| gate valve, 1/2 open | 4.0                                | 200                          |  |
| exit                 | 1.0                                | _50                          |  |
| Total                | 14.7                               | 735                          |  |

## Method 1, velocity heads

A velocity head = 
$$u^2/2g = 1.98^2/(2 \times 9.8) = 0.20$$
 m of liquid.  
Head loss =  $0.20 \times 14.7 = 2.94$  m  
as pressure =  $2.94 \times 998 \times 9.8 = 28,754$  N/m<sup>2</sup>  
Friction loss in pipe,  $\Delta P_f = 8 \times 0.0032 \frac{(120)}{(25 \times 10^{-3})} 998 \times \frac{1.98^2}{2}$   
=  $240,388$  N/m<sup>2</sup> (5.3)  
Total pressure =  $28,754 + 240,388 = 269,142$  N/m<sup>2</sup> =  $270$  kN/m<sup>2</sup>

# Method 2, equivalent pipe diameters

Extra length of pipe to allow for miscellaneous losses

$$= 735 \times 25 \times 10^{-3} = 18.4 \text{ m}$$

So, total length for  $\Delta P$  calculation = 120 + 18.4 = 138.4 m

$$\Delta P_f = 8 \times 0.0032 \frac{(138.4)}{(25 \times 10^{-3})} 998 \times \frac{1.98^2}{2} = 277,247 \text{ N/m}^2$$

$$= 277 \text{ kN/m}^2$$
(5.3)

Note: the two methods will not give exactly the same result. The method using velocity heads is the more fundamentally correct approach, but the use of equivalent diameters is easier to apply and sufficiently accurate for use in design calculations.

# 5.4.3. Power requirements for pumping liquids

To transport a liquid from one vessel to another through a pipeline, energy has to be supplied to:

- 1. overcome the friction losses in the pipes;
- 2. overcome the miscellaneous losses in the pipe fittings (e.g. bends), valves, instruments etc.;
- 3. overcome the losses in process equipment (e.g. heat exchangers);
- 4. overcome any difference in elevation from end to end of the pipe;
- 5. overcome any difference in pressure between the vessels at each end of the pipeline.

The total energy required can be calculated from the equation:

$$g\Delta z + \Delta P/\rho - \Delta P_f/\rho - W = 0 \tag{5.5}$$

where W = work done, J/kg,

 $\Delta z = \text{difference in elevations } (z_1 - z_2), \text{ m},$ 

 $\Delta P = \text{difference in system pressures } (P_1 - P_2), \text{ N/m}^2,$ 

 $\Delta P_f$  = pressure drop due to friction, including miscellaneous losses, and equipment losses, (see section 5.4.2), N/m<sup>2</sup>,

 $\rho = \text{liquid density, kg/m}^3$ ,

g = acceleration due to gravity, m/s<sup>2</sup>.

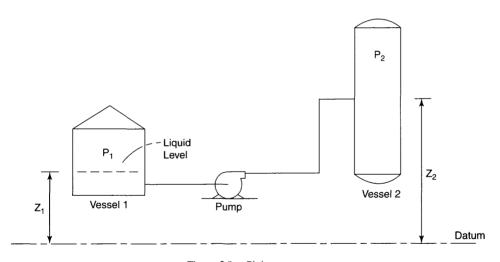



Figure 5.8. Piping system

If W is negative a pump is required; if it is positive a turbine could be installed to extract energy from the system.

The head required from the pump = 
$$\Delta P_f/\rho g - \Delta P/\rho g - \Delta z$$
 (5.5a)

The power is given by:

Power = 
$$(W \times m)/\eta$$
, for a pump (5.6a)

and = 
$$(W \times m) \times \eta$$
, for a turbine (5.6b)

where m = mass flow-rate, kg/s,

 $\eta = \text{efficiency} = \text{power out/power in.}$ 

The efficiency will depend on the type of pump used and the operating conditions. For preliminary design calculations, the efficiency of centrifugal pumps can be determined using Figure. 5.9.

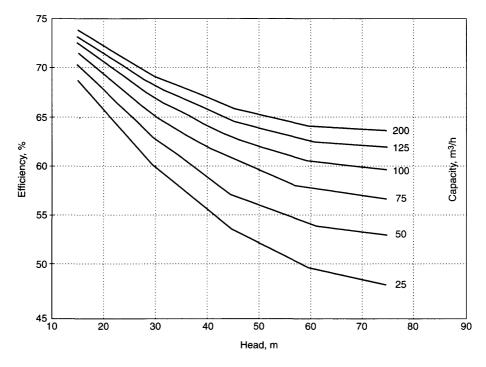



Figure 5.9. Centrifugal pump efficiency

# Example 5.2

A tanker carrying toluene is unloaded, using the ship's pumps, to an on-shore storage tank. The pipeline is 225 mm internal diameter and 900 m long. Miscellaneous losses due to fittings, valves, etc., amount to 600 equivalent pipe diameters. The maximum liquid level in the storage tank is 30 m above the lowest level in the ship's tanks. The ship's tanks are nitrogen blanketed and maintained at a pressure of 1.05 bar. The storage tank has a floating roof, which exerts a pressure of 1.1 bar on the liquid.

The ship must unload 1000 tonne within 5 hours to avoid demurrage charges. Estimate the power required by the pump. Take the pump efficiency as 70 per cent.

Physical properties of toluene: density 874 kg/m<sup>3</sup>, viscosity 0.62 mNm<sup>-2</sup> s.

## Solution

Cross-sectional area of pipe = 
$$\frac{\pi}{4}(225 \times 10^{-3})^2 = 0.0398 \text{ m}^2$$
  
Minimum fluid velocity =  $\frac{1000 \times 10^3}{5 \times 3600} \times \frac{1}{0.0398} \times \frac{1}{874} = 1.6 \text{ m/s}$ 

Reynolds number = 
$$(874 \times 1.6 \times 225 \times 10^{-3})/0.62 \times 10^{-3}$$
  
=  $507,484 = 5.1 \times 10^{5}$  (5.4)

Absolute roughness commercial steel pipe, Table 5.2 = 0.046 mm

Relative roughness = 0.046/225 = 0.0002

Friction factor from Figure 5.7, f = 0.0019

Total length of pipeline, including miscellaneous losses,

$$= 900 + 600 \times 225 \times 10^{-3} = 1035 \text{ m}$$
Friction loss in pipeline,  $\Delta P_f = 8 \times 0.0019 \times \left(\frac{1035}{225 \times 10^{-3}}\right) \times 874 \times \frac{1.62^2}{2}$ 

$$= \underline{78,221} \text{ N/m}^2$$
(5.3)

Maximum difference in elevation,  $(z_1 - z_2) = (0 - 30) = \underline{-30 \text{ m}}$ 

Pressure difference,  $(P_1 - P_2) = (1.05 - 1.1)10^5 = \frac{-5 \times 10^3}{10^3}$  N/m<sup>2</sup>

Energy balance

$$9.8(-30) + (-5 \times 103)/874 - (78,221)/874 - W = 0$$

$$W = \frac{-389.2}{} \text{ J/kg},$$
(5.5)

Power = 
$$(389.2 \times 55.56)/0.7 = 30,981 \text{ W}$$
, say  $31 \text{ kW}$ . (5.6a)

# 5.4.4. Characteristic curves for centrifugal pumps

The performance of a centrifugal pump is characterised by plotting the head developed against the flow-rate. The pump efficiency can be shown on the same curve. A typical plot is shown in Figure 5.10. The head developed by the pump falls as the flow-rate is increased. The efficiency rises to a maximum and then falls.

For a given type and design of pump, the performance will depend on the impeller diameter, the pump speed, and the number of stages. Pump manufacturers publish families of operating curves for the range of pumps they sell. These can be used to select the best pump for a given duty. A typical set of curves is shown in Figure 5.11.

# 5.4.5. System curve (operating line)

There are two components to the pressure head that has to be supplied by the pump in a piping system:

- 1. The static pressure, to overcome the differences in head (height) and pressure.
- 2. The dynamic loss due to friction in the pipe, the miscellaneous losses, and the pressure loss through equipment.

The static pressure difference will be independent of the fluid flow-rate. The dynamic loss will increase as the flow-rate is increased. It will be roughly proportional to the flow-rate squared, see equation 5.3. The system curve, or operating line, is a plot of the total

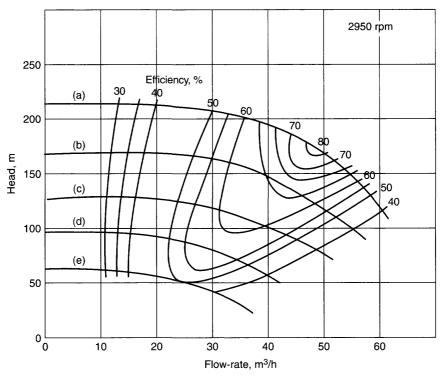



Figure 5.10. Pump characteristic for a range of impeller sizes (a) 250 mm (b) 225 mm (c) 200 (d) 175 mm (e) 150 mm.

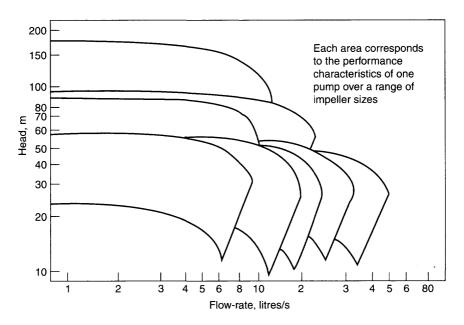



Figure 5.11. Family of pump curves

pressure head versus the liquid flow-rate. The operating point of a centrifugal pump can be found by plotting the system curve on the pump's characteristic curve, see Example 5.3.

When selecting a centrifugal pump for a given duty, it is important to match the pump characteristic with system curve. The operating point should be as close as is practical to the point of maximum pump efficiency, allowing for the range of flow-rate over which the pump may be required to operate.

Most centrifugal pumps are controlled by throttling the flow with a valve on the pump discharge, see Section 5.8.3. This varies the dynamic pressure loss, and so the position of the operating point on the pump characteristic curve.

Throttling the flow results in an energy loss, which is acceptable in most applications. However, when the flow-rates are large, the use of variable speed control on the pump drive should be considered to conserve energy.

A more detailed discussion of the operating characteristics of centrifugal and other types of pump is given by Walas (1990).

## Example 5.3

A process liquid is pumped from a storage tank to a distillation column, using a centrifugal pump. The pipeline is 80 mm internal diameter commercial steel pipe, 100 m long. Miscellaneous losses are equivalent to 600 pipe diameters. The storage tank operates at atmospheric pressure and the column at 1.7 bara. The lowest liquid level in the tank will be 1.5 m above the pump inlet, and the feed point to the column is 3 m above the pump inlet.

Plot the system curve on the pump characteristic given in Figure A and determine the operating point and pump efficiency.

Properties of the fluid: density 900 kg/m<sup>3</sup>, viscosity 1.36 mN m<sup>-2</sup>s.

#### Solution

Static head

Difference in elevation, 
$$\Delta z = 3.0 - 1.5 = 1.5$$
 m  
Difference in pressure,  $\Delta P = (1.7 - 1.013)10^5 = 0.7 \times 10^5 \text{ N/m}^2$   
as head of liquid =  $(0.7 \times 10^5)/(900 \times 9.8) = 7.9$  m  
Total static ead =  $1.5 + 7.9 = 9.4$  m

# Dynamic head

As an initial value, take the fluid velocity as 1 m/s, a reasonable value.

Cross-sectional area of pipe = 
$$\frac{\pi}{4} (80 \times 10^{-3})^2 = 5.03 \times 10^{-3} \text{ m}^2$$
  
Volumetric flow-rate =  $1 \times 5.03 \times 10^{-3} \times 3600 = 18.1 \text{ m}^3/\text{h}$   
Reynolds number =  $\frac{900 \times 1 \times 80 \times 10^{-3}}{1.36 \times 10^{-3}} = 5.3 \times 10^4$  (5.4)

Relative roughness = 0.46/80 = 0.0006

Friction factor from Figure 5.7, f = 0.0027

Length including miscellaneous loses =  $100 + (600 \times 80 \times 10^3) = 148 \text{ m}$ 

Pressure drop, 
$$\Delta P_f = 8 \times 0.0027 \frac{(148)}{(80 \times 10^{-3})} \times 900 \times \frac{1^2}{2} = \underline{17,982 \text{ N/m}^2}$$
  
= 17,982/(900 × 9.8) =  $\underline{\underline{2.03}}$  m liquid (5.3)

Total head = 9.4 + 2.03 = 11.4 m

To find the system curve the calculations were repeated for the velocities shown in the table below:

| velocity<br>m/s | flow-rate m <sup>3</sup> /h | static head<br>m | dynamic head<br>m | total head<br>m |
|-----------------|-----------------------------|------------------|-------------------|-----------------|
| 1               | 18.1                        | 9.4              | 2.0               | 11.4            |
| 1.5             | 27.2                        | 9.4              | 4.3               | 14.0            |
| 2.0             | 36.2                        | 9.4              | 6.8               | 16.2            |
| 2.5             | 45.3                        | 9.4              | 10.7              | 20.1            |
| 3.0             | 54.3                        | 9.4              | 15.2              | 24.6            |

Plotting these values on the pump characteristic gives the operating point as 18.5 m at  $40.0 \text{ m}^3/\text{h}$  and the pump efficiency as 79 per cent.

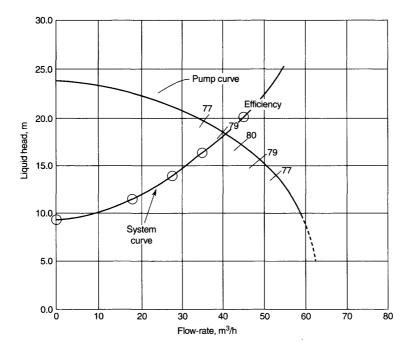



Figure A. Example 5.3

## 5.4.6. Net positive suction Head (NPSH)

The pressure at the inlet to a pump must be high enough to prevent cavitation occurring in the pump. Cavitation occurs when bubbles of vapour, or gas, form in the pump casing. Vapour bubbles will form if the pressure falls below the vapour pressure of the liquid.

The net positive suction head available  $(NPSH_{avail})$  is the pressure at the pump suction, above the vapour pressure of the liquid, expressed as head of liquid.

The net positive head required  $(NPSH_{reqd})$  is a function of the design parameters of the pump, and will be specified by the pump manufacturer. As a general guide, the NPSH should be above 3 m for pump capacities up to  $100 \text{ m}^3/\text{h}$ , and 6 m above this capacity. Special impeller designs can be used to overcome problems of low suction head; see Doolin (1977).

The net positive head available is given by the following equation:

$$NPSH_{avail} = P/\rho + H - P_f/\rho - P_v/\rho \tag{5.7}$$

where  $NPSH_{avail}$  = net positive suction head available at the pump suction, m,

P = the pressure above the liquid in the feed vessel, N/m<sup>2</sup>,

H = the height of liquid above the pump suction, m,

 $P_f$  = the pressure loss in the suction piping, N/m<sup>2</sup>,

 $P_v$  = the vapour pressure of the liquid at the pump suction, N/m<sup>2</sup>,

 $\rho=$  the density of the liquid at the pump suction temperature, kg/m³.

The inlet piping arrangement must be designed to ensure that  $NPSH_{avail}$  exceeds  $NPSH_{reqd}$  under all operating conditions.

The calculation of  $NPSH_{avail}$  is illustrated in Example 5.4.

# Example 5.4

Liquid chlorine is unloaded from rail tankers into a storage vessel. To provide the necessary NPSH, the transfer pump is placed in a pit below ground level. Given the following information, calculate the NPSH available at the inlet to the pump, at a maximum flow-rate of 16,000 kg/h.

The total length of the pipeline from the rail tanker outlet to the pump inlet is 50 m. The vertical distance from the tank outlet to the pump inlet is 10 m. Commercial steel piping, 50 mm internal diameter, is used.

Miscellaneous friction losses due to the tanker outlet constriction and the pipe fittings in the inlet piping, are equivalent to 1000 equivalent pipe diameters. The vapour pressure of chlorine at the maximum temperature reached at the pump is  $685 \text{ kN/m}^2$  and its density and viscosity,  $1286 \text{ kg/m}^3$  and  $0.364 \text{ mNm}^{-2}\text{s}$ . The pressure in the tanker is 7 bara.

## Solution

#### Friction losses

Miscellaneous losses 
$$= 1000 \times 50 \times 10^{-3} = 50 \text{ m of pipe}$$
Total length of inlet piping 
$$= 50 + 50 = 100 \text{ m}$$
Relative roughness, e/d 
$$= 0.046/50 = 0.001$$
Pipe cross-sectional area 
$$= \frac{\pi}{4}(50 \times 10^{-3})^2 = 1.96 \times 10^{-3} \text{ m}^2$$
Velocity, u 
$$= \frac{16,000}{3600} \times \frac{1}{1.96 \times 10^{-3}} \times \frac{1}{1286} = 1.76 \text{ m/s}$$
Reynolds number 
$$= \frac{1286 \times 1.76 \times 50 \times 10^{-3}}{0.364 \times 10^{-3}} = 3.1 \times 10^5 \tag{5.4}$$

Friction factor from Figure 5.7, f = 0.00225

$$\Delta P_f = 8 \times 0.00225 \frac{(100)}{(50 \times 10^{-3})} \times 1286 \times \frac{1.76^2}{2} = 71,703 \text{ N/m}^2$$
 (5.3)

$$NPSH = \frac{7 \times 10^5}{1286 \times 9.8} + 10 - \frac{71.703}{1286 \times 9.8} - \frac{685 \times 10^{-3}}{1286 \times 9.8}$$
$$= 55.5 + 10 - 5.7 - 54.4 = \underline{5.4 \text{ m}}$$
 (5.7)

# 5.4.7. Pump and other shaft seals

A seal must be made where a rotating shaft passes through the casing of a pump, or the wall of a vessel. The seal must serve several functions:

- 1. To keep the liquid contained.
- 2. To prevent ingress of incompatible fluids, such as air.
- 3. To prevent escape of flammable or toxic materials.

# Packed glands

The simplest, and oldest, form of seal is the packed gland, or stuffing box, Figure 5.12. Its applications range from: sealing the stems of the water taps in every home, to proving the seal on industrial pumps, agitator and valve shafts.

The shaft runs through a housing (gland) and the space between the shaft and the wall of the housing is filled with rings of packing. A gland follower is used to apply pressure to the packing to ensure that the seal is tight. Proprietary packing materials are used. A summary of the factors to be considered in the selection of packing materials for packed glands is given by Hoyle (1975). To make a completely tight seal, the pressure on the packing must be 2 to 3 times the system pressure. This can lead to excessive wear on rotating shafts and lower pressures are used; allowing some leakage, which lubricates the packing. So, packed glands should only be specified for fluids that are not toxic, corrosive, or inflammable.

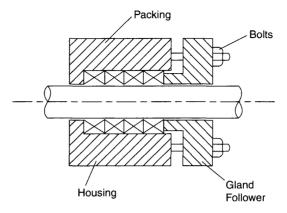



Figure 5.12. Packed gland

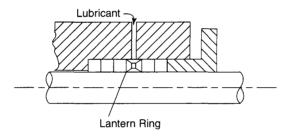



Figure 5.13. Packed gland with lantern ring

To provide positive lubrication, a lantern ring is often incorporated in the packing and lubricant forced through the ring into the packing, see Figure 5.13. With a pump seal, a flush is often take from the pump discharge and returned to the seal, through the lantern ring, to lubricate and cool the packing. If any leakage to the environment must be avoided a separate flush liquid can be used. A liquid must be selected that is compatible with the process fluid, and the environment; water is often used.

#### Mechanical seals

In the process industries the conditions at the pump seal are often harsh and more complex seals are needed. Mechanical face seals are used, Figure 5.14. They are generally referred to simply as mechanical seals, and are used only on rotating shafts.

The seal is formed between two flat faces, set perpendicular to the shaft. One face rotates with the shaft, the other is stationary. The seal is made, and the faces lubricated by a very thin film of liquid, about  $0.0001\mu m$  thick. A particular advantage of this type of seal is that it can provide a very effective seal without causing any wear on the shaft. The wear is transferred to the special seal faces. Some leakage will occur but it is small, normally only a few drops per hour.

Unlike a packed gland, a mechanical seal, when correctly installed and maintained, can be considered leak-tight.

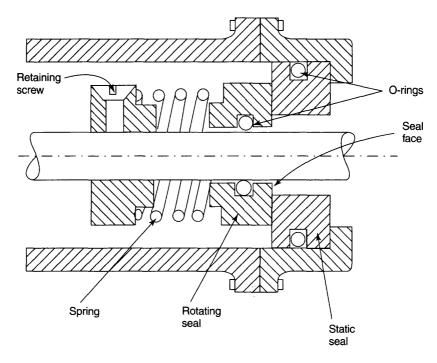



Figure 5.14. Basic mechanical seal

A great variety of mechanical seal designs are available, and seals can be found to suit virtually all applications. Only the basic mechanical seal is described below. Full details, and specifications, of the range of seals available and their applications can be obtained from manufacturers' catalogues.

#### The basic mechanical seal

The components of a mechanical seal, Figure 5.14 are:

- 1. A stationary sealing ring (mating ring).
- 2. A seal for the stationary ring, O-rings or gaskets.
- 3. A rotating seal ring (primary ring), mounted so that it can slide along the shaft to take up wear in the seal faces.
- 4. A secondary seal for the rotating ring mount; usually O-rings, or or chevron seals.
- 5. A spring to maintain contact pressure between the seal faces; to push the faces together,
- A thrust support for the spring; either a collar keyed to the shaft or a step in the shaft.

The assembled seal is fitted into a gland housing (stuffing box) and held in place by a retaining ring (gland plate).

Mechanical seals are classified as inside or outside, depending on whether, the primary (rotating ring) is located inside the housing; running in the fluid, or, outside. Outside seals

are easier to maintain, but inside seals are more commonly used in the process industries, as it is easier to lubricate and flush this type.

#### Double seals

Where it is necessary to prevent any leakage of fluid to the atmosphere, a double mechanical seal is used. The space between the two seals is flushed with a harmless fluid, compatible with the process fluid, and provides a buffer between the two seals.

## Seal-less pumps (canned pumps)

Pumps that have no seal on the shaft between the pump and the drive motor are available. They are used for severe duties, where it is essential that there is no leakage into the process fluid, or the environment.

The drive motor and pump are enclosed in a single casing and the stator windings and armature are protected by metal cans; they are usually referred to as canned pumps. The motor runs in the process fluid. The use of canned pumps to control environmental pollution is discussed by Webster (1979).

## 5.5. MECHANICAL DESIGN OF PIPING SYSTEMS

## 5.5.1. Wall thickness: pipe schedule

The pipe wall thickness is selected to resist the internal pressure, with an allowance for corrosion. Processes pipes can normally be considered as thin cylinders; only high-pressure pipes, such as high-pressure steam lines, are likely to be classified as thick cylinders and must be given special consideration (see Chapter 13).

The British Standard 5500 gives the following formula for pipe thickness:

$$t = \frac{Pd}{20\sigma_d + P} \tag{5.8}$$

where P = internal pressure, bar,

d = pipe od, mm,

 $\sigma_d$  = design stress at working temperature, N/mm<sup>2</sup>.

Pipes are often specified by a schedule number (based on the thin cylinder formula). The schedule number is defined by:

Schedule number = 
$$\frac{P_s \times 1000}{\sigma_s}$$
 (5.9)

 $P_s$  = safe working pressure, lb/in<sup>2</sup> (or N/mm<sup>2</sup>),

 $\sigma_s$  = safe working stress, lb/in<sup>2</sup> (or N/mm<sup>2</sup>).

Schedule 40 pipe is commonly used for general purposes.

Full details of the preferred dimensions for pipes can be found in the appropriate Handbook and Standards. The main United Kingdom code for pipes and piping systems is the British Standard is BS 1600.

The UK pipe schedule numbers are the same as the American (US). A summary of the US standards is given in Perry et al. (1997).

## Example 5.5

Estimate the safe working pressure for a 4 in. (100 mm) dia., schedule 40 pipe, carbon steel, butt welded, working temperature 100°C. The safe working stress for butt welded steel pipe up to 120°C is 6000 lb/in² (41.4 N/mm²).

## Solution

$$P_s = \frac{\text{(schedule no.)} \times \sigma_s}{1000} = \frac{40 \times 6000}{1000} = \frac{240 \text{ lb/in}^2}{1000} = \frac{1656 \text{ kN/m}^2}{1000}$$

## 5.5.2. Pipe supports

Over long runs, between buildings and equipment, pipes are usually carried on pipe racks. These carry the main process and service pipes, and are laid out to allow easy access to the equipment.

Various designs of pipe hangers and supports are used to support individual pipes. Details of typical supports can be found in the books by Perry *et al.* (1997) and Holmes (1973). Pipe supports frequently incorporate provision for thermal expansion.

# 5.5.3. Pipe fittings

Pipe runs are normally made up from lengths of pipe, incorporating standard fittings for joints, bends and tees. Joints are usually welded but small sizes may be screwed. Flanged joints are used where this is a more convenient method of assembly, or if the joint will have to be frequently broken for maintenance. Flanged joints are normally used for the final connection to the process equipment, valves and ancillary equipment.

Details of the standard pipe fittings, welded, screwed and flanged, can be found in manufacturer's catalogues and in the appropriate national standards. The standards for metal pipes and fittings are discussed by Masek (1968).

# 5.5.4. Pipe stressing

Piping systems must be designed so as not to impose unacceptable stresses on the equipment to which they are connected.

Loads will arise from:

- 1. Thermal expansion of the pipes and equipment.
- 2. The weight of the pipes, their contents, insulation and any ancillary equipment.
- 3. The reaction to the fluid pressure drop.
- 4. Loads imposed by the operation of ancillary equipment, such as relief valves.
- 5. Vibration.

Thermal expansion is a major factor to be considered in the design of piping systems. The reaction load due to pressure drop will normally be negligible. The dead-weight loads can be carried by properly designed supports.

Flexibility is incorporated into piping systems to absorb the thermal expansion. A piping system will have a certain amount of flexibility due to the bends and loops required by the layout. If necessary, expansion loops, bellows and other special expansion devices can be used to take up expansion.

A discussion of the methods used for the calculation of piping flexibility and stress analysis are beyond the scope of this book. Manual calculation techniques, and the application of computers in piping stress analysis, are discussed in Chapter 12 of the handbook edited by Holmes (1973). Other texts which give methods for the flexibility analysis of piping systems are those by King (1967) and the M. W. Kellog Co. (1964).

## 5.5.5. Layout and design

An extensive discussion of the techniques used for piping system design and specification is beyond the scope of this book. The subject is covered thoroughly in the books by Sherwood (1991), Kentish (1982a) (1982b), and Lamit (1981); see also Perry and Green (1984).

## 5.6. PIPE SIZE SELECTION

If the motive power to drive the fluid through the pipe is available free, for instance when pressure is let down from one vessel to another or if there is sufficient head for gravity flow, the smallest pipe diameter that gives the required flow-rate would normally be used.

If the fluid has to be pumped through the pipe, the size should be selected to give the least annual operating cost.

Typical pipe velocities and allowable pressure drops, which can be used to estimate pipe sizes, are given below:

|                               | Velocity m/s | $\Delta P$ kPa/m |
|-------------------------------|--------------|------------------|
| Liquids, pumped (not viscous) | 1-3          | 0.5              |
| Liquids, gravity flow         |              | 0.05             |
| Gases and vapours             | 15-30        | 0.02 per cent of |
|                               |              | line pressure    |
| High-pressure steam, >8 bar   | 30-60        |                  |

Rase (1953) gives expressions for design velocities in terms of the pipe diameter. His expressions, converted to SI units, are:

| Pump discharge  | 0.06d + 0.4  m/s |
|-----------------|------------------|
| Pump suction    | 0.02d + 0.1  m/s |
| Steam or vapour | 0.2d m/s         |

where d is the internal diameter in mm.

Simpson (1968) gives values for the optimum velocity in terms of the fluid density. His values, converted to SI units and rounded, are:

| Fluid density kg/m <sup>3</sup> | Velocity m/s |
|---------------------------------|--------------|
| 1600                            | 2.4          |
| 800                             | 3.0          |
| 160                             | 4.9          |
| 16                              | 9.4          |
| 0.16                            | 18.0         |
| 0.016                           | 34.0         |

The maximum velocity should be kept below that at which erosion is likely to occur. For gases and vapours the velocity cannot exceed the critical velocity (sonic velocity) (see Volume 1, Chapter 4) and would normally be limited to 30 per cent of the critical velocity.

## Economic pipe diameter

The capital cost of a pipe run increases with diameter, whereas the pumping costs decrease with increasing diameter. The most economic pipe diameter will be the one which gives the lowest annual operating cost. Several authors have published formulae and nomographs for the estimation of the economic pipe diameter, Genereaux (1937), Peters and Timmerhaus (1968) (1991), Nolte (1978) and Capps (1995). Most apply to American practice and costs, but the method used by Peters and Timmerhaus has been modified to take account of UK prices (Anon, 1971).

The formulae developed in this section are presented as an illustration of a simple optimisation problem in design, and to provide an estimate of economic pipe diameter that is based on UK costs and in SI units. The method used is essentially that first published by Genereaux (1937).

The cost equations can be developed by considering a 1 metre length of pipe.

The purchase cost will be roughly proportional to the diameter raised to some power.

Purchase cost = 
$$Bd^n \pounds/m$$

The value of the constant B and the index n depend on the pipe material and schedule. The installed cost can be calculated by using the factorial method of costing discussed in Chapter 6.

Installed cost = 
$$Bd^n(1+F)$$

where the factor F includes the cost of valves, fittings and erection, for a typical run of the pipe.

The capital cost can be included in the operating cost as an annual capital charge. There will also be an annual charge for maintenance, based on the capital cost.

$$Cp = Bd^{n}(1+F)(a+b)$$
 (5.10)

where Cp = capital cost portion of the annual operating cost, £,

a = capital charge, per cent/100,

b = maintenance costs, per cent/100.

The power required for pumping is given by:

Power = volumetric flow-rate  $\times$  pressure drop.

Only the friction pressure drop need be considered, as any static head is not a function of the pipe diameter.

To calculate the pressure drop the pipe friction factor needs to be known. This is a function of Reynolds number, which is in turn a function of the pipe diameter. Several expressions have been proposed for relating friction factor to Reynolds number. For simplicity the relationship proposed by Genereaux (1937) for turbulent flow in clean commercial steel pipes will be used.

$$f = 0.04Re^{-0.16}$$

where f is the Fanning friction factor =  $2(R/\rho u^2)$ .

Substituting this into the Fanning pressure drop equation gives:

$$\Delta P = 4.13 \times 10^{10} G^{1.84} \mu^{0.16} \rho^{-1} d^{-4.84}$$
(5.11)

where  $\Delta P$  = pressure drop, kN/m<sup>2</sup> (kPa),

G = flow rate, kg/s,

 $\rho = \text{density}, \text{ kg/m}^3,$ 

 $\mu = \text{viscosity}, \text{ m Nm}^{-2} \text{ s}$ 

d = pipe id, mm.

The annual pumping costs will be given by:

$$Cf = \frac{Ap}{E} \Delta P \frac{G}{\rho}$$

where A = plant attainment, hours/year,

 $p = \cos t \text{ of power, } \pounds/kWh,$ 

E = pump efficiency, per cent/100.

Substituting from equation 5.11

$$Cf = \frac{Hp}{E} 4.13 \times 10^{10} G^{2.84} \mu^{0.16} \rho^{-2} d^{-4.84}$$
 (5.12)

The total annual operating cost Ct = Cp + Cf.

Adding equations 5.10 and 5.12, differentiating, and equating to zero to find the pipe diameter to give the minimum cost gives:

$$d, \text{ optimum} = \left[ \frac{2 \times 10^{11} \times A pG^{2.84} \mu^{0.16} \rho^{-2}}{EnB(1+F)(a+b)} \right]^{1/(4.84+n)}$$
(5.13)

Equation 5.13 is a general equation and can be used to estimate the economic pipe diameter for any particular situation. It can be set up on a spreadsheet and the effect of the various factors investigated.

The equation can be simplified by substituting typical values for the constants.

A The normal attainment for a chemical process plant will be between 90–95%, so take the operating hours per year as 8000.

- E Pump and compressor efficiencies will be between 50 to 70%, so take 0.6.
- p Use the current cost of power, 0.055 £/kWh (mid-1992).
- F This is the most difficult factor to estimate. Other authors have used values ranging from 1.5 (Peters and Timmerhaus (1968) to 6.75 Nolte (1978)). It is best taken as a function of the pipe diameter; as has been done to derive the simplified equations given below.
- B, n Can be estimated from the current cost of piping.
- a Will depend on the current cost of capital, around 10% in mid-1992.
- b A typical figure for process plant will be 5%, see Chapter 6.
- F, B, and n have been estimated from cost data published by the Institution of Chemical Engineers, IChemE (1987), updated to mid-1992. This includes the cost of fittings, installation and testing. A log-log plot of the data gives the following expressions for the installed cost:

Carbon steel, 15 to 350 mm 27 
$$d^{0.55} \, \pounds/m$$
  
Stainless steel, 15 to 350 mm 31  $d^{0.62} \, \pounds/m$ 

Substitution in equation 5.12 gives, for carbon steel:

d, optimum = 366 
$$G^{0.53}\mu^{0.03}\rho^{-0.37}$$

Because the exponent of the viscosity term is small, its value will change very little over a wide range of viscosity

$$\mu = 10^{-5} \text{ Nm}^{-2} \text{s} (0.01 \text{ cp}), \mu^{0.03} = 0.71$$
  
 $\mu = 10^{-2} \text{ Nm}^{-2} \text{s} (10 \text{ cp}), \mu^{0.03} = 0.88$ 

Taking a mean value of 0.8, gives the following equations for the optimum diameter, for turbulent flow:

Carbon steel pipe:

at

$$d$$
, optimum = 293  $G^{0.53} \rho^{-0.37}$  (5.14)

Stainless steel pipe:

$$d$$
, optimum = 260  $G^{0.52} \rho^{-0.37}$  (5.15)

Equations 5.14 and 5.15 can be used to make an approximate estimate of the economic pipe diameter for normal pipe runs. For a more accurate estimate, or if the fluid or pipe run is unusual, the method used to develop equation 5.13 can be used, taking into account the special features of the particular pipe run.

The optimum diameter obtained from equations 5.14 and 5.15 should remain valid with time. The cost of piping depends on the cost power and the two costs appear in the equation as a ration raised to a small fractional exponent.

Equations for the optimum pipe diameter with laminar flow can be developed by using a suitable equation for pressure drop in the equation for pumping costs.

The approximate equations should not be used for steam, as the quality of steam depends on its pressure, and hence the pressure drop.

Nolte (1978) gives detailed methods for the selection of economic pipe diameters, taking into account all the factors involved. He gives equations for liquids, gases, steam and two-phase systems. He includes in his method an allowance for the pressure drop due to fittings and valves, which was neglected in the development of equation 5.12, and by most other authors.

The use of equations 5.14 and 5.15 are illustrated in Examples 5.6 and 5.7, and the results compared with those obtained by other authors. Peters and Timmerhaus's formulae give larger values for the economic pipe diameters, which is probably due to their low value for the installation cost factor, F.

## Example 5.6

Estimate the optimum pipe diameter for a water flow rate of 10 kg/s, at 20°C. Carbon steel pipe will be used. Density of water 1000 kg/m<sup>3</sup>.

## Solution

d, optimum = 
$$293 \times (10)^{0.53} 1000^{-0.37}$$
 (5.14)  
=  $77.1 \text{ mm}$  use 80-mm pipe.

Economic diameter

Viscosity of water at  $20^{\circ}$ C =  $1.1 \times 10^{-3}$  Ns/m<sup>2</sup>.

$$Re = \frac{4G}{\pi\mu d} = \frac{4 \times 10}{\pi \times 1.1 \times 10^{-3} \times 80 \times 10^{-3}} = 1.45 \times 10^{5}$$

>4000, so flow is turbulent.

Comparison of methods:

| Equation 5.14                | 180 mm         |
|------------------------------|----------------|
| Peters and Timmerhaus (1991) | 4 in. (100 mm) |
| Nolte (1978)                 | 80 mm          |

# Example 5.7

Estimate the optimum pipe diameter for a flow of HCl of 7000 kg/h at 5 bar, 15°C, stainless steel pipe. Molar volume 22.4 m<sup>3</sup>/kmol, at 1 bar, 0°C.

#### Solution

Molecular weight HCl = 36.5.

Density at operating conditions = 
$$\frac{36.5}{22.4} \times \frac{5}{1} \times \frac{273}{288} = \frac{7.72 \text{ kg/m}^3}{288}$$

Optimum diameter = 
$$260 \left(\frac{7000}{3600}\right)^{0.52} 7.72^{-0.37}$$
 (5.15)  
=  $\underline{172.4 \text{ mm}}$ 

use 180-mm pipe.

Viscosity of HCl 0.013 m Ns/m<sup>2</sup>

$$Re = \frac{4}{\pi} \times \frac{7000}{3600} \times \frac{1}{0.013 \times 10^{-3} \times 180 \times 10^{-3}} = \frac{1.06 \times 10^{6}}{1.000}$$
, turbulent

Comparison of methods:

Economic diameter

Equation 5.15 Peters and Timmerhaus (1991) Nolte (1978) 180 mm 9 in. (220 mm) carbon steel 7 in. (180 mm) carbon steel

# Example 5.8

Calculate the line size and specify the pump required for the line shown in Figure 5.15; material ortho-dichlorobenzene (ODCB), flow-rate 10,000 kg/h, temperature 20°C, pipe material carbon steel.

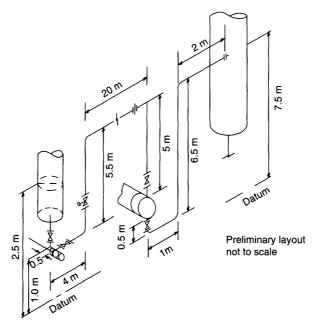



Figure 5.15. Piping isometric drawing (Example 5.8)

#### Solution

ODCB density at  $20^{\circ}$ C =  $1306 \text{ kg/m}^3$ . Viscosity:  $0.9 \text{ mNs/m}^2$  (0.9 cp).

# Estimation of pipe diameter required

typical velocity for liquid 2 m/s mass flow =  $\frac{10,000}{3600}$  = 2.78 kg/s volumetric flow =  $\frac{2.78}{1306}$  = 2.13 × 10<sup>-3</sup> m<sup>3</sup>/s area of pipe =  $\frac{\text{volumetric flow}}{\text{velocity}}$  =  $\frac{2.13 \times 10^{-3}}{2}$  = 1.06 × 10<sup>-3</sup> m<sup>2</sup> diameter of pipe =  $\sqrt{\left(1.06 \times 10^{-3} \times \frac{4}{\pi}\right)}$  = 0.037 m

Or, use economic pipe diameter formula:

d, optimum = 
$$293 \times 2.78^{0.53} \times 1306^{-0.37}$$
 (5.14)  
=  $35.4 \text{ mm}$ 

=37 mm

Take diameter as 40 mm

cross-sectional area = 
$$\frac{\pi}{4}$$
 (40 × 10<sup>-3</sup>) = 1.26 × 10<sup>-3</sup> m<sup>2</sup>

# Pressure drop calculation

fluid velocity = 
$$\frac{2.13 \times 10^{-3}}{1.26 \times 10^{-3}}$$
 = 1.70 m/s

Friction loss per unit length,  $\Delta f_1$ :

$$Re = \frac{1306 \times 1.70 \times 40 \times 10^{-3}}{0.9 \times 10^{-3}} = 9.9 \times 10^{4}$$
 (5.5)

Absolute roughness commercial steel pipe, table 5.2 = 0.46 mm Relative roughness, e/d = 0.046/40 = 0.001 Friction factor from Figure 5.7, f = 0.0027

$$\Delta f_1 = 8 \times 0.0027 \times \frac{(1)}{(40 \times 10^{-3})} \times 1306 \times \frac{1.7^2}{2} = 1019 \text{ N/m}^2$$
 (5.3)  
= 1.02 kPa

Design for a maximum flow-rate of 20 per cent above the average flow.

Friction loss = 
$$1.02 \times 1.2^2 = 1.5 \text{ kPa/m}$$

#### Miscellaneous losses

Take as equivalent pipe diameters. All bends will be taken as 90° standard radius elbow. Line to pump suction:

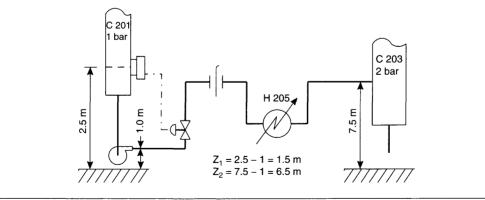
= 1.5 m

bend, 
$$1 \times 30 \times 40 \times 10^{-3} = 1.2 \text{ m}$$
  
valve,  $1 \times 18 \times 40 \times 10^{-3} = 0.7 \text{ m}$   
 $\frac{3.4 \text{ m}}{3.4 \text{ m}}$   
entry loss =  $\frac{\rho u^2}{2}$  (see Section 5.4.2)  
at maximum design velocity =  $\frac{1306(1.7 \times 1.2)^2}{2 \times 10^3} = 2.7 \text{ kPa}$ 

Control valve pressure drop, allow normal 
$$(\times 1.2^2)$$
 maximum 200 kPa
Heat exchanger, allow normal  $(\times 1.2^2)$  maximum 100 kPa
Orifice, allow normal  $(\times 1.2^2)$  maximum 22 kPa

length

Line from pump discharge:


length = 
$$4 + 5.5 + 20 + 5 + 0.5 + 1 + 6.5 + 2 = 44.5 \text{ m}$$
  
bends,  $6 \times 30 \times 40 \times 10^{-3} = 7.2 \text{ m} = 7.2 \text{ m}$   
valves,  $3 \times 18 \times 40 \times 10^{-3} = 2.2 \text{ m} = 2.2 \text{ m}$ 

The line pressure-drop calculation is set out on the calculation sheet shown in Table 5.4. Pump selection:

flow-rate = 
$$2.13 \times 10^{-3} \times 3600 = 7.7 \text{ m}^3/\text{h}$$
  
differential head, maximum,  $\underline{44 \text{ m}}$   
select single-stage centrifugal (Figure 5.6)

Table 5.4. Line calculation form (Example 5.4)

|                  |                    |                | Pun   | p and lir | e calculatio     | n sheet            |          |       |       |
|------------------|--------------------|----------------|-------|-----------|------------------|--------------------|----------|-------|-------|
| Job no.          | Sheet no.          | By RKS, 7/7/79 |       | Checked   |                  | ,                  |          |       |       |
| 4415A            | 1                  |                |       |           |                  |                    |          |       |       |
| Fluid            |                    |                | ODCB  |           |                  | DISCHARGE CA       | LCULATIO | N     |       |
| Temperatu        | ıre °C             |                | 20    |           | L                | ine size mm 40     |          |       |       |
| Density k        | g/m <sup>3</sup>   |                | 1306  |           |                  | Flow               | Norm.    | Max.  | Units |
| Viscosity        | mNs/m <sup>2</sup> |                | 0.9   |           | $u_2$            | Velocity           | 1.7      | 2.0   | m/s   |
| Normal fl        | ow kg/s            |                | 2.78  |           | $\Delta f_2$     | Friction loss      | 1.0      | 1.5   | kPa/m |
| Design m         | ax. flow kg/s      |                | 3.34  |           | L <sub>2</sub>   | Line length        | 54       | _     | m     |
|                  |                    | •              |       |           | $\Delta f_2 L_2$ | Line loss          | 54       |       | kPa   |
|                  | SUCTION CAI        | CULATIO        | ON    |           |                  | Orifice            | 15       | 22    | kPa   |
| Li               | ne size mm         |                | 40    |           | 30%              | Control valve      | 140      | 200   | kPa   |
|                  | Flow               | Norm.          | Max.  | Units     |                  | Equipment          |          |       |       |
| u <sub>1</sub>   | Velocity           | 1.7            | 2.0   | m/s       |                  | (a) Heat ex.       | 70       | 100   | kPa   |
| $\Delta f_1$     | Friction loss      | 1.0            | 1.5   | kPa/m     |                  | (b)                | -        |       | kPa   |
| Li               | Line length        | 3.4            | _     | m         |                  | (c)                | _        | -     | kPa   |
| $\Delta f_1 L_1$ | Line loss          | 3.4            | 5.1   | kPa       |                  | (6) Dynamic loss   | 279      | 403   | kPa   |
| $\rho u_1^2/2$   | Entrance           | 1.9            | 2.7   | kPa       |                  |                    |          |       |       |
| (40 kPa)         | Strainer           | _              | _     | kPa       | $z_2$            | Static head        | 6.5      | _     | m     |
|                  | (1) Sub-total      | 5.3            | 7.8   | kPa       | $\rho g z_2$     |                    | 85       | 85    | kPa   |
|                  |                    |                |       |           |                  | Equip. press (max) | 200      | 200   | kPa   |
| $z_1$            | Static head        | 1.5            | 1.5   | m         |                  | Contingency        | None     | None  | kPa   |
| $\rho g z_1$     |                    | 19.6           | 19.6  | kPa       |                  | (7) Sub-total      | 285      | 285   | kPa   |
|                  | Equip. press       | 100            | 100   | kPa       | (7) + (6)        | Discharge press.   | 564      | 685   | kPa   |
|                  | (2) Sub-total      | 119.6          | 119.6 | kPa       | (3)              | Suction press.     | 114.3    | 111.8 | kPa   |
|                  |                    |                |       |           |                  | (8) Diff. press.   | 450      | 576   | kPa   |
| (2) - (1)        |                    | 114.3          | 111.8 | kPa       | (8)/ρg           |                    | 34       | 44    | l m   |
|                  | (4) VAP. PRESS.    | 0.1            | 0.1   | kPa       | (o)/pg           |                    | 34       | 44    | 111   |
| (3) - (4)        | (5) NPSH           | 114.2          | 111.7 | kPa       | Valve/(6)        | Control valve      |          |       |       |
| (5)/ρg           |                    | 8.7            | 8.6   | m         | valve/(0)        | % Dyn. loss        | 50%      |       |       |



| Table 5.5. | Pump | Specification | Sheet | (Example | 5.8) |
|------------|------|---------------|-------|----------|------|
|------------|------|---------------|-------|----------|------|

|                               | Pump Specification               |
|-------------------------------|----------------------------------|
| Type:                         | Centrifugal                      |
| No. stages:                   | 1                                |
| Single/Double suction:        | Single                           |
| Vertical/Horizontal mounting: | Horizontal                       |
| Impeller type:                | Closed                           |
| Casing design press.:         | 600 kPa                          |
| design temp.:                 | 20°C                             |
| Driver:                       | Electric, 440 V, 50 c/s 3-phase. |
| Seal type:                    | Mechanical, external flush       |
| Max. flow:                    | $7.7  \text{m}^3/\text{h}$       |
| Diff. press.:                 | 600 kPa (47 m, water)            |

## 5.7. CONTROL AND INSTRUMENTATION

## 5.7.1. Instruments

Instruments are provided to monitor the key process variables during plant operation. They may be incorporated in automatic control loops, or used for the manual monitoring of the process operation. They may also be part of an automatic computer data logging system. Instruments monitoring critical process variables will be fitted with automatic alarms to alert the operators to critical and hazardous situations.

Comprehensive reviews of process instruments and control equipment are published periodically in the journal *Chemical Engineering*. These reviews give details of all the instruments and control hardware available commercially, including those for the on-line analysis of stream compositions, (Anon., 1969). Details of process instruments and control equipment can also be found in various handbooks, Perry *et al.* (1997) and Considine (1957).

It is desirable that the process variable to be monitored be measured directly; often, however, this is impractical and some dependent variable, that is easier to measure, is monitored in its place. For example, in the control of distillation columns the continuous, on-line, analysis of the overhead product is desirable but difficult and expensive to achieve reliably, so temperature is often monitored as an indication of composition. The temperature instrument may form part of a control loop controlling, say, reflux flow; with the composition of the overheads checked frequently by sampling and laboratory analysis.

# 5.7.2. Instrumentation and control objectives

The primary objectives of the designer when specifying instrumentation and control schemes are:

- 1. Safe plant operation:
  - (a) To keep the process variables within known safe operating limits.
  - (b) To detect dangerous situations as they develop and to provide alarms and automatic shut-down systems.
  - (c) To provide interlocks and alarms to prevent dangerous operating procedures.
- 2. Production rate:

To achieve the design product output.

- 3. Product quality:
  - To maintain the product composition within the specified quality standards.
- 4. Cost:

To operate at the lowest production cost, commensurate with the other objectives.

These are not separate objectives and must be considered together. The order in which they are listed is not meant to imply the precedence of any objective over another, other than that of putting safety first. Product quality, production rate and the cost of production will be dependent on sales requirements. For example, it may be a better strategy to produce a better-quality product at a higher cost.

In a typical chemical processing plant these objectives are achieved by a combination of automatic control, manual monitoring and laboratory analysis.

#### 5.7.3. Automatic-control schemes

The detailed design and specification of the automatic control schemes for a large project is usually done by specialists. The basic theory underlying the design and specification of automatic control systems is covered in several texts: Coughanowr (1991), Shinskey (1984) (1998) and Perry *et al.* (1997). The books by Murrill (1988) and Shinskey (1988) cover many of the more practical aspects of process control system design, and are recommended.

In this chapter only the first step in the specification of the control systems for a process will be considered: the preparation of a preliminary scheme of instrumentation and control, developed from the process flow-sheet. This can be drawn up by the process designer based on his experience with similar plant and his critical assessment of the process requirements. Many of the control loops will be conventional and a detailed analysis of the system behaviour will not be needed, nor justified. Judgement, based on experience, must be used to decide which systems are critical and need detailed analysis and design.

Some examples of typical (conventional) control systems used for the control of specific process variables and unit operations are given in the next section, and can be used as a guide in preparing preliminary instrumentation and control schemes.

#### Guide rules

The following procedure can be used when drawing up preliminary P and I diagrams:

- 1. Identify and draw in those control loops that are obviously needed for steady plant operation, such as:
  - (a) level controls,
  - (b) flow controls,
  - (c) pressure controls,
  - (d) temperature controls.
- 2. Identify the key process variables that need to be controlled to achieve the specified product quality. Include control loops using direct measurement of the controlled variable, where possible; if not practicable, select a suitable dependent variable.
- 3. Identify and include those additional control loops required for safe operation, not already covered in steps 1 and 2.

- 4. Decide and show those ancillary instruments needed for the monitoring of the plant operation by the operators; and for trouble-shooting and plant development. It is well worthwhile including additional connections for instruments which may be needed for future trouble-shooting and development, even if the instruments are not installed permanently. This would include: extra thermowells, pressure tappings, orifice flanges, and extra sample points.
- 5. Decide on the location of sample points.
- 6. Decide on the need for recorders and the location of the readout points, local or control room. This step would be done in conjunction with steps 1 to 4.
- 7. Decide on the alarms and interlocks needed; this would be done in conjunction with step 3 (see Chapter 9).

## 5.8. TYPICAL CONTROL SYSTEMS

## 5.8.1. Level control

In any equipment where an interface exists between two phases (e.g. liquid-vapour), some means of maintaining the interface at the required level must be provided. This may be incorporated in the design of the equipment, as is usually done for decanters, or by automatic control of the flow from the equipment. Figure 5.16 shows a typical arrangement for the level control at the base of a column. The control valve should be placed on the discharge line from the pump.

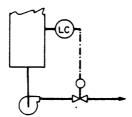



Figure 5.16. Level control

#### 5.8.2. Pressure control

Pressure control will be necessary for most systems handling vapour or gas. The method of control will depend on the nature of the process. Typical schemes are shown in Figures 5.17a, b, c, d (see p. 229). The scheme shown in Figure 5.17a would not be used where the vented gas was toxic, or valuable. In these circumstances the vent should be taken to a vent recovery system, such as a scrubber.

#### 5.8.3. Flow control

Flow control is usually associated with inventory control in a storage tank or other equipment. There must be a reservoir to take up the changes in flow-rate.

To provide flow control on a compressor or pump running at a fixed speed and supplying a near constant volume output, a by-pass control would be used, as shown in Figures 5.18a, b (see p. 230).

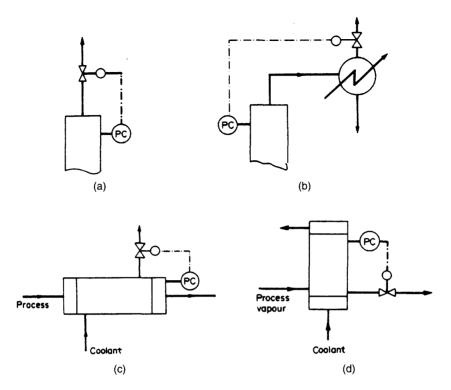



Figure 5.17. (a) Pressure control by direct venting (b) Venting of non-condensables after a condenser (c) Condenser pressure control by controlling coolant flow (d) Pressure control of a condenser by varying the heat-transfer area, area dependent on liquid level

# 5.8.4. Heat exchangers

Figure 5.19a (see p. 231) shows the simplest arrangement, the temperature being controlled by varying the flow of the cooling or heating medium.

If the exchange is between two process streams whose flows are fixed, by-pass control will have to be used, as shown in Figure 5.19b (see p. 231).

#### Condenser control

Temperature control is unlikely to be effective for condensers, unless the liquid stream is sub-cooled. Pressure control is often used, as shown in Figure 5.17d (see p. 229), or control can be based on the outlet coolant temperature.

# Reboiler and vaporiser control

As with condensers, temperature control is not effective, as the saturated vapour temperature is constant at constant pressure. Level control is often used for vaporisers; the controller controlling the steam supply to the heating surface, with the liquid feed to the vaporiser on flow control, as shown in Figure 5.20 (see p. 231). An increase in the feed results in an automatic increase in steam to the vaporiser to vaporise the increased flow and maintain the level constant.

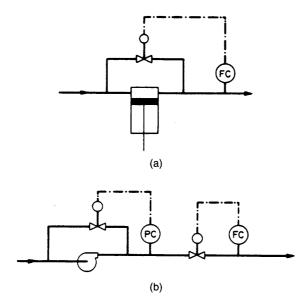



Figure 5.18. (a) Flow control for a reciprocating pump (b) Alternative scheme for a centrifugal compressor or pump

Reboiler control systems are selected as part of the general control system for the column and are discussed in Section 5.8.7.

#### 5.8.5. Cascade control

With this arrangement, the output of one controller is used to adjust the set point of another. Cascade control can give smoother control in situations where direct control of the variable would lead to unstable operation. The "slave" controller can be used to compensate for any short-term variations in, say, a service stream flow, which would upset the controlled variable; the primary (master) controller controlling long-term variations. Typical examples are shown in Figure 5.22e (see p. 233) and 5.23 (see p. 234).

#### 5.8.6. Ratio control

Ratio control can be used where it is desired to maintain two flows at a constant ratio; for example, reactor feeds and distillation column reflux. A typical scheme for ratio control is shown in Figure 5.21 (see p. 232).

#### 5.8.7. Distillation column control

The primary objective of distillation column control is to maintain the specified composition of the top and bottom products, and any side streams; correcting for the effects of disturbances in:

- 1. Feed flow-rate, composition and temperature.
- 2. Steam supply pressure.

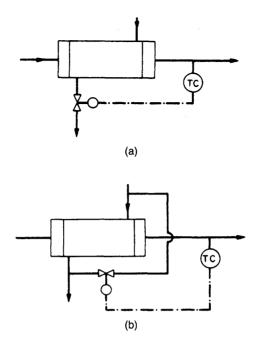



Figure 5.19. (a) Control of one fluid stream (b) By-pass control

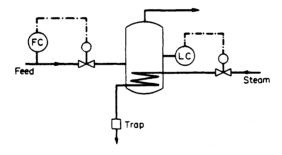



Figure 5.20. Vaporiser control

- 3. Cooling water pressure and header temperature.
- 4. Ambient conditions, which cause changes in internal reflux (see Chapter 11).

The compositions are controlled by regulating reflux flow and boil-up. The column overall material balance must also be controlled; distillation columns have little surge capacity (hold-up) and the flow of distillate and bottom product (and side-streams) must match the feed flows.

Shinsky (1984) has shown that there are 120 ways of connecting the five main parts of measured and controlled variables, in single loops. A variety of control schemes has been devised for distillation column control. Some typical schemes are shown in Figures 5.22a, b, c, d, e (see pp. 233, 234); ancillary control loops and instruments are not shown.

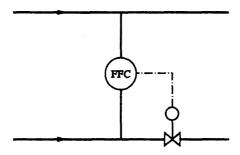



Figure 5.21. Ratio control

Distillation column control is discussed in detail by Parkins (1959), Bertrand and Jones (1961) and Shinskey (1984) Buckley *et al.* (1985).

Column pressure is normally controlled at a constant value. The use of variable pressure control to conserve energy has been discussed by Shinskey (1976).

The feed flow-rate is often set by the level controller on a preceding column. It can be independently controlled if the column is fed from a storage or surge tank.

Feed temperature is not normally controlled, unless a feed preheater is used.

Temperature is often used as an indication of composition. The temperature sensor should be located at the position in the column where the rate of change of temperature with change in composition of the key component is a maximum; see Parkins, (1959). Near the top and bottom of the column the change is usually small. With multicomponent systems, temperature is not a unique function of composition.

Top temperatures are usually controlled by varying the reflux ratio, and bottom temperatures by varying the boil-up rate. If reliable on-line analysers are available they can be incorporated in the control loop, but more complex control equipment will be needed.

Differential pressure control is often used on packed columns to ensure that the packing operates at the correct loading; see Figure 5.22*d* (see p. 233).

Additional temperature indicating or recording points should be included up the column for monitoring column performance and for trouble shooting.

## 5.8.8. Reactor control

The schemes used for reactor control depend on the process and the type of reactor. If a reliable on-line analyser is available, and the reactor dynamics are suitable, the product composition can be monitored continuously and the reactor conditions and feed flows controlled automatically to maintain the desired product composition and yield. More often, the operator is the final link in the control loop, adjusting the controller set points to maintain the product within specification, based on periodic laboratory analyses.

Reactor temperature will normally be controlled by regulating the flow of the heating or cooling medium. Pressure is usually held constant. Material balance control will be necessary to maintain the correct flow of reactants to the reactor and the flow of products and unreacted materials from the reactor. A typical reactor control scheme is shown in Figure 5.23 (see p. 234).

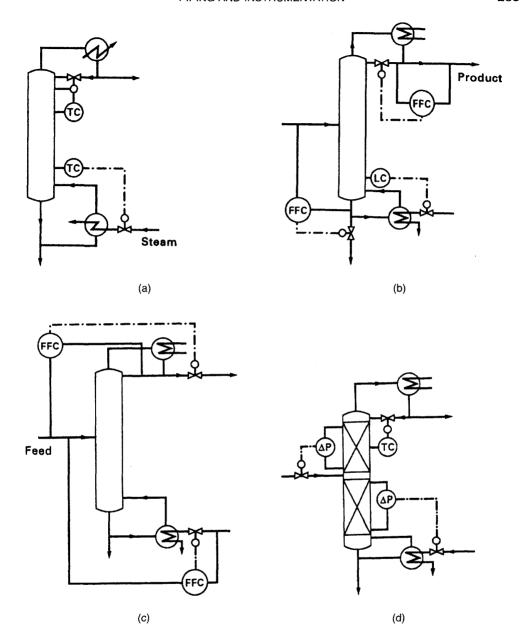



Figure 5.22. (a) Temperature pattern control. With this arrangement interaction can occur between the top and bottom temperature controllers (b) Composition control. Reflux ratio controlled by a ratio controller, or splitter box, and the bottom product as a fixed ratio of the feed flow (c) Composition control. Top product take-off and boil-up controlled by feed (d) Packed column, differential pressure control. Eckert (1964) discusses the control of packed columns

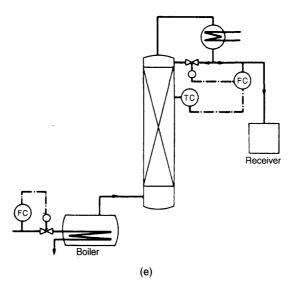



Figure 5.22. (e) Batch distillation, reflux flow cascaded with temperature to maintain constant top composition

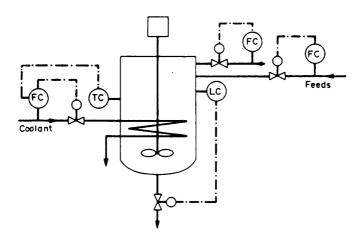



Figure 5.23. A typical stirred tank reactor control scheme, temperature: cascade control, and reagent: flow control

# 5.9. ALARMS AND SAFETY TRIPS, AND INTERLOCKS

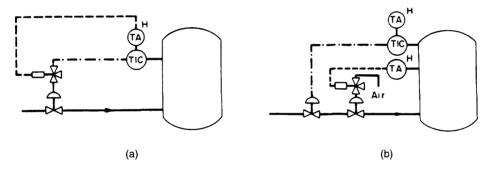
Alarms are used to alert operators of serious, and potentially hazardous, deviations in process conditions. Key instruments are fitted with switches and relays to operate audible and visual alarms on the control panels and annunciator panels. Where delay, or lack of response, by the operator is likely to lead to the rapid development of a hazardous situation, the instrument would be fitted with a trip system to take action automatically to avert the hazard; such as shutting down pumps, closing valves, operating emergency systems.

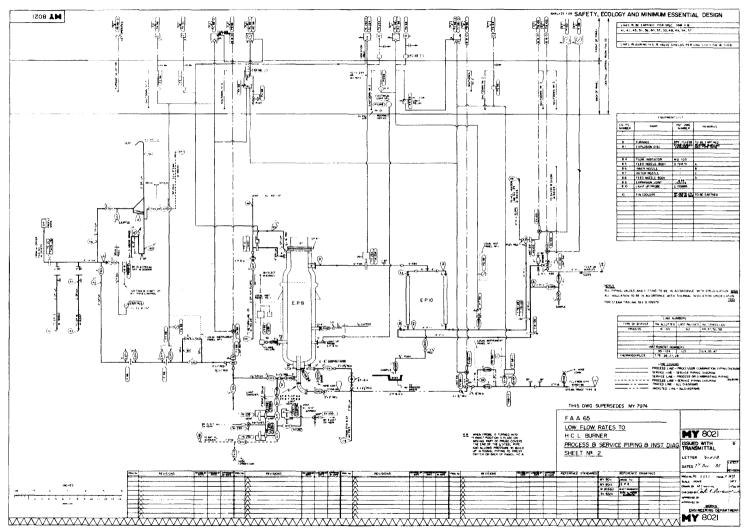
The basic components of an automatic trip system are:

- 1. A sensor to monitor the control variable and provide an output signal when a preset value is exceeded (the instrument).
- 2. A link to transfer the signal to the actuator, usually consisting of a system of pneumatic or electric relays.
- 3. An actuator to carry out the required action; close or open a valve, switch off a motor.

A description of some of the equipment (hardware) used is given by Rasmussen (1975).

A safety trip can be incorporated in a control loop; as shown in Figure 5.24a. In this system the high-temperature alarm operates a solenoid valve, releasing the air on the pneumatic activator, closing the valve on high temperature. However, the safe operation of such a system will be dependent on the reliability of the control equipment, and for potentially hazardous situations it is better practice to specify a separate trip system; such as that shown in Figure 5.24b. Provision must be made for the periodic checking of the trip system to ensure that the system operates when needed.





Figure 5.24. (a) Trip as part of control system (b) Separate shut-down trip

#### Interlocks

Where it is necessary to follow a fixed sequence of operations—for example, during a plant start-up and shut-down, or in batch operations—interlocks are included to prevent operators departing from the required sequence. They may be incorporated in the control system design, as pneumatic or electric relays, or may be mechanical interlocks. Various proprietary special lock and key systems are available.

# 5.10. COMPUTERS AND MICROPROCESSORS IN PROCESS CONTROL

Computers are being increasingly used for data logging, process monitoring and control. They have largely superseded the strip charts and analogue controllers seen in older plant. The long instrument panels and "mimic" flow-chart displays have been replaced by intelligent video display units. These provide a window on the process. Operators



and technical supervision can call up and display any section of the process to review the operating parameters and adjust control settings. Abnormal and alarm situations are highlighted and displayed.

Historical operating data is retained in the computer memory. Averages and trends can be displayed, for plant investigation and trouble shooting.

Software to continuously update and optimise plant performance can be incorporated in the computer control systems.

Programmable logic controllers are used for the control and interlocking of processes where a sequence of operating steps has to be carried out: such as, in batch processes, and in the start-up and shut down of continuous processes.

A detailed discussion of the application of digital computers and microprocessors in process control is beyond the scope of this volume. The use of computers and microprocessor based distributed control systems for the control of chemical process is covered by Kalani (1988).

### 5.11. REFERENCES

Anon. (1969) Chem. Eng., NY 76 (June 2nd) 136. Process instrument elements.

Anon. (1971) Brit. Chem. Eng. 16, 313. Optimum pipeline diameters by nomograph.

AUSTIN, D. G. (1979) Chemical Engineering Drawing Symbols (George Godwin).

BERTRAND, L. and JONES, J. B. (1961) Chem. Eng., NY 68 (Feb. 20th) 139. Controlling distillation columns.

BUCKLEY, P. S., LUYBEN, W. L. and SHUNTA, J. P. (1985) Design of Distillation Column Control Systems (Arnold).

BVAMA (1991) Valves and Actuators from Britain, 5th edn (British Valve and Actuator Manufacturers' Association).

CAPPS, R. W. (1995) Chem. Eng. NY, 102 (July) 102. Select the optimum pipe diameter.

CHAFLIN, S. (1974) Chem. Eng., NY 81 (Oct. 14th) 105. Specifying control valves.

CONSIDINE, D. M. (1957) Process Instruments and Control Handbook (McGraw-Hill).

COUGHANOWR, D. R. (1991) Process Systems Analysis and Control, 2nd edn. (MacGraw-Hill).

DE SANTIS, G. J. (1976) Chem. Eng., NY 83 (Nov. 22nd) 163. How to select a centrifugal pump.

DOOLIN, J. H. (1977) Chem. Eng., NY (Jan. 17th) 137. Select pumps to cut energy cost.

ECKERT, J. S. (1964) Chem. Eng., NY 71 (Mar. 30th) 79. Controlling packed-column stills.

GENEREAUX, R. P. (1937) Ind. Eng. Chem. 29, 385. Fluid-flow design methods.

HOLLAND, F. A. and CHAPMAN, F. S. (1966) *Chem. Eng., NY* 73 (Feb. 14th) 129. Positive displacement pumps. HOLMES, E. (ed.) (1973) *Handbook of Industrial Pipework Engineering* (McGraw-Hill).

HOYLE, R. (1978) Chem. Eng. NY, 85 (Oct 8th) 103. How to select and use mechanical packings.

ICHEME (1988) A New Guide to Capital Cost Estimation 3rd edn (Institution of Chemical Engineers, London).

JACOBS, J. K. (1965) Hydrocarbon Proc. 44 (June) 122. How to select and specify process pumps.

KALANI, G. (1988) Microprocessor Based Distributed Control Systems (Prentice Hall).

KENTISH, D. N. W. (1982a) Industrial Pipework (McGraw-Hill).

KENTISH, D. N. W. (1982b) Pipework Design Data (McGraw-Hill).

KERN, R. (1975) Chem. Eng., NY 82 (April 28th) 119. How to design piping for pump suction conditions.

KING, R. C. (ed.) (1967) Piping Handbook, 5th edn (McGraw-Hill).

LAMIT, L. G. (1981) Piping Systems: Drafting and Design (Prentice Hall).

LUDWG, E. E. (1960) Chem. Eng., NY 67 (June 13th) 162. Flow of fluids.

M. W. KELLOG Co. (1964) Design of Piping Systems (Wiley).

MASEK, J. A. (1968) Chem. Eng., NY 75 (June 17th) 215. Metallic piping.

MCNAUGHTON (ed.) (1985) The Chemical Engineering Guide to Pumps (McGraw-Hill).

MERRICK, R. C. (1990) Valve Selection and Specification Guide (Spon.).

MERRICK, R. C. (1986) Chem. Eng., NY 93 (Sept. 1st) 52. Guide to the selection of manual valves.

MURRILL, P. W. (1988) Application Concepts of Process Control (Instrument Society of America).

NEERKIN, R. F. (1974) Chem. Eng., NY 81 (Feb. 18) 104. Pump selection for chemical engineers.

NOLTE, C. B. (1978) Optimum Pipe Size Selection (Trans. Tech. Publications).

PARKINS, R. (1959) Chem. Eng. Prog. 55 (July) 60. Continuous distillation plant controls.

PEARSON, G. H. (1978) Valve Design (Mechanical Engineering Publications).

PERRY, R. H. and CHILTON, C. H. (eds) (1973) Chemical Engineers Handbook, 5th edn (McGraw-Hill).

PERRY, R. H. and GREEN, D. W. (eds) (1984) Perry's Chemical Engineers Handbook, 6th edn (McGraw-Hill).

PERRY, R. H., GREEN, D. W. and MALONEY, J. O. (eds) (1997) Perry's Chemical Engineers' Handbook, 7th edn. (McGraw-Hill).

Peters, M. S. and Timmerhaus, K. D. (1968) Plant Design and Economics for Chemical Engineers, 2nd edn (McGraw-Hill).

PETERS, M. S. and TIMMERHAUS, K. D. (1991) Plant Design and Economics, 4th edn (McGraw-Hill).

RASE, H. F. (1953) Petroleum Refiner 32 (Aug.) 14. Take another look at economic pipe sizing.

RASMUSSEN, E. J. (1975) Chem. Eng., NY 82 (May 12th) 74. Alarm and shut down devices protect process equipment.

SHERWOOD, D. R. (1991) The Piping Guide, 2nd edn (Spon.).

SHINSKEY, F. G. (1976) Chem. Eng. Prog. 72 (May) 73. Energy-conserving control systems for distillation units.

SHINSKEY, F. G. (1984) Distillation Control, 2nd edn (McGraw-Hill).

SHINSKEY, F. G. (1988) Process Control Systems, 3rd edn (McGraw-Hill).

SIMPSON, L. L. (1968) Chem. Eng., NY 75 (June 17th) 1923. Sizing piping for process plants.

SMITH, E. and VIVIAN, B. E. (1995) Valve Selection (Mechanical Engineering Publications).

WALAS S. M. (1990) Chemical Process Equipment (Butterworth-Heinemann).

WARRING, R. H. (1981) Seals and Sealing Handbook. Trade and Technical Press.

WEBSTER, G. R. (1979) Chem. Engr. London No. 341 (Feb.) 91. The canned pump in the petrochemical environment.

### **British Standards**

BS 806: 1975 Ferrous pipes and piping for and in connection with land boilers.

BS 1600: ... Dimension of steel pipes for the petroleum industry.

Part 1: 1970 Imperial units.

Part 2: 1970 Metric units.

BS 1646: 1984 Symbolic representation for process measurement control functions and instrumentation.

Part 1: 1977 Basic requirements.

Part 2: 1983 Specifications for additional requirements.

Part 3: 1984 Specification for detailed symbols for instrument interconnection diagrams.

Part 4: 1984 Specification for basic symbols for process computer, interface and shared display/control functions.

### American Standards

USAS B31.1.0: The ASME standard code for pressure piping. ASA B31.3.0: The ASME code for petroleum refinery piping.

## **5.12. NOMENCLATURE**

|                  |                                            | Dimensions in MLT£                               |
|------------------|--------------------------------------------|--------------------------------------------------|
| Α                | Plant attainment (hours operated per year) | _                                                |
| В                | Purchased cost factor, pipes               | <b>£L</b> −¹                                     |
| a                | Capital charges factor, piping             | <del></del>                                      |
| b                | Maintenance cost factor, piping            | <del>_</del>                                     |
| Cf               | Annual pumping cost, piping                | $\mathbf{\pounds}\mathbf{L}^{-1}\mathbf{T}^{-1}$ |
| Cp               | Capital cost, piping                       | <b>£L</b> <sup>−1</sup>                          |
| Ct               | Total annual cost, piping                  | $\mathbf{\mathcal{L}}^{-1}\mathbf{T}^{-1}$       |
| d                | Pipe diameter                              | ${f L}$                                          |
| $d_i$            | Pipe inside diameter                       | L                                                |
| $\boldsymbol{E}$ | Pump efficiency                            |                                                  |
| e                | Relative roughness                         |                                                  |
| F                | Installed cost factor, piping              | <del>-</del>                                     |
| f                | Friction factor                            |                                                  |

| G                    | Mass flow rate                                          | $\mathbf{M}\mathbf{T}^{-1}$                |
|----------------------|---------------------------------------------------------|--------------------------------------------|
| g                    | Gravitational acceleration                              | $LT^{-2}$                                  |
| $\overset{\circ}{H}$ | Height of liquid above the pump suction                 | L                                          |
| h                    | Pump head                                               | L                                          |
| K                    | Number of velocity heads                                |                                            |
| L                    | Pipe length                                             | L                                          |
| m                    | Mass flow-rate                                          | $\mathbf{M}\mathbf{T}^{-1}$                |
| N                    | Pump speed, revolutions per unit time                   | $\mathbf{T}^{-1}$                          |
| $N_s$                | Pump specific speed                                     | _                                          |
| n                    | Index relating pipe cost to diameter                    |                                            |
| P                    | Pressure                                                | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ |
| $P_f$                | Pressure loss in suction piping                         | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ |
| $P_s$                | Safe working pressure                                   | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ |
| $P_v$                | Vapour pressure of liquid                               | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$          |
| $\Delta P$           | Difference in system pressures $(P_1 - P_2)$            | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ |
| $\Delta P_f$         | Pressure drop <sup>†</sup>                              | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ |
| p                    | Cost of power, pumping                                  |                                            |
| Q                    | Volumetric flow rate                                    | $L^3T^{-1}$                                |
| R                    | Shear stress on surface, pipes                          | $ML^{-1}T^{-2}$                            |
| t                    | Pipe wall thickness                                     | L                                          |
| и                    | Fluid velocity                                          | $LT^{-1}$                                  |
| W                    | Work done                                               | $\mathbf{L}^2 \mathbf{T}^{-2}$             |
| z                    | Height above datum                                      | L                                          |
| $\Delta z$           | Difference in elevation $(z_1 - z_2)$                   | L                                          |
| η                    | Pump efficiency                                         |                                            |
| ho                   | Fluid density                                           | $ML^{-3}$                                  |
| $\mu$                | Viscosity of fluid                                      | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-1}$ |
| $\sigma_d$           | Design stress                                           | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ |
| $\sigma_{s}$         | Safe working stress                                     | $ML^{-1}T^{-2}$                            |
| Re                   | Reynolds number                                         |                                            |
| $NPSH_{avail}$       | Net positive suction head available at the pump suction | L                                          |
| $NPSH_{reqd}$        | Net positive suction head required at the pump suction  | L                                          |

<sup>†</sup>Note: In Volumes 1 and 2 this symbol is used for pressure difference, and pressure drop (negative pressure gradient) indicated by a minus sign. In this chapter, as the symbol is only used for pressure drop, the minus sign is omitted for convenience.

### 5.13. PROBLEMS

- **5.1.** Select suitable valve types for the following applications:
  - 1. Isolating a heat exchanger.
  - 2. Manual control of the water flow into a tank used for making up batches of sodium hydroxide solution.
  - 3. The valves need to isolate a pump and provide emergency manual control on a by-pass loop.
  - 4. Isolation valves in the line from a vacuum column to the steam ejectors producing the vacuum.
  - 5. Valves in a line where cleanliness and hygiene are an essential requirement.

State the criterion used in the selection for each application.

**5.2.** Crude dichlorobenzene is pumped from a storage tank to a distillation column. The tank is blanketed with nitrogen and the pressure above the liquid surface is

held constant at 0.1 bar gauge pressure. The minimum depth of liquid in the tank is 1 m.

The distillation column operates at a pressure of 500 mmHg (500 mm of mercury, absolute). The feed point to the column is 12 m above the base of the tank. The tank and column are connected by a 50 mm internal diameter commercial steel pipe, 200 m long. The pipe run from the tank to the column contains the following valves and fittings: 20 standard radius 90° elbows; two gate valves to isolate the pump (operated fully open); an orifice plate and a flow-control valve.

If the maximum flow-rate required is 20,000 kg/h, calculate the pump motor rating (power) needed. Take the pump efficiency as 70 per cent and allow for a pressure drop of 0.5 bar across the control valve and a loss of 10 velocity heads across the orifice.

Density of the dichlorobenzene 1300 kg/m<sup>3</sup>, viscosity 1.4 cp.

**5.3.** A liquid is contained in a reactor vessel at 115 bar absolute pressure. It is transferred to a storage vessel through a 50 mm internal diameter commercial steel pipe. The storage vessel is nitrogen blanketed and pressure above the liquid surface is kept constant at 1500 N/m<sup>2</sup> gauge. The total run of pipe between the two vessels is 200 m. The miscellaneous losses due to entry and exit losses, fittings, valves, etc., amount to 800 equivalent pipe diameters. The liquid level in the storage vessel is at an elevation 20 m *below* the level in the reactor.

A turbine is fitted in the pipeline to recover the excess energy that is available, over that required to transfer the liquid from one vessel to the other. Estimate the power that can be taken from the turbine, when the liquid transfer rate is 5000 kg/h. Take the efficiency of the turbine as 70%.

The properties of the fluid are: density 895 kg/m³, viscosity 0.76 mNm<sup>-2</sup>s.

**5.4.** A process fluid is pumped from the bottom of one distillation column to another, using a centrifugal pump. The line is standard commercial steel pipe 75 mm internal diameter. From the column to the pump inlet the line is 25 m long and contains six standard elbows and a fully open gate valve. From the pump outlet to the second column the line is 250 m long and contains ten standard elbows, four gate valves (operated fully open) and a flow-control valve. The fluid level in the first column is 4 m above the pump inlet. The feed point of the second column is 6 m above the pump inlet. The operating pressure in the first column is 1.05 bara and that of the second column 0.3 barg.

Determine the operating point on the pump characteristic curve when the flow is such that the pressure drop across the control valve is  $35 \text{ kN/m}^2$ .

The physical properties of the fluid are: density 875 kg/m<sup>3</sup>, viscosity 1.46 mN m<sup>-2</sup>s.

Also, determine the NPSH, at this flow-rate, if the vapour pressure of the fluid at the pump suction is 25 kN/m<sup>2</sup>.

## Pump characteristic

Flow-rate, m<sup>3</sup>/h 0.0 27.3 45.4 54.5 63.6 18.2 36.3 Head, m of liquid 32.0 31.4 30.8 29.0 26.5 23.2 18.3

**5.5.** A polymer is produced by the emulsion polymerisation of acrylonitrile and methyl methacrylate in a stirred vessel. The monomers and an aqueous solution of catalyst are fed to the polymerisation reactor continuously. The product is withdrawn from the base of the vessel as a slurry.

Devise a control system for this reactor, and draw up a preliminary piping and instrument diagram. The follow points need to be considered:

- 1. Close control of the reactor temperature is required.
- 2. The reactor runs 90 per cent full.
- 3. The water and monomers are fed to the reactor separately.
- 4. The emulsion is a 30 per cent mixture of monomers in water.
- 5. The flow of catalyst will be small compared with the water and monomer flows.
- 6. Accurate control of the catalyst flow is essential.
- **5.6.** Devise a control system for the distillation column described in Chapter 11, Example 11.2. The flow to the column comes from a storage tank. The product, acetone, is sent to storage and the waste to an effluent pond. It is essential that the specifications on product and waste quality are met.

## CHAPTER 6

# Costing and Project Evaluation

## 6.1. INTRODUCTION

Cost estimation is a specialised subject and a profession in its own right. The design engineer, however, needs to be able to make quick, rough, cost estimates to decide between alternative designs and for project evaluation. Chemical plants are built to make a profit, and an estimate of the investment required and the cost of production are needed before the profitability of a project can be assessed.

In this chapter the various components that make up the capital cost of a plant and the components of the operating costs are discussed, and the techniques used for estimating reviewed briefly. Simple costing methods and some cost data are given, which can be used to make preliminary estimates of capital and operating costs at the flow-sheet stage. They can also be used to cost out alternative processing schemes and equipment.

For a more detailed treatment of the subject the reader should refer to the numerous specialised texts that have been published on cost estimation. The following books are particularly recommended: Aries and Newton (1955), Happle and Jordan (1975) and Guthrie (1974) Page (1984) Garrett (1989).

## 6.2. ACCURACY AND PURPOSE OF CAPITAL COST ESTIMATES

The accuracy of an estimate depends on the amount of design detail available: the accuracy of the cost data available; and the time spent on preparing the estimate. In the early stages of a project only an approximate estimate will be required, and justified, by the amount of information by then developed.

Capital cost estimates can be broadly classified into three types according to their accuracy and purpose:

- 1. Preliminary (approximate) estimates, accuracy typically ±30 per cent, which are used in initial feasibility studies and to make coarse choices between design alternatives. They are based on limited cost data and design detail.
- 2. Authorisation (Budgeting) estimates, accuracy typically  $\pm 10$ –15 per cent. These are used for the authorisation of funds to proceed with the design to the point where an accurate and more detailed estimate can be made. Authorisation may also include funds to cover cancellation charges on any long delivery equipment ordered at this stage of the design to avoid delay in the project. In a contracting organisation this type of estimate could be used with a large contingency factor to obtain a price for tendering. Normally, however, an accuracy of about  $\pm 5$  per cent would be needed

and a more detailed estimate would be made, if time permitted. With experience, and where a company has cost data available from similar projects, estimates of acceptable accuracy can be made at the flow-sheet stage of the project. A rough P and I diagram and the approximate sizes of the major items of equipment would also be needed.

3. Detailed (Quotation) estimates, accuracy ±5-10 per cent, which are used for project cost control and estimates for fixed price contracts. These are based on the completed (or near complete) process design, firm quotations for equipment, and a detailed breakdown and estimation of the construction cost.

The cost of preparing an estimate increases from about 0.1 per cent of the total project cost for  $\pm 30$  per cent accuracy, to about 2 per cent for a detailed estimate with an accuracy of  $\pm 5$  per cent.

### 6.3. FIXED AND WORKING CAPITAL

Fixed capital is the total cost of the plant ready for start-up. It is the cost paid to the contractors.

It includes the cost of:

- 1. Design, and other engineering and construction supervision.
- 2. All items of equipment and their installation.
- 3. All piping, instrumentation and control systems.
- 4. Buildings and structures.
- 5. Auxiliary facilities, such as utilities, land and civil engineering work.

It is a once-only cost that is not recovered at the end of the project life, other than the scrap value.

Working capital is the additional investment needed, over and above the fixed capital, to start the plant up and operate it to the point when income is earned.

It includes the cost of:

- 1. Start-up.
- 2. Initial catalyst charges.
- 3. Raw materials and intermediates in the process.
- 4. Finished product inventories.
- 5. Funds to cover outstanding accounts from customers.

Most of the working capital is recovered at the end of the project. The total investment needed for a project is the sum of the fixed and working capital.

Working capital can vary from as low as 5 per cent of the fixed capital for a simple, single-product, process, with little or no finished product storage; to as high as 30 per cent for a process producing a diverse range of product grades for a sophisticated market, such as synthetic fibres. A typical figure for petrochemical plants is 15 per cent of the fixed capital.

Methods for estimating the working capital requirement are given by Bechtel (1960), Lyda (1972) and Scott (1978).

## 6.4. COST ESCALATION (INFLATION)

The cost of materials and labour has been subject to inflation since Elizabethan times. All cost-estimating methods use historical data, and are themselves forecasts of future costs. Some method has to be used to update old cost data for use in estimating at the design stage, and to forecast the future construction cost of the plant.

The method usually used to update historical cost data makes use of published cost indices. These relate present costs to past costs, and are based on data for labour, material and energy costs published in government statistical digests.

Cost in year A = Cost in year B 
$$\times$$
  $\frac{\text{Cost index in year A}}{\text{Cost index in year B}}$  (6.1)

To get the best estimate, each job should be broken down into its components and separate indices used for labour and materials. It is often more convenient to use the composite indices published for various industries in the trade journals. These produce a weighted average index combining the various components in proportions considered typical for the particular industry. Such an index for the chemical industry in the United Kingdom is published in the journal *Process Engineering* (previously entitled *Chemical and Process Engineering*), see Cran (1973) (1979). The composition of this index is:

$$I = 0.37 \text{ Im} + 0.08 \text{ Ie} + 0.10 \text{ Ic} + 0.19 \text{ Is} + 0.26 \text{ Io}$$

where I =the composite index

Im = mechanical engineering index

Ie = electrical engineering index

Ic = civil engineering index

Is = site engineering index

Io = overheads engineering index

The base year used for the index up to 1986 was 1975 (index at the start of 1975 = 100). In January 1986 the base was revised to January 1980 = 100; see Anon (1986). It was revised again in March 1992, to January 1990 = 100; See Anon (1992).

Care must be taken when updating costs over a period that includes a change of the index base.

The Process Engineering index, together with composite indices for some other countries, over a ten-year period (January to January), is shown in Figure 6.1.

A composite index for the United States process plant industry is published monthly in the journal *Chemical Engineering*, the CPE plant cost index. This journal also publishes the Marshall and Stevens index (M and S equipment cost index), base year 1926.

All cost indices should be used with caution and judgement. They do not necessarily relate the true make-up of costs for any particular piece of equipment or plant; nor the effect of supply and demand on prices. The longer the period over which the correlation is made the more unreliable the estimate.

Since 1970 prices have risen dramatically and this is reflected in the UK index which rose from 45 to 160 over the period from 1969 to 1978, a factor of 3.6. The use of the

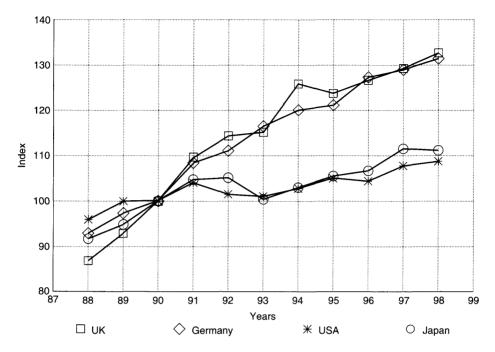



Figure 6.1. Plant cost indices

index to update costs over such a period can only give an approximate indication of the true cost; to be used only when up-to-date cost data are not available.

To estimate the future cost of a plant some prediction has to be made of the future annual rate of inflation. This can be based on an extrapolation of one of the published indices, tempered with the engineer's own assessment of what the future may hold. Prior to 1970 costs were escalating at about 7 per cent per year and this figure was often used to predict future costs. The current rate of inflation, January 1999, is around 3 per cent per year.

## Example 6.1

The purchased cost of a tubular exchanger, carbon steel shell, stainless steel tubes, heat transfer area 500 m<sup>2</sup>, was £50,000 in January 1988; estimate the cost in January 1999.

## Solution

Use the Process Engineering Index, Figure 6.1:

value of index: January 
$$1988 = 87$$
  
January  $1998 = 132$ 

Cost in January  $1998 = 50,000 \times (132/87) = £75,862$ 

Allowing for 3% inflation from 1998 to 99,  $\cos t = 75,862 \times (1.03) = £78,134$ 

Say, £78,000 in January 1999

### 6.5. RAPID CAPITAL COST ESTIMATING METHODS

### 6.5.1. Historical costs

An approximate estimate of the capital cost of a project can be obtained from a knowledge of the cost of earlier projects using the same manufacturing process. This method can be used prior to the preparation of the flow-sheets to get a quick estimate of the investment likely to be required.

The capital cost of a project is related to capacity by the equation

$$C_2 = C_1 \left(\frac{S_2}{S_1}\right)^n \tag{6.2}$$

where  $C_2$  = capital cost of the project with capacity  $S_2$ ,

 $C_1$  = capital cost of the project with capacity  $S_1$ .

The value of the index n is traditionally taken as 0.6; the well-known six-tenths rule. This value can be used to get a rough estimate of the capital cost if there are not sufficient data available to calculate the index for the particular process. Estrup (1972) gives a critical review of the six-tenths rule. Equation 6.2 is only an approximation, and if sufficient data are available the relationship is best represented on a log-log plot. Garrett (1989) has published capital cost-plant capacity curves for over 250 processes.

## Example 6.2

Obtain a rough estimate of the cost of a plant to produce 750 tonnes per day of sulphuric acid, from sulphur. Use the costs given by Garrett (1989) reproduced in Figure 6.2.

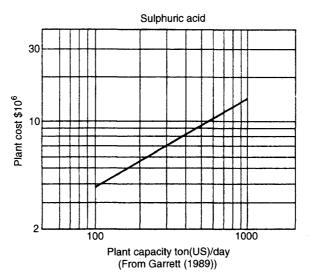



Figure 6.2. Capital Cost v. Capacity

### Solution

Garret's units are US dollars and US tons, and refer to 1987 (Chemical Engineering Index quoted as 320).

1 US ton = 
$$2000 \text{ lb} = 0.91 \text{ tonne} (1000 \text{ kg})$$
  
So, 750 tonne per day =  $750/0.91 = 824 \text{ US t/d}$ 

From Figure 6.2 the fixed capital cost for this capacity, for production from sulphur, is  $13 \times 10^6$  US dollars.

There are two possible ways to convert to UK costs:

- 1. Convert at the 1987 exchange rate and update using a UK index.
- 2. Update using a US index and convert using the current exchange rate.
- 1. In 1987 (January) the rate of exchange was 1.64 = £1, and UK and US cost can be taken as roughly equivalent.

$$1987 \cos t = \frac{13 \times 10^6}{1.64} = £7.93 \times 10^6$$

Updating this cost using the index published in *Process Engineering* (basis 100 at end 1990)

Index 1987 (January) = 
$$78$$
  
1998 (January) =  $132$ 

Capital cost of plant early 1998

= 
$$7.93 \times 10^6 \times \frac{132}{78} = £13.42 \times 10^6$$
  
say, £13,500,000

2. Garrett quotes the *Chemical Engineering Index* for his costs as 320 (January 1987). The value in January 1998 was 388, so the dollar cost of the plant in early 1998 will be:

$$13 \times 10^6 \times \frac{388}{320} = 15.8 \times 10^6$$

The rate of exchange in January 1998 was \$1.65 So the cost in pounds sterling will be:

$$\frac{158 \times 10^6}{1.65} = 9.6 \times 10^6$$
say, £10,000,000

Where UK, or other local, indexes and historical exchange rates are available, it is probably better to convert costs to the local currency using the rate of exchange ruling at the date of the costs and update using the local index: method 1 in the example 6.2. In the United Kingdom historical values for exchange rates can be found in the government publication, *Economic Trends*, (Central Statistical Office, HMSO).

As a rough guide US costs can be taken as equivalent to local prices, converted to local currency, for Western European countries, but construction costs may be significantly greater in less developed parts of the world.

Location factors can be used to make allowance for the variation in costs in different countries; see IChemE (1987).

## 6.5.2. Step counting methods

Step counting estimating methods provide a way of making a quick, *order of magnitude*, estimate of the capital cost of a proposed project.

The technique is based on the premise that the capital cost is determined by a number of significant processing steps in the overall process. Factors are usually included to allow for the capacity, and complexity of the process: material of construction, yield, operating pressure and temperature.

A number of workers have published correlations based on a step counting approach: Taylor (1977), Wilson (1971). These and other correlations are reviewed and compared in the Institution of Chemical Engineers booklet, IChemE (1988).

Bridgwater, IChemE (1988), gives a developed relatively simple correlation for plants that are predominantly liquid and/or solid phase handing processes.

His equation, adjusted to 1998 prices is:

for plant capacities under 60,000 tonne per year:

$$C = 130,000 \text{ N } (Q/s)^{0.30}$$
(6.3)

and above 60,000 t/y:

$$C = 150 \text{ N } (Q/s)^{0.675} \tag{6.4}$$

where C = capital cost in pounds sterling

N = Number of functional units

Q = plant capacity, tonne per year

s = reactor conversion

Reactor conversion is defined as:

$$s = \frac{mass\ of\ desired\ product}{mass\ reactor\ input}$$

Timms, IChemE (1988) gives a simple equation for gas phase processes; updated to 1998:

$$C = 8000 \text{ N Q}^{0.615} \tag{6.5}$$

where the symbols are the same as for equations 6.3 and 6.4.

In US dollars

$$C' = 13000 \text{ N } Q^{0.615}$$
 (6.5a)

Where C' = captial cost in US dollars

### Example 6.3

Estimate the capital cost for the nitric acid plant shown in Figure 4.2, Chapter 4.

### Solution

Number of significant processing steps 6.

Capacity 100,000 tonne per year

C = 
$$8000 \times 6 \times 100,000^{0.615} = 57.05 \times 10^6$$
 (6.5)  
say, £60 million.

$$C' = 1300 \times 6 \times 100,000^{0.615} = 92.70 \times 10^6$$
  
say, \$93 million.

Clearly, step counting methods can only, at best, give a very approximate idea of the probable cost of a plant. They are useful in the conceptual stage of process design, when comparisons between alternative process routes are being made.

### 6.6. THE FACTORIAL METHOD OF COST ESTIMATION

Capital cost estimates for chemical process plants are often based on an estimate of the purchase cost of the major equipment items required for the process, the other costs being estimated as factors of the equipment cost. The accuracy of this type of estimate will depend on what stage the design has reached at the time the estimate is made, and on the reliability of the data available on equipment costs. In the later stages of the project design, when detailed equipment specifications are available and firm quotations have been obtained, an accurate estimation of the capital cost of the project can be made.

## 6.6.1. Lang factors

The factorial method of cost estimation is often attributed to Lang (1948). The fixed capital cost of the project is given as a function of the total purchase equipment cost by the equation:

$$Cf = f_L Ce (6.6)$$

where Cf = fixed capital cost,

Ce = the total delivered cost of all the major equipment items: storage tanks, reaction vessels, columns, heat exchangers, etc.,

 $f_L$  = the "Lang factor", which depends on the type of process.

 $f_L = 3.1$  for predominantly solids processing plant  $f_L = 4.7$  for predominantly fluids processing plant

 $f_L = 3.6$  for a mixed fluids-solids processing plant

The values given above should be used as a guide; the factor is best derived from an organisation's own cost files.

Equation 6.6 can be used to make a quick estimate of capital cost in the early stages of project design, when the preliminary flow-sheets have been drawn up and the main items of equipment roughly sized.

### 6.6.2. Detailed factorial estimates

To make a more accurate estimate, the cost factors that are compounded into the "Lang factor" are considered individually. The direct-cost items that are incurred in the construction of a plant, in addition to the cost of equipment are:

- 1. Equipment erection, including foundations and minor structural work.
- 2. Piping, including insulation and painting.
- 3. Electrical, power and lighting.
- 4. Instruments, local and control room.
- 5. Process buildings and structures.
- 6. Ancillary buildings, offices, laboratory buildings, workshops.
- 7. Storages, raw materials and finished product.
- 8. Utilities (Services), provision of plant for steam, water, air, firefighting services (if not costed separately).
- 9. Site, and site preparation.

The contribution of each of these items to the total capital cost is calculated by multiplying the total purchased equipment by an appropriate factor. As with the basic "Lang factor", these factors are best derived from historical cost data for similar processes. Typical values for the factors are given in several references, Aries and Newton (1955), Happle and Jordan (1975) and Garrett (1989). Guthrie (1974), splits the costs into the material and labour portions and gives separate factors for each. In a booklet published by the Institution of Chemical Engineers, IChemE (1988), the factors are shown as a function of plant size and complexity.

The accuracy and reliability of an estimate can be improved by dividing the process into sub-units and using factors that depend on the function of the sub-units; see Guthrie (1969). In Guthrie's detailed method of cost estimation the installation, piping and instrumentation costs for each piece of equipment are costed separately. Detailed costing is only justified if the cost data available are reliable and the design has been taken to the point where all the cost items can be identified and included.

Typical factors for the components of the capital cost are given in Table 6.1. These can be used to make an approximate estimate of capital cost using equipment cost data published in the literature.

In addition to the direct cost of the purchase and installation of equipment, the capital cost of a project will include the indirect costs listed below. These can be estimated as a function of the direct costs.

### Indirect costs

1. Design and engineering costs, which cover the cost of design and the cost of "engineering" the plant: purchasing, procurement and construction supervision. Typically 20 per cent to 30 per cent of the direct capital costs.

- 2. Contractor's fees, if a contractor is employed his fees (profit) would be added to the total capital cost and would range from 5 per cent to 10 per cent of the direct costs.
- 3. Contingency allowance, this is an allowance built into the capital cost estimate to cover for *unforeseen* circumstances (labour disputes, design errors, adverse weather). Typically 5 per cent to 10 per cent of the direct costs.

The indirect cost factors are included in Table 6.1.

Table 6.1. Typical factors for estimation of project fixed capital cost

|    |                                                                              |        | Process type       |        |
|----|------------------------------------------------------------------------------|--------|--------------------|--------|
|    | Item                                                                         | Fluids | Fluids –<br>solids | Solids |
| 1. | Major equipment, total purchase                                              |        |                    |        |
|    | cost                                                                         | PCE    | PCE                | PCE    |
|    | $f_1$ Equipment erection                                                     | 0.4    | 0.45               | 0.50   |
|    | f <sub>2</sub> Piping                                                        | 0.70   | 0.45               | 0.20   |
|    | $f_3$ Instrumentation                                                        | 0.20   | 0.15               | 0.10   |
|    | $f_4$ Electrical                                                             | 0.10   | 0.10               | 0.10   |
|    | f <sub>5</sub> Buildings, process                                            | 0.15   | 0.10               | 0.05   |
|    | *f <sub>6</sub> Utilities                                                    | 0.50   | 0.45               | 0.25   |
|    | *f <sub>7</sub> Storages                                                     | 0.15   | 0.20               | 0.25   |
|    | *f <sub>8</sub> Site development                                             | 0.05   | 0.05               | 0.05   |
|    | *f <sub>9</sub> Ancillary buildings                                          | 0.15   | 0.20               | 0.30   |
| 2. | Total physical plant cost (PPC)<br>PPC = PCE $(1 + f_1 + \cdots + f_9)$      |        |                    |        |
|    | $=$ PCE $\times$                                                             | 3.40   | 3.15               | 2.80   |
|    | $f_{10}$ Design and Engineering                                              | 0.30   | 0.25               | 0.20   |
|    | $f_{11}$ Contractor's fee                                                    | 0.05   | 0.05               | 0.05   |
|    | $f_{12}$ Contingency<br>Fixed capital = PPC $(1 + f_{10} + f_{11} + f_{12})$ | 0.10   | 0.10               | 0.10   |
|    | $= PPC \times$                                                               | 1.45   | 1.40               | 1.35   |

<sup>\*</sup>Omitted for minor extensions or additions to existing sites.

The capital cost required for the provision of utilities and other plant services will depend on whether a new (green field) site is being developed, or if the plant is to be built on an existing site and will make use of some of the existing facilities. The term "battery limits" is used to define a contractor's responsibility. The main processing plant, within the battery limits, would normally be built by one contractor. The utilities and other ancillary equipment would often be the responsibility of other contractors and would be said to be outside the battery limits. They are often also referred to as "off-sites".

## 6.7. ESTIMATION OF PURCHASED EQUIPMENT COSTS

The cost of the purchased equipment is used as the basis of the factorial method of cost estimation and must be determined as accurately as possible. It should preferably be based on recent prices paid for similar equipment.

The relationship between size and cost given in equation 6.2 can also be used for equipment, but the relationship is best represented by a log-log plot if the size range is wide. A wealth of data has been published on equipment costs; see Aries and Newton (1955), Chilton (1960), Chemical Engineering (1970, 1979), Guthrie (1969, 1974), Winfield and Dryden (1962), Hall *et al.* (1982), Page (1984), Ulrich (1984) and Garrett (1989). Articles giving the cost of process equipment are frequently published in the journals *Chemical Engineering* and *Hydrocarbon Processing*.

The cost of specialised equipment, which cannot be found in the literature, can usually be estimated from the cost of the components that make up the equipment. For example, a reactor design is usually unique for a particular process but the design can be broken down into standard components (vessels, heat-exchange surfaces, spargers, agitators) the cost of which can be found in the literature and used to build up an estimate of the reactor cost.

Pikulik and Diaz (1977) give a method of costing major equipment items from cost data on the basic components: shells, heads, nozzles, and internal fittings. Purohit (1983) gives a detailed procedure for estimating the cost of heat exchangers.

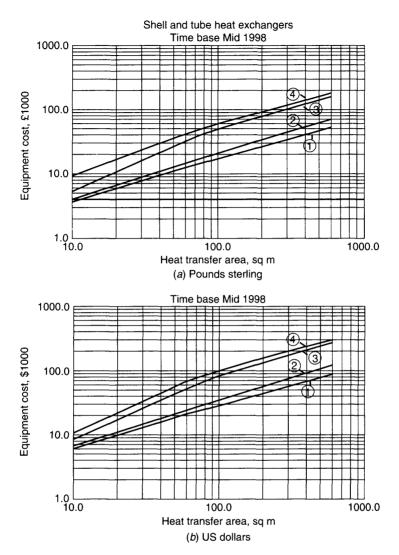
Almost all the information on costs available in the open literature is in American journals and refers to dollar prices in the US. Some UK equipment prices were published in the journals *British Chemical Engineering* and *Chemical and Process Engineering* before they ceased publication. The only comprehensive collection of UK prices available is given in the Institution of Chemical Engineers booklet, IChemE (1988).

Up to 1970 US and UK prices for equipment could be taken as roughly equivalent, converting from dollars to pounds using the rate of exchange ruling on the date the prices were quoted. Since 1970 the rate of inflation in the US has been significantly lower than in the UK, and rates of exchange have fluctuated since the pound was floated in 1972.

If it can be assumed that world market forces will level out the prices of equipment, the UK price can be estimated from the US price by bringing the cost up to date using a suitable US price index, converting to pounds sterling at the current rate of exchange, and adding an allowance for freight and duty.

If an estimate is being made to compare two processes, the costing can be done in dollars and any conclusion drawn from the comparison should still be valid for the United Kingdom and other countries.

The cost data given in Figures 6.3 to 6.7, and Table 6.2 have been compiled from various sources. They can be used to make preliminary estimates. The base date is mid-1998, and the prices are thought to be accurate to within  $\pm 25$  per cent. To use Table 6.2, substitute the values given for the particular type of equipment into the equation:


$$Ce = CS^n (6.7)$$

where Ce = purchased equipment cost, £,

S = characteristic size parameter, in the units given in Table 6.2,

 $C = \cos t$  constant from Table 6.2,

n = index for that type of equipment.



| Mate           | riaļs           | Pressure | factors | Type factors     |        |  |
|----------------|-----------------|----------|---------|------------------|--------|--|
| Shell          | Tubes           | 1-10 bar | × 1.0   | Floating head    | × 1.0  |  |
| 1 Carbon steel | Carbon steel    | 10-20    | × 1.1   | Fixed tube sheet |        |  |
| (Ž) C.S.       | Brass           | 20-30    | × 1.25  | U tube           | × 0.85 |  |
| (3) C.S.       | Stainless steel | 30-50    | × 1.3   | Kettle           | × 1.3  |  |
| (4) S.S.       | S.S.            | 50-70    | × 1.5   |                  |        |  |

Figure 6.3a, b. Shell and tube heat exchangers. Time base mid-1998 Purchased cost = (bare cost from figure)  $\times$  Type factor  $\times$  Pressure factor

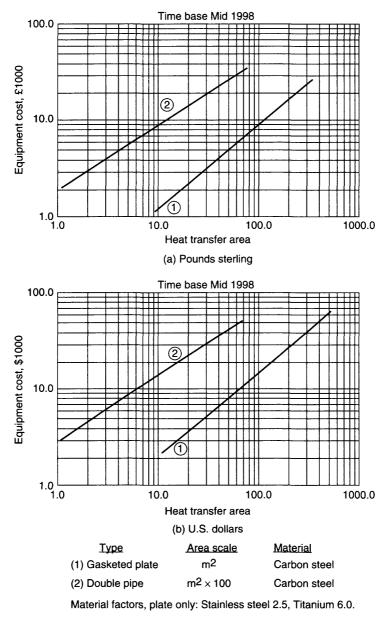



Figure 6.4. Gasketed plate and frame and double pipe heat exchangers, Time base mid-1998.

Purchased cost = (bare cost from figure) × Material factor

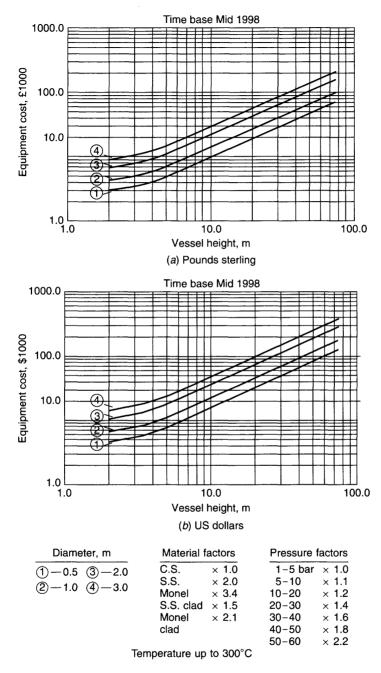



Figure 6.5a, b. Vertical pressure vessels. Time base mid-1998. Purchased cost = (bare cost from figure)  $\times$  Material factor  $\times$  Pressure factor

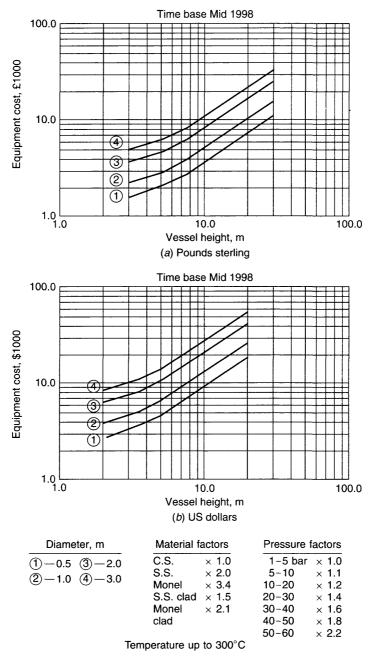



Figure 6.6a, b. Horizontal pressure vessels. Time base mid-1998. Purchase cost = (bare cost from figure)  $\times$  Material factor  $\times$  Pressure factor

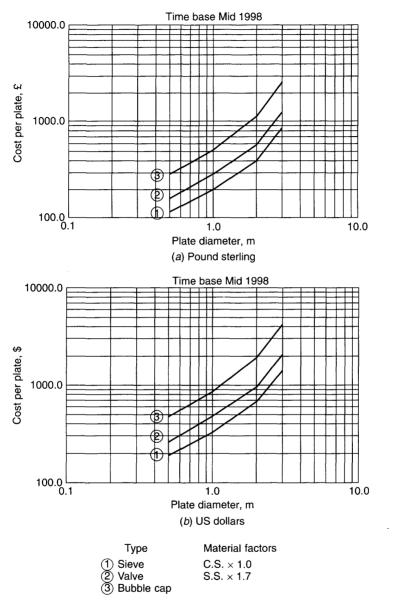



Figure 6.7a, b. Column plates. Time base mid-1998 (for column costs see Figure 6.4)

Installed cost = (cost from figure) × Material factor

Table 6.2. Purchase cost of miscellaneous equipment, cost factors for use in equation 6.7 Cost basis mid 1998

| Equipment                      | Size<br>unit, S          | Size<br>range       | Cons<br>C,£    | stant<br>C,\$    | Index<br>n   | Comment                     |
|--------------------------------|--------------------------|---------------------|----------------|------------------|--------------|-----------------------------|
| Agitators                      |                          |                     |                |                  |              |                             |
| Propeller                      | driver                   | 5-75                | 1200           | 1900             | 0.5          | complete                    |
| Turbine                        | power, kW                |                     | 3700           | 6100             | 0.5          | unit                        |
| Boilers                        |                          |                     |                | •                |              |                             |
| Packaged                       | 1 // .                   | (5 50) 103          | 25             |                  | 0.0          | oil or gas fired            |
| up to 10 bar<br>10 to 60 bar   | kg/h steam               | $(5-50)\times 10^3$ | 35<br>60       | 60<br>100        | 0.8<br>0.8   |                             |
| Centrifuges                    |                          |                     |                |                  |              |                             |
| Horizontal basket              | dia., m                  | 0.5 - 1.0           | 35,000         | 58,000           | 1.3          |                             |
| Vertical basket                |                          |                     | 35,000         | 58,000           | 1.0          |                             |
| Compressors<br>Centrifugal     | driver                   | 20-500              | 580            | 960              | 0.8          | electric,                   |
| Continugui                     | power, kW                | 20 300              |                | 700              | 0.0          | max. press                  |
| Reciprocating                  |                          |                     | 800            | 1350             | 0.8          | 50 bar                      |
| Conveyors                      | 1                        | 2 40                |                |                  |              |                             |
| Belt<br>0.5 m wide             | length, m                | 2-40                | 1200           | 1900             | 0.75         |                             |
| 1.0 m wide                     |                          |                     | 1800           | 2900             | 0.75         |                             |
| Crushers                       |                          |                     |                |                  |              |                             |
| Cone                           | t/h                      | 20-200              | 2300           | 3800             | 0.85         |                             |
| Pulverisers                    | kg/h                     |                     | 2000           | 3400             | 0.35         |                             |
| Dryers<br>Rotary               | area, m <sup>2</sup>     | 5-30                | 7000           | 11,500           | 0.45         | carbon steel                |
| Pan                            | arca, iii                | 2-10                | 4700           | 7700             | 0.35         | caroon steer                |
| Evaporators                    |                          |                     |                |                  |              |                             |
| Vertical tube                  | area, m <sup>2</sup>     | 10-000              | 7000           | 11,500           | 0.53         | carbon steel                |
| Falling film                   |                          |                     | 13,000         | 21,000           | 0.52         |                             |
| Filters                        | area, m <sup>2</sup>     | 5 50                | 2700           | 4400             | 0.60         | • :                         |
| Plate and frame<br>Vacuum drum | area, m-                 | 5-50<br>1-10        | 2700<br>10,500 | 17,000           | 0.60         | cast iron<br>carbon steel   |
| Furnaces                       |                          |                     | 10,000         | 17,000           | 0.00         |                             |
| Process                        | heat abs, kW             |                     |                |                  |              |                             |
| Cylindrical                    |                          | $10^3 - 10^4$       | 220            | 360              | 0.77         | carbon steel                |
| Box                            |                          | $10^3 - 10^5$       | 340            | 560              | 0.77         | $\times$ 2.0 for SS         |
| Reactors                       | 3                        | 2 20                | 0200           | 15 000           | 0.40         |                             |
| Jacketed, agitated             | capacity, m <sup>3</sup> | 3-30                | 9300<br>18,500 | 15,000<br>31,000 | 0.40<br>0.45 | carbon steel<br>glass lined |
| Tanks                          |                          |                     | 10,500         | 21,000           | 0.75         | grado milea                 |
| Process                        | capacity, m <sup>3</sup> |                     |                |                  |              |                             |
| vertical                       | • •                      | 1-50                | 1450           | 2400             | 0.60         | atmos. press                |
| horizontal<br>Storage          |                          | 10-100              | 1750           | 2900             | 0.60         | carbon steel                |
| Storage floating roof          |                          | 50-8000             | 1700           | 2900             | 0.55         | × 2.5 for                   |
| cone roof                      |                          | 50-8000             | 1400           | 2300             | 0.55         | stainless                   |

Table 6.3. Cost of column packing. Cost basis mid 1998

|                             | Cost        | $£/m^3 ($/m^3)$ |            |
|-----------------------------|-------------|-----------------|------------|
| Size, mm                    | 25          | 38              | 50         |
| Saddles, stoneware          | 840 (1400)  | 620 (1020)      | 580 (960)  |
| Pall rings, polypropylene   | 650 (1080)  | 400 (650)       | 250 (400)  |
| Pall rings, stainless steel | 1500 (2500) | 1500 (2500)     | 830 (1360) |

## 6.8. SUMMARY OF THE FACTORIAL METHOD

Many variations on the factorial method are used. The method outlined below can be used with the data given in this chapter to make a quick, approximate, estimate of the investment need for a project.

### **Procedure**

- 1. Prepare material and energy balances, draw up preliminary flow-sheets, size major equipment items and select materials of construction.
- 2. Estimate the purchase cost of the major equipment items. Use Figures 6.3 to 6.6 and Tables 6.2 and 6.3, or the general literature.
- 3. Calculate the total physical plant cost (PPC), using the factors given in Table 6.1

$$PPC = PCE(1 + f_1 + \dots + f_9)$$
 (6.8)

- 4. Calculate the indirect costs from the direct costs using the factors given in Table 6.1.
- 5. The direct plus indirect costs give the total fixed capital.
- 6. Estimate the working capital as a percentage of the fixed capital; 10 to 20 per cent.
- 7. Add the fixed and working capital to get the total investment required.

### 6.9. OPERATING COSTS

An estimate of the operating costs, the cost of producing the product, is needed to judge the viability of a project, and to make choices between possible alternative processing schemes. These costs can be estimated from the flow-sheet, which gives the raw material and service requirements, and the capital cost estimate.

The cost of producing a chemical product will include the items listed below. They are divided into two groups.

- 1. Fixed operating costs: costs that do not vary with production rate. These are the bills that have to be paid whatever the quantity produced.
- 2. Variable operating costs: costs that are dependent on the amount of product produced.

#### Fixed costs

- 1. Maintenance (labour and materials).
- 2. Operating labour.
- 3. Laboratory costs.
- 4. Supervision.
- 5. Plant overheads.
- 6. Capital charges.
- 7. Rates (and any other local taxes).
- 8. Insurance.
- 9. Licence fees and royalty payments.

### Variable costs

- 1. Raw materials.
- 2. Miscellaneous operating materials.
- 3. Utilities (Services).
- 4. Shipping and packaging.

The division into fixed and variable costs is somewhat arbitrary. Certain items can be classified without question, but the classification of other items will depend on the accounting practice of the particular organisation.

The items may also be classified differently in cost sheets and cost standards prepared to monitor the performance of the operating plant. For this purpose the fixed-cost items should be those over which the plant supervision has no control, and the variable items those for which they can be held accountable.

The costs listed above are the direct costs of producing the product at the plant site. In addition to these costs the site will have to carry its share of the Company's general operating expenses. These will include:

- 1. General overheads.
- 2. Research and development costs.
- 3. Sales expense.
- 4. Reserves.

How these costs are apportioned will depend on the Company's accounting methods. They would add about 20 to 30 per cent to direct production costs at the site.

## 6.9.1. Estimation of operating costs

In this section the components of the fixed and variable costs are discussed and methods given for their estimation.

It is usually convenient to do the costing on an annual basis.

## Raw materials

These are the major (essential) materials required to manufacture the product. The quantities can be obtained from the flow-sheet and multiplied by the operating hours per year to get the annual requirements.

The price of each material is best obtained by getting quotations from potential suppliers, but in the preliminary stages of a project prices can be taken from the literature.

The American journal *Chemical Marketing Reporter*, CMR (1992), publishes a weekly review of the prices of most chemicals. No such information is published in the United Kingdom. The U.S. prices, converted to the local currency at the current rate of exchange, can be used as a guide to the probable price in other countries. An indication of the prices of a selected range of chemicals is given in Table 6.4.

## Miscellaneous materials (plant supplies)

Under this heading are included all the miscellaneous materials required to operate the plant that are not covered under the headings raw materials or maintenance materials.

Miscellaneous materials will include:

- 1. Safety clothing: hard hats, safety glasses etc.
- 2. Instrument charts and accessories
- 3. Pipe gaskets
- 4. Cleaning materials

An accurate estimate can be made by detailing and costing all the items needed, based on experience with similar plants. As a rough guide the cost of miscellaneous materials can be taken as 10 per cent of the total maintenance cost.

## Utilities (services)

This term includes, power, steam, compressed air, cooling and process water, and effluent treatment; unless costed separately. The quantities required can be obtained from the energy balances and the flow-sheets. The prices should be taken from Company records, if available. They will depend on the primary energy sources and the plant location. The figures given in Table 6.5 can be used to make preliminary estimates. The current cost of utilities supplied by the utility companies: electricity, gas and water, can be obtained from their local area offices.

## Shipping and packaging

This cost will depend on the nature of the product. For liquids collected at the site in the customer's own tankers the cost to the product would be small; whereas the cost of packaging and transporting synthetic fibres or polymers to a central distribution warehouse would add significantly to the product cost.

#### Maintenance

This item will include the cost of maintenance labour, which can be as high as the operating labour cost, and the materials (including equipment spares) needed for the maintenance of the plant. The annual maintenance costs for chemical plants are high, typically 5 to 15 per cent of the installed capital costs. They should be estimated from a knowledge of the maintenance costs on similar plant. As a first estimate the annual maintenance cost can be taken as 10 per cent of the fixed capital cost; the cost can be considered to be divided evenly between labour and materials.

## Operating labour

This is the manpower needed to operate the plant: that directly involved with running the process.

The costs should be calculated from an estimate of the number of shift and day personnel needed, based on experience with similar processes. It should be remembered that to operate three shifts per day, at least five shift crews will be needed. The figures used for the cost of each man should include an allowance for holidays, shift allowances, national insurance, pension contributions and any other overheads. The current wage rates per

Table 6.4. Raw material and product costs

Typical prices for bulk purchases, mid-1998. All deliveries by rail or road tanker, and all materials technical/industrial grade; unless otherwise stated

| Chemical, and state              | Cost unit | Cost £/unit | Cost \$/unit |
|----------------------------------|-----------|-------------|--------------|
| Acetaldehyde, 99%                | kg        | 0.53        | 0.48         |
| Acetic acid                      | kg        | 0.45        | 0.87         |
| Acetic anhydride                 | kg        | 0.70        | 1.15         |
| Acetone                          | kg        | 0.63        | 1.03         |
| Acrylonitrile                    | kg        | 0.74        | 1.22         |
| Ally alcohol                     | kg        | 1.40        | 2.30         |
| Ammonia, anhydrous               | t         | 120         | 180          |
| Ammonium nitrate, bulk           | t         | 95          | 160          |
| Ammonium sulphate, bulk          | t         | 85          | 140          |
| Amyl alcohol, mixed isomers      | kg        | 65          | 1.07         |
| Aniline                          | kg        | 0.69        | 1.13         |
| Benzaldehyde, drums              | kg        | 1.95        | 3.21         |
| Benzene                          | kg        | 0.20        | 0.33         |
| Benzoic acid, drums              | kg        | 0.90        | 1.47         |
| Butene-1                         | kg        | 0.42        | 0.69         |
| n-Butyl alcohol                  | kg        | 0.70        | 1.15         |
| n-Butyl ether, drums             | kg        | 1.95        | 3.20         |
| Calcium carbide, bulk            | t         | 320         | 530          |
| Calcium carbonate, bulk, coarse  | t         | 180         | 130          |
| Calcium chloride, bulk           | t         | 130         | 220          |
| Calcium hydroxide (lime), bulk   | t         | 55          | 90           |
| Carbon disulphide                | t         | 370         | 500          |
| Carbon tetrachloride, drums      | kg        | 0.50        | 0.83         |
| Chlorine                         | t         | 100         | 170          |
| Chloroform                       | kg        | 0.42        | 0.69         |
| Cupric chloride, anhydrous       | kg        | 3.30        | 5.5          |
|                                  | -         | 0.95        | 1.54         |
| Dichlorobezene<br>Diethanolamine | kg        |             |              |
|                                  | kg        | 0.85        | 1.35         |
| Ethanol, 90%                     | kg        | 4.2         | 6.50         |
| Ethyl ether                      | kg        | 0.80        | 1.35         |
| Ethylene, contract               | kg        | 0.35        | 0.58         |
| Ethylene glycol                  | kg        | 0.40        | 0.58         |
| Ethylene oxide                   | kg        | 0.75        | 1.20         |
| Formaldehyde, 37% w/w            | kg        | 0.42        | 0.70         |
| Formic acid, 94% w/w, drums      | kg        | 0.63        | 1.05         |
| Glycerine, 99.7%                 | kg        | 1.30        | 2.20         |
| Heptane                          | kg        | 0.16        | 0.20         |
| Hexane                           | kg        | 0.20        | 0.33         |
| Hydrochloric acid, 30% w/w       | t         | 60          | 90           |
| Hydrogen fluoride, anhydrous     | kg        | 0.90        | 1.40         |
| Hydrogen peroxide, 50% w/w       | kg        | 0.50        | 0.80         |
| Isobutyl, alcohol                | kg        | 0.75        | 1.1          |
| Isopropyl alcohol                | kg        | 0.40        | 0.75         |
| * **                             | =         |             |              |
| Maleic anhydride, drums          | kg        | 1.80        | 2.90         |
| Methanol                         | kg        | 0.15        | 0.25         |
| Methyl ethyl ketone              | kg        | 0.64        | 1.06         |
| Monoethanolamine                 | kg        | 0.79        | 1.30         |
| Methylstyrene                    | kg        | 0.70        | 1.15         |
| Nitric acid, 50% w/w             | t         | 130         | 220          |
| 98% w/w                          | t         | 220         | 370          |
| Nitrobenzene                     | kg        | 0.47        | 0.78         |
|                                  |           |             |              |

Table 6.4. (Continued)

Typical prices for bulk purchases, mid-1998. All deliveries by rail or road tanker, and all materials technical/industrial grade; unless otherwise stated

| Oxalic acid, sacks           | kg | 0.58 | 0.96 |
|------------------------------|----|------|------|
| Phenol                       | kg | 0.57 | 0.94 |
| Phosphoric acid 75% w/w      | kg | 0.47 | 0.78 |
| Potassium bicarbonate, sacks | kg | 0.45 | 0.75 |
| Potassium carbonate, sacks   | kg | 0.56 | 0.92 |
| Potassium chloride, sacks    | kg | 1.56 | 2.50 |
| Potassium chromate, sacks    | kg | 0.80 | 1.30 |
| Potassium hydroxide          | kg | 2.00 | 3.70 |
| Potassium nitrate, bulk      | t  | 350  | 570  |
| Propylene                    | kg | 0.32 | 0.46 |
| Propylene oxide              | kg | 0.92 | 0.56 |
| n-Propyl alcohol             | kg | 0.45 | 0.73 |
| Sodium carbonate, sacks      | kg | 0.35 | 0.58 |
| Sodium chloride, drums       | kg | 0.40 | 0.65 |
| Sodium hydroxide, drums      | kg | 1.60 | 2.60 |
| Sodium sulphate, bulk        | t  | 72   | 120  |
| Sodium thiosulphate          | kg | 0.80 | 1.30 |
| Slphur, crude, 99.5%, sacks  | t  | 85   | 140  |
| Sulphuric acid, 98% w/w      | t  | 40   | 65   |
| Titanium dioxide, sacks      | kg | 1.50 | 2.50 |
| Toluene                      | kg | 1.10 | 1.74 |
| Toluene diisocyanate         | kg | 1.45 | 2.30 |
| Trichloroethane              | kg | 0.56 | 0.94 |
| Trichloroethylene            | kg | 0.84 | 1.40 |
| Vinyl acetate                | kg | 0.65 | 1.08 |
| Vinyl chloride               | kg | 0.30 | 0.50 |
| Urea, 46% nitrogen, bulk     | t  | 120  | 160  |
| Xylenes                      | kg | 1.10 | 1.80 |

Caution: use these prices only as rough guide to the probable price range. Actual prices at a given time will vary considerably from these values; depending on location, contract quantities, and the prevailing market forces.

Table 6.5. Cost of utilities, typical figures mid-1998

| Utility                           | UK                                | USA                 |
|-----------------------------------|-----------------------------------|---------------------|
| Mains water (process water)       | 60 p/t                            | 20 c/t              |
| Natural gas                       | 0.4 p/MJ                          | 0.7 c/MJ            |
| Electricity                       | 1.2 p/MJ                          | 2.3 c/MJ            |
| Fuel oil                          | 60 ₤ /t                           | 100 \$/t            |
| Cooling water (cooling towers)    | 1.5 p/t                           | 1 c/t               |
| Chilled water (10°C)              | 5 p/t                             | 8 c/t               |
| Demineralised water               | 15 p/t                            | 15 c/t              |
| Steam (from direct fired boilers) | 7 £ /t                            | 12 \$/t             |
| Compressed air (9 bar)            | $0.4 \text{ p/m}^3 \text{ (stp)}$ | $0.6 \text{ c/m}^3$ |
| Instrument air (9 bar) (dry)      | $0.6 \text{ p/m}^3 \text{ (stp)}$ | 1 c/m <sup>3</sup>  |
| Refrigeration (0°C)               | 0.6 p/MJ,                         | 0.5 c/MJ            |
| Nitrogen                          | $6 \text{ p/m}^3 \text{ (stp)}$   | $8 \text{ c/m}^3$   |

Note: £1 = 100 p, 1\$ = 100c, 1 t = 1000 kg = 2200 Ibm, stp = 1 atm, 0  $^{\circ}\text{C}$ 

These prices should be used only as rough guide to the likely cost of utilities. The cost of water will be very dependent on the plant location, and the price of all utilities will be determined by the current cost of energy.

hour in the UK chemical industry (mid-1998) are £8-10, to which must be added up to 50 per cent for the various allowances and overheads mentioned above.

Chemical plants do not normally employ many people and the cost of operating labour would not normally exceed 15 per cent of the total operating cost. The direct overhead charges would add 20 to 30 per cent to this figure.

Wessel (1952) gives a method of estimating the number of man-hours required based on the plant capacity and the number of discrete operating steps.

## Supervision

This heading covers the direct operating supervision: the management directly associated with running the plant. The number required will depend on the size of the plant and the nature of the process. The site would normally be broken down into a number of manageable units. A typical management team for a unit would consist of four to five shift foremen, a general foreman, and an area supervisor (manager) and his assistant. The cost of supervision should be calculated from an estimate of the total number required and the current salary levels, including the direct overhead costs. On average, one "supervisor" would be needed for each four to five operators. Typical salaries, mid-1998, are £16,000 to £35,000, depending on seniority. An idea of current salaries can be obtained from the salary reviews published periodically by the Institution of Chemical Engineers.

## Laboratory costs

The annual cost of the laboratory analyses required for process monitoring and quality control is a significant item in most modern chemical plants. The costs should be calculated from an estimate of the number of analyses required and the standard charge for each analysis, based on experience with similar processes.

As a rough estimate the cost can be taken as 20 to 30 per cent of the operating labour cost, or 2 to 4 per cent of the total production cost.

### Plant overheads

Included under this heading are all the general costs associated with operating the plant not included under the other headings; such as, general management, plant security, medical, canteen, general clerical staff and safety. It would also normally include the plant technical personnel not directly associated with and charged to a particular operating area. This group may be included in the cost of supervision, depending on the organisation's practice.

The plant overhead cost is usually estimated from the total labour costs: operating, maintenance and supervision. A typical range would be 50 to 100 per cent of the labour costs; depending on the size of the plant and whether the plant was on a new site, or an extension of an existing site.

## Capital charges

The investment required for the project is recovered as a charge on the project. How this charge is shown on an organisation's books will depend on its accounting practices.

Capital is often recovered as a depreciation charge, which sets aside a given sum each year to repay the cost of the plant. If the plant is considered to "depreciate" at a fixed rate over its predicted operating life, the annual sum to be included in the operating cost can be easily calculated. The operating life of a chemical plant is usually taken as 10 years, which gives a depreciation rate of 10 per cent per annum. The plant is not necessarily replaced at the end of the depreciation period. The depreciation sum is really an internal transfer to the organisation's fund for future investment. If the money for the investment is borrowed, the sum set aside would be used to repay the loan. Interest would also be payable on the loan at the current market rates. Normally the capital to finance a particular project is not taken as a direct loan from the market but comes from the company's own reserves. Any interest charged would, like depreciation, be an internal (book) transfer of cash to reflect the cost of the capital used.

Rather than consider the cost of capital as depreciation or interest, or any other of the accounting terms used, which will depend on the accounting practice of the particular organisation and the current tax laws, it is easier to take the cost as a straight, unspecified, capital charge on the operating cost. This would be typically 10 to 20 per cent of the fixed capital, annually, depending on the cost of money. As an approximate estimate the "capital charge" can be taken as 2 per cent above the current minimum lending rate. For a full discussion on the nature of depreciation and the cost of capital see Happle and Jordan (1975), Holland *et al.* (1983), Valle-Riestra (1983).

### Local taxes

This term covers local taxes, which are calculated on the value of the site. A typical figure would be 1 to 2 per cent of the fixed capital.

#### Insurance

The cost of the site and plant insurance: the annual insurance premium paid to the insurers; usually about 1 to 2 per cent of the fixed capital.

## Royalties and licence fees

If the process used has not been developed exclusively by the operating company, royalties and licence fees may be payable. These may be paid as a lump sum, included in the fixed capital, or as an annual fee; or payments based on the amount of product sold.

The cost would add about 1 per cent to 5 per cent to the sales price.

## Summary of production costs

The various components of the operating costs are summarised in Table 6.6. The typical values given in this table can be used to make an approximate estimate of production costs.

Table 6.6. Summary of production costs

| Variable costs 1. Raw materials             | Typical values from flow-sheets                                    |
|---------------------------------------------|--------------------------------------------------------------------|
| 2. Miscellaneous materials                  | 10 per cent of item (5)                                            |
| 3. Utilities                                | from flow-sheet                                                    |
| 4. Shipping and packaging                   | usually negligible                                                 |
| Sub-total A                                 |                                                                    |
| Fixed costs                                 |                                                                    |
| 5. Maintenance                              | 5-10 per cent of fixed capital                                     |
| 6. Operating labour                         | from manning estimates                                             |
| 7. Laboratory costs                         | 20-23 per cent of 6                                                |
| 8. Supervision                              | 20 per cent of item (6)                                            |
| 9. Plant overheads                          | 50 per cent of item (6)                                            |
| 10. Capital charges                         | 15 per cent of the fixed capital                                   |
| 11. Insurance 12. Local taxes               | 1 per cent of the fixed capital                                    |
| 13. Royalties                               | 2 per cent of the fixed capital<br>1 per cent of the fixed capital |
| Sub-total B                                 |                                                                    |
| Direct production costs A + B               |                                                                    |
| 13. Sales expense                           | 20-30 per cent of the direct                                       |
| 14. General overheads                       | production cost                                                    |
| 15. Research and development                |                                                                    |
| Sub-total C                                 |                                                                    |
| Annual production $cost = A + B + C =$      |                                                                    |
| Production cost £/kg = $\frac{Ann}{A}$      | nual production cost                                               |
| $\frac{1}{\text{An}} = \frac{1}{\text{An}}$ | nual production rate                                               |

## Example 6.4

Preliminary design work has been done on a process to recover a valuable product from an effluent gas stream. The gas will be scrubbed with a solvent in a packed column; the recovered product and solvent separated by distillation; and the solvent cooled and recycled. The major items of equipment that will be required are detailed below.

- 1. Absorption column: diameter 1 m, vessel overall height 15 m, packed height 12 m, packing 25 mm ceramic intalox saddles, vessel carbon steel, operating pressure 5 bar.
- 2. Recovery column: diameter 1 m, vessel overall height 20 m, 35 sieve plates, vessel and plates stainless steel, operating pressure 1 bar.
- 3. Reboiler: forced convection type, fixed tube sheets, area 18.6 m<sup>2</sup>, carbon steel shell, stainless-steel tubes, operating pressure 1 bar.
- 4. Condenser: fixed tube sheets, area 25.3 m<sup>2</sup>, carbon steel shell and tubes, operating pressure 1 bar.
- 5. Recycle solvent cooler: U-tubes, area 10.1 m<sup>2</sup>, carbon steel shell and tubes, operating pressure 5 bar.
- 6. Solvent and product storage tanks: cone roof, capacity 35 m<sup>3</sup>, carbon steel.

Estimated service requirements:

Steam 200 kg/h
Cooling water 5000 kg/h
Electrical power 100 kwh/d (360 MJ/d)

Estimated solvent loss 10 kg/d. Price: £400/t.

Plant attainment 95 per cent.

Estimate the capital investment required for this project, and the annual operating cost; date mid-1998.

### Solution

Purchased cost of major equipment items.

## Absorption column

```
Bare vessel cost (Figure 6.5a) £21,000; material factor 1.0, pressure factor 1.1. Vessel cost = 21,000 \times 1.0 \times 1.1 = £23,000 Packing cost (Table 6.3) £840/m³ Volume of packing = (\pi/4) \times 12 = 9.4m³ Cost of column packing = 9.4 \times 840 = £7896 Total cost of column 21,000 + 7896 = 28.896, say £29,000
```

## Recovery column

```
Bare vessel cost (Figure 6.5a) £26,000; material factor 2.0, pressure factor 1.0 Vessel cost 26,000 \times 2.0 \times 1.0 = £52,000 Cost of a plate (Figure 6.7a), material factor 1.7 = 200 \times 1.7 = £340 Total cost of plates = 35 \times 340 = £11,900 Total cost of column = 52,000 + 11,900 = £63,900, say £64,000
```

### Reboiler

```
Bare cost (Figure 6.3a) £10,000; type factor 0.8, pressure factor 1.0 Purchased cost = 10.000 \times 0.8 \times 1.0 = £8000
```

### Condenser

```
Bare cost (Figure 6.3a) £7000; type factor 0.8, pressure factor 1.0 Purchased cost = 7000 \times 0.8 \times 1.0 = £5600, say £6000
```

### Cooler

```
Bare cost (Figure 6.3a) £3800; type factor 0.85, pressure factor 1.0 Purchased cost = 3.800 \times 0.85 \times 1.0 = £3230, say £3000
```

### Solvent tank

Purchase cost (Table 6.2) = 
$$1400 \times (35)^{0.55} = £9894$$
, say £10,000

### Product tank

Purchase cost same as solvent tank = £10,000

Total purchase cost of major equipment items (PCE)

| Absorption co | lumn  | 29,000   |
|---------------|-------|----------|
| Recovery colu | ımn   | 64,000   |
| Reboiler      |       | 8000     |
| Condenser     |       | 6000     |
| Cooler        |       | 3000     |
| Solvent tank  |       | 10,000   |
| Product tank  |       | 10,000   |
|               | Total | £130,000 |
|               |       |          |

Estimation of fixed capital cost, reference Table 6.1, fluids processing plant:

| PCE £130,000                                                                                                                                                                 | _                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| $f_1$ Equipment erection $f_2$ Piping $f_3$ Instrumentation $f_4$ Electrical $f_5$ Buildings $f_6$ Utilities $f_7$ Storages $f_8$ Site development $f_9$ Ancillary buildings | 0.40 0.70 0.20 0.10 none required not applicable provided in PCE not applicable none required |
|                                                                                                                                                                              |                                                                                               |

Total physical plant cost (PPC) = 130,000(1 + 0.4 + 0.7 + 0.2 + 0.1) = £312,200

 $f_{10}$  Design and Engineering 0.30

f<sub>11</sub> Contractors Fee none (unlikely to be used for a small, plant project)

 $f_{12}$  Contingencies 0.10

Fixed capital = 312,200(1 + 0.3 + 0.1) = 436,800 round up to £437,000

Working capital, allow 5% of fixed capital to cover cost of the initial solvent charge

$$= 437,000 \times 0.05 = 21,850$$
, round to £22,000

Total investment required for project = 437,000 + 22,000 = £459,000, say £460,000

Annual operating costs, reference Table 6.6:

Operating time, allowing for plant attainment =  $365 \times 0.95 = 347$  d/y,  $347 \times 24 =$ 8328 h/y.

### Variable costs:

| 1. Raw materials, solvent make-up = $10 \times 347 \times 400/1000 =$                 | £ 1388         |
|---------------------------------------------------------------------------------------|----------------|
| 2. Miscellaneous materials, $10\%$ of maintenance cost (item 5) =                     | £ 2200         |
| 3. Utilities, cost from Table 6.5:                                                    |                |
| Steam, at $7£/t = 7 \times 8328 \times 200/1000 =$                                    | £11,659        |
| Cooling water, at 1.5 p/t = $(1.5/100) \times 8328 \times 5000/1000 =$                | £ 625          |
| Power, at 1.2 p/MJ = $(1.2/100) \times 360 \times 347 =$<br>4. Shipping and packaging | £ 1499         |
| 4. Shipping and packaging                                                             | not applicable |

Variable costs = £17,371

### Fixed costs:

| 5.  | Maintenance, take as 5% of fixed capital = $437,000 \times 0.05 =$ | £21,850        |
|-----|--------------------------------------------------------------------|----------------|
| 6.  | Operating labour, allow one extra man on days. It is unlikely      |                |
|     | that one extra man per shift would be needed to operate            |                |
|     | this small plant, and one extra per shift would give               |                |
|     | a disproportionately high labour cost.                             |                |
|     | Say, £25,000 per year, allowing for overheads =                    | £25,000        |
| 7.  | Supervision, no additional supervision would be needed             |                |
| 8.  | Plant overheads, take as 50% of operating labour =                 | £12,500        |
| 9.  | Laboratory, take as 30% of operating labour =                      | £ 7500         |
| 10. | Capital charges, 10% of fixed capital (bank rate 8%) =             | £43,700        |
| 11. | Insurance, 1% of fixed capital =                                   | £ 4400         |
| 12. | Local taxes                                                        | neglect        |
| 13. | Royalties                                                          | not applicable |
|     | Fixed costs = $£114,950$                                           |                |
|     | Direct production $costs = 17,371 + 114,950 =$                     | £132,321       |

- 14. Sales expense
- 15. General overheads not applicable
- 16. Research and development

Annual operating cost, rounded = £132,000

### 6.10. ECONOMIC EVALUATION OF PROJECTS

As the purpose of investing money in chemical plant is to earn money, some means of comparing the economic performance of projects is needed.

For small projects, and for simple choices between alternative processing schemes and equipment, the decisions can usually be made by comparing the capital and operating costs. More sophisticated evaluation techniques and economic criteria are needed when decisions have to be made between large, complex projects, particularly when the projects differ widely in scope, time scale and type of product. Some of the more commonly used techniques of economic evaluation and the criteria used to judge economic performance are outlined in this section. For a full discussion of the subject one of the many specialist texts that have been published should be consulted; ICI (1968), Merrett and Sykes (1963), Alfred and Evans (1967) and Vale-Riestra (1983). The booklet published by the Institution of Chemical Engineers, Allen (1991), is particularly recommended to students.

Making major investment decisions in the face of the uncertainties that will undoubtedly exist about plant performance, costs, the market, government policy, and the world economic situation, is a difficult and complex task (if not an impossible task) and in a large design organisation the evaluation would be done by a specialist group.

## 6.10.1. Cash flow and cash-flow diagrams

The flow of cash is the life blood of any commercial organisation. The cash flows in a manufacturing company can be likened to the material flows in a process plant.

The inputs are the cash needed to pay for research and development; plant design and construction; and plant operation. The outputs are goods for sale; and cash returns, are recycled, to the organisation from the profits earned. The "net cash flow" at any time is the difference between the earnings and expenditure. A cash-flow diagram, such as that shown in Figure 6.8, shows the forecast cumulative net cash flow over the life of a project. The cash flows are based on the best estimates of investment, operating costs, sales volume and sales price, that can be made for the project. A cash-flow diagram gives a clear picture of the resources required for a project and the timing of the earnings. The diagram can be divided into the following characteristic regions:

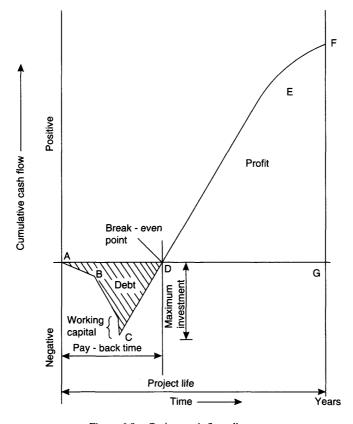



Figure 6.8. Project cash-flow diagram

- A-B The investment required to design the plant.
- B-C The heavy flow of capital to build the plant, and provide funds for start-up.
- C-D The cash-flow curve turns up at C, as the process comes on stream and income is generated from sales. The net cash flow is now positive but the cumulative amount remains negative until the investment is paid off, at point D.

  Point D is known as the *break-even point* and the time to reach the break-even point

Point D is known as the *break-even point* and the time to reach the break-even point is called the *pay-back time*. In a different context, the term "break-even point" is used for the percentage of plant capacity at which the income equals the cost for production.

- D-E In this region the cumulative cash flow is positive. The project is earning a return on the investment.
- E-F Toward the end of project life the rate of cash flow may tend to fall off, due to increased operating costs and falling sale volume and price, and the slope of the curve changes.

The point F gives the final cumulative net cash flow at the end of the project life.

Net cash flow is a relatively simple and easily understood concept, and forms the basis for the calculation of other, more complex, measures of profitability.

## 6.10.2. Tax and depreciation

In calculating cash flows, as in Example 6.6, the project is usually considered as an isolated system, and taxes on profits and the effect of depreciation of the investment are not considered; tax rates are not constant and depend on government policy. In recent years, profit tax has been running at around 33 per cent and this figure can be used to make an estimate of the cash flow after tax. Depreciation rates depend on government policy, and on the accounting practices of the particular company. At times, it has been government practice to allow higher depreciation rates for tax purposes in development areas; or to pay capital grants to encourage investment in these areas. The effect of government policy must clearly be taken into account at some stage when evaluating projects, particularly when considering projects in different countries.

## 6.10.3. Discounted cash flow (time value of money)

In Figure 6.8 the net cash flow is shown at its value in the year in which it occurred. So the figures on the ordinate show the "future worth" of the project: the cumulative "net future worth" (NFW).

The money earned in any year can be put to work (reinvested) as soon as it is available and start to earn a return. So money earned in the early years of the project is more valuable than that earned in later years. This "time value of money" can be allowed for by using a variation of the familiar compound interest formula. The net cash flow in each year of the project is brought to its "present worth" at the start of the project by discounting it at some chosen compound interest rate.

Net present worth (NPW) of cash flow in year 
$$n = \frac{\text{Estimated net cash flow in year } n \text{ (NFW)}}{(1+r)^n}$$
 (6.9)

where r is the discount rate (interest rate) per cent/100 and

Total NPW of project = 
$$\sum_{n=1}^{n=t} \frac{\text{NFW}}{(1+r)^n}$$
 (6.10)

t =life of project, years.

The discount rate is chosen to reflect the earning power of money. It would be roughly equivalent to the current interest rate that the money could earn if invested.

The total NPW will be less than the total NFW, and reflects the time value of money and the pattern of earnings over the life of the project; see Example 6.6.

Most proprietary spreadsheets have procedures for calculating the cumulative NPW from a listing of the yearly net annual revenue (profit). Spreadsheets are useful tools for economic analysis and project evaluation.

## 6.10.4. Rate of return calculations

Cash-flow figures do not show how well the capital invested is being used; two projects with widely different capital costs may give similar cumulative cash-flow figures. Some way of measuring the performance of the capital invested is needed. Rate of return (ROR), which is the ratio of annual profit to investment, is a simple index of the performance of the money invested. Though basically a simple concept, the calculation of the ROR is complicated by the fact that the annual profit (net cash flow) will not be constant over the life of the project. The simplest method is to base the ROR on the average income over the life of the project and the original investment.

$$ROR = \frac{Cumulative \text{ net cash flow at end of project}}{\text{Life of project} \times \text{original investment}} \times 100 \text{ per cent}$$
 (6.11)

From Figure 6.8.

Cumulative income = 
$$F - C$$
  
Investment =  $C$   
Life of project =  $G$   
then,  $ROR = \frac{F - C}{C \times G} \times 100$  per cent

The rate of return is often calculated for the anticipated best year of the project: the year in which the net cash flow is greatest. It can also be based on the book value of the investment, the investment after allowing for depreciation. Simple rate of return calculations take no account of the time value of money.

# 6.10.5. Discounted cash-flow rate of return (DCFRR)

Discounted cash-flow analysis, used to calculate the present worth of future earnings (Section 6.10.3), is sensitive to the interest rate assumed. By calculating the NPW for various interest rates, it is possible to find an interest rate at which the cumulative net present worth at the end of the project is zero. This particular rate is called the "discounted cash-flow rate of return" (DCFRR) and is a measure of the maximum rate that the project could pay and still break even by the end of the project life.

$$\sum_{n=1}^{n=t} \frac{\text{NFW}}{(1+r')^n} = 0 \tag{6.12}$$

where r' = the discounted cash-flow rate of return (per cent/100),

NFW = the future worth of the net cash flow in year n,

t = the life of the project, years.

The value of r' is found by trial-and-error calculations. Finding the discount rate that just pays off the project investment over the project's life is analogous to paying off a mortgage. The more profitable the project, the higher the DCFRR that it can afford to pay.

DCFRR provides a useful way of comparing the performance of capital for different projects; independent of the amount of capital used and the life of the plant, or the actual interest rates prevailing at any time.

Other names for DCFRR are interest rate of return and internal rate of return.

# 6.10.6. Pay-back time

Pay-back time is the time required after the start of the project to pay off the initial investment from income; point D on Figure 6.7. Pay-back time is a useful criterion for judging projects that have a short life, or when the capital is only available for a short time.

It is often used to judge small improvement projects on operating plant. Typically, a pay-back time of 2 to 5 years would be expected from such projects.

Pay-back time as a criterion of investment performance does not, by definition, consider the performance of the project after the pay-back period.

# 6.10.7. Allowing for inflation

Inflation depreciates money in a manner similar to, but different from, the idea of discounting to allow for the time value of money. The effect of inflation on the net cash flow in future years can be allowed for in a similar manner to the net present worth calculation given by equation 6.9, using an inflation rate in place of, or added to, the discount rate r. However, the difficulty is to decide what the inflation rate is likely to be in future years. Also, inflation may well affect the sales price, operating costs and raw material prices differently. One approach is to argue that a decision between alternative projects made without formally considering the effect of inflation on future earnings will still be correct, as inflation is likely to affect the predictions made for both projects in a similar way.

# 6.10.8. Sensitivity analysis

The economic analysis of a project can only be based on the best estimates that can be made of the investment required and the cash flows. The actual cash flows achieved in any year will be affected by any changes in raw-materials costs, and other operating costs; and will be very dependent on the sales volume and price. A sensitivity analysis is a way of examining the effects of uncertainties in the forecasts on the viability of a project. To carry out the analysis the investment and cash flows are first calculated using what are considered the most probable values for the various factors; this establishes the base case for analysis. The cash flows, and whatever criteria of performance are to be used, are then calculated assuming a range of error for each of the factors in turn; for example, an error of, say,  $\pm 10$  per cent on the sales price might be assumed. This will show how sensitive the cash flows and economic criteria are to errors in the forecast figures. It gives some idea of the degree of risk involved in making judgements on the forecast performance of the project.

# 6.10.9. Summary

The investment criteria discussed in this section are set out in Table 6.7, which shows the main advantage and disadvantage of each criterion.

There is no one best criterion on which to judge an investment opportunity. A company will develop its own methods of economic evaluation, using the techniques discussed in this section, and will have a "target" figure of what to expect for the criterion used, based on their experience with previous successful, and unsuccessful, projects.

| Criterion                           | Abbreviation | Units | Main advantage                                                                   | Main shortcoming                                                                                               |
|-------------------------------------|--------------|-------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Investment                          | _            | £,\$  | Shows financial resources needed                                                 | No indication of project performance                                                                           |
| Net future worth                    | NFW          | £,\$  | Simple. When plotted as cash-flow diagram, shows timing of investment and income | Takes no account of the time value of money                                                                    |
| Pay-back time                       | _            | years | Shows how soon investment will be recovered                                      | No information on later years                                                                                  |
| Net present worth                   | NPW          | £,\$  | As for NFW but accounts for timing of cash flows                                 | Dependent on discount rate used                                                                                |
| Rate of return                      | ROR          | %     | Measures performance of capital                                                  | Takes no account of timing<br>of cash flows<br>Dependent on definition of<br>income (profit) and<br>investment |
| Discounted cash-flow rate of return | DCFRR        | %     | Measures performance of capital allowing for timing of cash flows                | No indication of the resources needed                                                                          |

Table 6.7. Investment criteria

A figure of 20 to 30 per cent for the return on investment (ROR) can be used as a rough guide for judging small projects, and when decisions have to be made on whether to install additional equipment to reduce operating costs. This is equivalent to saying that for a project to be viable the investment needed should not be greater than about 4 to 5 times the annual savings achieved.

As well as economic performance, many other factors have to be considered when evaluating projects; such as those listed below:

- 1. Safety.
- 2. Environmental problems (waste disposal).
- 3. Political considerations (government policies).
- 4. Location of customers.
- 5. Availability of labour.
- 6. Availability of supporting services.
- 7. Company experience in the particular technology.

# Example 6.5

A plant is producing 10,000 t/y of a product. The overall yield is 70 per cent, on a mass basis (kg of product per kg raw material). The raw material costs £10/t, and the product

sells for £35/t. A process modification has been devised that will increase the yield to 75 per cent. The additional investment required is £35,000, and the additional operating costs are negligible. Is the modification worth making?

## Solution

There are two ways of looking at the earnings to be gained from the modification:

- 1. If the additional production given by the yield increase can be sold at the current price, the earnings on each additional ton of production will equal the sales price less the raw material cost.
- If the additional production cannot be readily sold, the modification results in a reduction in raw material requirements, rather than increased sales, and the earnings (savings) are from the reduction in annual raw material costs.

The second way gives the lowest figures and is the safest basis for making the evaluation. At 10,000 t/y production

Raw material requirements at 70 per cent yield 
$$=\frac{10,000}{0.7}=14,286$$
  
at 75 per cent yield  $=\frac{10,000}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.75}=\frac{13,333}{0.7$ 

Pay-back time (as the annual savings are constant, the pay-back time will be the reciprocal of the ROR)

$$=\frac{100}{27} = 3.7 \text{ years}$$

On these figures the modification would be considered worthwhile.

# Example 6.6

It is proposed to build a plant to produce a new product. The estimated investment required is 12.5 million pounds and the timing of the investment will be:

| year l | 1.0 million (design costs)       |
|--------|----------------------------------|
| year 2 | 5.0 million (construction costs) |
| year 3 | 5.0 million " "                  |
| year 4 | 1.5 million (working capital)    |

The plant will start up in year 4.

The forecast sales price, sales volume, and raw material costs are shown in Table 6.8.

| Table 6.8. | Summary | of o | lata and | results | for | example | 66 |
|------------|---------|------|----------|---------|-----|---------|----|
|            |         |      |          |         |     |         |    |

|                       |                                     |                               |                                   | During                                                   | year                               | At year end                                          |                                                        | At comm                                              | encement (                               | of project                               |                                          |
|-----------------------|-------------------------------------|-------------------------------|-----------------------------------|----------------------------------------------------------|------------------------------------|------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| End of year           | Forecast sales<br>10 <sup>3</sup> t | Forecast selling<br>Price £/t | Raw material costs<br>£/t product | Sale income<br>less operating<br>costs 10 <sup>6</sup> £ | Net cash flow<br>10 <sup>6</sup> £ | Cumulative cash flow 10 <sup>6</sup> £ (Project NFW) | Discounted cash flow at 15 per cent $10^6\mathfrak{E}$ | Cumulative DCF<br>(Project NPW)<br>10 <sup>6</sup> £ | Project NPW at 25 per cent discount rate | Project NPW at 35 per cent discount rate | Project NPW at 37 per cent discount rate |
| 1                     | 0                                   | _                             |                                   | 0                                                        | -1.0                               | -1.00                                                | -0.87                                                  | -0.87                                                | -0.80                                    | -0.74                                    | 0.73                                     |
| 2                     | 0                                   |                               | _                                 | 0                                                        | -5.0                               | -6.00                                                | -3.78                                                  | -4.65                                                | -4.00                                    | -3.48                                    | -3.39                                    |
| 1<br>2<br>3<br>4<br>5 | 0                                   |                               | _                                 | 0                                                        | -5.0                               | -11.00                                               | -3.29                                                  | -7.94                                                | -6.56                                    | -5.52                                    | -5.34                                    |
| 4                     | 100                                 | 150                           | 90                                | 4.6                                                      | 3.10                               | -7.90                                                | 1.77                                                   | -6.17                                                | -5.29                                    | -4.58                                    | -4.46                                    |
| 5                     | 105                                 | 150                           | 90                                | 4.85                                                     | 4.85                               | -3.05                                                | 2.41                                                   | -4.03                                                | -3.70                                    | -3.50                                    | -3.45                                    |
| 6                     | 110                                 | 150                           | 90                                | 5.10                                                     | 5.10                               | 2.05                                                 | 2.20                                                   | -1.83                                                | -2.36                                    | -2.66                                    | -2.68                                    |
| 7                     | 120                                 | 150                           | 90                                | 5.60                                                     | 5.60                               | 7.65                                                 | 2.11                                                   | 0.28                                                 | -1.19                                    | -1.97                                    | -2.06                                    |
| 8                     | 130                                 | 150                           | 90                                | 6.10                                                     | 6.10                               | 13.75                                                | 1.99                                                   | 2.27                                                 | -0.17                                    | -1.42                                    | -1.57                                    |
| 9                     | 140                                 | 150                           | 90                                | 6.50                                                     | 6.50                               | 20.25                                                | 1.85                                                   | 4.12                                                 | 0.70                                     | -0.98                                    | -1.19                                    |
| 10                    | 150                                 | 145                           | 85                                | 7.00                                                     | 7.00                               | 27.25                                                | 1.73                                                   | 5.85                                                 | 1.45                                     | -0.64                                    | -0.89                                    |
| 11                    | 165                                 | 140                           | 85                                | 6.93                                                     | 6.93                               | 34.18                                                | 1.49                                                   | 7.34                                                 | 2.05                                     | -0.38                                    | -0.67                                    |
| 12                    | 180                                 | 140                           | 85                                | 7.60                                                     | 7.60                               | 41.78                                                | 1.42                                                   | 8.76                                                 | 2.57                                     | -0.17                                    | -0.50                                    |
| 13                    | 190                                 | 140                           | 85                                | 8.05                                                     | 8.05                               | 49.83                                                | 1.31                                                   | 10.07                                                | 3.01                                     | -0.01                                    | -0.36                                    |
| 14                    | 200                                 | 135                           | 80                                | 8.05                                                     | 8.05                               | 57.88                                                | 1.14                                                   | 11.21                                                | 3.36                                     | 0.11                                     | -0.27                                    |
| 15                    | 190                                 | 130                           | 75                                | 7.62                                                     | 7.62                               | 65.50                                                | 0.94                                                   | 12.15                                                | 3.63                                     | 0.19                                     | -0.20                                    |
| 16                    | 180                                 | 120                           | 75                                | 7.19                                                     | 7.19                               | 72.69                                                | 0.77                                                   | 12.92                                                | 3.83                                     | 0.25                                     | -0.15                                    |
| 17                    | 170                                 | 115                           | 70                                | 5.06                                                     | 5.06                               | 77.75                                                | 0.47                                                   | 13.39                                                | 3.95                                     | 0.28                                     | -0.13                                    |
| 18                    | 160                                 | 110                           | 70                                | 3.93                                                     | 3.93                               | 81.68                                                | 0.32                                                   | 13.71                                                | 4.02                                     | 0.30                                     | -0.12                                    |
| 19                    | 150                                 | 100                           | 70                                | 2.15                                                     | 2.15                               | 83.83                                                | 0.15                                                   | 13.86                                                | 4.05                                     | 0.31                                     | -0.11                                    |

The fixed operating costs are estimated to be:

£400,000 per year up to year 9 £500,000 per year from year 9 to 13 £550,000 per year from year 13

The variable operating costs are estimated to be:

£10 per ton of product up to year 13 £13 per ton of product from year 13

## Calculate:

- 1. The net cash flow in each year.
- 2. The future worth of the project, NFW.
- 3. The present worth, NPW, at a discount rate of 15 per cent.
- 4. The discounted cash-flow rate of return, DCFRR.
- 5. The pay-back time.

No account needs to be taken of tax in this exercise; or the scrap value of the equipment and value of the site at the end of the project life. For the discounting calculation, cash flows can be assumed to occur at the end of the year in which they actually occur.

#### Solution

The cash-flow calculations are summarised in Table 6.8. Sample calculations to illustrate the methods used are given below.

# For year 4

| Investment (negative cash flow)                                  | = | £1.5  | $\times 10^6$   |
|------------------------------------------------------------------|---|-------|-----------------|
| Sales income = $100 \times 10^3 \times 150$                      | = | £15.0 | $\times~10^{6}$ |
| Raw material costs = $100 \times 10^3 \times 90$                 | = | £9.0  | $\times 10^6$   |
| Fixed operating costs                                            | = | £0.4  | $\times~10^6$   |
| Variable operating costs = $100 \times 10^3 \times 10$           | = | £1.0  | $\times~10^6$   |
| Net cash flow = sales income $-\cos ts - investment$             |   |       |                 |
| = 15.0 - 10.4 - 1.5 = 3.1 million pounds                         |   |       |                 |
| Discounted cash flow (at 15 per cent) = $\frac{3.1}{(1+0.15)^4}$ | = | £1.77 | $\times 10^6$   |

# For year 8

| Investment                                             |   | nil                            |
|--------------------------------------------------------|---|--------------------------------|
| Sales income = $130 \times 10^3 \times 150$            | = | £19.5 × $10^6$                 |
| Raw material costs = $130 \times 10^3 \times 90$       | = | £11.7 $\times$ 10 <sup>6</sup> |
| Fixed operating costs                                  | = | $£0.4 \times 10^6$             |
| Variable operating costs = $130 \times 10^3 \times 10$ | = | £1.3 × $10^6$                  |
| Net cash flow = $19.5 - 13.4 = 6.10$ million pounds    |   |                                |
| $DCF = \frac{6.1}{(1.15)^8} = 1.99$                    |   |                                |

#### **DCFRR**

This is found by trial-and-error calculations. The present worth has been calculated at discount rates of 25, 35 and 37 per cent. From the results shown in Table 6.8 it will be seen that the rate to give zero present worth will be around 36 per cent. This is the discounted cash-flow rate of return for the project.

# 6.11. COMPUTER METHODS FOR COSTING AND PROJECT EVALUATION

Most large manufacturing and contracting organisations use computer programs to aid in the preparation of cost estimates and in process evaluation. Many have developed their own programs, using cost data available from company records to ensure that the estimates are reliable. Of the packages available commercially, QUESTIMATE, marketed by the Icarus Corporation, is probably the most widely used.

Two less sophisticated programs, which are available to university departments at reasonable cost, are CAPCOS from ChemEng Software and Services, and ECONOMIST,

which was developed at Teesside University. Both these programs are available in versions suitable for personal computers. CAPCOS utilised costing methods developed by Guthrie (1969, 1970) with the data updated in 1986; ECONOMIST uses U.K. cost data.

## 6.12. REFERENCES

ALFRED, A. M. and Evans, J. B. (1967) Appraisal of Investment Projects by DCF (Chapman & Hall).

ALLEN, D. H. (1991) Economic Evaluation of Projects (Institution of Chemical Engineers, London).

Anon. (1986) Process Engineering (Jan.) 13. Changing index bases.

Anon. (1992) Process Engineering (March) 18. Predict indices — a review.

ARIES, R. S. and NEWTON, R. D. (1955) Cost Estimation (McGraw-Hill).

BECHTEL, L. B. (1960) Chem. Eng., NY 67 (Feb. 22nd) 127. Estimate working capital needs.

CHEM. ENG. (1970) Modern Cost Estimating Techniques (McGraw-Hill).

CHEM. ENG. (1977) Modern Cost Engineering (McGraw-Hill).

CHILTON, C. H. (1960) Cost Engineering in the Process Industries (McGraw-Hill).

CMR (1992) Chemical Marketing Reporter (Schnell Publishing Co. Inc.).

CRAN, J. (1973) Process Engineering (Jan.) 18. Process engineering indices help estimate the cost of new plant.

CRAN, J. (1979) Process Engineering (June) 10. Plant cost indices change with time.

ESTRUP, C. (1972) Brit. Chem. Eng. Proc. Tech. 17, 213. The history of the six-tenths rule in capital cost estimation.

GARRETT, D. E. (1989) Chemical Engineering Economics (Van Norstrand Reinhold).

GUTHRIE, K. M. (1969) Chem. Eng., NY 76 (March 24th) 114. Capital cost estimating.

GUTHRIE, K. M. (1970) Chem. Eng., NY 77 (June 15th) 140. Capital and operating costs for 54 processes. (Note: correction Dec. 14th, 7).

GUTHRIE, K. M. (1974) Process Plant Estimating, Evaluation, and Control (Craftsman books).

HALL, R. S., MATLEY, J. and McNaughton, J. (1982) Chem. Eng., NY 89 (April 5th) 80. Current cost of process equipment.

HAPPLE, J. and JORDAN, D. G. (1975) Chemical Process Economics, 2nd edn (Marcel Dekker).

HOLLAND, F. A., WATSON, F. A. and WILKINSON, J. K. (1983) Introduction to Process Economics 2nd edn (Wiley). ICI (1968) Assessing Projects—a programme for learning (Methuen).

ICHEME (1988) A New Guide to Capital Cost Estimation 3rd edn (Institution of Chemical Engineers, London). KARBANDA, O. P. (1978) Process Plant and Equipment Cost Estimating (Sevak Publications, Bombay).

LANG, H. J. (1948) Chem. Eng., NY 55 (June) 112. Simplified approach to preliminary cost estimates.

LYDA, T. B. (1972) Chem. Eng., NY 79 (Sept. 18th) 182. How much working capital will the new project need? MERRETT, A. J. and SYKES, A. (1963) The Finance and Analysis of Capital Projects (Longmans & Green).

MILLER, C. A. (1979) Chem. Eng., NY 86 (July 2nd) 89. Converting construction costs from one country to another.

PAGE, J. S. (1984) Conceptual Cost Estimating (Gulf).

PIKULIK, A. and DIAZ, H. E. (1977) Chem. Eng., NY 84 (Oct. 10th) 106. Cost estimating for major process equipment.

PUROHIT, G. P. (1983) Chem. Eng., NY 90 (Aug. 22nd) 56. Estimating the cost of heat exchangers.

Scott, R. (1978) Eng. and Proc. Econ., 3 105. Working capital and its estimation for project evaluation.

TAYLOR, J. H. (1977) Eng. and Proc. Econ. 2, 259. The process step scoring method for making quick capital estimates.

ULRICH, G. D. (1984) A Guide to Chemical Engineering Process Design and Economics (Wiley).

VALLE-RIESTRA, J. F. (1983) Project Evaluation in the Chemical Process Industries (McGraw-Hill).

WESSEL, H. E. (1952) Chem. Eng., NY 59 (July) 209. New graph correlates operating labor data for chemical processes.

WILSON, G. T. (1971) Brit. Chem. Eng. 16 931. Capital investment for chemical plant.

WINFIELD, M. D. and DRYDEN, C. E. (1962) Chem. Eng., NY 69 (Dec. 24th) 100. Chart gives equipment, plant costs.

## 6.13. NOMENCLATURE

Dimensions in MT £ or \$

A Year in which cost is known (equation 6.1)

B Year in which cost is to be estimated (equation 6.1)

T T

| C               | Cost constant in equation 6.7          | *                     |
|-----------------|----------------------------------------|-----------------------|
| Ce              | Purchased equipment cost               | <b>£</b> or <b>\$</b> |
| Cf              | Fixed capital cost                     | <b>£</b> or <b>\$</b> |
| $C_1$           | Capital cost of plant 1                | £ or \$               |
| $C_2$           | Capital cost of plant 2                | £ or \$               |
| $f_L$           | Lang factors (equation 6.3)            |                       |
| $f_1 \dots f_9$ | Capital cost factors (Table 6.1)       |                       |
| N               | Number of significant processing steps |                       |
| n               | Capital cost index in equation 6.4     |                       |
| Q               | Plant capacity                         | $\mathbf{MT}^{-1}$    |
| S               | Equipment size unit in equation 6.4    | *                     |
| $S_1$           | Capacity of plant 1                    | $\mathbf{MT}^{-1}$    |
| $S_2$           | Capacity of plant 2                    | $\mathbf{MT}^{-1}$    |
| S               | Reactor conversion                     |                       |

Asterisk (\*) indicates that these dimensions are dependent on the type of equipment.

## 6.14. PROBLEMS

- **6.1.** The capital cost of a plant to produce 100 t per day of aniline was 8.5 million US dollars in mid-1992. Estimate the cost in pounds sterling in January 1999. Take the exchange rates as: £1 = \$2.0 in mid-1992 and £1 = \$1.65 in January 1998.
- **6.2.** The process used in the manufacture of aniline from nitrobenzene is described in Appendix G, design problem G.8. The process involves six significant stages: Vaporisation of the nitrobenzene

Hydrogenation of the nitrobenzene

Separation of the reactor products by condensation

Recovery of crude aniline by distillation

Purification of the crude nitrobenzene

Recovery of aniline from waste water streams

Estimate the capital cost of a plant to produce 20,000 tonne per year.

- 6.3. A reactor vessel cost £365,000 in June 1993, estimate the cost in mid-1999.
- **6.4.** The cost of a distillation column was \$225,000 in early 1988, estimate the cost in January 1998.
- **6.5.** Using the data on equipment costs given in this chapter, estimate the cost of the following equipment:
  - 1. A shell and tube heat exchanger, heat transfer area 50 m<sup>2</sup>, floating head type, carbon steel shell, stainless steel tubes, operating pressure 25 bar.
  - 2. A kettle reboiler: heat transfer area 25 m<sup>2</sup>, carbon steel shell and tubes, operating pressure 10 bar.
  - 3. A horizontal, cylindrical, storage tank, 3 m diameter, 12 m long, used for liquid chlorine at 10 bar, material carbon steel.
  - 4. A plate column: diameter 2 m height 25 m, stainless clad vessel, 20 stainless steel sieve plates, operating pressure 5 bar.
- **6.6.** Compare the cost the following types of heat exchangers, to give a heat transfer area of 10 m<sup>2</sup>. Take the construction material as carbon steel.

- 1. Shell and tube, fixed head
- 2. Double-pipe
- 3. Gasketed plate
- **6.7.** Estimate the cost of the following items of equipment:
  - 1. A packaged boiler to produce 20,000 kg/h of steam at 10 bar.
  - 2. A centrifugal compressor, driver power 75 kW
  - 3. A plate and frame filter press, filtration area 10 m<sup>2</sup>
  - 4. A floating roof storage tank, capacity 50,000 m<sup>3</sup>
  - 5. A cone roof storage tank, capacity 35,000 m<sup>3</sup>
- **6.8.** A storage tank is purged continuously with a stream of nitrogen. The purge stream leaving the tank is saturated with the product stored in the tank. A major part of the product lost in the purge could be recovered by installing a scrubbing tower to absorb the product in a solvent. The solution from the tower could be fed to a stage in the production process, and the product and solvent recovered without significant additional cost. A preliminary design of the purge recovery system has been made. It would consist of:
  - 1. A small tower 0.5 m diameter, 4 m high, packed with 25 mm ceramic saddles, packed height 3 m.
  - 2. A small storage tank for the solution, 5 m<sup>3</sup> capacity.
  - 3. The necessary pipe work, pump, and instrumentation.

All materials of construction, carbon steel.

Using the following data, evaluate whether it would be economical to install the recovery system:

- 1. cost of product £5 per kg,
- 2. cost of solvent 20 p/kg,
- 3. additional solvent make-up 10 kg/d,
- 4. current loss of product 0.7 kg/h,
- 5. anticipated recovery of product 80 per cent,
- 6. additional service(utility) costs, negligible.

Other operating costs will be insignificant.

- **6.9.** Make a rough estimate of the cost of steam per ton, produced from a packaged boiler. 10,000 kg per hour of steam are required at 15 bar. Natural gas will be used as the fuel, calorific value 39 MJ/m<sup>3</sup>. Take the boiler efficiency as 80 per cent. No condensate will be returned to the boiler.
- **6.10.** The production of methyl ethyl ketone (MEK) is described in Appendix G, problem G.3. A preliminary design has been made for a plant to produce 10,000 tonne per year. The major equipment items required are listed below. The plant attainment will be 8000 hours per year.

Estimate the capital required for this project, and the production cost.

The plant will be built on an existing site with adequate resources to provide the ancillary requirements of the new plant.

## Major equipment items

- 1. Butanol vaporiser: shell and tube heat exchanger, kettle type, heat transfer area 15 m<sup>2</sup>, design pressure 5 bar, materials carbon steel.
- 2. Reactor feed heaters, two off: shell and tube, fixed head, heat transfer area 25 m<sup>2</sup>, design pressure 5 bar, materials stainless steel.
- 3. Reactor, three off: shell and tube construction, fixed tube sheets, heat transfer area 50 m<sup>2</sup>, design pressure 5 bar, materials stainless steel.
- 4. Condenser: shell and tube heat exchanger, fixed tube sheets, heat transfer area 25 m<sup>2</sup>, design pressure 2 bar, materials stainless steel.
- 5. Absorption column: packed column, diameter 0.5 m, height 6.0 m, packing height 4.5 m, packing 25 mm ceramic saddles, design pressure 2 bar, material carbon steel.
- 6. Extraction column: packed column, diameter 0.5 m, height 4 m, packed height 3 m, packing 25 mm stainless steel pall rings, design pressure 2 bar, material carbon steel.
- 7. Solvent recovery column: plate column, diameter 0.6 m, height 6 m, 10 stainless steel sieve plates, design pressure 2 bar, column material carbon steel.
- 8. Recover column reboiler: thermosyphon, shell and tube, fixed tube sheets, heat transfer area 4 m<sup>2</sup>, design pressure 2 bar, materials carbon steel.
- 9. Recovery column condenser: double-pipe, heat transfer area 1.5 m², design pressure 2 bar, materials carbon steel.
- 10. Solvent cooler: double pipe exchanger, heat transfer area 2 m<sup>2</sup>, materials stainless steel.
- 11. Product purification column: plate column, diameter 1 m<sup>2</sup>, height 20 m, 15 sieve plates, design pressure 2 bar, materials stainless steel.
- 12. Product column reboiler: kettle type, heat transfer area 4 m<sup>2</sup>, design pressure 2 bar, materials stainless steel.
- 13. Product column condenser: shell and tube, floating head, heat transfer area 15 m<sup>2</sup>, design pressure 2 bar, materials stainless steel.
- 14. Feed compressor: centrifugal, rating 750 kW,
- 15. Butanol storage tank: cone roof, capacity 400 m³, material carbon steel.
- 16. Solvent storage tank: horizontal, diameter 1.5 m, length 5 m, material carbon steel.
- 17. Product storage tank: cone roof, capacity 400 m³, material carbon steel.

#### Raw materials

- 1. 2-butanol, 1.045 kg per kg of MEK, price £450/t (\$750/t).
- 2. Solvent (trichloroethane) make-up 7000 kg per year, price 60p/kg. (\$1.0/kg).

### Utilities

Fuel oil, 3000 t per year Cooling water, 120 t/hour Steam, low pressure, 1.2 t/h Electrical power, 1 MW

The fuel oil is burnt to provide flue gases for heating the reactor feed and the reactor. The cost of the burner need not be included in this estimate. Some of

the fuel requirements could be provided by using the by-product hydrogen. Also, the exhaust flue gases could be used to generate steam. The economics of these possibilities need not be considered.

**6.11.** A plant is proposing to install a combined heat and power system to supply electrical power and process steam. Power is currently taken from a utility company and steam is generated using on-site boilers.

The capital cost of the CHP plant is estimated to be £3 million pounds (5 million dollars). Combined heat and power is expected to give net savings of £700,000 (\$1,150,000) per year. The plant is expected to operate for 10 years after the completion of construction.

Calculate the cumulative net present worth of the project, at a discount rate of 8 per cent. Also, calculate the discounted cash flow rate of return.

Construction will take two years, and the capital will be paid in two equal increments, at the end of the first and second year. The savings (income) can be taken as paid at the end of each year. Production will start on the completion of construction.

#### CHAPTER 7

# Materials of Construction

## 7.1. INTRODUCTION

This chapter covers the selection of materials of construction for process equipment and piping.

Many factors have to be considered when selecting engineering materials, but for chemical process plant the overriding consideration is usually the ability to resist corrosion. The process designer will be responsible for recommending materials that will be suitable for the process conditions. He must also consider the requirements of the mechanical design engineer; the material selected must have sufficient strength and be easily worked. The most economical material that satisfies both process and mechanical requirements should be selected; this will be the material that gives the lowest cost over the working life of the plant, allowing for maintenance and replacement. Other factors, such as product contamination and process safety, must also be considered. The mechanical properties that are important in the selection of materials are discussed briefly in this chapter. Several books have been published on the properties of materials, and the metal-working processes used in equipment fabrication, and a selection suitable for further study is given in the list of references at the end of this chapter. The mechanical design of process equipment is discussed in Chapter 13.

A detailed discussion of the theoretical aspects of corrosion is not given in this chapter, as this subject is covered comprehensively in several books: Evans (1963a), Uhlig (1963), Fontana (1986), Dillon (1986) and Schweitzer (1989).

Corrosion and corrosion prevention are also the subject of one of the design guides published by the Design Council, Ross (1977).

## 7.2. MATERIAL PROPERTIES

The most important characteristics to be considered when selecting a material of construction are:

- 1. Mechanical properties
  - (a) Strength-tensile strength
  - (b) Stiffness-elastic modulus (Young's modulus)
  - (c) Toughness-fracture resistance
  - (d) Hardness-wear resistance
  - (e) Fatigue resistance
  - (f) Creep resistance
- 2. The effect of high and low temperatures on the mechanical properties

- Corrosion resistance
- 4. Any special properties required; such as, thermal conductivity, electrical resistance, magnetic properties
- 5. Ease of fabrication-forming, welding, casting (see Table 7.1)
- 6. Availability in standard sizes-plates, sections, tubes
- 7. Cost

Table 7.1. A guide to the fabrication properties of common metals and alloys

|                 |           | -            |             |         |         |                      |
|-----------------|-----------|--------------|-------------|---------|---------|----------------------|
|                 | Machining | Cold working | Hot working | Casting | Welding | Annealing<br>temp.°C |
| Mild steel      | S         | S            | S           | D       | S       | 750                  |
| Low alloy steel | S         | D            | S           | D       | S       | 750                  |
| Cast iron       | S         | U            | U           | S       | D/U     | _                    |
| Stainless steel |           |              |             |         |         |                      |
| (18Cr, 8Ni)     | S         | S            | S           | D       | S       | 1050                 |
| Nickel          | S         | S            | S           | S       | S       | 1150                 |
| Monel           | S         | S            | S           | S       | S       | 1100                 |
| Copper          |           |              |             |         |         |                      |
| (deoxidised)    | D         | S            | S           | S       | D       | 800                  |
| Brass           | S         | D            | S           | S       | S       | 700                  |
| Aluminium       | S<br>S    | S            | S           | D       | S       | 550                  |
| Dural           | S         | S            | S           | _       | S       | 350                  |
| Lead            | _         | S            |             |         | S       | _                    |
| Titanium        | S         | S            | U           | U       | D       | _                    |

S—Satisfactory, D—Difficult, special techniques needed. U—Unsatisfactory.

## 7.3. MECHANICAL PROPERTIES

Typical values of the mechanical properties of the more common materials used in the construction of chemical process equipment are given in Table 7.2.

# 7.3.1. Tensile strength

The tensile strength (tensile stress) is a measure of the basic strength of a material. It is the maximum stress that the material will withstand, measured by a standard tensile test. The older name for this property, which is more descriptive of the property, was Ultimate Tensile Strength (UTS).

The design stress for a material, the value used in any design calculations, is based on the tensile strength, or on the yield or proof stress (see Chapter 13).

Proof stress is the stress to cause a specified permanent extension, usually 0.1 per cent. The tensile testing of materials is covered by BS 18.

## 7.3.2. Stiffness

Stiffness is the ability to resist bending and buckling. It is a function of the elastic modulus of the material and the shape of the cross-section of the member (the second moment of area).

|                   | Tensile<br>strength<br>(N/mm <sup>2</sup> ) | 0.1 per cent<br>proof stress<br>(N/mm <sup>2</sup> ) | Modulus of<br>elasticity<br>(kN/mm <sup>2</sup> ) | Hardness<br>Brinell | Specific gravity |
|-------------------|---------------------------------------------|------------------------------------------------------|---------------------------------------------------|---------------------|------------------|
| Mild steel        | 430                                         | 220                                                  | 210                                               | 100-200             | 7.9              |
| Low alloy steel   | 420-660                                     | 230-460                                              | 210                                               | 130-200             | 7.9              |
| Cast iron         | 140-170                                     | _                                                    | 140                                               | 150-250             | 7.2              |
| Stainless steel   |                                             |                                                      |                                                   |                     |                  |
| (18Cr, 8Ni)       | >540                                        | 200                                                  | 210                                               | 160                 | 8.0              |
| Nickel            |                                             |                                                      |                                                   |                     |                  |
| (>99 per cent Ni) | 500                                         | 130                                                  | 210                                               | 80-150              | 8.9              |
| Monel             | 650                                         | 170                                                  | 170                                               | 120-250             | 8.8              |
| Copper            |                                             |                                                      |                                                   |                     |                  |
| (deoxidised)      | 200                                         | 60                                                   | 110                                               | 30-100              | 8.9              |
| Brass             |                                             |                                                      |                                                   |                     |                  |
| (Admiralty)       | 400-600                                     | 130                                                  | 115                                               | 100-200             | 8.6              |
| Aluminium         |                                             |                                                      |                                                   |                     |                  |
| (>99 per cent)    | 80-150                                      | _                                                    | 70                                                | 30                  | 2.7              |
| Dural             | 400                                         | 150                                                  | 70                                                | 100                 | 2.7              |
| Lead              | 30                                          |                                                      | 15                                                | 5                   | 11.3             |
| Titanium          | 500                                         | 350                                                  | 110                                               | 150                 | 4.5              |

Table 7.2. Mechanical properties of common metals and alloys (typical values at room temperature)

# 7.3.3. Toughness

Toughness is associated with tensile strength, and is a measure of the material's resistance to crack propagation. The crystal structure of ductile materials, such as steel, aluminium and copper, is such that they stop the propagation of a crack by local yielding at the crack tip. In other materials, such as the cast irons and glass, the structure is such that local yielding does not occur and the materials are brittle. Brittle materials are weak in tension but strong in compression. Under compression any incipient cracks present are closed up. Various techniques have been developed to allow the use of brittle materials in situations where tensile stress would normally occur. For example, the use of prestressed concrete, and glass-fibre-reinforced plastics in pressure vessels construction.

A detailed discussion of the factors that determine the fracture toughness of materials can be found in the books by Institute of Metallurgists (1960) and Boyd (1970). Gordon (1976) gives an elementary, but very readable, account of the strength of materials in terms of their macroscopic and microscopic structure.

#### 7.3.4. Hardness

The surface hardness, as measured in a standard test, is an indication of a material's ability to resist wear. Hardness testing is covered by British Standards: BS 240, 4175, 427 and 860. This will be an important property if the equipment is being designed to handle abrasive solids, or liquids containing suspended solids which are likely to cause erosion.

# 7.3.5. Fatigue

Fatigue failure is likely to occur in equipment subject to cyclic loading; for example, rotating equipment, such as pumps and compressors, and equipment subjected to pressure cycling. A comprehensive treatment of this subject is given by Harris (1976).

# 7.3.6. Creep

Creep is the gradual extension of a material under a steady tensile stress, over a prolonged period of time. It is usually only important at high temperatures; for instance, with steam and gas turbine blades. For a few materials, notably lead, the rate of creep is significant at moderate temperatures. Lead will creep under its own weight at room temperature and lead linings must be supported at frequent intervals.

The creep strength of a material is usually reported as the stress to cause rupture in 100,000 hours, at the test temperature.

# 7.3.7. Effect of temperature on the mechanical properties

The tensile strength and elastic modulus of metals decrease with increasing temperature. For example, the tensile strength of mild steel (low carbon steel, C < 0.25 per cent) is 450 N/mm<sup>2</sup> at 25°C falling to 210 at 500°C, and the value of Young's modulus 200,000 N/mm<sup>2</sup> at 25°C falling to 150,000 N/mm<sup>2</sup> at 500°C. If equipment is being designed to operate at high temperatures, materials that retain their strength must be selected. The stainless steels are superior in this respect to plain carbon steels.

Creep resistance will be important if the material is subjected to high stresses at elevated temperatures. Special alloys, such as Inconel (International Nickel Co.), are used for high temperature equipment such as furnace tubes.

The selection of materials for high-temperature applications is discussed by Day (1979).

At low temperatures, less than 10°C, metals that are normally ductile can fail in a brittle manner. Serious disasters have occurred through the failure of welded carbon steel vessels at low temperatures. The phenomenon of brittle failure is associated with the crystalline structure of metals. Metals with a body-centred-cubic (bcc) lattice are more liable to brittle failure than those with a face-centred-cubic (fcc) or hexagonal lattice. For low-temperature equipment, such as cryogenic plant and liquefied-gas storages, austenitic stainless steel (fcc) or aluminium alloys (hex) should be specified; see Wigley (1978).

V-notch impact tests, such as the Charpy test, are used to test the susceptibility of materials to brittle failure: see Wells (1968) and BS 131.

The brittle fracture of welded structures is a complex phenomenon and is dependent on plate thickness and the residual stresses present after fabrication; as well as the operating temperature. A comprehensive discussion of brittle fracture in steel structures is given by Boyd (1970).

# 7.4. CORROSION RESISTANCE

The conditions that cause corrosion can arise in a variety of ways. For this brief discussion on the selection of materials it is convenient to classify corrosion into the following categories:

- 1. General wastage of material-uniform corrosion.
- 2. Galvanic corrosion-dissimilar metals in contact.
- 3. Pitting-localised attack.
- 4. Intergranular corrosion.

- 5. Stress corrosion.
- 6. Erosion-corrosion.
- 7. Corrosion fatigue.
- 8. High temperature oxidation.
- 9. Hydrogen embrittlement.

Metallic corrosion is essentially an electrochemical process. Four components are necessary to set up an electrochemical cell:

- 1. Anode-the corroding electrode.
- 2. Cathode-the passive, non-corroding electrode.
- 3. The conducting medium-the electrolyte-the corroding fluid.
- 4. Completion of the electrical circuit-through the material.

Cathodic areas can arise in many ways:

- (i) Dissimilar metals.
- (ii) Corrosion products.
- (iii) Inclusions in the metal, such as slag.
- (iv) Less well-aerated areas.
- (v) Areas of differential concentration.
- (vi) Differentially strained areas.

## 7.4.1. Uniform corrosion

This term describes the more or less uniform wastage of material by corrosion, with no pitting or other forms of local attack. If the corrosion of a material can be considered to be uniform the life of the material in service can be predicted from experimentally determined corrosion rates.

Corrosion rates are usually expressed as a penetration rate in inches per year, or mills per year (mpy) (where a mill =  $10^{-3}$  inches). They are also expressed as a weight loss in milligrams per square decimetre per day (mdd). In corrosion testing, the corrosion rate is measured by the reduction in weight of a specimen of known area over a fixed period of time.

$$ipy = \frac{12w}{tA\rho} \tag{7.1}$$

where w = mass loss in time t, lb,

t = time, years,

 $A = \text{surface area, ft}^2$ ,

 $\rho = \text{density of material, lb/ft}^3$ ,

as most of the published data on corrosion rates are in imperial units.

In SI units 1 ipy = 25 mm per year.

When judging corrosion rates expressed in mdd it must be remembered that the penetration rate depends on the density of the material. For ferrous metals 100 mdd = 0.02 ipy.

What can be considered as an acceptable rate of attack will depend on the cost of the material; the duty, particularly as regards to safety; and the economic life of the plant. For

the more commonly used inexpensive materials, such as the carbon and low alloy steels, a guide to what is considered acceptable is given in Table 7.3. For the more expensive alloys, such as the high alloy steels, the brasses and aluminium, the figures given in Table 7.3 should be divided by 2.

|                              | Corrosi | on rate |
|------------------------------|---------|---------|
|                              | ipy     | mm/y    |
| Completely satisfactory      | < 0.01  | 0.25    |
| Use with caution             | < 0.03  | 0.75    |
| Use only for short exposures | < 0.06  | 1.5     |
| Completely unsatisfactory    | >0.06   | 1.5     |

Table 7.3. Acceptable corrosion rates

The corrosion rate will be dependent on the temperature and concentration of the corrosive fluid. An increase in temperature usually results in an increased rate of corrosion; though not always. The rate will depend on other factors that are affected by temperature, such as oxygen solubility.

The effect of concentration can also be complex. For example, the corrosion of mild steel in sulphuric acid, where the rate is unacceptably high in dilute acid and at concentrations above 70 per cent, but is acceptable at intermediate concentrations.

## 7.4.2. Galvanic corrosion

If dissimilar metals are placed in contact, in an electrolyte, the corrosion rate of the anodic metal will be increased, as the metal lower in the electrochemical series will readily act as a cathode. The galvanic series in sea water for some of the more commonly used metals is shown in Table 7.4. Some metals under certain conditions form a natural protective film; for example, stainless steel in oxidising environments. This state is denoted by "passive" in the series shown in Table 7.4; active indicates the absence of the protective film. Minor shifts in position in the series can be expected in other electrolytes, but the series for sea

Noble end (protected end) 18/8 stainless steel (passive) Monel Inconel (passive) Nickel (passive) Copper Aluminium bronze (Cu 92 per cent, Al 8 per cent) Admiralty brass (Cu 71 per cent, Zn 28 per cent, Sn 1 per cent) Nickel (active) Inconel (active) Lead 18/8 stainless steel (active) Cast iron Mild steel Aluminium Galvanised steel Zinc Magnesium

Table 7.4. Galvanic series in sea water

water is a good indication of the combinations of metals to be avoided. If metals which are widely separated in the galvanic series have to be used together, they should be insulated from each other, breaking the conducting circuit. Alternatively, if sacrificial loss of the anodic material can be accepted, the thickness of this material can be increased to allow for the increased rate of corrosion. The corrosion rate will depend on the relative areas of the anodic and cathodic metals. A high cathode to anode area should be avoided. Sacrificial anodes are used to protect underground steel pipes.

# **7.4.3. Pitting**

Pitting is the term given to very localised corrosion that forms pits in the metal surface. If a material is liable to pitting penetration can occur prematurely and corrosion rate data are not a reliable guide to the equipment life.

Pitting can be caused by a variety of circumstances; any situation that causes a localised increase in corrosion rate may result in the formation of a pit. In an aerated medium the oxygen concentration will be lower at the bottom of a pit, and the bottom will be anodic to the surrounding metal, causing increased corrosion and deepening of the pit. A good surface finish will reduce this type of attack. Pitting can also occur if the composition of the metal is not uniform; for example, the presence of slag inclusions in welds. The impingement of bubbles can also cause pitting, the effect of cavitation in pumps, which is an example of erosion-corrosion.

# 7.4.4. Intergranular corrosion

Intergranular corrosion is the preferential corrosion of material at the grain (crystal) boundaries. Though the loss of material will be small, intergranular corrosion can cause the catastrophic failure of equipment. Intergranular corrosion is a common form of attack on alloys but occurs rarely with pure metals. The attack is usually caused by a differential couple being set up between impurities existing at the grain boundary. Impurities will tend to accumulate at the grain boundaries after heat treatment. The classic example of intergranular corrosion in chemical plant is the weld decay of unstabilised stainless steel. This is caused by the precipitation of chromium carbides at the grain boundaries in a zone adjacent to the weld, where the temperature has been between 500–800°C during welding. Weld decay can be avoided by annealing after welding, if practical; or by using low carbon grades (<0.3 per cent C); or grades stabilised by the addition of titanium or niobium. A test for the susceptibility of stainless steels to weld decay is given in BS 1501.

#### 7.4.5. Effect of stress

Corrosion rate and the form of attack can be changed if the material is under stress. Generally, the rate of attack will not change significantly within normal design stress values. However, for some combinations of metal, corrosive media and temperature, the phenomenon called stress cracking can occur. This is the general name given to a form

of attack in which cracks are produced that grow rapidly, and can cause premature, brittle failure, of the metal. The conditions necessary for stress corrosion cracking to occur are:

- 1. Simultaneous stress and corrosion.
- 2. A specific corrosive substance; in particular the presence of  $Cl^-$ ,  $OH^-$ ,  $NO_3^-$ , or  $NH_4^+$  ions.

Mild stress can cause cracking; the residual stresses from fabrication and welding are sufficient.

For a general discussion of the mechanism of stress corrosion cracking see Fontana (1986).

Some classic examples of stress corrosion cracking are:

The season cracking of brass cartridge cases.

Caustic embrittlement of steel boilers.

The stress corrosion cracking of stainless steels in the presence of chloride ions.

Stress corrosion cracking can be avoided by selecting materials that are not susceptible in the specific corrosion environment; or, less certainly, by stress relieving by annealing after fabrication and welding.

Comprehensive tables of materials susceptible to stress corrosion cracking in specific chemicals are given by Moore (1979). Moore's tables are taken from the corrosion data survey published by NACE (1974).

The term corrosion fatigue is used to describe the premature failure of materials in corrosive environments caused by cyclic stresses. Even mildly corrosive conditions can markedly reduce the fatigue life of a component. Unlike stress corrosion cracking, corrosion fatigue can occur in any corrosive environment and does not depend on a specific combination of corrosive substance and metal. Materials with a high resistance to corrosion must be specified for critical components subjected to cyclic stresses.

#### 7.4.6. Erosion-corrosion

The term erosion-corrosion is used to describe the increased rate of attack caused by a combination of erosion and corrosion. If a fluid stream contains suspended particles, or where there is high velocity or turbulence, erosion will tend to remove the products of corrosion and any protective film, and the rate of attack will be markedly increased. If erosion is likely to occur, more resistant materials must be specified, or the material surface protected in some way. For example, plastics inserts are used to prevent erosion-corrosion at the inlet to heat-exchanger tubes.

# 7.4.7. High-temperature oxidation

Corrosion is normally associated with aqueous solutions but oxidation can occur in dry conditions. Carbon and low alloy steels will oxidise rapidly at high temperatures and their use is limited to temperatures below  $500^{\circ}$ C.

Chromium is the most effective alloying element to give resistance to oxidation, forming a tenacious oxide film. Chromium alloys should be specified for equipment subject to temperatures above  $500^{\circ}$ C in oxidising atmospheres.

# 7.4.8. Hydrogen embrittlement

Hydrogen embrittlement is the name given to the loss of ductility caused by the absorption (and reaction) of hydrogen in a metal. It is of particular importance when specifying steels for use in hydrogen reforming plant. Alloy steels have a greater resistance to hydrogen embrittlement than the plain carbon steels. A chart showing the suitability of various alloy steels for use in hydrogen atmospheres, as a function of hydrogen partial pressure and temperature, is given in the NACE (1974) corrosion data survey. Below 500°C plain carbon steel can be used.

#### 7.5. SELECTION FOR CORROSION RESISTANCE

In order to select the correct material of construction, the process environment to which the material will be exposed must be clearly defined. Additional to the main corrosive chemicals present, the following factors must be considered:

- 1. Temperature-affects corrosion rate and mechanical properties.
- 2. Pressure.
- 3. pH.
- 4. Presence of trace impurities-stress corrosion.
- 5. The amount of aeration-differential oxidation cells.
- 6. Stream velocity and agitation-erosion-corrosion.
- 7. Heat-transfer rates-differential temperatures.

The conditions that may arise during abnormal operation, such as at start-up and shutdown, must be considered, in addition to normal, steady state, operation.

#### Corrosion charts

The resistance of some commonly used materials to a range of chemicals is shown in Appendix C. More comprehensive corrosion data, covering most of the materials used in the construction of process plant, in a wide range of corrosive media, are given by, Rabald (1968), NACE (1974), Hamner (1974), Perry and Green (1984) and Schweitzer (1976) (1989) (1998).

The twelve volume *Dechema Corrosion Handbook* is an extensive guide to the interaction of corrosive media with materials, Dechema (1987).

These corrosion guides can be used for the preliminary screening of materials that are likely to be suitable, but the fact that published data indicate that a material is suitable cannot be taken as a guarantee that it will be suitable for the process environment being considered. Slight changes in the process conditions, or the presence of unsuspected trace impurities, can markedly change the rate of attack or the nature of the corrosion. The guides will, however, show clearly those materials that are manifestly unsuitable. Judgement, based on experience with the materials in similar processes environments, must be used when assessing published corrosion data.

Pilot plant tests, and laboratory corrosion tests under simulated plant conditions, will help in the selection of suitable materials if actual plant experience is not available. Care is needed in the interpretation of laboratory tests. Corrosion test procedures are described by Ailor (1971) and Champion (1967).

The advice of the technical service department of the company supplying the materials should also be sought.

## 7.6. MATERIAL COSTS

An indication of the cost of some commonly used metals is given in Table 7.5. The actual cost of metals and alloys will fluctuate quite widely, depending on movements in the world metal exchanges.

| Table 7.5. Basic cost of metals |         |  |  |  |
|---------------------------------|---------|--|--|--|
| Metal                           | £/tonne |  |  |  |
| Carbon steel                    | 300     |  |  |  |
| Low alloy steels (Cr-Mo)        | 400-700 |  |  |  |
| Nickel steel (9%)               | 800     |  |  |  |
| Austenitic stainless steels:    |         |  |  |  |
| 304                             | 1600    |  |  |  |
| 321                             | 1700    |  |  |  |
| 316                             | 2400    |  |  |  |
| 310                             | 3000    |  |  |  |
| high Ni                         | 6000    |  |  |  |
| Copper                          | 800     |  |  |  |
| Aluminium                       | 900     |  |  |  |
| Nickel                          | 3000    |  |  |  |
| Monel                           | 2600    |  |  |  |
| Titanium                        | 20,000  |  |  |  |

The quantity of a material used will depend on the material density and strength (design stress) and these must be taken into account when comparing material costs. Moore (1970) compares costs by calculating a cost rating factor defined by the equation:

Cost rating = 
$$\frac{C \times \rho}{\sigma_d}$$
 (7.2)

where  $C = \cos t$  per unit mass, £/kg,

 $\rho = \text{density}, \text{kg/m}^3,$ 

 $\sigma_d = \text{design stress}, \text{N/mm}^2.$ 

His calculated cost ratings, relative to the rating for mild steel (low carbon), are shown in Table 7.6. Materials with a relatively high design stress, such as stainless and low alloy steels, can be used more efficiently than carbon steel.

The relative cost of equipment made from different materials will depend on the cost of fabrication, as well as the basic cost of the material. Unless a particular material requires special fabrication techniques, the relative cost of the finished equipment will be lower than the relative bare material cost. For example; the purchased cost of a stainless-steel storage tank will be 2 to 3 times the cost of the same tank in carbon steel, whereas the relative cost of the metals is between 5 to 8.

If the corrosion rate is uniform, then the optimum material can be selected by calculating the annual costs for the possible candidate materials. The annual cost will depend on the predicted life, calculated from the corrosion rate, and the purchased cost of the equipment.

|                           |       | Design stress<br>(N/mm <sup>2</sup> ) |
|---------------------------|-------|---------------------------------------|
| Carbon steel              | 1     | 100                                   |
| Al-alloys (Mg)            | 4     | 70                                    |
| Stainless steel 18/8 (Ti) | 5     | 130                                   |
| Inconel                   | 12    | 140                                   |
| Brass                     | 10-15 | 76                                    |
| Al-bronzes                | 16    | 87                                    |
| Aluminium                 | 18    | 14                                    |
| Monel                     | 19    | 120                                   |
| Copper                    | 27    | 46                                    |
| Nickel                    | 35    | 70                                    |

Table 7.6. Relative cost ratings for metals

*Note*: the design stress figures are shown for the purposes of illustration only and should not be used as design values.

In a given situation, it may prove more economic to install a cheaper material with a high corrosion rate and replace it frequently; rather than select a more resistant but more expensive material. This strategy would only be considered for relatively simple equipment with low fabrication costs, and where premature failure would not cause a serious hazard. For example, carbon steel could be specified for an aqueous effluent line in place of stainless steel, accepting the probable need for replacement. The pipe wall thickness would be monitored *in situ* frequently to determine when replacement was needed.

The more expensive, corrosion-resistant, alloys are frequently used as a cladding on carbon steel. If a thick plate is needed for structural strength, as for pressure vessels, the use of clad materials can substantially reduce the cost.

#### 7.7. CONTAMINATION

With some processes, the prevention of the contamination of a process stream, or a product, by certain metals, or the products of corrosion, overrides any other considerations when selecting suitable materials. For instance, in textile processes, stainless steel or aluminium is often used in preference to carbon steel, which would be quite suitable except that any slight rusting will mark the textiles (iron staining).

With processes that use catalysts, care must be taken to select materials that will not cause contamination and poisoning of the catalyst.

Some other examples that illustrate the need to consider the effect of contamination by trace quantities of other materials are:

- 1. For equipment handling acetylene the pure metals, or alloys containing copper, silver, mercury, gold, must be avoided to prevent the formation of explosive acetylides.
- 2. The presence of trace quantities of mercury in a process stream can cause the catastrophic failure of brass heat-exchanger tubes, from the formation of a mercury-copper amalgam. Incidents have occurred where the contamination has come from unsuspected sources, such as the failure of mercury-in-steel thermometers.

3. In the Flixborough disaster (see Chapter 9), there was evidence that the stress corrosion cracking of a stainless-steel pipe had been caused by zinc contamination from galvanised-wire supporting lagging.

### 7.7.1. Surface finish

In industries such as the food, pharmaceutical, biochemical, and textile industries, the surface finish of the material is as important as the choice of material, to avoid contamination.

Stainless steel is widely used, and the surfaces, inside and out, are given a high finish by abrasive blasting and mechanical polishing. This is done for the purposes of hygiene; to prevent material adhering to the surface; and to aid cleaning and sterilisation. The surface finishes required in food processing are discussed by Timperley (1984) and Jowitt (1980).

A good surface finish is important in textile fibre processing to prevent the fibres snagging.

## 7.8. COMMONLY USED MATERIALS OF CONSTRUCTION

The general mechanical properties, corrosion resistance, and typical areas of use of some of the materials commonly used in the construction of chemical plant are given in this section. The values given are for a typical, representative, grade of the material or alloy. The multitude of alloys used in chemical plant construction is known by a variety of trade names, and code numbers designated in the various national standards. With the exception of the stainless steels, no attempt has been made in this book to classify the alloys discussed by using one or other of the national standards; the commonly used, generic, names for the alloys have been used. For the full details of the properties and compositions of the grades available in a particular class of alloy, and the designated code numbers, reference should be made to the appropriate national code, to the various handbooks, or to manufacturers' literature. For the United Kingdom standards, the British Standards Institute Catalogue should be consulted.

The US trade names and codes are given by Perry and Green (1984). A comprehensive review of the engineering materials used for chemical and process plant can be found in the books by Evans (1974), Hepner (1962) and Rumford (1954). Hepner's book is a collection of articles previously published in the journal *Chemical and Process Engineering*, in the period 1960 to 1961. The articles cover the complete range of materials used for process plant.

#### 7.8.1. Iron and steel

Low carbon steel (mild steel) is the most commonly used engineering material. It is cheap; is available in a wide range of standard forms and sizes; and can be easily worked and welded. It has good tensile strength and ductility.

The carbon steels and iron are not resistant to corrosion, except in certain specific environments, such as concentrated sulphuric acid and the caustic alkalies. They are suitable for use with most organic solvents, except chlorinated solvents; but traces of corrosion products may cause discoloration.

Mild steel is susceptible to stress-corrosion cracking in certain environments.

The corrosion resistance of the low alloy steels (less than 5 per cent of alloying elements), where the alloying elements are added to improve the mechanical strength and not for corrosion resistance, is not significantly different from that of the plain carbon steels.

A comprehensive reference covering the properties and application of steels, including the stainless steels, is the book by Llewellyn (1992). Carbon and alloy are covered by British Standards, BS 970 and BS 1501–1504. The use of carbon steel in the construction of chemical plant is discussed by Clark (1970).

The high silicon irons (14 to 15 per cent Si) have a high resistance to mineral acids, except hydrofluoric acid. They are particularly suitable for use with sulphuric acid at all concentrations and temperatures. They are, however, very brittle.

#### 7.8.2. Stainless steel

The stainless steels are the most frequently used corrosion resistant materials in the chemical industry.

To impart corrosion resistance the chromium content must be above 12 per cent, and the higher the chromium content, the more resistant is the alloy to corrosion in oxidising conditions. Nickel is added to improve the corrosion resistance in non-oxidising environments.

# Types

A wide range of stainless steels is available, with compositions tailored to give the properties required for specific applications. They can be divided into three broad classes according to their microstructure:

- 1. Ferritic: 13-20 per cent Cr, < 0.1 per cent C, with no nickel
- 2. Austenitic: 18-20 per cent Cr, > 7 per cent Ni
- 3. Martensitic: 12-10 per cent Cr, 0.2 to 0.4 per cent C, up to 2 per cent Ni

The uniform structure of Austenite (fcc, with the carbides in solution) is the structure desired for corrosion resistance, and it is these grades that are widely used in the chemical industry. The composition of the main grades of austenitic steels, and the US, and equivalent UK designations are shown in Table 7.7. Their properties are discussed below.

Type 304 (the so-called 18/8 stainless steels): the most generally used stainless steel. It contains the minimum Cr and Ni that give a stable austenitic structure. The carbon content is low enough for heat treatment not to be normally needed with thin sections to prevent weld decay (see Section 7.4.4).

Type 304L: low carbon version of type 304 (< 0.03 per cent C) used for thicker welded sections, where carbide precipitation would occur with type 304.

Type 321: a stabilised version of 304, stabilised with titanium to prevent carbide precipitation during welding. It has a slightly higher strength than 304L, and is more suitable for high-temperature use.

Type 347: stabilised with niobium.

Type 316: in this alloy, molybdenum is added to improve the corrosion resistance in reducing conditions, such as in dilute sulphuric acid, and, in particular, to solutions containing chlorides.

Type 316L: a low carbon version of type 316, which should be specified if welding or heat treatment is liable to cause carbide precipitation in type 316.

Types 309/310: alloys with a high chromium content, to give greater resistance to oxidation at high temperatures. Alloys with greater than 25 per cent Cr are susceptible to embrittlement due to sigma phase formation at temperatures above 500°C. Sigma phase is an intermetallic compound, FeCr. The formation of the sigma phase in austenitic stainless steels is discussed by Hills and Harries (1960).

| Specification no. |         |          | Composition per cent |           |              |              |              |       |        |
|-------------------|---------|----------|----------------------|-----------|--------------|--------------|--------------|-------|--------|
| BS 1501           | AISI    | C<br>max | Si<br>max            | Mn<br>max | Cr<br>range  | Ni<br>range  | Mo<br>range  | Ti    | Nb     |
| 801B              | 304     | 0.08     |                      | 2.00      | 17.5<br>20.0 | 8.0<br>11.0  |              | _     |        |
| 810 C             | 304 ELC | 0.03     | 1.00                 | 2.00      | 17.5<br>20.0 | 10 min       | _            | _     | _      |
| 801 Ti            | 321     | 0.12     | 1.00                 | 2.00      | 17.0<br>20.0 | 7.5 min      | _            | 4 × C | _      |
| 801 Nb            | 347     | 0.08     | 1.00                 | 2.00      | 17.0<br>20.0 | 9 min        | _            | _     | 10 × C |
| 821 Ti            | _       | 0.12     | 1.00                 | 2.00      | 17.0<br>20.0 | 25 min       |              | 4 × C |        |
| 845 B             | 316     | 0.08     | 1.00                 | 2.00      | 16.5<br>18.5 | 10 min       | 2.25<br>3.00 |       |        |
| 845 Ti            | _       | 0.08     | 0.06                 | 2.00      | 16.5<br>18.5 | 10 min       | 2.25<br>3.00 | 4 × C | _      |
| 846               |         | 0.08     | 1.00                 | 2.00      | 18.0<br>20.0 | 11.0<br>14.0 | 3.0<br>4.0   |       |        |

Table 7.7. Commonly used grades of austenitic stainless steel

S and P 0.045 per cent all grades.

AISI American Iron and Steel Institute.

# Mechanical properties

The austenitic stainless steels have greater strength than the plain carbon steels, particularly at elevated temperatures (see Table 7.8).

Table 7.8. Comparative strength of stainless steel

| Temperature °C                             |                   | 300 | 400 | 500 | 600 |
|--------------------------------------------|-------------------|-----|-----|-----|-----|
| Typical design<br>stress N/mm <sup>2</sup> | mild steel        | 77  | 62  | 31  |     |
| Stess Willin                               | stainless<br>18/8 | 108 | 100 | 92  | 62  |

As was mentioned in Section 7.3.7, the austenitic stainless steels, unlike the plain carbon steels, do not become brittle at low temperatures. It should be noted that the thermal conductivity of stainless steel is significantly lower than that of mild steel.

Typical at 100°C values are, type 304 (18/8) 16 W/m°C mild steel 60 W/m°C

Austenitic stainless steels are non-magnetic in the annealed condition.

#### General corrosion resistance

The higher the alloying content, the better the corrosion resistance over a wide range of conditions, strongly oxidising to reducing, but the higher the cost. A ranking in order of increasing corrosion resistance, taking type 304 as 1, is given below:

Intergranular corrosion (weld decay) and stress corrosion cracking are problems associated with the use of stainless steels, and must be considered when selecting types suitable for use in a particular environment. Stress corrosion cracking in stainless steels can be caused by a few ppm of chloride ions (see Section 7.4.5).

In general, stainless steels are used for corrosion resistance when oxidising conditions exist. Special types, or other high nickel alloys, should be specified if reducing conditions are likely to occur. The properties, corrosion resistance, and uses of the various grades of stainless steel are discussed fully by Peckner and Bernstein (1977). A comprehensive discussion of the corrosion resistance of stainless steels is given in Sedriks (1979).

Stress corrosion cracking in stainless steels is discussed by Turner (1989).

# High alloy content stainless steels

Super austenitic, high nickel, stainless steels, containing between 29 to 30 per cent nickel and 20 per cent chromium, have a good resistance to acids and acid chlorides. They are more expensive than the lower alloy content, 300 series, of austenitic stainless steels.

Duplex, and super-duplex stainless steels, contain high percentages of chromium. They are called duplex because their structure is a mixture of the austenitic and ferritic phases. They have a better corrosion resistance than the austenitic stainless steels and are less susceptible to stress corrosion cracking. The chromium content of duplex stainless steels is around 20 per cent, and around 25 per cent in the super-duplex grades. The super-duplex steels where developed for use in aggressive off-shore environments.

The duplex range of stainless steels can be readily cast, wrought and machined. Problems can occur in welding, due to the need to keep the correct balance of ferrite and austenite in the weld area, but this can be overcome using the correct welding materials and procedures.

The cost of the duplex grades is comparable with the 316 steels. Super-duplex is around fifty per cent higher than the cost of duplex.

The selection and properties of duplex stainless steels are discussed by Bendall and Guha (1990), and Warde (1991).

#### 7.8.3. Nickel

Nickel has good mechanical properties and is easily worked. The pure metal (>99 per cent) is not generally used for chemical plant, its alloys being preferred for most applications. The main use is for equipment handling caustic alkalies at temperatures above that at which carbon steel could be used; above 70°C. Nickel is not subject to corrosion cracking like stainless steel.

#### 7.8.4. Monel

Monel, the classic nickel-copper alloy with the metals in the ratio 2:1, is probably, after the stainless steels, the most commonly used alloy for chemical plant. It is easily worked and has good mechanical properties up to  $500^{\circ}$ C. It is more expensive than stainless steel but is not susceptible to stress-corrosion cracking in chloride solutions. Monel has good resistance to dilute mineral acids and can be used in reducing conditions, where the stainless steels would be unsuitable. It may be used for equipment handling, alkalies, organic acids and salts, and sea water.

#### 7.8.5. Inconel

Inconel (typically 76 per cent Ni, 7 per cent Fe, 15 per cent Cr) is used primarily for acid resistance at high temperatures. It maintains its strength at elevated temperature and is resistant to furnace gases, if sulphur free.

# 7.8.6. The Hastelloys

The trade name Hastelloy covers a range of nickel, chromium, molybdenum, iron alloys that were developed for corrosion resistance to strong mineral acids, particularly HCl. The corrosion resistance, and use, of the two main grades, Hastelloy B (65 per cent Ni, 28 per cent Mo, 6 per cent Fe) and Hastelloy C (54 per cent Ni, 17 per cent Mo, 15 per cent Cr, 5 per cent Fe), are discussed in papers by Weisert (1952a,b).

# 7.8.7. Copper and copper alloys

Pure copper is not widely used for chemical equipment. It has been used traditionally in the food industry, particularly in brewing. Copper is a relatively soft, very easily worked metal, and is used extensively for small-bore pipes and tubes.

The main alloys of copper are the brasses, alloyed with zinc, and the bronzes, alloyed with tin. Other, so-called bronzes are the aluminium bronzes and the silicon bronzes.

Copper is attacked by mineral acids, except cold, dilute, unaerated sulphuric acid. It is resistant to caustic alkalies, except ammonia, and to many organic acids and salts. The brasses and bronzes have a similar corrosion resistance to the pure metal. Their main use in the chemical industry is for valves and other small fittings, and for heat-exchanger tubes and tube sheets. If brass is used, a grade must be selected that is resistant to dezincification.

The cupro-nickel alloys (70 per cent Cu) have a good resistance to corrosion-erosion and are used for heat-exchanger tubes, particularly where sea water is used as a coolant.

# 7.8.8. Aluminium and its alloys

Pure aluminium lacks mechanical strength but has higher resistance to corrosion than its alloys. The main structural alloys used are the Duralumin (Dural) range of aluminium-copper alloys (typical composition 4 per cent Cu, with 0.5 per cent Mg) which have a tensile strength equivalent to that of mild steel. The pure metal can be used as a cladding on Dural plates, to combine the corrosion resistance of the pure metal with the strength of the alloy. The corrosion resistance of aluminium is due to the formation of a thin oxide film (as with the stainless steels). It is therefore most suitable for use in strong oxidising conditions. It is attacked by mineral acids, and by alkalies; but is suitable for concentrated nitric acid, greater than 80 per cent. It is widely used in the textile and food industries, where the use of mild steel would cause contamination. It is also used for the storage and distribution of demineralised water.

#### 7.8.9. Lead

Lead was one of the traditional materials of construction for chemical plant but has now, due to its price, been largely replaced by other materials, particularly plastics. It is a soft, ductile material, and is mainly used in the form of sheets (as linings) or pipe. It has a good resistance to acids, particularly sulphuric.

## 7.8.10. Titanium

Titanium is now used quite widely in the chemical industry, mainly for its resistance to chloride solutions, including sea water and wet chlorine. It is rapidly attacked by dry chlorine, but the presence of as low a concentration of moisture as 0.01 per cent will prevent attack. Like the stainless steels, titanium depends for its resistance on the formation of an oxide film.

Alloying with palladium (0.15 per cent) significantly improves the corrosion resistance, particularly to HCl. Titanium is being increasingly used for heat exchangers, for both shell and tube, and plate exchangers; replacing cupro-nickel for use with sea water.

The use of titanium for corrosion resistance is discussed by Deily (1997).

## 7.8.11. Tantalum

The corrosion resistance of tantalum is similar to that of glass, and it has been called a metallic glass. It is expensive, about five times that of stainless steel, and is used for special applications, where glass or a glass lining would not be suitable. Tantalum plugs are used to repair glass-lined equipment.

The use of Tantalum as a material of construction in the chemical industry is discussed by Fensom and Clark (1984) and Rowe (1994).

#### 7.8.12. Zirconium

Zirconium and Zirconium alloys are used in the nuclear industry, because of their low neutron absorption cross-section and resistance to hot water at high pressures.

In the chemical industry zirconium is finding use where resistance to hot and boiling acids is required: nitric, sulphuric, and particularly hydrochloric. Its resistance is equivalent to that of tantalum but zirconium is less expensive, similar in price to high nickel steel.

#### 7.8.13. Silver

Silver linings are used for vessels and equipment handling hydrofluoric acid. It is also used for special applications in the food and pharmaceutical industries where it is vital to avoid contamination of the product.

#### 7.8.14. Gold

Because of its high cost gold is rarely used as a material of construction. It is highly resistant to attack by dilute nitric acid and hot concentrated sulphuric acid, but is dissolved by aqua regia (a mixture of concentrated nitric and sulphuric acids). It is attacked by chlorine and bromine, and forms an amalgam with mercury.

It has been used as thin plating on condenser tubes and other surfaces.

## 7.8.15. Platinum

Platinum has a high resistance to oxidation at high temperature. One of its main uses has been, in the form of an alloy with copper, in the manufacture of the spinnerets used in synthetic textile spinning processes.

# 7.9. PLASTICS AS MATERIALS OF CONSTRUCTION FOR CHEMICAL PLANT

Plastics are being increasingly used as corrosion-resistant materials for chemical plant construction. They can be divided into two broad classes:

- 1. Thermoplastic materials, which soften with increasing temperature; for example, polyvinyl chloride (PVC) and polyethylene.
- 2. Thermosetting materials, which have a rigid, cross-linked structure; for example, the polyester and epoxy resins.

Details of the chemical composition and properties of the wide range of plastics used as engineering material can be found in the books by Butt and Wright (1980), Evans (1974) and Hepner (1962).

The biggest use of plastics is for piping; sheets are also used for lining vessels and for fabricated ducting and fan casings. Mouldings are used for small items; such as, pump impellers, valve parts and pipe fittings.

The mechanical strength and operating temperature of plastics are low compared with that of metals. The mechanical strength, and other properties, can be modified by the addition of fillers and plasticisers. When reinforced with glass or carbon fibres thermosetting plastics can have a strength equivalent to mild steel, and are used for pressure vessels and pressure piping. Unlike metals, plastics are flammable. Plastics can

be considered to complement metals as corrosion-resistant materials of construction. They generally have good resistance to dilute acids and inorganic salts, but suffer degradation in organic solvents that would not attack metals. Unlike metals, plastics can absorb solvents, causing swelling and softening. The properties and typical areas of use of the main plastics used for chemical plant are reviewed briefly in the following sections. A comprehensive discussion of the use of plastics as corrosion-resistant materials is given in the books by Evans (1966) and Fontana (1986). The mechanical properties and relative cost of plastics are given in Table 7.9.

| Material      | Tensile<br>strength<br>(N/mm²) | Elastic<br>modulus<br>(kN/mm <sup>2</sup> ) | Density (kg/m <sup>3</sup> ) | Relative<br>cost |
|---------------|--------------------------------|---------------------------------------------|------------------------------|------------------|
| PVC           | 55                             | 3.5                                         | 1400                         | 1.5              |
| Polyethylene  |                                |                                             |                              |                  |
| (low density) | 12                             | 0.2                                         | 900                          | 1.0              |
| Polypropylene | 35                             | 1.5                                         | 900                          | 1.5              |
| PTFE          | 21                             | 1.0                                         | 2100                         | 30.0             |
| GRP polyester | 100                            | 7.0                                         | 1500                         | 3.0              |
| GRP epoxy     | 250                            | 14.0                                        | 1800                         | 5.0              |

Table 7.9. Mechanical properties and relative cost of polymers

Approximate cost relative to polyethylene, volumetric basis.

# 7.9.1. Poly-vinyl chloride (PVC)

PVC is probably the most commonly used thermoplastic material in the chemical industry. Of the available grades, rigid (unplasticised) PVC is the most widely used. It is resistant to most inorganic acids, except strong sulphuric and nitric, and inorganic salt solutions. It is unsuitable, due to swelling, for use with most organic solvents. The maximum operating temperature for PVC is low, 60 °C. The use of PVC as a material of construction in chemical engineering is discussed in a series of articles by Mottram and Lever (1957).

# 7.9.2. Polyolefines

Low-density polyethylene (polythene) is a relatively cheap, tough, flexible plastic. It has a low softening point and is not suitable for use above about 60°C. The higher density polymer (950 kg/m³) is stiffer, and can be used at higher temperatures. Polypropylene is a stronger material than the polyethylenes and can be used at temperatures up to 120°C. The chemical resistance of the polyolefines is similar to that of PVC.

# 7.9.3. Polytetrafluroethylene (PTFE)

PTFE, known under the trade names Teflon and Fluon, is resistant to all chemicals, except molten alkalies and fluorine, and can be used at temperatures up to 250°C. It is a relatively weak material, but its mechanical strength can be improved by the addition of fillers (glass and carbon fibres). It is expensive and difficult to fabricate. PTFE is used extensively for gaskets and gland packings. As a coating, it is used to confer non-stick properties to surfaces, such as filter plates. It can also be used as a liner for vessels.

# 7.9.4. Polyvinylidene (PVDF)

PVDF has properties similar to PTFE but is easier to fabricate. It has good resistance to inorganic acids and alkalis, and organic solvents. It is limited to a maximum operating temperature of 140°C.

# 7.9.5. Glass-fibre reinforced plastics (GRP)

The polyester resins, reinforced with glass fibre, are the most common thermosetting plastics used for chemical plant. Complex shapes can be easily formed using the techniques developed for working with reinforced plastics. Glass-reinforced plastics are relatively strong and have a good resistance to a wide range of chemicals. The mechanical strength depends on the resin used; the form of the reinforcement (chopped mat or cloth); and the ratio of resin to glass.

By using special techniques, in which the reinforcing glass fibres are wound on in the form of a continuous filament, high strength can be obtained, and this method is used to produce pressure vessels.

The polyester resins are resistant to dilute mineral acids, inorganic salts and many solvents. They are less resistant to alkalies.

Glass-fibre-reinforced epoxy resins are also used for chemical plant but are more expensive than the polyester resins. In general they are resistant to the same range of chemicals as the polyesters, but are more resistant to alkalies.

The chemical resistance of GRP is dependent on the amount of glass reinforcement used. High ratios of glass to resin give higher mechanical strength but generally lower resistance to some chemicals. The design of chemical plant equipment in GRP is the subject of a book by Malleson (1969); see also Shaddock (1971) and Baines (1984).

#### 7.9.6. Rubber

Rubber, particularly in the form of linings for tanks and pipes, has been extensively used in the chemical industry for many years. Natural rubber is most commonly used, because of its good resistance to acids (except concentrated nitric) and alkalies. It is unsuitable for use with most organic solvents.

Synthetic rubbers are also used for particular applications. Hypalon (trademark, E. I. du Pont de Nemours) has a good resistance to strongly oxidising chemicals and can be used with nitric acid. It is unsuitable for use with chlorinated solvents. Viton (trademark, E. I. du Pont de Nemours) has a better resistance to solvents, including chlorinated solvents, than other rubbers. Both Hypalon and Viton are expensive, compared with other synthetic, and natural, rubbers.

The use of natural rubber lining is discussed by Saxman (1965), and the chemical resistance of synthetic rubbers by Evans (1963b). Rubber and other linings for chemical plant are covered by the British Standard, BS 6374.

Butt and Wright (1984) give an authoritative account of the application and uses of rubber and plastics linings and coatings.

# 7.10. CERAMIC MATERIALS (SILICATE MATERIALS)

Ceramics are compounds of non-metallic elements and include the following materials used for chemical plant:

Glass, the borosilicate glasses (hard glass).

Stoneware.

Acid-resistant bricks and tiles.

Refractory materials.

Cements and concrete.

Ceramic materials have a cross-linked structure and are therefore brittle.

## 7.10.1. Glass

Borosilicate glass (known by several trade names, including Pyrex) is used for chemical plant as it is stronger than the soda glass used for general purposes; it is more resistant to thermal shock and chemical attack.

Glass equipment is available from several specialist manufacturers. Pipes and fittings are produced in a range of sizes, up to 0.5 m. Special equipment, such as heat exchangers, is available and, together with the larger sizes of pipe, is used to construct distillation and absorption columns. Teflon gaskets are normally used for jointing glass equipment and pipe.

Where failure of the glass could cause injury, pipes and equipment should be protected by external shielding or wrapping with plastic tape.

Glass linings, also known as glass enamel, have been used on steel and iron vessels for many years. Borosilicate glass is used, and the thickness of the lining is about 1 mm. The techniques used for glass lining, and the precautions to be taken in the design and fabrication of vessels to ensure a satisfactory lining, are discussed by Landels and Stout (1970). Borosilicate glass is resistant to acids, salts and organic chemicals. It is attacked by the caustic alkalies and fluorine.

#### 7.10.2. Stoneware

Chemical stoneware is similar to the domestic variety, but of higher quality; stronger and with a better glaze. It is available in a variety of shapes for pipe runs and columns. As for glass, it is resistant to most chemicals, except alkalies and fluorine. The composition and properties of chemical stoneware are discussed by Holdridge (1961). Stoneware and porcelain shapes are used for packing absorption and distillation columns (see Chapter 11).

## 7.10.3. Acid-resistant bricks and tiles

High-quality bricks and tiles are used for lining vessels, ditches and to cover floors. The linings are usually backed with a corrosion-resistant membrane of rubber or plastic, placed

behind the titles, and special acid-resistant cements are used for the joints. Brick and tile linings are covered in a book by Falcke and Lorentz (1985).

# 7.10.4. Refractory materials (refractories)

Refractory bricks and cements are needed for equipment operating at high temperatures; such as, fired heaters, high-temperature reactors and boilers.

The refractory bricks in common use are composed of mixtures of silica (SiO<sub>2</sub>) and alumina (Al<sub>2</sub>O<sub>3</sub>). The quality of the bricks is largely determined by the relative amounts of these materials and the firing temperature. Mixtures of silica and alumina form a eutectic (94.5 per cent SiO<sub>2</sub>, 1545°C) and for a high refractoriness under load (the ability to resist distortion at high temperature) the composition must be well removed from the eutectic composition. The highest quality refractory bricks, for use in load-bearing structures at high temperatures, contain high proportions of silica or alumina. "Silica bricks", containing greater than 98 per cent SiO<sub>2</sub>, are used for general furnace construction. High alumina bricks, 60 per cent Al<sub>2</sub>O<sub>3</sub>, are used for special furnaces where resistance to attack by alkalies is important; such as lime and cement kilns. Fire bricks, typical composition 50 per cent SiO<sub>2</sub>, 40 per cent Al<sub>2</sub>O<sub>3</sub>, balance CaO and Fe<sub>2</sub>O<sub>3</sub>, are used for general furnace construction. Silica can exist in a variety of allotropic forms, and bricks containing a high proportion of silica undergo reversible expansion when heated up to working temperature. The higher the silica content the greater the expansion, and this must be allowed for in furnace design and operation.

Ordinary fire bricks, fire bricks with a high porosity, and special bricks composed of diatomaceous earths are used for insulating walls.

Full details of the refractory materials used for process and metallurgical furnaces can be found in the books by Norton (1968) and Lyle (1947).

## **7.11. CARBON**

Impervious carbon, impregnated with chemically resistant resins, is used for specialised equipment; particularly heat exchangers. It has a high conductivity and a good resistance to most chemicals, except oxidising acids, of concentrations greater than 30 per cent. Carbon tubes can be used in conventional shell and tube exchanger arrangements; or proprietary designs can be used, in which the fluid channels are formed in blocks of carbon; see Hilland (1960) and Denyer (1991).

#### 7.12. PROTECTIVE COATINGS

A wide range of paints and other organic coatings is used for the protection of mild steel structures. Paints are used mainly for protection from atmospheric corrosion. Special chemically resistant paints have been developed for use on chemical process equipment. Chlorinated rubber paints and epoxy-based paints are used. In the application of paints and other coatings, good surface preparation is essential to ensure good adhesion of the paint film or coating.

Brief reviews of the paints used to protect chemical plant are given by Ruff (1984) and Hullcoop (1984).

## 7.13. DESIGN FOR CORROSION RESISTANCE

The life of equipment subjected to corrosive environments can be increased by proper attention to design details. Equipment should be designed to drain freely and completely. The internal surfaces should be smooth and free from crevasses where corrosion products and other solids can accumulate. Butt joints should be used in preference to lap joints. The use of dissimilar metals in contact should be avoided, or care taken to ensure that they are effectively insulated to avoid galvanic corrosion. Fluid velocities and turbulence should be high enough to avoid the deposition of solids, but not so high as to cause erosion-corrosion.

## 7.14. REFERENCES

AILOR, W. H. (ed.) (1971) Handbook of Corrosion Testing and Evaluation (Wiley).

BAINES, D. (1984) Chem. Engr., London No. 161 (July) 24. Glass reinforced plastics in the process industries. BENDALL, K. and Guha, P. (1990) Process Industry Journal (Mar.) 31. Balancing the cost of corrosion resistance.

BOYD, G. M. (1970) Brittle Fracture of Steel Structures (Butterworths).

BUTT, L. T. and WRIGHT, D. C. (1980) Use of Polymers in Chemical Plant Construction (Applied Science).

DECHEMA (1987) Corrosion Handbook (VCH).

CHAMPION, F. A. (1967) Corrosion Testing Procedures 3rd edn (Chapman Hall).

CLARK, E. E. (1970) Chem. Engr. London No. 242 (Oct.) 312. Carbon Steels for the construction of chemical and allied plant.

DAY, M. F. (1979) Materials for High Temperature Use, Engineering Design Guide No. 28 (Oxford U.P.).

Deily, J. E. (1997) Chem. Eng. Prog. 93 (June) 50. Use titanium to stand up to corrosives.

DENYER, M. (1991) Processing (July) 23. Graphite as a material for heat exchangers.

DILLON, C. P. (1986) Corrosion Control in the Chemical Industry (McGraw-Hill).

EVANS, U. R. (1963a) An Introduction to Metallic Corrosion (Arnold).

EVANS, L. S. (1963b) Rubber and Plastics Age 44, 1349. The chemical resistance of rubber and plastics.

EVANS, L. S. (1974) Selecting Engineering Materials for Chemical and Process Plant (Business Books); see also 2nd edn (Hutchinson, 1980).

EVANS, L. S. (1980) Chemical and Process Plant: a Guide to the Selection of Engineering Materials, 2nd edn (Hutchinson).

EVANS, V. (1966) Plastics as Corrosion Resistant Materials (Pergamon).

FALCKE, F. K. and LORENTZ, G. (eds) (1985) Handbook of Acid Proof Construction (VCH).

FENSOM, D. H. and CLARK, B. (1984) Chem. Engr., London No. 162 (Aug.) 46. Tantalum: Its uses in the chemical industry.

FONTANA, M. G. (1986) Corrosion Engineering, 3rd edn (McGraw-Hill).

GORDON, J. E. (1976) The New Science of Strong Materials, 2nd edn (Penguin Books).

HAMNER, N. E. (1974) Corrosion Data Survey, 5th edn (National Association of Corrosion Engineers).

HARRIS, W. J. (1976) The Significance of Fatigue (Oxford U.P.).

HEPNER, I. L. (ed.) (1962) Materials of Construction for Chemical Plant (Leonard Hill).

HILLAND, A. (1960) Chem. and Proc. Eng. 41, 416. Graphite for heat exchangers.

HILLS, R. F. and HARRIES, D. P. (1960) Chem. and Proc. Eng. 41, 391. Sigma phase in austenitic stainless steel.

HOLDRIDGE, D. A. (1961) Chem. and Proc. Eng. 42, 405. Ceramics.

HULLCOOP, R. (1984) Processing (April) 13. The great cover up.

INSTITUTE OF METALLURGISTS (1960) Toughness and Brittleness of Metals (Iliffe).

JOWITT, R. (ed.) (1980) Hygienic design and operation of food plant (Ellis Horwood).

LANDELS, H. H. and STOUT, E. (1970) Brit. Chem. Eng. 15, 1289. Glassed steel equipment: a guide to current technology.

LLEWELLYN, D. T. (1992) Steels: Metallurgy and Applications (Butterworth-Heinemann).

LYLE, O. (1947) Efficient Use of Steam (HMSO).

MALLESON, J. H. (1969) Chemical Plant Design with Reinforced Plastics (McGraw-Hill).

MOORE, D. C. (1970) Chem. Engr. London No. 242 (Oct.) 326. Copper.

MOORE, R. E. (1979) Chem. Eng., NY 86 (July 30th) 91. Selecting materials to resist corrosive conditions.

MOTTRAM, S. and LEVER, D. A. (1957) *The Ind. Chem.* **33**, 62, 123, 177 (in three parts). Unplasticized P.V.C. as a constructional material in chemical engineering.

NACE (1974) Standard TM-01-69 Laboratory Corrosion Testing of Metals for the Process Industries (National Association of Corrosion Engineers).

NORTON, F. H. (1968) Refractories, 4th edn (McGraw-Hill).

PECKNER, D. and BERNSTEIN, I. M. (1977) Handbook of Stainless Steels (McGraw-Hill).

PERRY, R. H. and CHILTON, C. H. (eds) (1973) Chemical Engineer's Handbook, 5th edn (McGraw-Hill).

PERRY, R. H. and GREEN, D. W. (eds) (1984) Perry's Chemical Engineers Handbook, 6th edn (McGraw-Hill).

RABALD, E. (1968) Corrosion Guide, 2nd edn (Elsevier).

Ross, T. K. (1977) Metal Corrosion (Oxford U.P.).

Rowe, D. (1994) Process Industry Journal (March) 37. Tempted by tantalum.

RUFF, C. (1984) Chem. Engr., London No. 409 (Dec.) 27. Paint for Plants.

RUMFORD, F. (1954) Chemical Engineering Materials (Constable).

SAXMAN, T. E. (1965) Materials Protection 4 (Oct.) 43. Natural rubber tank linings.

SCHWEITZER, P. A. (1976) Corrosion Resistance Tables (Dekker).
SCHWEITZER, P. A. (1989) (ed.) Corrosion and Corrosion Protection Handbook, 2nd edn (Marcell Dekker).

SCHWEITZER, P. A. (1998) Encyclopedia of Corrosion Protection (Marcel Dekker).

SEDRIKS, A. J. (1979) Corrosion Resistance of Stainless Steel (Wiley).

SHADDOCK, A. K. (1971) Chem. Eng., NY 78 (Aug. 9th) 116. Designing for reinforced plastics.

SOAR, D. G. (1962) Chem. Proc. Eng. 43, 81. Paints.

TIMPERLEY, D. A. (1984) Inst. Chem. Eng. Sym. Ser. No. 84, 31. Surface finish and spray cleaning of stainless steel

TURNER, M. (1989) Chem. Engr., London No. 460 (May) 52. What every chemical engineer should know about stress corrosion cracking.

UHLIG, H. H. (1963) Corrosion and Corrosion Control (Wiley); see also 2nd edn, 1971.

WARDE, E. (1991) Chem. Engr., London No. 502 (Aug. 15th) 35. Which super-duplex?

WEISERT, E. D. (1952a) Chem. Eng., NY 59 (June) 267. Hastelloy alloy C.

WEISERT, E. D. (1952b) Chem. Eng., NY 59 (July) 314. Hastelloy alloy B.

WELLS, A. A. (1968) British Welding Journal 15, 221. Fracture control of thick steels for pressure vessels.

WIGLEY, D. A. (1978) Materials for Low Temperatures, Engineering Design Guide No. 28 (Oxford U.P.).

# **Bibliography**

Further reading on materials, materials selection and equipment fabrication.

CALLISTER, W. D. Materials Science and Engineering, an Introduction (Wiley, 1991).

Crane, F. A. A. and Charles, J. A. Selection and Use of Engineering Materials, 2nd edn (Butterworths, 1989). EWALDS, H. L. Fracture Mechanics (Arnold, 1984).

FLINN, R. A. and TROJAN, P. K. Engineering Materials and Their Applications, 4th edn (Houghton Mifflin, 1990).

GACKENBACH, R. E. Materials Selection for Process Plants (Chapman and Hall, 1960).

Higgins, R. A. Properties of Engineering Materials (Arnold, 1977).

RAY, M. S. The Technology and Application of Engineering Materials (Prentice Hall, 1987).

ROLFE, S. T. Fracture Mechanics and Fatigue Control in Structures, 2nd edn (Prentice Hall, 1987).

#### **British Standards**

BS 18: ... Method for tensile testing of metals.

Part 1: 1970 Non-ferrous metals.

Part 2: 1971 Steel (general).

BS 131: ... Methods for notched bar tests.

Part 1: 1961 The Izod impact test on metals.

Part 2: 1972 The Charpy V-notch impact test on metals.

Part 3: 1972 The Charpy U-notch impact test on metals.

Part 4: 1972 Calibration of impact testing machines for metals.

Part 5: 1965 Determination of crystallinity.

BS 240: ... Method of Brinell hardness testing.

Part 1: 1962 Testing of metals.

Part 2: 1964 Verification of testing machine.

BS 427: ... Method for Vickers hardness test.

Part 1: 1961 Testing of metals.

Part 2: 1962 Verification of the testing machine.

| BS 860:  |         | 1967 Tables for comparison of hardness scales.                                                 |
|----------|---------|------------------------------------------------------------------------------------------------|
| BS 970:  |         | Specification for wrought steels for mechanical and allied engineering purposes—4 parts.       |
| BS 1501: |         | Steels for pressure purposes: plates.                                                          |
|          | Part 1: | 1980, 1990 Specification for carbon and carbon manganese steels.                               |
|          | Part 2: | 1988 Specification for alloy steels.                                                           |
|          | Part 3: | 1990 Specification for corrosion and heat resisting steels.                                    |
| BS 1502: |         | 1982, 1990 Specification for steels for fired and unfired pressure vessels: sections and bars. |
| BS 1503: |         | 1989 Specification for steel forgings for pressure purposes.                                   |
| BS 1504: |         | 1976, 1984 Specification for steel castings for pressure purposes.                             |
| BS 4175: |         | Method for Rockwell superficial hardness test (N and T Scales).                                |
|          | Part 1: | 1967 Testing of metals.                                                                        |
|          | Part 2: | 1970 Verification of testing machine.                                                          |
| BS 6364  |         | Lining of equipment with polymeric materials for the process industries.                       |
|          | Part 1: | 1985 Specification for lining with sheet thermoplastics.                                       |

Part 1: 1985 Specification for lining with sheet thermoplastics.

Part 2: 1984 Specification for lining with non-sheet applied thermoplastics. Part 3: 1984 Specification for lining with stoved thermosetting resins. Part 4: 1984 Specification for lining with cold curing thermosetting resins.

Part 5: 1985 Specification for lining with rubbers.

## 7.15. NOMENCLATURE

|            |                  | Dimensions in MLT£ |
|------------|------------------|--------------------|
| A          | Area             | $\mathbf{L}^2$     |
| C          | Cost of material | £/M                |
| t          | Time             | T                  |
| w          | Mass loss        | M                  |
| ρ          | Density          | $\mathbf{ML}^{-3}$ |
| $\sigma_d$ | Design stress    | $ML^{-1} T^{-2}$   |

#### 7.16. PROBLEMS

- 7.1. A pipeline constructed of carbon steel failed after 3 years operation. On examination it was found that the wall thickness had been reduced by corrosion to about half the original value. The pipeline was constructed of nominal 100 mm (4 in) schedule 40, pipe, inside diameter 102.3 mm (4.026 in), outside diameter 114.3 mm (4.5 in). Estimate the rate of corrosion in ipy and mm per year.
- **7.2.** The pipeline described in question 7.1 was used to carry wastewater to a hold-up tank. The effluent is not hazardous. A decision has to be made on what material to use to replace the pipe. Three suggestion have been made:
  - 1. Replace with the same schedule carbon steel pipe and accept renewal at 3-year intervals.
  - 2. Replace with a thicker pipe, schedule 80, outside diameter 114.3 mm (4.5 in), inside diameter 97.2 mm (3.826 in).
  - 3. Use stainless steel pipe, which will not corrode.

The estimated cost of the pipes, per unit length is: schedule 40 carbon steel £3 (\$5), schedule 80 carbon steel £5 (\$8.3), stainless steel (304) schedule 40 £15 (\$24.8). Installation and fittings for all the materials adds £10 (\$16.5) per unit length. The downtime required to replace the pipe does not result in a loss of production. If the expected future life of the plant is 7 years, recommend which pipe to use.

- **7.3.** Choose a suitable material of construction for the following duties:
  - 1. 98 per cent w/w sulphuric acid at 70 °C.
  - 2. 5 per cent w/w sulphuric acid at 30 °C.
  - 3. 30 per cent w/w hydrochloric acid at 50 °C.
  - 4. 5 per cent aqueous sodium hydroxide solution at 30 °C.
  - 5. Concentrated aqueous sodium hydroxide solution at 50 °C.
  - 6. 5 per cent w/w nitric acid at 30 °C.
  - 7. Boiling concentrated nitric acid.
  - 8. 10 per cent w/w sodium chloride solution.
  - 9. A  $\hat{5}$  per cent w/w solution of cuprous chloride in hydrochloric acid.
  - 10. 10 per cent w/w hydrofluoric acid.

In each case, select the material for a 50 mm pipe operating at approximately 2 bar pressure.

- **7.4.** Suggest suitable materials of construction for the following applications:
  - 1. A 10,000 m<sup>3</sup> storage tank for toluene.
  - 2. A 5.0 m<sup>3</sup> tank for storing a 30% w/w aqueous solution of sodium chloride.
  - 3. A 2m diameter, 20 m high distillation column, distilling acrylonitrile.
  - 4. A 100 m<sup>3</sup> storage tank for strong nitric acid.
  - 5. A 500 m<sup>3</sup> aqueous waste hold-up tank. The wastewater pH can vary from 1 to 12. The wastewater will also contain traces of organic material.
  - 6. A packed absorption column 0.5 m diameter, 3 m high, absorbing gaseous hydrochloric acid into water. The column will operate at essentially atmospheric pressure.
- **7.5.** Aniline is manufactured by the hydrogenation of nitrobenzene in a fluidised bed reactor. The reactor operates at 250 °C and 20 bar. The reactor vessel is approximately 3 m diameter and 9 m high. Suggest suitable materials of construction for this reactor.
- **7.6.** Methyl ethyl ketone (MEK) is manufactured by the dehydrogenation of 2-butanol using a shell and tube type reactor. Flue gases are used for heating and pass though the tubes. The flue gases will contain traces of sulphur dioxide. The reaction products include hydrogen.
  - The reaction takes place in the shell at a pressure of 3 bar and temperature of 500 °C. Select suitable materials for the tubes and shell.
- 7.7. In the manufacture of aniline by the hydrogenation of nitrobenzene, the off-gases from the reactor are cooled and the products and unreacted nitrobenzene condensed in a shell and tube exchanger. A typical composition of the condensate is, kmol/h: aniline 950, cyclo-hexylamine 10, water 1920, nitrobenzene 40. The gases enter the condenser at 230 °C and leave at 50 °C. The cooling water enters the tubes at 20 °C and leaves at 50 °C. Suggest suitable materials of construction for the shell and the tubes.
- **7.8.** A slurry of acrylic polymer particles in water is held in storage tanks prior to filtering and drying. Plain carbon steel would be a suitable material for the tanks, but it is essential that the polymer does not become contaminated with iron in storage. Suggest some alternative materials of construction for the tanks.

#### CHAPTER 8

# Design Information and Data

# 8.1. INTRODUCTION

Information on manufacturing processes, equipment parameters, materials of construction, costs and the physical properties of process materials are needed at all stages of design; from the initial screening of possible processes, to the plant start-up and production.

Sources of data on costs were discussed in Chapter 6 and materials of construction in Chapter 7. This chapter covers sources of information on manufacturing processes and physical properties; and the estimation of physical property data. Information on the types of equipment (unit operations) used in chemical process plants is given in Volume 2, and in the Chapters concerned with equipment selection and design in this Volume, Chapters 10, 11 and 12.

When a project is largely a repeat of a previous project, the data and information required for the design will be available in the Company's process files, if proper detailed records are kept. For a new project or process, the design data will have to be obtained from the literature, or by experiment (research laboratory and pilot plant), or purchased from other companies. The information on manufacturing processes available in the general literature can be of use in the initial stages of process design, for screening potential process; but is usually mainly descriptive, and too superficial to be of much use for detailed design and evaluation.

The literature on the physical properties of elements and compounds is extensive, and reliable values for common materials can usually be found. The principal sources of physical property data are listed in the references at the end of this chapter.

Where values cannot be found, the data required will have to be measured experimentally or estimated. Methods of estimating (predicting) the more important physical properties required for design are given in this chapter. A physical property data bank is given in Appendix D.

Readers who are unfamiliar with the sources of information, and the techniques used for searching the literature, should consult one of the many guides to the technical literature that have been published; such as those by Antony (1979), Burman (1965) and Mount (1976).

# 8.2. SOURCES OF INFORMATION ON MANUFACTURING PROCESSES

In this section the sources of information available in the open literature on commercial processes for the production of chemicals and related products are reviewed.

The chemical process industries are competitive, and the information that is published on commercial processes is restricted. The articles on particular processes published in the technical literature and in textbooks invariably give only a superficial account of the chemistry and unit operations used. They lack the detailed information needed on reaction kinetics, process conditions, equipment parameters, and physical properties needed for process design. The information that can be found in the general literature is, however, useful in the early stages of a project, when searching for possible process routes. It is often sufficient for a flow-sheet of the process to be drawn up and a rough estimate of the capital and production costs made.

The most comprehensive collection of information on manufacturing processes is probably the *Encyclopedia of Chemical Technology* edited by Kirk and Othmer (1978, 1991ff), which covers the whole range of chemical and associated products. Another encyclopedia covering manufacturing processes is that edited by McKetta (1977). Several books have also been published which give brief summaries of the production processes used for the commercial chemicals and chemical products. The most well known of these is probably Shreve's book on the chemical process industries, now updated by Austin, Austin (1984). Others worth consulting are those by Faith *et al.* (1965), Groggins (1958), Stephenson (1966) and Weissermal and Arpe (1978). Comyns (1993) lists named chemical manufacturing processes, with references.

The extensive German reference work on industrial processes, *Ullman's Encyclopedia* of *Industrial Technology*, is now available in an English translation, Ullman (1984).

Specialised texts have been published on some of the more important bulk industrial chemicals, such as that by Miller (1969) on ethylene and its derivatives; these are too numerous to list but should be available in the larger reference libraries and can be found by reference to the library catalogue.

Books quickly become outdated, and many of the processes described are obsolete, or at best obsolescent. More up-to-date descriptions of the processes in current use can be found in the technical journals. The journal *Hydrocarbon Processing* publishes an annual review of petrochemical processes, which was entitled *Petrochemical Developments* and is now called *Petrochemicals Notebook*; this gives flow-diagrams and brief process descriptions of new process developments. Patents are a useful source of information; but it should be remembered that the patentee will try to write the patent in a way that protects his invention, whilst disclosing the least amount of useful information to his competitors. The examples given in a patent to support the claims often give an indication of the process conditions used; though they are frequently examples of laboratory preparations, rather than of the full-scale manufacturing processes. Several short guides have been written to help engineers understand the use of patents for the protection of inventions, and as sources of information; such as those by Capsey (1963), Lieberry (1972) and HMSO (1970, 1971).

#### World Wide Web

It is worthwhile searching the Internet for information on processes, equipment and products. Many manufacturers and government departments maintain web sites. In particular, up-to-date information can be obtained on the health and environmental effects of products.

### 8.3. GENERAL SOURCES OF PHYSICAL PROPERTIES

In this section those references that contain comprehensive compilations of physical property data are reviewed. Sources of data on specific physical properties are given in the remaining sections of the chapter.

International Critical Tables (1933) is still probably the most comprehensive compilation of physical properties, and is available in most reference libraries. Though it was first published in 1933, physical properties do not change, except in as much as experimental techniques improve, and ICT is still a useful source of engineering data.

Tables and graphs of physical properties are given in many handbooks and textbooks on Chemical Engineering and related subjects. Many of the data given are duplicated from book to book, but the various handbooks do provide quick, easy access to data on the more commonly used substances.

An extensive compilation of thermophysical data has been published by Plenum Press, Touloukian (1970–77). This multiple-volume work covers conductivity, specific heat, thermal expansion, viscosity and radiative properties (emittance, reflectance, absorptance and transmittance).

Elsevier have published a series of volumes on physical property and thermodynamic data. Those of use in design are included in the Bibliography at the end of this chapter. The Engineering Sciences Data Unit (ESDU) was set up to provide authenticated data

for engineering design. Its publications include some physical property data, and other design data and methods of interest to chemical engineering designers. They also cover data and methods of use in the mechanical design of equipment.

Caution should be exercised when taking data from the literature, as typographical

errors often occur. If a value looks doubtful it should be cross-checked in an independent reference, or by estimation.

The values of some properties will be dependent on the method of measurement; for example, surface tension and flash point, and the method used should be checked, by reference to the original paper if necessary, if an accurate value is required.

The results of research work on physical properties are reported in the general engineering and scientific literature. The *Journal of Chemical Engineering Data* specialises in publishing physical property data for use in chemical engineering design. A quick search of the literature for data can be made by using the abstracting journals; such as *Chemical Abstracts* (American Chemical Society) and *Engineering Index* (Engineering Index Inc. Nov. York) Index Inc., New York).

Computerised physical property data banks have been set up by various organisations to provide a service to the design engineer. They can be incorporated into computer-aided design programs and are increasingly being used to provide reliable, authenticated, design data. An example of such a data bank is the Physical Property Data Service (PPDS) available from the National Engineering Laboratory (NEL).

### 8.4. ACCURACY REQUIRED OF ENGINEERING DATA

The accuracy needed depends on the use to which the data will be put. Before spending time and money searching for the most accurate value, or arranging for special measurements to be made, the designer must decide what accuracy is required; this will depend on several factors:

- 1. The level of design; less accuracy is obviously needed for rough scouting calculations, made to sort out possible alternative designs, than in the final stages of design; when money will be committed to purchase equipment, and for construction.
- 2. The reliability of the design methods; if there is some uncertainty in the techniques to be used, it is clearly a waste of time to search out highly accurate physical property data that will add little or nothing to the reliability of the final design.
- 3. The sensitivity to the particular property: how much will a small error in the property affect the design calculation. For example, it was shown in Chapter 4 that the estimation of the optimum pipe diameter is insensitive to viscosity. The sensitivity of a design method to errors in physical properties, and other data, can be checked by repeating the calculation using slightly altered values.

It is often sufficient to estimate a value for a property (sometimes even to make an intelligent guess) if the value has little effect on the final outcome of the design calculation. For example, in calculating the heat load for a reboiler or vaporiser an accurate value of the liquid specific heat is seldom needed, as the latent heat load is usually many times the sensible heat load and a small error in the sensible heat calculation will have little effect on the design. The designer must, however, exercise caution when deciding to use less reliable data, and to be sure that they are sufficiently accurate for his purpose. For example, it would be correct to use an approximate value for density when calculating the pressure drop in a pipe system where a small error could be tolerated, considering the other probable uncertainties in the design; but it would be quite unacceptable in the design of a decanter, where the operation depends on small differences in density.

Consider the accuracy of the equilibrium data required to calculate the number of equilibrium stages needed for the separation of a mixture of acetone and water by distillation (see Chapter 11, Example 11.2). Several investigators have published vapour-liquid equilibrium data for this system: Othmer *et al.* (1952), York and Holmes (1942), Kojima *et al.* (1968), Reinders and De Minjer (1947).

If the purity of the acetone product required is less than 95 per cent, inaccuracies in the v-1-e plot will have little effect on the estimate of the number of stages required, as the relative volatility is very high. If a high purity is wanted, say >99 per cent, then reliable data are needed in this region as the equilibrium line approaches the operating line (a pinch point occurs). Of the references cited, none gives values in the region above 95 per cent, and only two give values above 90 per cent; more experimental values are needed to design with confidence. There is a possibility that the system forms an azeotrope in this region. An azeotrope does form at higher pressure, Othmer *et al.* (1952).

### 8.5. PREDICTION OF PHYSICAL PROPERTIES

Whenever possible, experimentally determined values of physical properties should be used. If reliable values cannot be found in the literature and if time, or facilities, are not available for their determination, then in order to proceed with the design the designer must resort to estimation. Techniques are available for the prediction of most physical properties with sufficient accuracy for use in process and equipment design. A detailed review of all the different methods available is beyond the scope of this book; selected methods are given for the more commonly needed properties. The criterion used for selecting a

particular method for presentation in this chapter was to choose the most easily used, simplest, method that had sufficient accuracy for general use. If highly accurate values are required, then specialised texts on physical property estimation should be consulted; such as those by: Reid *et al.* (1987), Bretsznajder (1971) and Sterbacek *et al.* (1979), and AIChemE (1983) (1985).

A quick check on the probable accuracy of a particular method can be made by using it to estimate the property for an analogous compound, for which experimental values are available.

The techniques used for prediction are also useful for the correlation, and extrapolation and interpolation, of experimental values.

Group contribution techniques; which are based on the concept that a particular physical property of a compound can be considered to be made up of contributions from the constituent atoms, groups, and bonds, the contributions being determined from experimental data; provide the designer with simple, convenient, methods for physical property estimation; requiring only a knowledge of the structural formula of the compound.

Also useful, and convenient to use, are prediction methods based on the use of reduced properties (corresponding states); providing that values for the critical properties are available, or can be estimated with sufficient accuracy; see Sterbacek *et al.* (1979).

### 8.6. DENSITY

### **8.6.1. Liquids**

Values for the density of pure liquids can usually be found in the handbooks. It should be noted that the density of most organic liquids, other than those containing a halogen or other "heavy atom", usually lies between 800 and 1000 kg/m³. Liquid densities are given in Appendix D.

An approximate estimate of the density at the normal boiling point can be obtained from the molar volume (see Table 8.6)

$$\rho_b = \frac{M}{V_m} \tag{8.1}$$

where  $\rho_b = \text{density}$ , kg/m<sup>3</sup>,

M =molecular mass,

 $V_m = \text{molar volume, m}^3/\text{kmol.}$ 

For mixtures, it is usually sufficient to take the specific volume of the components as additive; even for non-ideal solutions, as is illustrated by Example 8.1.

The densities of many aqueous solutions are given by Perry et al. (1997).

# Example 8.1

Calculate the density of a mixture of methanol and water at 20°C, composition 40 per cent w/w methanol

Density of water at 20°C 998.2 kg/m<sup>3</sup>
Density of methanol at 20°C 791.2 kg/m<sup>3</sup>

### Solution

Basis: 1000 kg

Volume of water = 
$$\frac{0.6 \times 1000}{998.2}$$
 = 0.601 m<sup>3</sup>  
Volume of methanol =  $\frac{0.4 \times 1000}{791.2}$  = 0.506 m<sup>3</sup>  
Total 1.107 m<sup>3</sup>  
Density of mixture =  $\frac{1000}{1.107}$  =  $\frac{903.3 \text{ kg/m}^3}{903.3}$  Experimental value = 934.5 kg/m<sup>3</sup>  
Error =  $\frac{934.5 - 903.3}{903.3}$  = 3 per cent, which would be acceptable for most engineering purposes

If data on the variation of density with temperature cannot be found, they can be approximated for non-polar liquids from Smith's equation for thermal expansion (Smith *et al.*, 1954).

$$\beta = \frac{0.04314}{(T_c - T)^{0.641}} \tag{8.2}$$

where  $\beta$  = coefficient of thermal expansion,  $K^{-1}$ ,

 $T_c$  = critical temperature, K,

T = temperature, K.

# 8.6.2. Gas and vapour density (specific volume)

For general engineering purposes it is often sufficient to consider that real gases, and vapours, behave ideally, and to use the gas law:

$$PV = n\mathbf{R}T\tag{8.3}$$

where  $P = \text{absolute pressure N/m}^2$  (Pa),

 $V = \text{volume m}^3$ ,

n = mols of gas

T = absolute temperature, K,

 $\mathbf{R}$  = universal gas constant, 8.314 J K<sup>-1</sup> mol<sup>-1</sup> (or kJ K<sup>-1</sup> kmol<sup>-1</sup>).

Specific volume = 
$$\frac{\mathbf{R}T}{P}$$
 (8.4)

These equations will be sufficiently accurate up to moderate pressures, in circumstances where the value is not critical. If greater accuracy is needed, the simplest method is to

modify equation 8.3 by including the compressibility factor z:

$$PV = zn\mathbf{R}T\tag{8.5}$$

The compressibility factor can be estimated from a generalised compressibility plot, which gives z as a function of reduced pressure and temperature (Chapter 3, Figure 3.8); see also Volume 1, Chapter 2.

For mixtures, the pseudocritical properties of the mixture should be used to obtain the compressibility factor.

$$P_{c,m} = P_{c,a} y_a + P_{c,b} y_b + \cdots {8.6}$$

$$T_{c,m} = T_{c,a} y_a + T_{c,b} y_b + \cdots$$
 (8.7)

where  $P_c$  = critical pressure,

 $T_c$  = critical temperature,

y = mol fraction,

suffixes

m = mixture

a, b, etc. = components

### 8.7. VISCOSITY

Viscosity values will be needed for any design calculations involving the transport of fluids or heat. Values for pure substances can usually be found in the literature. Liquid viscosities are given in Appendix D. Methods for the estimation of viscosity are given below.

# 8.7.1. Liquids

A rough estimate of the viscosity of a pure liquid at its boiling point can be obtained from the modified Arrhenius equation:

$$\mu_b = 0.01 \rho_b^{0.5} \tag{8.8}$$

where  $\mu_b$  = viscosity, mNs/m<sup>2</sup>,

 $\rho_b$  = density at boiling point, kg/m<sup>3</sup>.

A more accurate value can be obtained if reliable values of density are available, or can be estimated with sufficient accuracy, from Souders' equation, Souders (1938):

$$\log(\log 10\mu) = \frac{I}{M}\rho \times 10^{-3} - 2.9 \tag{8.9}$$

where  $\mu = \text{viscosity}$ , mNs/m<sup>2</sup>,

M =molecular mass.

I =Souders' index, estimated from the group contributions given in Table 8.1,

 $\rho$  = density at the required temperature, kg/m<sup>3</sup>.

| Atom                                                                   | Н      | О       | С                     | N                                    | Cl                               | Br  | I                             |
|------------------------------------------------------------------------|--------|---------|-----------------------|--------------------------------------|----------------------------------|-----|-------------------------------|
| Contribution                                                           | +2.7   | +29.7   | +50.2                 | +37.0                                | +60                              | +79 | +110                          |
|                                                                        |        | Contril | butions of gr         | oups and bonds                       |                                  |     |                               |
| Double bond<br>Five-member rin<br>Six-member ring                      |        |         | -15.5<br>-24<br>-21   | H—C—R<br>  <br>O                     |                                  |     | +10                           |
| Side groups on a six-member rin                                        | ng:    |         |                       | —СН <b>=</b> СН —                    | CH <sub>2</sub> — X <sup>†</sup> |     | +4                            |
| Molecular weigh<br>Molecular weigh<br>Ortho or para p<br>Meta position | t > 16 |         | -9<br>-17<br>+3<br>-1 | CH —X                                |                                  |     | +6                            |
| R CH-CH R                                                              |        |         | +8                    | OH<br>COO<br>COOH<br>NO <sub>2</sub> |                                  |     | +57.1<br>+90<br>+104.4<br>+80 |
| $R - \overset{\frown}{C} - R$ $\overset{\frown}{R}$                    |        |         | +10                   |                                      |                                  |     |                               |
| —CH <sub>2</sub> —                                                     |        |         | +55.6                 |                                      |                                  |     |                               |

Table 8.1. Contributions for calculating the viscosity constant I in Souders' equation

# Example 8.2

Estimate the viscosity of toluene at 20°C.

### Solution

Toluene CH<sub>3</sub>

Contributions from Table 8.1:

7 carbon atoms 
$$7 \times 50.2 = 351.4$$
  
8 hydrogen atoms  $8 \times 2.7 = 21.6$   
3 double bonds  $3(-15.5) = -46.5$   
1 six-membered ring  $-21.1$   
1 side group  $-9.0$   
Total,  $I = 296.4$ 

Density at  $20^{\circ}\text{C} = 866 \text{ kg/m}^3$ Molecular weight 92

$$\log(\log 10\mu) = \frac{296.4 \times 866 \times 10^{-3}}{92} - 2.9 = -0.11$$

<sup>&</sup>lt;sup>†</sup>X is a negative group.

$$\log 10\mu = 0.776$$
 
$$\mu = 0.597, \ \text{rounded} \ = 0.6 \ \text{mNs/m}^{\ 2}$$

experimental value,  $0.6 \text{ cp} = 0.6 \text{ mNs/m}^2$ 

Author's note: the fit obtained in this example is rather fortuitous, the usual accuracy of the method for organic liquids is around  $\pm 10$  per cent.

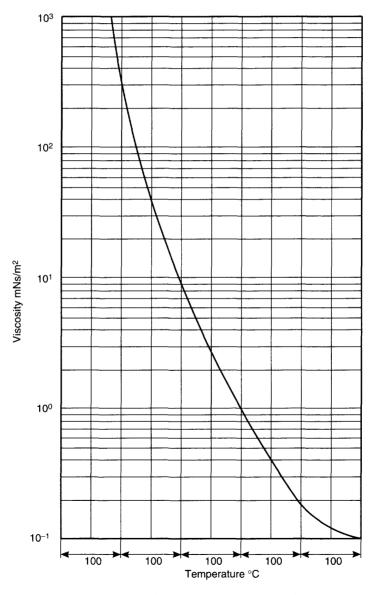



Figure 8.1. Generalised viscosity vs. temperature curve for liquids

### Variation with temperature

If the viscosity is known at a particular temperature, the value at another temperature can be estimated with reasonable accuracy (within  $\pm 20$  per cent) by using the generalised plot of Lewis and Squires (1934), Figure 8.1. The scale of the temperature ordinate is obtained by plotting the known value, as illustrated in Example 8.3.

### Example 8.3

Estimate the viscosity of toluene at 80°C, using the value at 20°C given in Example 8.2.

#### Solution

Temperature increment  $80 - 20 = 60^{\circ}$ C. From Figure 8.1*a*, viscosity at  $80^{\circ}$ C = 0.26 mN s/m<sup>2</sup>.

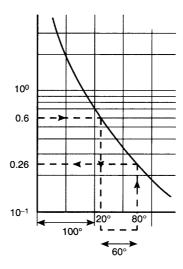



Figure 8.1a.

# Effect of pressure

The viscosity of a liquid is dependent on pressure as well as temperature, but the effect is not significant except at very high pressures. A rise in pressure of 300 bar is roughly equivalent to a decrease in temperature of 1°C.

#### **Mixtures**

It is difficult to predict the viscosity of mixtures of liquids. Viscosities are rarely additive, and the shape of the viscosity-concentration curve can be complex. The viscosity of the mixture may be lower or, occasionally, higher than that of the pure components. A rough check on the magnitude of the likely error in a design calculation, arising from uncertainty in the viscosity of a mixture, can be made by using the smallest and largest values of the pure components in the calculation, and noting the result.

As an approximation, the variation can be assumed to be linear, if the range of viscosity is not very wide, and a weighted average viscosity calculated. For organic liquid mixtures a modified form of Souders' equation can be used; using a mol fraction weighted average value for the viscosity constant for the mixture  $I_m$ , and the average molecular weight.

For a binary mixture equation 8.9 becomes:

$$\log(\log 10 \ \mu_m) = \rho_m \left[ \frac{x_1 I_1 + x_2 I_2}{x_1 M_1 + x_2 M_2} \right] \times 10^{-3} - 2.9$$
 (8.10)

where  $\mu_m$  = viscosity of mixture,

 $\rho_m$  = density of mixture,

 $x_1, x_2 = \text{mol fraction of components},$ 

 $M_1, M_2$  = molecular masses of components.

Bretsznajder (1971) gives a detailed review of the methods that have been developed for estimating the viscosity of mixtures, including methods for aqueous solutions and dispersions.

For heat-transfer calculations, Kern (1950) gives a rough rule of thumb for organic liquid mixtures:

$$\frac{1}{\mu_m} = \frac{w_1}{\mu_1} + \frac{w_2}{\mu_2} \tag{8.11}$$

where  $w_1, w_2 = \text{mass fractions of the components 1 and 2},$ 

 $\mu_1, \mu_2$  = viscosities of components 1 and 2.

#### 8.7.2 Gases

Reliable methods for the prediction of gas viscosities, and the effect of temperature and pressure, are given by Bretsznajder (1971) and Reid *et al.* (1987).

Where an estimate of the viscosity is needed to calculate Prandtl numbers (see Volume 1, Chapter 1) the methods developed for the direct estimation of Prandtl numbers should be used.

For gases at low pressure Bromley (1952) has suggested the following values:

| Prandti number         |
|------------------------|
| $0.67 \pm 5$ per cent  |
| $0.73 \pm 15$ per cent |
| $0.79 \pm 15$ per cent |
| $0.86 \pm 8$ per cent  |
|                        |

The Prandtl number for gases varies only slightly with temperature.

### 8.8 THERMAL CONDUCTIVITY

The experimental methods used for the determination of thermal conductivity are described by Tsederberg (1965), who also lists values for many substances. Ho *et al.* (1972) give values for the thermal conductivity of the elements.

#### 8.8.1. Solids

The thermal conductivity of a solid is determined by its form and structure, as well as composition. Values for the commonly used engineering materials are given in various handbooks.

### 8.8.2. Liquids

The data available in the literature up to 1973 have been reviewed by Jamieson *et al.* (1975). The Weber equation (Weber, 1880) can be used to make a rough estimate of the thermal conductivity of organic liquids, for use in heat-transfer calculations.

$$k = 3.56 \times 10^{-5} C_p \left(\frac{\rho^4}{M}\right)^{1/3} \tag{8.12}$$

where k = thermal conductivity. W/m°C,

M =molecular mass,

 $C_p$  = specific heat capacity, kJ/kg°C,

 $\rho = \text{density}, \text{kg/m}^3.$ 

Bretsznajder (1971) gives a group contribution method for estimating the thermal conductivity of liquids.

### Example 8.4

Estimate the thermal conductivity of benzene at 30°C.

#### Solution

Density at  $30^{\circ}$ C = 875 kg/m<sup>3</sup>

Molecular mass = 78

Specific heat capacity =  $1.75 \text{ kJ/kg}^{\circ}\text{C}$ 

$$k = 3.56 \times 10^{-5} \times 1.75 \left(\frac{875^4}{78}\right)^{1/3} = \underline{0.12 \text{ W/m}^{\circ}\text{C}}$$
 (8.12)

Experimental value, 0.16 W/m°C

#### 8.8.3. Gases

Approximate values for the thermal conductivity of pure gases, up to moderate pressures, can be estimated from values of the gas viscosity, using Eucken's equation, Eucken (1911):

$$k = \mu \left( C_p + \frac{10.4}{M} \right) \tag{8.13}$$

where  $\mu = \text{viscosity}$ , mNs/m<sup>2</sup>,

 $C_p$  = specific heat capacity, kJ/kg°C,

M =molecular mass.

### Example 8.5

Estimate the thermal conductivity of ethane at 1 bar and 450°C.

#### Solution

Viscosity = 0.0134 mNs/m<sup>2</sup> Specific heat capacity = 2.47 kJ/kg°C

$$k = 0.0134 \left( 2.47 + \frac{10.4}{30} \right) = 0.038 \text{ W/m}^{\circ}\text{C}$$
 (8.13)

Experimental value, 0.043 W/m°C, error 12 per cent.

#### 8.8.4. Mixtures

In general, the thermal conductivities of liquid mixtures, and gas mixtures, are not simple functions of composition and the thermal conductivity of the components. Bretsznajder (1971) discusses the methods that are available for estimating the thermal conductivities of mixtures from a knowledge of the thermal conductivity of the components.

If the components are all non-polar a simple weighted average is usually sufficiently accurate for design purposes.

$$k_m = k_1 w_1 + k_2 w_2 + \cdots ag{8.14}$$

where  $k_m$  = thermal conductivity of mixture,

 $k_1, k_2$  = thermal conductivity of components,

 $w_1, w_2 =$ component mass fractions.

#### 8.9. SPECIFIC HEAT CAPACITY

The specific heats of the most common organic and inorganic materials can usually be found in the handbooks.

# 8.9.1. Solids and liquids

Approximate values can be calculated for solids, and liquids, by using a modified form of Kopp's law, which is given by Werner (1941). The heat capacity of a compound is taken as the sum of the heat capacities of the individual elements of which it is composed. The values attributed to each element, for liquids and solids, at room temperature, are given in Table 8.2; the method illustrated in Example 8.6.

# Example 8.6

Estimate the specific heat capacity of urea, CH<sub>4</sub>N<sub>2</sub>O.

|            |        | ,       |
|------------|--------|---------|
| Element    | Solids | Liquids |
| C          | 7.5    | 11.7    |
| Н          | 9.6    | 18.0    |
| В          | 11.3   | 19.7    |
| Si         | 15.9   | 24.3    |
| 0          | 16.7   | 25.1    |
| F          | 20.9   | 29.3    |
| P and S    | 22.6   | 31.0    |
| all others | 26.0   | 33.5    |

Table 8.2. Heat capacities of the elements, J/mol°C

### Solution

Element mol. mass Heat capacity

C 12 7.5 = 7.5

H 4 
$$\times$$
 9.6 = 38.4

N 28  $\times$  2  $\times$  26.0 = 52.0

O 16 16.7 = 16.7

T14.6 J/mol°C

Specific heat capacity = 
$$\frac{114.6}{60}$$
 =  $\frac{1.91 \text{ J/g}^{\circ}\text{C}}{\text{(kJ/kg}^{\circ}\text{C)}}$ 

Experimental value 1.34 kJ/kg°C.

Kopp's rule does not take into account the arrangement of the atoms in the molecule, and, at best, gives only very approximate, "ball-park" values.

For organic liquids, the group contribution method proposed by Chueh and Swanson (1973a,b) will give accurate predictions. The contributions to be assigned to each molecular group are given in Table 8.3 and the method illustrated in Examples 8.7 and 8.8.

Liquid specific heats do not vary much with temperature, at temperatures well below the critical temperature (reduced temperature <0.7).

The specific heats of liquid mixtures can be estimated, with sufficient accuracy for most technical calculations, by taking heat capacities of the components as additive.

For dilute aqueous solutions it is usually sufficient to take the specific heat of the solution as that of water.

# Example 8.7

Using Chueh and Swanson's method, estimate the specific heat capacity of ethyl bromide at 20°C.

### Solution

Ethyl bromide CH<sub>3</sub>CH<sub>2</sub>Br

| Group    | Contribution | No. of |   |                  |
|----------|--------------|--------|---|------------------|
| $-CH_3$  | 36.84        | 1      | = | 36.84            |
| $-CH_2-$ | 30.40        | 1      | = | 30.40            |
| —Br      | 37.68        | 1      | = | 37.68            |
|          |              | Total  |   | 104.92 kJ/kmol°C |

Table 8.3. Group contributions for liquid heat capacities at 20°C, kJ/kmol°C (Chueh and Swanson, 1973a, b)

| Group               | Value | Group                             | Value  |
|---------------------|-------|-----------------------------------|--------|
| Alkan               | 10    | 0                                 | 60.71  |
| —CH <sub>3</sub>    |       | c'o                               | 00.71  |
| -                   | 36.84 | —СH <sub>2</sub> ОН               | 73.27  |
| —CH <sub>2</sub> —  | 30.40 | 1                                 | 76.20  |
| <br>CH-<br> <br>C-  | 20.93 | — СНОН                            | /0.20  |
|                     |       | — coн                             | 111.37 |
| — <u>c</u> —        | 7.37  |                                   | 111.57 |
| 01-0                |       | — ОН                              | 44.80  |
| Olefin              |       | -ONO <sub>2</sub>                 | 119.32 |
| — C12               | 21.77 | Halogen                           |        |
| =C $-$ H            | 21.35 | —Cl (first or second on a carbon) | 36.01  |
| 1                   |       | —Cl (third or fourth on a carbon) | 25.12  |
| =c-                 | 15.91 | —Br                               | 37.68  |
| Alkyr               | ne    | —_F                               | 16.75  |
| —С≡н                | 24.70 | —ı                                | 36.01  |
| —c≡                 | 24.70 | Nitrogen                          |        |
| In a ri             |       | H                                 |        |
|                     |       | н— N—                             | 58.62  |
| —CH=                | 18.42 | н                                 |        |
|                     |       | N                                 | 43.96  |
| -C =  or  -C -      | 12.14 | —N —                              |        |
| -c=                 | 22.19 | —N—                               | 31.40  |
| — CH <sub>2</sub> — | 25.96 | —N ===(in a ring)                 | 18.84  |
| Oxyge               |       | — C≡N                             | 58.70  |
| -o-                 | 35.17 | Sulphur                           | 20.70  |
|                     |       | —SH                               | 44.80  |
| _c=o                | 53.00 | s                                 | 33.49  |
| -c-o                |       | Hydrogen                          | 33.47  |
| <br>H               | 53.00 | H— (for formic acid, formates,    |        |
| 0                   |       | hydrogen cyanide, etc.)           | 14.65  |
| H                   | 79.97 |                                   |        |
| —С—ОН               |       |                                   |        |

Add 18.84 for any carbon group which fulfils the following criterion: a carbon group which is joined by a single bond to a carbon group connected by a double or triple bond with a third carbon group. In some cases a carbon group fulfils the above criterion in more ways than one; 18.84 should be added each time the group fulfils the criterion.

Exceptions to the above 18.84 rule:

- 1. No such extra 18.84 additions for -CH<sub>3</sub> groups.
- 2. For a -CH<sub>2</sub>- group fulfilling the 18.84 addition criterion add 10.47 instead of 18.84. However, when the -CH<sub>2</sub>- group fulfils the addition criterion in more ways than one, the addition should be 10.47 the first time and 18.84 for each subsequent addition.
- 3. No such extra addition for any carbon group in a ring.

mol. wt. = 109  
Specific heat capacity = 
$$\frac{104.92}{109} = \frac{0.96 \text{ kJ/kg}^{\circ}\text{C}}{109}$$

Experimental value 0.90 kJ/kg°C

### Example 8.8

Estimate the specific heat capacity of chlorobutadiene at 20°C, using Chueh and Swanson's method.

#### Solution

Structural formula 
$$CH_2 = C - CH = CH_2$$
, mol. wt. 88.5

#### 8.9.2. Gases

The dependence of gas specific heats on temperature was discussed in Chapter 3, Section 3.5. For a gas in the ideal state the specific heat capacity at constant pressure is given by:

$$C_p^{\circ} = a + bT + cT^2 + dT^3$$
 (equation 3.19)

Values for the constants in this equation for the more common gases can be found in the handbooks, and in Appendix D.

Several group contribution methods have been developed for the estimation of the constants, such as that by Rihani and Doraiswamy (1965) for organic compounds. Their values for each molecular group are given in Table 8.4, and the method illustrated in Example 8.9. The values should not be used for acetylenic compounds.

The correction of the ideal gas heat capacity to account for real conditions of temperature and pressure was discussed in Chapter 3, Section 3.7.

Table 8.4. Group contributions to ideal gas heat capacities, kJ/kmol°C (Rihani and Doraiswamy, 1965)

| Group                                                                               | а                    | $b \times 10^2$ | $c \times 10^4$ | $d \times 10^6$ |
|-------------------------------------------------------------------------------------|----------------------|-----------------|-----------------|-----------------|
|                                                                                     | Aliphatic hydroca    | rbon groups     |                 |                 |
| — СН <sub>3</sub>                                                                   | 2.5485               | 8.9740          | -0.3567         | 0.004752        |
|                                                                                     | 1.6518               | 8.9447          | -0.5012         | 0.0187          |
| —CH <sub>2</sub>                                                                    | 2.2048               | 7.6857          | -0.3994         | 0.008264        |
| —С—Н<br>                                                                            | -14.7516             | 14.3020         | -1.1791         | 0.03356         |
| -c-                                                                                 | -24.4131             | 18.6493         | -1.7619         | 0.05288         |
| HC=CH <sub>2</sub>                                                                  | 1.1610               | 14.4786         | -0.8031         | 0.01792         |
| >C=CH <sub>2</sub>                                                                  | -1.7472              | 16.2694         | -1.1652         | 0.03083         |
| $^{\mathrm{H}}$ c=c $^{\mathrm{H}}$                                                 | -13.0676             | 15.9356         | -0.9877         | 0.02305         |
| $C = C \subset H$                                                                   | 3.9261               | 12.5208         | -0.7323         | 0.01641         |
| >c=c <h< td=""><td>-6.161</td><td>14.1696</td><td>-0.9927</td><td>0.02594</td></h<> | -6.161               | 14.1696         | -0.9927         | 0.02594         |
| >c=c<                                                                               | 1.9829               | 14.7304         | -1.3188         | 0.03854         |
| $C = C = CH_2$                                                                      | 9.3784               | 17.9597         | -1.07433        | 0.02474         |
| $C=C=CH_2$                                                                          | 11.0146              | 17.4414         | -1.1912         | 0.03047         |
| c = c = c                                                                           | -13.0833             | 20.8878         | -1.8018         | 0.05447         |
|                                                                                     | Aromatic hydroca     | rbon groups     |                 |                 |
| HC T                                                                                | -6.1010              | 8.0165          | -0.5162         | 0.01250         |
| -c                                                                                  | -5.8125              | 6.3468          | -0.4476         | 0.01113         |
| ↔C <sub>K</sub>                                                                     | 0.5104               | 5.0953          | -0.3580         | 0.00888         |
|                                                                                     | Contributions due to | ring formation  |                 |                 |
| Three-membered ring                                                                 | -14.7878             | -0.1256         | 0.3129          | -0.02309        |
| Four-membered ring Five-membered ring:                                              | -36.2368             | 4.5134          | 0.1779          | -0.00105        |
| Pentane                                                                             | -51.4348             | 7.7913          | -0.4342         | 0.00898         |
| Pentene<br>Six mambarad rings                                                       | -28.8106             | 3.2732          | -0.1445         | 0.00247         |
| Six-membered ring:<br>Hexane                                                        | -56.0709             | 8.9564          | -0.1796         | -0.00781        |
| Hexene                                                                              | -33.5941             | 9.3110          | -0.80118        | 0.02291         |

(continued overleaf)

Table 8.4. (continued)

| Group                                                 | а                | $b \times 10^2$ | $c \times 10^4$ | d × 10 <sup>6</sup> |
|-------------------------------------------------------|------------------|-----------------|-----------------|---------------------|
|                                                       | Oxygen-contain   | ning groups     |                 |                     |
| — он                                                  | 27.2691          | -0.5640         | 0.1733          | -0.00680            |
| -o-                                                   | 11.9161          | -0.04187        | 0.1901          | -0.01142            |
| H<br>-C=0                                             | 14.7308          | 3.9511          | 0.2571          | -0.02922            |
| c=0                                                   | 4.1935           | 8.6931          | -0.6850         | 0.01882             |
| О<br>  <br>—С—О—Н                                     | 5.8846           | 14.4997         | -1.0706         | 0.02883             |
| $-c \stackrel{\circ}{\underset{\circ}{\swarrow}}_{0}$ | 11.4509          | 4.5012          | 0.2793          | -0.03864            |
| O                                                     | -15.6352         | 5.7472          | -0.5296         | 0.01586             |
|                                                       | Nitrogen-contair | ning groups     |                 |                     |
| $-c \equiv N$                                         | 18.8841          | 2.2864          | 0.1126          | -0.01587            |
| —N <b>≡</b> C                                         | 21.2941          | 1.4620          | 0.1084          | -0.01020            |
| $NH_2$                                                | 17.4937          | 3.0890          | 0.2843          | -0.03061            |
| NH-                                                   | -5.2461          | 9.1825          | -0.6716         | 0.01774             |
| >n—                                                   | -14.5186         | 12.3230         | -1.1191         | 0.03277             |
| N                                                     | 10.2401          | 1.4386          | 0.07159         | -0.01138            |
| —NO <sub>2</sub>                                      | 4.5638           | 11.0536         | -0.7834         | 0.01989             |
|                                                       | Sulphur-contain  | ing groups      |                 |                     |
| — sн                                                  | 10.7170          | 5.5881          | -0.4978         | 0.01599             |
| <del>-</del> s                                        | 17.6917          | 0.4719          | -0.0109         | -0.00030            |
| _s_<br>s**                                            | 17.0922          | -0.1260         | 0.3061          | -0.02546            |
| —so₃H                                                 | 28.9802          | 10.3561         | 0.7436          | -0.09397            |
|                                                       | Halogen-contain  | ning groups     |                 |                     |
| — F                                                   | 6.0215           | 1.4453          | -0.0444         | -0.00014            |
| — Cl                                                  | 12.8373          | 0.8885          | -0.0536         | 0.00116             |
| —-Br                                                  | 11.5577          | 1.9808          | -0.1905         | 0.0060              |
| <u>—</u> I                                            | 13.6703          | 2.0520          | -0.2257         | 0.00746             |

### Example 8.9

Estimate the specific heat capacity of isopropyl alcohol at 500 K.

#### Solution

Structural formula

| Group            | No. of | а        | $b \times 10^2$ | $c \times 10^4$ | $d \times 10^6$ |
|------------------|--------|----------|-----------------|-----------------|-----------------|
| —СН <sub>3</sub> | 2      | 5.0970   | 17.9480         | -0.7134         | 0.0095          |
| -CH              | 1      | -14.7516 | 14.3020         | -1.1791         | 0.03356         |
| ОН               | 1      | 27.2691  | -0.5640         | 0.1733          | -0.0068         |
| Total            |        | 17.6145  | 31.6860         | -1.7190         | 0.0363          |

$$C_p^{\circ} = 17.6145 + 31.6860 \times 10^{-2}T - 1.7192 \times 10^{-4}T^2 + 0.0363 \times 10^{-6}T^3.$$

At 500 K, substitution gives:

$$C_p = 137.6 \text{ kJ/kmol}^{\circ}\text{C}$$

Experimental value, 31.78 cal/mol°C = 132.8 kJ/kmol°C, error 4 per cent.

# 8.10. ENTHALPY OF VAPORISATION (LATENT HEAT)

The latent heats of vaporisation of the more commonly used materials can be found in the handbooks and in Appendix D.

A very rough estimate can be obtained from Trouton's rule (Trouton, 1884), one of the oldest prediction methods.

$$\frac{L_v}{T_b} = \text{constant} \tag{8.15}$$

where  $L_v$  = latent heat of vaporisation, kJ/kmol,

 $T_b$  = normal boiling point, K.

For organic liquids the constant can be taken as 100.

More accurate estimates, suitable for most engineering purposes, can be made from a knowledge of the vapour pressure-temperature relationship for the substance. Several correlations have been proposed; see Reid *et al.* (1987).

The equation presented here, due to Haggenmacher (1946), is derived from the Antoine vapour pressure equation (see Section 8.11).

$$L_v = \frac{8.32 \ BT^2 \Delta z}{(T+C)^2} \tag{8.16}$$

where  $L_v =$  latent heat at the required temperature, kJ/kmol,

T = temperature, K,

B, C =coefficients in the Antoine equation (equation 8.20),

 $\Delta z = z_{\rm gas} - z_{\rm liquid}$  (where z is the compressibility constant), calculated from the equation:

$$\Delta z = \left[1 - \frac{P_r}{T_s^3}\right]^{0.5} \tag{8.17}$$

 $P_r$  = reduced pressure,

 $T_r$  = reduced temperature.

If an experimental value of the latent heat at the boiling point is known, the Watson equation (Watson, 1943), can be used to estimate the latent heat at other temperatures.

$$L_v = L_{v,b} \left[ \frac{T_c - T}{T_c - T_b} \right]^{0.38} \tag{8.18}$$

where  $L_v =$  latent heat at temperature T, kJ/kmol,

 $L_{v,b}$  = latent heat at the normal boiling point, kJ/kmol,

 $T_b$  = boiling point, K,

 $T_c$  = critical temperature, K,

T = temperature, K.

Over a limited range of temperature, up to 100°C, the variation of latent heat with temperature can usually be taken as linear.

#### 8.10.1. Mixtures

For design purposes it is usually sufficiently accurate to take the latent heats of the components of a mixture as additive:

$$L_v \text{ mixture } = L_{v1}x_1 + L_{v2}x_2 + \cdots$$
 (8.19)

where  $L_{v1}$ ,  $L_{v2}$  = latent heats of the components kJ/kmol,

 $x_1, x_2 = \text{mol fractions of components.}$ 

# Example 8.10

Estimate the latent heat of vaporisation of acetic anhydride, C<sub>4</sub>H<sub>6</sub>O<sub>3</sub>, at its boiling point, 139.6°C (412.7 K), and at 200°C (473 K).

#### Solution

For acetic anhydride  $T_c = 569.1 \text{ K}$ ,  $P_c = 46 \text{ bar}$ ,

Antoine constants 
$$A = 16.3982$$

$$B = 3287.56$$

$$C = -75.11$$

Experimental value at the boiling point 41,242 kJ/kmol.

From Trouton's rule:

$$L_{v,b} = 100 \times 412.7 = 41,270 \text{ kJ/kmol}$$

*Note*: the close approximation to the experimental value is fortuitous, the rule normally gives only a very approximate estimate.

From Haggenmacher's equation:

at the b.p. 
$$P_r = \frac{1}{46} = 0.02124$$
 
$$T_r = \frac{412.7}{569.1} = 0.7252$$
 
$$\Delta z = \left[1 - \frac{0.02124}{0.7252^3}\right]^{0.5} = 0.972$$
 
$$L_{v,b} = \frac{8.32 \times 3287.6 \times (412.7)^2 \times 0.972}{(412.7 - 75.11)^2} = \frac{39,733 \text{ kJ/mol}}{20.753 \text{ kJ/mol}}$$

At 200°C, the vapour pressure must first be estimated, from the Antoine equation:

$$\ln P = A - \frac{B}{T+C}$$

$$\ln P = 16.3982 - \frac{3287.56}{473 - 75.11} = 8.14$$

$$P = 3421.35 \text{ mmHg} = 4.5 \text{ bar}$$

$$P_c = \frac{4.5}{46} = 0.098$$

$$T_c = \frac{473}{569.1} = 0.831$$

$$\Delta z = \left[1 - \frac{0.098}{0.831^3}\right]^{0.5} = 0.911$$

$$L_v = \frac{8.32 \times 3287.6 \times (473)^2 \times 0.911}{(473 - 75.11)^2} = \frac{35,211 \text{ kJ/kmol}}{(473 - 75.11)^2}$$

Using Watson's equation and the experimental value at the b.p.

$$L_v = 41,242 \left[ \frac{569.1 - 473}{569.1 - 412.7} \right]^{0.38} = \frac{34,260 \text{ kJ/kmol}}{200.38}$$

### 8.11. VAPOUR PRESSURE

If the normal boiling point (vapour pressure = 1 atm) and the critical temperature and pressure are known, then a straight line drawn through these two points on a plot of log-pressure versus reciprocal absolute temperature can be used to make a rough estimation of the vapour pressure at intermediate temperatures.

Several equations have been developed to express vapour pressure as a function of temperature. One of the most commonly used is the three-term Antoine equation, Antoine (1888);

$$\ln P = A - \frac{B}{T + C} \tag{8.20}$$

where P = vapour pressure, mmHg,

A, B, C = the Antoine coefficients.

T = temperature, K.

Vapour pressure data, in the form of the constants in the Antoine equation, are given in several references; the compilations by Ohe (1976), Dreisbach (1952), Hala *et al.* (1968) and Hirata (1975) give values for several thousand compounds. Antoine vapour pressure coefficients for the elements are given by Nesmeyanov (1963). Care must be taken when using Antoine coefficients taken from the literature in equation 8.20, as the equation is often written in different and ambiguous forms; the logarithm of the pressure may be to the base 10, instead of the natural logarithm, and the temperature may be degrees Celsius, not absolute temperature. Also, occasionally, the minus sign shown in equation 8.20 is included in the constant *B* and the equation written with a plus sign. The pressure may also be in units other than mm Hg. Always check the actual form of the equation used in the particular reference. Antoine constants for use in equation 8.20 are given in Appendix D.

# 8.12. DIFFUSION COEFFICIENTS (DIFFUSIVITIES)

Diffusion coefficients are needed in the design of mass transfer processes; such as gas absorption, distillation and liquid-liquid extraction.

Experimental values for the more common systems can be often found in the literature, but for most design work the values will have to be estimated. Methods for the prediction of gas and liquid diffusivities are given in Volume 1, Chapter 10; some experimental values are also given.

#### 8.12.1. Gases

The equation developed by Fuller *et al.* (1966) is easy to apply and gives reliable estimates:

$$D_v = \frac{1.013 \times 10^{-7} T^{1.75} \left(\frac{1}{M_a} + \frac{1}{M_b}\right)^{1/2}}{P\left[\left(\sum_a v_i\right)^{1/3} + \left(\sum_b v_i\right)^{1/3}\right]^2}$$
(8.21)

where  $D_v = \text{diffusivity}, \text{ m}^2/\text{s},$ 

T = temperature, K,

 $M_a, M_b =$  molecular masses of components a and b,

P = total pressure, bar,

 $\sum_{a} v_i$ ,  $\sum_{b} v_i$  = the summation of the special diffusion volume coefficients for components a and b, given in Table 8.5.

The method is illustrated in Example 8.11.

Table 8.5. Special atomic diffusion volumes (Fuller et al., 1966)

| Atomic and structural diffusion volume increments |       |                               |       |  |  |  |  |
|---------------------------------------------------|-------|-------------------------------|-------|--|--|--|--|
| C                                                 | 16.5  | Cl                            | 19.5* |  |  |  |  |
| Н                                                 | 1.98  | S                             | 17.0* |  |  |  |  |
| O                                                 | 5.48  | Aromatic or hetrocyclic rings | -20.0 |  |  |  |  |
| N                                                 | 5.69* | , ,                           |       |  |  |  |  |

| Diffusion volumes of simple molecules |       |                 |        |  |  |  |
|---------------------------------------|-------|-----------------|--------|--|--|--|
| $\overline{H_2}$                      | 7.07  | СО              | 18.9   |  |  |  |
| $D_2$                                 | 6.70  | $CO_2$          | 26.9   |  |  |  |
| He                                    | 2.88  | $N_2O$          | 35.9   |  |  |  |
| $N_2$                                 | 17.9  | $NH_3$          | 14.9   |  |  |  |
| $O_2$                                 | 16.6  | $H_2$           | 12.7   |  |  |  |
| Air                                   | 20.1  | $CCL_2F_2$      | 114.8* |  |  |  |
| Ne                                    | 5.59  | SF <sub>6</sub> | 69.7*  |  |  |  |
| Ar                                    | 16.1  | $Cl_2$          | 37.7*  |  |  |  |
| Kr                                    | 22.8  | $Br_2$          | 67.2*  |  |  |  |
| Xe                                    | 37.9* | $SO_2$          | 41.1*  |  |  |  |

<sup>\*</sup>Value based on only a few data points

# Example 8.11

Estimate the diffusivity of methanol in air at atmospheric pressure and 25°C.

#### Solution

Diffusion volumes from Table 8.5; methanol:

Element 
$$v_i$$
 No. of C 16.50 × 1 = 16.50 H 1.98 × 4 = 7.92 O 5.48 × 1 =  $5.48$   $\sum_{a} v_i$  29.90

Diffusion volume for air = 20.1.

1 standard atmosphere = 1.013 bar.

molecular mass  $CH_3OH = 32$ , air = 29.

$$D_v = \frac{1.013 \times 10^{-7} \times 298^{1.75} (1/32 + 1/29)^{1/2}}{1.013[(29.90)^{1/3} + (20.1)^{1/3}]^2}$$

$$= \underline{16.2 \times 10^{-6} \text{m}^2/\text{s}}$$
(8.21)

Experimental value,  $15.9 \times 10^{-6}$  m<sup>2</sup>/s.

### 8.12.2. Liquids

The equation developed by Wilke and Chang (1955), given below, can be used to predict liquid diffusivity. This equation is discussed in Volume 1, Chapter 10.

$$D_L = \frac{1.173 \times 10^{-13} (\phi M)^{0.5} T}{\mu V_{0.6}^{0.6}}$$
 (8.22)

where  $D_L$  = liquid diffusivity, m<sup>2</sup>/s,

 $\phi$  = an association factor for the solvent,

= 2.6 for water (some workers recommend 2.26),

= 1.9 for methanol,

= 1.5 for ethanol.

= 1.0 for unassociated solvents,

M = molecular mass of solvent,

 $\mu$  = viscosity of solvent, mN s/m<sup>2</sup>,

T = temperature, K,

 $V_m$  = molar volume of the solute at its boiling point, m<sup>3</sup>/kmol. This can be estimated from the group contributions given in Table 8.6.

The method is illustrated in Example 8.12.

The Wilke-Chang correlation is shown graphically in Figure 8.2. This figure can be used to determine the association constant for a solvent from experimental values for  $D_L$  in the solvent.

The Wilke-Chang equation gives satisfactory predictions for the diffusivity of organic compounds in water but not for water in organic solvents.

# Example 8.12

Estimate the diffusivity of phenol in ethanol at 20°C (293 K).

#### Solution

Viscosity of ethanol at 20°C, 1.2 mNs/m<sup>2</sup>.

Molecular mass, 46.

Molar volume of phenol

<sup>™</sup> From Table 8.6:

Table 8.6. Structural contributions to molar volumes, m<sup>3</sup>/kmol (Gambil, 1958)

|               |                                        |                 | Molecula | ır volumes         | 3              |                                               |              |
|---------------|----------------------------------------|-----------------|----------|--------------------|----------------|-----------------------------------------------|--------------|
| Air           | 0.0299                                 | CO <sub>2</sub> | 0.0340   | H <sub>2</sub> S   | 0.0329         | NO                                            | 0.0236       |
| $Br_2$        | 0.0532                                 | COS             | 0.0515   | $I_2$              | 0.0715         | $N_2O$                                        | 0.0364       |
| $Cl_2$        | 0.0484                                 | $H_2$           | 0.0143   | $N_2$              | 0.0312         | $O_2$                                         | 0.0256       |
| CO            | 0.0307                                 | $H_2O$          | 0.0189   | $NH_3$             | 0.0258         | $SO_2$                                        | 0.0448       |
|               |                                        |                 | Atomic   | volumes            |                |                                               |              |
| As            | 0.0305                                 | F               | 0.0087   | P                  | 0.0270         | Sn                                            | 0.0423       |
| Bi            | 0.0480                                 | Ge              | 0.0345   | Pb                 | 0.0480         | Ti                                            | 0.0357       |
| Br            | 0.0270                                 | Н               | 0.0037   | S                  | 0.0256         | V                                             | 0.0320       |
| C             | 0.0148                                 | Hg              | 0.0190   | Sb                 | 0.0342         | Zn                                            | 0.0204       |
| Cr            | 0.0274                                 | I               | 0.037    | Si                 | 0.0320         |                                               |              |
|               |                                        |                 |          |                    |                |                                               |              |
| Cl, terminal, | as in RCl                              |                 | 0.0216   | in highe           | r esters, ethe | ers                                           | 0.01         |
| medial,       | as in R—Cl                             | HCl—R           | 0.0246   | in acids           |                |                                               | 0.012        |
| Nitrogen, dou | uble-bonded                            |                 | 0.0156   | in union           | with S, P, l   | N                                             | 0.008        |
| triply bonde  | ed, as in nitr                         | iles            | 0.0162   | three-me           | embered ring   | <u>,                                     </u> | -0.006       |
| in primary    | amines, RNI                            | $H_2$           | 0.0105   | four-me            | mbered ring    |                                               | -0.008       |
| in secondar   | in secondary amines, R <sub>2</sub> NH |                 | 0.012    | five-membered ring |                | -0.011                                        |              |
| in tertiary a | amines, R <sub>3</sub> N               |                 | 0.0108   | six-men            | bered ring a   | is in benze                                   | ene,         |
| •             |                                        |                 |          |                    | cyclohexa      | ne, pyridi                                    | ine $-0.013$ |
| Oxygen, exce  | ept as noted                           | below           | 0.0074   |                    | -              |                                               |              |
| in methyl e   | esters                                 |                 | 0.0091   | Naphtha            | lene ring      |                                               | -0.030       |
| in methyl e   |                                        |                 | 0.0099   |                    | ene ring       |                                               | -0.047       |

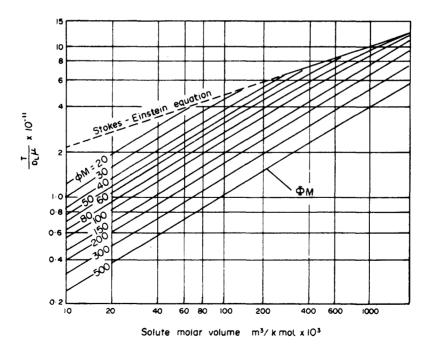



Figure 8.2. The Wilke-Chang correlation

Atom Vol. No. of   
C 0.0148 
$$\times$$
 6 = 0.0888  
H 0.0037  $\times$  6 = 0.0222  
O 0.0074  $\times$  1 = 0.0074  
ring -0.015  $\times$  1 = -0.015  
0.1034 m<sup>3</sup>/k mol

$$D_L = \frac{1.173 \times 10^{-13} (1.5 \times 46)^{0.5} 293}{1.2 \times 0.1034^{0.6}} = \underline{9.28 \times 10^{-10} \text{ m}^2/\text{s}}$$
(8.22)

Experimental value,  $8 \times 10^{-10}$  m<sup>2</sup>/s

### 8.13. SURFACE TENSION

It is usually difficult to find experimental values for surface tension for any but the more commonly used liquids. A useful compilation of experimental values is that by Jasper (1972), which covers over 2000 pure liquids. Othmer *et al.* (1968) give a nomograph covering about 100 compounds.

If reliable values of the liquid and vapour density are available, the surface tension can be estimated from the Sugden parachor; which can be estimated by a group contribution method, Sugden (1924).

$$\sigma = \left[ \frac{P_{ch}(\rho_L - \rho_v)}{M} \right]^4 \times 10^{-12} \tag{8.23}$$

where  $\sigma = \text{surface tension}$ , mJ/m<sup>2</sup> (dyne/cm),

 $P_{ch}$  = Sugden's parachor,

 $\rho_L = \text{liquid density, kg/m}^3$ ,

 $\rho_v$  = density of the saturated vapour, kg/m<sup>3</sup>,

M =molecular mass.

 $\sigma$ ,  $\rho_L$ ,  $\rho_v$  evaluated at the system temperature.

The vapour density can be neglected when it is small compared with the liquid density. The parachor can be calculated using the group contributions given in Table 8.7. The method is illustrated in Example 8.13.

#### 8.13.1. Mixtures

The surface tension of a mixture is rarely a simple function of composition. However, for hydrocarbons a rough value can be calculated by assuming a linear relationship.

$$\sigma_m = \sigma_1 x_1 + \sigma_2 x_2 \dots \tag{8.24}$$

where  $\sigma_m$  = surface tension of mixture,

 $\sigma_1$ ,  $\sigma_2$  = surface tension of components,

 $x_1$ ,  $x_2$  = component mol fractions.

| Atom, group or bond             | Contribution | Atom, group or bond   | Contribution |
|---------------------------------|--------------|-----------------------|--------------|
| C                               | 4.8          | Si                    | 25.0         |
| Н                               | 17.1         | Al                    | 38.6         |
| H in (OH)                       | 11.3         | Sn                    | 57.9         |
| 0                               | 20.0         | As                    | 50.1         |
| O <sub>2</sub> in esters, acids | 60.0         | Double bond: terminal |              |
| N                               | 12.5         | 2,3-position          | 23.2         |
| S                               | 48.2         | 3,4-position          |              |
| P                               | 37.7         | Triple bond           | 46.6         |
| F                               | 25.7         | Rings                 |              |
| Cl                              | 54.3         | 3-membered            | 16.7         |
| Br                              | 68.0         | 4-membered            | 11.6         |
| I                               | 91.0         | 5-membered            | 8.5          |
| Se                              | 62.5         | 6-membered            | 6.1          |

Table 8.7. Contribution to Sugdens's parachor for organic compounds (Sugden, 1924)

## Example 8.13

Estimate the surface tension of pure methanol at 20°C, density 791.7 kg/m³, molecular weight 32.04.

### Solution

Calculation of parachor, CH<sub>3</sub>OH, Table 8.7.

| Group | Contribution |   | No. |   |      |
|-------|--------------|---|-----|---|------|
| C     | 4.8          | X | 1   | = | 4.8  |
| H-O   | 11.3         | × | 1   | = | 11.3 |
| H-C   | 17.1         | × | 3   | = | 51.3 |
| O     | 20.0         | × | 1   | = | 20.0 |
|       |              |   |     |   | 87.4 |

$$\sigma = \left[ \frac{87.4 \times 791.7}{32.04} \right]^4 \times 10^{-12} = \underline{21.8 \text{ mJ/m}^2}$$
 (8.23)

Experimental value 22.5 mJ/m<sup>2</sup>.

### 8.14. CRITICAL CONSTANTS

Values of the critical temperature and pressure will be needed for prediction methods that correlate physical properties with the reduced conditions. Experimental values for many substances can be found in various handbooks; and in Appendix D. Critical reviews of the literature on critical constants, and summaries of selected values, have been published by Kudchadker *et al.* (1968), for organic compounds, and by Mathews (1972), for inorganic compounds. An earlier review was published by Kobe and Lynn (1953).

If reliable experimental values cannot be found, techniques are available for estimating the critical constants with sufficient accuracy for most design purposes. For organic compounds Lydersen's method is normally used, Lydersen (1955):

$$T_c = \frac{T_b}{[0.567 + \Sigma \Delta T - (\Sigma \Delta T)^2]}$$
 (8.25)

$$P_c = \frac{M}{(0.34 + \Sigma \Delta P)^2}$$
 (8.26)

$$V_c = 0.04 + \Sigma \Delta V \tag{8.27}$$

where  $T_c$  = critical temperature, K,

 $P_c$  = critical pressure, atm (1.0133 bar),

 $V_c$  = molar volume at the critical conditions, m<sup>3</sup>/kmol,

 $T_b$  = normal boiling point, K,

M = relative molecular mass,

 $\Delta T$  = critical temperature increments, Table 8.8,

 $\Delta P$  = critical pressure increments, Table 8.8,

 $\Delta V = \text{molar volume increments}$ . Table 8.8.

Fedons (1982) gives a simple method for the estimation of critical temperature, that does not require a knowledge of the boiling point of the compound.

### Example 8.14

Estimate the critical constants for diphenylmethane using Lydersen's method; normal boiling point 537.5 K, molecular mass 168.2, structural formula:

$$HC \xrightarrow{C} \xrightarrow{H} \xrightarrow{H} \xrightarrow{C} \xrightarrow{H} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C}$$

#### Solution

| Crown                                        | No. of |   | Total contribution |            |            |  |
|----------------------------------------------|--------|---|--------------------|------------|------------|--|
| Group                                        |        |   | $\Delta T$         | $\Delta P$ | $\Delta V$ |  |
|                                              |        |   |                    |            |            |  |
| H— $C$ —(ring)                               | 10     |   | 0.11               | 1.54       | 0.37       |  |
| $=$ $\overset{\perp}{\mathrm{C}}$ $-$ (ring) | 2      |   | 0.022              | 0.308      | 0.072      |  |
| —CH <sub>2</sub> —                           | 1      |   | 0.02               | 0.227      | 0.055      |  |
|                                              |        | Σ | 0.152              | 2.075      | 0.497      |  |

$$T_c = \frac{537.5}{(0.567 + 0.152 - 0.152^2)} = \frac{772 \text{ k}}{\text{experimental value 767 K,}}$$

$$P_c = \frac{168.2}{(0.34 + 2.075)^2} = \frac{28.8 \text{ atm}}{(0.34 + 2.075)^2}$$

experimental value 28.2 atm,  

$$V_c = 0.04 + 0.497 = 0.537 \text{ m}^3/\text{kmol}$$

# DESIGN INFORMATION AND DATA

Table 8.8. Critical constant increments (Lydersen, 1955)

|                     | $\Delta T$ | $\Delta P$  | $\Delta V$ |                                   | $\Delta T$ | $\Delta P$ | $\Delta V$ |
|---------------------|------------|-------------|------------|-----------------------------------|------------|------------|------------|
| Non-ring increments | 5          |             |            |                                   |            |            |            |
| — CH <sub>3</sub>   | 0.020      | 0.227       | 0.055      |                                   | 0.0        | 0.198      | 0.036      |
|                     | 0.020      | 0.227       | 0.055      | =c-<br>=c=                        | 0.0        | 0.198      | 0.036      |
| 1                   |            |             |            | <b>≡</b> СН                       | 0.005      | 0.153      | 0.036*     |
| — CH                | 0.012      | 0.210       | 0.051      | <b>≡</b> c−                       | 0.005      | 0.153      | 0.036*     |
|                     |            |             |            | Н                                 | 0          | 0          | 0          |
|                     | 0.00       | 0.210       | 0.041      |                                   |            |            |            |
| =CH <sub>2</sub>    | 0.018      | 0.198       | 0.045      |                                   |            |            |            |
| _<br>=СН            | 0.018      | 0.198       | 0.045      |                                   |            |            |            |
| Ring increments     |            | ,           |            |                                   |            |            |            |
| —СH <sub>2</sub> —  | 0.013      | 0.184       | 0.0445     | _<br>=СН                          | 0.011      | 0.154      | 0.037      |
| —CH                 | 0.012      | 0.192       | 0.046      | = $c$ $-$                         | 0.011      | 0.154      | 0.036      |
|                     | -0.007*    | 0.154*      | 0.031*     | =c=                               | 0.011      | 0.154      | 0.036      |
| Halogen increments  |            |             |            |                                   |            |            |            |
| —_F                 | 0.018      | 0.224       | 0.018      | —Br                               | 0.010      | 0.50*      | 0.070*     |
| —CI                 | 0.017      | 0.320       | 0.049      | I                                 | 0.012      | 0.83*      | 0.095*     |
| Oxygen increments   |            | - · · · · - |            |                                   |            |            |            |
| -OH (alcohols)      | 0.082      | 0.06        | 0.018*     | 1                                 | 0.033*     | 0.2*       | 0.050*     |
| —OH (phenols)       | 0.031      | -0.02*      | 0.030*     | — CO (ring)                       | 0.033      | 0.2        | 0.030      |
| — O — (non-ring)    | 0.021      | 0.16        | 0.020      | HC=O (aldehyde)                   | 0.048      | 0.33       | 0.073      |
| — O — (ring)        | 0.014*     | 0.12*       | 0.080*     | —COOH (acid)                      | 0.085      | 0.4*       | 0.080      |
| C=O (non-ring)      | 0.040      | 0.29        | 0.060      | — COO — (ester)                   | 0.047      | 0.47       | 0.080      |
|                     |            |             |            | O (except for combinations above) | 0.02*      | 0.12*      | 0.011*     |
| Nitrogen increments |            |             |            |                                   |            |            |            |
| -NH <sub>2</sub>    | 0.031      | 0.095       | 0.028      | <br>N (ring)                      | 0.007*     | 0.013*     | 0.032*     |
| NH (non-ring)       | 0.031      | 0.135       | 0.037*     | — (ning)<br>— CN                  | 0.060*     | 0.36*      | 0.080*     |
| NH (ring)           | 0.024*     | 0.09*       | 0.027*     | —NO <sub>2</sub>                  | 0.055*     | 0.42*      | 0.078*     |
| <br>N(non-ring)     | 0.014      | 0.17        | 0.042*     |                                   |            |            |            |

Table 8.8. (continued)

|                    | $\Delta T$ | $\Delta P$ | $\Delta V$ |              | $\Delta T$ | $\Delta P$ | $\Delta V$ |
|--------------------|------------|------------|------------|--------------|------------|------------|------------|
| Sulphur Increments |            |            |            |              |            |            |            |
| — sн               | 0.015      | 0.27       | 0.055      | — S — (ring) | 0.008*     | 0.24*      | 0.045*     |
| — S — (non-ring)   | 0.015      | 0.27       | 0.055      | S            | 0.003*     | 0.24*      | 0.047*     |
| Miscellaneous   Si | 0.03 0.54* |            | <br>       |              | 0.03*      | -          |            |

Dashes represent bonds with atoms other than hydrogen.

Values marked with an asterisk are based on too few experimental points to be reliable.

# 8.15. ENTHALPY OF REACTION AND ENTHALPY OF FORMATION

Enthalpies of reaction (heats of reaction) for the reactions used in the production of commercial chemicals can usually be found in the literature. Stephenson (1966) gives values for most of the production processes he describes in his book.

Heats of reaction can be calculated from the heats of formation of the reactants and products, as described in Chapter 3, Section 3.11. Values of the standard heats of formation for the more common chemicals are given in various handbooks; see also Appendix D. A useful source of data on heats of formation, and combustion, is the critical review of the literature by Domalski (1972).

Benson has developed a detailed group contribution method for the estimation of heats of formation; see Benson (1976) and Benson *et al.* (1968). He estimates the accuracy of the method to be from  $\pm 2.0$  kJ/mol for simple compounds, to about  $\pm 12$  kJ/mol for highly substituted compounds. Benson's method, and other group contribution methods for the estimation of heats of formation, are described by Reid *et al.* (1987).

### 8.16. PHASE EQUILIBRIUM DATA

Phase equilibrium data are needed for the design of all separation processes that depend on differences in concentration between phases.

# 8.16.1. Experimental data

Experimental data have been published for several thousand binary and many multicomponent systems. Virtually all the published experimental data has been collected together in the volumes comprising the DECHEMA vapour-liquid and liquid-liquid data collection, DECHEMA (1977). The books by Chu *et al.* (1956), Hala *et al.* (1968, 1973) and Hirata *et al.* (1975) are also useful sources.

# 8.16.2. Phase equilibria

The criterion for thermodynamic equilibrium between two phases of a multicomponent mixture is that for every component, i:

$$f_i^v = f_i^L \tag{8.28}$$

where  $f_i^{\nu}$  is the vapour-phase fugacity and  $f_i^L$  the liquid-phase fugacity of component i:

$$f_i^{\nu} = \pi \phi_i y_i \tag{8.29}$$

and

$$f_i^L = f_i^{OL} \gamma_i x_i \tag{8.30}$$

where  $\pi = \text{total systems pressure}$ 

 $\phi_i$  = vapour fugacity coefficient

 $y_i$  = concentration of component i in the vapour phase

 $f_{i}^{OL}$  = standard state fugacity of the pure liquid

 $\gamma_i$  = liquid-phase activity coefficient

 $x_i = \text{concentration of component } i \text{ in the liquid phase}$ 

Substitution from equations 8.29 and 8.30 into equation 8.28, and rearranging gives:

$$K_i = \frac{y_i}{x_i} = \frac{\gamma_i f_i^{OL}}{\pi \phi_i} \tag{8.31}$$

where  $K_i$  is the distribution coefficient (the K value).

 $\phi_i$  can be calculated from an appropriate equation of state (see Section 8.16.3).  $f_i^{OL}$  can be computed from the following expression:

$$f_i^{OL} = P_i^o \phi_i^s \left\{ \exp \left\{ \frac{(\pi - P_i^o)}{RT} v_i^L \right\} \right\}$$
 (8.32)

where  $P_i^o$  = the pure component vapour pressure (which can be calculated from the Antoine equation, see Section 8.11), N/m<sup>2</sup>

 $\phi_i^s$  = the fugacity coefficient of the pure component i at saturation  $v_i^L$  = the liquid molar volume, m<sup>3</sup>/mol

The exponential term in equation 8.32 is known as the *Poynting* correction, and corrects for the effects of pressure on the liquid-phase fugacity.

 $\phi_i^s$  is calculated using the same equation of state used to calculate  $\phi_i$ .

For systems in which the vapour phase imperfections are not significant, equation 8.32 reduces to the familiar Raoult's law equation (see Volume 2, Chapter 11):

$$K_i = \frac{\gamma_i P_i^o}{\pi} \tag{8.33}$$

# Relative volatility

The relative volatility of two components can be expressed as the ratio of their K values:

$$\alpha_{ij} = \frac{K_i}{K_j} \tag{8.34}$$

For ideal mixtures (obeying Raoult's law):

$$K_i = \frac{P_i^o}{P} \tag{8.35}$$

and

$$\alpha_{ij} = \frac{K_i^o}{K_j^o} = \frac{P_i^o}{P_j^o}$$
 (8.36)

where  $K_i^o$  and  $K_j^o$  are the ideal K values for components i and j.

# 8.16.3. Equations of state

An equation of state is an algebraic expression which relates temperature, pressure and molar volume, for a real fluid.

Many equations of state have been developed, of varying complexity. No one equation is sufficiently accurate to represent all real gases, under all conditions. The equations of state most frequently used in the design of multicomponent separation processes are given below. The actual equation is only given for one of the correlations, the Redlich–Kwong equation, as an illustration. Equations of state would normally be incorporated in computer aided design packages; see Chapter 11. For details of the other equations the reader should consult the reference cited, or the books by Reid *et al.* (1987) and Walas (1989). To selection the best equation to use for a particular process design refer to Table 8.11 and Figure 8.4.

# Redlich-Kwong equation (R-K)

This equation is an extension of the more familiar *Van der Waal's* equation. The *Redlich–Kwong* equation is:

$$P = \frac{PT}{V - b} \times \frac{a}{T^{1/2}V(V + b)} \tag{8.37}$$

where  $a = 0.427 \text{ R}^2 T_c^{2.5}/P_c$   $b = 0.08664 \text{ R} T_c/P_c$  P = pressureV = volume

The R-K equation is not suitable for use near the critical pressure  $(P_r > 0.8)$ , or for liquids; Redlich and Kwong (1949).

# Redlich-Kwong-Soave equation (R-K-S)

Soave (1972) modified the *Redlich-Kwong* equation to extend its usefulness to the critical region, and for use with liquids.

# Benidict-Webb-Rubin (B-W-R) equation

This equation has eight empirical constants and gives accurate predictions for vapour and liquid phase hydrocarbons. It can also be used for mixtures of light hydrocarbons with carbon dioxide and water; Benedict *et al.* (1951).

# Lee-Kesler-Plocker (L-K-P) equation

Lee and Kesler (1975) extended the *Benidict-Webb-Rubin* equation to a wider variety of substances, using the principle of corresponding states. The method was modified further by Plocker *et al.* (1978).

# Chao-Seader equation (C-S)

The *Chao-Seader* equation gives accurate predictions for light hydrocarbons and hydrogen, but is limited to temperatures below 530 K; Chao and Seader (1961).

# Grayson-Stread equation (G-S)

Grayson and Stread (1963) extended the *Chao-Seader* equation for use with hydrogen rich mixtures, and for high pressure and high temperature systems. It can be used up to 200 bar and 4700 K.

# Peng-Robinson equation (P-R)

The Peng-Robinson equation is related to the *Redlich-Kwong-Soave* equation of state and was developed to overcome the instability in the *Redlich-Kwong-Soave* equation near the critical point; Peng and Robinson (1970).

# Brown K<sub>10</sub> equation (B-K10)

Brown, see Cajander *et al.* (1960), developed a method which relates the equilibrium constant K to four parameters: component, pressure, temperature, and the convergence pressure. The convergence pressure is the pressure at which all K values tend to 1. The *Brown*  $K_{10}$  equation is limited to low pressure and its use is generally restricted to vacuum systems.

# 8.16.4. Correlations for liquid phase activity coefficients

The liquid phase activity coefficient,  $\gamma_i$ , is a function of pressure, temperature and liquid composition. At conditions remote from the critical conditions it is virtually independent of pressure and, in the range of temperature normally encountered in distillation, can be taken as independent of temperature.

Several equations have been developed to represent the dependence of activity coefficients on liquid composition. Only those of most use in the design of separation processes will be given. For a detailed discussion of the equations for activity coefficients and their relative merits the reader is referred to the book by Reid *et al.* (1987), Walas (1984) and Null (1970).

# Wilson equation

The equation developed by Wilson (1964) is convenient to use in process design:

$$\ln \gamma_k = 1.0 - \ln \left[ \sum_{j=1}^n (x_j A_{kj}) \right] - \sum_{i=1}^n \left[ \frac{x_i A_{ik}}{\sum_{j=1}^n (x_j A_{ij})} \right]$$
(8.38)

```
where \gamma_k = activity coefficient for component k,

A_{ij}, A_{ji} = Wilson coefficients (A values) for the binary pair i, j,

n = number of components.
```

The Wilson equation is superior to the familiar Van-Laar and Margules equations (see Volume 2, Chapter 11) for systems that are severely non-ideal; but, like other three suffix equations, it cannot be used to represent systems that form two phases in the concentration range of interest.

A significant advantage of the Wilson equation is that it can be used to calculate the equilibrium compositions for multicomponent systems using only the Wilson coefficients obtained for the binary pairs that comprise the multicomponent mixture. The Wilson coefficients for several hundred binary systems are given in the DECHEMA vapour-liquid data collection, DECHEMA (1977), and by Hirata (1975). Hirata gives methods for calculating the Wilson coefficients from vapour liquid equilibrium experimental data.

The Wilson equation is best solved using a short computer program with the Wilson coefficients in a matrix form. A suitable program is given in Table 8.9 and its use illustrated in Example 8.15. The program language is GWBASIC and it is intended for

Table 8.9. Program for Wilson equation (Example 8.15)

```
100
        REM WILSON EQUATION
        REM CALCULATES ACTIVITY COEFFICIENTS FOR MULTICOMPONENT SYSTEMS
110
        PRINT ''DATA STATEMENTS LINES 410 TO 450''
120
130
        READ N
        REM MAT READ A
140
        FOR I = 1 TO N
150
        FOR J = 1 TO N
160
170
        READ A(I, J).
180
        NEXT J
190
        NEXT I
        PRINT ''TYPE IN LIQUID COMPOSITION, ONE COMPONENT AT A TIME''
200
210
        FOR P=1 TO N
        PRINT ''X''; P; ''?''
220
        INPUT X(P)
230
        NEXT P
240
250
        FOR K=1 TO N
260
        01 = 0
270
        FOR J=1 TO N
280
        Q1=Q1+X(J)*A(K,J)
290
        NEXT J
300
        Q2 = 0
310
        FOR I=1 TO N
320
        03 = 0
330
        FOR J=1 TO N
340
        O3 = O3 + X(J) *A(I,J)
350
        NEXT J
360
        Q2=Q2+(X(I)*A(I,K))/Q3
370
        NEXT T
380
        G(K) = EXP(1-LOG(O1)-O2)
        PRINT ''GAMMA''; K; ''=''; G(K)
390
400
        NEXT K
410
        DATA 4
        DATA 1,2.3357,2.7385,0.4180
420
430
        DATA 0.1924,1,1.6500,0.1108
440
        DATA 0.2419, 0.5343, 1, 0.0465
450
        DATA 0.9699, 0.9560, 0.7795, 1
460
        END
```

interactive use. It can be extended for use with any number of components by changing the value of the constant N in the first data statement and including the appropriate Wilson coefficients (Wilson A values) in the other data statements. The program can easily be modified for use as a sub-routine for bubble-point and other vapour composition programs.

### Example 8.15

Using the Wilson equation, calculate the activity coefficients for isopropyl alcohol (IPA) and water in a mixture of IPA, methanol, water, and ethanol; composition, all mol fraction:

| Methanol | Ethanol | IPA  | Water |
|----------|---------|------|-------|
| 0.05     | 0.05    | 0.18 | 0.72  |

#### Solution

Use the binary Wilson A values given by Hirata (1975). The program "WILSON", Table 8.9, is used to solve this example.

The Wilson A-values for the binary pairs are  $A_{i,j}$ 

|   |   | j                |        |        |        |  |  |
|---|---|------------------|--------|--------|--------|--|--|
|   | - | 1                | 2      | 3      | 4      |  |  |
|   | 1 | <b>[</b> 1       | 2.3357 | 2.7385 | 0.4180 |  |  |
|   | 2 | 0.1924           | 1      | 1.6500 | 0.1108 |  |  |
| ι | 3 | 0.2419           | 0.5343 | 1      | 0.0465 |  |  |
|   | 4 | 0.2419<br>0.9699 | 0.9560 | 0.7795 | 1      |  |  |

Component 1 = MeOH

2 = EtOH

3 = IPA

 $4 = H_2O$ 

The output from the program for the concentrations given was:

$$\gamma_3 = 2.11, \qquad \gamma_4 = 1.25$$

Experimental values from Hirata (1975)

$$\gamma_3 = 2.1, \qquad \gamma_4 = 1.3$$

# Non-random two liquid equation (NRTL) equation

The NRTL equation developed by Renon and Prausnitz (1968) overcomes the disadvantage of the Wilson equation in that it is applicable to immiscible systems. If it can be used to predict phase compositions for vapour-liquid and liquid-liquid systems.

# Universal quasi-chemical (UNIQUAC) equation

The UNIQUAC equation developed by Abrams and Prausnitz (1975) is usually preferred to the NRTL equation in the computer aided design of separation processes. It is suitable for miscible and immiscible systems, and so can be used for vapour-liquid and liquid-liquid systems. As with the Wilson and NRTL equations, the equilibrium

compositions for a multicomponent mixture can be predicted from experimental data for the binary pairs that comprise the mixture. Also, in the absence of experimental data for the binary pairs, the coefficients for use in the UNIQUAC equation can be predicted by a group contribution method: UNIFAC, described below.

The UNIQUAC equation is not given here as its algebraic complexity precludes its use in manual calculations. It would normally be used as a sub-routine in a design or process simulation program. For details of the equation consult the texts by Reid *et al.* (1987) or Walas (1984).

The best source of data for the UNIQUAC constants for binary pairs is the DECHEMA vapour-liquid and liquid-liquid data collection, DECHEMA (1977).

## 8.16.5. Prediction of vapour-liquid equilibria

The designer will often be confronted with the problem of how to proceed with the design of a separation process without adequate experimentally determined equilibrium data. Some techniques are available for the prediction of vapour-liquid equilibria (v-l-e) data and for the extrapolation of experimental values. Caution must be used in the application of these techniques in design and the predictions should be supported with experimentally determined values whenever practicable. The same confidence cannot be placed on the prediction of equilibrium data as that for many of the prediction techniques for other physical properties given in this chapter. Some of the techniques most useful in design are given in the following paragraphs.

# Estimation of activity coefficients from azeotropic data

If a binary system forms an azeotrope, the activity coefficients can be calculated from a knowledge of the composition of the azeotrope and the azeotropic temperature. At the azeotropic point the composition of the liquid and vapour are the same, so from equation 8.31:

$$\gamma_i = \frac{P}{P_i^{\circ}}$$

where  $P_i^{\circ}$  is determined at the azeotropic temperature.

The values of the activity coefficients determined at the azeotropic composition can be used to calculate the coefficients in the Wilson equation (or any other of the three-suffix equations) and the equation used to estimate the activity coefficients at other compositions.

Horsley (1973) gives an extensive collection of data on azeotropes.

# Activity coefficients at infinite dilution

The constants in any of the activity coefficient equations can be readily calculated from experimental values of the activity coefficients at infinite dilution. For the Wilson equation:

$$\ln \gamma_1^{\infty} = -\ln A_{12} - A_{21} + 1 \tag{8.39a}$$

$$\ln \gamma_2^{\infty} = -\ln A_{21} - A_{12} + 1 \tag{8.39b}$$

where  $\gamma_1^\infty, \gamma_2^\infty$  = the activity coefficients at infinite dilution for components 1 and 2, respectively,

 $A_{12}$  = the Wilson A-value for component 1 in component 2,

 $A_{21}$  = the Wilson A-value for component 2 in component 1.

Relatively simple experimental techniques, using ebulliometry and chromatography, are available for the determination of the activity coefficients at infinite dilution. The methods used are described by Null (1970) and Conder and Young (1979).

Pieratti *et al.* (1955) have developed correlations for the prediction of the activity coefficients at infinite dilution for systems containing water, hydrocarbons and some other organic compounds. Their method, and the data needed for predictions, is described by Treybal (1963) and Reid *et al.* (1987).

## Calculation of activity coefficients from mutual solubility data

For systems that are only partially miscible in the liquid state, the activity coefficient in the homogeneous region can be calculated from experimental values of the mutual solubility limits. The methods used are described by Reid *et al.* (1987), Treybal (1963), Brian (1965) and Null (1970). Treybal (1963) has shown that the Van-Laar equation should be used for predicting activity coefficients from mutual solubility limits.

## Group contribution methods

Group contribution methods have been developed for the prediction of liquid-phase activity coefficients. The objective has been to enable the prediction of phase equilibrium data for the tens of thousands of possible mixtures of interest to the process designer to be made from the contributions of the relatively few functional groups which made up the compounds. The UNIFAC method, Fredenslund *et al.* (1977a), is probably the most useful for process design. Its use is described in detail in a book by Fredenslund *et al.* (1977b), which includes computer programs and data for the use of the UNIFAC method in the design of distillation columns.

A method was also developed to predict the parameters required for the NTRL equation: the ASOG method, Kojima and Tochigi (1979).

More extensive work has been done to develop the UNIFAC method, to include a wider range of functional groups; see Gmeling et al. (1982) and Magnussen et al. (1981).

The UNIFAC equation is the preferred equation for use in design, and it is included as a sub-routine in most simulation and design programs.

Care must be exercised in applying the UNIFAC method. The specific limitations of the method are:

- 1. Pressure not greater than a few bar (say, limit to 5 bar)
- 2. Temperature below 150°C
- 3. No non-condensible components or electrolytes
- 4. Components must not contain more than 10 functional groups.

# 8.16.6. K-values for hydrocarbons

A useful source of *K*-values for light hydrocarbons is the well-known "De Priester charts", Dabyburjor (1978), which are reproduced as Figure 8.3*a* and *b*. These charts give the *K*-values over a wide range of temperature and pressure.

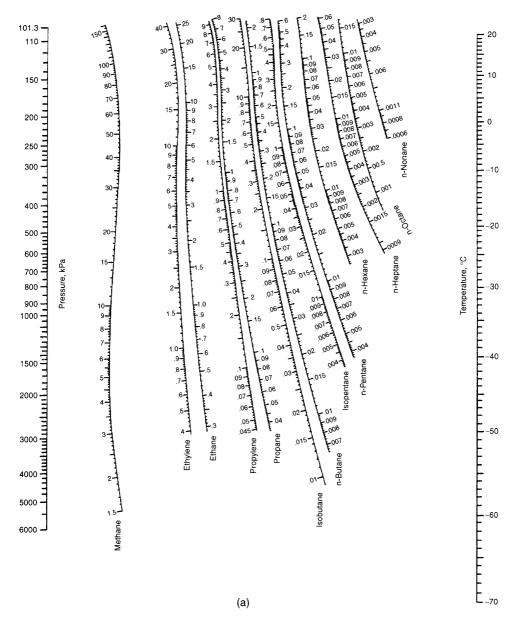



Figure 8.3. (a) De Priester chart — K-values for hydrocarbons, low temperature

# 8.16.7. Sour-water systems (Sour)

The term *sour water* is used for water containing carbon dioxide, hydrogen sulphide and ammonia encountered in refinery operations.

Special correlations have been developed to handle the vapour-liquid equilibria of such systems, and these are incorporated in most design and simulation programs.

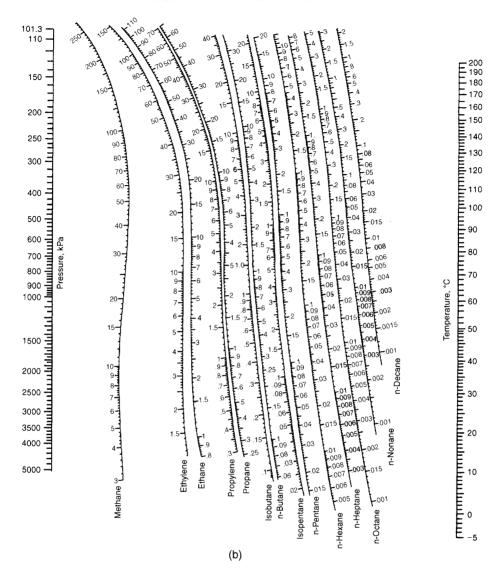



Figure 8.3. (b) De Priester chart—K-values for hydrocarbons, high temperature

Newman (1991) gives the equilibrium data required for the design of sour water systems, as charts.

# 8.16.8. Vapour-liquid equilibria at high pressures

At pressures above a few atmospheres, the deviations from ideal behaviour in the gas phase will be significant and must be taken into account in process design. The effect of pressure on the liquid-phase activity coefficient must also be considered. A discussion of the methods used to correlate and estimate vapour-liquid equilibrium data at high pressures is beyond the scope of this book. The reader should refer to the texts by Null (1970) or Prausnitz and Chueh (1968).

Prausnitz and Chueh also discuss phase equilibria in systems containing components above their critical temperature (super-critical components).

## 8.16.9. Liquid-liquid equilibria

Experimental data, or predictions, that give the distribution of components between the two solvent phases, are needed for the design of liquid-liquid extraction processes; and mutual solubility limits will be needed for the design of decanters, and other liquid-liquid separators.

Perry and Green (1984) give a useful summary of solubility data. Liquid-liquid equilibrium compositions can be predicted from vapour-liquid equilibrium data, but the predictions are seldom accurate enough for use in the design of liquid-liquid extraction processes.

Null (1970) gives a computer program for the calculation of ternary diagrams from vle data, using the Van-Laar equation.

The DECHEMA data collection includes liquid-liquid equilibrium data for several hundred mixtures, DECHEMA (1977).

The UNIQUAC equation can be used to estimate activity coefficients and liquid compositions for multicomponent liquid-liquid systems. The UNIFAC method can be used to estimate UNIQUAC parameters when experimental data are not available, see Section 8.16.5.

It must be emphasised that extreme caution needs to be exercised when using predicted values for liquid activity coefficients in design calculations.

# 8.16.10. Choice of phase equilibria for design calculations

The choice of the best method for deducing vapour-liquid and liquid-liquid equilibria for a given system will depend on three factors:

- 1. The composition of the mixture (the class of system)
- 2. The operating pressure (low, medium or high)
- 3. The experimental data available.

#### Classes of mixtures

For the purpose of deciding which phase equilibrium method to use, it is convenient to classify components into the classes shown in Table 8.10.

|      | Class                       | Principle interactions | Examples                                          |
|------|-----------------------------|------------------------|---------------------------------------------------|
| Ī.   | Simple molecules            | Dispersion forces      | H <sub>2</sub> , N <sub>2</sub> , CH <sub>4</sub> |
| II.  | Complex non-polar molecules | Dispersion forces      | $CCl_4$ , $iC_5H_{10}$                            |
| III. | Polarisable                 | Induction dipole       | $CO_2$ , $C_6H_6$                                 |
| IV.  | Polar molecules             | Dipole moment          | dimethyl formamide, chloroethane                  |
| V.   | Hydrogen bonding            | Hydrogen bonds         | alcohols, water                                   |

Table 8.10. Classification of mixtures

| Class of mixture                     | <     | Low<br><3 bar | Pressure<br>Moderate<br><15 bar |          | High<br>>15 bar |          |
|--------------------------------------|-------|---------------|---------------------------------|----------|-----------------|----------|
|                                      | $f^L$ | $f^V$         | $f^L$                           | $f^V$    | $f^L$           | $f^V$    |
| I, II, III (none supercritical)      | ES    | I             | ES                              | ES       | ES              | ES and K |
| I, II, III<br>(supercritical)        | ES    | I             | ES                              | ES       | ES              | ES and K |
| I, II, III, IV, V<br>(vapour-liquid) | ACT   | I             | ACT                             | ES       | ES              | ES and K |
| I, II, III, IV, V<br>(liquid-liquid) | ACT   | I             | ACT                             | ES       | ES              | ES       |
| Hydrocarbons and water               | ES    | ES and K      | ES                              | ES and K | ES              | ES and K |

Table 8.11. Selection of phase equilibrium method

ACT = correlation for liquid-phase activity coefficient: such as, Wilson, NRTL, UNIQUAC, UNIFAC. (See Section 8.16.4). Use UNIQUAC and UNIFAC v-l-e parameters for vapour-liquid systems and l-l-e parameters for liquid-liquid systems.

Using the classification given in Table 8.10, Table 8.11 can be used to select the appropriate vapour-liquid and liquid-liquid phase equilibria method.

# Flow chart for selection of phase equilibria method

The flow chart shown in Figure 8.4 has been adapted from a similar chart published by Wilcon and White (1986). The abbreviations used in the chart for the equations of state correspond to those given in Section 8.16.3.

#### 8.16.11. Gas solubilities

At low pressures, most gases are only sparingly soluble in liquids, and at dilute concentrations the systems obey Henry's law (see Volume 2, Chapter 11). Markham and Kobe (1941) and Battino and Clever (1966) give comprehensive reviews of the literature on gas solubilities.

# 8.16.12. Use of equations of state to estimate specific enthalpy and density

Computer aided packages for the design and simulation of separation processes will contain sub-routines for the estimation of excess enthalpy and liquid and vapour density from the appropriate equation of state.

I = Ideal, vapour fugacity = partial pressure.

ES = appropriate equation of state.

K = equilibrium constant (K factor) derived from experimental data.

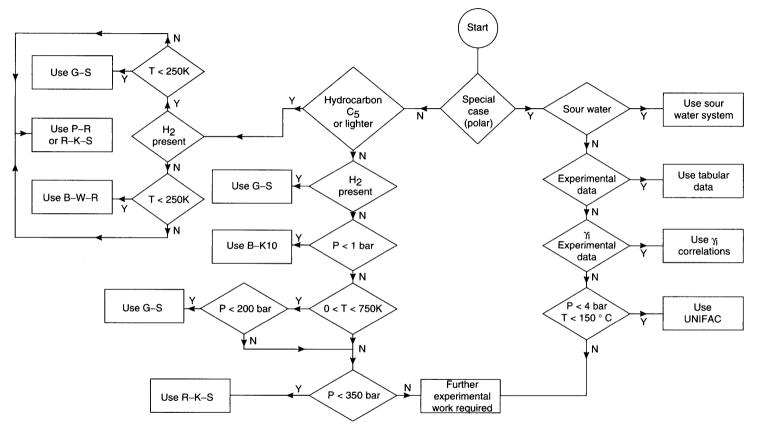



Figure 8.4. Flow chart for the selection of phase equilibria method

# Specific enthalpy

For the vapour phase, the deviation of the specific enthalpy from the ideal state can be illustrated using the *Redlich-Kwong* equation, written in the form:

$$z^3 + z^2 + z(B^2 + B - A) = 0$$

where z = the compressibility factor

$$A = \frac{a \times P}{R^2 \times T^{2.5}}$$
$$B = \frac{b \times P}{R \times T}$$

The fugacity coefficient is given by:

$$\ln \phi = z - 1 - \ln(z - b) - \left(\frac{A}{B}\right) \ln \left(1 - \frac{B}{z}\right)$$
 and the excess enthalpy  $(H - H^\circ) = RT + \int_0^v \left[T\left(\frac{\mathrm{d}P}{\mathrm{d}T}\right)_v - P\right] \,\mathrm{d}v$ 

where H is enthalpy at the system temperature and pressure and  $H^{\circ}$  enthalpy at the ideal state.

Unless liquid phase activity coefficients have been used, it is best to use the same equation of state for excess enthalpy that was selected for the vapour-liquid equilibria. If liquid-phase activity coefficients have been specified, then a correlation appropriate for the activity coefficient method should be used.

# **Density**

For vapours, use the equation of state selected for predicting the vapour-liquid equilibria. For liquids, use the same equation if it is suitable for estimating liquid density.

#### 8.17. REFERENCES

AIChE (1983) Design Institute for Physical Property Data, Manual for Predicting Chemical Process Design Data (AIChemE).

AIChE (1985) Design Institute for Physical Property Data, Data Compilation, Part II (AIChemE).

Antoine, C. (1888) Compte rend. 107, 681 and 836. Tensions des vapeurs: nouvelle relation entre les tensions et les températures.

ANTONY, A. (1979) Guide to Basic Information Sources in Chemistry (Wiley).

AUSTIN, G. T. (1984) Shreve's Chemical Process Industries, 5th edn (McGraw-Hill).

BATTINO, R. and CLEVER, H. L. (1966) Chem. Rev. 66, 395. The solubility of gases in liquids.

BENDICT, M., WEBB, G. B. and RUBIN, L. C. (1951) *Chem. Eng. Prog.* 47, 419, 449, 571, 609 (in 4 parts). An experimental equation for thermodynamic properties of light hydrocarbons.

BENSON, S. W. (1976) Thermochemical Kinetics, 2nd edn (Wiley).

Benson, S. W., Cruickshank, F. R., Golden, D. M., Haugen, G. R., O'Neal, H. E., Rogers, A. S., Shaw, R. and Walsh, R. (1969) *Chem. Rev.* **69**, 279. Activity rules for the estimation of thermochemical properties.

Bretsznajder, S. (1971) Prediction of Transport and other Physical Properties of Fluids (Pergamon Press).

BRIAN, P. L. T. (1965) *Ind. Eng. Chem. Fundamentals* 4, 100. Predicting activity coefficients from liquid phase solubility limits.

Bromley, L. A. (1952) Thermal Conductivity of Gases at Moderate Pressure, University of California Radiation Laboratory Report UCRL—1852 (University of California, Berkeley).

BURMAN, C. R. (1965) How to find out in Chemistry (Pergamon Press).

CAJANDER, B. C., HIPLIN, H. G. and LENOIR, J. M. (1960) J. Chem. Eng. Data 5, 251. Prediction of equilibrium ratios from nomograms of improved accuracy.

CAPSEY, S. R. (1963) Patents, an Introduction for Engineers and Scientists (Newnes-Butterworths).

Chao, K. C. and Seader, J. D. (1961) AIChEJ1 7, 598. A generalized correlation for vapor-liquid equilibria in hydrocarbon mixtures.

CHUEH, C. F. and SWANSON, A. C. (1973a) Can. J. Chem. Eng. 51, 576. Estimation of liquid heat capacity.

CHUEH, C. F. and SWANSON, A. C. (1973b) Chem. Eng. Prog. 69 (July) 83. Estimating liquid heat capacity.

CHU, J. C., WANG, S. L., LEVY, S. L. and PAUL, R. (1956) Vapour-liquid Equilibrium Data (J. W. Edwards Inc., Ann Arbor, Michigan).

COMYNS, A. E. (1993) Dictionary of Named Chemical Processes (Oxford University Press).

CONDER, J. R. and YOUNG, C. L. (1979) Physicochemical Measurement by Gas Chromatography (Wiley).

DABYBURJOR, D. B. (1978) Chem. Eng. Prog. 74 (April) 85. SI units for distribution coefficients.

DECHEMA (1977ff) DECHEMA Chemistry Data Series (DECHEMA).

DOMALSKI, E. S. (1972) J. Phys. Chem. Ref. Data 1, 221. Selected values of heats of combustion and heats of formation of organic compounds containing the elements C, H, N, O, P, and S.

Dreisbach, R. R. (1952) Pressure-volume-temperature Relationships of Organic Compounds, 3rd edn (Handbook Publishers).

EUCKEN, A. (1911) Phys. Z. 12, 1101.

FAITH, W. L., KEYES, W. L. and CLARK, R. L. (1965) Industrial Chemicals, 3rd edn (Wiley).

FEDONS, R. F. (1982) Chem. Eng. Commns. 16, 149. A Relationship between Chemical Structure and Critical Temperature.

Fredenslund, A., Gmehling, J., Michelsen, M. L., Rasmussen, P. and Prausnitz, J. M. (1977a) *Ind. Eng. Chem. Proc. Des. and Dev.* 16, 450. Computerized design of multicomponent distillation columns using the UNIFAC group contribution method for calculation of activity coefficients.

FREDENSLUND, A., GMEHLING, J. and RASMUSSEN, P. (1977b) Vapour-liquid Equilibria using UNIFAC: a Group Contribution Method (Elsevier).

Fuller, E. N., Schettler, P. D. and Giddings, J. C. (1966) *Ind. Eng. Chem.* **58** (May) 19. A new method for the prediction of gas-phase diffusion coefficients.

GAMBILL, W. R. (1958) Chem. Eng., NY 65 (June 2nd) 125. Predict diffusion coefficient, D.

GMEHLING, J., RASMUSSEN, P. and FREDNENSLUND, A. (1982) *Ind. Eng. Chem. Proc. Des. and Dev.* 21, 118. Vapour liquid equilibria by UNIFAC group contribution, revision and extension.

GREYSON, H. G. and STREED, C. W. (1963) Proc. 6th World Petroleum Congress, Frankfurt, Germany, paper 20, Sec. 7, 233. Vapor-liquid equilibrium for high temperature, high pressure hydrogen-hydrocarbon systems. GROGGINS, P. (1958) Unit Processes in Organic Synthesis, 5th edn (McGraw-Hill).

HAGGENMACHER, J. E. (1946) J. Am. Chem. Soc. 68, 1633. Heat of vaporisation as a function of temperature.

HALA, E., WICHTERLE, I. POLAK, J. and BOUBLIK, T. (1968) Vapour-liquid Equilibrium Data at Normal Pressure (Pergamon).

HALA, E., WICHTERLE, I. and LINEK, J. (1973) Vapour-liquid Equilibrium Data Bibliography (Elsevier). Supplements: 1, 1976; 2, 1979; 3, 1982, 4, 1985.

HIRATA, M., OHE, S. and NAGAHAMA, K. (1975) Computer Aided Data Book of Vapour-liquid Equilibria (Elsevier).

HMSO (1970) Searching British Patent Literature.

HMSO (1971) About Patents — patents as a source of technical information.

Ho, C. Y., Powell, R. W. and LILEY, P. E. (1972) J. Phys. Chem. Ref. Data 1, 279. Thermal conductivity of the elements.

HORSLEY, L. H. (1973) Azeotropic Data III (American Chemical Society).

JAMIESON, D. T., IRVING, J. B. and TUDHOPE, J. S. (1975) Liquid Thermal Conductivity: A Data Survey to 1973 (HMSO)

JASPER, J. J. (1972) J. Phys. Chem. Ref. Data 1, 841. The surface tension of pure liquids.

KERN, D. Q. (1950) Process Heat Transfer (McGraw-Hill).

KIRK, R. E. and OTHMER, D. F. (eds) (1966) Encyclopedia of Chemical Technology, 2nd edn (Wiley).

KIRK, R. E. and OTHMER, D. F. (eds) (1978-84) Encyclopedia of Chemical Technology, 3rd edn (Wiley).

KIRK, R. E. and OTHMER, D. F. (eds) (1991 ff) Encyclopedia of Chemical Technology, 4th edn (Wiley).

KOBE, K. A. and LYNN, R. E. (1953) Chem. Rev. 52, 177. The critical properties of elements and compounds.

KOJIMA, K. and TOCHIGI, K. (1979) Prediction of Vapour-Liquid Equilibria by the ASOG Method (Elsevier).

KOJIMA, K., TOCHIGI, K., SEKI, H. and WATASE, K. (1968) Kagaku Kogaku 32, 149. Determination of vapour-liquid equilibrium from boiling point curve.

KUDCHADKER, A. P., ALANI, G. H. and ZWOLINSK, B. J. (1968) Chem. Rev. 68, 659. The critical constants of organic substances.

LEE, B. I. and KESLER, M. G. (1975) AIChemEJL 21, 510. A generalized thermodynamic correlation based on three-parameter corresponding states.

LEWIS, W. K. and SQUIRES, L. (1934) *Oil and Gas J*. (Nov. 15th) 92. The mechanism of oil viscosity as related to the structure of liquids.

LIEBERRY, F. (ed.) (1972) Mainly on Patents; the use of Industrial Property and its Literature (Butterworths).

Lydersen, A. L. (1955) *Estimation of Critical Properties of Organic Compounds*, University of Wisconsin Coll. Eng. Exp. Stn. Report 3 (University of Wisconsin).

MAGNUSSEN, T., RASMUSSEN, P. and FREDNENSLUND, A. (1981) *Ind. Eng. Chem. Proc. Des. and Dev.* 20, 331. UNIFAC parameter table for prediction of liquid-liquid equilibria.

MARKHAM, A. E. and KOBE, K. A. (1941) Chem. Rev. 28, 519. The solubility of gases in liquids.

MATHEWS, J. F. (1972) Chem. Rev. 72, 71. The critical constants of inorganic substances.

MCKETTA, J. J. (ed.) (1977) Encyclopedia of Chemical Processes and Design (Marcel Dekker).

MILLER, S. A. (1969) Ethylene and its Industrial Derivatives (Benn).

MOUNT, E. (1976) Guide to Basic Information Sources in Engineering (Wiley).

NESMEYANOV, A. N. (1963) Vapour Pressure of Elements (Infosearch Ltd., London).

Newman, S. A. (1991) *Hyd. Proc.* **70** (Sept.) 145 (Oct.) 101 (Nov.) 139 (in 3 parts). Sour water design by charts.

NULL, H. R. (1970) Phase Equilibrium in Process Design (Wiley).

OHE, S. (1976) Computer Aided Data Book of Vapour Pressure (Data Book Publishing Co., Japan).

OTHMER, D. F., CHUDGAR, M. M. and LEVY, S. L. (1952) *Ind. Eng. Chem.* 44, 1872. Binary and ternary systems of acetone, methyl ethyl ketone and water.

OTHMER, D. F., JOSEFOWITZ, S. and SCHMUTZLER, A. F. (1968) *Ind. Eng. Chem.* 40, 886. Correlating surface tensions of liquids.

PENG, D. Y. and ROBINSON, D. B. (1976) *Ind. Eng. Chem. Fund.* **15**, 59. A new two constant equation of state. PERRY, R. H. and CHILTON, C. H. (eds) (1973) *Chemical Engineers Handbook*, 5th edn (McGraw-Hill).

PERRY, R. H. and Green, D. W. (eds) (1984) Perry's Chemical Engineers Handbook, 6th edn (McGraw-Hill). PERRY, R.H., GREEN, D. W. and MALONEY, J. O. (eds) (1997) Perry's Chemical Engineers' Handbook, 7th edn.

(McGraw-Hill).

PIERATTI, G. J., DEAL, C. H. and DERR, E. L. (1955) *Ind. Eng. Chem.* 51, 95. Activity coefficients and molecular

structure.

PLOCKER, U., KNAPP, H. and PRAUSNITZ, J. (1978) *Ind. Eng. Chem. Proc. Des. and Dev.* 17, 243. Calculation of high-pressure vapour-liquid equilibria from a corresponding-states correlation with emphasis

on asymmetric mixtures.

PRAUSNITZ, J. M., ECKERT, C. A., ORYE, R. V. and O'CONNELL, J. P. (1967) Computer Calculation of Multi-component Vapour-liquid Equilibria (Prentice-Hall).

PRAUSNITZ, J. M. and CHUEH, P. L. (1968) Computer Calculations for High-pressure Vapour-liquid-equilibria (Prentice-Hall).

PRAUSNITZ, J. M. (1969) Molecular Thermodynamics of Fluid-phase Equilibria (Prentice-Hall).

REDLICH, O. and Kwong, J. N. S. (1949) *Chem. Rev.* 44, 233. The thermodynamics of solutions, V. An equation of state. Fugacities of gaseous solutions.

REID, R. C., PRAUSNITZ, J. M. and POLING, B. E. (1987) Properties of Liquids and Gases, 4th edn (McGraw-Hill).

REINDERS, W. and DE MINJER, C. H. (1947) *Trav. Chim. Pays-Bas* 66, 573. Vapour-liquid equilibria in ternary systems VI. The system water-acetone-chloroform.

RIHANI, D. N. and DORAISWAMY, L. K. (1965) *Ind. Eng. Chem. Fundamentals* **4**, 17. Estimation of heat capacity of organic compounds from group contributions.

SMITH, W. T., GREENBAUM, S. and RUTLEDGE, G. P. (1954) J. Phys. Chem. 58, 443. Correlation of critical temperature with thermal expansion coefficients of organic liquids.

SOAVE, G. (1972) Chem. Eng. Sci. 27, 1197 Equilibrium constants from modified Redlich-Kwong equation of state.

Souders, M. (1938) J. Am. Chem. Soc. 60, 154. Viscosity and chemical constitution.

STEPHENSON, R. M. (1966) Introduction to the Chemical Process Industries (Reinhold).

STERBACEK, Z., BISKUP, B. and TAUSK, P. (1979) Calculation of Properties using Corresponding-state Methods (Elsevier).

SUGDEN, S. (1924) J. Chem. Soc. 125, 1177. A relation between surface tension, density, and chemical composition.

TOULOUKIAN, Y. S. (ed.) (1970-77) Thermophysical Properties of Matter, TPRC Data Services (Plenum Press).

TREYBAL, R. E. (1963) Liquid Extraction, 2nd edn (McGraw-Hill).

TROUTON, F. T. (1884) Phil. Mag. 18, 54. On molecular latent heat.

TSEDERBERG, N. V. (1965) Thermal Conductivity of Gases and Liquids (Arnold).

ULLMAN (1984) Ullman's Encyclopedia of Industrial Chemistry, 5th edn (VCH).

WALAS, S. M. (1985) Phase Equilibrium in Chemical Engineering (Butterworths).

WATSON, K. M. (1943) *Ind. Eng. Chem.* 35, 398. Thermodynamics of the liquid state: generalized prediction of properties.

WEBER, H. F. (1980) Ann Phy. Chem. 10, 103. Untersuchungen über die wärmeleitung in flüssigkeiten.

WEISSERMAL, K. and ARPE, H. (1978) Industrial Organic Chemistry (Verlag Chemie).

WERNER, R. R. (1941) Thermochemical Calculations (McGraw-Hill).

WILKE, C. R. (1949) Chem. Eng. Prog. 45, 218. Estimation of liquid diffusion coefficients.

WILKE, C. R. and CHANG, P. (1955) A.I.Ch.E.Jl. 1, 264. Correlation of diffusion coefficients in dilute solutions.

WILCON, R. F. and WHITE, S. L. (1986) Chem. Eng., NY 93, (Oct. 27th) 142. Selecting the proper model to stimulate vapour-liquid equilibrium.

WILSON, G. M. (1964) J. Am. Chem. Soc. 86, 127. A new expression for excess energy of mixing.

YORK, R. and HOLMES, R. C. (1942) *Ind. Eng. Chem.* 34, 345. Vapor-liquid equilibria of the system acetone-acetic acid-water.

## Bibliography: general sources of physical properties

BOUBIK, T., FRIED, V. and HALA, E. (1984) The Vapour Pressures of Pure Substances, 2nd edn (Elsevier).

BOUL, M., NYVLT and SOHNEL (1981) Solubility of Inorganic Two-Component Systems (Elsevier).

CHRISTENSEN, J. J., HANKS, R. W. and IZATT (1982) Handbook of Heats of Mixing (Wiley).

Dreisbach, R. R. (1955-61) *Physical Properties of Chemical Compounds*, Vols. I, II, III (American Chemical Society).

Dreisbach, R. R. (1952) Pressure-volume-temperature Relationships of Organic Compounds, 3rd edn (Handbook Publishers).

FENSKE, M., BRAUN, W. G. and THOMPSON, W. H. (1966) Technical Data Book-Petroleum Refining (American Petroleum Institute).

FLICK, E. W. (ed.) (1991) Industrial Solvent Handbook, 4th edn (Noyes).

GALLANT, R. W. (1968) (1970) Physical Properties of Hydrocarbons, Vols. 1 and 2 (Gulf).

LANGE, N. A. (ed.) (1961) Handbook of Chemistry, 10th edn (McGraw-Hill).

MAXWELL, J. B. (1950) Data Book on Hydrocarbons (Van Nostrand).

NATIONAL BUREAU OF STANDARDS (1951) Selected Values of Thermodynamic Properties, Circular C500 (US Government Printing Office).

PERRY, R. H. and GREEN, D. W. (eds) (1984) Chemical Engineers Handbook, 6th edn (McGraw-Hill).

PERRY, R.H., GREEN, D. W. and MALONEY, J. O. (eds) (1997) Perry's Chemical Engineers' Handbook, 7th edn. (McGraw-Hill).

RENON, H. (1986) Fluid Properties and Phase Equilibria for Chemical Engineers (Elsevier).

Ross, T. K. and Freshwater, D. C. (1962) Chemical Engineers Data Book (Leonard Hill).

ROSSINI, F. D. (1953) Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds (American Chemical Society).

SEIDELL, A. (1952) Solubilities of Inorganic and Organic Compounds, 3rd edn (Van Nostrand).

SOHNEL, O. and NOVOTNY (1985) Densities of Aqueous Solutions in Organic Substances (Elsevier).

SPIERS, H. M. (ed.) (1961) *Technical Data on Fuel*, 6th edn (British National Committee, Conference on World Power).

STEPHEN, T. and STEPHEN, H. (1963) Solubilities of Inorganic and Organic Compounds, 2 vols. (Macmillan).

TAMIR, A., Tamir, E. and STEPHAN, K. (1983) Heats on Phase Change of Pure Components and Mixtures (Elsevier).

TIMMERMANNS, J. (1950) Physico-chemical Constants of Pure Organic Compounds (Elsevier).

TIMMERMANNS, J. (1959) Physico-chemical Constants of Binary Systems, 4 vols. (Interscience).

VISWANATH, D. S. and NATARAJAN, G. (1989) Data Book on Viscosity (Hemisphere).

WEAST, R. C. (ed.) (1972) Handbook of Chemistry and Physics, 53rd edn (the Chemical Rubber Co.).

WASHBURN, E. W. (ed.) (1933) International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, 8 vols. (McGraw-Hill).

WISNIAK, J. and TAMIR, A. (1980) Liquid-liquid Equilibria and Extraction: A Literature Source Book, Parts A and B.

WISNIAK, J. and HERSKOWITZ, M. (1984) Solubility of Gases and Solids, 2 vols. (Elsevier).

YAWS, C. L. (1977) Physical Properties (McGraw-Hill).

# 8.18. NOMENCLATURE

|                               |                                                                                         | Dimensions                                                 |
|-------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------|
|                               |                                                                                         | in <b>MLT</b> $\theta$                                     |
| Α                             | Coefficient in the Antoine equation                                                     | _                                                          |
| $A_{1,2}$                     | Coefficients in the Wilson equation for the binary pair 1, 2                            | -                                                          |
| a                             | Coefficient in the Redlich Kwong equation of state                                      | _                                                          |
| В                             | Coefficient in the Antoine equation                                                     | $\theta$                                                   |
| $B_i$                         | Second viral coefficient for component i                                                | $\mathbf{M}^{-1}\mathbf{L}^3$                              |
| b                             | Coefficient in the Redlich Kwong equation of state                                      | _                                                          |
| $\boldsymbol{C}$              | Coefficient in the Antoine equation                                                     | $\theta$                                                   |
| $C_p$                         | Specific heat capacity at constant pressure                                             | $\mathbf{L}^2\mathbf{T}^{-2}\boldsymbol{\theta}^{-1}$      |
| $D_L$                         | Liquid diffusivity                                                                      | $\mathbf{L}^{2}\mathbf{T}^{-1}$                            |
| $D_v$                         | Gas diffusivity                                                                         | $\mathbf{L}^2\mathbf{T}^{-1}$                              |
| $f_{i}$                       | Fugacity coefficient for component i                                                    |                                                            |
| $f_i^{OL}$                    | Standard state fugacity coefficient of pure liquid                                      |                                                            |
| $H_{rr0}$                     | Specific enthalpy                                                                       | $L^2T^{-2}$ $L^2T^{-2}$                                    |
| $H^0$                         | Excess specific enthalpy                                                                |                                                            |
| I                             | Souders' index (equation 8.9)                                                           | $\mathbf{M}^{-1}\mathbf{L}^3$                              |
| $K K^0$                       | Equilibrium constant (ratio)                                                            | _                                                          |
|                               | Equilibrium constant for an ideal mixture                                               | $\mathbf{MLT}^{-3}\boldsymbol{\theta}^{-1}$                |
| k<br>L                        | Thermal conductivity                                                                    | $\mathbf{MLT}^{-3}\boldsymbol{\theta}^{-1}$                |
| $k_m$                         | Thermal conductivity of a mixture                                                       | $L^2T^{-2}$                                                |
| $L_v$                         | Latent heat of vaporisation                                                             | $L^2T^{-2}$                                                |
| $\stackrel{L_{v,b}}{\it M}$   | Latent heat at normal boiling point Molecular mass (weight)                             | M                                                          |
| n                             | Number of components                                                                    |                                                            |
| P                             | Pressure                                                                                | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ or $\mathbf{L}$ |
| $P_c$                         | Critical pressure                                                                       | $ML^{-1}T^{-2}$                                            |
| $P_{ch}$                      | Sugden's parachor (equation 8.23)                                                       |                                                            |
| $P_i^0$                       | Vapour pressure of component i                                                          | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ or $\mathbf{L}$ |
| $P_k^{'}$                     | Vapour pressure of component k                                                          | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ or $\mathbf{L}$ |
| $P_r$                         | Reduced pressure                                                                        |                                                            |
| $\Delta P_c$                  | Critical constant increment in Lydersen equation (equation 8.26)                        | $M^{-1/2}L^{1/2}T$                                         |
| R                             | Universal gas constant                                                                  | $\mathbf{L}^2\mathbf{T}^{-2}\boldsymbol{\theta}^{-1}$      |
| $\underline{T}$               | Temperature, absolute scale                                                             | θ                                                          |
| $T_b$                         | Normal boiling point, absolute scale                                                    | $\theta$                                                   |
| $\frac{T_c}{T_r}$             | Critical temperature                                                                    | θ                                                          |
| $\Delta T_c$                  | Reduced temperature<br>Critical constant increment in Lydersen equation (Equation 8.25) |                                                            |
| t c                           | Temperature, relative scale                                                             | $\theta$                                                   |
| $V_c$                         | Critical volume                                                                         | $\mathbf{M}^{-1}\mathbf{L}^3$                              |
| $V_m$                         | Molar volume at normal boiling point                                                    | $\mathbf{M}^{-1}\mathbf{L}^3$                              |
| $\Delta V_c$                  | Critical constant increment in Lydersen equation (Equation 8.27)                        | $\mathbf{M}^{-1}\mathbf{L}^3$                              |
| $v_i$                         | Special diffusion volume coefficient for component i (Table 8.5)                        | $\mathbf{L}^3$                                             |
| $v_i^0$                       | Liquid molar volume                                                                     | $\mathbf{M}^{-1}\mathbf{L}^3$                              |
| w                             | Mass fraction (weight fraction)                                                         |                                                            |
| x                             | Mol fraction, liquid phase                                                              |                                                            |
| У                             | Mol fraction, vapour phase                                                              | _                                                          |
| z                             | Compressibility factor                                                                  | _                                                          |
| α                             | Relative volatility                                                                     | $\theta^{-1}$                                              |
| β                             | Coefficient of thermal expansion Liquid activity coefficient                            | <del>o</del> -                                             |
| $\gamma \sim \gamma^{\infty}$ | Activity coefficient at infinite dilution                                               | _                                                          |
| $\mu$                         | Dynamic viscosity                                                                       | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-1}$                 |
| $\mu_b$                       | Viscosity at boiling point                                                              | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-1}$                 |
| $\mu_m$                       | Viscosity of a mixture                                                                  | $\mathbf{ML}^{-1}\mathbf{T}^{-1}$                          |
| ,                             |                                                                                         |                                                            |

| ρ                       | Density                                | $ML^{-3}$                   |
|-------------------------|----------------------------------------|-----------------------------|
| $ ho_L$                 | Liquid density                         | $ML^{-3}$                   |
| $ ho_v$                 | Vapour (gas) density                   | $ML^{-3}$                   |
| $ ho_b$                 | Density at normal boiling point        | $ML^{-3}$                   |
| $\sigma$                | Surface tension                        | $\mathbf{M}\mathbf{T}^{-2}$ |
| $\sigma_m$              | Surface tension of a mixture           | $\mathbf{M}\mathbf{T}^{-2}$ |
| $\phi$                  | Fugacity coefficient                   | _                           |
| $\phi^s$                | Fugacity coefficient of pure component |                             |
| $\phi^L$                | Fugacity coefficient of pure liquid    | -                           |
| $oldsymbol{\phi}^V$     | Fugacity coefficient of pure vapour    | _                           |
| Suffixe                 | es                                     |                             |
| a, b<br>i, j, k<br>1, 2 | Components                             |                             |
| L                       | Liquid                                 | _                           |
| V                       | Vapour                                 | _                           |

#### 8.19. PROBLEMS

- **8.1.** Estimate the liquid density at their boiling points for the following:
  - 1. 2-butanol,
  - 2. Methyl chloride,
  - 3. Methyl ethyl ketone,
  - 4. Aniline,
  - 5. Nitrobenzene.
- **8.2.** Estimate the density of the following gases at the conditions given:
  - 1. Hydrogen at 20 bara and 230 °C,
  - 2. Ammonia at 1 bara and 50 °C and at 100 bara and 300 °C,
  - 3. Nitrobenzene at 20 bara and 230 °C,
  - 4. Water at 100 bara and 500 °C. Check your answer using steam tables,
  - 5. Benzene at 2 barg and 250 °C,
  - 6. Synthesis gas  $(N_2 + 3H_2)$  at 5 barg and 25 °C.
- **8.3.** Make a rough estimate of the viscosity of 2-butanol and aniline at their boiling points, using the modified Arrhenius equation. Compare your values with those given using the equation for viscosity in Appendix D.
- **8.4.** Make a rough estimate of the thermal conductivity of n-butane both as a liquid at  $20\,^{\circ}$ C and as a gas at 5 bara and  $200\,^{\circ}$ C. Take the viscosity of the gaseous n-butane as 0.012 mN m<sup>-2</sup>s.
- **8.5.** Estimate the specific heat capacity of liquid 1,4 pentadiene and aniline at 20 °C.
- **8.6.** For the compounds listed below, estimate the constants in the equation for ideal gas heat capacity, equation 3.19, using the method given in Section 8.9.2.
  - 1. 3-methyl thiophene.
  - 2. Nitrobenzene.
  - 3. 2-methyl-2-butanethiol.
  - 4. Methyl-t-butyl ether.

- **8.7.** Estimate the heat of vaporisation of methyl-t-butyl ether, at 100 °C.
- **8.8.** Estimate the gaseous phase diffusion coefficient for the following systems, at 1 atmosphere and the temperatures given:
  - 1. Carbon dioxide in air at 20 °C.
  - 2. Ethane in hydrogen at 0°C,
  - 3. Oxygen in hydrogen at 0°C,
  - 4. Water vapour in air at 450 °C,
  - 5. Phosgene in air at 0 °C.
- **8.9.** Estimate the liquid phase diffusion coefficient for the following systems at 25 °C:
  - 1. Toluene in n-heptane,
  - 2. Nitrobenzene in carbon tetrachloride.
  - 3. Chloroform in benzene,
  - 4. Hydrogen chloride in water,
  - 5. Sulphur dioxide in water.
- **8.10.** Estimate the surface tension of pure acetone and ethanol at 20 °C, and benzene at 16 °C, all at 1 atmosphere pressure.
- **8.11.** Using Lydersen's method, estimate the critical constants for isobutanol. Compare your values with those given in Appendix D.
- **8.12.** The composition of the feed to a debutaniser is given below. The column will operate at 14 bar and below 750 K. The process is to be modelled using a commercial simulation program. Suggest a suitable phase equilibrium method to use in the simulation.

Feed composition:

|                |         | kg/h |
|----------------|---------|------|
| propane        | $C_3$   | 910  |
| isobutane      | $i-C_4$ | 180  |
| n-butane       | $n-C_4$ | 270  |
| isopentane     | $i-C_5$ | 70   |
| normal pentane | $n-C_5$ | 90   |
| normal hexane  | $n-C_6$ | 20   |

**8.13.** In the manufacture of methyl ethyl ketone from butanol, the product is separated from unreacted butanol by distillation. The feed to the column consists of a mixture of methyl ethyl ketone, 2-butanol and trichloroethane. What would be a suitable phase equilibrium correlation to use in modelling this process?

### CHAPTER 9

# Safety and Loss Prevention

#### 9.1. INTRODUCTION

Any organisation has a legal and moral obligation to safeguard the health and welfare of its employees and the general public. Safety is also good business; the good management practices needed to ensure safe operation will also ensure efficient operation.

The term "loss prevention" is an insurance term, the loss being the financial loss caused by an accident. This loss will not only be the cost of replacing damaged plant and third party claims, but also the loss of earnings from lost production and lost sales opportunity.

All manufacturing processes are to some extent hazardous, but in chemical processes there are additional, special, hazards associated with the chemicals used and the process conditions. The designer must be aware of these hazards, and ensure, through the application of sound engineering practice, that the risks are reduced to acceptable levels.

In this book only the particular hazards associated with chemical and allied processes will be considered. The more general, normal, hazards present in all manufacturing process such as, the dangers from rotating machinery, falls, falling objects, use of machine tools, and of electrocution will not be considered. General industrial safety and hygiene are covered in several books, King and Magid (1979), Hadley (1969).

Safety and loss prevention in process design can be considered under the following broad headings:

- 1. Identification and assessment of the hazards.
- Control of the hazards: for example, by containment of flammable and toxic materials.
- 3. Control of the process. Prevention of hazardous deviations in process variables (pressure, temperature, flow), by provision of automatic control systems, interlocks, alarms, trips; together with good operating practices and management.
- 4. Limitation of the loss. The damage and injury caused if an incident occurs: pressure relief, plant layout, provision of fire-fighting equipment.

In this chapter the discussion of safety in process design will of necessity be limited. A more complete treatment of the subject can be found in the books by Wells (1980) (1997), Lees (1996), Fawcett and Wood (1984), Green (1982) and Carson and Mumford (1988); and in the general literature, particularly the publications by the American Institute of Chemical Engineers and the Institution of Chemical Engineers. The proceedings of the symposia on safety and loss prevention organised by these bodies, and the European Federation of Chemical Engineering, also contain many articles of interest on general safety philosophy, techniques and organisation, and the hazards associated with specific

processes and equipment. The Institution of Chemical Engineers has published two booklets on safety of particular interest to students of Chemical Engineering, IChemE (1977) and Scott and Crawley (1992).

#### 9.2. INTRINSIC AND EXTRINSIC SAFETY

Processes can be divided into those that are intrinsically safe, and those for which the safety has to be engineered in. An intrinsically safe process is one in which safe operation is inherent in the nature of the process; a process which causes no danger, or negligible danger, under all foreseeable circumstances (all possible deviations from the design operating conditions). The term inherently safe is often preferred to intrinsically safe, to avoid confusion with the narrower use of the term intrinsically safe as applied to electrical equipment (see Section 9.3.4).

Clearly, the designer should always select a process that is inherently safe whenever it is practical, and economic, to do so. However, most chemical manufacturing processes are, to a greater or lesser extent, inherently unsafe, and dangerous situations can develop if the process conditions deviate from the design values.

The safe operation of such processes depends on the design and provision of engineered safety devices, and on good operating practices, to prevent a dangerous situation developing, and to minimise the consequences of any incident that arises from the failure of these safeguards.

The term "engineered safety" covers the provision in the design of control systems, alarms, trips, pressure-relief devices, automatic shut-down systems, duplication of key equipment services; and fire-fighting equipment, sprinkler systems and blast walls, to contain any fire or explosion.

The design of inherently safe process plant is discussed by Kletz in a booklet published by the Institution of Chemical Engineers, Kletz (1984). He makes the telling point that what you do not have cannot leak out: so cannot catch fire, explode or poison anyone. Which is a plea to keep the inventory of dangerous material to the absolute minimum required for the operation of the process.

#### 9.3. THE HAZARDS

In this section the special hazards of chemicals are reviewed (toxicity, flammability and corrosivity); together with the other hazards of chemical plant operation.

# 9.3.1. Toxicity

Most of the materials used in the manufacture of chemicals are poisonous, to some extent. The potential hazard will depend on the inherent toxicity of the material and the frequency and duration of any exposure. It is usual to distinguish between the short-term effects (acute) and the long-term effects (chronic). A highly toxic material that causes immediate injury, such as phosgene or chlorine, would be classified as a safety hazard. Whereas a material whose effect was only apparent after long exposure at low concentrations, for instance, carcinogenic materials, such as vinyl chloride, would be classified as industrial

health and hygiene hazards. The permissible limits and the precautions to be taken to ensure the limits are met will be very different for these two classes of toxic materials. Industrial hygiene is as much a matter of good operating practice and control as of good design.

The inherent toxicity of a material is measured by tests on animals. It is usually expressed as the lethal dose at which 50 per cent of the test animals are killed, the  $LD_{50}$  (lethal dose fifty) value. The dose is expressed as the quantity in milligrams of the toxic substance per kilogram of body weight of the test animal.

Some values for tests on rats are given in Table 9.1. Estimates of the  $LD_{50}$  for man are based on tests on animals. The  $LD_{50}$  measures the acute effects; it gives only a crude indication of the possible chronic effects.

Table 9.1. Some LD<sub>50</sub> values

| Compound          | mg/kg |  |  |
|-------------------|-------|--|--|
| Potassium cyanide | 10    |  |  |
| Tetraethyl lead   | 35    |  |  |
| Lead              | 100   |  |  |
| DDT               | 150   |  |  |
| Aspirin           | 1500  |  |  |
| Table salt        | 3000  |  |  |

Source: Lowrance (1976).

There is no generally accepted definition of what can be considered toxic and non-toxic. A system of classification is given in the *Classification*, *Packaging and Labelling of Dangerous Substances*, *Regulations*, 1984 (United Kingdom), which is based on European Economic Community (EEC) guidelines; for example:

LD<sub>50</sub>, absorbed orally in rats, mg/kg ≤25 very toxic 25 to 200 toxic 200 to 2000 harmful

These definitions apply only to the short-term (acute) effects. In fixing permissible limits on concentration for the long-term exposure of workers to toxic materials, the exposure time must be considered together with the inherent toxicity of the material. The "Threshold Limit Value" (TLV) is the most commonly used guide for controlling the long-term exposure of workers to contaminated air. The TLV is defined as the concentration to which it is believed the average worker could be exposed to, day by day, for 8 hours a day, 5 days a week, without suffering harm. It is expressed in ppm for vapours and gases, and in mg/m³ (or grains/ft³) for dusts and liquid mists. A comprehensive source of data on the toxicity of industrial materials is Sax's handbook, Lewis (1992); which also gives guidance on the interpretation and use of the data. Toxicity data on solvents is given by Browning (1965). Recommended TLV values are published in bulletins by the United States Occupational Safety and Health Administration. Since 1980 the United Kingdom Health and Safety Executive (HSE) has published values for the Occupational Exposure Limits (OEL), for both long and short term exposure, in place of TLV values.

Fuller details of the methods used for toxicity testing, the interpretation of the result and their use in setting standards for industrial hygiene are given in the more specialised texts on the subject; see Carson and Mumford (1988) and Lees (1980).

#### Control of substances hazardous to health

In the United Kingdom the use of substances likely to be harmful to employees is covered by regulations issued by the Health and Safety Executive (HSE), under the Health and Safety at Work Act, 1974 (HSAWA). The principal set of regulations in force is the *Control of Substances Hazardous to Health* regulations, 1988; known under the acronym: the *COSHH* regulations. The *COSHH* regulations apply to any hazardous substance in use in any place of work.

The employer is required to carry out an assessment to evaluate the risk to health, and establish what precautions are needed to protect employees. A written record of the assessment would be kept, and details made available to employees.

A thorough explanation of the regulations is not within the scope of this book, as they will apply more to plant operation and maintenance than to process design. The HSE has published a series of booklets giving details of the regulations and their application. A comprehensive guide to the *COSHH* regulations has also been published by the Royal Society of Chemistry, Simpson and Simpson (1991).

The designer will be concerned more with the preventative aspects of the use of hazardous substances. Points to consider are:

- 1. Substitution: of the processing route with one using less hazardous material. Or, substitution of toxic process materials with non-toxic, or less toxic materials.
- 2. Containment: sound design of equipment and piping, to avoid leaks. For example, specifying welded joints in preference to gasketed flanged joints (liable to leak).
- 3. Ventilation: use open structures, or provide adequate ventilation systems.
- 4. Disposal: provision of effective vent stacks to disperse material vented from pressure relief devices; or use vent scrubbers.
- 5. Emergency equipment: escape routes, rescue equipment, respirators, safety showers, eye baths.

In addition, good plant operating practice would include:

- 1. Written instruction in the use of the hazardous substances and the risks involved.
- 2. Adequate training of personnel.
- 3. Provision of protective clothing.
- 4. Good housekeeping and personal hygiene.
- 5. Monitoring of the environment to check exposure levels. Consider the installation of permanent instruments fitted with alarms.
- Regular medical check-ups on employees, to check for the chronic effects of toxic materials.

# 9.3.2. Flammability

The term "flammable" is now more commonly used in the technical literature than "inflammable" to describe materials that will burn, and will be used in this book. The hazard caused by a flammable material depends on a number of factors:

- 1. The flash-point of the material.
- 2. The autoignition temperature of the material.
- 3. The flammability limits of the material.
- 4. The energy released in combustion.

## Flash-point

The flash-point is a measure of the ease of ignition of the liquid. It is the lowest temperature at which the material will ignite from an open flame. The flash-point is a function of the vapour pressure and the flammability limits of the material. It is measured in standard apparatus, following standard procedures (BS 2839 and 4688). Both open- and closed-cup apparatus is used. Closed-cup flash-points are lower than open cup, and the type of apparatus used should be stated clearly when reporting measurements. Flash-points are given in Sax's handbook, Lewis (1992). The flash-points of many volatile materials are below normal ambient temperature; for example, ether  $-45^{\circ}$ C, petrol (gasoline)  $-43^{\circ}$ C (open cup).

## Autoignition temperature

The autoignition temperature of a substance is the temperature at which it will ignite spontaneously in air, without any external source of ignition. It is an indication of the maximum temperature to which a material can be heated in air; for example, in drying operations.

## Flammability limits

The flammability limits of a material are the lowest and highest concentrations in air, at normal pressure and temperature, at which a flame will propagate through the mixture. They show the range of concentration over which the material will burn in air, if ignited. Flammability limits are characteristic of the particular material, and differ widely for different materials. For example, hydrogen has a lower limit of 4.1 and an upper limit of 74.2 per cent by volume, whereas for petrol (gasoline) the range is only from 1.3 to 7.0 per cent.

The Flammability limits for a number of materials are given in Table 9.2.

The limits for a wider range of materials are given in Sax's handbook, Lewis (1992).

A flammable mixture may exist in the space above the liquid surface in a storage tank. The vapour space above highly flammable liquids is usually purged with inert gas (nitrogen) or floating-head tanks are used. In a floating-head tank a "piston" floats on top of the liquid, eliminating the vapour space.

# Flame traps

Flame arresters are fitted in the vent lines of equipment that contains flammable material to prevent the propagation of flame through the vents. Various types of proprietary flame arresters are used. In general, they work on the principle of providing a heat sink, usually expanded metal grids or plates, to dissipate the heat of the flame. Flame arrestors and their applications are discussed by Rogowski (1980), Howard (1992) and Mendoza et al. (1988).

Traps should also be installed in plant ditches to prevent the spread of flame. These are normally liquid U-legs, which block the spread of flammable liquid along ditches.

Table 9.2. Flammability ranges

| Material             | Lower limit | Upper limit |
|----------------------|-------------|-------------|
| Hydrogen             | 4.1         | 74.2        |
| Ammonia              | 15.0        | 28.0        |
| Hydrocyanic acid     | 5.6         | 40.0        |
| Hydrogen sulphide    | 4.3         | 45.0        |
| Carbon disulphide    | 1.3         | 44.0        |
| Carbon monoxide      | 12.5        | 74.2        |
| Methane              | 5.3         | 14.0        |
| Ethane               | 3.0         | 12.5        |
| Propane              | 2.3         | 9.5         |
| Butane               | 1.9         | 8.5         |
| Isobutane            | 1.8         | 8.4         |
| Ethylene             | 3.1         | 32.0        |
| Propylene            | 2.4         | 10.3        |
| n-Butene             | 1.6         | 9.3         |
| Isobutene            | 1.8         | 9.7         |
| Butadiene            | 2.0         | 11.5        |
| Benzene              | 1.4         | 7.1         |
| Toluene              | 1.4         | 6.7         |
| Cyclohexane          | 1.3         | 8.0         |
| Methanol             | 7.3         | 36.0        |
| Ethanol              | 4.3         | 19.0        |
| Isopropanol          | 2.2         | 12.0        |
| Formaldehyde         | 7.0         | 73.0        |
| Acetaldhyde          | 4.1         | 57.0        |
| Aetone               | 3.0         | 12.8        |
| Methylethyl ketone   | 1.8         | 10.0        |
| Dimethylamine (DEA)  | 2.8         | 184         |
| Trimethylamine (TEA) | 2.0         | 11.6        |
| Petrol (gasoline)    | 1.3         | 7.0         |
| Paraffin (kerosene)  | 0.7         | 5.6         |
| Gas oil (diesel)     | 6.0         | 13.5        |

Volume percentage in air at ambient conditions

# Fire precautions

Recommendations on the fire precautions to be taken in the design of chemical plant are given in the British Standard, BS 5908.

# 9.3.3. Explosions

An explosion is the sudden, catastrophic, release of energy, causing a pressure wave (blast wave). An explosion can occur without fire, such as the failure through over-pressure of a steam boiler or an air receiver.

When discussing the explosion of a flammable mixture it is necessary to distinguish between detonation and deflagration. If a mixture detonates the reaction zone propagates at supersonic velocity (approximately 300 m/s) and the principal heating mechanism in the mixture is shock compression. In a deflagration the combustion process is the same as in the normal burning of a gas mixture; the combustion zone propagates at subsonic

velocity, and the pressure build-up is slow. Whether detonation or deflagration occurs in a gas-air mixture depends on a number of factors; including the concentration of the mixture and the source of ignition. Unless confined or ignited by a high-intensity source (a detonator) most materials will not detonate. However, the pressure wave (blast wave) caused by a deflagration can still cause considerable damage.

Certain materials, for example, acetylene, can decompose explosively in the absence of oxygen; such materials are particularly hazardous.

## Confined vapour cloud explosion (CVCE)

A relatively small amount of flammable material, a few kilograms, can lead to an explosion when released into the confined space of a building.

# Unconfined vapour cloud explosions (UCVCE)

This type of explosion results from the release of a considerable quantity of flammable gas, or vapour, into the atmosphere, and its subsequent ignition. Such an explosion can cause extensive damage, such as occurred at Flixborough, HMSO (1975). Unconfined vapour explosions are discussed by Munday (1976) and Gugan (1979).

# Boiling liquid expanding vapour explosions (BLEVE)

Boiling liquid expanding vapour explosions occur when there is a sudden release of vapour, containing liquid droplets, due to the failure of a storage vessel exposed to fire. A serious incident involving the failure of a LPG (Liquified Petroleum Gas) storage sphere occurred at Feyzin, France, in 1966, when the tank was heated by an external fire fuelled by a leak from the tank; see Lees (1980) and Marshall (1987).

# **Dust explosions**

Finely divided combustible solids, if intimately mixed with air, can explode. Several disastrous explosions have occurred in grain silos.

Dust explosions usually occur in two stages: a primary explosion which disturbs deposited dust; followed by the second, severe, explosion of the dust thrown into the atmosphere. Any finely divided combustible solid is a potential explosion hazard. Particular care must be taken in the design of dryers, conveyors, cyclones, and storage hoppers for polymers and other combustible products or intermediates. The extensive literature on the hazard and control of dust explosions should be consulted before designing powder handling systems: Palmer (1973), Bodrutha (1980), Bartknecht (1981), Field (1982), Cross and Farrer (1982), IChemE (1984), and Eckhoff (1991).

# 9.3.4. Sources of ignition

Though precautions are normally taken to eliminate sources of ignition on chemical plants, it is best to work on the principle that a leak of flammable material will ultimately find an ignition source.

## Electrical equipment

The sparking of electrical equipment, such as motors, is a major potential source of ignition, and flame proof equipment is normally specified. Electrically operated instruments, controllers and computer systems are also potential sources of ignition of flammable mixtures.

The use of electrical equipment in hazardous areas is covered by British Standards BS 5345 and BS 5501. The code of practice, BS 5345, Part 1, defines hazardous areas as those where explosive gas-air mixtures are present, or may be expected to be present, in quantities such as to require special precautions for the construction and use of electrical apparatus. Non-hazardous areas are those where explosive gas-air mixtures are not expected to be present.

Three classifications are defined for hazardous areas:

Zone 0: explosive gas-air mixtures are present continuously or present for long periods.

Specify: intrinsically safe equipment.

Zone 1: explosive gas-air mixtures likely to occur in normal operation.

Specify: intrinsically safe equipment, or flame-proof enclosures: enclosures with pressurising and purging.

Zone 3: explosive gas-air mixtures not likely to occur during normal operation, but could occur for short periods.

Specify: intrinsically safe equipment, or total enclosure, or non-sparking apparatus.

Consult the standards for the full specification before selecting equipment for use in the designated zones.

The design and specification of intrinsically safe control equipment and systems is discussed by Bass (1984).

# Static electricity

The movement of any non-conducting material, powder, liquid or gas, can generate static electricity, producing sparks. Precautions must be taken to ensure that all piping is properly earthed (grounded) and that electrical continuity is maintained around flanges. Escaping steam, or other vapours and gases, can generate a static charge. Gases escaping from a ruptured vessel can self-ignite from a static spark. For a review of the dangers of static electricity in the process industries, see the articles by Eichel (1967), Napier (1971), Napier and Russell (1974); and the books by Glor (1988) and Bustin and Dukek (1983). A code of practice for the control of static electricity is given in BS 5938 (1991).

#### Process flames

Open flames from process furnaces and incinerators are obvious sources of ignition and must be sited well away from plant containing flammable materials.

#### Miscellaneous sources

It is the usual practice on plants handling flammable materials to control the entry on to the site of obvious sources of ignition; such as matches, cigarette lighters and battery-operated

equipment. The use of portable electrical equipment, welding, spark-producing tools and the movement of petrol-driven vehicles would also be subject to strict control.

Exhaust gases from diesel engines are also a potential source of ignition.

## 9.3.5. lonising radiation

The radiation emitted by radioactive materials is harmful to living matter. Small quantities of radioactive isotopes are used in the process industry for various purposes; for example, in level and density-measuring instruments, and for the non-destructive testing of equipment.

The use of radioactive isotopes in industry is covered by government legislation, HMSO (1968, 1969).

A discussion of the particular hazards that arise in the chemical processing of nuclear fuels is outside the scope of this book.

#### 9.3.6. Pressure

Over-pressure, a pressure exceeding the system design pressure, is one of the most serious hazards in chemical plant operation. Failure of a vessel, or the associated piping, can precipitate a sequence of events that culminate in a disaster.

Pressure vessels are invariably fitted with some form of pressure-relief device, set at the design pressure, so that (in theory) potential over-pressure is relieved in a controlled manner.

Three basically different types of relief device are commonly used:

Directly actuated valves: weight or spring-loaded valves that open at a predetermined pressure, and which normally close after the pressure has been relieved. The system pressure provides the motive power to operate the valve.

*Indirectly actuated valves*: pneumatically or electrically operated valves, which are activated by pressure-sensing instruments.

Bursting discs: thin discs of material that are designed and manufactured to fail at a predetermined pressure, giving a full bore opening for flow.

Relief valves are normally used to regulate minor excursions of pressure; and bursting discs as safety devices to relieve major over-pressure. Bursting discs are often used in conjunction with relief valves to protect the valve from corrosive process fluids during normal operation. The design and selection of relief valves is discussed by Connison (1960), Issacs (1971), and Morley (1989a,b), and is also covered by the pressure vessel standards, see Chapter 13. Bursting discs are discussed by Kayser (1972), Fitzsimmons and Cockram (1979), Mathews (1984), Askquith and Lavery (1990) and Murphy (1993). In the United Kingdom the use of bursting discs is covered by BS 2915. The discs are manufactured in a variety of materials for use in corrosive conditions; such as, impervious carbon, gold and silver; and suitable discs can be found for use with all process fluids.

Bursting discs and relief valves are proprietary items and the vendors should be consulted when selecting suitable types and sizes.

The factors to be considered in the design of relief systems are set out in a comprehensive paper by Parkinson (1979) and by Moore (1984); and in a book published by the

# Vent piping

When designing relief venting systems it is important to ensure that flammable or toxic gases are vented to a safe location. This will normally mean venting at a sufficient height to ensure that the gases are dispersed without creating a hazard. For highly toxic materials it may be necessary to provide a scrubber to absorb and "kill" the material; for instance, the provision of caustic scrubbers for chlorine and hydrochloric acid gases. If flammable materials have to be vented at frequent intervals; as, for example, in some refinery operations, flare stacks are used.

The rate at which material can be vented will be determined by the design of the complete venting system: the relief device and the associated piping. The maximum venting rate will be limited by the critical (sonic) velocity, whatever the pressure drop (see Volume 1, Chapter 4). The design of venting systems to give adequate protection against over-pressure is a complex and difficult subject, particularly if two-phase flow is likely to occur. For complete protection the venting system must be capable of venting at the same rate as the vapour is being generated. For reactors, the maximum rate of vapour generation resulting from a loss of control can usually be estimated. Vessels must also be protected against over-pressure caused by external fires. In these circumstances the maximum rate of vapour generation will depend on the rate of heating. Standard formulae are available for the estimation of the maximum rates of heat input and relief rates, see ROSPA (1971) and NFPA (1987a,b).

For some vessels, particularly where complex vent piping systems are needed, it may be impractical for the size of the vent to give complete protection against the worst possible situation.

For a comprehensive discussion of the problem of vent system design, and the design methods available, see the papers by Duxbury (1976, 1979).

The design of relief systems has been studied by the Design Institute for Emergency Relief Systems (DIERS), established by the American Institute of Chemical Engineers; Fisher (1985). DIERS has published recommended design methods; see Poole (1985) and AIChemE (1992a,b). Computer programs based on the work by DIERS are also available.

# Under-pressure (vacuum)

Unless designed to withstand external pressure (see Chapter 13) a vessel must be protected against the hazard of under-pressure, as well as over-pressure. Under-pressure will normally mean vacuum on the inside with atmospheric pressure on the outside. It requires only a slight drop in pressure below atmospheric pressure to collapse a storage tank. Though the pressure differential may be small, the force on the tank roof will be considerable. For example, if the pressure in a 10-m diameter tank falls to 10 millibars below the external pressure, the total load on the tank roof will be around 80,000 N (8 tonne). It is not an uncommon occurrence for a storage tank to be sucked in (collapsed) by the suction pulled by the discharge pump, due to the tank vents having become blocked. Where practical, vacuum breakers (valves that open to atmosphere when the internal pressure drops below atmospheric) should be fitted.

# 9.3.7. Temperature deviations

Excessively high temperature, over and above that for which the equipment was designed, can cause structural failure and initiate a disaster. High temperatures can arise from loss

of control of reactors and heaters; and, externally, from open fires. In the design of processes where high temperatures are a hazard, protection against high temperatures is provided by:

- 1. Provision of high-temperature alarms and interlocks to shut down reactor feeds, or heating systems, if the temperature exceeds critical limits.
- 2. Provision of emergency cooling systems for reactors, where heat continues to be generated after shut-down; for instance, in some polymerisation systems.
- Structural design of equipment to withstand the worst possible temperature excursion.
- 4. The selection of intrinsically safe heating systems for hazardous materials.

Steam, and other vapour heating systems, are intrinsically safe; as the temperature cannot exceed the saturation temperature at the supply pressure. Other heating systems rely on control of the heating rate to limit the maximum process temperature. Electrical heating systems can be particularly hazardous.

# Fire protection

To protect against structural failure, water-deluge systems are usually installed to keep vessels and structural steelwork cool in a fire.

The lower section of structural steel columns are also often lagged with concrete or other suitable materials.

#### 9.3.8. Noise

Excessive noise is a hazard to health and safety. Long exposure to high noise levels can cause permanent damage to hearing. At lower levels, noise is a distraction and causes fatigue.

The unit of sound measurement is the decibel, defined by the expression:

Sound level = 20 
$$\log_{10} \left[ \frac{\text{RMS sound pressure (Pa)}}{2 \times 10^{-5}} \right]$$
, dB (9.1)

The subjective effect of sound depends on frequency as well as intensity.

Industrial sound meters include a filter network to give the meter a response that corresponds roughly to that of the human ear. This is termed the "A" weighting network and the readings are reported as dB(A); see BS 5969.

Permanent damage to hearing can be caused at sound levels above about 90 dB(A), and it is normal practice to provide ear protection in areas where the level is above 80 dB(A).

Excessive plant noise can lead to complaints from neighbouring factories and local residents. Due attention should be given to noise levels when specifying, and when laying out, equipment that is likely to be excessively noisy; such as, compressors, fans, burners and steam relief valves.

Several books are available on the general subject of industrial noise control (Warring, 1974), (Sharland, 1972) and on noise control in the process industries; PPA (1973), Lipcombe and Taylor (1978).

### 9.4. DOW FIRE AND EXPLOSION INDEX

The hazard classification guide developed by the Dow Chemical Company and published by the American Institute of Chemical Engineering, Dow (1987), gives a method of evaluating the potential risk from a process, and assessing the potential loss.

A numerical "Fire and explosion index" (F & EI) is calculated, based on the nature of the process and the properties of the process materials. The larger the value of the F & EI, the more hazardous the process, see Table 9.3.

Table 9.3. Assessment of hazard

| Fire and explosion index range | Degree of hazard |
|--------------------------------|------------------|
| 1-60                           | Light            |
| 61-96                          | Moderate         |
| 97-127                         | Intermediate     |
| 128-158                        | Heavy            |
| >159                           | Severe           |

Adapted from the Dow F & EI guide (1994).

To assess the potential hazard of a new plant, the index can be calculated after the Piping and Instrumentation and equipment layout diagrams have been prepared. In earlier versions of the guide the index was then used to determine what preventative and protection measures were needed, see Dow (1973). In the current version the preventative and protection measures, that have been incorporated in the plant design to reduce the hazard–are taken into account when assessing the potential loss; in the form of loss control credit factors.

It is worthwhile estimating the F & EI index at an early stage in the process design, as it will indicate whether alternative, less hazardous, process routes should be considered.

Only a brief outline of the method used to calculate the Dow F & EI will be given in this section. The full guide should be studied before applying the technique to a particular process. Judgement, based on experience with similar processes, is needed to decide the magnitude of the various factors used in the calculation of the index, and the loss control credit factors.

#### 9.4.1. Calculation of the Dow F & El

The procedure for calculating the index and the potential loss is set out in Figure 9.1.

The first step is to identify the units that would have the greatest impact on the magnitude of any fire or explosion. The index is calculated for each of these units.

The basis of the F & EI is a *Material Factor* (MF). The MF is then multiplied by a *Unit Hazard Factor*, F<sub>3</sub>, to determine the F & EI for the process unit. The Unit Hazard factor is the product of two factors which take account of the hazards inherent in the operation of the particular process unit: the general and special process hazards, see Figure 9.2.

#### Material factor

The material factor is a measure of the intrinsic rate of energy release from the burning, explosion, or other chemical reaction of the material. Values for the MF for over 300 of

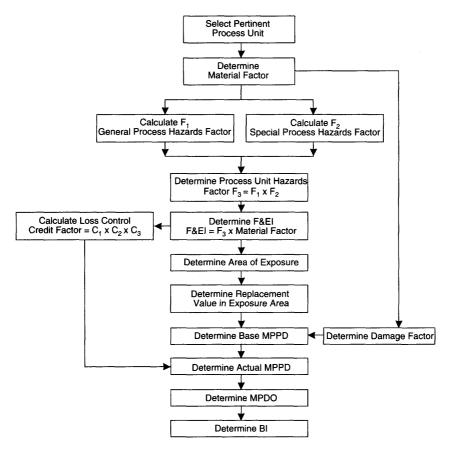



Figure 9.1. Procedure for calculating the fire and explosion index and other risk analysis information. From Dow (1994) reproduced by permission of the American Institute of Chemical Engineers. © 1994 AIChE. All rights reserved.

the most commonly used substances are given in the guide. The guide also includes a procedure for calculating the MF for substances not listed: from a knowledge of the flash points, (for dusts, dust explosion tests) and a reactivity value,  $N_r$ . The reactivity value is a qualitative description of the reactivity of the substance, and ranges from 0 for stable substances, to 4 for substances that are capable of unconfined detonation.

Some typical material factors are given in Table 9.4.

In calculating the F & EI for a unit the value for the material with the highest MF, which is present in significant quantities, is used.

# General process hazards

The general process hazards are factors that play a primary role in determining the magnitude of the loss following an incident.

Six factors are listed on the calculation form, Figure 9.2.

|                | MF | Flash<br>point°C | Heat of combustion MJ/kg |
|----------------|----|------------------|--------------------------|
| Acetaldehyde   | 24 | -39              | 24.4                     |
| Acetone        | 16 | -20              | 28.6                     |
| Acetylene      | 40 | gas              | 48.2                     |
| Ammonia        | 4  | gas              | 18.6                     |
| Benzene        | 16 | -11              | 40.2                     |
| Butane         | 21 | gas              | 45.8                     |
| Chlorine       | 1  |                  | 0.0                      |
| Cyclohexane    | 16 | -20              | 43.5                     |
| Ethyl alcohol  | 16 | 13               | 26.8                     |
| Hydrogen       | 21 | gas              | 120.0                    |
| Nitroglycerine | 40 |                  | 18.2                     |
| Sulphur        | 4  |                  | 9.3                      |
| Toluene        | 16 | 40               | 31.3                     |
| Vinyl Chloride | 21 | gas              | 18.6                     |

Table 9.4. Some typical material factors

- A. *Exothermic chemical reactions*: the penalty varies from 0.3 for a mild exotherm, such as hydrogenation, to 1.25 for a particularly sensitive exotherm, such as nitration.
- B. *Endothermic processes*: a penalty of 0.2 is applied to reactors, only. It is increased to 0.4 if the reactor is heated by the combustion of a fuel.
- C. Materials handling and transfer: this penalty takes account of the hazard involved in the handling, transfer and warehousing of the material.
- D. Enclosed or indoor process units: accounts for the additional hazard where ventilation is restricted.
- E. Access of emergency equipment: areas not having adequate access are penalised. Minimum requirement is access from two sides.
- F. *Drainage and spill control*: penalises design conditions that would cause large spills of flammable material adjacent to process equipment; such as inadequate design of drainage.

# Special process hazards

The special process hazards are factors that are known from experience to contribute to the probability of an incident involving loss.

Twelve factors are listed on the calculation form, Figure 9.2.

- A. *Toxic materials*: the presence of toxic substances after an incident will make the task of the emergency personnel more difficult. The factor applied ranges from 0 for non-toxic materials, to 0.8 for substances that can cause death after short exposure.
- B. Sub-atmospheric pressure: allows for the hazard of air leakage into equipment. It is only applied for pressure less than 500 mmHg (9.5 bara).
- C. Operation in or near flammable range: covers for the possibility of air mixing with material in equipment or storage tanks, under conditions where the mixture will be within the explosive range.

## **FIRE & EXPLOSION INDEX**

| AREA/COUNTRY                                                                                                 | DIVISION                                      |                         |                            | DATE         |                           |                             |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------|----------------------------|--------------|---------------------------|-----------------------------|
| SITE                                                                                                         | MANUFACTU                                     | PRING UNIT              | PROCESS UNIT               |              | <u> </u>                  |                             |
| PREPARED BY: APPROVED BY:(Superinten                                                                         |                                               |                         | ntendent)                  | BUILDING     |                           |                             |
| REVIEWED BY:(Management)  REVIEWED BY:(Technology Center)  REVIEW                                            |                                               |                         |                            |              | D BY:(Safety & Los        | s Prevention)               |
| MATERIALS IN PROCESS UNIT                                                                                    |                                               |                         |                            |              |                           |                             |
| STATE OF OPERATION                                                                                           |                                               |                         | BASIC MATERIAL(S) FO       | R MATERIAL   | FACTOR                    |                             |
| — DESIGN — START UP — I                                                                                      | NORMAL OPER                                   | RATION SHUTDOWN         |                            |              |                           |                             |
| MATERIAL FACTOR (See Table 1 or A                                                                            | Appendices A                                  | or B) Note requirements | when unit temperature over | r 140 °F (60 | °C)                       |                             |
| General Process Hazar                                                                                        | ds                                            |                         |                            |              | Penalty Fac-<br>tor Range | Penalty Fac-<br>tor Used(1) |
| Base Factor                                                                                                  |                                               |                         |                            |              | 1.00                      | 1.00                        |
| A. Exothermic Chemical F                                                                                     | Reactions                                     |                         |                            |              | 0.30 to 1.25              |                             |
| B. Endothermic Processe                                                                                      |                                               |                         |                            |              | 0.20 to 0.40              |                             |
| C. Material Handling and                                                                                     |                                               |                         |                            |              | 0.25 to 1.05              |                             |
| D. Enclosed or Indoor Pro                                                                                    | cess Units                                    |                         | <del>.</del>               |              | 0.25 to 0.90              |                             |
| E. Access                                                                                                    |                                               |                         |                            |              | 0.20 to 0.35              |                             |
| F. Drainage and Spill Con                                                                                    |                                               |                         | gal (                      |              | 0.25 to 0.50              |                             |
| General Process Hazar                                                                                        | ds Factor (                                   | F <sub>1</sub> )        |                            | ••••••       |                           |                             |
| 2. Special Process Hazard                                                                                    | is                                            |                         |                            |              |                           |                             |
| Base Factor                                                                                                  |                                               |                         |                            |              | 1.00                      | 1.00                        |
| A. Toxic Material(s) 0.20 to 0.                                                                              |                                               |                         |                            |              | 0.20 to 0.80              |                             |
| B. Sub-Atmospheric Pressure (< 500 mm Hg) 0.50                                                               |                                               |                         |                            |              |                           |                             |
| C. Operation in or Near Flammable Range Inerted Not Inerted                                                  |                                               |                         |                            |              |                           |                             |
| 1. Tank Farms Stora                                                                                          |                                               |                         |                            |              | 0.50                      |                             |
| Process Upset or I                                                                                           |                                               |                         |                            |              | 0.30                      |                             |
| 3. Always in Flamma                                                                                          |                                               |                         |                            |              | 0.80                      |                             |
| D. Dust Explosion (See Ta                                                                                    |                                               |                         |                            |              | 0.25 to 2.00              |                             |
| E. Pressure (See Figure 2                                                                                    | 2)                                            | Operating Pressure      | psig or kPa                | gauge        |                           |                             |
| F I am Tamanahan                                                                                             |                                               | Heller Setting          | psig or kPa                | gauge        | 0.004-0.00                |                             |
| F. Low Temperature                                                                                           | A Instable Ma                                 | etorial:                | Quantity                   | ib or ka     | 0.20 to 0.30              |                             |
| G. Quantity of Flammable                                                                                     | UISIADIE M                                    |                         | Hc =BTU/lb or              |              |                           |                             |
| 1. Liquids or Gases in                                                                                       | Process /S                                    |                         | - <u></u>                  | urng         |                           |                             |
|                                                                                                              |                                               |                         |                            |              |                           |                             |
| Liquids or Gases in Storage (See Figure 4)     Combustible Solids in Storage, Dust in Process (See Figure 5) |                                               |                         |                            |              |                           |                             |
| H. Corrosion and Erosion                                                                                     |                                               |                         |                            |              | 0.10 to 0.75              |                             |
|                                                                                                              |                                               |                         |                            |              | 0.10 to 1.50              |                             |
| J. Use of Fired Equipment (See Figure 6)                                                                     |                                               |                         |                            |              |                           |                             |
| K. Hot Oil Heat Exchange                                                                                     | K. Hot Oil Heat Exchange System (See Table 5) |                         |                            |              |                           |                             |
| L. Rotating Equipment 0.50                                                                                   |                                               |                         |                            |              | 0.50                      |                             |
| Special Process Hazards Factor (F <sub>2</sub> )                                                             |                                               |                         |                            |              |                           |                             |
| Process Unit Hazards Factor (F1 x F2) = F3                                                                   |                                               |                         |                            |              |                           |                             |
| Fire and Explosion Inde                                                                                      | Fire and Explosion Index (F3 x MF = F&EI)     |                         |                            |              |                           |                             |
|                                                                                                              |                                               |                         |                            |              |                           |                             |

(1) For no penalty use 0.00.

Figure 9.2. Dow Fire and Explosion Index calculation form.

From Dow (1994) reproduced by permission of the American Institute of Chemical Engineers. © 1994 AIChE. All rights reserved. Note: the figure numbers refer to the Dow guide. Gallons are US gallons.

```
Note: 1 m^3 = 264.2 US gal; 1 kN/m^2 = 0.145 psi; 1 kg = 2.2 lbs; 1 kJ/Kg = 0.43 BTU/lb.
```

- D. Dust explosion: covers for the possibility of a dust explosion. The degree of risk is largely determined by the particle size. The penalty factor varies from 0.25 for particles above 175  $\mu$ m, to 2.0 for particles below 75  $\mu$ m.
- E. Relief pressure: this penalty accounts for the effect of pressure on the rate of leakage, should a leak occur. Equipment design and operation becomes more critical as the operating pressure is increased. The factor to apply depends on the relief device setting and the physical nature of the process material. It is determined from Figure 2 in the Dow Guide.
- F. Low temperature: this factor allows for the possibility of brittle fracture occurring in carbon steel, or other metals, at low temperatures (see Chapter 7 of this book).
- G. Quantity of flammable material: the potential loss will be greater the greater the quantity of hazardous material in the process or in storage. The factor to apply depends on the physical state and hazardous nature of the process material, and the quantity of material. It varies from 0.1 to 3.0, and is determined from Figures 3, 4 and 5 in the Dow Guide.
- H. Corrosion and erosion: despite good design and materials selection, some corrosion problems may arise, both internally and externally. The factor to be applied depends on the anticipated corrosion rate. The severest factor is applied if stress corrosion cracking is likely to occur (see Chapter 7 of this book).
- I. Leakage—joints and packing: this factor accounts for the possibility of leakage from gaskets, pump and other shaft seals, and packed glands. The factor varies from 0.1 where there is the possibility of minor leaks, to 1.5 for processes that have sight glasses, bellows or other expansion joints.
- J. Use of fired heaters: the presence of boilers or furnaces, heated by the combustion of fuels, increases the probability of ignition should a leak of flammable material occur from a process unit. The risk involved will depend on the siting of the fired equipment and the flash point of the process material. The factor to apply is determined with reference to Figure 6 in the Dow Guide.
- K. Hot oil heat exchange system: most special heat exchange fluids are flammable and are often used above their flash points; so their use in a unit increases the risk of fire or explosion. The factor to apply depends on the quantity and whether the fluid is above or below its flash point; see Table 5 in the Guide.
- L. Rotating equipment: this factor accounts for the hazard arising from the use of large pieces of rotating equipment: compressors, centrifuges, and some mixers.

#### 9.4.2 Potential loss

The procedure for estimating the potential loss that would follow an incident is set out in Table 9.5: the Unit analysis summary.

The first step is to calculate the *Damage factor* for the unit. The Damage factor depends on the value of the Material factor and the Process unit hazards factor (F<sub>3</sub> in Figure 2). It is determined using Figure 8 in the Dow Guide.

An estimate is then made of the area (radius) of exposure. This represents the area containing equipment that could be damaged following a fire or explosion in the unit being considered. It is evaluated from Figure 7 in the Guide and is a linear function of the Fire and Explosion Index.

Table 9.5. Loss control credit factors

#### 1. Process Control Credit Factor (C<sub>1</sub>)

|                       | Credit       | Credit  |                                      | Credit       | Credit  |
|-----------------------|--------------|---------|--------------------------------------|--------------|---------|
| Feature               | Factor       | Factor  | Feature                              | Factor       | Factor  |
|                       | Range        | Used(2) |                                      | Range        | Used(2) |
| a. Emergency Power    | 0.98         |         | f. Inert Gas                         | 0.94 to 0.96 |         |
| b. Cooling            | 0.97 to 0.99 |         | g. Operating Instructions/Procedures | 0.91 to 0.99 |         |
| c. Explosion Control  | 0.84 to 0.98 |         | h. Reactive Chemical Review          | 0.91 to 0.98 |         |
| d. Emergency Shutdown | 0.96 to 0.99 |         | i. Other Process Hazard Analysis     | 0.91 to 0.98 |         |
| e. Computer Control   | 0.93 to 0.99 |         |                                      |              |         |

| C <sub>1</sub> Value(3) |  |
|-------------------------|--|

#### 2. Material Isolation Credit Factor (C2)

|                          | Credit       | Credit  |              | Credit       | Credit  |
|--------------------------|--------------|---------|--------------|--------------|---------|
| Feature                  | Factor       | Factor  | Feature      | Factor       | Factor  |
|                          | Range        | Used(2) |              | Range        | Used(2) |
| a. Remote Control Valves | 0.96 to 0.98 |         | c. Drainage  | 0.91 to 0.97 |         |
| b. Dump/Blowdown         | 0.96 to 0.98 |         | d. Interlock | 0.98         |         |

| $C_2$ Value(3) |  |
|----------------|--|

#### 3. Fire Protection Credit Factor (C<sub>3</sub>)

|                      | Credit       | Credit  |                                | Credit       | Credit  |
|----------------------|--------------|---------|--------------------------------|--------------|---------|
| Feature              | Factor       | Factor  | Feature                        | Factor       | Factor  |
|                      | Range        | Used(2) |                                | Range        | Used(2) |
| a. Leak Detection    | 0.94 to 0.98 |         | f. Water Curtains              | 0.97 to 0.98 |         |
| b. Structural Steel  | 0.95 to 0.98 |         | g. Foam                        | 0.92 to 0.97 |         |
| c. Fire Water Supply | 0.94 to 0.97 |         | h. Hand Extinguishers/Monitors | 0.93 to 0.98 |         |
| d. Special Systems   | 0.91         |         | i. Cable Protection            | 0.94 to 0.98 |         |
| e. Sprinkler Systems | 0.74 to 0.97 |         |                                |              |         |

| $C_3$ Value(3)                                                |                      |         |
|---------------------------------------------------------------|----------------------|---------|
|                                                               | <br><b>.</b> .       |         |
| Loss Control Credit Factor = $C_1 \times C_2 \times C_3(3) =$ | (enter on line 7 Tab | le 9.6) |

From Dow (1994) reproduced by permission of the American Institute of Chemical Engineers. © 1994 AIChE. All rights reserved.

An estimate of the replacement value of the equipment within the exposed area is then made, and combined with by the damage factor to estimate the *Base maximum probable* property damage (Base MPPD).

The Maximum probable property damage (MPPD) is then calculated by multiplying the Base MPPD by a Credit control factor. The Loss control credit control factors, see Table 9.6, allow for the reduction in the potential loss given by the preventative and protective measures incorporated in the design.

The MPPD is used to predict the maximum number of days which the plant will be down for repair, the Maximum probable days outage (MPDO). The MPDO is used to estimate

| Table 9.6. | Process | unit risk | analysis | Summary |
|------------|---------|-----------|----------|---------|
|            |         |           |          |         |

| 1. Fire & Explosion Index (F& El)                                  |                                   |      |
|--------------------------------------------------------------------|-----------------------------------|------|
| 2. Radius of Exposure (Figure 7)*                                  | ft or m                           |      |
| 3. Area of Exposure                                                | ft <sup>2</sup> or m <sup>2</sup> |      |
| 4. Value of Area of Exposure                                       |                                   | \$MM |
| 5. Damage Factor (Figure 8)*                                       |                                   |      |
| 6. Base Maximum Probable Property Damage—(Base MPPD) [4 × 5]       |                                   | \$MM |
| 7. Loss Control Credit Factor (See Above)                          |                                   |      |
| 8. Actual Maximum Probable Property Damage — (Actual MPPD) [6 × 7] |                                   | \$MM |
| 9. Maximum Probable Days Outage—(MPDO) (Figure 9)*                 | days                              |      |
| 10. Business Interruption — (Bl)                                   |                                   | \$MM |

<sup>(2)</sup> For no credit factor enter 1.00. (3) Product of all factors used.

From Dow (1994) reproduced by permission of the American Institute of Chemical Engineers. © 1994 AIChE. All rights reserved.

the financial loss due to the lost production: the *Business interruption* (BI). The financial loss due to lost business opportunity can often exceed the loss from property damage.

## 9.4.3. Basic preventative and protective measures

The basic safety and fire protective measures that should be included in all chemical process designs are listed below. This list is based on that given in the Dow Guide, with some minor amendments

- 1. Adequate, and secure, water supplies for fire fighting.
- 2. Correct structural design of vessels, piping, steel work.
- 3. Pressure-relief devices.
- 4. Corrosion-resistant materials, and/or adequate corrosion allowances.
- 5. Segregation of reactive materials.
- 6. Earthing of electrical equipment.
- 7. Safe location of auxiliary electrical equipment, transformers, switch gear.
- 8. Provision of back-up utility supplies and services.
- 9. Compliance with national codes and standards.
- 10. Fail-safe instrumentation.
- 11. Provision for access of emergency vehicles and the evacuation of personnel.
- 12. Adequate drainage for spills and fire-fighting water.
- 13. Insulation of hot surfaces.
- 14. No glass equipment used for flammable or hazardous materials, unless no suitable alternative is available.
- 15. Adequate separation of hazardous equipment.
- 16. Protection of pipe racks and cable trays from fire.
- 17. Provision of block valves on lines to main processing areas.
- 18. Protection of fired equipment (heaters, furnaces) against accidental explosion and fire.
- 19. Safe design and location of control rooms.

<sup>\*</sup>Refer to Fire & Explosion Index Hazard Classification Guide for details.

*Note*: the design and location of control rooms, particularly as regards protection against an unconfined vapour explosion, is covered in a publication of the Chemical Industries Association, CIA (1979a).

## 9.4.4. Mond fire, explosion, and toxicity index

The Mond index was developed from the Dow F and E index by personnel at the ICI Mond division. The third edition of the Dow index, Dow (1973), was extended to cover a wider range of process and storage installations; the processing of chemicals with explosive properties; and the evaluation of a toxicity hazards index. Also included was a procedure to allow for the off-setting effects of good design, and of control and safety instrumentation. Their revised, Mond fire, explosion and toxicity index was discussed in a series of papers by Lewis (1979a, 1979b); which included a technical manual setting out the calculation procedure. An extended version of the manual was issued in 1985, and an amended version published in 1993, ICI (1993).

#### **Procedure**

The basic procedures for calculating the Mond indices are similar to those used for the Dow index.

The process is first divided into a number of units which are assessed individually.

The dominant material for each unit is then selected and its material factor determined. The material factor in the Mond index is a function of the energy content per unit weight (the heat of combustion).

The material factor is then modified to allow for the effect of general and special process and material hazards; the physical quantity of the material in the process step; the plant layout; and the toxicity of process materials.

Separate fire and explosion indices are calculated. An aerial explosion index can also be estimated, to assess the potential hazard of aerial explosions. An equivalent Dow index can also be determined.

The individual fire and explosion indexes are combined to give an overall index for the process unit. The overall index is the most important in assessing the potential hazard.

The magnitude of the potential hazard is determined by reference to rating tables, similar to that shown for the Dow index in Table 9.2.

After the initial calculation of the indices (the initial indices), the process is reviewed to see what measures can be taken to reduce the rating (the potential hazard).

The appropriate off-setting factors to allow for the preventative features included in the design are then applied, and final hazard indices calculated.

#### Preventative measures

Preventative measures fall into two categories:

- 1. Those that reduce the number of incidents. Such as: sound mechanical design of equipment and piping; operating and maintenance procedures, and operator training.
- 2. Those that reduce the scale of a potential incident; such as: measures for fire protection, and fixed fire fighting equipment.

Many measures will not fit neatly into individual categories but will apply to both.

## Implementation

The Mond technique of hazard evaluation is fully explained in the ICI technical manual, ICI (1993)<sup>(1)</sup>, to which reference should be made to implement the method. The calculations are made using a standard form, similar to that used for the Dow index. A computer program is available for use with IBM compatible personal computers.

## **9.4.5. Summary**

The Dow and Mond indexes are useful techniques, which can be used in the early stages of a project design to evaluate the hazards and risks of the proposed process.

Calculation of the indexes for the various sections of the process will highlight any particularly hazardous sections and indicate where a detailed study is needed to reduce the hazards

## Example 9.1

Evaluate the Dow F & EI for the nitric acid plant described in Chapter 4, Example 4.4.

#### Solution

The calculation is set out on the special form shown in Figure 9.2a. Notes on the decisions taken and the factors used are given below.

*Unit*: consider the total plant, no separate areas, but exclude the main storages. *Material factor*: for ammonia, from Dow Guide, and Table 9.3.

$$MF = 4.0$$

*Note*: Hydrogen is present, and has a larger material factor (21) but the concentration is too small for it to be considered the dominant material.

# General process hazards:

- A. Oxidising reaction, factor = 0.5
- B. Not applicable.
- C. Not applicable.
- D. Not applicable.
- E. Adequate access would be provided, factor = 0.0.
- F. Adequate drainage would be provided, factor = 0.0.

# Special process hazards:

- A. Ammonia is highly toxic, likely to cause serious injury, factor = 0.6.
- B. Not applicable.

<sup>(1)</sup> Published under licence from Imperial Chemical Industries plc by Dr P. Doran and T. R. Greig, 40 Mors Lane, Northwich, Cheshire, CW8 2PX, United Kingdom.

## **FIRE & EXPLOSION INDEX**

| AREA/COUNTRY                                                                        | DIVISION    | -                                               | LOCATION           | SLI           | GO            | DATE 20                   | JAN 1997               |
|-------------------------------------------------------------------------------------|-------------|-------------------------------------------------|--------------------|---------------|---------------|---------------------------|------------------------|
| SITE -                                                                              |             | TURING UNIT PROCESS UNIT COMPLETE PLANT         |                    |               | PLANT         |                           |                        |
| PREPARED BY: RKS                                                                    |             | APPROVED BY:(Superintendent)  ANOTHER  BUILDING |                    |               | 1             |                           |                        |
| REVIEWED BY:(Management)  REVIEWED BY:(Technology Center)  REVIEWED BY:(Safety & Lo |             |                                                 | D BY:(Safety & Los | s Prevention) |               |                           |                        |
| MATERIALS IN PROCESS UNIT                                                           | MMONIA,     | NR, OXIDES OF NITE                              | ROGEN, W           | ATER          |               |                           |                        |
| STATE OF OPERATION                                                                  |             |                                                 |                    | TERIAL(S) FO  | R MATERIA     | L FACTOR                  |                        |
| DESIGN START UP I                                                                   | IORMAL OPE  | RATION — SHUTDOWN                               |                    | AMMO          | NIA           |                           |                        |
| MATERIAL FACTOR (See Table 1 or A                                                   | ppendices A | or B) Note requirements                         | when unit te       | mperature ove | or 140 °F (60 | ) °C)                     | 4                      |
| General Process Hazar                                                               | ds          |                                                 |                    |               |               | Penalty Fac-<br>tor Range | Penalty Factor Used(1) |
| Base Factor                                                                         |             |                                                 |                    |               |               | 1.00                      | 1.00                   |
| A. Exothermic Chemical F                                                            |             |                                                 |                    |               |               | 0.30 to 1.25              | 0.50                   |
| B. Endothermic Processes                                                            | 3           |                                                 |                    |               |               | 0.20 to 0.40              |                        |
| C. Material Handling and                                                            |             |                                                 |                    |               |               | 0.25 to 1.05              |                        |
| D. Enclosed or Indoor Pro                                                           | cess Units  |                                                 |                    |               |               | 0.25 to 0.90              |                        |
| E. Access                                                                           |             |                                                 |                    | <del> </del>  |               | 0.20 to 0.35              |                        |
| F. Drainage and Spill Con                                                           | trol        |                                                 |                    | gal           | or cu.m.      | 0.25 to 0.50              |                        |
| General Process Hazar                                                               |             | (F <sub>1</sub> )                               |                    |               |               |                           | 1.50                   |
| 2. Special Process Hazard                                                           |             |                                                 |                    |               |               | 1.00                      |                        |
| Base Factor                                                                         |             |                                                 |                    |               |               |                           | 1.00                   |
| A. Toxic Material(s)                                                                | / 500       |                                                 |                    |               |               | 0.20 to 0.80<br>0.50      | 0.60                   |
| B. Sub-Atmospheric Press     C. Operation in or Near Fl                             |             |                                                 | Inerted            | Not In        | orted         | 0.50                      |                        |
|                                                                                     |             |                                                 | HISTO              | 140( 111      | BI (BC        | 0.50                      |                        |
| Tank Farms Storag     Process Upset or F                                            |             |                                                 |                    |               |               | 0.30                      | 0.80                   |
| Always in Flamma                                                                    |             | <u> </u>                                        |                    |               | +             | 0.80                      | 0.80                   |
| D. Dust Explosion (See Ta                                                           |             |                                                 |                    |               | <del></del>   | 0.25 to 2.00              |                        |
| E. Pressure (See Figure 2                                                           |             | Operating Pressure<br>Relief Setting            |                    | _ psig or kP  |               | 0.23 10 2.00              | 0.35                   |
| F. Low Temperature                                                                  | <del></del> | Heliai Gettili                                  |                    | pong or KI    | - 94090       | 0.20 to 0.30              |                        |
| G. Quantity of Flammable                                                            | Unstable M  | aterial:                                        | Qua                | antity        | lb or kg      |                           |                        |
| - Goming of Finishindon                                                             |             |                                                 | Hc =               | BTU/lb or     |               |                           |                        |
| Liquids or Gases in                                                                 |             |                                                 |                    |               |               |                           |                        |
| 2. Liquids or Gases in                                                              |             |                                                 |                    |               |               |                           |                        |
| Combustible Solids                                                                  | in Storage  | Dust in Process (See                            | Figure 5)          |               |               |                           |                        |
| H. Corrosion and Erosion                                                            |             |                                                 |                    |               |               | 0.10 to 0.75              | 0.10                   |
| <ol> <li>Leakage – Joints and F</li> </ol>                                          |             |                                                 |                    |               |               | 0,10 to 1.50              | 0.10                   |
| J. Use of Fired Equipment                                                           |             |                                                 |                    |               |               |                           |                        |
| K. Hot Oil Heat Exchange                                                            | System (Se  | e Table 5)                                      |                    |               |               | 0.15 to 1.15              |                        |
| L. Rotating Equipment                                                               |             |                                                 |                    |               |               | 0.50                      | 0.50                   |
| Special Process Hazard                                                              |             |                                                 |                    |               |               |                           | 3.45                   |
| Process Unit Hazards F                                                              |             |                                                 |                    |               |               |                           | 5.20                   |
| Fire and Explosion Inde                                                             | v /Fo v 1   | AF = F&EI)                                      |                    | ••••          |               |                           | 21                     |

(1) For no penalty use 0.00.

Figure 9.2a. Fire and explosion index calculation form, Example 9.1. From Dow (1994) reproduced by permission of the American Institute of Chemical Engineers. © 1994 AIChE. All rights reserved.

- C. Operation always is within the flammable limits, factor = 0.8.
- D. Not applicable.
- E. Operation pressure  $8 \text{ atm} = 8 \times 14.7 14.7 = 103 \text{ psig.}$  Set relief valve at 20% above the operating pressure (see Chapter 13 of this book) = 125 psig.

From Figure 2 in the guide, factor = 0.35.

*Note*: psig = pounds force per square inch, gauge.

- F. Not applicable.
- G. The largest quantity of ammonia in the process will be the liquid in the vaporiser, say around 500 kg.

Heat of combustion, Table 9.3 = 18.6 MJ/kg

Potential energy release =  $500 \times 18.6 = 9300 \text{ MJ}$ 

 $= 9300 \times 10^6/(1.05506 \times 10^3) = 8.81 \times 10^6$  Btu

which is too small to register on Figure 3 in the Guide, factor = 0.0.

- H. Corrosion resistant materials of construction would be specified, but external corrosion is possible due to nitric oxide fumes, allow minimum factor = 0.1.
- I. Welded joints would be used on ammonia service and mechanical seals on pumps. Use minimum factor as full equipment details are not known at the flow-sheet stage, factor = 0.1.
- J. Not applicable.
- K. Not applicable.
- L. Large turbines and compressors used, factor = 0.5.

The index works out at 21: classified as "Light". Ammonia would not normally be considered a dangerously flammable material; the danger of an internal explosion in the reactor is the main process hazard. The toxicity of ammonia and the corrosiveness of nitric acid would also need to be considered in a full hazard evaluation.

## 9.5. HAZARD AND OPERABILITY STUDIES

A hazard and operability study is a procedure for the systematic, critical, examination of the operability of a process. When applied to a process design or an operating plant, it indicates potential hazards that may arise from deviations from the intended design conditions.

The technique was developed by the Petrochemicals Division of Imperial Chemical Industries, see Lawley (1974), and is now in general use in the chemical and process industries.

The term "operability study" should more properly be used for this type of study, though it is usually referred to as a hazard and operability study, or HAZOP study. This can cause confusion with the term "hazard analysis", which is a technique for the quantitative assessment of a hazard, after it has been identified by an operability study, or similar technique. The Chemical Industries Association has published a *Guide to Hazard and Operability Studies*, CIA (1979b), which gives a comprehensive description of the technique and examples of its application. The method is also explained fully by Kletz (1999). Further examples are given by Lawley (1974), Wells (1980) and Austin and Jeffreys (1979).

A brief outline of the technique is given in this section to illustrate its use in process design. It can be used to make a preliminary examination of the design at the flow-sheet stage; and for a detailed study at a later stage, when a full process description, final flow-sheets, P and I diagrams, and equipment details are available.

## 9.5.1. Basic principles

A formal operability study is the systematic study of the design, vessel by vessel, and line by line, using "guide words" to help generate thought about the way deviations from the intended operating conditions can cause hazardous situations.

The seven guide words recommended in the CIA booklet are given in Table 9.7. In addition to these words, the following words are also used in a special way, and have the precise meanings given below:

*Intention*: the intention defines how the particular part of the process was intended to operate; the intention of the designer.

*Deviations*: these are departures from the designer's intention which are detected by the systematic application of the guide words.

Causes: reasons why, and how, the deviations could occur. Only if a deviation can be shown to have a realistic cause is it treated as meaningful.

Consequences: the results that follow from the occurrence of a meaningful deviation. Hazards: consequences that can cause damage (loss) or injury.

The use of the guide words can be illustrated by considering a simple example. Figure 9.3 shows a chlorine vaporiser, which supplies chlorine at 2 bar to a chlorination reactor. The vaporiser is heated by condensing steam.

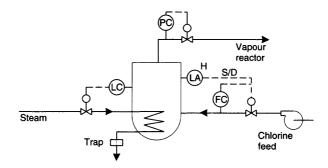



Figure 9.3. Chlorine vaporiser instrumentation

Consider the steam supply line and associated control instrumentation. The designer's intention is that steam shall be supplied at a pressure and flow rate to match the required chlorine demand.

Apply the guide word No:

Possible deviation — no steam flow.

Possible causes — blockage, valve failure (mechanical or power), failure of steam supply (fracture of main, boiler shut-down).

Clearly this is a meaningful deviation, with several plausible causes.

Consequences—the main consequence is loss of chlorine flow to the chlorination reactor.

The effect of this on the reactor operation would have to be considered. This would be brought out in the operability study on the reactor; it would be a possible cause of no chlorine flow.

Apply the guide word MORE:

Possible deviation — more steam flow.

Possible cause—valve stuck open.

Consequences—low level in vaporiser (this should activate the low level alarm), higher rate of flow to the reactor.

*Note:* to some extent the level will be self-regulating, as the level falls the heating surface is uncovered.

Hazard—depends on the possible effect of high flow on the reactor.

Possible deviation — more steam pressure (increase in mains pressure).

Possible causes — failure of pressure-regulating valves.

Consequences—increase in vaporisation rate. Need to consider the consequences of the heating coil reaching the maximum possible steam system pressure.

Hazard—rupture of lines (unlikely), effect of sudden increase in chlorine flow on reactor.

## 9.5.2. Explanation of guide words

The basic meaning of the guide words in Table 9.7. The meaning of the words No/Not, MORE and LESS are easily understood; the No/Not, MORE and LESS could, for example, refer to flow, pressure, temperature, level and viscosity. All circumstances leading to No flow should be considered, including reverse flow.

The other words need some further explanation:

As Well As: something in addition to the design intention; such as, impurities, side-reactions, ingress of air, extra phases present.

PART OF: something missing, only part of the intention realised; such as, the change in composition of a stream, a missing component.

REVERSE: the reverse of, or opposite to, the design intention. This could mean reverse flow if the intention was to transfer material. For a reaction, it could mean the reverse reaction. In heat transfer, it could mean the transfer of heat in the opposite direction to what was intended.

OTHER THAN: an important and far-reaching guide word, but consequently more vague in its application. It covers all conceivable situations other than that intended; such as, start-up, shut-down, maintenance, catalyst regeneration and charging, failure of plant services.

When referring to time, the guide words SOONER THAN and LATER THAN can also be used.

| Table 9.7. A list of guide work | Table 9.7. | Α | list | of | guide | word |
|---------------------------------|------------|---|------|----|-------|------|
|---------------------------------|------------|---|------|----|-------|------|

| Guide words  | Meanings                                  | Comments                                                                                                                                                                                               |  |  |
|--------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| No or Not    | The complete negation of these intentions | No part of the intentions is achieved but nothing else happens                                                                                                                                         |  |  |
| More<br>Less | Quantitative increases or decreases       | These refer to quantities and properties<br>such as flow rates and temperatures,<br>as well as activities like "HEAT" and                                                                              |  |  |
| As well as   | A qualitative increase                    | "REACT"  All the design and operating intentions are achieved together with some additional activity                                                                                                   |  |  |
| PART OF      | A qualitative decrease                    | Only some of the intentions are achieved; some are not                                                                                                                                                 |  |  |
| Reverse      | The logical opposite of the intention     | This is mostly applicable to activities, for example reverse flow or chemical reaction. It can also be applied to substances, e.g. "POISON instead of "ANTIDOTE" or "D" instead of "L" optical isomers |  |  |
| OTHER THAN   | Complete substitution                     | No part of the original intention is achieved. Something quite different happens                                                                                                                       |  |  |

#### 9.5.3. Procedure

An operability study would normally be carried out by a team of experienced people, who have complementary skills and knowledge; led by a team leader who is experienced in the technique.

The team examines the process vessel by vessel, and line by line, using the guide words to detect any hazards.

The information required for the study will depend on the extent of the investigation.

A preliminary study can be made from a description of the process and the process flow-sheets. For a detailed, final, study of the design, the flow-sheets, piping and instrument diagrams, equipment specifications and layout drawings would be needed. For a batch process information on the sequence of operation will also be required, such as that given in operating instructions, logic diagrams and flow charts.

A typical sequence of events is shown in Figure 9.4. After each line has been studied it is marked on the flow-sheet as checked.

A written record is not normally made of each step in the study, only those deviations that lead to a potential hazard are recorded. If possible, the action needed to remove the hazard is decided by the team and recorded. If more information, or time, is needed to decide the best action, the matter is referred to the design group for action, or taken up at another meeting of the study team.

When using the operability study technique to vet a process design, the action to be taken to deal with a potential hazard will often be modifications to the control systems and instrumentation: the inclusion of additional alarms, trips, or interlocks. If major hazards

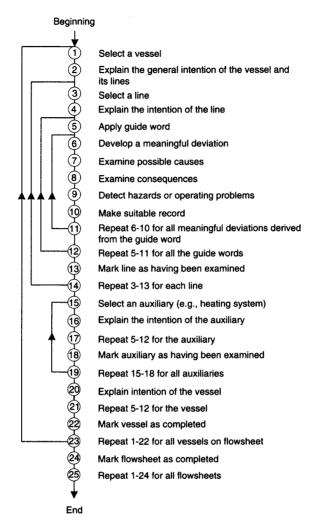



Figure 9.4. Detailed sequence of an operability study

are identified, major design changes may be necessary; alternative processes, materials or equipment.

# Example 9.2

This example illustrates how the techniques used in an operability study can be used to decide the instrumentation required for safe operation. Figure 9.5a shows the basic instrumentation and control systems required for the steady-state operation of the reactor section of the nitric acid process considered in Example 4.4. Figure 9.5b shows the

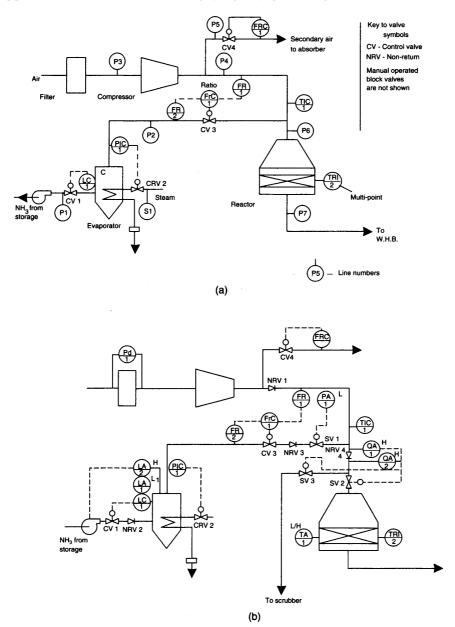



Figure 9.5. Nitric acid plant, reactor section (a) basic instrumentation (b) full instrumentation

additional instrumentation and safety trips added after making the operability study set out below. The instrument symbols used are explained in Chapter 5.

The most significant hazard of this process is the probability of an explosion if the concentration of ammonia in the reactor is inadvertently allowed to reach the explosive range, >14 per cent.

# Operability study

The sequence of steps shown in Figure 9.4 is followed. Only deviations leading to action, and those having consequences of interest, are recorded.

Vessel – Air Filter
Intention – to remove particles that would foul the reactor catalyst

| Guide<br>word              | Deviation                         | Cause                                                           | Consequences and action                                                                                                                        |
|----------------------------|-----------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Line No. P.                |                                   |                                                                 |                                                                                                                                                |
|                            | transfers clear and to compressor | at atmospheric pressure a                                       | and ambient                                                                                                                                    |
| LESS OF                    | Flow                              | Partially blocked filter                                        | Possible dangerous increase in NH <sub>3</sub> concentration: measure                                                                          |
| As well<br>as              | Composition                       | Filter damaged, incorrectly installed                           | and log pressure differential<br>Impurities, possible poisoning<br>of catalyst: proper<br>maintenance                                          |
| Vessel – Co<br>Intention – | -                                 | bar, 12,000 kg/h, 250°C                                         | , to the mixing tee                                                                                                                            |
| Line No. P                 |                                   | actor (mixing tee)                                              |                                                                                                                                                |
| No/None                    | Flow                              | Compressor failure                                              | Possible dangerous NH <sub>3</sub> conc.:<br>low flow pressure alarm<br>(PA1) interlocked to<br>shut-down NH <sub>3</sub> flow                 |
| MORE                       | Flow                              | Failure of compressor controls                                  | High rate of reaction, high reactor temperature: high-temperature alarms (TA1)                                                                 |
| REVERSE                    | Flow                              | Fall in line press. (compressor fails) high pressure at reactor | NH <sub>3</sub> in compressor — explosion<br>hazard: fit non-return valve<br>(NRV1); hot wet acid<br>gas-corrosion; fit second<br>valve (NRV4) |
| Line No. P.                |                                   |                                                                 |                                                                                                                                                |
| No                         | Flow                              | y air to absorber Compressor failure CV4 failure                | Incomplete oxidation, air pollution from absorber vent: operating procedures                                                                   |
| LESS                       | Flow                              | CV4 pluggage FRC1 failure                                       | As no flow                                                                                                                                     |

Vessel - Ammonia vaporiser Intention - evaporate liquid ammonia at 8 bar, 25°C, 731 kg/h

| Guide Deviation word |                   | Cause                                             | Consequences and action                                                                                                                       |  |
|----------------------|-------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Line No. P           |                   |                                                   |                                                                                                                                               |  |
| Intention –          | transfer liquid N |                                                   |                                                                                                                                               |  |
| No Flow  LESS Flow   |                   | Pump failure CV1 fails                            | Level falls in vaporiser: fit low-level alarm (LA1)                                                                                           |  |
|                      |                   | Partial failure pump/valve                        | (LA1) alarms                                                                                                                                  |  |
| MORE Flow            |                   | CV1 sticking, LC1 fails                           | Vaporiser floods, liquid to reactor: fit high-level alarm (LA2) with automatic pump shut-down                                                 |  |
|                      |                   | Leakage into storages from refrigeration          | Concentration of NH <sub>4</sub> OH in vaporiser: routine analysis, maintenance                                                               |  |
| REVERSE              | Flow              | Pump fails, vaporiser press. higher than delivery | Flow of vapour into storages:<br>(LA1) alarms; fit non-return<br>valve (NRV2)                                                                 |  |
| Line No. P.          | 2                 |                                                   |                                                                                                                                               |  |
| Intention -          | transfers vapour  | to mixing tee                                     |                                                                                                                                               |  |
| No                   | Flow              | Failure of steam flow,<br>CV3 fails closed        | (LA1) alarms, reaction ceases:<br>considered low flow alarm,<br>rejected – needs resetting at<br>each rate                                    |  |
| LESS                 | Flow              | Partial failure or blockage CV3                   | As no flow                                                                                                                                    |  |
|                      | Level             | LC1 fails                                         | LA2 alarms                                                                                                                                    |  |
| MORE                 | Flow              | FR2/ratio control mis-operation                   | Danger of high ammonia<br>concentration: fit alarm, fit<br>analysers (duplicate) with<br>high alarm 12 per cent NH <sub>3</sub><br>(QA1, QA2) |  |
|                      | Level             | LC1 fails                                         | LA2 alarms                                                                                                                                    |  |
| REVERSE              | Flow              | Steam failure                                     | Hot, acid gases from reactor – corrosion: fit non-return valve (NRV3)                                                                         |  |
| Line S1 (auxiliary)  |                   | CRV2 fails, trap frozen                           | High level in vaporiser: LA2 actuated                                                                                                         |  |

| Guide<br>word             | Deviation                             | Cause                                         | Consequences and action                                                                                                                                  |
|---------------------------|---------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vessel - R<br>Intention - |                                       | th air, 8 bar, 900°C                          |                                                                                                                                                          |
| Line No. 1                | . •                                   |                                               |                                                                                                                                                          |
| Intention -               | <ul> <li>transfers mixture</li> </ul> | e to reactor, 250°C                           |                                                                                                                                                          |
| No                        | Flow                                  | NRV4 stuck closed                             | Fall in reaction rate: fit low temp. alarm (TA1)                                                                                                         |
| LESS                      | Flow                                  | NRV4 partially closed                         | As No                                                                                                                                                    |
|                           | NH <sub>3</sub> conc.                 | Failure of ratio control                      | Temperatures fall: TA1 alarms (consider low conc. alarm on QA1, 2)                                                                                       |
| More                      | NH <sub>3</sub> conc.                 | Failure of ratio control, air flow restricted | High reactor temp.: TA1 alarms 14 per cent explosive mixture enters reactor – disaster: include automatic shut-down by-pass actuated by QA1, 2, SV2, SV3 |
|                           | Flow                                  | Control systems failure                       | High reactor temp.: TA1                                                                                                                                  |
|                           |                                       | Tallule                                       | aiaiii3                                                                                                                                                  |
| Line No. 1                | •                                     |                                               |                                                                                                                                                          |
| Intention -               | <ul> <li>transfers reactor</li> </ul> | products to waste-heat boil                   | ler                                                                                                                                                      |
| AS WELL<br>AS             | Composition                           | Refractory particles from reactor             | Possible pluggage of boiler tubes: install filter up-stream of boiler                                                                                    |

## 9.6 HAZARD ANALYSIS

An operability study will identify potential hazards, but gives no guidance on the likelihood of an incident occurring, or the loss suffered; this is left to the intuition of the team members. Incidents usually occur through the coincident failure of two or more items; failure of equipment, control systems and instruments, and mis-operation. The sequence of events that leads to a hazardous incident can be shown as a fault tree (logic tree), such as that shown in Figure 9.6. This figure shows the set of circumstances that would result in the flooding of the chloride vaporiser shown in Figure 9.3. The AND symbol is used where coincident inputs are necessary before the system fails, and the OR symbol where failure of any input, by itself, would cause failure of the system. A fault tree is analogous to the type of logic diagram used to represent computer operations, and the symbols are analogous to logic AND and OR gates.

The fault trees for even a simple process unit will be complex, with many branches. Fault trees are used to make a quantitive assessment of the likelihood of failure of a system, using data on the reliability of the individual components of the system. For example, if the following figures represent an estimate of the probability of the events

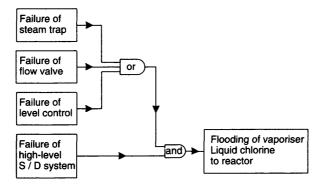



Figure 9.6. Simple fault chart (logic diagram)

shown in Figure 9.6 happening, the probability of failure of the total system by this route can be calculated.

|                                  | Probability of failure $\times 10^{\circ}$ |
|----------------------------------|--------------------------------------------|
| Steam trap                       | 1                                          |
| Flow control valve               | 0.1                                        |
| Level control, sub-system        | 0.5                                        |
| High level shut-down, sub-system | 0.04                                       |

The probabilities are added for OR gates, and multiplied for AND gates; so the probability of flooding the vaporiser is given by:

$$(1 + 0.1 + 0.5)10^{-3} \times 0.04 \times 10^{-3} = 0.06 \times 10^{-6}$$

The data on probabilities given in this example are for illustration only, and do not represent actual data for these components. Some quantitive data on the reliability of instruments and control systems is given by Lees (1976). Examples of the application of quantitive hazard analysis techniques in chemical plant design are given by Lawley (1974), Kletz (1971), (1992), Wells (1980) (1996), Gibson (1976) and Prugh (1980). Much of the work on the development of hazard analysis techniques, and the reliability of equipment, has been done in connection with the development of the nuclear energy programmes in the USA (USAEC, 1975) and the UK.

The Centre for Chemical Process Safety of the American Institute of Chemical Engineers has published a comprehensive and authoritative guide to quantitative risk analysis, AIChemE (1989).

## 9.7 ACCEPTABLE RISK AND SAFETY PRIORITIES

If the consequences of an incident can be predicted quantitatively (property loss and the possible number of fatalities), then a quantitive assessment can be made of the risk.

$$\frac{\text{Quantitive assessment}}{\text{of risk}} = \left\{ \begin{array}{l} \text{Frequency of} \\ \text{incident} \end{array} \right\} \times \left\{ \begin{array}{l} \text{loss per} \\ \text{incident} \end{array} \right\}$$

If the loss can be measured in money, the cash value of the risk can be compared with the cost of safety equipment or design changes to reduce the risk. In this way, decisions on safety can be made in the same way as other design decisions: to give the best return of the money invested.

Hazards invariably endanger life as well as property, and any attempt to make cost comparisons will be difficult and controversial. It can be argued that no risk to life should be accepted. However, resources are always limited and some way of establishing safety priorities is needed.

One approach is to compare the risks, calculated from a hazard analysis, with risks that are generally considered acceptable; such as, the average risks in the particular industry, and the kind of risks that people accept voluntarily. One measure of the risk to life is the "Fatal Accident Frequency Rate" (FAFR), defined as the number of deaths per 10<sup>8</sup> working hours. This is equivalent to the number of deaths in a group of 1000 men over their working lives. The FAFR can be calculated from statistical data for various industries and activities; some of the published values are shown in Tables 9.8 and 9.9. Table 9.8 shows the relative position of the chemical industry compared with other industries; Table 9.9 gives values for some of the risks that people accept voluntarily.

Table 9.8. FAFR for some UK industries

|                                           | FAFR   |
|-------------------------------------------|--------|
| Manufacturing (1971–74)                   | 2      |
| Chemical (1971–74)                        | 4      |
| Construction (1971–74)                    | 9      |
| Mining and quarrying (1971-73)            | 10     |
| Air crews in flight (1964–73)             | 200    |
| Professional boxers in the ring (1963-74) | 20,000 |

Table 9.9. FAFR for some non-industrial activities

| Travelling by train (1963–72) | 3    |
|-------------------------------|------|
| Staying at home (1972)        | 4    |
| Travelling by bus (1963-73)   | 4    |
| Travelling by car (1963-73)   | 48   |
| Travelling by air (1964-73)   | 190  |
| Canoeing (1962-72)            | 670  |
| Gliding (1964–73)             | 1000 |
| Motor cycling (1963-73)       | 1040 |
|                               |      |

Source: Gibson (1976).

In the chemical process industries it is generally accepted that risks with an FAFR greater than 0.4 (one-tenth of the average for the industry) should be eliminated as a matter of priority, the elimination of lesser risks depending on the resources available; see Kletz (1977a). This criterion is for risks to employees; for risks to the general public (undertaken involuntarily) a lower criterion must be used. The level of risk to which the public outside the factory gate should be exposed by the operations will always be a matter of debate and controversy. Kletz (1977b) suggests that a hazard can be considered acceptable if the average risk is less than one in 10 million, per person, per year. This

is equivalent to a FAFR of 0.001; about the same as deaths from the bites of venomous creatures in the UK, or the chance of being struck by lightning.

### 9.8 SAFETY CHECK LISTS

Check lists are useful aids to memory. A check list that has been drawn up by experienced engineers can be a useful guide for the less experienced. However, too great a reliance should never be put on the use of check lists, to the exclusion of all other considerations and techniques. No check list can be completely comprehensive, covering all the factors to be considered for any particular process or operation.

A short safety check list, covering the main items which should be considered in process design, is given below.

More detailed check lists are given by Carson and Mumford (1988) and Wells (1980). Balemans (1974) gives a comprehensive list of guidelines for the safe design of chemical plant, drawn up in the form of a check list. A loss prevention check list is included in the Dow Fire and Explosion Index Hazard Classification Guide, Dow (1987).

## Design safety check list

#### Materials

- (a) flash-point
- (b) flammability range
- (c) autoignition temperature
- (d) composition
- (e) stability (shock sensitive?)
- (f) toxicity, TLV
- (g) corrosion
- (h) physical properties (unusual?)
- (i) heat of combustion/reaction

#### **Process**

- 1. Reactors
  - (a) exothermic heat of reaction
  - (b) temperature control—emergency systems
  - (c) side reactions dangerous?
  - (d) effect of contamination
  - (e) effect of unusual concentrations (including catalyst)
  - (f) corrosion
- 2. Pressure systems
  - (a) need?
  - (b) design to current codes (BS 5500)
  - (c) materials of construction adequate?
  - (d) pressure relief—adequate?
  - (e) safe venting systems
  - (f) flame arresters

#### Control systems

- (a) fail safe
- (b) back-up power supplies
- (c) high/low alarms and trips on critical variables
  - (i) temperature
  - (ii) pressure
  - (iii) flow
  - (iv) level
  - (v) composition
- (d) back-up/duplicate systems on critical variables
- (e) remote operation of valves
- (f) block valves on critical lines
- (g) excess-flow valves
- (h) interlock systems to prevent mis-operation
- (i) automatic shut-down systems

#### Storages

- (a) limit quantity
- (b) inert purging/blanketing
- (c) floating roof tanks
- (d) dykeing
- (e) loading/unloading facilities safety
- (f) earthing
- (g) ignition sources vehicles

#### General

- (a) inert purging systems needed
- (b) compliance with electrical codes
- (c) adequate lighting
- (d) lightning protection
- (e) sewers and drains adequate, flame traps
- (f) dust-explosion hazards
- (g) build-up of dangerous impurities purges
- (h) plant layout
  - (i) separation of units
  - (ii) access
  - (iii) siting of control rooms and offices
  - (iv) services
- (i) safety showers, eye baths

#### Fire protection

- (a) emergency water supplies
- (b) fire mains and hydrants
- (c) foam systems
- (d) sprinklers and deluge systems
- (e) insulation and protection of structures
- (f) access to buildings
- (g) fire-fighting equipment

The check list is intended to promote thought; to raise questions such as: is it needed, what are the alternatives, has provision been made for, check for, has it been provided?

### 9.9 MAJOR HAZARDS

A series of major accidents at manufacturing sites and storage installation has focused the attention of national governments on the need to control the planning and operation of sites where there is the potential for a major accident. Sites posing a substantial threat to the employees, the public and the environment.

In the United Kingdom an advisory committee was set up by the Health and Safety Executive (HSE) to review the problem and recommend procedures for the control of these sites, HSE (1976, 1979). Subsequently, a series of directives and amendments on this subject were issued by the European Economic Commission (EEC), and the EEC directives were implemented in the UK by the publication of the Control of Major Industrial Accident Hazards Regulations, 1984 (the CIMAH regulations).

The regulations apply to both the manufacture and storage of substances likely to cause a major hazard. The manufacturing processes covered are listed in a schedule to the regulations, but the regulations will, in effect, apply to any chemical manufacturing process involving flammable or toxic materials that are likely to constitute a hazard. The degree of hazard with material storages depends on the nature of the material and the quantity stored. The regulations define the minimum quantities for hazardous substances above which the regulations apply.

The regulations require industrial companies to report on the operation of dangerous installations, and on the storage of dangerous materials. In essence the company is required to demonstrate that it has:

- i. Identified the hazards.
- ii. Taken steps to ensure the proper design, testing and operation of the plant.
- iii. Taken steps to prevent or minimise the consequences that would follow a major incident.
- iv. Provided training and safety equipment for their employees.
- v. Prepared, and kept up to date, an emergency plan covering procedures to deal with a major incident.
- vi. Informed the public living outside the site, who may be affected by a major accident, of the nature of the hazard, and what to do in the event of an accident.
- vii. Liaised with the local authorities in the preparation of an off-site emergency plan.

In preparing the report for the HSE the company would usually prepare a *safety case* assessing the nature and degree of the hazard and the consequences of an incident. This would include details of the measures taken to alleviate the hazard and the consequences of an accident. The preparation of safety cases is covered by Lees and Ang (1989).

The Company is required to report any major incident to the Health and Safety Executive (HSE).

The regulations covering the control of major industrial accident hazards in the United States are discussed by Brooks *et al.* in Lees and Ang (1989).

Major hazards and their management are covered by Wells (1997).

## 9.9.1 Computer software for quantitative risk analysis

The assessment of the risks and consequences involved in the planning and operation of a major plant site is a daunting task.

The methodology of the classical method of quantitative risk analysis is shown in Figure 9.7. First, the likely frequency of failure of equipment, pipe-lines, and storage vessels must be predicted; using the techniques mentioned in Section 9.6. The probable magnitude of any discharges must then be estimated, and the consequences of failure evaluated: fire, explosion or toxic fume release. Other factors, such as, site geography, weather conditions, site layout, and safety management practices, must be taken into consideration. The dispersion of gas clouds can be predicted using suitable models. This methodology enables the severity of the risks to be assessed. Limits have to be agreed on the acceptable risks; such as the permitted concentrations of toxic gases. Decisions can then be made on the siting of plant equipment (see Chapter 14), on the suitability of a site location, and on emergency planning procedures.

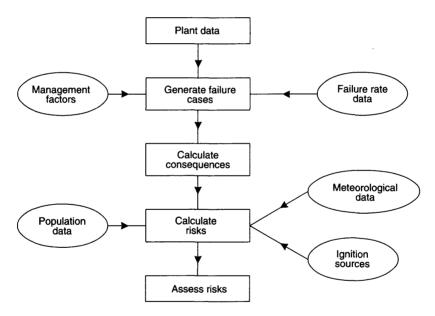



Figure 9.7. Quantitative risk assessment procedure

The comprehensive and detailed assessment of the risks required for a "safety-case" can only be satisfactorily carried out for major installations with the aid of computer software. Suites of programmes for quantitative risk analysis have been developed over the past decade by consulting firms specialising in safety and environmental protection. Typical of the software available is the SAFETI (Suite for Assessment of Flammability Explosion and Toxic Impact) suite of programs developed by Technica Ltd. These programs were initially developed for the authorities in the Netherlands, as a response to the Seveso Directive of the EEC (which requires the development of safety cases and hazard reviews); see Ale and Whitehouse (1986). The programs have subsequently been developed further

and extended, and are widely used in the preparation of safety cases; see Pitblado *et al.* (1990). SAFETI is available for main frame and, as  $\mu$ SAFETI, for personal computers.

Computer programs can be used to investigate a range of possible scenarios for a site. But, as with all computer software used in design, they should not be used without caution and judgement. They would normally be used with the assistance and guidance of the consulting firm supplying the software. With intelligent use, guided by experience, such programs can indicate the magnitude of the likely risks at a site, and allow sound decisions to be made when licensing a process operation or granting planning permission for a new installation.

#### 9.10 REFERENCES

ALE, B. J. M. and WHITEHOUSE, R. J. (1986) Computer based systems for risk analysis of process plant, in *Heavy Gas and Risk Analysis*, Hartwig, S. (ed.) (Reidel).

Anon. (1988) Extremely Hazardous Substances: superfund chemical profiles, U.S. Environmental Protection Agency, 2 vols. (Noyes).

ASKQUITH, W. and LAVERY, K. (1990) Proc. Ind. Jl. (Sept.) 15. Bursting discs — the vital element in relief.

AIChemE (1987) Guidelines for Hazard Evaluation Procedures (Center for Chemical Process Safety, American Institute of Chemical Engineers, New York).

AIChemE (1989) Guidelines for Chemical Process Qualitative Risk Analysis (Center for Chemical Process Safety, American Institute of Chemical Engineers, New York).

AIChemE (1992a) Emergency Relief Systems for Runaway Chemical Reactions and Storage Vessels (American Institute of Chemical Engineers, New York).

AIChemE (1992b) Emergency Relief Design using DIERS Technology. (American Institute of Chemical Engineers).

AUSTIN, D. G. and JEFFERYS, G. V. (1979) The Manufacture of Methyl Ethyl Ketone from 2-Butanol (IChemE/Godwin).

BALEMANS, A. W. M. (1974) Check-lists: guide lines for safe design of process plants. Loss Prevention and Safety Promotion in the Process Industries, C. H. Bushmann (ed.) (Elsevier).

BARTKNECHT, W. (1981) Dust Explosions (Springer Verlag).

Bass, H. G. (1984) Intrinsic Safety: Instrumentation for flammable atmospheres (Quatermaine).

BODRUTHA, F. T. (1980) Industrial Explosion Prevention and Protection (McGraw-Hill).

Browning, E. (1965) Toxicity and Metabolism of Industrial Solvents (Elsevier).

BUSTIN, W. M. and DUHEK, W. G. (1983) Electrostatic Hazards in the Petroleum Industry (Wiley).

CARSON, P. A. and MUMFORD, C. J. (1988) Safe Handling of Chemicals in Industry, 2 vols. (Longmans).

CIA (1979a) Process Plant Hazards and Control Building Design (Chemical Industries Association, London).

CIA (1979b) A Guide to Hazard and Operability Studies (Chemical Industries Association, London).

CONNISON, J. (1960) Chem. Eng., NY 67 (July 25th) 113. How to design a pressure relief system.

CROSS, J. and FARRER, D. (1982) Dust Explosions (Plenum Press).

Dow (1973) Fire and Explosion Index Hazard Classification Guide, 3rd edn Dow Chemical Company.

Dow (1987) Dow's Fire and Explosion Index Hazard Classification Guide, 6th edn (American Institute of Chemical Engineers, New York).

Dow CHEMICAL Co. (1973) The Dow Safety Guide, a reprint from Chemical Engineering Progress (AIChE).

DUXBURY, H. A. (1976) Loss Prevention No. 10 (AIChE) 147. Gas vent sizing methods.

DUXBURY, H. A. (1979) Chem. Engr. London No. 350 (Nov.) 783. Relief line sizing for gases.

ECKHOFF, R. K. (1991) Dust Explosions (Butterworth-Heinemann).

EICHEL (1967) Chem. Eng., NY 74 (March 13th) 153. Electrostatics.

FAWCETT, H. H. and WOOD, W. S. (1982) Safety and Accident Prevention in Chemical Operations (Wiley).

FIELD, P. (1982) Dust Explosions (Elsevier).

FISHER, H. G. (1985) Chem. Eng. Prog. 81 (August) 33 DIERS research program on emergency relief systems. FITZSIMMONS, P. E. and COCKRAM, M. D. (1979) Northwestern Branch Paper No. 2 (IChemE, London). The safe venting of chemical reactors.

GIBSON, S. B. (1976) *Inst. Chem. Eng. Sym. Ser.* No. 47, 135. The design of new chemical plants using hazard analysis.

GLOR, M. (1988) Electrostatic Hazards in Powder Handling (Wiley).

GREEN, A. E. (ed.) (1982) High Risk Technology (Wiley).

Green, A. E. (ed.) (1983) Safety System Reliability (Wiley).

GUGAN, K. (1979) Unconfined Vapour Cloud Explosions (IChemE/Godwin).

HADLEY, W. (ed.) (1969) Industrial Safety Handbook (McGraw-Hill).

HMSO (1968) The Ionising Radiation (unsealed radioactive substances) Regulations (Stationery Office).

HMSO (1969) The Ionising Radiation (sealed sources) Regulations (Stationery Office).

HMSO (1975) The Flixborough Disaster, Report of the Court of Enquiry (Stationery Office).

HMSO (1989a) Control of Substances Hazardous to Health Regulations 1988 (COSHH)—Introducing COSHH (HMSO).

HMSO (1989b) Control of Substances Hazardous to Health Regulations 1988 (COSHH)—Introductory Assessment COSHH (HMSO).

Howard, W. B. (1992) *Chem. Eng. Prog.* **88** (April) 69. Use precautions in selection, installation and operation of flame arresters.

HSC (1977) The Advisory Commission on Major Hazards, First Report, Health and Safety Commission (HMSO).

HSC (1979) The Advisory Commission on Major Hazards, Second Report, Health and Safety Commission (HMSO).

ICHEME (1977) A First Guide to Loss Prevention (Institution of Chemical Engineers, London).

ICHEME (1984) Guide to Dust Explosion Prevention and Protection, 3 parts (Institution of Chemical Engineers, London).

ICI (1993) Mond Index: How to Identify, Assess and Minimise Potential Hazards on Chemical Plant Units for New and Existing Processes. 2nd edn, ICI, Northwich.

ISAACS, M. (1971) Chem. Eng., NY 78 (Feb. 22nd) 113. Pressure relief systems.

KAYSER, D. S. (1972) Loss Prevention No. 6 (AIChE) 82. Rupture disc selection.

KING, R. and MAGID, J. (1979) Industrial Hazard and Safety Handbook (Newnes-Butterworths).

KLETZ, T. A. (1971) Inst. Chem. Eng. Sym. Ser. No. 34, 75. Hazard analysis - a quantitative approach to safety.

KLETZ, T. A. (1977a) New Scientist (May 12th) 320. What risks should we run.

KLETZ, T. A. (1977b) Hyd. Proc. 56 (May) 207. Evaluate risk in plant design.

KLETZ, T. A. (1984) Cheaper, Safer Plants or Wealth and Safety at Work (Institution of Chemical Engineers, London).

KLETZ, T. A. (1999) *Identifying and Assessing Process Industry Hazards*, 4th edn (Institution of Chemical Engineers, London).

KUSNETZ, H. L. (1974) Loss Prevention No. 8 (AIChE) 20. Industrial hygiene factors in design and operating practice.

LAWLEY, H. G. (1974) Loss Prevention No. 8 (AIChE) 105. Operability studies and hazard analysis.

LEES, F. P. (1976) Inst. Chem. Eng. Sym. Ser. No. 47, 73. A review of instrument failure data.

LEES, F. P. (1996) Loss Prevention in the Process Industries, 2nd edn, 2 vols. (Butterworths).

LEES, F. P. and ANG, M. L. (eds) (1989) Safety Cases Within the Control of Industrial Major Accident Hazards (CIMAH) Regulations 1984 (Butterworths).

LEWIS, D. J. (1979a) AIChE Loss Prevention Symposium, Houston, April. The Mond fire, explosion and toxicity index: a development of the Dow index.

Lewis, D. J. (1979b) Loss Prevention No. 13 (AIChE) 20. The Mond fire, explosion and toxicity index applied to plant layout and spacing.

LEWIS, J. R. (1992) Sax's Dangerous Properties of Hazardous Materials, 8th edn (Van Nostrand Reinhold).

LIPCOMBE, D. M. and TAYLOR, A. C. (1978) Noise Control Handbook of Principles and Practice (Van Nostrand). LOWRANCE, W. W. (1976) Of Acceptable Risk (W. Kaufmann, USA).

LUNN, G. (1984) Venting Gas and Dust Explosions (Institution of Chemical Engineers, London).

MARSHALL, V. C. (1987) Major Chemical Hazards (Ellis Horwood).

MATHEWS, T. (1984) Chem. Engr., London No. 406 (Aug.-Sept.) 21. Bursting discs for over-pressure protection. MENDOZA, V. A., SMOLENSKY, J. F. and STRAITZ, J. F. (1998) Hyd. Proc. 77 (Oct.) 63. Do your flame arrestors

provide adequate protection.

MOORE, A. (1984) Chem. Engr., London No. 407 (Oct.) 13. Pressure relieving systems.

MORLEY, P. G. (1989a) Chem. Engr., London No. 463 (Aug.) 21. Sizing pressure safety valves for gas duty.

MORLEY, P. G. (1989b) Chem. Engr., London No. 465 (Oct. 47. Sizing pressure safety valves for flashing liquid duty.

MUNDAY, G. (1976) Chem. Engr. London No. 308 (April) 278. Unconfined vapour explosions.

MURPHY, G. (1993) Processing (Nov.) 6. Quiet life ends in burst of activity.

NAPIER, D. H. (1971) Inst. Chem. Eng. Sym. Ser. 34, 170. Static electrification in the process industries.

NAPIER, D. H. and RUSSELL, D. A. (1974) Proc. First Int. Sym. on Loss Prevention (Elsevier). Hazard assessment and critical parameters relating to static electrification in the process industries.

NFPA (1987a) Flammable and Combustible Liquids Code, NFPA 30 (National Fire Protection Association, USA).

NFPA (1987b) Flammable and Combustible Liquids Code Handbook (National Fire Protection Association, USA).

PALMER, K. N. (1973) Dust Explosions and Fires (Chapman & Hall).

PARKINSON, J. S. (1979) Inst. Chem. Eng. Sym. Design 79, K1. Assessment of plant pressure relief systems.

PARRY, C. F. (1992) Relief Systems Handbook (Institution of Chemical Engineers, London).

PITBLADO, R. M., SHAW, S. J. and SEVENS, G. (1990) *Inst. Chem. Eng. Sym. Ser.* No. 120, 51. The SAFETI risk assessment package and case study application.

POOLE, G. (1985) Proc. Eng. (May) 67. Improving the design of emergency relief systems.

PPA (1973) Noise Control (Process Plant Association, London).

PRUGH, R. N. (1980) Chem. Eng. Prog. 76 (July) 59. Applications of fault tree analysis.

ROGOWSKI, Z. W. (1980) Inst. Chem. Eng. Sym. Ser. No. 58, 53. Flame arresters in industry.

ROSPA (1971) Liquid Flammable Gases: Storage and Handling (Royal Society for the Prevention of Accidents, London).

RSC (1991ff) Dictionary of Substances and Their Effects, 5 vols (Royal Society of Chemistry).

SAX, N. I. (1975) Dangerous Properties of Industrial Materials, 4th edn (Reinhold).

Scott, D. and Crawley, F. (1992) Process Plant Design and Operation: guidance to safe practice (Institution of Chemical Engineers, London).

SHARLAND, I. (1972) Woods Practical Guide to Noise Control (Woods Acoustics Ltd., England).

SIMPSON, D. AND SIMPSON, W. G. (1991) The COSHH Regulations: a practical guide (Royal Society of Chemistry).

SITTIG, M. (1985) Handbook of Toxic and Hazardous Chemicals and Carcinogens, 2nd edn (Noyes).

USAEC (1975) Reactor Safety Study, WASH-1400 (United States Atomic Energy Commission).

VERALIN, C. H. (1985) Fire Protection Manual for Hydrocarbon Process Plants, 3rd edn (Gulf).

WARRING, R. H. (1974) Handbook of Noise and Vibration Control, 2nd edn (Trade and Technical Publications).

WELLS, G. L. (1980) Safety in Process Plant Design (IChemE/Godwin).

WELLS, G. L. (1996) Hazard Identification and Risk Assessment (Institution of Chemical Engineers, London).

WELLS, G. L. (1997) Major Hazards and their Management (Institution of Chemical Engineers, London).

#### **British Standards**

BS 2915: 1990 Specification for bursting discs and bursting disc devices.

BS 5345: 1977-90 Code of practice for the installation and maintenance of electrical apparatus for use in

potentially explosive atmospheres (other than mining applications or explosives processing

and manufacture), 8 parts.

BS 5501: 1977-82 Electrical apparatus for potentially explosive atmospheres, 9 parts.

BS 5908: 1990 Code of practice for fire precautions in the chemical and allied industries.

BS 5958: 1991 Code of practice for the control of undesirable static electricity.

Part 1: General considerations.

Part 2: Recommendations for particular industries.

#### 9.11. PROBLEMS

- **9.1.** In the storage of flammable liquids, if the composition of the vapour-air mixture above the liquid surface falls within the flammability limits, a floating roof tank would be used or the tank blanketed with inert gas. Check if the vapour composition for liquids listed below will fall within their flammability range, at atmospheric pressure and 25°C.
  - 1. Toluene
  - 2. Acrylonitrile
  - 3. Nitrobenzene
  - 4. Acetone
- **9.2.** Estimate the Dow Fire and Explosion Index, and determine the hazard rating, for the processes listed below.

Use the process descriptions given in Appendix G and develop the designs, as needed, to estimate the index.

)

- 1. Ethylhexanol from propylene and synthesis gas, G.1.
- 2. Chlorobenzenes from benzene and chlorine, G.2.
- 3. Methyl ethyl ketone from 2-butanol, G.3.
- 4. Acrylonitrile from propylene and ammonia, G.4.
- 5. Aniline from nitrobenzene and hydrogen. G.8.
- **9.3.** Devise a preliminary control scheme for the sections of the nitric acid plant described in Chapter 4, flow-sheet Figure 4.2, which are listed below. Make a practice HAZOP study of each section and revise your preliminary control scheme.
  - 1. Waste heat boiler (WHB)
  - 2. Condenser
  - 3. Absorption column

## CHAPTER 10

# Equipment Selection, Specification and Design

#### 10.1. INTRODUCTION

The first chapters of this book covered process design: the synthesis of the complete process as an assembly of units; each carrying out a specific process operation. In this and the following chapters, the selection, specification and design of the equipment required to carry out the function of these process units (unit operations) is considered in more detail. The equipment used in the chemical processes industries can be divided into two classes: proprietary and non-proprietary. Proprietary equipment, such as pumps, compressors, filters, centrifuges and dryers, is designed and manufactured by specialist firms. Non-proprietary equipment is designed as special, one-off, items for particular processes; for example, reactors, distillation columns and heat exchangers.

Unless employed by one of the specialist equipment manufacturers, the chemical engineer is not normally involved in the detailed design of proprietary equipment. His job will be to select and specify the equipment needed for a particular duty; consulting with the vendors to ensure that the equipment supplied is suitable. He may be involved with the vendor's designers in modifying standard equipment for particular applications; for example, a standard tunnel dryer designed to handle particulate solids may be adapted to dry synthetic fibres.

As was pointed out in Chapter 1, the use of standard equipment, whenever possible, will reduce costs.

Reactors, columns and other vessels are usually designed as special items for a given project. In particular, reactor designs are usually unique, except where more or less standard equipment is used; such as an agitated, jacketed, vessel.

Distillation columns, vessels and tubular heat exchangers, though non-proprietary items, will be designed to conform to recognised standards and codes; this reduces the amount of design work involved.

The chemical engineer's part in the design of "non-proprietary" equipment is usually limited to selecting and "sizing" the equipment. For example, in the design of a distillation column his work will typically be to determine the number of plates; the type and design of plate; diameter of the column; and the position of the inlet, outlet and instrument nozzles. This information would then be transmitted, in the form of sketches and specification sheets, to the specialist mechanical design group, or the fabricator's design team, for detailed design.

In this chapter the emphasis is put on equipment selection, rather than equipment design; as most of the equipment described is proprietary equipment. Design methods

are given for some miscellaneous non-proprietary items. A brief discussion of reactor design is included to supplement that given in Volume 3. The design of two important classes of equipment, columns and heat exchangers, is covered separately in Chapters 11 and 12. A great variety of equipment is used in the process industries, and it is only possible to give very brief descriptions of the main types in this volume. Further details are given in Volume 2; and descriptions and illustrations of most of the equipment used can be found in various handbooks: Perry and Green (1984), Schweitzer (1988), Mead (1964), Hendglein (1969) and Walas (1990). Equipment manufacturers' advertisements in the technical press should also be studied. It is worthwhile building up a personal file of vendors' catalogues to supplement those that may be held in a firm's library. In the United Kingdom, a commercial organisation, Technical Indexes Ltd., publishes the Process Engineering Index; which contains on microfilm information from over 3000 manufacturers and suppliers of process equipment.

The scientific principles and theory that underlie the design of and operation of processing equipment is covered in Volume 2.

## 10.2. SEPARATION PROCESSES

As was discussed in Chapter 1, chemical processes consist essentially of reaction stages followed by separation stages in which the products are separated and purified.

The main techniques used to separate phases, and the components within phases, are listed in Table 10.1 and discussed in Sections 10.3 to 10.9.

#### 10.3. SOLID-SOLID SEPARATIONS

Processes and equipment are required to separate valuable solids from unwanted material, and for size grading (classifying) solid raw materials and products.

The equipment used for solid-solid separation processes was developed primarily for the minerals processing and metallurgical industries for the benefication (up-grading) of ores. The techniques used depend on differences in physical, rather than chemical, properties, though chemical additives may be used to enhance separation. The principal techniques used are shown in Figure 10.1; which can be used to select the type of processes likely to be suitable for a particular material and size range.

Sorting material by appearance, by hand, is now rarely used due to the high cost of labour.

# 10.3.1. Screening (sieving)

The methods used for laboratory particle size analysis are discussed in detail in Volume 2, Chapter 1.

Screens separate particles on the basis of size. Their main application is in grading raw materials and products into size ranges, but they are also used for the removal of trash (over-and under-sized contaminants) and for dewatering. Industrial screening equipment is used over a wide range of particle sizes, from fine powders to large rocks. For small particles woven cloth or wire screens are used, and for larger sizes, perforated metal plates or grids.

Table 10.1. Separation processes

Numbers refer to the sections in this chapter. Processes in brackets are used for separating dissolved components (solutions). The terms major and minor component only apply where different phases are to be separated; i.e. not to those on the diagonal

|                 | MINOR COMPONENT |                                                                                                                  |                                                                                                           |                                                                                                        |                                                                  |                              |                      |  |
|-----------------|-----------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------|----------------------|--|
|                 |                 | Solid                                                                                                            |                                                                                                           | Liquid                                                                                                 |                                                                  | Gas/Vapour                   |                      |  |
| ENT             | Solid           | Sorting Screening Hydrocyclones Classifiers Jigs Tables Centrifuges Dense media Flotation Magnetic Electrostatic | 10.3<br>10.3.1<br>10.3.2<br>10.3.3<br>10.3.4<br>10.3.5<br>10.3.6<br>10.3.7<br>10.3.8<br>10.3.9<br>10.3.10 | Pressing<br>Drying                                                                                     | 10.4.5<br>10.4.6.                                                | Crushing<br>Heating          | 10.10                |  |
| MAJOR COMPONENT | Liquid          | Thickeners<br>Clarifiers<br>Hydrocyclones<br>Filtration<br>Centrifuges<br>(Crystallisers)<br>(Evaporators)       | 10.4.1<br>10.4.1<br>10.4.4<br>10.4.2<br>10.4.3<br>10.5.2<br>10.5.1                                        | Decanters<br>Coalescers<br>(Solvent<br>extraction)<br>(Distillation)<br>(Adsorption)<br>(Ion exchange) | 10.6.1<br>10.6.3<br>10.7.1<br>Chapter 11<br>Volume 2<br>Volume 2 | (Stripping)                  | Volume 2             |  |
|                 | GAS/VAPOUR      | Gravity settlers Impingement settlers Cyclones Filters Wet scrubbers Electrostatic precipitators                 | 10.8.1<br>10.8.2<br>10.8.3<br>10.8.4<br>10.8.5                                                            | Separating vessels Demisting pads Cyclones Wet scrubbers Electrostatic precipitators                   | 10.9<br>10.9<br>10.8.3<br>10.8.5                                 | (Adsorption)<br>(Absorption) | Volume 2<br>Volume 2 |  |

Screen sizes are defined in two ways: by a mesh size number for small sizes and by the actual size of opening in the screen for the larger sizes. There are several different standards in use for mesh size, and it is important to quote the particular standard used when specifying particle size ranges by mesh size. In the UK the appropriate British Standards should be used; BS 410 and BS 1796. A comparison of the various international standard sieve mesh sizes is given in Volume 2, Chapter 1.

The simplest industrial screening equipment are stationary screens, over which the material to be screened flows. Typical of this type are "Grizzly" screens, which consist of rows of equally spaced parallel bars, and which are used to "scalp" off over-sized rocks in the feed to crushers.

Dynamic screening equipment can be categorised according to the type of motion used to shake-up and transport the material on the screen. The principal types used in the chemical process industries are described briefly below.

| Colour, a             | ppearance      |              |                 |           |           | Hand sorting | 1 |
|-----------------------|----------------|--------------|-----------------|-----------|-----------|--------------|---|
| Size alone            | 1              |              | Screening       |           |           |              |   |
|                       | Liquid c       | yclones      |                 |           |           |              |   |
|                       | Hydro          | separators - | classifiers     |           |           |              |   |
| Centrifu              | ges            |              | Sizers          |           |           |              |   |
| Density ald           | one, heavy med | ia           | In cyclo        | nes In co | nes In di | rums         |   |
| Size and density Jigs |                |              |                 |           |           |              |   |
|                       |                |              | Wet tables      | , spirals |           | <u> </u>     |   |
|                       |                |              |                 | (Ores) D  | ry tables | (Coal)       |   |
| Magnetic p            | permeability   | Ma           | agnetic separa  | tors, dry | ]         | <del></del>  |   |
|                       | Magnetic       | separators,  | wet             |           | ]         |              |   |
| Electrical of         | conductivity   | Elec         | trostatic separ | ators     | ]         |              |   |
| Surface we            | etability      |              |                 |           |           |              |   |
|                       | Froth flota    | tion         |                 |           |           |              |   |
| 01                    | 0.01           | 0.1          |                 | 1         |           | 10           | 1 |
|                       |                |              |                 |           |           |              |   |

Particle size, mm

Figure 10.1. A particle size selection guide to solid-solid separation techniques and equipment (after Roberts et al. 1971)

Vibrating screens: horizontal and inclined screening surfaces vibrated at high frequencies (1000 to 7000 Hz). High capacity units, with good separating efficiency, which are used for a wide range of particle sizes.

Oscillating screens: operated at lower frequencies than vibrating screens (100-400 Hz) with a longer, more linear, stroke.

Reciprocating screens: operated with a shaking motion, a long stroke at low frequency (20–200 Hz). Used for conveying with size separation.

Shifting screens: operated with a circular motion in the plane of the screening surface. The actual motion may be circular, gyratory, or circularly vibrated. Used for the wet and dry screening of fine powders.

Revolving screens: inclined, cylindrical screens, rotated at low speeds (10-20 rpm). Used for the wet screening of relatively coarse material, but have now been largely replaced by vibrating screens.

Figure 10.2, which is based on a similar chart given by Matthews (1971), can be used to select the type of screening equipment likely to be suitable for a particular size range. Equipment selection will normally be based on laboratory and pilot scale screening tests, conducted with the co-operation of the equipment vendors. The main factors to be considered, and the information that would be required by the firms supplying proprietary screening equipment, are listed below:

- 1. Rate, throughput required.
- 2. Size range (test screen analysis).
- 3. Characteristics of the material: free-flowing or sticky, bulk density, abrasiveness.
- 4. Hazards: flammability, toxicity, dust explosion.
- 5. Wet or dry screening to be used.

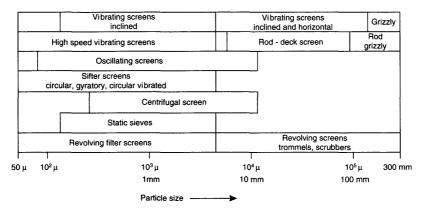



Figure 10.2. Screen selection by particle size range

## 10.3.2. Liquid-solid cyclones

Cyclones can be used for the classification of solids, as well as for liquid-solid, and liquid-liquid separations. The design and application of liquid cyclones (hydrocyclones) is discussed in Section 10.4.4. A typical unit is shown in Figure 10.3.

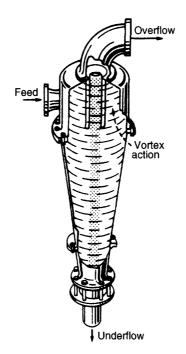



Figure 10.3. Liquid-solid cyclone (hydrocyclone)

Liquid cyclones can be used for the classification of solid particles over a size range from 5 to 100  $\mu$ m. Commercial units are available in a wide range of materials of

construction and sizes; from as small as 10 mm to up to 30 m diameter. The separating efficiency of liquid cyclones depends on the particle size and density, and the density and viscosity of the liquid medium.

## 10.3.3. Hydroseparators and sizers (classifiers)

Classifiers that depend on the difference in the settling rates of different size particles in water are frequently used for separating fine particles, in the 50 to 300  $\mu$ m range. Various designs are used. The principal ones used in the chemical process industries are described below.

Thickeners: thickeners are primarily used for liquid-solid separation (see Section 10.4). When used for classification, the feed rate is such that the overflow rate is greater than the settling rate of the slurry, and the finer particles remain in the overflow stream.

Rake classifiers: are inclined, shallow, rectangular troughs, fitted with mechanical rakes at the bottom to rake the deposited solids to the top of the incline (Figure 10.4). Several rake classifiers can be used in series to separate the feed into different size ranges.

Bowl classifiers: are shallow bowls with concave bottoms, fitted with rakes. Their operation is similar to that of thickeners.

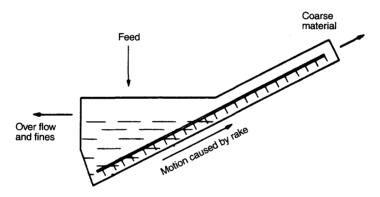



Figure 10.4. Rake classifier

# 10.3.4. Hydraulic jigs

Jigs separate solids by difference in density and size. The material is immersed in water, supported on a screen (Figure 10.5). Pulses of water are forced through the bed of material, either by moving the screen or by pulsating the water level. The flow of water fluidises the bed and causes the solids to stratify with the lighter material at the top and the heavier at the bottom.

#### 10.3.5. Tables

Tables are used wet and dry. The separating action of a wet table resembles that of the traditional miner's pan. Riffled tables (Figure 10.6) are basically rectangular decks, inclined at a shallow angle to the horizontal (2 to  $5^{\circ}$ ), with shallow slats (riffles) fitted to

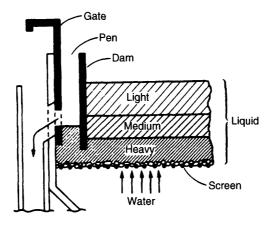



Figure 10.5. A hydraulic jig

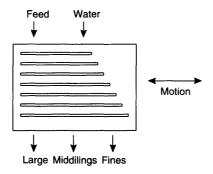



Figure 10.6. Wilfley riffled table

the surface. The table is mechanically shaken, with a slow stroke in the forward direction and a faster backward stroke. The particles are separated into different size ranges under the combined action of the vibration, water flow, and the resistance to flow over the riffles.

# 10.3.6. Classifying centrifuges

Centrifuges are used for the classification of particles in size ranges below  $10 \mu m$ . Two types are used: solid bowl centrifuges, usually with a cylindrical, conical bowl, rotated about a horizontal axis; and "nozzle" bowl machines, fitted with discs.

These types are described in Section 10.4.3.

# 10.3.7. Dense-medium separators (sink and float processes)

Solids of different densities can be separated by immersing them in a fluid of intermediate density. The heavier solids sink to the bottom and the lighter float to the surface. Water suspensions of fine particles are often used as the dense liquid (heavy-medium). The technique is used extensively for the benefication (concentration) of mineral ores.

## 10.3.8. Flotation separators (froth-flotation)

Froth-flotation processes are used extensively for the separation of finely divided solids. Separation depends on differences in the surface properties of the materials. The particles are suspended in an aerated liquid (usually water), and air bubbles adhere preferentially to the particles of one component and bring them to the surface. Frothing agents are used so that the separated material is held on the surface as a froth and can be removed.

Froth-flotation is an extensively used separation technique, having a wide range of applications in the minerals processing industries and other industries. It can be used for particles in the size range from 50 to 400  $\mu$ m.

## 10.3.9. Magnetic separators

Magnetic separators can be used for materials that are affected by magnetic fields; the principle is illustrated in Figure 10.7. Rotating-drum magnetic separators are used for a wide range of materials in the minerals processing industries. They can be designed to handle relatively high throughputs, up to 3000 kg/h per metre length of drum.

Simple magnetic separators are often used for the removal of iron from the feed to a crusher.

The various types of magnetic separators used and their applications are described by Bronkala (1988).

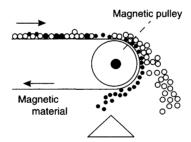



Figure 10.7. Magnetic separator

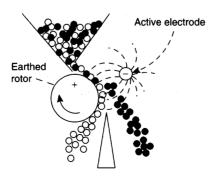



Figure 10.8. Electrostatic separator

## 10.3.10. Electrostatic separators

Electrostatic separation depends on differences in the electrical properties (conductivity) of the materials to be treated. In a typical process the material particles pass through a high-voltage electric field as it is fed on to a revolving drum, which is at earth potential (Figure 10.8). Those particles that acquire a charge adhere to the drum surface and are carried further around the drum before being discharged.

# 10.4. LIQUID-SOLID (SOLID-LIQUID) SEPARATORS

The need to separate solid and liquid phases is probably the most common phase separation requirement in the process industries, and a variety of techniques is used (Figure 10.9). Separation is effected by either the difference in density between the liquid and solids, using either gravity or centrifugal force, or, for filtration, depends on the particle size and shape. The most suitable technique to use will depend on the solids concentration and feed rate, as well as the size and nature of the solid particles. The range of application of various techniques and equipment, as a function of slurry concentration and particle size, is shown in Figure 10.10.

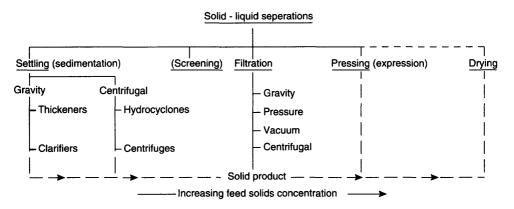



Figure 10.9. Solid-liquid separation techniques

The choice of equipment will also depend on whether the prime objective is to obtain a clear liquid or a solid product, and on the degree of dryness of the solid required.

The design, construction and application of thickeners, centrifuges and filters is a specialised subject, and firms who have expertise in these fields should be consulted when selecting and specifying equipment for new applications. Several specialist texts on the subject are available: Svarovsky (1985) (1990) and Purchas and Wakeman (1986). The theory of sedimentation processes is covered in Volume 2, Chapter 5 and filtration in Chapter 7.

#### 10.4.1. Thickeners and clarifiers

Thickening and clarification are sedimentation processes, and the equipment used for the two techniques are similar. The primary purpose of thickening is to increase the concentration of a relatively large quantity of suspended solids; whereas that of clarifying,

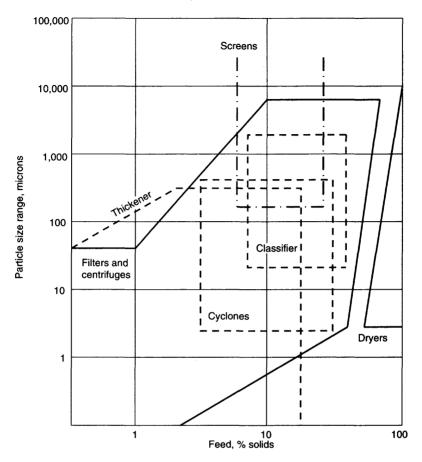



Figure 10.10. Solid-liquid separation techniques (after Dahlstrom and Cornell, 1971)

as the name implies, is to remove a small quantity of fine solids to produce a clear liquid effluent. Thickening and clarification are relatively cheap processes when used for the treatment of large volumes of liquid.

A thickener, or clarifier, consists essentially of a large circular tank with a rotating rake at the base. Rectangular tanks are also used, but the circular design is preferred. They can be classified according to the way the rake is supported and driven. The three basic designs are shown in Figure 10.11 (see p. 408). Various designs of rake are used, depending on the nature of the solids.

The design and construction of thickeners and clarifiers is described by Dahlstrom and Cornell (1971) and Seibert (1987).

Flocculating agents are often added to promote the separating performance of thickeners.

#### 10.4.2. Filtration

In filtration processes the solids are separated from the liquid by passing (filtering) the slurry through some form of porous filter medium. Filtration is a widely used separation

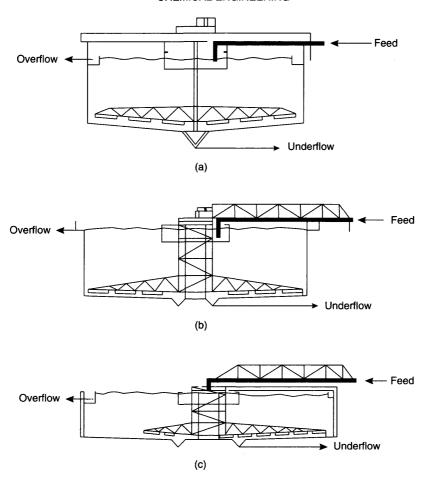



Figure 10.11. Types of thickener and clarifier (a) Bridge supported (up to <40 m dia.) (b) Centre column supported (<30 m dia.) (c) Traction driven (<60 m dia.)

process in the chemical and other process industries. Many types of equipment and filter media are used; designed to meet the needs of particular applications. Descriptions of the filtration equipment used in the process industries and their fields of application can be found in various handbooks: Perry and Green (1984). Schweitzer (1988), Henglein (1969) and Mead (1964); and in several specialist texts on the subject: Suttle (1969), Orr (1977), Purchas (1967), Wakeman (1975) and Cheremisnoff (1998). A short discussion of filtration theory and descriptions of the principal types of equipment is given in Volume 2, Chapter 7.

The most commonly used filter medium is woven cloth, but a great variety of other media is also used. The main types are listed in Table 10.2. A comprehensive discussion of the factors to be considered when selecting filter media is given by Purchas (1971) and Mais (1971). Filter aids are often used to increase the rate of filtration of difficult slurries. They are either applied as a precoat to the filter cloth or added to the slurry, and

deposited with the solids, assisting in the formation of a porous cake. The various filter aids and their application are discussed by Purchas (1967).

| Table | 10.2  | Filter | media |
|-------|-------|--------|-------|
| Table | 1U.Z. | emer   | meana |

| LType                 | Examples                              | Minimum size particle trapped (μm) |
|-----------------------|---------------------------------------|------------------------------------|
| 1. Solid fabrications | Scalloped washers<br>Wire-wound tubes | 5                                  |
| 2. Rigid porous media | Ceramics, stoneware<br>Sintered metal | 1 3                                |
| 3. Metal              | Perforated sheets<br>Woven wire       | 100                                |
| 4. Porous plastics    | Pads, sheets<br>Membranes             | 3<br>0.005                         |
| 5. Woven fabrics      | Natural and synthetic fibre cloths    | 10                                 |
| 6. Non-woven sheets   | Felts, lap<br>Paper, cellulose        | 10<br>5                            |
| 7. Cartridges         | Yarn-wound spools, graded fibres      | 2                                  |
| 8. Loose solids       | Fibres, asbestos, cellulose           | sub-micron                         |

Industrial filters use vacuum, pressure, or centrifugal force to drive the liquid (filtrate) through the deposited cake of solids. Filtration is essentially a discontinuous process. With batch filters, such as plate and frame presses, the equipment has to be shut down to discharge the cake; and even with those filters designed for continuous operation, such as rotating-drum filters, periodic stoppages are necessary to change the filter cloths. Batch filters can be coupled to continuous plant by using several units in parallel, or by providing buffer storage capacity for the feed and product.

The principal factors to be considered when selecting filtration equipment are:

- 1. The nature of the slurry and the cake formed.
- 2. The solids concentration in the feed.
- 3. The throughput required.
- 4. The nature and physical properties of the liquid: viscosity, flammability, toxicity, corrosiveness.
- 5. Whether cake washing is required.
- 6. The cake dryness required.
- 7. Whether contamination of the solid by a filter aid is acceptable.
- 8. Whether the valuable product is the solid or the liquid, or both.

The overriding factor will be the filtration characteristics of the slurry; whether it is fast filtering (low specific cake resistance) or slow filtering (high specific cake resistance). The filtration characteristics can be determined by laboratory or pilot plant tests. A guide to filter selection by the slurry characteristics is given in Table 10.3; which is based on a similar selection chart given by Porter *et al.* (1971).

The principal types of industrial scale filter used are described briefly below.

Leaf test rate, kg/h m2

| 140.0 101.0 0 miles to miles to miles |                   |                  |                         |             |                |  |  |
|---------------------------------------|-------------------|------------------|-------------------------|-------------|----------------|--|--|
| Slurry characteristics                | Fast filtering    | Medium filtering | Slow<br>filtering       | Dilute      | Very<br>dilute |  |  |
| Cake formation rate                   | cm/s<br>>20%      | mm/s             | 0.02-0.12 mm/s<br>1-10% | 0.02 mm/s   | No cake <0.1%  |  |  |
| Normal concentration<br>Settling rate | >20%<br>Very fast | 10-20%<br>Fast   | Slow                    | <5%<br>Slow | <0.1%<br>—     |  |  |

25 - 250

<25

Table 10.3. Guide to filter selection

250-2500

| Filtrate rate, m <sup>3</sup> /h m <sup>2</sup>                                                                                                      | >10 | 5-10 | 0.02-0.05 | 0.02-5 | 0.02-5 |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----------|--------|--------|
| Filter application Continuous vacuum filters Multicompartment drum Single compartment drum Top feed drum Scroll discharge drum Tilting pan Belt Disc |     |      |           | -      |        |
| Batch vacuum leaf Batch nutsche Batch pressure filters Plate and frame Vertical leaf Horizontal plate Cartridge edge                                 |     |      |           |        |        |

# Nutsche (gravity and vacuum operation)

>2500

This is the simplest type of batch filter. It consists of a tank with a perforated base, which supports the filter medium.

# Plate and frame press (pressure operation) (Figure 10.12)

The oldest and most commonly used batch filter. Versatile equipment, made in a variety of materials, and capable of handling viscous liquids and cakes with a high specific resistance.

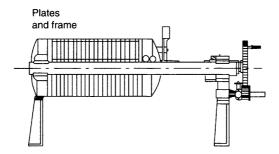



Figure 10.12. Plate and frame filter press

# Leaf filters (pressure and vacuum operation)

Various types of leaf filter are used, with the leaves arranged in horizontal or vertical rows. The leaves consist of metal frames over which filter cloths are draped. The cake is

removed either mechanically or by sluicing it off with jets of water. Leaf filters are used for similar applications as plate and frame presses, but generally have lower operating costs.

## Rotary drum filters (usually vacuum operation) (Figure 10.13)

A drum filter consists essentially of a large hollow drum round which the filter medium is fitted. The drum is partially submerged in a trough of slurry, and the filtrate sucked through the filter medium by vacuum inside the drum. Wash water can be sprayed on to the drum surface and multicompartment drums are used so that the wash water can be kept separate from the filtrate. A variety of methods is used to remove the cake from the drum: knives, strings, air jets and wires. Rotating drum filters are essentially continuous in operation. They can handle large throughputs, and are widely used for free filtering slurries.

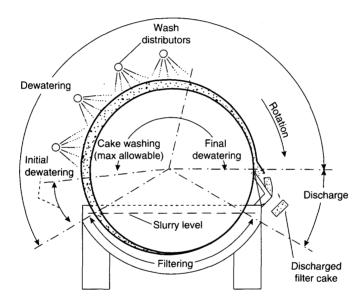



Figure 10.13. Drum filter

# Disc filters (pressure and vacuum operation)

Disc filters are similar in principle to rotary filters, but consist of several thin discs mounted on a shaft, in place of the drum. This gives a larger effective filtering area on a given floor area, and vacuum disc filters are used in preference to drum filters where space is restricted. At sizes above approximately 25 m² filtration area, disc filters are cheaper; but their applications are more restricted, as they are not as suitable for the application of wash water, or precoating.

# Belt filters (vacuum operation) (Figure 10.14)

A belt filter consists of an endless reinforced rubber belt, with drainage hole along its centre, which supports the filter medium. The belt passes over a stationary suction box, into which the filtrate is sucked. Slurry and wash water are sprayed on to the top of the belt.

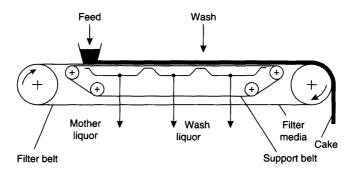



Figure 10.14. Belt filter

## Horizontal pan filters (vacuum operation) (Figure 10.15)

This type is similar in operation to a vacuum Nutsche filter. It consists of shallow pans with perforated bases, which support the filter medium. By arranging a series of pans around the circumference of a rotating wheel, the operation of filtering, washing, drying and discharging can be made automatic.

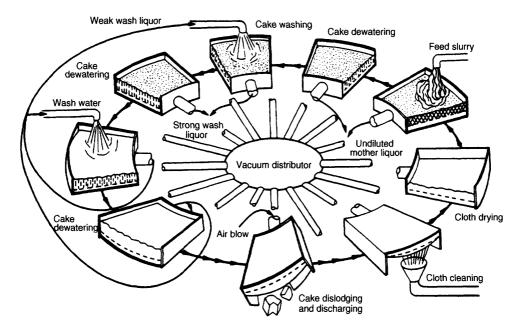



Figure 10.15. Pan filters

# Centrifugal filters

Centrifugal filters use centrifugal force to drive the filtrate through the filter cake. The equipment used is described in the next section.

## 10.4.3. Centrifuges

Centrifuges are classified according to the mechanism used for solids separation:

- (a) Sedimentation centrifuges: in which the separation is dependent on a difference in density between the solid and liquid phases (solid heavier).
- (b) Filtration centrifuges: which separate the phases by filtration. The walls of the centrifuge basket are porous, and the liquid filters through the deposited cake of solids and is removed.

The choice between a sedimentation or filtration centrifuge for a particular application will depend on the nature of the feed and the product requirements.

The main factors to be considered are summarised in Table 10.4. As a general rule, sedimentation centrifuges are used when it is required to produce a clarified liquid, and filtration centrifuges to produce a pure, dry, solid.

|                            |                              | _          |
|----------------------------|------------------------------|------------|
| Factor                     | Sedimentation                | Filtration |
| Solids size, fine          |                              | х          |
| Solids size, $>150 \mu m$  | X                            |            |
| Compressible cakes         | X                            |            |
| Open cakes                 |                              | x          |
| Dry cake required          |                              | x          |
| High filtrate clarity      | X                            |            |
| Crystal breakage problems  |                              | x          |
| Pressure operation         |                              |            |
| High-temperature operation | will depend on<br>centrifuge |            |
| •                          | ~                            |            |

Table 10.4. Selection of sedimentation or filter centrifuge

A variety of centrifugal filter and sedimenter designs is used. The main types are listed in Table 10.5. They can be classified by a number of design and operating features, such as:

- 1. Mode of operation—batch or continuous.
- 2. Orientation of the bowl/basket—horizontal or vertical.
- 3. Position of the suspension and drive—overhung or underhung.
- 4. Type of bowl—solid, perforated basket, disc bowl.
- 5. Method of solids cake removal.
- 6. Method of liquid removal.

Detailed descriptions of the various types of centrifuge used in the process industries and their applications can be found in various handbooks, and in articles by Morris (1966), Linley (1984), Bradley (1965a) and Ambler (1971).

The fields of application of each type, classified by the size range of the solid particles separated, are given in Figure 10.16. A similar selection chart is given by Schroeder (1998).

# Sedimentation centrifuges

There are four main types of sedimentation centrifuge:

Table 10.5. Centrifuge types (after Sutherland, 1970)

| Sedimentation      | Filtration-fixed bed  |  |  |
|--------------------|-----------------------|--|--|
| Laboratory         | Vertical basket       |  |  |
| Bottle             | Manual discharge      |  |  |
| Ultra              | Bag discharge         |  |  |
| •                  | Knife discharge       |  |  |
| Tubular bowl       | Horizontal basket     |  |  |
|                    | Inclined basket       |  |  |
| Disc               |                       |  |  |
| Batch bowl         |                       |  |  |
| Nozzle discharge   |                       |  |  |
| Valve discharge    | Filtration-moving bed |  |  |
| Opening bowl       |                       |  |  |
| Imperforate basket | Conical bowl          |  |  |
| Manual discharge   | Wide angle            |  |  |
| Skimmer discharge  | Vibrating             |  |  |
|                    | Torsional             |  |  |
|                    | Tumbling              |  |  |
| Scroll discharge   | Scroll discharge      |  |  |
| Horizontal         |                       |  |  |
| Cantilevered       | Cylindrical bowl      |  |  |
| Vertical           | Scroll discharge      |  |  |
| Screen bowl        | Pusher                |  |  |

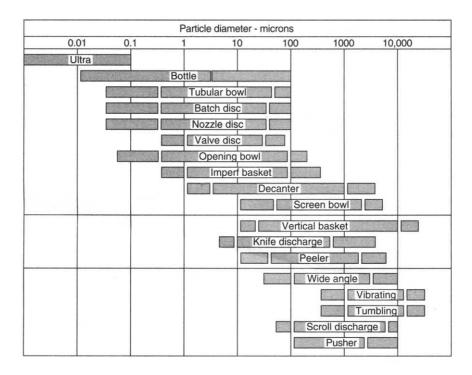



Figure 10.16. Classification of centrifuges by particle size (after Sutherland, 1970)

## 1. Tubular bowl (Figure 10.17)

High-speed, vertical axis, tubular bowl centrifuges are used for the separation of immiscible liquids, such as water and oil, and for the separation of fine solids. The bowl is driven at speeds of around 15,000 rpm (250 Hz) and the centrifugal force generated exceeds 130,000 N.

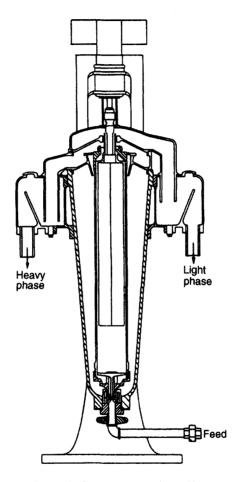



Figure 10.17. Tubular Bowl centrifuge

# 2. Disc bowl (Figure 10.18)

The conical discs in a disc bowl centrifuge split the liquid flow into a number of very thin layers, which greatly increases the separating efficiency. Disc bowl centrifuges are used for separating liquids and fine solids, and for solids classification.

# 3. Scroll discharge

In this type of machine the solids deposited on the wall of the bowl are removed by a scroll (a helical screw conveyer) which revolves at a slightly different speed from the

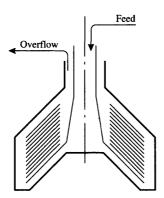



Figure 10.18. Disc bowl centrifuge

bowl. Scroll discharge centrifuges can be designed so that solids can be washed and relatively dry solids be discharged.

#### 4. Solid bowl batch centrifuge

The simplest type; similar to the tubular bowl machine type but with a smaller bowl length to diameter ratio (less than 0.75). The tubular bowl type is rarely used for solids concentrations above 1 per cent by volume. For concentrations between 1 to 15 per cent, any of the other three types can be used. Above 15 per cent, either the scroll discharge type or the batch type may be used, depending on whether continuous or intermittent operation is required.

## Sigma theory for sedimentation centrifuges

The basic equations describing sedimentation in a centrifugal field have been developed in Volume 2, Chapter 9. In that discussion the term sigma ( $\Sigma$ ) is introduced, which can be used to define the performance of a centrifuge independently of the physical properties of the solid-fluid system. The sigma value of a centrifuge, normally expressed in cm<sup>2</sup>, is equal to the cross-sectional area of a gravity settling tank having the same clarifying capacity.

This approach to describing centrifuge performance has become known as the "sigma theory". It provides a means for comparing the performance of sedimentation centrifuges and for scaling up from laboratory and pilot scale tests; see Ambler (1952) and Trowbridge (1962).

In the general case, it can be shown that:

$$Q = 2u_g \Sigma \tag{10.1}$$

and (where Stokes' law applies) 
$$u_g = \frac{\Delta \rho d_s^2 g}{18\mu}$$
 (10.2)

*Note*: The factor of 2 is included in equation 10.1 as  $d_s$  is the *cut-off* size, 50 per cent of particles of this size will be removed in passage through the centrifuge.

where  $Q = \text{volumetric flow of liquid through the centrifuge, m}^3/\text{s}$ ,

 $u_g$  = terminal velocity of the solid particle settling under gravity through the liquid, m/s,

 $\Sigma$  = sigma value of the centrifuge, m<sup>2</sup>,

 $\Delta \rho$  = density difference between solid and liquid, kg/m<sup>3</sup>

 $d_s$  = the diameter of the solid particle, the cut-off size, m ( $\mu$ m × 10<sup>-6</sup>),

 $\mu = \text{viscosity of the liquid, Nm}^{-2}\text{s.}$ 

 $g = \text{gravitational acceleration}, 9.81 \text{ m/s}^2$ 

Morris (1966) gives a method for the selection of the appropriate type of sedimentation centrifuge for a particular application based on the ratio of the liquid overflow to sigma value  $(Q/\Sigma)$ . His values for the operating range of each type, and their approximate efficiency rating, are given in Table 10.6. The efficiency term is used to account for the different amounts by which the various designs differ from the theoretical sigma values given by equation 10.1. Sigma values depend solely on the geometrical configuration and speed of the centrifuge. Details of the calculation for various types are given by Ambler (1952). To use Table 10.6, it is necessary to know the feed rate of slurry (and hence the liquid overflow Q), the density of the liquid and solid, the liquid viscosity; and the diameter of the particle for, say, a 98 per cent size removal. The use of Table 10.6 is illustrated in Example 10.1.

| Туре                          | Approximate efficiency (%) | Normal operating range Q, $m^3/h$ at $Q/\Sigma$ m/s       |
|-------------------------------|----------------------------|-----------------------------------------------------------|
| Tubular bowl                  | 90                         | 0.4 at $5 \times 10^{-8}$ to 4 at $3.5 \times 10^{-7}$    |
| Disc                          | 45                         | 0.1 at $7 \times 10^{-8}$ to 110 at $4.5 \times 10^{-7}$  |
| Solid bowl (scroll discharge) | 60                         | 0.7 at $1.5 \times 10^{-6}$ to 15 at $1.5 \times 10^{-5}$ |
| Solid bowl (basket)           | 75                         | 0.4 at $5 \times 10^{-6}$ to 4 at $1.5 \times 10^{-4}$    |

Table 10.6. Selection of sedimentation centrifuges

A selection guide for sedimentation centrifuges by Lavanchy et al. (1964), which includes other types of solid-liquid separators, is shown in Figure 10.19, adapted to SI units.

### Example 10.1

A precipitate is to be continuously separated from a slurry. The solids concentration is 5 per cent and the slurry feed rate 5.5 m<sup>3</sup>/h. The relevant physical properties at the system operating temperature are:

liquid density 1050 kg/m<sup>3</sup>, viscosity 4 cp (mNm<sup>-2</sup>s), solid density 2300 kg/m<sup>3</sup>, "cut-off" particle size 10  $\mu$ m = 10 × 10<sup>-6</sup> m.

#### Solution

Overflow rate, 
$$Q = 0.95 \times 5.5 = 5.23 \text{ m}^3/\text{h}$$
  
=  $\frac{5.13}{3600} = 1.45 \times 10^{-3} \text{ m}^3/\text{s}$   
 $\Delta \rho = 2300 - 1050 = 1250 \text{ kg/m}^3$ 

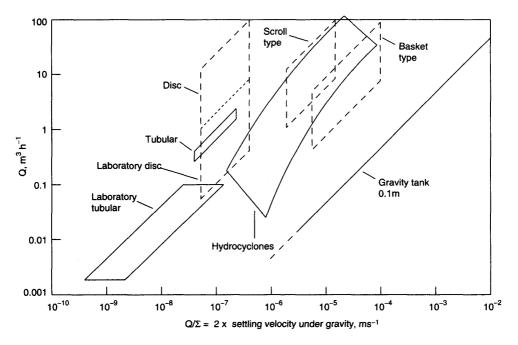



Figure 10.19. Performance of sedimentation equipment (after Lavanchy et al., 1964)

From equations 10.1 and 10.2

$$\frac{Q}{\Sigma} = 2 \times \frac{1250(10 \times 10^{-6})^2}{18 \times 4 \times 10^{-3}} \times 9.81 = 3.4 \times 10^{-5}$$

From Table 10.6 for a Q of 5.23 m<sup>3</sup>/h at a  $Q/\Sigma$  of 3.4  $\times$  10<sup>-5</sup> a solid bowl basket type should be used.

To obtain an idea of the size of the machine needed the sigma value can be calculated using the efficiency value from Table 10.6.

From equation 10.1:

$$\Sigma = \frac{Q}{eff. \times 2u_g} = \frac{1.45 \times 10^{-3}}{0.75 \times 2 \times 3.4 \times 10^{-5}}$$
$$= \frac{28.4 \text{ m}^2}{2}$$

The sigma value is the equivalent area of a gravity settler that would perform the same separation as the centrifuge.

## Filtration centrifuges (centrifugal filters)

It is convenient to classify centrifugal filters into two broad classes, depending on how the solids are removed: fixed bed or moving bed.

In the fixed-bed type, the cake of solids remains on the walls of the bowl until removed manually, or automatically by means of a knife mechanism. It is essentially cyclic in operation. In the moving-bed type, the mass of solids is moved along the bowl by the

action of a scroll (similar to the solid-bowl sedimentation type); or by a ram (pusher type); or by a vibration mechanism; or by the bowl angle. Washing and drying zones can be incorporated into the moving bed type.

Bradley (1965a) has grouped the various types into the family tree shown in Figure 10.20.

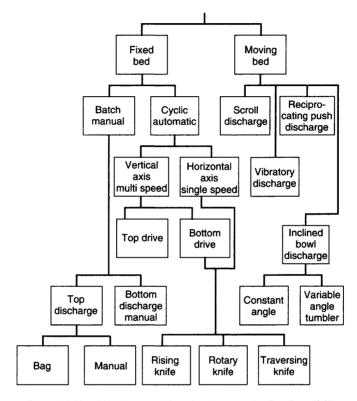



Figure 10.20. Filtration centrifuge family tree (after Bradley, 1965a)

Schematic diagrams of the various types are shown in Figure 10.21. The simplest machines are the basket types (Figures 10.21a, b, c), and these form the basic design from which the other types have been developed (Figures 10.21d to o).

The various arrangements of knife mechanisms used for automatic removal of the cake are shown in Figures 10.21d to h. The bottom discharge-type machines (Figures 10.21d, e) can be designed for variable speed, automatic discharge; and are suitable for use with fragile, or plate or needle-shaped crystals, where it is desirable to avoid breakage or compaction of the bed. They can be loaded and discharged at low speeds, which reduces breakage and compaction of the cake. The single-speed machines (Figures 10.21f, g, h) are used where cakes are thin, and short cycle times are required. They can be designed for high-temperature and pressure operation. When continuous operation is required, the scroll, pusher, or other self-discharge types are used (Figures 10.21i to o). The scroll discharge centrifuge is a low-cost, flexible machine, capable of a wide range of applications; but is not suitable for handling fragile materials.

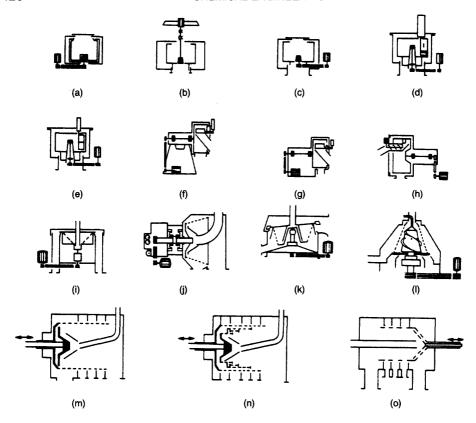



Figure 10.21. Schematic diagrams of filtration centrifuge types (Bradley, 1965a) (a) Bottom drive batch basket with bag (b) Top drive bottom discharge batch basket (c) Bottom drive bottom discharge batch basket (d) Bottom drive automatic basket, rising knife (e) Bottom drive automatic basket, rotary knife (f) Single-reversing knife rising knife (g) Single-speed automatic rotary knife (h) Single-speed automatic traversing knife (i) Inclined wall self-discharge (j) Inclined vibrating wall self-discharge (k) Inclined "tumbling" wall self-discharge (l) Inclined wall scroll discharge (m) Traditional single-stage pusher (n) Traditional multi-stage pusher (o) Conical pusher with de-watering cone

It is normally used for coarse particles, where some contamination of the filtrate with fines can be tolerated.

The capacity of filtration centrifuges is very dependent on the solids concentration in the feed. For example, at 10 per cent feed slurry concentration 9 kg of liquid will be centrifuged for every 1 kg of solids separated; whereas with a 50 per cent solids concentration the quantity will be less than 1 kg. For dilute slurries it is well worth considering using some form of pre-concentration; such as gravity sedimentation or a hydrocyclone.

## 10.4.4. Hydrocyclones (liquid-cyclones)

Hydrocyclones are used for solid-liquid separations; as well as for solids classification, and liquid-liquid separation. It is a centrifugal device with a stationary wall, the centrifugal force being generated by the liquid motion. The operating principle is basically the same

as that of the gas cyclone described in Section 10.8.3, and in Volume 2, Chapter 8. Hydrocyclones are simple, robust, separating devices, which can be used over the particle size range from 4 to 500  $\mu$ m. They are often used in groups, as illustrated in Figure 10.24b. The design and application of hydrocyclones is discussed fully in books by Bradley (1965b) and Svarovsky (1984). Design methods and charts are also given by Zanker (1977), Day and Grichar (1979) and Moir (1985).

The nomographs by Zanker can be used to make a preliminary estimate of the size of cyclone needed. The specialist manufacturers of hydrocyclone equipment should be consulted to determine the best arrangements and design for a particular application.

Zanker's method is outlined below and illustrated in Example 10.2. Figure 10.23 is based on an empirical equation by Bradley (1960):

$$d_{50} = 4.5 \left[ \frac{D_c^3 \mu}{L^{1.2} (\rho_s - \rho_L)} \right]$$
 (10.3)

where  $d_{50}$  = the particle diameter for which the cyclone is 50 per cent efficient,  $\mu$ m,  $D_c$  = diameter of the cyclone chamber, cm,

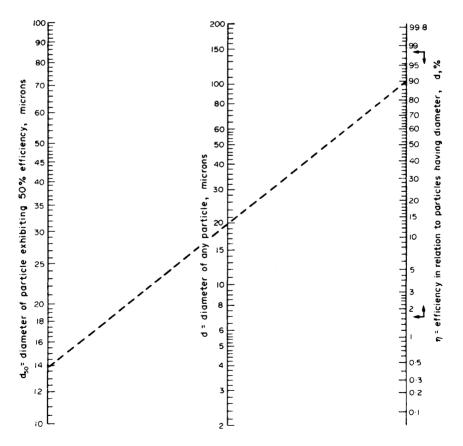



Figure 10.22. Determination of  $d_{50}$  from the desired particle separation (Equation 10.3, Zanker, 1977) (Example 10.2)

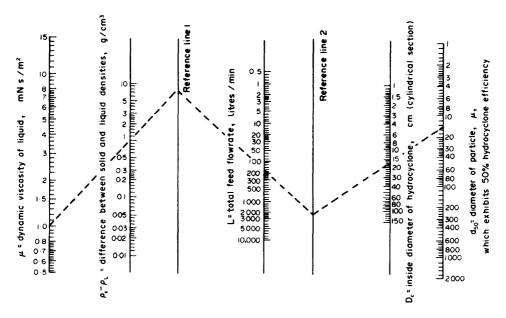



Figure 10.23. Chamber dia.  $D_c$  from flow-rate, physical properties, and  $d_{50}$  particle size (Equation 10.4, Zanker, 1977) (Example 10.2)

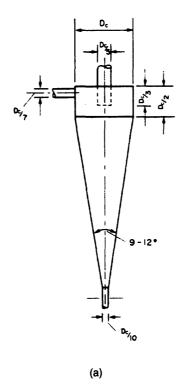



Figure 10.24. (a) Hydrocyclone-typical proportions

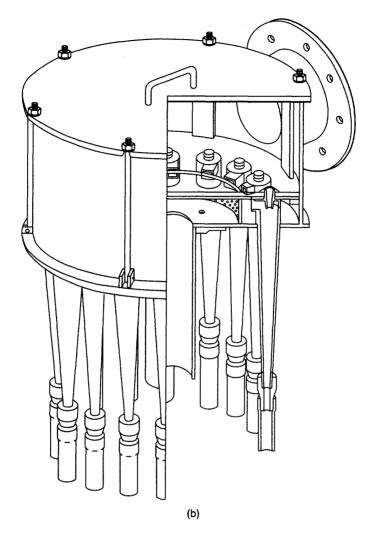



Figure 10.24. (b) A "Clog" assembly of 16 × 2 in (50 mm) diameter hydrocyclone. (Courtesy of Richard Mozley Ltd.)

 $\mu$  = liquid viscosity, centipoise (mN s/m<sup>2</sup>),

L = feed flow rate, 1/min,

 $\rho_L$  = density of the liquid, g/cm<sup>3</sup>,

 $\rho_s$  = density of the solid, g/cm<sup>3</sup>.

The equation gives the chamber diameter required to separate the so-called  $d_{50}$  particle diameter, as a function of the slurry flow rate and the liquid and solid physical properties. The  $d_{50}$  particle diameter is the diameter of the particle, 50 per cent of which will appear in the overflow, and 50 per cent in the underflow. The separating efficiency for other particles is related to the  $d_{50}$  diameter by Figure 10.22, which is based on a formula by Bennett (1936).

$$\eta = 100 \left[ 1 - e^{-(d/d_{50} - 0.115)^3} \right]$$
 (10.4)

where  $\eta$  = the efficiency of the cyclone in separating any particle of diameter d, per cent,

d = the selected particle diameter,  $\mu$ m.

The method applies to hydrocyclones with the proportions shown in Figure 10.24.

### Example 10.2

Estimate the size of hydrocyclone needed to separate 90 per cent of particles with a diameter greater than 20  $\mu$ m, from 10 m<sup>3</sup>/h of a dilute slurry.

Physical properties: solid density 2000 kg/m<sup>3</sup>, liquid density 1000 kg/m<sup>3</sup>, viscosity 1 mN s/m<sup>2</sup>

#### Solution

Flow-rate = 
$$\frac{10 \times 10^3}{60}$$
 = 166.71/min  
( $\rho_s - \rho_L$ ) = 2.0 - 1.0 = 1.0 g/cm<sup>3</sup>

From Figure 10.22, for 90 per cent removal of particles above 20  $\mu$ m

$$d_{50} = 14 \ \mu \text{m}$$

From Figure 10.23, for  $\mu = 1 \text{ mN s/m}^2$ ,  $(\rho_s - \rho_L) = 1.0 \text{ g/cm}^3$ , L = 167/min

$$D_c = \underline{16 \text{ cm}}$$

### 10.4.5. Pressing (expression)

Pressing, in which the liquid is squeezed (expressed) from a mass of solids by compression, is used for certain specialised applications. Pressing consumes a great deal of energy, and should not be used unless no other separating technique is suitable. However, in some applications dewatering by pressing can be competitive with drying.

Presses are of two basic types: hydraulic batch presses and screw presses. Hydraulic presses are used for extracting fruit juices, and screw presses for dewatering materials; such as paper pulp, rubbish and manure. The equipment used is described in the handbooks; Perry and Green (1984) and Mead (1964).

## 10.4.6. Solids drying

Drying is the removal of water, or other volatile liquids, by evaporation. Most solid materials require drying at some stage in their production. The choice of suitable drying equipment cannot be separated from the selection of the upstream equipment feeding the drying stage.

Table 10.7. Dryer selection

| Mode of operation | Generic        | ٥ | Feed condition |   | Specific<br>dryer                         |                | Suitable<br>for heat-  | for               | Retention or            | Heat<br>transfer                       | Capacity               | Typical evaporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------|----------------|---|----------------|---|-------------------------------------------|----------------|------------------------|-------------------|-------------------------|----------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Žå                | G &            | 1 | 2              | 3 | types                                     |                | sensitive<br>materials | vacuum<br>service | cycle<br>time           | method                                 |                        | capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| # H               |                |   | -              |   | Shelf     Cabinet     Compartmen          |                | Yes                    | Yes               | 6.48 h                  | Radiant<br>and<br>conduction           | Limited                | 0.15-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | 2              |   | L              | - | Truck 1. Kettle 2. Pan                    | No<br>Yes      | Yes<br>No              | No<br>Yes         | 6.48 h<br>3.12 h        | Convection Conduction                  |                        | 0.15-1.0<br>1.5-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Batch             | Stationary     |   | L              | ļ | Rotary                                    | Yes            | Yes                    | Yes               | 4.48 h                  | Conduction                             | Limited                | 0.5-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | S <sub>2</sub> |   | -              |   | Rotary<br>internal                        | Yes            | Yes                    | Yes               | 4.48 h                  | Conduction                             | Limited                | 0.5-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |                |   | -              |   | Double cone                               | Yes            | Yes                    | Yes               | 3.12 h                  | Conduction                             | Limited                | 0.5-12 rausign per transign per |
|                   | Drum           | - |                |   | Single drum     Double drum     Twin drum | No             | Yes                    | Yes               | Very<br>short           | Conduction                             | Medium                 | 5-50<br><u>%</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   |                |   | ļ.,            |   | Rotary<br>direct<br>heat                  | No             | No                     | No                | Long                    | Convection                             | High                   | 3-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   | Rotary         |   | -              |   | Rotary,<br>indirect<br>heat<br>Rotary,    | No             | No                     | No                | Long                    | Conduction                             | Medium                 | 15-200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |                |   |                |   | steam<br>tube<br>Rotary,                  | No             | Depends on<br>material | No                | Long                    | Conduction                             | High                   | 15-200 amnlo vacing dryer volume 50-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| S                 |                |   |                |   | direct-<br>indirect<br>heat               | No             | No                     | No                | Long                    | Conduction<br>Convection               | High                   | 50-150 💂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Continuous        |                |   | -              |   | Louver                                    | No             | Depends on material    | No                | Long                    | Convection                             | High                   | 5-240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ĭ                 | Conveyor       |   | H              | ᅥ | Tunnel<br>belt,<br>screen                 | No             | Yes                    | No                | Long                    | Convection                             | Medium                 | 1.5-35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |                |   |                |   | Rotary<br>shelf                           | Yes            | Depends on material    | No                | Medium                  | Conduction<br>Convection               | Medium                 | 0.5-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |                |   | ┝╌┥            |   | Trough                                    | Yes            | Depends on material    | Yes               | Varies                  | Conduction                             | Medium                 | 0.5-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |                |   | H              |   | Vibrating                                 | Yes            | Depends on material    | No                | Medium                  | Convection Conduction                  | Medium                 | 0.5-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   |                |   |                |   | Turbo                                     | No             | Depends on material    | No                | Medium                  | Convection                             | Medium                 | 1-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | Suspended      | • |                |   | Spray<br>Flash<br>Fluid                   | No<br>No<br>No | Yes<br>Yes<br>Yes      | No<br>No<br>No    | Short<br>Short<br>Short | Convection<br>Convection<br>Convection | High<br>High<br>Medium | 1.5-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | Sus            |   |                |   | bed                                       |                |                        |                   |                         |                                        |                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

= applicable to feed conditions noted

Key to feed conditions:

<sup>1.</sup> Solutions, colloidal suspensions and emulsions, pumpable solids suspensions, pastes and sludges.

<sup>2.</sup> Free-flowing powders, granular, crystalline or fibrous solids that can withstand mechanical handling.

<sup>3.</sup> Solids incapable of withstanding mechanical handling.

The overriding consideration in the selection of drying equipment is the nature and concentration of the feed. Drying is an energy-intensive process, and the removal of liquid by thermal drying will be more costly than by mechanical separation techniques.

Drying equipment can be classified according to the following design and operating features:

- 1. Batch or continuous.
- 2. Physical state of the feed: liquid, slurry, wet solid.
- 3. Method of conveyance of the solid: belt, rotary, fluidised.
- 4. Heating system: conduction, convection, radiation.

Except for a few specialised applications, hot air is used as the heating and mass transfer medium in industrial dryers. The air may be directly heated by the products of combustion of the fuel used (oil, gas or coal) or indirectly heated, usually by banks of steamheated finned tubes. The heated air is usually propelled through the dryer by electrically driven fans.

Table 10.7, adapted from a similar selection guide by Parker (1963a), shows the basic features of the various types of solids dryer used in the process industries; and Table 10.8, by Williams-Gardner (1965), shows typical applications.

Batch dryers are normally used for small-scale production and where the drying cycle is likely to be long. Continuous dryers require less labour, less floor space; and produce a more uniform quality product.

When the feed is solids, it is important to present the material to the dryer in a form that will produce a bed of solids with an open, porous, structure.

For pastes and slurries, some form of pretreatment equipment will normally be needed, such as extrusion or granulation.

The main factors to be considered when selecting a dryer are:

- 1. Feed condition: solid, liquid, paste, powder, crystals.
- 2. Feed concentration, the initial liquid content.
- 3. Product specification: dryness required, physical form.
- 4. Throughput required.
- 5. Heat sensitivity of the product.
- 6. Nature of the vapour: toxicity, flammability.
- 7. Nature of the solid: flammability (dust explosion hazard), toxicity.

The drying characteristics of the material can be investigated by laboratory and pilot plant tests; which are best carried out in consultation with the equipment vendors.

The theory of drying processes is discussed in Volume 2, Chapter 16. Full descriptions of the various types of equipment used and their applications are given in that chapter, and in several specialist books; Keey (1972, 1978); Nonhebel and Moss (1971); Williams-Gardner (1971). Only brief descriptions of the principal types will be given in this section.

The basic types used in the chemical process industries are: tray, band, rotary, fluidised, pneumatic, drum and spray dryers.

### Tray dryers (Figure 10.25)

Batch tray dryers are used for drying small quantities of solids, and are used for a wide range of materials.

Table 10.8. Dryer applications

| Dryer type           | System                                                | Feed form                                                                                         | Typical products                                                                      |  |  |
|----------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| Batch ovens          | Forced convection                                     | Paste, granules,<br>extrude cake                                                                  | Pigment dyestuffs,<br>pharmaceuticals,<br>fibres                                      |  |  |
|                      | Vacuum                                                | Extrude cake                                                                                      | Pharmaceuticals                                                                       |  |  |
| " pan (agitated)     | Atmospheric and vacuum                                | Crystals, granules, powders                                                                       | Fine chemicals, food products                                                         |  |  |
| " rotary             | Vacuum                                                | Crystals, granules solvent recovery                                                               | Pharmaceuticals                                                                       |  |  |
| " fluid bed          | Forced convection                                     | Granular, crystals                                                                                | Fine chemicals,<br>pharmaceuticals,<br>plastics                                       |  |  |
| " infra-red          | Radiant                                               | Components sheets                                                                                 | Metal products, plastics                                                              |  |  |
| Continuous rotary    | Convection Direct/indirect Direct Indirect Conduction | Crystals, coarse<br>powders, extrudes,<br>preformed cake<br>lumps, granular<br>paste and fillers, | Chemical ores,<br>food products,<br>clays, pigments,<br>chemicals                     |  |  |
|                      |                                                       | cakes back-mixed with dry product                                                                 | Carbon black                                                                          |  |  |
| " film drum          | Conduction                                            | Liquids, suspensions                                                                              | Foodstuffs, pigment                                                                   |  |  |
| " trough             | Conduction                                            |                                                                                                   | Ceramics, adhesives                                                                   |  |  |
| » spray              | Convection                                            | Liquids, suspensions                                                                              | Foodstuffs, pharmaceuticals, ceramics, fine chemicals, deter- gents, organic extracts |  |  |
| " band               | Convection                                            | Preformed solids                                                                                  | Foodstuffs, pig-<br>ments, chemicals,<br>rubber, clays, ores,<br>textiles             |  |  |
| " fluid bed          | fluid bed Convection                                  |                                                                                                   | Ores, coal, clays, chemicals                                                          |  |  |
| pneumatic Convection |                                                       | Preformed pastes,<br>granules, crystals,<br>coarse products                                       | Chemicals, starch,<br>flour, resins, wood-<br>products, food<br>products              |  |  |
| " infra-red          | Radiant                                               | Components sheets                                                                                 | Metal products,<br>moulded fibre<br>articles, painted<br>surfaces                     |  |  |

The material to be dried is placed in solid bottomed trays over which hot air is blown; or perforated bottom trays through which the air passes.

Batch dryers have high labour requirements, but close control can be maintained over the drying conditions and the product inventory, and they are suitable for drying valuable products.

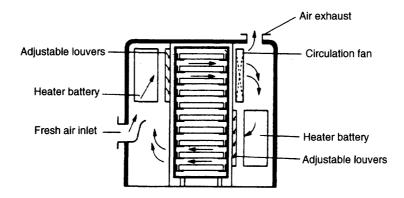



Figure 10.25. Tray dryer

### Conveyor dryers (continuous circulation band dryers) (Figure 10.26)

In this type, the solids are fed on to an endless, perforated, conveyor belt, through which hot air is forced. The belt is housed in a long rectangular cabinet, which is divided up into zones, so that the flow pattern and temperature of the drying air can be controlled. The relative movement through the dryer of the solids and drying air can be parallel or, more usually, counter-current.

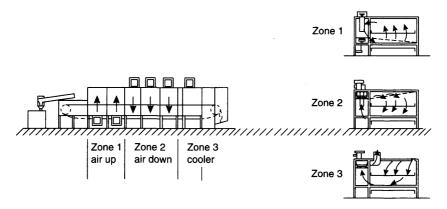



Figure 10.26. Conveyor dryer

This type of dryer is clearly only suitable for materials that form a bed with an open structure. High drying rates can be achieved, with good product-quality control. Thermal efficiencies are high and, with steam heating, steam usage can be as low as 1.5 kg per kg of water evaporated. The disadvantages of this type of dryer are high initial cost and, due to the mechanical belt, high maintenance costs.

## Rotary dryer (Figure 10.27)

In rotary dryers the solids are conveyed along the inside of a rotating, inclined, cylinder and are heated and dried by direct contact with hot air gases flowing through the cylinder. In some, the cylinders are indirectly heated.

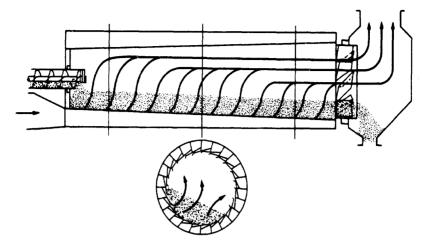



Figure 10.27. Rotary dryer

Rotating dryers are suitable for drying free-flowing granular materials. They are suitable for continuous operation at high throughputs; have a high thermal efficiency and relatively low capital cost and labour costs. Some disadvantages of this type are: a non-uniform residence time, dust generation and high noise levels.

### Fluidised bed dryers (Figure 10.28)

In this type of dryer, the drying gas is passed through the bed of solids at a velocity sufficient to keep the bed in a fluidised state; which promotes high heat transfer and drying rates.

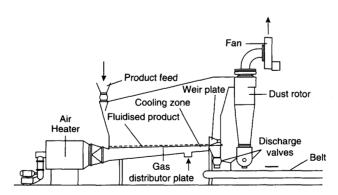



Figure 10.28. Fluidised bed dryer

Fluidised bed dryers are suitable for granular and crystalline materials within the particle size range 1 to 3 mm. They are designed for continuous and batch operation.

The main advantages of fluidised dryers are: rapid and uniform heat transfer; short drying times, with good control of the drying conditions; and low floor area requirements. The power requirements are high compared with other types.

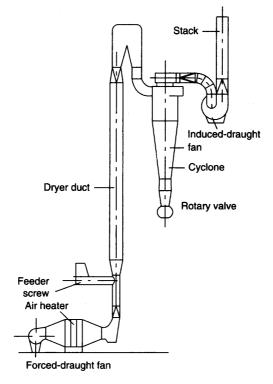



Figure 10.29. Pneumatic dryer

## Pneumatic dryers (Figure 10.29)

Pneumatic dryers, also called flash dryers, are similar in their operating principle to spray dryers. The product to be dried is dispersed into an upward-flowing stream of hot gas by a suitable feeder. The equipment acts as a pneumatic conveyor and dryer. Contact times are short, and this limits the size of particle that can be dried. Pneumatic dryers are suitable for materials that are too fine to be dried in a fluidised bed dryer but which are heat sensitive and must be dried rapidly. The thermal efficiency of this type is generally low.

### Spray dryers (Figure 10.30)

Spray dryers are normally used for liquid and dilute slurry feeds, but can be designed to handle any material that can be pumped. The material to be dried is atomised in a nozzle, or by a disc-type atomiser, positioned at the top of a vertical cylindrical vessel. Hot air flows up the vessel (in some designs downward) and conveys and dries the droplets. The liquid vaporises rapidly from the droplet surface and open, porous particles are formed. The dried particles are removed in a cyclone separator or bag filter.

The main advantages of spray drying are the short contact time, making it suitable for drying heat-sensitive materials, and good control of the product particle size, bulk density, and form. Because the solids concentration in the feed is low the heating requirements will be high. Spray drying is discussed in a book by Masters (1991).

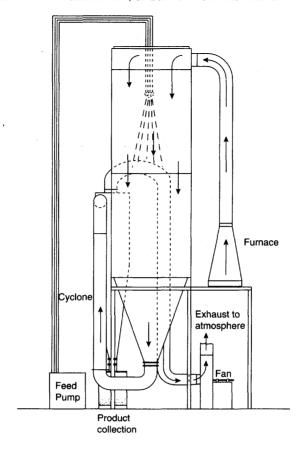



Figure 10.30. Spray dryer

# Rotary drum dryers (Figure 10.31)

Drum dryers are used for liquid and dilute slurry feeds. They are an alternative choice to spray dryers when the material to be dried will form a film on a heated surface, and is not heat sensitive.

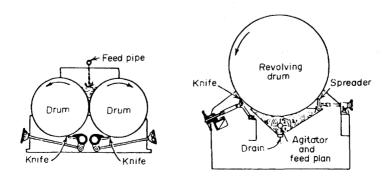



Figure 10.31. Rotary drum dryers

They consist essentially of a revolving, internally heated, drum, on which a film of the solids is deposited and dried. The film is formed either by immersing part of the drum in a trough of the liquid or by spraying, or splashing, the feed on to the drum surface; double drums are also used in which the feed is fed into the "nip" formed between the drums.

The drums are usually heated with steam, and steam economies of 1.3 kg steam per kg of water evaporated are typically achieved.

#### 10.5. SEPARATION OF DISSOLVED SOLIDS

On an industrial scale, evaporation and crystallisation are the main processes used for the recovery of dissolved solids from solutions.

Membrane filtration processes, such as reverse osmosis, and micro and ultra filtration, are used to "filter out" dissolved solids in certain applications; see Table 10.9. These specialised processes will not be discussed in this book. A comprehensive description of the techniques used and their applications is given in Volume 2, Chapter 20; see also: Lacey and Loeb (1972), Meares (1976), Cheryan (1986), McGregor (1986) and Schweitzer (1988).

| Process                                         | Approximate size range (m)                                   | Examples                                                                                                   |  |  |
|-------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|
| Microfiltration Ultrafiltration Reverse osmosis | $10^{-8} - 10^{-4}$ $10^{-9} - 10^{-8}$ $10^{-10} - 10^{-9}$ | Pollen, blood cells, bacteria<br>Albumin, vitamin B <sub>12</sub><br>Ions, Na <sup>+</sup> Cl <sup>-</sup> |  |  |

Table 10.9. Membrane filtration processes

### 10.5.1. Evaporators

Evaporation is the removal of a solvent by vaporisation, from solids that are not volatile. It is normally used to produce a concentrated liquid, often prior to crystallisation, but a dry solid product can be obtained with some specialised designs. The general subject of evaporation is covered in Volume 2, Chapter 14. That chapter includes a discussion of heat transfer in evaporators, multiple-effect evaporators, and a description of the principal types of equipment. The selection of the appropriate type of evaporator is discussed by Cole (1984). Evaporation is the subject of a book by Billet (1989).

A great variety of evaporator designs have been developed for specialised applications in particular industries. The designs can be grouped into the following basic types.

## Direct-heated evaporators

This type includes solar pans and submerged combustion units. Submerged combustion evaporators can be used for applications where contamination of the solution by the products of combustion is acceptable.

### Long-tube evaporators (Figure 10.32)

In this type the liquid flows as a thin film on the walls of a long, vertical, heated, tube. Both falling film and rising film types are used. They are high capacity units; suitable for low viscosity solutions.

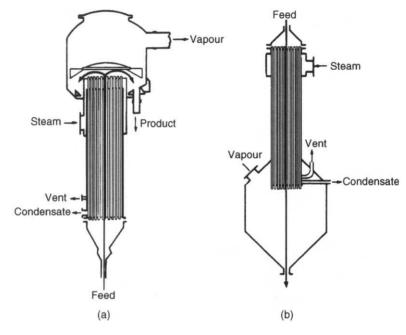



Figure 10.32. Long-tube evaporators (a) Rising film (b) Falling film

### Forced-circulation evaporators (Figure 10.33)

In forced circulation evaporators the liquid is pumped through the tubes. They are suitable for use with materials which tend to foul the heat transfer surfaces, and where crystallisation can occur in the evaporator.

## Agitated thin-film evaporators (Figure 10.34)

In this design a thin layer of solution is spread on the heating surface by mechanical means. Wiped-film evaporators are used for very viscous materials and for producing solid products. The design and applications of this type of evaporator are discussed by Mutzenburg (1965), Parker (1965) and Fischer (1965).

## Short-tube evaporators

Short-tube evaporators, also called callandria evaporators, are used in the sugar industry; see Volume 2.

## **Evaporator selection**

The selection of the most suitable evaporator type for a particular application will depend on the following factors:

- 1. The throughput required.
- 2. The viscosity of the feed and the increase in viscosity during evaporation.

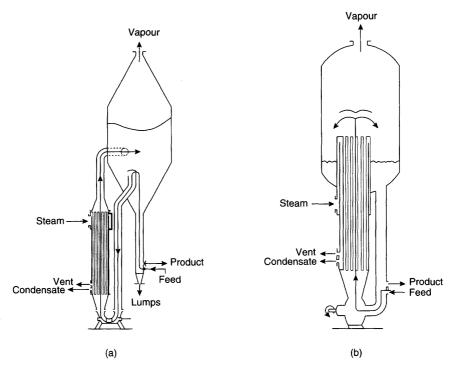



Figure 10.33. Forced-circulation evaporators (a) Submerged tube (b) Boiling tube

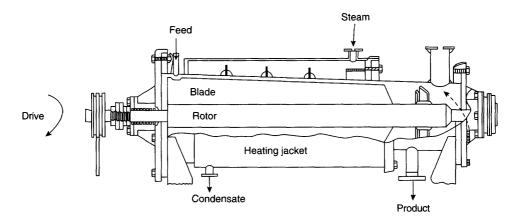



Figure 10.34. Horizontal wiped-film evaporator

- 3. The nature of the product required; solid, slurry, or concentrated solution.
- 4. The heat sensitivity of the product.
- 5. Whether the materials are fouling or non-fouling.
- 6. Whether the solution is likely to foam.
- 7. Whether direct heating can be used.

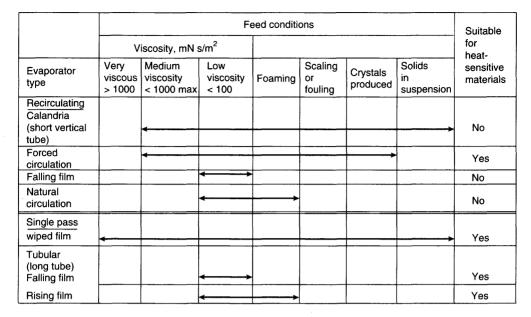



Figure 10.35. Evaporator selection guide

A selection guide based on these factors is given in Figure 10.35; see also Parker (1963b).

### Auxilliary equipment

Condensers and vacuum pumps will be needed for evaporators operated under vacuum. For aqueous solutions, steam ejectors and jet condensers are normally used. Jet condensers are direct-contact condensers, where the vapour is condensed by contact with jets of cooling water. Indirect, surface condensers, are used where it is necessary to keep the condensed vapour and cooling water effluent separate.

## 10.5.2. Crystallisation

Crystallisation is used for the production, purification and recovery of solids. Crystalline products have an attractive appearance, are free flowing, and easily handled and packaged. The process is used in a wide range of industries: from the small-scale production of specialised chemicals, such as pharmaceutical products, to the tonnage production of products such as sugar, common salt and fertilisers.

Crystallisation theory is covered in Volume 2, Chapter 15, and in several other texts: Mullin (1992), Van Hook (1961), Nyvlt (1971) and Janie and Grootscholten (1984). Descriptions and illustrations of the many types of commercial crystalliser used can be found in these texts and in various handbooks: Perry and Green (1984), Schweitzer (1988). Procedures for the scale-up and design of crystallisers are given by Mersham (1984), (1988), (1995). Bamford (1965) includes details of the ancillary equipment required: vacuum pumps, circulation pumps, valves, filters, centrifuges and dryers.

Precipitation, which can be considered as a branch of crystallisation, is covered by Sohnel and Garside (1992).

Crystallisation equipment can be classified by the method used to obtain supersaturation of the liquor, and also by the method used to suspend the growing crystals. Supersaturation is obtained by cooling or evaporation. There are four basic types of crystalliser; these are described briefly below.

### Tank crystallisers

This is the simplest type of industrial crystallising equipment. Crystallisation is induced by cooling the mother liquor in tanks; which may be agitated and equipped with cooling coils or jackets. Tank crystallisers are operated batchwise, and are generally used for small-scale production.

### Scraped-surface crystallisers

This type is similar in principle to the tank type, but the cooling surfaces are continually scraped or agitated to prevent the fouling by deposited crystals and to promote heat transfer. They are suitable for processing high-viscosity liquors. Scraped-surface crystallisers can be operated batchwise, with recirculation of the mother liquor, or continuously. A disadvantage of this type is that they tend to produce very small crystals. A typical unit is the Swenson-Walker crystalliser shown in Volume 2.

#### Circulating magma crystallisers (Figure 10.36)

In this type both the liquor and growing crystals are circulated through the zone in which supersaturation occurs. Circulating magma crystallisers are probably the most

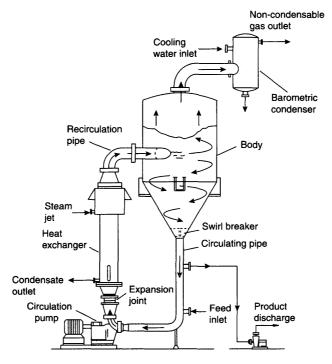



Figure 10.36. Circulating magma crystalliser (evaporative type)

important type of large-scale crystallisers used in the chemical process industry. Designs are available in which supersaturation is achieved by direct cooling, evaporation or evaporative cooling under vacuum.

## Circulating liquor crystallisers (Figure 10.37)

In this type only the liquor is circulated through the heating or cooling equipment; the crystals are retained in suspension in the crystallising zone by the up-flow of liquor. Circulating liquor crystallisers produce crystals of regular size. The basic design consists of three components: a vessel in which the crystals are suspended and grow and are removed; a means of producing supersaturation, by cooling or evaporation; and a means of

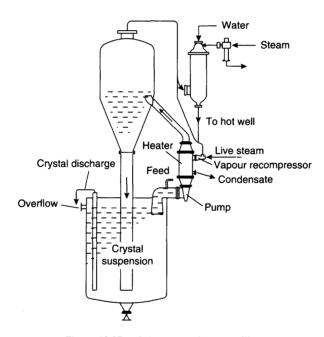



Figure 10.37. Oslo evaporative crystalliser

Table 10.10. Selection of crystallisers

| Crystalliser type  | Applications                                                                            | Typical uses                                                                  |
|--------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Tank               | Batch operation, small-scale production                                                 | Fatty acids, vegetable oils, sugars                                           |
| Scraped surface    | Organic compounds, where fouling is a problem, viscous materials                        | Chlorobenzenes, organic acids, paraffin waxes, napthalene, urea               |
| Circulating magma  | Production of large-sized crystals. High throughputs                                    | Ammonium and other inorganic salts, sodium and potassium chlorides            |
| Circulating liquor | Production of uniform crystals (smaller size than circulating magma). High throughputs. | Gypsum, inorganic salts, sodium<br>and potassium nitrates, silver<br>nitrates |

circulating the liquor. The Oslo crystalliser (Figure 10.37) is the archetypical design for this type of crystallising equipment.

Circulating liquor crystallisers and circulating magma crystallisers are used for the large-scale production of a wide range of crystal products.

Typical applications of the main types of crystalliser are summarised in Table 10.10; see also Larson (1978).

#### 10.6. LIQUID-LIQUID SEPARATION

Separation of two liquid phases, immiscible or partially miscible liquids, is a common requirement in the process industries. For example, in the unit operation of liquid-liquid extraction the liquid contacting step must be followed by a separation stage (Volume 2, Chapter 13). It is also frequently necessary to separate small quantities of entrained water from process streams. The simplest form of equipment used to separate liquid phases is the gravity settling tank, the decanter. Various proprietary equipment is also used to promote coalescence and improve separation in difficult systems, or where emulsions are likely to form. Centrifugal separators are also used.

#### 10.6.1. Decanters (settlers)

Decanters are used to separate liquids where there is a sufficient difference in density between the liquids for the droplets to settle readily. Decanters are essentially tanks which give sufficient residence time for the droplets of the dispersed phase to rise (or settle) to the interface between the phases and coalesce. In an operating decanter there will be three distinct zones or bands: clear heavy liquid; separating dispersed liquid (the dispersion zone); and clear light liquid.

Decanters are normally designed for continuous operation, but the same design principles will apply to batch operated units. A great variety of vessel shapes is used for decanters, but for most applications a cylindrical vessel will be suitable, and will be the cheapest shape. Typical designs are shown in Figures 10.38 and 10.39. The position of the interface can be controlled, with or without the use of instruments, by use of a syphon take-off for the heavy liquid, Figure 10.38.

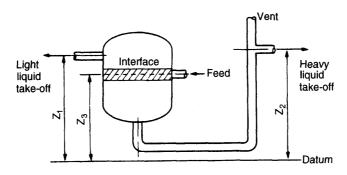



Figure 10.38. Vertical decanter

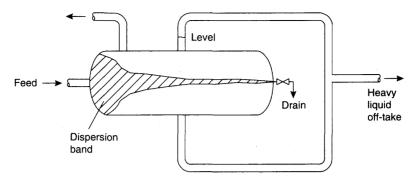



Figure 10.39. Horizontal decanter

The height of the take-off can be determined by making a pressure balance. Neglecting friction loss in the pipes, the pressure exerted by the combined height of the heavy and light liquid in the vessel must be balanced by the height of the heavy liquid in the take-off leg, Figure 10.38.

$$(z_1 - z_3)\rho_1 g + z_3 \rho_2 g = z_2 \rho_2 g$$

$$z_2 = \frac{(z_1 - z_3)\rho_1}{\rho_2} + z_3$$
(10.5)

hence

where  $\rho_1$  = density of the light liquid, kg/m<sup>3</sup>,

 $\rho_2$  = density of the heavy liquid, kg/m<sup>3</sup>,

 $z_1$  = height from datum to light liquid overflow, m,

 $z_2$  = height from datum to heavy liquid overflow, m,

 $z_3$  = height from datum to the interface, m.

The height of the liquid interface should be measured accurately when the liquid densities are close, when one component is present only in small quantities, or when the throughput is very small. A typical scheme for the automatic control of the interface, using a level instrument that can detect the position of the interface, is shown in Figure 10.40. Where one phase is present only in small amounts it is often recycled to the decanter feed to give more stable operation.

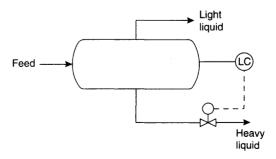



Figure 10.40. Automatic control, level controller detecting interface

### Decanter design

A rough estimate of the decanter volume required can be made by taking a hold-up time of 5 to 10 min, which is usually sufficient where emulsions are not likely to form. Methods for the design of decanters are given by Hooper and Jacobs (1979) and Signales (1975). The general approach taken is outlined below and illustrated by Example 10.3.

The decanter vessel is sized on the basis that the velocity of the continuous phase must be less than settling velocity of the droplets of the dispersed phase. Plug flow is assumed, and the velocity of the continuous phase calculated using the area of the interface:

$$u_c = \frac{L_c}{A_i} < u_d \tag{10.6}$$

where  $u_d$  = settling velocity of the dispersed phase droplets, m/s,

 $u_c$  = velocity of the continuous phase, m/s,

 $L_c$  = continuous phase volumetric flow rate, m<sup>3</sup>/s,

 $A_i$  = area of the interface, m<sup>2</sup>.

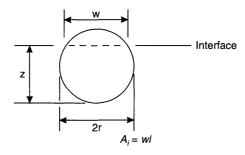
Stokes' law (see Volume 2, Chapter 3) is used to determine the settling velocity of the droplets:

$$u_d = \frac{d_d^2 g(\rho_d - \rho_c)}{18\mu_c} \tag{10.7}$$

where  $d_d$  = droplet diameter, m,

 $u_d$  = settling (terminal) velocity of the dispersed phase droplets with diameter d, m/s,

 $\rho_c$  = density of the continuous phase, kg/m<sup>3</sup>,


 $\rho_d$  = density of the dispersed phase, kg/m<sup>3</sup>,

 $\mu_c$  = viscosity of the continuous phase, N s/m<sup>2</sup>,

 $g = \text{gravitational acceleration}, 9.81 \text{ m/s}^2.$ 

Equation 10.7 is used to calculate the settling velocity with an assumed droplet size of 150  $\mu$ m, which is well below the droplet sizes normally found in decanter feeds. If the calculated settling velocity is greater than  $4 \times 10^{-3}$  m/s, then a figure of  $4 \times 10^{-3}$  m/s is used.

For a horizontal, cylindrical, decanter vessel, the interfacial area will depend on the position of the interface.



and

$$w = 2(2rz - z^2)^{1/2}$$

where w =width of the interface, m,

z = height of the interface from the base of the vessel, m,

l = length of the cylinder, m,

r = radius of the cylinder, m.

For a vertical, cylindrical decanter:

$$A_i = \pi r^2$$

The position of the interface should be such that the band of droplets that collect at the interface waiting to coalesce and cross the interface does not extend to the bottom (or top) of the vessel. Ryon et al. (1959) and Mizrahi and Barnea (1973) have shown that the depth of the dispersion band is a function of the liquid flow rate and the interfacial area. A value of 10 per cent of the decanter height is usually taken for design purposes. If the performance of the decanter is likely to be critical the design can be investigated using scale models. The model should be scaled to operate at the same Reynolds number as the proposed design, so that the effect of turbulence can be investigated; see Hooper (1975).

#### Example 10.3

Design a decanter to separate a light oil from water.

The oil is the dispersed phase.

Oil, flow rate 1000 kg/h, density 900 kg/m<sup>3</sup>, viscosity 3 mN s/m<sup>2</sup>.

Water, flow rate 5000 kg/h, density 1000 kg/m<sup>3</sup>, viscosity 1 mN s/m<sup>2</sup>.

#### Solution

Take  $d_d = 150 \ \mu \text{m}$ 

$$u_d = \frac{(150 \times 10^{-6})^2 \, 9.81(900 - 1000)}{18 \times 1 \times 10^{-3}}$$
  
= -0.0012 m/s, -1.2 mm/s (rising)

As the flow rate is small, use a vertical, cylindrical vessel.

diameter =  $\underline{1.2 \text{ m}}$ 

$$L_c = \frac{5000}{1000} \times \frac{1}{3600} = 1.39 \times 10^{-3} \text{ m}^3/\text{s}$$

$$u_c \neq u_d, \text{ and } u_c = \frac{L_c}{A_i}$$

$$A_i = \frac{1.39 \times 10^{-3}}{0.0012} = 1.16 \text{ m}^2$$

$$r = \sqrt{\frac{1.16}{\pi}} = 0.61 \text{ m}$$

hence

Take the height as twice the diameter, a reasonable value for a cylinder:

height = 
$$\underline{2.4}$$
 m

Take the dispersion band as 10 per cent of the height =  $\underline{0.24 \text{ m}}$ 

Check the residence time of the droplets in the dispersion band

$$= \frac{0.24}{u_d} = \frac{0.24}{0.0012} = 200 \text{ s } (\sim 3 \text{ min})$$

This is satisfactory, a time of 2 to 5 min is normally recommended. Check the size of the water (continuous, heavy phase) droplets that could be entrained with the oil (light phase).

Velocity of oil phase = 
$$\frac{1000}{900} \times \frac{1}{3600} \times \frac{1}{1.16}$$
  
=  $2.7 \times 10^{-4}$  m/s (0.27 mm/s)

From equation 10.7

$$d_d = \left[ \frac{u_d 18\mu_c}{g(\rho_d - \rho_c)} \right]^{1/2}$$

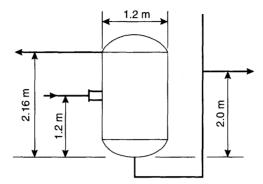
so the entrained droplet size will

$$= \left[ \frac{2.7 \times 10^{-4} \times 18 \times 3 \times 10^{-3}}{9.81(1000 - 900)} \right]^{1/2}$$
$$= \underbrace{1.2 \times 10^{-4} \text{ m}}_{} = 120 \ \mu\text{m}$$

which is satisfactory; below 150  $\mu$ m.

### Piping arrangement

To minimise entrainment by the jet of liquid entering the vessel, the inlet velocity for a decanter should keep below 1 m/s.


Flow-rate = 
$$\left[\frac{1000}{900} + \frac{5000}{1000}\right] \frac{1}{3600} = 1.7 \times 10^{-3} \text{ m}^3/\text{s}$$
  
Area of pipe =  $\frac{1.7 \times 10^{-3}}{1} = 1.7 \times 10^{-3} \text{ m}^2$   
Pipe diameter =  $\sqrt{\frac{1.7 \times 10^{-3} \times 4}{\pi}} = 0.047 \text{ m}$ , say  $\underline{50 \text{ mm}}$ 

Take the position of the interface as half-way up the vessel and the light liquid off-take as at 90 per cent of the vessel height, then

$$z_1 = 0.9 \times 2.4 = 2.16 \text{ m}$$
  
 $z_3 = 0.5 \times 2.4 = 1.2 \text{ m}$ 

$$z_2 = \frac{(2.16 - 1.2)}{1000} \times 900 + 1.2 = \underline{2.06 \text{ m}}$$
 (10.5)  
 $say \underline{2.0 \text{ m}}$ 

Proposed design



Drain valves should be fitted at the interface so that any tendency for an emulsion to form can be checked; and the emulsion accumulating at the interface drained off periodically as necessary.

### 10.6.2. Plate separators

Stacks of horizontal, parallel, plates are used in some proprietary decanter designs to increase the interfacial area per unit volume and to reduce turbulence. They, in effect, convert the decanter volume into several smaller separators connected in parallel.

#### 10.6.3. Coalescers

Proprietary equipment, in which the dispersion is forced through some form of coalescing medium, is often used for the coalescence and separation of finely dispersed droplets. A medium is chosen that is preferentially wetted by the dispersed phase; knitted wire or plastic mesh, beds of fibrous material, or special membranes are used. The coalescing medium works by holding up the dispersed droplets long enough for them to form globlets of sufficient size to settle. A typical unit is shown in Figure 10.41; see Redmon (1963). Coalescing filters are suitable for separating small quantities of dispersed liquids from large throughputs.

Electrical coalescers, in which a high voltage field is used to break down the stabilising film surrounding the suspended droplets, are used for desalting crude oils and for similar applications; see Waterman (1965).



Figure 10.41. Typical coalescer design

#### 10.6.4. Centrifugal separators

#### Sedimentation centrifuges

For difficult separations, where simple gravity settling is not satisfactory, sedimentation centrifuges should be considered. Centrifuging will give a cleaner separation than that obtainable by gravity settling. Centrifuges can be used where the difference in gravity between the liquids is very small, as low as 100 kg/m<sup>3</sup>, and they can handle high throughputs, up to around 100 m<sup>3</sup>/h. Also, centrifuging will usually break any emulsion that may form. Bowl or disc centrifuges are normally used (see Section 10.4.3).

### Hydrocyclones

Hydrocyclones are used for some liquid-liquid separations, but are not so effective in this application as in separating solids from liquids.

#### 10.7. SEPARATION OF DISSOLVED LIQUIDS

The most commonly used techniques for the separation and purification of miscible liquids are distillation and solvent extraction. In recent years, adsorption, ion exchange and chromatography have become practical alternatives to distillation or solvent extraction in many special applications.

Distillation is probably the most widely used separation technique in the chemical process industries, and is covered in Chapter 11 of this volume, and Chapter 11 of Volume 2. Solvent extraction and the associated technique, leaching (solid-liquid extraction) are covered in Volume 2, Chapters 13 and 10. Adsorption, which can be used for the separation of liquid and gases mixtures, is covered in Chapter 17 of Volume 2. Adsorption is also covered in the books by Suziki (1990), Yang (1987) and Crittenden and Thomas (1998).

Ion exchange, the separation of dissolved solids, is covered in Chapter 18 of Volume 2. Through ion exchange is usually associated with water purification the technique has applications in other industries.

Chromatography, which is finding increasing applications in the downstream processing of biochemical products, is covered in Chapter 19 of Volume 2.

In this section, the discussion is restricted to a brief review of solvent-extraction processes.

#### 10.7.1. Solvent extraction and leaching

### Solvent extraction (liquid-liquid extraction)

Solvent extraction, also called liquid-liquid extraction, can be used to separate a substance from a solution by extraction into another solvent. It can be used ether to recover a valuable substance from the original solution, or to purify the original solvent by removing an unwanted component. Examples of solvent extraction are: the extraction of uranium and plutonium salts from solution in nitric acid, in the nuclear industry; and the purification of water.

The process depends on the substance being extracted, the solute, having a greater solubility in the solvent used for the extraction than in the original feed solvent. The two solvents must be essentially immiscible.

The solvents are mixed in a contactor, to effect the transfer of solute, and then the phases separated. The depleted feed solvent leaving the extractor is called the raffinate, and the solute rich extraction solvent, the extract. The solute is normally recovered from the extraction solvent, by distillation, and the extraction solvent recycled.

The simplest form of extractor is a mixer-settler, which consist of an agitated tank and a decanter.

The design of extraction columns is discussed in Chapter 11, Section 11.16. See also, Volume 2, Chapter 13, Walas (1990) and Perry *et al.* (1997).

### Leaching

Liquids can be extracted from solids by leaching. As the name implies, the soluble liquid contained in a solid is leached out by contacting the solid with a suitable solvent. A principal application of leaching is in the extraction of valuable oils from nuts and seeds; such as, palm oil and rape seed oil.

The equipment used to contact the solids with the solvent is usually a special designs to suit the type of solid being processed, and is to an extent unique to the particular industry. General details of leaching equipment are given in Volume 2, Chapter 10 and in Perry *et al.* (1997).

The leaching is normally done using a number of stages. In this respect, the process is similar to liquid-liquid extraction., and the methods used to determine the number of stages required are similar.

For a detailed discussion of the procedures used to determine the number of stages required for a particular process, see Volume 2, Chapter 10 or Prabhudesai (1988).

## 10.8. GAS-SOLIDS SEPARATIONS (GAS CLEANING)

The primary need for gas-solid separation processes is for gas cleaning: the removal of dispersed finely divided solids (dust) and liquid mists from gas streams. Process gas streams must often be cleaned up to prevent contamination of catalysts or products, and to avoid damage to equipment, such as compressors. Also, effluent gas streams must be cleaned to comply with air-pollution regulations and for reasons of hygiene, to remove toxic and other hazardous materials; see IChemE (1992).

There is also often a need for clean, filtered, air for process using air as a raw material, and where clean working atmospheres are needed: for instance, in the pharmaceutical and electronics industries.

The particles to be removed may range in size from large molecules, measuring a few hundredths of a micrometre, to the coarse dusts arising from the attrition of catalysts or the fly ash from the combustion of pulverised fuels.

A variety of equipment has been developed for gas cleaning. The principal types used in the process industries are listed in Table 10.11, which is adapted from a selection guide given by Sargent (1971). Table 10.11 shows the general field of application of each type in terms of the particle size separated, the expected separation efficiency, and the throughput. It can be used to make a preliminary selection of the type of equipment likely to be suitable for a particular application. Descriptions of the equipment shown in Table 10.11 can be found in various handbooks: Perry and Green (1984), Schweitzer (1988); and in several specialist texts: Nonhebel (1972), Strauss (1966), Dorman (1974), Rose and Wood (1966), Gas cleaning is also covered in Volume 2, Chapter 8.

Gas-cleaning equipment can be classified according to the mechanism employed to separate the particles: gravity settling, impingement, centrifugal force, filtering, washing and electrostatic precipitation.

## 10.8.1. Gravity settlers (settling chambers)

Settling chambers are the simplest form of industrial gas-cleaning equipment, but have only a limited use; they are suitable for coarse dusts, particles larger than 50  $\mu$ m. They are essentially long, horizontal, rectangular chambers; through which the gas flows. The solids settle under gravity and are removed from the bottom of the chamber. Horizontal plates or vertical baffles are used in some designs to improve the separation. Settling chambers offer little resistance to the gas flow, and can be designed for operation at high temperature and high pressure, and for use in corrosive atmospheres.

The length of chamber required to settle a given particle size can be estimated from the settling velocity (calculated using Stokes' law) and the gas velocity. A design procedure is given by Maas (1979).

## 10.8.2. Impingement separators

Impingement separators employ baffles to achieve the separation. The gas stream flows easily round the baffles, whereas the solid particles, due to their higher momentum, tend to continue in their line of flight, strike the baffles and are collected. A variety of baffle

|                             |                                  |                                            | Table 10.11.           | Gas-cleaning e                   | quipment                |                                               |                                                                        |                                 |
|-----------------------------|----------------------------------|--------------------------------------------|------------------------|----------------------------------|-------------------------|-----------------------------------------------|------------------------------------------------------------------------|---------------------------------|
| Type of equipment           | Minimum particle<br>size<br>(μm) | Minimum<br>loading<br>(mg/m <sup>3</sup> ) | Approx. efficiency (%) | Typical gas<br>velocity<br>(m/s) | Maximum capacity (m³/s) | Gas pressure<br>drop<br>(mm H <sub>2</sub> O) | Liquid<br>rate<br>(m <sup>3</sup> /10 <sup>3</sup> m <sup>3</sup> gas) | Space<br>required<br>(relative) |
| Dry collectors              |                                  |                                            |                        | <u>-</u> -                       |                         |                                               |                                                                        |                                 |
| Settling chamber            | 50                               | 12,000                                     | 50                     | 1.5-3                            | none                    | 5                                             |                                                                        | Large                           |
| Baffle chamber              | 50                               | 12,000                                     | 50                     | 5-10                             | none                    | 3-12                                          |                                                                        | Medium                          |
| Louver                      | 20                               | 2500                                       | 80                     | 10-20                            | 15                      | 10-50                                         | _                                                                      | Small                           |
| Cyclone                     | 10                               | 2500                                       | 85                     | 10-20                            | 25                      | 10-70                                         |                                                                        | Medium                          |
| Multiple cyclone            | 5                                | 2500                                       | 95                     | 10-20                            | 100                     | 50-150                                        | <del></del> ,                                                          | Small                           |
| Impingement                 | 10                               | 2500                                       | 90                     | 15-30                            | none                    | 25-50                                         | · <del></del>                                                          | Small                           |
| Wet scrubbers               |                                  |                                            |                        |                                  |                         |                                               |                                                                        |                                 |
| Gravity spray               | 10                               | 2500                                       | 70                     | 0.5 - 1                          | 50                      | 25                                            | 0.05 - 0.3                                                             | Medium                          |
| Centrifugal                 | 5                                | 2500                                       | 90                     | 10-20                            | 50                      | 50-150                                        | 0.1 - 1.0                                                              | Medium                          |
| Impingement                 | 5                                | 2500                                       | 95                     | 15-30                            | 50                      | 50-200                                        | 0.1 - 0.7                                                              | Medium                          |
| Packed                      | 5                                | 250                                        | 90                     | 0.5 - 1                          | 25                      | 25-250                                        | 0.7 - 2.0                                                              | Medium                          |
| Jet 0.5                     | to 5 (range)                     | 250                                        | 90                     | 10-100                           | 50                      | none                                          | 7-14                                                                   | Small                           |
| Venturi                     | 0.5                              | 250                                        | 99                     | 50-200                           | 50                      | 250-750                                       | 0.4 - 1.4                                                              | Small                           |
| Others                      |                                  |                                            |                        |                                  |                         |                                               |                                                                        |                                 |
| Fabric filters              | 0.2                              | 250                                        | 99                     | 0.01 - 0.1                       | 100                     | 50-150                                        |                                                                        | Large                           |
| Electrostatic precipitators | 2                                | 250                                        | 99                     | 5-30                             | 1000                    | 5-25                                          | _                                                                      | Large                           |

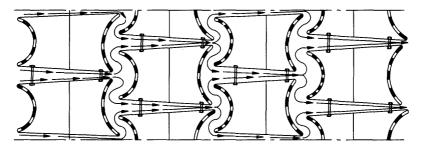



Figure 10.42. Impingement separator (section showing gas flow)

designs is used in commercial equipment; a typical example is shown in Figure 10.42. Impingement separators cause a higher pressure drop than settling chambers, but are capable of separating smaller particle sizes,  $10-20 \mu m$ .

### 10.8.3. Centrifugal separators (cyclones)

Cyclones are the principal type of gas-solids separator employing centrifugal force, and are widely used. They are basically simple constructions; can be made from a wide range of materials; and can be designed for high temperature and pressure operation.

Cyclones are suitable for separating particles above about 5  $\mu$ m diameter; smaller particles, down to about 0.5  $\mu$ m, can be separated where agglomeration occurs.

The most commonly used design is the reverse-flow cyclone, Figure 10.43; other configurations are used for special purposes. In a reverse-flow cyclone the gas enters the top chamber tangentially and spirals down to the apex of the conical section; it then moves upward in a second, smaller diameter, spiral, and exits at the top through a central vertical pipe. The solids move radially to the walls, slide down the walls, and are collected at the bottom. Design procedures for cyclones are given by Constantescu (1984). Strauss (1966), Koch and Licht (1977) and Stairmand (1951). The theoretical concepts and experimental work on which the design methods are based on discussed in Volume 2, Chapter 8. Stairmand's method is outlined below and illustrated in Example 10.4.

## Cyclone design

Stairmand developed two standard designs for gas-solid cyclones: a high-efficiency cyclone, Figure 10.44a, and a high throughput design, Figure 10.44b. The performance curves for these designs, obtained experimentally under standard test conditions, are shown in Figures 10.45a and 10.45b. These curves can be transformed to other cyclone sizes and operating conditions by use of the following scaling equation, for a given separating efficiency:

$$d_2 = d_1 \left[ \left( \frac{D_{c_2}}{D_{c_1}} \right)^3 \times \frac{Q_1}{Q_2} \times \frac{\Delta \rho_1}{\Delta \rho_2} \times \frac{\mu_2}{\mu_1} \right]^{1/2}$$
 (10.8)

where  $d_1$  = mean diameter of particle separated at the standard conditions, at the chosen separating efficiency, Figures 10.45a or 10.45b,

 $d_2$  = mean diameter of the particle separated in the proposed design, at the same separating efficiency,

 $D_{c_1}$  = diameter of the standard cyclone = 8 inches (203 mm),

 $D_{c_2}$  = diameter of proposed cyclone, mm,

 $Q_1 =$ standard flow rate:

for high efficiency design =  $223 \text{ m}^3/\text{h}$ , for high throughput design =  $669 \text{ m}^3/\text{h}$ ,

 $Q_2$  = proposed flow rate, m<sup>3</sup>/h,

 $\Delta \rho_1$  = solid-fluid density difference in standard conditions = 2000 kg/m<sup>3</sup>,

 $\Delta \rho_2$  = density difference, proposed design,

 $\mu_1$  = test fluid viscosity (air at 1 atm, 20°C)

 $= 0.018 \text{ mN s/m}^2$ ,

 $\mu_2$  = viscosity, proposed fluid.

A performance curve for the proposed design can be drawn up from Figures 10.45a or 10.45b by multiplying the grade diameter at, say, each 10 per cent increment of efficiency, by the scaling factor given by equation 10.8; as shown in Figure 10.46 (p. 451).

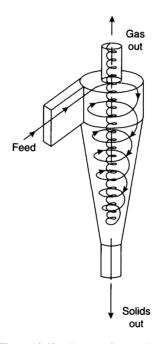



Figure 10.43. Reverse-flow cyclone

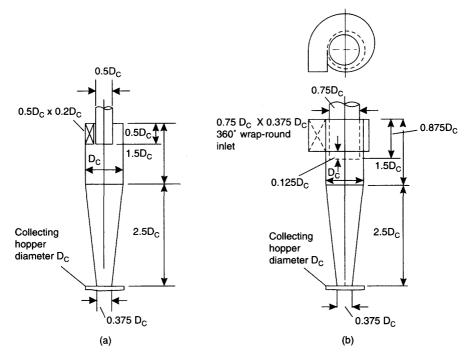



Figure 10.44. Standard cyclone dimension (a) High efficiency cyclone (b) High gas rate cyclone

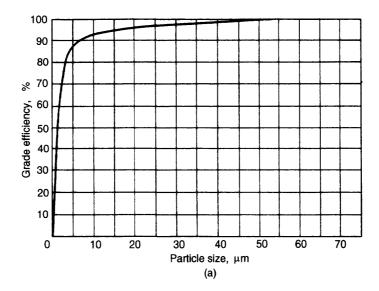



Figure 10.45. Performance curves, standard conditions (a) High efficiency cyclone

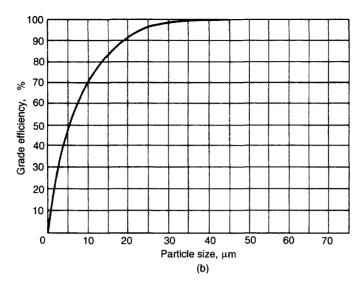



Figure 10.45 (continued). Performance curves, standard conditions (b) High gas rate cyclone

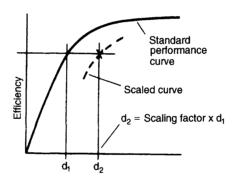



Figure 10.46. Scaled performance curve

An alternative method of using the scaling factor, that does not require redrawing the performance curve, is used in Example 10.4. The cyclone should be designed to give an inlet velocity of between 9 and 27 m/s (30 to 90 ft/s); the optimum inlet velocity has been found to be 15 m/s (50 ft/s).

### Pressure drop

The pressure drop in a cyclone will be due to the entry and exit losses, and friction and kinetic energy losses in the cyclone. The empirical equation given by Stairmand (1949) can be used to estimate the pressure drop:

$$\Delta P = \frac{\rho_f}{203} \left\{ u_1^2 \left[ 1 + 2\phi^2 \left( \frac{2r_t}{r_e} - 1 \right) \right] + 2u_2^2 \right\}$$
 (10.9)

where  $\Delta P$  = cyclone pressure drop, millibars,

 $\rho_f$  = gas density, kg/m<sup>3</sup>,

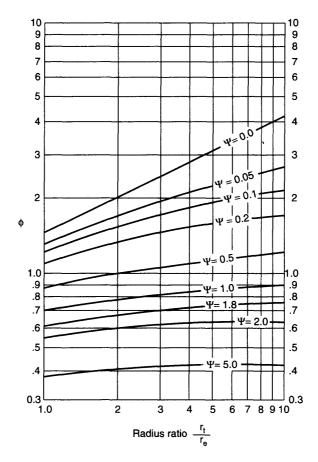



Figure 10.47. Cyclone pressure drop factor

 $u_1 = inlet duct velocity, m/s,$ 

 $u_2 = \text{exit duct velocity, m/s,}$ 

 $r_t$  = radius of circle to which the centre line of the inlet is tangential, m,

 $r_e$  = radius of exit pipe, m,

 $\phi$  = factor from Figure 10.47,

 $\psi$  = parameter in Figure 10.47, given by:

$$\psi = f_c \frac{A_s}{A_1}$$

 $f_c$  = friction factor, taken as 0.005 for gases,

 $A_s$  = surface area of cyclone exposed to the spinning fluid,  $m^2$ .

For design purposes this can be taken as equal to the surface area of a cylinder with the same diameter as the cylone and length equal to the total height of the cyclone (barrel plus cone).

 $A_1$  = area of inlet duct,  $m^2$ .

### General design procedure

- Select either the high-efficiency or high-throughput design, depending on the performance required.
- Obtain an estimate of the particle size distribution of the solids in the stream to be treated.
- 3. Estimate the number of cyclones needed in parallel.
- 4. Calculate the cyclone diameter for an inlet velocity of 15 m/s (50 ft/s). Scale the other cyclone dimensions from Figures 10.44a or 10.44b.
- 5. Calculate the scale-up factor for the transposition of Figures 10.45a or 10.45b.
- 6. Calculate the cyclone performance and overall efficiency (recovery of solids). If unsatisfactory try a smaller diameter.
- 7. Calculate the cyclone pressure drop and, if required, select a suitable blower.
- 8. Cost the system and optimise to make the best use of the pressure drop available, or, if a blower is required, to give the lowest operating cost.

## Example 10.4

Design a cyclone to recover solids from a process gas stream. The anticipated particle size distribution in the inlet gas is given below. The density of the particles is 2500 kg/m<sup>3</sup>, and the gas is essentially nitrogen at 150°C. The stream volumetric flow-rate is 4000 m<sup>3</sup>/h, and the operation is at atmospheric pressure. An 80 per cent recovery of the solids is required.

| Particle size (µm)             | 50 | 40 | 30 | 20 | 10 | 5  | 2 |
|--------------------------------|----|----|----|----|----|----|---|
| Percentage by weight less than | 90 | 75 | 65 | 55 | 30 | 10 | 4 |

#### Solution

As 30 per cent of the particles are below 10  $\mu$ m the high-efficiency design will be required to give the specified recovery.

Flow-rate = 
$$\frac{4000}{3600}$$
 = 1.11 m<sup>3</sup>/s  
Area of inlet duct, at 15 m/s =  $\frac{1.11}{15}$  = 0.07 m<sup>2</sup>

From Figure 10.44a, duct area = 
$$0.5 D_c \times 0.2 D_c$$
  
so,  $D_c = 0.84$ 

This is clearly too large compared with the standard design diameter of 0.203 m. Try four cyclones in parallel,  $D_c = 0.42$  m.

Flow-rate per cyclone = 
$$1000 \text{ m}^3/\text{h}$$
  
Density of gas at  $150^{\circ}\text{C} = \frac{28}{22.4} \times \frac{273}{423} = 0.81 \text{ kg/m}^2$ ,

negligible compared with the solids density

Viscosity of 
$$N_2$$
 at  $150^{\circ}C = 0.023 \text{ cp}(\text{mN s/m}^2)$ 

From equation 10.8,

scaling factor = 
$$\left[ \left( \frac{0.42}{0.203} \right)^3 \times \frac{223}{1000} \times \frac{2000}{2500} \times \frac{0.023}{0.018} \right]^{1/2} = \underline{\underline{1.42}}$$

The performance calculations, using this scaling factor and Figure 10.45a, are set out in the table below:

|                         | Calcu                | lated performa                            | nce of cyclone a                                  | lesign, Examp                    | le 10.4                 |                     |
|-------------------------|----------------------|-------------------------------------------|---------------------------------------------------|----------------------------------|-------------------------|---------------------|
| 1                       | 2                    | 3                                         | 4                                                 | 5                                | 6                       | 7                   |
| Particle size $(\mu m)$ | Per cent in<br>range | Mean particle<br>size ÷ scaling<br>factor | Efficiency at<br>scaled size %<br>(Figure 10.46a) | Collected $(2) \times (4)$ $100$ | Grading at exit (2)-(5) | Per cent<br>at exit |
| >50                     | 10                   | 35                                        | 98                                                | 9.8                              | 0.2                     | 1.8                 |
| 50-40                   | 15                   | 32                                        | 97                                                | 14.6                             | 0.4                     | 3.5                 |
| 40-30                   | 10                   | 25                                        | 96                                                | 9.6                              | 0.4                     | 3.5                 |
| 30-20                   | 10                   | 18                                        | 95                                                | 9.5                              | 0.5                     | 4.4                 |
| 20-10                   | 25                   | 11                                        | 93                                                | 23.3                             | 1.7                     | 15.1                |
| 10-5                    | 20                   | 5                                         | 86                                                | 17.2                             | 2.8                     | 24.8                |
| 5-2                     | 6                    | 3                                         | 72                                                | 4.3                              | 1.7                     | 15.1                |
| 2-0                     | 4                    | 1                                         | 10                                                | 0.4                              | 3.6                     | 31.8                |
|                         | 100                  |                                           | Overall collection efficiency                     | <u>88.7</u>                      | 11.3                    | 100.0               |

The collection efficiencies shown in column 4 of the table were read from Figure 10.45a at the scaled particle size, column 3. The overall collection efficiency satisfies the specified solids recovery. The proposed design with dimension in the proportions given

## Pressure-drop calculation

in Figure 10.44a is shown in Figure 10.48.

Area of inlet duct, 
$$A_1$$
, =  $210 \times 80 = 16,800 \text{ mm}^2$   
Cyclone surface area,  $A_s = \pi 420 \times (630 + 1050)$   
=  $2.218 \times 10^6 \text{ mm}^2$ 

 $f_c$  taken as 0.005

$$\psi = \frac{f_c, A_s}{A_1} = \frac{0.005 \times 2.218 \times 10^6}{16.800} = 0.66$$

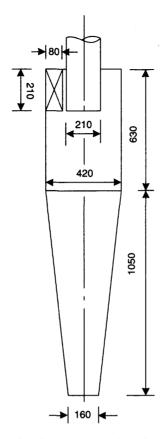



Figure 10.48. Proposed cyclone design, all dimensions mm (Example 10.4)

$$\frac{r_t}{r_e} = \frac{(420 - (80/2))}{210} = 1.81$$

From Figure 10.47,  $\phi = 0.9$ .

$$u_1 = \frac{1000}{3600} \times \frac{10^6}{16,800} = 16.5 \text{ m/s}$$

Area of exit pipe =  $\frac{\pi \times 210^2}{4}$  = 34,636 mm<sup>2</sup>

$$u_2 = \frac{1000}{3600} \times \frac{10^6}{34,636} = 8.0 \text{ m/s}$$

From equation 10.6

$$\Delta P = \frac{0.81}{203} [16.5^2 [1 + 2 \times 0.9^2 (2 \times 1.81 - 1)] + 2 \times 8.0^2]$$

$$= \underline{6.4 \text{ millibar}} (67 \text{ mm H}_2\text{O})$$

This pressure drop looks reasonable.

### 10.8.4. Filters

The filters used for gas cleaning separate the solid particles by a combination of impingement and filtration; the pore sizes in the filter media used are too large simply to filter out the particles. The separating action relies on the precoating of the filter medium by the first particles separated; which are separated by impingement on the filter medium fibres. Woven or felted cloths of cotton and various synthetic fibres are commonly used as the filter media. Glass-fibre mats and paper filter elements are also used.

A typical example of this type of separator is the bag filter, which consists of a number of bags supported on a frame and housed in a large rectangular chamber, Figure 10.49. The deposited solids are removed by mechanically vibrating the bag, or by periodically reversing the gas flow. Bag filters can be used to separate small particles, down to around 1  $\mu$ m, with a high separating efficiency. Commercial units are available to suit most applications and should be selected in consultation with the vendors.

The design and specification of bag filters (baghouses) is covered by Kraus (1979).

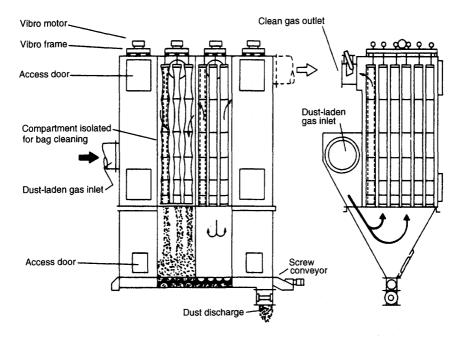



Figure 10.49. Multi-compartment vibro bag filter

#### Air filters

Dust-free air is required for many process applications. The requirements of air filtration differ from those of process gas filtration mainly in that the quantity of dust to be removed will be lower, typically less than 10 mg/m<sup>3</sup> (~5 grains per 1000 ft<sup>3</sup>); and also in that there is no requirement to recover the material collected.

Three basic types of air filter are used: viscous, dry and continuous. Viscous and dry units are similar in construction, but the filter medium of the viscous type is coated with a viscous material, such as a mineral oil, to retain the dust. The filters are made up from standard, preformed, sections, supported on a frame in a filter housing. The sections are removed periodically for cleaning or replacement. Various designs of continuous filtration equipment are also available, employing either viscous or dry filter elements, but in which the filter is cleaned continuously. A comprehensive description of air-filtration equipment is given by Strauss (1966).

### 10.8.5. Wet scrubbers (washing)

In wet scrubbing the dust is removed by counter-current washing with a liquid, usually water, and the solids are removed as a slurry. The principal mechanism involved is the impact (impingement) of the dust particles and the water droplets. Particle sizes down to 0.5  $\mu$ m can be removed in suitably designed scrubbers. In addition to removing solids, wet scrubbers can be used to simultaneously cool the gas and neutralise any corrosive constituents.

Spray towers, and plate and packed columns are used, as well as a variety of proprietary designs. Spray towers have a low pressure drop but are not suitable for removing very fine particles, below 10  $\mu$ m. The collecting efficiency can be improved by the use of plates or packing but at the expense of a higher pressure drop.

Venturi and orifice scrubbers are simple forms of wet scrubbers. The turbulence created by the venturi or orifice is used to atomise water sprays and promote contact between the liquid droplets and dust particles. The agglomerated particles of dust and liquid are then collected in a centrifugal separator, usually a cyclone.

# 10.8.6. Electrostatic precipitators

Electrostatic precipitators are capable of collecting very fine particles,  $<2~\mu m$ , at high efficiencies. However, their capital and operating costs are high, and electrostatic precipitation should only be considered in place of alternative processes, such as filtration, where the gases are hot or corrosive. Electrostatic precipitators are used extensively in the metallurgical, cement and electrical power industries. Their main application is probably in the removal of the fine fly ash formed in the combustion of pulverised coal in powerstation boilers. The basic principle of operation is simple. The gas is ionised in passing between a high-voltage electrode and an earthed (grounded) electrode; the dust particles become charged and are attracted to the earthed electrode. The precipitated dust is removed from the electrodes mechanically, usually by vibration, or by washing. Wires are normally used for the high-voltage electrode, and plates or tubes for the earthed electrode. A typical design is shown in Figure 10.50. A full description of the construction, design and application of electrostatic precipitators is given by Schneider *et al.* (1975) and by Rose and Wood (1966).

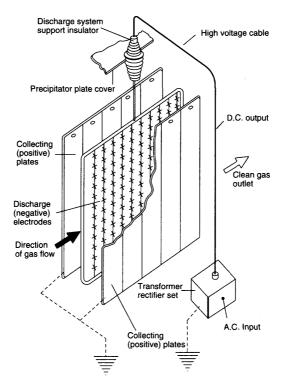



Figure 10.50. Electrostatic precipitator

#### 10.9. GAS-LIQUID SEPARATORS

The separation of liquid droplets and mists from gas or vapour streams is analogous to the separation of solid particles and, with the possible exception of filtration, the same techniques and equipment can be used.

Where the carryover of some fine droplets can be tolerated it is often sufficient to rely on gravity settling in a vertical or horizontal separating vessel (knockout pot).

Knitted mesh demisting pads are frequently used to improve the performance of separating vessels where the droplets are likely to be small, down to  $1~\mu m$ , and where high separating efficiencies are required. Proprietary demister pads are available in a wide range of materials, metals and plastics; thickness and pad densities. For liquid separators, stainless steel pads around 100 mm thick and with a nominal density of  $150~kg/m^3$  would generally be used. Use of a mister pad allows a smaller vessel to be used. Separating efficiencies above 99% can be obtained with low pressure drop. The design and specification of demister pads for gas-liquid separators is discussed by York (1954) and Pryce Bailey and Davies (1973).

The design methods for horizontal separators given below are based on a procedure given by Gerunda (1981).

Cyclone separators are also frequently used for gas-liquid separation. They can be designed using the same methods for gas-solids cyclones. The inlet velocity should be kept below 30 m/s to avoid pick-up of liquid form the cyclone surfaces.

### 10.9.1. Settling velocity

Equation 10.10 can be used to estimate the settling velocity of the liquid droplets, for the design of separating vessels.

$$u_t = 0.07[(\rho_L - \rho_v)/\rho_v)]^{1/2}$$
(10.10)

where  $u_t$  = settling velocity, m/s,

 $\rho_L = \text{liquid density, kg/m}^3$ ,

 $\rho_v = \text{vapour density, kg/m}^3$ .

If a demister pad is not used, the value of  $u_t$  obtained from equation 10.10 should be multiplied by a factor of 0.15 to provide a margin of safety and to allow for flow surges.

# 10.9.2. Vertical separators

The layout and typical proportions of a vertical liquid-gas separator are shown in Figure 10.51a.

The diameter of the vessel must be large enough to slow the gas down to below the velocity at which the particles will settle out. So the minimum allowable diameter will

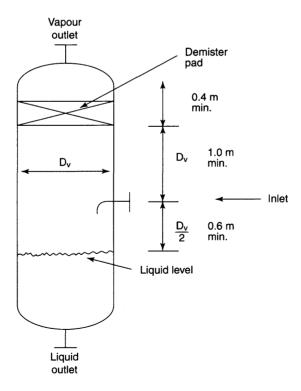



Figure 10.51a. Vertical liquid-vapour Separator

be given by:

$$D_v = \sqrt{\left(\frac{4V_v}{\pi u_s}\right)} \tag{10.11}$$

where  $D_v = \text{minimum vessel diameter, m}$ ,

 $V_v = \text{gas}$ , or vapour volumetric flow-rate, m<sup>3</sup>/s,

 $u_s = u_t$ , if a demister pad is used, and 0.15  $u_t$  for a separator without a demister pad; u<sub>t</sub> from equation (10.10), m/s.

The height of the vessel outlet above the gas inlet should be sufficient to allow for disengagement of the liquid drops. A height equal to the diameter of the vessel or 1 m, which ever is the greatest, should be used, see Figure 10.51a.

The liquid level will depend on the hold-up time necessary for smooth operation and control; typically 10 minutes would be allowed.

## Example 10.5

Make a preliminary design for a separator to separate a mixture of steam and water; flow-rates: steam 2000 kg/h, water 1000 kg/h; operating pressure 4 bar.

### Solution

From steam tables, at 4 bar: saturation temperature 143.6°C, liquid density 926.4 kg/m<sup>3</sup>, vapour density 2.16 kg/m<sup>3</sup>.

$$u_t = 0.07[(926.4 - 2.16)/2.16]^{\frac{1}{2}} = 1.45 \text{ m/s}$$
 (10.10)

As the separation of condensate from steam is unlikely to be critical, a demister pad will not be specified.

So, 
$$u_t = 0.15 \times 1.45 = 0.218$$
 m/s

So, 
$$u_t = 0.15 \times 1.45 = 0.218$$
 m/s  
Vapour volumetric flow-rate =  $\frac{2000}{3600 \times 2.16} = 0.257$  m<sup>3</sup>/s

$$D_v = \sqrt{[(4 \times 0.257)/(\pi \times 0.218)]} = 1.23 \text{ m}, \text{ round to } 1.25 \text{ m} \text{ (4 ft)}.$$
 (10.11)

Liquid volumetric flow-rate = 
$$\frac{1000}{3600 \times 926.14} = 3.0 \times 10^{-4} \text{ m}^3/\text{s}$$

Allow a minimum of 10 minutes hold-up.

Volume held in vessel = 
$$3.0 \times 10^{-4} \times (10 \times 60) = 0.18 \text{ m}^3$$

Liquid depth required, 
$$h_v = \frac{\text{volume held-up}}{\text{vessel cross-sectional area}}$$

$$= \frac{0.18}{(\pi \times 1.25^2/4)} = 0.15 \text{ m}$$

Increase to 0.3 m to allow space for positioning the level controller.

## 10.9.3. Horizontal separators

The layout of a typical horizontal separator is shown in Figure 10.51b.

A horizontal separator would be selected when a long liquid hold-up time is required.

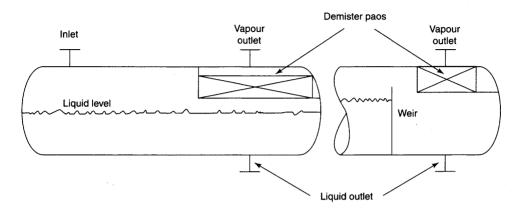



Figure 10.51b. Horizontal liquid vapour Separator

In the design of a horizontal separator the vessel diameter cannot be determined independently of its length, unlike for a vertical separator. The diameter and length, and the liquid level, must be chosen to give sufficient vapour residence time for the liquid droplets to settle out, and for the required liquid hold-up time to be met.

The most economical length to diameter ratio will depend on the operating pressure (see Chapter 13). As a general guide the following values can be used:

| Operating pressure, bar | Length: diameter, $L_v/D_v$ |
|-------------------------|-----------------------------|
| 0-20                    | 3                           |
| 20-35                   | 4                           |
| >35                     | 5                           |

The relationship between the area for vapour flow,  $A_v$ , and the height above the liquid level,  $h_v$ , can been found from tables giving the dimensions of the segments of circles; see Perry and Green (1984), or from Figure 11.32 and 11.33 in Chapter 11.

For preliminary designs, set the liquid height at half the vessel diameter,

$$h_v = D_v/2$$
 and  $f_v = 0.5$ ,

where  $f_v$  is the fraction of the total cross-sectional area occupied by the vapour.

The design procedure for horizontal separators is illustrated in the following example, example 10.6.

# Example 10.6

Design a horizontal separator to separate 10,000 kg/h of liquid, density 962.0 kg/m<sup>3</sup>, from 12,500 kg/h of vapour, density 23.6 kg/m<sup>3</sup>. The vessel operating pressure will be 21 bar.

### Solution

$$u_t = 0.07[(962.0 - 23.6)/23.6]^{1/2} = 0.44$$
 m/s

Try a separator without a demister pad.

$$u_a = 0.15 \times 0.44 = 0.066$$
 m/s

Vapour volumetric flow-rate = 
$$\frac{12,500}{3600 \times 23.6} = 0.147 \text{ m}^3/\text{s}$$

Take  $h_v = 0.5D_v$  and  $L_v/D_v = 4$ 

Cross-sectional area for vapour flow =  $\frac{\pi D_v^2}{4} \times 0.5 = 0.393 Dv^2$ 

Vapour velocity, 
$$u_v = \frac{0.147}{0.393Dv^2} = 0.374D_v^{-2}$$

Vapour residence time required for the droplets to settle to liquid surface

$$= h_v/u_a = 0.5D_v/0.66 = 7.58D_v$$

Actual residence time = vessel length/vapour velocity

$$= L_v/u_v = \frac{4D_v}{0.374 \text{ Dv}^{-2}} = 10.70D_v^3$$

For satisfactory separation required residence time = actual.

So, 
$$7.58D_v = 10.70D_v^3$$

 $D_v = 0.84$  m, say 0.92 m (3 ft, standard pipe size)

Liquid hold-up time,

liquid volumetric flow-rate = 
$$\frac{10,000}{3600 \times 962.0} = 0.00289 \text{ m}^3/\text{s}$$

liquid cross-sectional area = 
$$\frac{\pi \times 0.92^2}{4} \times 0.5 = 0.332 \text{ m}^2$$

Length,  $L_v = 4 \times 0.92 = 3.7 \text{ m}$ 

Hold-up volume =  $0.332 \times 3.7 = 1.23 \text{ m}^3$ 

Hold-up time = liquid volume/liquid flow-rate

$$= 1.23/0.00289 = 426 \text{ s} = 7 \text{ minutes}.$$

This is unsatisfactory, 10 minutes minimum required.

Need to increase the liquid volume. This is best done by increasing the vessel diameter. If the liquid height is kept at half the vessel diameter, the diameter must be increased by a factor of roughly  $(10/7)^{0.5} = 1.2$ .

)

New 
$$D_v = 0.92 \times 1.2 = 1.1 \text{ m}$$

Check liquid residence time,

new liquid volume = 
$$\frac{\pi \times 1.1^2}{4} \times 0.5 \times (4 \times 1.1) = 2.09 \text{ m}^3$$

new residence time = 2.09/0.00289 = 723 s = 12 minutes, satisfactory

Increasing the vessel diameter will have also changed the vapour velocity and the height above the liquid surface. The liquid separation will still be satisfactory as the velocity, and hence the residence time, is inversely proportional to the diameter squared, whereas the distance the droplets have to fall is directly proportional to the diameter.

In practice, the distance travelled by the vapour will be less than the vessel length,  $L_v$ , as the vapour inlet and outlet nozzles will be set in from the ends. This could be allowed for in the design but will make little difference.

# 10.10. CRUSHING AND GRINDING (COMMINUTION) EQUIPMENT

Crushing is the first step in the process of size reduction; reducing large lumps to manageable sized pieces. For some processes crushing is sufficient, but for chemical processes it is usually followed by grinding to produce a fine-sized powder. Though many articles have been published on comminution, and Marshall (1974) mentions over 4000, the subject remains essentially empirical. The designer must rely on experience, and the advice of the equipment manufacturers, when selecting and sizing crushing and grinding equipment; and to estimate the power requirements. Several models have been proposed for the calculation of the energy consumed in size reduction; some of which are discussed in Volume 2, Chapter 2. For a fuller treatment of the subject the reader should refer to the book by Lowrison (1974) and Prasher (1987).

Range of Typical Moh's hardness of material handled feed to Sticky size reduction 10 6 5 materials product ratio Diamond Sapphire Topaz Quartz Feldspar Apatite Fluorspar Calcite Gypsum Talc size Jaw crushers Gyratory crushers Rotary impactors Autogeneous mills (dry) 105 um Stamp mills Intermediate Coarse Roll crushers Disc mills Pan mill (dry) - Hammer mill 104 µm Rod - loaded Tumbling mill (dry) Ultra Ring roll and ball mills  $10^3 \, \mu m$ Ball - loaded tumbling mill (dry) Vibration mill (dry) 50 (1mm) Pin mills  $10^2 \, \mu m$ Sand mills Fluid - energy mills Colloid mills 500 10 µm /ery fine

Table 10.12. Selection of comminution equipment (after Lowrison, 1974)

Peg and disc mills Cage mills Impact breakers Vibration mills

| Material                                | Material                             | Typical                              | Suitable equi                                                                                                  | Suitable equipment for product size classes                                              |                                                                                                       |                                                                                                                        |
|-----------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| class classification materials in class | materials<br>in class                | Down to 5 mesh                       | Between 5 and 300 mesh                                                                                         | Less than 300<br>mesh                                                                    |                                                                                                       |                                                                                                                        |
| †                                       | Hard and tough                       | Mica<br>Scrap and<br>powdered metals | Jaw crushers Gyratory crushers Cone crushers Autogeneous mills                                                 | Ball, pebble,<br>rod and cone<br>mills<br>Tube mills<br>Vibration mills                  | Ball, pebble and cone mills Tube mills Vibration and vibro-energy mills Fluid-energy mills            | Moh's hardness<br>5-10, but<br>includes other<br>tough materials<br>of lower<br>hardness                               |
| 2                                       | Hard, abrasive<br>and brittle        | Coke, quartz,<br>granite             | Jaw crushers Gyratory and cone crushers Roll crushers                                                          | Ball, pebble,<br>rod and cone<br>mills<br>Vibration mills<br>Roller mills                | Ball, pebble and cone mills Tube mills Vibration and vibro-energy mills Fluid-energy mills            | Moh's hardness 5-10 High wear rate/ contamination in high-speed machinery Use machines with abrasion resistant linings |
| 3                                       | Intermediate<br>hard, and<br>friable | Barytes, fluor-<br>spar, limestone   | Jaw crushers Gyratory crushers Roll crushers Edge runner mills Impact breakers Autogeneous mills Cone crushers | Ball, pebble, rod and cone mills Tube mills Ring roll mills Ring ball mills Roller mills | Ball, pebble and cone mills Tube mills Perl mills Vibration and vibro-energy mills Fluid-energy mills | Moh's hardness<br>3-5                                                                                                  |

Table 10.13. Selection of comminution equipment for various materials (after Marshall, 1974) Note: Moh's scale of hardness is given in Table 10.12

| 4 | Fibrous, low<br>abrasion and<br>possibly tough | Wood, asbestos                     | Cone crushers Roll crushers Edge runner mills Autogeneous mills Impact breakers | Ball, pebble, rod and cone mills Tube mills Roller mills Peg and disc mills Cage mills Impact breakers Vibration mills Rotary cutters and dicers  | Ball, pebble and cone mills Tube mills Sand mills Perl mills Vibration and vibro-energy mills Colloid mills                                       | Wide range of hardness Low-temperature, liquid nitrogen, useful to embrittle soft but tough materials                              |
|---|------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 5 | Soft and friable                               | Sulphur, gypsum<br>rock salt       | Cone crushers Roll crushers Edge runner mills Impact breakers Autogeneous mills | Ball, pebble and cone mills Tube mills Ring roll mills Ring ball mills Roller mills Peg and disc mills Cage mills Impact breakers Vibration mills | Ball, pebble and cone mills Tube mills Sand mills Perl mills Vibration and vibro-energy mills Colloid mills Fluid-energy mills Peg and disc mills | Moh's hardness<br>1-3                                                                                                              |
|   | Sticky                                         | Clays, certain<br>organic pigments | Roll crushers<br>Impact breakers<br>Edge runner mills                           | Ball, pebble, rod and cone mills* Tube mills* Peg and disc mills Cage mills Ring roll mills                                                       | Ball, pebble and cone mills* Tube mills* Sand mills Perl mills Vibration and vibro-energy mills Colloid mills                                     | Wide range of Moh's hardness although mainly less than 3 Tends to clog *Wet grinding employed except for certain exceptional cases |

<sup>\*</sup>All ball, pebble, rod and cone mills, edge runner mills, tube mills, vibration mills and some ring ball mills may be used wet or dry except where stated. The perl mills, sand mills and colloid mills may be used for wet milling only.

The main factors to be considered when selecting equipment for crushing and grinding are:

- 1. The size of the feed.
- 2. The size reduction ratio.
- 3. The required particle size distribution of the product.
- 4. The throughput.
- 5. The properties of the material: hardness, abrasiveness, stickiness, density, toxicity, flammability.
- 6. Whether wet grinding is permissible.

The selection guides given by Lowrison (1974) and Marshall (1974), which are reproduced in Tables 10.12 and 10.13, can be used to make a preliminary selection based on particle size and material hardness. Descriptions of most of the equipment listed in these tables are given in Volume 2, or can be found in the literature; Perry and Green (1984), Hiorns (1970), Lowrison (1974). The most commonly used equipment for coarse size reduction are jaw crushers and rotary crushers; and for grinding, ball mills or their variants: pebble, roll and tube mills.

### 10.11. MIXING EQUIPMENT

The preparation of mixtures of solids, liquids and gases is an essential part of most production processes in the chemical and allied industries; covering all processing stages, from the preparation of reagents through to the final blending of products. The equipment used depends on the nature of the materials and the degree of mixing required. Mixing is often associated with other operations, such as reaction and heat transfer. Liquid and solids mixing operations are frequently carried out as batch processes.

In this section, mixing processes will be considered under three separate headings: gases, liquids and solids.

# 10.11.1. Gas mixing

Specialised equipment is seldom needed for mixing gases, which because of their low viscosities mix easily. The mixing given by turbulent flow in a length of pipe is usually sufficient for most purposes. Turbulence promoters, such as orifices or baffles, can be used to increase the rate of mixing. The piping arrangements used for inline mixing are discussed in the section on liquid mixing.

# 10.11.2. Liquid mixing

The following factors must be taken into account when choosing equipment for mixing liquids:

- 1. Batch of continuous operation.
- 2. Nature of the process: miscible liquids, preparation of solutions, or dispersion of immiscible liquids.
- 3. Degree of mixing required.
- 4. Physical properties of the liquids, particularly the viscosity.
- 5. Whether the mixing is associated with other operations: reaction, heat transfer.

For the continuous mixing of low viscosity fluids inline mixers can be used. For other mixing operations stirred vessels or proprietary mixing equipment will be required.

### Inline mixing

Static devices which promote turbulent mixing in pipelines provide an inexpensive way of continuously mixing fluids. Some typical designs are shown in Figures 10.52a, b, c. A simple mixing tee, Figure 10.52a, followed by a length of pipe equal to 10 to 20 pipe diameters, is suitable for mixing low viscosity fluids ( $\leq$ 50 mN s/m<sup>2</sup>) providing the flow is turbulent, and the densities and flow-rates of the fluids are similar.

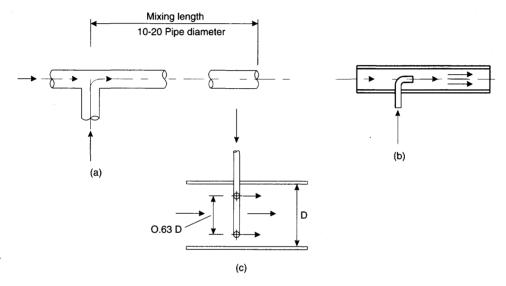



Figure 10.52. Inline mixers (a) Tee (b) Injection (c) Annular

With injection mixers (Figures 10.52b,c), in which the one fluid is introduced into the flowing stream of the other through a concentric pipe or an annular array of jets, mixing will take place by entrainment and turbulent diffusion. Such devices should be used where one flow is much lower than the other, and will give a satisfactory blend in about 80 pipe diameters. The inclusion of baffles or other flow restrictions will reduce the mixing length required.

The static inline mixer shown in Figure 10.53 is effective in both laminar and turbulent flow, and can be used to mix viscous mixtures. The division and rotation of the fluid at each element causes rapid radical mixing; see Rosenzweig (1977), Baker (1991) and



Figure 10.53. Static mixer (Kenics Corporation)

Myers et al. (1997). The dispersion and mixing of liquids in pipes is discussed by Clayton et al. (1968) and Lee and Brodkey (1964).

Centrifugal pumps are effective inline mixers for blending and dispersing liquids. Various proprietary motor-driven inline mixers are also used for special applications; see Perry and Green (1984).

#### Stirred tanks

Mixing vessels fitted with some form of agitator are the most commonly used type of equipment for blending liquids and preparing solutions.

Liquid mixing in stirred tanks is covered in Volume 1, Chapter 7, and in several textbooks; Uhl and Gray (1967), Holland and Chapman (1966a), Sterbacek and Tausk (1965), Nagata (1975), Harnby *et al.* (1997) and Tatterson (1991), (1993).

A typical arrangement of the agitator and baffles in a stirred tank, and the flow pattern generated, is shown in Figure 10.54. Mixing occurs through the bulk flow of the liquid and, on a microscopic scale, by the motion of the turbulent eddies created by the agitator. Bulk flow is the predominant mixing mechanism required for the blending of miscible liquids and for solids suspension. Turbulent mixing is important in operations involving mass and heat transfer; which can be considered as shear controlled processes.



Figure 10.54. Agitator arrangements and flow patterns

The most suitable agitator for a particular application will depend on the type of mixing required, the capacity of the vessel, and the fluid properties, mainly the viscosity.

The three basic types of impeller which are used at high Reynolds numbers (low viscosity) are shown in Figures 10.55a, b, c. They can be classified according to the predominant direction of flow leaving the impeller. The flat-bladed (Rushton) turbines are essentially radial-flow devices, suitable for processes controlled by turbulent mixing (shear controlled processes). The propeller and pitched-bladed turbines are essentially axial-flow devices, suitable for bulk fluid mixing.

Paddle, anchor and helical ribbon agitators (Figures 10.56a, b, c), and other special shapes, are used for more viscous fluids.

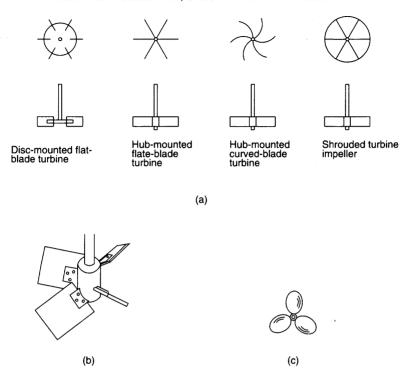



Figure 10.55. Basic impeller types (a) Turbine impeller (b) Pitched bladed turbine (c) Marine propeller

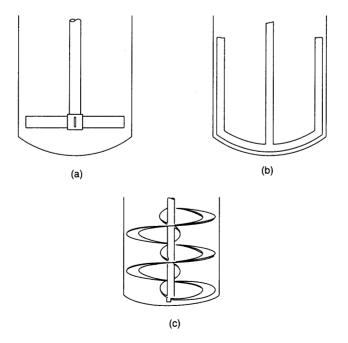



Figure 10.56. Low-speed agitators (a) Paddle (b) Anchor (c) Helical ribbon

The selection chart given in Figure 10.57, which has been adapted from a similar chart given by Penney (1970), can be used to make a preliminary selection of the agitator type, based on the liquid viscosity and tank volume.

For turbine agitators, impeller to tank diameter ratios of up to about 0.6 are used, with the depth of liquid equal to the tank diameter. Baffles are normally used, to improve the mixing and reduce problems from vortex formation. Anchor agitators are used with close clearance between the blades and vessel wall, anchor to tank diameter ratios of

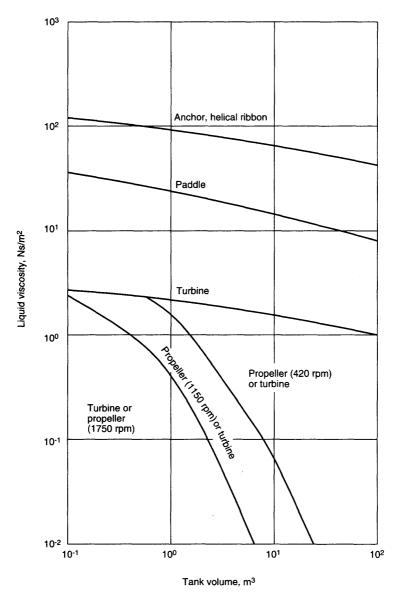



Figure 10.57. Agitator selection guide

0.95 or higher. The selection of agitators for dispersing gases in liquids is discussed by Hicks (1976).

## Agitator power consumption

The shaft power required to drive an agitator can be estimated using the following generalised dimensionless equation, the derivation of which is given in Volume 2, Chapter 13.

$$N_p = KRe^b F r^c ag{10.11}$$

where  $N_p$  = power number =  $\frac{P}{D^5 N^3 \rho}$ ,

$$Re = \text{Reynolds number} = \frac{D^2 N \rho}{\mu},$$

$$Fr = Froude number = \frac{DN^2}{g},$$

P = shaft power, W,

K = a constant, dependent on the agitator type, size, and the agitator-tank geometry,

 $\rho = \text{fluid density, kg/m}^3$ ,

 $\mu = \text{fluid viscosity}, \text{Ns/m}^2,$ 

 $N = \text{agitator speed, s}^{-1}$  (revolutions per second) (rps),

D = agitator diameter, m,

 $g = \text{gravitational acceleration}, 9.81 \text{ m/s}^2.$ 

Values for the constant K and the indices b and c for various types of agitator, tank-agitator geometries, and dimensions, can be found in the literature; Rushton et al. (1950), Nagata (1975). A useful review of the published correlations for agitator power consumption and heat transfer in agitated vessels is given by Wilkinson and Edwards (1972); they include correlations for non-Newtonian fluids. Typical power curves for propeller and turbine agitators are given in Figures 10.58 and 10.59. In the laminar flow region the index "b" = 1; and at high Reynolds number the power number is independent of the Froude number; index "c" = 0.

An estimate of the power requirements for various applications can be obtained from Table 10.14.

Power, kW/m<sup>3</sup> Agitation Applications 0.04 - 0.10Mild Blending, mixing Homogeneous reactions 0.01 - 0.03Medium Heat transfer 0.03 - 1.0Liquid-liquid mixing 1.0 - 1.51.5 - 2.0Severe Slurry suspension Gas absorption, 1.5 - 2.0**Emulsions** 1.5 - 2.0Violent Fine slurry suspension > 2.0

Table 10.14. Power requirements - baffled agitated tanks

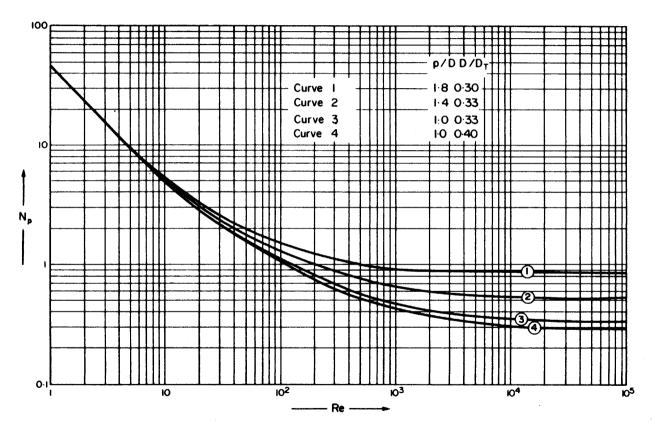



Figure 10.58. Power correlation for single three-bladed propellers baffled, (from Uhl and Gray (1967) with permission). p = blade pitch, D = b

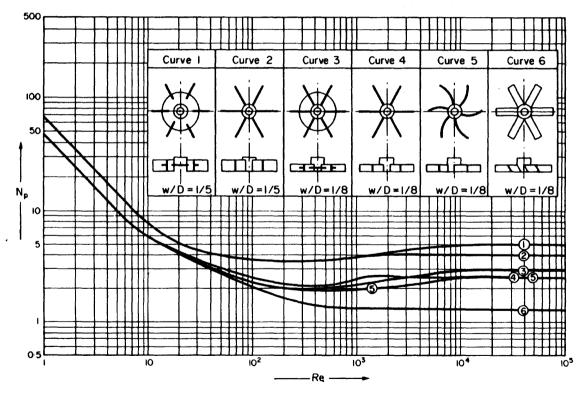



Figure 10.59. Power correlations for baffled turbine impellers, for tank with 4 baffles (From Uhl and Gray (1967) with permission). w = impeller width, D = impeller diameter

## Side-entering agitators

Side-entering agitators are used for blending low viscosity liquids in large tanks, where it is impractical to use conventional agitators supported from the top of the tank; see Oldshue *et al.* (1956).

Where they are used with flammable liquids, particular care must be taken in the design and maintenance of the shaft seals, as any leakage may cause a fire.

For blending flammable liquids, the use of liquid jets should be considered as an "intrinsically" safer option; see Fossett and Prosser (1949).

## 10.11.3. Solids and pastes

A great variety of specialised equipment has been developed for mixing dry solids and pastes (wet solids). The principal types of equipment and their fields of application are given in Table 10.15. Descriptions of the equipment can be found in the literature; Perry and Green (1984), Reid (1979), Mead (1964) and Green (1984). Cone blenders are used for free-flowing solids. Ribbon blenders can be used for dry solids and for blending liquids with solids. Z-blade mixers and pan mixers are used for kneading heavy pastes and doughs. Most solid and paste mixers are designed for batch operation.

A selection chart for solids mixing equipment is given by Jones (1985).

| Type of equipment                                                        | Mixing action                                                 | Applications                                                                                             | Examples                                                                 |
|--------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Rotating: cone,<br>double cone, drum                                     | Tumbling action                                               | Blending dry, free-<br>flowing powders,<br>granules, crystals                                            | Pharmaceuticals, food, chemicals                                         |
| Air blast fluidisation                                                   | Air blast lifts and mixes particles                           | Dry powders and granules                                                                                 | Milk powder;<br>detergents,<br>chemicals                                 |
| Horizontal trough<br>mixer, with ribbon<br>blades, paddles or<br>beaters | Rotating element produces contra-flow movement of materials   | Dry and moist powders                                                                                    | Chemicals, food,<br>pigments, tablet<br>granulation                      |
| Z-blade mixers                                                           | Shearing and kneading by<br>the specially shaped<br>blades    | Mixing heavy pastes, creams and doughs                                                                   | Bakery industry,<br>rubber doughs,<br>plastic dispersions                |
| Pan mixers                                                               | Vertical, rotating paddles,<br>often with planetary<br>motion | Mixing, whipping and<br>kneading of materials<br>ranging from low<br>viscosity pastes to stiff<br>doughs | Food, pharmaceuticals<br>and chemicals,<br>printing inks and<br>ceramics |
| Cylinder mixers, single and double                                       | Shearing and kneading action                                  | Compounding of rubbers and plastics                                                                      | Rubbers, plastics, and pigment dispersion                                |

Table 10.15. Solids and paste mixers

### 10.12. TRANSPORT AND STORAGE OF MATERIALS

In this section the principal means used for the transport and storage of process materials: gases, liquids and solids are discussed briefly. Further details and full descriptions of the

equipment used can be found in various handbooks. Pumps and compressors are also discussed in Chapters 3 and 5 of this volume, and in Volume 1, Chapter 8.

### 10.12.1. Gases

The type of equipment best suited for the pumping of gases in pipelines depends on the flow-rate, the differential pressure required, and the operating pressure.

In general, fans are used where the pressure drop is small, <35 cm  $\rm H_2O$  (0.03 bar); axial flow compressors for high flow-rates and moderate differential pressures; centrifugal compressors for high flow-rates and, by staging, high differential pressures. Reciprocating compressors can be used over a wide range of pressures and capacities, but are normally only specified in preference to centrifugal compressors where high pressures are required at relatively low flow-rates.

Reciprocating, centrifugal and axial flow compressors are the principal types used in the chemical process industries, and the range of application of each type is shown in Figure 10.60 which has been adapted from a similar diagram by Dimoplon (1978). A more comprehensive selection guide is given in Table 10.16. Diagrammatic sketches of the compressors listed are given in Figure 10.61.

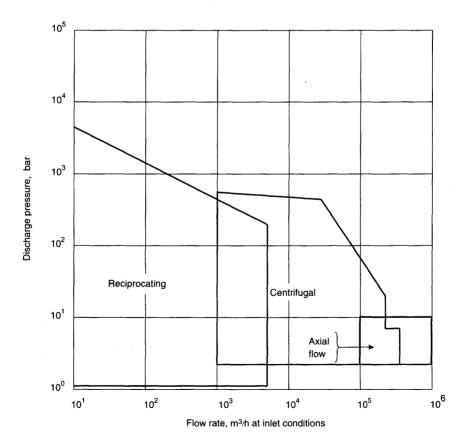



Figure 10.60. Compressor operating ranges

| Table 10.16. | Operating range of compressors | s and blowers (after Beg | g, 1966)                                |
|--------------|--------------------------------|--------------------------|-----------------------------------------|
| ruoie ro.ro. | operating range of compressor. | o and blombis (and be)   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |

| Type of compressor    | Normal maximum speed | Normal maximum capacity | Normal maximum pressure (differential) (bar) |                |
|-----------------------|----------------------|-------------------------|----------------------------------------------|----------------|
|                       | (rpm)                | $(m^3/h)$               | Single stage                                 | Multiple stage |
| Displacement          |                      |                         |                                              |                |
| 1. Reciprocating      | 300                  | 85,000                  | 3.5                                          | 5000           |
| 2. Sliding vane       | 300                  | 3400                    | 3.5                                          | 8              |
| 3. Liquid ring        | 200                  | 2550                    | 0.7                                          | 1.7            |
| 4. Rootes             | 250                  | 4250                    | 0.35                                         | 1.7            |
| 5. Screw              | 10,000               | 12,750                  | 3.5                                          | 17             |
| Dynamic               |                      |                         |                                              |                |
| 6. Centrifugal fan    | 1000                 | 170,000                 |                                              | 0.2            |
| 7. Turbo blower       | 3000                 | 8500                    | 0.35                                         | 1.7            |
| 8. Turbo compressor   | 10,000               | 136,000                 | 3.5                                          | 100            |
| 9. Axial flow fan     | 1000                 | 170,000                 | 0.35                                         | 2.0            |
| 10. Axial flow blower | 3000                 | 170,000                 | 3.5                                          | 10             |

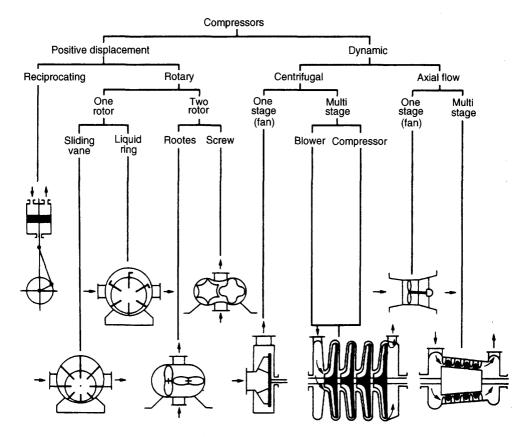



Figure 10.61. Type of compressor (Begg, 1966)

Several textbooks are available on compressor design, selection and operation; Chlumsky (1965), Kovat (1964), Bloch *et al.* (1982) and Brown (1990).

## Vacuum production

The production of vacuum (sub-atmospheric pressure) is required for many chemical engineering processes; for example, vacuum distillation, drying and filtration. The type of vacuum pump needed will depend on the degree of vacuum required, the capacity of the system and the rate of air inleakage.

Reciprocating and rotary positive displacement pumps are commonly used where moderately low vacuum is required, about 10 mmHg (0.013 bar), at moderate to high flow rates; such as in vacuum filtration.

Steam-jet ejectors are versatile and economic vacuum pumps and are frequently used, particularly in vacuum distillation. They can handle high vapour flow rates and, by using several ejectors in series, can produce low pressures, down to about 0.1 mmHg (0.13 mbar).

The operating principle of steam-jet ejectors is explained in Volume 1, Chapter 8. Their specification, sizing and operation are covered in a comprehensive series of papers by Power (1964). Diffusion pumps are used where very low pressures are required (hard vacuum) for processes such as molecular distillation.

### Storage

Gases are stored at low pressure in gas holders similar to those used for town gas, which are a familiar sight in any town. The liquid sealed type are most commonly used. These consist of a number of telescopic sections (lifts) which rise and fall as gas is added to or withdrawn from the holder. The dry sealed type is used where the gas must be kept dry. In this type the gas is contained by a piston moving in a large vertical cylindrical vessel. Water seal holders are intrinsically safer for use with flammable gases than the dry seal type; as any leakage through the piston seal may form an explosive mixture in the closed space between the piston and the vessel roof. Details of the construction of gas holders can be found in text books on Gas Engineering; Meade (1921), Smith (1945).

Gases are stored at high pressures where this is a process requirement and to reduce the storage volume. For some gases the volume can be further reduced by liquefying the gas by pressure or refrigeration. Cylindrical and spherical vessels (Horton spheres) are used. The design of pressure vessels is discussed in Chapter 13.

# 10.12.2. Liquids

The selection of pumps for liquids is discussed in Chapter 5. Descriptions of most of the types of pumps used in the chemical process industries are given in Volume 1, Chapter 8. Several textbooks and handbooks have also been published on this subject; Holland and Chapman (1966b), Pollak (1980), Warring (1979).

The principal types used and their operating pressures and capacity ranges are summarised in Table 10.17 and Figure 10.63. Centrifugal pumps will normally be the first choice for pumping process fluids, the other types only being used for specialapplications; such as the use of reciprocating and gear pumps for metering.

|                                      |                                    | ·                            |
|--------------------------------------|------------------------------------|------------------------------|
| Туре                                 | Capacity range (m <sup>3</sup> /h) | Typical head<br>(m of water) |
| Centrifugal                          | $0.25 - 10^3$                      | 10-50<br>300 (multistage)    |
| Reciprocating                        | 0.5 - 500                          | 50-200                       |
| Diaphragm                            | 0.05 - 50                          | 5-60                         |
| Rotary<br>gear and similar           | 0.05-500                           | 60-200                       |
| Rotary<br>sliding vane<br>or similar | 0.25-500                           | 7-70                         |

Table 10.17. Normal operating range of pumps

## Pump shaft power

The power required for pumping an incompressible fluid is given by:

$$Power = \frac{\Delta P Q_p}{\eta_p} \times 100 \tag{10.12}$$

where  $\Delta P$  = pressure differential across the pump, N/m<sup>2</sup>,

 $Q_p = \text{flow rate, m}^3/\text{s},$ 

 $\eta_p = \text{pump efficiency, per cent.}$ 

See also, Chapter 5, Section 5.4.3.

The efficiency of centrifugal pumps depends on their size. The values given in Figure 10.62 can be used to estimate the power and energy requirements for preliminary design purpose. The efficiency of reciprocating pumps is usually around 90 per cent.

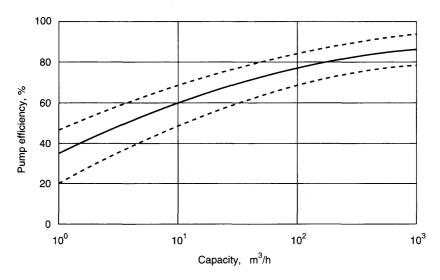



Figure 10.62. Efficiencies of centrifugal pumps

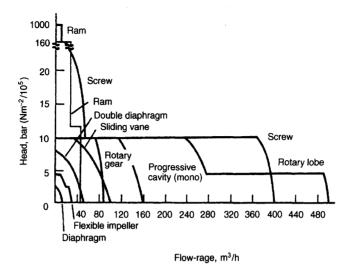



Figure 10.63. Selection of positive displacement pumps (adapted from Marshall (1985)). Descriptions of the types mentioned are given in Volume 1, Chapter 8

## Storage

Liquids are usually stored in bulk in vertical cylindrical steel tanks. Fixed and floating-roof tanks are used. In a floating-roof tank a movable piston floats on the surface of the liquid and is sealed to the tank walls. Floating-roof tanks are used to eliminate evaporation losses and, for flammable liquids, to obviate the need for inert gas blanketing to prevent an explosive mixture forming above the liquid, as would be the situation with a fixed-roof tank.

Horizontal cylindrical tanks and rectangular tanks are also used for storing liquids, usually for relatively small quantities.

### 10.12.3. Solids

The movement and storage of solids is usually more expensive than the movement of liquids and gases, which can be easily pumped down a pipeline. The best equipment to use will depend on a number of factors:

- 1. The throughput.
- 2. Length of travel.
- 3. Change in elevation.
- 4. Nature of the solids: size, bulk density, angle of repose, abrasiveness, corrosiveness, wet or dry.

Belt conveyors are the most commonly used type of equipment for the continuous transport of solids. They can carry a wide range of materials economically over long and short distances; both horizontally or at an appreciable angle, depending on the angle of repose of the solids. A belt conveyor consists of an endless belt of a flexible material, supported on rollers (idlers), and passing over larger rollers at each end, one of which is

driven. The belt material is usually fabric-reinforced rubber or plastics; segmental metal belts are also used. Belts can be specified to withstand abrasive and corrosive materials; see BS 490.

Screw conveyors, also called worm conveyors, are used for materials that are free flowing. The basic principle of the screw conveyor has been known since the time of Archimedes. The modern conveyor consists of a helical screw rotating in a U-shaped trough. They can be used horizontally or, with some loss of capacity, at an incline to lift materials. Screw conveyors are less efficient than belt conveyors, due to the friction between the solids and the flights of the screw and the trough, but are cheaper and easier to maintain. They are used to convey solids over short distances, and when some elevation (lift) is required. They can also be used for delivering a metered flow of solids.

The most widely used equipment where a vertical lift is required is the bucket elevator. This consists of buckets fitted to an endless chain or belt, which passes over a driven roller or sprocket at the top end. Bucket elevators can handle a wide range of solids, from heavy lumps to fine powders, and are suitable for use with wet solids and slurries.

The mechanical conveying of solids is the subject of a book by Colijn (1985).

Pneumatic and hydraulic conveying, in which the solid particles are transported along a pipeline in suspension in a fluid, are discussed in Volume 1, Chapter 5, and in a book by Mills (1990).

### Storage

The simplest way to store solids is to pile them on the ground in the open air. This is satisfactory for the long-term storage of materials that do not deteriorate on exposure to the elements; for example, the seasonal stock piling of coal at collieries and power stations. For large stockpiles, permanent facilities are usually installed for distributing and reclaiming the material; travelling gantry cranes, grabs and drag scrapers feeding belt conveyors are used. For small, temporary, storages mechanical shovels and trunks can be used. Where the cost of recovery from the stockpile is large compared with the value of the stock held, storage in silos or bunkers should be considered.

Overhead bunkers, also called bins or hoppers, are normally used for the short-term storage of materials that must be readily available for the process. They are arranged so that the material can be withdrawn at a steady rate from the base of the bunker on to a suitable conveyor. Bunkers must be carefully designed to ensure the free flow of material within the bunker, to avoid packing and bridging. Jenike (1967) and Jenike and Johnson (1970), has studied the flow of solids in containers and developed design methods. All aspects of the design of bins and hoppers, including feeding and discharge systems, are covered in books by Reisner and Rothe (1971), and Stepanoff (1969).

See also the British Material Handling Board's code of practice on the design of silos and bunkers, BMHB (1992).

The storage and transport of wet solids are covered by Heywood (1991).

### 10.13. REACTORS

The reactor is the heart of a chemical process. It is the only place in the process where raw materials are converted into products, and reactor design is a vital step in the overall design of the process.

Numerous texts have been published on reactor design, and a selection is given in the bibliography at the end of this chapter. The volumes by Rase (1977), (1990) cover the practical aspects of reactor design and include case studies of industrial reactors. The design of electrochemical reactors is covered by Pickett (1979), Rousar *et al.* (1985) and Scott (1991).

The treatment of reactor design in this section will be restricted to a discussion of the selection of the appropriate reactor type for a particular process, and an outline of the steps to be followed in the design of a reactor.

The design of an industrial chemical reactor must satisfy the following requirements:

- 1. The chemical factors: the kinetics of the reaction. The design must provide sufficient residence time for the desired reaction to proceed to the required degree of conversion.
- 2. The mass transfer factors: with heterogeneous reactions the reaction rate may be controlled by the rates of diffusion of the reacting species; rather than the chemical kinetics.
- 3. The heat transfer factors: the removal, or addition, of the heat of reaction.
- 4. The safety factors: the confinement of hazardous reactants and products, and the control of the reaction and the process conditions.

The need to satisfy these interrelated, and often contradictory factors, makes reactor design a complex and difficult task. However, in many instances one of the factors will predominate and will determine the choice of reactor type and the design method.

# 10.13.1. Principal types of reactor

The following characteristics are normally used to classify reactor designs:

- 1. Mode of operation: batch or continuous.
- 2. Phases present: homogeneous or heterogeneous.
- 3. Reactor geometry: flow pattern and manner of contacting the phases
  - (i) stirred tank reactor:
  - (ii) tubular reactor;
  - (iii) packed bed, fixed and moving;
  - (iv) fluidised bed.

# Batch or continuous processing

In a batch process all the reagents are added at the commencement; the reaction proceeds, the compositions changing with time, and the reaction is stopped and the product withdrawn when the required conversion has been reached. Batch processes are suitable for small-scale production and for processes where a range of different products, or grades, is to be produced in the same equipment; for instance, pigments, dyestuffs and polymers.

In continuous processes the reactants are fed to the reactor and the products withdrawn continuously; the reactor operates under steady-state conditions. Continuous production will normally give lower production costs than batch production, but lacks the flexibility of batch production. Continuous reactors will usually be selected for large-scale production. Processes that do not fit the definition of batch or continuous are often referred to as

semi-continuous or semi-batch. In a semi-batch reactor some of the reactants may be added, or some of the products withdrawn, as the reaction proceeds. A semi-continuous process can be one which is interrupted periodically for some purpose; for instance, for the regeneration of catalyst.

## Homogeneous and heterogeneous reactions

Homogeneous reactions are those in which the reactants, products, and any catalyst used form one continuous phase: gaseous or liquid.

Homogeneous gas phase reactors will always be operated continuously; whereas liquid phase reactors may be batch or continuous. Tubular (pipe-line) reactors are normally used for homogeneous gas-phase reactions; for example, in the thermal cracking of petroleum crude oil fractions to ethylene, and the thermal decomposition of dichloroethane to vinyl chloride. Both tubular and stirred tank reactors are used for homogeneous liquid-phase reactions.

In a heterogeneous reaction two or more phases exist, and the overriding problem in the reactor design is to promote mass transfer between the phases. The possible combination of phases are:

- 1. Liquid-liquid: immiscible liquid phases; reactions such as the nitration of toluene or benzene with mixed acids, and emulsion polymerisations.
- 2. Liquid-solid: with one, or more, liquid phases in contact with a solid. The solid may be a reactant or catalyst.
- 3. Liquid-solid-gas: where the solid is normally a catalyst; such as in the hydrogeneration of amines, using a slurry of platinum on activated carbon as a catalyst.
- 4. Gas-solid: where the solid may take part in the reaction or act as a catalyst. The reduction of iron ores in blast furnaces and the combustion of solid fuels are examples where the solid is a reactant.
- 5. Gas-liquid: where the liquid may take part in the reaction or act as a catalyst.

# Reactor geometry (type)

The reactors used for established processes are usually complex designs which have been developed (have evolved) over a period of years to suit the requirements of the process, and are unique designs. However, it is convenient to classify reactor designs into the following broad categories.

#### Stirred tank reactors

Stirred tank (agitated) reactors consist of a tank fitted with a mechanical agitator and a cooling jacket or coils. They are operated as batch reactors or continuously. Several reactors may be used in series.

The stirred tank reactor can be considered the basic chemical reactor; modelling on a large scale the conventional laboratory flask. Tank sizes range from a few litres to several thousand litres. They are used for homogeneous and heterogeneous liquid-liquid and liquid-gas reactions; and for reactions that involve finely suspended solids, which are held in suspension by the agitation. As the degree of agitation is under the designer's control, stirred tank reactors are particularly suitable for reactions where good mass transfer or heat transfer is required.

When operated as a continuous process the composition in the reactor is constant and the same as the product stream, and, except for very rapid reactions, this will limit the conversion that can be obtained in one stage.

The power requirements for agitation will depend on the degree of agitation required and will range from about 0.2 kW/m<sup>3</sup> for moderate mixing to 2 kW/m<sup>3</sup> for intense mixing.

#### Tubular reactor

Tubular reactors are generally used for gaseous reactions, but are also suitable for some liquid-phase reactions.

If high heat-transfer rates are required, small-diameter tubes are used to increase the surface area to volume ratio. Several tubes may be arranged in parallel, connected to a manifold or fitted into a tube sheet in a similar arrangement to a shell and tube heat exchanger. For high-temperature reactions the tubes may be arranged in a furnace.

The pressure-drop and heat-transfer coefficients in empty tube reactors can be calculated using the methods for flow in pipes given in Volume 1.

### Packed bed reactors

There are two basic types of packed-bed reactor: those in which the solid is a reactant, and those in which the solid is a catalyst. Many examples of the first type can be found in the extractive metallurgical industries.

In the chemical process industries the designer will normally be concerned with the second type: catalytic reactors. Industrial packed-bed catalytic reactors range in size from small tubes, a few centimetres diameter, to large diameter packed beds. Packed-bed reactors are used for gas and gas-liquid reactions. Heat-transfer rates in large diameter packed beds are poor and where high heat-transfer rates are required fluidised beds should be considered.

### Fluidised bed reactors

The essential features of a fluidised bed reactor is that the solids are held in suspension by the upward flow of the reacting fluid; this promotes high mass and heat-transfer rates and good mixing. Heat-transfer coefficients in the order of 200 W/m<sup>2</sup>°C to jackets and internal coils are typically obtained. The solids may be a catalyst; a reactant in fluidised combustion processes; or an inert powder, added to promote heat transfer.

Though the principal advantage of a fluidised bed over a fixed bed is the higher heattransfer rate, fluidised beds are also useful where it is necessary to transport large quantities of solids as part of the reaction processes, such as where catalysts are transferred to another vessel for regeneration.

Fluidisation can only be used with relatively small sized particles, <300  $\,\mu\mathrm{m}$  with gases.

A great deal of research and development work has been done on fluidised bed reactors in recent years, but the design and scale up of large diameter reactors is still an uncertain process and design methods are largely empirical.

The principles of fluidisation processes are covered in Volume 2, Chapter 6. The design of fluidised bed reactors is discussed by Rase (1977).

### 10.13.2. Design procedure

A general procedure for reactor design is outlined below:

- 1. Collect together all the kinetic and thermodynamic data on the desired reaction and the side reactions. It is unlikely that much useful information will be gleaned from a literature search, as little is published in the open literature on commercially attractive processes. The kinetic data required for reactor design will normally be obtained from laboratory and pilot plant studies. Values will be needed for the rate of reaction over a range of operating conditions: pressure, temperature, flow-rate and catalyst concentration. The design of experimental reactors and scale-up is discussed by Rase (1977) and Jordan (1968).
- 2. Collect the physical property data required for the design; either from the literature, by estimation or, if necessary, by laboratory measurements.
- 3. Identify the predominant rate-controlling mechanism: kinetic, mass or heat transfer. Choose a suitable reactor type, based on experience with similar reactions, or from the laboratory and pilot plant work.
- 4. Make an initial selection of the reactor conditions to give the desired conversion and yield.
- Size the reactor and estimate its performance.
   Exact analytical solutions of the design relationships are rarely possible; semiempirical methods based on the analysis of idealised reactors will normally have to be used.
- 6. Select suitable materials of construction.
- 7. Make a preliminary mechanical design for the reactor: the vessel design, heat-transfer surfaces, internals and general arrangement.
- 8. Cost the proposed design, capital and operating, and repeat steps 4 to 8, as necessary, to optimise the design.

In choosing the reactor conditions, particularly the conversion, and optimising the design, the interaction of the reactor design with the other process operations must not be overlooked. The degree of conversion of raw materials in the reactor will determine the size, and cost, of any equipment needed to separate and recycle unreacted materials. In these circumstances the reactor and associated equipment must be optimised as a unit.

### 10.14. REFERENCES

ALDERS, L. (1955) Liquid-liquid Extraction (Elsevier).

AMBLER, C. M. (1952) Chem. Eng. Prog. 48 (March) 150. Evaluating the performance of centrifuges.

AMBLER, C. M. (1971) Chem. Eng., NY 78 (Feb. 15th) 55. Centrifuge selection.

BAKER, J. R. (1991) Chem. Eng. Prog. 87 (6) 32. Motionless mixtures stir up new uses.

BAMFORTH, A. W. (1965) Industrial Crystallisation (Leonard Hill).

BEGG, G. A. J. (1966) Chem. & Process Eng. 47, 153. Gas compression in the chemical industry.

BENNETT, J. G. (1936) J. Inst. Fuel 10, 22. Broken coal.

BILLET, R. (1989) Evaporation Technology (VCH).

BLOCH, H. P., CAMERON, J. A., DANOWSKY, F. M., JAMES, R., SWEARINGEN, J. S. and WEIGHTMAN, M. E. (1982) Compressors and Expanders: Selection and Applications for the Process Industries (Dekker).

BMHB (1992) Draft Code of Practice for the Design of Hoppers, Bins, Bunkers and Silos, 3rd edn (British Standards Institute).

Bradley, D. (1960) Institute of Minerals and Metals, International Congress, London, April, Paper 7, Group 2. Design and performance of cyclone thickeners.

BRADLEY, D. (1965a) Chem. & Process Eng. 595. Medium-speed centrifuges.

Bradley, D. (1965b) The Hydrocyclone (Pergamon).

BRONKALA, W. J. (1988) Chem. Eng., NY 95 (March 14th) 133. Purification: doing it with magnets.

Brown, R. L. (1990) Compressors: Sizing and Selection (Gulf).

BRYANT, D. (1984) Proc. Inst. Mech. Eng. 198A, No. 5, 89. Assessment of flash vessels.

CHERYAN, M. (1986) Ultrafiltration Handbook (Techonomonic).

CHEREMISNOFF, N. P. (1998) Liquid Filtration 2nd edn. (Butterworth-Heinemann).

CHLUMSKY, V. (1965) Reciprocating and Rotary Compressors (E. & F. N. Spon).

CLAYTON, C. G., BALL, A. M. and SPACKMAN, R. (1968) Dispersion and Mixing during Turbulent Flow in a Circular Pipe. UK Atomic Energy Authority Res. Group Report AERE-R 5569.

Cole, J. (1984) Chem. Engr., London No. 404 (June) 20. A guide to the selection of evaporation plant.

CONSTANTINESCU, S. (1984) Chem. Eng., NY 91 (Feb. 20th) 97. Sizing gas cyclones.

COLUN, H. (1985) Mechanical Conveyors for Bulk Solids (Elsevier).

CREMER, H. W. and DAVIES, T. (eds) (1956) Chemical Engineering Practice (Butterworths).

CRITENDEN, B. and THOMAS, W. J. (1995) Adsorption Design and Technology (Butterworth-Heinemann).

DAHLSTROM, D. A. and CORNELL, C. F. (1971) Chem. Eng., NY 78 (Feb. 15th) 63, thickening and clarification.

DAY, R. W. and GRICHAR, C. N. (1979) Hydrocyclone separation, in *Handbook of Separation Processes for Chemical Engineers*, Schweitzer, P. A. (ed.) (McGraw-Hill).

DIMOPLON, W. (1978) Hyd. Proc. 57 (May) 221. What process engineers need to know about compressors.

DORMAN, R. G. (1974) Dust Control and Air Cleaning (Pergamon).

EVANS, F. L. (1980) Equipment Design Handbook for Refineries and Chemical Plants, 2nd edn, Vol 2 (Gulf).

FISCHER, R. (1965) Chem. Eng., NY 72 (Sept. 13th) 179. Agitated evaporators, Part 2, equipment and economics. Fossett, H. and Prosser, L. E. (1949) Proc. Inst. Mech. Eng. 160, 224. The application of free jets to the mixing of fluids in tanks.

GERUNDA, A. (1981) Chem. Eng., NY 74 (May 4) 81. How to size liquid-vapor separators.

Hanson, C. (1968) Chem. Eng., NY 75 (Aug. 26th) 76. Solvent extraction.

HANSON, C. (ed.) (1971) Recent Advances in Liquid-liquid Extraction (Pergamon).

HARNBY, N., EDWARDS, M. F. and NIENOW, A. W. (1997) (eds) Mixing in the Process Industries, 2nd edn. (Butterworths).

HENGLEIN, F. A. (1969) Chemical Technology (Pergamon).

HEYWOOD, N. (1991) The Storage and Conveying of Wet Granular Solids in the Process Industries (Royal Society of Chemistry).

HICKS, R. W. (1976) Chem. Eng., NY 83 (July 19th) 141. How to select turbine agitators for dispersing gas into liquids.

HIORNS, F. J. (1970) Brit. Chem. Eng. 15, 1565. Advances in comminution.

HOLLAND, F. A. and CHAPMAN, F. S. (1966a) Liquid Processing and Mixing in Stirred Tanks (Reinhold).

HOLLAND, F. A. and CHAPMAN, F. S. (1966b) Pumping of Liquids (Reinhold).

HOOPER, W. B. (1975) Chem. Eng., NY 82 (Aug. 4th) 103. Predicting flow patterns in plant equipment.

HOOPER, W. B. and JACOBS, L. T. (1988) Decantation, in *Handbook of Separation Techniques for Chemical Engineers* 2nd edn, Schweitzer, P. A. (ed.) (McGraw-Hill).

IChemE (1992) Dust and Fume Control: a User Guide, 2nd edn (Institution of Chemical Engineers, London).

JANIE, S. J. and GROOTSCHOLTEN, P. A. M. (1984) Industrial Crystallization (Riedel).

JENIKE, A. W. (1967) Powder Technology 1, 237. Quantitive design of mass flow in bins.

JENIKE, A. W. and JOHNSON, J. R. (1970) Chem. Eng. Prog. 66 (June) 31. Solids flow in bins and moving beds.

JONES, R. L. (1985) Chem. Engr., London No 419 (Nov.) 41. Mixing equipment for powders and pastes.

JORDAN, D. J. (1968) Chemical Process Development, Vol. 1 (Wiley).

KEEY, R. B. (1972) Drying—Principles and Practice (Pergamon).

KEEY, R. B. (1978) Introduction to Industrial Drying (Pergamon).

Koch, W. H. and Light, W. (1977) Chem. Eng., NY 84 (Nov. 7th) 80. New design approach boosts cyclone efficiency.

KOVAT, A. (1964) Design and Performance of Centrifugal and Axial Flow Pumps and Compressors (Pergamon). Kraus, M. N. (1979) Chem. Eng., NY 86 (April 9th) 94. Separating and collecting industrial dusts. (April 23rd) 133. Baghouses: selecting, specifying and testing of industrial dust collectors.

LACEY, R. E. and LOEB, S. (eds) (1972) Industrial Processing with Membranes (Wiley).

LARSON, M. A. (1978) Chem. Eng., NY 85 (Feb. 13th) 90. Guidelines for selecting crystallizers.

LAVANCHY, A. C., KEITH, F. W. and BEAMS, J. W. (1964) Centrifugal separation, in Kirk-Othmer Encyclopedia of Chemical Technology, 2nd edn (Interscience).

LEE, J. and BRODKEY, R. S. (1964) AIChEJI 10, 187. Turbulent motion and mixing in a pipe.

LINLEY, J. (1984) Chem. Engr., London No. 409 (Dec.) 28. Centrifuges, Part 1: Guidelines on selection.

Lo, T. C., BAIRD, M. H. I. and HANSON, C. (eds) (1983) Handbook of Solvent Extraction (Wiley).

LOWRISON, G. C. (1974) Crushing and Grinding (Butterworths).

MAAS, J. H. (1988) Gas-solid separations, in *Handbook of Separation Techniques for Chemical Engineers*, 2nd edn, Schweitzer, P. A. (ed.) (McGraw-Hill).

MAIS, L. G. (1971) Chem. Eng., NY 78 (Feb. 15th) 49. Filter media.

MARSHALL, P. (1985) Chem. Engr., London, No. 418 (Oct.) 52. Positive displacement pumps — a brief survey.

MARSHALL, V. C. (1974) Comminution (IChemE, London).

MASTERS, K. (1991) Spray Drying Handbook, 5th edn (Longmans).

MATTHEWS, C. W. (1971) Chem. Eng., NY 78 (Feb. 15th) 99. Screening.

McGregor, W. C. (ed.) (1986) Membrane Separation Processes in Biotechnology (Dekker).

MEAD, W. J. (1964) The Encyclopedia of Chemical Process Equipment (Reinhold).

MEADE, A. (1921) Modern Gasworks Practice, 2nd edn (Benn Bros.).

MEARES, P. (ed.) (1976) Membrane Separation Processes (Elsevier).

MERSHAM, A. (1984) Int. Chem. Eng., 24 (3) 401. Design and scale-up of crystallizers.

MERSHAM, A. (1988) Chem. Eng. & Proc. 23 (4) 213. Design of crystallizers.

MERSMANN, A, (ed.) (1995) Crystallisation Technology Handbook (Marcel Dekker).

MILLS, D. (1990) Pneumatic Conveying Design Guide (Butterworths).

MIZRAHI, J. and BARNEA, E. (1973) Process Engineering (Jan.) 60. Compact settler gives efficient separation of liquid-liquid dispersions.

Moir, D. N. (1985) Chem. Engr., London No. 410 (Jan.) 20. Selection and use of hydrocyclones.

MORRIS, B. G. (1966) Brit. Chem. Eng. 11, 347, 846 (in two parts) Application and selection of centrifuges.

MULLIN, J. W. (1992) Crystallisation, 3rd edn (Butterworths).

MUTZENBURG, A. B. (1965) Chem. Eng., NY 72 (Sept. 13th) 175. Agitated evaporators, Part 1, thin-film technology.

NAGATA, S. (1975) Mixing Principles and Applications (Halstead Press/Wiley).

Nonhebel, G. (ed.) (1972) Gas Purification Processes for Air Pollution Control, 2nd edn (Newnes-Butterworths).

NONHEBEL, G. and Moss, A. A. H. (1971) Drying of Solids in the Chemical Industry (Butterworths).

NYVLT, J. (1971) Industrial Crystallisation from Solutions (Butterworths).

OLDSHUE, J. Y., HIRSHLAND, H. E. and GRETTON, A. T. (1956) Chem. Eng. Prog. 52 (Nov.) 481. Side-entering mixers.

ORR, C. (ed.) (1977) Filtration: Principles and Practice, 2 volumes (Dekker).

PARKER, N. H. (1963a) Chem. Eng., NY 70 (June 24th) 115. Aids to dryer selection.

PARKER, N. H. (1963b) Chem. Eng., NY 70 (July 22nd) 135. How to specify evaporators.

PARKER, N. (1965) Chem. Eng., NY 72 (Sept. 13th) 179. Agitated evaporators, Part 2, equipment and economics.

PENNY, N. R. (1970) Chem. Eng., NY 77 (June 1st) 171. Guide to trouble free mixing.

PERRY, R. H. and CHILTON, C. H. (eds) (1973) Chemical Engineers Handbook, 5th edn (McGraw-Hill).

PERRY, R. H. and GREEN, D. W. (eds) (1984) Perry's Chemical Engineers Handbook, 6th edn (McGraw-Hill).

PERRY, R. H., GREEN, D. W. and MALONEY, J. O. (eds) (1997) Perry's Chemical Engineers' Handbook, 7th edn (McGraw-Hill).

PICKETT, D. J. (1979) Electrochemical Reactor Design (Elsevier).

POLLAK, F. (ed.) (1980) Pump Users Handbook, 2nd edn (Trade & Technical Press).

PORTER, H. F., FLOOD, J. E. and RENNIE, F. W. (1971) Chem. Eng., NY 78 (Feb. 15th) 39. Filter selection.

PORTER, M. C. (1988) Membrane filtration, in *Handbook of Separation Processes for Chemical Engineers*, 2nd edn, Schweitzer, P. A. (ed.) (McGraw-Hill).

POWER, R. B. (1964) Hyd. Proc. 43 (March) 138. Steam jet air ejectors.

Prabhudesal, R. K. (1988) Leaching, in *Handbook of Separation Processes for Chemical Engineers*, Schweitzer, PA. (ed.) (McGraw-Hill).

PRASHER, C. L. (1987) Crushing and Grinding Process Handbook (Wiley).

PRYCE BAYLEY, D. and DAVIES, G. A. (1973) Chemical Processing 19 (May) 33. Process applications of knitted mesh mist eliminators.

PURCHAS, D. B. (1967) Industrial Filtration of Liquids (Leonard Hill).

Purchas, D. B. (1971) Chemical Processing 17 (Jan.) 31, (Feb.) 55 (in two parts). Choosing the cheapest filter medium.

PURCHAS, D. P. and WAKEMAN, R. J. (eds) (1986) Solid/Liquid Separation Equipment Scale-up, 2nd edn (Uplands Press).

RASE, H. F. (1977) Chemical Reactor Design for Process Plants, 2 volumes (Wiley).

RASE, H. F. (1990) Fixed-bed Reactor Design and Diagnostics (Butterworths).

REDMON, O. C. (1963) Chem. Eng. Prog. 59 (Sept.) 87. Cartridge type coalescers.

REID, R. W. (1979) Mixing and kneading equipment, in *Solids Separation and Mixing*, Bhatia, M. V. and Cheremisinoff, P. E. (eds) (Technomic).

REISNER, W. and ROTHE, M. E. (1971) Bins and Bunkers for Handling Bulk Materials (Trans. Tech. Publications).

ROBERTS, E. J., STAVENGER, P., BOWERSOX, J. P., WALTON, A. K. and MEHTA, M. (1971) Chem. Eng., NY 78 (Feb. 15th) 89. Solid/solid separation.

Rose, H. E. and Wood, A. J. (1966) An Introduction to Electrostatic Precipitation in Theory and Practice, 2nd edn (Constable).

ROSENNZWEIG, M. D. (1977) Chem. Eng., NY 84 (May 9th) 95. Motionless mixers move into new processing roles.

ROUSAR, I., MICHA, K. and KIMLA, A. (1985) Electrochemical Engineering, 2 vols. (Butterworths).

Rushton, J. H., Costich, E. W. and Everett, H. J. (1950) Chem. Eng. Prog. 46, 467. Power characteristics of mixing impellers.

RYON, A. D., DALEY, F. L. and LOWRIE, R. S. (1959) Chem. Eng. Prog. 55 (Oct.) 70. Scale-up of mixer-settlers. SARGENT, G. D. (1971) Chem. Eng., NY 78 (Feb. 15) 11. Gas/solid separations.

SCHNEIDER, G. G., HORZELLA, T. I., Spiegel, P. J. and Cooper, P. J. (1975) Chem. Eng., NY 82 (May 26th 94. Selecting and specifying electrostatic precipitators.

SCHROEDER, T. (1998) Chem. Eng., NY 105 (Sept.) 82. Selecting the right centrifuge.

Schweitzer, P. A. (ed.) (1988) Handbook of Separation Techniques for Chemical Engineers, 2nd edn (McGraw-Hill).

Scott, K. (1991) Electrochemical Reaction Engineering (Academic Press).

SIGNALES, B. (1975) Chem. Eng., NY 82 (June 23rd) 141. How to design settling drums.

SMITH, N. (1945) Gas Manufacture and Utilisation (British Gas Council).

SOHNEL, O. and GARSIDE, J. (1992) Precipitation (Butterworth-Heinemann).

STAIRMAND, C. J. (1949) Engineering 168, 409. Pressure drop in cyclone separators.

STAIRMAND, C. J. (1951) Trans. Inst. Chem. Eng. 29, 356. Design and performance of cyclone separators.

STEPANOFF, A. J. (1969) Gravity Flow of Bulk Solids and Transport of Solids in Suspension (Wiley).

STERBACEK, Z. and TAUSK, P. (1965) Mixing in the Chemical Industry (Pergamon).

STRAUSS, N. (1966) Industrial Gas Cleaning (Pergamon).

SUTHERLAND, K. S. (1970) Chemical Processing 16 (May) 10. How to specify a centrifuge.

SUTTLE, H. K. (ed.) (1969) Process Engineering Technique Evaluation: Filtration (Morgan-Grampian).

SUZIKI, M. (1990) Adsorption Engineering (Elsevier).

SVAROVSKY, L. (1984) Hydrocyclones (Holt, Rinehart and Winston).

SVAROVSKY, L. (1985) Solid-Liquid Separation Processes and Technology (Elsevier).

SVAROVSKY, L. (ed.) (1990) Solid-Liquid Separation, 3rd edn (Butterworths).

TATTERSON, G. B. (1991) Fluid Mixing and Gas Dispersion in Agitated Tanks (McGraw-Hill).

TATTERSON, G. B. (1993) Scale-up and Design of Industrial Mixing Processes (McGraw-Hill).

TREYBAL, R. E. (1963) Liquid Extraction, 2nd edn (McGraw-Hill).

TROWBRIDGE, M. E. O'K. (1962) *Chem. Engr., London No.* 162 (Aug.) 73. Problems in scaling-up of centrifugal separation equipment.

UHL, W. W. and GRAY, J. B. (eds) (1967) Mixing, Theory and Practice, 2 volumes (Academic Press).

VAN HOOK, A. (1961) Crystallisation: Theory and Practice (Reinhold).

WAKEMAN, R. J. (1975) Filters and Filtration (Elsevier).

WALAS, S. M. (1990) Chemical Process Equipment: Selection and Design (Butterworths).

WARRING, R. H. (1979) Pumps, Selection Systems and Application (Trade & Technical Press).

WARRING, R. H. (1981) Filters and Filtration Handbook (Trade and Technical Press).

WATERMAN, L. L. (1965) Chem. Eng. Prog. 61 (Oct.) 51. Electrical coalescers.

WILKINSON, W. L. and EDWARDS, M. F. (1972) Chem. Engr., London No. 264 (Aug.) 310; No. 265 (Sept.) 328 (in two parts). Heat transfer in agitated vessels.

WILLIAMS-GARDNER, A. (1965) Chem & Process Eng. 46, 609. Selection of industrial dryers.

WILLIAMS-GARDNER, A. (1971) Industrial Drying (Leonard Hill).

Wu, F. H. (1984) Chem. Eng. NY 91 (April 2) 74. Drum separator design: a new approach.

YANG, R. T. (1987) Gas Separation by Adsorption Processes (Butterworths).

YORK, O. H. (1954) Chem. Eng. Prog. 50 (Aug.) 421. Performance of wire-mesh demisters.

ZANKER, A. (1977) Chem. Eng., NY 84 (May 9th) 122. Hydrocyclones: dimensions and performance.

# **Bibliography**

Books on reactor design (not cited in text).

CARBERRY, J. J. Chemical and Catalytic Reactor Engineering (McGraw-Hill, 1976).

CHEN, N. H. Process Reactor Design (Allyn and Bacon, 1983).

DORAISWAMY, L. K. AND SHARMA, M. M. Heterogenous Reactions: analysis, examples, and reactor design (Wiley, 1983):

Volume 1: Gas-solid and solid-solid reactions

Volume 2: Fluid-fluid-solid reactions.

FROMENT, G. F. and BISCHOFF, K. B. Chemical Reactor Analysis and Design, 2nd edn (Wiley, 1990).

LEVENSPIEL, O. Chemical Reaction Engineering, 2nd edn (Wiley, 1972).

LEVENSPIEL, O. The Chemical Reactor Omnibook (Corvallis: OSU book centre, 1979).

NAUMAN, E. B. Chemical Reactor Design (Wiley, 1987).

ROSE, L. M. Chemical Reactor Design in Practice (Elsevier, 1981).

SMITH, J. M. Chemical Engineering Kinetics (McGraw-Hill, 1970).

WESTERTERP, K. R., VAN SWAAJI, W. P. M. and BEENACKERS, A. A. C. M. Chemical Reactor Design and Operation, 2nd edn (Wiley, 1984).

#### **British Standards**

BS 410: 1976 Specification for test sieves. BS 490: ... Conveyor and elevator belting.

Part 1: 1972 Rubber and plastic belting of textile construction for general use.

Part 2: 1975 Rubber and plastics belting of textile construction for use on bucket elevators.

BS 1796: 1976 Method for test sieving.

#### 10.15. NOMENCLATURE

|                   |                                                                           | Dimensions                       |
|-------------------|---------------------------------------------------------------------------|----------------------------------|
|                   |                                                                           | in MLT                           |
| $A_i$             | Area of interface                                                         | $\mathbf{L}^2$                   |
| $A_s$             | Surface area of cyclone                                                   | $\mathbf{L}^2$                   |
| $A_v$             | Area for vapour flow                                                      | $\mathbf{L}^2$                   |
| $A_1$             | Area of cyclone inlet duct                                                | $\mathbf{L}^2$                   |
| b                 | Index in equation 10.11                                                   |                                  |
| c                 | Index in equation 10.11                                                   |                                  |
| D                 | Agitator diameter                                                         | L                                |
| $D_c$             | Cyclone diameter                                                          | L                                |
| $D_{c_1}$         | Diameter of standard cyclone                                              | L .                              |
| $D_{c_2}$         | Diameter of proposed cyclone design                                       | L                                |
| $D_T$             | Tank diameter                                                             | L                                |
| $D_v$             | minimum vessel diameter for separator                                     | L                                |
| d                 | Particle diameter                                                         | L                                |
| $d_s$             | Diameter of solid particle removed in a centrifuge                        | L                                |
| $d_1$             | Mean diameter of particles separated in cyclone under standard conditions | L                                |
| $d_2$             | Mean diameter of particles separated in proposed cyclone design           | L                                |
| $d_{50}$          | Particle diameter for which cyclone is 50 per cent efficient              | L                                |
| $f_c$             | Friction factor for cyclones                                              | <del></del>                      |
| $f_v$             | fraction of cross-sectional area occupied by vapour.                      | _                                |
| $h_v$             | height above liquid level                                                 | L                                |
| K                 | Constant in equation 10.11                                                | 2- 1                             |
| L                 | Cyclone feed volumetric flow-rate                                         | $\mathbf{L}^{3}\mathbf{T}^{-1}$  |
| $L_c$             | Continuous phase volumetric flow-rate                                     | $L^3T^{-1}$                      |
| $L_v$             | length of separator                                                       | $LT^{-1}$                        |
| l                 | Length of decanter vessel                                                 | L                                |
| N                 | Agitator speed                                                            | $\mathbf{T}^{-1}$                |
| P                 | Agitator shaft power                                                      | $\mathbf{ML}^{2}\mathbf{T}^{-3}$ |
| $\Delta P$        | Press differential (pressure drop)                                        | $ML^{-1}T^{-2}$                  |
| p                 | Agitator blade pitch                                                      | L                                |
| $\dot{Q}$         | Volumetric flow-rate of liquid through a centrifuge                       | $\mathbf{L}^{3}\mathbf{T}^{-1}$  |
| $\widetilde{Q}_p$ | Volumetric liquid flow through a pump                                     | $\mathbf{L}^{3}\mathbf{T}^{-1}$  |
| $Q_1$             | Standard flow-rate in cyclone                                             | $L^3T^{-1}$                      |
| $Q_2$             | Proposed flow-rate in cyclone                                             | $L^{3}T^{-1}$                    |
| 22                | Proposed non-rate in Cyclone                                              | LI                               |

| r                | Radius of decanter vessel                                                 | L                                 |
|------------------|---------------------------------------------------------------------------|-----------------------------------|
| $r_e$            | Radius of cyclone exit pipe                                               | L                                 |
| $r_t$            | Radius of circle to which centre line of cyclone inlet duct is tangential | L                                 |
| $u_c$            | Velocity of continuous phase in a decanter                                | $LT^{-1}$                         |
| $u_d$            | Settling (terminal) velocity of dispersed phase in a decanter             | $LT^{-1}$                         |
| $u_g$            | Terminal velocity of solid particles settling under gravity               | $LT^{-1}$                         |
| $u_s$            | velocity in a separator                                                   | $LT^{-1}$                         |
| $u_t$            | settling velocity                                                         | $LT^{-1}$                         |
| û,               | Maximum allowable vapour velocity in a separating vessel                  | $LT^{-1}$                         |
| $u_1$            | Velocity in cyclone inlet duct                                            | $LT^{-1}$                         |
| u <sub>2</sub>   | Velocity in cyclone exit duct                                             | $LT^{-1}$                         |
| $\overline{V}_v$ | Gas, or vapour volumetric flow-rate                                       | $L^3T^{-1}$                       |
| w                | Width of interface in a decanter                                          | L                                 |
| Z <sub>1</sub>   | Height to light liquid overflow from a decanter                           | L                                 |
| <b>Z</b> 2       | Height to heavy liquid overflow from a decanter                           | L                                 |
| <b>Z</b> 3       | Height to the interface in a decanter                                     | L                                 |
| η                | Separating efficiency of a centrifuge                                     |                                   |
| $\eta_p$         | Pump efficiency                                                           | <b>–</b>                          |
| $\mu$            | Liquid viscosity                                                          | ML-1T-1                           |
| $\mu_c$          | Viscosity of continuous phase                                             | $ML^{-1}T^{-1}$                   |
| $\mu_1$          | Cyclone test fluid viscosity                                              | $\mathbf{ML}^{-1}\mathbf{T}^{-1}$ |
| $\mu_2$          | Viscosity of fluid in proposed cyclone design                             | $\mathbf{ML}^{-1}\mathbf{T}^{-1}$ |
| ρ                | Liquid density                                                            | $ML^{-3}$                         |
| $ ho_f$          | Gas density                                                               | $ML^{-3}$                         |
| $ ho_{ m L}$     | Liquid density                                                            | $ML^{-3}$                         |
| $ ho_s$          | Density of solid                                                          | $ML^{-3}$                         |
| $ ho_v$          | Vapour density                                                            | $ML^{-3}$                         |
| $\rho_1$         | Light liquid density in a decanter                                        | $ML^{-3}$                         |
| $\rho_2$         | Heavy liquid density in a decanter                                        | $ML^{-3}$                         |
| $\Delta \rho$    | Difference in density between solid and liquid                            | $ML^{-3}$                         |
| $\Delta \rho_1$  | Density difference under standard conditions in standard cyclone          | $ML^{-3}$                         |
| $\Delta \rho_2$  | Density difference in proposed cyclone design                             | $\mathbf{ML}^{-3}$                |
| Σ                | Sigma value for centrifuges, defined by equation 10.1                     | $\mathbf{L}^2$                    |
| φ                | Factor in Figure 10.48                                                    |                                   |
| $\psi$           | Parameter in Figure 10.47                                                 | _                                 |
|                  |                                                                           |                                   |

## **10.16. PROBLEMS**

- 10.1. The product from a crystalliser is to be separated from the liquor using a centrifuge. The concentration of the crystals is 6.5 per cent and the slurry feed rate to the centrifuge will be  $5.0 \text{ m}^3/\text{h}$ . The density of the liquor is  $995 \text{ kg/m}^3$  and that of the crystals  $1500 \text{ kg/m}^3$ . The viscosity of the liquor is  $0.7 \text{ mN m}^{-2}\text{s}$ . The cut-off crystal size required is  $5 \mu\text{m}$ .
  - Select a suitable type of centrifuge to use for this duty.
- 10.2. Dissolved solids in the tar from the bottom of a distillation column are precipitated by quenching the hot tar in oil. The solids are then separated from the oil and burnt. The density of the solids is 1100 kg/m<sup>3</sup>. The density of the liquid phase after addition of the tar is 860 kg/m<sup>3</sup> and its viscosity, at the temperature of the mixture, 1.7 mN m<sup>-2</sup>s. The solid content of the oil and tar mixture is 10 per cent

and the flow-rate of the liquid phase leaving the separator will be 1000 kg/h. The cut-off particle size required is 0.1 mm.

List the types of separator that could be considered for separating the solids from the liquid. Bearing mind the nature of the process, what type of separator would you recommend for this duty?

10.3. The solids from a dilute slurry are to be separated using hydrocyclones. The density of the solids is 2900 kg/m<sup>3</sup>, and liquid is water. A recovery of 95 per cent of particles greater than 100  $\mu$ m is required. The minimum operating temperature will be 10 °C and the maximum 30 °C.

Design a hydrocyclone system to handle 1200 1/m of this slurry.

**10.4.** A fluidised bed is used in the production of aniline by the hydrogenation of nitrobenzene. Single-stage cyclones, followed by candle filters, are used to remove fines from the gases leaving the fluidised bed.

The reactor operates at a temperature  $270\,^{\circ}\text{C}$  and a pressure of 2.5 bara. The reactor diameter is 10 m. Hydrogen is used in large excess in the reaction, and for the purposes of this exercise the properties of the gas may be taken as those of hydrogen at the reactor conditions. The density of the catalyst particles is  $1800 \text{ kg/m}^3$ .

The estimated particle size distribution of the fines is:

| Particle size, $\mu$ m | 50  | 40 | 30 | 20 | 10 | 5 | 2 |
|------------------------|-----|----|----|----|----|---|---|
| Percentage by          |     |    |    |    |    |   |   |
| weight less than       | 100 | 70 | 40 | 20 | 10 | 5 | 2 |

A 70 per cent recovery of the solids is required in the cyclones.

For a gas flow rate of  $100,000 \text{ m}^3/\text{h}$ , at the reactor conditions, determine how many cyclones operating in parallel are need and design a suitable cyclone. Estimate the size distribution of the particles entering the filters.

10.5. In a process for the production of acrylic fibres by the emulsion polymerisation of acrylonitrile, the unreacted monomer is recovered from water by distillation. Acrylonitrile forms an azeotrope with water and the overhead product from the column contain around 5 mol per cent water. The overheads are condensed and the recovered acrylonitrile separated from the water in a decanter. The decanter operating temperature will be 20 °C.

Size a suitable decanter for a feed-rate of 300 kg/h.

10.6. In the production of aniline by the hydrogenation of nitrobenzene, the reactor products are separated from unreacted hydrogen in a condenser. The condensate, which is mainly water and aniline, together with a small amount of unreacted nitrobenzene and cyclo-hexylamine, is fed to a decanter to separate the water and aniline. The separation will not be complete, as aniline is slightly soluble in water, and water in aniline. A typical material balance for the decanter is given below:

Basis 100 kg feed

|                  | feed | aqueous stream | organic stream |
|------------------|------|----------------|----------------|
| water            | 23.8 | 21.4           | 2.4            |
| aniline          | 72.2 | 1.1            | 71.1           |
| nitrobenzene     | 3.2  | trace          | 3.2            |
| cyclo-hexylamine | 0.8  | 0.8            | trace          |
| total            | 100  | 23.3           | 76.7           |

Design a decanter for this duty, for a feed-rate of 3500 kg/h. Concentrate on the separation of the water and aniline. The densities of water-aniline solutions are given in Appendix G, problem C.8. The decanter will operate at a maximum temperature of  $30\,^{\circ}$ C.

- **10.7.** Water droplets are to be separated from air in a simple separation drum. The flow-rate of the air is 1000 m<sup>3</sup>/h, at stp, and it contains 75 kg of water. The drum will operate at 1.1 bara pressure and 20 °C. Size a suitable liquid-vapour separator.
- **10.8.** The vapours from a chlorine vaporiser will contain some liquid droplets. The vaporiser consists of a vertical, cylindrical, vessel with a submerged bundle for heating. A vapour rate of 2500 kg/h is required and the vaporiser will operate at 6 bara.

Size the vessel to restrict the carryover of liquid droplets. The liquid hold-up time need not be considered, as the liquid level will be a function of the thermal design.

#### CHAPTER 11

# Separation Columns (Distillation, Absorption and Extraction)

#### 11.1. INTRODUCTION

This chapter covers the design of separating columns. Though the emphasis is on distillation processes, the basic construction features, and many of the design methods, also apply to other multistage processes; such as stripping, absorption and extraction.

Distillation is probably the most widely used separation process in the chemical and allied industries; its applications ranging from the rectification of alcohol, which has been practised since antiquity, to the fractionation of crude oil.

Only a brief review of the fundamental principles that underlie the design procedures will be given; a fuller discussion can be found in Volume 2, and in other text books; Robinson and Gilliland (1950), Norman (1961), Oliver (1966), Smith (1963), King (1980), Hengstebeck (1961), Kister (1992).

A good understanding of methods used for correlating vapour-liquid equilibrium data is essential to the understanding of distillation and other equilibrium-staged processes; this subject was covered in Chapter 8.

In recent years, most of the work done to develop reliable design methods for distillation equipment has been carried out by a commercial organisation, Fractionation Research Inc., an organisation set up with the resources to carry out experimental work on full-size columns. Since their work is of a proprietary nature, it is not published in the open literature and it has not been possible to refer to their methods in this book. Fractionation Research's design manuals will, however, be available to design engineers whose companies are subscribing members of the organisation.

# Distillation column design

The design of a distillation column can be divided into the following steps:

- 1. Specify the degree of separation required: set product specifications.
- 2. Select the operating conditions: batch or continuous; operating pressure.
- 3. Select the type of contacting device: plates or packing.
- 4. Determine the stage and reflux requirements: the number of equilibrium stages.
- 5. Size the column: diameter, number of real stages.
- 6. Design the column internals: plates, distributors, packing supports.
- 7. Mechanical design: vessel and internal fittings.

The principal step will be to determine the stage and reflux requirements. This is a relatively simple procedure when the feed is a binary mixture, but a complex

and difficult task when the feed contains more than two components (multicomponent systems).

#### 11.2. CONTINUOUS DISTILLATION: PROCESS DESCRIPTION

The separation of liquid mixtures by distillation depends on differences in volatility between the components. The greater the relative volatilities, the easier the separation. The basic equipment required for continuous distillation is shown in Figure 11.1. Vapour flows up the column and liquid counter-currently down the column. The vapour and liquid are brought into contact on plates, or packing. Part of the condensate from the condenser is returned to the top of the column to provide liquid flow above the feed point (reflux), and part of the liquid from the base of the column is vaporised in the reboiler and returned to provide the vapour flow.

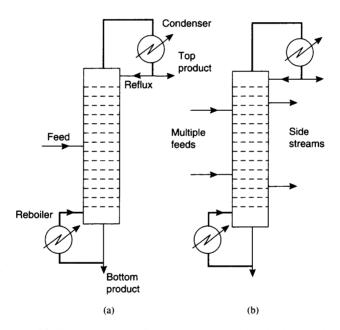



Figure 11.1. Distillation column (a) Basic column (b) Multiple feeds and side streams

In the section below the feed, the more volatile components are stripped from the liquid and this is known as the *stripping section*. Above the feed, the concentration of the more volatile components is increased and this is called the enrichment, or more commonly, the *rectifying section*. Figure 11.1a shows a column producing two product streams, referred to as *tops* and *bottoms*, from a single feed. Columns are occasionally used with more than one feed, and with side streams withdrawn at points up the column, Figure 11.1b. This does not alter the basic operation, but complicates the analysis of the process, to some extent.

If the process requirement is to strip a volatile component from a relatively non-volatile solvent, the rectifying section may be omitted, and the column would then be called a *stripping column*.

In some operations, where the top product is required as a vapour, only sufficient liquid is condensed to provide the reflux flow to the column, and the condenser is referred to as a partial condenser. When the liquid is totally condensed, the liquid returned to the column will have the same composition as the top product. In a partial condenser the reflux will be in equilibrium with the vapour leaving the condenser. Virtually pure top and bottom products can be obtained in a single column from a binary feed, but where the feed contains more than two components, only a single "pure" product can be produced, either from the top or bottom of the column. Several columns will be needed to separate a multicomponent feed into its constituent parts.

#### 11.2.1. Reflux considerations

The reflux ratio, R, is normally defined as:

$$R = \frac{\text{flow returned as reflux}}{\text{flow of top product taken off}}$$

The number of stages required for a given separation will be dependent on the reflux ratio used.

In an operating column the effective reflux ratio will be increased by vapour condensed within the column due to heat leakage through the walls. With a well-lagged column the heat loss will be small and no allowance is normally made for this increased flow in design calculations. If a column is poorly insulated, changes in the internal reflux due to sudden changes in the external conditions, such as a sudden rain storm, can have a noticeable effect on the column operation and control.

#### Total reflux

Total reflux is the condition when all the condensate is returned to the column as reflux: no product is taken off and there is no feed.

At total reflux the number of stages required for a given separation is the minimum at which it is theoretically possible to achieve the separation. Though not a practical operating condition, it is a useful guide to the likely number of stages that will be needed.

Columns are often started up with no product take-off and operated at total reflux till steady conditions are attained. The testing of columns is also conveniently carried out at total reflux.

#### Minimum reflux

As the reflux ratio is reduced a *pinch point* will occur at which the separation can only be achieved with an infinite number of stages. This sets the minimum possible reflux ratio for the specified separation (see Volume 2, Chapter 11).

## Optimum reflux ratio

Practical reflux ratios will lie somewhere between the minimum for the specified separation and total reflux. The designer must select a value at which the specified separation is achieved at minimum cost. Increasing the reflux reduces the number of stages required, and hence the capital cost, but increases the service requirements (steam and water) and the operating costs. The optimum reflux ratio will be that which gives the lowest annual operating cost. No hard and fast rules can be given for the selection of the design reflux ratio, but for many systems the optimum will lie between 1.2 to 1.5 times the minimum reflux ratio.

For new designs, where the ratio cannot be decided on from past experience, the effect of reflux ratio on the number of stages can be investigated using the short-cut design methods given in this chapter. This will usually indicate the best of value to use in more rigorous design methods.

At low reflux ratios the calculated number of stages will be very dependent on the accuracy of the vapour-liquid equilibrium data available. If the data are suspect a higher than normal ratio should be selected to give more confidence in the design.

# 11.2.2. Feed-point location

The precise location of the feed point will affect the number of stages required for a specified separation and the subsequent operation of the column. As a general rule, the feed should enter the column at the point that gives the best match between the feed composition (vapour and liquid if two phases) and the vapour and liquid streams in the column. In practice, it is wise to provide two or three feed-point nozzles located round the predicted feed point to allow for uncertainties in the design calculations and data, and possible changes in the feed composition after start-up.

# 11.2.3. Selection of column pressure

Except when distilling heat-sensitive materials, the main consideration when selecting the column operating-pressure will be to ensure that the dew point of the distillate is above that which can be easily obtained with the plant cooling water. The maximum, summer, temperature of cooling water is usually taken as 30°C. If this means that high pressures will be needed, the provision of refrigerated brine cooling should be considered. Vacuum operation is used to reduce the column temperatures for the distillation of heat-sensitive materials and where very high temperatures would otherwise be needed to distil relatively non-volatile materials.

When calculating the stage and reflux requirements it is usual to take the operating pressure as constant throughout the column. In vacuum columns, the column pressure drop will be a significant fraction of the total pressure and the change in pressure up the column should be allowed for when calculating the stage temperatures. This may require a trial and error calculation, as clearly the pressure drop cannot be estimated before an estimate of the number of stages is made.

#### 11.3. CONTINUOUS DISTILLATION: BASIC PRINCIPLES

#### 11.3.1. Stage equations

Material and energy balance equations can be written for any stage in a multistage process. Figure 11.2 shows the material flows into and out of a typical stage n in a distillation column. The equations for this stage are set out below, for any component i.

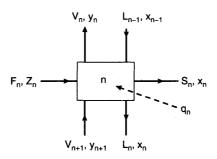



Figure 11.2. Stage flows

material balance

$$V_{n+1}y_{n+1} + L_{n-1}x_{n-1} + F_nz_n = V_ny_n + L_nx_n + S_nx_n$$
 (11.1)

energy balance

$$V_{n+1}H_{n+1} + L_{n-1}h_{n-1} + Fh_f + q_n = V_nH_n + L_nh_n + S_nh_n$$
 (11.2)

where  $V_n$  = vapour flow from the stage,

 $V_{n+1}$  = vapour flow into the stage from the stage below,

 $L_n$  = liquid flow from the stage,

 $L_{n-1}$  = liquid flow into the stage from the stage above,

 $F_n =$  any feed flow into the stage,

 $S_n$  = any side stream from the stage,

 $q_n$  = heat flow into, or removal from, the stage,

n =any stage, numbered from the top of the column,

z = mol fraction of component i in the feed stream (note, feed may be two-phase),

x = mol fraction of component i in the liquid streams,

y = mol fraction component i in the vapour streams,

H = specific enthalpy vapour phase,

h = specific enthalpy liquid phase,

 $h_f = \text{specific enthalpy feed (vapour + liquid)}.$ 

All flows are the total stream flows (mols/unit time) and the specific enthalpies are also for the total stream (J/mol).

It is convenient to carry out the analysis in terms of "equilibrium stages". In an equilibrium stage (theoretical plate) the liquid and vapour streams leaving the stage are taken to be in equilibrium, and their compositions are determined by the vapour-liquid equilibrium relationship for the system (see Chapter 8). In terms of equilibrium constants:

$$\mathbf{v}_i = K_i \mathbf{x}_i \tag{11.3}$$

The performance of real stages is related to an equilibrium stage by the concept of plate efficiencies for plate contactors, and "height of an equivalent theoretical plate" for packed columns.

In addition to the equations arising from the material and energy balances over a stage, and the equilibrium relationships, there will be a fourth relationship, the summation equation for the liquid and vapour compositions:

$$\sum x_{i,n} = \sum y_{i,n} = 1.0 \tag{11.4}$$

These four equations are the so-called MESH equations for the stage: Material balance, Equilibrium, Summation and Heat (energy) balance, equations. MESH equations can be written for each stage, and for the reboiler and condenser. The solution of this set of equations forms the basis of the rigorous methods that have been developed for the analysis for staged separation processes.

# 11.3.2. Dew points and bubble points

To estimate the stage, and the condenser and reboiler temperatures, procedures are required for calculating dew and bubble points. By definition, a saturated liquid is at its bubble point (any rise in temperature will cause a bubble of vapour to form), and a saturated vapour is at its dew point (any drop in temperature will cause a drop of liquid to form).

Dew points and bubble points can be calculated from a knowledge of the vapour-liquid equilibrium for the system. In terms of equilibrium constants, the bubble point is defined by the equation:

bubble point: 
$$\sum y_i = \sum K_i x_i = 1.0$$
 (11.5a)

and dew point: 
$$\sum x_i = \sum \frac{y_i}{K_i} = 1.0$$
 (11.5b)

For multicomponent mixtures the temperature that satisfies these equations, at a given system pressure, must be found by trial and error.

For binary systems the equations can be solved more readily because the component compositions are not independent; fixing one fixes the other.

$$y_a = 1 - y_b {(11.6a)}$$

$$x_a = 1 - x_b \tag{11.6b}$$

Bubble- and dew-point calculations are illustrated in Example 11.9.

# 11.3.3. Equilibrium flash calculations

In an equilibrium flash process a feed stream is separated into liquid and vapour streams at equilibrium. The composition of the streams will depend on the quantity of the feed vaporised (flashed). The equations used for equilibrium flash calculations are developed below and a typical calculation is shown in Example 11.1.

Flash calculations are often needed to determine the condition of the feed to a distillation column and, occasionally, to determine the flow of vapour from the reboiler, or condenser if a partial condenser is used.

Single-stage flash distillation processes are used to make a coarse separation of the light components in a feed; often as a preliminary step before a multicomponent distillation column, as in the distillation of crude oil.

Figure 11.3 shows a typical equilibrium flash process. The equations describing this process are:

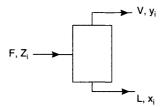



Figure 11.3. Flash distillation

Material balance, for any component, i

$$Fz_i = Vy_i + Lx_i \tag{11.7}$$

Energy balance, total stream enthalpies:

$$Fh_f = VH + Lh \tag{11.8}$$

If the vapour-liquid equilibrium relationship is expressed in terms of equilibrium constants, equation 11.7 can be written in a more useful form:

$$Fz_{i} = VK_{i}x_{i} + Lx_{i}$$
$$= Lx_{i} \left[ \frac{V}{L}K_{i} + 1 \right]$$

from which

$$L = \sum_{i} \frac{Fz_i}{\left[\frac{VK_i}{L} + 1\right]} \tag{11.9}$$

and, similarly,

$$V = \sum_{i} \frac{F_{Z_i}}{\left[\frac{L}{VK_i} + 1\right]} \tag{11.10}$$

The groups incorporating the liquid and vapour flow-rates and the equilibrium constants have a general significance in separation process calculations.

The group  $L/VK_i$  is known as the absorption factor  $A_i$ , and is the ratio of the mols of any component in the liquid stream to the mols in the vapour stream.

The group  $VK_i/L$  is called the stripping factor  $S_i$ , and is the reciprocal of the absorption factor.

Efficient techniques for the solution of the trial and error calculations necessary in multi-component flash calculations are given by several authors; Smith (1963), Oliver (1966), Hengstebeck (1961) and King (1980).

# Example 11.1

A feed to a column has the composition given in the table below, and is at a pressure of 14 bar and a temperature of 60°C. Calculate the flow and composition of the liquid and vapour phases. Take the equilibrium data from the Depriester charts given in Chapter 8.

|      |                              | kmol/h | $z_i$ |
|------|------------------------------|--------|-------|
| Feed | ethane (C <sub>2</sub> )     | 20     | 0.25  |
|      | propane (C <sub>3</sub> )    | 20     | 0.25  |
|      | isobutane (iC <sub>4</sub> ) | 20     | 0.25  |
|      | n-pentane (nC <sub>5</sub> ) | 20     | 0.25  |

#### Solution

For two phases to exist the flash temperature must lie between the bubble point and dew point of the mixture.

From equations 11.5a and 11.5b:

$$\sum K_i z_i > 1.0$$

$$\sum \frac{z_i}{K_i} > 1.0$$

Check feed condition

|                  | $K_i$ | $K_i z_i$ | $z_i/K_i$ |
|------------------|-------|-----------|-----------|
| $\overline{C_2}$ | 3.8   | 0.95      | 0.07      |
| $C_3$            | 1.3   | 0.33      | 0.19      |
| iC <sub>4</sub>  | 0.43  | 0.11      | 0.58      |
| $nC_5$           | 0.16  | 0.04      | 1.56      |
|                  |       | Σ 1.43    | Σ 2.40    |

therefore the feed is a two phase mixture.

| FI | ach | cal | cui | lation |
|----|-----|-----|-----|--------|
| r: | asn | Car | CH  | auon   |

|                  |       | Try                 | Try $L/V = 3.0$           |        |       |
|------------------|-------|---------------------|---------------------------|--------|-------|
|                  | $K_i$ | $A_i = L/VK_i$      | $V_i = F z_i / (1 + A_i)$ | $A_i$  | $V_i$ |
| $\overline{C_2}$ | 3.8   | 0.395               | 14.34                     | 0.789  | 11.17 |
| $C_3$            | 1.3   | 1.154               | 9.29                      | 2.308  | 6.04  |
| iC <sub>4</sub>  | 0.43  | 3.488               | 4.46                      | 6.977  | 2.51  |
| $nC_5$           | 0.16  | 9.375               | 1.93                      | 18.750 | 1.01  |
|                  |       | $V_{\rm ca}$        | $V_{\rm calc} =$          | 20.73  |       |
|                  |       | $L/V = \frac{80}{}$ | L/V =                     | = 2.80 |       |

Hengstebeck's method is used to find the third trial value for L/V. The calculated values are plotted against the assumed values and the intercept with a line at  $45^{\circ}$  (calculated = assumed) gives the new trial value, 2.4.

|                       | Try L/ | V = 2.4 |               |                        |
|-----------------------|--------|---------|---------------|------------------------|
| •                     | $A_i$  | $V_i$   | $y_i = V_i/V$ | $x_i = (Fz_i - V_i)/L$ |
| 2                     | 0.632  | 12.26   | 0.52          | 0.14                   |
| 3                     | 1.846  | 7.03    | 0.30          | 0.23                   |
| $\overline{C}_4$      | 5.581  | 3.04    | 0.13          | 0.30                   |
| $C_5$                 | 15.00  | 1.25    | 0.05          | 0.33                   |
| $V_{\rm cal} = 23.58$ |        | 1.00    | 1.00          |                        |

L = 80 - 23.58 = 56.42 kmol/h,

L/V calculated = 56.42/23.58 = 2.39 close enough to the assumed value of 2.4.

#### Adiabatic flash

In many flash processes the feed stream is at a higher pressure than the flash pressure and the heat for vaporisation is provided by the enthalpy of the feed. In this situation the flash temperature will not be known and must be found by trial and error. A temperature must be found at which both the material and energy balances are satisfied.

# 11.4. DESIGN VARIABLES IN DISTILLATION

It was shown in Chapter 1 that to carry out a design calculation the designer must specify values for a certain number of independent variables to define the problem completely, and that the ease of calculation will often depend on the judicious choice of these design variables.

In manual calculations the designer can use intuition in selecting the design variables and, as he proceeds with the calculation, can define other variables if it becomes clear that

the problem is not sufficiently defined. He can also start again with a new set of design variables if the calculations become tortuous. When specifying a problem for a computer method it is essential that the problem is completely and sufficiently defined.

In Chapter 1 it was shown that the number of independent variables for any problem is equal to the difference between the total number of variables and the number of linking equations and other relationships. Examples of the application of this formal procedure for determining the number of independent variables in separation process calculations are given by Gilland and Reed (1942), Kwauk (1956) and Hanson and Somerville (1963). For a multistage, multicomponent, column, there will be a set of material and enthalpy balance equations and equilibrium relationships for each stage, and for the reboiler and condenser; for each component. If there are more than a few stages the task of counting the variables and equations becomes burdensome and mistakes are very likely to be made. A simpler, more practical, way to determine the number of independent variables is the "description rule" procedure given by Hanson et al. (1962). Their description rule states that to determine a separation process completely the number of independent variables which must be set (by the designer) will equal the number that are set in the construction of the column or that can be controlled by external means in its operation. The application of this rule requires the designer to visualise the column in operation and list the number of variables fixed by the column construction; those fixed by the process; and those that have to be controlled for the column to operate steadily and produce product within specification. The method is best illustrated by considering the operation of the simplest type of column: with one feed, no side streams, a total condenser, and a reboiler. The construction will fix the number of stages above and below the feed point (two variables). The feed composition and total enthalpy will be fixed by the processes upstream (1 + (n - 1)) variables, where **n** is the number of components). The feed rate, column pressure and condenser and reboiler duties (cooling water and steam flows) will be controlled (four variables).

Total number of variables fixed = 
$$2 + 1 + (\mathbf{n} - 1) + 4 = \mathbf{n} + \mathbf{6}$$

To design the column this number of variables must be specified completely to define the problem, but the same variables need not be selected.

Typically, in a design situation, the problem will be to determine the number of stages required at a specified reflux ratio and column pressure, for a given feed, and with the product compositions specified in terms of two key components and one product flow-rate. Counting up the number of variables specified it will be seen that the problem is completely defined:

Feed flow, composition, enthalpy 
$$= 2 + (\mathbf{n} - 1)$$
  
Reflux (sets  $q_c$ )  $= 1$   
Key component compositions, top and bottom  $= 2$   
Product flow  $= 1$   
Column pressure  $= \frac{1}{\mathbf{n} + 6}$ 

Note: specifying (n-1) component compositions completely defines the feed composition as the fractions add up to 1.

In theory any (n + 6) independent variables could have been specified to define the problem, but it is clear that the use of the above variables will lead to a straightforward solution of the problem.

When replacing variables identified by the application of the description rule it is important to ensure that those selected are truly independent, and that the values assigned to them lie within the range of possible, practical, values.

The number of independent variables that have to be specified to define a problem will depend on the type of separation process being considered. Some examples of the application of the description rule to more complex columns are given by Hanson *et al.* (1962).

#### 11.5. DESIGN METHODS FOR BINARY SYSTEMS

A good understanding of the basic equations developed for binary systems is essential to the understanding of distillation processes.

The distillation of binary mixtures is covered thoroughly in Volume 2, Chapter 11, and the discussion in this section is limited to a brief review of the most useful design methods. Though binary systems are usually considered separately, the design methods developed for multicomponent systems (Section 11.6) can obviously also be used for binary systems. With binary mixtures fixing the composition of one component fixes the composition of the other, and iterative procedures are not usually needed to determine the stage and reflux requirements; simple graphical methods are normally used.

# 11.5.1. Basic equations

Sorel (1899) first derived and applied the basic stage equations to the analysis of binary systems. Figure 11.4a shows the flows and compositions in the top part of a column. Taking the system boundary to include the stage n and the condenser, gives the following equations:

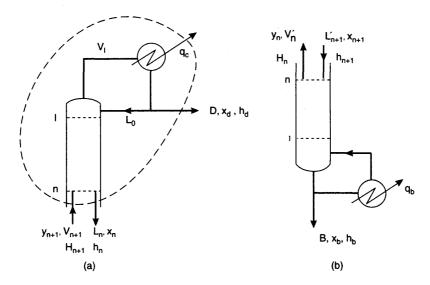



Figure 11.4. Column flows and compositions (a) Above feed (b) Below feed

Material balance

total flows 
$$V_{n+1} = L_n + D \tag{11.11}$$

for either component 
$$V_{n+1}y_{n+1} = L_n x_n + Dx_d$$
 (11.12)

Energy balance

total stream enthalpies 
$$V_{n+1}H_{n+1} = L_n h_n + D h_d + q_c$$
 (11.13)

where  $q_c$  is the heat removed in the condenser.

Combining equations 11.11 and 11.12 gives

$$y_{n+1} = \frac{L_n}{L_n + D} x_n + \frac{D}{L_n + D} x_d \tag{11.14}$$

Combining equations 11.11 and 11.13 gives

$$V_{n+1}H_{n+1} = (L_n + D)H_{n+1} = L_n h_n + Dh_d + q_c$$
 (11.15)

Analogous equations can be written for the stripping section, Figure 11.6b.

$$x_{n+1} = \frac{V_n'}{V_n' + B} y_n + \frac{B}{V_n' + B} x_b$$
 (11.16)

and

$$L'_{n+1}h_{n+1} = (V'_n + B)h_{n+1} = V'_n H_n + Bh_b - q_b$$
 (11.17)

At constant pressure, the stage temperatures will be functions of the vapour and liquid compositions only (dew and bubble points) and the specific enthalpies will therefore also be functions of composition

$$H = f(y) \tag{11.18a}$$

$$h = f(x) \tag{11.18b}$$

# Lewis-Sorel method (equimolar overflow)

For most distillation problems a simplifying assumption, first proposed by Lewis (1909), can be made that eliminates the need to solve the stage energy-balance equations. The molar liquid and vapour flow rates are taken as constant in the stripping and rectifying sections. This condition is referred to as equimolar overflow: the molar vapour and liquid flows from each stage are constant. This will only be true where the component molar latent heats of vaporisation are the same and, together with the specific heats, are constant over the range of temperature in the column; there is no significant heat of mixing; and the heat losses are negligible. These conditions are substantially true for practical systems when the components form near-ideal liquid mixtures.

Even when the latent heats are substantially different the error introduced by assuming equimolar overflow to calculate the number of stages is usually small, and acceptable.

With equimolar overflow equations 11.14 and 11.16 can be written without the subscripts to denote the stage number:

$$y_{n+1} = \frac{L}{L+D}x_n + \frac{D}{L+D}x_d \tag{11.19}$$

$$x_{n+1} = \frac{V'}{V' + B} y_n + \frac{B}{V' + B} x_b \tag{11.20}$$

where L = the constant liquid flow in the rectifying section = the reflux flow,  $L_0$ , and V' is the constant vapour flow in the stripping section.

Equations 11.19 and 11.20 can be written in an alternative form:

$$y_{n+1} = \frac{L}{V}x_n + \frac{D}{V}x_d \tag{11.21}$$

$$y_n = \frac{L'}{V'} x_{n+1} - \frac{B}{V'} x_b \tag{11.22}$$

where V is the constant vapour flow in the rectifying section = (L + D); and L' is the constant liquid flow in the stripping section = V' + B.

These equations are linear, with slopes L/V and L'/V'. They are referred to as *operating lines*, and give the relationship between the liquid and vapour compositions between stages. For an equilibrium stage, the compositions of the liquid and vapour streams leaving the stage are given by the equilibrium relationship.

#### 11.5.2. McCabe-Thiele method

Equations 11.21 and 11.22 and the equilibrium relationship are conveniently solved by the graphical method developed by McCabe and Thiele (1925). The method is discussed fully in Volume 2. A simple procedure for the construction of the diagram is given below and illustrated in Example 11.2.

#### **Procedure**

Refer to Figure 11.5, all compositions are those of the more volatile component.

1. Plot the vapour-liquid equilibrium curve from data available at the column operating pressure. In terms of relative volatility:

$$y = \frac{\alpha x}{(1 + (\alpha - 1)x)} \tag{11.23}$$

where  $\alpha$  is the geometric average relative volatility of the lighter (more volatile) component with respect to the heavier component (less volatile).

It is usually more convenient, and less confusing, to use equal scales for the x and y axes.

- 2. Make a material balance over the column to determine the top and bottom compositions,  $x_d$  and  $x_b$ , from the data given.
- 3. The top and bottom operating lines intersect the diagonal at  $x_d$  and  $x_b$  respectively; mark these points on the diagram.
- 4. The point of intersection of the two operating lines is dependent on the phase condition of the feed. The line on which the intersection occurs is called the *q line* (see Volume 2). The *q* line is found as follows:

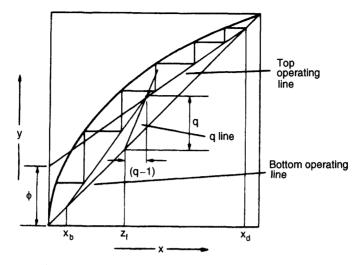



Figure 11.5. McCabe-Thiele diagram

(i) calculate the value of the ratio q given by

$$q = \frac{\text{heat to vaporise 1 mol of feed}}{\text{molar latent heat of feed}}$$

- (ii) plot the q line, slope = q/(q-1), intersecting the diagonal at  $z_f$  (the feed composition).
- 5. Select the reflux ratio and determine the point where the top operating line extended cuts the y axis:

$$\phi = \frac{x_d}{1+R} \tag{11.24}$$

- 6. Draw in the top operating line, from  $x_d$  on the diagonal to  $\phi$ .
- 7. Draw in the bottom operating line; from  $x_b$  on the diagonal to the point of intersection of the top operating line and the q line.
- 8. Starting at  $x_d$  or  $x_b$ , step off the number of stages.

*Note*: The feed point should be located on the stage closest to the intersection of the operating lines.

The reboiler, and a partial condenser if used, act as equilibrium stages. However, when designing a column there is little point in reducing the estimated number of stages to account for this; they can be considered additional factors of safety.

The efficiency of real contacting stages can be accounted for by reducing the height of the steps on the McCabe-Thiele diagram, see diagram Figure 11.6. Stage efficiencies are discussed in Section 11.10.

The McCabe-Thiele method can be used for the design of columns with side streams and multiple feeds. The liquid and vapour flows in the sections between the feed and take-off points are calculated and operating lines drawn for each section.

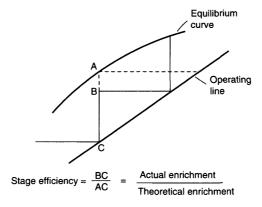



Figure 11.6. Stage efficiency

# Stage vapour and liquid flows not constant

The McCabe-Thiele method can be used when the condition of equimolar overflow cannot be assumed, but the operating lines will not then be straight. They can be drawn by making energy balances at a sufficient number of points to determine the approximate slope of the lines; see Hengstebeck (1961). Alternatively the more rigorous graphical method of Ponchon and Savarit derived in Volume 2 can be used. Nowadays, it should rarely be necessary to resort to complex graphical methods when the simple McCabe-Thiele diagram is not sufficiently accurate, as computer programs will normally be available for the rigorous solution of such problems.

# 11.5.3. Low product concentrations

When concentrations of the more volatile component of either product is very low the steps on the McCabe-Thiele diagram become very small and difficult to plot. This problem can be overcome by replotting the top or bottom sections to a larger scale, or on log-log paper. In a log plot the operating line will not be straight and must be drawn by plotting points calculated using equations 11.21 and 11.22. This technique is described by Alleva (1962) and is illustrated in Example 11.2.

If the operating and equilibrium lines are straight, and they usually can be taken as such when the concentrations are small, the number of stages required can be calculated using the equations given by Robinson and Gilliland (1950).

For the stripping section:

$$N_{s}^{*} = \frac{\log \left[ \frac{\left( \frac{K'}{s'} - 1 \right) \left( \frac{x'_{r}}{x_{b}} - 1 \right)}{\frac{1}{s'} (K' - 1)} + 1 \right]}{\log \left( \frac{K'}{s'} \right)} + 1$$
 (11.25)

where  $N_s^*$  = number of ideal stages required from  $x_b$  to some reference point  $x_r'$ ,  $x_b$  = mol fraction of the more volatile component in the bottom product,

 $x'_r = \text{mol fraction of more volatile component at the reference point,}$ 

s' = slope of the bottom operating line,

K' = equilibrium constant for the more volatile component.

For the rectifying section:

$$N_r^* = \frac{\log\left[\frac{(1-s) + x_r/x_d(s-K)}{1-K}\right]}{\log\left(\frac{s}{K}\right)} - 1$$
 (11.26)

where  $N_r^* =$  number of stages required from some reference point  $x_r$  to the  $x_d$ ,

 $x_d = \text{mol fraction of the } least volatile \text{ component in the top product,}$ 

 $x_r = \text{mol fraction of } least volatile \text{ component at reference point,}$ 

K = equilibrium constant for the least volatile component,

s =slope of top operating line.

*Note*: at low concentrations  $K = \alpha$ .

The use of these equations is illustrated in Example 11.3.

#### Example 11.2

Acetone is to be recovered from an aqueous waste stream by continuous distillation. The feed will contain 10 per cent w/w acetone. Acetone of at least 98 per cent purity is wanted, and the aqueous effluent must not contain more than 50 ppm acetone. The feed will be at 20°C. Estimate the number of ideal stages required.

#### Solution

There is no point in operating this column at other than atmospheric pressure. The equilibrium data available for the acetone-water system were discussed in Chapter 8, Section 8.4.

The data of Kojima et al. will be used.

| Mol fraction $x$ , liquid | 0.00     | 0.05   | 0.10   | 0.15   | 0.20   | 0.25   | 0.30   |
|---------------------------|----------|--------|--------|--------|--------|--------|--------|
| Acetone y, vapour         | 0.00     | 0.6381 | 0.7301 | 0.7716 | 0.7916 | 0.8034 | 0.8124 |
| bubble point °C           | 100.0    | 74.80  | 68.53  | 65.26  | 63.59  | 62.60  | 61.87  |
| x                         | 0.35     | 0.40   | 0.45   | 0.50   | 0.55   | 0.60   | 0.65   |
| y                         | 0.8201   | 0.8269 | 0.8376 | 0.8387 | 0.8455 | 0.8532 | 0.8615 |
| o <sub>1</sub>            | C 61.26  | 60.75  | 60.35  | 59.95  | 59.54  | 59.12  | 58.71  |
|                           | <u> </u> | 0.70   | 0.75   | 0.80   | 0.85   | 0.90   | 0.95   |
|                           | y        | 0.8712 | 0.8817 | 0.8950 | 0.9118 | 0.9335 | 0.9627 |
|                           | °C       | 58.29  | 57.90  | 57.49  | 57.08  | 56.68  | 56.30  |

The equilibrium curve can be drawn with sufficient accuracy to determine the stages above the feed by plotting the concentrations at increments of 0.1. The diagram would normally be plotted at about twice the size of Figure 11.7.

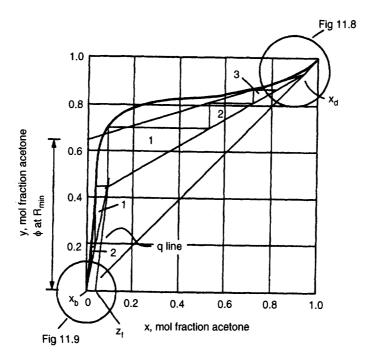



Figure 11.7. McCabe-Thiele plot, Example 11.2

Molecular weights, acetone 58, water 18

Mol fractions acetone feed = 
$$\frac{\frac{10}{58}}{\frac{10}{58} + \frac{90}{18}} = 0.033$$
top product = 
$$\frac{\frac{98}{58}}{\frac{98}{58} + \frac{2}{18}} = 0.94$$
bottom product =  $50 \times 10^{-6} \times \frac{18}{58} = 15.5 \times 10^{-6}$ 

# Feed condition (q-line)

Bubble point of feed (interpolated) =  $83^{\circ}$ C Latent heats, water 41,360, acetone 28,410 J/mol Mean specific heats, water 75.3, acetone 128 J/mol  $^{\circ}$ C Latent heat of feed = 28,410 × 0.033 + (1 - 0.033) 41,360 = 40,933 J/mol Specific heat of feed = (0.033 × 128) + (1 - 0.033) 75.3 = 77.0 J/mol  $^{\circ}$ C Heat to vaporise 1 mol of feed = (83 - 20) 77.0 + 40,933 = 45,784 J

$$q = \frac{45,784}{40,933} = 1.12$$
Slope of  $q$  line =  $\frac{1.12}{1.12 - 1} = 9.32$ 

For this problem the condition of minimum reflux occurs where the top operating line just touches the equilibrium curve at the point where the q line cuts the curve.

From the Figure 11.7,

 $\phi$  for the operating line at minimum reflux = 0.65

From equation 11.24,  $R_{\text{min}} = 0.94/0.65 - 1 = 0.45$ 

Take  $R = R_{\min} \times 3$ 

As the flows above the feed point will be small, a high reflux ratio is justified; the condenser duty will be small.

At 
$$R = 3 \times 0.45 = 1.35$$
,  $\phi = \frac{0.94}{1 + 1.35} = 0.4$ 

For this problem it is convenient to step the stages off starting at the intersection of the operating lines. This gives three stages above the feed up to y = 0.8. The top section is drawn to a larger scale, Figure 11.8, to determine the stages above y = 0.8: three to four stages required; total stages above the feed 7.

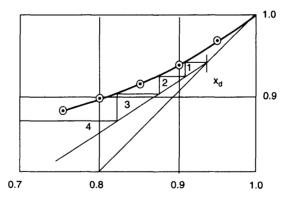



Figure 11.8. Top section enlarged

Below the feed, one stage is required down to x = 0.04. A log-log plot is used to determine the stages below this concentration. Data for log-log plot:

operating line slope, from Figure 11.7 = 0.45/0.09 = 5.0

operating line equation, 
$$y = 4.63(x - x_b) + x_b$$
  
=  $5.0x - 62.0 \times 10^{-6}$   
equilibrium line slope, from v-l-e data =  $0.6381/0.05 = 12.8$ 

|                                 | <i>x</i> = | $4 \times 10^{-2}$ | $10^{-3}$ | 10-4 | $4 \times 10^{-5}$ | $2\times10^{-5}$ |
|---------------------------------|------------|--------------------|-----------|------|--------------------|------------------|
| Equilibrium line Operating line |            |                    |           |      |                    |                  |

From Figure 11.9, number of stages required for this section = 8

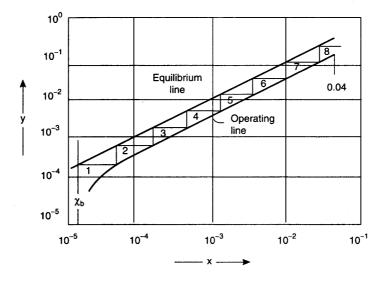



Figure 11.9. Log-log plot of McCabe-Thiele diagram

Total number of stages below feed = 9 Total stages =  $7 + 9 = \underline{16}$ 

# Example 11.3

For the problem specified in Example 11.2, estimate the number of ideal stages required below an acetone concentration of 0.04 (more volatile component), using the Robinson-Gilliland equation.

#### Solution

From the McCabe-Thiele diagram in Example 11.2:

slope of bottom operating line, s' = 5.0 slope of equilibrium line, K' = 12.8

$$x_b = 15.5 \times 10^{-6}$$

$$N_s^* = \frac{\log \left[ \frac{\left(\frac{12.8}{5.0} - 1\right) \left(\frac{0.04}{15.5 \times 10^{-6}} - 1\right)}{\left(\frac{1}{5.0}\right) (12.8 - 1)} + 1 \right]}{\log \left(\frac{12.8}{5.0}\right)} + 1 = 8.9, \underline{\underline{say 9}} \quad (11.25)$$

# 11.5.4. The Smoker equations

Smoker (1938) derived an analytical equation that can be used to determine the number of stages when the relative volatility is constant. Though his method can be used for any problem for which the relative volatilities in the rectifying and stripping sections can be taken as constant, it is particularly useful for problems where the relative volatility is low; for example, in the separation of close boiling isomers. If the relative volatility is close to one, the number of stages required will be very large, and it will be impractical to draw a McCabe-Thiele diagram. The derivation of the equations are outlined below and illustrated in Example 11.4.

The equations can be easily programmed for solution on Personal Computers. A program written in GWBASIC is given in Table 11.1.

# Derivation of the equations:

A straight operating line can be represented by the equation:

$$y = sx + c \tag{11.27}$$

and in terms of relative volatility the equilibrium values of y are given by:

$$y = \frac{\alpha x}{1 + (\alpha - 1)x}$$
 (equation 11.23)

Eliminating y from these equations gives a quadratic in x:

$$s(\alpha - 1)x^{2} + [s + b(\alpha - 1) - \alpha]x + b = 0$$
 (11.28)

For any particular distillation problem equation 11.28 will have only one real root k between 0 and 1

$$s(\alpha - 1)k^{2} + [s + b(\alpha - 1) - \alpha]k + b = 0$$
 (11.29)

k is the value of the x ordinate at the point where the extended operating lines intersect the vapour-liquid equilibrium curve. Smoker shows that the number of stages required is given by the equation:

$$N = \log \left[ \frac{x_0^* (1 - \beta x_n^*)}{x_n^* (1 - \beta x_0^*)} \right] / \log \left( \frac{\alpha}{sc^2} \right)$$
 (11.30)

where

$$\beta = \frac{sc(\alpha - 1)}{\alpha - sc^2} \tag{11.31}$$

N = number of stages required to effect the separation represented by the concentration change from

#### TABLE 11.1. Smoker equation

```
NUMBER OF STAGES BY SMOKER EQUATION"
10 PRINT "
20 PRINT
30 PRINT "ALLOWS DIFFERENT REL. VOLS. IN STRIPPING AND RECTIFYING SECTIONS
40 PRINT
50 PRINT "IF FEED NOT AT BOLING POINT, REPLACE FEED MOL FRACTION
          WITH X COORDINATE OF INTERSECTION OF O-LINE AND OPERATING LINES."
60 PRINT
70 PRINT "MOL FRACTIONS: FEED, TOPS, BOTTOMS ?"
80 INPUT X1, X2, X3
90 PRINT "XF =";X1; "XD =";X2; "XB =";X3
100 PRINT "AVERAGE REL VOLS: RECTIFYING AND STRIPPING SECTIONS ?"
110 INPUT A1, A2
120 PRINT "REL VOL RECTIFYING ="; A1; "STRIPPING ="; A2
130 PRINT "REFLUX RATIO ?"
140 INPUT R
150 PRINT "REFLUX RATIO =":R
160 REM RECTIFYING SECTION
170 M1=R/(R+1)
180 B1=X2/(R+1)
190 REM CALCULATE K
200 A=M1*(A1-1)
210 B=M1+B1*(A1-1)-A1
220 C=B1
230 GOSUB 450
240 REM CALCULATE STAGES
250 C1=1+(A1-1)*K
260 X4=X2-K
270 X5=X1-K
280 G1= (M1*C1*(A1-1))/(A1-M1*C1^2)
290 N1=LOG(X4*(1-G1*X5)/(X5*(1-G1*X4)))/LOG(A1/(M1*C1^2))
300 PRINT "NUMBER OF STAGES IN RECTIFYING SECTION ="; N1
310 REM STRIPPING SECTION
320 M2 = (R*X1+X2-(R+1)*X3)/((R+1)*(X1-X3))
330 B2=((X1-X2)*X3)/(R+1)*(X1-X3)
340 A=M2*(A2-1)
350 B=(M2+B2*(A2-1)-A2)
360 C=B2
370 GOSUB 450
380 X6=X1-K
390 X7=X3-K
400 C2=1+(A2-1)*K
410 G2=M2*C2*(A2-1)/(A2-M2*C2^2)
420 N2 = LOG(X6*(1-G2*X7)/(X7*(1-G2*X6)))/LOG(A2/(M2*C2^2))
430 PRINT "NUMBER OF STAGES IN STRIPPING SECTIOM ="; N2
440 END
450 REM SUB PROGRAM TO SOLVE QUADRATIC
460 D=(B^2-4*A*C)
470 IF D<0 THEN 560
480 K1 = (-B + SQR(D)) / (2*A)
490 K2=(-B-SOR(D))/(2*A)
500 IF K1<0 THEN 540
510 IF K2>1 THEN 540
520 K=K2
530 GOTO 580
540 PRINT"
             ROOTS OUT OF LIMITS, CHECK PROBLEM SPECIFICATION"
550 STOP
560 PRINT
          " IMAGINARY ROOTS, CHECK PROBLEM SPECIFICATION"
570 STOP
580 RETURN
590 END
```

$$x_n^* \text{ to } x_0^*; x^* = (x - k) \text{ and } x_0^* > x_n^*$$

$$c = 1 + (\alpha - 1)k \tag{11.32}$$

s = slope of the operating line between  $x_n^*$  and  $x_0^*$ ,  $\alpha =$  relative volatility, assumed constant over  $x_n^*$  to  $x_0^*$ .

For a column with a single feed and no side streams:

# Rectifying section

$$x_0^* = x_d - k \tag{11.33}$$

$$x_n^* = z_f - k (11.34)$$

$$s = \frac{R}{R+1} \tag{11.35}$$

$$b = \frac{x_d}{R+1} \tag{11.36}$$

# Stripping section

$$x_0^* = z_f - k \tag{11.37}$$

$$x_n^* = x_b - k (11.38)$$

$$s = \frac{Rz_f + x_d - (R+1)x_b}{(R+1)(z_f - x_b)}$$
 (11.39)

$$b = \frac{(z_f - x_d)x_b}{(R+1)(z_f - x_b)}$$
(11.40)

If the feed stream is not at its bubble point,  $z_f$  is replaced by the value of x at the intersection of operating lines, given by

$$z_f^* = \frac{b + \frac{z_f}{q - 1}}{\frac{q}{q - 1} - s} \tag{11.41}$$

All compositions for the more volatile component.

# Example 11.4

A column is to be designed to separate a mixture of ethylbenzene and styrene. The feed will contain 0.5 mol fraction styrene, and a styrene purity of 99.5 per cent is required, with a recovery of 85 per cent. Estimate the number of equilibrium stages required at a reflux ratio of 8. Maximum column bottom pressure 0.20 bar.

#### Solution

Ethylbenzene is the more volatile component.

Antoine equations, ethylbenzene, 
$$\ln P^{\circ} = 9.386 - \frac{3279.47}{T - 59.95}$$
  
styrene  $\ln P^{\circ} = 9.386 - \frac{3328.57}{T - 63.72}$   
 $P$  bar,  $T$  Kelvin

Material balance, basis 100 kmol feed:

at 85 per cent recovery, styrene in bottoms =  $50 \times 0.85 = 42.5$  kmol at 99.5 per cent purity, ethylbenzene in bottoms =  $\frac{42.5}{99.5} \times 0.5 = 0.21$  kmol ethylbenzene in the tops = 50 - 0.21 = 49.79 kmol styrene in tops = 50 - 42.5 = 7.5 kmol mol fraction ethylbenzene in tops =  $\frac{49.79}{49.79 + 7.5} = 0.87$   $z_f = 0.5$ ,  $z_h = 0.005$ ,  $z_d = 0.87$ 

Column bottom temperature, from Antoine equation for styrene

$$\ln 0.2 = 9.386 - \frac{3328.57}{T - 63.72}$$
$$T = 366 \text{ K}, 93.3^{\circ}\text{C}$$

At 93.3°C, vapour pressure of ethylbenzene

$$\ln P^{\circ} = 9.386 - \frac{3279.47}{366.4 - 59.95} = 0.27 \text{ bar}$$
Relative volatility =  $\frac{P^{\circ} \text{ ethylbenzene}}{P^{\circ} \text{ styrene}} = \frac{0.27}{0.20} = 1.35$ 

The relative volatility will change as the compositions and (particularly for a vacuum column) the pressure changes up the column. The column pressures cannot be estimated until the number of stages is known; so as a first trial the relative volatility will be taken as constant, at the value determined by the bottom pressure.

# Rectifying section

$$s = \frac{8}{8+1} = 0.89\tag{11.35}$$

$$b = \frac{0.87}{8+1} = 0.097\tag{11.36}$$

$$0.89(1.35 - 1)k^2 + [0.89 + 0.097(1.35 - 1) - 1.35]k + 0.097 = 0$$
 (11.29)

$$k = 0.290$$

$$x_0^* = 0.87 - 0.29 = 0.58 \tag{11.33}$$

$$x_n^* = 0.50 - 0.29 = 0.21 \tag{11.34}$$

$$c = 1 + (1.35 - 1)0.29 = 1.10 (11.32)$$

$$\beta = \frac{0.89 \times 1.10(1.35 - 1)}{1.35 - 0.89 \times 1.1^2} = 1.255 \tag{11.31}$$

$$N = \log \left[ \frac{0.58(1 - 1.255 \times 0.21)}{0.21(1 - 1.255 \times 0.58)} \right] / \log \left( \frac{1.35}{0.89 \times 1.1^2} \right)$$

$$= \frac{\log 7.473}{\log 1.254} = 8.87, \underbrace{\text{say 9}}_{====}$$
(11.30)

Stripping section, feed taken as at its bubble point

$$s = \frac{8 \times 0.5 + 0.87 - (8+1)0.005}{(8+1)(0.5 - 0.005)} = 1.084$$
(11.39)

$$b = \frac{(0.5 - 0.87)0.005}{(8+1)(0.5 - 0.005)} = -4.15 \times 10^{-4} \text{ (essentially zero)}$$
 (11.40)

$$1.084(1.35-1)k^2 + [1.084-4.15 \times 10^{-4}(1.35-1)-1.35]k - 4.15 \times 10^{-4}$$

$$k = 0.702 \tag{11.29}$$

$$x_0^* = 0.5 - 0.702 = -0.202 (11.37)$$

$$x_n^* = 0.005 - 0.702 = -0.697 \tag{11.38}$$

$$c = 1 + (1.35 - 1)0.702 = 1.246 (11.32)$$

$$\beta = \frac{1.084 \times 1.246(1.35 - 1)}{1.35 - 1.084 \times 1.246^2} = -1.42 \tag{11.31}$$

$$N = \log \left[ \frac{-0.202(1 - 0.697 \times 1.42)}{-0.697(1 - 0.202 \times 1.42)} \right] / \log \left( \frac{1.35}{1.084 \times 1.246^2} \right)$$

$$= \frac{\log[4.17 \times 10^{-3}]}{\log 0.8} = 24.6, \text{ say } \underline{25}$$
(11.30)

# 11.6. MULTICOMPONENT DISTILLATION: GENERAL CONSIDERATIONS

The problem of determining the stage and reflux requirements for multicomponent distillations is much more complex than for binary mixtures. With a multicomponent mixture, fixing one component composition does not uniquely determine the other component compositions and the stage temperature. Also when the feed contains more than two components it is not possible to specify the complete composition of the top and bottom products independently. The separation between the top and bottom products is specified by setting limits on two "key" components, between which it is desired to make the separation.

The complexity of multicomponent distillation calculations can be appreciated by considering a typical problem. The normal procedure is to solve the MESH equations (Section 11.3.1) stage-by-stage, from the top and bottom of the column toward the feed point. For such a calculation to be exact, the compositions obtained from both the bottom-up and top-down calculations must mesh at the feed point and match the feed composition. But the calculated compositions will depend on the compositions assumed for the top and bottom products at the commencement of the calculations. Though it is possible to

match the key components, the other components will not match unless the designer was particularly fortunate in choosing the trial top and bottom compositions. For a completely rigorous solution the compositions must be adjusted and the calculations repeated until a satisfactory mesh at the feed point is obtained. Clearly, the greater the number of components, the more difficult the problem. As was shown in Section 11.3.2, trial-and-error calculations will be needed to determine the stage temperatures. For other than ideal mixtures, the calculations will be further complicated by the fact that the component volatilities will be functions of the unknown stage compositions. If more than a few stages are required, stage-by-stage calculations are complex and tedious; as illustrated in Example 11.9.

Before the advent of the modern digital computer, various "short-cut" methods were developed to simplify the task of designing multicomponent columns. A comprehensive summary of the methods used for hydrocarbon systems is given by Edmister (1947 to 1949) in a series of articles in the journal *The Petroleum Engineer*. Though computer programs will normally be available for the rigorous solution of the MESH equations, short-cut methods are still useful in the preliminary design work, and as an aid in defining problems for computer solution. Intelligent use of the short-cut methods can reduce the computer time and costs.

The short-cut methods available can be divided into two classes:

- 1. Simplifications of the rigorous stage-by-stage procedures to enable the calculations to be done using hand calculators, or graphically. Typical examples of this approach are the methods given by Hengstebeck (1961), and the Smith-Brinkley method (1960); which are described in Section 11.7.
- 2. Empirical methods, which are based on the performance of operating columns, or the results of rigorous designs. Typical examples of these methods are Gilliland's correlation, which is given in Volume 2, Chapter 11, and the Erbar-Maddox correlation given in Section 11.7.3.

# 11.6.1. Key components

Before commencing the column design, the designer must select the two "key" components between which it is desired to make the separation. The light key will be the component that it is desired to keep out of the bottom product, and the heavy key the component to be kept out of the top product. Specifications will be set on the maximum concentrations of the keys in the top and bottom products. The keys are known as "adjacent keys" if they are "adjacent" in a listing of the components in order of volatility, and "split keys" if some other component lies between them in the order; they will usually be adjacent.

Which components are the key components will normally be clear, but sometimes, particularly if close boiling isomers are present, judgement must be used in their selection. If any uncertainty exists, trial calculations should be made using different components as the keys to determine the pair that requires the largest number of stages for separation (the worst case). The Fenske equation can be used for these calculations; see Section 11.7.3.

The "non-key" components that appear in both top and bottom products are known as "distributed" components; and those that are not present, to any significant extent, in one or other product, are known as "non-distributed" components.

# 11.6.2. Number and sequencing of columns

As was mentioned in Section 11.2, in multicomponent distillations it is not possible to obtain more than one pure component, one sharp separation, in a single column. If a multicomponent feed is to be split into two or more virtually pure products, several columns will be needed. Impure products can be taken off as side streams; and the removal of a side stream from a stage where a minor component is concentrated will reduce the concentration of that component in the main product.

For separation of N components, with one essentially pure component taken overhead, or from the bottom of each column, (N-1) columns will be needed to obtain complete separation of all components. For example, to separate a mixture of benzene, toluene and xylene two columns are needed (3-1). Benzene is taken overhead from the first column and the bottom product, essentially free of benzene, is fed to the second column. This column separates the toluene and xylene.

The order in which the components are separated will determine the capital and operating costs. Where there are several components the number of possible sequences can be very large; for example, with five components the number is 14, whereas with ten components it is near 5000. When designing systems that require the separation of several components, efficient procedures are needed to determine the optimum sequence of separation; see Smith (1995) and Kumar (1981). In this section, it is only possible to give some general guide rules.

# Heuristic rules for optimum sequencing

- 1. Remove the components one at a time; as in the benzene-toluene-xylene example.
- 2. Remove any components that are present in large excess early in the sequence.
- 3. With difficult separations, involving close boiling components, postpone the most difficult separation to late in the sequence.

Difficult separations will require many stages, so to reduce cost, the column diameter should be made a small as possible. Column diameter is dependent on flow-rate; see Section 11.11. The further down the sequence the smaller will be the amount of material that the column has to handle.

#### Tall columns

Where a large number of stages is required, it may be necessary to split a column into two separate columns to reduce the height of the column, even though the required separation could, theoretically, have been obtained in a single column. This may also be done in vacuum distillations, to reduce the column pressure drop and limit the bottom temperatures.

# 11.7. MULTICOMPONENT DISTILLATION: SHORT-CUT METHODS FOR STAGE AND REFLUX REQUIREMENTS

Some of the more useful short-cut procedures which can be used to estimate stage and reflux requirements without the aid of computers are given in this section. Most of the short-cut methods were developed for the design of separation columns for hydrocarbon systems in the petroleum and petrochemical systems industries, and caution must be

exercised when applying them to other systems. They usually depend on the assumption of constant relative volatility, and should not be used for severely non-ideal systems.

Short cut methods for non-ideal and azeotropic systems are given by Featherstone (1971) (1973).

# 11.7.1. Pseudo-binary systems

If the presence of the other components does not significantly affect the volatility of the key components, the keys can be treated as a pseudo-binary pair. The number of stages can then be calculated using a McCabe-Thiele diagram, or the other methods developed for binary systems. This simplification can often be made when the amount of the non-key components is small, or where the components form near-ideal mixtures.

Where the concentration of the non-keys is small, say less than 10 per cent, they can be lumped in with the key components. For higher concentrations the method proposed by Hengstebeck (1946) can be used to reduce the system to an equivalent binary system. Hengstebeck's method is outlined below and illustrated in Example 11.5. Hengstebeck's book (1961) should be consulted for the derivation of the method and further examples of its application.

# Hengstebeck's method

For any component *i* the Lewis-Sorel material balance equations (Section 11.5) and equilibrium relationship can be written in terms of the individual component molar flow rates; in place of the component composition:

$$v_{n+1,i} = l_{n,i} + d_i (11.42)$$

$$v_{n,i} = K_{n,i} \frac{V}{L} l_{n,i} \tag{11.43}$$

for the stripping section:

$$l'_{n+1,i} = v'_{n,i} + b_i (11.44)$$

$$v'_{n,i} = K_{n,i} \frac{V'}{I'} l'_{n,i} \tag{11.45}$$

where  $l_{n,i}$  = the liquid flow rate of any component i from stage n,

 $v_{n,i}$  = the vapour flow rate of any component i from stage n,

 $d_i$  = the flow rate of component i in the tops,

 $b_i$  = the flow rate of component i in the bottoms,

 $K_{n,i}$  = the equilibrium constant for component i at stage n.

The superscript ' denotes the stripping section.

V and L are the total flow-rates, assumed constant.

To reduce a multicomponent system to an equivalent binary it is necessary to estimate the flow-rate of the key components throughout the column. Hengstebeck makes use of the fact that in a typical distillation the flow-rates of each of the light non-key components approaches a constant, limiting, rate in the rectifying section; and the flows of each of the heavy non-key components approach limiting flow-rates in the stripping section. Putting

the flow-rates of the non-keys equal to these limiting rates in each section enables the combined flows of the key components to be estimated.

Rectifying section

$$L_e = L - \Sigma l_i \tag{11.46}$$

$$V_e = V - \Sigma v_i \tag{11.47}$$

Stripping section

$$L_e' = L' - \Sigma l_i' \tag{11.48}$$

$$V_e' = V' - \Sigma \underline{v_i'} \tag{11.49}$$

where  $V_e$  and  $L_e$  are the estimated flow rates of the combined keys,

 $\underline{l_i}$  and  $\underline{v_i}$  are the limiting liquid and vapour rates of components *lighter* than the keys in the rectifying section,

 $\frac{\underline{l'_i}}{\underline{l'_i}}$  and  $\underline{v'_i}$  are the limiting liquid and vapour rates of components *heavier* than the keys in the stripping section.

The method used to estimate the limiting flow-rates is that proposed by Jenny (1939). The equations are:

$$\underline{l_i} = \frac{d_i}{\alpha_i - 1} \tag{11.50}$$

$$v_i = l_i + d_i \tag{11.51}$$

$$\underline{v_i'} = \frac{\alpha_i b_i}{\alpha_{1K} - \alpha_i} \tag{11.52}$$

$$l_i' = v_i' + b_i (11.53)$$

where  $\alpha_i$  = relative volatility of component i, relative to the heavy key (HK),

 $\alpha_{LK}$  = relative volatility of the light key (LK), relative to the heavy key.

Estimates of the flows of the combined keys enable operating lines to be drawn for the equivalent binary system. The equilibrium line is drawn by assuming a constant relative volatility for the light key:

$$y = \frac{\alpha_{LK}x}{1 + (\alpha_{LK} - 1)x}$$
 (equation 11.23)

where y and x refer to the vapour and liquid concentrations of the light key.

Hengstebeck shows how the method can be extended to deal with situations where the relative volatility cannot be taken as constant, and how to allow for variations in the liquid and vapour molar flow rates. He also gives a more rigorous graphical procedure based on the Lewis-Matheson method (see Section 11.8).

# Example 11.5

Estimate the number of ideal stages needed in the butane-pentane splitter defined by the compositions given in the table below. The column will operate at a pressure of 8.3 bar, with a reflux ratio of 2.5. The feed is at its boiling point.

*Note*: a similar problem has been solved by Lyster *et al.* (1959) using a rigorous computer method and it was found that ten stages were needed.

|                            | Feed (f) | Tops (d) | Bottoms (b) |
|----------------------------|----------|----------|-------------|
| Propane, C <sub>3</sub>    | 5        | 5        | 0           |
| i-Butane, iC <sub>4</sub>  | 15       | 15       | 0           |
| n-Butane, nC <sub>4</sub>  | 25       | 24       | 1           |
| i-Pentane, iC <sub>5</sub> | 20       | 1        | 19          |
| n-Pentane, nC <sub>5</sub> | 35       | 0        | 35          |
|                            | 100      | 45       | 55 kmol     |

#### Solution

The top and bottom temperatures (dew points and bubble points) were calculated by the methods illustrated in Example 11.9. Relative volatilities are given by equation 8.30:

$$\alpha_i = \frac{K_i}{K_{HK}}$$

Equilibrium constants were taken from the Depriester charts (Chapter 8). Relative volatilities

|                      | Тор  | Bottom | Average |
|----------------------|------|--------|---------|
| Temp. °C             | 65   | 120    | -       |
| $\overline{C_3}$     | 5.5  | 4.5    | 5.0     |
| iC <sub>4</sub>      | 2.7  | 2.5    | 2.6     |
| (LK) nC <sub>4</sub> | 2.1  | 2.0    | 2.0     |
| (HK) iC <sub>5</sub> | 1.0  | 1.0    | 1.0     |
| nC <sub>5</sub>      | 0.84 | 0.85   | 0.85    |

Calculations of non-key flows Equations 11.50, 11.51, 11.52, 11.53

|                 | $\alpha_i$ | $d_i$                           | $\underline{l_i} = d_i/(\alpha_i - 1)$                           | $\underline{v_i} = \underline{l_i} + d_i$   |
|-----------------|------------|---------------------------------|------------------------------------------------------------------|---------------------------------------------|
| C <sub>3</sub>  | 5          | 5                               | 1.3                                                              | 6.3                                         |
| iC <sub>4</sub> | 2.6        | 15                              | 9.4                                                              | 24.4                                        |
|                 |            | $\Sigma \underline{l_i} = 10.7$ | $\Sigma \underline{v_i} = 30.7$                                  | ,                                           |
|                 | $\alpha_i$ | $b_i$                           | $\underline{v_i'} = \alpha_i b_i / (\alpha_{\rm LK} - \alpha_i)$ | $\underline{l_i'} = \underline{v_i'} + b_i$ |
| nC <sub>5</sub> | 0.85       | 35                              | 25.9                                                             | 60.9                                        |
|                 |            |                                 | $\Sigma \underline{v_i'} = 25.9$                                 | $\Sigma \underline{l'_i} = 60.9$            |

Flows of combined keys

$$L_e = 2.5 \times 45 - 10.7 = 101.8 \tag{11.46}$$

$$V_e = (2.5 + 1)45 - 30.7 = 126.8$$
 (11.47)

$$V'_{a} = (2.5 + 1)45 - 25.9 = 131.6$$
 (11.49)

$$L'_{a} = (2.5 + 1)45 + 55 - 60.9 = 151.6$$
 (11.48)

Slope of top operating line

$$\frac{L_e}{V_a} = \frac{101.8}{126.8} = 0.8$$

Slope of bottom operating line

$$\frac{L'_e}{V'_e} = \frac{151.6}{131.6} = 1.15$$

$$x_b = \frac{\text{flow LK}}{\text{flow (LK + HK)}} = \frac{1}{19+1} = 0.05$$

$$x_d = \frac{24}{24+1} = 0.96$$

$$x_f = \frac{25}{25+20} = 0.56$$

$$y = \frac{2x}{1+(2-1)x} = \frac{2x}{1+x}$$

$$\frac{x}{1+x} = \frac{x}{1+x} = \frac{x}{1+x}$$

$$\frac{x}{1+x} = \frac{x}{$$

The McCabe-Thiele diagram is shown in Figure 11.10. Twelve stages required; feed on seventh from base.

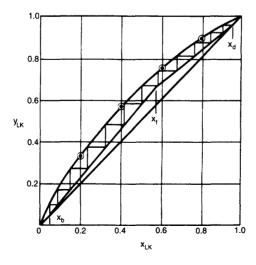



Figure 11.10. McCabe-Thiele diagram for Example 11.5

# 11.7.2. Smith-Brinkley method

Smith and Brinkley developed a method for determining the distribution of components in multicomponent separation processes. Their method is based on the solution of the finite-difference equations that can be written for multistage separation processes, and can be used for extraction and absorption processes, as well as distillation. Only the equations for distillation will be given here. The derivation of the equations is given by Smith and Brinkley (1960) and Smith (1963). For any component i (suffix i omitted in the equation for clarity)

$$\frac{b}{f} = \frac{(1 - S_r^{N_r - N_s}) + R(1 - S_r)}{(1 - S_r^{N_r - N_s}) + R(1 - S_r) + GS_r^{N_r - N_s}(1 - S_s^{N_s + 1})}$$
(11.54)

where b/f is the fractional split of the component between the feed and the bottoms, and:

 $N_r$  = number of equilibrium stages above the feed,

 $N_s$  = number of equilibrium stages below the feed,

 $S_r$  = stripping factor, rectifying section =  $K_iV/L$ ,

 $S_s$  = stripping factor, stripping section =  $K'_i V' / L'$ ,

V and L are the total molar vapour and liquid flow rates, and the superscript ' denotes the stripping section.

G depends on the condition of the feed.

If the feed is mainly liquid:

$$G_{i} = \frac{K'_{i}}{K_{i}} \frac{L}{L'} \left[ \frac{1 - S_{r}}{1 - S_{s}} \right]_{i}$$
 (11.55)

and the feed stage is added to the stripping section. If the feed is mainly vapour:

$$G_{i} = \frac{L}{L'} \left[ \frac{1 - S_{r}}{1 - S_{s}} \right]_{i} \tag{11.56}$$

Equation 11.54 is for a column with a total condenser. If a partial condenser is used the number of stages in the rectifying section should be increased by one.

The procedure for using the Smith-Brinkley method is as follows:

- 1. Estimate the flow-rates L, V and L', V' from the specified component separations and reflux ratio.
- 2. Estimate the top and bottom temperatures by calculating the dew and bubble points for assumed top and bottom compositions.
- 3. Estimate the feed point temperature.
- 4. Estimate the average component K values in the stripping and rectifying sections.
- 5. Calculate the values of  $S_{r,i}$  for the rectifying section and  $S_{s,i}$  for the stripping section.

- 6. Calculate the fractional split of each component, and hence the top and bottom compositions.
- Compare the calculated with the assumed values and check the overall column material balance.
- 8. Repeat the calculation until a satisfactory material balance is obtained. The usual procedure is to adjust the feed temperature up and down till a satisfactory balance is obtained.

Examples of the application of the Smith-Brinkley method are given by Smith (1963). This method is basically a rating method, suitable for determining the performance of an existing column, rather than a design method, as the number of stages must be known.

It can be used for design by estimating the number of stages by some other method and using equation 11.54 to determine the top and bottom compositions. The estimated stages can then be adjusted and the calculations repeated until the required specifications are achieved. However, the Geddes-Hengstebeck method for estimating the component splits, described in Section 11.7.4, is easier to use and satisfactory for preliminary design.

# 11.7.3. Empirical correlations

The two most frequently used empirical methods for estimating the stage requirements for multicomponent distillations are the correlations published by Gilliland (1940) and by Erbar and Maddox (1961). These relate the number of ideal stages required for a given separation, at a given reflux ratio, to the number at total reflux (minimum possible) and the minimum reflux ratio (infinite number of stages).

Gilliland's correlation is given in Volume 2, Chapter 11.

The Erbar-Maddox correlation is given in this section, as it is now generally considered to give more reliable predictions. Their correlation is shown in Figure 11.11; which gives the ratio of number of stages required to the number at total reflux, as a function of the reflux ratio, with the minimum reflux ratio as a parameter. To use Figure 11.11, estimates of the number of stages at total reflux and the minimum reflux ratio are needed.

# Minimum number of stages (Fenske Equation)

The Fenske equation (Fenske, 1932) can be used to estimate the minimum stages required at total reflux. The derivation of this equation for a binary system is given in Volume 2, Chapter 11. The equation applies equally to multicomponent systems and can be written as:

$$\left[\frac{x_i}{x_r}\right]_d = \alpha_i^{N_m} \left[\frac{x_i}{x_r}\right]_b \tag{11.57}$$

where  $[x_i/x_r]$  = the ratio of the concentration of any component i to the concentration of a reference component r, and the suffixes d and b denote the distillate (tops) (d) and the bottoms (b),

 $N_m$  = minimum number of stages at total reflux, including the reboiler,

 $\alpha_i$  = average relative volatility of the component i with respect to the reference component.

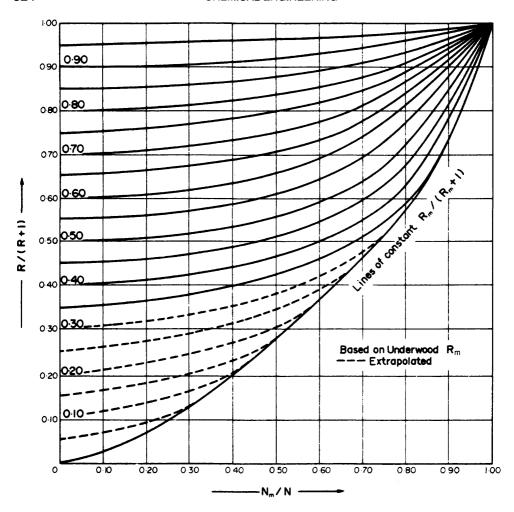



Figure 11.11. Erbar-Maddox correlation (Erbar and Maddox, 1961)

Normally the separation required will be specified in terms of the key components, and equation 11.57 can be rearranged to give an estimate of the number of stages.

$$N_{m} = \frac{\log \left[\frac{x_{LK}}{x_{HK}}\right]_{d} \left[\frac{x_{HK}}{x_{LK}}\right]_{b}}{\log \alpha_{LK}}$$
(11.58)

where  $\alpha_{LK}$  is the average relative volatility of the light key with respect to the heavy key, and  $x_{LK}$  and  $x_{HK}$  are the light and heavy key concentrations. The relative volatility is taken as the geometric mean of the values at the column top and bottom temperatures. To calculate these temperatures initial estimates of the compositions must be made, so the calculation of the minimum number of stages by the Fenske equation is a trial-and-error procedure. The procedure is illustrated in Example 11.7. If there is a wide

difference between the relative volatilities at the top and bottom of the column the use of the average value in the Fenske equation will underestimate the number of stages. In these circumstances, a better estimate can be made by calculating the number of stages in the rectifying and stripping sections separately; taking the feed concentration as the base concentration for the rectifying section and as the top concentration for the stripping section, and estimating the average relative volatilities separately for each section. This procedure will also give an estimate of the feed point location.

Winn (1958) has derived an equation for estimating the number of stages at total reflux, which is similar to the Fenske equation, but which can be used when the relative volatility cannot be taken as constant.

If the number of stages is known, equation 11.57 can be used to estimate the split of components between the top and bottom of the column at total reflux. It can be written in a more convenient form for calculating the split of components:

$$\frac{d_i}{b_i} = \alpha_i^{N_m} \left[ \frac{d_r}{b_r} \right] \tag{11.59}$$

where  $d_i$  and  $b_i$  are the flow-rates of the component i in the tops and bottoms,  $d_r$  and  $b_r$  are the flow-rates of the reference component in the tops and bottoms.

Note: from the column material balance:

$$d_i + b_i = f_i$$

where  $f_i$  is the flow rate of component i in the feed.

#### Minimum reflux ratio

Colburn (1941) and Underwood (1948) have derived equations for estimating the minimum reflux ratio for multicomponent distillations. These equations are discussed in Volume 2, Chapter 11. As the Underwood equation is more widely used it is presented in this section. The equation can be stated in the form:

$$\sum \frac{\alpha_i x_{i,d}}{\alpha_i - \theta} = R_m + 1 \tag{11.60}$$

where  $\alpha_i$  = the relative volatility of component i with respect to some reference component, usually the heavy key,

 $R_m$  = the minimum reflux ratio,

 $x_{i,d}$  = concentration of component i in the tops at minimum reflux

and  $\theta$  is the root of the equation:

$$\sum \frac{\alpha_i x_{i,f}}{\alpha_i - \theta} = 1 - q \tag{11.61}$$

where  $x_{i,f}$  = the concentration of component i in the feed, and q depends on the condition of the feed and was defined in Section 11.5.2.

The value of  $\theta$  must lie between the values of the relative volatility of the light and heavy keys, and is found by trial and error.

In the derivation of equations 11.60 and 11.61 the relative volatilities are taken as constant. The geometric average of values estimated at the top and bottom temperatures should be used. This requires an estimate of the top and bottom compositions. Though the compositions should strictly be those at minimum reflux, the values determined at total reflux, from the Fenske equation, can be used. A better estimate can be obtained by replacing the number of stages at total reflux in equation 11.59 by an estimate of the actual number; a value equal to  $N_m/0.6$  is often used. The Erbar-Maddox method of estimating the stage and reflux requirements, using the Fenske and Underwood equations, is illustrated in Example 11.7.

### Feed-point location

A limitation of the Erbar-Maddox, and similar empirical methods, is that they do not give the feed-point location. An estimate can be made by using the Fenske equation to calculate the number of stages in the rectifying and stripping sections separately, but this requires an estimate of the feed-point temperature. An alternative approach is to use the empirical equation given by Kirkbride (1944):

$$\log\left[\frac{N_r}{N_s}\right] = 0.206\log\left[\left(\frac{B}{D}\right)\left(\frac{x_{f,HK}}{x_{f,LK}}\right)\left(\frac{x_{b,LK}}{x_{d,HK}}\right)^2\right]$$
(11.62)

where  $N_r$  = number of stages above the feed, including any partial condenser,

 $N_s$  = number of stages below the feed, including the reboiler,

B =molar flow bottom product,

D =molar flow top product,

 $x_{f,HK}$  = concentration of the heavy key in the feed,

 $x_{f,LK}$  = concentration of the light key in the feed,

 $x_{d, HK}$  = concentration of the heavy key in the top product,

 $x_{b,LK}$  = concentration of the light key if in the bottom product.

The use of this equation is illustrated in Example 11.8.

# 11.7.4. Distribution of non-key components (graphical method)

The graphical procedure proposed by Hengstebeck (1946), which is based on the Fenske equation, is a convenient method for estimating the distribution of components between the top and bottom products.

Hengstebeck and Geddes (1958) have shown that the Fenske equation can be written in the form:

$$\log\left(\frac{d_i}{b_i}\right) = A + C\log\alpha_i \tag{11.63}$$

Specifying the split of the key components determines the constants A and C in the equation.

The distribution of the other components can be readily determined by plotting the distribution of the keys against their relative volatility on log-log paper, and drawing a straight line through these two points. The method is illustrated in Example 11.6.

Yaws et al. (1979) have shown that the components distributions calculated by equation 11.63 compare well with those obtained by rigorous plate by plate calculations.

Chang (1980) gives a computer program, based on the Geddes-Hengstebeck equation, for the estimation of component distributions.

### Example 11.6

Use the Geddes-Hengstebeck method to check the component distributions for the separation specified in Example 11.5

| Summary of problems, your per 100 minor feed |                        |                                   |                                        |  |  |  |
|----------------------------------------------|------------------------|-----------------------------------|----------------------------------------|--|--|--|
| $\alpha_i$ Feed $(f_i)$                      |                        | Distillate $(d_i)$                | Bottoms $(b_i)$                        |  |  |  |
| 5                                            | 5                      |                                   |                                        |  |  |  |
| 2.6                                          | 15                     |                                   |                                        |  |  |  |
| 2.0                                          | 25                     | 24                                | 1                                      |  |  |  |
| 1.0                                          | 20                     | 1                                 | 19                                     |  |  |  |
| 0.85                                         | 35                     |                                   |                                        |  |  |  |
|                                              | 5<br>2.6<br>2.0<br>1.0 | 5 5<br>2.6 15<br>2.0 25<br>1.0 20 | 5 5<br>2.6 15<br>2.0 25 24<br>1.0 20 1 |  |  |  |

Summary of problem, flow per 100 kmol feed

#### Solution

The average volatilities will be taken as those estimated in Example 11.5. Normally, the volatilities are estimated at the feed bubble point, which gives a rough indication of the average column temperatures. The dew point of the tops and bubble point of the bottoms can be calculated once the component distributions have been estimated, and the calculations repeated with a new estimate of the average relative volatilities, as necessary.

For the light key, 
$$\frac{d_i}{b_i} = \frac{24}{1} = 24$$
  
For the heavy key,  $\frac{d_i}{b_i} = \frac{1}{19} = 0.053$ 

These values are plotted on Figure 11.12.

The distribution of the non-keys are read from Figure 11.12 at the appropriate relative volatility and the component flows calculated from the following equations:

Overall column material balance

$$f_i = d_i + b_i$$

from which

$$d_i = \frac{f_i}{\left(\frac{b_i}{d_i} + 1\right)}$$

$$b_i = \frac{f_i}{\left(\frac{d_i}{b_i} + 1\right)}$$



Figure 11.12. Component Distribution (Example 11.6)

|                 | $\alpha_i$ | $f_i$ | $d_i/b_i$ | $d_i$ | $b_i$ |
|-----------------|------------|-------|-----------|-------|-------|
| $C_3$           | 5          | 5     | 40,000    | 5     | 0     |
| iC <sub>4</sub> | 2.6        | 15    | 150       | 14.9  | 0.1   |
| nC <sub>4</sub> | 2.0        | 25    | 21        | 24    | 1     |
| $iC_5$          | 1.0        | 20    | 0.053     | 1     | 19    |
| $nC_5$          | 0.85       | 35    | 0.011     | 0.4   | 34.6  |

As these values are close to those assumed for the calculation of the dew points and bubble points in Example 11.5, there is no need to repeat with new estimates of the relative volatilities.

### Example 11.7

For the separation specified in Example 11.5, evaluate the effect of changes in reflux ratio on the number of stages required. This is an example of the application of the Erbar-Maddox method.

#### Solution

The relative volatilities estimated in Example 11.5, and the component distributions calculated in Example 11.6 will be used for this example.

| Summary of data      |            |       |          |          |  |
|----------------------|------------|-------|----------|----------|--|
|                      | $\alpha_i$ | $f_i$ | $d_i$    | $b_i$    |  |
| $\overline{C_3}$     | 5          | 5     | 5        | 0        |  |
| iC <sub>4</sub>      | 2.6        | 15    | 14.9     | 0.1      |  |
| $nC_4$ (LK)          | 2.0        | 25    | 24       | 1        |  |
| iC <sub>5</sub> (HK) | 1          | 20    | 1        | 19       |  |
| nC <sub>5</sub>      | 0.85       | 35    | 0.4      | 34.6     |  |
|                      |            | 100   | D = 45.3 | B = 54.7 |  |

Minimum number of stages; Fenske equation, equation 11.58:

$$N_m = \frac{\log\left[\left(\frac{24}{1}\right)\left(\frac{19}{1}\right)\right]}{\log 2} = \underline{8.8}$$

Minimum reflux ratio; Underwood equations 11.60 and 11.61.

This calculation is best tabulated.

As the feed is at its boiling point q = 1

$$\sum \frac{\alpha_i x_{i,f}}{\alpha_i - \theta} = 0 \tag{11.61}$$

|           |          | $\alpha_i \qquad \alpha_i x_{i,f} \qquad \theta =$ |                  | Try            |                 |  |
|-----------|----------|----------------------------------------------------|------------------|----------------|-----------------|--|
| $x_{i,f}$ | $lpha_i$ |                                                    | $\theta = 1.5$   | $\theta = 1.3$ | $\theta = 1.35$ |  |
| 0.05      | 5        | 0.25                                               | 0.071            | 0.068          | 0.068           |  |
| 0.15      | 2.6      | 0.39                                               | 0.355            | 0.300          | 0.312           |  |
| 0.25      | 2.0      | 0.50                                               | 1.000            | 0.714          | 0.769           |  |
| 0.20      | 1        | 0.20                                               | -0.400           | -0.667         | -0.571          |  |
| 0.35      | 0.85     | 0.30                                               | -0.462           | -0.667         | -0.600          |  |
|           |          |                                                    | $\Sigma = 0.564$ | -0.252         | 0.022           |  |
|           |          |                                                    |                  |                | close enoug     |  |

Equation 11.60

| $x_{i,d}$ | $\alpha_i$ | $\alpha_i x_{i,d}$ | $\alpha_i x_{i,d}/(\alpha_i-\theta)$ |
|-----------|------------|--------------------|--------------------------------------|
| 0.11      | 5          | 0.55               | 0.15                                 |
| 0.33      | 2.6        | 0.86               | 0.69                                 |
| 0.53      | 2.0        | 1.08               | 1.66                                 |
| 0.02      | 1          | 0.02               | -0.06                                |
| 0.01      | 0.85       | 0.01               | -0.02                                |
|           |            | ,                  | $\Sigma = 2.42$                      |

$$R_m + 1 = 2.42$$

$$R_m = \underbrace{1.42}_{(R_m + 1)} = \underbrace{1.42}_{2.42} = 0.59$$

Specimen calculation, for R = 2.0

$$\frac{R}{(R+1)} = \frac{2}{3} = 0.66$$

from Figure 11.11

$$\frac{N_m}{N} = 0.56$$

$$N = \frac{8.8}{0.56} = \underline{15.7}$$

for other reflux ratios

*Note*: Above a reflux ratio of 4 there is little change in the number of stages required, and the optimum reflux ratio will be near this value.

# Example 11.8

Estimate the position of the feed point for the separation considered in Example 11.7, for a reflux ratio of 3.

### **Solution**

Use the Kirkbride equation, equation 11.62. Product distributions taken from Example 11.6,

$$x_{b,LK} = \frac{1}{54.7} = 0.018$$

$$x_{d,HK} = \frac{1}{45.3} = 0.022$$

$$\log\left(\frac{N_r}{N_s}\right) = 0.206\log\left[\frac{54.7}{45.3}\left(\frac{0.20}{0.25}\right)\left(\frac{0.018}{0.022}\right)^2\right]$$

$$\log\left(\frac{N_r}{N_s}\right) = 0.206\log(0.65)$$

$$\frac{N_r}{N_s} = \underline{0.91}$$

for R = 3, N = 12number of stages, excluding the reboiler = 11

$$N_r + N_s = 11$$
  
 $N_s = 11 - N_r = 11 - 0.91N_s$   
 $N_s = \frac{11}{1.91} = 5.76$ , say  $\underline{6}$ 

Checks with the method used in Example 11.5, where the reflux ratio was 2.5.

# Example 11.9

This example illustrates the complexity and trial and error nature of stage-by-stage calculation.

The same problem specification has been used in earlier examples to illustrate the shortcut design methods.

A butane-pentane splitter is to operate at 8.3 bar with the following feed composition:

|                 |                | $x_f$ | f mol/100 mol feed |
|-----------------|----------------|-------|--------------------|
| Propane,        | C <sub>3</sub> | 0.05  | 5                  |
| Isobutane,      | $iC_4$         | 0.15  | 15                 |
| Normal butane,  | $nC_4$         | 0.25  | 25                 |
| Isopentane,     | $iC_5$         | 0.20  | 20                 |
| Normal pentane, | $nC_5$         | 0.35  | 35                 |
| Light key       | $nC_4$         |       |                    |
| Heavy key       | $iC_5$         |       |                    |

For a specification of not more than 1 mol of the light key in the bottom product and not more than 1 mol of the heavy key in the top product, and a reflux ratio of 2.5, make a stage-by-stage calculation to determine the product composition and number of stages required.

#### Solution

Only sufficient trial calculations will be made to illustrate the method used. Basis 100 mol feed.

Estimation of dew and bubble points

Bubble point 
$$\sum y_i = \sum K_i x_i = 1.0$$
 (11.5a)

Dew point 
$$\sum x_i = \sum \frac{y_i}{K_i} = 1.0$$
 (11.5b)

The K values, taken from the De Priester charts (Chapter 8), are plotted in Figure (a) for easy interpolation.

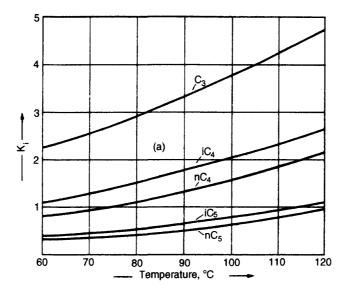



Figure (a). K-values at 8.3 bar

To estimate the dew and bubble points, assume that nothing heavier than the heavy key appears in the tops, and nothing lighter than the light key in the bottoms.

|                  | d  | $x_d$ | b  | $x_b$ |
|------------------|----|-------|----|-------|
| $\overline{C_3}$ | 5  | 0.11  | 0  |       |
| $C_4$            | 15 | 0.33  | 0  | _     |
| $nC_4$           | 24 | 0.54  | 1  | 0.02  |
| $iC_5$           | 1  | 0.02  | 19 | 0.34  |
| nC <sub>5</sub>  | 0  | _     | 35 | 0.64  |
|                  | 45 |       | 55 |       |

### Bubble-point calculation, bottoms

|                  | $x_b$ | Try 1 | 100°C             | Try 1 | 20°C           |
|------------------|-------|-------|-------------------|-------|----------------|
|                  |       | $K_i$ | $K_i x_i$         | $K_i$ | $K_i x_i$      |
| $\overline{C_3}$ |       | _     |                   |       |                |
| iC <sub>4</sub>  |       |       |                   |       |                |
| $nC_4$           | 0.02  | 1.85  | 0.04              | 2.1   | 0.04           |
| iC <sub>5</sub>  | 0.34  | 0.94  | 0.32              | 1.1   | 0.37           |
| $nC_5$           | 0.64  | 0.82  | 0.52              | 0.96  | 0.61           |
|                  |       |       | = 0.88<br>too low | close | 1.02<br>enough |

Dew-point calculation, tops

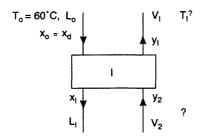
|                  | $x_d$ | Try                                  | 70°C        | Try 60°C |                  |  |
|------------------|-------|--------------------------------------|-------------|----------|------------------|--|
|                  |       | $K_i$                                | $y_i/K_i$   | $K_i$    | $y_i/K_i$        |  |
| $\overline{C_3}$ | 0.11  | 2.6                                  | 0.04        | 2.20     | 0.24             |  |
| iC <sub>4</sub>  | 0.33  | 1.3                                  | 0.25        | 1.06     | 0.35             |  |
| nC <sub>4</sub>  | 0.54  | 0.9                                  | 0.60        | 0.77     | 0.42             |  |
| iC <sub>5</sub>  | 0.02  | 0.46                                 | 0.04        | 0.36     | 0.01             |  |
| $nC_5$           |       |                                      | <del></del> |          |                  |  |
|                  |       | $\sum y_i/K_i = 0.94$ temp. too high |             | close    | 1.02<br>e enough |  |

Bubble-point calculation, feed (liquid feed)

|                  | $x_f$ | Try 80°C |           | Try 90°C |          | Try 85°C |            |
|------------------|-------|----------|-----------|----------|----------|----------|------------|
|                  |       | $K_i$    | $x_i K_i$ | $K_i$    | $x_iK_i$ | $K_i$    | $x_iK_i$   |
| $\overline{C_3}$ | 0.05  | 2.9      | 0.15      | 3.4      | 0.17     | 3.15     | 0.16       |
| iC <sub>4</sub>  | 0.15  | 1.5      | 0.23      | 1.8      | 0.27     | 1.66     | 0.25       |
| nC <sub>4</sub>  | 0.25  | 1.1      | 0.28      | 1.3      | 0.33     | 1.21     | 0.30       |
| iC <sub>5</sub>  | 0.20  | 0.5      | 0.11      | 0.66     | 0.13     | 0.60     | 0.12       |
| nC <sub>5</sub>  | 0.35  | 0.47     | 0.16      | 0.56     | 0.20     | 0.48     | 0.17       |
|                  |       |          | 0.93      |          | 1.10     |          | 1.00       |
|                  |       | temp.    | too low   | temp.    | too high |          | satisfacto |

# Stage-by-stage calculations

Top down calculations, assume total condensation with no subcooling


$$y_1 = x_d = x_0$$

It is necessary to estimate the composition of the "non-keys" so that they can be included in the stage calculations. As a first trial the following values will be assumed:

|                  | $x_d$ | d    |
|------------------|-------|------|
| $\overline{C_3}$ | 0.10  | 5    |
| iC <sub>4</sub>  | 0.33  | 15   |
| nC <sub>4</sub>  | 0.54  | 24   |
| iC <sub>5</sub>  | 0.02  | 1    |
| nC <sub>5</sub>  | 0.001 | 0.1  |
|                  |       | 45.1 |

In each stage calculation it will necessary to estimate the stage temperatures to determine the K values and liquid and vapour enthalpies. The temperature range from top to bottom of the column will be approximately  $120-60=60^{\circ}\text{C}$ . An approximate calculation (Example 11.7) has shown that around fourteen ideal stages will be needed; so the temperature change from stage to stage can be expected to be around 4 to  $5^{\circ}\text{C}$ .

### Stage 1



$$L_0 = R \times D = 2.5 \times 45.1 = 112.8$$
  
 $V_1 = (R+1)D = 3.5 \times 45.1 = 157.9$ 

Estimation of stage temperature and outlet liquid composition  $(x_1)$ 

|                                         | Try $T_1 = 66^{\circ}$ |       | $=66^{\circ}$ C | Try $T_1$ | $=65^{\circ}C$    |                              |
|-----------------------------------------|------------------------|-------|-----------------|-----------|-------------------|------------------------------|
|                                         | <i>y</i> <sub>1</sub>  | $K_i$ | $y_i/K_i$       | $K_i$     | $y_i/K_i$         | $x_1 = y_i / K_i$ Normalised |
| $\overline{C_3}$                        | 0.10                   | 2.40  | 0.042           | 2.36      | 0.042             | 0.042                        |
| iC <sub>4</sub>                         | 0.33                   | 1.20  | 0.275           | 1.19      | 0.277             | 0.278                        |
| nC <sub>4</sub>                         | 0.54                   | 0.88  | 0.614           | 0.86      | 0.628             | 0.629                        |
| iC <sub>5</sub>                         | 0.02                   | 0.42  | 0.048           | 0.42      | 0.048             | 0.048                        |
| nC <sub>5</sub>                         | 0.001                  | 0.32  | 0.003           | 0.32      | 0.003             | 0.003                        |
| *************************************** | Σ                      |       | i = 0.982 close |           | 0.998<br>e enough |                              |

Summary of stage equations

$$L_0 + V_2 = L_1 + V_1 \tag{i}$$

$$L_0 x_0 + V_2 y_2 = L_1 x_1 + V_1 y_1 \tag{ii}$$

$$h_0 L_0 + H_2 V_2 = h_1 L_1 + H_1 V_1 \tag{iii}$$

$$h = f(x, T) (iv)$$

$$H = f(x, T) \tag{v}$$

The enthalpy relationship is plotted in Figures (b) and (c).

$$y_i = K_i x_i \tag{vi}$$

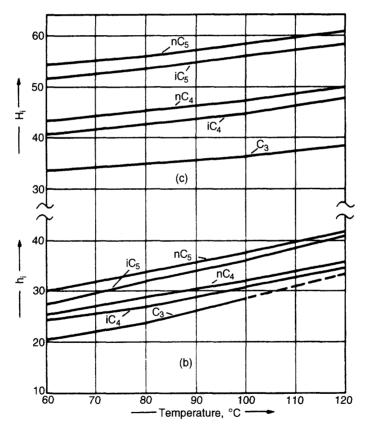



Figure (b) and (c). Enthalpy kJ/mol (adapted from J. B. Maxwell, *Data Book of Hydrocarbons* (Van Nostrand, 1962))

Before a heat balance can be made to estimate  $L_1$  and  $V_2$ , an estimate of  $y_2$  and  $T_2$  is needed.  $y_2$  is dependent on the liquid and vapour flows, so as a first trial assume that

these are constant and equal to  $L_0$  and  $V_1$ ; then, from equations (i) and (ii),

$$y_2 = \left(\frac{L_0}{V_1}\right)(x_1 - x_0) + y_1$$
$$\frac{L_0}{V_1} = \frac{112.8}{157.9} = 0.71$$

|                  | $x_1$ | $x_0$ | $y_2 = 0.71(x_1 - x_0) + y_1$ | y <sub>2</sub><br>Normalised |
|------------------|-------|-------|-------------------------------|------------------------------|
| $\overline{C_3}$ | 0.042 | 0.10  | 0.057                         | 0.057                        |
| iC <sub>4</sub>  | 0.278 | 0.33  | 0.294                         | 0.292                        |
| nC <sub>4</sub>  | 0.629 | 0.54  | 0.604                         | 0.600                        |
| iC <sub>5</sub>  | 0.048 | 0.02  | 0.041                         | 0.041                        |
| nC <sub>5</sub>  | 0.003 | 0.001 | 0.013                         | 0.013                        |

1.009 close enough

### Enthalpy data from Figures (b) and (c) J/mol

|                  | $h_0(T_0 = 60^{\circ}\text{C})$ |            |           | ,                     | $h_1(T_1 = 65^{\circ}\text{C})$ |           |  |
|------------------|---------------------------------|------------|-----------|-----------------------|---------------------------------|-----------|--|
|                  | $\overline{x_0}$                | $h_i$      | $h_i x_i$ | $x_1$                 | $h_i$                           | $h_i x_i$ |  |
| $\overline{C_3}$ | 0.10                            | 20,400     | 2040      | 0.042                 | 21,000                          | 882       |  |
| $iC_4$           | 0.33                            | 23,400     | 7722      | 0.278                 | 24,900                          | 6897      |  |
| $nC_4$           | 0.54                            | 25,200     | 13,608    | 0.629                 | 26,000                          | 16,328    |  |
| $iC_5$           | 0.02                            | 27,500     | 550       | 0.048                 | 28,400                          | 1363      |  |
| $nC_5$           | 0.001                           | 30,000     | 30        | 0.003                 | 30,700                          | 92        |  |
|                  |                                 | $h_0 =$    | 23,950    |                       | $h_1 =$                         | 25,562    |  |
|                  |                                 | $H_1(T_1)$ | = 65°C)   | $H_2(T)$              | $_2 = 70^{\circ}$ C as          | sumed)    |  |
|                  | $v_1$                           | $H_i$      | $H_i y_i$ | <i>y</i> <sub>2</sub> | $H_i$                           | $H_i y_i$ |  |
| $\overline{C_3}$ | 0.10                            | 34,000     | 3400      | 0.057                 | 34,800                          | 1984      |  |
| iC <sub>4</sub>  | 0.33                            | 41,000     | 13,530    | 0.292                 | 41,300                          | 12,142    |  |
| $nC_4$           | 0.54                            | 43,700     | 23,498    | 0.600                 | 44,200                          | 26,697    |  |
| iC <sub>5</sub>  | 0.02                            | 52,000     | 1040      | 0.041                 | 52,500                          | 2153      |  |
| $nC_5$           | 0.001                           | 54,800     | 55        | 0.013                 | 55,000                          | 715       |  |
| $H_1 = 41,623$   |                                 |            |           |                       | $H_2 =$                         | 43,691    |  |

Energy balance (equation iii)

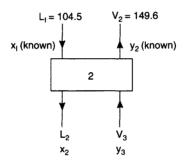
$$23,950 \times 112.8 + 43,691V_2 = 25,562L_1 + 41,623 \times 157.9$$
  
 $43,691V_2 = 255,626L_1 + 3,870,712$ 

Material balance (equation i)

$$112.8 + V_2 = L_1 + 157.9$$

substituting

$$43,691(L_1 + 45.1) = 25,562L_1 + 3,870,712$$


$$L_1 = 104.8$$

$$V_2 = 104.8 + 45.1 = 149.9$$

$$\frac{L_1}{V_2} = 0.70$$

Could revise calculated values for  $y_2$  but  $L_1/V_2$  is close enough to assumed value of 0.71, so there would be no significant difference from first estimate.

### Stage 2



Estimation of stage temperature and outlet liquid composition  $(x_2)$ .

|                  |                       | $T_2 = 7$ | 0°C (use assumed | value as first trial)     |
|------------------|-----------------------|-----------|------------------|---------------------------|
|                  | <i>y</i> <sub>2</sub> | $K_i$     | $x_2 = y_2/K_i$  | x <sub>2</sub> Normalised |
| $\overline{C_3}$ | 0.057                 | 2.55      | 0.022            | 0.022                     |
| iC <sub>4</sub>  | 0.292                 | 1.30      | 0.226            | 0.222                     |
| $nC_4$           | 0.600                 | 0.94      | 0.643            | 0.630                     |
| iC <sub>5</sub>  | 0.041                 | 0.43      | 0.095            | 0.093                     |
| $nC_5$           | 0.013                 | 0.38      | 0.034            | 0.033                     |
|                  | -                     |           | 1.020            |                           |
|                  |                       | close en  | ough to 1.0      |                           |

$$y_3 = \frac{L}{V}(x_2 - x_1) + y_2$$

| As | a | first | trial | take | L/V | as $L_1$ | $/V_1$ | = 0.70 |
|----|---|-------|-------|------|-----|----------|--------|--------|
|----|---|-------|-------|------|-----|----------|--------|--------|

|                  | $x_2$ | $x_1$ | $y_3 = 0.70(x_2 - x_1) + y_2$ | y <sub>3</sub><br>Normalised |
|------------------|-------|-------|-------------------------------|------------------------------|
| $\overline{C_3}$ | 0.022 | 0.042 | 0.044                         | 0.043                        |
| iC <sub>4</sub>  | 0.222 | 0.277 | 0.256                         | 0.251                        |
| $nC_4$           | 0.630 | 0.628 | 0.613                         | 0.601                        |
| $iC_5$           | 0.093 | 0.048 | 0.072                         | 0.072                        |
| $nC_5$           | 0.033 | 0.003 | 0.035                         | 0.034                        |
|                  |       |       | 1.020                         |                              |

### Enthalpy data from Figures (b) and (c)

|                  | $h_2(T_2 = 70^{\circ}\text{C})$ |        |           | $H_3(T_3 = 75^{\circ}\text{C assumed})$ |        |           |
|------------------|---------------------------------|--------|-----------|-----------------------------------------|--------|-----------|
|                  | $x_2$                           | $h_i$  | $h_i x_2$ | у3                                      | $H_i$  | $H_i y_3$ |
| $\overline{C_3}$ | 0.022                           | 21,900 | 482       | 0.043                                   | 34,600 | 1488      |
| iC <sub>4</sub>  | 0.222                           | 25,300 | 5617      | 0.251                                   | 41,800 | 10,492    |
| $nC_4$           | 0.630                           | 27,000 | 17,010    | 0.601                                   | 44,700 | 26,865    |
| $iC_5$           | 0.093                           | 29,500 | 2744      | 0.072                                   | 53,000 | 3816      |
| $nC_5$           | 0.033                           | 31,600 | 1043      | 0.035                                   | 55,400 | 1939      |
|                  | $h_2 =$                         | 26,896 |           | $H_3 =$                                 | 44,600 |           |

### Energy balance

$$25,562 \times 104.8 + 44,600V_3 = 4369 \times 149.9 + 26,896L_2$$

#### Material balance

$$104.8 + V_3 = 149.9 + L_2$$

$$L_2 = 105.0$$

$$V_3 = 150.1$$

$$\frac{L_2}{V_3} = 0.70 \text{ checks with assumed value.}$$

# Stage 3

As the calculated liquid and vapour flows are not changing much from stage to stage the calculation will be continued with the value of L/V taken as constant at 0.7.

|                  | Try   | $T_3 = 75^{\circ}$ C (assur |            |                              |
|------------------|-------|-----------------------------|------------|------------------------------|
|                  | $K_i$ | $x_3 = y_3/K_i$             | Normalised | $y_4 = 0.7(x_3 - x_2) + y_3$ |
| $\overline{C_3}$ | 2.71  | 0.016                       | 0.015      | 0.38                         |
| $iC_4$           | 1.40  | 0.183                       | 0.177      | 0.217                        |
| $nC_4$           | 1.02  | 0.601                       | 0.580      | 0.570                        |
| $iC_5$           | 0.50  | 0.144                       | 0.139      | 0.104                        |
| $nC_5$           | 0.38  | 0.092                       | 0.089      | 0.074                        |
|                  |       | 1.036                       |            | 1.003                        |
|                  |       | Close enough                |            |                              |

# Stage 4

|                  | $K_i$   | $x_4 = y_4/K_i$ | Normalised   | $y_5 = 0.7(x_4 - x_3) + y_4$ |
|------------------|---------|-----------------|--------------|------------------------------|
| $\overline{C_3}$ | 2.95    | 0.013           | 0.013        | 0.039                        |
| iC <sub>4</sub>  | 1.55    | 0.140           | 0.139        | 0.199                        |
| nC <sub>4</sub>  | 1.13    | 0.504           | 0.501        | 0.515                        |
| iC <sub>5</sub>  | 0.55    | 0.189           | 0.188        | 0.137                        |
| $nC_5$           | 0.46    | 0.161           | 0.166        | 0.118                        |
|                  | ******* | 1.007           |              | 1.008                        |
|                  |         |                 | Close enough |                              |

# Stage 5

|                  |          | Try $T_5 =$           | = 85°C       |                              |
|------------------|----------|-----------------------|--------------|------------------------------|
|                  | $K_i$    | <i>x</i> <sub>5</sub> | Normalised   | $y_6 = 0.7(x_5 - x_4) + y_5$ |
| $\overline{C_3}$ | 3.12     | 0.013                 | 0.012        | 0.038                        |
| $iC_4$           | 1.66     | 0.120                 | 0.115        | 0.179                        |
| $nC_4$           | 1.20     | 0.430                 | 0.410        | 0.450                        |
| $iC_5$           | 0.60     | 0.228                 | 0.218        | 0.159                        |
| $nC_5$           | 0.46     | 0.257                 | 0.245        | 0.192                        |
|                  | <u> </u> | 1.048                 |              | 1.018                        |
|                  |          |                       | Close enough |                              |

| Stá | age | 6 |
|-----|-----|---|
|     |     |   |

|                                                      | Try $T_6 = 90^{\circ}$ C |                       |       | Try $T_6 = 92^{\circ}$ C |            |       |
|------------------------------------------------------|--------------------------|-----------------------|-------|--------------------------|------------|-------|
|                                                      | $K_i$                    | <i>x</i> <sub>6</sub> | $K_i$ | <i>x</i> <sub>6</sub>    | Normalised | у7    |
| C <sub>3</sub>                                       | 3.35                     | 0.011                 | 3.45  | 0.011                    | 0.011      | 0.037 |
| C <sub>3</sub><br>iC <sub>4</sub><br>nC <sub>4</sub> | 1.80                     | 0.099                 | 1.85  | 0.097                    | 0.095      | 0.166 |
| nC <sub>4</sub>                                      | 1.32                     | 0.341                 | 1.38  | 0.376                    | 0.318      | 0.386 |
| iC <sub>5</sub>                                      | 0.65                     | 0.245                 | 0.69  | 0.230                    | 0.224      | 0.163 |
| iC <sub>5</sub><br>nC <sub>5</sub>                   | 0.51                     | 0.376                 | 0.53  | 0.362                    | 0.350      | 0.268 |
|                                                      |                          | 1.072<br>too low      |       | 1.026<br>close enough    |            | 1.020 |

Note: ratio of LK to HK in liquid from this stage 
$$=\frac{0.386}{0.163}=2.37$$

### Stage 7

|                  | Try $T_6 = 97^{\circ}$ C |                       |            |  |  |  |
|------------------|--------------------------|-----------------------|------------|--|--|--|
|                  | $K_i$                    | <i>x</i> <sub>7</sub> | Normalised |  |  |  |
| $\overline{C_3}$ | 3.65                     | 0.010                 | 0.010      |  |  |  |
| iC <sub>4</sub>  | 1.98                     | 0.084                 | 0.083      |  |  |  |
| nC <sub>4</sub>  | 1.52                     | 0.254                 | 0.251      |  |  |  |
| iC <sub>5</sub>  | 0.75                     | 0.217                 | 0.214      |  |  |  |
| $nC_5$           | 0.60                     | 0.447                 | 0.442      |  |  |  |
|                  |                          | 1.012                 |            |  |  |  |
|                  | LK                       | 0.251                 |            |  |  |  |

ratio 
$$\frac{LK}{HK} = \frac{0.251}{0.214} = 1.17$$

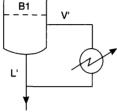
This is just below the ratio in the feed

$$=\frac{25}{20}=1.25$$

So, the feed would be introduced at this stage.

But the composition of the non-key components on the plate does not match the feed composition.

|                 | $x_f$       | x <sub>7</sub> |
|-----------------|-------------|----------------|
|                 | <del></del> |                |
| $C_3$           | 0.05        | 0.10           |
| iC <sub>4</sub> | 0.15        | 0.084          |
| $nC_4$          | 0.25        | 0.254          |
| $iC_5$          | 0.20        | 0.217          |
| $nC_5$          | 0.35        | 0.447          |


So it would be necessary to adjust the assumed top composition and repeat the calculation.

### **Bottom-up calculation**

To illustrate the procedure the calculation will be shown for the reboiler and bottom stage, assuming constant molar overflow.

With the feed at its boiling point and constant molar overflow the base flows can be calculated as follows:

$$V' = V_0 = 157.9$$
  
 $L' = L_0 + \text{FEED} = 112.8 + 100 = 212.8$   
 $\frac{V'}{L'} = \frac{157.9}{212.8} = 0.74$ 



It will be necessary to estimate the concentration of the non-key components in the bottom product; as a first trial take:

# Reboiler

Check bubble-point estimate of 120°C

|                      | Try 120°C |                   |                 | Try 118°C             |       |
|----------------------|-----------|-------------------|-----------------|-----------------------|-------|
|                      | $x_B$     | $K_i$             | $y_B = K_i x_B$ | $K_i$                 | УВ    |
| $\overline{C_3}$     | 0.001     | 4.73              | 0.005           | 4.60                  | 0.005 |
| iC <sub>4</sub>      | 0.001     | 2.65              | 0.003           | 2.58                  | 0.003 |
| $nC_4$               | 0.02      | 2.10              | 0.042           | 2.03                  | 0.041 |
| iC <sub>5</sub>      | 0.34      | 1.10              | 0.374           | 1.06                  | 0.360 |
| nC <sub>5</sub> 0.64 | 0.64      | 0.96              | 0.614           | 0.92                  | 0.589 |
|                      |           | 1.038<br>too high |                 | 0.998<br>close enough |       |

Material balance:

$$x_{B1}L' = y_BV' + x_BB$$

$$x_{B1} = \frac{V'}{L'}y_B + \frac{B}{L'}x_B$$

$$x_{B1} = \frac{157.9}{212.8}y_B + \frac{55}{212.8}x_B$$

$$= 0.74y_B + 0.26x_B$$

Stage 1 from base (B1)

|                                        | $x_B$ | УВ    | $x_{B1}$ | $x_{B2} = 0.74(y_{1B} - y_B) + x_{1B}$ |
|----------------------------------------|-------|-------|----------|----------------------------------------|
| $\overline{C_3}$                       | 0.001 | 0.005 | 0.004    | 0.014                                  |
| iC <sub>4</sub>                        | 0.001 | 0.003 | 0.002    | 0.036                                  |
| nC <sub>4</sub>                        | 0.02  | 0.041 | 0.020    | 0.019                                  |
| $iC_5$                                 | 0.34  | 0.361 | 0.356    | 0.357                                  |
| $nC_5$                                 | 0.64  | 0.590 | 0.603    | 0.559                                  |
| ************************************** |       |       |          | 0.985                                  |

The calculation is continued stage-by-stage up the column to the feed point (stage 7 from the top). If the vapour composition at the feed point does not mesh with the top-down calculation, the assumed concentration of the non-keys in the bottom product is adjusted and the calculations repeated.

# 11.8. MULTICOMPONENT SYSTEMS: RIGOROUS SOLUTION PROCEDURES (COMPUTER METHODS)

The application of digital computers has made the rigorous solution of the MESH equations (Section 11.3.1) a practical proposition, and computer methods for the design of multicomponent separation columns will be available in most design organisations. Programs, and computer time, can also be rented from commercial computing bureaux. A considerable amount of work has been done over the past twenty or so years to develop efficient and reliable computer-aided design procedures for distillation and other staged processes. A detailed discussion of this work is beyond the scope of this book and the reader is referred to the specialist books that have been published on the subject, Smith (1963), Holland (1963, 1975) and Hanson and Sommerville (1963), and to the numerous papers that have appeared in the chemical engineering literature. A good summary of the present state of the art is given by Haas (1992).

Several different approaches have been taken to develop programs that are efficient in the use of computer time, and suitable for the full range of multicomponent separation processes that are used in the process industries. A design group will use those methods that are best suited to the processes that it normally handles.

In this section a brief outline will be given of the methods that have been developed; together with authoritative references, and sources of published program listings.

The basic steps in any rigorous solution procedure will be:

- Specification of the problem; complete specification is essential for computer methods.
- 2. Selection of values for the iteration variables; for example, estimated stage temperatures, and liquid and vapour flows (the column temperature and flow profiles).
- 3. A calculation procedure for the solution of the stage equations.
- 4. A procedure for the selection of new values for the iteration variables for each set of trial calculations.
- 5. A procedure to test for convergence; to check if a satisfactory solution has been achieved.

It is convenient to consider the methods available under the following four headings:

- 1. Lewis-Matheson method.
- 2. Thiele-Geddes method.
- 3. Relaxation methods.
- 4. Linear algebra methods.

### Rating and design methods

With the exception of the Lewis-Matheson method, all the methods listed above require the specification of the number of stages below and above the feed point. They are therefore not directly applicable to design: where the designer wants to determine the number of stages required for a specified separation. They are strictly what are referred to as "rating methods"; used to determine the performance of existing, or specified, columns. Given the number of stages they can be used to determine product compositions. Iterative procedures are necessary to apply rating methods to the design of new columns. An initial estimate of the number of stages can be made using short-cut methods and the programs used to calculate the product compositions; repeating the calculations with revised estimates till a satisfactory design is obtained.

#### 11.8.1. Lewis-Matheson method

The method proposed by Lewis and Matheson (1932) is essentially the application of the Lewis-Sorel method (Section 11.5.1) to the solution of multicomponent problems. Constant molar overflow is assumed and the material balance and equilibrium relationship equations are solved stage by stage starting at the top or bottom of the column, in the manner illustrated in Example 11.9. To define a problem for the Lewis-Matheson method the following variables must be specified, or determined from other specified variables:

Feed composition, flow rate and condition.

Distribution of the key components.

One product flow.

Reflux ratio.

Column pressure.

Assumed values for the distribution of the non-key components.

The usual procedure is to start the calculation at the top and bottom of the column and proceed toward the feed point. The initial estimates of the component distributions in the products are then revised and the calculations repeated until the compositions calculated from the top and bottom starts mesh, and match the feed at the feed point.

Efficient procedures for adjusting the compositions to achieve a satisfactory mesh at the feed point are given by Hengstebeck (1961). Good descriptions of the Lewis-Matheson method, with examples of manual calculations, are also given in the books by Oliver (1966) and Smith (1963); a simple example is given in Volume 2, Chapter 11.

In some computer applications of the method, where the assumption of constant molar overflow is not made, it is convenient to start the calculations by assuming flow and temperature profiles. The stage component compositions can then be readily determined and used to revise the profiles for the next iteration. With this modification the procedure is similar to the Thiele-Geddes method discussed in the next section.

In general, the Lewis-Matheson method has not been found to be an efficient procedure for computer solutions, other than for relatively straightforward problems. It is not suitable for problems involving multiple feeds, and side-streams, or where more than one column is needed.

The method is suitable for interactive programs run on programmable calculators and Personal Computers. Such programs can be "semi-manual" in operation: the computer solving the stage equations, while control of the iteration variables, and convergence is kept by the designer. As the calculations are carried out one stage at a time, only a relatively small computer memory is needed.

#### 11.8.2. Thiele-Geddes method

Like the Lewis-Matheson method, the original method of Thiele and Geddes (1933) was developed for manual calculation. It has subsequently been adapted by many workers for computer applications. The variables specified in the basic method, or that must be derived from other specified variables, are:

Reflux temperature.

Reflux flow rate.

Distillate rate.

Feed flows and condition.

Column pressure.

Number of equilibrium stages above and below the feed point.

The basic procedure used in the Thiele-Geddes method, with examples, is described in books by Oliver (1966), Smith (1963) and Deshpande (1985). The application of the method to computers is covered in a series of articles by Lyster *et al.* (1959) and Holland (1963).

The method starts with an assumption of the column temperature and flow profiles. The stage equations are then solved to determine the stage component compositions and the results used to revise the temperature profiles for subsequent trial calculations. Efficient convergence procedures have been developed for the Thiele-Geddes method. The so-called "theta method", described by Lyster *et al.* (1959) and Holland (1963), is recommended.

The Thiele-Geddes method can be used for the solution of complex distillation problems, and for other multi-component separation processes. A series of programs for the solution of problems in distillation, extraction, stripping and absorption, which use an iterative procedure similar to the Thiele-Geddes method, are given by Hanson *et al.* (1962).

#### 11.8.3. Relaxation methods

With the exception of this method, all the methods described solve the stage equations for the steady-state design conditions. In an operating column other conditions will exist at start-up, and the column will approach the "design" steady-state conditions after a period of time. The stage material balance equations can be written in a finite difference form, and procedures for the solution of these equations will model the unsteady-state behaviour of the column.

Rose *et al.* (1958) and Hanson and Sommerville (1963) have applied "relaxation methods" to the solution of the unsteady-state equations to obtain the steady-state values. The application of this method to the design of multistage columns is described by Hanson and Sommerville (1963). They give a program listing and worked examples for a distillation column with side-streams, and for a reboiled absorber.

Relaxation methods are not competitive with the "steady-state" methods in the use of computer time, because of slow convergence. However, because they model the actual operation of the column, convergence should be achieved for all practical problems. The method has the potential of development for the study of the transient behaviour of column designs, and for the analysis and design of batch distillation columns.

# 11.8.4. Linear algebra methods

The Lewis-Matheson and Thiele-Geddes methods use a stage-by-stage procedure to solve the equations relating the component compositions to the column temperature and flow profiles. However, the development of high-speed digital computers with large memories makes possible the simultaneous solution of the complete set of MESH equations that describe the stage compositions throughout the column.

If the equilibrium relationships and flow-rates are known (or assumed) the set of material balance equations for each component is linear in the component compositions. Amundson and Pontinen (1958) developed a method in which these equations are solved simultaneously and the results used to provide improved estimates of the temperature and flow profiles. The set of equations can be expressed in matrix form and solved using the standard inversion routines available in modern computer systems. Convergence can usually be achieved after a few iterations.

This approach has been further developed by other workers; notably Wang and Henke (1966) and Naphtali and Sandholm (1971).

The linearisation method of Naphtali and Sandholm has been used by Fredenslund *et al.* (1977) for the multicomponent distillation program given in their book. Included in their book, and coupled to the distillation program, are methods for estimation of the liquid-vapour relationships (activity coefficients) using the UNIFAC method (see Chapter 8, Section 16.3). This makes the program particularly useful for the design of columns for

new processes, where experimental data for the equilibrium relationships are unlikely to be available. The program is recommended to those who do not have access to their own "in house" programs.

#### 11.9. BATCH DISTILLATION

Batch operation should be considered when the quantity to be distilled is small; when it is produced at irregular intervals; when a range of products has to be produced; or when the feed composition is likely to vary considerably.

Batch distillation is an unsteady-state process: the composition in the still and the overheads changing as the batch is distilled. The basic theory of batch distillation is covered in Volume 2, Chapter 11, and in several other books, Robinson and Gilliland (1950), Van Winkle (1967), Treybal (1980), Sherwood *et al.* (1975). In the simple theoretical analysis of batch distillation the liquid hold-up in the column is usually neglected. This hold-up can have a significant effect on the separating efficiency and should be taken into account when designing batch columns. The practical design of batch distillation processes is discussed by Hengstebeck (1961), Ellerbe (1979) and Billet (1979).

#### 11.10. PLATE EFFICIENCY

The designer is concerned with real contacting stages; not the theoretical equilibrium stage assumed for convenience in the mathematical analysis of multistage processes. Equilibrium will rarely be attained in a real stage. The concept of a stage efficiency is used to link the performance of practical contacting stages to the theoretical equilibrium stage.

Three principal definitions of efficiency are used:

1. Murphree plate efficiency (Murphree, 1925), defined in terms of the vapour compositions by:

$$E_{mV} = \frac{y_n - y_{n-1}}{y_e - y_{n-1}} \tag{11.64}$$

where  $y_e$  is the composition of the vapour that would be in equilibrium with the liquid leaving the plate. The Murphree plate efficiency is the ratio of the actual separation achieved to that which would be achieved in an equilibrium stage (see Figure 11.6). In this definition of efficiency the liquid and the vapour stream are taken to be perfectly mixed; the compositions in equation 11.64 are the average composition values for the streams.

- 2. Point efficiency (Murphree point efficiency). If the vapour and liquid compositions are taken at a point on the plate, equation 11.64 gives the local or point efficiency,  $E_{mv}$ .
- 3. Overall column efficiency. This is sometimes confusingly referred to as the overall plate efficiency.

$$E_o = \frac{\text{number of ideal stages}}{\text{number of real stages}}$$
 (11.65)

An estimate of the overall column efficiency will be needed when the design method used gives an estimate of the number of ideal stages required for the separation.

In some methods, the Murphree plate efficiencies can be incorporated into the procedure for calculating the number of stages and the number of real stages determined directly.

For the idealised situation where the operating and equilibrium lines are straight, the overall column efficiency and the Murphree plate efficiency are related by an equation derived by Lewis (1936):

$$E_0 = \frac{\log\left[1 + E_{mV}\left(\frac{mV}{L} - 1\right)\right]}{\log\left(\frac{mV}{L}\right)}$$
(11.66)

where m = slope of the equilibrium line,

V =molar flow rate of the vapour,

L =molar flow rate of the liquid.

Equation 11.66 is not of much practical use in distillation, as the slopes of the operating and equilibrium lines will vary throughout the column. It can be used by dividing the column into sections and calculating the slopes over each section. For most practical purposes, providing the plate efficiency does not vary too much, a simple average of the plate efficiency calculated at the column top, bottom and feed points will be sufficiently accurate.

### 11.10.1. Prediction of plate efficiency

Whenever possible the plate efficiencies used in design should be based on experimental values for similar systems, obtained on full-sized columns. There is no entirely satisfactory method for predicting plate efficiencies from the system physical properties and plate design parameters. However, the methods given in this section can be used to make a rough estimate where no reliable experimental values are available. They can also be used to extrapolate data obtained from small-scale experimental columns. If the system properties are at all unusual, experimental confirmation of the predicted values should always be obtained. The small, laboratory scale, glass sieve plate column developed by Oldershaw (1941) has been shown to give reliable values for scale-up. The use of Oldershaw columns is described in papers by Swanson and Gester (1962), Veatch et al. (1960) and Fair et al. (1983).

Some typical values of plate efficiency for a range of systems are given in Table 11.2. More extensive compilations of experimental data are given by Vital *et al.* (1984) and Kister (1992).

Plate, and overall column, efficiencies will normally be between 30 per cent and 70 per cent, and as a rough guide a figure of 50 per cent can be assumed for preliminary designs.

Efficiencies will be lower for vacuum distillations, as low weir heights are used to keep the pressure drop small (see Section 11.10.4).

# Multicomponent systems

The prediction methods given in the following sections, and those available in the open literature, are invariably restricted to binary systems. It is clear that in a binary system

| Table 11.2. Representative efficiencies, siev |
|-----------------------------------------------|
|-----------------------------------------------|

| System                      | Column dia., m | Pressure kPa, abs | Efficiency<br>E <sub>mV</sub> | %<br>E <sub>o</sub> |
|-----------------------------|----------------|-------------------|-------------------------------|---------------------|
| Water-methanol              | 1.0            | _                 | 80                            |                     |
| Water-ethanol               | 0.2            | 101               | 90                            |                     |
| Water-isopropanol           | _              | _                 |                               | 70                  |
| Water-acetone               | 0.15           | 90                | 80                            |                     |
| Water-acetic acid           | 0.46           | 101               | 75                            |                     |
| Water-ammonia               | 0.3            | 101               | 90                            |                     |
| Water-carbon dioxide        | 0.08           | _                 | 80                            |                     |
| Toluene-propanol            | 0.46           | -                 | 65                            |                     |
| Toluene-ethylene dichloride | 0.05           | 101               |                               | 75                  |
| Toluene-methylethylketone   | 0.15           | _                 |                               | 85                  |
| Toluene-cyclohexane         | 2.4            | _                 |                               | 70                  |
| Toluene-methylcyclohexane   | _              | 27                |                               | 90                  |
| Toluene-octane              | 0.15           | 101               |                               | 40                  |
| Heptane-cyclohexane         | 1.2            | 165               | 95                            | 85                  |
| -                           | 2.4            | 165               |                               | 75                  |
| Propane-butane              | _              |                   |                               | 100                 |
| Isobutane-n-butane          |                | 2070              |                               | 110                 |
| Benzene-toluene             | 0.13           |                   | 75                            |                     |
| Benzene-methanol            | 0.18           | 690               | 94                            |                     |
| Benzene-propanol            | 0.46           | _                 | 55                            |                     |
| Ethylbenzene-styrene        | _              | _                 | 75                            |                     |

 $E_{mV} = Murphree plate efficiency,$ 

 $E_0$  = Overall column efficiency.

the efficiency obtained for each component must be the same. This is not so for a multicomponent system; the heavier components will usually exhibit lower efficiencies than the lighter components.

The following guide rules, adapted from a paper by Toor and Burchard (1960), can be used to estimate the efficiencies for a multicomponent system from binary data:

- 1. If the components are similar, the multicomponent efficiencies will be similar to the binary efficiency.
- 2. If the predicted efficiencies for the binary pairs are high, the multicomponent efficiency will be high.
- 3. If the resistance to mass transfer is mainly in the liquid phase, the difference between the binary and multicomponent efficiencies will be small.
- 4. If the resistance is mainly in the vapour phase, as it normally will be, the difference between the binary and multicomponent efficiencies can be substantial.

The prediction of efficiencies for multicomponent systems is also discussed by Chen and Fair (1984b). For mixtures of dissimilar compounds the efficiency can be very different from that predicted for each binary pair, and laboratory or pilot-plant studies should be made to confirm any predictions.

#### 11.10.2. O'Connell's correlation

A quick estimate of the overall column efficiency can be obtained from the correlation given by O'Connell (1946), which is shown in Figure 11.13. The overall column efficiency

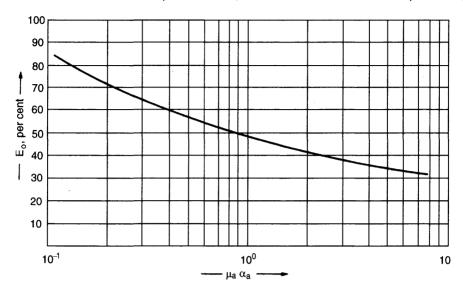



Figure 11.13. Distillation column efficiencies (bubble-caps) (after O'Connell, 1946)

is correlated with the product of the relative volatility of the light key component (relative to the heavy key) and the molar average viscosity of the feed, estimated at the average column temperature. The correlation was based mainly on data obtained with hydrocarbon systems, but includes some values for chlorinated solvents and water-alcohol mixtures. It has been found to give reliable estimates of the overall column efficiency for hydrocarbon systems; and can be used to make an approximate estimate of the efficiency for other systems. The method takes no account of the plate design parameters; and includes only two physical property variables.

Eduljee (1958) has expressed the O'Connell correlation in the form of an equation:

$$E_o = 51 - 32.5 \log(\mu_a \alpha_a) \tag{11.67}$$

where  $\mu_a$  = the molar average liquid viscosity, mNs/m<sup>2</sup>,  $\alpha_a$  = average relative volatility of the light key.

#### Absorbers

O'Connell gave a similar correlation for the *plate efficiency* of absorbers; Figure 11.14. Appreciably lower plate efficiencies are obtained in absorption than in distillation.

In O'Connell's paper, the plate efficiency is correlated with a function involving Henry's constant, the total pressure, and the solvent viscosity at the operating temperature.

To convert the original data to SI units, it is convenient to express this function in the following form:

$$x = 0.062 \left[ \frac{\rho_s P}{\mu_s \mathcal{H} M_s} \right] = 0.062 \left[ \frac{\rho_s}{\mu_s K M_s} \right]$$
 (11.68)

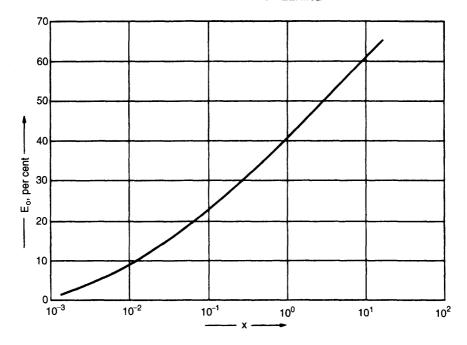



Figure 11.14. Absorber column efficiencies (bubble-caps) (after O'Connell, 1946)

where  $\mathcal{H}=$  the Henry's law constant, Nm $^{-2}$ /mol fraction,

 $P = \text{total pressure}, N/m^2,$ 

 $\mu_s$  = solvent viscosity, mNs/m<sup>2</sup>,

 $M_s$  = molecular weight of the solvent,

 $\rho_s$  = solvent density, kg/m<sup>3</sup>,

K = equilibrium constant for the solute.

# Example 11.10

Using O'Connell's correlation, estimate the overall column efficiency and the number of real stages required for the separation given in Example 11.5.

#### Solution

From Example 11.5, feed composition, mol fractions:

propane 0.05, i-butane 0.15, n-butane 0.25, i-pentane 0.20, n-pentane 0.35.

Column-top temperature 65°C, bottom temperature 120°C.

Average relative volatility light key = 2.0

Take the viscosity at the average column temperature, 93°C,

viscosities, propane =  $0.03 \text{ mNs/m}^2$ 

butane =  $0.12 \text{ mNs/m}^2$ 

pentane =  $0.14 \text{ mNs/m}^2$ 

For feed composition, molar average viscosity = 
$$0.03 \times 0.05 + 0.12(0.15 + 0.25)$$
  
+  $0.14(0.20 + 0.35)$   
=  $0.13 \text{ mNs/m}^2$   
 $\alpha_a \mu_a = 2.0 \times 0.13 = 0.26$ 

From Figure 11.13,  $E_o = \underline{70}$  per cent

From Example 11.4, number of ideal stages = 12, one ideal stage will be the reboiler, so number of actual stages

$$=\frac{(12-1)}{0.7}=\underline{\underline{16}}$$

#### 11.10.3. Van Winkle's correlation

Van Winkle *et al.* (1972) have published an empirical correlation for the plate efficiency which can be used to predict plate efficiencies for binary systems. Their correlation uses dimensionless groups that include those system variables and plate parameters that are known to affect plate efficiency. They give two equations, the simplest, and that which they consider the most accurate, is given below. The data used to derive the correlation covered both bubble-cap and sieve plates.

$$E_{mV} = 0.07Dg^{0.14}Sc^{0.25}Re^{0.08} (11.69)$$

where  $Dg = \text{surface tension number} = (\sigma_L/\mu_L u_v)$ ,

 $u_v = \text{superficial vapour velocity},$ 

 $\sigma_L$  = liquid surface tension,

 $\mu_L = \text{liquid viscosity},$ 

 $Sc = \text{liquid Schmidt number} = (\mu_L/\rho_L D_{LK}),$ 

 $\rho_L = \text{liquid density},$ 

 $D_{LK}$  = liquid diffusivity, light key component,

 $Re = \text{Reynolds number} = (h_w u_v \rho_v / \mu_L \text{ (FA)}),$ 

 $h_w$  = weir height,

 $\rho_v = \text{vapour density},$ 

$$(FA)$$
 = fractional area =  $\frac{\text{(area of holes or risers)}}{\text{(total column cross-sectional area)}}$ 

The use of this method is illustrated in Example 11.13.

### 11.10.4. AIChE method

This method of predicting plate efficiency, published in 1958, was the result of a five-year study of bubble-cap plate efficiency directed by the Research Committee of the American Institute of Chemical Engineers.

The AIChE method is the most detailed method for predicting plate efficiencies that is available in the open literature. It takes into account all the major factors that are known to affect plate efficiency; this includes:

The mass transfer characteristics of the liquid and vapour phases.

The design parameters of the plate.

The vapour and liquid flow-rates.

The degree of mixing on the plate.

The method is well established, and in the absence of experimental values, or proprietary prediction methods, should be used when more than a rough estimate of efficiency is needed.

The approach taken is semi-empirical. Point efficiencies are estimated making use of the "two-film theory", and the Murphree efficiency estimated allowing for the degree of mixing likely to be obtained on real plates.

The procedure and equations are given in this section without discussion of the theoretical basis of the method. The reader should refer to the AIChE manual, AIChE (1958); or to Smith (1963) who gives a comprehensive account of the method, and extends its use to sieve plates. A brief discussion of the method is given in Volume 2; to which reference can be made for the definition of any unfamiliar terms used in the equations.

Chan and Fair (1984a) have published an alternative method for point efficiencies on sieve plates which they demonstrate gives closer predictions than the AIChE method.

#### AIChE method

The mass transfer resistances in the vapour and liquid phases are expressed in terms of the number of transfer units,  $N_G$  and  $N_L$ . The point efficiency is related to the number of transfer units by the equation:

$$\frac{1}{\ln(1 - E_{mv})} = -\left[\frac{1}{N_G} + \frac{mV}{L} \times \frac{1}{N_L}\right]$$
 (11.70)

where m is the slope of the operating line and V and L the vapour and liquid molar flow rates.

Equation 11.70 is plotted in Figure 11.15.

The number of gas phase transfer units is given by:

$$\mathbf{N}_G = \frac{(0.776 + 4.57 \times 10^{-3} h_w - 0.24 F_v + 105 L_p)}{\left(\frac{\mu_v}{\rho_v D_v}\right)^{0.5}}$$
(11.71)

where  $h_w =$  weir height, mm,

 $F_v$  = the column vapour "F" factor =  $u_a \sqrt{\rho_v}$ ,

 $u_a$  = vapour velocity based on the active tray area (bubbling area), see Section 11.13.2, m/s,

 $L_p$  = the volumetric liquid flow rate across the plate, divided by the average width of the plate, m<sup>3</sup>/sm. The average width can be calculated by dividing the active area by the length of the liquid path  $Z_L$ ,

 $\mu_v = \text{vapour viscosity}, \text{Ns/m}^2,$ 

 $\rho_v = \text{vapour density; kg/m}^3$ ,

 $D_v = \text{vapour diffusivity, m}^2/\text{s.}$ 

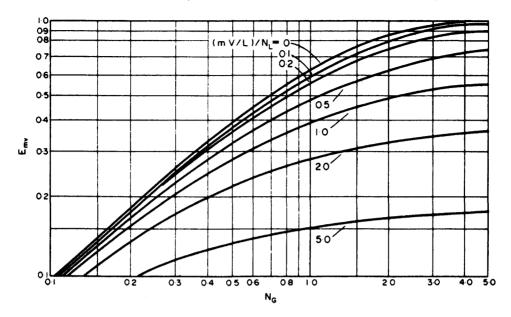



Figure 11.15. Relationship between point efficiency and number of liquid and vapour transfer units (Equation 11.70)

The number of liquid phase transfer units is given by:

$$\mathbf{N}_{I} = (4.13 \times 10^{8} D_{I})^{0.5} (0.21 F_{v} + 0.15) t_{I}$$
 (11.72)

where  $D_L$  = liquid phase diffusivity, m<sup>2</sup>/s,

 $t_L$  = liquid contact time, s,

given by:

$$t_L = \frac{Z_c Z_L}{L_p} \tag{11.73}$$

where  $Z_L$  = length of the liquid path, from inlet downcomer to outlet weir, m,

 $Z_c$  = liquid hold-up on the plate, m<sup>3</sup> per m<sup>2</sup> active area,

given by:

for bubble-cap plates

$$Z_c = 0.042 + 0.19 \times 10^{-3} h_w - 0.014 F_v + 2.5 L_p$$
 (11.74)

for sieve plates

$$Z_c = 0.006 + 0.73 \times 10^{-3} h_w - 0.24 \times 10^{-3} F_v h_w + 1.22 L_p$$
 (11.75)

The Murphree efficiency  $E_{mV}$  is only equal to the point efficiency  $E_{mv}$  if the liquid on the plate is perfectly mixed. On a real plate this will not be so, and to estimate the plate efficiency from the point efficiency some means of estimating the degree of mixing is needed. The dimensionless Peclet number characterises the degree of mixing in a system.

For a plate the Peclet number is given by:

$$Pe = \frac{Z_L^2}{D_e t_L} {(11.76)}$$

where  $D_e$  is the "eddy diffusivity", m<sup>2</sup>/s.

A Peclet number of zero indicates perfect mixing and a value of  $\infty$  indicates plug flow. For bubble-cap and sieve plates the eddy diffusivity can be estimated from the equation:

$$D_e = (0.0038 + 0.017u_a + 3.86L_p + 0.18 \times 10^{-3}h_w)^2$$
 (11.77)

The relation between the plate efficiency and point efficiency with the Peclet number as a parameter is shown in Figure 11.16a and b. The application of the AIChE method is illustrated in Example 11.12.

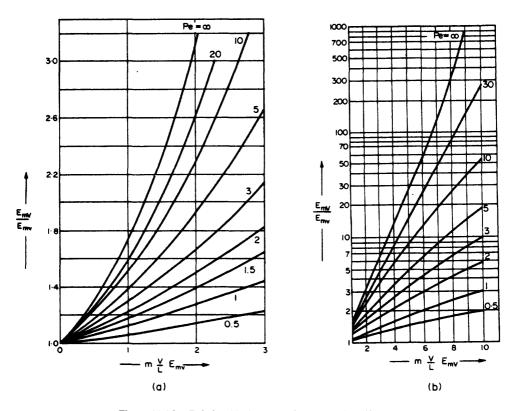



Figure 11.16. Relationship between plate and point efficiency

# Estimation of physical properties

To use the AIChE method, and Van Winkle's correlation, estimates of the physical properties are required. It is unlikely that experimental values will be found in the literature for all systems that are of practical interest. The prediction methods given in Chapter 8, and in the references given in that chapter, can be used to estimate values.

The AIChE design manual recommends the Wilke and Chang (1955) equation for liquid diffusivities and the Wilke and Lee (1955) modification to the Hirschfelder, Bird and Spotz equation for gas diffusivities.

### Plate design parameters

The significance of the weir height in the AIChE equations should be noted. The weir height was the plate parameter found to have the most significant effect on plate efficiency. Increasing weir height will increase the plate efficiency, but at the expense of an increase in pressure drop and entrainment. Weir heights will normally be in the range 40 to 100 mm for columns operating at and above atmospheric pressure, but will be as low as 6 mm for vacuum columns. This, in part, accounts for the lower plate efficiencies obtained in vacuum columns.

The length of the liquid path  $Z_L$  is taken into account when assessing the plate-mixing performance. The mixing correlation given in the AIChE method was not tested on large-diameter columns, and Smith (1963) states that the correlation should not be used for large-diameter plates. However, on a large plate the liquid path will normally be subdivided, and the value of  $Z_L$  will be similar to that in a small column.

The vapour "F" factor  $F_v$  is a function of the active tray area. Increasing  $F_v$  decreases the number of gas-phase transfer units. The liquid flow term  $L_p$  is also a function of the active tray area, and the liquid path length. It will only have a significant effect on the number of transfer units if the path length is long. In practice the range of values for  $F_v$ , the active area, and the path length will be limited by other plate design considerations.

# Multicomponent systems

The AIChE method was developed from measurements on binary systems. The AIChE manual should be consulted for advice on its application to multicomponent systems.

#### 11.10.5. Entrainment

The AIChE method, and that of Van Winkle, predict the "dry" Murphree plate efficiency. In operation some liquid droplets will be entrained and carried up the column by the vapour flow, and this will reduce the actual, operating, efficiency.

The dry-plate efficiency can be corrected for the effects of entrainment using the equation proposed by Colburn (1936):

$$E_a = \frac{E_{mV}}{1 + E_{mV} \left[ \frac{\psi}{1 - \psi} \right]} \tag{11.78}$$

where  $E_a$  = actual plate efficiency, allowing for entrainment,

$$\psi = \text{the fractional entrainment} = \frac{\text{entrained liquid}}{\text{gross liquid flow}}.$$

Methods for predicting the entrainment from sieve plates are given in Section 11.13.5, Figure 11.27; a similar method for bubble-cap plates is given by Bolles (1963).

#### 11.11. APPROXIMATE COLUMN SIZING

An approximate estimate of the overall column size can be made once the number of real stages required for the separation is known. This is often needed to make a rough estimate of the capital cost for project evaluation.

### Plate spacing

The overall height of the column will depend on the plate spacing. Plate spacings from 0.15 m (6 in.) to 1 m (36 in.) are normally used. The spacing chosen will depend on the column diameter and operating conditions. Close spacing is used with small-diameter columns, and where head room is restricted; as it will be when a column is installed in a building. For columns above 1 m diameter, plate spacings of 0.3 to 0.6 m will normally be used, and 0.5 m (18 in.) can be taken as an initial estimate. This would be revised, as necessary, when the detailed plate design is made.

A larger spacing will be needed between certain plates to accommodate feed and sidestreams arrangements, and for manways.

#### Column diameter

The principal factor that determines the column diameter is the vapour flow-rate. The vapour velocity must be below that which would cause excessive liquid entrainment or a high-pressure drop. The equation given below, which is based on the well-known Souders and Brown equation, Lowenstein (1961), can be used to estimate the maximum allowable superficial vapour velocity, and hence the column area and diameter,

$$\hat{u}_v = (-0.171l_t^2 + 0.27l_t - 0.047) \left[ \frac{(\rho_L - \rho_v)}{\rho_v} \right]^{1/2}$$
(11.79)

where  $\hat{u}_v = \text{maximum}$  allowable vapour velocity, based on the gross (total) column cross-sectional area, m/s,

 $l_t$  = plate spacing, m, (range 0.5-1.5).

The column diameter,  $D_c$ , can then be calculated:

$$D_c = \sqrt{\frac{4\hat{V}_w}{\pi \rho_v \hat{u}_v}} \tag{11.80}$$

where  $\hat{V}_w$  is the maximum vapour rate, kg/s.

This approximate estimate of the diameter would be revised when the detailed plate design is undertaken.

# 11.12. PLATE CONTACTORS

Cross-flow plates are the most common type of plate contactor used in distillation and absorption columns. In a cross-flow plate the liquid flows across the plate and the vapour up through the plate. A typical layout is shown in Figure 11.17. The flowing liquid is

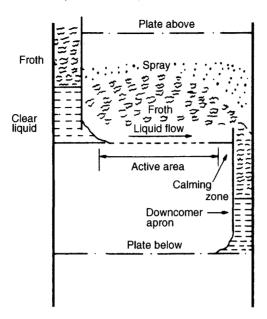
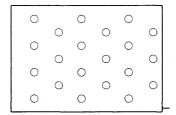



Figure 11.17. Typical cross-flow plate (sieve)

transferred from plate to plate through vertical channels called "downcomers". A pool of liquid is retained on the plate by an outlet weir.

Other types of plate are used which have no downcomers (non-cross-flow plates), the liquid showering down the column through large openings in the plates (sometimes called shower plates). These, and, other proprietary non-cross-flow plates, are used for special purposes, particularly when a low-pressure drop is required.

Three principal types of cross-flow tray are used, classified according to the method used to contact the vapour and liquid.


# 1. Sieve plate (perforated plate) (Figure 11.18)

This is the simplest type of cross-flow plate. The vapour passes up through perforations in the plate; and the liquid is retained on the plate by the vapour flow. There is no positive vapour liquid seal, and at low flow-rates liquid will "weep" through the holes, reducing the plate efficiency. The perforations are usually small holes, but larger holes and slots are used.

# 2. Bubble-cap plates (Figure 11.19)

In which the vapour passes up through short pipes, called risers, covered by a cap with a serrated edge, or slots. The bubble-cap plate is the traditional, oldest, type of cross-flow plate, and many different designs have been developed. Standard cap designs would now be specified for most applications.

The most significant feature of the bubble-cap plate is that the use of risers ensures that a level of liquid is maintained on the tray at all vapour flow-rates.



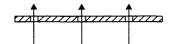



Figure 11.18. Sieve plate

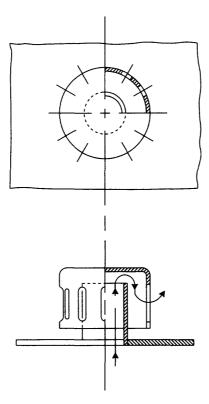



Figure 11.19. Bubble-cap

# 3. Valve plates (floating cap plates) (Figure 11.20)

Valve plates are proprietary designs. They are essentially sieve plates with large-diameter holes covered by movable flaps, which lift as the vapour flow increases.

As the area for vapour flow varies with the flow-rate, valve plates can operate efficiently at lower flow-rates than sieve plates: the valves closing at low vapour rates.

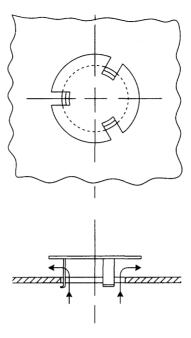



Figure 11.20. Simple valve

Some very elaborate valve designs have been developed, but the simple type shown in Figure 11.20 is satisfactory for most applications.

# Liquid flow pattern

Cross-flow trays are also classified according to the number of liquid passes on the plate. The design shown in Figure 11.21a is a single-pass plate. For low liquid flow rates reverse flow plates are used; Figure 11.21b. In this type the plate is divided by a low central partition, and inlet and outlet downcomers are on the same side of the plate. Multiple-pass plates, in which the liquid stream is sub-divided by using several downcomers, are used for high liquid flow-rates and large diameter columns. A double-pass plate is shown in Figure 11.21c.

# 11.12.1. Selection of plate type

The principal factors to consider when comparing the performance of bubble-cap, sieve and valve plates are: cost, capacity, operating range, efficiency and pressure drop.

Cost. Bubble-cap plates are appreciably more expensive than sieve or valve plates. The relative cost will depend on the material of construction used; for mild steel the ratios, bubble-cap: valve: sieve, are approximately 3.0:1.5:1.0.

Capacity. There is little difference in the capacity rating of the three types (the diameter of the column required for a given flow-rate); the ranking is sieve, valve, bubble-cap.

Operating range. This is the most significant factor. By operating range is meant the range of vapour and liquid rates over which the plate will operate satisfactorily (the



Figure 11.21. Liquid flow patterns on cross-flow trays. (a) Single pass (b) Reverse flow (c) Double pass

stable operating range). Some flexibility will always be required in an operating plant to allow for changes in production rate, and to cover start-up and shut-down conditions. The ratio of the highest to the lowest flow rates is often referred to as the "turn-down" ratio. Bubble-cap plates have a positive liquid seal and can therefore operate efficiently at very low vapour rates.

Sieve plates rely on the flow of vapour through the holes to hold the liquid on the plate, and cannot operate at very low vapour rates. But, with good design, sieve plates can be designed to give a satisfactory operating range; typically, from 50 per cent to 120 per cent of design capacity.

Valve plates are intended to give greater flexibility than sieve plates at a lower cost than bubble-caps.

*Efficiency*. The Murphree efficiency of the three types of plate will be virtually the same when operating over their design flow range, and no real distinction can be made between them; see Zuiderweg *et al.* (1960).

*Pressure drop.* The pressure drop over the plates can be an important design consideration, particularly for vacuum columns. The plate pressure drop will depend on the detailed design of the plate but, in general, sieve plates give the lowest pressure drop, followed by valves, with bubble-caps giving the highest.

Summary. Sieve plates are the cheapest and are satisfactory for most applications. Valve plates should be considered if the specified turn-down ratio cannot be met with sieve plates. Bubble-caps should only be used where very low vapour (gas) rates have to be handled and a positive liquid seal is essential at all flow-rates.

#### 11.12.2. Plate construction

The mechanical design features of sieve plates are described in this section. The same general construction is also used for bubble-cap and valve plates. Details of the various

types of bubble-cap used, and the preferred dimensions of standard cap designs, can be found in the books by Smith (1963) and Ludwig (1979). The manufacturers' design manuals should be consulted for details of valve plate design; Glitsch (1970) and Koch (1960).

Two basically different types of plate construction are used. Large-diameter plates are normally constructed in sections, supported on beams. Small plates are installed in the column as a stack of pre-assembled plates.

#### Sectional construction

A typical plate is shown in Figure 11.22. The plate sections are supported on a ring welded round the vessel wall, and on beams. The beams and ring are about 50 mm wide, with the beams set at around 0.6 m spacing. The beams are usually angle or channel sections, constructed from folded sheet. Special fasteners are used so the sections can be assembled from one side only. One section is designed to be removable to act as a manway. This reduces the number of manways needed on the vessel, which reduces the vessel cost.

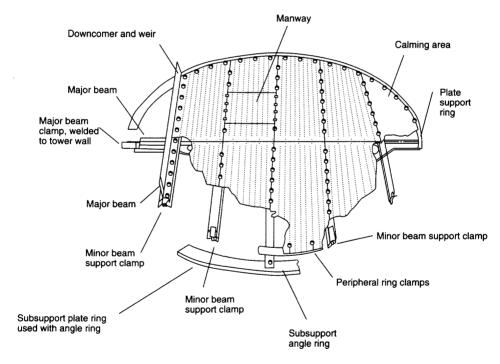



Figure 11.22. Typical sectional plate construction

Diagrams and photographs, of sectional plates, are given in Volume 2, Chapter 11.

# Stacked plates (cartridge plates)

The stacked type of construction is used where the column diameter is too small for a man to enter to assemble the plates, say less than 1.2 m (4 ft). Each plate is fabricated

complete with the downcomer, and joined to the plate above and below using screwed rods (spacers); see Figure 11.23. The plates are installed in the column shell as an assembly (stack) of ten, or so, plates. Tall columns have to be divided into flanged sections so that plate assemblies can be easily installed and removed. The weir, and downcomer supports, are usually formed by turning up the edge of the plate.

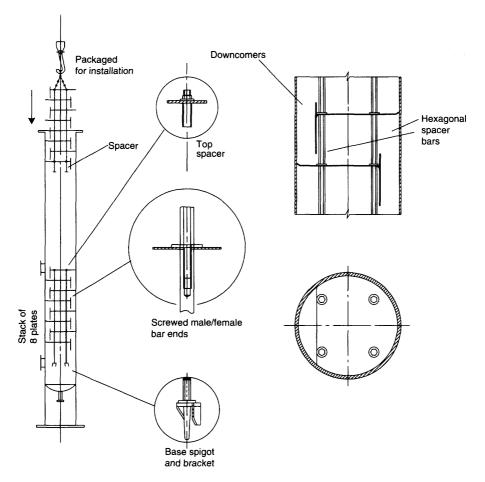



Figure 11.23. Typical stacked-plate construction

The plates are not fixed to the vessel wall, as they are with sectional plates, so there is no positive liquid seal at the edge of the plate, and a small amount of leakage will occur. In some designs the plate edges are turned up round the circumference to make better contact at the wall. This can make it difficult to remove the plates for cleaning and maintenance, without damage.

#### **Downcomers**

The segmental, or chord downcomer, shown in Figure 11.24a is the simplest and cheapest form of construction and is satisfactory for most purposes. The downcomer channel is

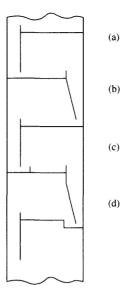



Figure 11.24. Segment (chord) downcomer designs. (a) Vertical apron (b) Inclined apron (c) Inlet weir (d) Recessed well

formed by a flat plate, called an apron, which extends down from the outlet weir. The apron is usually vertical, but may be sloped (Figure 11.24b) to increase the plate area available for perforation. If a more positive seal is required at the downcomer at the outlet, an inlet weir can be fitted (Figure 11.24c) or a recessed seal pan used (Figure 11.24d). Circular downcomers (pipes) are sometimes used for small liquid flow-rates.

# Side-stream and feed points

Where a side-stream is withdrawn from the column the plate design must be modified to provide a liquid seal at the take-off pipe. A typical design is shown in Figure 11.25a. When the feed stream is liquid it will be normally introduced into the downcomer leading to the feed plate, and the plate spacing increased at this point; Figure 11.25b.

# Structural design

The plate structure must be designed to support the hydraulic loads on the plate during operation, and the loads imposed during construction and maintenance. Typical design values used for these loads are:

Hydraulic load: 600 N/m² live load on the plate, plus 3000 N/m² over the downcomer seal area.

Erection and maintenance: 1500 N concentrated load on any structural member.

It is important to set close tolerances on the weir height, downcomer clearance, and plate flatness, to ensure an even flow of liquid across the plate. The tolerances specified will depend on the dimensions of the plate but will typically be about 3 mm.

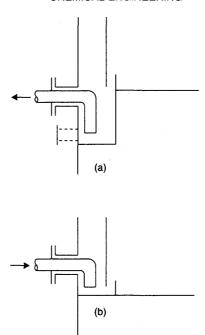



Figure 11.25. Feed and take-off nozzles

The plate deflection under load is also important, and will normally be specified as not greater than 3 mm under the operating conditions for plates greater than 2.5 m, and proportionally less for smaller diameters.

The mechanical specification of bubble-cap, sieve and valve plates is covered in a series of articles by Glitsch (1960), McClain (1960), Thrift (1960a, b) and Patton and Pritchard (1960).

### 11.13. PLATE HYDRAULIC DESIGN

The basic requirements of a plate contacting stage are that it should:

Provide good vapour-liquid contact.

Provide sufficient liquid hold-up for good mass transfer (high efficiency).

Have sufficient area and spacing to keep the entrainment and pressure drop within acceptable limits.

Have sufficient downcomer area for the liquid to flow freely from plate to plate.

Plate design, like most engineering design, is a combination theory and practice. The design methods use semi-empirical correlations derived from fundamental research work combined with practical experience obtained from the operation of commercial columns. Proven layouts are used, and the plate dimensions are kept within the range of values known to give satisfactory performance.

A short procedure for the hydraulic design of sieve plates is given in this section. Design methods for bubble-cap plates are given by Bolles (1963) and Ludwig (1979). Valve plates are proprietary designs and will be designed in consultation with the vendors. Design manuals are available from some vendors; Glistsch (1970) and Koch (1960).

A detailed discussion of the extensive literature on plate design and performance will not be given in this volume. Chase (1967) and Zuiderweg (1982) give critical reviews of the literature on sieve plates.

Several design methods have been published for sieve plates: Barnicki and Davies (1989), Koch and Kuzniar (1966), Fair (1963), and Huang and Hodson (1958); see also the book by Lockett (1986).

## Operating range

Satisfactory operation will only be achieved over a limited range of vapour and liquid flow rates. A typical performance diagram for a sieve plate is shown in Figure 11.26.

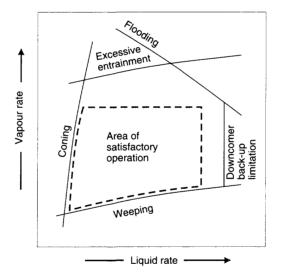



Figure 11.26. Sieve plate performance diagram

The upper limit to vapour flow is set by the condition of flooding. At flooding there is a sharp drop in plate efficiency and increase in pressure drop. Flooding is caused by either the excessive carry over of liquid to the next plate by entrainment, or by liquid backing-up in the downcomers.

The lower limit of the vapour flow is set by the condition of weeping. Weeping occurs when the vapour flow is insufficient to maintain a level of liquid on the plate. "Coning" occurs at low liquid rates, and is the term given to the condition where the vapour pushes the liquid back from the holes and jets upward, with poor liquid contact.

In the following sections gas can be taken as synonymous with vapour when applying the method to the design of plates for absorption columns.

### 11.13.1. Plate-design procedure

A trial-and-error approach is necessary in plate design: starting with a rough plate layout, checking key performance factors and revising the design, as necessary, until a satisfactory design is achieved. A typical design procedure is set out below and discussed in the following sections. The normal range of each design variable is given in the discussion, together with recommended values which can be used to start the design.

#### **Procedure**

- Calculate the maximum and minimum vapour and liquid flow-rates, for the turn down ratio required.
- 2. Collect, or estimate, the system physical properties.
- 3. Select a trial plate spacing (Section 11.11).
- 4. Estimate the column diameter, based on flooding considerations (Section 11.13.3).
- 5. Decide the liquid flow arrangement (Section 11.13.4).
- 6. Make a trial plate layout: downcomer area, active area, hole area, hole size, weir height (Sections 11.13.8 to 11.13.10).
- 7. Check the weeping rate (Section 11.13.6), if unsatisfactory return to step 6.
- 8. Check the plate pressure drop (Section 11.13.14), if too high return to step 6.
- 9. Check downcomer back-up, if too high return to step 6 or 3 (Section 11.13.15).
- 10. Decide plate layout details: calming zones, unperforated areas. Check hole pitch, if unsatisfactory return to step 6 (Section 11.13.11).
- 11. Recalculate the percentage flooding based on chosen column diameter.
- 12. Check entrainment, if too high return to step 4 (Section 11.13.5).
- 13. Optimise design: repeat steps 3 to 12 to find smallest diameter and plate spacing acceptable (lowest cost).
- 14. Finalise design: draw up the plate specification and sketch the layout.

This procedure is illustrated in Example 11.11.

#### 11.13.2. Plate areas

The following areas terms are used in the plate design procedure:

 $A_c$  = total column cross-sectional area,

 $A_d$  = cross-sectional area of downcomer,

 $A_n$  = net area available for vapour-liquid disengagement, normally equal to  $A_c - A_d$ , for a single pass plate,

 $A_a$  = active, or bubbling, area, equal to  $A_c - 2A_d$  for single-pass plates,

 $A_h$  = hole area, the total area of all the active holes,

 $A_p$  = perforated area (including blanked areas),

 $A_{ap}$  = the clearance area under the downcomer apron.

### 11.13.3. Diameter

The flooding condition fixes the upper limit of vapour velocity. A high vapour velocity is needed for high plate efficiencies, and the velocity will normally be between 70 to

90 per cent of that which would cause flooding. For design, a value of 80 to 85 per cent of the flooding velocity should be used.

The flooding velocity can be estimated from the correlation given by Fair (1961):

$$u_f = K_1 \sqrt{\frac{\rho_L - \rho_v}{\rho_v}} \tag{11.81}$$

where  $u_f$  = flooding vapour velocity, m/s, based on the net column cross-sectional area  $A_n$  (see Section 11.13.2),

 $K_1 =$  a constant obtained from Figure 11.27.

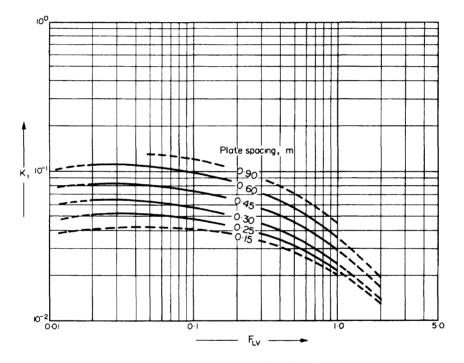



Figure 11.27. Flooding velocity, sieve plates

The liquid-vapour flow factor  $F_{LV}$  in Figure 11.27 is given by:

$$F_{LV} = \frac{L_w}{V_w} \sqrt{\frac{\rho_v}{\rho_L}} \tag{11.82}$$

where  $L_w = \text{liquid mass flow-rate, kg/s,}$ 

 $V_w$  = vapour mass flow-rate, kg/s.

The following restrictions apply to the use of Figure 11.27:

- 1. Hole size less than 6.5 mm. Entrainment may be greater with larger hole sizes.
- 2. Weir height less than 15 per cent of the plate spacing.

- 3. Non-foaming systems.
- 4. Hole: active area ratio greater than 0.10; for other ratios apply the following corrections:

| hole: active area | multiply $K_1$ by |
|-------------------|-------------------|
| 0.10              | 1.0               |
| 0.08              | 0.9               |
| 0.06              | 0.8               |

5. Liquid surface tension 0.02 N/m, for other surface tensions  $\sigma$  multiply the value of  $K_1$  by  $[\sigma/0.02]^{0.2}$ .

To calculate the column diameter an estimate of the net area  $A_n$  is required. As a first trial take the downcomer area as 12 per cent of the total, and assume that the hole-active area is 10 per cent.

Where the vapour and liquid flow-rates, or physical properties, vary significantly throughout the column a plate design should be made for several points up the column. For distillation it will usually be sufficient to design for the conditions above and below the feed points. Changes in the vapour flow-rate will normally be accommodated by adjusting the hole area; often by blanking off some rows of holes. Different column diameters would only be used where there is a considerable change in flow-rate. Changes in liquid rate can be allowed for by adjusting the liquid downcomer areas.

## 11.13.4. Liquid-flow arrangement

The choice of plate type (reverse, single pass or multiple pass) will depend on the liquid flow-rate and column diameter. An initial selection can be made using Figure 11.28, which has been adapted from a similar figure given by Huang and Hodson (1958).

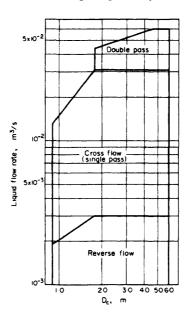



Figure 11.28. Selection of liquid-flow arrangement

#### 11.13.5. Entrainment

Entrainment can be estimated from the correlation given by Fair (1961), Figure 11.29, which gives the fractional entrainment  $\psi$  (kg/kg gross liquid flow) as a function of the liquid-vapour factor  $F_{LV}$ , with the percentage approach to flooding as a parameter.

The percentage flooding is given by:

percentage flooding = 
$$\frac{u_n \text{ actual velocity (based on net area)}}{u_f \text{ (from equation } 11.81)}$$
 (11.83)

The effect of entrainment on plate efficiency can be estimated using equation 11.78.

As a rough guide the upper limit of  $\psi$  can be taken as 0.1; below this figure the effect on efficiency will be small. The optimum design value may be above this figure, see Fair (1963).

### 11.13.6. Weep point

The lower limit of the operating range occurs when liquid leakage through the plate holes becomes excessive. This is known as the weep point. The vapour velocity at the weep point is the minimum value for stable operation. The hole area must be chosen so that at the lowest operating rate the vapour flow velocity is still well above the weep point.

Several correlations have been proposed for predicting the vapour velocity at the weep point; see Chase (1967). That given by Eduljee (1959) is one of the simplest to use, and has been shown to be reliable.

The minimum design vapour velocity is given by:

$$\check{u}_h = \frac{[K_2 - 0.90(25.4 - d_h)]}{(\rho_v)^{1/2}}$$
(11.84)

where  $\check{u}_h$  = minimum vapour velocity through the holes(based on the hole area), m/s,

 $d_h = \text{hole diameter, mm,}$ 

 $K_2$  = a constant, dependent on the depth of clear liquid on the plate, obtained from Figure 11.30 (see page 571).

The clear liquid depth is equal to the height of the weir  $h_w$  plus the depth of the crest of liquid over the weir  $h_{ow}$ ; this is discussed in the next section.

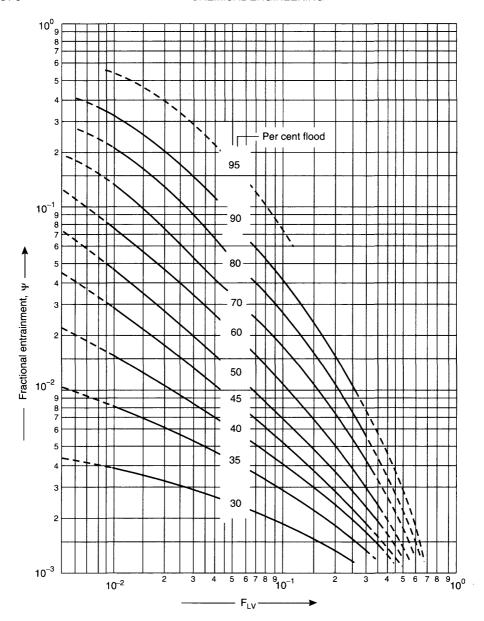



Figure 11.29. Entrainment correlation for sieve plates (Fair, 1961)

### 11.13.7. Weir liquid crest

The height of the liquid crest over the weir can be estimated using the Francis weir formula (see Volume 1, Chapter 5). For a segmental downcomer this can be written as:

$$h_{ow} = 750 \left[ \frac{L_w}{\rho_L l_w} \right]^{2/3} \tag{11.85}$$

where  $l_w$  = weir length, m,

 $h_{ow}$  = weir crest, mm liquid,

 $L_w = \text{liquid flow-rate, kg/s.}$ 

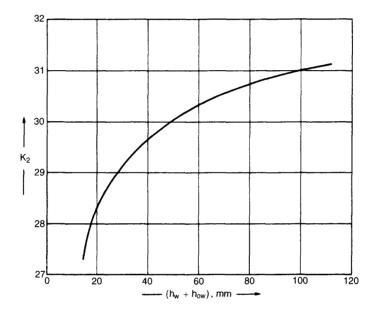



Figure 11.30. Weep-point correlation (Eduljee, 1959)

With segmental downcomers the column wall constricts the liquid flow, and the weir crest will be higher than that predicted by the Francis formula for flow over an open weir. The constant in equation 11.85 has been increased to allow for this effect.

To ensure an even flow of liquid along the weir, the crest should be at least 10 mm at the lowest liquid rate. Serrated weirs are sometimes used for very low liquid rates.

#### 11.13.8. Weir dimensions

# Weir height

The height of the weir determines the volume of liquid on the plate and is an important factor in determining the plate efficiency (see Section 11.10.4). A high weir will increase the plate efficiency but at the expense of a higher plate pressure drop. For columns operating above atmospheric pressure the weir heights will normally be between 40 mm to 90 mm (1.5 to 3.5 in.); 40 to 50 mm is recommended. For vacuum operation lower weir heights are used to reduce the pressure drop; 6 to 12 mm  $(\frac{1}{4}$  to  $\frac{1}{2}$  in.) is recommended.

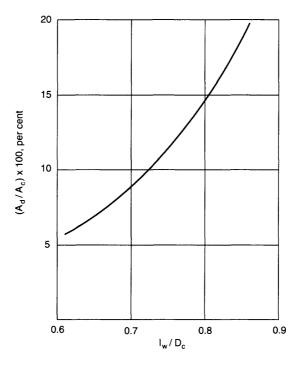



Figure 11.31. Relation between downcomer area and weir length

#### Inlet weirs

Inlet weirs, or recessed pans, are sometimes used to improve the distribution of liquid across the plate; but are seldom needed with segmental downcomers.

# Weir length

With segmental downcomers the length of the weir fixes the area of the downcomer. The chord length will normally be between 0.6 to 0.85 of the column diameter. A good initial value to use is 0.77, equivalent to a downcomer area of 12 per cent.

The relationship between weir length and downcomer area is given in Figure 11.31. For double-pass plates the width of the central downcomer is normally 200-250 mm (8-10 in.).

#### 11.13.9. Perforated area

The area available for perforation will be reduced by the obstruction caused by structural members (the support rings and beams), and by the use of calming zones.

Calming zones are unperforated strips of plate at the inlet and outlet sides of the plate. The width of each zone is usually made the same; recommended values are: below 1.5 m diameter, 75 mm; above, 100 mm.

The width of the support ring for sectional plates will normally be 50 to 75 mm: the support ring should not extend into the downcomer area. A strip of unperforated plate will be left round the edge of cartridge-type trays to stiffen the plate.

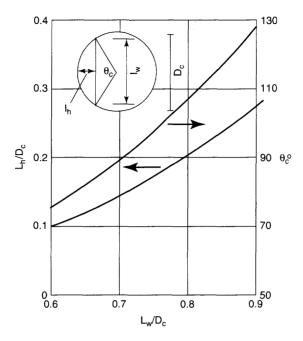



Figure 11.32. Relation between angle subtended by chord, chord height and chord length

The unperforated area can be calculated from the plate geometry. The relationship between the weir chord length, chord height and the angle subtended by the chord is given in Figure 11.32.

#### 11.13.10. Hole size

The hole sizes used vary from 2.5 to 12 mm; 5 mm is the preferred size. Larger holes are occasionally used for fouling systems. The holes are drilled or punched. Punching is cheaper, but the minimum size of hole that can be punched will depend on the plate thickness. For carbon steel, hole sizes approximately equal to the plate thickness can be punched, but for stainless steel the minimum hole size that can be punched is about twice the plate thickness. Typical plate thicknesses used are: 5 mm (3/16 in.) for carbon steel, and 3 mm (12 gauge) for stainless steel.

When punched plates are used they should be installed with the direction of punching upward. Punching forms a slight nozzle, and reversing the plate will increase the pressure drop.

# 11.13.11. Hole pitch

The hole pitch (distance between the hole centres)  $l_p$  should not be less than 2.0 hole diameters, and the normal range will be 2.5 to 4.0 diameters. Within this range the pitch can be selected to give the number of active holes required for the total hole area specified.

Square and equilateral triangular patterns are used; triangular is preferred. The total hole area as a fraction of the perforated area  $A_p$  is given by the following expression, for

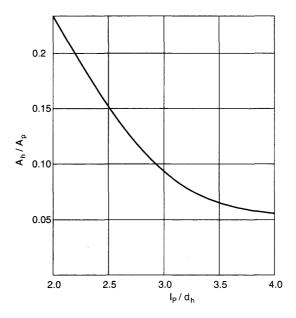



Figure 11.33. Relation between hole area and pitch

an equilateral triangular pitch:

$$\frac{A_h}{A_p} = 0.9 \left[ \frac{d_h}{l_p} \right]^2 \tag{11.86}$$

This equation is plotted in Figure 11.33.

# 11.13.12. Hydraulic gradient

The hydraulic gradient is the difference in liquid level needed to drive the liquid flow across the plate. On sieve plates, unlike bubble-cap plates, the resistance to liquid flow will be small, and the hydraulic gradient is usually ignored in sieve-plate design. It can be significant in vacuum operation, as with the low weir heights used the hydraulic gradient can be a significant fraction of the total liquid depth. Methods for estimating the hydraulic gradient are given by Fair (1963).

# 11.13.13. Liquid throw

The liquid throw is the horizontal distance travelled by the liquid stream flowing over the downcomer weir. It is only an important consideration in the design of multiple-pass plates. Bolles (1963) gives a method for estimating the liquid throw.

# 11.13.14. Plate pressure drop

The pressure drop over the plates is an important design consideration. There are two main sources of pressure loss: that due to vapour flow through the holes (an orifice loss), and that due to the static head of liquid on the plate.

A simple additive model is normally used to predict the total pressure drop. The total is taken as the sum of the pressure drop calculated for the flow of vapour through the dry plate (the dry plate drop  $h_d$ ); the head of clear liquid on the plate ( $h_w + h_{ow}$ ); and a term to account for other, minor, sources of pressure loss, the so-called residual loss  $h_r$ . The residual loss is the difference between the observed experimental pressure drop and the simple sum of the dry-plate drop and the clear-liquid height. It accounts for the two effects: the energy to form the vapour bubbles and the fact that on an operating plate the liquid head will not be clear liquid but a head of "aerated" liquid froth, and the froth density and height will be different from that of the clear liquid.

It is convenient to express the pressure drops in terms of millimetres of liquid. In pressure units:

$$\Delta P_t = 9.81 \times 10^{-3} h_t \rho_L \tag{11.87}$$

where  $\Delta P_t$  = total plate pressure drop, Pa(N/m<sup>2</sup>),  $h_t$  = total plate pressure drop, mm liquid.

### Dry plate drop

The pressure drop through the dry plate can be estimated using expressions derived for flow through orifices (see Volume 2, Chapter 5).

$$h_d = 51 \left[ \frac{u_h}{C_0} \right]^2 \frac{\rho_v}{\rho_L} \tag{11.88}$$

where the orifice coefficient  $C_0$  is a function of the plate thickness, hole diameter, and the hole to perforated area ratio.  $C_0$  can be obtained from Figure 11.34; which has been adapted from a similar figure by Liebson *et al.* (1957).  $u_h$  is the velocity through the holes, m/s.

#### Residual head

Methods have been proposed for estimating the residual head as a function of liquid surface tension, froth density and froth height. However, as this correction term is small the use of an elaborate method for its estimation is not justified, and the simple equation proposed by Hunt *et al.* (1955) can be used:

$$h_r = \frac{12.5 \times 10^3}{\rho_I} \tag{11.89}$$

Equation 11.89 is equivalent to taking the residual drop as a fixed value of 12.5 mm of water  $(\frac{1}{2} \text{ in.})$ .

# Total drop

The total plate drop is given by:

$$h_t = h_d + (h_w + h_{ow}) + h_r (11.90)$$

If the hydraulic gradient is significant, half its value is added to the clear liquid height.

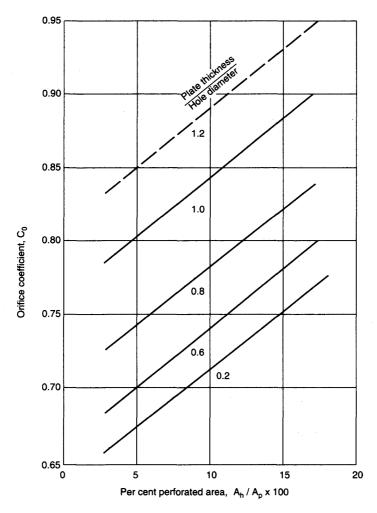



Figure 11.34. Discharge coefficient, sieve plates (Liebson et al., 1957)

# 11.13.15. Downcomer design [back-up]

The downcomer area and plate spacing must be such that the level of the liquid and froth in the downcomer is well below the top of the outlet weir on the plate above. If the level rises above the outlet weir the column will flood.

The back-up of liquid in the downcomer is caused by the pressure drop over the plate (the downcomer in effect forms one leg of a U-tube) and the resistance to flow in the downcomer itself; see Figure 11.35.

In terms of clear liquid the downcomer back-up is given by:

$$h_b = (h_w + h_{ow}) + h_t + h_{dc} (11.91)$$

where  $h_b$  = downcomer back-up, measured from plate surface, mm,

 $h_{dc}$  = head loss in the downcomer, mm.

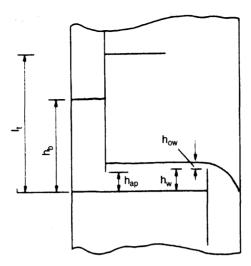



Figure 11.35. Downcomer back-up

The main resistance to flow will be caused by the constriction at the downcomer outlet, and the head loss in the downcomer can be estimated using the equation given by Cicalese *et al.* (1947)

$$h_{dc} = 166 \left[ \frac{L_{wd}}{\rho_L A_m} \right]^2 \tag{11.92}$$

where  $L_{wd}$  = liquid flow rate in downcomer, kg/s,

 $A_m$  = either the downcomer area  $A_d$  or the clearance area under the downcomer  $A_{av}$ ; whichever is the smaller,  $m^2$ .

The clearance area under the downcomer is given by:

$$A_{ap} = h_{ap}l_w (11.93)$$

where  $h_{ap}$  is height of the bottom edge of the apron above the plate. This height is normally set at 5 to 10 mm  $(\frac{1}{4}$  to  $\frac{1}{2}$  in.) below the outlet weir height:

$$h_{ap} = h_w - (5 \text{ to } 10 \text{ mm})$$

# Froth height

To predict the height of "aerated" liquid on the plate, and the height of froth in the downcomer, some means of estimating the froth density is required. The density of the "aerated" liquid will normally be between 0.4 to 0.7 times that of the clear liquid. A number of correlations have been proposed for estimating froth density as a function of the vapour flow-rate and the liquid physical properties; see Chase (1967); however, none is particularly reliable, and for design purposes it is usually satisfactory to assume an average value of 0.5 of the liquid density.

This value is also taken as the mean density of the fluid in the downcomer; which means that for safe design the clear liquid back-up, calculated from equation 11.91, should not exceed half the plate spacing  $l_t$ , to avoid flooding.

Allowing for the weir height:

$$h_b \neq \frac{1}{2}(l_t + h_w)$$
 (11.94)

This criterion is, if anything, oversafe, and where close plate spacing is desired a better estimate of the froth density in the downcomer should be made. The method proposed by Thomas and Shah (1964) is recommended.

#### Downcomer residence time

Sufficient residence time must be allowed in the downcomer for the entrained vapour to disengage from the liquid stream; to prevent heavily "aerated" liquid being carried under the downcomer.

A time of at least 3 seconds is recommended.

The downcomer residence time is given by:

$$t_r = \frac{A_d h_{bc} \rho_L}{L_{wd}} \tag{11.95}$$

where  $t_r$  = residence time, s,

 $h_{bc}$  = clear liquid back-up, m.

# Example 11.11

Design the plates for the column specified in Example 11.2. Take the minimum feed rate as 70 per cent of the maximum (maximum feed 10,000 kg/h). Use sieve plates.

#### Solution

As the liquid and vapour flow-rates and compositions will vary up the column, plate designs should be made above and below the feed point. Only the bottom plate will be designed in detail in this example.

From McCabe-Thiele diagram, Example 11.2:

Number of stages = 16

Slope of the bottom operating line = 5.0

Slope of top operating line = 0.57

Top composition 94 per cent mol. 98 per cent w/w.

Bottom composition - essentially water.

Reflux ratio = 1.35

#### Flow-rates

Mol. weight feed =  $0.033 \times 58 + (1 - 0.033)18 = 19.32$ Feed = 13,000/19.32 = 672.9 kmol/h A mass balance on acetone gives:

Top product, 
$$D = 672.9 \times 0.033/0.94 = 23.6 \text{ kmol/h}$$

Vapour rate, 
$$V = D(1 + R) = 23.6(1 + 1.35) = 55.5$$
 kmol/h

An overall mass balance gives:

Bottom product, B = 672.9 - 23.6 = 649.3 kmol/h

Slope of the bottom operating line  $L_m'/V_m' = 5.0$ 

and  $V_{m}' = L_{m}' - B$ , from which:

vapour flow below feed,  $V_{m}' = 162.3$  kmol/h

liquid flow below feed,  $L_{m}' = 811.6$  kmol/h

## Physical properties

Estimate base pressure, assume column efficiency of 60 per cent, take reboiler as equivalent to one stage.

Number of real stages = 
$$\frac{16-1}{0.6} = 25$$

Assume 100 mm water, pressure drop per plate.

Column pressure drop = 
$$100 \times 10^{-3} \times 1000 \times 9.81 \times 25 = 24{,}525$$
 Pa

Top pressure, 1 atm 
$$(14.7 \text{ lb/in}^2) = 101.4 \times 10^3 \text{ Pa}$$

Estimated bottom pressure = 
$$101.4 \times 10^3 + 24,525$$

$$= 125,925 \text{ Pa} = \underline{1.26 \text{ bar}}$$

From steam tables, base temperature 106°C.

$$\rho_v = 0.72 \text{ kg/m}^3$$

$$\rho_L = 954 \text{ kg/m}^3$$

Surface tension  $57 \times 10^{-3}$  N/m

Top, 98% w/w acetone, top temperature 57°C

From PPDS (see Chapter 8);

$$\rho_v = 2.05 \text{ kg/m}^3, \, \rho_L = 753 \text{ kg/m}^3$$

Molecular weight 55.6

Surface tension  $23 \times 10^{-3}$  N/m

#### Column diameter

$$F_{LV}$$
 bottom =  $5.0\sqrt{\frac{0.72}{954}} = 0.14$  (11.82)  
 $F_{LV}$  top =  $0.57\sqrt{\frac{2.05}{753}} = 0.03$ 

Take tray spacing as 0.5 m

From Figure 11.27

base 
$$K_1 = 7.5 \times 10^{-2}$$
  
top  $K_1 = 9.0 \times 10^{-2}$ 

Correction for surface tensions

base 
$$K_1 = \left(\frac{57}{20}\right)^{0.2} \times 7.5 \times 10^{-2} = 9.3 \times 10^{-2}$$
  
top  $K_1 = \left(\frac{23}{20}\right)^{0.2} \times 9.0 \times 10^{-2} = 9.3 \times 10^{-2}$   
base  $u_f = 9.3 \times 10^{-2} \sqrt{\frac{954 - 0.72}{0.72}} = 3.38 \text{ m/s}$  (11.81)  
top  $u_f = 9.3 \times 10^{-2} \sqrt{\frac{753 - 2.05}{2.05}} = 1.78 \text{ m/s}$ 

Design for 85 per cent flooding at maximum flow rate

base 
$$\hat{u_v} = 3.38 \times 0.85 = 2.87$$
 m/s  
top  $\hat{u_v} = 1.78 \times 0.85 = 1.51$  m/s

Maximum volumetric flow-rate

base = 
$$\frac{162.3 \times 18}{0.72 \times 3600}$$
 = 1.13 m<sup>3</sup>/s  
top =  $\frac{55.5 \times 55.6}{2.05 \times 3600}$  = 0.42 m<sup>3</sup>/s

Net area required

bottom = 
$$\frac{1.13}{2.87}$$
 = 0.40 m<sup>2</sup>  
top =  $\frac{0.42}{1.51}$  = 0.28 m<sup>2</sup>

As first trial take downcomer area as 12 per cent of total. Column cross-sectioned area

base = 
$$\frac{0.40}{0.88}$$
 = 0.46 m<sup>2</sup>  
top =  $\frac{0.28}{0.88}$  = 0.32 m<sup>2</sup>

Column diameter

base = 
$$\sqrt{\frac{0.46 \times 4}{\pi}}$$
 = 0.77 m  
top =  $\sqrt{\frac{0.34 \times 4}{\pi}}$  = 0.64 m

Use same diameter above and below feed, reducing the perforated area for plates above the feed.

Nearest standard pipe size (BS 1600, Pt. 2); outside diameter 812.8 mm (32 in); standard wall thickness 9.52 mm; inside diameter 794 mm.

## Liquid flow pattern

Maximum volumetric liquid rate = 
$$\frac{811.6 \times 18}{3600 \times 954}$$
 =  $4.3 \times 10^{-3}$  m<sup>3</sup>/s

The plate diameter is outside the range of Figure 11.28, but it is clear that a single pass plate can be used.

## Provisional plate design

Column diameter  $D_c = 0.79 \text{ m}$ 

Column area  $A_c = 0.50 \text{ m}^2$ 

Downcomer area  $A_d = 0.12 \times 0.50 = 0.06 \text{ m}^2$ , at 12 per cent

Net area  $A_n = A_c - A_d = 0.50 - 0.06 = 0.44 \text{ m}^2$ 

Active area  $A_a = A_c - 2A_d = 0.50 - 0.12 = 0.38 \text{ m}^2$ 

Hole area  $A_h$  take 10 per cent  $A_a$  as first trial = 0.038 m<sup>2</sup>

Weir length (from Figure 11.31) =  $0.76 \times 0.79 = 0.60 \text{ m}$ 

Take weir height 50 mm Hole diameter 5 mm Plate thickness 5 mm

# Check weeping

Maximum liquid rate = 
$$\left(\frac{811.6 \times 18}{3600}\right)$$
 = 4.06 kg/s

Minimum liquid rate, at 70 per cent turn-down =  $0.7 \times 4.06 = 2.84$  kg/s

maximum 
$$h_{ow} = 750 \left( \frac{4.06}{954 \times 0.06} \right)^{2/3} = 27 \text{ mm liquid}$$
 (11.85)  
minimum  $h_{ow} = 750 \left( \frac{2.85}{954 \times 0.60} \right)^{2/3} = 22 \text{ mm liquid}$ 

at minimum rate  $h_w + h_{ow} = 50 + 22 = 72$  mm

actual minimum vapour velocity =  $\frac{\text{minimum vapour rate}}{A_h}$ =  $\frac{0.7 \times 1.13}{0.038}$  = 20.8 m/s

So minimum operating rate will be well above weep point.

### Plate pressure drop

Dry plate drop

Maximum vapour velocity through holes

$$\hat{u_h} = \frac{1.13}{0.038} = 29.7 \text{ m/s}$$

From Figure 11.34, for plate thickness/hole dia. = 1, and  $A_h/A_p \simeq A_h/A_a = 0.1$ ,  $C_0 = 0.84$ 

$$h_d = 51 \left(\frac{29.7}{0.84}\right)^2 \frac{0.72}{954} = 48 \text{ mm liquid}$$
 (11.88)

residual head

$$h_r = \frac{12.5 \times 10^3}{954} = 13.1 \text{ mm liquid}$$
 (11.89)

total plate pressure drop

$$h_t = 48 + (50 + 27) + 13 = 138$$
 mm liquid

*Note*: 100 mm was assumed to calculate the base pressure. The calculation could be repeated with a revised estimate but the small change in physical properties will have little effect on the plate design. 138 mm per plate is considered acceptable.

# Downcomer liquid back-up

Downcomer pressure loss

Take  $h_{ap} = h_w - 10 = 40$  mm.

Area under apron,  $A_{ap} = 0.60 \times 40 \times 10^{-3} = 0.024 \text{ m}^2$ .

As this is less than  $A_d = 0.06 \text{ m}^2$  use  $A_{ap}$  in equation 11.92

$$h_{dc} = 166 \left( \frac{4.06}{954 \times 0.024} \right)^2 = 5.2 \text{ mm}$$

say 6 mm.

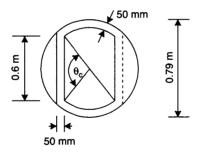
Back-up in downcomer

$$h_b = (50 + 27) + 138 + 6 = 221 \text{ mm}$$
 (11.91)  
 $\underline{0.22 \text{ m}}$ 

 $0.22 < \frac{1}{2}$  (plate spacing + weir height) so tray spacing is acceptable

Check residence time

$$t_r = \frac{0.06 \times 0.22 \times 954}{4.06} = 3.1 \text{ s}$$
 (11.95)  
>3 s, satisfactory.


#### Check entrainment

$$u_v = \frac{1.13}{0.44} = 2.57$$
 m/s per cent flooding  $= \frac{2.57}{3.38} = 76$   $F_{LV} = \underline{0.14}$ , from Figure 11.29,  $\Psi = 0.018$ , well below 0.1.

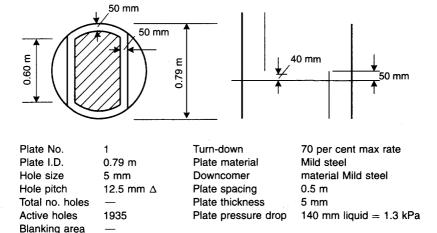
As the per cent flooding is well below the design figure of 85, the column diameter could be reduced, but this would increase the pressure drop.

### Trial layout

Use cartridge-type construction. Allow 50 mm unperforated strip round plate edge; 50 mm wide calming zones.



#### Perforated area


From Figure 11.32, at 
$$l_w/D_c = 0.76$$
  
 $\theta_c = 99^\circ$ 

angle subtended at plate edge by unperforated strip =  $180-99=81^\circ$  mean length, unperforated edge strips =  $(0.79-50\times10^{-3})\pi\times81/180=1.05$  m area of unperforated edge strips =  $50\times10^{-3}\times1.05=0.053$  m² Mean length of calming zone =  $(0.79-50\times10^{-3})\sin(99/2)=0.563$  m Area of calming zone =  $2(0.563\times50\times10^{-3})=0.056$  m² Total area for perforations,  $A_p=0.38-0.053-0.056=0.271$  m²  $A_h/A_p=0.038/0.271=0.14$  From Figure 11.33  $l_p/d_h=2.6$ , satisfactory, within 2.5 to 4.0.

#### Number of holes

Area of one hole = 
$$1.964 \times 10^{-5} \text{ m}^2$$
  
Number of holes =  $\frac{0.038}{1.964 \times 10^{-5}} = 1935$ 

### Plate specification



# Example 11.12

For the plate design in Example 11.11, estimate the plate efficiency for the plate on which the concentration of acetone is 5 mol per cent. Use the AIChE method.

#### Solution

Plate will be in the stripping section (see Figure 11.7).

Plate dimensions:

active area =  $0.38 \text{ m}^2$ ,

length between downcomers (Figure 11.32) (liquid path) =  $0.79 - 2 \times 0.095 = 0.60$  m, weir height = 50 mm.

Flow rates, check efficiency at minimum rates, at column base:

vapour = 
$$0.7 \frac{162.3}{3600} = 0.032$$
 kmol/s  
liquid =  $0.7 \frac{811.6}{3600} = 0.158$  kmol/s

from the MaCable-Thiele diagram (Figure 11.7) at x = 0.05, assuming 60 per cent plate efficiency,  $y \approx 0.4$ . The liquid composition, x = 0.05, will occur on around the ninth

plate from the bottom, the seventh from the top of the column. The pressure on this plate will be approximately:

$$9 \times 138 \times 10^{-3} \times 1000 \times 982 + 101.4 \times 10^{3} = 113.6 \text{ kPa}$$
  
say, 1.14 bar

At this pressure the plate temperature will be 79°C, and the liquid and vapour physical properties, from PPDS:

liquid

mol. weight = 20.02, 
$$\rho_L$$
 = 925 kg/m<sup>3</sup>,  $\mu_L$  = 9.34 × 10<sup>-3</sup> Nm<sup>-2</sup> s,  $\sigma = 60 \times 10^{-3}$  N/m

vapour

mol. weight = 34.04, 
$$\rho_v = 1.35 \text{ kg/m}^3$$
,  $\mu_v = 10.0 \times 10^{-6} \text{ Nm}^{-2} \text{ s}$ ,  $D_L = 4.64 \times 10^{-9} \text{ m}^2/\text{s}$  (estimated using Wilke-Chang equation, Chapter 8)  $D_v = 18.6 \times 10^{-6} \text{ m}^2/\text{s}$  (estimated using Fuller equation, Chapter 8)

Vapour, volumetric flow-rate = 
$$\frac{0.032 \times 34.04}{1.35} = 0.81 \text{ m}^3/\text{s}$$
Liquid, volumetric flow-rate = 
$$\frac{0.158 \times 20.02}{925} = 3.42 \times 10^{-3} \text{ m}^3/\text{s}$$

$$u_a = \frac{0.81}{0.38} = 2.13 \text{ m/s}$$
 $F_v = u_a \sqrt{\rho_v} = 3.13 \sqrt{1.35} = 3.64$ 

Average width over active area =  $\frac{0.38}{0.60}$  = 0.63 m

$$L_p = \frac{3.42 \times 10^{-3}}{0.63} = 5.43 \times 10^{-3} \text{ m}^2/\text{s}$$

$$N_G = \frac{(0.776 + 4.57 \times 10^{-3} \times 50 - 0.24 \times 3.64 + 105 \times 5.43 \times 10^{-3})}{\left(\frac{10.0 \times 10^{-6}}{1.35 \times 18.8 \times 10^{-6}}\right)^{1/2}} = 1.11$$
(11.71)

$$Z_C = 0.006 + 0.73 \times 10^{-3} \times 50 - 0.24 \times 10^{-3} \times 3.64 \times 50 + 1.22$$
$$\times 5.43 \times 10^{-3} = 5.45 \times 10^{-3} \text{ m}^3/\text{m}^2$$
(11.75)

$$t_L = \frac{5.45 \times 10^{-3} \times 0.6}{5.43 \times 10^{-3}} = 0.6 \text{ s}$$
 (11.73)

$$N_L = (4.13 \times 10^8 \times 4.64 \times 10^{-9})^{0.5} (0.21 \times 3.64 + 0.15) 0.6 = 0.76$$
 (11.72)

$$D_e = (0.0038 + 0.017 \times 2.13 + 3.86 \times 5.43 \times 10^{-3} + 0.18 \times 10^{-3} \times 50)^2$$
  
= 0.0049 m<sup>2</sup>/s (11.77)

$$Pe = \frac{0.60^2}{0.0049 \times 0.6} = 123 \tag{11.76}$$

From the McCabe-Thiele diagram, at x = 0.05, slope of operating line = 3.5 and slope of equilibrium line = 1.0,

so, 
$$\frac{mV}{L} = \frac{1}{5} = 0.20$$

$$\frac{\left(\frac{mV}{L}\right)}{N_L} = \frac{0.2}{0.76} = 0.26$$

From Figure 11.15  $E_{mv} = 0.55$   $E_{mv}$ 

From Figure 11.16  $\frac{E_{mV}}{E_{mv}} = 1.0$ .

So  $E_{mV} = 55$  per cent.

*Note*: The slope of the equilibrium line is difficult to determine at x = 0.05, but any error will not greatly affect the value of  $E_{mV}$ .

### Example 11.13

Calculate the plate efficiency for the plate design considered in Examples 11.11 and 11.12, using Van Winkle's correlation.

### Solution

From Examples 11.12 and 11.11:

$$\rho_L = 925 \text{ kg/m}^3,$$

$$\rho_v = 1.35 \text{ kg/m}^3,$$

$$\mu_L = 0.34 \times 10^{-3} \text{ Ns/m}^2,$$

$$\mu_v = 10.0 \times 10^{-6} \text{ Ns/m}^2,$$

$$D_{LK} = D_L = 4.64 \times 10^{-9} \text{ m}^2/\text{s},$$

$$h_w = 50 \text{ mm},$$

$$FA \text{ (fractional area)} = A_h/A_c = \frac{0.038}{0.50} = 0.076,$$

$$u_v = \text{superficial vapour velocity} = \frac{0.81}{0.50} = 1.62 \text{ m/s},$$

$$\sigma_L = 60 \times 10^{-3} \text{ N/m}$$

$$Dg = \left(\frac{60 \times 10^{-3}}{0.34 \times 10^{-3} \times 1.62}\right) = 109$$

$$Sc = \left(\frac{0.34 \times 10^{-3}}{925 \times 4.64 \times 10^{-9}}\right) = 79,$$

$$Re = \left(\frac{50 \times 10^{-3} \times 1.62 \times 1.35}{0.34 \times 10^{-3} \times 0.076}\right) = 4232$$

$$E_{mV} = 0.07(109)^{0.14}(79)^{0.25}(4232)^{0.08}$$

$$= \underline{0.79} \quad (79 \text{ per cent})$$
(11.69)

#### 11.14. PACKED COLUMNS

Packed columns are used for distillation, gas absorption, and liquid-liquid extraction; only distillation and absorption will be considered in this section. Stripping (desorption) is the reverse of absorption and the same design methods will apply.

The gas liquid contact in a packed bed column is continuous, not stage-wise, as in a plate column. The liquid flows down the column over the packing surface and the gas or vapour, counter-currently, up the column. In some gas-absorption columns co-current flow is used. The performance of a packed column is very dependent on the maintenance of good liquid and gas distribution throughout the packed bed, and this is an important consideration in packed-column design.

A schematic diagram, showing the main features of a packed absorption column, is given in Figure 11.36. A packed distillation column will be similar to the plate columns shown in Figure 11.1, with the plates replaced by packed sections.

The design of packed columns using random packings is covered in books by Strigle (1994) and Billet (1995).

# Choice of plates or packing

The choice between a plate or packed column for a particular application can only be made with complete assurance by costing each design. However, this will not always be worthwhile, or necessary, and the choice can usually be made, on the basis of experience by considering main advantages and disadvantages of each type; which are listed below:

- 1. Plate columns can be designed to handle a wider range of liquid and gas flow-rates than packed columns.
- 2. Packed columns are not suitable for very low liquid rates.
- 3. The efficiency of a plate can be predicted with more certainty than the equivalent term for packing (HETP or HTU).
- 4. Plate columns can be designed with more assurance than packed columns. There is always some doubt that good liquid distribution can be maintained throughout a packed column under all operating conditions, particularly in large columns.
- 5. It is easier to make provision for cooling in a plate column; coils can be installed on the plates.
- 6. It is easier to make provision for the withdrawal of side-streams from plate columns.

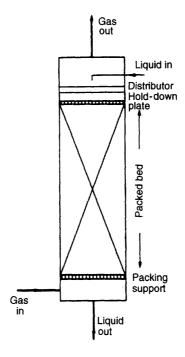



Figure 11.36. Packed absorption column

- 7. If the liquid causes fouling, or contains solids, it is easier to make provision for cleaning in a plate column; manways can be installed on the plates. With small-diameter columns it may be cheaper to use packing and replace the packing when it becomes fouled.
- 8. For corrosive liquids a packed column will usually be cheaper than the equivalent plate column.
- 9. The liquid hold-up is appreciably lower in a packed column than a plate column. This can be important when the inventory of toxic or flammable liquids needs to be kept as small as possible for safety reasons.
- 10. Packed columns are more suitable for handling foaming systems.
- 11. The pressure drop per equilibrium stage (HETP) can be lower for packing than plates; and packing should be considered for vacuum columns.
- 12. Packing should always be considered for small diameter columns, say less than 0.6 m, where plates would be difficult to install, and expensive.

# Packed-column design procedures

The design of a packed column will involve the following steps:

- 1. Select the type and size of packing.
- 2. Determine the column height required for the specified separation.
- Determine the column diameter (capacity), to handle the liquid and vapour flow rates.

4. Select and design the column internal features: packing support, liquid distributor, redistributors.

These steps are discussed in the following sections, and a packed-column design illustrated in Example 11.14.

### 11.14.1. Types of packing

The principal requirements of a packing are that it should:

Provide a large surface area: a high interfacial area between the gas and liquid.

Have an open structure: low resistance to gas flow.

Promote uniform liquid distribution on the packing surface.

Promote uniform vapour gas flow across the column cross-section.

Many diverse types and shapes of packing have been developed to satisfy these requirements. They can be divided into two broad classes:

- 1. Packings with a regular geometry: such as stacked rings, grids and proprietary structured packings.
- 2. Random packings: rings, saddles and proprietary shapes, which are dumped into the column and take up a random arrangement.

Grids have an open structure and are used for high gas rates, where low pressure drop is essential; for example, in cooling towers. Random packings and structured packing elements are more commonly used in the process industries.

# Random packing

The principal types of random packings are shown in Figure 11.37. Design data for these packings are given in Table 11.3. Data on a wider range of packing sizes are given in Volume 2, Chapter 4. The design methods and data given in this section can be used for the preliminary design of packed columns, but for detailed design it is advisable to consult the packing manufacturer's technical literature to obtain data for the particular packing that will be used. The packing manufacturers should be consulted for details of the many special types of packing that are available for special applications.

Raschig rings, Figure 11.37a, are one of the oldest specially manufactured types of random packing, and are still in general use. Pall rings, Figure 11.37b, are essentially Raschig rings in which openings have been made by folding strips of the surface into the ring. This increases the free area and improves the liquid distribution characteristics. Berl saddles, Figure 11.37c, were developed to give improved liquid distribution compared to Raschig rings, Intalox saddles, Figure 11.37d, can be considered to be an improved type of Berl saddle; their shape makes them easier to manufacture than Berl saddles. The Hypac and Super Intalox packings shown in Figure 11.37e, f can be considered improved types of Pall ring and Intalox saddle, respectively.

Intalox saddles, Super Intalox and Hypac packings are proprietary design, and registered trade marks of the Norton Chemical Process Products Ltd.

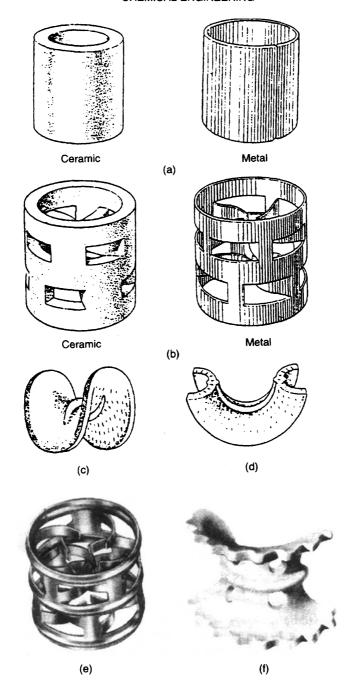



Figure 11.37. Types of packing (Norton Co.). (a) Raschig rings (b) Pall rings (c) Berl saddle ceramic (d) Intalox saddle ceramic (e) Metal Hypac (f) Ceramic, super Intalox

|                             | Size  |    | Bulk<br>density | Surface area a | Packing<br>factor     |
|-----------------------------|-------|----|-----------------|----------------|-----------------------|
|                             | in.   | mm | $(kg/m^3)$      | $(m^2/m^3)$    | $F_p \mathrm{m}^{-1}$ |
| Raschig rings               | 0.50  | 13 | 881             | 368            | 2100                  |
| ceramic                     | 1.0   | 25 | 673             | 190            | 525                   |
|                             | 1.5   | 38 | 689             | 128            | 310                   |
|                             | 2.0   | 51 | 651             | 95             | 210                   |
|                             | 3.0   | 76 | 561             | 69             | 120                   |
| Metal                       | 0.5   | 13 | 1201            | 417            | 980                   |
| (density for carbon steel)  | 1.0   | 25 | 625             | 207            | 375                   |
|                             | 1.5   | 38 | 785             | 141            | 270                   |
|                             | 2.0   | 51 | 593             | 102            | 190                   |
|                             | 3.0   | 76 | 400             | 72             | 105                   |
| Pall rings                  | 0.625 | 16 | 593             | 341            | 230                   |
| metal                       | 1.0   | 25 | 481             | 210            | 160                   |
| (density for carbon steel)  | 1.25  | 32 | 385             | 128            | 92                    |
|                             | 2.0   | 51 | 353             | 102            | 66                    |
|                             | 3.5   | 76 | 273             | 66             | 52                    |
| Plastics                    | 0.625 | 16 | 112             | 341            | 320                   |
| (density for polypropylene) | 1.0   | 25 | 88              | 207            | 170                   |
|                             | 1.5   | 38 | 76              | 128            | 130                   |
|                             | 2.0   | 51 | 68              | 102            | 82                    |
|                             | 3.5   | 89 | 64              | 85             | 52                    |
| Intalox saddles             | 0.5   | 13 | 737             | 480            | 660                   |
| ceramic                     | 1.0   | 25 | 673             | 253            | 300                   |
|                             | 1.5   | 38 | 625             | 194            | 170                   |
|                             | 2.0   | 51 | 609             | 108            | 130                   |
|                             | 3.0   | 76 | 577             |                | 72                    |

Table 11.3. Design data for various packings

Ring and saddle packings are available in a variety of materials: ceramics, metals, plastics and carbon. Metal and plastics (polypropylene) rings are more efficient than ceramic rings, as it is possible to make the walls thinner.

Raschig rings are cheaper per unit volume than Pall rings or saddles but are less efficient, and the total cost of the column will usually be higher if Raschig rings are specified. For new columns, the choice will normally be between Pall rings and Berl or Intalox saddles.

The choice of material will depend on the nature of the fluids and the operating temperature. Ceramic packing will be the first choice for corrosive liquids; but ceramics are unsuitable for use with strong alkalies. Plastic packings are attacked by some organic solvents, and can only be used up to moderate temperatures; so are unsuitable for distillation columns. Where the column operation is likely to be unstable metal rings should be specified, as ceramic packing is easily broken. The choice of packings for distillation and absorption is discussed in detail by Eckert (1963), Strigle (1994), Kister (1992) and Billet (1995).

# Packing size

In general, the largest size of packing that is suitable for the size of column should be used, up to 50 mm. Small sizes are appreciably more expensive than the larger sizes. Above 50 mm the lower cost per cubic metre does not normally compensate for the lower mass transfer efficiency. Use of too large a size in a small column can cause poor liquid distribution.

Recommended size ranges are:

| Column diameter          | Use packing size           |
|--------------------------|----------------------------|
| <0.3 m (1 ft)            | <25 mm (1 in.)             |
| 0.3 to 0.9 m (1 to 3 ft) | 25 to 38 mm (1 to 1.5 in.) |
| >0.9 m                   | 50 to 75 mm (2 to 3 in.)   |

### Structured packing

The term *structured packing* refers to packing elements made up from wire mesh or perforated metal sheets. The material is folded and arranged with a regular geometry, to give a high surface area with a high void fraction. A typical example is shown in Figure 11.38.

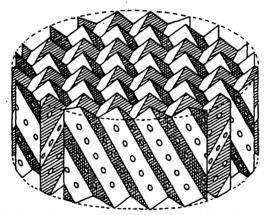



Figure 11.38. Make-up of structured packing. (Reproduced from Butcher (1988) with permission.)

Structured packings are produced by a number of manufacturers. The basic construction and performance of the various proprietary types available are similar. The advantage of structured packings over random packing is their low HETP (typically less than 0.5 m) and low pressure drop (around 100 Pa/m). They are being increasingly used in the following applications:

- 1. For difficult separations, requiring many stages: such as the separation of isotopes.
- 2. High vacuum distillation.
- 3. For column revamps: to increase capacity and reduce reflux ratio requirements.

The applications have mainly been in distillation, but structured packings can also be used in absorption; in applications where high efficiency and low pressure drop are needed.

The cost of structured packings per cubic metre will be significantly higher than that of random packings, but this is offset by their higher efficiency.

The manufacturers' technical literature should be consulted for design data. A review of the types available is given by Butcher (1988). Generalised methods for predicting the

capacity and pressure drop of structured packings are given by Fair and Bravo (1990) and Kister and Gill (1992). The use of structured packings in distillation is discussed in detail in the book by Kister (1992).

### 11.14.2. Packed-bed height

#### Distillation

For the design of packed distillation columns it is simpler to treat the separation as a staged process, and use the concept of the height of an equivalent equilibrium stage to convert the number of ideal stages required to a height of packing. The methods for estimating the number of ideal stages given in Sections 11.5 to 11.8 can then be applied to packed columns.

The height of an equivalent equilibrium stage, usually called the height of a theoretical plate (HETP), is the height of packing that will give the same separation as an equilibrium stage. It has been shown by Eckert (1975) that in distillation the HETP for a given type and size of packing is essentially constant, and independent of the system physical properties; providing good liquid distribution is maintained and the pressure drop is at least above 17 mm water per metre of packing height. The following values for Pall rings can be used to make an approximate estimate of the bed height required.

Size, mm HETP, m  
25 (1 in.) 0.4-0.5  
38 (
$$1\frac{1}{2}$$
 in.) 0.6-0.75  
50 (2 in.) 0.75-1.0

The HETP for saddle packings will be similar to that for Pall rings providing the pressure drop is at least 29 mm per m.

The HETP for Raschig rings will be higher than those for Pall rings or saddles, and the values given above will only apply at an appreciably higher pressure drop, greater than 42 mm per m.

The methods for estimating the heights of transfer units, HTU, given in Section 11.14.3 can be used for distillation. The relationship between transfer units and the height of an equivalent theoretical plate, HETP is given by:

$$HETP = \frac{\mathbf{H}_{OG} \operatorname{Ln} \left( \frac{mG_m}{L_m} \right)}{\left( \frac{mG_m}{L_m - 1} \right)}$$
(11.96)

from equation 11.105

$$\mathbf{H}_{OG} = \mathbf{H}_G + \left(\frac{mG_m}{L_m}\right)\mathbf{H}_L$$

see Volume 2, Chapter 11. The slope of the operating line m will normally vary throughout a distillation so it will be necessary to calculate the HETP for each plate or a series of plates.

## Absorption

Though packed absorption and stripping columns can also be designed as staged process, it is usually more convenient to use the integrated form of the differential equations set up by considering the rates of mass transfer at a point in the column. The derivation of these equations is given in Volume 2, Chapter 12.

Where the concentration of the solute is small, say less than 10 per cent, the flow of gas and liquid will be essentially constant throughout the column, and the height of packing required, Z, is given by:

 $Z = \frac{G_m}{K_G a P} \int_{y_2}^{y_1} \frac{\mathrm{d}y}{y - y_e}$  (11.97)

in terms of the overall gas phase mass transfer coefficient  $K_G$  and the gas composition. Or,

$$Z = \frac{L_m}{K_L a C_t} \int_{x_2}^{x_1} \frac{\mathrm{d}x}{x_e - x}$$
 (11.98)

in terms of the overall liquid-phase mass-transfer coefficient  $K_L$  and the liquid composition.

where  $G_m$  = molar gas flow-rate per unit cross-sectional area,

 $L_m$  = molar liquid flow-rate per unit cross-sectional area,

a = interfacial surface area per unit volume,

P = total pressure,

 $C_t = \text{total molar concentration},$ 

 $y_1$  and  $y_2$  = the mol fractions of the solute in the gas at the bottom and top of the column, respectively,

 $x_1$  and  $x_2$  = the mol fractions of the solute in the liquid at the bottom and top of the column, respectively,

 $x_e$  = the concentration in the liquid that would be in equilibrium with the gas concentration at any point,

 $y_e$  = the concentration in the gas that would be in equilibrium with the liquid concentration at any point.

The relation between the equilibrium concentrations and actual concentrations is shown in Figure 11.39.

For design purposes it is convenient to write equations 11.97 and 11.98 in terms of "transfer units" (HTU); where the value of integral is the number of transfer units, and the group in front of the integral sign, which has units of length, is the height of a transfer unit.

$$Z = \mathbf{H}_{OG} \mathbf{N}_{OG} \tag{11.99a}$$

 $Z = \mathbf{H}_{OL} \mathbf{N}_{OL} \tag{11.99b}$ 

or

where  $\mathbf{H}_{OG}$  is the height of an overall gas-phase transfer unit

$$=\frac{G_m}{K_G a P} \tag{11.100}$$

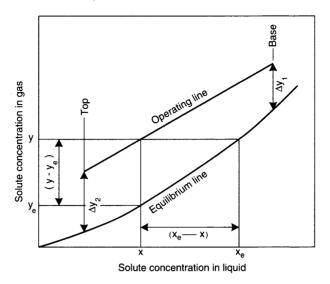



Figure 11.39. Gas absorption concentration relationships

 $N_{OG}$  is the number of overall gas-phase transfer units

$$= \int_{y_2}^{y_1} \frac{\mathrm{d}y}{y - y_e} \tag{11.101}$$

 $\mathbf{H}_{OL}$  is the height of an overall liquid-phase transfer unit

$$=\frac{L_m}{K_L a C_t} \tag{11.102}$$

 $N_{OL}$  is the number of overall liquid-phase transfer units

$$= \int_{x_2}^{x_1} \frac{\mathrm{d}x}{x_e - x} \tag{11.103}$$

The number of overall gas-phase transfer units is often more conveniently expressed in terms of the partial pressure of the solute gas.

$$\mathbf{N}_{OG} = \int_{p_1}^{p_2} \frac{\mathrm{d}p}{p - p_e} \tag{11.104}$$

The relationship between the overall height of a transfer unit and the individual film transfer units  $\mathbf{H}_L$  and  $\mathbf{H}_G$ , which are based on the concentration driving force across the liquid and gas films, is given by:

$$\mathbf{H}_{OG} = \mathbf{H}_G + m \frac{G_m}{L_m} \mathbf{H}_L \tag{11.105}$$

$$\mathbf{H}_{OL} = \mathbf{H}_L + \frac{L_m}{mG_m} \mathbf{H}_G \tag{11.106}$$

where m is the slope of the equilibrium line and  $G_m/L_m$  the slope of the operating line.

The number of transfer units is obtained by graphical or numerical integration of equations 11.101, 11.103 or 11.104.

Where the operating and equilibrium lines are straight, and they can usually be considered to be so for dilute systems, the number of transfer units is given by:

$$\mathbf{N}_{OG} = \frac{y_1 - y_2}{\Delta y_{\text{lm}}} \tag{11.107}$$

where  $\Delta y_{lm}$  is the log mean driving force, given by:

$$y_{\rm lm} = \frac{\Delta y_1 - \Delta y_2}{\ln\left(\frac{\Delta y_1}{\Delta y_2}\right)} \tag{11.108}$$

where 
$$\Delta y_1 = y_1 - y_e$$
,  
 $\Delta y_2 = y_2 - y_e$ .

If the equilibrium curve and operating lines can be taken as straight and the solvent feed essentially solute free, the number of transfer units is given by:

$$\mathbf{N}_{OG} = \frac{1}{1 - \left(\frac{mG_m}{L_m}\right)} \ln \left[ \left(1 - \frac{mG_m}{L_m}\right) \frac{y_1}{y_2} + \frac{mG_m}{L_m} \right]$$
(11.109)

This equation is plotted in Figure 11.40, which can be used to make a quick estimate of the number of transfer units required for a given separation.

It can be seen from Figure 11.40 that the number of stages required for a given separation is very dependent on the flow rate  $L_m$ . If the solvent rate is not set by other process considerations, Figure 11.40 can be used to make quick estimates of the column height at different flow rates to find the most economic value. Colburn (1939) has suggested that the optimum value for the term  $mG_m/L_m$  will lie between 0.7 to 0.8.

Only physical absorption from dilute gases has been considered in this section. For a discussion of absorption from concentrated gases and absorption with chemical reaction, the reader should refer to Volume 2, or to the books by Treybal (1980) and Sherwood *et al.* (1975). If the inlet gas concentration is not too high, the equations for dilute systems can be used by dividing the operating line up into two or three straight sections.

# 11.14.3. Prediction of the height of a transfer unit (HTU)

There is no entirely satisfactory method for predicting the height of a transfer unit. In practice the value for a particular packing will depend not only on the physical properties and flow-rates of the gas and liquid, but also on the uniformity of the liquid distribution throughout the column, which is dependent on the column height and diameter. This makes it difficult to extrapolate data obtained from small size laboratory and pilot plant columns to industrial size columns. Whenever possible estimates should be based on actual values obtained from operating columns of similar size to that being designed.

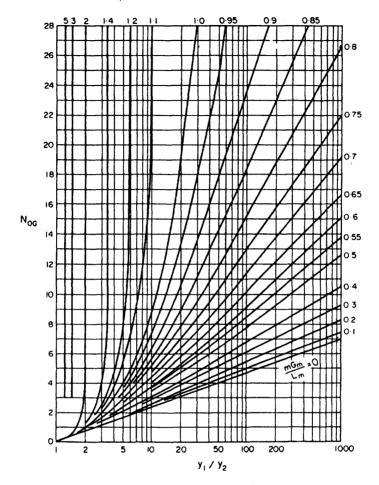



Figure 11.40. Number of transfer units  $N_{OG}$  as a function of  $y_1/y_2$  with  $mG_m/L_m$  as parameter

Experimental values for several systems are given by Cornell *et al.* (1960), Eckert (1963), and Vital *et al.* (1984). A selection of values for a range of systems is given in Table 11.4. The composite mass transfer term  $K_Ga$  is normally used when reporting experimental mass-transfer coefficients for packing, as the effective interfacial area for mass transfer will be less than the actual surface area a of the packing.

Many correlations have been published for predicting the height of a transfer unit, and the mass-transfer coefficients; several are reviewed in Volume 2, Chapter 12. The two methods given in this section have been found to be reliable for preliminary design work, and, in the absence of practical values, can be used for the final design with a suitable factor of safety.

The approach taken by the authors of the two methods is fundamentally different, and this provides a useful cross-check on the predicted values. Judgement must always be used when using predictive methods in design, and it is always worthwhile trying several methods and comparing the results.

Typical values for the HTU of random packings are:

| 25 mm (1 in.)                      | 0.3 to 0.6 m (1 to 2 ft)                            |
|------------------------------------|-----------------------------------------------------|
| 38 mm $(1\frac{1}{2} \text{ in.})$ | 0.5 to 0.75 m $(1\frac{1}{2}$ to $2\frac{1}{2}$ ft) |
| 50 mm (2 in.)                      | 0.6 to 1.0 m (2 to 3 ft)                            |

Table 11.4. Typical packing efficiencies

| System                                | Pressure | Column | P    | acking   | HTU  | HETP |
|---------------------------------------|----------|--------|------|----------|------|------|
| •                                     | kPa      | dia, m | type | size, mm | m    | m    |
| Absorption                            |          |        |      |          |      |      |
| Hydrocarbons                          | 6000     | 0.9    | Pall | 50       |      | 0.85 |
| NH <sub>3</sub> -Air-H <sub>2</sub> O | 101      |        | Berl | 50       | 0.50 |      |
| Air-water                             | 101      | _      | Berl | 50       | 0.50 |      |
| Acetone-water                         | 101      | 0.6    | Pall | 50       |      | 0.75 |
| Distillation                          |          |        |      |          |      |      |
| Pentane-propane                       | 101      | 0.46   | Pall | 25       |      | 0.46 |
| IPA-water                             | 101      | 0.46   | Int. | 25       | 0.75 | 0.50 |
| Methanol-water                        | 101      | 0.41   | Pall | 25       | 0.52 |      |
|                                       | 101      | 0.20   | Int. | 25       |      | 0.46 |
| Acetone-water                         | 101      | 0.46   | Pall | 25       |      | 0.37 |
|                                       | 101      | 0.36   | Int. | 25       |      | 0.46 |
| Formic acid-water                     | 101      | 0.91   | Pall | 50       |      | 0.45 |
| Acetone-water                         | 101      | 0.38   | Pall | 38       | 0.55 | 0.45 |
|                                       | 101      | 0.38   | Int. | 50       | 0.50 | 0.45 |
|                                       | 101      | 1.07   | Int. | 38       |      | 1.22 |
| MEK-toluene                           | 101      | 0.38   | Pall | 25       | 0.29 | 0.35 |
|                                       | 101      | 0.38   | Int. | 25       | 0.27 | 0.23 |
|                                       | 101      | 0.38   | Berl | 25       | 0.31 | 0.31 |

Pall = Pall rings, Berl = Berl saddles, Int. = Intalox saddles

#### Cornell's method

Cornell et al. (1960) reviewed the previously published data and presented empirical equations for predicting the height of the gas and liquid film transfer units. Their correlation takes into account the physical properties of the system, the gas and liquid flow-rates; and the column diameter and height. Equations and figures are given for a range of sizes of Raschig rings and Berl saddles. Only those for Berl saddles are given here, as it is unlikely that Raschig rings would be considered for a new column. Though the mass-transfer efficiency of Pall rings and Interlox saddles will be higher than that of the equivalent size Berl saddle, the method can be used to make conservative estimates for these packings.

Bolles and Fair (1982) have extended the correlations given in the earlier paper to include metal Pall rings.

Cornell's equations are:

$$\mathbf{H}_{G} = 0.011 \psi_{h}(Sc)_{v}^{0.5} \left(\frac{D_{c}}{0.305}\right)^{1.11} \left(\frac{Z}{3.05}\right)^{0.33} / (L_{w}^{*} f_{1} f_{2} f_{3})^{0.5}$$
 (11.110)

$$\mathbf{H}_{L} = 0.305\phi_{h}(Sc)_{L}^{0.5}K_{3} \left(\frac{Z}{3.05}\right)^{0.15}$$
(11.111)

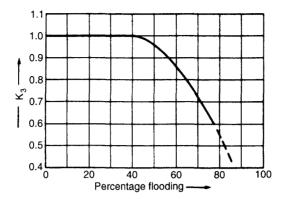



Figure 11.41. Percentage flooding correction factor

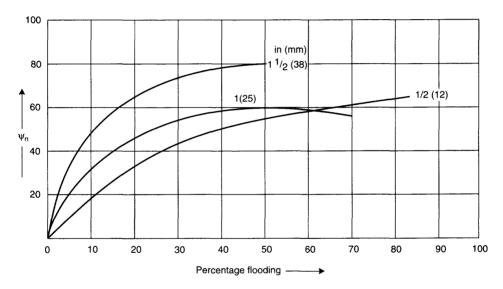



Figure 11.42. Factor for  $H_G$  for Berl saddles

where  $\mathbf{H}_G$  = height of a gas-phase transfer unit, m,

 $\mathbf{H}_L$  = height of a liquid-phase transfer unit, m,

 $(Sc)_v = \text{gas Schmidt number} = (\mu_v/\rho_v D_v),$ 

 $(Sc)_L$  = liquid Schmidt number =  $(\mu_L/\rho_L D_L)$ ,

 $D_c = \text{column diameter, m,}$ 

Z = column height, m,

 $K_3$  = percentage flooding correction factor, from Figure 11.41,

 $\psi_h = \mathbf{H}_G$  factor from Figure 11.42,

 $\phi_h = \mathbf{H}_L$  factor from Figure 11.43,

 $L_w^*$  = liquid mass flow-rate per unit area column cross-sectional area, kg/m<sup>2</sup>s,

 $f_1$  = liquid viscosity correction factor =  $(\mu_L/\mu_w)^{0.16}$ ,

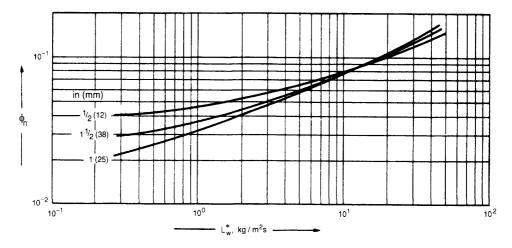



Figure 11.43. Factor for  $H_L$  for Berl saddles

 $f_2$  = liquid density correction factor =  $(\rho_w/\rho_L)^{1.25}$ ,  $f_3$  = surface tension correction factor =  $(\sigma_w/\sigma_L)^{0.8}$ ,

where the suffix w refers to the physical properties of water at 20°C; all other physical properties are evaluated at the column conditions.

The terms ( $D_c$ /0.305) and (Z/3.05) are included in the equations to allow for the effects of column diameter and packed-bed height. The "standard" values used by Cornell were 1 ft (0.305 m) for diameter, and 10 ft (3.05 m) for height. These correction terms will clearly give silly results if applied over too wide a range of values. For design purposes the diameter correction term should be taken as a fixed value of 2.3 for columns above 0.6 m (2 ft) diameter, and the height correction should only be included when the distance between liquid redistributors is greater than 3 m. To use Figures 11.41 and 11.42 an estimate of the column percentage flooding is needed. This can be obtained from Figure 11.44, where a flooding line has been included with the lines of constant pressure drop.

Percentage flooding = 
$$\left[\frac{K_4 \text{ at design pressure drop}}{K_4 \text{ at flooding}}\right]^{1/2}$$
 (11.112)

A full discussion of flooding in packed columns is given in Volume 2, Chapter 4.

### Onda's method

Onda et al. (1968) published useful correlations for the film mass-transfer coefficients  $k_G$  and  $k_L$  and the effective wetted area of the packing  $a_w$ , which can be used to calculate  $\mathbf{H}_G$  and  $\mathbf{H}_L$ .

Their correlations were based on a large amount of data on gas absorption and distillation; with a variety of packings, which included Pall rings and Berl saddles. Their method for estimating the effective area of packing can also be used with experimentally determined values of the mass-transfer coefficients, and values predicted using other correlations.

The equation for the effective area is:

$$\frac{a_w}{a} = 1 - \exp\left[-1.45 \left(\frac{\sigma_c}{\sigma_L}\right)^{0.75} \left(\frac{L_w^*}{a\mu_L}\right)^{0.1} \left(\frac{L_w^{*2}a}{\rho_L^2g}\right)^{-0.05} \left(\frac{L_w^{*2}}{\rho_L\sigma_La}\right)^{0.2}\right] (11.113)$$

and for the mass coefficients:

$$k_L \left(\frac{\rho_L}{\mu_L g}\right)^{1/3} = 0.0051 \left(\frac{L_w^*}{a_w \mu_L}\right)^{2/3} \left(\frac{\mu_L}{\rho_L D_L}\right)^{-1/2} (ad_p)^{0.4}$$
 (11.114)

$$\frac{k_G}{a} \frac{RT}{D_v} = K_5 \left(\frac{V_w^*}{a\mu_v}\right)^{0.7} \left(\frac{\mu_v}{\rho_v D_v}\right)^{1/3} (ad_p)^{-2.0}$$
(11.115)

where  $K_5 = 5.23$  for packing sizes above 15 mm, and 2.00 for sizes below 15 mm,

 $L_w^*$  = liquid mass flow rate per unit cross-sectional area, kg/m<sup>2</sup>s,

 $V_w^* = \text{gas mass flow rate per unit column cross-sectional area, kg/m}^2 \text{s},$ 

 $a_w$  = effective interfacial area of packing per unit volume, m<sup>2</sup>/m<sup>3</sup>,

 $a = \text{actual area of packing per unit volume (see Table 11.3), m}^2/\text{m}^3$ ,

 $d_p$  = packing size, m,

 $\sigma_c$  = critical surface tension for the particular packing material given below:

| Material               | $\sigma_c$ mN/m |
|------------------------|-----------------|
| Ceramic                | 61              |
| Metal (steel)          | 75              |
| Plastic (polyethylene) | 33              |
| Carbon                 | 56              |

 $\sigma_L$  = liquid surface tension, N/m,

 $k_G$  = gas film mass transfer coefficient, kmol/m<sup>2</sup>s atm or kmol/m<sup>2</sup>s bar,

 $k_L$  = liquid film mass transfer coefficient, kmol/m<sup>2</sup>s (kmol/m<sup>3</sup>) = m/s.

Note: all the groups in the equations are dimensionless.

The units for  $k_G$  will depend on the units used for the gas constant:

$$\mathbf{R} = 0.08206 \text{ atm m}^3/\text{kmol K or}$$
  
0.08314 bar m<sup>3</sup>/kmol K

The film transfer unit heights are given by:

$$\mathbf{H}_G = \frac{G_m}{k_G a_w P} \tag{11.116}$$

$$\mathbf{H}_L = \frac{L_m}{k_L a_w C_t} \tag{11.117}$$

where P = column operating pressure, atm or bar,

 $C_t = \text{total concentration, kmol/m}^3 = \rho_L/\text{molecular weight solvent,}$ 

 $G_m$  = molar gas flow-rate per unit cross-sectional area, kmol/m<sup>2</sup>s,

 $L_m = \text{molar liquid flow-rate per unit cross-sectional area, kmol/m}^2 \text{s.}$ 

# Nomographs

A set of nomographs are given in Volume 2, Chapter 12 for the estimation of  $\mathbf{H}_G$  and  $\mathbf{H}_L$ , and the wetting rate. These were taken from a proprietary publication, but are based on a set of similar nomographs given by Czermann *et al.* (1958), who developed the nomographs from correlations put forward by Morris and Jackson (1953) and other workers.

The nomographs can be used to make a quick, rough, estimate of the column height, but are an oversimplification, as they do not take into account all the physical properties and other factors that affect mass transfer in packed columns.

## 11.14.4. Column diameter (capacity)

The capacity of a packed column is determined by its cross-sectional area. Normally, the column will be designed to operate at the highest economical pressure drop, to ensure good liquid and gas distribution. For random packings the pressure drop will not normally exceed 80 mm of water per metre of packing height. At this value the gas velocity will be about 80 per cent of the flooding velocity. Recommended design values, mm water per m packing, are:

Absorbers and strippers 15 to 50 Distillation, atmospheric and moderate pressure 40 to 80

Where the liquid is likely to foam, these values should be halved.

For vacuum distillations the maximum allowable pressure drop will be determined by the process requirements, but for satisfactory liquid distribution the pressure drop should not be less than 8 mm water per m. If very low bottom pressures are required special low pressure-drop gauze packings should be considered; such as Hyperfil, Multifil or Dixon rings; see Volume 2, Chapter 4.

The column cross-sectional area and diameter for the selected pressure drop can be determined from the generalised pressure-drop correlation given in Figure 11.44.

Figure 11.44 correlates the liquid and vapour flow rates, system physical properties and packing characteristics, with the gas mass flow-rate per unit cross-sectional area; with lines of constant pressure drop as a parameter.

The term  $K_4$  on Figure 11.44 is the function:

$$K_4 = \frac{13.1(V_w^*)^2 F_p \left(\frac{\mu_L}{\rho_L}\right)^{0.1}}{\rho_v(\rho_L - \rho_v)}$$
(11.118)

where  $V_w^* = \text{gas mass flow-rate per unit column cross-sectional area, kg/m}^2 \text{s}$ 

 $F_p$  = packing factor, characteristic of the size and type of packing, see Table 11.3, m<sup>-1</sup>.

 $\mu_L = \text{liquid viscosity, Ns/m}^2$ 

 $\rho_L$ ,  $\rho_v$  = liquid and vapour densities, kg/m<sup>3</sup>

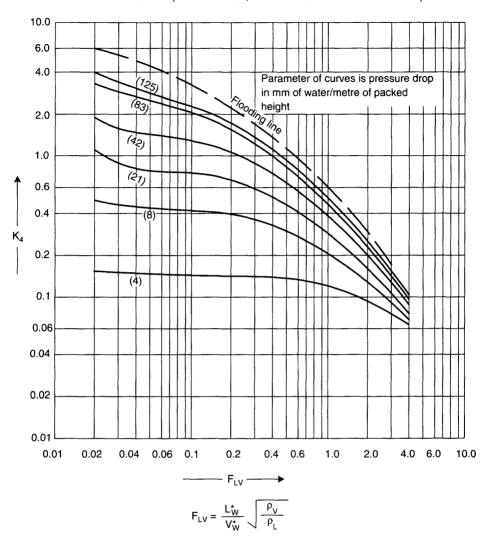



Figure 11.44. Generalised pressure drop correlation, adapted from a figure by the Norton Co. with permission

The values of the flow factor  $F_{LV}$  given in Figure 11.44 covers the range that will generally give satisfactory column performance.

The ratio of liquid to gas flow will be fixed by the reflux ratio in distillation; and in gas absorption will be selected to give the required separation with the most economic use of solvent.

A new generalised correlation for pressure drop in packed columns, similar to Figure 11.44, has been published by Leva (1992), (1995). The new correlations gives a better prediction for systems where the density of the irrigating fluid is appreciably greater than that of water. It can also be used to predict the pressure drop over dry packing.

### Example 11.14

Sulphur dioxide produced by the combustion of sulphur in air is absorbed in water. Pure SO<sub>2</sub> is then recovered from the solution by steam stripping. Make a preliminary design for the absorption column. The feed will be 5000 kg/h of gas containing 8 per cent v/v SO<sub>2</sub>. The gas will be cooled to 20°C. A 95 per cent recovery of the sulphur dioxide is required.

### Solution

As the solubility of SO<sub>2</sub> in water is high, operation at atmospheric pressure should be satisfactory. The feed-water temperature will be taken as 20°C, a reasonable design value.

# Solubility data

From Chemical Engineers Handbook, 5th edn, McGraw-Hill, 1973.

| SO <sub>2</sub> | per cent w/w<br>solution   | 0.05 | 0.1 | 0.15 | 0.2 | 0.3  | 0.5 | 0.7 | 1.0 | 1.5 |
|-----------------|----------------------------|------|-----|------|-----|------|-----|-----|-----|-----|
|                 | Partial press.<br>gas mmHg | 1.2  | 3.2 | 5.8  | 8.5 | 14.1 | 26  | 39  | 59  | 92  |

Partial pressure of SO<sub>2</sub> in the feed =  $(8/100) \times 760 = 60.8$  mm Hg These figures are plotted in Figure (d).

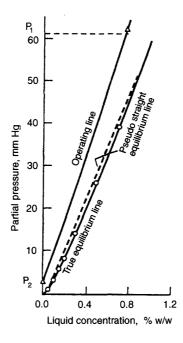



Figure (d). SO<sub>2</sub> absorber design (Example 11.14)

## Number of stages

Partial pressure in the exit gas at 95 per cent recovery =  $60.8 \times 0.05 = 3.04$  mm Hg Over this range of partial pressure the equilibrium line is essentially straight so Figure 11.40 can be used to estimate the number of stages needed.

The use of Figure 11.40 will slightly overestimate the number of stages and a more accurate estimate would be made by graphical integration of equation 11.104; but this is not justified in view of the uncertainty in the prediction of the transfer unit height.

Molecular weights:  $SO_2 = 64$ ,  $H_2O = 18$ , air = 29

## Slope of equilibrium line

From the data: partial pressure at 1.0% w/w  $SO_2 = 59$  mm Hg.

Mol. fraction in vapour = 
$$\frac{59}{760} = 0.0776$$
  
Mol. fraction in liquid =  $\frac{\frac{1}{64}}{\frac{1}{64} + \frac{99}{18}} = 0.0028$   
 $m = \frac{0.0776}{0.0028} = 27.4$ 

To decide the most economic water flow-rate, the stripper design should be considered together with the absorption design, but for the purpose of this example the absorption design will be considered alone. Using Figure 11.40 the number of stages required at different water rates will be determined and the "optimum" rate chosen:

$$\frac{y_1}{y_2} = \frac{p_1}{p_2} = \frac{60.8}{3.04} = 20$$

| $m\frac{G_m}{L_m}$ | 0.5 | 0.6 | 0.7 | 0.8 | 0.9  | 1.0  |
|--------------------|-----|-----|-----|-----|------|------|
| $N_{OG}$           | 3.7 | 4.1 | 6.3 | 8   | 10.8 | 19.0 |

It can be seen that the "optimum" will be between  $mG_m/L_m = 0.6$  to 0.8, as would be expected. Below 0.6 there is only a small decrease in the number of stages required with increasing liquid rate; and above 0.8 the number of stages increases rapidly with decreasing liquid rate.

Check the liquid outlet composition at 0.6 and 0.8:

Material balance 
$$L_m x_1 = G_m (y_1 - y_2)$$
  
so  $x_1 = \frac{G_m}{L_m} (0.08 \times 0.95) = \frac{m}{27.4} \frac{G_m}{L_m} (0.076)$ 

at 
$$\frac{mG_m}{L_m} = 0.6$$
,  $x_1 = 1.66 \times 10^{-3}$  mol fraction at  $\frac{mG_m}{L_m} = 0.8$ ,  $x_1 = 2.22 \times 10^{-3}$  mol fraction

Use 0.8, as the higher concentration will favour the stripper design and operation, without significantly increasing the number of stages needed in the absorber.

$$N_{OG} = 8$$

### Column diameter

The physical properties of the gas can be taken as those for air, as the concentration of  $SO_2$  is low.

Gas flow-rate = 
$$\frac{5000}{3600}$$
 = 1.39 kg/s, =  $\frac{1.39}{29}$  = 0.048 kmol/s  
Liquid flow-rate =  $\frac{27.4}{0.8} \times 0.048 = 1.64$  kmol/s  
= 29.5 kg/s.

Select 38 mm ( $1\frac{1}{2}$  in.) ceramic Intalox saddles. From Table 11.3,  $F_p = 170 \text{ m}^{-1}$ 

Gas density at 
$$20^{\circ}\text{C} = \frac{29}{22.4} \times \frac{273}{293} = 1.21 \text{ kg/m}^3$$
  
Liquid density  $\approx 1000 \text{ kg/m}^3$   
Liquid viscosity  $= 10^{-3} \text{ Ns/m}^2$   
 $\frac{L_W^*}{V_W^*} \sqrt{\frac{\rho_v}{\rho_I}} = \frac{29.5}{1.39} \sqrt{\frac{1.21}{10^3}} = 0.74$ 

Design for a pressure drop of 20 mm H<sub>2</sub>O/m packing From Figure 11.44,

$$K_4=0.35$$
 At flooding  $K_4=0.8$  Percentage flooding  $=\sqrt{\frac{0.35}{0.8}}\times 100=66$  per cent, satisfactory.

From equation 11.118

$$V_W^* = \left[ \frac{K_4 \rho_V (\rho_L - \rho_v)}{13.1 F_p (\mu_L / \rho_L)^{0.1}} \right]^{1/2}$$

$$= \left[ \frac{0.35 \times 1.21 (1000 - 1.21)}{13.1 \times 170 (10^{-3} / 10^3)^{0.1}} \right]^{1/2} = 0.87 \text{ kg/m}^2 \text{s}$$

Column area required = 
$$\frac{1.39}{0.87} = 1.6 \text{ m}^2$$
  
Diameter =  $\sqrt{\frac{4}{\pi} \times 1.6} = 1.43 \text{ m}$   
Round off to  $\underline{1.50 \text{ m}}$   
Column area =  $\frac{\pi}{4} \times 1.5^2 = 1.77 \text{ m}^2$   
Packing size to column diameter ratio =  $\frac{1.5}{38 \times 10^{-3}} = 39$ ,

A larger packing size could be considered.

Percentage flooding at selected diameter

$$= 66 \times \frac{1.6}{1.77} = 60$$
 per cent,

Could consider reducing column diameter.

## Estimation of HOG

### Cornell's method

$$D_L = 1.7 \times 10^{-9} \text{ m}^2/\text{s}$$

$$D_v = 1.45 \times 10^{-5} \text{ m}^2/\text{s}$$

$$\mu_v = 0.018 \times 10^{-3} \text{ Ns/m}^2$$

$$(Sc)_v = \frac{0.018 \times 10^{-3}}{1.21 \times 1.45 \times 10^{-5}} = 1.04$$

$$(Sc)_L = \frac{10^{-3}}{1000 \times 1.7 \times 10^{-9}} = 588$$

$$L_W^* = \frac{29.5}{1.77} = 16.7 \text{ kg/s m}^2$$

From Figure 11.41, at 60 per cent flooding,  $K_3 = 0.85$ .

From Figure 11.42, at 60 per cent flooding,  $\psi_h = 80$ .

From Figure 11.43, at  $L_W^* = 16.7$ ,  $\phi_h = 0.1$ .

 $\mathbf{H}_{OG}$  can be expected to be around 1 m, so as a first estimate Z can be taken as 8 m. The column diameter is greater than 0.6 m so the diameter correction term will be taken as 2.3.

$$\mathbf{H}_L = 0.305 \times 0.1(588)^{0.5} \times 0.85 \left(\frac{8}{3.05}\right)^{0.15} = 0.7 \text{ m}$$
 (11.111)

As the liquid temperature has been taken as 20°C, and the liquid is water,

$$f_1 = f_2 = f_3 = 1$$
  
 $\mathbf{H}_G = 0.011 \times 80(1.04)^{0.5} (2.3) \left(\frac{8}{3.05}\right)^{0.33} / (16.7)^{0.5} = 0.7 \text{ m}$  (11.110)

$$\mathbf{H}_{OG} = 0.7 + 0.8 \times 0.7 = 1.3 \text{ m}$$
 (11.105)

 $Z = 8 \times 1.3 = 10.4$  m, close enough to the estimated value.

### Onda's method

 $\mathbf{R} = 0.08314 \text{ bar m}^3/\text{kmol } \mathbf{K}.$ 

Surface tension of liquid, taken as water at  $20^{\circ}\text{C} = 70 \times 10^{-3} \text{ N/m}$ 

$$g = 9.81 \text{ m/s}^2$$
  
 $d_p = 38 \times 10^{-3} \text{ m}$ 

From Table 11.3, for 38 mm Intalox saddles

$$a = 194 \text{ m}^2/\text{m}^3$$
  
 $\sigma_c$  for ceramics =  $61 \times 10^{-3} \text{ N/m}$ 

$$\frac{a_W}{a} = 1 - \exp\left[-1.45 \left(\frac{61 \times 10^{-3}}{70 \times 10^{-3}}\right)^{0.75} \left(\frac{17.6}{194 \times 10^{-3}}\right)^{0.1} \left(\frac{17.6^2 \times 194}{1000^2 \times 9.81}\right)^{-0.05} \times \left(\frac{17.6^2}{1000 \times 70 \times 10^{-3} \times 194}\right)^{0.2}\right] = 0.71$$
(11.113)

$$a_W = 0.71 \times 194 = 138 \text{ m}^2/\text{m}^3$$

$$k_L \left(\frac{10^3}{10^{-3} \times 9.81}\right)^{1/3} = 0.0051 \left(\frac{17.6}{138 \times 10^{-3}}\right)^{2/3} \left(\frac{10^{-3}}{10^3 \times 1.7 \times 10^{-9}}\right)^{-1/2} \times (194 \times 38 \times 10^{-3})^{0.4}$$
(11.114)

$$k_L = 2.5 \times 10^{-4} \text{ m/s}$$

$$V_W^*$$
 on actual column diameter =  $\frac{1.39}{1.77} = 0.79 \text{ kg/m}^2 \text{s}$ 

$$k_{G} \frac{0.08314 \times 293}{194 \times 1.45 \times 10^{-5}} = 5.23 \left( \frac{0.79}{194 \times 0.018 \times 10^{-3}} \right)^{0.7}$$

$$\times \left( \frac{0.018 \times 10^{-3}}{1.21 \times 1.45 \times 10^{-5}} \right)^{1/3} (194 \times 38 \times 10^{-3})^{-2.0}$$

$$k_{G} = 5.0 \times 10^{-4} \text{ kmol/sm}^{2} \text{ bar}$$

$$G_{m} = \frac{0.79}{29} = 0.027 \text{ kmol/m}^{2} \text{s}$$

$$G_m = \frac{16.7}{29} = 0.027 \text{ kmol/m}^2$$
  
 $L_m = \frac{16.7}{18} = 0.93 \text{ kmol/m}^2$ s

$$\mathbf{H}_G = \frac{0.027}{5.0 \times 10^{-4} \times 138 \times 1.013} = 0.39 \text{ m}$$
 (11.116)

$$C_T$$
 = total concentration, as water,

$$=\frac{1000}{18}=55.6 \text{ kmol/m}^3$$

$$\mathbf{H}_L = \frac{0.93}{2.5 \times 10^{-4} \times 138 \times 55.6} = 0.49 \text{ m}$$
 (11.117)

$$\mathbf{H}_{OG} = 0.39 + 0.8 \times 0.49 = \underline{0.78 \text{ m}}$$
 (11.105)

Use higher value, estimated using Cornell's method, and round up packed bed height to 11 m.

### 11.14.5. Column internals

The internal fittings in a packed column are simpler than those in a plate column but must be carefully designed to ensure good performance. As a general rule, the standard fittings developed by the packing manufacturers should be specified. Some typical designs are shown in Figures 11.45 to 11.54; and their use is discussed in the following paragraphs.

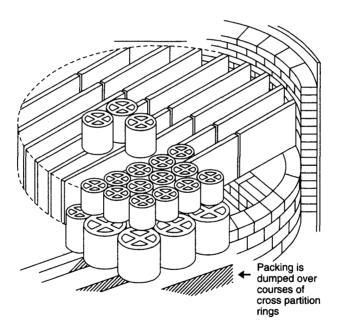



Figure 11.45. Stacked packing used to support random packing

# Packing support

The function of the support plate is to carry the weight of the wet packing, whilst allowing free passage of the gas and liquid. These requirements conflict; a poorly designed support will give a high pressure drop and can cause local flooding. Simple grid and perforated plate supports are used, but in these designs the liquid and gas have to vie for the same openings. Wide-spaced grids are used to increase the flow area; with layers of larger size packing stacked on the grid to support the small size random packing, Figure 11.45.

The best design of packing support is one in which gas inlets are provided above the level where the liquid flows from the bed; such as the gas-injection type shown in Figure 11.46 and 11.47. These designs have a low pressure drop and no tendency to flooding. They are available in a wide range of sizes and materials: metals, ceramics and plastics.

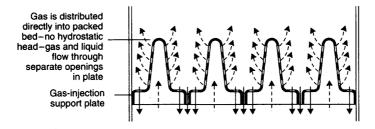



Figure 11.46. The principle of the gas-injection packing support

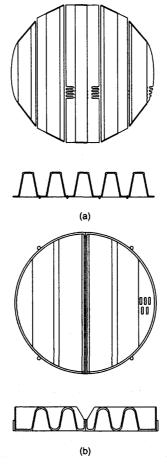



Figure 11.47. Typical designs of gas-injection supports (Norton Co.). (a) Small diameter columns (b) Large diameter columns

## Liquid distributors

The satisfactory performance of a plate column is dependent on maintaining a uniform flow of liquid throughout the column, and good initial liquid distribution is essential. Various designs of distributors are used. For small-diameter columns a central open feedpipe, or one fitted with a spray nozzle, may well be adequate; but for larger columns more elaborate designs are needed to ensure good distribution at all liquid flow-rates. The two most commonly used designs are the orifice type, shown in Figure 11.48, and the weir type, shown in Figure 11.49. In the orifice type the liquid flows through holes in the plate and the gas through short stand pipes. The gas pipes should be sized to give sufficient area for gas flow without creating a significant pressure drop; the holes should be small enough to ensure that there is a level of liquid on the plate at the lowest liquid rate, but large enough to prevent the distributor overflowing at the highest rate. In the weir type the liquid flows over notched weirs in the gas stand-pipes. This type can be designed to cope with a wider range of liquid flow rates than the simpler orifice type.

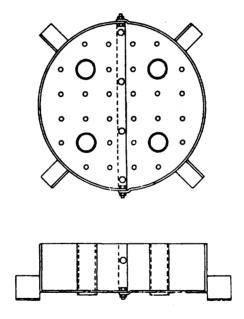



Figure 11.48. Orifice-type distributor (Norton Co.)

For large-diameter columns, the trough-type distributor shown in Figure 11.50 can be used, and will give good liquid distribution with a large free area for gas flow.

All distributors which rely on the gravity flow of liquid must be installed in the column level, or maldistribution of liquid will occur.

A pipe manifold distributor, Figure 11.51, can be used when the liquid is fed to the column under pressure and the flow-rate is reasonably constant. The distribution pipes and orifices should be sized to give an even flow from each element.



Figure 11.49. Weir-type distributor (Norton Co.)

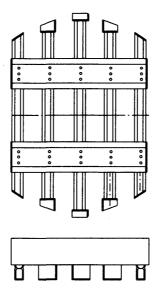
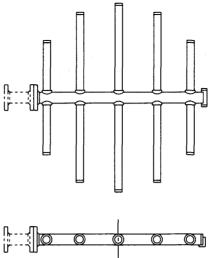
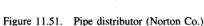





Figure 11.50. Weir-trough distributors (Norton Co.)

# Liquid redistributors

Redistributors are used to collect liquid that has migrated to the column walls and redistribute it evenly over the packing. They will also even out any maldistribution that has occurred within the packing.





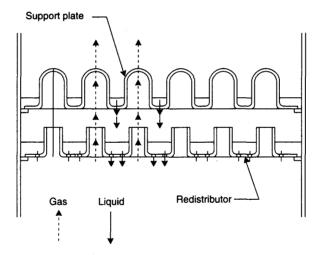



Figure 11.52. Full redistributor

A full redistributor combines the functions of a packing support and a liquid distributor; a typical design is shown in Figure 11.52.

The "wall-wiper" type of redistributor, in which a ring collects liquid from the column wall and redirects it into the centre packing, is occasionally used in small-diameter columns, less than 0.6 m. Care should be taken when specifying this type to select a design that does not unduly restrict the gas flow and cause local flooding. A good design is that shown in Figure 11.53.

The maximum bed height that should be used without liquid redistribution depends on the type of packing and the process. Distillation is less susceptible to maldistribution than

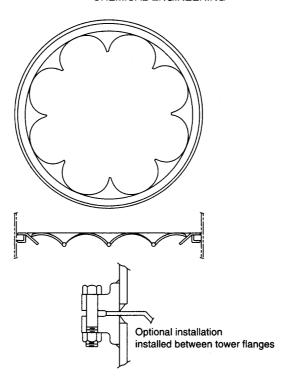



Figure 11.53. "Wall wiper" redistributor (Norton Co.)

absorption and stripping. As a general guide, the maximum bed height should not exceed 3 column diameters for Raschig rings, and 8 to 10 for Pall rings and saddles. In a large-diameter column the bed height will also be limited by the maximum weight of packing that can be supported by the packing support and column walls; this will be around 8 m.

# Hold-down plates

At high gas rates, or if surging occurs through mis-operation, the top layers of packing can be fluidised. Under these conditions ceramic packing can break up and the pieces filter down the column and plug the packing; metal and plastic packing can be blown out of the column. Hold-down plates are used with ceramic packing to weigh down the top layers and prevent fluidisation; a typical design is shown in Figure 11.54. Bed-limiters are sometimes used with plastics and metal packings to prevent expansion of the bed when operating at a high-pressure drop. They are similar to hold-down plates but are of lighter construction and are fixed to the column walls. The openings in hold-down plates and bed-limiters should be small enough to retain the packing, but should not restrict the gas and liquid flow.

# Installing packing

Ceramic and metal packings are normally dumped into the column "wet", to ensure a truly random distribution and prevent damage to the packing. The column is partially filled with water and the packing dumped into the water. A height of water must be kept above the packing at all times.

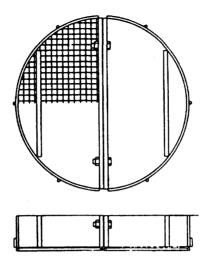



Figure 11.54. Hold-down plate design (Norton Co.)

If the columns must be packed dry, for instance to avoid contamination of process fluids with water, the packing can be lowered into the column in buckets or other containers. Ceramic packings should not be dropped from a height of more than half a metre.

## Liquid hold-up

An estimate of the amount of liquid held up in the packing under operating conditions is needed to calculate the total load carried by the packing support. The liquid hold-up will depend on the liquid rate and, to some extent, on the gas flow-rate. The packing manufacturers' design literature should be consulted to obtain accurate estimates. As a rough guide, a value of about 25 per cent of the packing weight can be taken for ceramic packings.

# 11.14.6. Wetting rates

If very low liquid rates have to be used, outside the range of  $F_{LV}$  given in Figure 11.44, the packing wetting rate should be checked to make sure it is above the minimum recommended by the packing manufacturer.

Wetting rate is defined as:

wetting rate = 
$$\frac{\text{volumetric liquid rate per unit cross-sectional area}}{\text{packing surface area per unit volume}}$$

A nomograph for the calculation of wetting rates is given in Volume 2, Chapter 4.

Wetting rates are frequently expressed in terms of mass or volume flow-rate per unit column cross-sectional area.

Kister (1992) gives values for minimum wetting rates of 0.5 to 2 gpm/ft<sup>2</sup> (0.35  $\times$  10<sup>3</sup> to 1.4  $\times$  10<sup>3</sup> m<sup>3</sup> s<sup>-1</sup>/m<sup>2</sup>) for random packing and 0.1 to 0.2 gpm/ft<sup>2</sup> (0.07  $\times$ 

 $10^{-3}$  to  $0.14 \times 10^{-3}$  m<sup>3</sup> s<sup>-1</sup>/m<sup>2</sup>) for structured packing. Norman (1961) recommends that the liquid rate in absorbers should be kept above 2.7 kg/m<sup>2</sup>s.

If the design liquor rate is too low, the diameter of the column should be reduced. For some processes liquid can be recycled to increase the flow over the packing.

A substantial factor of safety should be applied to the calculated bed height for process where the wetting rate is likely to be low.

### 11.15. COLUMN AUXILIARIES

Intermediate storage tanks will normally be needed to smooth out fluctuations in column operation and process upsets. These tanks should be sized to give sufficient hold-up time for smooth operation and control. The hold-up time required will depend on the nature of the process and on how critical the operation is; some typical values for distillation processes are given below:

| Operation                     | Time, minutes |
|-------------------------------|---------------|
| Feed to a train of columns    | 10 to 20      |
| Between columns               | 5 to 10       |
| Feed to a column from storage | 2 to 5        |
| Reflux drum                   | 5 to 15       |

The time given is that for the level in the tank to fall from the normal operating level to the minimum operating level if the feed ceases.

Horizontal or vertical tanks are used, depending on the size and duty. Where only a small hold-up volume is required this can be provided by extending the column base, or, for reflux accumulators, by extending the bottom header of the condenser.

The specification and sizing of surge tanks and accumulators is discussed in more detail by Mehra (1979) and Evans (1980).

# 11.16. SOLVENT EXTRACTION (LIQUID-LIQUID EXTRACTION)

Extraction should be considered as an alternative to distillation in the following situations:

- 1. Where the components in the feed have close boiling points. Extraction in a suitable solvent may be more economic if the relative volatility is below 1.2.
- 2. If the feed components form an azeotrope.
- 3. If the solute is heat sensitive, and can be extracted in to a lower boiling solvent, to reduce the heat history during recovery.

### Solvent selection

The following factors need to be considered when selecting a suitable solvent for a given extraction.

1. Affinity for solute: the selectivity, which is a measure of the distribution of the solute between the two solvents (concentration of solute in feed-solvent divided by

the concentration in extraction-solvent). Selectivity is analogous to relative volatility in distillation. The greater the difference in solubility of the solute between the two solvents, the easier it will be to extract.

- 2. Partition ratio: this is the weight fraction of the solute in the extract divided by the weight fraction in the raffinate. This determines the quantity of solvent needed. The less solvent needed the lower will be the solvent and solvent recovery costs.
- 3. Density: the greater the density difference between the feed and extraction solvents the easier it will be to separate the solvents.
- 4. Miscibility: ideally the two solvents should be immiscible. The greater the solubility of the exaction solvent in the feed solvent the more difficult it will be to recover the solvent from the raffinate, and the higher the cost.
- 5. Safety: if possible, and all other factors considered, a solvent should be chosen that is not toxic nor dangerously inflammable.
- 6. Cost: the purchase cost of the solvent is important but should not be considered in isolation from the total process costs. It may be worth considering a more expensive solvent if it is more effective and easier to recover.

## 11.16.1. Extraction equipment

Extraction equipment can be divided into two broad groups:

- 1. Stage-wise extractors, in which the liquids are alternately contacted (mixed) and then separated, in a series of stages. The "mixer-settler" contactor, is an example of this type. Several mixer-settlers are often used in series to increase the effectiveness of the extraction.
- 2. Differential extractors, in which the phases are continuously in contact in the extractor and are only separated at the exits; for example, in packed column extractors.

Extraction columns can be further sub-divided according to the method used to promote contact between the phases: packed, plate, mechanically agitated, or pulsed columns. Various types of proprietary centrifugal extractors are also used.

The following factors need to be taken into consideration when selecting an extractor for a particular application:

- 1. The number of stages required.
- 2. The throughputs.
- 3. The settling characteristics of the phases.
- 4. The available floor area and head room.

Hanson (1968) has given a selection guide based on these factors, which can be used to select the type of equipment most likely to be suitable, Figure 11.55.

The fields of application of the various types of extraction equipment are also well summarised in Volume 2, Chapter 13. The basic principles of liquid-liquid extraction are covered in several specialist texts: Hanson (1971), Alders (1955), Treybal (1963), (1980), Lo *et al.* (1983), and Humphrey and Keller (1997).

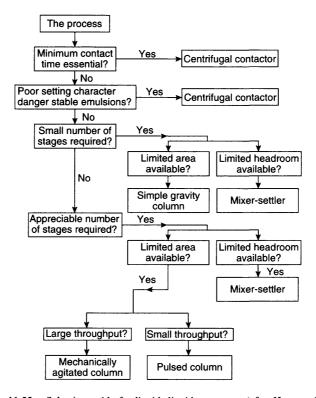



Figure 11.55. Selection guide for liquid-liquid contactors (after Hanson, 1968)

## 11.16.2. Extractor design

# Number of stages

The primary task in the design of an extractor for a liquid-liquid extraction process is the determination of the number of stages needed to achieve the separation required.

The stages my be arranged in three way:

- 1. Fresh solvent fed to each stage, the raffinate passing from stage to stage.
- 2. The extracting solvent fed co-currently with the raffinate, from stage to stage
- 3. The exacting solvent fed counter-current to the raffinate.

Counter-current flow is the most efficient method and the most commonly used. It will give the greatest concentration of the solute in the extract, and the least use of solvent.

# Equilibrium data

To determine the number of stages it best to plot the equilibrium data on a triangular diagram, Figure 11.56. Each corner of the triangle represents 100% of the feed-solvent, solute or extraction-solvent. Each side shows the composition of one of the binary pairs. The ternary compositions are shown in the interior of the triangular. Mixtures within the region bounded by the curve will separate into two phases. The tie-lines link the equilibrium

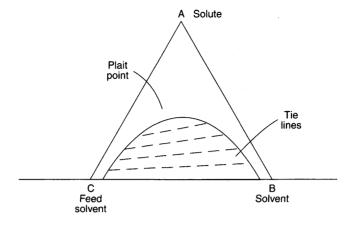



Figure 11.56. Equilibrium diagram solute distributed between two solvents

compositions of the separate phases. The tie-lines reduce in length toward the top of the curve. The point where they disappear is called the *plait* point.

A fuller discussion of the various classes of diagram used to represent liquid-liquid equilibria is given in Volume 2, Chapter 13; see also Trebal (1963) and Humphrey et al. (1984).

The most comprehensive source of equilibrium data for liquid-liquid systems is the DECHEMA data series, Sorensen and Arlt (1979). Equilibrium data for some systems is also given by Perry *et al.* (1997).

The UNIQUAC and UNIFAC equations can be used to estimate liquid-liquid equilibria, see Chapter 8.

# Number of stages

The number of stages required for a given separation can be determined from the triangular diagram using a method analogous to the McCabe-Thiele diagram used to determine the number of theoretical stages (plates) in distillation. The method set out below is for counter-current extraction.

#### **Procedure**

Refer to Figures 11.56 and 11.57.

Let the flow-rates be:

F =feed, of the solution to be extracted

E = extract

R = raffinate

S = the extracting solvent

and the compositions:

r = raffinate

e = extract

s = solvent

f = feed

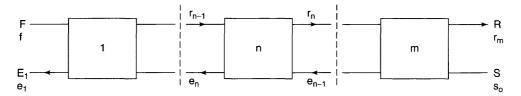



Figure 11.57. Counter-current extraction

Then a material balance over stage n gives:

$$F + E_{n+1} = R_n + E_1$$

It can be shown that the difference in flow-rate between the raffinate leaving any stage,  $R_n$ , and the extract entering the stage,  $E_n$ , is constant. Also, that the difference between the amounts of each component entering and leaving a stage is constant. This means that if lines are drawn on the triangular diagram linking the composition of the raffinate from a stage and the extract entering from the next stage, they will pass through a common pole when extrapolated. The number of stages needed can be found by making use of this construction and the equilibrium compositions given by the tie-lines.

### Construction

- 1. Draw the liquid-liquid equilibrium data on triangular graph paper. Show sufficient tie-lines to enable the equilibrium compositions to be determined at each stage.
- 2. Mark the feed and extraction-solvent compositions on the diagram. Join them with a line. The composition of a mixture of the feed and solvent will lie on this line.
- 3. Calculate the composition of the mixture given by mixing the feed with the extraction solvent. Mark this point, 0, on the line drawn in step 2.
- 4. Mark the final raffinate composition,  $r_m$  on the equilibrium curve.
- 5. Draw a line from  $r_m$  through the point 0. This will cut the curve at the final extract composition,  $e_1$ .
  - Note: if the extract composition is specified, rather than the raffinate, draw the line from  $e_1$  through 0 to find  $r_m$ .
- 6. Draw a line from the solvent composition,  $S_0$  through  $r_m$  and extend it beyond  $r_m$ .
- 7. Draw a line from  $e_1$  through f and extend it to cross the line drawn in step 6, at the pole point, P.
- 8. Find the composition of the raffinate leaving the first stage,  $r_1$  by judging the position of the tie-line from  $e_1$ . Draw a line from the pole point, P, through  $r_1$  to cut the curve at  $e_2$ , the extract leaving stage 2.
- 9. Repeat this procedure until sufficient stages have been drawn to reach the desired raffinate final composition.

If an extended tie-line passes through the pole point P, an infinite number of stages will be needed. This condition sets the minimum flow of extraction-solvent required. It is analogous to a pinch point in distillation.

The method is illustrated in example 11.15

### Example 11.15

Acetone is to be extracted from a solution in water, using 1,1,2-trichloroethane. The feed concentration is 45.0 per cent w/w acetone. Determine the number of stages required to reduce the concentration of acetone to below 10 per cent, using 32 kg of extraction-solvent per 100 kg feed.

The equilibrium data for this system are given by Trebal *et al. Ind. Eng. Chem.* **38**, 817 (1946).

#### Solution

Composition of feed + solvent, point  $o = 0.45 \times 100/(100 + 32) = 0.34 = 34$  per cent. Draw line from TCE (trichloroethane) = 100 per cent, point  $s_0$ , to feed composition, f, 45 per cent acetone.

Mark point o on this line at 34 per cent acetone.

Mark required final raffinate composition,  $r_m$ , on the equilibrium curve, at 10 per cent.

Draw line from this point through point o to find final extract composition,  $e_1$ .

Draw line from this point though the feed composition, f, extend this line to cut a line extended from  $s_0$  through  $r_m$ , at P.

Using the tie-lines plotted on the figure, judge the position that a tie-line would have from  $e_1$  and mark it in, to find the point on the curve giving the composition of the raffinate leaving the first stage,  $r_1$ .

Draw a line through from the pole point P through  $r_1$ , to find the point on the curve giving the extract composition leaving the second stage,  $e_2$ .

Repeat these steps until the raffinate composition found is below 10 per cent.

From the diagram, Figure 11.58, it can be seen that five stages are needed.

That the raffiante composition from stage 5 passes through the specified raffinate composition of 10 per cent is fortuitous. As the construction, particularly the judgement of the position of the tie-lines, is approximate, the number of stages will be increased to six. This should ensure that the specified raffinate composition of below 10 per cent is met.

### Immiscible solvents

If the solvents are immiscible the procedure for determining the number of stages required is simplified. The equilibrium curve can be drawn on regular, orthogonal, graph paper. An operating line, giving the relationship between the compositions of the raffinate and extracts entering and leaving each stage, can then be drawn, and the stages stepped off.

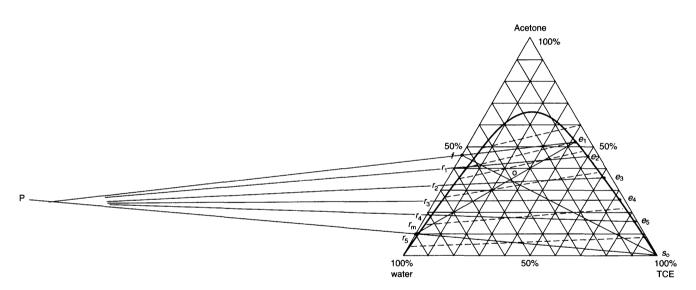



Figure 11.58. Example 11.15

The procedure is similar to the McCabe-Thiele construction for determining the number of stages in distillation; Section 11.5.2. The slope of the operating line is the ratio of the final raffinate to fresh solvent flow-rates.

For a full discussion of the methods that can be used to determine the stage requirements in liquid-liquid extraction refer to Trebal (1963), Perry et al. (1997) and Robbins (1988).

Computer programs are available for the design of extraction processes and would normally be included in the various commercial process simulation packages available; see Chapter 4.

#### 11.16.3. Extraction columns

The simplest form of extractor is a spray column. The column is empty; one liquid forms a continuous phase and the other liquid flows up, or down, the column in the form of droplets. Mass transfer takes places to, or from, the droplets to the continuous phase. The efficiency of a spray tower will be low, particularly with large diameter columns, due to back mixing. The efficiency of the basic, empty, spray column can be improved by installing plates or packing.

Sieve plates are used, similar to those used for distillation and absorption. The stage efficiency for sieve plates, expressed in terms the height of an equivalent theoretical stage (HETS), will, typically, range from 1 to 2.5 m.

Random packings are also used; they are the same as those used in packed distillation and absorption columns. The properties of random packings are given in Table 11.3. Proprietary structured packing are also used.

Mass transfer in packed columns is a continuous, differential, process, so the transfer unit method should be used to determine the column height, as used in absorption; see Section 11.14.2. However, it often convenient to treat them as staged processes and use the HETS for the packing employed. For random packings the HETS will, typically, range from 0.5 to 1.5 m, depending on the type and size of packing used.

# Flooding

No simple correlation is available to predict the flooding velocities in extraction columns, and hence the column diameter needed. The more specialised texts should be consulted to obtain guidance on the appropriate method to use for a particular problem; see Trebal (1963), Perry *et al.* (1997) and Humphrey and Keller (1997).

# 11.16.4. Supercritical fluid extraction

A recent development in liquid-liquid extraction has been the use of supercritical fluids as the extraction-solvent. Carbon dioxide at high pressure is the most commonly used fluid. It is used in processes for the decaffeination of coffee and tea. The solvent can be recovered from the extract solution as a gas, by reducing the pressure. Super critical extraction processes are discussed by Humphrey and Keller (1997).

### 11.17. REFERENCES

- AIChE (1958) Bubble-tray Design Manual (American Institute of Chemical Engineers).
- ALLEVA, R. Q. (1962) Chem. Eng., NY 69 (Aug. 6th) 111. Improving McCabe-Thiele diagrams.
- AMUNDSON, N. R. and PONTINEN, A. J. (1958) *Ind. Eng. Chem.* **50**, 730. Multicomponent distillation calculations on a large digital computer.
- BARNICKI, S. D. and DAVIES, J. F. (1989) Chem. Eng., NY 96 (Oct.) 140, (Nov.) 202. Designing sieve tray columns.
- BILLET, R. (1979) Distillation Engineering (Heydon).
- BILLET, R. (1995) Packed Towers (VCH).
- Bolles, W. L. (1963) Tray hydraulics: bubble-cap trays, in *Design of Equilibrium Stage Processes*, Smith, B. D. (McGraw-Hill).
- Bolles, W. L. and Fair, J. R. (1982) *Chem. Eng., NY* 89 (July 12) 109. Improved mass transfer model enhances packed-column design.
- BUTCHER, C. (1988) Chem. Engr., London No. 451 (Aug.) 25. Structured packings.
- CHAN, H. and FAIR, J. R. (1984a) *Ind. Eng. Chem. Proc. Des. Dev.* 23, 814. Prediction of point efficiencies on sieve trays. 1. Binary systems.
- CHAN, H. and FAIR, J. R. (1984b) *Ind. Eng. Chem. Proc. Des. Dev.* 23, 820. Prediction of point efficiencies on sieve trays. 2. multicomponent systems.
- CHANG, H-Y. (1980) Hyd. Proc. 59 (Aug.) 79. Computer aids short-cut distillation design.
- CHASE, J. D. (1967) Chem. Eng., NY 74 (July 31st) 105 (Aug. 28th) 139 (in two parts). Sieve-tray design.
- CICALESE, J. J., DAVIS, J. A., HARRINGTON, P. J., HOUGHLAND, G. S., HUTCHINSON, A. J. L. and WALSH, T. J. (1947) *Pet. Ref.* 26 (May) 495. Study of alkylation-plant isobutane tower performance.
- COLBURN, A. P. (1936) Ind. Eng. Chem. 28, 520. Effect of entrainment on plate efficiency in distillation.
- COLBURN, A. P. (1939) Trans. Am. Inst. Chem. Eng. 35, 211. The simplified calculation of diffusional processes.
- COLBURN, A. P. (1941) *Trans. Am. Inst. Chem. Eng.* 37, 805. The calculation of minimum reflux ratio in the distillation of multicomponent mixtures.
- CORNELL, D., KNAPP, W. G. and FAIR, J. R. (1960) Chem. Eng. Prog. **56** (July) 68 (Aug.) 48 (in two parts). Mass transfer efficiency in packed columns.
- CZERMANN, J. J., GYOKHEGYI, S. L. and HAY, J. J. (1958) Pet. Ref. 37 (April) 165. Designed packed columns graphically.
- DESHPANDE, P. B. (1985) Distillation Dynamics and Control (Arnold).
- ECKERT, J. S. (1963) *Chem. Eng. Prog.* **59** (May) 76. A new look at distillation—4 tower packings—comparative performance.
- ECKERT, J. S. (1975) Chem. Eng., NY 82 (April 14th) 70. How tower packings behave.
- ECONOMOPOULOS, A. P. (1978) Chem. Eng., NY 85 (Dec. 4th) 109. Computer design of sieve tray columns.
- EDMISTER, W. C. (1947) Hydrocarbon absorption and fractionation process design methods, a series of articles published in the *Petroleum Engineer* from May 1947 to March 1949 (19 parts). Reproduced in *A Sourcebook of Technical Literature on Distillation* (Gulf).
- EDULJEE, H. E. (1958) Brit. Chem. Eng. 53, 14. Design of sieve-type distillation plates.
- EDULJEE, H. E. (1959) Brit. Chem. Eng. 54, 320. Design of sieve-type distillation plates.
- ELLERBE, R. W. (1979) Batch distillation, in *Handbook of Separation Processes for Chemical Engineers*, Schweitzer, P. A. (ed.) (McGraw-Hill).
- Erbar, J. H. and Maddox, R. N. (1961) Pet. Ref. 40 (May) 183. Latest score: reflux vs. trays.
- EVANS, F. L. (1980) Equipment Design Handbook for Refineries and Chemical Plants, vol. 2, 2nd edn (Gulf).
- FAIR, J. R. (1961) Petro/Chem. Eng. 33 (Oct.) 45. How to predict sieve tray entrainment and flooding.
- FAIR, J. R. (1963) Tray hydraulics: perforated trays, in *Design of Equilibrium Stage Processes*, Smith, B. D. (McGraw-Hill).
- FAIR, J. R. and BRAVO, J. L. (1990) Chem. Eng. Prog. 86, (1) 19. Distillation columns containing structured packing.
- FAIR, J. R. and MATTHEWS, R. L. (1958) Pet. Ref. 37 (April) 153. Better estimate of entrainment from bubble-cap trays.
- FAIR, J. R., NULL, H. R. and BOLLES, W. L. (1983) *Ind. Eng. Chem. Proc. Des. Dev.* 22, 53. Scale-up of plate efficiency from laboratory Oldershaw data.
- FEATHERSTONE, W. (1971) Brit. Chem. Eng. & Proc. Tech. 16 (12), 1121. Azeotropic systems, a rapid method of still design.
- FEATHERSTONE, W. (1973) Proc. Tech. Int. 18 (April/May), 185. Non-ideal systems—A rapid method of estimating still requirements.
- FENSKE, M. R. (1932) Ind. Eng. Chem. 24, 482. Fractionation of straight-run gasoline.
- Fredenslund, A., Gmehling, J. and Rasmussen, P. (1977) Vapour-liquid Equilibria using UNIFAC (Elsevier). Geddes, R. L. (1958) AIChE Jl 4, 389. General index of fractional distillation power for hydrocarbon mixtures.

GILLILAND, E. R. (1940) *Ind. Eng. Chem.* **32**, 1220. Multicomponent rectification, estimation of the number of theoretical plates as a function of the reflux ratio.

GILLILAND, E. R. and REED, C. E. (1942) *Ind. Eng. Chem.* 34, 551. Degrees of freedom in multicomponent absorption and rectification.

GLITSCH, H. C. (1960) Pet. Ref. 39 (Aug) 91. Mechanical specification of trays.

GLITSCH, H. C. (1970) Ballast Tray Design Manual, Bulletin No. 4900 (W. Glistsch & Son, Dallas, Texas).

HAAS, J. R. (1992) Rigorous Distillation Calculations, in Distillation Design, Kister, H. Z. (McGraw-Hill).

HANSON, C. (1968) Chem. Eng., NY 75 (Aug. 26th) 76. Solvent extraction.

HANSON, D. N., DUFFIN, J. H. and SOMERVILLE, G. E. (1962) Computation of Multistage Separation Processes (Reinhold).

HANSON, D. N. and SOMERVILLE, G. F. (1963) Advances in Chemical Engineering 4, 279. Computing multistage vapor-liquid processes.

HENGSTEBECK, R. J. (1946) *Trans. Am. Inst. Chem. Eng.* 42, 309. Simplified method for solving multicomponent distillation problems.

HENGSTEBECK, R. J. (1961) Distillation: Principles and design procedures (Reinhold).

HOLLAND, C. D. (1963) Multicomponent Distillation (Prentice-Hall).

HOLLAND, C. D. (1975) Fundamentals and Modeling of Separation Processes (Prentice-Hall).

HUANG, C-J. and HODSON, J. R. (1958) Pet. Ref. 37 (Feb.) 103. Perforated trays — designed this way.

HUMPHREY, J. L. and KELLER, G. E. (1997) Separation Process Technology. (McGraw-Hill).

HUMPHREY, J. L., ROCHA, J. A. and FAIR, J. R.. (1984) Chem. Eng., NY 91 (Sept. 17) 76. The essentials of extraction.

HUNT, C.D'A., HANSON, D. N. and WILKE, C. R. (1955) AIChE Jl 1, 441. Capacity factors in the performance of perforated-plate columns.

JENNY, F. T. (1939) Trans. Am. Inst. Chem. Eng. 35, 635. Graphical solution of problems in multicomponent fractionation.

KING, C. J. (1980) Separation Processes 2nd edn (McGraw-Hill).

KIRKBRIDE, C. G. (1944) Pet. Ref. 23 (Sept.) 87(321). Process design procedure for multicomponent fractionators.

KISTER, H. Z. (1992) Distillation Design (McGraw-Hill).

KISTER, H. Z. and GILL, D. R. (1992) *Chem. Engr., London* No. 524 (Aug.) s7. Flooding and pressure drop in structured packings.

Koch (1960) Flexitray Design Manual, Bulletin 960 (Koch Engineering Co., Wichita, Kansas).

KOCH, R. and KUZNIAR, J. (1966) *International Chem. Eng.* 6 (Oct.) 618. Hydraulic calculations of a weir sieve tray.

KUMAR, A. (1981) Process Synthesis and Engineering Design (Tata-McGraw-Hill.).

KWAUK, M. (1956) AIChE Jl 2, 240. A system for counting variables in separation processes.

LEVA, M. (1992) Chem. Eng. Prog. 88, 65. Reconsider Packed-Tower Pressure-Drop Correlations.

LEVA, M. (1995) Chem. Engr. London No. 592 (July 27) 24. Revised GPDC applied.

LEWIS, W. K. (1909) Ind. Eng. Chem. 1, 522. The theory of fractional distillation.

LEWIS, W. K. (1936) Ind. Eng. Chem. 28, 399. Rectification of binary mixtures.

LEWIS, W. K. and MATHESON, G. L. (1932) Ind. Eng. Chem. 24, 494. Studies in distillation.

LIEBSON, I., KELLEY, R. E. and BULLINGTON, L. A. (1957) Pet. Ref. 36 (Feb.) 127. How to design perforated travs.

LOCKETT, M. J. (1986) Distillation Tray Fundamentals (Cambridge University Press).

LOWENSTEIN, J. G. (1961) Ind. Eng. Chem. 53 (Oct.) 44A. Sizing distillation columns.

LUDWIG, E. E. (1979) Applied Process Design for Chemical and Petrochemical Plant, Vol. 2, 2nd edn (Gulf).

Lyster, W. N., Sullivan, S. L. Billingsley, D. S. and Holland, C. D. (1959) Pet. Ref. 38 (June) 221 (July) 151 (Oct.) 139 and 39 (Aug.) 121 (in four parts). Figure distillation this way.

McCabe, W. L. and Thiele, E. W. (1925) *Ind. Eng. Chem.* 17, 605. Graphical design of distillation columns.

McClain, R. W. (1960) Pet. Ref. 39 (Aug.) 92. How to specify bubble-cap trays.

McCormick, J. E. and Roche, E. C. (1979) Continuous distillation: separation of multicomponent mixtures, in *Handbook of Separation Processes for Chemical Engineers*, Schweitzer, P. A. (ed.) (McGraw-Hill).

MEHRA, Y. R. (1979) Chem. Eng., NY 86 (July 2nd) 87. Liquid surge capacity in horizontal and vertical vessels.

MORRIS, G. A. and JACKSON, J. (1953) Absorption Towers (Butterworths).

MURPHREE, E. V. (1925) Ind. Eng. Chem. 17, 747. Rectifying column calculations.

NAPHTALI, L. M. and SANDHOLM, D. P. (1971) AIChE Jl 17, 148. Multicomponent separation calculations by linearisation.

NORMAN, W. S. (1961) Absorption, Distillation and Cooling Towers (Longmans).

O'CONNELL, H. E. (1946) Trans. Am. Inst. Chem. Eng. 42, 741. Plate efficiency of fractionating columns and absorbers.

OLDERSHAW, C. F. (1941) *Ind. Eng. Chem. (Anal. ed.)* 13, 265. Perforated plate columns for analytical batch distillations.

OLIVER, E. D. (1966) Diffusional Separation Processes (Wiley).

ONDA, K., TAKEUCHI, H. and OKUMOTO, Y. (1968) J. Chem. Eng. Japan 1, 56. Mass transfer coefficients between gas and liquid phases in packed columns.

PATTON, B. A. and PRITCHARD, B. L. (1960) Pet. Ref. 39 (Aug.) 95. How to specify sieve trays.

PERRY, R. H. and CHILTON, C. H. (eds) (1973) Chemical Engineers Handbook, 5th edn (McGraw-Hill).

PERRY, R. H., GREEN, D. W. and MALONEY, J. O. (eds) (1997) Perry's Chemical Engineers' Handbook, 7th edn. (McGraw-Hill).

ROBBINS, L. A. (1988) Extraction, in *Handbook of Separation Processes for Chemical Engineers*, SCHWEITZER, P. A. (ed.) (McGraw-Hill).

ROBINSON, C. S. and GILLILAND, E. R. (1950) Elements of Fractional Distillation (McGraw-Hill).

Rose, A., Sweeney, R. F. and Schrodt, V. N. (1958) *Ind. Eng. Chem.* **50**, 737. Continuous distillation calculations by relaxation method.

SHERWOOD, T. K., PIGFORD, R. L. and WILKE, C. R. (1975) Mass Transfer (McGraw-Hill).

SMITH, B. D. (1963) Design of Equilibrium Stage Processes (McGraw-Hill).

SMITH, B. D. and BRINKLEY, W. K. (1960) AIChE Jl 6, 446. General short-cut equation for equilibrium stage processes.

SMITH, R. (1995) Chemical Process Design (McGraw-Hill).

SMOKER, E. H. (1938) *Trans. Am. Inst. Chem. Eng.* **34**, 165. Analytical determination of plates in fractionating columns.

SOREL, E. (1899) Distillation et Rectification Industrielle (G. Carré et C. Naud).

SORENSEN, J. M. and ARLT, W. (1979) Liquid-Liquid Equilibrium Data Collection, Chemical Data Series Vols V/2, V/3 (DECHEMA).

SOUDERS, M. and BROWN, G. G. (1934) Ind. Eng. Chem. 26, 98. Design of fractionating columns.

STRIGLE, R. F. (1994) Random Packings and Packed Towers: design and applications 2nd edn (Gulf).

SWANSON, R. W. and GESTER, J. A. (1962) J. Chem. Eng. Data 7, 132. Purification of isoprene by extractive distillation.

THIELE, E. W. and GEDDES, R. L. (1933) *Ind. Eng. Chem.* 25, 289. The computation of distillation apparatus for hydrocarbon mixtures.

THOMAS, W. J. and SHAH, A. N. (1964) Trans. Inst. Chem. Eng. 42, T71. Downcomer studies in a frothing system.

THRIFT, C. (1960a) Pet. Ref. 39 (Aug.) 93. How to specify valve trays.

THRIFT, C. (1960b) Pet. Ref. 39 (Aug.) 95. How to specify sieve trays.

Toor, H. L. and Burchard, J. K. (1960) AIChE Jl 6, 202. Plate efficiencies in multicomponent systems.

TREYBAL, R. E. (1980) Mass Transfer Operations, 3rd edn (McGraw-Hill).

UNDERWOOD, A. J. V. (1948) Chem. Eng. Prog. 44 (Aug.) 603. Fractional distillation of multicomponent mixtures.

VAN WINKLE, M. (1967) Distillation (McGraw-Hill).

VAN WINKLE, M., MACFARLAND, A. and SIGMUND, P. M. (1972) Hyd. Proc. 51 (July) 111. Predict distillation efficiency.

VEATCH, F., CALLAHAN, J. L., DOL, J. D. and MILBERGER, E. C. (1960) Chem. Eng. Prog. 56 (Oct.) 65. New route to acrylonitrile.

VITAL, T. J., GROSSEL, S. S. and OLSEN, P. I. (1984) *Hyd. Proc.* **63** (Dec.) 75. Estimating separation efficiency. WANG, J. C. and HENKE, G. E. (1966) *Hyd. Proc.* **48** (Aug) 155. Tridiagonal matrix for distillation.

WILKE, C. R. and CHANG, P. (1955) AIChE Jl 1, 264. Correlation for diffusion coefficients in dilute solutions. WILKE, C. R. and LEE, C. Y. (1955) Ind. Eng. Chem. 47, 1253. Estimation of diffusion coefficients for gases and vapours.

WINN, F. W. (1958) Pet. Ref. 37 (May) 216. New relative volatility method for distillation calculations.

YAWS, C. L., PATEL, P. M., PITTS, F. H. and FANG, C. S. (1979) Hyd. Proc. 58 (Feb.) 99. Estimate multicomponent recovery.

ZUIDERWEG, F. J. (1982) Chem. Eng. Sci. 37, 1441. Sieve trays: A state-of-the-art review.

ZUIDERWEG, F. J., VERBURG, H. and GILISSEN, F. A. H. (1960) First International Symposium on Distillation, Inst. Chem. Eng. London, 201. Comparison of fractionating devices.

### 11.18. NOMENCLATURE

|                                                                |                                                                                        | . 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $A_h$                                                          | Total hole area                                                                        | $\mathbf{L}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $A_i$                                                          | Absorption factor                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $A_m$                                                          | Area term in equation 11.92                                                            | $\mathbf{L}_{2}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $A_n$                                                          | Net area available for vapour-liquid disengagement                                     | $\mathbf{L}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $A_p$                                                          | Perforated area                                                                        | $\mathbf{L}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a                                                              | Packing surface area per unit volume                                                   | $\mathbf{L}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $a_w$                                                          | Effective interfacial area of packing per unit volume                                  | $\mathbf{L}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B                                                              | Mols of bottom product per unit time                                                   | $\mathbf{M}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\bar{b}$                                                      | Parameter in equation 11.28                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $b_i$                                                          | Mols of component <i>i</i> in bottom product                                           | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\vec{C}_o$                                                    | Orifice coefficient in equation 11.88                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $C_T$                                                          | Total molar concentration                                                              | $\mathbf{M}L^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| c                                                              | Parameter defined by equation 11.32                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| D                                                              | Mols of distillate per unit time                                                       | $MT^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $D_c$                                                          | Column diameter                                                                        | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $D_e$                                                          | Eddy diffusivity                                                                       | $L^2T^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $D_L^e$                                                        | Liquid diffusivity                                                                     | $\mathbf{L}^{2}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $D_{LK}$                                                       | Diffusivity of light key component                                                     | $\mathbf{L}^{2}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                |                                                                                        | $\mathbf{L}^{2}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $D_v$                                                          | Diffusivity of vapour Hole diameter                                                    | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $d_h$                                                          |                                                                                        | $MT^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $d_i$                                                          | Mols of component <i>i</i> in distillate per unit time                                 | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $d_p$                                                          | Size of packing Extract flow-rate                                                      | $MT^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $E \\ E_a$                                                     |                                                                                        | WI I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $E_{mV}$                                                       | Actual plate efficiency, allowing for entrainment Murphree plate efficiency            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $E_{mv}$                                                       | Murphree point efficiency                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $E_o^{mv}$                                                     | Overall column efficiency                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $e^{-v}$                                                       | Extract composition                                                                    | Market Ma |
| FA                                                             | Fractional area, equation 11.69                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| F                                                              | Feed, of the solution to be extracted                                                  | $\mathbf{M}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $F_n$                                                          | Feed rate to stage n                                                                   | $MT^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $F_p$                                                          | Packing factor                                                                         | $\mathbf{L}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\stackrel{\scriptstyle{\scriptstyle{\scriptstyle{ u}}}}{F_v}$ | Column 'F' factor = $u_a \sqrt{\rho_v}$                                                | $\mathbf{M}^{1/2}\mathbf{L}^{-1/2}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $F_{LV}^{v}$                                                   | Column liquid-vapour factor in Figure 11.27                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $f^{\mathcal{L}}$                                              | Feed composition                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $f_i$                                                          | Mols of component i in feed per unit time                                              | $\mathbf{M}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $f_1$                                                          | Viscosity correction factor in equation 11.110                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $f_2$                                                          | Liquid density correction factor in equation 11.110                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $f_3$                                                          | Surface tension correction factor in equation 11.110                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| G                                                              | Feed condition factor defined by equations 11.55 and 11.56                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $G_m$                                                          | Molar flow-rate of gas per unit area                                                   | $\mathbf{M}\mathbf{L}^{-2}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| g                                                              | Gravitational acceleration                                                             | $LT^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| H                                                              | Specific enthalpy of vapour phase                                                      | $L^2T^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\mathbf{H}_G$                                                 | Height of gas film transfer unit                                                       | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\mathbf{H}_L$                                                 | Height of liquid film transfer unit                                                    | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\mathbf{H}_{OG}$                                              | Height of overall gas phase transfer unit                                              | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\mathbf{H}_{OL}$                                              | Height of overall liquid phase transfer unit                                           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ${\mathcal H}$                                                 | Henry's constant                                                                       | $ML^{-1}T^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| h                                                              | Specific enthalpy of liquid phase                                                      | $L^2T^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $h_{ap}$                                                       | Apron clearance                                                                        | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $h_b$                                                          | Height of liquid backed-up in downcomer                                                | Ĺ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $h_{bc}$                                                       | Downcomer back-up in terms of clear liquid head                                        | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $h_d$                                                          | Dry plate pressure drop, head of liquid                                                | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $h_{dc}$                                                       | Head loss in downcomer                                                                 | $f L \ f L^2 f T^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $h_f$                                                          | Specific enthalpy of feed stream                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $h_{ow}$                                                       | Height of liquid crest over downcomer weir                                             | L<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $h_r$ $h_t$                                                    | Plate residual pressure drop, head of liquid Total plate pressure drop, head of liquid | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $n_t$                                                          | rotal plate pressure drop, nead of riquid                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| ,                 | W                                                                | _                                                     |
|-------------------|------------------------------------------------------------------|-------------------------------------------------------|
| $h_w$             | Weir height                                                      | L                                                     |
| K<br>K'           | Equilibrium constant for least volatile component                |                                                       |
|                   | Equilibrium constant for more volatile component                 |                                                       |
| $K_G$             | Overall gas phase mass transfer coefficient                      | $\mathbf{L}^{-1}\mathbf{T}$                           |
| $K_i$             | Equilibrium constant for component i                             | LT <sup>-1</sup>                                      |
| $K_L$             | Overall liquid phase mass transfer coefficient                   | LI                                                    |
| $K_n$             | Equilibrium constant on stage n                                  |                                                       |
| $K_1$ $K_2$       | Constant in equation 11.81<br>Constant in equation 11.84         |                                                       |
| $K_3$             | Percentage flooding factor in equation 11.111                    |                                                       |
| $K_4$             | Parameter in Fig. 11.44, defined by equation 11.118              | _                                                     |
| $K_5$             | Constant in equation 11.115                                      | _<br>_<br>_                                           |
| k                 | Root of equation 11.28                                           | _                                                     |
| $k_G$             | Gas film mass transfer coefficient                               | $\mathbf{L}^{-1}\mathbf{T}$                           |
| $k_L^{-}$         | Liquid film mass transfer coefficient                            | $\mathbf{L}\mathbf{T}^{-1}$                           |
| $\tilde{L}$       | Liquid flow-rate, mols per unit time                             | MT-1                                                  |
| $L_e$             | Estimated flow-rate of combined keys, liquid                     | MT-1                                                  |
| $L_m$             | Molar flow-rate of liquid per unit area                          | $\mathbf{ML}^{-2}\mathbf{T}^{-1}$                     |
| $L_p$             | Volumetric flow-rate across plate divided by average plate width | $\mathbf{L}^2\mathbf{T}^{-1}$                         |
| $\dot{L_w}$       | Liquid mass flow-rate                                            | $\mathbf{MT}^{-1}$                                    |
| $L_w^*$           | Liquid mass flow-rate per unit area                              | $\mathbf{M}\mathbf{T}^{-2}\mathbf{T}^{-1}$            |
| $L_{wd}$          | Liquid mass flow-rate through downcomer                          | $\mathbf{MT}^{-1}$                                    |
| $\underline{l_i}$ | Limiting liquid flow-rate of components lighter than the keys    |                                                       |
|                   | in the rectifying section                                        | $\mathbf{M}\mathbf{T}^{-1}$                           |
| $l_i'$            | Limiting liquid flow-rates of components heavier than the keys   |                                                       |
|                   | in the stripping section                                         | $\mathbf{M}\mathbf{T}^{-1}$                           |
| $l_h$             | Weir chord height                                                | L                                                     |
| $l_n$             | Molar liquid flow rate of component from stage n                 | $\mathbf{M}\mathbf{T}^{-1}$                           |
| $l_p$             | Pitch of holes (distance between centres)                        | L                                                     |
| $l_t$             | Plate spacing in column                                          | <u>L</u>                                              |
| $l_w$             | Weir length                                                      | L                                                     |
| $M_s$             | Molecular weight of solvent                                      | <del>-</del>                                          |
| m<br>N            | Slope of equilibrium line                                        | <del>_</del>                                          |
| $N_G$             | Number of stages<br>Number of gas-film transfer units            | _                                                     |
| $N_L$             | Number of liquid-film transfer units                             | _                                                     |
| $N_m$             | Number of stages at total reflux                                 | _                                                     |
| $N_{OG}$          | Number of overall gas-phase transfer units                       | _                                                     |
| $N_{OL}$          | Number of overall liquid-phase transfer units                    | <del></del>                                           |
| $N_r$             | Number of equilibrium stages above feed                          | _                                                     |
| $N_r^*$           | Number of stages in rectifying section (equation 11.26)          | _                                                     |
| $N_s$             | Number of equilibrium stages below feed                          | _                                                     |
| $N_s^*$           | Number of stages in stripping section (equation 11.25)           | _                                                     |
| n                 | Stage number                                                     |                                                       |
| P                 | Total pressure                                                   | $ML^{-1}T^{-2}$                                       |
| $P^o$             | Vapour pressure                                                  | $ML^{-1}T^{-2}$                                       |
| $\Delta P_t$      | Total plate pressure drop                                        | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$                     |
| p                 | Partial pressure                                                 | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$                     |
| q                 | Heat to vaporise one mol of feed divided by molar latent heat    | —<br>Net 2m-3                                         |
| $q_b$             | Heat supplied to reboiler                                        | $ML^2T^{-3}$                                          |
| $q_c$             | Heat removed in condenser                                        | $ML^2T^{-3}$                                          |
| $q_n$             | Heat supplied to or removed from stage $n$                       | $ML^2T^{-3}$                                          |
| R                 | Universal gas constant                                           | $\mathbf{L}^2\mathbf{T}^{-2}\boldsymbol{\theta}^{-1}$ |
| R                 | Reflux ratio                                                     |                                                       |
| R                 | Raffinate flow-rate                                              | $\mathbf{M}\mathbf{T}^{-1}$                           |
| $R_m$             | Minimum reflux ratio Raffinate composition                       |                                                       |
| r<br>S            | Extracting solvent flow-rate                                     |                                                       |
| $S_i$             | Stripping factor                                                 | 141.1                                                 |
| J <sub>I</sub>    | ourbbing motor                                                   |                                                       |

| $S_n$                 | Side stream flow from stage n                                           | $\mathbf{M}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $S_r$                 | Stripping factor for rectifying section (equation 11.54)                | named to the second state of the second state |
| $S_s$                 | Stripping factor for stripping section (equation 11.54)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| S                     | Slope of operating line                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| S                     | Solvent composition                                                     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $t_L$                 | Liquid contact time                                                     | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $t_r$                 | Residence time in downcomer                                             | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $u_a$                 | Vapour velocity based on active area                                    | $\mathbf{L}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $u_f$                 | Vapour velocity at flooding point                                       | LT <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $u_h$                 | Vapour velocity through holes                                           | $\mathbf{L}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $u_n$                 | Vapour velocity based on net cross-sectional area                       | $\mathbf{L}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $u_{v}$               | Superficial vapour velocity (based on total cross-sectional area)       | $LT^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| V                     | Vapour flow-rate mols per unit time                                     | $MT^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $V_e$                 | Estimated flow-rate of combined keys, vapour                            | $\mathbf{M}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $V_w$                 | Vapour mass flow-rate                                                   | $\mathbf{MT}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $V_w^*$               | Vapour mass flow-rate per unit area                                     | $ML^{-2}T^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $v_i^w$               | Limiting vapour flow-rates of components lighter than the keys          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | in the rectifying section                                               | $\mathbf{M}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $v_i'$                | Limiting vapour flow-rates of components heavier than the keys          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <u>-1</u>             | in the stripping section                                                | $\mathbf{M}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 21                    | Molar vapour flow-rate of component from stage $n$                      | $\mathbf{MT}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $v_n$ $x$             | Mol fraction of component in liquid phase                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $x_A$                 | Mol fraction of component A in binary mixture                           | . <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $x_B$                 | Mol fraction of component B in binary mixture                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $x_b$                 | Mol fraction of component in bottom product                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $x_d$                 | Mol fraction of component in distillate                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| x <sub>e</sub>        | Equilibrium concentration                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $x_i$                 | Mol fraction of component i                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $x_r$                 | Concentration of reference component (equation 11.57)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $x_n^*$               | Reference concentration in equation 11.30                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $x_o^*$               | Reference concentration in equation 11.30                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $x_1$                 | Concentration of solute in solution at column base                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $x_2$                 | Concentration of solute in solution at column top                       | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $x_r$                 | Reference concentration equations 11.25 and 11.26                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| У                     | Mol fraction of component in vapour phase                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| УA                    | Mol fraction of component A in a binary mixture                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $y_B$                 | Mol fraction of component B in a binary mixture                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $y_e$                 | Equilibrium concentration                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $y_i$                 | Mol fraction of component i                                             | <del>_</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\Delta y$            | Concentration driving force in the gas phase                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\Delta y_{lm}$       | Log mean concentration driving force                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <i>y</i> <sub>1</sub> | Concentration of solute in gas phase at column base                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\overset{y_2}{Z}$    | Concentration of solute in gas phase at column top<br>Height of packing | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $Z_c$                 | Liquid hold-up on plate                                                 | Ĺ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $Z_L^c$               | Length of liquid path                                                   | Ĺ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $z_i$                 | Mol fraction of component $i$ in feed stream                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $z_f$                 | Mol fraction of component in feed stream                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $z_f^*$               | Pseudo feed concentration defined by equation 11.41                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\alpha$              | Relative volatility                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\alpha_i$            | Relative volatility of component <i>i</i>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\alpha_a$            | Average relative volatility of light key                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\beta$               | Parameter defined by equation 11.31                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\theta$              | Root of equation 11.61                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\mu$                 | Dynamic viscosity                                                       | $\mathbf{ML}^{-1}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\mu_a$               | Molar average liquid viscosity                                          | $\mathbf{ML}^{-1}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\mu_s$               | Viscosity of solvent                                                    | $\mathbf{ML}^{-1}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\mu_w$               | Viscosity of water at 20°C                                              | $\mathbf{ML}^{-1}\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\rho$                | Density  Density                                                        | $ML^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| r                     | ~~~~,                                                                   | 1,122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| $egin{array}{c}  ho_w \ \sigma \ \sigma_c \ \sigma_w \ \Phi \ \Phi_n \ \psi \ \psi_h \end{array}$ | Density of water at 20°C Surface tension Critical surface tension for packing material Surface tension of water at 20°C Intercept of operating line on Y axis Factor in equation 11.43 Fractional entrainment Factor in equation 11.42 | ML <sup>-3</sup><br>MT <sup>-2</sup><br>MT <sup>-2</sup><br>———————————————————————————————————— |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| D <sub>g</sub> P <sub>e</sub> R <sub>e</sub> S <sub>c</sub>                                       | Surface tension number Peclet number Reynolds number Schmidt number                                                                                                                                                                    |                                                                                                  |
| Suffixes<br>L<br>v<br>HK<br>LK                                                                    | s<br>Liquid<br>Vapour<br>Heavy key<br>Light key                                                                                                                                                                                        |                                                                                                  |
| b<br>d<br>f                                                                                       | Bottoms<br>Distillate (Tops)<br>Feed                                                                                                                                                                                                   |                                                                                                  |
| i<br>n<br>1<br>2                                                                                  | Component number Stage number Base of packed column Top of packed column                                                                                                                                                               |                                                                                                  |
| Supers                                                                                            | cripts                                                                                                                                                                                                                                 |                                                                                                  |
| ,                                                                                                 | Stripping section of column                                                                                                                                                                                                            |                                                                                                  |
| Subscri                                                                                           | ipts                                                                                                                                                                                                                                   |                                                                                                  |
| m<br>n                                                                                            | Last stage<br>Stage number                                                                                                                                                                                                             |                                                                                                  |

### 11.19. PROBLEMS

**11.1.** At a pressure of 10 bar, determine the bubble and dew point of a mixture of hydrocarbons, composition, mol per cent: n-butane 21, n-pentane 48, n-hexane 31.

The equilibrium K factors can be estimated using the De Priester charts in Chapter 8.

11.2. The feed to a distillation column has the following composition, mol per cent: propane 5.0, isobutane 15, n-butane 25, isopentane 20, n-pentane 35. The feed is preheated to a temperature of 90 °C, at 8.3 bar pressure. Estimate the proportion of the feed which is vapour.

The equilibrium K factors are given in Example 11.9.

- 11.3. Propane is separated from propylene by distillation. The compounds have close boiling points and the relative volatility will be low. For a feed composition of 10 per cent w/w propane, 90 per cent w/w propylene, estimate the number of theoretical plates needed to produce propylene overhead with a minimum purity of 99.5 mol per cent. The column will operate with a reflux ratio of 20. The feed will be at its boiling point. Take the relative volatility as constant at 1.1.
- **11.4.** The composition of the feed to a debutaniser is given below. Make a preliminary design for a column to recover 98 per cent of the n-butane overhead and 95 per

cent of the isopentane from the column base. The column will operate at 14 bar and the feed will be at its boiling point. Use the short-cut methods and follow the procedure set out below. Use the De Priester charts to determine the relative volatility. The liquid viscosity can be estimated using the data given in Appendix D.

- (a) Investigate the effect of reflux ratio on the number of theoretical stages.
- (b) Select the optimum reflux ratio.
- (c) Determine the number of stages at this reflux ratio.
- (d) Estimate the stage efficiency.
- (e) Determine the number of real stages.
- (f) Estimate the feed point.
- (g) Estimate the column diameter.

### Feed composition:

|                |                  | kg/h |
|----------------|------------------|------|
| propane        | $C_3$            | 910  |
| isobutane      | i-C <sub>4</sub> | 180  |
| n-butane       | n-C <sub>4</sub> | 270  |
| isopentane     | $i-C_5$          | 70   |
| normal pentane | $n-C_5$          | 90   |
| normal hexane  | $n-C_6$          | 20   |

11.5. In a process for the manufacture of acetone, acetone is separated from acetic acid by distillation. The feed to the column is 60 mol per cent acetone, the balance acetic acid

The column is to recover 95 per cent of the acetone in the feed with a purity of 99.5 mol per cent acetone. The column will operate at a pressure of 760 mmHg and the feed will be preheated to  $70\,^{\circ}$ C.

For this separation, determine:

- (a) the number of minimum number of stages required,
- (b) the minimum reflux ratio.
- (c) the number of theoretical stages for a reflux ratio 1.5 times the minimum,
- (d) the number of actual stages if the plate efficiency can be taken as 60 per cent.

Equilibrium data for the system acetone-acetic acid, at 760 mmHg, mol fractions acetone:

| liquid   |       |      |      |      |      |      |      |      |      |
|----------|-------|------|------|------|------|------|------|------|------|
| phase    | 0.10  | 0.2  | 0.3  | 0.4  | 0.5  | 0.6  | 0.7  | 0.8  | 0.9  |
| vapour   |       |      |      |      |      |      |      |      |      |
| phase    | 0.31  | 0.56 | 0.73 | 0.84 | 0.91 | 0.95 | 0.97 | 0.98 | 0.99 |
| boiling  |       |      |      |      |      |      |      |      |      |
| point °C | 103.8 | 93.1 | 85.8 | 79.7 | 74.6 | 70.2 | 66.1 | 62.6 | 59.2 |

Reference: Othmer, D. F. Ind. Eng. Chem. 35, 614 (1943).

**11.6.** In the manufacture of absolute alcohol by fermentation, the product is separated and purified using several stages of distillation. In the first stage, a mixture of

5 mol per cent ethanol in water, with traces of acetaldehyde and fusel oil, is concentrated to 50 mol per cent. The concentration of alcohol in the wastewater is reduced to less than 0.1 mol per cent.

Design a sieve plate column to perform this separation, for a feed rate of 10,000 kg/hour. Treat the feed as a binary mixture of ethanol and water.

Take the feed temperature as 20 °C. The column will operate at 1 atmosphere. Determine:

- (a) the number of theoretical stages,
- (b) an estimate of the stage efficiency,
- (c) the number of actual stages needed.

Design a suitable sieve plate for conditions below the feed point.

Equilibrium data for the system ethanol-water, at 760 mmHg, mol fractions ethanol:

```
liquid
phase
         0.019 0.072 0.124 0.234 0.327 0.508 0.573 0.676 0.747 0.894
vapour
         0.170 \quad 0.389 \quad 0.470 \quad 0.545 \quad 0.583 \quad 0.656 \quad 0.684 \quad 0.739 \quad 0.782 \quad 0.894
phase
boiling
point
°C
        95.5
                89.0
                        85.3
                                82.7
                                        81.5
                                                79.8
                                                        79.3
                                                                78.7
                                                                        78.4
                                                                                78.2
```

Reference: Carey, J. S. and Lewis, W. K. Ind. Eng. Chem 24, 882 (1932).

11.7. In the manufacture of methyl ethyl ketone from butanol, the product is separated from unreacted butanol by distillation. The feed to the column consists of a mixture of 0.90 mol fraction MEK, 0.10 mol fraction 2-butanol, with a trace of trichloroethane.

The feed rate to the column is 20 kmol/h and the feed temperature 35 °C. The specifications required are: top product 0.99 mol fraction MEK; bottom product 0.99 mol fraction butanol.

Design a column for this separation. The column will operate at essentially atmospheric pressure. Use a reflux ratio 1.5 times the minimum.

- (a) determine the minimum reflux ratio,
- (b) determine the number of theoretical stages,
- (c) estimate the stage efficiency,
- (d) determine the number of actual stages needed,
- (e) design a suitable sieve plate for conditions below the feed point.

Equilibrium data for the system MEK-2-butanol, mol fractions MEK:

| liquid<br>phase            | 0.1  | 0.2  | 0.3  | 0.4  | 0.5  | 0.6  | 0.7  | 0.8  | 0.9  |
|----------------------------|------|------|------|------|------|------|------|------|------|
| vapour<br>phase<br>boiling | 0.23 | 0.41 | 0.53 | 0.64 | 0.73 | 0.80 | 0.86 | 0.91 | 0.95 |
| point °C                   | 97   | 94   | 92   | 90   | 87   | 85   | 84   | 82   | 80   |

**11.8.** A column is required to recover acetone from an aqueous solution. The feed contains 5 mol per cent acetone. A product purity of 99.5 per cent w/w is required and the effluent water must contain less than 100 ppm acetone.

The feed temperature will range from 10 to 25 °C. The column will operate at atmospheric pressure. For a feed of 7500 kg/h, compare the designs for a sieve plate and packed column, for this duty. Use a reflux ratio of 3. Compare the capital and utility cost for the two designs.

No reboiler is required for this column; live steam can be used.

Equilibrium data for the system acetone-water is given in Example 11.2.

**11.9.** In the manufacture of methyl ethyl ketone (MEK). the product MEK is extracted from a solution in water using 1,1,2 trichloroethane as the solvent.

For a feed rate 2000 kg/h of solution, composition 30 per cent w/w MEK, determine the number of stages required to recover 95 per cent of the dissolved MEK; using 700 kg/h TCE, with counter-current flow.

Tie-line data for the system MEK-water-TCE percentages w/w, from Newman et al., Ind Eng Chem 41, 2039 (1949).

| water-ric | ch phase | solvent-r | ich phase |
|-----------|----------|-----------|-----------|
| MEK       | TCE      | MEK       | TCE       |
| 18.15     | 0.11     | 75.00     | 19.92     |
| 12.78     | 0.16     | 58.62     | 38.65     |
| 9.23      | 0.23     | 44.38     | 54.14     |
| 6.00      | 0.30     | 31.20     | 67.80     |
| 2.83      | 0.37     | 16.90     | 82.58     |
| 1.02      | 0.41     | 5.58      | 94.42     |

11.10. Chlorine is to be removed from a vent stream by scrubbing with a 5 per cent w/w aqueous solution of sodium hydroxide. The vent stream is essential nitrogen, with a maximum concentration of 5.5 per cent w/w chlorine. The concentration of chlorine leaving the scrubber must be less than 50 ppm by weight. The maximum flow-rate of the vent stream to the scrubber will be 4500 kg/h. Design a suitable packed column for this duty. The column will operate at 1.1 bar and ambient temperature. If necessary, the aqueous stream may be recirculated to maintain a suitable wetting rate.

Note: the reaction of chlorine with the aqueous solution will be rapid and there will be essentially no back-pressure of chlorine from the solution.

### CHAPTER 12

## Heat-transfer Equipment

### 12.1. INTRODUCTION

The transfer of heat to and from process fluids is an essential part of most chemical processes. The most commonly used type of heat-transfer equipment is the ubiquitous shell and tube heat exchanger; the design of which is the main subject of this chapter.

The fundamentals of heat-transfer theory are covered in Volume 1, Chapter 9; and in many other textbooks: Holman (1992), Ozisik (1985), Rohsenow *et al.* (1985), Kreith and Bohn (1986), and Incropera and Dewitt (1990).

Several useful books have been published on the design of heat exchange equipment. These should be consulted for fuller details of the construction of equipment and design methods than can be given in this book. A selection of the more useful texts is listed in the bibliography at the end of this chapter. The compilation edited by Schlünder (1983ff), see also the edition by Hewitt (1990), is probably the most comprehensive work on heat exchanger design methods available in the open literature. The book by Saunders (1988) is recommended as a good source of information on heat exchanger design, especially for shell-and-tube exchangers.

As with distillation, work on the development of reliable design methods for heat exchangers has been dominated in recent years by commercial research organisations: Heat Transfer Research Inc. (HTRI) in the United States, and Heat Transfer and Fluid Flow Service (HTFS) operated by the United Kingdom Atomic Energy Authority and the National Engineering Laboratory in the United Kingdom. Their methods are of a proprietary nature and are not therefore available in the open literature. They will, however, be available to design engineers in the major operating and contracting companies, whose companies subscribe to these organisations.

The principal types of heat exchanger used in the chemical process and allied industries, which will be discussed in this chapter, are listed below:

- 1. Double-pipe exchanger: the simplest type, used for cooling and heating.
- 2. Shell and tube exchangers: used for all applications.
- 3. Plate and frame exchangers (plate heat exchangers): used for heating and cooling.
- 4. Plate-fin exchangers.
- 5. Spiral heat exchangers.
- 6. Air cooled: coolers and condensers.
- 7. Direct contact: cooling and quenching.
- 8. Agitated vessels.
- 9. Fired heaters.

The word "exchanger" really applies to all types of equipment in which heat is exchanged but is often used specifically to denote equipment in which heat is exchanged between two process streams. Exchangers in which a process fluid is heated or cooled by a plant service stream are referred to as heaters and coolers. If the process stream is vaporised the exchanger is called a vaporiser if the stream is essentially completely vaporised; a reboiler if associated with a distillation column; and an evaporator if used to concentrate a solution (see Chapter 10). The term fired exchanger is used for exchangers heated by combustion gases, such as boilers; other exchangers are referred to as "unfired exchangers".

### 12.2. BASIC DESIGN PROCEDURE AND THEORY

The general equation for heat transfer across a surface is:

$$Q = UA\Delta T_m \tag{12.1}$$

where

Q = heat transferred per unit time, W,

U = the overall heat transfer coefficient, W/m<sup>2</sup>°C,

 $A = \text{heat-transfer area, } m^2$ ,

 $\Delta T_m$  = the mean temperature difference, the temperature driving force, °C.

The prime objective in the design of an exchanger is to determine the surface area required for the specified duty (rate of heat transfer) using the temperature differences available.

The overall coefficient is the reciprocal of the overall resistance to heat transfer, which is the sum of several individual resistances. For heat exchange across a typical heat-exchanger tube the relationship between the overall coefficient and the individual coefficients, which are the reciprocals of the individual resistances, is given by:

$$\frac{1}{U_o} = \frac{1}{h_o} + \frac{1}{h_{od}} + \frac{d_o \ln\left(\frac{d_o}{d_i}\right)}{2k_w} + \frac{d_o}{d_i} \times \frac{1}{h_{id}} + \frac{d_o}{d_i} \times \frac{1}{h_i}$$
(12.2)

where  $U_o$  = the overall coefficient based on the outside area of the tube, W/m<sup>2</sup>°C,

 $h_o$  = outside fluid film coefficient, W/m<sup>2</sup>°C,

 $h_i$  = inside fluid film coefficient, W/m<sup>2</sup>°C,

 $h_{od}$  = outside dirt coefficient (fouling factor), W/m<sup>2</sup>°C,

 $h_{id}$  = inside dirt coefficient, W/m<sup>2</sup>°C,

 $k_w$  = thermal conductivity of the tube wall material, W/m°C,

 $d_i$  = tube inside diameter, m,

 $d_o$  = tube outside diameter, m.

The magnitude of the individual coefficients will depend on the nature of the heat-transfer process (conduction, convection, condensation, boiling or radiation), on the physical properties of the fluids, on the fluid flow-rates, and on the physical arrangement of the heat-transfer surface. As the physical layout of the exchanger cannot be determined until the area is known the design of an exchanger is of necessity a trial and error procedure. The steps in a typical design procedure are given below:

- 1. Define the duty: heat-transfer rate, fluid flow-rates, temperatures.
- 2. Collect together the fluid physical properties required: density, viscosity, thermal conductivity.
- 3. Decide on the type of exchanger to be used.
- 4. Select a trial value for the overall coefficient, U.
- 5. Calculate the mean temperature difference,  $\Delta T_m$ .
- 6. Calculate the area required from equation 12.1.
- 7. Decide the exchanger layout.
- 8. Calculate the individual coefficients.
- 9. Calculate the overall coefficient and compare with the trial value. If the calculated value differs significantly from the estimated value, substitute the calculated for the estimated value and return to step 6.
- 10. Calculate the exchanger pressure drop; if unsatisfactory return to steps 7 or 4 or 3, in that order of preference.
- 11. Optimise the design: repeat steps 4 to 10, as necessary, to determine the cheapest exchanger that will satisfy the duty. Usually this will be the one with the smallest area.

Procedures for estimating the individual heat-transfer coefficients and the exchanger pressure drops are given in this chapter.

## 12.2.1. Heat exchanger analysis: the effectiveness - NTU method

The *effectiveness—NTU* method is a procedure for evaluating the performance of heat exchangers, which has the advantage that it does not require the evaluation of the mean temperature differences. *NTU* stands for the Number of Transfer Units, and is analogous with the use of transfer units in mass transfer; see Chapter 11.

The principal use of this method is in the rating of an existing exchanger. It can be used to determine the performance of the exchanger when the heat transfer area and construction details are known. The method has an advantage over the use of the design procedure outlined above, as an unknown stream outlet temperature can be determined directly, without the need for iterative calculations. It makes use of plots of the exchanger *effectiveness* versus *NTU*. The effectiveness is the ratio of the actual rate of heat transfer, to the maximum possible rate.

The *effectiveness-NTU* method will not be covered in this book, as it is more useful for rating than design. The method is covered in books by Incropera and Dewitt (1996), Ozisik (1985) and Hewitt *et al.* (1994). The method is also covered in the Engineering Sciences Data Unit, ESDU 86018 (1986). This reference gives large clear plots of *effectiveness* versus *NTU* and is recommend for accurate work.

### 12.3. OVERALL HEAT-TRANSFER COEFFICIENT

Typical values of the overall heat-transfer coefficient for various types of heat exchanger are given in Table 12.1. More extensive data can be found in the books by Perry and Green (1984), TEMA (1988), and Ludwig (1965).

Table 12.1. Typical overall coefficients

| Cold fluid               | <i>U</i> (W/m <sup>2</sup> °C)                                                                                                                                                                                                                                                          |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | U (W/III C)                                                                                                                                                                                                                                                                             |
|                          |                                                                                                                                                                                                                                                                                         |
| Water                    | 800-1500                                                                                                                                                                                                                                                                                |
| Organic solvents         | 100-300                                                                                                                                                                                                                                                                                 |
| Light oils               | 100-400                                                                                                                                                                                                                                                                                 |
| Heavy oils               | 50-300                                                                                                                                                                                                                                                                                  |
| Gases                    | 10-50                                                                                                                                                                                                                                                                                   |
|                          |                                                                                                                                                                                                                                                                                         |
| Water                    | 250 - 750                                                                                                                                                                                                                                                                               |
| Water                    | 350-900                                                                                                                                                                                                                                                                                 |
| Water                    | 60-300                                                                                                                                                                                                                                                                                  |
| Water                    | 20-300                                                                                                                                                                                                                                                                                  |
| Brine                    | 150-500                                                                                                                                                                                                                                                                                 |
| Brine                    | 600-1200                                                                                                                                                                                                                                                                                |
| Brine                    | 15 - 250                                                                                                                                                                                                                                                                                |
|                          |                                                                                                                                                                                                                                                                                         |
| Water                    | 1500-4000                                                                                                                                                                                                                                                                               |
| Organic solvents         | 500-1000                                                                                                                                                                                                                                                                                |
| Light oils               | 300-900                                                                                                                                                                                                                                                                                 |
| Heavy oils               | 60-450                                                                                                                                                                                                                                                                                  |
| Gases                    | 30-300                                                                                                                                                                                                                                                                                  |
| Heavy oils               | 50-300                                                                                                                                                                                                                                                                                  |
| Gases                    | 20-200                                                                                                                                                                                                                                                                                  |
|                          | 30-100                                                                                                                                                                                                                                                                                  |
| Hydrocarbon vapours      | 30-100                                                                                                                                                                                                                                                                                  |
| •                        |                                                                                                                                                                                                                                                                                         |
| Water                    | 1000-1500                                                                                                                                                                                                                                                                               |
| Water                    | 700-1000                                                                                                                                                                                                                                                                                |
| Water                    | 500-700                                                                                                                                                                                                                                                                                 |
| Water                    | 200-500                                                                                                                                                                                                                                                                                 |
|                          |                                                                                                                                                                                                                                                                                         |
| Aqueous solutions        | 1000-1500                                                                                                                                                                                                                                                                               |
| •                        | 900-1200                                                                                                                                                                                                                                                                                |
|                          | 600-900                                                                                                                                                                                                                                                                                 |
|                          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                   |
| 0                        |                                                                                                                                                                                                                                                                                         |
|                          | 300-450                                                                                                                                                                                                                                                                                 |
|                          |                                                                                                                                                                                                                                                                                         |
|                          | 300-700                                                                                                                                                                                                                                                                                 |
|                          | 50-150                                                                                                                                                                                                                                                                                  |
|                          | 50-100                                                                                                                                                                                                                                                                                  |
|                          | 100-300                                                                                                                                                                                                                                                                                 |
|                          | 300-600                                                                                                                                                                                                                                                                                 |
| nersed coils             |                                                                                                                                                                                                                                                                                         |
| Pool                     |                                                                                                                                                                                                                                                                                         |
| <del>- ·</del>           |                                                                                                                                                                                                                                                                                         |
| Dilute aqueous solutions | 500-1000                                                                                                                                                                                                                                                                                |
| Light oils               | 200-300                                                                                                                                                                                                                                                                                 |
|                          | 70-150                                                                                                                                                                                                                                                                                  |
|                          | 200-500                                                                                                                                                                                                                                                                                 |
| -                        | 100-150                                                                                                                                                                                                                                                                                 |
|                          | Light oils Heavy oils Gases  Water Water Water Water Brine Brine Brine Water Organic solvents Light oils Heavy oils Gases Heavy oils Gases Steam Hydrocarbon vapours  Water Water Water Water Water Water Water Water Water Organic solvents Light oils Gases Steam Hydrocarbon vapours |

(continued overleaf)

Table 12.1. (continued)

|                          | Immersed coils           |                       |
|--------------------------|--------------------------|-----------------------|
| Coil                     | Pool                     | $U (W/m^2 ^{\circ}C)$ |
| Agitated                 |                          |                       |
| Steam                    | Dilute aqueous solutions | 800-1500              |
| Steam                    | Light oils               | 300-500               |
| Steam                    | Heavy oils               | 200-400               |
| Water                    | Aqueous solutions        | 400-700               |
| Water                    | Light oils               | 200-300               |
|                          | Jacketed vessels         |                       |
| Jacket                   | Vessel                   |                       |
| Steam                    | Dilute aqueous solutions | 500-700               |
| Steam                    | Light organics           | 250-500               |
| Water                    | Dilute aqueous solutions | 200-500               |
| Water                    | Light organics           | 200-300               |
| Gas                      | sketed-plate exchangers  |                       |
| Hot fluid                | Cold fluid               |                       |
| Light organic            | Light organic            | 2500-5000             |
| Light organic            | Viscous organic          | 250-500               |
| Viscous organic          | Viscous organic          | 100-200               |
| Light organic            | Process water            | 2500-3500             |
| Viscous organic          | Process water            | 250-500               |
| Light organic            | Cooling water            | 2000-4500             |
| Viscous organic          | Cooling water            | 250-450               |
| Condensing steam         | Light organic            | 2500-3500             |
| Condensing steam         | Viscous organic          | 250-500               |
| Process water            | Process water            | 5000-7500             |
| Process water            | Cooling water            | 5000-7000             |
| Dilute aqueous solutions | Cooling water            | 5000-7000             |
| Condensing steam         | Process water            | 3500-4500             |

Figure 12.1, which is adapted from a similar nomograph given by Frank (1974), can be used to estimate the overall coefficient for tubular exchangers (shell and tube). The film coefficients given in Figure 12.1 include an allowance for fouling.

The values given in Table 12.1 and Figure 12.1 can be used for the preliminary sizing of equipment for process evaluation, and as trial values for starting a detailed thermal design.

## 12.4. FOULING FACTORS (DIRT FACTORS)

Most process and service fluids will foul the heat-transfer surfaces in an exchanger to a greater or lesser extent. The deposited material will normally have a relatively low thermal conductivity and will reduce the overall coefficient. It is therefore necessary to oversize an exchanger to allow for the reduction in performance during operation. The effect of fouling is allowed for in design by including the inside and outside fouling coefficients in equation 12.2. Fouling factors are usually quoted as heat-transfer resistances, rather than coefficients. They are difficult to predict and are usually based on past experience.

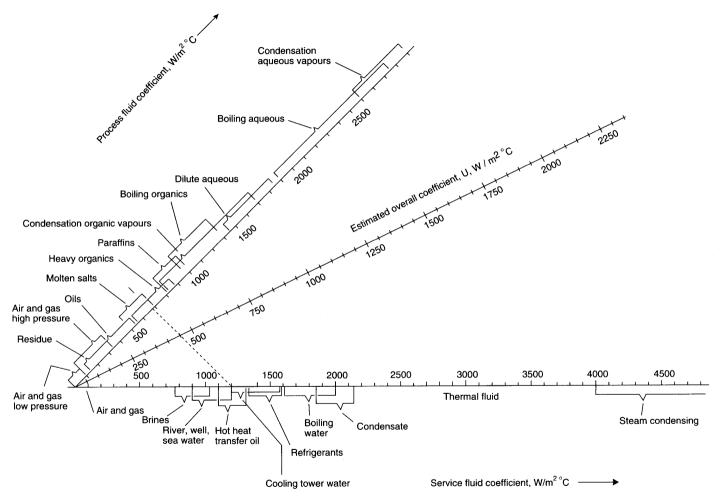



Figure 12.1. Overall coefficients (join process side duty to service side and read U from centre scale)

Estimating fouling factors introduces a considerable uncertainty into exchanger design; the value assumed for the fouling factor can overwhelm the accuracy of the predicted values of the other coefficients. Fouling factors are often wrongly used as factors of safety in exchanger design. Some work on the prediction of fouling factors has been done by HTRI; see Taborek *et al.* (1972). Fouling is the subject of books by Bott (1990) an Garrett-Price (1985).

Typical values for the fouling coefficients and factors for common process and service fluids are given in Table 12.2. These values are for shell and tube exchangers with plain (not finned) tubes. More extensive data on fouling factors are given in the TEMA standards (1988), and by Ludwig (1965).

| Fluid                    | Coefficient (W/m <sup>2</sup> °C) | Factor (resistance) (m <sup>2</sup> °C/W) |
|--------------------------|-----------------------------------|-------------------------------------------|
| River water              | 3000-12,000                       | 0.0003-0.0001                             |
| Sea water                | 1000-3000                         | 0.001 - 0.0003                            |
| Cooling water (towers)   | 3000-6000                         | 0.0003 - 0.00017                          |
| Towns water (soft)       | 3000-5000                         | 0.0003 - 0.0002                           |
| Towns water (hard)       | 1000-2000                         | 0.001 - 0.0005                            |
| Steam condensate         | 1500-5000                         | 0.00067 - 0.0002                          |
| Steam (oil free)         | 4000-10,000                       | 0.0025 - 0.0001                           |
| Steam (oil traces)       | 2000-5000                         | 0.0005 - 0.0002                           |
| Refrigerated brine       | 3000-5000                         | 0.0003 - 0.0002                           |
| Air and industrial gases | 5000-10,000                       | 0.0002 - 0.0001                           |
| Flue gases               | 2000-5000                         | 0.0005 - 0.0002                           |
| Organic vapours          | 5000                              | 0.0002                                    |
| Organic liquids          | 5000                              | 0.0002                                    |
| Light hydrocarbons       | 5000                              | 0.0002                                    |
| Heavy hydrocarbons       | 2000                              | 0.0005                                    |
| Boiling organics         | 2500                              | 0.0004                                    |
| Condensing organics      | 5000                              | 0.0002                                    |
| Heat transfer fluids     | 5000                              | 0.0002                                    |
| Aqueous salt solutions   | 3000-5000                         | 0.0003 - 0.0002                           |

Table 12.2. Fouling factors (coefficients), typical values

The selection of the design fouling coefficient will often be an economic decision. The optimum design will be obtained by balancing the extra capital cost of a larger exchanger against the savings in operating cost obtained from the longer operating time between cleaning that the larger area will give. Duplicate exchangers should be considered for severely fouling systems.

## 12.5. SHELL AND TUBE EXCHANGERS: CONSTRUCTION DETAILS

The shell and tube exchanger is by far the most commonly used type of heat-transfer equipment used in the chemical and allied industries. The advantages of this type are:

- 1. The configuration gives a large surface area in a small volume.
- 2. Good mechanical layout: a good shape for pressure operation.
- 3. Uses well-established fabrication techniques.
- 4. Can be constructed from a wide range of materials.

- 5. Easily cleaned.
- 6. Well-established design procedures.

Essentially, a shell and tube exchanger consists of a bundle of tubes enclosed in a cylindrical shell. The ends of the tubes are fitted into tube sheets, which separate the shell-side and tube-side fluids. Baffles are provided in the shell to direct the fluid flow and support the tubes. The assembly of baffles and tubes is held together by support rods and spacers, Figure 12.2.

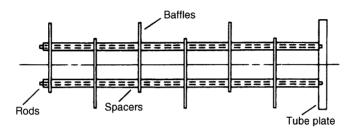



Figure 12.2. Baffle spacers and tie rods

## Exchanger types

The principal types of shell and tube exchanger are shown in Figures 12.3 to 12.8. Diagrams of other types and full details of their construction can be found in the heat-exchanger standards (see Section 12.5.1.). The standard nomenclature used for shell and tube exchangers is given below; the numbers refer to the features shown in Figures 12.3 to 12.8.

### Nomenclature

#### Part number

- 1. Shell
- 2. Shell cover
- 3. Floating-head cover
- 4. Floating-tube plate
- 5. Clamp ring
- 6. Fixed-tube sheet (tube plate)
- 7. Channel (end-box or header)
- 8. Channel cover
- 9. Branch (nozzle)
- 10. Tie rod and spacer
- 11. Cross baffle or tube-support plate
- 12. Impingement baffle
- 13. Longitudinal baffle
- 14. Support bracket

- 15. Floating-head support
- 16. Weir
- 17. Split ring
- 18. Tube
- 19. Tube bundle
- 20. Pass partition
- 21. Floating-head gland (packed gland)
- 22. Floating-head gland ring
- 23. Vent connection
- 24. Drain connection
- 25. Test connection
- 26. Expansion bellows
- 27. Lifting ring

The simplest and cheapest type of shell and tube exchanger is the fixed tube sheet design shown in Figure 12.3. The main disadvantages of this type are that the tube bundle cannot be removed for cleaning and there is no provision for differential expansion of the shell and tubes. As the shell and tubes will be at different temperatures, and may be of different materials, the differential expansion can be considerable and the use of this type is limited to temperature differences up to about 80°C. Some provision for expansion can be made by including an expansion loop in the shell (shown dotted on Figure 12.3) but their use is limited to low shell pressure; up to about 8 bar. In the other types, only one end of the tubes is fixed and the bundle can expand freely.

The U-tube (U-bundle) type shown in Figure 12.4 requires only one tube sheet and is cheaper than the floating-head types; but is limited in use to relatively clean fluids as the tubes and bundle are difficult to clean. It is also more difficult to replace a tube in this type.

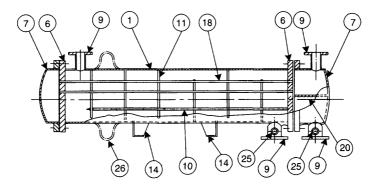



Figure 12.3. Fixed-tube plate (based on figures from BS 3274: 1960)

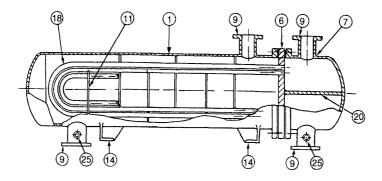



Figure 12.4. U-tube (based on figures from BS 3274: 1960)

Exchangers with an internal floating head, Figures 12.5 and 12.6, are more versatile than fixed head and U-tube exchangers. They are suitable for high-temperature differentials and, as the tubes can be rodded from end to end and the bundle removed, are easier to

clean and can be used for fouling liquids. A disadvantage of the pull-through design, Figure 12.5, is that the clearance between the outermost tubes in the bundle and the shell must be made greater than in the fixed and U-tube designs to accommodate the floating-head flange, allowing fluid to bypass the tubes. The clamp ring (split flange design), Figure 12.6, is used to reduce the clearance needed. There will always be a danger of leakage occurring from the internal flanges in these floating head designs.

In the external floating head designs, Figure 12.7, the floating-head joint is located outside the shell, and the shell sealed with a sliding gland joint employing a stuffing box. Because of the danger of leaks through the gland, the shell-side pressure in this type is usually limited to about 20 bar, and flammable or toxic materials should not be used on the shell side.

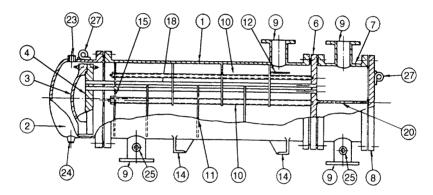



Figure 12.5. Internal floating head without clamp ring (based on figures from BS 3274: 1960)

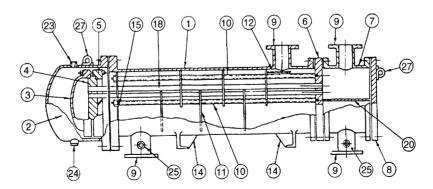



Figure 12.6. Internal floating head with clamp ring (based on figures from BS 3274: 1960)

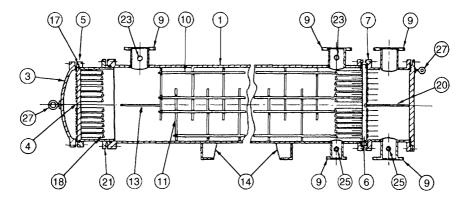



Figure 12.7. External floating head, packed gland (based on figures from BS 3274: 1960)

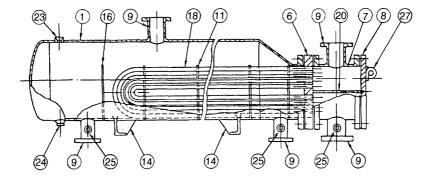



Figure 12.8. Kettle reboiler with U-tube bundle (based on figures from BS 3274: 1960)

## 12.5.1. Heat-exchanger standards and codes

The mechanical design features, fabrication, materials of construction, and testing of shell and tube exchangers is covered by British Standard, BS 3274. The standards of the American Tubular Heat Exchanger Manufacturers Association, the TEMA standards, are also universally used. The TEMA standards cover three classes of exchanger: class R covers exchangers for the generally severe duties of the petroleum and related industries; class C covers exchangers for moderate duties in commercial and general process applications; and class B covers exchangers for use in the chemical process industries. The British and American standards should be consulted for full details of the mechanical design features of shell and tube exchangers; only brief details will be given in this chapter.

The standards give the preferred shell and tube dimensions; the design and manufacturing tolerances; corrosion allowances; and the recommended design stresses for materials of construction. The shell of an exchanger is a pressure vessel and will be designed in accordance with the appropriate national pressure vessel code. In the United Kingdom this will be BS 5500, which is discussed in Chapter 13. The dimensions of standard flanges for use with heat exchangers are given in BS 3274, and in the TEMA standards.

In both the American and British standards dimensions are given in feet and inches, so these units have been used in this chapter with the equivalent values in SI units given in brackets.

### 12.5.2. Tubes

### **Dimensions**

Tube diameters in the range  $\frac{5}{8}$  in. (16 mm) to 2 in. (50 mm) are used. The smaller diameters  $\frac{5}{8}$  to 1 in. (16 to 25 mm) are preferred for most duties, as they will give more compact, and therefore cheaper, exchangers. Larger tubes are easier to clean by mechanical methods and would be selected for heavily fouling fluids.

The tube thickness (gauge) is selected to withstand the internal pressure and give an adequate corrosion allowance. Steel tubes for heat exchangers are covered by BS 3606 (metric sizes); the standards applicable to other materials are given in BS 3274. Standard diameters and wall thicknesses for steel tubes are given in Table 12.3.

| Table 12.3.           | imensions           | mensions for steel tubes |     |     |     |
|-----------------------|---------------------|--------------------------|-----|-----|-----|
| Outside diameter (mm) | Wall thickness (mm) |                          |     |     |     |
| 16                    | 1.2                 | 1.6                      | 2.0 | _   |     |
| 20                    |                     | 1.6                      | 2.0 | 2.6 | _   |
| 25                    | _                   | 1.6                      | 2.0 | 2.6 | 3.2 |
| 30                    |                     | 1.6                      | 2.0 | 2.6 | 3.2 |
| 38                    |                     | _                        | 2.0 | 2.6 | 3.2 |
| 50                    | _                   | _                        | 2.0 | 2.6 | 3.2 |

Table 12.3. Standard dimensions for steel tubes

The preferred lengths of tubes for heat exchangers are: 6 ft. (1.83 m), 8 ft (2.44 m), 12 ft (3.66 m), 16 ft (4.88 m) 20 ft (6.10 m), 24 ft (7.32 m). For a given surface area, the use of longer tubes will reduce the shell diameter; which will generally result in a lower cost exchanger, particularly for high shell pressures. The optimum tube length to shell diameter will usually fall within the range of 5 to 10.

If U-tubes are used, the tubes on the outside of the bundle will be longer than those on the inside. The average length needs to be estimated for use in the thermal design. U-tubes will be bent from standard tube lengths and cut to size.

The tube size is often determined by the plant maintenance department standards, as clearly it is an advantage to reduce the number of sizes that have to be held in stores for tube replacement.

As a guide,  $\frac{3}{4}$  in. (19 mm) is a good trial diameter with which to start design calculations.

## Tube arrangements

The tubes in an exchanger are usually arranged in an equilateral triangular, square, or rotated square pattern; see Figure 12.9.

The triangular and rotated square patterns give higher heat-transfer rates, but at the expense of a higher pressure drop than the square pattern. A square, or rotated square arrangement, is used for heavily fouling fluids, where it is necessary to mechanically clean

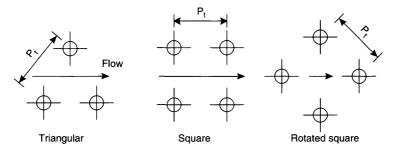



Figure 12.9. Tube patterns

the outside of the tubes. The recommended tube pitch (distance between tube centres) is 1.25 times the tube outside diameter; and this will normally be used unless process requirements dictate otherwise. Where a square pattern is used for ease of cleaning, the recommended minimum clearance between the tubes is 0.25 in. (6.4 mm).

### Tube-side passes

The fluid in the tube is usually directed to flow back and forth in a number of "passes" through groups of tubes arranged in parallel, to increase the length of the flow path. The number of passes is selected to give the required tube-side design velocity. Exchangers are built with from one to up to about sixteen tube passes. The tubes are arranged into the number of passes required by dividing up the exchanger headers (channels) with partition plates (pass partitions). The arrangement of the pass partitions for 2, 4 and 6 tube passes are shown in Figure 12.11. The layouts for higher numbers of passes are given by Saunders (1988).

#### 12.5.3. Shells

The British standard BS 3274 covers exchangers from 6 in. (150 mm) to 42 in. (1067 mm) diameter; and the TEMA standards, exchangers up to 60 in. (1520 mm).

Up to about 24 in. (610 mm) shells are normally constructed from standard, close tolerance, pipe; above 24 in. (610 mm) they are rolled from plate.

For pressure applications the shell thickness would be sized according to the pressure vessel design standards, see Chapter 13. The minimum allowable shell thickness is given in BS 3274 and the TEMA standards. The values, converted to SI units, are given below:

## Minimum shell thickness, mm

| Nominal shell | Carbo | Carbon steel |       |  |
|---------------|-------|--------------|-------|--|
| dia., mm      | pipe  | plate        | steel |  |
| 152           | 7.1   |              | 3.2   |  |
| 203-305       | 9.3   |              | 3.2   |  |
| 330-737       | 9.5   | 9.5          | 4.8   |  |
| 762-991       | _     | 11.1         | 6.4   |  |
| 1016-1524     |       | 12.7         | 7.9   |  |

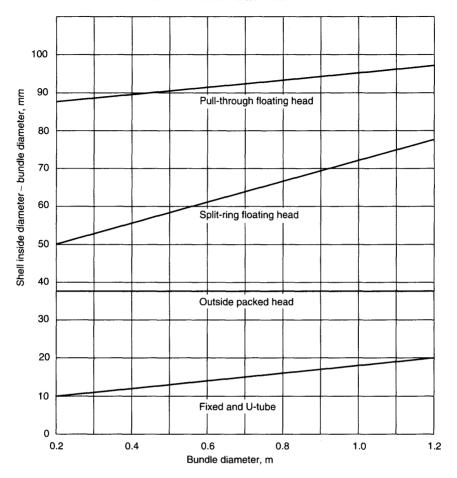



Figure 12.10. Shell-bundle clearance

The shell diameter must be selected to give as close a fit to the tube bundle as is practical; to reduce bypassing round the outside of the bundle; see Section 12.9. The clearance required between the outermost tubes in the bundle and the shell inside diameter will depend on the type of exchanger and the manufacturing tolerances; typical values are given in Figure 12.10.

## 12.5.4. Tube-sheet layout (tube count)

The bundle diameter will depend not only on the number of tubes but also on the number of tube passes, as spaces must be left in the pattern of tubes on the tube sheet to accommodate the pass partition plates.

An estimate of the bundle diameter  $D_b$  can be obtained from equation 12.3b, which is an empirical equation based on standard tube layouts. The constants for use in this

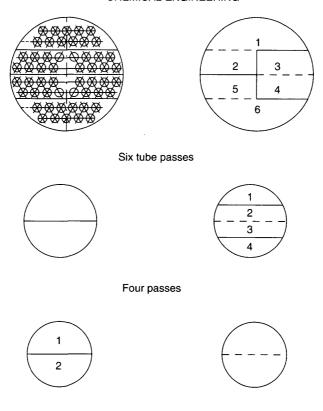



Figure 12.11. Tube arrangements, showing pass-partitions in headers

Two passes

equation, for triangular and square patterns, are given in Table 12.4.

$$N_t = K_1 \left(\frac{D_b}{d_o}\right)^{n_1},\tag{12.3a}$$

$$D_b = d_o \left(\frac{N_t}{K_1}\right)^{1/n_1},\tag{12.3b}$$

where  $N_t$  = number of tubes,

 $D_b$  = bundle diameter, mm,

 $d_o$  = tube outside diameter, mm.

If U-tubes are used the number of tubes will be slightly less than that given by equation 12.3a, as the spacing between the two centre rows will be determined by the minimum allowable radius for the U-bend. The minimum bend radius will depend on the tube diameter and wall thickness. It will range from 1.5 to 3.0 times the tube outside diameter. The tighter bend radius will lead to some thinning of the tube wall.

An estimate of the number of tubes in a U-tube exchanger (twice the actual number of U-tubes), can be made by reducing the number given by equation 12.3a by one centre row of tubes.

The number of tubes in the centre row, the row at the shell equator, is given by:

Tubes in centre row = 
$$\frac{D_b}{P_t}$$

where  $p_t$  = tube pitch, mm.

The tube layout for a particular design will normally be planned with the aid of computer programs. These will allow for the spacing of the pass partition plates and the position of the tie rods. Also, one or two rows of tubes may be omitted at the top and bottom of the bundle to increase the clearance and flow area opposite the inlet and outlet nozzles.

Tube count tables which give an estimate of the number of tubes that can be accommodated in standard shell sizes, for commonly used tube sizes, pitches and number of passes, can be found in several books: Kern (1950), Ludwig (1965), Perry and Green (1984), and Saunders (1988).

Some typical tube arrangements are shown in Appendix J.

| Triangular pitch    | $p_t = 1.25d_o$ |                |                |                 |                 |
|---------------------|-----------------|----------------|----------------|-----------------|-----------------|
| No. passes          | 1               | 2              | 4              | 6               | 8               |
| $K_1$ $n_1$         | 0.319<br>2.142  | 0.249<br>2.207 | 0.175<br>2.285 | 0.0743<br>2.499 | 0.0365<br>2.675 |
| Square pitch, $p_t$ | $= 1.25d_o$     |                |                |                 |                 |
| No. passes          | 1               | 2              | 4              | 6               | 8               |
| $K_1$ $n_1$         | 0.215<br>2.207  | 0.156<br>2.291 | 0.158<br>2.263 | 0.0402<br>2.617 | 0.0331<br>2.643 |

Table 12.4. Constants for use in equation 12.3

## 12.5.5. Shell types (passes)

The principal shell arrangements are shown in Figure 12.12*a*-*e*. The letters E, F, G, H, J are those used n the TEMA standards to designate the various types. The E shell is the most commonly used arrangement.

Two shell passes (F shell) are occasionally used where the shell and tube side temperature differences will be unsuitable for a single pass (see Section 12.6). However, it is difficult to obtain a satisfactory seal with a shell-side baffle and the same flow arrangement can be achieved by using two shells in series. One method of sealing the longitudinal shell-side baffle is shown in Figure 12.12f.

The divided flow and split-flow arrangements (G and J shells) are used to reduce the shell-side pressure drop; where pressure drop, rather than heat transfer, is the controlling factor in the design.

### 12.5.6. Baffles

Baffles are used in the shell to direct the fluid stream across the tubes, to increase the fluid velocity and so improve the rate of transfer. The most commonly used type of baffle is the

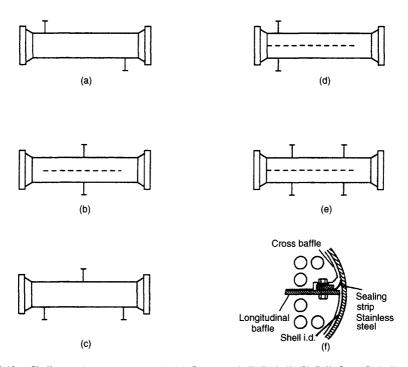



Figure 12.12. Shell types (pass arrangements). (a) One-pass shell (E shell) (b) Split flow (G shell) (c) Divided flow (J shell) (d) Two-pass shell with longitudinal baffle (F shell) (e) Double split flow (H shell)

single segmental baffle shown in Figure 12.13a, other types are shown in Figures 12.13b, c and d.

Only the design of exchangers using single segmental baffles will be considered in this chapter.

If the arrangement shown in Figure 12.13a were used with a horizontal condenser the baffles would restrict the condensate flow. This problem can be overcome either by rotating the baffle arrangement through  $90^{\circ}$ , or by trimming the base of the baffle, Figure 12.14.

The term "baffle cut" is used to specify the dimensions of a segmental baffle. The baffle cut is the height of the segment removed to form the baffle, expressed as a percentage of the baffle disc diameter. Baffle cuts from 15 to 45 per cent are used. Generally, a baffle cut of 20 to 25 per cent will be the optimum, giving good heat-transfer rates, without excessive drop. There will be some leakage of fluid round the baffle as a clearance must be allowed for assembly. The clearance needed will depend on the shell diameter; typical values, and tolerances, are given in Table 12.5.

Another leakage path occurs through the clearance between the tube holes in the baffle and the tubes. The maximum design clearance will normally be  $\frac{1}{32}$  in. (0.8 mm).

The minimum thickness to be used for baffles and support plates are given in the standards. The baffle spacings used range from 0.2 to 1.0 shell diameters. A close baffle spacing will give higher heat transfer coefficients but at the expense of higher pressure drop. The optimum spacing will usually be between 0.3 to 0.5 times the shell diameter.

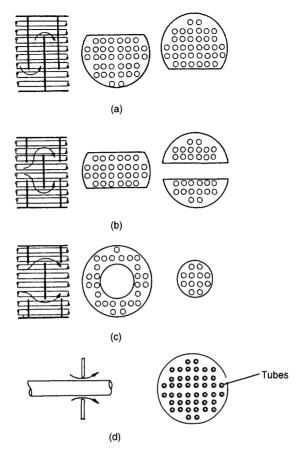



Figure 12.13. Types of baffle used in shell and tube heat exchangers. (a) Segmental (b) Segmental and strip (c) Disc and doughnut (d) Orifice

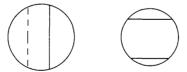



Figure 12.14. Baffles for condensers

Table 12.5. Typical baffle clearances and tolerances

| Shell diameter, D <sub>s</sub> | Baffle diameter                   | Tolerance                        |
|--------------------------------|-----------------------------------|----------------------------------|
| Pipe shells                    |                                   |                                  |
| 6 to 25 in. (152 to 635 mm)    | $D_s - \frac{1}{16}$ in. (1.6 mm) | $+\frac{1}{32}$ in. (0.8 mm)     |
| Plate shells                   | 10                                | 32                               |
| 6 to 25 in. (152 to 635 mm)    | $D_s - \frac{1}{8}$ in. (3.2 mm)  | $+0, -\frac{1}{32}$ in. (0.8 mm) |
| 27 to 42 in. (686 to 1067 mm)  | $D_s - \frac{3}{16}$ in. (4.8 mm) | $+0, -\frac{1}{16}$ in. (1.6 mm) |

### 12.5.7. Support plates and tie rods

Where segmental baffles are used some will be fabricated with closer tolerances,  $\frac{1}{64}$  in. (0.4 mm), to act as support plates. For condensers and vaporisers, where baffles are not needed for heat-transfer purposes, a few will be installed to support the tubes.

The minimum spacings to be used for support plates are given in the standards. The spacing ranges from around 1 m for 16 mm tubes to 2 m for 25 mm tubes.

The baffles and support plate are held together with tie rods and spacers. The number of rods required will depend on the shell diameter, and will range from 4, 16 mm diameter rods, for exchangers under 380 mm diameter; to 8, 12.5 mm rods, for exchangers of 1 m diameter. The recommended number for a particular diameter can be found in the standards.

## 12.5.8. Tube sheets (plates)

In operation the tube sheets are subjected to the differential pressure between shell and tube sides. The design of tube sheets as pressure-vessel components is covered by BS 5500 and is discussed in Chapter 13. Design formulae for calculating tube sheet thicknesses are also given in the TEMA standards.

The joint between the tubes and tube sheet is normally made by expanding the tube by rolling with special tools, Figure 12.15. Tube rolling is a skilled task; the tube must be expanded sufficiently to ensure a sound leaf-proof joint, but not overthinned, weakening the tube. The tube holes are normally grooved, Figure 12.16a, to lock the tubes more firmly in position and to prevent the joint from being loosened by the differential expansion of the shell and tubes. When it is essential to guarantee a leak-proof joint the tubes can be welded to the sheet, Figure 12.16b. This will add to the cost of the exchanger; not only due to the cost of welding, but also because a wider tube spacing will be needed.

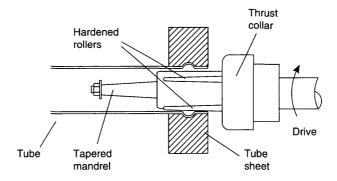



Figure 12.15. Tube rolling

The tube sheet forms the barrier between the shell and tube fluids, and where it is essential for safety or process reasons to prevent any possibility of intermixing due to leakage at the tube sheet joint, double tube-sheets can be used, with the space between the sheets vented; Figure 12.16c.

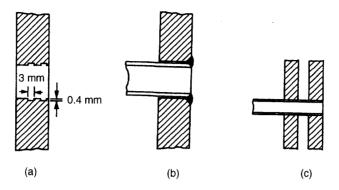



Figure 12.16. Tube/tube sheet joints

To allow sufficient thickness to seal the tubes the tube sheet thickness should not be less than the tube outside diameter, up to about 25 mm diameter. Recommended minimum plate thicknesses are given in the standards.

The thickness of the tube sheet will reduce the effective length of the tube slightly, and this should be allowed for when calculating the area available for heat transfer. As a first approximation the length of the tubes can be reduced by 25 mm for each tube sheet.

### 12.5.9. Shell and header nozzles (branches)

Standard pipe sizes will be used for the inlet and outlet nozzles. It is important to avoid flow restrictions at the inlet and outlet nozzles to prevent excessive pressure drop and flow-induced vibration of the tubes. As well as omitting some tube rows (see Section 12.5.4), the baffle spacing is usually increased in the nozzle zone, to increase the flow area. For vapours and gases, where the inlet velocities will be high, the nozzle may be flared, or special designs used, to reduce the inlet velocities; Figure 12.17a and b. The extended

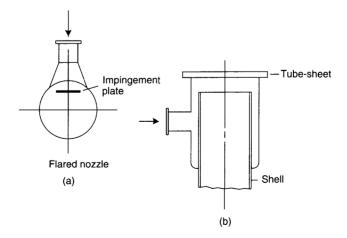



Figure 12.17. Inlet nozzle designs

shell design shown in Figure 12.17b also serves as an impingement plate. Impingement plates are used where the shell-side fluid contains liquid drops, or for high-velocity fluids containing abrasive particles.

### 12.5.10. Flow-induced tube vibrations

Premature failure of exchanger tubes can occur through vibrations induced by the shell-side fluid flow. Care must be taken in the mechanical design of large exchangers where the shell-side velocity is high, say greater than 3 m/s, to ensure that tubes are adequately supported.

The vibration induced by the fluid flowing over the tube bundle is caused principally by vortex shedding and turbulent buffeting. As fluid flows over a tube vortices are shed from the down-stream side which cause disturbances in the flow pattern and pressure distribution round the tube. Turbulent buffeting of tubes occurs at high flow-rates due to the intense turbulence at high Reynolds numbers.

The buffeting caused by vortex shedding or by turbulent eddies in the flow stream will cause vibration, but large amplitude vibrations will normally only occur above a certain critical flow velocity. Above this velocity the interaction with the adjacent tubes can provide a feed back path which reinforces the virbrations. Resonance will also occur if the vibrations approach the natural vibration frequency of the unsupported tube length. Under these conditions the magnitude of the vibrations can increase dramatically leading to tube failure. Failure can occur either through the impact of one tube on another or through wear on the tube where it passes through the baffles.

For most exchanger designs, following the recommendations on support sheet spacing given in the standards will be sufficient to protect against premature tube failure from vibration. For large exchangers with high velocities on the shell-side the design should be analysed to check for possible vibration problems. The computer aided design programs for shell-and-tube exchanger design available from commercial organisations, such as HTFS and HTRI (see Section 12.1), include programs for vibration analysis.

Much work has been done on tube vibration over the past 20 years, due to an increase in the failure of exchangers as larger sizes and higher flow-rates have been used. Discussion of this work is beyond the scope of this book; for review of the methods used see Saunders (1988) and Singh and Soler (1984).

See also, the Engineering Science Data Unit manual ESDU 87019, which gives a clear explanation of mechanisms causing tube vibration in shell and tube heat exchangers, and their prediction and prevention.

# 12.6. MEAN TEMPERATURE DIFFERENCE (TEMPERATURE DRIVING FORCE)

Before equation 12.1 can be used to determine the heat transfer area required for a given duty, an estimate of the mean temperature difference  $\Delta T_m$  must be made. This will normally be calculated from the terminal temperature differences: the difference in the fluid temperatures at the inlet and outlet of the exchanger. The well-known "logarithmic mean" temperature difference (see Volume 1, Chapter 9) is only applicable

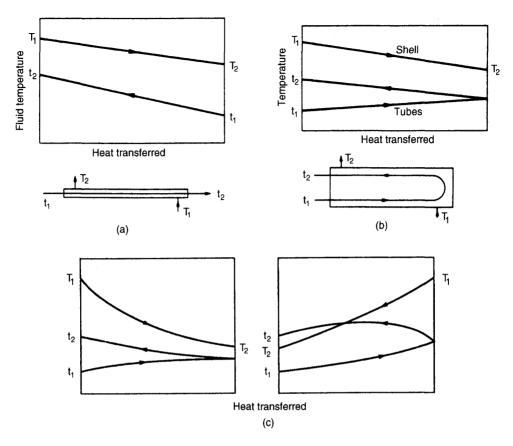



Figure 12.18. Temperature profiles (a) Counter-current flow (b) 1:2 exchanger (c) Temperature cross

to sensible heat transfer in true co-current or counter-current flow (linear temperature-enthalpy curves). For counter-current flow, Figure 12.18a, the logarithmic mean temperature is given by:

$$\Delta T_{\rm lm} = \frac{(T_1 - t_2) - (T_2 - t_1)}{\ln \frac{(T_1 - t_2)}{(T_2 - t_1)}}$$
(12.4)

where  $\Delta T_{\rm lm} = \log$  mean temperature difference,

 $T_1$  = inlet shell-side fluid temperature,

 $T_2$  = outlet shell-side fluid temperature,

 $t_1$  = inlet tube-side temperature,

 $t_2$  = outlet tube-side temperature.

The equation is the same for co-current flow, but the terminal temperature differences will be  $(T_1 - t_1)$  and  $(T_2 - t_2)$ . Strictly, equation 12.4 will only apply when there is no change in the specific heats, the overall heat-transfer coefficient is constant, and there are no heat losses. In design, these conditions can be assumed to be satisfied providing the temperature change in each fluid stream is not large.

In most shell and tube exchangers the flow will be a mixture of co-current, countercurrent and cross flow. Figures 12.18b and c show typical temperature profiles for an exchanger with one shell pass and two tube passes (a 1:2 exchanger). Figure 12.18cshows a temperature cross, where the outlet temperature of the cold stream is above that of the hot stream.

The usual practice in the design of shell and tube exchangers is to estimate the "true temperature difference" from the logarithmic mean temperature by applying a correction factor to allow for the departure from true counter-current flow:

$$\Delta T_m = F_t \Delta T_{\rm lm} \tag{12.5}$$

where  $\Delta T_m$  = true temperature difference, the mean temperature difference for use in the design equation 12.1,

 $F_t$  = the temperature correction factor.

The correction factor is a function of the shell and tube fluid temperatures, and the number of tube and shell passes. It is normally correlated as a function of two dimensionless temperature ratios:

$$R = \frac{(T_1 - T_2)}{(t_2 - t_1)} \tag{12.6}$$

and

$$S = \frac{(t_2 - t_1)}{(T_1 - t_1)} \tag{12.7}$$

R is equal to the shell-side fluid flow-rate times the fluid mean specific heat; divided by the tube-side fluid flow-rate times the tube-side fluid specific heat.

S is a measure of the temperature efficiency of the exchanger.

For a 1 shell: 2 tube pass exchanger, the correction factor is given by:

$$F_{t} = \frac{\sqrt{(R^{2} + 1)} \ln \left[ \frac{(1 - S)}{(1 - RS)} \right]}{(R - 1) \ln \left[ \frac{2 - S[R + 1 - \sqrt{(R^{2} + 1)}]}{2 - S[R + 1 + \sqrt{(R^{2} + 1)}]} \right]}$$
(12.8)

The derivation of equation 12.8 is given by Kern (1950). The equation for a 1 shell: 2 tube pass exchanger can be used for any exchanger with an even number of tube passes, and is plotted in Figure 12.19. The correction factor for 2 shell passes and 4, or multiples of 4, tube passes is shown in Figure 12.20, and that for divided and split flow shells in Figures 12.21 and 12.22.

Temperature correction factor plots for other arrangements can be found in the TEMA standards and the books by Kern (1950) and Ludwig (1965). Mueller (1973) gives a comprehensive set of figures for calculating the log mean temperature correction factor, which includes figures for cross-flow exchangers.

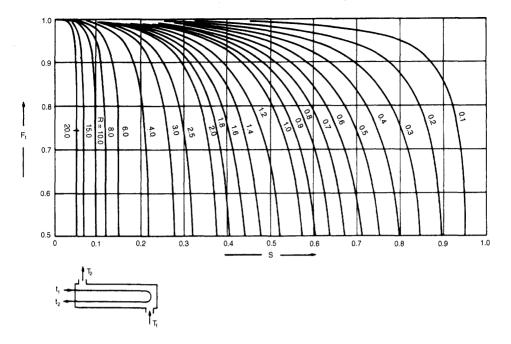



Figure 12.19. Temperature correction factor: one shell pass; two or more even tube 'passes

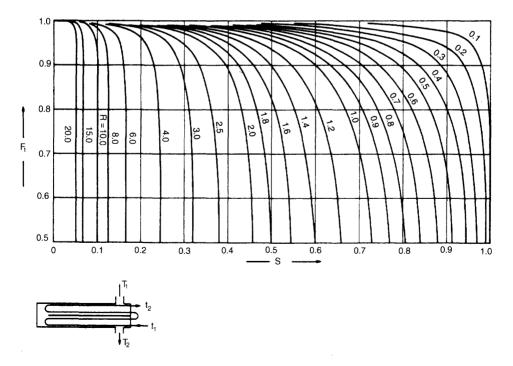



Figure 12.20. Temperature correction factor: two shell passes; four or multiples of four tube passes

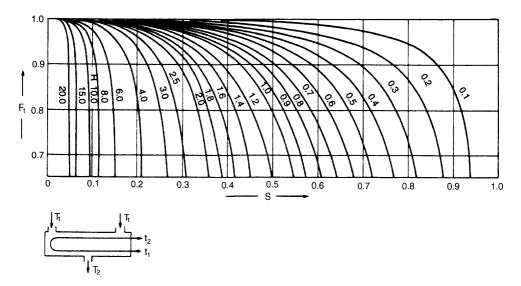



Figure 12.21. Temperature correction factor: divided-flow shell; two or more even-tube passes

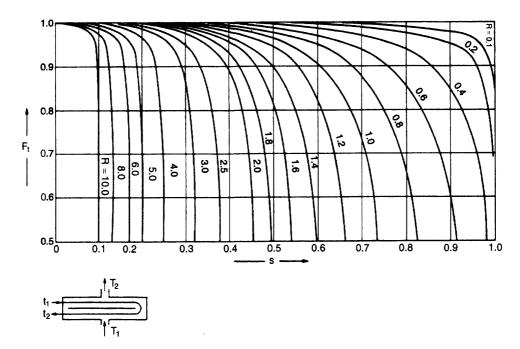



Figure 12.22. Temperature correction factor, split flow shell, 2 tube pass

The following assumptions are made in the derivation of the temperature correction factor  $F_t$ , in addition to those made for the calculation of the log mean temperature difference:

- 1. Equal heat transfer areas in each pass.
- 2. A constant overall heat-transfer coefficient in each pass.
- 3. The temperature of the shell-side fluid in any pass is constant across any cross-section.
- 4. There is no leakage of fluid between shell passes.

Though these conditions will not be strictly satisfied in practical heat exchangers, the  $F_t$  values obtained from the curves will give an estimate of the "true mean temperature difference" that is sufficiently accurate for most designs. Mueller (1973) discusses these assumptions, and gives  $F_t$  curves for conditions when all the assumptions are not met; see also Butterworth (1973) and Emerson (1973).

The shell-side leakage and bypass streams (see Section 12.9) will affect the mean temperature difference, but are not normally taken into account when estimating the correction factor  $F_t$ . Fisher and Parker (1969) give curves which show the effect of leakage on the correction factor for a 1 shell pass: 2 tube pass exchanger.

The value of  $F_t$  will be close to one when the terminal temperature differences are large, but will appreciably reduce the logarithmic mean temperature difference when the temperatures of shell and tube fluids approach each other; it will fall drastically when there is a temperature cross. A temperature cross will occur if the outlet temperature of the cold stream is greater than the inlet temperature of the hot stream, Figure 12.18c.

Where the  $F_t$  curve is near vertical values cannot be read accurately, and this will introduce a considerable uncertainty into the design.

An economic exchanger design cannot normally be achieved if the correction factor  $F_t$  falls below about 0.75. In these circumstances an alternative type of exchanger should be considered which gives a closer approach to true counter-current flow. The use of two or more shells in series, or multiple shell-side passes, will give a closer approach to true counter-current flow, and should be considered where a temperature cross is likely to occur.

Where both sensible and latent heat is transferred, it will be necessary to divide the temperature profile into sections and calculate the mean temperature difference for each section.

## 12.7. SHELL AND TUBE EXCHANGERS: GENERAL DESIGN CONSIDERATIONS

### 12.7.1. Fluid allocation: shell or tubes

Where no phase change occurs, the following factors will determine the allocation of the fluid streams to the shell or tubes.

*Corrosion*. The more corrosive fluid should be allocated to the tube-side. This will reduce the cost of expensive alloy or clad components.

Fouling. The fluid that has the greatest tendency to foul the heat-transfer surfaces should be placed in the tubes. This will give better control over the design fluid velocity, and the higher allowable velocity in the tubes will reduce fouling. Also, the tubes will be easier to clean.

Fluid temperatures. If the temperatures are high enough to require the use of special alloys placing the higher temperature fluid in the tubes will reduce the overall cost. At moderate temperatures, placing the hotter fluid in the tubes will reduce the shell surface temperatures, and hence the need for lagging to reduce heat loss, or for safety reasons.

*Operating pressures*. The higher pressure stream should be allocated to the tube-side. High-pressure tubes will be cheaper than a high-pressure shell.

*Pressure drop.* For the same pressure drop, higher heat-transfer coefficients will be obtained on the tube-side than the shell-side, and fluid with the lowest allowable pressure drop should be allocated to the tube-side.

*Viscosity*. Generally, a higher heat-transfer coefficient will be obtained by allocating the more viscous material to the shell-side, providing the flow is turbulent. The critical Reynolds number for turbulent flow in the shell is in the region of 200. If turbulent flow cannot be achieved in the shell it is better to place the fluid in the tubes, as the tube-side heat-transfer coefficient can be predicted with more certainty.

Stream flow-rates. Allocating the fluids with the lowest flow-rate to the shell-side will normally give the most economical design.

### 12.7.2. Shell and tube fluid velocities

High velocities will give high heat-transfer coefficients but also a high-pressure drop. The velocity must be high enough to prevent any suspended solids settling, but not so high as to cause erosion. High velocities will reduce fouling. Plastic inserts are sometimes used to reduce erosion at the tube inlet. Typical design velocities are given below:

## Liquids

Tube-side, process fluids: 1 to 2 m/s, maximum 4 m/s if required to reduce fouling; water: 1.5 to 2.5 m/s.

Shell-side: 0.3 to 1 m/s.

## Vapours

For vapours, the velocity used will depend on the operating pressure and fluid density; the lower values in the ranges given below will apply to high molecular weight materials.

Vacuum 50 to 70 m/s
Atmospheric pressure 10 to 30 m/s
High pressure 5 to 10 m/s

## 12.7.3. Stream temperatures

The closer the temperature approach used (the difference between the outlet temperature of one stream and the inlet temperature of the other stream) the larger will be the heat-transfer area required for a given duty. The optimum value will depend on the application, and can only be determined by making an economic analysis of alternative designs. As a general guide the greater temperature difference should be at least 20°C, and the least temperature difference 5 to 7°C for coolers using cooling water, and 3 to 5°C using refrigerated brines. The maximum temperature rise in recirculated cooling water is limited to around 30°C. Care should be taken to ensure that cooling media temperatures are kept well above

the freezing point of the process materials. When the heat exchange is between process fluids for heat recovery the optimum approach temperatures will normally not be lower than 20°C.

## 12.7.4. Pressure drop

In many applications the pressure drop available to drive the fluids through the exchanger will be set by the process conditions, and the available pressure drop will vary from a few millibars in vacuum service to several bars in pressure systems.

When the designer is free to select the pressure drop an economic analysis can be made to determine the exchanger design which gives the lowest operating costs, taking into consideration both capital and pumping costs. However, a full economic analysis will only be justified for very large, expensive, exchangers. The values suggested below can be used as a general guide, and will normally give designs that are near the optimum.

### Liquids

Viscosity 
$$<1 \text{ mN s/m}^2$$
 35 kN/m<sup>2</sup>  
1 to 10 mN s/m<sup>2</sup> 50-70 kN/m<sup>2</sup>

### Gas and vapours

High vacuum  $0.4-0.8 \text{ kN/m}^2$ Medium vacuum  $0.1 \times \text{absolute pressure}$ 1 to 2 bar  $0.5 \times \text{system gauge pressure}$ Above 10 bar  $0.1 \times \text{system gauge pressure}$ 

When a high-pressure drop is utilised, care must be taken to ensure that the resulting high fluid velocity does not cause erosion or flow-induced tube vibration.

## 12.7.5. Fluid physical properties

The fluid physical properties required for heat-exchanger design are: density, viscosity, thermal conductivity and temperature-enthalpy correlations (specific and latent heats). Sources of physical property data are given in Chapter 8. The thermal conductivities of commonly used tube materials are given in Table 12.6.

In the correlations used to predict heat-transfer coefficients, the physical properties are usually evaluated at the mean stream temperature. This is satisfactory when the temperature change is small, but can cause a significant error when the change in temperature is large. In these circumstances, a simple, and safe, procedure is to evaluate the heat-transfer coefficients at the stream inlet and outlet temperatures and use the lowest of the two values. Alternatively, the method suggested by Frank (1978) can be used; in which equations 12.1 and 12.3 are combined:

$$Q = \frac{A[U_2(T_1 - t_2) - U_1(T_2 - t_1)]}{\ln\left[\frac{U_2(T_1 - t_2)}{U_1(T_2 - t_1)}\right]}$$
(12.9)

where  $U_1$  and  $U_2$  are evaluated at the ends of the exchanger. Equation 12.9 is derived by assuming that the heat-transfer coefficient varies linearly with temperature.

If the variation in the physical properties is too large for these simple methods to be used it will be necessary to divide the temperature-enthalpy profile into sections and evaluate the heat-transfer coefficients and area required for each section.

| Metal                         | Temperature (°C) | $k_w(W/m^{\circ}C)$ |
|-------------------------------|------------------|---------------------|
| Aluminium                     | 0                | 202                 |
|                               | 100              | 206                 |
| Brass                         | 0                | 97                  |
| (70 Cu, 30 Zn)                | 100              | 104                 |
|                               | 400              | 116                 |
| Copper                        | 0                | 388                 |
| ••                            | 100              | 378                 |
| Nickel                        | 0                | 62                  |
|                               | 212              | 59                  |
| Cupro-nickel (10 per cent Ni) | 0-100            | 45                  |
| Monel                         | 0-100            | 30                  |
| Stainless steel (18/8)        | 0-100            | 16                  |
| Steel                         | 0                | 45                  |
|                               | 100              | 45                  |
|                               | 600              | 36                  |
| Titanium                      | 0-100            | 16                  |

Table 12.6. Conductivity of metals

# 12.8. TUBE-SIDE HEAT-TRANSFER COEFFICIENT AND PRESSURE DROP (SINGLE PHASE)

### 12.8.1. Heat transfer

### Turbulent flow

Heat-transfer data for turbulent flow inside conduits of uniform cross-section are usually correlated by an equation of the form:

$$Nu = CRe^a Pr^b \left(\frac{\mu}{\mu_w}\right)^c \tag{12.10}$$

where  $Nu = \text{Nusselt number} = (h_i d_e/k_f)$ ,

 $Re = \text{Reynolds number} = (\rho u_t d_e / \mu) = (G_t d_e / \mu),$ 

 $Pr = \text{Prandtl number} = (C_p \mu / k_f)$ 

and:  $h_i$  = inside coefficient, W/m<sup>2</sup>°C,

 $d_e$  = equivalent (or hydraulic mean) diameter, m

$$d_e = \frac{4 \times \text{cross-sectional area for flow}}{\text{wetted perimeter}} = d_i \text{ for tubes,}$$

 $u_t = \text{fluid velocity, m/s,}$ 

 $k_f$  = fluid thermal conductivity, W/m°C,

 $G_t = \text{mass velocity}, \text{ mass flow per unit area, kg/m}^2 s,$ 

 $\mu$  = fluid viscosity at the bulk fluid temperature, Ns/m<sup>2</sup>,

 $\mu_w$  = fluid viscosity at the wall,

 $C_p$  = fluid specific heat, heat capacity, J/kg°C.

The index for the Reynolds number is generally taken as 0.8. That for the Prandtl number can range from 0.3 for cooling to 0.4 for heating. The index for the viscosity factor is normally taken as 0.14 for flow in tubes, from the work of Sieder and Tate (1936), but some workers report higher values. A general equation that can be used for exchanger design is:

$$Nu = CRe^{0.8}Pr^{0.33} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$
 (12.11)

where C = 0.021 for gases,

= 0.023 for non-viscous liquids,

= 0.027 for viscous liquids.

It is not really possible to find values for the constant and indexes to cover the complete range of process fluids, from gases to viscous liquids, but the values predicted using equation 12.11 should be sufficiently accurate for design purposes. The uncertainty in the prediction of the shell-side coefficient and fouling factors will usually far outweigh any error in the tube-side value. Where a more accurate prediction than that given by equation 12.11 is required, and justified, the data and correlations given in the Engineering Sciences Data Unit report are recommended: Nos. 67016 (1967), 68006 (1968) and 68007 (1968).

Butterworth (1977) gives the following equation, which is based on the ESDU work:

$$St = ERe^{-0.205}Pr^{-0.505} (12.12)$$

where  $St = \text{Stanton number} = (Nu/RePr) = (h_i/\rho u_t C_p)$ 

and  $E = 0.0225 \exp(-0.0225(\ln Pr)^2)$ .

Equation 12.12 is applicable at Reynolds numbers greater than 10,000.

## Hydraulic mean diameter

In some texts the equivalent (hydraulic mean) diameter is defined differently for use in calculating the heat transfer coefficient in a conduit or channel, than for calculating the pressure drop. The perimeter through which the heat is being transferred is used in place of the total wetted perimeter. In practice, the use of  $d_e$  calculated either way will make little difference to the value of the estimated overall coefficient; as the film coefficient is only, roughly, proportional to  $d_e^{-0.2}$ .

It is the full wetted perimeter that determines the flow regime and the velocity gradients in a channel. So, in this book,  $d_e$  determined using the full wetted perimeter will be used for both pressure drop and heat transfer calculations. The actual area through which the heat is transferred should, of course, be used to determine the rate of heat transfer; equation 12.1.

### Laminar flow

Below a Reynolds number of about 2000 the flow in pipes will be laminar. Providing the natural convection effects are small, which will normally be so in forced convection, the following equation can be used to estimate the film heat-transfer coefficient:

$$Nu = 1.86(RePr)^{0.33} \left(\frac{d_e}{L}\right)^{0.33} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$
 (12.13)

Where L is the length of the tube in metres.

If the Nusselt number given by equation 12.13 is less than 3.5, it should be taken as 3.5. In laminar flow the length of the tube can have a marked effect on the heat-transfer rate for length to diameter ratios less than 500.

## Transition region

In the flow region between laminar and fully developed turbulent flow heat-transfer coefficients cannot be predicted with certainty, as the flow in this region is unstable, and the transition region should be avoided in exchanger design. If this is not practicable the coefficient should be evaluated using both equations 12.11 and 12.13 and the least value taken.

## Heat-transfer factor, jh

It is often convenient to correlate heat-transfer data in terms of a heat transfer "j" factor, which is similar to the friction factor used for pressure drop (see Volume 1, Chapters 3 and 9). The heat-transfer factor is defined by:

$$j_h = StPr^{0.67} \left(\frac{\mu}{\mu_w}\right)^{-0.14} \tag{12.14}$$

The use of the  $j_h$  factor enables data for laminar and turbulent flow to be represented on the same graph; Figure 12.23. The  $j_h$  values obtained from Figure 12.23 can be used with equation 12.14 to estimate the heat-transfer coefficients for heat-exchanger tubes and commercial pipes. The coefficient estimated for pipes will normally be conservative (on the high side) as pipes are rougher than the tubes used for heat exchangers, which are finished to closer tolerances. Equation 12.14 can be rearranged to a more convenient form:

$$\frac{h_i d_i}{k_f} = j_h Re P r^{0.33} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$
 (12.15)

Note. Kern (1950), and other workers, define the heat transfer factor as:

$$j_H = NuPr^{-1/3} \left(\frac{\mu}{\mu_w}\right)^{-0.14}$$

The relationship between  $j_h$  and  $j_H$  is given by:

$$j_H = j_h Re$$

## Viscosity correction factor

The viscosity correction factor will normally only be significant for viscous liquids.

To apply the correction an estimate of the wall temperature is needed. This can be made by first calculating the coefficient without the correction and using the following relationship to estimate the wall temperature:

$$h_i(t_w - t) = U(T - t)$$
 (12.16)

where t = tube-side bulk' temperature (mean),

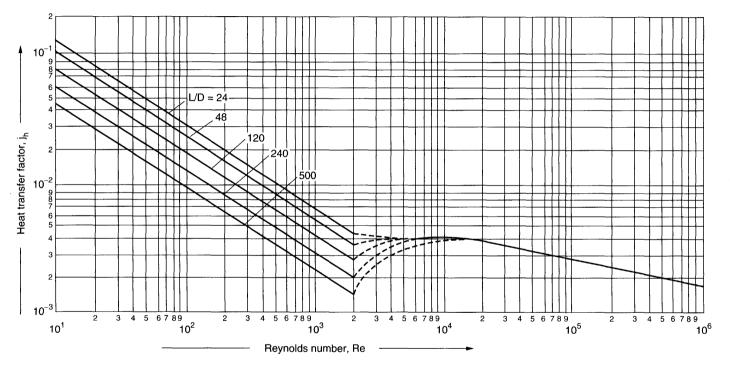



Figure 12.23. Tube-side heat-transfer factor

 $t_w$  = estimated wall temperature,

T =shell-side bulk temperature (mean).

Usually an approximate estimate of the wall temperature is sufficient, but trial-and-error calculations can be made to obtain a better estimate if the correction is large.

#### Coefficients for water

Though equations 12.11 and 12.13 and Figure 12.23 may be used for water, a more accurate estimate can be made by using equations developed specifically for water. The physical properties are conveniently incorporated into the correlation. The equation below has been adapted from data given by Eagle and Ferguson (1930):

$$h_i = \frac{4200(1.35 + 0.02t)u_t^{0.8}}{d_i^{0.2}}$$
 (12.17)

where  $h_i$  = inside coefficient, for water, W/m<sup>2</sup>°C,

 $t = \text{water temperature}, ^{\circ}\text{C},$ 

 $u_t$  = water velocity, m/s,

 $d_i$  = tube inside diameter, mm.

### 12.8.2. Tube-side pressure drop

There are two major sources of pressure loss on the tube-side of a shell and tube exchanger: the friction loss in the tubes and the losses due to the sudden contraction and expansion and flow reversals that the fluid experiences in flow through the tube arrangement.

The tube friction loss can be calculated using the familiar equations for pressure-drop loss in pipes (see Volume 1, Chapter 3). The basic equation for isothermal flow in pipes (constant temperature) is:

$$\Delta P = 8j_f \left(\frac{L'}{d_i}\right) \frac{\rho u_t^2}{2} \tag{12.18}$$

where  $j_f$  is the dimensionless friction factor and L' is the effective pipe length.

The flow in a heat exchanger will clearly not be isothermal, and this is allowed for by including an empirical correction factor to account for the change in physical properties with temperature. Normally only the change in viscosity is considered:

$$\Delta P = 8j_f(L'/d_i)\rho \frac{u_t^2}{2} \left(\frac{\mu}{\mu_w}\right)^{-m}$$
 (12.19)

m = 0.25 for laminar flow, Re < 2100,

= 0.14 for turbulent flow, Re > 2100.

Values of  $j_f$  for heat exchanger tubes can be obtained from Figure 12.24. Values for commercial pipes are given in Volume 2, Chapter 3.

The pressure losses due to contraction at the tube inlets, expansion at the exits, and flow reversal in the headers, can be a significant part of the total tube-side pressure drop.

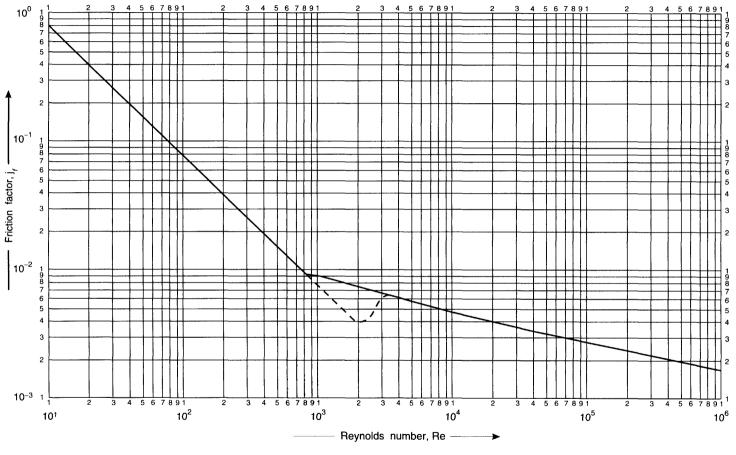



Figure 12.24. Tube-side friction factors Note: The friction factor  $j_f$  is the same as the friction factor for pipes  $\phi (= (R/\rho u^2))$ , defined in Volume 1 Chapter 3.

There is no entirely satisfactory method for estimating these losses. Kern (1950) suggests adding four velocity heads per pass. Frank (1978) considers this to be too high, and recommends 2.5 velocity heads. Butterworth (1978) suggests 1.8. Lord *et al.* (1970) take the loss per pass as equivalent to a length of tube equal to 300 tube diameters for straight tubes, and 200 for U-tubes; whereas Evans (1980) appears to add only 67 tube diameters per pass.

The loss in terms of velocity heads can be estimated by counting the number of flow contractions, expansions and reversals, and using the factors for pipe fittings to estimate the number of velocity heads lost. For two tube passes, there will be two contractions, two expansions and one flow reversal. The head loss for each of these effects (see Volume 1, Chapter 3) is: contraction 0.5, expansion 1.0, 180° bend 1.5; so for two passes the maximum loss will be

$$2 \times 0.5 + 2 \times 1.0 + 1.5 = 4.5$$
 velocity heads  
=  $\underbrace{2.25 \text{ per pass}}$ 

From this, it appears that Frank's recommended value of 2.5 velocity heads per pass is the most realistic value to use.

Combining this factor with equation 12.19 gives

$$\Delta P_t = N_p \left[ 8j_f \left( \frac{L}{d_i} \right) \left( \frac{\mu}{\mu_w} \right)^{-m} + 2.5 \right] \frac{\rho u_t^2}{2}$$
 (12.20)

where  $\Delta P_t$  = tube-side pressure drop, N/m<sup>2</sup> (Pa),

 $N_p$  = number of tube-side passes,

 $u_t$  = tube-side velocity, m/s,

L = length of one tube.

Another source of pressure drop will be the flow expansion and contraction at the exchanger inlet and outlet nozzles. This can be estimated by adding one velocity head for the inlet and 0.5 for the outlet, based on the nozzle velocities.

# 12.9. SHELL-SIDE HEAT-TRANSFER AND PRESSURE DROP (SINGLE PHASE)

# 12.9.1. Flow pattern

The flow pattern in the shell of a segmentally baffled heat exchanger is complex, and this makes the prediction of the shell-side heat-transfer coefficient and pressure drop very much more difficult than for the tube-side. Though the baffles are installed to direct the flow across the tubes, the actual flow of the main stream of fluid will be a mixture of cross flow between the baffles, coupled with axial (parallel) flow in the baffle windows; as shown in Figure 12.25. Not all the fluid flow follows the path shown in Figure 12.25; some will leak through gaps formed by the clearances that have to be allowed for fabrication and assembly of the exchanger. These leakage and bypass streams are shown in Figure 12.26, which is based on the flow model proposed by Tinker (1951, 1958). In Figure 12.26, Tinker's nomenclature is used to identify the various streams, as follows:

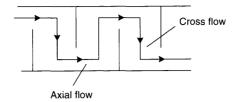



Figure 12.25. Idealised main stream flow

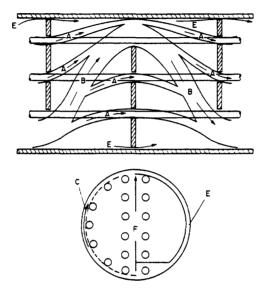



Figure 12.26. Shell-side leakage and by-pass paths

- Stream A is the tube-to-baffle leakage stream. The fluid flowing through the clearance between the tube outside diameter and the tube hole in the baffle.
- Stream B is the actual cross-flow stream.
- Stream C is the bundle-to-shell bypass stream. The fluid flowing in the clearance area between the outer tubes in the bundle (bundle diameter) and the shell.
- Stream E is the baffle-to-shell leakage stream. The fluid flowing through the clearance between the edge of a baffle and the shell wall.
- Stream F is the pass-partition stream. The fluid flowing through the gap in the tube arrangement due to the pass partition plates. Where the gap is vertical it will provide a low-pressure drop path for fluid flow.

Note. There is no stream D.

The fluid in streams C, E and F bypasses the tubes, which reduces the effective heat-transfer area.

Stream C is the main bypass stream and will be particularly significant in pull-through bundle exchangers, where the clearance between the shell and bundle is of necessity large. Stream C can be considerably reduced by using sealing strips; horizontal strips that block

the gap between the bundle and the shell, Figure 12.27. Dummy tubes are also sometimes used to block the pass-partition leakage stream F.

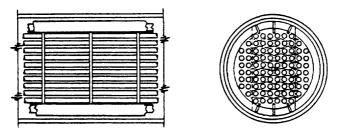



Figure 12.27. Sealing strips

The tube-to-baffle leakage stream A does not bypass the tubes, and its main effect is on pressure drop rather than heat transfer.

The clearances will tend to plug as the exchanger becomes fouled and this will increase the pressure drop; see Section 12.9.6.

## 12.9.2. Design methods

The complex flow pattern on the shell-side, and the great number of variables involved, make it difficult to predict the shell-side coefficient and pressure drop with complete assurance. In methods used for the design of exchangers prior to about 1960 no attempt was made to account for the leakage and bypass streams. Correlations were based on the total stream flow, and empirical methods were used to account for the performance of real exchangers compared with that for cross flow over ideal tube banks. Typical of these "bulk-flow" methods are those of Kern (1950) and Donohue (1955). Reliable predictions can only be achieved by comprehensive analysis of the contribution to heat transfer and pressure drop made by the individual streams shown in Figure 12.26. Tinker (1951, 1958) published the first detailed stream-analysis method for predicting shell-side heattransfer coefficients and pressure drop, and the methods subsequently developed have been based on his model. Tinker's presentation is difficult to follow, and his method difficult and tedious to apply in manual calculations. It has been simplified by Devore (1961, 1962); using standard tolerance for commercial exchangers and only a limited number of baffle cuts. Devore gives nomographs that facilitate the application of the method in manual calculations. Mueller (1973) has further simplified Devore's method and gives an illustrative example.

The Engineering Sciences Data Unit has also published a method for estimating shell-side the pressure drop and heat transfer coefficient, EDSU 83038 (1984). The method is based on a simplification of Tinker's work. It can be used for hand calculations, but as iterative procedures are involved it is best programmed for use with personal computers.

Tinker's model has been used as the basis for the proprietary computer methods developed by Heat Transfer Research Incorporated; see Palen and Taborek (1969), and by Heat Transfer and Fluid Flow Services; see Grant (1973).

Bell (1960, 1963) developed a semi-analytical method based on work done in the cooperative research programme on shell and tube exchangers at the University of Delaware. His method accounts for the major bypass and leakage streams and is suitable for a manual calculation. Bell's method is outlined in Section 12.9.4 and illustrated in Example 12.2.

Though Kern's method does not take account of the bypass and leakage streams, it is simple to apply and is accurate enough for preliminary design calculations, and for designs where uncertainty in other design parameters is such that the use of more elaborate methods is not justified. Kern's method is given in Section 12.9.3 and is illustrated in Example 12.1.

#### 12.9.3. Kern's method

This method was based on experimental work on commercial exchangers with standard tolerances and will give a reasonably satisfactory prediction of the heat-transfer coefficient for standard designs. The prediction of pressure drop is less satisfactory, as pressure drop is more affected by leakage and bypassing than heat transfer. The shell-side heat transfer and friction factors are correlated in a similar manner to those for tube-side flow by using a hypothetical shell velocity and shell diameter. As the cross-sectional area for flow will vary across the shell diameter, the linear and mass velocities are based on the maximum area for cross-flow: that at the shell equator. The shell equivalent diameter is calculated using the flow area between the tubes taken in the axial direction (parallel to the tubes) and the wetted perimeter of the tubes; see Figure 12.28.

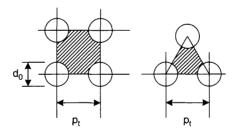



Figure 12.28. Equivalent diameter, cross-sectional areas and wetted perimeters

Shell-side  $j_h$  and  $j_f$  factors for use in this method are given in Figures 12.29 and 12.30, for various baffle cuts and tube arrangements. These figures are based on data given by Kern (1950) and by Ludwig (1965).

The procedure for calculating the shell-side heat-transfer coefficient and pressure drop for a single shell pass exchanger is given below:

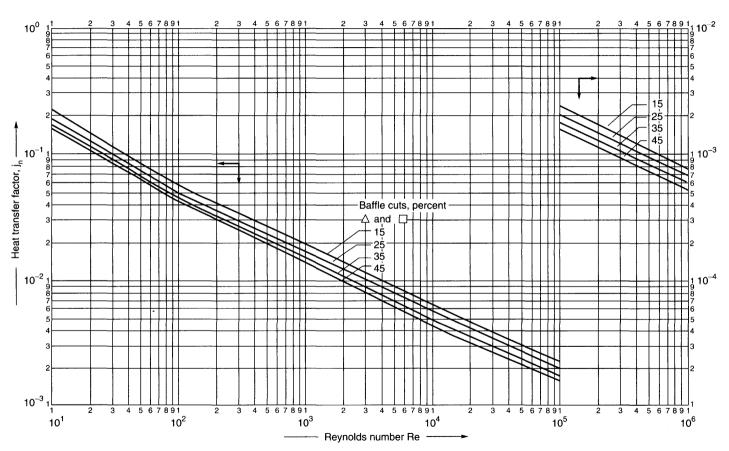



Figure 12.29. Shell-side heat-transfer factors, segmental baffles

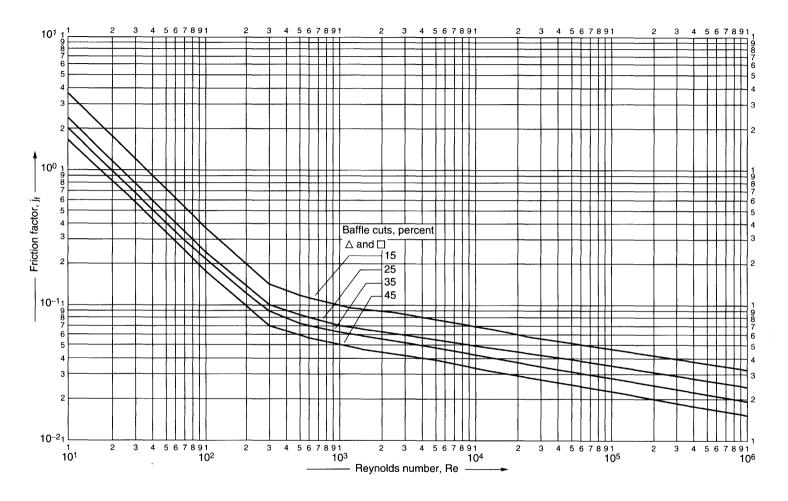



Figure 12.30. Shell-side friction factors, segmental baffles

#### **Procedure**

1. Calculate the area for cross-flow  $A_s$  for the hypothetical row of tubes at the shell equator, given by:

$$A_s = \frac{(p_t - d_o)D_s l_B}{p_t}$$
 (12.21)

where  $p_t$  = tube pitch,

 $d_o$  = tube outside diameter,

 $D_s$  = shell inside diameter, m,

 $l_B$  = baffle spacing, m.

The term  $(p_t - d_o)/p_t$  is the ratio of the clearance between tubes and the total distance between tube centres.

2. Calculate the shell-side mass velocity  $G_s$  and the linear velocity  $u_s$ :

$$G_s = \frac{W_s}{A_s}$$
$$u_s = \frac{G_s}{a_s}$$

where  $W_s$  = fluid flow-rate on the shell-side, kg/s,  $\rho$  = shell-side fluid density, kg/m<sup>3</sup>.

3. Calculate the shell-side equivalent diameter (hydraulic diameter), Figure 12.28. For a square pitch arrangement:

$$d_e = \frac{4\left(\frac{p_t^2 - \pi d_o^2}{4}\right)}{\pi d_o} = \frac{1.27}{d_o}(p_t^2 - 0.785d_o^2)$$
(12.22)

For an equilateral triangular pitch arrangement:

$$d_e = \frac{4\left(\frac{p_t}{2} \times 0.87 \, p_t - \frac{1}{2}\pi \frac{d_o^2}{4}\right)}{\frac{\pi d_o}{2}} = \frac{1.10}{d_o} (p_t^2 - 0.917 d_o^2) \tag{12.23}$$

where  $d_e$  = equivalent diameter, m.

4. Calculate the shell-side Reynolds number, given by:

$$Re = \frac{G_s d_e}{\mu} = \frac{u_s d_e \rho}{\mu} \tag{12.24}$$

5. For the calculated Reynolds number, read the value of  $j_h$  from Figure 12.29 for the selected baffle cut and tube arrangement, and calculate the shell-side heat transfer coefficient  $h_s$  from:

$$Nu = \frac{h_s d_e}{k_f} = j_h Re P r^{1/3} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$
 (12.25)

The tube wall temperature can be estimated using the method given for the tube-side, Section 12.8.1.

6. For the calculated shell-side Reynolds number, read the friction factor from Figure 12.30 and calculate the shell-side pressure drop from:

$$\Delta P_s = 8j_f \left(\frac{D_s}{d_e}\right) \left(\frac{L}{l_B}\right) \frac{\rho u_s^2}{2} \left(\frac{\mu}{\mu_w}\right)^{-0.14}$$
 (12.26)

where L = tube length,

 $l_B$  = baffle spacing.

The term  $(L/l_B)$  is the number of times the flow crosses the tube bundle =  $(N_b + 1)$ , where  $N_b$  is the number of baffles.

# Shell nozzle-pressure drop

The pressure loss in the shell nozzles will normally only be significant with gases. The nozzle pressure drop can be taken as equivalent to  $1\frac{1}{2}$  velocity heads for the inlet and  $\frac{1}{2}$  for the outlet, based on the nozzle area or the free area between the tubes in the row immediately adjacent to the nozzle, whichever is the least.

## Example 12.1

Design an exchanger to sub-cool condensate from a methanol condenser from  $95^{\circ}$ C to  $40^{\circ}$ C. Flow-rate of methanol 100,000 kg/h. Brackish water will be used as the coolant, with a temperature rise from  $25^{\circ}$  to  $40^{\circ}$ C.

#### Solution

Only the thermal design will be considered.

This example illustrates Kern's method.

Coolant is corrosive, so assign to tube-side.

Heat capacity methanol =  $2.84 \text{ kJ/kg}^{\circ}\text{C}$ 

Heat load = 
$$\frac{100,000}{3600} \times 2.84(95 - 40) = 4340 \text{ kW}$$

Heat capacity water =  $4.2 \text{ kJ/kg}^{\circ}\text{C}$ 

Cooling water flow = 
$$\frac{4340}{4.2(40 - 25)} = 68.9 \text{ kg/s}$$

$$\Delta T_{\rm lm} = \frac{(95 - 40) - (40 - 25)}{\ln \frac{(95 - 40)}{(40 - 25)}} = 31^{\circ} \text{C}$$
 (12.4)

Use one shell pass and two tube passes

$$R = \frac{95 - 40}{40 - 25} = 3.67\tag{12.6}$$

$$S = \frac{40 - 25}{95 - 25} = 0.21\tag{12.7}$$

From Figure 12.19

$$F_t = 0.85$$

$$\Delta T_m = 0.85 \times 31 = 26^{\circ} \text{C}$$

From Figure 12.1

$$U = 600 \text{ W/m}^2 ^{\circ} \text{C}$$

Provisional area

$$A = \frac{4340 \times 10^3}{26 \times 600} = 278 \text{ m}^2 \tag{12.1}$$

Choose 20 mm o.d., 16 mm i.d., 4.88-m-long tubes  $(\frac{3}{4}in. \times 16 \text{ ft})$ , cupro-nickel. Allowing for tube-sheet thickness, take

$$L = 4.83 \text{ m}$$

Area of one tube =  $4.83 \times 20 \times 10^{-3} \pi = 0.303 \text{ m}^2$ 

Number of tubes = 
$$\frac{278}{0.303} = \underline{918}$$

As the shell-side fluid is relatively clean use 1.25 triangular pitch.

Bundle diameter 
$$D_b = 20 \left( \frac{918}{0.249} \right)^{1/2.207} = 826 \text{ mm}$$
 (12.3b)

Use a split-ring floating head type.

From Figure 12.10, bundle diametrical clearance = 68 mm,

shell diameter, 
$$D_s = 826 + 68 = 894$$
 mm.

(*Note*. nearest standard pipe sizes are 863.6 or 914.4 mm). Shell size could be read from standard tube count tables.

#### Tube-side coefficient

Mean water temperature = 
$$\frac{40 + 25}{2} = 33^{\circ}$$
C

Tube cross-sectional area =  $\frac{\pi}{4} \times 16^2 = 201 \text{ mm}^2$ 

Tubes per pass = 
$$\frac{918}{2}$$
 = 459

Total flow area =  $459 \times 201 \times 10^{-6} = 0.092 \text{ m}^2$ 

Water mass velocity = 
$$\frac{68.9}{0.092}$$
 = 749 kg/s m<sup>2</sup>

Density water =  $995 \text{ kg/m}^3$ 

Water linear velocity = 
$$\frac{749}{995}$$
 = 0.75 m/s

$$h_i = \frac{4200(1.35 + 0.02 \times 33)0.75^{0.8}}{16^{0.2}} = 3852 \text{ W/m}^2 \text{°C}$$
 (12.17)

The coefficient can also be calculated using equation 12.15; this is done to illustrate use of this method.

$$\frac{h_i d_i}{k_f} = j_h Re P r^{0.33} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$

Viscosity of water =  $0.8 \text{ mNs/m}^2$ 

Thermal conductivity =  $0.59 \text{ W/m}^{\circ}\text{C}$ 

$$Re = \frac{\rho u d_i}{\mu} = \frac{995 \times 0.75 \times 16 \times 10^{-3}}{0.8 \times 10^{-3}} = 14,925$$

$$Pr = \frac{C_p \mu}{k_f} = \frac{4.2 \times 10^3 \times 0.8 \times 10^{-3}}{0.59} = 5.7$$

$$Neglect \left(\frac{\mu}{\mu_w}\right)$$

$$\frac{L}{d_i} = \frac{4.83 \times 10^3}{16} = 302$$

From Figure 12.23,  $j_h = 3.9 \times 10^{-3}$ 

$$h_i = \frac{0.59}{16 \times 10^{-3}} \times 3.9 \times 10^{-3} \times 14,925 \times 5.7^{0.33} = 3812 \text{ W/m}^2 ^{\circ}\text{C}$$

Checks reasonably well with value calculated from equation 12.17; use lower figure.

#### Shell-side coefficient

Choose baffle spacing =  $\frac{D_s}{5} = \frac{894}{5} = 178$  mm.

Tube pitch = 
$$1.25 \times 20 = 25 \text{ mm}$$

Cross-flow area 
$$A_s = \frac{(25 - 20)}{25} 894 \times 178 \times 10^{-6} = 0.032 \text{ m}^2$$
 (12.21)

Mass velocity, 
$$G_S = \frac{100,000}{3600} \times \frac{1}{0.032} = 868 \text{ kg/s m}^2$$

Equivalent diameter 
$$d_e = \frac{1.1}{20}(25^2 - 0.917 \times 20^2) = 14.4 \text{ mm}$$
 (12.23)

Mean shell side temperature =  $\frac{95 + 40}{2} = 68^{\circ}$ C

Methanol density =  $750 \text{ kg/m}^3$ 

Viscosity =  $0.34 \text{ mNs/m}^2$ 

Heat capacity =  $2.84 \text{ kJ/kg}^{\circ}\text{C}$ 

Thermal conductivity =  $0.19 \text{ W/m}^{\circ}\text{C}$ 

$$Re = \frac{G_s d_e}{\mu} = \frac{868 \times 14.4 \times 10^{-3}}{0.34 \times 10^{-3}} = 36,762$$
 (12.24)

$$Pr = \frac{C_p \mu}{k_f} = \frac{2.84 \times 10^3 \times 0.34 \times 10^{-3}}{0.19} = 5.1$$

Choose 25 per cent baffle cut, from Figure 12.29

$$j_h = 3.3 \times 10^{-3}$$

Without the viscosity correction term

$$h_s = \frac{0.19}{14.4 \times 10^{-3}} \times 3.3 \times 10^{-3} \times 36,762 \times 5.1^{1/3} = 2740 \text{ W/m}^2 ^{\circ}\text{C}$$

Estimate wall temperature

Mean temperature difference = 
$$68 - 33 = 35^{\circ}$$
C across all resistances across methanol film =  $\frac{U}{h_0} \times \Delta T = \frac{600}{2740} \times 35 = 8^{\circ}$ C

Mean wall temperature =  $68 - 8 = 60^{\circ}$ C

$$\mu_w = 0.37 \text{ mNs/m}^2$$

$$\left(\frac{\mu}{\mu_w}\right)^{0.14} = 0.99$$

which shows that the correction for a low-viscosity fluid is not significant.

#### Overall coefficient

Thermal conductivity of cupro-nickel alloys =  $50 \text{ W/m}^{\circ}\text{C}$ .

Take the fouling coefficients from Table 12.2; methanol (light organic) 5000  $\text{Wm}^{-2} \,^{\circ}\text{C}^{-1}$ , brackish water (sea water), take as highest value, 3000  $\text{Wm}^{-2} \,^{\circ}\text{C}^{-1}$ 

$$\frac{1}{U_o} = \frac{1}{2740} + \frac{1}{5000} + \frac{20 \times 10^{-3} \ln\left(\frac{20}{16}\right)}{2 \times 50} + \frac{20}{16} \times \frac{1}{3000} + \frac{20}{16} \times \frac{1}{3812}$$

$$U_o = \underline{738 \text{ W/m}^2 ^\circ \text{C}}$$
(12.2)

well above assumed value of 600 W/m<sup>2</sup>°C.

# Pressure drop

#### Tube-side

From Figure 12.24, for Re = 14,925

$$j_f = 4.3 \times 10^{-3}$$

Neglecting the viscosity correction term

$$\Delta P_t = 2 \left( 8 \times 4.3 \times 10^{-3} \left( \frac{4.83 \times 10^3}{16} \right) + 2.5 \right) \frac{995 \times 0.75^2}{2}$$
 (12.20)  
= 7211 N/m<sup>2</sup> = 7.2 kPa (1.1 psi)

low, could consider increasing the number of tube passes.

#### Shell side

Linear velocity = 
$$\frac{G_s}{\rho} = \frac{868}{750} = 1.16$$
 m/s

From Figure 12.30, at Re = 36,762

$$j_f = 4 \times 10^{-2}$$

Neglect viscosity correction

$$\Delta P_s = 8 \times 4 \times 10^{-2} \left(\frac{894}{14.4}\right) \left(\frac{4.83 \times 10^3}{178}\right) \frac{750 \times 1.16^2}{2}$$

$$= 272,019 \text{ N/m}^2$$

$$= 272 \text{ kPa (39 psi) too high,}$$
(12.26)

could be reduced by increasing the baffle pitch. Doubling the pitch halves the shell-side velocity, which reduces the pressure drop by a factor of approximately  $(1/2)^2$ 

$$\Delta P_s = \frac{272}{4} = 68 \text{ kPa (10 psi)}, \text{ acceptable}$$

This will reduce the shell-side heat-transfer coefficient by a factor of  $(1/2)^{0.8}(h_o \propto Re^{0.8} \propto u_s^{0.8})$ 

$$h_o = 2740 \times (\frac{1}{2})^{0.8} = 1573 \text{ W/m}^2 {}^{\circ}\text{C}$$

This gives an overall coefficient of 615  $W/m^2$ °C – still above assumed value of 600  $W/m^2$ °C.

# Example 12.2

Design a shell-and-tube exchanger for the following duty.

20,000 kg/h of kerosene (42° API) leaves the base of a kerosene side-stripping column at 200°C and is to be cooled to 90°C by exchange with 70,000 kg/h light crude oil (34° API) coming from storage at 40°C. The kerosene enters the exchanger at a pressure of 5 bar and the crude oil at 6.5 bar. A pressure drop of 0.8 bar is permissible on both streams. Allowance should be made for fouling by including a fouling factor of 0.0003 (W/m<sup>2</sup>°C)<sup>-1</sup> on the crude stream and 0.0002 (W/m<sup>2</sup>°C)<sup>-1</sup> on the kerosene stream.

#### Solution

The solution to this example illustrates the iterative nature of heat exchanger design calculations. An algorithm for the design of shell-and-tube exchangers is shown in Figure A. The procedure set out in this figure will be followed in the solution.

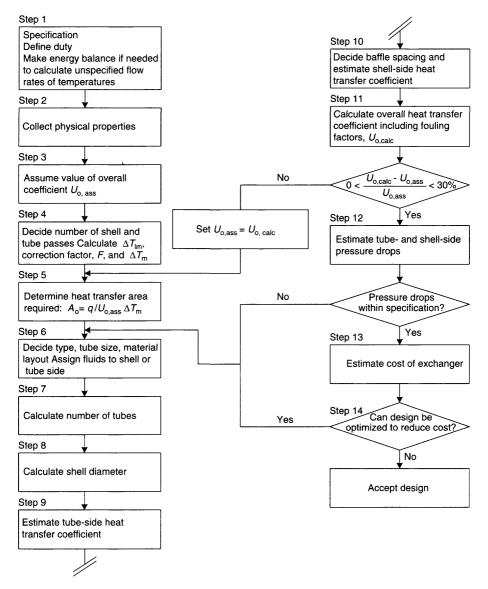



Figure A. Design procedure for shell-and-tube heat exchangers Example 12.2 and Figure A were developed by the author for the Open University Course T333 *Principles and Applications of Heat Transfer*. They are reproduced here by permission of the Open University.

## Step 1: Specification

The specification is given in the problem statement.

20,000 kg/h of kerosene (42° API) at 200°C cooled to 90°C, by exchange with 70,000 kg/h light crude oil (34° API) at 40°C.

The kerosene pressure 5 bar, the crude oil pressure 6.5 bar.

Permissible pressure drop of 0.8 bar on both streams.

Fouling factors: crude stream  $0.00035 \text{ (W/m}^2 \,^{\circ}\text{C)}^{-1}$ , kerosene stream  $0.0002 \text{ (W/m}^2 \,^{\circ}\text{C)}^{-1}$ .

To complete the specification, the duty (heat transfer rate) and the outlet temperature of the crude oil needed to be calculated.

The mean temperature of the kerosene = (200 + 90)/2 = 145°C.

At this temperature the specific heat capacity of 42° API kerosene is 2.47 kJ/kg°C (physical properties from D. Q. Kern, Process Heat Transfer, McGraw-Hill).

Duty = 
$$\frac{20,000}{3600} \times 2.47(200 - 90) = 1509.4 \text{ kW}$$

As a first trial take the mean temperature of the crude oil as equal to the inlet temperature,  $40^{\circ}$ C; specific heat capacity at this temperature = 2.01 kJ/kg°C.

An energy balance gives:

$$\frac{7000}{3600} \times 2.01(t_2 - 40) = 1509.4$$

 $t_2 = 78.6^{\circ}\text{C}$  and the stream mean temperature =  $(40 + 78.6)/2 = 59.3^{\circ}\text{C}$ .

The specific heat at this temperature is 2.05 kJ/kg°C. A second trial calculation using this value gives  $t_2 = 77.9$ °C and a new mean temperature of 58.9°C. There is no significant change in the specific heat at this mean temperature from the value used, so take the crude stream outlet temperature to be 77.9°C, say 78°C.

| Kerosene                                             | inlet               | mean                | outlet              |                  |
|------------------------------------------------------|---------------------|---------------------|---------------------|------------------|
| temperature                                          | 200                 | 145                 | 90                  | °C               |
| specific heat                                        | 2.72                | 2.47                | 2.26                | kJ/kg°C          |
| thermal conductivity                                 | 0.130               | 0.132               | 0.135               | $W/m^{\circ}C$   |
| density                                              | 690                 | 730                 | 770                 | kg/m³            |
| viscosity                                            | 0.22                | 0.43                | 0.80                | $mN sm^{-2}$     |
|                                                      |                     |                     |                     |                  |
| Crude oil                                            | outlet              | mean                | inlet               |                  |
| Crude oil temperature                                | outlet<br>78        | mean<br>59          | inlet<br>40         | °C               |
|                                                      |                     |                     |                     | °C<br>kJ/kg°C    |
| temperature                                          | 78                  | 59                  | 40                  | · ·              |
| temperature specific heat                            | 78<br>2.09          | 59<br>2.05          | 40<br>2.01          | kJ/kg°C          |
| temperature<br>specific heat<br>thermal conductivity | 78<br>2.09<br>0.133 | 59<br>2.05<br>0.134 | 40<br>2.01<br>0.135 | kJ/kg°C<br>W/m°C |

## Step 3: Overall coefficient

For an exchanger of this type the overall coefficient will be in the range 300 to 500 W/m<sup>2</sup>°C, see Figure 12.1 and Table 12.1; so start with 300 W/m<sup>2</sup>°C.

### Step 4: Exchanger type and dimensions

An even number of tube passes is usually the preferred arrangement, as this positions the inlet and outlet nozzles at the same end of the exchanger, which simplifies the pipework. Start with one shell pass and 2 tube passes.

$$\Delta T_{lm} = \frac{(200 - 78) - (90 - 40)}{\ln \frac{(200 - 78)}{(90 - 40)}} = 80.7^{\circ} \text{C}$$
 (12.4)

$$R = \frac{(200 - 90)}{(78 - 40)} = 2.9\tag{12.6}$$

$$S = \frac{(78 - 40)}{(200 - 40)} = 0.24\tag{12.7}$$

From Figure 12.19,  $F_t = 0.88$ , which is acceptable.

So,

$$\Delta T_m = 0.88 \times 80.7 = 71.0^{\circ} \text{C}$$

## Step 5: Heat transfer area

$$A_o = \frac{1509.4 \times 10^3}{300 \times 71.0} = 70.86 \text{ m}^2$$
 (12.1)

# Step 6: Layout and tube size

Using a split-ring floating head exchanger for efficiency and ease of cleaning.

Neither fluid is corrosive, and the operating pressure is not high, so a plain carbon steel can be used for the shell and tubes.

The crude is dirtier than the kerosene, so put the crude through the tubes and the kerosene in the shell.

Use 19.05 mm (3/4 inch) outside diameter, 14.83 mm inside diameter, 5 m Long tubes (a popular size) on a triangular 23.81 mm pitch (pitch/dia. = 1.25).

# Step 7: Number of tubes

Area of one tube (neglecting thickness of tube sheets)

$$= \pi \times 19.05 \times 10^{-3} \times 5 = 0.2992 \text{ m}^2$$

Number of tubes = 70.89/0.2992 = 237, say 240 So, for 2 passes, tubes per pass = 120 Check the tube-side velocity at this stage to see if it looks reasonable.

Tube cross-sectional area = 
$$\frac{\pi}{4}(14.83 \times 10^{-3})^2 = 0.0001727 \text{ m}^2$$
  
So area per pass =  $120 \times 0.0001727 = 0.02073 \text{ m}^2$   
Volumetric flow =  $\frac{70,000}{3600} \times \frac{1}{820} = 0.0237 \text{ m}^3/\text{s}$   
Tube-side velocity,  $u_t = \frac{0.0237}{0.02073} = 1.14 \text{ m/s}$ 

The velocity is satisfactory, between 1 to 2 m/s, but may be a little low. This will show up when the pressure drop is calculated.

### Step 8: Bundle and shell diameter

From Table 12.4, for 2 tube passes,  $K_1 = 0.249$ ,  $n_1 = 2.207$ ,

so, 
$$D_b = 19.05 \left(\frac{240}{0.249}\right)^{1/2.207} = 428 \text{ mm } (0.43 \text{ m})$$
 (12.3b)

For a split-ring floating head exchanger the typical shell clearance from Figure 12.10 is 56 mm, so the shell inside diameter,

$$D_s = 428 + 56 = 484 \text{ mm}$$

# Step 9: Tube-side heat transfer coefficient

$$Re = \frac{820 \times 1.14 \times 14.83 \times 10^{-3}}{3.2 \times 10^{-3}} = 4332, (4.3 \times 10^{3})$$

$$Pr = \frac{2.05 \times 10^{3} \times 3.2 \times 10^{-3}}{0.134} = 48.96$$

$$\frac{L}{d_{i}} = \frac{5000}{14.83} = 337$$

From Figure 12.23,  $j_h = 3.2 \times 10^{-3}$ 

$$Nu = 3.2 \times 10^{-3} (4332)(48.96)^{0.33} = 50.06$$

$$h_i = 50.06 \times \left(\frac{0.134}{14.83 \times 10^{-3}}\right) = 452 \text{ W/m}^{2} ^{\circ}\text{C}$$
(12.15)

This is clearly too low if  $U_o$  is to be 300 W/m<sup>2</sup>°C. The tube-side velocity did look low, so increase the number of tube passes to 4. This will halve the cross-sectional area in each pass and double the velocity.

New 
$$u_t = 2 \times 1.14 = 2.3 \text{ m/s}$$
  
and  $Re = 2 \times 4332 = 8664(8.7 \times 10^3)$   
 $j_h = 3.8 \times 10^{-3}$ 

$$h_i = \left(\frac{0.134}{14.83 \times 10^{-3}}\right) \times 3.8 \times 10^{-3} (8664)(48.96)^{0.33}$$
$$= 1074 \text{ W/m}^2 {}^{\circ}\text{C}$$

### Step 10: Shell-side heat transfer coefficient

Kern's method will be used.

With 4 tube passes the shell diameter will be larger than that calculated for 2 passes. For 4 passes  $K_1 = 0.175$  and  $n_1 = 2.285$ .

$$D_b = 19.05 \left(\frac{240}{0.175}\right)^{1/2.285} = 450 \text{ mm}, (0.45 \text{ m})$$
 (12.3b)

The bundle to shell clearance is still around 56 mm, giving:

$$D_s = 506 \text{ mm (about 20 inches)}$$

As a first trial take the baffle spacing =  $D_s/5$ , say 100 mm. This spacing should give good heat transfer without too high a pressure drop.

$$A_s = \frac{(23.81 - 19.05)}{23.81} 506 \times 100 = 10,116 \text{ mm}^2 = 0.01012 \text{ m}^2$$
 (12.21)

$$d_e = \frac{1.10}{19.05} (23.81^2 - 0.917 \times 19.05^2) = 13.52 \text{ mm}$$
 (12.23)

Volumetric flow-rate on shell-side = 
$$\frac{20,000}{3600} \times \frac{1}{730} = 0.0076 \text{ m}^3/\text{s}$$
  
Shell-side velocity =  $\frac{0.076}{0.01012} = 0.75 \text{ m/s}$ 

$$Re = \frac{730 \times 0.75 \times 13.52 \times 10^{-3}}{0.43 \times 10^{-3}} = 17,214, (1.72 \times 10^{4})$$

$$Pr = \frac{2.47 \times 10^{3} \times 0.43 \times 10^{-3}}{0.132} = 8.05$$

Use segmental baffles with a 25% cut. This should give a reasonable heat transfer coefficient without too large a pressure drop.

From Figure 12.29,  $j_h = 4.52 \times 10^{-3}$ .

Neglecting the viscosity correction:

$$h_s = \left(\frac{0.132}{13.52} \times 10^3\right) \times 4.52 \times 10^{-3} \times 17,214 \times 8.05^{0.33} = 1505 \text{ W/m}^2 \text{°C}$$
 (12.25)

# Step 11: Overall coefficient

$$\frac{1}{U_o} = \left(\frac{1}{1074} + 0.00035\right) \frac{19.05}{14.83} + \frac{19.05 \times 10^{-3} \text{Ln}\left(\frac{19.05}{14.83}\right)}{2 \times 55} + \frac{1}{1505} + 0.0002$$

$$U_o = 386 \text{ W/m}^2 \text{ °C}$$
(12.2)

This is above the initial estimate of 300 W/m<sup>2</sup>°C. The number of tubes could possibly be reduced, but first check the pressure drops.

### Step 12: Pressure drop

#### Tube-side

240 tubes, 4 passes, tube i.d. 14.83 mm,  $u_t$  2.3 m/s,  $Re = 8.7 \times 10^3$ . From Figure 12.24,  $j_f = 5 \times 10^{-3}$ .

$$\Delta P_t = 4 \left( 8 \times 5 \times 10^{-3} \left( \frac{5000}{14.83} \right) + 2.5 \right) \frac{(820 \times 2.3^2)}{2}$$

$$= 4(13.5 + 2.5) \frac{(820 \times 2.3^2)}{2}$$

$$= 138.810 \text{ N/m}^2 \cdot 1.4 \text{ bar}$$

This exceeds the specification. Return to step 6 and modify the design.

### Modified design

The tube velocity needs to be reduced. This will reduce the heat transfer coefficient, so the number of tubes must be increased to compensate. There will be a pressure drop across the inlet and outlet nozzles. Allow 0.1 bar for this, a typical figure (about 15% of the total); which leaves 0.7 bar across the tubes. Pressure drop is roughly proportional to the square of the velocity and  $u_t$  is proportional to the number of tubes per pass. So the pressure drop calculated for 240 tubes can be used to estimate the number of tubes required.

Tubes needed =  $240/(0.6/1.4)^{0.5} = 365$ 

Say, 360 with 4 passes.

Retain 4 passes as the heat transfer coefficient will be too low with 2 passes.

Second trial design: 360 tubes 19.05 mm o.d., 14.83 mm i.d., 5 m long, triangular pitch 23.81 mm.

$$D_b = 19.05 \left(\frac{360}{0.175}\right)^{1/2.285} = 537 \text{ mm}, (0.54 \text{ m})$$
 (12.3b)

From Figure 12.10 clearance with this bundle diameter = 59 mm

$$D_s = 537 + 59 = 596 \text{ mm}$$
Cross-sectional area per pass =  $\frac{360}{4} (14.83 \times 10^{-3})^2 \frac{\pi}{4} = 0.01555 \text{ m}^2$ 
Tube velocity  $u_t = \frac{0.0237}{0.01555} = 1.524 \text{ m/s}$ 

$$Re = \frac{820 \times 1.524 \times 14.83 \times 10^{-3}}{3.2 \times 10^{-3}} = 5792$$

L/d is the same as the first trial, 337

$$j_h = 3.6 \times 10^{-3}$$
  
 $h_i = \left(\frac{0.134}{14.83} \times 10^{-3}\right) 3.6 \times 10^{-3} \times 5792 \times 48.96^{0.33} = 680 \text{ W/m}^2 \text{°C} \quad (12.15)$ 

This looks satisfactory, but check the pressure drop before doing the shell-side calculation.

$$j_f = 5.5 \times 10^{-3}$$
  
 $\Delta P_t = 4 \left( 8 \times 5.5 \times 10^{-3} \left( \frac{5000}{14.83} \right) + 2.5 \right) \frac{(820 \times 1.524^2)}{2} = 66,029 \text{ N/m}^2, 0.66 \text{ bar}$ 
(12.20)

Well within specification.

Keep the same baffle cut and spacing.

$$A_{s} = \frac{(23.81 - 19.05)}{23.81} 596 \times 100 = 11,915 \text{ mm}^{2}, 0.01192 \text{ m}^{2}$$

$$u_{s} = \frac{0.0076}{0.01193} = 0.638 \text{ m/s}$$

$$d_{e} = 13.52 \text{ mm, as before}$$

$$Re = \frac{730 \times 0.638 \times 13.52 \times 10^{-3}}{0.43 \times 10^{-3}} = 14,644, (1.5 \times 10^{4})$$

$$Pr = 8.05$$

$$j_{h} = 4.8 \times 10^{-3}, \quad j_{f} = 4.6 \times 10^{-2}$$

$$h_{s} = \left(\frac{0.132}{13.52 \times 10^{-3}}\right) 4.8 \times 10^{-3} \times 14,644 \times (8.05)^{0.33} = 1366 \text{ W/m}^{2} \,^{\circ}\text{C}, \text{ looks OK}$$

$$(12.25)$$

$$\Delta P_{s} = 8 \times 4.6 \times 10^{-2} \left(\frac{596}{13.52}\right) \left(\frac{5000}{100}\right) \frac{(730 \times 0.638^{2})}{2} = 120,510 \text{ N/m}^{2}, 1.2 \text{ bar}$$

Too high; the specification only allowed 0.8 overall, including the loss over the nozzles. Check the overall coefficient to see if there is room to modify the shell-side design.

$$\frac{1}{U_o} = \left(\frac{1}{683} + 0.00035\right) \frac{19.05}{14.83} + \frac{19.05 \times 10^{-3} \ln\left(\frac{19.05}{14.88}\right)}{2 \times 55} + \frac{1}{1366} + 0.0002$$

$$U_o = 302 \text{ W/m}^2 \text{ °C}$$

$$U_o \text{ required} = \frac{Q}{(A_o \Delta T_{\text{lm}})}, \quad A_o = 360 \times 0.2992 = 107.7 \text{ m}^2,$$
so  $U_o \text{ required} = \frac{1509.4 \times 10^3}{(107.7 \times 71)} = 197 \text{ W/m}^2 \text{ °C}$ 

The estimated overall coefficient is well above that required for design, 302 compared to 192 W/m<sup>2</sup>°C, which gives scope for reducing the shell-side pressure drop.

Allow a drop of 0.1 bar for the shell inlet and outlet nozzles, leaving 0.7 bar for the shell-side flow. So, to keep within the specification, the shell-side velocity will have to be reduced by around  $\sqrt{(1/2)} = 0.707$ . To achieve this the baffle spacing will need to be increased to 100/0.707 = 141, say 140 mm.

$$A_s = \frac{(23.81 - 19.05)}{23.81} 596 \times 140 = 6681 \text{ mm}^2, 0.167 \text{ m}^2$$

$$u_s = \frac{0.0076}{0.0167} = 0.455 \text{ m/s},$$
(12.21)

Giving: Re = 10,443,  $h_s = 1177$  W/m<sup>2</sup>°C,  $\Delta P_s = 0.47$  bar, and  $U_o = 288$  Wm<sup>-2</sup>°C<sup>-1</sup>. The pressure drop is now well within the specification.

### Step 13: Estimate cost

The cost of this design can be estimated using the methods given in Chapter 6.

### Step 14: Optimisation

There is scope for optimising the design by reducing the number of tubes, as the pressure drops are well within specification and the overall coefficient is well above that needed. However, the method used for estimating the coefficient and pressure drop on the shell-side (Kern's method) is not accurate, so keeping to this design will give some margin of safety.

# Viscosity correction factor

The viscosity correction factor  $(\mu/\mu_w)^{0.14}$  was neglected when calculating the heat transfer coefficients and pressure drops. This is reasonable for the kerosene as it has a relatively low viscosity, but it is not so obviously so for the crude oil. So, before firming up the design, the effect of this factor on the tube-side coefficient and pressure drop will be checked.

First, an estimate of the temperature at the tube wall,  $t_w$  is needed.

The inside area of the tubes = 
$$\pi \times 14.83 \times 10^{-3} \times 5 \times 360 = 83.86 \text{ m}^2$$
  
Heat flux =  $Q/A = 1509.4 \times 10^3/83.86 = 17.999 \text{ W/m}^2$ 

As a rough approximation

$$(t_w - t)h_i = 17,999$$

where t is the mean bulk fluid temperature =  $59^{\circ}$ C.

So, 
$$t_w = \frac{17,999}{680} + 59 = 86^{\circ}\text{C}.$$

The crude oil viscosity at this temperature =  $2.1 \times 10^{-3} \text{ Ns/m}^2$ .

Giving 
$$\left(\frac{\mu}{\mu_w}\right)^{0.14} = \left(\frac{3.2 \times 10^{-3}}{2.1 \times 10^{-3}}\right)^{0.14} = 1.06$$

Only a small factor, so the decision to neglect it was justified. Applying the correction would increase the estimated heat transfer coefficient, which is in the right direction. It would give a slight decrease in the estimated pressure drop.

## Summary: the proposed design

Split ring, floating head, 1 shell pass, 4 tube passes.

360 carbon steel tubes, 5 m long, 19.05 mm o.d., 14.83 mm i.d., triangular pitch, pitch 23.18 mm.

Heat transfer area 107.7 m<sup>2</sup> (based on outside diameter).

Shell i.d. 597 mm (600 mm), baffle spacing 140 mm, 25% cut.

Tube-side coefficient 680 W/m<sup>2</sup>°C, clean.

Shell-side coefficient 1366 W/m<sup>2</sup>°C, clean.

Overall coefficient, estimated 288 W/m<sup>2</sup>°C, dirty.

Overall coefficient required 197 W/m<sup>2</sup>°C, dirty.

Dirt/Fouling factors:

Tube-side (crude oil)  $0.00035 \text{ (W/m}^2 \,^{\circ}\text{C)}^{-1}$ .

Shell-side (kerosene)  $0.0002 \text{ (W/m}^2 \,^{\circ}\text{C)}^{-1}$ .

Pressure drops:

Tube-side, estimated 0.40 bar, +0.1 for nozzles; specified 0.8 bar overall.

Shell-side, estimated 0.45 bar, +0.1 for nozzles; specified 0.8 bar overall.

# Optimisation using a CAD program

The use of a proprietary computer program (HTFS, M-TASC) to find the lowest cost design that meets the specification resulted in the design set out on page 633. The program selected longer tubes, to minimise the cost. This has resulted in an exchanger with a shell length to diameter ratio of greater than 10:1. This could cause problems in supporting the shell, and in withdrawing the tube bundle for maintenance.

The CAD program was rerun with the tube length restricted to 3500 mm, to produce a more compact design. This gave a design with 349 tubes, 4 passes, in a shell 540 mm diameter. The setting plan for this design is shown in Figure B.

# CAD design

Split ring, floating head, 1 shell pass, 2 tube passes.

168 carbon steel tubes, 6096 mm, 19.05 mm o.d., 14.83 mm i.d., triangular pitch, pitch 23.18 mm.

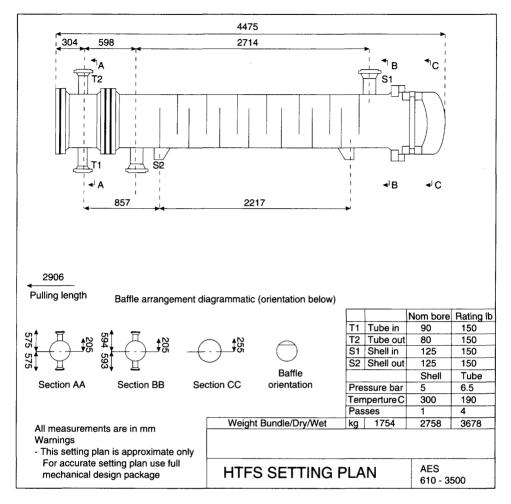



Figure B. Setting out plan for compact design. (Courtesy of Heat Transfer and Fluid Flow Service, Harwell)

Heat transfer area 61 m<sup>2</sup>.

Shell i.d. 387, baffle spacing 77.9 mm, 15% cut.

Tube-side coefficient 851 W/m<sup>2</sup>°C, clean.

Shell-side coefficient 1191 W/m<sup>2</sup>°C, clean.

Overall coefficient estimated 484 Wm<sup>-2</sup>°C<sup>-1</sup> clean.

Overall coefficient estimated 368 Wm<sup>-2</sup>°C<sup>-1</sup> dirty.

# Pressure drops, including drop over nozzles:

Tube-side, estimated 0.5 bar.

Shell-side, estimated 0.5 bar.

#### 12.9.4. Bell's method

In Bell's method the heat-transfer coefficient and pressure drop are estimated from correlations for flow over ideal tube-banks, and the effects of leakage, bypassing and flow in the window zone are allowed for by applying correction factors.

This approach will give more satisfactory predictions of the heat-transfer coefficient and pressure drop than Kern's method; and, as it takes into account the effects of leakage and bypassing, can be used to investigate the effects of constructional tolerances and the use of sealing strips. The procedure in a simplified and modified form to that given by Bell (1963), is outlined below.

The method is not recommended when the by-pass flow area is greater than 30% of the cross-flow area, unless sealing strips are used.

#### Heat-transfer coefficient

The shell-side heat transfer coefficient is given by:

$$h_s = h_{oc} F_n F_w F_b F_L \tag{12.27}$$

where  $h_{oc}$  = heat transfer coefficient calculated for cross-flow over an ideal tube bank, no leakage or bypassing.

 $F_n$  = correction factor to allow for the effect of the number of vertical tube rows,

 $F_w$  = window effect correction factor,

 $F_b$  = bypass stream correction factor,

 $F_L$  = leakage correction factor.

The total correction will vary from 0.6 for a poorly designed exchanger with large clearances to 0.9 for a well-designed exchanger.

# hoc, ideal cross-flow coefficient

The heat-transfer coefficient for an ideal cross-flow tube bank can be calculated using the heat transfer factors  $j_h$  given in Figure 12.31. Figure 12.31 has been adapted from a similar figure given by Mueller (1973). Mueller includes values for more tube arrangements than are shown in Figure 12.31. As an alternative to Figure 12.31, the comprehensive data given in the Engineering Sciences Data Unit report on heat transfer during cross-flow of fluids over tube banks, ESDU No. 73031 (1973), can be used; see Butterworth (1977).

The Reynolds number for cross-flow through a tube bank is given by:

$$Re = \frac{G_s d_o}{\mu} = \frac{u_s \rho d_o}{\mu}$$

where  $G_s$  = mass flow rate per unit area, based on the total flow and free area at the bundle equator. This is the same as  $G_s$  calculated for Kern's method,

 $d_o$  = tube outside diameter.

The heat-transfer coefficient is given by:

$$\frac{h_{oc}d_o}{k_f} = j_h Re P r^{1/3} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$
 (12.28)

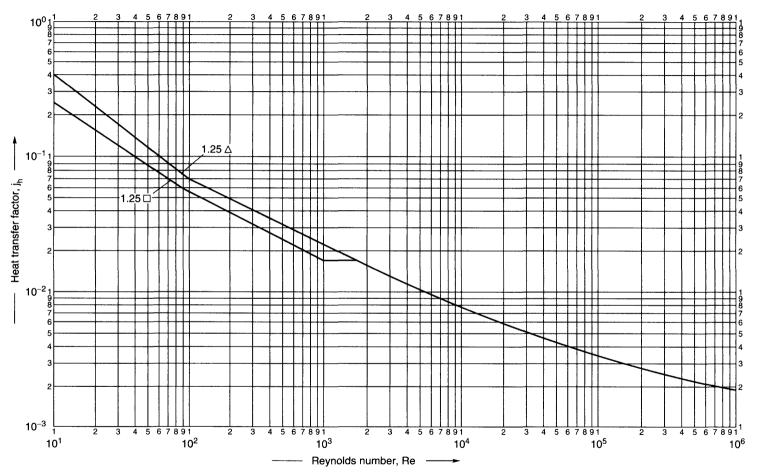



Figure 12.31. Heat-transfer factor for cross-flow tube banks

### F<sub>n</sub>, tube row correction factor

The mean heat-transfer coefficient will depend on the number of tubes crossed. Figure 12.31 is based on data for ten rows of tubes. For turbulent flow the correction factor  $F_n$  is close to 1.0. In laminar flow the heat-transfer coefficient may decrease with increasing rows of tubes crossed, due to the build up of the temperature boundary layer. The factors given below can be used for the various flow regimes; the factors for turbulent flow are based on those given by Bell (1963).

 $N_{cv}$  is number of constrictions crossed = number of tube rows between the baffle tips; see Figure 12.39, and Section 12.9.5.

1. Re > 2000, turbulent; take  $F_n$  from Figure 12.32.

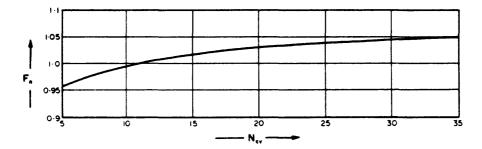



Figure 12.32. Tube row correction factor  $F_n$ 

2. Re > 100 to 2000, transition region, take  $F_n = 1.0$ ;

3. 
$$Re < 100$$
, laminar region,  
 $F_n \propto (N_c')^{-0.18}$ , (12.29)

where  $N_c'$  is the number of rows crossed in series from end to end of the shell, and depends on the number of baffles. The correction factor in the laminar region is not well established, and Bell's paper, or the summary given by Mueller (1973), should be consulted if the design falls in this region.

# Fw, window correction factor

This factor corrects for the effect of flow through the baffle window, and is a function of the heat-transfer area in the window zones and the total heat-transfer area. The correction factor is shown in Figure 12.33 plotted versus  $R_w$ , the ratio of the number of tubes in the window zones to the total number in the bundle, determined from the tube layout diagram.

For preliminary calculations  $R_w$  can be estimated from the bundle and window cross-sectional areas, see Section 12.9.5.

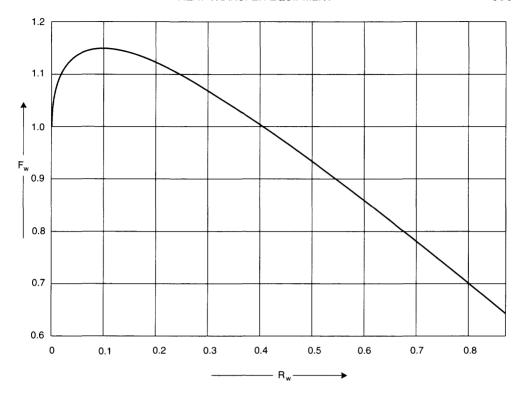



Figure 12.33. Window correction factor

# F<sub>b</sub>, bypass correction factor

This factor corrects for the main bypass stream, the flow between the tube bundle and the shell wall, and is a function of the shell to bundle clearance, and whether sealing strips are used:

$$F_b = \exp\left[-\alpha \frac{A_b}{A_s} \left(1 - \left(\frac{2N_s}{N_{cv}}\right)^{1/3}\right)\right]$$
 (12.30)

where  $\alpha = 1.5$  for laminar flow, Re < 100,

 $\alpha = 1.35$  for transitional and turbulent flow Re > 100,

 $A_b$  = clearance area between the bundle and the shell, see Figure 12.39 and Section 12.9.5,

 $A_s$  = maximum area for cross-flow, equation 12.21,

 $N_s$  = number of sealing strips encountered by the bypass stream in the cross-flow zone,

 $N_{cv}$  = the number of constrictions, tube rows, encountered in the cross-flow section.

Equation 12.30 applies for  $N_s \leq N_{cv}/2$ .

Where no sealing strips are used,  $F_b$  can be obtained from Figure 12.34.

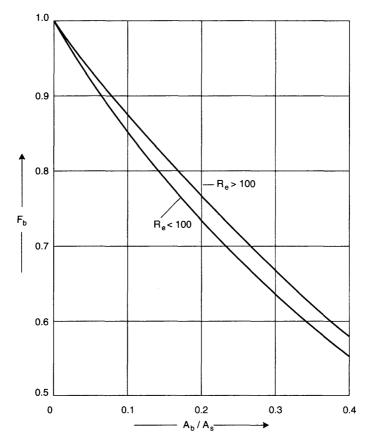



Figure 12.34. Bypass correction factor

# F<sub>L</sub>, Leakage correction factor

This factor corrects for the leakage through the tube-to-baffle clearance and the baffle-to-shell clearance.

$$F_L = 1 - \beta_L \left[ \frac{(A_{tb} + 2A_{sb})}{A_L} \right]$$
 (12.31)

where  $\beta_L$  = a factor obtained from Figure 12.35,

 $A_{tb}$  = the tube to baffle clearance area, per baffle, see Figure 12.39 and Section 12.9.5,

 $A_{sb}$  = shell-to-baffle clearance area, per baffle, see Figure 12.39 and Section 12.9.5,  $A_L$  = total leakage area =  $(A_{tb} + A_{sb})$ .

Typical values for the clearances are given in the standards, and are discussed in Section 12.5.6. The clearances and tolerances required in practical exchangers are discussed by Rubin (1968).

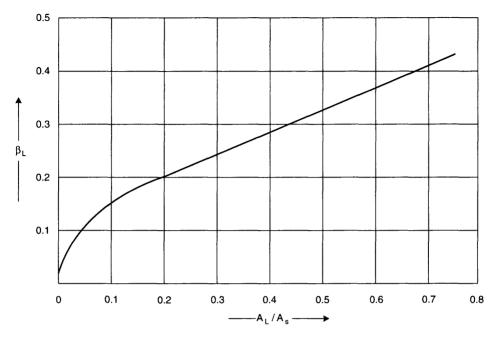



Figure 12.35. Coefficient for  $F_L$ , heat transfer

## Pressure drop

The pressure drops in the cross-flow and window zones are determined separately, and summed to give the total shell-side pressure drop.

#### Cross-flow zones

The pressure drop in the cross-flow zones between the baffle tips is calculated from correlations for ideal tube banks, and corrected for leakage and bypassing.

$$\Delta P_c = \Delta P_i F_b' F_L' \tag{12.32}$$

where  $\Delta P_c$  = the pressure drop in a cross-flow zone between the baffle tips, corrected for by-passing and leakage,

 $\Delta P_i$  = the pressure drop calculated for an equivalent ideal tube bank,

 $F_b'$  = by-pass correction factor,

 $F'_L$  = leakage correction factor.

# $\Delta P_i$ ideal tube bank pressure drop

The number of tube rows has little effect on the friction factor and is ignored.

Any suitable correlation for the cross-flow friction factor can be used; for that given in Figure 12.36, the pressure drop across the ideal tube bank is given by:

$$\Delta P_i = 8j_f N_{cv} \frac{\rho u_s^2}{2} \left(\frac{\mu}{\mu_w}\right)^{-0.14}$$
 (12.33)

where  $N_{cv}$  = number of tube rows crossed (in the cross-flow region),

 $u_s$  = shell side velocity, based on the clearance area at the bundle equator, equation 12.21,

 $j_f$  = friction factor obtained from Figure 12.36, at the appropriate Reynolds number,  $Re = (\rho u_s d_o/\mu)$ .

# F'<sub>b</sub>, bypass correction factor for pressure drop

Bypassing will affect the pressure drop only in the cross-flow zones. The correction factor is calculated from the equation used to calculate the bypass correction factor for heat transfer, equation 12.30, but with the following values for the constant  $\alpha$ .

Laminar region, Re < 100,  $\alpha = 5.0$ 

Transition and turbulent region, Re > 100,  $\alpha = 4.0$ 

The correction factor for exchangers without sealing strips is shown in Figure 12.37.

# F'<sub>1</sub>, leakage factor for pressure drop

Leakages will affect the pressure drop in both the cross-flow and window zones. The factor is calculated using the equation for the heat-transfer leakage-correction factor, equation 12.31, with the values for the coefficient  $\beta_L'$  taken from Figure 12.38.

# Window-zone pressure drop

Any suitable method can be used to determine the pressure drop in the window area; see Butterworth (1977). Bell used a method proposed by Colburn. Corrected for leakage, the window drop for turbulent flow is given by:

$$\Delta P_w = F_L'(2 + 0.6N_{wv}) \frac{\rho u_z^2}{2} \tag{12.34}$$

where  $u_z$  = the geometric mean velocity,

 $u_z = \sqrt{u_w u_s},$ 

 $u_w$  = the velocity in the window zone, based on the window area less the area occupied by the tubes  $A_w$ , see Section 12.9.5,

$$u_w = \frac{W_s}{A_w \rho} \tag{12.35}$$

 $W_s$  = shell-side fluid mass flow, kg/s,

 $N_{wv}$  = number of restrictions for cross-flow in window zone, approximately equal to the number of tube rows.



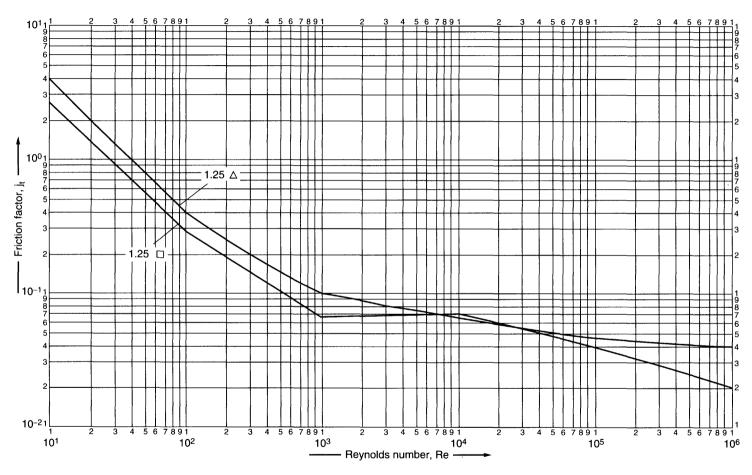



Figure 12.36. Friction factor for cross-flow tube banks

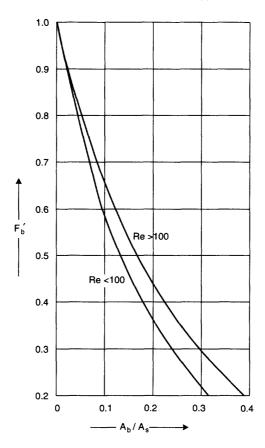



Figure 12.37. Bypass factor for pressure drop  $F_b'$ 

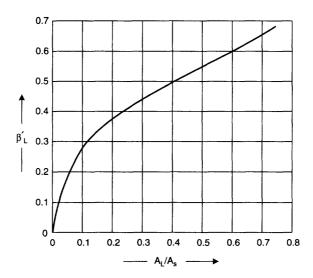



Figure 12.38. Coefficient for  $F'_L$ , pressure drop

### End zone pressure drop

There will be no leakage paths in an end zone (the zone between tube sheet and baffle). Also, there will only be one baffle window in these zones; so the total number of restrictions in the cross-flow zone will be  $N_{cv} + N_{wv}$ . The end zone pressure drop  $\Delta P_e$  will therefore be given by:

$$\Delta P_e = \Delta P_i \left[ \frac{(N_{wv} + N_{cv})}{N_{cv}} \right] F_b'$$
 (12.36)

## Total shell-side pressure drop

Summing the pressure drops over all the zones in series from inlet to outlet gives:

$$\Delta P_s = 2$$
 end zones +  $(N_b - 1)$  cross-flow zones +  $N_b$  window zones
$$\Delta P_s = 2\Delta P_e + \Delta P_c(N_b - 1) + N_b \Delta P_w \qquad (12.37)$$

where  $N_b$  is the number of baffles =  $[(L/l_B) - 1]$ .

An estimate of the pressure loss incurred in the shell inlet and outlet nozzles must be added to that calculated by equation 12.37; see Section 12.9.3.

## End zone lengths

The spacing in the end zones will often be increased to provide more flow area at the inlet and outlet nozzles. The velocity in these zones will then be lower and the heat transfer and pressure drop will be reduced slightly. The effect on pressure drop will be more marked than on heat transfer, and can be estimated by using the actual spacing in the end zone when calculating the cross-flow velocity in those zones.

# 12.9.5. Shell and bundle geometry

The bypass and leakage areas, window area, and the number of tubes and tube rows in the window and cross-flow zones can be determined precisely from the tube layout diagram. For preliminary calculations they can be estimated with sufficient accuracy by considering the tube bundle and shell geometry.

With reference to Figures 12.39 and 12.40:

 $H_c$ = baffle cut height =  $D_s \times B_c$ , where  $B_c$  is the baffle cut as a fraction,

 $H_b$ = height from the baffle chord to the top of the tube bundle,

 $B_b$ = "bundle cut" =  $H_b/D_b$ ,

 $\theta_b$ = angle subtended by the baffle chord, rads,

 $D_b$ = bundle diameter.

Then:

$$H_b = \frac{D_b}{2} - D_s(0.5 - B_c) \tag{12.38}$$

$$N_{cv} = \frac{(D_b - 2H_b)}{p_t'} \tag{12.39}$$

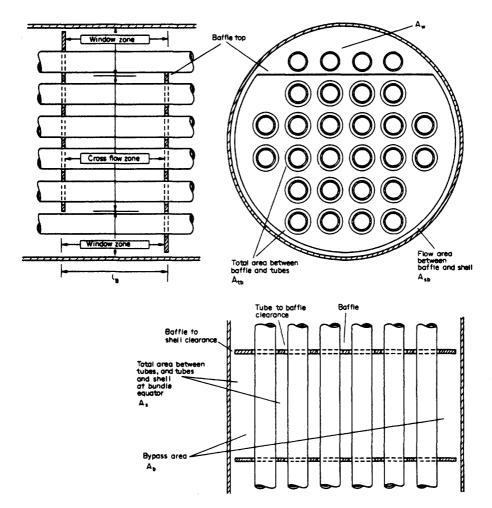



Figure 12.39. Clearance and flow areas in the shell-side of a shell and tube exchanger

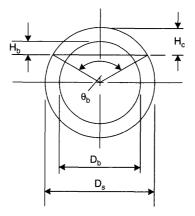



Figure 12.40. Baffle and tube geometry

$$N_{wv} = \frac{H_b}{p'_t} \tag{12.40}$$

where  $p'_t$  is the vertical tube pitch

 $p'_t = p_t$  for square pitch,

 $p'_t = 0.87 p_t$  for equilateral triangular pitch.

The number of tubes in a window zone  $N_w$  is given by:

$$N_w = N_t \times R_a' \tag{12.41}$$

where  $R'_a$  is the ratio of the bundle cross-sectional area in the window zone to the total bundle cross-sectional area,  $R'_a$  can be obtained from Figure 12.41, for the appropriate "bundle cut",  $B_b$ .

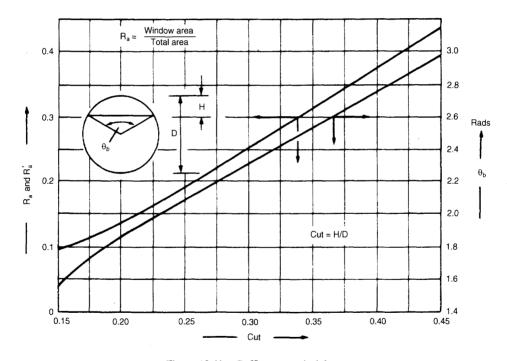



Figure 12.41. Baffle geometrical factors

The number of tubes in a cross-flow zone  $N_c$  is given by

$$N_c = N_t - 2N_w (12.42)$$

and

$$R_w = \frac{2N_w}{N_t} \tag{12.43}$$

$$A_w = \left(\frac{\pi D_s^2}{4} \times R_a\right) - \left(N_w \frac{\pi d_o^2}{4}\right) \tag{12.44}$$

 $R_a$  is obtained from Figure 12.41, for the appropriate baffle cut  $B_c$ 

$$A_{tb} = \frac{c_t \pi d_o}{2} (N_t - N_w) \tag{12.45}$$

where  $c_t$  is the diametrical tube-to-baffle clearance; the difference between the hole and tube diameter, typically 0.8 mm.

$$A_{sb} = \frac{c_s D_s}{2} (2\pi - \theta_b) \tag{12.46}$$

where  $c_s$  is the baffle-to-shell clearance, see Table 12.5.

 $\theta_b$  can be obtained from Figure 12.41, for the appropriate baffle cut,  $B_c$ 

$$A_b = l_B(D_s - D_b) (12.47)$$

where  $l_B$  is the baffle spacing.

## 12.9.6. Effect of fouling on pressure drop

Bell's method gives an estimate of the shell-side pressure drop for the exchanger in the clean condition. In service, the clearances will tend to plug up, particularly the small clearance between the tubes and baffle, and this will increase the pressure drop. Devore (1961) has estimated the effect of fouling on pressure drop by calculating the pressure drop in an exchange in the clean condition and with the clearance reduced by fouling, using Tinker's method. He presented his results as ratios of the fouled to clean pressure drop for various fouling factors and baffle spacings.

The ratios given in Table 12.7, which are adapted from Devore's figures, can be used to make a rough estimate of the effect of fouling on pressure drop.

| Fouling coefficient | Shell diameter/baffle spacing |      |      |  |
|---------------------|-------------------------------|------|------|--|
| $(W/m^2$ ° $C)$     | 1.0                           | 2.0  | 5.0  |  |
| Laminar flow        |                               |      |      |  |
| 6000                | 1.06                          | 1.20 | 1.28 |  |
| 2000                | 1.19                          | 1.44 | 1.55 |  |
| <1000               | 1.32                          | 1.99 | 2.38 |  |
| Turbulent flow      |                               |      |      |  |
| 6000                | 1.12                          | 1.38 | 1.55 |  |
| 2000                | 1.37                          | 2.31 | 2.96 |  |
| <1000               | 1.64                          | 3.44 | 4.77 |  |

Table 12.7. Ratio of fouled to clean pressure drop

# 12.9.7. Pressure-drop limitations

Though Bell's method will give a better estimate of the shell-side pressure drop than Kern's, it is not sufficiently accurate for the design of exchangers where the allowable pressure drop is the overriding consideration. For such designs, a divided-flow model based on Tinker's work should be used. If a proprietary computer program is not

available, the ESDU method (ESDU 83038) is recommended. Devore's method can also be considered, providing the exchanger layout conforms with those covered in his work.

### Example 12.3

Using Bell's method, calculate the shell-side heat transfer coefficient and pressure drop for the exchanger designed in Example 12.1.

Summary of proposed design

| Number of tubes     | = 918   |
|---------------------|---------|
| Shell i.d.          | 894 mm  |
| Bundle diameter     | 826 mm  |
| Tube o.d.           | 20 mm   |
| Pitch 1.25 $\Delta$ | 25 mm   |
| Tube length         | 4830 mm |
| Baffle pitch        | 356 mm  |

Physical properties from Example 12.1

#### Solution

#### Heat-transfer coefficient

Ideal bank coefficient,  $h_{oc}$ 

$$A_s = \frac{25 - 20}{25} \times 894 \times 356 \times 10^{-6} = 0.062 \text{ m}^2$$

$$G_s = \frac{100,000}{3600} \times \frac{1}{0.062} = 448 \text{ kg/s m}^2$$

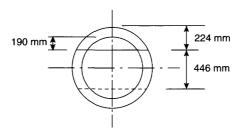
$$Re = \frac{G_s d_o}{\mu} = \frac{448 \times 20 \times 10^{-3}}{0.34 \times 10^{-3}} = 26,353$$

From Figure 12.31  $j_h = 5.3 \times 10^{-3}$ .

Prandtl number, from Example 12.1 = 5.1

Neglect viscosity correction factor  $(\mu/\mu_w)$ .

$$h_{oc} = \frac{0.19}{20 \times 10^{-3}} \times 5.3 \times 10^{-3} \times 26,353 \times 5.1^{1/3} = 2272 \text{ W/m}^2 \text{°C}$$
 (12.28)


# Tube row correction factor, Fn

Tube vertical pitch  $p_t' = 0.87 \times 25 = 21.8 \text{ mm}$ Baffle cut height  $H_c = 0.25 \times 894 = 224 \text{ mm}$ Height between baffle tips  $= 894 - 2 \times 224 = 446 \text{ mm}$ 

$$N_{cv} = \frac{446}{21.8} = 20$$

From Figure 12.32  $F_n = 1.03$ .

## Window correction factor, Fw



$$H_b = \frac{826}{2} - 894(0.5 - 0.25) = 190 \text{ mm}$$
 (12.38)

"Bundle cut" = 190/826 = 0.23 (23 per cent)

From Figure 12.41 at cut of 0.23

$$R'_a = 0.18$$

Tubes in one window area, 
$$N_w = 918 \times 0.18 = 165$$
 (12.41)

Tubes in cross-flow area, 
$$N_c = 918 - 2 \times 165 = 588$$
 (12.42)

$$R_w = \frac{2 \times 165}{918} = 0.36 \tag{12.43}$$

From Figure 12.33  $F_w = 1.02$ .

# Bypass correction, Fb

$$A_b = (894 - 826)356 \times 10^{-6} = 0.024 \text{ m}^2$$
 (12.47)  
 $\frac{A_b}{A_s} = \frac{0.024}{0.062} = 0.39$   
 $F_b = \exp[-1.35 \times 0.39] = 0.59$  (12.30)

Very low, sealing strips needed; try one strip for each five vertical rows.

$$\frac{N_s}{N_{cv}} = \frac{1}{5}$$

$$F_b = \exp[-1.35 \times 0.39(1 - (\frac{2}{5})^{1/3})] = 0.87$$
 (12.30)

# Leakage correction, F<sub>L</sub>

Using clearances as specified in the Standards,

tube-to-baffle 
$$\frac{1}{32}$$
 in. = 0.8 mm  
baffle-to-shell  $\frac{3}{16}$  in. = 4.8 mm

$$A_{tb} = \frac{0.8}{2} \times 20\pi (918 - 165) = 18.9 \times 10^3 \text{ mm}^2 = 0.019 \text{ m}^2$$
 (12.45)

From Figure 12.41, 25 per cent cut (0.25),  $\theta_b = 2.1$  rads.

$$A_{sb} = \frac{4.8}{2} \times 894(2\pi - 2.1) = 8.98 \times 10^{3} \text{ mm}^{2} = 0.009 \text{ m}^{2}$$

$$A_{L} = (0.019 + 0.009) = 0.028 \text{ m}^{2}$$

$$\frac{A_{L}}{A_{L}} = \frac{0.028}{0.062} = 0.45$$
(12.46)

From Figure 12.35  $\beta_L = 0.3$ .

$$F_L = 1 - 0.3 \left[ \frac{(0.019 + 2 \times 0.009)}{0.028} \right] = 0.60$$
 (12.31)

### Shell-Side Coefficient

$$h_s = 2272 \times 1.03 \times 1.02 \times 0.87 \times 0.60 = \underline{1246 \text{ W/m}^2 {}^{\circ}\text{C}}$$
 (12.27)

Appreciably lower than that predicted by Kern's method.

## Pressure drop

### Cross-flow zone

From Figure 12.36 at  $Re = 26{,}353$ , for 1.25  $\Delta$  pitch,  $j_f = 5.6 \times 10^{-2}$ 

$$u_s = \frac{G_s}{\rho} = \frac{448}{750} = 0.60 \text{ m/s}$$

Neglecting viscosity term  $(\mu/\mu_w)$ .

$$\Delta P_i = 8 \times 5.6 \times 10^{-2} \times 20 \times \frac{750 \times 0.6^2}{2} = 1209.6 \text{ N/m}^2$$
 (12.33)

$$(\alpha = 4.0) \tag{12.30}$$

$$F_b' = \exp[-4.0 \times 0.39(1 - (\frac{2}{5})^{1/3})] = 0.66$$

From Figure 12.38  $\beta'_L = 0.52$ .

$$F_L' = 1 - 0.52 \left[ \frac{(0.019 + 2 \times 0.009)}{0.028} \right] = 0.31$$
 (12.31)

$$\Delta P_c = 1209.6 \times 0.66 \times 0.31 = 248 \text{ N/m}^2$$

### Window zone

From Figure 12.41, for baffle cut 25 per cent (0.25)  $R_a = 0.19$ .

$$A_w = \left(\frac{\pi}{4} \times 894^2 \times 0.19\right) - \left(165 \times \frac{\pi}{4} \times 20^2\right)$$
  
= 67.4 × 10<sup>3</sup> mm<sup>2</sup> = 0.067 m<sup>2</sup> (12.44)

$$u_w = \frac{100,000}{3600} \times \frac{1}{750} \times \frac{1}{0.067} = 0.55 \text{ m/s}$$

$$u_z = \sqrt{u_w u_s} = \sqrt{0.55 \times 0.60} = 0.57 \text{ m/s}$$

$$N_{wv} = \frac{190}{21.8} = 8$$
(12.40)

$$\Delta P_w = 0.31(2 + 0.6 \times 8) \frac{750 \times 0.57^2}{2} = 257 \text{ N/m}^2$$
 (12.34)

#### End zone

$$\Delta P_e = 1209.6 \left[ \frac{(8+20)}{20} \right] 0.66 = 1118 \text{ N/m}^2$$
 (12.36)

### Total pressure drop

Number of baffles 
$$N_b = \frac{4830}{356} - 1 = 12$$
  
 $\Delta P_s = 2 \times 1118 + 248(12 - 1) + 12 \times 257 = 8048 \text{ N/m}^2$  (12.37)  
 $= 8.05 \text{ kPa}$  (1.2 psi)

This for the exchanger in the clean condition. Using the factors given in Table 12.7 to estimate the pressure drop in the fouled condition

$$\Delta P_s = 1.4 \times 8.05 = \underline{11.3 \text{ kPa}}$$

Appreciably lower than that predicted by Kern's method. This shows the unsatisfactory nature of the methods available for predicting the shell-side pressure drop.

### 12.10. CONDENSERS

This section covers the design of shell and tube exchangers used as condensers. Direct contact condensers are discussed in Section 12.13.

The construction of a condenser will be similar to other shell and tube exchangers, but with a wider baffle spacing, typically  $l_B = D_s$ .

Four condenser configurations are possible:

- 1. Horizontal, with condensation in the shell, and the cooling medium in the tubes.
- 2. Horizontal, with condensation in the tubes.
- 3. Vertical, with condensation in the shell.
- 4. Vertical, with condensation in the tubes.

Horizontal shell-side and vertical tube-side are the most commonly used types of condenser. A horizontal exchanger with condensation in the tubes is rarely used as a process condenser, but is the usual arrangement for heaters and vaporisers using condensing steam as the heating medium.

#### 12.10.1. Heat-transfer fundamentals

The fundamentals of condensation heat transfer are covered in Volume 1, Chapter 9.

The normal mechanism for heat transfer in commercial condensers is filmwise condensation. Dropwise condensation will give higher heat-transfer coefficients, but is unpredictable; and is not yet considered a practical proposition for the design of condensers for general purposes.

The basic equations for filmwise condensation were derived by Nusselt (1916), and his equations form the basis for practical condenser design. The basic Nusselt equations are derived in Volume 1, Chapter 9. In the Nusselt model of condensation laminar flow is assumed in the film, and heat transfer is assumed to take place entirely by conduction through the film. In practical condensers the Nusselt model will strictly only apply at low liquid and vapour rates, and where the flowing condensate film is undisturbed. Turbulence can be induced in the liquid film at high liquid rates, and by shear at high vapour rates. This will generally increase the rate of heat transfer over that predicted using the Nusselt model. The effect of vapour shear and film turbulence are discussed in Volume 1, Chapter 9, see also Butterworth (1978) and Taborek (1974).

Developments in the theory of condensation and their application in condenser design are reviewed by Owen and Lee (1983).

# Physical properties

The physical properties of the condensate for use in the following equations, are evaluated at the average condensate film temperature: the mean of the condensing temperature and the tube-wall temperature.

### 12.10.2. Condensation outside horizontal tubes

$$(h_c)_1 = 0.95k_L \left[ \frac{\rho_L(\rho_L - \rho_v)g}{\mu_L \Gamma} \right]^{1/3}$$
 (12.48)

where  $(h_c)_1$  = mean condensation film coefficient, for a single tube, W/m<sup>2</sup>°C

 $k_L$  = condensate thermal conductivity, W/m°C,

 $\rho_L$  = condensate density, kg/m<sup>3</sup>,

 $\rho_v = \text{vapour density, kg/m}^3$ ,

 $\mu_L = \text{condensate viscosity, Ns/m}^2$ ,

 $g = \text{gravitational acceleration}, 9.81 \text{ m/s}^2,$ 

 $\Gamma$  = the tube loading, the condensate flow per unit length of tube, kg/m s.

In a bank of tubes the condensate from the upper rows of tubes will add to that condensing on the lower tubes. If there are  $N_r$  tubes in a vertical row and the condensate is assumed to flow smoothly from row to row, Figure 12.42a, and if the flow remains laminar, the mean coefficient predicted by the Nusselt model is related to that for the top tube by:

$$(h_c)_{N_r} = (h_c)_1 N_r^{-1/4} (12.49)$$

In practice, the condensate will not flow smoothly from tube to tube, Figure 12.42b, and the factor of  $(N_r)^{-1/4}$  applied to the single tube coefficient in equation 12.49 is considered to be too conservative. Based on results from commercial exchangers, Kern (1950)

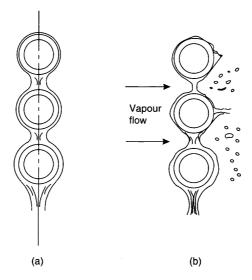



Figure 12.42. Condensate flow over tube banks

suggests using an index of 1/6. Frank (1978) suggests multiplying single tube coefficient by a factor of 0.75.

Using Kern's method, the mean coefficient for a tube bundle is given by:

$$(h_c)_b = 0.95k_L \left[ \frac{\rho_L(\rho_L - \rho_v)g}{\mu_L \Gamma_h} \right]^{1/3} N_r^{-1/6}$$
 (12.50)

where  $\Gamma_h = \frac{W_c}{LN_t}$ 

and L =tube length,

 $W_c$  = total condensate flow,

 $N_t$  = total number of tubes in the bundle,

 $N_r$  = average number of tubes in a vertical tube row.

 $N_r$  can be taken as two-thirds of the number in the central tube row.

For low-viscosity condensates the correction for the number of tube rows is generally ignored.

A procedure for estimating the shell-side heat transfer in horizontal condensers is given in the Engineering Sciences Data Unit manual, ESDU 84023.

#### 12.10.3. Condensation inside and outside vertical tubes

For condensation inside and outside vertical tubes the Nusselt model gives:

$$(h_c)_v = 0.926k_L \left[ \frac{\rho_L(\rho_L - \rho_v)g}{\mu_L \Gamma_v} \right]^{1/3}$$
 (12.51)

where  $(h_c)_v$  = mean condensation coefficient, W/m<sup>2</sup>°C,

 $\Gamma_v=$  vertical tube loading, condensate rate per unit tube perimeter, kg/m s

for a tube bundle

$$\Gamma_v = \frac{W_c}{N_t \pi d_o} \text{ or } \frac{W_c}{N_t \pi d_i}$$

Equation 12.51 will apply up to a Reynolds number of 30; above this value waves on the condensate film become important. The Reynolds number for the condensate film is given by:

$$Re_c = \frac{4\Gamma_v}{\mu_I}$$

The presence of waves will increase the heat-transfer coefficient, so the use of equation 12.51 above a Reynolds number of 30 will give conservative (safe) estimates. The effect of waves on condensate film on heat transfer is discussed by Kutateladze (1963).

Above a Reynolds number of around 2000, the condensate film becomes turbulent. The effect of turbulence in the condensate film was investigated by Colburn (1934) and Colburn's results are generally used for condenser design, Figure 12.43. Equation 12.51 is also shown on Figure 12.43. The Prandtl number for the condensate film is given by:

$$Pr_c = \frac{C_p \mu_L}{k_L}$$

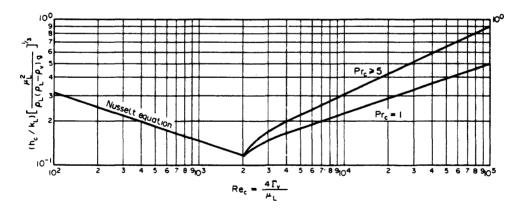



Figure 12.43. Condensation coefficient for vertical tubes

Figure 12.43 can be used to estimate condensate film coefficients in the absence of appreciable vapour shear. Horizontal and downward vertical vapour flow will increase the rate of heat transfer, and the use of Figure 12.43 will give conservative values for most practical condenser designs.

Boyko and Kruzhilin (1967) developed a correlation for shear-controlled condensation in tubes which is simple to use. Their correlation gives the mean coefficient between two points at which the vapour quality is known. The vapour quality x is the mass fraction of

the vapour present. It is convenient to represent the Boyko-Kruzhilin correlation as:

$$(h_c)_{BK} = h_i' \left[ \frac{J_1^{1/2} + J_2^{1/2}}{2} \right]$$

$$J = 1 + \left[ \frac{\rho_L - \rho_v}{\rho_v} \right] x$$
(12.52)

where

and the suffixes 1 and 2 refer to the inlet and outlet conditions respectively.  $h'_i$  is the tubeside coefficient evaluated for single-phase flow of the total condensate (the condensate at point 2). That is, the coefficient that would be obtained if the condensate filled the tube and was flowing alone; this can be evaluated using any suitable correlation for forced convection in tubes; see Section 12.8.

Boyko and Kruzhilin used the correlation:

$$h_i' = 0.021 \left(\frac{k_L}{d_i}\right) Re^{0.8} Pr^{0.43}$$
 (12.53)

In a condenser the inlet stream will normally be saturated vapour and the vapour will be totally condensed.

For these conditions equation 12.52 becomes:

$$(h_c)_{BK} = h_i' \left[ \frac{1 + \sqrt{\rho_L/\rho_v}}{2} \right]$$
 (12.54)

For the design of condensers with condensation inside the tubes and downward vapour flow, the coefficient should be evaluated using Figure 12.43 and equation 12.52, and the *higher* value selected.

# Flooding in vertical tubes

When the vapour flows up the tube, which will be the usual arrangement for a reflux condenser, care must be taken to ensure that the tubes do not flood. Several correlations have been published for the prediction of flooding in vertical tubes, see Perry and Green (1984). One of the simplest to apply, which is suitable for use in the design of condensers handling low-viscosity condensates, is the criterion given by Hewitt and Hall-Taylor (1970); see also Butterworth (1977). Flooding should not occur if the following condition is satisfied:

$$[u_v^{1/2}\rho_v^{1/4} + u_L^{1/2}\rho_L^{1/4}] < 0.6[gd_i(\rho_L - \rho_v)]^{1/4}$$
(12.55)

where  $u_v$  and  $u_L$  are the velocities of the vapour and liquid, based on each phase flowing in the tube alone; and  $d_i$  is in metres. The critical condition will occur at the bottom of the tube, so the vapour and liquid velocities should be evaluated at this point.

# Example 12.4

Estimate the heat-transfer coefficient for steam condensing on the outside, and on the inside, of a 25 mm o.d., 21 mm i.d. vertical tube 3.66 m long. The steam condensate rate

is 0.015 kg/s per tube and condensation takes place at 3 bar. The steam will flow down the tube.

### Solution

Physical properties, from steam tables:

Saturation temperature = 
$$133.5^{\circ}$$
C  
 $\rho_L = 931 \text{ kg/m}^3$   
 $\rho_v = 1.65 \text{ kg/m}^3$   
 $k_L = 0.688 \text{ W/m}^{\circ}$ C  
 $\mu_L = 0.21 \text{ mNs/m}^2$   
 $Pr_c = 1.27$ 

### Condensation outside the tube

$$\Gamma_v = \frac{0.015}{\pi 25 \times 10^{-3}} = 0.191 \text{ kg/s m}$$

$$Re_c = \frac{4 \times 0.191}{0.21 \times 10^{-3}} = 3638$$

From Figure 12.43

$$\frac{h_c}{k_L} \left[ \frac{\mu_L^2}{\rho_L(\rho_L - \rho_v)g} \right]^{1/3} = 1.65 \times 10^{-1}$$

$$h_c = 1.65 \times 10^{-1} \times 0.688 \left[ \frac{(0.21 \times 10^{-3})^2}{931(931 - 1.65)9.81} \right]^{-1/3}$$

$$= \underline{6554 \text{ W/m}^2 \circ \text{C}}$$

#### Condensation inside the tube

$$\Gamma_v = \frac{0.015}{\pi 21 \times 10^{-3}} = 0.227 \text{ kg/s m}$$

$$Re_c = \frac{4 \times 0.227}{0.21 \times 10^{-3}} = 4324$$

From Figure 12.43

$$h_c = 1.72 \times 10^{-1} \times 0.688 \left[ \frac{(0.21 \times 10^{-3})^2}{931(931 - 1.65)9.81} \right]^{-1/3}$$
  
= 6832 W/m<sup>2</sup>°C

Boyko-Kruzhilin method

Cross-sectional area of tube = 
$$(21 \times 10^{-3})^2 \frac{\pi}{4} = 3.46 \times 10^{-4} \text{ m}^2$$

Fluid velocity, total condensation

$$u_{t} = \frac{0.015}{931 \times 3.46 \times 10^{-4}} = 0.047 \text{ m/s}$$

$$Re = \frac{\rho u d_{i}}{\mu_{L}} = \frac{931 \times 0.047 \times 21 \times 10^{-3}}{0.21 \times 10^{-3}} = 4376$$

$$h'_{i} = 0.021 \times \frac{0.688}{21 \times 10^{-3}} (4376)^{0.8} (1.27)^{0.43} = 624 \text{ W/m}^{2} ^{\circ}\text{C}$$

$$h_{c} = 624 \left[ \frac{1 + \sqrt{931/1.65}}{2} \right] = 7723 \text{ W/m}^{2} ^{\circ}\text{C}$$

$$\text{Take higher value, } h_{c} = \underline{7723 \text{ W/m}^{2} ^{\circ}\text{C}}$$

$$(12.54)$$

## Example 12.5

It is proposed to use an existing distillation column, which is fitted with a dephlegmator (reflux condenser) which has 200 vertical, 50 mm i.d., tubes, for separating benzene from a mixture of chlorobenzenes. The top product will be 2500 kg/h benzene and the column will operate with a reflux ratio of 3. Check if the tubes are likely to flood. The condenser pressure will be 1 bar.

## Solution

The vapour will flow up and the liquid down the tubes. The maximum flow rates of both will occur at the base of the tube.

Vapour flow = 
$$(3 + 1)2500 = 10,000$$
 kg/h  
Liquid flow =  $3 \times 2500 = 7500$  kg/h  
Total area tubes =  $\frac{\pi}{4}(50 \times 10^{-3})^2 \times 200 = 0.39$  m<sup>2</sup>

Densities at benzene boiling point

$$\rho_L = 840 \text{ kg/m}^3, \quad \rho_v = 2.7 \text{ kg/m}^3$$

Vapour velocity (vapour flowing alone in tube)

$$u_v = \frac{10,000}{3600 \times 0.39 \times 2.7} = 2.64 \text{ m/s}$$

Liquid velocity (liquid alone)

$$u_L = \frac{7500}{3600 \times 0.39 \times 840} = 0.006 \text{ m/s}$$

From equation 12.55 for no flooding

$$[u_v^{1/2}\rho_v^{1/4} + u_L^{1/2}\rho_L^{1/4}] < 0.6[gd_i(\rho_L - \rho_v)]^{1/4}$$

$$[(2.64)^{1/2}(2.7)^{1/4} + (0.006)^{1/2}(840)^{1/4}] < 0.6[9.81 \times 50 \times 10^{-3}(840 - 2.7)]^{1/4}$$
$$[2.50] < [2.70]$$

Tubes should not flood, but there is little margin of safety.

#### 12.10.4. Condensation inside horizontal tubes

Where condensation occurs in a horizontal tube the heat-transfer coefficient at any point along the tube will depend on the flow pattern at that point. The various patterns that can exist in two-phase flow are shown in Figure 12.44; and are discussed in Volume 1, Chapter 5. In condensation, the flow will vary from a single-phase vapour at the inlet to a single-phase liquid at the outlet; with all the possible patterns of flow occurring between these points. Bell *et al.* (1970) give a method for following the change in flow pattern as condensation occurs on a Baker flow-regime map. Correlations for estimating the average condensation coefficient have been published by several workers, but there is no generally satisfactory method that will give accurate predictions over a wide flow range. A comparison of the published methods is given by Bell *et al.* (1970).

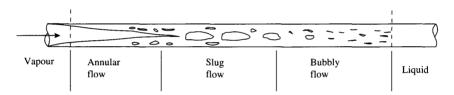



Figure 12.44. Flow patterns, vapour condensing in a horizontal tube

Two flow models are used to estimate the mean condensation coefficient in horizontal tubes: stratified flow, Figure 12.45a, and annular flow, Figure 12.45b. The stratified flow model represents the limiting condition at low condensate and vapour rates, and the annular model the condition at high vapour and low condensate rates. For the stratified flow model, the condensate film coefficient can be estimated from the Nusselt equation, applying a suitable correction for the reduction in the coefficient caused by the accumulation of condensate in the bottom of the tube. The correction factor will typically be



Figure 12.45. Flow patterns in condensation. (a) Stratified flow (b) Annular flow

around 0.8, so the coefficient for stratified flow can be estimated from:

$$(h_c)_s = 0.76k_L \left[ \frac{\rho_L(\rho_L - \rho_v)g}{\mu_L \Gamma_h} \right]^{1/3}$$
 (12.56)

The Boyko-Kruzhilin equation, equation 12.52, can be used to estimate the coefficient for annular flow.

For condenser design, the mean coefficient should be evaluated using the correlations for both annular and stratified flow and the *higher* value selected.

#### 12.10.5. Condensation of steam

Steam is frequently used as a heating medium. The film coefficient for condensing steam can be calculated using the methods given in the previous sections; but, as the coefficient will be high and will rarely be the limiting coefficient, it is customary to assume a typical, conservative, value for design purposes. For air-free steam a coefficient of 8000 W/m<sup>2</sup>°C (1500 Btu/h ft<sup>2</sup>°F) can be used.

## 12.10.6. Mean temperature difference

A pure, saturated, vapour will condense at a fixed temperature, at constant pressure. For an isothermal process such as this, the simple logarithmic mean temperature difference can be used in the equation 12.1; no correction factor for multiple passes is needed. The logarithmic mean temperature difference will be given by:

$$\Delta T_{\rm lm} = \frac{(t_2 - t_1)}{\ln \left[ \frac{T_{\rm sat} - t_1}{T_{\rm sat} - t_2} \right]}$$
(12.57)

where  $T_{\text{sat}}$  = saturation temperature of the vapour,

 $t_1$  = inlet coolant temperature,

 $t_2$  = outlet coolant.

When the condensation process is not exactly isothermal but the temperature change is small; such as where there is a significant change in pressure, or where a narrow boiling range multicomponent mixture is being condensed; the logarithmic temperature difference can still be used but the temperature correction factor will be needed for multipass condensers. The appropriate terminal temperatures should be used in the calculation.

# 12.10.7. Desuperheating and sub-cooling

When the vapour entering the condenser is superheated, and the condensate leaving the condenser is cooled below its boiling point (sub-cooled), the temperature profile will be as shown in Figure 12.46.

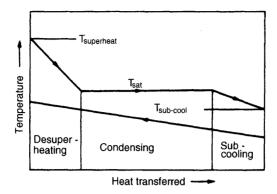



Figure 12.46. Condensation with desuperheating and sub-cooling

## Desuperheating

If the degree of superheat is large, it will be necessary to divide the temperature profile into sections and determine the mean temperature difference and heat-transfer coefficient separately for each section. If the tube wall temperature is below the dew point of the vapour, liquid will condense directly from the vapour on to the tubes. In these circumstances it has been found that the heat-transfer coefficient in the superheating section is close to the value for condensation and can be taken as the same. So, where the amount of superheating is not too excessive, say less than 25 per cent of the latent heat load, and the outlet coolant temperature is well below the vapour dew point, the sensible heat load for desuperheating can be lumped with the latent heat load. The total heat-transfer area required can then be calculated using a mean temperature difference based on the saturation temperature (not the superheat temperature) and the estimated condensate film heat-transfer coefficient.

# Sub-cooling of condensate

Some sub-cooling of the condensate will usually be required to control the net positive suction head at the condensate pump (see Chapter 5, and Volume 1, Chapter 8), or to cool a product for storage. Where the amount of sub-cooling is large, it is more efficient to sub-cool in a separate exchanger. A small amount of sub-cooling can be obtained in a condenser by controlling the liquid level so that some part of the tube bundle is immersed in the condensate.

In a horizontal shell-side condenser a dam baffle can be used, Figure 12.47a. A vertical condenser can be operated with the liquid level above the bottom tube sheet, Figure 12.47b.

The temperature difference in the sub-cooled region will depend on the degree of mixing in the pool of condensate. The limiting conditions are plug flow and complete mixing. The temperature profile for plug flow is that shown in Figure 12.46. If the pool is perfectly mixed, the condensate temperature will be constant over the sub-cooling region and equal to the condensate outlet temperature. Assuming perfect mixing will give a very

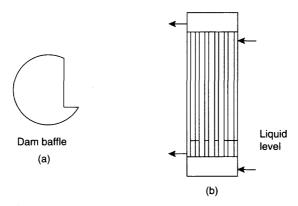



Figure 12.47. Arrangements for sub-cooling

conservative (safe) estimate of the mean temperature difference. As the liquid velocity will be low in the sub-cooled region the heat-transfer coefficient should be estimated using correlations for natural convection (see Volume 1, Chapter 9); a typical value would be 200 W/m<sup>2</sup> °C.

#### 12.10.8. Condensation of mixtures

The correlations given in the previous sections apply to the condensation of a single component; such as an essentially pure overhead product from a distillation column. The design of a condenser for a mixture of vapours is a more difficult task.

The term "mixture of vapours" covers three related situations of practical interest:

- 1. Total condensation of a multicomponent mixture; such as the overheads from a multicomponent distillation.
- 2. Condensation of only part of a multicomponent vapour mixture, all components of which are theoretically condensable. This situation will occur where the dew point of some of the lighter components is above the coolant temperature. The uncondensed component may be soluble in the condensed liquid; such as in the condensation of some hydrocarbons mixtures containing light "gaseous" components.
- 3. Condensation from a non-condensable gas, where the gas is not soluble to any extent in the liquid condensed. These exchangers are often called cooler-condensers.

The following features, common to all these situations, must be considered in the developing design methods for mixed vapour condensers:

- 1. The condensation will not be isothermal. As the heavy component condenses out the composition of the vapour, and therefore its dew point, change.
- 2. Because the condensation is not isothermal there will be a transfer of sensible heat from the vapour to cool the gas to the dew point. There will also be a transfer of sensible heat from the condensate, as it must be cooled from the temperature at which it condensed to the outlet temperature. The transfer of sensible heat from the

- vapour can be particularly significant, as the sensible-heat transfer coefficient will be appreciably lower than the condensation coefficient.
- 3. As the composition of the vapour and liquid change throughout the condenser their physical properties vary.
- 4. The heavy component must diffuse through the lighter components to reach the condensing surface. The rate of condensation will be governed by the rate of diffusion, as well as the rate of heat transfer.

# Temperature profile

To evaluate the true temperature difference (driving force) in a mixed vapour condenser a condensation curve (temperature vs. enthalpy diagram) must be calculated; showing the change in vapour temperature versus heat transferred throughout the condenser, Figure 12.48. The temperature profile will depend on the liquid-flow pattern in the condenser. There are two limiting conditions of condensate-vapour flow:

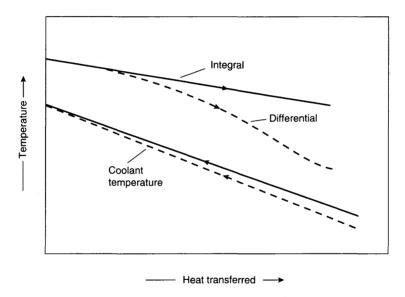



Figure 12.48. Condensation curves

- 1. Differential condensation: in which the liquid separates from the vapour from which it has condensed. This process is analogous to differential, or Rayleigh, distillation, and the condensation curve can be calculated using methods similar to those for determining the change in composition in differential distillation; see Volume 2, Chapter 11.
- 2. Integral condensation: in which the liquid remains in equilibrium with the uncondensed vapour. The condensation curve can be determined using procedures similar to those for multicomponent flash distillation given in Chapter 11. This will be a relatively simple calculation for a binary mixture, but complex and tedious for mixtures of more than two components.

It is normal practice to assume that integral condensation occurs. The conditions for integral condensation will be approached if condensation is carried out in one pass, so that the liquid and vapour follow the same path; as in a vertical condenser with condensation inside or outside the tubes. In a horizontal shell-side condenser the condensate will tend to separate from the vapour. The mean temperature difference will be lower for differential condensation, and arrangements where liquid separation is likely to occur should generally be avoided for the condensation of mixed vapours.

Where integral condensation can be considered to occur, the use of a corrected logarithmic mean temperature difference based on the terminal temperatures will generally give a conservative (safe) estimate of the mean temperature difference, and can be used in preliminary design calculations.

#### Estimation of heat-transfer coefficients

Total condensation. For the design of a multicomponent condenser in which the vapour is totally condensed, an estimate of the mean condensing coefficient can be made using the single component correlations with the liquid physical properties evaluated at the average condensate composition. It is the usual practice to apply a factor of safety to allow for the sensible-heat transfer and any resistance to mass transfer. Frank (1978) suggests a factor of 0.65, but this is probably too pessimistic. Kern (1950) suggests increasing the area calculated for condensation alone by the ratio of the total heat (condensing + sensible) to the condensing load. Where a more exact estimate of the coefficient is required, and justified by the data, the rigorous methods developed for partial condensation can be used.

*Partial condensation.* The methods developed for partial condensation and condensation from a non-condensable gas can be divided into two classes:

- 1. Empirical methods: approximate methods, in which the resistance to heat transfer is considered to control the rate of condensation, and the mass transfer resistance is neglected. Design methods have been published by Silver (1947), Bell and Ghaly (1973) and Ward (1960).
- 2. Analytical methods: more exact procedures, which are based on some model of the heat and mass transfer process, and which take into account the diffusional resistance to mass transfer. The classic method is that of Colburn and Hougen (1934); see also Colburn and Drew (1937) and Porter and Jeffreys (1963). The analytical methods are complex, requiring step-by-step, trial and error, calculations, or graphical procedures. They are suited for computer solution using numerical methods; and proprietary design programs are available. Examples of the application of the Colburn and Drew method are given by Kern (1950) and Jeffreys (1961). The method is discussed briefly in Volume 1, Chapter 9.

An assessment of the methods available for the design of condensers where the condensation is from a non-condensable gas is given by McNaught (1983).

Approximate methods. The local coefficient for heat transfer can be expressed in terms of the local condensate film coefficient  $h'_c$  and the local coefficient for sensible-heat

transfer from the vapour (the gas film coefficient)  $h'_g$ , by a relationship first proposed by Silver (1947):

$$\frac{1}{h'_{cg}} = \frac{1}{h'_c} + \frac{Z}{h'_g} \tag{12.58}$$

where  $h'_{cg}$  = the local effective cooling-condensing coefficient

and

$$Z = \frac{\Delta H_s}{\Delta H_t} = x C_{pg} \frac{\mathrm{d}T}{\mathrm{d}H_t},$$

 $(\Delta H_s/\Delta H_t)$  = the ratio of the change in sensible heat to the total enthalpy change.

 $(dT/dH_t)$  = slope of the temperature-enthalpy curve,

x =vapour quality, mass fraction of vapour,

 $C_{p_g}$  = vapour (gas) specific heat.

The term  $dT/dH_t$  can be evaluated from the condensation curve;  $h'_c$  from the single component correlations; and  $h'_g$  from correlations for forced convection.

If this is done at several points along the condensation curve the area required can be determined by graphical or numerical integration of the expression:

$$A = \int_0^{Q_t} \frac{\mathrm{d}Q}{U(T_v - t_c)} \tag{12.59}$$

where  $Q_t = \text{total heat transferred}$ ,

 $U = \text{overall heat transfer coefficient, from equation 12.1, using } h'_{cg}$ 

 $T_v = \text{local vapour (gas) temperature,}$ 

 $t_c =$ local cooling medium temperature.

Gilmore (1963) gives an integrated form of equation 12.57, which can be used for the approximate design of partial condensers

$$\frac{1}{h_{cg}} = \frac{1}{h_c} + \frac{Q_g}{Q_t} \frac{1}{h_g} \tag{12.60}$$

where  $h_{cg}$  = mean effective coefficient,

 $h_c$  = mean condensate film coefficient, evaluated from the single-component correlations, at the average condensate composition, and total condensate loading,

 $h_g$  = mean gas film coefficient, evaluated using the average vapour flow-rate : arithmetic mean of the inlet and outlet vapour (gas) flow-rates,

 $Q_g$  = total sensible-heat transfer from vapour (gas),

 $Q_t$  = total heat transferred: latent heat of condensation + sensible heat for cooling the vapour (gas) and condensate.

As a rough guide, the following rules of thumb suggested by Frank (1978) can be used to decide the design method to use for a partial condenser (cooler-condenser):

1. Non-condensables <0.5 per cent: use the methods for total condensation; ignore the presence of the uncondensed portion.

- 2. Non-condensables >70 per cent: assume the heat transfer is by forced convection only. Use the correlations for forced convection to calculate the heat-transfer coefficient, but include the latent heat of condensation in the total heat load transferred.
- 3. Between 0.5 to 70 per cent non-condensables: use methods that consider both mechanisms of heat transfer.

In partial condensation it is usually better to put the condensing stream on the shellside, and to select a baffle spacing that will maintain high vapour velocities, and therefore high sensible-heat-transfer coefficients.

Fog formation. In the condensation of a vapour from a non-condensable gas, if the bulk temperature of the gas falls below the dew point of the vapour, liquid can condense out directly as a mist or fog. This condition is undesirable, as liquid droplets may be carried out of the condenser. Fog formation in cooler-condensers is discussed by Colburn and Edison (1941) and Lo Pinto (1982). Steinmeyer (1972) gives criteria for the prediction of fog formation. Demisting pads can be used to separate entrained liquid droplets.

## 12.10.9. Pressure drop in condensers

The pressure drop on the condensing side is difficult to predict as two phases are present and the vapour mass velocity is changing throughout the condenser.

A common practice is to calculate the pressure drop using the methods for single-phase flow and apply a factor to allow for the change in vapour velocity. For total condensation, Frank (1978) suggests taking the pressure drop as 40 per cent of the value based on the inlet vapour conditions; Kern (1950) suggests a factor of 50 per cent.

An alternative method, which can also be used to estimate the pressure drop in a partial condenser, is given by Gloyer (1970). The pressure drop is calculated using an average vapour flow-rate in the shell (or tubes) estimated as a function of the ratio of the vapour flow-rate in and out of the shell (or tubes), and the temperature profile.

$$W_s \text{ (average)} = W_s \text{ (inlet)} \times K_2$$
 (12.61)

 $K_2$  is obtained from Figure 12.49.

 $\Delta T_{\rm in}/\Delta T_{\rm out}$  in Figure 12.49 is the ratio of the terminal temperature differences.

These methods can be used to make a crude estimate of the likely pressure drop. A reliable prediction can be obtained by treating the problem as one of two-phase flow. For tube-side condensation the general methods for two-phase flow in pipes can be used; see Collier and Thome (1994); and Volume 1, Chapter 5. As the flow pattern will be changing throughout condensation, some form of step-wise procedure will need to be used. Two-phase flow on the shell-side is discussed by Grant (1973), who gives a method for predicting the pressure drop based on Tinker's shell-side flow model.

A method for estimating the pressure drop on the shell-side of horizontal condensers is given in the Engineering Sciences Data Unit manual, ESDU 84023.

Pressure drop is only likely to be a major consideration in the design of vacuum condensers; and where reflux is returned to a column by gravity flow from the condenser.

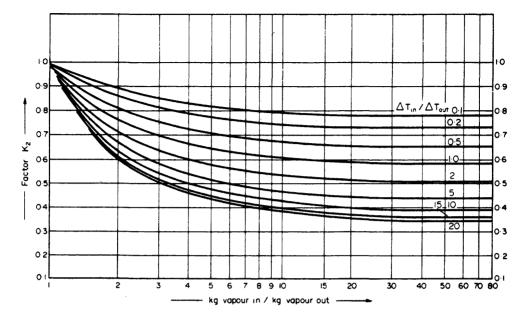



Figure 12.49. Factor for average vapour flow-rate for pressure-drop calculation (Gloyer, 1970)

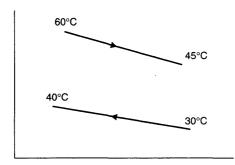
### Example 12.6

Design a condenser for the following duty: 45,000 kg/h of mixed light hydrocarbon vapours to be condensed. The condenser to operate at 10 bar. The vapour will enter the condenser saturated at 60°C and the condensation will be complete at 45°C. The average molecular weight of the vapours is 52. The enthalpy of the vapour is 596.5 kJ/kg and the condensate 247.0 kJ/kg. Cooling water is available at 30°C and the temperature rise is to be limited to 10°C. Plant standards require tubes of 20 mm o.d., 16.8 mm i.d., 4.88 m (16 ft) long, of admiralty brass. The vapours are to be totally condensed and no sub-cooling is required.

#### Solution

Only the thermal design will be done. The physical properties of the mixture will be taken as the mean of those for n-propane (MW = 44) and n-butane (MW = 58), at the average temperature.

Heat transferred from vapour = 
$$\frac{45,000}{3600}$$
(596.5 - 247.0) = 4368.8 kW  
Cooling water flow =  $\frac{4368.8}{(40-30)4.18}$  =  $\frac{104.5 \text{ kg/s}}{(40-30)4.18}$ 


Assumed overall coefficient (Table 12.1) = 900 W/m<sup>2</sup>°C

Mean temperature difference: the condensation range is small and the change in saturation temperature will be linear, so the corrected logarithmic mean temperature

difference can be used.

$$R = \frac{(60 - 45)}{(40 - 30)} = 1.5\tag{12.6}$$

$$S = \frac{(40 - 30)}{(60 - 30)} = 0.33\tag{12.7}$$



Try a horizontal exchanger, condensation in the shell, four tube passes. For one shell pass, four tube passes, from Figure 12.19,  $F_t = 0.92$ 

$$\Delta T_{\rm lm} = \frac{(60 - 40) - (45 - 30)}{\ln \frac{(60 - 40)}{(45 - 30)}} = 17.4^{\circ} \text{C}$$

$$\Delta T_m = 0.92 \times 17.4 = 16^{\circ} \text{C}$$

Trial area = 
$$\frac{4368.8 \times 10^3}{900 \times 16}$$
 = 303 m<sup>2</sup>

Surface area of one tube =  $20 \times 10^{-3} \pi \times 4.88 = 0.305 \text{ m}^2$  (ignore tube sheet thickness)

Number of tubes = 
$$\frac{303}{0.305} = 992$$

Use square pitch,  $P_t = 1.25 \times 20 \text{ mm} = 25 \text{ mm}.$ 

Tube bundle diameter

$$D_b = 20 \left(\frac{992}{0.158}\right)^{1/2.263} = 954 \text{ mm}$$
 (12.3b)

Number of tubes in centre row  $N_r = D_b/P_t = 954/25 = 38$ 

#### Shell-side coefficient

Estimate tube wall temperature,  $T_w$ ; assume condensing coefficient of 1500 W/m<sup>2</sup>°C, Mean temperature

Shell-side = 
$$\frac{60 + 45}{2}$$
 = 52.5°C

Tube-side = 
$$\frac{40 + 30}{2}$$
 = 35°C

$$(52.5 - T_w)1500 = (52.5 - 35)900$$
  
 $T_w = 42.0^{\circ}\text{C}$ 

Mean temperature condensate = 
$$\frac{52.5 + 42.0}{2}$$
 = 47°C

Physical properties at 47°C

$$\mu_L = 0.16 \text{ mNs/m}^2$$
 $\rho_L = 551 \text{ kg/m}^3$ 
 $k_L = 0.13 \text{ W/m}^{\circ}\text{C}$ 

vapour density at mean vapour temperature

$$\rho_v = \frac{52}{22.4} \times \frac{273}{(273 + 52.5)} \times \frac{10}{1} = 19.5 \text{ kg/m}^3$$

$$\Gamma_h = \frac{W_c}{LN_t} = \frac{45,000}{3600} \times \frac{1}{4.88 \times 992} = 2.6 \times 10^{-3} \text{ kg/s m}$$

$$N_r = \frac{2}{3} \times 38 = 25$$

$$h_c = 0.95 \times 0.13 \left[ \frac{551(551 - 19.5)9.81}{0.16 \times 10^{-3} \times 2.6 \times 10^{-3}} \right]^{1/3} \times 25^{-1/6}$$

$$= 1375 \text{ W/m}^2 \circ \text{C}$$
(12.50)

Close enough to assumed value of 1500 W/m<sup>2</sup>  $^{\circ}$ C, so no correction to  $T_w$  needed.

## Tube-side coefficient

Tube cross-sectional area = 
$$\frac{\pi}{4} (16.8 \times 10^{-3})^2 \times \frac{992}{4} = 0.055 \text{ m}^2$$
  
Density of water, at 35°C = 993 kg/m<sup>3</sup>  
Tube velocity =  $\frac{104.5}{993} \times \frac{1}{0.055} = 1.91 \text{ m/s}$   

$$h_i = \frac{4200(1.35 + 0.02 \times 35)1.91^{0.8}}{16.8^{0.2}}$$
= 8218 W/m<sup>2</sup>°C

Fouling factors: as neither fluid is heavily fouling, use 6000 W/m<sup>2</sup>°C for each side.

$$k_w = 50 \text{ W/m}^{\circ}\text{C}$$

## Overall coefficient

$$\frac{1}{U} = \frac{1}{1375} + \frac{1}{6000} + \frac{20 \times 10^{-3} \ln\left(\frac{20}{16.8}\right)}{2 \times 50} + \frac{20}{16.8} \times \frac{1}{6000} + \frac{20}{16.8} \times \frac{1}{8218}$$

$$U = \frac{786 \text{ W/m}^2 \circ \text{C}}{16.8} \times \frac{1}{6000} + \frac{20}{16.8} \times \frac{1}{6000} \times \frac{1}{6000} + \frac{20}{16.8} \times \frac{1}{6000} + \frac{20}{16.8} \times \frac{1}{6000} + \frac{20}{16.8} \times$$

Significantly lower than the assumed value of 900 W/m $^2$ °C. Repeat calculation using new trial value of 750 W/m $^2$ °C.

Area = 
$$\frac{4368 \times 10^3}{750 \times 16}$$
 = 364 m<sup>2</sup>  
Number of tubes =  $\frac{364}{0.305}$  = 1194  

$$D_b = 20 \left(\frac{1194}{0.158}\right)^{1/2.263}$$
 = 1035 mm (12.36)

Number of tubes in centre row =  $\frac{1035}{25} = 41$ 

$$\Gamma_h = \frac{45,000}{3600} \times \frac{1}{4.88 \times 1194} = 2.15 \times 10^{-3} \text{ kg/m s}$$

$$N_r = \frac{2}{3} \times 41 = 27$$

$$h_c = 0.95 \times 0.13 \left[ \frac{551(551 - 19.5)9.81}{0.16 \times 10^{-3} \times 2.15 \times 10^{-3}} \right]^{1/3} \times 27^{-1/6}$$

$$= 1447 \text{ W/m}^2 \circ \text{C}$$
(12.50)

New tube velocity = 
$$1.91 \times \frac{992}{1194} = 1.59 \text{ m/s}$$
  

$$h_i = 4200(1.35 + 0.02 \times 35) \frac{1.59^{0.8}}{16.8^{0.2}} = 7097 \text{ W/m}^2 \text{°C} \qquad (12.17)$$

$$\frac{1}{U} = \frac{1}{1447} + \frac{1}{6000} + \frac{20 \times 10^{-3} \ln\left(\frac{20}{16.8}\right)}{2 \times 50} + \frac{20}{16.8} \times \frac{1}{6000} + \frac{20}{16.8} \times \frac{1}{7097}$$

$$U = 773 \text{ W/m}^2 \text{°C} \qquad (12.2)$$

Close enough to estimate, firm up design.

# Shell-side pressure drop

Use pull-through floating head, no need for close clearance. Select baffle spacing = shell diameter, 45 per cent cut. From Figure 12.10, clearance = 95 mm.

Shell i.d. 
$$= 1035 + 95 = 1130 \text{ mm}$$

Use Kern's method to make an approximate estimate.

Cross-flow area 
$$A_s = \frac{(25-20)}{25}1130 \times 1130 \times 10^{-6}$$
 (12.21)  
= 0.255 m<sup>2</sup>

Mass flow-rate, based on inlet conditions

$$G_s = \frac{45,000}{3600} \times \frac{1}{0.255} = 49.02 \text{ kg/s m}^2$$
  
Equivalent diameter,  $d_e = \frac{1.27}{20} (25^2 - 0.785 \times 20^2)$   
= 19.8 mm

Vapour viscosity =  $0.008 \text{ mNs/m}^2$ 

$$Re = \frac{49.02 \times 19.8 \times 10^{-3}}{0.008 \times 10^{-3}} = 121,325$$

From Figure 12.30,  $j_f = 2.2 \times 10^{-2}$ 

$$u_s = \frac{G_s}{\rho_v} = \frac{49.02}{19.5} = 2.51 \text{ m/s}$$

Take pressure drop as 50 per cent of that calculated using the inlet flow; neglect viscosity correction.

$$\Delta P_s = \frac{1}{2} \left[ 8 \times 2.2 \times 10^{-2} \left( \frac{1130}{19.8} \right) \left( \frac{4.88}{1.130} \right) \frac{19.5(2.51)^2}{2} \right]$$

$$= 1322 \text{ N/m}^2$$

$$= \underline{1.3 \text{ kPa}}$$
(12.26)

Negligible; more sophisticated method of calculation not justified.

# Tube-side pressure drop

Viscosity of water = 0.6 mN s/m<sup>2</sup>

$$Re = \frac{u_t \rho d_i}{\mu} = \frac{1.59 \times 993 \times 16.8 \times 10^{-3}}{0.6 \times 10^{-3}} = \underbrace{44,208}_{44,208}$$

From Figure 12.24,  $j_f = 3.5 \times 10^{-3}$ . Neglect viscosity correction.

$$\Delta P_t = 4 \left[ 8 \times 3.5 \times 10^{-3} \left( \frac{4.88}{16.8 \times 10^{-3}} \right) + 2.5 \right] \frac{993 \times 1.59^2}{2}$$

$$= 53,388 \text{ N/m}^2$$

$$= \underline{53 \text{ kPa}} (7.7 \text{ psi}),$$
(12.20)

acceptable.

## 12.11. REBOILERS AND VAPORISERS

The design methods given in this section can be used for reboilers and vaporisers. Reboilers are used with distillation columns to vaporise a fraction of the bottom product; whereas in a vaporiser essentially all the feed is vaporised.

Three principal types of reboiler are used:

1. Forced circulation, Figure 12.50: in which the fluid is pumped through the exchanger, and the vapour formed is separated in the base of the column. When used as a vaporiser a disengagement vessel will have to be provided.

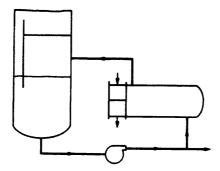



Figure 12.50. Forced-circulation reboiler

- 2. Thermosyphon, natural circulation, Figure 12.51: vertical exchangers with vaporisation in the tubes, or horizontal exchangers with vaporisation in the shell. The liquid circulation through the exchanger is maintained by the difference in density between the two-phase mixture of vapour and liquid in the exchanger and the single-phase liquid in the base of the column. As with the forced-circulation type, a disengagement vessel will be needed if this type is used as a vaporiser.
- 3. Kettle type, Figure 12.52: in which boiling takes place on tubes immersed in a pool of liquid; there is no circulation of liquid through the exchanger. This type is also, more correctly, called a submerged bundle reboiler.

  In some applications it is possible to accommodate the bundle in the base of the column, Figure 12.53; saving the cost of the exchanger shell.

# Choice of type

The choice of the best type of reboiler or vaporiser for a given duty will depend on the following factors:

- 1. The nature of the process fluid, particularly its viscosity and propensity to fouling.
- 2. The operating pressure: vacuum or pressure.
- 3. The equipment layout, particularly the headroom available.

Forced-circulation reboilers are especially suitable for handling viscous and heavily fouling process fluids; see Chantry and Church (1958). The circulation rate is predictable and high velocities can be used. They are also suitable for low vacuum operations, and for low rates of vaporisation. The major disadvantage of this type is that a pump is required and the pumping cost will be high. There is also the danger that leakage of hot fluid will occur at the pump seal; canned-rotor type pumps can be specified to avoid the possibility of leakage.

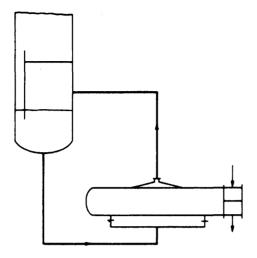



Figure 12.51. Horizontal thermosyphon reboiler

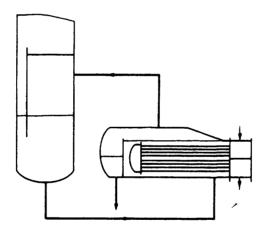



Figure 12.52. Kettle reboiler

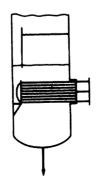



Figure 12.53. Internal reboiler

Thermosyphon reboilers are the most economical type for most applications, but are not suitable for high viscosity fluids or high vacuum operation. They would not normally be specified for pressures below 0.3 bar. A disadvantage of this type is that the column base must be elevated to provide the hydrostatic head required for the thermosyphon effect. This will increase the cost of the column supporting-structure. Horizontal reboilers require less headroom than vertical, but have more complex pipework. Horizontal exchangers are more easily maintained than vertical, as tube bundle can be more easily withdrawn.

Kettle reboilers have lower heat-transfer coefficients than the other types, as there is no liquid circulation. They are not suitable for fouling materials, and have a high residence time. They will generally be more expensive than an equivalent thermosyphon type as a larger shell is needed, but if the duty is such that the bundle can be installed in the column base, the cost will be competitive with the other types. They are often used as vaporisers, as a separate vapour-liquid disengagement vessel is not needed. They are suitable for vacuum operation, and for high rates of vaporisation, up to 80 per cent of the feed.

## 12.11.1. Boiling heat-transfer fundamentals

The complex phenomena involved in heat transfer to a boiling liquid are discussed in Volume 1, Chapter 9. A more detailed account is given by Collier and Thome (1994), Westwater (1956, 1958), Rohsenow (1973) and Hsu and Graham (1976). Only a brief discussion of the subject will be given in this section: sufficient for the understanding of the design methods given for reboilers and vaporisers.

The mechanism of heat transfer from a submerged surface to a pool of liquid depends on the temperature difference between the heated surface and the liquid; Figure 12.54. At low-temperature differences, when the liquid is below its boiling point, heat is transferred by natural convection. As the surface temperature is raised incipient boiling occurs, vapour

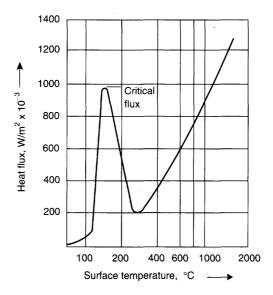



Figure 12.54. Typical pool boiling curve (water at 1 bar)

bubbles, and other effects caused by bubble generation at the surface, result in a large increase in the rate of heat transfer. This phenomenon is known as nucleate boiling. As the temperature is raised further the rate of heat transfer increases until the heat flux reaches a critical value. At this point, the rate of vapour generation is such that dry patches occur spontaneously over the surface, and the rate of heat transfer falls off rapidly. At higher temperature differences, the vapour rate is such that the whole surface is blanketed with vapour, and the mechanism of heat transfer is by conduction through the vapour film. Conduction is augmented at high temperature differences by radiation.

The maximum heat flux achievable with nucleate boiling is known as the critical heat flux. In a system where the surface temperature is not self-limiting, such as a nuclear reactor fuel element, operation above the critical flux will result in a rapid increase in the surface temperature, and in the extreme situation the surface will melt. This phenomenon is known as "burn-out". The heating media used for process plant are normally self-limiting; for example, with steam the surface temperature can never exceed the saturation temperature. Care must be taken in the design of electrically heated vaporisers to ensure that the critical flux can never be exceeded.

The critical flux is reached at surprisingly low temperature differences; around 20 to 30°C for water, and 20 to 50°C for light organics.

## Estimation of boiling heat-transfer coefficients

In the design of vaporisers and reboilers the designer will be concerned with two types of boiling: pool boiling and convective boiling. Pool boiling is the name given to nucleate boiling in a pool of liquid; such as in a kettle-type reboiler or a jacketed vessel. Convective boiling occurs where the vaporising fluid is flowing over the heated surface, and heat transfer takes place both by forced convection and nucleate boiling; as in forced circulation or thermosyphon reboilers.

Boiling is a complex phenomenon, and boiling heat-transfer coefficients are difficult to predict with any certainty. Whenever possible experimental values obtained for the system being considered should be used, or values for a closely related system.

# 12.11.2. Pool boiling

In the nucleate boiling region the heat-transfer coefficient is dependent on the nature and condition of the heat-transfer surface, and it is not possible to present a universal correlation that will give accurate predictions for all systems. Palen and Taborek (1962) have reviewed the published correlations and compared their suitability for use in reboiler design.

The correlation given by Forster and Zuber (1955) can be used to estimate pool boiling coefficients, in the absence of experimental data. Their equation can be written in the form:

$$h_{nb} = 0.00122 \left[ \frac{k_L^{0.79} C_{pL}^{0.45} \rho_L^{0.49}}{\sigma^{0.5} \mu_L^{0.29} \lambda^{0.24} \rho_v^{0.24}} \right] (T_w - T_s)^{0.24} (p_w - p_s)^{0.75}$$
 (12.62)

where  $h_{nb}$  = nucleate, pool, boiling coefficient, W/m<sup>2</sup>°C,

 $k_L$  = liquid thermal conductivity, W/m°C,

 $C_{pL}$  = liquid heat capacity, J/kg°C,

 $\rho_L = \text{liquid density, kg/m}^3,$ 

 $\mu_L = \text{liquid viscosity, Ns/m}^2,$ 

 $\lambda$  = latent heat, J/kg,

 $\rho_v = \text{vapour density, kg/m}^3$ ,

 $T_w$  = wall, surface temperature, °C,

 $T_s$  = saturation temperature of boiling liquid °C,

 $p_w$  = saturation pressure corresponding to the wall temperature,  $T_w$ , N/m<sup>2</sup>,

 $p_s$  = saturation pressure corresponding to  $T_s$ , N/m<sup>2</sup>,

 $\sigma$  = surface tension, N/m.

The reduced pressure correlation given by Mostinski (1963) is simple to use and gives values that are as reliable as those given by more complex equations.

$$h_{nb} = 0.104(P_c)^{0.69}(q)^{0.7} \left[ 1.8 \left( \frac{P}{P_c} \right)^{0.17} + 4 \left( \frac{P}{P_c} \right)^{1.2} + 10 \left( \frac{P}{P_c} \right)^{10} \right]$$
 (12.63)

where P = operating pressure, bar,

 $P_c$  = liquid critical pressure, bar,

 $q = \text{heat flux, W/m}^2$ .

Note.  $q = h_{nb}(T_w - T_s)$ .

Mostinski's equation is convenient to use when data on the fluid physical properties are not available.

Equations 12.62 and 12.63 are for boiling single component fluids; for mixtures the coefficient will generally be lower than that predicted by these equations. The equations can be used for close boiling range mixtures, say less than 5°C; and for wider boiling ranges with a suitable factor of safety (see Section 12.11.6).

#### Critical heat flux

It is important to check that the design, and operating, heat flux is well below the critical flux. Several correlations are available for predicting the critical flux. That given by Zuber *et al.* (1961) has been found to give satisfactory predictions for use in reboiler and vaporiser design. In SI units, Zuber's equation can be written as:

$$q_c = 0.131\lambda [\sigma g(\rho_L - \rho_v)\rho_v^2]^{1/4}$$
(12.64)

where  $q_c = \text{maximum}$ , critical, heat flux, W/m<sup>2</sup>,

 $g = \text{gravitational acceleration}, 9.81 \text{ m/s}^2.$ 

Mostinski also gives a reduced pressure equation for predicting the maximum critical heat flux:

$$q_c = 3.67 \times 10^4 P_c \left(\frac{P}{P_c}\right)^{0.35} \left[1 - \left(\frac{P}{P_c}\right)\right]^{0.9}$$
 (12.65)

## Film boiling

The equation given by Bromley (1950) can be used to estimate the heat-transfer coefficient for film boiling on tubes. Heat transfer in the film-boiling region will be controlled by conduction through the film of vapour, and Bromley's equation is similar to the Nusselt equation for condensation, where conduction is occurring through the film of condensate.

$$h_{fb} = 0.62 \left[ \frac{k_v^3 (\rho_L - \rho_v) \rho_v g \lambda}{\mu_v d_o (T_w - T_s)} \right]^{1/4}$$
 (12.66)

where  $h_{fb}$  is the film boiling heat-transfer coefficient; the suffix v refers to the vapour phase and  $d_o$  is in metres. It must be emphasised that process reboilers and vaporisers will always be designed to operate in the nucleate boiling region. The heating medium would be selected, and its temperature controlled, to ensure that in operation the temperature difference is well below that at which the critical flux is reached. For instance, if direct heating with steam would give too high a temperature difference, the steam would be used to heat water, and hot water used as the heating medium.

### Example 12.7

Estimate the heat-transfer coefficient for the pool boiling of water at 2.1 bar, from a surface at 125°C. Check that the critical flux is not exceeded.

## Solution

Physical properties, from steam tables:

Saturation temperature, 
$$T_s = 121.8^{\circ}\text{C}$$
  
 $\rho_L = 941.6 \text{ kg/m}^3, \ \rho_v = 1.18 \text{ kg/m}^3$   
 $C_{pL} = 4.25 \times 10^3 \text{ J/kg}^{\circ}\text{C}$   
 $k_L = 687 \times 10^{-3} \text{ W/m}^{\circ}\text{C}$   
 $\mu_L = 230 \times 10^{-6} \text{ Ns/m}^2$   
 $\lambda = 2198 \times 10^3 \text{ J/kg}$   
 $\sigma = 55 \times 10^{-3} \text{ N/m}$   
 $p_w \text{ at } 125^{\circ}\text{C} = 2.321 \times 10^5 \text{ N/m}^2$   
 $p_s = 2.1 \times 10^5 \text{ N/m}^2$ 

Use the Foster-Zuber correlation, equation 12.62:

$$h_b = 1.22 \times 10^{-3} \left[ \frac{(687 \times 10^{-3})^{0.79} (4.25 \times 10^3)^{0.45} (941.6)^{0.49}}{(55 \times 10^{-3})^{0.5} (230 \times 10^{-6})^{0.29} (2198 \times 10^3)^{0.24} 1.18^{0.24}} \right]$$

$$\times (125 - 121.8)^{0.24} (2.321 \times 10^5 - 2.10 \times 10^5)^{0.75}$$

$$= \underline{3738 \text{ W/m}^2 \circ \text{C}}$$

Use the Zuber correlation, equation 12.65:

$$q_c = 0.131 \times 2198 \times 10^3 [55 \times 10^{-3} \times 9.81(941.6 - 1.18)1.18^2]^{1/4}$$
$$= \underbrace{1.48 \times 10^6 \text{ W/m}^2}_{(125 \times 121.8)2728}$$

Actual flux =  $(125 - 121.8)3738 = 11,962 \text{ W/m}^2$ ,

well below critical flux.

## 12.11.3. Convective boiling

The mechanism of heat transfer in convective boiling, where the boiling fluid is flowing through a tube or over a tube bundle, differs from that in pool boiling. It will depend on the state of the fluid at any point. Consider the situation of a liquid boiling inside a vertical tube; Figure 12.55. The following conditions occur as the fluid flows up the tube.

- 1. Single-phase flow region: at the inlet the liquid is below its boiling point (sub-cooled) and heat is transferred by forced convection. The equations for forced convection can be used to estimate the heat-transfer coefficient in this region.
- 2. Sub-cooled boiling: in this region the liquid next to the wall has reached boiling point, but not the bulk of the liquid. Local boiling takes place at the wall, which increases the rate of heat transfer over that given by forced convection alone.



Figure 12.55. Convective boiling in a vertical tube

- 3. Saturated boiling region: in this region bulk boiling of the liquid is occurring in a manner similar to nucleate pool boiling. The volume of vapour is increasing and various flow patterns can form (see Volume 2, Chapter 14). In a long tube, the flow pattern will eventually become annular: where the liquid phase is spread over the tube wall and the vapour flows up the central core.
- 4. Dry wall region: Ultimately, if a large fraction of the feed is vaporised, the wall dries out and any remaining liquid is present as a mist. Heat transfer in this region is by convection and radiation to the vapour. This condition is unlikely to occur in commercial reboilers and vaporisers.

Saturated, bulk, boiling is the principal mechanism of interest in the design of reboilers and vaporisers.

A comprehensive review of the methods available for predicting convective boiling coefficients is given by Webb and Gupte (1992). The methods proposed by Chen (1966) and Shah (1976) are convenient to use in manual calculations and are accurate enough for preliminary design work. Chen's method is outlined below and illustrated in Example 12.8.

### Chen's method

In forced-convective boiling the effective heat-transfer coefficient  $h_{cb}$  can be considered to be made up of convective and nucleate boiling components;  $h'_{fc}$  and  $h'_{nb}$ .

$$h_{cb} = h'_{fc} + h'_{nb} (12.67)$$

The convective boiling coefficient  $h'_{fc}$  can be estimated using the equations for single-phase forced-convection heat transfer modified by a factor  $f_c$  to account for the effects of two-phase flow:

$$h'_{fc} = h_{fc} \times f_c \tag{12.68}$$

The forced-convection coefficient  $h_{fc}$  is calculated assuming that the liquid phase is flowing in the conduit alone.

The two-phase correction factor  $f_c$  is obtained from Figure 12.56; in which the term  $1/X_{tt}$  is the Lockhart-Martinelli two-phase flow parameter with turbulent flow in both phases (See Volume 1, Chapter 5). This parameter is given by:

$$\frac{1}{X_{tt}} = \left[\frac{x}{1-x}\right]^{0.9} \left[\frac{\rho_L}{\rho_v}\right]^{0.5} \left[\frac{\mu_v}{\mu_L}\right]^{0.1}$$
 (12.69)

where x is the vapour quality, the mass fraction of vapour.

The nucleate boiling coefficient can be calculated using correlations for nucleate pool boiling modified by a factor  $f_s$  to account for the fact that nucleate boiling is more difficult in a flowing liquid.

$$h'_{nb} = h_{nb} \times f_s \tag{12.70}$$

The suppression factor  $f_s$  is obtained from Figure 12.57. It is a function of the liquid Reynolds number  $Re_L$  and the forced-convection correction factor  $f_c$ .

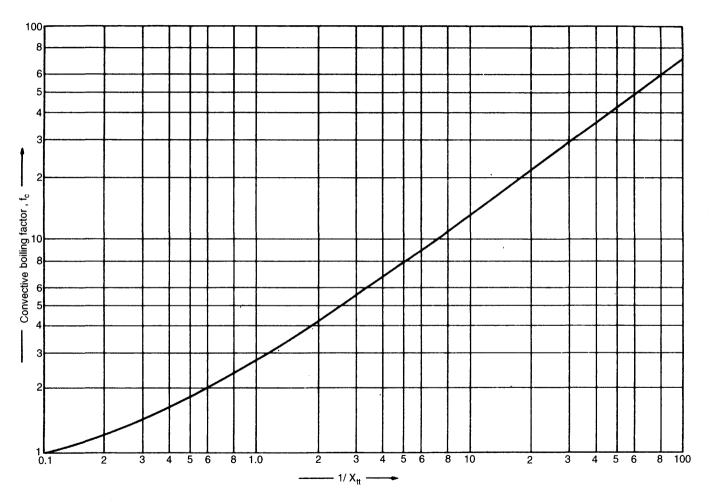



Figure 12.56. Convective boiling enhancement factor

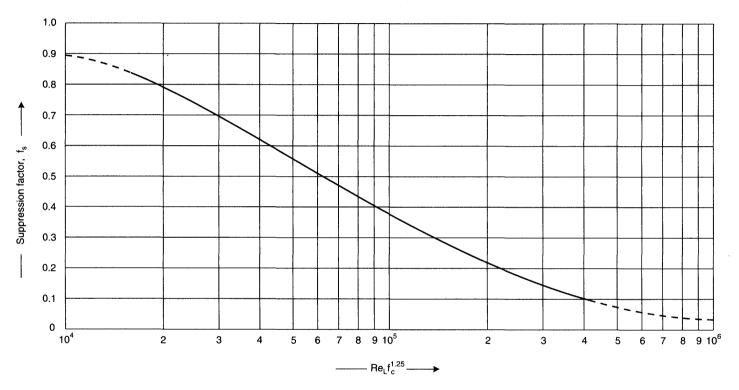



Figure 12.57. Nucleate boiling suppression factor

 $Re_L$  is evaluated assuming that only the liquid phase is flowing in the conduit, and will be given by:

 $Re_L = \frac{(1-x)Gd_e}{\mu_L}$  (12.71)

where G is the total mass flow rate per unit flow area.

Chen's method was developed from experimental data on forced convective boiling in vertical tubes. It can be applied, with caution, to forced convective boiling in horizontal tubes, and annular conduits (concentric pipes). Butterworth (1977) suggests that, in the absence of more reliable methods, it may be used to estimate the heat-transfer coefficient for forced convective boiling in cross-flow over tube bundles; using a suitable cross-flow correlation to predict the forced-convection coefficient. Shah's method was based on data for flow in horizontal and vertical tubes and annuli.

A major problem that will be encountered when applying convective boiling correlations to the design of reboilers and vaporisers is that, because the vapour quality changes progressively throughout the exchanger, a step-by-step procedure will be needed. The exchanger must be divided into sections and the coefficient and heat transfer area estimated sequentially for each section.

# Example 12.8

A fluid whose properties are essentially those of o-dichlorobenzene is vaporised in the tubes of a forced convection reboiler. Estimate the local heat-transfer coefficient at a point where 5 per cent of the liquid has been vaporised. The liquid velocity at the tube inlet is 2 m/s and the operating pressure is 0.3 bar. The tube inside diameter is 16 mm and the local wall temperature is estimated to be 120°C.

#### Solution

Physical properties:

boiling point 136°C  

$$\rho_L = 1170 \text{ kg/m}^3$$

$$\mu_L = 0.45 \text{ mNs/m}^2$$

$$\mu_v = 0.01 \text{ mNs/m}^2$$

$$\rho_v = 1.31 \text{ kg/m}^3$$

$$k_L = 0.11 \text{ W/m}^\circ\text{C}$$

$$C_{pL} = 1.25 \text{ kJ/kg}^\circ\text{C}$$

$$P_c = 41 \text{ bar}$$

The forced-convective boiling coefficient will be estimated using Chen's method. With 5 per cent vapour, liquid velocity (for liquid flow in tube alone)

= 
$$2 \times 0.95 = 1.90$$
 m/s  

$$Re_L = \frac{1170 \times 1.90 \times 16 \times 10^{-3}}{0.45 \times 10^{-3}} = 79,040$$

From Figure 12.23,  $j_h = 3.3 \times 10^{-3}$ 

$$Pr = \frac{1.25 \times 10^3 \times 0.45 \times 10^{-3}}{0.11} = 5.1$$

Neglect viscosity correction term.

$$h_{fc} = \frac{0.11}{16 \times 10^{-3}} \times 3.3 \times 10^{-3} (79,040)(5.1)^{0.33}$$
 (12.15)

$$= 3070 \text{ W/m}^2 \,^{\circ}\text{C}$$

$$\frac{1}{X_{tt}} = \left[\frac{0.05}{1 - 0.05}\right]^{0.9} \left[\frac{1170}{1.31}\right]^{0.5} \left[\frac{0.01 \times 10^{-3}}{0.45 \times 10^{-3}}\right]^{0.1}$$

$$= 1.44$$
(12.69)

From Figure 12.56,  $f_c = 3.2$ 

$$h'_{fc} = 3.2 \times 3070 = 9824 \text{ W/m}^2 ^{\circ}\text{C}$$

Using Mostinski's correlation to estimate the nucleate boiling coefficient

$$h_{nb} = 0.104 \times 41^{0.69} [h_{nb}(136 - 120)]^{0.7}$$

$$\times \left[ 1.8 \left( \frac{0.3}{41} \right)^{0.17} + 4 \left( \frac{0.3}{41} \right)^{1.2} + 10 \left( \frac{0.3}{41} \right)^{10} \right]$$

$$h_{nb} = 7.43 h_{nb}^{0.7}$$

$$h_{nb} = 800 \text{ W/m}^2 ^{\circ}\text{C}$$

$$Re_L f_c^{1.25} = 79,040 \times 3.2^{1.25} = 338,286$$
From Figure 12.57,  $f_s = 0.13$ ,
$$h'_{nb} = 0.13 \times 800 = 104 \text{ W/m}^2 ^{\circ}\text{C}$$

$$h_{cb} = 9824 + 104 = \underline{9928 \text{ W/m}}^2 ^{\circ}\text{C}$$

# 12.11.4. Design of forced-circulation reboilers

The normal practice in the design of forced-convection reboilers is to calculate the heat-transfer coefficient assuming that the heat is transferred by forced convection only. This will give conservative (safe) values, as any boiling that occurs will invariably increase the rate of heat transfer. In many designs the pressure is controlled to prevent any appreciable vaporisation in the exchanger. A throttle value is installed in the exchanger outlet line, and the liquid flashes as the pressure is let down into the vapour-liquid separation vessel.

If a significant amount of vaporisation does occur, the heat-transfer coefficient can be evaluated using correlations for convective boiling, such as Chen's method.

Conventional shell and tube exchanger designs are used, with one shell pass and two tube passes, when the process fluid is on the shell side; and one shell and one tube pass when it is in the tubes. High tube velocities are used to reduce fouling, 3-9 m/s.

Because the circulation rate is set by the designer, forced-circulation reboilers can be designed with more certainty than natural circulation units.

The critical flux in forced-convection boiling is difficult to predict. Kern (1950) recommends that for commercial reboiler designs the heat flux should not exceed  $63,000~\text{W/m}^2$  (20,000 Btu/ft²h) for organics and  $95,000~\text{W/m}^2$  (30,000 Btu/ft²h) for water and dilute aqueous solutions. These values are now generally considered to be too pessimistic.

## 12.11.5. Design of thermosyphon reboilers

The design of thermosyphon reboilers is complicated by the fact that, unlike a forced-convection reboiler, the fluid circulation rate cannot be determined explicitly. The circulation rate, heat-transfer rate and pressure drop are all interrelated, and iterative design procedures must be used. The fluid will circulate at a rate at which the pressure losses in the system are just balanced by the available hydrostatic head. The exchanger, column base and piping can be considered as the two legs of a U-tube; Figure 12.58. The driving force for circulation round the system is the difference in density of the liquid in the "cold" leg (the column base and inlet piping) and the two-phase fluid in the "hot" leg (the exchanger tubes and outlet piping).

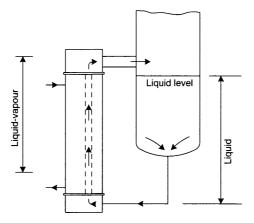



Figure 12.58. Vertical thermosyphon reboiler, liquid and vapour flows

To calculate the circulation rate it is necessary to make a pressure balance round the system.

A typical design procedure will include the following steps:

- 1. Calculate the vaporisation rate required; from the specified duty.
- 2. Estimate the exchanger area; from an assumed value for the overall heat-transfer coefficient. Decide the exchanger layout and piping dimensions.
- 3. Assume a value for the circulation rate through the exchanger.
- 4. Calculate the pressure drop in the inlet piping (single phase).
- 5. Divide the exchanger tube into sections and calculate the pressure drop section-by-section up the tube. Use suitable methods for the sections in which the flow is two-phase. Include the pressure loss due to the fluid acceleration as the vapour rate increases. For a horizontal reboiler, calculate the pressure drop in the shell, using a method suitable for two-phase flow.

- 6. Calculate the pressure drop in the outlet piping (two-phase).
- 7. Compare the calculated pressure drop with the available differential head; which will depend on the vapour voidage, and hence the assumed circulation rate. If a satisfactory balance has been achieved, proceed. If not, return to step 3 and repeat the calculations with a new assumed circulation rate.
- 8. Calculate the heat-transfer coefficient and heat-transfer rate section-by-section up the tubes. Use a suitable method for the sections in which the boiling is occurring; such as Chen's method.
- 9. Calculate the rate of vaporisation from the total heat-transfer rate, and compare with the value assumed in step 1. If the values are sufficiently close, proceed. If not, return to step 2 and repeat the calculations for a new design.
- 10. Check that the critical heat flux is not exceeded at any point up the tubes.
- 11. Repeat the complete procedure as necessary to optimise the design.

It can be seen that to design a thermosyphon reboiler using hand calculations would be tedious and time-consuming. The iterative nature of the procedure lends itself to solution by computers. Sarma et al. (1973) discuss the development of a computer program for vertical thermosyphon reboiler design, and give algorithms and design equations.

Extensive work on the performance and design of thermosyphon reboilers has been carried out by HTFS and HTRI, and proprietary design programs are available from these organisations.

In the absence of access to a computer program the rigorous design methods given by Fair (1960, 1963) or Hughmark (1961, 1964, 1969) can be used for thermosyphon vertical reboilers. Collins (1976) and Fair and Klip (1983) give methods for the design of horizonal, shell-side thermsyphon reboilers. The design and performance of this type of reboiler is also reviewed in a paper by Yilmaz (1987).

Approximate methods can be used for preliminary designs. Fair (1960) gives a method in which the heat transfer and pressure drop in the tubes are based on the average of the inlet and outlet conditions. This simplifies step 5 in the design procedure but trial-anderror calculations are still needed to determine the circulation rate. Frank and Prickett (1973) programmed Fair's rigorous design method for computer solution and used it, together with operating data on commercial exchangers, to derive a general correlation of heat-transfer rate with reduced temperature for vertical thermosyphon reboilers. Their correlation, converted to SI units, is shown in Figure 12.59. The basis and limitations of the correlation are listed below:

- 1. Conventional designs: tube lengths 2.5 to 3.7 m (8 to 12 ft) (standard length 2.44 m), preferred diameter 25 mm (1 in.).
- Liquid in the sump level with the top tube sheet.
   Process side fouling coefficient 6000 W/m²°C.
- 4. Heating medium steam, coefficient including fouling, 6000 W/m<sup>2</sup>°C.
- 5. Simple inlet and outlet piping.
- 6. For reduced temperatures greater than 0.8, use the limiting curve (that for aqueous solutions).
- 7. Minimum operating pressure 0.3 bar.
- 8. Inlet fluid should not be appreciably sub-cooled.
- 9. Extrapolation is not recommended.

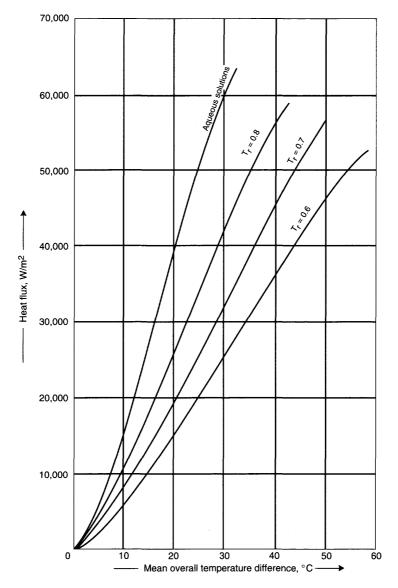



Figure 12.59. Vertical thermosyphon design correlation

For heating media other than steam and process side fouling coefficients different from  $6000 \text{ W/m}^2 \,^{\circ}\text{C}$ , the design heat flux taken from Figure 12.59 may be adjusted as follows:

$$U' = \frac{q'}{\Delta T'} \tag{12.72}$$

and

$$\frac{1}{U_c} = \frac{1}{U'} - \frac{1}{6000} + \frac{1}{h_s} - \frac{1}{6000} + \frac{1}{h_{id}}$$

where  $q' = \text{flux read from Figure 12.59 at } \Delta T'$ ,

 $h_s$  = new shell side coefficient W/m<sup>2</sup>°C,

 $h_{id}$  = fouling coefficient on the process (tube) side W/m<sup>2</sup>°C,

 $U_c$  = corrected overall coefficient.

The use of Frank and Prickett's method is illustrated in Example 12.9.

### Limitations on the use of Frank and Pricket's method

A study by van Edmonds (1994), using the HTFS TREB4 program, found that Frank and Pricket's method gave acceptable predictions for pure components and binary mixtures with water, but that the results were unreliable for other mixtures. Also, van Edmonds' results predicted higher flux values than those obtained by Pricket and Frank.

For preliminary designs for pure components, or near pure components, Pricket and Frank's method should give a conservative estimate of the operating heat flux. It is not recommended for mixtures, other than binary mixtures with water.

## Approximate design method for mixtures

For mixtures, the simplified analysis used by Kern (1954) can be used to obtain an approximate estimate of the number of tubes required; see also Aerstin and Street (1978) and Hewitt *et al.* (1994).

This method uses simple, unsophisticated, methods to estimate the two-phase pressure drop through the exchanger and piping, and the convective boiling heat transfer coefficient. The calculation procedure is set out below and illustrated in Example 12.10

#### Procedure

- 1. Determine the heat duty.
- 2. Estimate the heat transfer area, using the maximum allowable heat flux. Take as  $39,700 \text{ W/m}^2$  for vertical and  $47,300 \text{ W/m}^2$  for horizontal reboilers.
- 3. Choose the tube diameters and length. Calculate the number of tubes required.
- 4. Estimate the recirculation ratio, not less than 3.
- 5. Calculated the vapour flow rate leaving the reboiler for the duty and liquid heat of vaporisation.
- 6. Calculate the liquid flow rate leaving the reboiler for the vapour rate and recirculation ratio.
- 7. Estimate the two-phase pressure drop though the tubes, due to friction. Use the homogenous model or another simple method, such as the Lochart-Martenelli equation; see Volume 1, Chapter 5.
- 8. Estimate the static head in the tubes.
- 9. Estimate the available head.
- 10. Compare the total estimated pressure drop and the available head. If the available head is greater by a sufficient amount to allow for the pressure drop through the inlet and outlet piping, proceed. If the available head is not sufficient, return to step 2, and increase the number of tubes.
- 11. Calculate the convective heat transfer coefficient using simple methods, such as assuming convection only, or Chens' method; see Section 12.11.3.

- 12. Calculate the overall heat transfer coefficient.
- 13. Calculate the required overall coefficient and compare with that estimated. If satisfactory, accept the design, if unsatisfactory return to step 2 and increase the estimated area.

### Maximum heat flux

Thermosyphon reboilers can suffer from flow instabilities if too high a heat flux is used. The liquid and vapour flow in the tubes is not smooth but tends to pulsate, and at high heat fluxes the pulsations can become large enough to cause vapour locking. A good practice is to install a flow restriction in the inlet line, a valve or orifice plate, so that the flow resistance can be adjusted should vapour locking occur in operation.

Kern recommends that the heat flux in thermosyphon reboilers, based on the total heat-transfer area, should not exceed 37,900 W/m² (12,000 Btu/ft²h). For horizontal thermosyphon reboilers, Collins recommends a maximum flux ranging from 47,300 W/m² for 20-mm tubes to 56,800 W/m² for 25-mm tubes (15,000 to 18,000 Btu/ft²h). These "rule of thumb" values are now thought to be too conservative; see Skellence *et al.* (1968) and Furzer (1990). Correlations for determining the maximum heat flux for vertical thermosyphons are given by Lee *et al.* (1956) and Palen *et al.* (1974); and for horizontal thermosyphons by Yilmaz (1987).

### General design considerations

The tube lengths used for vertical thermosyphon reboilers vary from 1.83 m (6 ft) for vacuum service to 3.66 m (12 ft) for pressure operation. A good size for general applications is 2.44 m (8 ft) by 25 mm internal diameter. Larger tube diameters, up to 50 mm, are used for fouling systems.

The top tube sheet is normally aligned with the liquid level in the base of the column; Figure 12.58. The outlet pipe should be as short as possible, and have a cross-sectional area at least equal to the total cross-sectional area of the tubes.

# Example 12.9

Make a preliminary design for a vertical thermosyphon for a column distilling crude aniline. The column will operate at atmospheric pressure and a vaporisation rate of 6000 kg/h is required. Steam is available at 22 bar (300 psig). Take the column bottom pressure as 1.2 bar.

#### Solution

Physical properties, taken as those of aniline:

Boiling point at 1.2 bar  $190^{\circ}$ C Molecular weight 93.13  $T_c$  699 K Latent heat 42,000 kJ/kmol Steam saturation temperature  $217^{\circ}$ C.

Mean overall  $\Delta T = (217 - 190) = 27^{\circ}$ C.

Reduced temperature, 
$$T_r = \frac{(190 + 273)}{699} = 0.66$$

From Figure 12.59, design heat flux =  $25,000 \text{ W/m}^2$ 

Heat load = 
$$\frac{6000}{3600} \times \frac{42,000}{93.13} = 751 \text{ kW}$$
  
 $751 \times 10^3$ 

Area required = 
$$\frac{751 \times 10^3}{25,000}$$
 = 30 m<sup>2</sup>

Use 25 mm i.d., 30 mm o.d., 2.44 m long tubes.

Area of one tube = 
$$\pi 25 \times 10^{-3} \times 2.44 = 0.192 \text{ m}^2$$
  
Number of tubes =  $\frac{30}{0.192} = 157$ 

Approximate diameter of bundle, for 1.25 square pitch

$$D_b = 30 \left[ \frac{157}{0.215} \right]^{1/2.207} = 595 \text{ mm}$$
 (12.3b)

A fixed tube sheet will be used for a vertical thermosyphon reboiler. From Figure 12.10, shell diametrical clearance = 14 mm,

Shell inside dia. = 
$$595 + 14 = 609 \text{ mm}$$

Outlet pipe diameter; take area as equal to total tube cross-sectional area

$$= 157(25 \times 10^{-3})^2 \frac{\pi}{4} = 0.077 \text{ m}^2$$
 Pipe diameter =  $\sqrt{\frac{0.077 \times 4}{\pi}} = 0.31 \text{ m}$ 

# Example 12.10

Make a preliminary design for a vertical thermosyphon reboiler for the column specified in Example 11.9. Take the vapour rate required to be 36 kmol/h.

From example 8.3:

Operating pressure 8.3 (neglecting pressure drop over column).

Bottoms composition:  $C_3$  0.001,  $iC_4$  0.001,  $nC_4$  0.02,  $iC_5$  0.34,  $nC_5$  0.64, kmol.

Bubble point of mixture, approximately, 120°C.

#### Solution

The concentrations of  $C_3$  and  $iC_4$  are small enough to be neglected. Take the liquid: vapour ratio as 3:1.

Estimate the liquid and vapour compositions leaving the reboiler:

Vapour rate, V = 36/3600 = 0.1 kmol/s

L/V = 3, so liquid rate, L = 3 V = 0.3 kmol/s and feed, F = L + V = 0.4 kmol/s.

The vapour and liquid compositions leaving the reboiler can be estimated using the same procedure as that for a flash calculation; see Section 11.3.3.

(near enough correct)

Enthalpies of vaporisation, from Figures (b) and (c) Example 11.9, kJ/mol

|        | $x_i$ | $H_i$ | $h_i$ | $H_i - h_i$ | $x_i(H_i-h_i)$     |
|--------|-------|-------|-------|-------------|--------------------|
| $nC_4$ | 0.02  | 50    | 34    | 16          | 0.32               |
| $iC_5$ | 0.35  | 58    | 41    | 17          | 5.95               |
| $nC_5$ | 0.63  | 61    | 42    | 19          | 11.97              |
| Total  |       |       |       |             | $\overline{18.24}$ |

Exchanger duty, feed to reboiler taken as at its boiling point

$$=$$
 vapour flow-rate  $\times$  heat of vaporisation

$$= 0.1 \times 10^3 \times 18.24 = \underline{1824} \text{ kW}$$

Take the maximum flux as 37,900 W/m<sup>2</sup>; see Section 12.11.5.

Heat transfer area required =  $1,824,000/37,900 = 48.1 \text{ m}^2$ 

Use 25 mm i.d., 2.5 m long tubes, a popular size for vertical thermosyphon reboilers.

Area of one tube =  $25 \times 10^{-3} \pi \times 2.5 = 0.196 \text{ m}^2$ 

Number of tubes required = 48.1/0.196 = 246

Liquid density at base of exchanger =  $520 \text{ kg/m}^3$ 

Relative molecular mass at tube entry =  $58 \times 0.02 + 72(0.34 + 0.64) = 71.7$ 

vapour at exit = 
$$58 \times 0.02 + 72(0.35 + 0.63) = 71.7$$

Two-phase fluid density at tube exit:

volume of vapour = 
$$0.1 \times (22.4./8.3) \times (393/273) = 0.389 \text{ m}^3$$
  
volume of liquid =  $(0.3 \times 71.7)/520 = 0.0413 \text{ m}^3$   
total volume =  $0.389 + 0.0413 = 0.430 \text{ m}^3$   
exit density =  $\frac{(0.4 \times 71.7)}{0.430} \times 71.7 = 66.7 \text{ kg/m}^3$ 

#### Friction loss

Mass flow-rate = 
$$0.4 \times 71.7 = 28.68$$
 kg/s  
Cross-sectional area of tube =  $\frac{\pi (25 \times 10^{-3})^2}{4} = 0.00049$  m<sup>2</sup>

Total cross-sectional area of bundle =  $246 \times 0.00049 = 0.121 \text{ m}^2$ 

Mass flux, 
$$G = \text{mass flow/area} = 28.68/0.121 = 237.0 \text{ kg m}^{-2} \text{ s}^{-1}$$

At tube exit, pressure drop per unit lengths, using the homogeneous model: homogeneous velocity =  $G/\rho_m = 237/66.7 = 3.55$  m/s

Viscosity, taken as that of liquid, =  $0.12 \text{ mN sm}^{-2}$ 

$$Re = \frac{\rho_m ud}{\mu} = \frac{66.7 \times 3.55 \times 25 \times 10^{-3}}{0.12 \times 10^{-3}} = 49,330, (4.9 \times 10^4)$$

Friction factor, from Fig.  $12.24 = 3.2 \times 10^{-3}$ 

$$\Delta P_f = 8 \times 3.2 \times 10^{-3} \times \frac{1}{25 \times 10^{-3}} \times 66.7 \times \frac{3.55^2}{2} = 430 \text{ N/m}^{-2} \text{per m}$$
 (12.19)

At tube entry, liquid only, pressure drop per unit length:

velocity = 
$$G/\rho_L = 237.0/520 = 0.46$$
 m/s

$$Re = \frac{\rho_L ud}{\mu} = \frac{520 \times 0.46 \times 25 \times 10^{-3}}{0.12 \times 10^{-3}} = 49,833, (5.0 \times 10^4)$$

Friction factor, from Fig  $12.24 = 3.2 \times 10^{-3}$ 

$$\Delta P_f = 8 \times 3.2 \times 10^{-3} \times \frac{1}{25 \times 10^{-3}} \times 520 \times \frac{0.46^2}{2} = 56 \text{ N/m}^{-2} \text{per m}$$
 (12.19)

Taking the pressure drop change as linear along the tube,

Mean pressure drop per unit length =  $(430 + 56)/2 = 243 \text{ N/m}^2$ 

Pressure drop over tube  $243 \times 2.5 = 608 \text{ N/m}^2$ 

The viscosity correction factor is neglected in this rough calculation.

# Static pressure in tubes

Making the simplifying assumption that the variation in density in the tubes is linear from bottom to top, the static pressure will be given by:

$$\Delta P_s = g \int_0^L \frac{\mathrm{d}x}{v_i + x(v_0 - v_i)/L} = \frac{gL}{(v_0 - v_i)} \times \operatorname{Ln}(v_0/v_i)$$

where  $v_i$  and  $v_0$  are the inlet and outlet specific volumes.

$$v_i = 1/520 = 0.00192$$
 and  $v_0 = 1/66.7 = 0.0150$  m<sup>3</sup>/kg

$$\Delta P_s = \frac{9.8 \times 2.5}{(0.0150 - 0.00192)} \times \text{Ln}(0.0150/0.00192) = 3850 \text{ N/m}^2$$

Total pressure drop over tubes =  $346 + 3850 = \underline{4250}$  N/m<sup>2</sup>

# Available head (driving force)

$$\Delta P_a = \rho_L gL = 520 \times 9.8 \times 2.5 = 12,740 \text{ N/m}^2$$

Which is adequate to maintain a circulation ratio of 3:1, including allowances for the pressure drop across the piping.

### Heat transfer

The convective boiling coefficient will be calculated using Chen's method; see Section 12.13.3.

As the heat flux is known and only a rough estimate of the coefficient is required, use Mostinski's equation to estimate the nucleate boiling coefficient; Section 12.11.2.

Take the critical pressure as that for n-pentane, 33.7 bar.

$$h_{nb} = 0.104(33.7)^{0.69}(37,900)^{0.7}[1.8(8.3/33.7)^{0.17} + 4(8.3/33.7)^{1.2} + 10(8.3/33.7)^{10}]$$
  
= 1888.6(1.418 + 0.744 + 0.000) = 4083 Wm<sup>-2o</sup>C<sup>-1</sup> (12.63)

Vapour quality, x = mass vapour/total mass flow = 0.1/0.4 = 0.25

Viscosity of vapour =  $0.0084 \text{ mNm}^{-2}\text{s}$ 

Vapour density at tube exit =  $(0.1 \times 71.7)/0.389 = 18.43 \text{ kg/m}^3$ 

$$1/X_{tt} = [0.25/(1 - 0.25)]^{0.9} [520/18.43]^{0.5} [0.0084/0.12]^{0.1} = 1.51$$
 (12.69)

Specific heat of liquid =  $2.78 \text{ kJkg}^{-1\circ}\text{C}^{-1}$ , thermal conductivity of liquid =  $0.12 \text{ Wm}^{-1\circ}\text{C}^{-1}$ .

$$Pr_L = (2.78 \times 10^3 \times 0.12 \times 10^{-3})/0.12 = 2.78$$

Mass flux, liquid phase only flowing in tubes =  $(0.3 \times 71.7)/0.121 = 177.8$  kg m $^{-2}$ s $^{-1}$  Velocity = 177.8/520 = 0.34 m/s

$$Re_L = \frac{520 \times 0.34 \times 25 \times 10^{-3}}{0.12 \times 10^{-3}} = 36,833 \ (3.7 \times 10^4)$$

From Figure 12.23  $j_h = 3.3 \times 10^{-3}$ ,

$$Nu = 3.3 \times 10^{-3} \times 36,833 \times 2.78^{0.33} = 170.3$$
 (12.15)  
 $h_i = 170.3 \times (0.12/25 \times 10^{-3}) = 817 \text{ Wm}^{-2\circ}\text{C}^{-1}$ 

again, neglecting the viscosity correction factor.

From Figure 12.56, the convective boiling factor,  $f_c = 3.6$ 

$$Re_L \times f_c^{1.25} = 36,883 \times 3.6^{1.25} = 182,896 \ (1.8 \times 10^{-5})$$

From Figure 12.57 the nucleate boiling suppression factor,  $f_s = 0.23$ 

So, 
$$h_{cb} = 3.6 \times 817 + 0.23 \times 4083 = 3880 \text{ Wm}^{-2} \circ \text{C}^{-1}$$

This value has been calculated at the outlet conditions.

Assuming that the coefficient changes linearly for the inlet to outlet, then the average coefficient will be given by:

[inlet coefficient (all liquid) + outlet coefficient (liquid + vapour)]/2

$$Re_L$$
 at inlet =  $36,833 \times 0.4/0.3 = 49,111 \quad (4.9 \times 10^{-4})$ 

From Figure 12.23,  $j_h = 3.2 \times 10^{-3}$ 

$$Nu = 3.2 \times 10^{-3} \times 49,111 \times 2.78^{0.33} = 220.2$$

$$h_i = 220.2 \times (0.12/25 \times 10^{-3}) = 1057 \text{ Wm}^{-2} \circ \text{C}^{-1}$$
(12.15)

Mean coefficient =  $(1057 + 3880)/2 = 2467 \text{ Wm}^{-2} \circ \text{C}^{-1}$ 

The overall coefficient, U, neglecting the resistance of the tube wall, and taking the steam coefficient as 8000 Wm<sup>-2</sup>°C<sup>-1</sup>, is given by:

$$1/U = 1/8000 + 1/2467 = 5.30 \times 10^{-4}$$
  
 $U = 1886 \,\mathrm{Wm}^{-2} \,\mathrm{C}^{-1}$ 

The overall coefficient required for the design =  $\frac{\text{duty}}{\Delta T_{LM}}$ 

 $\Delta T_{LM} = 158.8 - 120 = 38.8$ °C, taking both streams as isothermal

So, 
$$U$$
 required =  $37,900/38.3 = 990 \text{ Wm}^{-2} \text{ C}^{-1}$ 

So the area available in the proposed design is more than adequate and will take care of any fouling.

The analysis could be improved by dividing the tube length into sections, calculating the heat transfer coefficient and pressure drop over each section, and totalling.

More accurate, but more complex, methods could be used to predict the two-phase pressure drop and heat transfer coefficients.

The pressure drop over the inlet and outlet pipes could also be estimated, taking into account the bends, and expansions and contractions.

An allowance could also be included for the energy (pressure drop) required to accelerate the liquid-vapour mixtures as the liquid is vaporised. This can be taken as two velocity head, based on the mean density.

# 12.11.6. Design of kettle reboilers

Kettle reboilers, and other submerged bundle equipment, are essentially pool boiling devices, and their design is based on data for nucleate boiling.

In a tube bundle the vapour rising from the lower rows of tubes passes over the upper rows. This has two opposing effects: there will be a tendency for the rising vapour to blanket the upper tubes, particularly if the tube spacing is close, which will reduce the heat-transfer rate; but this is offset by the increased turbulence caused by the rising vapour bubbles. Palen and Small (1964) give a detailed procedure for kettle reboiler design in which the heat-transfer coefficient calculated using equations for boiling on a single tube is reduced by an empirically derived tube bundle factor, to account for the effects of vapour blanketing. Later work by Heat Transfer Research Inc., reported by Palen *et al.* (1972), showed that the coefficient for bundles was usually greater than that estimated for a single tube. On balance, it seems reasonable to use the correlations for single tubes to estimate the coefficient for tube bundles without applying any correction (equations 12.62 or 12.63).

The maximum heat flux for stable nucleate boiling will, however, be less for a tube bundle than for a single tube. Palen and Small (1964) suggest modifying the Zuber equation for single tubes (equation 12.64) with a tube density factor. This approach was supported by Palen *et al.* (1972).

The modified Zuber equation can be written as:

$$q_{cb} = K_b \left(\frac{p_t}{d_o}\right) \left(\frac{\lambda}{\sqrt{N_t}}\right) \left[\sigma g(\rho_L - \rho_v)\rho_v^2\right]^{0.25}$$
(12.74)

where  $q_{cb} = \text{maximum}$  (critical) heat flux for the tube bundle, W/m<sup>2</sup>,

 $K_b = 0.44$  for square pitch arrangements,

= 0.41 for equilateral triangular pitch arrangements,

 $p_t$  = tube pitch,

 $d_o$  = tube outside diameter,

 $N_t = \text{total number of tubes in the bundle,}$ 

*Note.* For U-tubes  $N_t$  will be equal to twice the number of actual U-tubes.

Palen and Small suggest that a factor of safety of 0.7 be applied to the maximum flux estimated from equation 12.74. This will still give values that are well above those which have traditionally been used for the design of commercial kettle reboilers; such as that of 37,900 W/m<sup>2</sup> (12,000 Btu/ft<sup>2</sup>h) recommended by Kern (1950). This has had important implications in the application of submerged bundle reboilers, as the high heat flux allows a smaller bundle to be used, which can then often be installed in the base of the column; saving the cost of shell and piping.

# General design considerations

A typical layout is shown in Figure 12.8. The tube arrangement, triangular or square pitch, will not have a significant effect on the heat-transfer coefficient. A tube pitch of between 1.5 to 2.0 times the tube outside diameter should be used to avoid vapour blanketing. Long thin bundles will be more efficient than short fat bundles.

The shell should be sized to give adequate space for the disengagement of the vapour and liquid. The shell diameter required will depend on the heat flux. The following values

can be used as a guide:

| Heat flux W/m <sup>2</sup> | Shell dia./Bundle dia. |
|----------------------------|------------------------|
| 25,000                     | 1.2 to 1.5             |
| 25,000 to 40,000           | 1.4 to 1.8             |
| 40,000                     | 1.7 to 2.0             |

The freeboard between the liquid level and shell should be at least 0.25 m. To avoid excessive entrainment, the maximum vapour velocity  $\hat{u}_v$  (m/s) at the liquid surface should be less than that given by the expression:

$$\hat{u}_v < 0.2 \left[ \frac{\rho_L - \rho_v}{\rho_v} \right]^{1/2} \tag{12.75}$$

When only a low rate of vaporisation is required a vertical cylindrical vessel with a heating jacket or coils should be considered. The boiling coefficients for internal submerged coils can be estimated using the equations for nucleate pool boiling.

### Mean temperature differences

When the fluid being vaporised is a single component and the heating medium is steam (or another condensing vapour), both shell and tubes side processes will be isothermal and the mean temperature difference will be simply the difference between the saturation temperatures. If one side is not isothermal the logarithmic mean temperature difference should be used. If the temperature varies on both sides, the logarithmic temperature difference must be corrected for departures from true cross- or counter-current flow (see Section 12.6).

If the feed is sub-cooled, the mean temperature difference should still be based on the boiling point of the liquid, as the feed will rapidly mix with the boiling pool of liquid; the quantity of heat required to bring the feed to its boiling point must be included in the total duty.

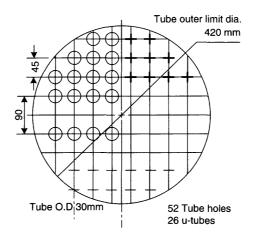
#### Mixtures

The equations for estimating nucleate boiling coefficients given in Section 12.11.1 can be used for close boiling mixtures, say less than 5°C, but will overestimate the coefficient if used for mixtures with a wide boiling range. Palen and Small (1964) give an empirical correction factor for mixtures which can be used to estimate the heat-transfer coefficient in the absence of experimental data:

$$(h_{nb})$$
 mixture =  $f_m(h_{nb})$  single component (12.76)

where  $f_m = \exp[-0.0083(T_{bo} - T_{bi})]$ 

and  $T_{bo}$  = temperature of the vapour mixture leaving the reboiler  ${}^{\circ}C$ ,


 $T_{bi}$  = temperature of the liquid entering the reboiler °C.

The inlet temperature will be the saturation temperature of the liquid at the base of the column, and the vapour temperature the saturation temperature of the vapour returned to

the column. The composition of these streams will be fixed by the distillation column design specification.

### Example 12.11

Design a vaporiser to vaporise 5000 kg/h n-butane at 5.84 bar. The minimum temperature of the feed (winter conditions) will be 0°C. Steam is available at 1.70 bar (10 psig).



Tube sheet layout, U-tubes, Example 12.9

### Solution

Only the thermal design and general layout will be done. Select kettle type. Physical properties of n-butane at 5.84 bar:

```
boiling point = 56.1^{\circ}C
latent heat = 326 \text{ kJ/kg}
mean specific heat, liquid = 2.51 \text{ kJ/kg}^{\circ}C
critical pressure, P_c = 38 \text{ bar}
```

Heat loads:

sensible heat (maximum) = 
$$(56.1 - 0)2.51 = 140.8$$
 kJ/kg total heat load =  $(140.8 + 326) \times \frac{5000}{3600} = 648.3$  kW, add 5 per cent for heat losses maximum heat load (duty) =  $1.05 \times 648.3$  =  $681$  kW

From Figure 12.1 assume  $U = 1000 \text{ W/m}^2 ^{\circ}\text{C}$ .

Mean temperature difference; both sides isothermal, steam saturation temperature at  $1.7 \text{ bar} = 115.2^{\circ}\text{C}$ 

$$\Delta T_m = 115.2 - 56.1 = 59.1^{\circ}\text{C}$$
  
Area (outside) required =  $\frac{681 \times 10^3}{1000 \times 59.1} = 11.5 \text{ m}^2$ 

Select 25 mm i.d., 30 mm o.d. plain U-tubes,

Nominal length 4.8 m (one U-tube)

Number of U tubes = 
$$\frac{11.5}{(30 \times 10^{-3})\pi 4.8} = 25$$

Use square pitch arrangement, pitch =  $1.5 \times \text{tube o.d.}$ 

$$= 1.5 \times 30 = 45 \text{ mm}$$

Draw a tube layout diagram, take minimum bend radius

$$1.5 \times \text{tube o.d.} = 45 \text{ mm}$$

Proposed layout gives 26 U-tubes, tube outer limit diameter 420 mm. Boiling coefficient

Use Mostinski's equation:

heat flux, based on estimated area,

$$q = \frac{681}{11.5} = 59.2 \text{ kW/m}^2$$

$$h_{nb} = 0.104(38)^{0.69} (59.2 \times 10^3)^{0.7} \left[ 1.8 \left( \frac{5.84}{38} \right)^{0.17} + 4 \left( \frac{5.84}{38} \right)^{1.2} + 10 \left( \frac{5.84}{38} \right)^{10} \right]$$

$$= 4855 \text{ W/m}^2 {}^{\circ}\text{C}$$
(12.63)

Take steam condensing coefficient as 8000 W/m<sup>2</sup>°C, fouling coefficient 5000 W/m<sup>2</sup>°C; butane fouling coefficient, essentially clean, 10,000 W/m<sup>2</sup>°C.

Tube material will be plain carbon steel,  $k_w = 55 \text{ W/m}^{\circ}\text{C}$ 

$$\frac{1}{U_o} = \frac{1}{4855} + \frac{1}{10,000} + \frac{30 \times 10^{-3} \ln \frac{30}{25}}{2 \times 55} + \frac{30}{25} \left(\frac{1}{5000} + \frac{1}{8000}\right)$$
(12.2)  
$$U_o = \underbrace{1341 \text{ W/m}^2 \circ \text{C}}_{}$$

Close enough to original estimate of 1000 W/m<sup>2</sup>°C for the design to stand.

Myers and Katz (*Chem. Eng. Prog. Sym. Ser.* **49**(5) 107-114) give some data on the boiling of n-butane on banks of tubes. To compare the value estimate with their values an estimate of the boiling film temperature difference is required:

$$= \frac{1341}{4855} \times 59.1 = 16.3^{\circ} \text{C } (29^{\circ}\text{F})$$

Myers data, extrapolated, gives a coefficient of around 3000 Btu/h ft<sup>2</sup> °F at a 29°F temperature difference =  $17,100 \text{ W/m}^2$  °C, so the estimated value of 4855 is certainly on the safe side.

Check maximum allowable heat flux. Use modified Zuber equation.

Surface tension (estimated) =  $9.7 \times 10^{-3}$  N/m

$$\rho_L = 550 \text{ kg/m}^3$$

$$\rho_v = \frac{58}{22.4} \times \frac{273}{(273 + 56)} \times 5.84 = 12.6 \text{ kg/m}^3$$

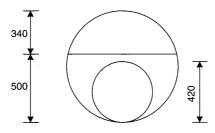
$$N_t = 52$$

For square arrangement  $K_b = 0.44$ 

$$q_c = 0.44 \times 1.5 \times \frac{326 \times 10^3}{\sqrt{52}} [9.7 \times 10^{-3} \times 9.81(550 - 12.6)12.6^2]^{0.25}$$
(12.74)  
= 283,224 W/m<sup>2</sup>  
= 280 kW/m<sup>2</sup>

Applying a factor of 0.7, maximum flux should not exceed  $280 \times 0.7 = 196 \text{ kW/m}^2$ . Actual flux of  $59.2 \text{ kW/m}^2$  is well below maximum allowable.

### Layout


From tube sheet layout  $D_b = 420$  mm.

Take shell diameter as twice bundle diameter

$$D_s = 2 \times 420 = 840$$
 mm.

Take liquid level as 500 mm from base,

freeboard = 
$$840 - 500 = 340$$
 mm, satisfactory.



From sketch, width at liquid level = 0.8 m.

Surface area of liquid =  $0.8 \times 2.4 = 1.9 \text{ m}^2$ .

Vapour velocity at surface = 
$$\frac{5000}{3600} \times \frac{1}{12.6} \times \frac{1}{1.9} = \frac{0.06 \text{ m/s}}{1.900}$$

Maximum allowable velocity

$$\hat{u}_v = 0.2 \left[ \frac{550 - 12.6}{12.6} \right]^{1/2} = \underline{1.3 \text{ m/s}}$$
 (12.75)

so actual velocity is well below maximum allowable velocity. A smaller shell diameter could be considered.

### 12.12. PLATE HEAT EXCHANGERS

### 12.12.1. Gasketed plate heat exchangers

A gasketed plate heat exchanger consists of a stack of closely spaced thin plates clamped together in a frame. A thin gasket seals the plates round their edges. The plates are normally between 0.5 and 3 mm thick and the gap between them 1.5 to 5 mm. Plate surface areas range from 0.03 to 1.5 m<sup>2</sup>, with a plate width:length ratio from 2.0 to 3.0. The size of plate heat exchangers can vary from very small, 0.03 m<sup>2</sup>, to very large,  $1500 \text{ m}^2$ . The maximum flow-rate of fluid is limited to around  $2500 \text{ m}^3/\text{h}$ 

The basic layout and flow arrangement for a gasketed plate heat exchanger is shown in Figure 12.60. Corner ports in the plates direct the flow from plate to plate. The plates are embossed with a pattern of ridges, which increase the rigidity of the plate and improve the heat transfer performance.

Plates are available in a wide range of metals and alloys; including stainless steel, aluminimum and titanium. A variety of gasket materials is also used; see Table 12.8.

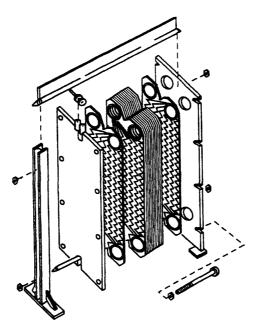



Figure 12.60. Gasketed plate heat exchanger

| Material                    | Approximate temperature limit, °C | Fluids                                       |
|-----------------------------|-----------------------------------|----------------------------------------------|
| Styrene-butane rubber       | 85                                | Aqueous systems                              |
| Acrylonitrile-butane rubber | 140                               | Aqueous system, fats, aliphatic hydrocarbons |
| Ethylene-propylene rubber   | 150                               | Wide range of chemicals                      |
| Fluorocarbon rubber         | 175                               | Oils                                         |
| Compressed asbestos         | 250                               | General resistance to organic chemicals      |

Table 12.8. Typical gasket materials for plated heat exchangers

#### Selection

The advantages and disadvantages of plate heat exchangers, compared with conventional shell and tube exchangers are listed below:

### Advantages

- 1. Plates are attractive when material costs are high.
- 2. Plate heat exchangers are easier to maintain.
- 3. Low approach temps can be used, as low as 1°C, compared with 5 to 10°C for shell and tube exchangers.
- 4. Plate heat exchangers are more flexible, it is easy to add extra plates.
- 5. Plate heat exchangers are more suitable for highly viscous materials.
- 6. The temperature correction factor,  $F_t$ , will normally be higher with plate heat exchangers, as the flow is closer to true counter-current flow.
- 7. Fouling tends to be significantly less in plate heat exchangers; see Table 12.9.

# Disadvantages

- 1. A plate is not a good shape to resist pressure and plate heat exchangers are not suitable for pressures greater than about 30 bar.
- 2. The selection of a suitable gasket is critical; see Table 12.8.
- 3. The maximum operating temperature is limited to about 250 °C, due to the performance of the available gasket materials.

Plate heat exchangers are used extensively in the food and beverage industries, as they can be readily taken apart for cleaning and inspection. Their use in the chemical industry will depend on the relative cost for the particular application compared with a conventional shell and tube exchanger; see Parker (1964) and Trom (1990).

Table 12.9. Fouling factors (coefficients), typical values for plate heat exchangers

| <del>-</del>            | · • • •                           | -                            |  |
|-------------------------|-----------------------------------|------------------------------|--|
| Fluid                   | Coefficient (W/m <sup>2</sup> °C) | Factor (m <sup>2</sup> °C/W) |  |
| Process water           | 30,000                            | 0.00003                      |  |
| Towns water (soft)      | 15,000                            | 0.00007                      |  |
| Towns water (hard)      | 6000                              | 0.00017                      |  |
| Cooling water (treated) | 8000                              | 0.00012                      |  |
| Sea water               | 6000                              | 0.00017                      |  |
| Lubricating oil         | 6000                              | 0.00017                      |  |
| Light organics          | 10,000                            | 0.0001                       |  |
| Process fluids          | 5000-20,000                       | 0.0002 - 0.00005             |  |
|                         |                                   |                              |  |

## Plate heat exchanger design

It is not possible to give exact design methods for plate heat exchangers. They are proprietary designs, and will normally be specified in consultation with the manufacturers. Information on the performance of the various patterns of plate used is not generally available. Emerson (1967) gives performance data for some proprietary designs, and Kumar (1984) and Bond (1980) have published design data for APV chevron patterned plates.

The approximate method given below can be used to size an exchanger for comparison with a shell and tube exchanger, and to check performance of an existing exchanger for new duties. More detailed design methods are given by Hewitt *et al.* (1994) and Cooper and Usher (1983).

### Procedure

The design procedure is similar to that for shell and tube exchangers.

- 1. Calculate duty, the rate of heat transfer required.
- 2. If the specification is incomplete, determine the unknown fluid temperature or fluid flow-rate from a heat balance.
- 3. Calculate the log mean temperature difference,  $\Delta T_{LM}$ .
- 4. Determine the log mean temperature correction factor,  $F_t$ ; see method given below.
- 5. Calculate the corrected mean temperature difference  $\Delta T_m = F_t \times \Delta T_{LM}$ .
- 6. Estimate the overall heat transfer coefficient; see Table 12.1.
- 7. Calculate the surface area required; equation 12.1.
- 8. Determine the number of plates required = total surface area/area of one plate.
- 9. Decide the flow arrangement and number of passes.
- Calculate the film heat transfer coefficients for each stream; see method given below.
- 11. Calculate the overall coefficient, allowing for fouling factors.
- 12. Compare the calculated with the assumed overall coefficient. If satisfactory, say -0% to +10% error, proceed. If unsatisfactory return to step 8 and increase or decrease the number of plates.
- 13. Check the pressure drop for each stream; see method given below.

This design procedure is illustrated in Example 12.12.

# Flow arrangements

The stream flows can be arranged in series or parallel, or a combination of series and parallel, see Figure 12.61. Each stream can be sub-divided into a number of passes; analogous to the passes used in shell and tube exchangers.

# Estimation of the temperature correction factor

For plate heat exchangers it is convenient to express the log mean temperature difference correction factor,  $F_t$ , as a function of the number of transfer units, NTU, and the flow arrangement (number of passes); see Figure 12.62. The correction will normally be higher for a plate heat exchanger than for a shell and tube exchanger operating with the same

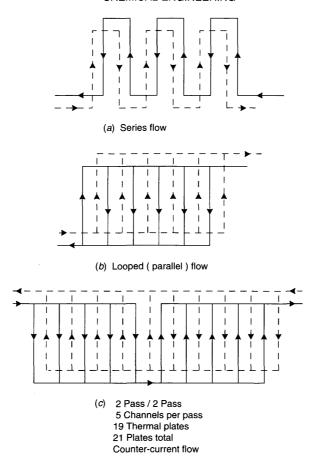



Figure 12.61. Plate heat-exchanger flow arrangements

temperatures. For rough sizing purposes, the factor can be taken as 0.95 for series flow. The number of transfer units is given by:

$$NTU = (t_0 - t_i)/\Delta T_{LM}$$

where

 $t_i$  = stream inlet temperature, °C,

 $t_0 = \text{stream outlet temperature}, ^{\circ}\text{C},$ 

 $\Delta T_{LM} = \log \text{ mean temperature difference,}^{\circ}\text{C.}$ 

Typically, the *NTU* will range from 0.5 to 4.0, and for most applications will lie between 2.0 to 3.0.

# Heat transfer coefficient

The equation for forced-convective heat transfer in conduits can be used for plate heat exchangers; equation 12.10.

The values for the constant C and the indices a,b,c will depend on the particular type of plate being used. Typical values for turbulent flow are given in the equation below,

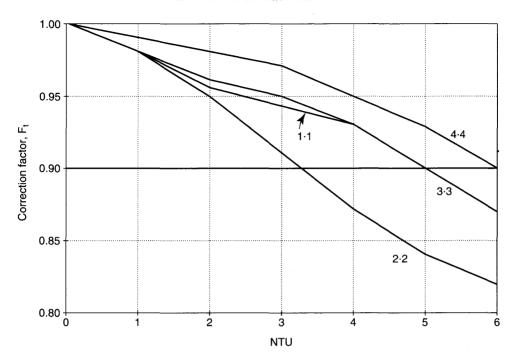



Figure 12.62. Log mean temperature correction factor for plate heat exchangers (adapted from Raju and Chand (1980))

which can be used to make a preliminary estimate of the area required.

$$\frac{h_p d_e}{k_f} = 0.26 Re^{0.65} Pr^{0.4} (\mu/\mu_w)^{0.14}$$
 (12.77)

where  $h_p$  = plate film coefficient,

 $Re = \text{Reynold number} = \frac{G_p d_e}{\mu} = \frac{\rho u_p d_e}{\mu}$ 

 $G_P = \text{mass flow rate per unit cross-sectional area} = w/A_f, \text{ kgm}^{-2}\text{s}^{-1},$ 

w = mass flow rate per channel, kg/s,

Af =cross-sectional area for flow,  $m^2$ ,

 $u_p$  = channel velocity, m/s,

 $d_e$  = equivalent (hydraulic) diameter, taken as twice the gap between the plates, m.

The corrugations on the plates will increase the projected plate area, and reduce the effective gap between the plates. For rough sizing, where the actual plate design is not known, this increase can be neglected. The channel width equals the plate pitch minus the plate thickness.

There is no heat transfer across the end plates, so the number of effective plates will be the total number of plates less two.

## Pressure drop

The plate pressure drop can be estimated using a form of the equation for flow in a conduit; equation 12.18.

$$\Delta P_{p} = 8j_{f}(L_{p}/d_{e})\frac{\rho u_{p}^{2}}{2}$$
 (12.78)

where  $L_P$  = the path length and  $u_p = G_p/\rho$ .

The value of the friction factor,  $j_f$ , will depend on the design of plate used. For preliminary calculations the following relationship can be used for turbulent flow:

$$j_f = 0.6 Re^{-0.3}$$

The transition from laminar to turbulent flow will normally occur at a Reynolds number of 100 to 400, depending on the plate design. With some designs, turbulence can be achieved at very low Reynolds numbers, which makes plate heat exchangers very suitable for use with viscous fluids.

The pressure drop due the contraction and expansion losses through the ports in the plates must be added to the friction loss. Kumar (1984) suggests adding 1.3 velocity heads per pass, based on the velocity through the ports.

$$\Delta P_{pt} = 1.3 \frac{(\rho u_{pt}^2)}{2} N_p \tag{12.79}$$

where  $u_{pt}$  = the velocity through the ports  $w/\rho A_p$ , m/s,

w = mass flow through the ports, kg/s,

 $A_p$  = area of the port =  $(\pi d_{pt}^2)/4$ , m<sup>2</sup>,

 $d_{pt}$  = port diameter, m,

 $N_p$  = number of passes.

# Example 12.12

Investigate the use of a gasketed plate heat exchanger for the duty set out in Example 12.1: cooling methanol using brackish water as the coolant. Titanium plates are to be specified, to resist corrosion by the saline water.

# Summary of example 12.1

Cool 100,000 kg/h of methanol from 95°C to 40°C, duty 4340 kW. Cooling water inlet temperature 25°C and outlet temperature 40°C. Flow-rates: methanol 27.8 kg/s, water 68.9 kg/s.

| Physical properties:            | Methanol | Water |
|---------------------------------|----------|-------|
| Density, kg/m <sup>3</sup>      | 750      | 995   |
| Viscosity, mN m <sup>-2</sup> s | 3.4      | 0.8   |
| Prandtl number                  | 5.1      | 5.7   |

Logarithmic mean temperature difference 31°C.

#### Solution

NTU, based on the maximum temperature difference

$$=\frac{95-40}{31}=1.8$$

Try a 1:1 pass arrangement.

From Figure 12.62,  $F_t = 0.96$ 

From Table 12.2 take the overall coefficient, light organic - water, to be 2000  $\text{Wm}^{-2\circ}\text{C}^{-1}$ .

Then, area required = 
$$\frac{4340 \times 10^3}{2000 \times 0.96 \times 31} = 72.92 \text{ m}^2$$

Select an effective plate area of 0.75 m<sup>2</sup>, effective length 1.5 m and width 0.5 m; these are typical plate dimensions. The actual plate size will be larger to accommodate the gasket area and ports.

Number of plates = total heat transfer area / effective area of one plate

$$= 72.92/0.75 = 97$$

No need to adjust this, 97 will give an even number of channels per pass, allowing for an end plate.

Number of channels per pass = (97 - 1)/2 = 48

Take plate spacing as 3 mm, a typical value, then:

channel cross-sectional area =  $3 \times 10^{-3} \times 0.5 = 0.0015 \text{ m}^2$ 

and hydraulic mean diameter =  $2 \times 3 \times 10^{-3} = 6 \times 10^{-3}$  m

#### Methanol

Channel velocity = 
$$\frac{27.8}{750} \times \frac{1}{0.0015} \times \frac{1}{48} = 0.51 \text{ m/s}$$
  

$$Re = \frac{\rho u_p d_e}{\mu} = \frac{750 \times 0.51 \times 6 \times 10^{-3}}{0.34 \times 10^{-3}} = 6750$$

$$Nu = 0.26(6750)^{0.65} \times 5.1^{0.4} = 153.8$$

$$h_p = 153.8(0.19/6 \times 10^{-3}) = 4870 \text{ Wm}^{-2\circ}\text{C}^{-1}$$

### Brackish water

Channel velocity = 
$$\frac{68.9}{995} \times \frac{1}{0.0015} \times \frac{1}{48} = 0.96 \text{ m/s}$$

$$Re = \frac{955 \times 0.96 \times 6 \times 10^{-3}}{0.8 \times 10^{-3}} = 6876$$

$$Nu = 0.26(6876)^{0.65} \times 5.7^{0.4} = 162.8$$

$$h_p = 162.8(0.59/6 \times 10^{-3}) = 16,009 \text{ Wm}^{-2^{\circ}}\text{C}^{-1}$$

### Overall coefficient

From Table 12.9, take the fouling factors (coefficients) as: brackish water (seawater)  $6000~\text{Wm}^{-2\circ}\text{C}^{-1}$  and methanol (light organic)  $10,000~\text{Wm}^{-2\circ}\text{C}^{-1}$ .

Take the plate thickness as 0.75 mm. Thermal conductivity of titanium 21 Wm<sup>-1</sup>°C<sup>-1</sup>.

$$\frac{1}{U} = \frac{1}{4870} + \frac{1}{10,000} + \frac{0.75 \times 10^{-3}}{21} + \frac{1}{16,009} + \frac{1}{6000}$$

$$U = \underline{1754} \,\text{Wm}^{-2\circ}\text{C}^{-1}, \text{ too low}$$

Increase the number of channels per pass to 60; giving  $(2 \times 60) + 1 = 121$  plates. Then, methanol channel velocity  $= 0.51 \times (48/60) = 0.41$  m/s, and Re = 5400. Cooling water channel velocity  $= 0.96 \times (48/60) = 0.77$  m/s, and Re = 5501. Giving,  $h_p = 4215$  Wm<sup>-2°</sup>C<sup>-1</sup> for methanol, and 13,846 Wm<sup>-2°</sup>C<sup>-1</sup> for water. Which gives an overall coefficient of  $\underline{1634}$  Wm<sup>-2°</sup>C<sup>-1</sup>.

Overall coefficient required  $2000 \times 48/60 = \underline{\underline{1600}}$  Wm<sup>-2°</sup>C<sup>-1</sup>, so 60 plates per pass should be satisfactory.

### Pressure drops

### Methanol

$$J_f = 0.60(5400)^{-0.3} = 0.046$$

Path length = plate length  $\times$  number of passes = 1.5  $\times$  1 = 1.5 m.

$$\Delta P_p = 8 \times 0.046 \left( \frac{1.5}{6 \times 10^{-3}} \right) \times 750 \times \frac{0.41^2}{2} = 5799 \text{ N/m}^2$$
 (12.78)

Port pressure loss, take port diameter as 100 mm, area =  $0.00785 \text{ m}^2$ . Velocity through port = (27.8/750)/0.00785 = 4.72 m/s.

$$\Delta P_{pt} = 1.3 \times \frac{750 \times 4.72^2}{2} = 10,860 \text{ N/m}^2$$
 (12.79)

Total pressure drop =  $5799 + 10,860 = 16,659 \text{ N/m}^2$ , 0.16 bar.

### Water

$$J_f = 0.6(5501)^{-0.3} = 0.045$$

Path length = plate length  $\times$  number of passes = 1.5  $\times$  1 = 1.5 m.

$$\Delta P_p = 8 \times 0.045 \times \left(\frac{1.5}{6 \times 10^{-3}}\right) \times 995 \times \frac{0.77^2}{2} = 26,547 \text{ N/m}^2$$
 (12.78)

Velocity through port = (68.9/995)/0.0078 = 8.88 m/s (rather high)

$$\Delta P_{pt} = 1.3 \times \frac{995 \times 8.88}{2} = 50,999 \text{ N/m}^2$$
 (12.79)

Total pressure drop = 26,547 + 50,999 = 77,546 N/m<sup>2</sup>, 0.78 bar

Could increase the port diameter to reduce the pressure drop.

The trial design should be satisfactory, so a plate heat exchanger could be considered for this duty.

### 12.12.2. Welded plate

Welded plate heat exchangers use plates similar to those in gasketed plate exchangers but the plate edges are sealed by welding. This increases the pressure and temperature rating to up to 80 bar and temperatures in excess of 500°C. They retain the advantages of plate heat exchangers (compact size and good rates of heat transfer) whilst giving security against leakage. An obvious disadvantage is that the exchangers cannot be dismantled for cleaning. So, their use is restricted to specialised applications where fouling is not a problem. The plates are fabricated in a variety of materials.

A combination of gasketed and welded plate construction is also used. An aggressive process fluid flowing between welded plates and a benign process stream, or service stream, between gasketed plates.

### 12.12.3. Plate-fin

Plate-fin exchangers consist essentially of plates separated by corrugated sheets, which form the fins. They are made up in a block and are often referred to as matrix exchangers; see Figure 12.63. They are usually constructed of aluminium and joined and sealed by brazing. The main application of plate-fin exchangers has been in the cryogenics industries, such as air separation plants, where large heat transfer surface areas are needed. They are now finding wider applications in the chemical processes industry, where large surface area, compact, exchangers are required. Their compact size and low weight have lead to some use in off-shore applications. The brazed aluminium construction is limited to pressures up to around 60 bar and temperatures up to 150°C. The units cannot be mechanically cleaned, so their use is restricted to clean process and service steams. The

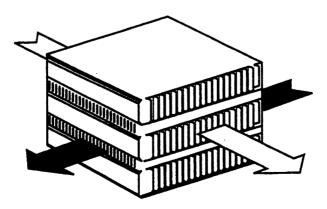



Figure 12.63. Plate-fin exchanger

construction and design of plate-fin exchangers and their applications are discussed by Saunders (1988) and Burley (1991), and their use in cryogenic service by Lowe (1987).

## 12.12.4. Spiral heat exchangers

A spiral heat exchanger can be considered as a plate heat exchanger in which the plates are formed into a spiral. The fluids flow through the channels formed between the plates. The exchanger is made up from long sheets, between 150 to 1800 mm wide, formed into a pair of concentric spiral channels. The channels are closed by gasketed end-plates bolted to an outer case. Inlet and outlet nozzels are fitted to the case and connect to the channels, see Figure 12.64. The gap between the sheets varies between 4 to 20 mm; depending on the size of the exchanger and the application. They can be fabricated in any material that can be cold-worked and welded.

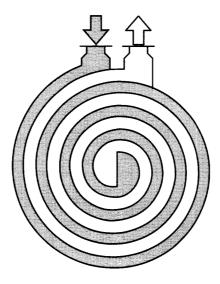



Figure 12.64. Spiral heat exchanger

Spiral heat exchangers are compact units: a unit with around 250  $\text{m}^2$  area occupying a volume of approximately 10  $\text{m}^3$ . The maximum operating pressure is limited to 20 bar and the temperature to 400°C.

For a given duty, the pressure drop over a spiral heat exchanger will usually be lower than that for the equivalent shell-and-tube exchanger. Spiral heat exchangers give true counter-current flow and can be used where the temperature correction factor  $F_t$  for a shell-and-tube exchanger would be too low; see Section 12.6. Because they are easily cleaned and the turbulence in the channels is high, spiral heat exchangers can be used for very dirty process fluids and slurries.

The correlations for flow in conduits can be used to estimate the heat transfer coefficient and pressure drop in the channels; using the hydraulic mean diameter as the characteristic dimension.

The design of spiral heat exchangers is discussed by Minton (1970)

### 12.13. DIRECT-CONTACT HEAT EXCHANGERS

In direct-contact heat exchange the hot and cold streams are brought into contact without any separating wall, and high rates of heat transfer are achieved.

Applications include: reactor off-gas quenching, vacuum condensers, cooler-condensers, desuperheating and humidification. Water-cooling towers are a particular example of direct-contact heat exchange. In direct-contact cooler-condensers the condensed liquid is frequently used as the coolant, Figure 12.65.

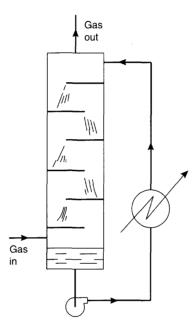



Figure 12.65. Typical direct-contact cooler (baffle plates)

Direct-contact heat exchangers should be considered whenever the process stream and coolant are compatible. The equipment used is basically simple and cheap, and is suitable for use with heavily fouling fluids and with liquids containing solids; spray chambers, spray columns, and plate and packed columns are used.

There is no general design method for direct contact exchangers. Most applications will involve the transfer of latent heat as well as sensible heat, and the process is one of simultaneous heat and mass transfer. When the approach to thermal equilibrium is rapid, as it will be in many applications, the size of the contacting vessel is not critical and the design can be based on experience with similar processes. For other situations the designer must work from first principles, setting up the differential equations for mass and heat transfer, and using judgement in making the simplifications necessary to achieve a solution. The design procedures used are analogous to those for gas absorption and distillation. The rates of heat transfer will be high; with coefficients for packed columns typically in the range 2000 to 20,000 W/m<sup>3</sup>°C (i.e. per cubic meter of packing).

The design and application of direct-contact heat exchangers is discussed by Fair (1961, 1972a, 1972b), and Chen-Chia and Fair (1989), they give practical design methods and data for a range of applications.

The design of water-cooling towers, and humidification, is covered in Volume 1, Chapter 13. The same basic principles will apply to the design of other direct-contact exchangers.

### 12.14. FINNED TUBES

Fins are used to increase the effective surface area of heat-exchanger tubing. Many different types of fin have been developed, but the plain transverse fin shown in Figure 12.66 is the most commonly used type for process heat exchangers. Typical fin dimensions are: pitch 2.0 to 4.0 mm, height 12 to 16 mm; ratio of fin area to bare tube area 15:1 to 20:1.

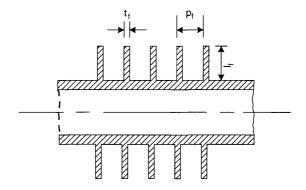



Figure 12.66. Finned tube

Finned tubes are used when the heat-transfer coefficient on the outside of the tube is appreciably lower than that on the inside; as in heat transfer from a liquid to a gas, such as in air-cooled heat exchangers.

The fin surface area will not be as effective as the bare tube surface, as the heat has to be conducted along the fin. This is allowed for in design by the use of a fin effectiveness, or fin efficiency, factor. The basic equations describing heat transfer from a fin are derived in Volume 1, Chapter 9; see also Kern (1950). The fin effectiveness is a function of the fin dimensions and the thermal conductivity of the fin material. Fins are therefore usually made from metals with a high thermal conductivity; for copper and aluminium the effectiveness will typically be between 0.9 to 0.95.

When using finned tubes, the coefficients for the outside of the tube in equation 12.2 are replaced by a term involving fin area and effectiveness:

$$\frac{1}{h_o} + \frac{1}{h_{od}} = \frac{1}{E_f} \left( \frac{1}{h_f} + \frac{1}{h_{df}} \right) \frac{A_o}{A_f}$$
 (12.80)

where  $h_f$  = heat-transfer coefficient based on the fin area,

 $h_{df}$  = fouling coefficient based on the fin area,

 $A_o$  = outside area of the bare tube,

 $A_f = \text{fin area},$ 

 $E_f = \text{fin effectiveness}.$ 

It is not possible to give a general correlation for the coefficient  $h_f$  covering all types of fin and fin dimensions. Design data should be obtained from the tube manufacturers for the particular type of tube to be used. Some information is given in Volume 1, Chapter 9. For banks of tubes in cross flow, with plain transverse fins, the correlation given by Briggs and Young (1963) can be used to make an approximate estimate of the fin coefficient.

$$Nu = 0.134Re^{0.681}Pr^{0.33} \left[\frac{p_f - t_f}{l_f}\right]^{0.2} \left[\frac{p_f}{t_f}\right]^{0.1134}$$
 (12.81)

where  $p_f = \text{fin pitch}$ ,

 $l_f = \text{fin height},$ 

 $t_f = \text{fin thickness.}$ 

The Reynolds number is evaluated for the bare tube (i.e. assuming that no fins exist).

Kern and Kraus (1972) give full details of the use of finned tubes in process heat exchangers design and design methods.

### Low fin tubes

Tubes with low transverse fins, about 1 mm high, can be used with advantage as replacements for plain tubes in many applications. The fins are formed by rolling, and the tube outside diameters are the same as those for standard plain tubes. Details are given in the manufacturer's data books, Wolverine (1959); see also Webber (1960).

### 12.15. DOUBLE-PIPE HEAT EXCHANGERS

One of the simplest and cheapest types of heat exchanger is the concentric pipe arrangement shown in Figure 12.67. These can be made up from standard fittings, and are useful where only a small heat-transfer area is required. Several units can be connected in series to extend their capacity.

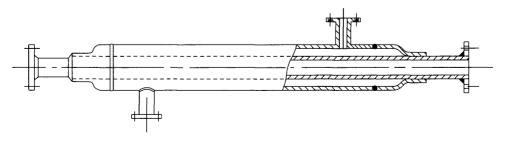



Figure 12.67. Double-pipe exchanger (constructed for weld fittings)

The correlation for forced convective heat transfer in conduits (equation 12.10) can be used to predict the heat transfer coefficient in the annulus, using the appropriate equivalent diameter:

$$d_e = \frac{4 \times \text{cross-sectional area}}{\text{wetted perimeter}} = \frac{4(d_2^2 - d_1^2)\frac{\pi}{4}}{\pi(d_2 + d_1)} = d_2 - d_1$$

where  $d_2$  is the inside diameter of the outer pipe and  $d_1$  the outside diameter of the inner pipe.

Some designs of double-pipe exchanger use inner tubes fitted with longitudinal fins.

### 12.16. AIR-COOLED EXCHANGERS

Air-cooled exchangers should be considered when cooling water is in short supply or expensive. They can also be competitive with water-cooled units even when water is plentiful. Frank (1978) suggests that in moderate climates air cooling will usually be the best choice for minimum process temperatures above 65°C, and water cooling for minimum processes temperatures below 50°C. Between these temperatures a detailed economic analysis would be necessary to decide the best coolant. Air-cooled exchangers are used for cooling and condensing.

Air-cooled exchangers consist of banks of finned tubes over which air is blown or drawn by fans mounted below or above the tubes (forced or induced draft). Typical units are shown in Figure 12.68. Air-cooled exchangers are packaged units, and would normally be selected and specified in consultation with the manufacturers. Some typical overall coefficients are given in Table 12.1. These can be used to make an approximate estimate of the area required for a given duty. The equation for finned tubes given in Section 12.14 can also be used.

The design and application of air-cooled exchangers is discussed by Ruben (1960), Lerner (1972), Brown (1978) and Mukherjee (1997). Design procedures are also given in the books by Kern (1950) and Kern and Kraus (1972). Lerner and Brown give typical values for the overall coefficient for a range of applications and provide methods for the preliminary sizing of air-cooled heat exchangers.

Details of the construction features of air-cooled exchangers are given by Ludwig (1965). The construction features of air-cooled heat exchangers are covered by the American Petroleum Institute standard, API 661.

# 12.17. FIRED HEATERS (FURNACES AND BOILERS)

When high temperatures and high flow rates are required, fired-heaters are used. Fired heaters are directly heated by the products of combusion of a fuel. The capacity of fired heaters ranges from 3 to 100 MW.

Typical applications of fired heaters are:

- 1. Process feed-stream heaters; such as the feed heaters for refinery crude columns (pipe stills); in which up to 60 per cent of the feed may be vaporised.
- 2. Reboilers for columns, using relatively small size direct-fired units.

- 3. Direct-fired reactors; for example, the pyrolysis of dichloroethane to form vinyl chloride.
- 4. Reformers for hydrogen production, giving outlet temperatures of 800-900°C.
- 5. Steam boilers.

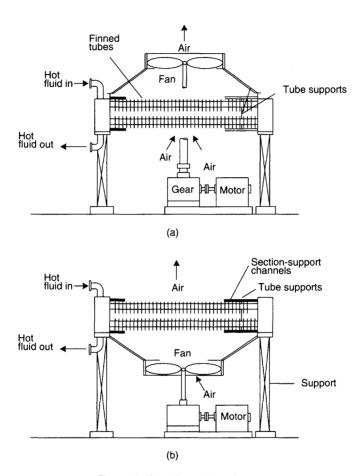



Figure 12.68. Air-cooled exchangers

#### 12.17.1. Basic construction

Many different designs and layouts are used, depending on the application, see Bergman (1979a).

The basic construction consists of a rectangular or cylindrical steel chamber, lined with refractory bricks. Tubes are arranged around the wall, in either horizontal or vertical banks. The fluid to be heated flows through the tubes. Typical layouts are shown in Figure 12.69a, b and c. A more detailed diagram of a pyrolysis furnace is given in Figure 12.70.

Heat transfer to the tubes on the furnace walls is predominantly by radiation. In modern designs this radiant section is surmounted by a smaller section in which the combustion

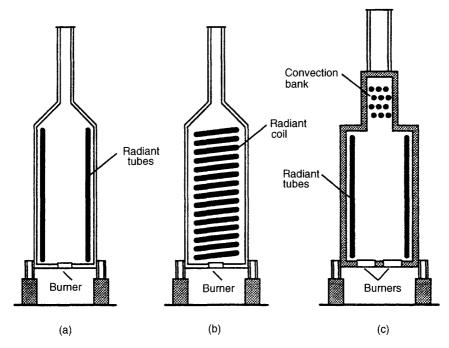



Figure 12.69. Fired heaters. (a) Vertical-cylindrical, all radiant (b) Vertical-cylindrical, helical coil (c) Vertical-cylindrical with convection section

gases flow over banks of tubes and transfer heat by convection. Extended surface tubes, with fins or pins, are used in the convection section to improve the heat transfer from the combustion gases. Plain tubes are used in the bottom rows of the convection section to act as a heat shield from the hot gases in the radiant section. Heat transfer in the shield section will be by both radiation and convection. The tube sizes used will normally be between 75 and 150 mm diameter. The tube size and number of passes used depending on the application and the process-fluid flow-rate. Typical tube velocities will be from 1 to 2 m/s for heaters, with lower rates used for reactors. Carbon steel is used for low temperature duties; stainless steel and special alloy steels for elevated temperatures. For high temperatures, a material that resists creep must be used.

The burners are positioned at base or sides of radiant section. Gaseous and liquid fuels are used. The combustion air may be preheated in tubes in the convection section.

# 12.17.2. Design

Computer programs for the design of fired heaters are available from commercial organisations; such as HTFS and HTRI, see Section 12.1. Manual calculation methods, suitable for the preliminary design of fired heaters, are given by Kern (1950), Wimpress (1978) and Evans (1980). A brief review of the factors to be considered is given in the following sections.

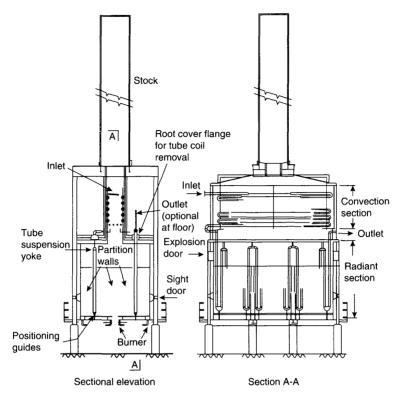



Figure 12.70. (Foster Wheeler) Multi-zoned pyrolysis furnace

#### 12.17.3. Heat transfer

#### Radiant section

Between 50 to 70 per cent of the total heat is transferred in the radiant section.

The gas temperature will depend on the fuel used and the amount of excess air. For gaseous fuels around 20% excess air is normally used, and 25% for liquid fuels.

Radiant heat transfer from a surface is governed by the Stephan-Boltzman equation, see Volume 1, Chapter 9.

$$q_r = \sigma T^4 \tag{12.82}$$

where  $q_r$  = radiant heat flux, W/m<sup>2</sup>

 $\sigma = \text{Stephen-Boltzman constant, } 5.67 \times 10^{-8} \; \text{W} \text{m}^{-2} \, \text{K}^{-4}$ 

T =temperature of the surface, K.

For the exchange of heat between the combustion gases and the hot tubes the equation can be written as:

$$Q_r = \sigma(\alpha A_{cp}) F(T_g^4 - T_t^4)$$
(12.83)

where  $Q_r$  = radiant heat transfer rate, W

 $A_{cp}$  = the "cold-plane" area of the tubes

= number of tubes  $\times$  the exposed length  $\times$  tube pitch

 $\alpha$  = the absorption efficiency factor

F = the radiation exchange factor

 $T_g$  = temperature of the hot gases, K

 $T_t$  = tube surface temperature, K

Part of the radiation from the hot combustion gases will strike the tubes and be absorbed, and part will pass through the spaces between the tubes and be radiated back into the furnace. If the tubes are in front of the wall, some of the radiation from the wall will also be absorbed by the tubes. This complex situation is allowed for by calculating what is known as the cold plane area of the tubes  $A_{cp}$ , and then applying the absorption efficiency factor  $\alpha$  to allow for the fact that the tube area will not be as effective as a plane area. The absorption efficiency factor is a function of the tube arrangement and will vary from around 0.4 for widely spaced tubes, to 1.0 for the theoretical situation when the tubes are touching. It will be around 0.7 to 0.8 when the pitch equals the tube diameter. Values for  $\alpha$  are available in handbooks for a range of tube arrangements; see Perry and Green (1984), and Wimpress (1978).

The radiation exchange factor F depends on the arrangement of the surfaces and their emissivity and absorptivity. Combustion gases are poor radiators, because only the carbon dioxide and water vapour, about 20 to 25 per cent of the total, will emit radiation in the thermal spectrum, see Volume 1, Chapter 9. For a fired heater the exchange factor will depend on the partial pressure and emissivity of these gases, and the layout of the heater. The partial pressure is dependent on the kind of fuel used, liquid or gas, and the amount of excess air. The gas emissivity is a function of temperature. Methods for estimating the exchange factor for typical furnace designs are given in the handbooks; see Perry and Green (1984), and Wimpress (1978).

The heat flux to the tubes in the radiant section will lie between 20 to 40 kW/m<sup>2</sup>, for most applications. A value of 30 kW/m<sup>2</sup> can be used to make a rough estimate of the tube area needed in this section.

A small amount of heat will be transferred to the tubes by convection in the radiant section, but as the superficial velocity of the gases will be low, the heat transfer coefficient will be low, around  $10~\text{Wm}^{-2}\,^{\circ}\text{C}^{-1}$ .

#### Convection section

The combustion gases flow across the tube banks in the convection section and the correlations for cross-flow in tube banks can be used to estimate the heat transfer coefficient. The gas side coefficient will be low, and where extended surfaces are used an allowance must be made for the fin efficiency. Procedures are given in the tube vendors literature, and in handbooks, see Section 12.14, and Bergman (1978b).

The overall coefficient will depend on the gas velocity and temperature, and the tube size. Typical values range from 20 to 50  $Wm^{-2} \circ C^{-1}$ .

The lower tubes in the shield bank in the convection section will receive heat by radiation from the radiant section. This can be allowed for by including the area of the lower row of tubes with the tubes in the radiant section.

### 12.17.4. Pressure drop

Most of the pressure drop will occur in the convection section. The procedures for estimating the pressure drop across banks of tubes can be used to estimate the pressure drop in this section, see Section 12.9.4 and Volume 1, Chapter 9.

The pressure drop in the radiant section will be small compared with that across the convection section and can usually be neglected.

### 12.17.5. Process-side heat transfer and pressure drop

The tube inside heat transfer coefficients and pressure drop can be calculated using the conventional methods for flow inside tubes; see Section 12.8, and Volume 1, Chapter 9. If the unit is being used as a vaporiser the existence of two-phase flow in some of the tubes must be taken into account. Bergman (1978b) gives a quick method for estimating two-phase pressure drop in the tubes of fired heaters.

Typical approach temperatures, flue gas to inlet process fluid, are around 100°C.

## 12.17.6. Stack design

Most fired heaters operate with natural draft, and the stack height must be sufficient to achieve the flow of combustion air required and to remove the combustion products.

It is normal practice to operate with a slight vacuum throughout the heater, so that air will leak in through sight-boxes and dampers, rather than combustion products leak out. Typically, the aim would be to maintain a vacuum of around 2 mm water gauge just below the convection section.

The stack height required will depend on the temperature of the combustion gases leaving the convection section and the elevation of the site above sea level. The draft arises from the difference in density of the hot gases and the surrounding air.

The draft in millimetres of water (mm H<sub>2</sub>O) can be estimated using the equation:

$$P_d = 0.35(L_s)(p') \left[ \frac{1}{T_a} - \frac{1}{T_{ga}} \right]$$
 (12.84)

where  $L_s$  = stack height, m

 $p' = \text{atmospheric pressure, millibar } (\text{N/m}^2 \times 10^{-2})$ 

 $T_a$  = ambient temperature, K

 $T_{ga}$  = average flue-gas temperature, K

Because of heat losses, the temperature at the top of the stack will be around 80°C below the inlet temperature.

The frictional pressure loss in the stack must be added to the loss in the heater when estimating the stack draft required. This can be calculated using the usual methods for pressure loss in circular conduits, see Section 12.8, and Volume 1, Chapter 3. The mass velocity in the stack will be around 1.5 to 2 kg/m<sup>2</sup>. These values can be used to determine the cross-section needed.

An approximate estimate of the pressure losses in the convection section can be made by multiplying the velocity head  $(u^2/2g)$  by factors for each restriction; typical values are given below:

- 0.2-0.5 for each row of plain tubes
- 1.0-2.0 for each row of finned tubes
- 0.5 for the stack entrance
- 1.0 for the stack exit
- 1.5 for the stack damper

## 12.17.7. Thermal efficiency

Modern fired heaters operate at thermal efficiencies of between 80 to 90 per cent, depending on the fuel and the excess air requirement. In some applications additional excess air may be used to reduce the flame temperature, to avoid overheating of the tubes.

Where the inlet temperature of the process fluid is such that the outlet temperature from the convection section would be excessive, giving low thermal efficiency, this excess heat can be used to preheat the air to the furnace. Tubes would be installed above the process fluid section in the convection section. Forced draft operation would be needed to drive the air flow through the preheat section.

Heat losses from the heater casing are normally between 1.5 to 2.5 per cent of the heat input.

### 12.18. HEAT TRANSFER TO VESSELS

The simplest way to transfer heat to a process or storage vessel is to fit an external jacket, or an internal coil.

#### 12.18.1. Jacketed vessels

# Conventional jackets

The most commonly used type jacket is that shown in Figure 12.71. It consists of an outer cylinder which surrounds part of the vessel. The heating or cooling medium circulates in the annular space between the jacket and vessel walls and the heat is transferred through the wall of the vessel. Circulation baffles are usually installed in the annular space to increase the velocity of the liquid flowing through the jacket and improve the heat transfer coefficient, see Figure 12.72a. The same effect can be obtained by introducing the fluid through a series of nozzles spaced down the jacket. The momentum of the jets issuing from the nozzles sets up a swirling motion in the jacket liquid; Figure 12.72d.

The spacing between the jacket and vessel wall will depend on the size of the vessel, but will typically range from 50 mm for small vessels to 300 mm for large vessels.

# Half-pipe jackets

Half-pipe jackets are formed by welding sections of pipe, cut in half along the longitudinal axis, to the vessel wall. The pipe is usually wound round the vessel in a helix; Figure 12.72c.

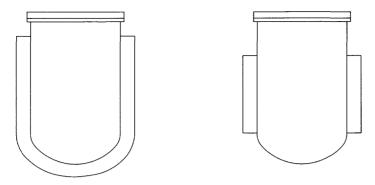



Figure 12.71. Jacketed vessel

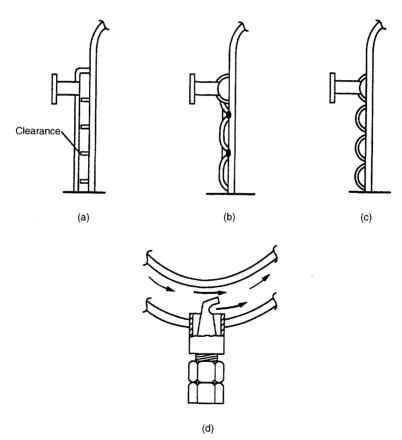



Figure 12.72. Jacketed vessels. (a) Spirally baffled jacket (b) Dimple jacket (c) Half-pipe jacket (d) Agitation nozzle

The pitch of the coils and the area covered can be selected to provide the heat transfer area required. Standard pipe sizes are used; ranging from 60 to 120 mm outside diameter. The half-pipe construction makes a strong jacket capable of withstanding pressure better than the conventional jacket design.

## Dimpled jackets

Dimpled jackets are similar to the conventional jackets but are constructed of thinner plates. The jacket is strengthened by a regular pattern of hemispherical dimples pressed into the plate and welded to the vessel wall, Figure 12.72b.

### Jacket selection

Factors to consider when selecting the type of jacket to use are listed below:

 Cost: in terms of cost the designs can be ranked, from cheapest to most expensive, as:

simple, no baffles agitation nozzles spiral baffle dimple jacket half-pipe jacket

- 2. Heat transfer rate required: select a spirally baffled or half-pipe jacket if high rates are required.
- 3. Pressure: as a rough guide, the pressure rating of the designs can be taken as: jackets, up to 10 bar dimpled jackets, up to 20 bar half-pipe, up to 70 bar.
- So, half-pipe jaclets would be used for high pressure.

# Jacket heat transfer and pressure drop

The heat transfer coefficient to the vessel wall can be estimated using the correlations for forced convection in conduits, such as equation 12.11. The fluid velocity and the path length can be calculated from the geometry of the jacket arrangement. The hydraulic mean diameter (equivalent diameter,  $d_e$ ) of the channel or half-pipe should be used as the characteristic dimension in the Reynolds and Nusselt numbers; see Section 12.8.1.

In dimpled jackets a velocity of 0.6 m can be used to estimate the heat transfer coefficient. A method for calculating the heat transfer coefficient for dimpled jackets is given by Markovitz (1971).

The coefficients for jackets using agitation nozzles will be similar to that given by using baffles. A method for calculating the heat transfer coefficient using agitation nozzles is given by Bolliger (1982).

To increase heat transfer rates, the velocity through a jacket can be increased by recirculating the cooling or heating liquid.

For simple jackets without baffles, heat transfer will be mainly by natural convection and the heat transfer coefficient will range from 200 to 400  $Wm^{-2\circ}C^{-1}$ .

#### 12.18.2. Internal coils

The simplest and cheapest form of heat transfer surface for installation inside a vessel is a helical coil; see Figure 12.73. The pitch and diameter of the coil can be made to suit the

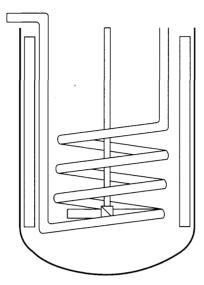



Figure 12.73. Internal coils

application and the area required. The diameter of the pipe used for the coil is typically equal to  $D_v/30$ , where  $D_v$  is the vessel diameter. The coil pitch is usually around twice the pipe diameter. Small coils can be self supporting, but for large coils some form of supporting structure will be necessary. Single or multiple turn coils are used.

# Coil heat transfer and pressure drop

The heat transfer coefficient at the inside wall and pressure drop through the coil can be estimated using the correlations for flow through pipes; see Section 12.8 and Volume 1, Chapters 3 and 9. Correlations for forced convection in coiled pipes are also given in the Engineering Sciences Data Unit manual, ESDU 78031.

# 12.18.3. Agitated vessels

Unless only small rates of heat transfer are required, as when maintaining the temperature of liquids in storage vessels, some form of agitation will be needed. The various types of agitator used for mixing and blending described in Chapter 10, Section 10.11.2, are also used to promote heat transfer in vessels; see also Volume 1, Chapter 7. The correlations used to estimate the heat transfer coefficient to the vessel wall, or to the surface of coils, have the same form as those used for forced convection in conduits, equation 12.10. The fluid velocity is replaced by a function of the agitator diameter and rotational speed,  $D \times N$ , and the characteristic dimension is the agitator diameter.

$$Nu = CRe^a Pr^b \left(\frac{\mu}{\mu_w}\right)^c \tag{12.10}$$

For agitated vessels:

$$\frac{h_v D}{k_f} = C \left(\frac{N D^2 \rho}{\mu}\right)^a \left(\frac{C_p \mu}{k_f}\right)^b \left(\frac{\mu}{\mu_w}\right)^c \tag{12.85}$$

where  $h_v$  = heat transfer coefficient to vessel wall or coil, Wm<sup>-2</sup>°C<sup>-1</sup>

D = agitator diameter, m

N = agitator, speed, rps (revolutions per second)

 $\rho = \text{liquid density, kg/m}^3$ 

 $k_f = \text{liquid thermal conductivity, Wm}^{-1} \circ \text{C}^{-1}$ 

 $C_p$  = liquid specific heat capacity, J kg<sup>-1</sup>°C<sup>-1</sup>

 $\mu = \text{liquid viscosity}, \text{Nm}^{-2}\text{s}.$ 

The values of constant C and the indices a, b and c depend on the type of agitator, the use of baffles, and whether the transfer is to the vessel wall or to coils. Some typical correlations are given below.

Baffles will normally be used in most applications.

1. Flat blade paddle, baffled or unbaffled vessel, transfer to vessel wall, Re < 4000:

$$Nu = 0.36Re^{0.67}Pr^{0.33} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$
 (12.86a)

2. Flat blade disc turbine, baffled or unbaffled vessel, transfer to vessel wall, Re < 400:

$$Nu = 0.54Re^{0.67}Pr^{0.33} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$
 (12.86b)

3. Flat blade disc turbine, baffled vessel, transfer to vessel wall, Re > 400:

$$Nu = 0.74Re^{0.67}Pr^{0.33} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$
 (12.86c)

4. Propeller, 3 blades, transfer to vessel wall, Re > 5000:

$$Nu = 0.64Re^{0.67}Pr^{0.33} \left(\frac{\mu}{\mu_{w}}\right)^{0.14}$$
 (12.86*d*)

5. Turbine, flat blades, transfer to coil, baffled, Re, 2000-700,000:

$$Nu = 1.10Re^{0.62}Pr^{0.33} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$
 (12.86e)

6. Paddle, flat blades, transfer to coil, baffled,

$$Nu = 0.87Re^{0.62}Pr^{0.33} \left(\frac{\mu}{\mu_{w}}\right)^{0.14}$$
 (12.86f)

More comprehensive design data is given by: Uhl and Gray (1967), Wilkinson and Edwards (1972), Nagata (1975), Penny (1983) and Fletcher (1987).

#### Example 12.13

A jacketed, agitated reactor consists of a vertical cylinder 1.5 m diameter, with a hemispherical base and a flat, flanged, top. The jacket is fitted to the cylindrical section only and extends to a height of 1 m. The spacing between the jacket and vessel walls is 75 mm. The jacket is fitted with a spiral baffle. The pitch between the spirals is 200 mm.

The jacket is used to cool the reactor contents. The coolant used is chilled water at 10°C; flow-rate 32,500 kg/h, exit temperature 20°C.

Estimate the heat transfer coefficient at the outside wall of the reactor and the pressure drop through the jacket.

#### Solution

The baffle forms a continuous spiral channel, section 75 mm  $\times$  200 mm.

Number of spirals = height of jacket/pitch = 
$$\frac{1}{200} \times 10^{-3} = 5$$

Length of channel =  $5 \times \pi \times 1.5 = 23.6$  m

Cross-sectional area of channel =  $(75 \times 200) \times 10^{-6} = 15 \times 10^{-3}$  m

Hydraulic mean diameter,  $d_e = \frac{4 \times \text{cross-sectional area}}{\text{wetted perimeter}}$ 

$$= \frac{4 \times (75 \times 200)}{2(75 + 200)} = 109 \text{ mm}$$

Physical properties at mean temperature of 15°C, from steam tables:  $\rho = 999 \text{ kg/m}^3$ ,  $\mu = 1.136 \text{ mNm}^{-2}\text{s}$ , Pr = 7.99,  $k_f = 595 \times 10^{-3} \text{ Wm}^{-1} \text{ C}^{-1}$ .

Velocity through channel, 
$$u = \frac{32,500}{3600} \times \frac{1}{999} \times \frac{1}{15 \times 10^{-3}} = 0.602 \text{ m/s}$$

$$Re = \frac{999 \times 0.602 \times 109 \times 10^{-3}}{1.136 \times 10^{-3}} = 57,705$$

Chilled water is not viscous so use equation 12.11 with C = 0.023, and neglect the viscosity correction term.

$$Nu = 0.023Re^{0.8}Pr^{0.33}$$

$$h_j \times \frac{109 \times 10^{-3}}{595 \times 10^{-3}} = 0.023(57,705)^{0.8}(7.99)^{0.33}$$

$$h_j = \underline{1606} \text{ Wm}^{-2} \circ \text{C}^{-1}$$

Use equation 12.18 for estimating the pressure drop, taking the friction factor from Figure 12.24. As the hydraulic mean diameter will be large compared to the roughness of the jacket surface, the relative roughness will be comparable with that for heat exchanger

tubes. The relative roughness of pipes and channels and the effect on the friction factor is covered in Volume 1, Chapter 3.

From Figure 12.24, for  $Re = 5.8 \times 10^4$ ,  $j_f = 3.2 \times 10^{-3}$ 

$$\Delta P = 8j_f \left(\frac{L}{d_e}\right) \rho \frac{u^2}{2}$$

$$\Delta P = 8 \times 3.2 \times 10^{-3} \left(\frac{23.6}{109} \times 10^{-3}\right) 999 \times \frac{0.602^2}{2}$$

$$= \underline{1003} \text{ N/m}^2$$
(12.18)

## Example 12.14

The reactor described in Example 12.11 is fitted with a flat blade disc turbine agitator 0.6 m diameter, running at 120 rpm. The vessel is baffled and is constructed of stainless steel plate 10 mm thick.

The physical properties of the reactor contents are:

$$\rho = 850 \text{ kg/m}^3, \ \mu = 80 \text{ mNm}^{-2}\text{s}, \ k_f = 400 \times 10^{-3} \text{ Wm}^{-1} \,^{\circ}\text{C}^{-1},$$
 
$$C_p = 2.65 \text{ kJ kg}^{-1} \,^{\circ}\text{C}^{-1}.$$

Estimate the heat transfer coefficient at the vessel wall and the overall coefficient in the clean condition.

#### Solution

Agitator speed (revs per sec) =  $1200/60 = 2 \text{ s}^{-1}$ 

$$Re = \frac{\rho ND^2}{\mu} = \frac{850 \times 2 \times 0.6^2}{80 \times 10^{-3}} = 7650$$

$$Pr = \frac{C_p \mu}{k_f} = \frac{2.65 \times 10^3 \times 80 \times 10^{-3}}{400 \times 10^{-3}} = 530$$

For a flat blade turbine use equation 12.86c:

$$Nu = 0.74Re^{0.67}Pr^{0.33} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$

Neglect the viscosity correction term:

$$\frac{h_{\nu} \times 0.6}{400 \times 10^{-3}} = 0.74(7650)^{0.67} (530)^{0.33}$$
$$h_{\nu} = 1564 \text{ Wm}^{-2} \,{}^{\circ}\text{C}^{-1}$$

Taking the thermal conductivity of stainless steel as 16 Wm<sup>-1</sup>°C<sup>-1</sup> and the jacket coefficient from Example 12.11.

$$\frac{1}{U} = \frac{1}{1606} + \frac{10 \times 10^{-3}}{16} + \frac{1}{1564}$$

$$U = 530 \text{ Wm}^{-2} \circ \text{C}^{-1}$$

#### 12.19. REFERENCES

AERSTIN, F. and STREET, G. (1978) Applied Chemical Process Design. (Plenum Press).

BELL, K. J. (1960) Petro/Chem. 32 (Oct.) C26. Exchanger design: based on the Delaware research report.

Bell, K. J. (1963) Final Report of the Co-operative Research Program on Shell and Tube Heat Exchangers, University of Delaware, Eng. Expt. Sta. Bull. 5 (University of Delaware).

Bell, K. J., Taborek, J. and Fenoglio, F. (1970) *Chem. Eng. Prog. Symp. Ser.* No. 102, **66**, 154. Interpretation of horizontal in-tube condensation heat transfer correlations with a two-phase flow regime map.

Bell, K. J. and Ghaly, M. A. (1973) *Chem. Eng. Prog. Symp. Ser.* No. 131, **69**, 72. An approximate generalized design method for multicomponent/partial condensers.

BERGMAN, H. L. (1978a) Chem. Eng., NY 85 (June 19th) 99. Fired heaters — Finding the basic design for your application.

BERGMAN, H. L. (1978b) *Chem. Eng.*, NY 85 (Aug. 14th) 129. Fired heaters—How combustion conditions influence design and operation.

BOND, M. P. (1981) *Chem. Engr.*, *London* No. 367 (April) 162. Plate heat exchanger for effective heat transfer. BOTT, T. R. (1990) *Fouling Notebook* (Institution of Chemical Engineers, London).

BOYKO, L. D. and KRUZHILIN, G. N. (1967) *Int. J. Heat Mass Transfer* 10, 361. Heat transfer and hydraulic resistance during condensation of steam in a horizontal tube and in a bundle of tubes.

BRIGGS, D. E. and YOUNG, E. H. (1963) Chem. Eng. Prog. Symp. Ser. No. 59, 61, 1. Convection heat transfer and pressure drop of air flowing across triangular pitch banks of finned tubes.

BROMLEY, L. A. (1950) Chem. Eng. Prog. 46, 221. Heat transfer in stable film boiling.

Brown, R. (1978) Chem. Eng., NY 85 (March 27th) 414. Design of air-cooled heat exchangers: a procedure for preliminary estimates.

BUONOPANE, R. A., TROUPE, R. A. and MORGAN, J. C. (1963) Chem. Eng. Prog. 59 (July) 57. Heat transfer design method for plate heat exchangers.

BURLEY, J. R. (1991) Chem. Eng., NY 98 (Aug.) 90. Don't overlook compact heat exchangers.

BUTTERWORTH, D. (1973) Conference on Advances in Thermal and Mechanical Design of Shell and Tube Heat Exchangers, NEL Report No. 590. (National Engineering Laboratory, East Kilbride, Glasgow, UK). A calculation method for shell and tube heat exchangers in which the overall coefficient varies along the length.

BUTTERWORTH, D. (1977) Introduction to Heat Transfer, Engineering Design Guide No. 18 (Oxford U.P.).

BUTTERWORTH, D. (1978) Course on the Design of Shell and Tube Heat Exchangers (National Engineering Laboratory, East Kilbride, Glasgow, UK). Condensation 1 - Heat transfer across the condensed layer.

CHANTRY, W. A. and CHURCH, D. M. (1958) Chem. Eng. Prog. 54 (Oct.) 64. Design of high velocity forced circulation reboilers for fouling service.

CHEN, J. C. (1966) *Ind. Eng. Chem. Proc. Des. Dev.* 5, 322. A correlation for boiling heat transfer to saturated fluids in convective flow.

CHEN-CHIA, H. and FAIR, J. R. (1989) *Heat Transfer Engineering*, **10** (2) 19. Direct-contact gas-liquid heat transfer in a packed column.

COLBURN, A. P. (1934) *Trans. Am. Inst. Chem. Eng.* **30**, 187. Note on the calculation of condensation when a portion of the condensate layer is in turbulent motion.

COLBURN, A. P. and DREW, T. B. (1937) Trans. Am. Inst. Chem. Eng. 33, 197. The condensation of mixed vapours.

COLBURN, A. P. and EDISON, A. G. (1941) Ind. Eng. Chem. 33, 457. Prevention of fog in condensers.

COLBURN, A. P. and HOUGEN, O. A. (1934) *Ind. Eng. Chem.* 26, 1178. Design of cooler condensers for mixtures of vapors with non-condensing gases.

COLLIER, J. G. and THOME, J. R. (1994) Convective Boiling and Condensation, 3rd edn (McGraw-Hill).

COLLINS, G. K. (1976) Chem. Eng., NY 83 (July 19th) 149. Horizontal-thermosiphon reboiler design.

COOPER, A. and USHER, J. D. (1983) Plate heat exchangers, in *Heat Exchanger Design Handbook* (Hemisphere Publishing).

DEVORE, A. (1961) Pet. Ref. 40 (May) 221. Try this simplified method for rating baffled exchangers.

DEVORE, A. (1962) Hyd. Proc. and Pet. Ref. 41 (Dec.) 103. Use nomograms to speed exchanger design.

DONOHUE, D. A. (1955) *Pet. Ref.* **34** (Aug.) 94, (Oct.) 128, (Nov.) 175, and **35** (Jan.) 155, in four parts. Heat exchanger design.

EAGLE, A. and FERGUSON, R. M. (1930) *Proc. Roy. Soc.* A. 127, 540. On the coefficient of heat transfer from the internal surfaces of tube walls.

EMERSON, W. H. (1967) Thermal and Hydrodynamic Performance of Plate Heat Exchangers, NEL. Reports Nos. 283, 284, 285, 286 (National Engineering Laboratories, East Kilbride, Glasgow, UK).

EMERSON, W. H. (1973) Conference on Advances in Thermal and Mechanical Design of Shell and Tube Exchangers, NEL Report No. 590. (National Engineering Laboratory, East Kilbride, Glasgow, UK). Effective tube-side temperature in multi-pass heat exchangers with non-uniform heat-transfer coefficients and specific heats.

EVANS, F. L. (1980) Equipment Design Handbook, Vol. 2, 2nd edn (Gulf).

FAIR, J. R. (1961) Petro./Chem. Eng. 33 (Aug.) 57. Design of direct contact gas coolers.

FAIR, J. R. (1960) Pet. Ref. 39 (Feb.) 105. What you need to design thermosiphon reboilers.

FAIR, J. R. (1963) Chem. Eng., NY 70 (July 8th) 119, (Aug. 5th) 101, in two parts. Vaporiser and reboiler design.

FAIR, J. R. (1972a) Chem. Eng. Prog. Sym. Ser. No. 118, 68, 1. Process heat transfer by direct fluid-phase contact.

FAIR, J. R. (1972b) Chem. Eng., NY 79 (June 12th) 91. Designing direct-contact cooler/condensers.

FAIR, J. R. and KLIP, A. (1983) Chem. Eng. Prog. 79 (3) 86. Thermal design of horizonal reboilers.

FISHENDEN, M. and SAUNDERS, O. A. (1950) An Introduction to Heat Transfer (Clarendon Press).

FISHER, J. and PARKER, R. O. (1969) Hyd. Proc. 48 (July) 147. New ideas on heat exchanger design.

FLETCHER, P. (1987) Chem. Engr., London No. 435 (April) 33. Heat transfer coefficients for stirred batch reactor design.

FORSTER, K. and ZUBER, N. (1955) AIChE Jl 1, 531. Dynamics of vapour bubbles and boiling heat transfer.

FRAAS, A. P. and OZISIK, M. N. (1965) Heat Exchanger Design (Wiley).

Frank, O. and Prickett, R. D. (1973) Chem. Eng., NY 80 (Sept. 3rd) 103. Designing vertical thermosiphon reboilers.

Frank, O. (1974) Chem Eng., NY 81 (May 13th) 126. Estimating overall heat transfer coefficients.

FRANK, O. (1978) Simplified design procedure for tubular exchangers, in *Practical Aspects of Heat Transfer*, Chem. Eng. Prog. Tech. Manual (Am. Inst. Chem. Eng.).

FURZER, I. A. (1990) *Ind. Eng. Chem. Res.* 29, 1396. Vertical thermosyphon reboilers. Maximum heat flux and separation efficiency.

GARRETT-PRICE, B. A. (1985) Fouling of Heat Exchangers: characteristics, costs, prevention control and removal (Noyes).

GILMORE, G. H. (1963) Chapter 10 in *Chemical Engineers Handbook*, 4th edn, Perry, R. H., Chilton, C. H. and Kirkpatrick, S. P. (eds) (McGraw-Hill).

GLOYER, W. (1970) Hydro. Proc. 49 (July) 107. Thermal design of mixed vapor condensers.

Grant, I. D. R. (1973) Conference on Advances in Thermal and Mechanical Design of Shell and Tube Exchangers, NEL Report No. 590 (National Engineering Laboratory, East Kilbride, Glasgow, UK.). Flow and pressure drop with single and two phase flow on the shell-side of segmentally baffled shell-and-tube exchangers.

HEWITT, G. F. and HALL-TAYLOR, N. S. (1970) Annular Two-phase Flow (Pergamon).

HEWITT, G. F. (ed.) (1990) Hemisphere Handbook of Heat Exchanger Design (Hemisphere).

HEWITT, G. F., SPIRES, G. L. and BOTT, T. R. (1994) Process Heat Transfer (CRC Press).

HOLMAN, J. P. (1992) Heat transfer, 7th edn (McGraw-Hill).

HSU, Y. and GRAHAM, R. W. (1976) Transport Processes in Boiling and Two-phase Flow (McGraw-Hill).

HUGHMARK, G. A. (1961) Chem. Eng. Prog. 57 (July) 43. Designing thermosiphon reboilers.

HUGHMARK, G. A. (1964) Chem. Eng. Prog. 60 (July) 59. Designing thermosiphon reboilers.

HUGHMARK, G. A. (1969) Chem. Eng. Prog. 65 (July) 67. Designing thermosiphon reboilers.

INCROPERA, F. P. and DEWITT, D. P. (1996) Introduction to Heat Transfer, 3rd edn (Wiley).

JACOB, M. (1957) Heat Transfer, 2 vols (Wiley).

JACOBS, J. K. (1961) Hyd. Proc. and Pet. Ref. 40 (July) 189. Reboiler selection simplified.

JEFFREYS, G. V. (1961) A Problem in Chemical Engineering Design (Inst. Chem. Eng., London).

KAY, J. M. (1963) An Introduction to Fluid Mechanics and Heat Transfer: with applications in chemical and mechanical process engineering, 2nd edn (Wiley).

KERN, D. Q. (1950) Process Heat Transfer (McGraw-Hill).

KERN, D. Q. and KRAUS, A. D. (1972) Extended Surface Heat Transfer (McGraw-Hill).

KREITH, F. (1976) Principles of Heat Transfer, 3rd edn (Harper & Row).

KUMAR, H. (1984) *Inst. Chem. Eng. Sym. Ser.* No. 86, 1275. The plate heat exchanger: construction and design. KUTATELADZE, S. S. (1963) *Fundamentals of Heat Transfer* (Academic Press).

LEE, D. C., DORSEY, J. W., MOORE, G. Z. and MAYFIELD, F. D. (1956) *Chem. Eng. Prog.* **52** (April) 160. Design data for thermosiphon reboilers.

LERNER, J. E. (1972) Hyd. Proc. 51 (Feb.) 93. Simplified air cooler estimating.

LIHOU, D. (1975) Heaters for Chemical Reactors (Inst. Chem. Eng., London).

LOPINTO, L. (1982) Chem. Eng., NY 89 (May 17) 111. Fog formation in low temperature condensers.

LORD, R. C., MINTON, P. E. and SLUSSER, R. P. (1970) *Chem. Eng.*, NY 77 (June 1st) 153. Guide to trouble free heat exchangers.

Lowe, R. E. (1987) Chem. Eng., NY 94 (Aug. 17th) 131. Plate-and-fin heat exchangers for cryogenic service.

LUDWIG, E. E. (1965) Applied Process Design for Chemical and Petroleum Plants, Vol. 3 (Gulf).

McADAMS, W. H. (1954) Heat Transmission, 3rd edn (McGraw-Hill).

MAKOVITZ, R. E. (1971) Chem. Eng., NY 78 (Nov. 15th) 156. Picking the best vessel jacket.

McKee, H. R. (1970) Ind. Eng. Chem. 62 (Dec.) 76. Thermosiphon reboilers-a review.

McNaught, J. M. (1983) An assessment of design methods for condensation of vapors from a noncondensing gas, in *Heat Exchangers: Theory and Practice* (McGraw-Hill).

MINTON, P. E. (1970) Chem. Eng., NY 77 (May 4) 103. Designing spiral plate heat exchangers.

MORETTI, P. M. (1973) Am. Inst. Chem. Eng. 74th National Meeting, New Orleans, March 14th. A critical review of the literature on flow-induced vibrations in heat exchangers.

MOSTINSKI, I. L. (1963) *Teploenergetika* **4**, 66; English abstract in *Brit. Chem. Eng.* **8**, 580 (1963). Calculation of boiling heat transfer coefficients, based on the law of corresponding states.

MUELLER, A. C. (1973) Heat Exchangers, Section 18 in Rosenow, W. M. and Hartnell, H. P. (eds) *Handbook of Heat Transfer* (McGraw-Hill).

MUKHERJEE, R. (1997) Chem. Eng. Prog. 93 (Feb) 26. Effectively design air cooled heat exchangers.

NAGATA, S. (1975) Mixing (Halstead Press).

NUSSELT, W. (1916) Z. Ver. duet. Ing. 60, 541, 569. Die Oberflächenkondensation des Wasserdampfes.

Ozisik, M. N. (1985) Heat Transfer: a basic approach (McGraw-Hill).

OWEN, R. G. and LEE, W. C. (1983) *Inst. Chem. Eng. Sym. Ser.* No. 75, 261. A review of recent developments in condenser theory.

PALEN, J. W. and SMALL, W. M. (1964) Hyd. Proc. 43 (Nov.) 199. A new way to design kettle reboilers.

PALEN, J. W., SHIH, C. C., YARDEN, A. and TABOREK, J. (1974) 5th Int. Heat Transfer Conf., 204. Performance limitations in a large scale thermosiphon reboiler.

PALEN, J. W. and TABOREK, J. (1962) Chem. Eng. Prog. 58 (July) 39. Refinery kettle reboilers.

Palen, J. W. and Taborek, J. (1969) *Chem. Eng. Prog. Sym. Ser.* No. 92, **65**, 53. Solution of shell side flow pressure drop and heat transfer by stream analysis method.

Palen, J. W., Yarden, A. and Taborek, J. (1972) *Chem. Eng. Symp. Ser.* No. 118, **68**, 50. Characteristics of boiling outside large-scale horizontal multitube boilers.

PARKER, D. V. (1964) Brit. Chem. Eng. 1, 142. Plate heat exchangers.

PENNY, W. R. (1983) Agitated vessels, in Heat Exchanger Design Handbook (Hemisphere), volume 3.

PERRY, R. H. and CHILTON, C. H. (eds) (1973) Chemical Engineers Handbook, 5th edn (McGraw-Hill).

PERRY, R. H. and GREEN, D. W. (eds) (1984) Perry's Chemical Engineers Handbook, 6th edn (McGraw-Hill).

PORTER, K. E. and JEFFREYS, G. V. (1963) *Trans. Inst. Chem. Eng.* 41, 126. The design of cooler condensers for the condensation of binary vapours in the presence of a non-condensable gas.

RAJU, K. S. N. and CHAND J. (1980) Chem. Eng., NY 87 (Aug. 11) 133. Consider the plate heat exchanger.

ROHSENOW, W. M., HARTNELL, J. P. and GANIC, E. N. (eds) (1985) Handbook of Heat Transfer Fundamentals, 2nd edn (McGraw-Hill).

RUBIN, F. L. (1960) Chem. Eng., NY 67 (Oct. 31st) 91. Design of air cooled heat exchangers.

RUBIN, F. L. (1968) Chem. Eng. Prog. 64 (Dec.) 44. Practical heat exchange design.

SARMA, N. V. L. S., REDDY, P. J. and Murti, P. S. (1973) *Ind. Eng. Chem. Proc. Des. Dev.* 12, 278. A computer design method for vertical thermosyphon reboilers.

SAUNDERS, E. A. D. (1988) Heat Exchangers (Longmans).

SCHLUNDER, E. U. (ed.) (1983) *Heat Exchanger Design Handbook* (Hemisphere). 5 volumes with supplements. SHAH, M. M. (1976) ASHRAE TRANS. **82** (Part 2) 66. A new correlation for heat transfer during boiling flow through tubes.

SIEDER, E. N. and TATE, G. E. (1936) *Ind. Eng. Chem.* 28, 1429. Heat transfer and pressure drop of liquids in tubes.

SILVER, L. (1947) Trans. Inst. Chem. Eng. 25, 30. Gas cooling with aqueous condensation.

SINGH, K. P. and SOLER, A. I. (1984) Mechanical Design of Heat Exchanger and Pressure Vessel Components (Arcturus).

STEINMEYER, D. E. (1972) Chem. Eng. Prog. 68 (July) 64. Fog formation in partial condensers.

Skellene, K. R., Sternling, C. V., Church, D. M. and Snyder, N. H. (1968) *Chem. Eng. Prog. Symp. Ser.* No. 82, **64**, 102. An experimental study of vertical thermosiphon reboilers.

TABOREK, J. (1974) Design methods for heat transfer equipment: a critical survey of the state of the art, in Afgan, N. and Schlünder, E. V. (eds), *Heat Exchangers: Design and Theory Source Book* (McGraw-Hill).

TABOREK, J., AOKI, T., RITTER, R. B. and PALEN, J. W. (1972) *Chem. Eng. Prog.* **68** (Feb.) 59, (July) 69, in two parts. Fouling: the major unresolved problem in heat transfer.

TEMA (1988) Standards of the Tubular Heat Exchanger Manufactures Association, 7th edn (Tubular Heat Exchanger Manufactures Association, New York).

THORNGREN, J. T. (1970) Hyd. Proc. 49 (April) 129. Predict exchanger tube damage.

TINKER, T. (1951) Proceedings of the General Discussion on Heat Transfer, p. 89, Inst. Mech. Eng., London. Shell-side characteristics of shell and tube heat exchangers.

TINKER, T. (1958) Trans. Am. Soc. Mech. Eng. 80 (Jan.) 36. Shell-side characteristics of shell and tube exchangers.

TROM L. (1990) Hyd. Proc. 69 (10) 75. Consider plate and spiral heat exchangers.

VAN EDMONDS, S. (1994) Masters Thesis, University of Wales Swansea. A short-cut design procedure for vertical thermosyphon reboilers.

UHL, W. W. and GRAY, J. B. (eds) (1967) Mixing Theory and Practice, 2 volumes (Academic Press).

WARD, D. J. (1960) Petro./Chem. Eng. 32, C-42. How to design a multiple component partial condenser.

Webb, R. L. and Gupte, N. S. (1992) *Heat Trans. Eng.*, 13 (3) 58. A critical review of correlations for convective vaporisation in tubes and tube banks.

WEBBER, W. O. (1960) Chem. Eng., NY 53 (Mar. 21st) 149. Under fouling conditions finned tubes can save money.

WESTWATER, J. W. (1956) Advances in Chemical Engineering 1, 1. Boiling liquids.

WESTWATER, J. W. (1958) Advances in Chemical Engineering 2, 1. Boiling liquids.

WIMPRESS, N. (1978) Chem. Eng., NY 85 (May 22nd) 95. Generalized method predicts fired-heater performance.

WILKINSON, W. L. and EDWARDS, M. F. (1972) Chem. Engr., London No. 264 (Aug) 310, No. 265 (Sept) 328. Heat transfer in agitated vessels.

WOLVERINE (1959) Engineering Data Book (Wolverine Tube Division, Calumet and Hecla, Inc., Michigan).

YILMAZ, S. B. (1987) Chem. Eng. Prog. 83 (11) 64. Horizontal shellside thermosiphon reboilers.

ZUBER, N., TRIBUS, M. and WESTWATER, J. W. (1961) Second International Heat Transfer Conference, Paper 27, p. 230, Am. Soc. Mech. Eng. The hydrodynamic crisis in pool boiling of saturated and sub-cooled liquids.

#### **British Standards**

BS 3274: 1960 Tubular heat exchangers for general purposes.

BS 3606: 1978 Specification for steel tubes for heat exchangers.

BS 5500: 1976 Unfired fusion welded pressure vessels.

# Engineering Sciences Data Unit Reports

No. 67016 (1967) Forced convection heat transfer in circular tubes. Part I, turbulent flow.

No. 68006 (1968) Forced convection heat transfer in circular tubes. Part II, laminar and transitional flow.

No. 68007 (1968) Forced convection in circular tubes. Part III, further data for turbulent flow.

No. 69004 (1969) Convective heat transfer during forced cross flow of fluids over a circular cylinder, including convection effects.

No. 73031 (1973) Convective heat transfer during cross flow of fluids over plain tube banks.

No. 78031 (1978) Internal forced convection in coiled pipes.

No. 83038 (1984) Baffled shell-and-tube exchangers: Flow distribution, pressure drop and heat transfer on shellside.

No. 84023 (1984) Shellside pressure drop and heat transfer in down flow condensation.

No. 86018 (1986) Effectiveness NTU relationships for the design and performance evaluation of two stream heat exchangers.

No. 87019 (1987) Flow induced vibrations in tube bundles with particular reference to shell and tube heat exchangers.

Engineering Sciences Data Unit, 251-259 Regent Street, London W1R 7AD.

#### American Petroleum Institute Standards

API 661 Air-Cooled Heat Exchangers for General Refinery Service.

# **Bibliography**

AZBEL, D. Heat Transfer Application in Process Engineering (Noyles, 1984).

FRAAS, A. P. Heat Exchanger Design, 2nd edn (Wiley, 1989).

GUNN, D. and HORTON, R. Industrial Boilers (Longmans, 1989).

GUPTA, J. P. Fundamentals of Heat Exchanger and Pressure Vessel Technology (Hemisphere, 1986).

KAKAC, S. (ed.) Boilers, Evaporators, and Condensers (Wiley, 1991)

KAKAC, S., BERGLES, A. E. and MAYINGER, F. (eds) Heat Exchangers: thermal-hydraulic fundamentals and design (Hemisphere, 1981).

CHEREMISINOFF, N. P. (ed.) Handbook of Heat and Mass Transfer, 2 vols (Gulf, 1986).

McKetta, J. J. (ed.) Heat Transfer Design Methods (Marcel Dekker, 1990).

PALEN, J. W, (ed.) Heat Exchanger Source Book (Hemisphere, 1986).

SAUNDERS, E. A. D. Heat Exchangers (Longmans, 1988).

SCHLUNDER, E. U. (ed.) Heat Exchanger Design Handbook, 5 volumes with supplements (Hemisphere, 1983). SHAH, R. K., SUBBARAO, E. C. and MASHELKAR, R. A. (eds) Heat Transfer Equipment Design (Hemisphere, 1988)

SINGH, K. P. Theory and Practice of Heat Exchanger Design (Hemisphere, 1989).

SINGH, K. P. and SOLER, A. I. Mechanical Design of Heat Exchanger and Pressure Vessel Components (Arcturus, 1984).

SMITH, R. A. Vaporisers: selection, design and operation (Longmans, 1986).

WALKER, G. Industrial Heat Exchangers (McGraw-Hill, 1982).

YOKELL, S. A Working Guide to Shell and Tube Heat Exchangers (McGraw-Hill, 1990).

#### 12.20. NOMENCLATURE

|                         |                                                                                      | Dimensions in MLT0                                                   |
|-------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| A                       | Heat transfer area                                                                   | $\mathbf{L}^2$                                                       |
| $A_{cp}$                | Cold-plane area of tubes                                                             | $\mathbf{L}^2$                                                       |
| $A_o^{c_p}$             | Clearance area between bundle and shell                                              | $\mathbf{L}^2$                                                       |
| $A_f$                   | Fin area                                                                             | $\mathbf{L}^2$                                                       |
| $A_{L}$                 | Total leakage area                                                                   | $\mathbf{L}^2$                                                       |
| $A_{\alpha}$            | Outside area of bare tube                                                            | $\mathbf{L}^2$                                                       |
| $A_p$                   | Area of a port plate heat exchanger                                                  | $\mathbf{L}^2$                                                       |
| $A_s$                   | Cross-flow area between tubes                                                        | $\mathbf{L}^2$                                                       |
| $A_{sb}$                | Shell-to-baffle clearance area                                                       | $\mathbf{L}^2$                                                       |
| $A_{tb}$                | Tube-to-baffle clearance area                                                        | $\mathbf{L}^2$                                                       |
| a                       | Index in equation 12.10                                                              | <del>-</del>                                                         |
| $B_c$                   | Baffle cut                                                                           |                                                                      |
| $B_b$                   | Bundle cut                                                                           |                                                                      |
| $b^{\circ}$             | Index in equation 12.10                                                              |                                                                      |
| C                       | Constant in equation 12.10                                                           |                                                                      |
| $C_p$                   | Heat capacity at constant pressure                                                   | $\mathbf{L}^2\mathbf{T}^{-2}\boldsymbol{\theta}^{-1}$                |
| $C_{p_R}$               | Heat capacity of gas                                                                 | $\mathbf{L^{2}T^{-2}\theta^{-1}} \\ \mathbf{L^{2}T^{-2}\theta^{-1}}$ |
| $C_{p_L}^{r_s}$         | Heat capacity of liquid phase                                                        | $\mathbf{L}^2\mathbf{T}^{-2}\mathbf{\theta}^{-1}$                    |
| $c^{PL}$                | Index in equation 12.10                                                              | _                                                                    |
| $c_s$                   | Shell-to-baffle diametrical clearance                                                | L                                                                    |
| $c_t$                   | Tube-to-baffle diametrical clearance                                                 | L                                                                    |
| D                       | Agitator diameter                                                                    | L                                                                    |
| $D_b$                   | Bundle diameter                                                                      | <u>L</u>                                                             |
| $D_s$                   | Shell diameter                                                                       | L                                                                    |
| $D_v$                   | Vessel diameter                                                                      | L                                                                    |
| $d_e$                   | Equivalent diameter                                                                  | L<br>L                                                               |
| $d_i$                   | Tube inside diameter                                                                 | L<br>L                                                               |
| $d_{pt} \ d_o$          | Diameter of the ports in the plates of a plate heat exchanger  Tube outside diameter | Ĺ                                                                    |
| $d_1$                   | Outside diameter of inner of concentric tubes                                        | Ĺ                                                                    |
| $d_2$                   | Inside diameter of outer of concentric tubes                                         | $	ilde{	ilde{\mathbf{L}}}$                                           |
| $E_f$                   | Fin efficiency                                                                       | _                                                                    |
| $\tilde{F}'$            | Radiation exchange factor                                                            | _                                                                    |
| $F_b$                   | Bypass correction factor, heat transfer                                              | _                                                                    |
| $F_{h}^{\prime}$        | Bypass correction factor, pressure drop                                              | _                                                                    |
| $F_L^{'}$               | Leakage correction factor, heat transfer                                             |                                                                      |
| $F_L^{\tilde{r}}$ $F_n$ | Leakage correction factor, pressure drop                                             | <del></del>                                                          |
| $\overline{F_n}$        | Tube row correction factor                                                           |                                                                      |
|                         |                                                                                      |                                                                      |

#### CHEMICAL ENGINEERING

| $F_t$            | Log mean temperature difference correction factor                               |                                                                                                    |
|------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| $F_w$            | Window effect correction factor                                                 |                                                                                                    |
| $f_c$            | Two-phase flow factor                                                           |                                                                                                    |
| $f_m$            | Temperature correction factor for mixtures                                      |                                                                                                    |
| $f_s$            | Nucleate boiling suppression factor                                             |                                                                                                    |
| G                | Total mass flow-rate per unit area                                              | $ML^{-2}T^{-1}$                                                                                    |
| $G_p$            | Mass flow-rate per unit cross-sectional area between plates                     | $ML^{-2}T^{-1}$                                                                                    |
| $G_s$            | Shell-side mass flow-rate per unit area                                         | $ML^{-2}T^{-1}$                                                                                    |
| $G_t$            | Tube-side mass flow-rate per unit area                                          | $ML^{-2}T^{-1}$                                                                                    |
| 8                | Gravitational acceleration                                                      | $LT^{-2}$                                                                                          |
| $H_b$            | Height from baffle chord to top of tube bundle                                  | L<br>L                                                                                             |
| $H_c$            | Baffle cut height                                                               | $\mathbf{ML}^{2}\mathbf{T}^{-3}$                                                                   |
| $H_s$            | Sensible heat of stream  Total heat of stream (sensible + latent)               | $\mathbf{ML}^{-1}$ $\mathbf{ML}^{2}\mathbf{T}^{-3}$                                                |
| $H_t$            | · · · · · · · · · · · · · · · · · · ·                                           | $MT^{-3}\theta^{-1}$                                                                               |
| $h_c$            | Heat-transfer coefficient in condensation                                       | $MT^{-3}\theta^{-1}$                                                                               |
| $(h_c)_1$        | Mean condensation heat-transfer coefficient for a single tube                   | $MT^{-3}\theta^{-1}$                                                                               |
| $(h_c)_b$        | Heat-transfer coefficient for condensation on a horizontal tube bundle          | $MT^{-3}\theta^{-1}$                                                                               |
| $(h_c)_{N_r}$    | Mean condensation heat-transfer coefficient for a tube in a row of tubes        | $MT^{-3}\theta^{-1}$                                                                               |
| $(h_c)_v$        | Heat-transfer coefficient for condensation on a vertical tube                   |                                                                                                    |
| $(h_c)_{\rm BK}$ | Condensation coefficient from Boko-Kruzhilin correlation                        | $\mathbf{M}\mathbf{T}^{-3}\mathbf{\theta}^{-1}$<br>$\mathbf{M}\mathbf{T}^{-3}\mathbf{\theta}^{-1}$ |
| $(h_c)_s$        | Condensation heat transfer coefficient for stratified flow in tubes             | $MT^{-3}\theta^{-1}$                                                                               |
| $h'_c$           | Local condensing film coefficient, partial condenser                            |                                                                                                    |
| $h_{cb}$         | Convective boiling-heat transfer coefficient                                    | $MT^{-3}\theta^{-1}$                                                                               |
| $h_{cg}$         | Local effective cooling-condensing heat-transfer coefficient, partial condenser | $MT^{-3}\theta^{-1}$                                                                               |
| $h_{df}$         | Fouling coefficient based on fin area                                           | $MT^{-3}\theta^{-1}$                                                                               |
| $h_f$            | Heat-transfer coefficient based on fin area                                     | $MT^{-3}\theta^{-1}$                                                                               |
| $h_{fb}$         | Film boiling heat-transfer coefficient                                          | $\mathbf{M}\mathbf{T}^{-3}\mathbf{\theta}^{-1}$                                                    |
| $h'_{fc}$        | Forced-convection coefficient in equation 12.67                                 | $\mathbf{M}\mathbf{T}^{-3}\mathbf{\theta}^{-1}$                                                    |
| $h_g'$           | Local sensible-heat-transfer coefficient, partial condenser                     | $\mathbf{M}\mathbf{T}^{-3}\mathbf{\theta}^{-1}$                                                    |
| $h_i$            | Film heat-transfer coefficient inside a tube                                    | $\mathbf{M}\mathbf{T}^{-3}\mathbf{\theta}^{-1}$                                                    |
| $h_i'$           | Inside film coefficient in Boyko-Kruzhilin correlation                          | $\mathbf{M}\mathbf{T}^{-3}\mathbf{\theta}^{-1}$                                                    |
| $h_{id}$         | Fouling coefficient on inside of tube                                           | $\mathbf{M}\mathbf{T}^{-3}\mathbf{\theta}^{-1}$                                                    |
| $h_{nb}$         | Nucleate boiling-heat-transfer coefficient                                      | $\mathbf{M}\mathbf{T}^{-3}\mathbf{\theta}^{-1}$                                                    |
| $h'_{nb}$        | Nucleate boiling coefficient in equation 12.67                                  | $\mathbf{M}\mathbf{T}^{-3}\mathbf{\theta}^{-1}$                                                    |
| $h_o$            | Heat-transfer coefficient outside a tube                                        | $\mathbf{M}\mathbf{T}^{-3}\mathbf{\theta}^{-1}$                                                    |
| $h_{oc}$         | Heat-transfer coefficient for cross flow over an ideal tube bank                | $\mathbf{M}\mathbf{T}^{-3}\mathbf{\theta}^{-1}$                                                    |
| $h_{od}$         | Fouling coefficient on outside of tube                                          | $\mathbf{M}\mathbf{T}^{-3}\mathbf{\theta}^{-1}$                                                    |
| $h_p$            | Heat-transfer coefficient in a plate heat exchanger                             | $\mathbf{M}\mathbf{T}^{-3}\mathbf{\theta}^{-1}$                                                    |
| $h_s$            | Shell-side heat-transfer coefficient                                            | $\mathbf{M}\mathbf{T}^{-3}\mathbf{\theta}^{-1}$                                                    |
| $h_v$            | Heat transfer coefficient to vessel wall or coil                                | $\mathbf{M}\mathbf{T}^{-3}\mathbf{\theta}^{-1}$                                                    |
| $j_h$            | Heat transfer factor defined by equation 12.14                                  |                                                                                                    |
| jн               | Heat-transfer factor defined by equation 12.15                                  |                                                                                                    |
| $j_f$            | Friction factor                                                                 |                                                                                                    |
| $K_1$            | Constant in equation 12.3, from Table 12.4                                      |                                                                                                    |
| $K_2$            | Constant in equation 12.61                                                      | _                                                                                                  |
| $K_b$            | Constant in equation 12.74  Thormal conductivity of fluid                       | $MLT^{-3}\theta^{-}$                                                                               |
| $k_f$            | Thermal conductivity of fluid                                                   | MLT <sup>-3</sup> 0                                                                                |
| k <u>L</u>       | Thermal conductivity of liquid                                                  | MLT 30-                                                                                            |
| $k_v$            | Thermal conductivity of type well meterial                                      | MLT -3θ-                                                                                           |
| $k_w = L'$       | Thermal conductivity of tube wall material Effective tube length                | MLT 9                                                                                              |
| _                | Path length in a plate heat exchanger                                           | L<br>L                                                                                             |
| $L_P$ $L_s$      | Stack height                                                                    | L                                                                                                  |
| $l_B$            | Baffle spacing (pitch)                                                          | Ĺ                                                                                                  |
| $l_f$            | Fin height                                                                      | $	ilde{	ilde{\mathbf{L}}}$                                                                         |
| Ń                | Rotational speed                                                                | $\mathbf{T}^{-1}$                                                                                  |
| M.               | Number of haffles                                                               |                                                                                                    |

#### HEAT-TRANSFER EQUIPMENT

| $N_c$                                  | Number of tubes in cross flow zone                                               | _                                          |
|----------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------|
| $N_c'$                                 | Number of tube rows crossed from end to end of shell                             | _                                          |
| $N_{cv}$ $N_p$                         | Number of constrictions crossed  Number of passes, plate heat exchanger          |                                            |
| $N_r^p$                                | Number of tubes in a vertical row                                                | _                                          |
| $N_s$                                  | Number of sealing strips                                                         |                                            |
| $N_t$                                  | Number of tubes in a tube bundle                                                 | -                                          |
| $N_w$                                  | Number of tubes in window zone                                                   | _                                          |
| $N_{wv}$                               | Number of restrictions for cross flow in window zone                             | _                                          |
| P                                      | Total pressure                                                                   | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ |
| $P_c$                                  | Critical pressure                                                                | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ |
| $P_d$                                  | Stack draft                                                                      | L                                          |
| $\Delta P_c$                           | Pressure drop in cross flow zone <sup>(1)</sup>                                  | $ML^{-1}T^{-2}$                            |
| $\Delta P_e$                           | Pressure drop in end zone <sup>(1)</sup>                                         | $ML^{-1}T^{-2}$                            |
| $\Delta P_i$                           | Pressure drop for cross flow over ideal tube bank <sup>(1)</sup>                 | $ML^{-1}T^{-2}$                            |
| $\Delta P_p$                           | Pressure drop in a plate heat exchanger <sup>(1)</sup>                           | $ML^{-1}T^{-2}$                            |
| $\Delta P_{pt}$                        | Pressure loss through the ports in a plate heat exchanger <sup>(1)</sup>         | $ML^{-1}T^{-2}$                            |
| $\Delta P_s$                           | Shell-side pressure drop <sup>(1)</sup>                                          | $ML^{-1}T^{-2}$                            |
| $\Delta P_t$                           | Tube-side pressure drop <sup>(1)</sup>                                           | $ML^{-1}T^{-2}$                            |
| $\Delta P_w$                           | Pressure drop in window zone <sup>(1)</sup>                                      | $ML^{-1}T^{-2}$                            |
| p'                                     | Atmospheric pressure                                                             | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$          |
| $p_i$                                  | Fin pitch                                                                        | L                                          |
| $p_s$                                  | Saturation vapour pressure                                                       | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ |
| $p_t$                                  | Tube pitch                                                                       | L<br>L                                     |
| $p'_t$                                 | Vertical tube pitch Saturation vapour pressure corresponding to wall temperature | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ |
| $Q^{w}$                                | Heat transferred in unit time                                                    | $\mathbf{ML}^{2}\mathbf{T}^{-3}$           |
|                                        | Sensible-heat-transfer rate from gas phase                                       | $ML^2T^{-3}$                               |
| $egin{array}{c} Q_g \ Q_t \end{array}$ | Total heat-transfer rate from gas phase                                          | $\mathbf{ML}^{2}\mathbf{T}^{-3}$           |
|                                        | Heat flux (heat-transfer rate per unit area)                                     | $MT^{-3}$                                  |
| $q \\ q'$                              | Uncorrected value of flux from Figure 12.59                                      | $MT^{-3}$                                  |
| _                                      | Maximum (critical) flux for a single tube                                        | $MT^{-3}$                                  |
| $q_c \ q_{cb}$                         | Maximum flux for a tube bundle                                                   | $MT^{-3}$                                  |
| $q_r$                                  | Radiant heat flux                                                                | $MT^{-3}$                                  |
| R                                      | Dimensionless temperature ratio defined by equation 12.6                         |                                            |
| $R_a$                                  | Ratio of window area to total area                                               | workness                                   |
| $R'_a$                                 | Ratio of bundle cross-sectional area in window zone to total cross-sectional     |                                            |
| _                                      | area of bundle                                                                   |                                            |
| $R_w$                                  | Ratio number of tubes in window zones to total number                            | _                                          |
| S                                      | Dimensionless temperature ratio defined by equation 12.7                         | θ                                          |
| T<br>T                                 | Shell-side temperature Temperature of surface                                    | θ                                          |
| $T_a$                                  | Ambient temperature                                                              | θ                                          |
| $T_g^a$                                | Temperature of combustion gases                                                  | θ                                          |
| $T_{ga}^{s}$                           | Average flue-gas temperature                                                     | θ                                          |
| $T_r^{s}$                              | Reduced temperature                                                              | <del>_</del>                               |
| $T_s$                                  | Saturation temperature                                                           | θ                                          |
| $T_{\rm sat}$                          | Saturation temperature                                                           | θ                                          |
| $T_t$                                  | Tube surface temperature                                                         | $\frac{\theta}{\theta}$                    |
| $T_v$                                  | Vapour (gas) temperature Wall (surface) temperature                              | θ                                          |
| $T_w$ $T_1$                            | Shell-side inlet temperature                                                     | θ                                          |
| $T_2$                                  | Shell-side exit temperature                                                      | θ                                          |
| $\Delta T$                             | Temperature difference                                                           | θ                                          |
| $\Delta T_{ m lm}$                     | Logarithmic mean temperature difference                                          | θ                                          |
| $\Delta T_m$                           | Mean temperature difference in equation 12.1                                     | θ                                          |
| $\Delta T_s$                           | Temperature change in vapour (gas) stream                                        | θ                                          |
| t                                      | Tube-side temperature                                                            | $\frac{	heta}{	heta}$                      |
| $t_{c}$                                | Local coolant temperature                                                        | v                                          |

|                      |                                                                           | -                                               |
|----------------------|---------------------------------------------------------------------------|-------------------------------------------------|
| $t_f$                | Fin thickness                                                             | L                                               |
| $t_1$                | Tube-side inlet temperature                                               | θ                                               |
| $t_2$                | Tube-side exit temperature                                                | θ<br>2 cm-30-1                                  |
| U                    | Overall heat-transfer coefficient                                         | $MT^{-3}\theta^{-1}$                            |
| U'                   | Uncorrected overall coefficient, equation 12.72                           | $\mathbf{M}\mathbf{T}^{-3}\mathbf{\theta}^{-1}$ |
| $U_c$                | Corrected overall coefficient, equation 12.72                             | $\mathbf{M}\mathbf{T}^{-3}\mathbf{\theta}^{-1}$ |
| $U_o$                | Overall heat-transfer coefficient based on tube outside area              | $\mathbf{M}\mathbf{T}^{-3}\mathbf{\theta}^{-1}$ |
| и                    | Fluid velocity                                                            | $LT^{-1}$                                       |
| $u_L$                | Liquid velocity, equation 12.55                                           | $LT^{-1}$                                       |
| $u_p$                | Fluid velocity in a plate heat exchanger                                  | $LT^{-1}$                                       |
| $u_{pt}$             | Velocity through the ports of a plate heat exchanger                      | $LT^{-1}$                                       |
| $u_p$                | Velocity through channels of a plate heat exchanger                       | $LT^{-1}$                                       |
|                      | Shell-side fluid velocity                                                 | $LT^{-1}$                                       |
| $u_s$                | Tube-side fluid velocity                                                  | $LT^{-1}$                                       |
| $u_t$                | · · · · · · · · · · · · · · · · · · ·                                     | $LT^{-1}$                                       |
| $u_v$                | Vapour velocity, equation 12.55                                           |                                                 |
| $u_v$                | Maximum vapour velocity in kettle reboiler                                | LT <sup>-1</sup>                                |
| $u_w$                | Velocity in window zone                                                   | LT-1                                            |
| $u_z$                | Geometric mean velocity                                                   | $LT^{-1}$                                       |
| W                    | Mass flow-rate of fluid                                                   | $\mathbf{MT}^{-1}$                              |
| w                    | Mass flow through the channels and ports in a plate heat exchanger        | $\mathbf{M}\mathbf{T}^{-1}$                     |
| $W_c$                | Total condensate mass flow-rate                                           | $\mathbf{M}\mathbf{T}^{-1}$                     |
| $\boldsymbol{W}_{s}$ | Shell-side fluid mass flow-rate                                           | $\mathbf{M}\mathbf{T}^{-1}$                     |
| $X_{tt}$             | Lockhart-Martinelli two-phase flow parameter                              | _                                               |
| X                    | Mass fraction of vapour                                                   | _                                               |
| Z                    | Ratio of change in sensible heat of gas stream to change in total heat of |                                                 |
|                      | gas stream (sensible + latent)                                            | _                                               |
| α                    | Absorption efficiency factor                                              |                                                 |
| α                    | Factor in equation 12.30                                                  | =                                               |
| $\beta_L$            | Factor in equation 12.31, for heat transfer                               |                                                 |
| $eta_L'$             | Factor in equation 12.31, for pressure drop                               | _                                               |
| $\theta_b^-$         | Angle subtended by baffle chord                                           | <del>-</del>                                    |
| λ                    | Latent heat                                                               | $L^2T^{-2}$                                     |
| $\mu$                | Viscosity at bulk fluid temperature                                       | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-1}$      |
| $\mu_L$              | Liquid viscosity                                                          | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-1}$      |
| $\mu_v$              | Vapour viscosity                                                          | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-1}$      |
| $\mu_w$              | Viscosity at wall temperature                                             | $ML^{-1}T^{-1}$                                 |
| ρ                    | Fluid density                                                             | $\mathbf{ML}^{-3}$                              |
| $\rho_L$             | Liquid density                                                            | $\mathbf{ML}^{-3}$                              |
|                      | Vapour density                                                            | $ML^{-3}$                                       |
| $ ho_v$              | Stephen-Boltzman constant                                                 | $MT^{-3}\theta^{-4}$                            |
| σ                    | •                                                                         | $MT^{-2}$                                       |
| $\sigma$             | Surface tension                                                           |                                                 |
| Γ                    | Tube loading                                                              | $\mathbf{ML}^{-1}\mathbf{T}^{-1}$               |
| $\Gamma_h$           | Condensate loading on a horizontal tube                                   | $ML^{-1}T^{-1}$                                 |
| $\Gamma_v$           | Condensate loading on a vertical tube                                     | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-1}$      |
| Dimensi              | onless numbers                                                            |                                                 |
| Nu                   | Nusselt number                                                            |                                                 |
| Pr                   | Prandtl number                                                            |                                                 |
| $Pr_c$               | Prandtl number for condensate film                                        |                                                 |
| Re                   | Reynolds number                                                           |                                                 |
| $Re_c$               | Reynolds number for condensate film                                       |                                                 |
| $Re_L$               | Reynolds number for liquid phase                                          |                                                 |
| St                   | Stanton number                                                            |                                                 |
|                      |                                                                           |                                                 |

(1) Note: in Volumes 1 and 2 this symbol is used for pressure difference, and pressure drop (negative pressure gradient) indicated by a minus sign. In this chapter, as the symbol is only used for pressure drop, the minus sign has been omitted for convenience.

#### 12.21. PROBLEMS

12.1 A solution of sodium hydroxide leaves a dissolver at  $80^{\circ}$ C and is to be cooled to  $40^{\circ}$ C, using cooling water. The maximum flow-rate of the solution will be 8000 kg/h. The maximum inlet temperature of the cooling water will be  $20^{\circ}$ C and the temperature rise is limited to  $20^{\circ}$ C.

Design a double-pipe exchanger for this duty, using standard carbon steel pipe and fittings. Use pipe of 50 mm inside diameter, 55 mm outside diameter for the inner pipe, and 75 mm inside diameter pipe for the outer. Make each section 5 m long. The physical properties of the caustic solution are:

| temperature, °C                                         | 40    | 80    |
|---------------------------------------------------------|-------|-------|
| specific heat, kJkg <sup>-1</sup> °C <sup>-1</sup>      | 3.84  | 3.85  |
| density, kg/m <sup>3</sup>                              | 992.2 | 971.8 |
| thermal conductivity, Wm <sup>-1</sup> °C <sup>-1</sup> | 0.63  | 0.67  |
| viscosity, mN m <sup>-2</sup> s                         | 1.40  | 0.43  |

**12.2.** A double-pipe heat exchanger is to be used to heat 6000 kg/h of 22 mol per cent hydrochloric acid. The exchanger will be constructed from karbate (impervious carbon) and steel tubing. The acid will flow through the inner, karbate, tube and saturated steam at 100°C will be used for heating. The tube dimensions will be: karbate tube inside diameter 50 mm, outside diameter 60 mm; steel tube inside diameter 100 mm. The exchanger will be constructed in sections, with an effective length of 3 m each.

How many sections will be needed to heat the acid from 15 to  $65^{\circ}$ C? Physical properties of 22 % HCl at  $40^{\circ}$ C: specific heat  $4.93 \text{ kJkg}^{-1}$ °C<sup>-1</sup>, thermal conductivity  $0.39 \text{ Wm}^{-1}$ °C<sup>-1</sup>, density  $866 \text{ kg/m}^3$ .

| Viscosity: | temperature  | 20   | 30   | 40   | 50   | 60   | 70°C |
|------------|--------------|------|------|------|------|------|------|
| -          | $mN m^{-2}s$ | 0.68 | 0.55 | 0.44 | 0.36 | 0.33 | 0.30 |

Karbate thermal conductivity 480 Wm<sup>-1</sup>°C<sup>-1</sup>.

**12.3.** In a food processing plant there is a requirement to heat 50,000 kg/h of towns water from 10 to 70°C. Steam at 2.7 bar is available for heating the water. An existing heat exchanger is available, with the following specification:

Shell inside diameter 337 mm, E type.

Baffles 25 per cent cut, set at a spacing of 106 mm.

Tubes 15 mm inside diameter, 19 mm outside diameter, 4094 mm long.

Tube pitch 24 mm, triangular.

Number of tubes 124, arranged in a single pass.

Would this exchanger be suitable for the specified duty?

**12.4.** Design a shell and tube exchanger to heat 50,000 kg/h of liquid ethanol from 20°C to 80°C. Steam at 1.5 bar is available for heating. Assign the ethanol to the tube-side. The total pressure drop must not exceed 0.7 bar for the alcohol stream. Plant practice requires the use of carbon steel tubes, 25 mm inside diameter, 29 mm outside diameter, 4 m long.

Set out your design on a data sheet and make a rough sketch of the heat exchanger. The physical properties of ethanol can be readily found in the literature.

**12.5.** 4500 kg/h of ammonia vapour at 6.7 bara pressure is to be cooled from 120°C to 40°C, using cooling water. The maximum supply temperature of the cooling water available is 30°C, and the outlet temperature is to be restricted to 40°C. The pressure drops over the exchanger must not exceed 0.5 bar for the ammonia stream and 1.5 bar for the cooling water.

A contractor has proposed using a shell and tube exchanger with the following specification for this duty.

Shell: E-type, inside diameter 590 mm.

Baffles: 25 per cent cut, 300 mm spacing.

Tubes: carbon steel, 15 mm inside diameter, 19 mm outside diameter, 2400 mm long, number 360.

Tube arrangement: 8 passes, triangular tube pitch, pitch 23.75 mm.

Nozzles: shell 150 mm inside diameter, tube headers 75 mm inside diameter.

It is proposed to put the cooling water though the tubes.

Is the proposed design suitable for the duty?

Physical properties of ammonia at the mean temperature of 80°C:

specific heat  $2.418~kJkg^{-1}$ °C<sup>-1</sup>, thermal conductivity  $0.0317~Wm^{-1}$ °C<sup>-1</sup>, density  $4.03~kg/m^3$ , viscosity  $1.21\times10^{-5}~N~m^{-2}$ s.

**12.6.** A vaporiser is required to evaporate 10,000 kg/h of a process fluid, at 6 bar. The liquid is fed to the vaporiser at  $20^{\circ}\text{C}$ .

The plant has a spare kettle reboiler available with the following specification. U-tube bundle, 50 tubes, mean length 4.8 m, end to end.

Carbon steel tubes, inside diameter 25 mm, outside diameter 30 mm, square pitch 45 mm.

Steam at 1.7 bara will be used for heating.

Check if this reboiler would be suitable for the duty specified. Only check the thermal design. You may take it that the shell will handle the vapour rate.

Take the physical properties of the process fluid as:

liquid: density 535 kg/m³, specific heat 2.6 kJkg $^{-1}$ °C $^{-1}$ , thermal conductivity 0.094 Wm $^{-1}$ °C $^{-1}$ , viscosity 0.12 mN m $^{-2}$ s, surface tension 0.85 N/m, heat of vaporisation 322 kJ/kg.

Vapour density 14.4 kg/m<sup>3</sup>.

Vapour pressure:

temperature°C 50 60 70 80 90 100 110 120 pressure bar 5.0 6.4 8.1 10.1 12.5 15.3 18.5 20.1

**12.7.** A condenser is required to condense n-propanol vapour leaving the top of a distillation column. The n-propanol is essentially pure, and is a saturated vapour at a pressure of 2.1 bara. The condensate needs to be sub-cooled to 45°C.

Design a horizontal shell and tube condenser capable of handling a vapour rate of 30,000 kg/h. Cooling water is available at  $30^{\circ}$ C and the temperature rise is to be limited to  $30^{\circ}$ C. The pressure drop on the vapour stream is to be less than  $50 \text{ kN/m}^2$ , and on the water stream less than  $70 \text{ kN/m}^2$ . The preferred tube size is 16 mm inside diameter, 19 mm outside diameter, and 2.5 m long.

Take the saturation temperature of n-propanol at 2.1 bar as 118°C. The other physical properties required can be found in the literature, or estimated.

- **12.8.** Design a vertical shell and tube condenser for the duty given in question 12.7. Use the same preferred tube size.
- **12.9.** In the manufacture of methyl ethyl ketone (MEK) from 2-butanol, the reactor products are precooled and then partially condensed in a shell and tube exchanger. A typical analysis of the stream entering the condenser is, mol fractions: MEK 0.47, unreacted alcohol 0.06, hydrogen 0.47. Only 85 per cent of the MEK and alcohol are condensed. The hydrogen is non-condensable.

The vapours enter the condenser at 125°C and the condensate and uncondensed material leave at 27°C. The condenser pressure is maintained at 1.1 bara.

Make a preliminary design of this condenser, for a feed rate of 1500 kg/h. Chilled water will be used as the coolant, at an inlet temperature of  $10^{\circ}$ C and allowable temperature rise of  $30^{\circ}$ C.

Any of the physical properties of the components not available in Appendix D, or the general literature, should be estimated.

**12.10.** A vertical thermosyphon reboiler is required for a column. The liquid at the base of the column is essentially pure n-butane. A vapour rate of 5 kg/s is required. The pressure at the base of the column is 20.9 bar. Saturated steam at 5 bar will be used for heating.

Estimate the number of 25 mm outside diameter, 22 mm inside diameter, 4 m long, tubes needed.

At 20.9 bar the saturation temperature of n-butane is 117°C and the heat of vaporisation 828 kJ/kg.

**12.11.** An immersed bundle vaporiser is to be used to supply chlorine vapour to a chlorination reactor, at a rate of 10,000 kg/h. The chlorine vapour is required at 5 bar pressure. The minimum temperature of the chlorine feed will be 10°C. Hot water at 50°C is available for heating. The pressure drop on the water side must not exceed 0.8 bar.

Design a vaporiser for this duty. Use stainless steel U-tubes, 6 m long, 21 mm inside diameter, 25 mm outside diameter, on a square pitch of 40 mm.

The physical properties of chlorine at 5 bar are:

saturation temperature 10°C, heat of vaporisation 260 kJ/kg, specific heat 0.99 kJkg<sup>-1</sup>°C<sup>-1</sup>, thermal conductivity 0.13 Wm<sup>-1</sup>°C<sup>-1</sup>, density 1440 kg/m<sup>3</sup>, viscosity 0.3 mN m<sup>-2</sup>s, surface tension 0.013 N/m, vapour density 16.3 kg/m<sup>3</sup>. The vapour pressure can be estimated from the equation:

$$Ln(P) = 9.34 - 1978/(T + 246);$$
 P bar,  $T^{\circ}C$ 

**12.12.** There is a requirement to cool 200,000 kg/h of a dilute solution of potassium carbonate from 70 to 30°C. Cooling water will be used for cooling, with inlet and outlet temperatures of 20 and 60°C. A gasketed-plate heat exchanger is available with the following specification:

Number of plates 329.

Effective plate dimensions: length 1.5 m, width 0.5 m, thickness 0.75 mm.

Channel width 3 mm.

Flow arrangement two pass: two pass.

Port diameters 150 mm.

Check if this exchanger is likely to be suitable for the thermal duty required, and estimate the pressure drop for each stream.

Take the physical properties of the dilute potassium carbonate solution to be the same as those for water.

#### CHAPTER 13

# Mechanical Design of Process Equipment

#### 13.1. INTRODUCTION

This chapter covers those aspects of the mechanical design of chemical plant that are of particular interest to chemical engineers. The main topic considered is the design of pressure vessels. The design of storage tanks, centrifuges and heat-exchanger tube sheets are also discussed briefly.

The chemical engineer will not usually be called on to undertake the detailed mechanical design of a pressure vessel. Vessel design is a specialised subject, and will be carried out by mechanical engineers who are conversant with the current design codes and practices, and methods of stress analysis. However, the chemical engineer will be responsible for developing and specifying the basic design information for a particular vessel, and needs to have a general appreciation of pressure vessel design to work effectively with the specialist designer.

The basic data needed by the specialist designer will be:

- 1. Vessel function.
- 2. Process materials and services.
- 3. Operating and design temperature and pressure.
- 4. Materials of construction.
- 5. Vessel dimensions and orientation.
- 6. Type of vessel heads to be used.
- 7. Openings and connections required.
- 8. Specification of heating and cooling jackets or coils.
- 9. Type of agitator.
- 10. Specification of internal fittings.

A data sheet for pressure vessel design is given in Appendix H.

There is no strict definition of what constitutes a pressure vessel, but it is generally accepted that any closed vessel over 150 mm diameter subject to a pressure difference of more than 1 bar should be designed as a pressure vessel.

It is not possible to give a completely comprehensive account of vessel design in one chapter. The design methods and data given should be sufficient for the preliminary design of conventional vessels. Sufficient for the chemical engineer to check the feasibility of a proposed equipment design; to estimate the vessel cost for an economic analysis; and to determine the vessel's general proportions and weight for plant layout purposes. For a more detailed account of pressure vessel design the reader should refer to the books by

Singh and Soler (1984), Escoe (1994), Moss (1987), and Jawad and Farr (1989). Other useful books on the mechanical design of process equipment are listed in the bibliography at the end of this chapter.

An elementary understanding of the principles of the "Strength of Materials" (Mechanics of Solids) will be needed to follow this chapter. Readers who are not familiar with the subject should consult one of the many textbooks available; such as those by Ryder (1969), Case and Chilver (1971), Timoshenko and Young (1968), Faupel and Fisher (1981), Neathing (1982) and Hearn (1985).

#### 13.1.1. Classification of pressure vessels

For the purposes of design and analysis, pressure vessels are sub-divided into two classes depending on the ratio of the wall thickness to vessel diameter: thin-walled vessels, with a thickness ratio of less than 1:10; and thick-walled above this ratio.

The principal stresses (see Section 13.3.1) acting at a point in the wall of a vessel, due to a pressure load, are shown in Figure 13.1. If the wall is thin, the radial stress  $\sigma_3$  will be small and can be neglected in comparison with the other stresses, and the longitudinal and circumferential stresses  $\sigma_1$  and  $\sigma_2$  can be taken as constant over the wall thickness. In a thick wall, the magnitude of the radial stress will be significant, and the circumferential stress will vary across the wall. The majority of the vessels used in the chemical and allied industries are classified as thin-walled vessels. Thick-walled vessels are used for high pressures, and are discussed in Section 13.15.

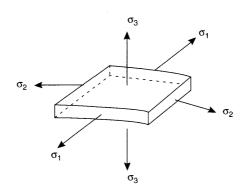



Figure 13.1. Principal stresses in pressure-vessel wall

## 13.2. PRESSURE VESSEL CODES AND STANDARDS

In all the major industrialised countries the design and fabrication of thin-walled pressure vessels is covered by national standards and codes of practice. A brief summary of the European, American and Japanese codes is given in *Hydrocarbon Processing* (1978); see also, Jawad and Farr (1989). In many countries the codes and standards are legally enforceable.

In the United Kingdom, though not a statutory requirement, all conventional pressure vessels for use in the chemical and allied industries will invariably be designed and fabricated in accordance with the British Standard specification for fusion-welded pressure vessels, BS 5500; or an equivalent code, such as the American Society of Mechanical Engineers code, Section VIII (the "ASME" code). The codes and standards cover design, materials of construction, fabrication (manufacture and workmanship), inspection and testing; and form the basis of agreement between the manufacturer and customer, and the customer's insurance company.

The current (1997) edition of BS 5500 covers vessels fabricated in carbon and alloy steels, and aluminium. The design of vessels in reinforced plastics is covered by BS 4994.

The United States, ASME code, is divided into sections; which cover unfired vessels, boilers, nuclear reactor vessels, and vessels constructed of fibre-glass-reinforced plastics. A comprehensive review of the ASME code is given by Chuse (1977) and Yokell (1986); see also, Perry *et al.* (1997).

The national codes and standards dictate the minimum requirements, and give general guidance for design and construction; any extension beyond the minimum code requirement will be determined by agreement between the manufacturer and customer.

The codes and standards are drawn up by committees of engineers experienced in vessel design and manufacturing techniques; and are a blend of theory, experiment and experience. They periodically are reviewed, and revisions issued to keep abreast of developments in design, stress analysis, fabrication and testing. The latest version of the appropriate national code or standard should always be consulted before undertaking the design of any pressure vessel.

Computer programs to aid in the design of vessels to BS 5500 and the ASME code are available from several commercial organisations; such as the Engineering Standards Data Unit in the United Kingdom.

#### 13.3. FUNDAMENTAL PRINCIPLES AND EQUATIONS

This section has been included to provide a basic understanding of the fundamental principles that underlie the design equations given in the sections that follow. The derivation of the equations is given in outline only. A full discussion of the topics covered can be found in any text on the "Strength of Materials".

# 13.3.1. Principal stresses

The state of stress at a point in a structural member under a complex system of loading is described by the magnitude and direction of the principal stresses. The principal stresses are the maximum values of the normal stresses at the point; which act on planes on which the shear stress is zero. In a two-dimensional stress system, Figure 13.2, the principal stresses at any point are related to the normal stresses in the x and y directions  $\sigma_x$  and  $\sigma_y$  and the shear stress  $\tau_{xy}$  at the point by the following equation:

Principal stresses, 
$$\sigma_1$$
,  $\sigma_2 = \frac{1}{2}(\sigma_y + \sigma_x) \pm \frac{1}{2}\sqrt{[(\sigma_y - \sigma_x)^2 + 4\tau_{xy}^2]}$  (13.1)

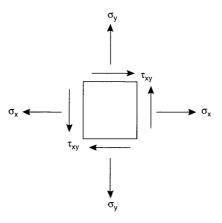



Figure 13.2. Two-dimensional stress system

The maximum shear stress at the point is equal to half the algebraic difference between the principal stresses:

Maximum shear stress = 
$$\frac{1}{2}(\sigma_1 - \sigma_2)$$
 (13.2)

Compressive stresses are conventionally taken as negative; tensile as positive.

#### 13.3.2. Theories of failure

The failure of a simple structural element under unidirectional stress (tensile or compressive) is easy to relate to the tensile strength of the material, as determined in a standard tensile test, but for components subjected to combined stresses (normal and shear stress) the position is not so simple, and several theories of failure have been proposed. The three theories most commonly used are described below:

Maximum principal stress theory: which postulates that a member will fail when one of the principal stresses reaches the failure value in simple tension,  $\sigma'_e$ . The failure point in a simple tension is taken as the yield-point stress, or the tensile strength of the material, divided by a suitable factor of safety.

Maximum shear stress theory: which postulates that failure will occur in a complex stress system when the maximum shear stress reaches the value of the shear stress at failure in simple tension.

For a system of combined stresses there are three shear stresses maxima:

$$\tau_1 = \frac{\sigma_1 - \sigma_2}{2} \tag{13.3a}$$

$$\tau_2 = \frac{\sigma_2 - \sigma_3}{2} \tag{13.3b}$$

$$\tau_3 = \frac{\sigma_3 - \sigma_1}{2} \tag{13.3c}$$

(13.4)

In the tensile test,  $au_e = \frac{\sigma_e'}{2}$ 

The maximum shear stress will depend on the sign of the principal stresses as well as their magnitude, and in a two-dimensional stress system, such as that in the wall of a thin-walled pressure vessel, the maximum value of the shear stress may be that given by putting  $\sigma_3 = 0$  in equations 13.3b and c.

The maximum shear stress theory is often called Tresca's, or Guest's, theory.

Maximum strain energy theory: which postulates that failure will occur in a complex stress system when the total strain energy per unit volume reaches the value at which failure occurs in simple tension.

The maximum shear-stress theory has been found to be suitable for predicting the failure of ductile materials under complex loading and is the criterion normally used in the pressure-vessel design.

## 13.3.3. Elastic stability

Under certain loading conditions failure of a structure can occur not through gross yielding or plastic failure, but by buckling, or wrinkling. Buckling results in a gross and sudden change of shape of the structure; unlike failure by plastic yielding, where the structure retains the same basic shape. This mode of failure will occur when the structure is not elastically stable: when it lacks sufficient stiffness, or rigidity, to withstand the load. The stiffness of a structural member is dependent not on the basic strength of the material but on its elastic properties (E and v) and the cross-sectional shape of the member.

The classic example of failure due to elastic instability is the buckling of tall thin columns (struts), which is described in any elementary text on the "Strength of Materials".

For a structure that is likely to fail by buckling there will be a certain critical value of load below which the structure is stable; if this value is exceeded catastrophic failure through buckling can occur.

The walls of pressure vessels are usually relatively thin compared with the other dimensions and can fail by buckling under compressive loads.

Elastic buckling is the decisive criterion in the design of thin-walled vessels under external pressure.

#### 13.3.4. Membrane stresses in shells of revolution

A shell of revolution is the form swept out by a line or curve rotated about an axis. (A solid of revolution is formed by rotating an area about an axis.) Most process vessels are made up from shells of revolution: cylindrical and conical sections; and hemispherical, ellipsoidal and torispherical heads; Figure 13.3.

The walls of thin vessels can be considered to be "membranes"; supporting loads without significant bending or shear stresses; similar to the walls of a balloon.

The analysis of the membrane stresses induced in shells of revolution by internal pressure gives a basis for determining the minimum wall thickness required for vessel shells. The actual thickness required will also depend on the stresses arising from the other loads to which the vessel is subjected.

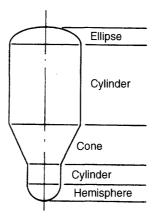



Figure 13.3. Typical vessel shapes

Consider the shell of revolution of general shape shown in Figure 13.4, under a loading that is rotationally symmetric; that is, the load per unit area (pressure) on the shell is constant round the circumference, but not necessarily the same from top to bottom.

Let P = pressure,

t =thickness of shell.

 $\sigma_1$  = the meridional (longitudinal) stress, the stress acting along a meridian,

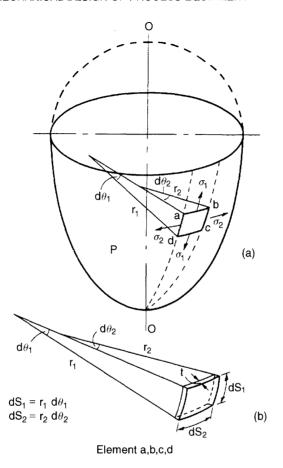
 $\sigma_2$  = the circumferential or tangential stress, the stress acting along parallel circles (often called the hoop stress),

 $r_1$  = the meridional radius of curvature,

 $r_2$  = circumferential radius of curvature.

*Note*: the vessel has a double curvature; the values of  $r_1$  and  $r_2$  are determined by the shape.

Consider the forces acting on the element defined by the points a, b, c, d. Then the normal component (component acting at right angles to the surface) of the pressure force on the element


$$= P\left[2r_1 \sin\left(\frac{d\theta_1}{2}\right)\right] \left[2r_2 \sin\left(\frac{d\theta_2}{2}\right)\right]$$

This force is resisted by the normal component of the forces associated with the membrane stresses in the walls of the vessel (given by, force = stress  $\times$  area)

$$=2\sigma_2 t dS_1 \sin\left(\frac{d\theta_2}{2}\right) + 2\sigma_1 t dS_2 \sin\left(\frac{d\theta_1}{2}\right)$$

Equating these forces and simplifying, and noting that in the limit  $d\theta/2 \rightarrow dS/2r$ , and  $\sin d\theta \rightarrow d\theta$ , gives:

$$\frac{\sigma_1}{r_1} + \frac{\sigma_2}{r_2} = \frac{P}{t} \tag{13.5}$$



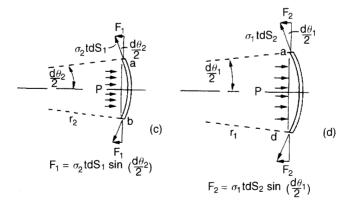



Figure 13.4(a)(b). Stress in a shell of revolution (c)(d). Forces acting on sides of element abcd

An expression for the meridional stress  $\sigma_1$  can be obtained by considering the equilibrium of the forces acting about any circumferential line, Figure 13.5. The vertical component of the pressure force

 $= P\pi(r_2\sin\theta)^2$ 

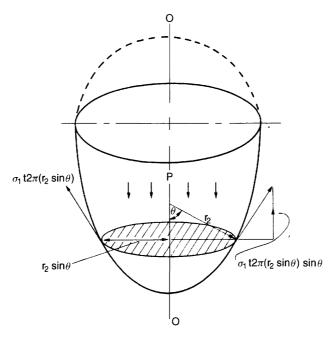



Figure 13.5. Meridional stress, force acting at a horizontal plane

This is balanced by the vertical component of the force due to the meridional stress acting in the ring of the wall of the vessel

$$=2\sigma_1 t\pi(r_2\sin\theta)\sin\theta$$

Equating these forces gives:

$$\sigma_1 = \frac{Pr_2}{2t} \tag{13.6}$$

Equations 13.5 and 13.6 are completely general for any shell of revolution.

# Cylinder (Figure 13.6a)

A cylinder is swept out by the rotation of a line parallel to the axis of revolution, so:

$$r_1 = \infty$$

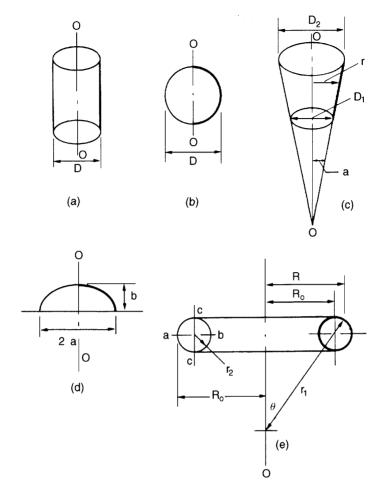



Figure 13.6. Shells of revolution

$$r_2 = \frac{D}{2}$$

where D is the cylinder diameter.

Substitution in equations 13.5 and 13.6 gives:

$$\sigma_2 = \frac{PD}{2t} \tag{13.7}$$

$$\sigma_1 = \frac{PD}{4t} \tag{13.8}$$

## Sphere (Figure 13.6b)

$$r_1 = r_2 = \frac{D}{2}$$

hence:

$$\sigma_1 = \sigma_2 = \frac{PD}{4t} \tag{13.9}$$

## Cone (Figure 13.6c)

A cone is swept out by a straight line inclined at an angle  $\alpha$  to the axis.

$$r_1 = \infty$$

$$r_2 = \frac{r}{\cos \alpha}$$

substitution in equations 13.5 and 13.6 gives:

$$\sigma_2 = \frac{Pr}{t\cos\alpha} \tag{13.10}$$

$$\sigma_1 = \frac{Pr}{2t\cos\alpha} \tag{13.11}$$

The maximum values will occur at  $r = D_2/2$ .

## Ellipsoid (Figure 13.6d)

For an ellipse with major axis 2a and minor axis 2b, it can be shown that (see any standard geometry text):

$$r_1 = \frac{r_2^3 b^2}{a^4}$$

From equations 13.5 and 13.6

$$\sigma_1 = \frac{Pr_2}{2t}$$
 (equation 13.6)

$$\sigma_2 = \frac{P}{t} \left[ r_2 - \frac{r_2^2}{2r_1} \right] \tag{13.12}$$

At the crown (top)

$$r_1 = r_2 = \frac{a^2}{b}$$

$$\sigma_1 = \sigma_2 = \frac{Pa^2}{2tb}$$
(13.13)

At the equator (bottom)  $r_2 = a$ , so  $r_1 = b^2/a$ 

$$\sigma_1 = \frac{Pa}{2t} \tag{13.13}$$

$$\sigma_2 = \frac{P}{t} \left[ a - \frac{a^2}{2b^2/a} \right] = \frac{Pa}{t} \left[ 1 - \frac{1}{2} \frac{a^2}{b^2} \right]$$
 (13.14)

It should be noted that if  $\frac{1}{2}(a/b)^2 > 1$ ,  $\sigma_2$  will be negative (compressive) and the shell could fail by buckling. This consideration places a limit on the practical proportions of ellipsoidal heads.

## Torus (Figure 13.6e)

A torus is formed by rotating a circle, radius  $r_2$ , about an axis.

$$\sigma_{1} = \frac{Pr_{2}}{2t}$$
 (equation 13.6)  

$$r_{1} = \frac{R}{\sin \theta} = \frac{R_{0} + r_{2} \sin \theta}{\sin \theta}$$
  

$$\sigma_{2} = \frac{Pr_{2}}{t} \left[ 1 - \frac{r_{2} \sin \theta}{2(R_{0} + r_{2} \sin \theta)} \right]$$
 (13.15)

and

On the centre line of the torus, point c,  $\theta = 0$  and

$$\sigma_2 = \frac{Pr_2}{t} \tag{13.16}$$

At the outer edge, point a,  $\theta = \pi/2$ ,  $\sin \theta = 1$  and

$$\sigma_2 = \frac{Pr_2}{2t} \left[ \frac{2R_0 + r_2}{R_0 + r_2} \right] \tag{13.17}$$

the minimum value.

At the inner edge, point b,  $\theta = 3\pi/2$ ,  $\sin \theta = -1$  and

$$\sigma_2 = \frac{Pr_2}{2t} \left[ \frac{2R_0 - r_2}{R_0 - r_2} \right] \tag{13.18}$$

the maximum value.

So  $\sigma_2$  varies from a maximum at the inner edge to a minimum at the outer edge.

# Torispherical heads

A torispherical shape, which is often used as the end closure of cylindrical vessels, is formed from part of a torus and part of a sphere, Figure 13.7. The shape is close to that of an ellipse but is easier and cheaper to fabricate.

In Figure 13.7  $R_k$  is the knuckle radius (the radius of the torus) and  $R_c$  the crown radius (the radius of the sphere). For the spherical portion:

$$\sigma_1 = \sigma_2 = \frac{PR_c}{2t} \tag{13.19}$$

For the torus:

$$\sigma_1 = \frac{PR_k}{2t} \tag{13.20}$$

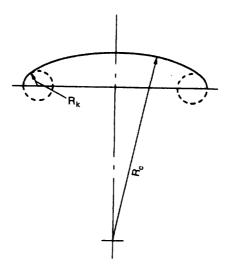



Figure 13.7. Torisphere

 $\sigma_2$  depends on the location, and is a function of  $R_c$  and  $R_k$ ; it can be calculated from equations 13.15 and 13.9.

The ratio of the knuckle radius to crown radius should be made not less than 6/100 to avoid buckling. The stress will be higher in the torus section than the spherical section.

## 13.3.5. Flat plates

Flat plates are used as covers for manholes, as blind flanges, and for the ends of small diameter and low pressure vessels.

For a uniformly loaded circular plate supported at its edges, the slope  $\phi$  at any radius x is given by:

$$\phi = -\frac{\mathrm{d}w}{\mathrm{d}x} = -\frac{1}{\mathbf{D}} \frac{Px^3}{16} + \frac{C_1x}{2} + \frac{C_2}{x}$$
 (13.21)

(The derivation of this equation can be found in any text on the strength of materials.) Integration gives the deflection w:

$$w = \frac{Px^4}{64\mathbf{D}} - C_1 \frac{x^2}{4} - C_2 \ln x + C_3 \tag{13.22}$$

where P = intensity of loading (pressure),

x =radial distance to point of interest,

**D** = flexual rigidity of plate =  $(Et^3)/(12(1-v^2))$ ,

t = plate thickness,

 $\nu$  = Poisson's ratio for the material,

E = modulus of elasticity of the material (Young's modulus).

 $C_1$ ,  $C_2$ ,  $C_3$  are constants of integration which can be obtained from the boundary conditions at the edge of the plate.

Two limiting situations are possible:

- 1. When the edge of the plate is rigidly clamped, not free to rotate; which corresponds to a heavy flange, or a strong joint.
- 2. When the edge is free to rotate (simply supported); corresponding to a weak joint, or light flange.

## 1. Clamped edges (Figure 13.8a)

The edge (boundary) conditions are:

$$\phi = 0 \text{ at } x = 0$$

$$\phi = 0 \text{ at } x = a$$

$$w = 0 \text{ at } x = a$$

where a is the radius of the plate.

Which gives:

$$C_2 = 0$$
,  $C_1 = \frac{Pa^2}{8\mathbf{D}}$ , and  $C_3 = \frac{Pa^4}{64\mathbf{D}}$ 

hence

$$\phi = \frac{Px}{16\mathbf{D}}(a^2 - x^2) \tag{13.23}$$

and

$$w = \frac{P}{64\mathbf{D}}(x^2 - a^2)^2 \tag{13.24}$$

The maximum deflection will occur at the centre of the plate at x = 0

$$\hat{w} = \frac{Pa^4}{64\mathbf{D}} \tag{13.25}$$

The bending moments per unit length due to the pressure load are related to the slope and deflection by:

$$M_1 = \mathbf{D} \left[ \frac{\mathrm{d}\phi}{\mathrm{d}x} + \nu \frac{\phi}{x} \right] \tag{13.26}$$

$$M_2 = \mathbf{D} \left[ \frac{\phi}{x} + \nu \frac{\mathrm{d}\phi}{\mathrm{d}x} \right] \tag{13.27}$$

Where  $M_1$  is the moment acting along cylindrical sections, and  $M_2$  that acting along diametrical sections.

Substituting for  $\phi$  and  $d\phi/dx$  in equations 13.26 and 13.27 gives:

$$M_1 = \frac{P}{16} [a^2 (1 + \nu) - x^2 (3 + \nu)]$$
 (13.28)

$$M_2 = \frac{P}{16} [a^2(1+\nu) - x^2(1+3\nu)]$$
 (13.29)

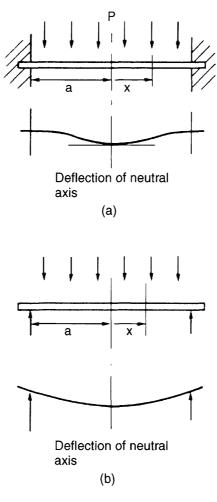



Figure 13.8. Flat circular plates (a) Clamped edges (b) Simply supported

The maximum values will occur at the edge of the plate, x = a.

$$\hat{M}_1 = -\frac{Pa^2}{8}, \quad \hat{M}_2 = -v\frac{Pa^2}{8}$$

The bending stress is given by:

$$\sigma_b = \frac{M_1}{I'} \times \frac{t}{2}$$

where  $I' = \text{second moment of area per unit length} = t^3/12$ , hence

$$\hat{\sigma}_b = \frac{6\hat{M}_1}{t^2} = \frac{3}{4} \frac{Pa^2}{t^2} \tag{13.30}$$

## 2. Simply supported plate (Figure 13.8b)

The edge (boundary) conditions are:

$$\phi = 0$$
 at  $x = 0$   
 $w = 0$  at  $x = a$   
 $M_1 = 0$  at  $x = a$  (free to rotate)

which gives  $C_2$  and  $C_3 = 0$ .

Hence

$$\phi = -\frac{1}{\mathbf{D}} \frac{Px^3}{16} + \frac{C_1 x}{2}$$

and

$$\frac{\mathrm{d}\phi}{\mathrm{d}x} = -\frac{1}{\mathbf{D}} \left[ \frac{3Px^2}{16} \right] + \frac{C_1}{2}$$

Substituting these values in equation 13.26, and equating to zero at x = a, gives:

$$C_1 = \frac{Pa^2}{8\mathbf{D}} \frac{(3+\nu)}{(1+\nu)}$$

and hence

$$M_1 = \frac{P}{16}(3+\nu)(a^2 - x^2) \tag{13.31}$$

The maximum bending moment will occur at the centre, where  $M_1 = M_2$ 

so

$$\hat{M}_1 = \hat{M}_2 = \frac{P(3+\nu)a^2}{16} \tag{13.32}$$

and

$$\hat{\sigma}_b = \frac{6\hat{M}_1}{t^2} = \frac{3}{8}(3+\nu)\frac{Pa^2}{t^2}$$
 (13.33)

# General equation for flat plates

A general equation for the thickness of a flat plate required to resist a given pressure load can be written in the form:

$$t = CD\sqrt{\frac{P}{f}} \tag{13.34}$$

where f = the maximum allowable stress (the design stress),

D = the effective plate diameter,

C = a constant, which depends on the edge support.

The limiting value of C can be obtained from equations 13.30 and 13.33. Taking Poisson's ratio as 0.3, a typical value for steels, then if the edge can be taken as completely rigid C = 0.43, and if it is essentially free to rotate C = 0.56.

#### 13.3.6. Dilation of vessels

Under internal pressure a vessel will expand slightly. The radial growth can be calculated from the elastic strain in the radial direction. The principal strains in a two-dimensional system are related to the principal stresses by:

$$\varepsilon_1 = \frac{1}{E}(\sigma_1 - \nu \sigma_2) \tag{13.35}$$

$$\varepsilon_2 = \frac{1}{E}(\sigma_2 - \nu \sigma_1) \tag{13.36}$$

The radial (diametrical strain) will be the same as the circumferential strain  $\varepsilon_2$ . For any shell of revolution the dilation can be found by substituting the appropriate expressions for the circumferential and meridional stresses in equation 13.36.

The diametrical dilation  $\Delta = D\varepsilon_1$ .

For a cylinder

$$\sigma_1 = \frac{PD}{4t}$$
$$\sigma_2 = \frac{PD}{2t}$$

substitution in equation 13.36 gives:

$$\Delta_c = \frac{PD^2}{4tE}(2 - \nu) \tag{13.37}$$

For a sphere (or hemisphere)

 $\sigma_1 = \sigma_2 = \frac{PD}{4t}$   $\Delta_s = \frac{PD^2}{4tF}(1 - \nu) \tag{13.38}$ 

and

So for a cylinder closed by a hemispherical head of the same thickness the difference in dilation of the two sections, if they were free to expand separately, would be:

$$\Delta_c - \Delta_s = \frac{PD^2}{4tE}$$

# 13.3.7. Secondary stresses

In the stress analysis of pressure vessels and pressure vessel components stresses are classified as primary or secondary. Primary stresses can be defined as those stresses that are necessary to satisfy the conditions of static equilibrium. The membrane stresses induced by the applied pressure and the bending stresses due to wind loads are examples of primary stresses. Primary stresses are not self-limiting; if they exceed the yield point of the material, gross distortion, and in the extreme situation, failure of the vessel will occur.

Secondary stresses are those stresses that arise from the constraint of adjacent parts of the vessel. Secondary stresses are self-limiting; local yielding or slight distortion will satisfy the conditions causing the stress, and failure would not be expected to occur in one application of the loading. The "thermal stress" set up by the differential expansion of parts of the vessel, due to different temperatures or the use of different materials, is an example of a secondary stress. The discontinuity that occurs between the head and the cylindrical section of a vessel is a major source of secondary stress. If free, the dilation of the head would be different from that of the cylindrical section (see Section 13.2.6); they are constrained to the same dilation by the welded joint between the two parts. The induced bending moment and shear force due to the constraint give rise to secondary bending and shear stresses at the junction. The magnitude of these discontinuity stresses can be estimated by analogy with the behaviour of beams on elastic foundations; see Hetenyi (1958) and Harvey (1974). The estimation of the stresses arising from discontinuities is covered in the books by Bednar (1986), and Jawad and Farr (1989).

Other sources of secondary stresses are the constraints arising at flanges, supports, and the change of section due to reinforcement at a nozzle or opening (see Section 13.6).

Though secondary stresses do not affect the "bursting strength" of the vessel, they are an important consideration when the vessel is subject to repeated pressure loading. If local yielding has occurred, residual stress will remain when the pressure load is removed, and repeated pressure cycling can lead to fatigue failure.

# 13.4. GENERAL DESIGN CONSIDERATIONS: PRESSURE VESSELS

# 13.4.1. Design pressure

A vessel must be designed to withstand the maximum pressure to which it is likely to be subjected in operation.

For vessels under internal pressure, the design pressure is normally taken as the pressure at which the relief device is set. This will normally be 5 to 10 per cent above the normal working pressure, to avoid spurious operation during minor process upsets. When deciding the design pressure, the hydrostatic pressure in the base of the column should be added to the operating pressure, if significant.

Vessels subject to external pressure should be designed to resist the maximum differential pressure that is likely to occur in service. Vessels likely to be subjected to vacuum should be designed for a full negative pressure of 1 bar, unless fitted with an effective, and reliable, vacuum breaker.

# 13.4.2. Design temperature

The strength of metals decreases with increasing temperature (see Chapter 7) so the maximum allowable design stress will depend on the material temperature. The design temperature at which the design stress is evaluated should be taken as the maximum working temperature of the material, with due allowance for any uncertainty involved in predicting vessel wall temperatures.

#### 13.4.3. Materials

Pressure vessels are constructed from plain carbon steels, low and high alloy steels, other alloys, clad plate, and reinforced plastics.

Selection of a suitable material must take into account the suitability of the material for fabrication (particularly welding) as well as the compatibility of the material with the process environment.

The pressure vessel design codes and standards include lists of acceptable materials; in accordance with the appropriate material standards.

In the United Kingdom, carbon and alloy steels for pressure vessels are covered by BS 1501 plates, BS 1502 section and bars, BS forgings, and BS 1504 castings.

## 13.4.4. Design stress (nominal design strength)

For design purposes it is necessary to decide a value for the maximum allowable stress (nominal design strength) that can be accepted in the material of construction.

This is determined by applying a suitable "design stress factor" (factor of safety) to the maximum stress that the material could be expected to withstand without failure under standard test conditions. The design stress factor allows for any uncertainty in the design methods, the loading, the quality of the materials, and the workmanship.

For materials not subject to high temperatures the design stress is based on the yield stress (or proof stress), or the tensile strength (ultimate tensile stress) of the material at the design temperature.

For materials subject to conditions at which the creep is likely to be a consideration, the design stress is based on the creep characteristics of the material: the average stress to produce rupture after  $10^5$  hours, or the average stress to produce a 1 per cent strain after  $10^5$  hours, at the design temperature. Typical design stress factors for pressure components are shown in Table 13.1.

| Property                    |                                           | Material                          |                       |  |  |  |
|-----------------------------|-------------------------------------------|-----------------------------------|-----------------------|--|--|--|
|                             | Carbon Carbon-manganese, low alloy steels | Austenitic<br>stainless<br>steels | Non-ferrous<br>metals |  |  |  |
| Minimum yield               |                                           |                                   |                       |  |  |  |
| stress or 0.2 per           |                                           |                                   |                       |  |  |  |
| cent proof stress,          |                                           |                                   |                       |  |  |  |
| at the design               |                                           |                                   |                       |  |  |  |
| temperature                 | 1.5                                       | 1.5                               | 1.5                   |  |  |  |
| Minimum tensile             |                                           |                                   |                       |  |  |  |
| strength, at room           |                                           |                                   |                       |  |  |  |
| temperature                 | 2.35                                      | 2.5                               | 4.0                   |  |  |  |
| Mean stress to              |                                           |                                   |                       |  |  |  |
| produce rupture             |                                           |                                   |                       |  |  |  |
| at 10 <sup>5</sup> h at the |                                           |                                   |                       |  |  |  |
| design temperature          | 1.5                                       | 1.5                               | 1.0                   |  |  |  |

Table 13.1. Design stress factors

In the British Standard, BS 5500, the nominal design strengths (allowable design stresses), for use with the design methods given, are listed in the standard, for the range of materials covered by the standard. The standard should be consulted for the principles and design stress factors used in determining the nominal design strengths.

Typical design stress values for some common materials are shown in Table 13.2. These may be used for preliminary designs. The standards and codes should be consulted for the values to be used for detailed vessel design.

Table 13.2. Typical design stresses for plate (The appropriate material standards should be consulted for particular grades and plate thicknesses)

| Material                     | Tensile                       |         | Г   | esign s | stress a | t tempe | rature | °C (N/ı | nm <sup>2</sup> ) |     |     |
|------------------------------|-------------------------------|---------|-----|---------|----------|---------|--------|---------|-------------------|-----|-----|
|                              | strength (N/mm <sup>2</sup> ) | 0 to 50 | 100 | 150     | 200      | 250     | 300    | 350     | 400               | 450 | 500 |
| Carbon steel                 |                               |         |     |         |          |         |        |         |                   |     |     |
| (semi-killed or              |                               |         |     |         |          |         |        |         |                   |     |     |
| silicon killed)              | 360                           | 135     | 125 | 115     | 105      | 95      | 85     | 80      | 70                |     |     |
| Carbon-manganese steel       |                               |         |     |         |          |         |        |         |                   |     |     |
| (semi-killed or              |                               |         |     |         |          |         |        |         |                   |     |     |
| silicon killed)              | 460                           | 180     | 170 | 150     | 140      | 130     | 115    | 105     | 100               |     |     |
| Carbon-molybdenum steel, 0.5 |                               |         |     |         |          |         |        |         |                   |     |     |
| per cent Mo                  | 450                           | 180     | 170 | 145     | 140      | 130     | 120    | 110     | 110               |     |     |
| Low alloy steel              |                               |         |     |         |          |         |        |         |                   |     |     |
| (Ni, Cr, Mo, V)              | 550                           | 240     | 240 | 240     | 240      | 240     | 235    | 230     | 220               | 190 | 170 |
| Stainless steel<br>18Cr/8Ni  |                               |         |     |         |          |         |        |         |                   |     |     |
| unstabilised (304)           | 510                           | 165     | 145 | 130     | 115      | 110     | 105    | 100     | 100               | 95  | 90  |
| Stainless steel<br>18Cr/8Ni  |                               |         |     |         |          |         |        |         |                   |     |     |
| Ti stabilised (321)          | 540                           | 165     | 150 | 140     | 135      | 130     | 130    | 125     | 120               | 120 | 115 |
| Stainless steel<br>18Cr/8Ni  |                               |         |     |         |          |         |        |         |                   |     |     |
| Mo $2\frac{1}{2}$ per cent   |                               |         |     |         |          |         |        |         |                   |     |     |
| (316)                        | 520                           | 175     | 150 | 135     | 120      | 115     | 110    | 105     | 105               | 100 | 95  |

## 13.4.5. Welded joint efficiency, and construction categories

The strength of a welded joint will depend on the type of joint and the quality of the welding.

The soundness of welds is checked by visual inspection and by non-destructive testing (radiography).

The possible lower strength of a welded joint compared with the virgin plate is usually allowed for in design by multiplying the allowable design stress for the material by a "welded joint factor" J. The value of the joint factor used in design will depend on the type of joint and amount of radiography required by the design code. Typical values are shown in Table 13.3. Taking the factor as 1.0 implies that the joint is equally as strong as the virgin plate; this is achieved by radiographing the complete weld length, and cutting out and remaking any defects. The use of lower joint factors in design, though saving costs on radiography, will result in a thicker, heavier, vessel, and the designer must balance any cost savings on inspection and fabrication against the increased cost of materials.

| Type of joint                              | Degree of radiography |      |      |  |  |
|--------------------------------------------|-----------------------|------|------|--|--|
|                                            | 100<br>per cent       | spot | none |  |  |
| Double-welded butt or equivalent           | 1.0                   | 0.85 | 0.7  |  |  |
| Single-weld butt joint with bonding strips | 0.9                   | 0.80 | 0.65 |  |  |

Table 13.3. Maximum allowable joint efficiency

The national codes and standards divide vessel construction into different categories, depending on the amount of non-destructive testing required. The higher categories require 100 per cent radiography of the welds, and allow the use of highest values for the weld-joint factors. The lower-quality categories require less radiography, but allow only lower joint-efficiency factors, and place restrictions on the plate thickness and type of materials that can be used. The highest category will invariably be specified for process-plant pressure vessels.

The standards should be consulted to determine the limitations and requirements of the construction categories specified. Welded joint efficiency factors are not used, as such, in the design equations given in BS 5500; instead limitations are placed on the values of the nominal design strength (allowable design stress) for materials in the lower construction category. The standard specifies three construction categories:

Category 1: the highest class, requires 100 per cent non-destructive testing (NDT) of the welds; and allows the use of all materials covered by the standard, with no restriction on the plate thickness.

Category 2: requires less non-destructive testing but places some limitations on the materials which can be used and the maximum plate thickness.

Category 3: the lowest class, requires only visual inspection of the welds, but is restricted to carbon and carbon-manganese steels, and austenitic stainless steel; and limits are placed on the plate thickness and the nominal design stress. For carbon and carbon-manganese steels the plate thickness is restricted to less than 16 mm and the design stress is about half that allowed for categories 1 and 2. For stainless steel the thickness is restricted to less than 25 mm and the allowable design stress is around 80 per cent of that for the other categories.

#### 13.4.6. Corrosion allowance

The "corrosion allowance" is the additional thickness of metal added to allow for material lost by corrosion and erosion, or scaling (see Chapter 7). The allowance to be used should be agreed between the customer and manufacturer. Corrosion is a complex phenomenon, and it is not possible to give specific rules for the estimation of the corrosion allowance required for all circumstances. The allowance should be based on experience with the material of construction under similar service conditions to those for the proposed design. For carbon and low-alloy steels, where severe corrosion is not expected, a minimum allowance of 2.0 mm should be used; where more severe conditions are anticipated this should be increased to 4.0 mm. Most design codes and standards specify a minimum allowance of 1.0 mm.

## 13.4.7. Design loads

A structure must be designed to resist gross plastic deformation and collapse under all the conditions of loading. The loads to which a process vessel will be subject in service are listed below. They can be classified as major loads, that must always be considered in vessel design, and subsidiary loads. Formal stress analysis to determine the effect of the subsidiary loads is only required in the codes and standards where it is not possible to demonstrate the adequacy of the proposed design by other means; such as by comparison with the known behaviour of existing vessels.

## Major loads

- 1. Design pressure: including any significant static head of liquid.
- 2. Maximum weight of the vessel and contents, under operating conditions.
- 3. Maximum weight of the vessel and contents under the hydraulic test conditions.
- 4. Wind loads.
- 5. Earthquake (seismic) loads.
- 6. Loads supported by, or reacting on, the vessel.

## Subsidiary loads

- 1. Local stresses caused by supports, internal structures and connecting pipes.
- 2. Shock loads caused by water hammer, or by surging of the vessel contents.
- 3. Bending moments caused by eccentricity of the centre of the working pressure relative to the neutral axis of the vessel.
- 4. Stresses due to temperature differences and differences in the coefficient expansion of materials.
- 5. Loads caused by fluctuations in temperature and pressure.

A vessel will not be subject to all these loads simultaneously. The designer must determine what combination of possible loads gives the worst situation, and design for that loading condition.

## 13.4.8. Minimum practical wall thickness

There will be a minimum wall thickness required to ensure that any vessel is sufficiently rigid to withstand its own weight, and any incidental loads. As a general guide the wall thickness of any vessel should not be less than the values given below; the values include a corrosion allowance of 2 mm:

| Vessel diameter (m) | Minimum thickness (mm) |
|---------------------|------------------------|
| 1                   | 5                      |
| 1 to 2              | 7                      |
| 2 to 2.5            | 9                      |
| 2.5 to 3.0          | 10                     |
| 3.0 to 3.5          | 12                     |

# 13.5. THE DESIGN OF THIN-WALLED VESSELS UNDER INTERNAL PRESSURE

## 13.5.1. Cylinders and spherical shells

For a cylindrical shell the minimum thickness required to resist internal pressure can be determined from equation 13.7; the cylindrical stress will be the greater of the two principal stresses.

If  $D_i$  is internal diameter and e the minimum thickness required, the mean diameter will be  $(D_i + e)$ ; substituting this for D in equation 13.7 gives:

$$e = \frac{P_i(D_i + e)}{2f}$$

where f is the design stress and  $P_i$  the internal pressure. Rearranging gives:

$$e = \frac{P_i D_i}{2f - P_i} \tag{13.39}$$

This is the form of the equation given in the British Standard, BS 5500.

An equation for the minimum thickness of a sphere can be obtained from equation 13.9:

$$e = \frac{P_i D_i}{4f - P_i} \tag{13.40}$$

The equation for a sphere given in BS 5500 is:

$$e = \frac{P_i D_i}{4f - 1.2P_i} \tag{13.41}$$

The equation given in the British Standard BS 5500 differs slightly from equation 13.40, as it is derived from the formula for thick-walled vessels; see Section 13.15.

If a welded joint factor is used equations 13.39 and 13.40 are written:

$$e = \frac{P_i D_i}{2Jf - P_i} \tag{13.39a}$$

and

$$e = \frac{P_i D_i}{4Jf - 1.2P_i} \tag{13.40b}$$

where J is the joint factor.

Any consistent set of units can be used for equations 13.39a to 13.40b.

#### 13.5.2. Heads and closures

The ends of a cylindrical vessel are closed by heads of various shapes. The principal types used are:

- 1. Flat plates and formed flat heads; Figure 13.9.
- 2. Hemispherical heads; Figure 13.10a.
- 3. Ellipsoidal heads; Figure 13.10b.
- 4. Torispherical heads; Figure 13.10c.

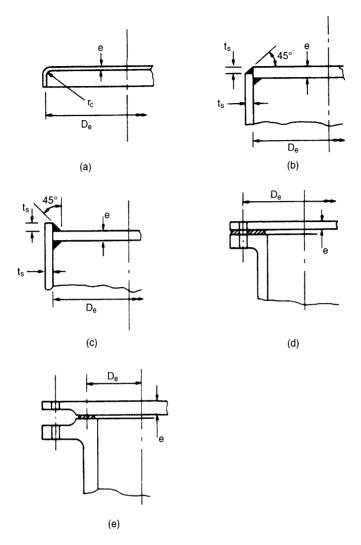



Figure 13.9. Flat-end closures (a) Flanged plate (b) Welded plate (c) Welded plate (d) Bolted cover (e) Bolted cover

Hemispherical, ellipsoidal and torispherical heads are collectively referred to as domed heads. They are formed by pressing or spinning; large diameters are fabricated from formed sections. Torispherical heads are often referred to as dished ends.

The preferred proportions of domed heads are given in the standards and codes.

#### Choice of closure

Flat plates are used as covers for manways, and as the channel covers of heat exchangers. Formed flat ends, known as "flange-only" ends, are manufactured by turning over a flange with a small radius on a flat plate, Figure 13.9a. The corner radius reduces the abrupt

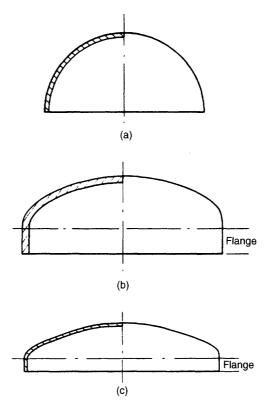



Figure 13.10. Domed heads (a) Hemispherical (b) Ellipsoidal (c) Torispherical

change of shape, at the junction with the cylindrical section; which reduces the local stresses to some extent: "Flange-only" heads are the cheapest type of formed head to manufacture, but their use is limited to low-pressure and small-diameter vessels.

Standard torispherical heads (dished ends) are the most commonly used end closure for vessels up to operating pressures of 15 bar. They can be used for higher pressures, but above 10 bar their cost should be compared with that of an equivalent ellipsoidal head. Above 15 bar an ellipsoidal head will usually prove to be the most economical closure to use.

A hemispherical head is the strongest shape; capable of resisting about twice the pressure of a torispherical head of the same thickness. The cost of forming a hemispherical head will, however, be higher than that for a shallow torispherical head. Hemispherical heads are used for high pressures.

# 13.5.3. Design of flat ends

Though the fabrication cost is low, flat ends are not a structurally efficient form, and very thick plates would be required for high pressures or large diameters.

The design equations used to determine the thickness of flat ends are based on the analysis of stresses in flat plates; Section 13.3.5.

The thickness required will depend on the degree of constraint at the plate periphery. The minimum thickness required is given by:

$$e = C_p D_e \sqrt{\frac{P_i}{f}} \tag{13.42}$$

where  $C_p$  = a design constant, dependent on the edge constraint,

 $D_e$  = nominal plate diameter,

f = design stress.

Any consistent set of units can be used.

Values for the design constant  $C_p$  and the nominal plate diameter  $D_e$  are given in the design codes and standards for various arrangements of flat end closures (BS 5500, clause 3.5.5).

The values of the design constant and nominal diameter for the typical designs shown in Figure 13.9 are given below:

- (a) Flanged-only end, for diameters less than 0.6 m and corner radii at least equal to 0.25e,  $C_p$  can be taken as 0.45;  $D_e$  is equal to  $D_i$ .
- (b, c) Plates welded to the end of the shell with a fillet weld, angle of fillet 45° and depth equal to the plate thickness, take  $C_p$  as 0.55 and  $D_e = D_i$ .
- (d) Bolted cover with a full face gasket (see Section 13.10), take  $C_p = 0.4$  and  $D_e$  equal to the bolt circle diameter.
- (e) Bolted end cover with a narrow-face gasket, take  $C_p = 0.55$  and  $D_e$  equal to the mean diameter of the gasket.

# 13.5.4. Design of domed ends

Design equations and charts for the various types of domed heads are given in the codes and standards and should be used for detailed design. The codes and standards cover both unpierced and pierced heads. Pierced heads are those with openings or connections. The head thickness must be increased to compensate for the weakening effect of the holes where the opening or branch is not locally reinforced (see Section 13.6).

For convenience, simplified design equations are given in this section. These are suitable for the preliminary sizing of unpierced heads and for heads with fully compensated openings or branches.

# Hemispherical heads

It can be seen by examination of equations 13.7 and 13.9, that for equal stress in the cylindrical section and hemispherical head of a vessel the thickness of the head need only be half that of the cylinder. However, as the dilation of the two parts would then be different, discontinuity stresses would be set up at the head and cylinder junction. For no difference in dilation between the two parts (equal diametrical strain) it can be shown that for steels (Poisson's ratio = 0.3) the ratio of the hemispherical head thickness to cylinder

thickness should be 7/17. However, the stress in the head would then be greater than that in the cylindrical section; and the optimum thickness ratio is normally taken as 0.6; see Brownell and Young (1959).

## Ellipsoidal heads

Most standard ellipsoidal heads are manufactured with a major and minor axis ratio of 2:1. For this ratio, the following equation can be used to calculate the minimum thickness required:

$$e = \frac{P_i D_i}{2J f - 0.2P_i} \tag{13.43}$$

## Torispherical heads

There are two junctions in a torispherical end closure: that between the cylindrical section and the head, and that at the junction of the crown and the knuckle radii. The bending and shear stresses caused by the differential dilation that will occur at these points must be taken into account in the design of the heads. One approach taken is to use the basic equation for a hemisphere and to introduce a stress concentration, or shape, factor to allow for the increased stress due to the discontinuity. The stress concentration factor is a function of the knuckle and crown radii.

$$e = \frac{P_i R_c C_s}{2fJ + P_i (C_s - 0.2)} \tag{13.44}$$

where  $C_s$  = stress concentration factor for torispherical heads =  $\frac{1}{4}(3 + \sqrt{R_c/R_k})$ ,

 $R_c = \text{crown radius},$ 

 $R_k =$ knuckle radius.

The ratio of the knuckle to crown radii should not be less than 0.06, to avoid buckling; and the crown radius should not be greater than the diameter of the cylindrical section. Any consistent set of units can be used with equations 13.43 and 13.44. For formed heads (no joints in the head) the joint factor J is taken as 1.0.

# Flanges (skirts) on domed heads

Formed domed heads are made with a short straight cylindrical section, called a flange or skirt; Figure 13.10. This ensures that the weld line is away from the point of discontinuity between the head and the cylindrical section of the vessel.

#### 13.5.5. Conical sections and end closures

Conical sections (reducers) are used to make a gradual reduction in diameter from one cylindrical section to another of smaller diameter.

Conical ends are used to facilitate the smooth flow and removal of solids from process equipment; such as, hoppers, spray-dryers and crystallisers.

From equation 13.10 it can be seen that the thickness required at any point on a cone is related to the diameter by the following expression:

$$e = \frac{P_i D_c}{2fJ - P_i} \cdot \frac{1}{\cos \alpha} \tag{13.45}$$

where  $D_c$  is the diameter of the cone at the point,

 $\alpha$  = half the cone apex angle.

This equation will only apply at points away from the cone to cylinder junction. Bending and shear stresses will be caused by the different dilation of the conical and cylindrical sections. This can be allowed for by introducing a stress concentration factor, in a similar manner to the method used for torispherical heads,

$$e = \frac{C_c P_i D_c}{2fJ - P_i} \tag{13.46}$$

The design factor  $C_c$  is a function of the half apex angle  $\alpha$ :

A formed section would normally be used for the transition between a cylindrical section and conical section; except for vessels operating at low pressures, or under hydrostatic pressure only. The transition section would be made thicker than the conical or cylindrical section and formed with a knuckle radius to reduce the stress concentration at the transition, Figure 13.11. The thickness at the knuckle can be calculated using equation 13.46, and that for the conical section away from the transition from equation 13.45.

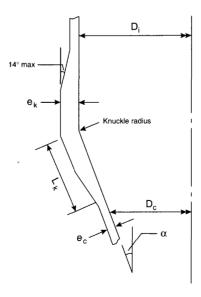
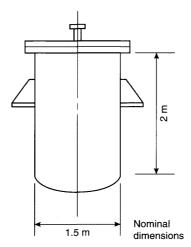



Figure 13.11. Conical transition section

The length of the thicker section  $L_k$  depends on the cone angle and is given by:


$$L_k = \sqrt{\frac{D_i e_k}{4\cos\alpha}} \tag{13.47}$$

where  $e_k$  is the thickness at the knuckle.

Design procedures for conical sections are given in the codes and standards (BS 5500, clause 3.5.3).

## Example 13.1

Estimate the thickness required for the component parts of the vessel shown in the diagram. The vessel is to operate at a pressure of 14 bar (absolute) and temperature of 300°C. The material of construction will be plain carbon steel. Welds will be fully radiographed. A corrosion allowance of 2 mm should be used.



#### Solution

Design pressure, take as 10 per cent above operating pressure,

$$= (14 - 1) \times 1.1$$
  
= 14.3 bar  
= 1.43 N/mm<sup>2</sup>

Design temperature 300°C.

From Table 13.2, typical design stress =  $85 \text{ N/mm}^2$ .

# Cylindrical section

$$e = \frac{1.43 \times 1.5 \times 10^3}{2 \times 85 - 1.43} = 12.7 \text{ mm}$$
 (13.39)

add corrosion allowance 12.7 + 2 = 14.7

#### Domed head

(i) Try a standard dished head (torisphere):

crown radius 
$$R_c = D_i = 1.5 \text{ m}$$

knuckle radius = 6 per cent  $R_c = 0.09$  m

A head of this size would be formed by pressing: no joints, so J = 1.

$$C_s = \frac{1}{4} \left( 3 + \sqrt{\frac{R_c}{R_k}} \right) = \frac{1}{4} \left( 3 + \sqrt{\frac{1.5}{0.09}} \right) = 1.77$$
 (13.44)

$$e = \frac{1.43 \times 1.5 \times 10^3 \times 1.77}{2 \times 85 + 1.43(1.77 - 0.2)} = \frac{22.0 \text{ mm}}{}$$
 (13.44)

(ii) Try a "standard" ellipsoidal head, ratio major : minor axes = 2 : 1

$$e = \frac{1.43 \times 1.5 \times 10^3}{2 \times 85 - 0.2 \times 1.43}$$
  
= 12.7 mm

So an ellipsoidal head would probably be the most economical. Take as same thickness as wall 15 mm.

#### Flat head

Use a full face gasket  $C_p = 0.4$ 

 $D_e$  = bolt circle diameter, take as approx. 1.7 m.

$$e = 0.4 \times 1.7 \times 10^3 \sqrt{\frac{1.43}{85}} = \underline{88.4 \text{ mm}}$$
 (13.42)

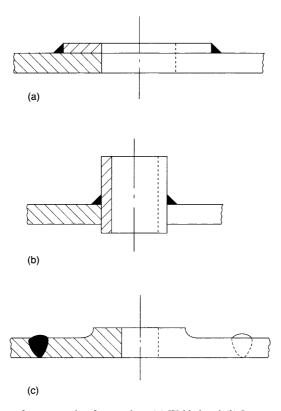
Add corrosion allowance and round-off to 90 mm.

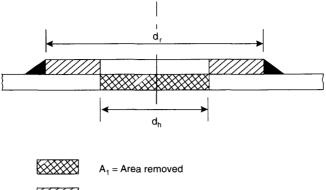
This shows the inefficiency of a flat cover. It would be better to use a flanged domed head.

#### 13.6. COMPENSATION FOR OPENINGS AND BRANCHES

All process vessels will have openings for connections, manways, and instrument fittings. The presence of an opening weakens the shell, and gives rise to stress concentrations. The stress at the edge of a hole will be considerably higher than the average stress in the surrounding plate. To compensate for the effect of an opening, the wall thickness is increased in the region adjacent to the opening. Sufficient reinforcement must be provided to compensate for the weakening effect of the opening without significantly altering the general dilation pattern of the vessel at the opening. Over-reinforcement will reduce the flexibility of the wall, causing a "hard spot", and giving rise to secondary stresses; typical arrangements are shown in Figure 13.12.

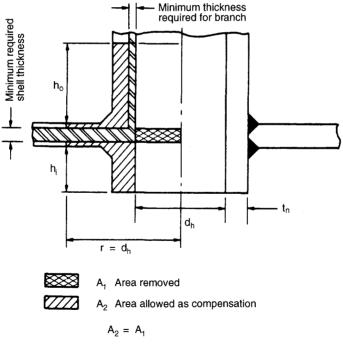
The simplest method of providing compensation is to weld a pad or collar around the opening, Figure 13.12a. The outer diameter of the pad is usually between  $1\frac{1}{2}$  to 2 times the





Figure 13.12. Types of compensation for openings (a) Welded pad (b) Inset nozzle (c) Forged ring

diameter of the hole or branch. This method, however, does not give the best disposition of the reinforcing material about the opening, and in some circumstances high thermal stress can arise due to the poor thermal conductivity of the pad to shell junction.

At a branch, the reinforcement required can be provided, with or without a pad, by allowing the branch, to protrude into the vessel, Figure 13.12b. This arrangement should be used with caution for process vessels, as the protrusion will act as a trap for crud, and local corrosion can occur. Forged reinforcing rings, Figure 13.12c, provide the most effective method of compensation, but are expensive. They would be used for any large openings and branches in vessels operating under severe conditions.


# Calculation of reinforcement required

The "equal area method" is the simplest method used for calculating the amount of reinforcement required, and is allowed in most design codes and standards. The principle used is to provide reinforcement local to the opening, equal in cross-sectional area to the area removed in forming the opening, Figure 13.13. If the actual thickness of the vessel wall is greater than the minimum required to resist the loading, the excess thickness can be taken into account when estimating the area of reinforcement required. Similarly with a branch connection, if the wall thickness of the branch or nozzle is greater than the minimum required, the excess material in the branch can be taken into account. Any



$$A_2$$
 = reinforcement area  $A_2 = A_1$   $d_r = 1.5 \text{ to } 2.0 \text{ x } d_h$ 

Figure 13.13. Equal-area method of compensation



Max. allowed  $h_0$  and  $h_i = 0.64 \sqrt{(d_h + t_n)t_n}$ 

All dimensions shown are in the fully corroded condition (i.e. less corrosion allowance)

Figure 13.14. Branch compensation

corrosion allowance must be deducted when determining the excess thickness available as compensation. The standards and codes differ in the areas of the branch and shell considered to be effective for reinforcement, and should be consulted to determine the actual area allowed and the disposition of the various types of reinforcement. Figure 13.14 can be used for preliminary calculations. For branch connections of small diameter the reinforcement area can usually be provided by increasing the wall thickness of the branch pipe. Some design codes and standards do not require compensation for connections below 89 mm (3 in.) diameter.

If anything, the equal area method tends to over-estimate the compensation required and in some instances the additional material can reduce the fatigue life of the vessel. More sophisticated methods for determining the compensation required have been introduced into the latest editions of the codes and standards. A critical discussion of the methods that are used in the various national codes and standards for calculating the compensation for openings and branches is given in the British Standards Institute publication PD 6437 (1969) and PD 6550 (1989).

The equal-area method is generally used for estimating the increase in thickness required to compensate for multiple openings.

# 13.7. DESIGN OF VESSELS SUBJECT TO EXTERNAL PRESSURE

## 13.7.1. Cylindrical shells

Two types of process vessel are likely to be subjected to external pressure: those operated under vacuum, where the maximum pressure will be 1 bar (atm); and jacketed vessels, where the inner vessel will be under the jacket pressure. For jacketed vessels, the maximum pressure difference should be taken as the full jacket pressure, as a situation may arise in which the pressure in the inner vessel is lost. Thin-walled vessels subject to external pressure are liable to failure through elastic instability (buckling) and it is this mode of failure that determines the wall thickness required.

For an open-ended cylinder, the critical pressure to cause buckling  $P_c$  is given by the following expression; see Windenburg and Trilling (1934):

$$P_{c} = \frac{1}{3} \left[ n^{2} - 1 + \frac{2n^{2} - 1 - v}{n^{2} \left(\frac{2L}{\pi D_{0}}\right)^{2} - 1} \right] \frac{2E}{(1 - v^{2})} \left(\frac{t}{D_{0}}\right)^{3} + \frac{2Et/D_{0}}{(n^{2} - 1) \left[n^{2} \left(\frac{2L}{\pi D_{0}}\right)^{2} + 1\right]^{2}}$$
(13.48)

where L = the unsupported length of the vessel, the effective length,

 $D_0$  = external diameter,

t =wall thickness,

E =Young's modulus,

v = Poisson's ratio.

n = the number of lobes formed at buckling.

For long tubes and cylindrical vessels this expression can be simplified by neglecting terms with the group  $(2L/\pi D_0)^2$  in the denominator; the equation then becomes:

$$P_c = \frac{1}{3} \left[ (n^2 - 1) \frac{2E}{(1 - v^2)} \right] \left( \frac{t}{D_0} \right)^3$$
 (13.49)

The minimum value of the critical pressure will occur when the number of lobes is 2, and substituting this value into equation 13.49 gives:

$$P_c = \frac{2E}{1 - v^2} \left(\frac{t}{D_0}\right)^3 \tag{13.50}$$

For most pressure-vessel materials Poisson's ratio can be taken as 0.3; substituting this in equation 13.50 gives:

$$P_c = 2.2E \left(\frac{t}{D_0}\right)^3 \tag{13.51}$$

For short closed vessels, and long vessels with stiffening rings, the critical buckling pressure will be higher than that predicted by equation 13.51. The effect of stiffening can be taken into account by introducing a "collapse coefficient",  $K_c$ , into equation 13.51.

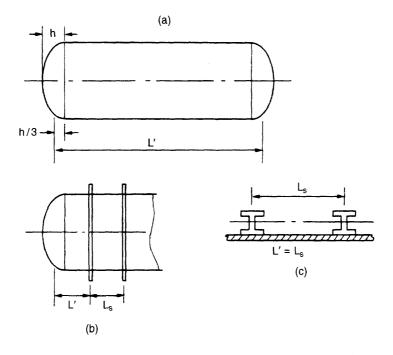
$$P_c = K_c E \left(\frac{t}{D_0}\right)^3 \tag{13.52}$$

where  $K_c$  is a function of the diameter and thickness of the vessel, and the effective length L' between the ends or stiffening rings; and is obtained from Figure 13.16. The effective length for some typical arrangements is shown in Figure 13.15.

It can be shown (see Southwell, 1913) that the critical distance between stiffeners,  $L_c$ , beyond which stiffening will not be effective is given by:

$$L_c = \frac{4\pi\sqrt{6}D_0}{27} \left[ (1 - v^2)^{1/4} \right] \left( \frac{D_0}{t} \right)^{1/2}$$
 (13.53)

Substituting v = 0.3 gives:


$$L_c = 1.11D_0 \left(\frac{D_0}{t}\right)^{1/2} \tag{13.54}$$

Any stiffening rings used must be spaced closer than  $L_c$ . Equation 13.52 can be used to determine the critical buckling pressure and hence the thickness required to resist a given external pressure; see Example 13.2. A factor of safety of at least 3 should be applied to the values predicted using equation 13.52.

The design methods and design curves given in the standards and codes (BS 5500, clause 3.6) should be used for the detailed design of vessels subject to external pressure.

#### Out of roundness

Any out-of-roundness in a shell after fabrication will significantly reduce the ability of the vessel to resist external pressure. A deviation from a true circular cross-section equal to the shell thickness will reduce the critical buckling pressure by about 50 per cent. The



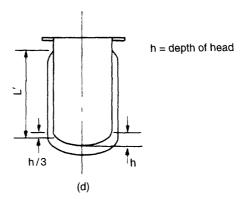



Figure 13.15. Effective length, vessel under external pressure (a) Plain vessel (b) With stiffeners (use smaller of L' and L<sub>s</sub>) (c) I—section stiffening rings (d) Jacketed vessel

ovality (out-of-roundness) of a cylinder is measured by:

Ovality = 
$$\frac{2(D_{\text{max}} - D_{\text{min}})}{(D_{\text{max}} + D_{\text{min}})} \times 100$$
, per cent

For vessels under external pressure this should not normally exceed 1.5 per cent.

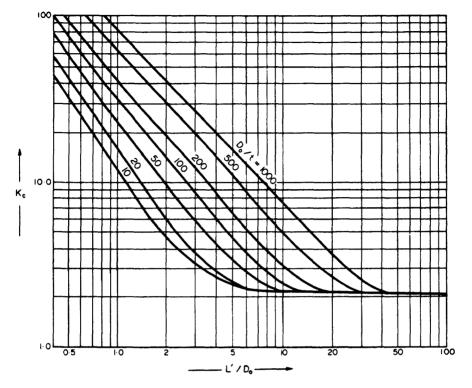



Figure 13.16. Collapse coefficients for cylindrical shells (after Brownell and Young, 1959)

# 13.7.2. Design of stiffness rings

The usual procedure is to design stiffening rings to carry the pressure load for a distance of  $\frac{1}{2}L_s$  on each side of the ring, where  $L_s$  is the spacing between the rings. So, the load per unit length on a ring  $F_r$  will be given by:

$$F_r = P_e L_s \tag{13.55}$$

where  $P_e$  is the external pressure.

The critical load to cause buckling in a ring under a uniform radial load  $F_c$  is given by the following expression; see Faupel and Fisher (1981):

$$F_c = \frac{24EI_r}{D_r^3} {13.56}$$

where  $I_r$  = second moment of area of the ring cross-section,

 $D_r$  = diameter of the ring (approximately equal to the shell outside diameter).

Combining equations 13.55 and 13.56 will give an equation from which the required dimensions of the ring can be determined:

$$P_e L_s \neq \frac{24EI_r}{D_r^3} \div \text{(factor of safety)}$$
 (13.57)

In calculating the second moment of area of the ring some allowance is normally made for the vessel wall; the use of  $I_r$  calculated for the ring alone will give an added factor of safety.

In vacuum distillation columns, the plate-support rings will act as stiffening rings and strengthen the vessel; see Example 13.2.

#### 13.7.3. Vessel heads

The critical buckling pressure for a sphere subject to external pressure is given by (see Timoshenko, 1936):

$$P_c = \frac{2Et^2}{R_s^2 \sqrt{3(1-v^2)}} \tag{13.58}$$

where  $R_s$  is the outside radius of the sphere. Taking Poisson's ratio as 0.3 gives:

$$P_c = 1.21E \left(\frac{t}{R_s}\right)^2 \tag{13.59}$$

This equation gives the critical pressure required to cause general buckling; local buckling can occur at a lower pressure. Karman and Tsien (1939) have shown that the pressure to cause a "dimple" to form is about one-quarter of that given by equation 13.59, and is given by:

$$P_c' = 0.365E \left(\frac{t}{R_s}\right)^2 \tag{13.60}$$

A generous factor of safety is needed when applying equation 13.60 to the design of heads under external pressure. A value of 6 is typically used, which gives the following equation for the minimum thickness:

$$e = 4R_s \sqrt{\left(\frac{P_e}{E}\right)} \tag{13.61}$$

Any consistent system of units can be used with equation 13.61.

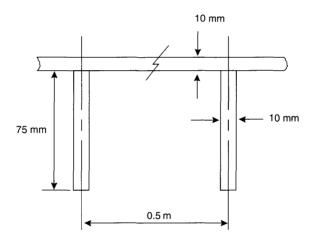
Torispherical and ellipsoidal heads can be designed as equivalent hemispheres. For a torispherical head the radius  $R_s$  is taken as equivalent to the crown radius  $R_c$ . For an ellipsoidal head the radius can be taken as the maximum radius of curvature; that at the top, given by:

$$R_s = \frac{a^2}{b} \tag{13.62}$$

where  $2a = \text{major axis} = D_0$  (shell o.d.),

2b = minor axis = 2h,

h = height of the head from the tangent line.


Because the radius of curvature of an ellipse is not constant the use of the maximum radius will over-size the thickness required.

Design methods for heads under external pressure are given in the standards and codes.

#### Example 13.2

A vacuum distillation column is to operate under a top pressure of 50 mmHg. The plates are supported on rings 75 mm wide, 10 mm deep. The column diameter is 1 m and the plate spacing 0.5 m. Check if the support rings will act as effective stiffening rings. The material of construction is carbon steel and the maximum operating temperature 50°C. If the vessel thickness is 10 mm, check if this is sufficient.

#### Solution



Take the design pressure as 1 bar external.

From equation 13.55 the load on each ring =  $0.5 \times 10^5$  N/m.

Taking E for steel at 50°C as 200,000 N/mm<sup>2</sup> =  $2 \times 10^{11}$  N/m<sup>2</sup>, and using a factor of safety of 6, the second moment of area of the ring to avoid buckling is given by: equation 13.57

$$0.5 \times 10^5 = \frac{24 \times 2 \times 10^{11} \times I_r}{1^3 \times 6}$$
$$I_r = 6.25 \times 10^{-8} \text{ m}^4$$

For a rectangular section, the second moment of area is given by

$$I = \frac{\text{breadth} \times \text{depth}^3}{12}$$
so  $I_r$  for the support rings = 
$$\frac{10 \times (75)^3 \times 10^{-12}}{12}$$
=  $3.5 \times 10^{-7}$  m<sup>4</sup>

and the support ring is of an adequate size to be considered as a stiffening ring.

$$\frac{L'}{D_0} = \frac{0.5}{1} = 0.5$$

$$\frac{D_0}{t} = \frac{1000}{10} = 100$$

From Figure 13.16  $K_c = 75$ From equation 13.52

$$P_c = 75 \times 2 \times 10^{11} \left(\frac{1}{100}\right)^3 = \underline{15 \times 10^6 \text{ N/m}^2}$$

which is well above the maximum design pressure of 10<sup>5</sup> N/m<sup>2</sup>.

#### 13.8. DESIGN OF VESSELS SUBJECT TO COMBINED LOADING

Pressure vessels are subjected to other loads in addition to pressure (see Section 13.4.7) and must be designed to withstand the worst combination of loading without failure It is not practical to give an explicit relationship for the vessel thickness to resist combined loads. A trial thickness must be assumed (based on that calculated for pressure alone) and the resultant stress from all loads determined to ensure that the maximum allowable stress intensity is not exceeded at any point.

The main sources of load to consider are:

- 1. Pressure.
- 2. Dead weight of vessel and contents.
- 3. Wind.
- 4. Earthquake (seismic).
- 5. External loads imposed by piping and attached equipment.

The primary stresses arising from these loads are considered in the following paragraphs, for cylindrical vessels; Figure 13.17.

# Primary stresses

1. The longitudinal and circumferential stresses due to pressure (internal or external), given by:

$$\sigma_h = \frac{PD_i}{2t} \tag{13.63}$$

$$\sigma_L = \frac{PD_i}{4t} \tag{13.64}$$

2. The direct stress  $\sigma_w$  due to the weight of the vessel, its contents, and any attachments. The stress will be tensile (positive) for points below the plane of the vessel supports, and compressive (negative) for points above the supports, see Figure 13.18. The dead-weight stress will normally only be significant, compared to the magnitude of the other stresses, in tall vessels.

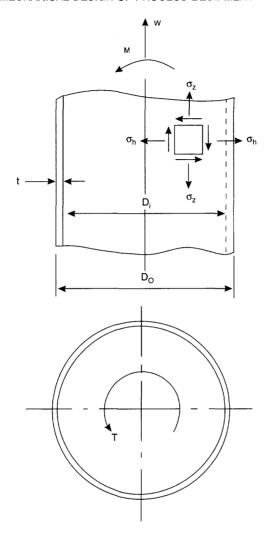



Figure 13.17. Stresses in a cylindrical shell under combined loading

$$\sigma_w = \frac{W}{\pi(D_i + t)t} \tag{13.65}$$

where W is the total weight which is supported by the vessel wall at the plane considered, see Section 13.8.1.

- 3. Bending stresses resulting from the bending moments to which the vessel is subjected. Bending moments will be caused by the following loading conditions:
  - (a) The wind loads on tall self-supported vessels (Section 13.8.2).
  - (b) Seismic (earthquake) loads on tall vessels (Section 13.8.3).
  - (c) The dead weight and wind loads on piping and equipment which is attached to the vessel, but offset from the vessel centre line (Section 13.8.4).

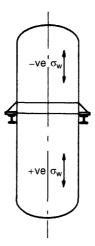



Figure 13.18. Stresses due to dead-weight loads

(d) For horizontal vessels with saddle supports, from the disposition of dead-weight load (see Section 13.9.1).

The bending stresses will be compressive or tensile, depending on location, and are given by:

$$\sigma_b = \pm \frac{M}{I_v} \left( \frac{D_i}{2} + t \right) \tag{13.66}$$

where  $M_v$  is the total bending moment at the plane being considered and  $I_v$  the second moment of area of the vessel about the plane of bending.

$$I_v = \frac{\pi}{64} (D_0^4 - D_i^4) \tag{13.67}$$

4. Torsional shear stresses  $\tau$  resulting from torque caused by loads offset from the vessel axis. These loads will normally be small, and need not be considered in preliminary vessel designs.

The torsional shear stress is given by:

$$\tau = \frac{T}{I_p} \left( \frac{D_i}{2} + t \right) \tag{13.68}$$

where T = the applied torque,

 $I_p = \text{polar second moment of area} = (\pi/32)(D_0^4 - D_i^4)$ 

# Principal stresses

The principal stresses will be given by:

$$\sigma_1 = \frac{1}{2} [\sigma_h + \sigma_z + \sqrt{(\sigma_h - \sigma_z)^2 + 4\tau^2}]$$
 (13.69)

$$\sigma_2 = \frac{1}{2} [\sigma_h + \sigma_z - \sqrt{(\sigma_h - \sigma_z)^2 + 4\tau^2}]$$
 (13.70)

where  $\sigma_z$  = total longitudinal stress

$$=\sigma_L+\sigma_w\pm\sigma_b$$

 $\sigma_w$  should be counted as positive if tension and negative if compressive.

 $\tau$  is not usually significant.

The third principal stress, that in the radial direction  $\sigma_3$ , will usually be negligible for thin-walled vessels (see Section 13.1.1). As an approximation it can be taken as equal to one-half the pressure loading

$$\sigma_3 = 0.5P \tag{13.71}$$

 $\sigma_3$  will be compressive (negative).

## Allowable stress intensity

The maximum intensity of stress allowed will depend on the particular theory of failure adopted in the design method (see Section 13.3.2). The maximum shear-stress theory is normally used for pressure vessel design, and is the criterion used in BS 5500.

Using this criterion the maximum stress intensity at any point is taken for design purposes as the numerically greatest value of the following:

$$(\sigma_1 - \sigma_2)$$

$$(\sigma_1 - \sigma_3)$$

$$(\sigma_2 - \sigma_3)$$

The vessel wall thickness must be sufficient to ensure the maximum stress intensity does not exceed the design stress (nominal design strength) for the material of construction, at any point.

# Compressive stresses and elastic stability

Under conditions where the resultant axial stress  $\sigma_z$  due to the combined loading is compressive, the vessel may fail by elastic instability (buckling) (see Section 13.3.3). Failure can occur in a thin-walled process column under an axial compressive load by buckling of the complete vessel, as with a strut (Euler buckling); or by local buckling, or wrinkling, of the shell plates. Local buckling will normally occur at a stress lower than that required to buckle the complete vessel. A column design must be checked to ensure that the maximum value of the resultant axial stress does not exceed the critical value at which buckling will occur.

For a curved plate subjected to an axial compressive load the critical buckling stress  $\sigma_c$  is given by (see Timoshenko, 1936):

$$\sigma_c = \frac{E}{\sqrt{3(1-v^2)}} \left(\frac{t}{R_p}\right) \tag{13.72}$$

where  $R_p$  is the radius of curvature.

Taking Poisson's ratio as 0.3 gives:

$$\sigma_c = 0.60E\left(\frac{t}{R_p}\right) \tag{13.73}$$

By applying a suitable factor of safety, equation 13.72 can be used to predict the maximum allowable compressive stress to avoid failure by buckling. A large factor of safety is required, as experimental work has shown that cylindrical vessels will buckle at values well below that given by equation 13.72. For steels at ambient temperature  $E = 200,000 \text{ N/mm}^2$ , and equation 13.72 with a factor of safety of 12 gives:

$$\sigma_c = 2 \times 10^4 \left(\frac{t}{D_o}\right) \text{ N/mm}^2 \tag{13.74}$$

The maximum compressive stress in a vessel wall should not exceed that given by equation 13.74; or the maximum allowable design stress for the material, whichever is the least.

# Stiffening

As with vessels under external pressure, the resistance to failure buckling can be increased significantly by the use of stiffening rings, or longitudinal strips. Methods for estimating the critical buckling stress for stiffened vessels are given in the standards and codes.

## Loading

The loads to which a vessel may be subjected will not all occur at the same time. For example, it is the usual practice to assume that the maximum wind load will not occur simultaneously with a major earthquake.

The vessel must be designed to withstand the worst combination of the loads likely to occur in the following situations:

- 1. During erection (or dismantling) of the vessel.
- 2. With the vessel erected but not operating.
- 3. During testing (the hydraulic pressure test).
- 4. During normal operation.

# 13.8.1. Weight loads

The major sources of dead weight loads are:

- 1. The vessel shell.
- 2. The vessel fittings: manways, nozzles.
- 3. Internal fittings: plates (plus the fluid on the plates); heating and cooling coils.
- 4. External fittings: ladders, platforms, piping.
- 5. Auxiliary equipment which is not self-supported; condensers, agitators.
- 6. Insulation.

7. The weight of liquid to fill the vessel. The vessel will be filled with water for the hydraulic pressure test; and may fill with process liquid due to misoperation.

*Note*: for vessels on a skirt support (see Section 13.9.2), the weight of the liquid to fill the vessel will be transferred directly to the skirt.

The weight of the vessel and fittings can be calculated from the preliminary design sketches. The weights of standard vessel components: heads, shell plates, manways, branches and nozzles, are given in various handbooks; Megyesy (1986) and Brownell and Young (1959).

For preliminary calculations the approximate weight of a cylindrical vessel with domed ends, and uniform wall thickness, can be estimated from the following equation:

$$W_v = C_v \pi \rho_m D_m g(H_v + 0.8D_m) t \times 10^{-3}$$
 (13.75)

where  $W_v = \text{total weight of the shell, excluding internal fittings, such as plates, } N$ ,

 $C_v$  = a factor to account for the weight of nozzles, manways, internal supports, etc; which can be taken as

= 1.08 for vessels with only a few internal fittings,

= 1.15 for distillation columns, or similar vessels, with several manways, and with plate support rings, or equivalent fittings,

 $H_v$  = height, or length, between tangent lines (the length of the cylindrical section), m,

 $g = \text{gravitational acceleration}, 9.81 \text{ m/s}^2,$ 

t = wall thickness, mm

 $\rho_m$  = density of vessel material, kg/m<sup>3</sup>,

 $D_m$  = mean diameter of vessel =  $(D_i + t \times 10^{-3})$ , m.

For a steel vessel, equation 13.75 reduces to:

$$W_v = 240C_v D_m (H_v + 0.8D_m)t (13.76)$$

The following values can be used as a rough guide to the weight of fittings; see Nelson (1963):

- (a) caged ladders, steel, 360 N/m length,
- (b) plain ladders, steel, 150 N/m length,
- (c) platforms, steel, for vertical columns, 1.7 kN/m<sup>2</sup> area,
- (d) contacting plates, steel, including typical liquid loading, 1.2 kN/m<sup>2</sup> plate area.

Typical values for the density of insulating materials are (all kg/m<sup>3</sup>):

| Foam glass       | 150 |
|------------------|-----|
| Mineral wool     | 130 |
| Fibreglass       | 100 |
| Calcium silicate | 200 |

These densities should be doubled to allow for attachment fittings, sealing, and moisture absorption.

## 13.8.2. Wind loads (tall vessels)

Wind loading will only be important on tall columns installed in the open. Columns and chimney-stacks are usually free standing, mounted on skirt supports, and not attached to structural steel work. Under these conditions the vessel under wind loading acts as a cantilever beam, Figure 13.19. For a uniformly loaded cantilever the bending moment at any plane is given by:

$$M_x = \frac{wx^2}{2} \tag{13.77}$$

where x is the distance measured from the free end and w the load per unit length (Newtons per metre run).

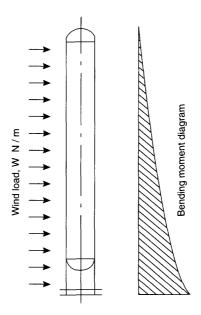



Figure 13.19. Wind loading on a tall column

So the bending moment, and hence the bending stress, will vary parabolically from zero at the top of the column to a maximum value at the base. For tall columns the bending stress due to wind loading will often be greater than direct stress due to pressure, and will determine the plate thickness required. The most economical design will be one in which the plate thickness is progressively increased from the top to the base of the column. The thickness at the top being sufficient for the pressure load, and that at the base sufficient for the pressure plus the maximum bending moment.

Any local increase in the column area presented to the wind will give rise to a local, concentrated, load, Figure 13.20. The bending moment at the column base caused by a concentrated load is given by:

$$M_p = F_p H_p \tag{13.78}$$

where  $F_p = local$ , concentrated, load,

 $H_p$  = the height of the concentrated load above the column base.

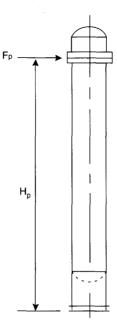



Figure 13.20. Local wind loading

## Dynamic wind pressure

The load imposed on any structure by the action of the wind will depend on the shape of the structure and the wind velocity.

$$P_w = \frac{1}{2} C_d \rho_a u_w^2 \tag{13.79}$$

where  $P_w$  = wind pressure (load per unit area),

 $C_d = \text{drag coefficient (shape factor)},$ 

 $\rho_a$  = density of air,

 $u_w = \text{wind velocity}.$ 

The drag coefficient is a function of the shape of the structure and the wind velocity (Reynolds number).

For a smooth cylindrical column or stack the following semi-empirical equation can be used to estimate the wind pressure:

$$P_w = 0.05u_w^2 (13.79a)$$

where  $P_w = \text{wind pressure}$ , N/m<sup>2</sup>,

 $u_w = \text{wind speed, km/h.}$ 

If the column outline is broken up by attachments, such as ladders or pipe work, the factor of 0.05 in equation 13.79a should be increased to 0.07, to allow for the increased drag.

A column must be designed to withstand the highest wind speed that is likely to be encountered at the site during the life of the plant. The probability of a given wind speed occurring can be predicted by studying meteorological records for the site location.

Maps showing the wind speeds to be used in the design of structures at locations in the United Kingdom are given in the British Standards Code of Practice BS CP 3: 1972 "Basic Data for the Design of Buildings, Chapter V Loading: Part 2 Wind Loads". Typical values are around 50 m/s (112 miles per hour). The code of practice also gives methods estimating the dynamic wind pressure on buildings and structures of various shapes. Data and design methods are also given in the Engineering Sciences Data Unit (ESDU) reports on wind engineering, and in the Building Research Establishment Digest No. 119 (1970) "The assessment of wind loads", HMSO, July 1970. Design loadings for locations in the United States are given by Megysey (1986), Escoe (1986) and Moss (1987).

A wind speed of 160 km/h (100 mph) can be used for preliminary design studies; equivalent to a wind pressure of 1280 N/m<sup>2</sup> (25 lb/ft<sup>2</sup>).

At any site, the wind velocity near the ground will be lower than that higher up (due to the boundary layer), and in some design methods a lower wind pressure is used at heights below about 20 m; typically taken as one-half of the pressure above this height.

The loading per unit length of the column can be obtained from the wind pressure by multiplying by the effective column diameter: the outside diameter plus an allowance for the thermal insulation and attachments, such as pipes and ladders.

$$F_w = P_w D_{\text{eff}} \tag{13.80}$$

An allowance of 0.4 m should be added for a caged ladder. The calculation of the wind load on a tall column, and the induced bending stresses, is illustrated in Example 13.3. Further examples of the design of tall columns are given by Brownell (1963), Henry (1973), Bednar (1986), Escoe (1994) and Jawad and Farr (1989).

#### Deflection of tall columns

Tall columns sway in the wind. The allowable deflection will normally be specified as less than 150 mm per 30 metres of height (6 in. per 100 ft).

For a column with a uniform cross-section, the deflection can be calculated using the formula for the deflection of a uniformly loaded cantilever. A method for calculating the deflection of a column where the wall thickness is not constant is given by Tang (1968).

#### Wind-induced vibrations

Vortex shedding from tall thin columns and stacks can induce vibrations which, if the frequency of shedding of eddies matches the natural frequency of the column, can be severe enough to cause premature failure of the vessel by fatigue. The effect of vortex shedding should be investigated for free standing columns with height to diameter ratios greater than 10. Methods for estimating the natural frequency of columns are given by Freese (1959) and DeGhetto and Long (1966); see also the BRE digest No. 119 (1970) and the ESDU manuals on wind engineering.

Helical strakes (strips) are fitted to the tops of tall smooth chimneys to change the pattern of vortex shedding and so prevent resonant oscillation. The same effect will be achieved on a tall column by distributing any attachments (ladders, pipes and platforms) around the column.

## 13.8.3. Earthquake loading

The movement of the earth's surface during an earthquake produces horizontal shear forces on tall self-supported vessels, the magnitude of which increases from the base upward. The total shear force on the vessel will be given by:

$$F_s = a_e \left(\frac{W}{g}\right) \tag{13.81}$$

where  $a_e$  = the acceleration of the vessel due to the earthquake,

g = the acceleration due to gravity,

W = total weight of the vessel.

The term  $(a_e/g)$  is called the seismic constant  $C_e$ , and is a function of the natural period of vibration of the vessel and the severity of the earthquake. Values of the seismic constant have been determined empirically from studies of the damage caused by earthquakes, and are available for those geographical locations which are subject to earthquake activity. Values for sites in the United States, and procedures for determining the stresses induced in tall columns are given by Megyesy (1986), Escoe (1994) and Moss (1987).

A seismic stress analysis is not made as a routine procedure in the design of vessels for sites in the United Kingdom, except for nuclear installations, as the probability of an earthquake occurring of sufficient severity to cause significant damage is negligible. However, the possibility of earthquake damage may be considered if the site is a Major Hazards installation, see Chapter 9, Section 9.9.

## 13.8.4. Eccentric loads (tall vessels)

Ancillary equipment attached to a tall vessel will subject the vessel to a bending moment if the centre of gravity of the equipment does not coincide with the centre line of the vessel (Figure 13.21). The moment produced by small fittings, such as ladders, pipes and manways, will be small and can be neglected. That produced by heavy equipment, such

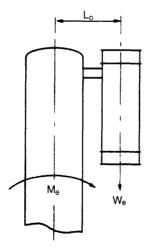



Figure 13.21. Bending moment due to offset equipment

as reflux condensers and side platforms, can be significant and should be considered. The moment is given by:

$$M_e = W_e L_o \tag{13.82}$$

where  $W_e$  = dead weight of the equipment,

 $L_o$  = distance between the centre of gravity of the equipment and the column centre line.

#### 13.8.5. Torque

Any horizontal force imposed on the vessel by ancillary equipment, the line of thrust of which does not pass through the centre line of the vessel, will produce a torque on the vessel. Such loads can arise through wind pressure on piping and other attachments. However, the torque will normally be small and usually can be disregarded. The pipe work and the connections for any ancillary equipment will be designed so as not to impose a significant load on the vessel.

## Example 13.3

Make a preliminary estimate of the plate thickness required for the distillation column specified below:

| Height, between tangent lines | 50 m |
|-------------------------------|------|
| Diameter                      | 2 m  |
| Skirt support, height         | 3 m  |
|                               |      |

100 sieve plates, equally spaced

Insulation, mineral wool 75 mm thick

Material of construction, stainless steel, design stress 135 N/mm<sup>2</sup> at design temperature 200°C

Operating pressure 10 bar (absolute)

Vessel to be fully radiographed (joint factor 1).

#### Solution

Design pressure; take as 10 per cent above operating pressure

$$= (10 - 1) \times 1.1 = 9.9 \text{ bar, say } 10 \text{ bar}$$
  
= 1.0 N/mm<sup>2</sup>

Minimum thickness required for pressure loading

$$= \frac{1 \times 2 \times 10^3}{2 \times 135 - 1} = 7.4 \text{ mm}$$
 (13.39)

A much thicker wall will be needed at the column base to withstand the wind and dead weight loads.

As a first trial, divide the column into five sections (courses), with the thickness increasing by 2 mm per section. Try 10, 12, 14, 16, 18 mm.

## Dead weight of vessel

Though equation 13.76 only applies strictly to vessels with uniform thickness, it can be used to get a rough estimate of the weight of this vessel by using the average thickness in the equation, 14 mm.

Take 
$$C_v = 1.15$$
, vessel with plates,  
 $D_m = 2 + 14 \times 10^{-3} = 2.014 \text{ m}$ ,  
 $H_v = 50 \text{ m}$ ,  
 $t = 14 \text{ mm}$   
 $W_v = 240 \times 1.15 \times 2.014(50 + 0.8 \times 2.014)14$   
 $= 401643 \text{ N}$   
 $= 402 \text{ kN}$  (13.76)

#### Weight of plates:

plate area = 
$$\pi/4 \times 2^2 = 3.14 \text{ m}^2$$
  
weight of a plate (see page 761) =  $1.2 \times 3.14 = 3.8 \text{ kN}$   
 $100 \text{ plates} = 100 \times 3.8 = 380 \text{ kN}$ 

#### Weight of insulation:

mineral wool density = 130 kg/m<sup>3</sup>  
approximate volume of insulation = 
$$\pi \times 2 \times 50 \times 75 \times 10^{-3}$$
  
= 23.6 m<sup>3</sup>  
weight = 23.6 × 130 × 9.81 = 30,049 N  
double this to allow for fittings, etc. = 60 kN

#### Total weight:

| shell      | 402    |
|------------|--------|
| plates     | 380    |
| insulation | 60     |
|            | 842 kN |

# Wind loading

Take dynamic wind pressure as 1280 N/m<sup>2</sup>.

Mean diameter, including insulation = 
$$2 + 2(14 + 75) \times 10^{-3}$$
  
= 2.18 m

Loading (per linear metre) 
$$F_w = 1280 \times 2.18 = 2790 \text{ N/m}$$
 (13.80)

Bending moment at bottom tangent line:

$$M_x = \frac{2790}{2} \times 50^2 = 3,487,500 \text{ Nm}$$
 (13.77)

## Analysis of stresses

At bottom tangent line

Pressure stresses:

$$\sigma_L = \frac{1.0 \times 2 \times 10^3}{4 \times 18} = 27.8 \text{ N/mm}^2$$
 (13.64)

$$\sigma_h = \frac{1 \times 2 \times 10^3}{2 \times 18} = 55.6 \text{ N/mm}^2$$
 (13.63)

Dead weight stress:

$$\sigma_w = \frac{W_v}{\pi (D_i + t)t} = \frac{842 \times 10^3}{\pi (2000 + 18)18}$$

$$= 7.4 \text{ N/mm}^2 \text{ (compressive)}$$

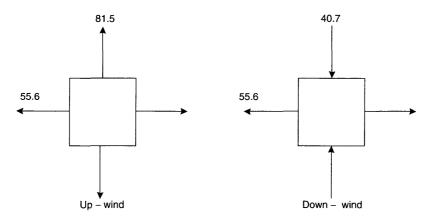
Bending stresses:

$$D_o = 2000 + 2 \times 18 = 2036 \text{ mm}$$
  
 $I_v = \frac{\pi}{64} (2036^4 - 2000^4) = 5.81 \times 10^{10} \text{ mm}^4$  (13.67)

$$\sigma_b = \pm \frac{3,487,500 \times 10^3}{5.81 \times 10^{10}} \left( \frac{2000}{2} + 18 \right)$$

$$= \pm 61.1 \text{ N/mm}^2$$
(13.66)

The resultant longitudinal stress is:


$$\sigma_z = \sigma_L + \sigma_w \pm \sigma_b$$

 $\sigma_w$  is compressive and therefore negative.

$$\sigma_z$$
 (upwind) = 27.8 - 7.4 + 61.1 = +81.5 N/mm<sup>2</sup>.

$$\sigma_z$$
 (downwind) = 27.8 - 7.4 - 61.1 = -40.7 N/mm<sup>2</sup>.

As there is no torsional shear stress, the principal stresses will be  $\sigma_z$  and  $\sigma_h$ . The radial stress is negligible,  $\simeq (P_i/2) = 0.5 \text{ N/mm}^2$ .



The greatest difference between the principal stresses will be on the down-wind side

$$(55.6 - (-40.7)) = \underline{96.5 \text{ N/mm}^2},$$

well below the maximum allowable design stress

# Check elastic stability (buckling)

Critical buckling stress:

$$\sigma_c = 2 \times 10^4 \left(\frac{18}{2036}\right) = \underline{176.8 \text{ N/mm}^2}$$
 (13.74)

The maximum compressive stress will occur when the vessel is not under pressure = 7.4 + 61.1 = 68.5, well below the critical buckling stress.

So design is satisfactory. Could reduce the plate thickness and recalculate.

#### 13.9. VESSEL SUPPORTS

The method used to support a vessel will depend on the size, shape, and weight of the vessel; the design temperature and pressure; the vessel location and arrangement; and the internal and external fittings and attachments. Horizontal vessels are usually mounted on two saddle supports; Figure 13.22. Skirt supports are used for tall, vertical columns; Figure 13.23. Brackets, or lugs, are used for all types of vessel; Figure 13.24. The supports must be designed to carry the weight of the vessel and contents, and any superimposed loads, such as wind loads. Supports will impose localised loads on the vessel wall, and the design must be checked to ensure that the resulting stress concentrations are below the maximum allowable design stress. Supports should be designed to allow easy access to the vessel and fittings for inspection and maintenance.

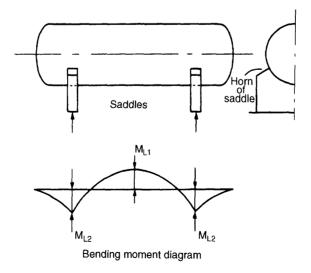



Figure 13.22. Horizontal cylindrical vessel on saddle supports

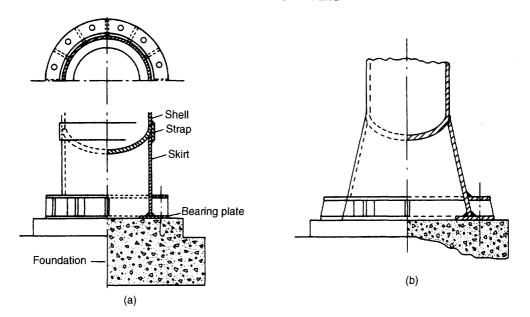



Figure 13.23. Typical skirt-support designs (a) Straight skirt (b) Conical skirt

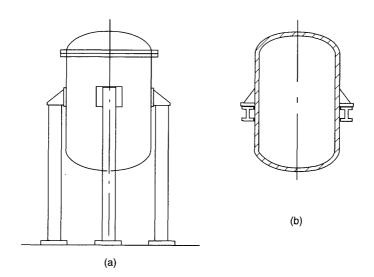



Figure 13.24. Bracket supports (a) Supported on legs (b) Supported from steel-work

# 13.9.1. Saddle supports

Though saddles are the most commonly used support for horizontal cylindrical vessels, legs can be used for small vessels. A horizontal vessel will normally be supported at two cross-sections; if more than two saddles are used the distribution of the loading is uncertain.

A vessel supported on two saddles can be considered as a simply supported beam, with an essentially uniform load, and the distribution of longitudinal axial bending moment will be as shown in Figure 13.22. Maxima occur at the supports and at mid-span. The theoretical optimum position of the supports to give the least maximum bending moment will be the position at which the maxima at the supports and at mid-span are equal in magnitude. For a uniformly loaded beam the position will be at 21 per cent of the span, in from each end. The saddle supports for a vessel will usually be located nearer the ends than this value, to make use of the stiffening effect of the ends.

#### Stress in the vessel wall

The longitudinal bending stress at the mid-span of the vessel is given by:

$$\sigma_{b1} = \frac{M_{L1}}{I_b} \times \frac{D}{2} \simeq \frac{4M_{L1}}{\pi D^2 t} \tag{13.83}$$

where  $M_{L1}$  = longitudinal bending stress at the mid-span,

 $I_h$  = second moment of area of the shell,

D =shell diameter.

t =shell thickness.

The resultant axial stress due to bending and pressure will be given by:

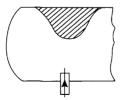
$$\sigma_z = \frac{PD}{4t} \pm \frac{4M_{L1}}{\pi D^2 t} \tag{13.84}$$

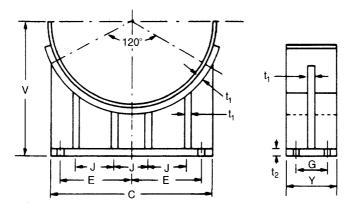
The magnitude of the longitudinal bending stress at the supports will depend on the local stiffness of the shell; if the shell does not remain circular under load a portion of the upper part of the cross-section is ineffective against longitudinal bending; see Figure 13.25. The stress is given by:

$$\sigma_{b2} = \frac{4M_{L2}}{C_h \pi D^2 t} \tag{13.85}$$

where  $M_{L2}$  = longitudinal bending moment at the supports,

 $C_h$  = an empirical constant; varying from 1.0 for a completely stiff shell to about 0.1 for a thin, unstiffened, shell.



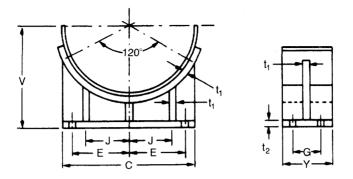


Figure 13.25. Saddle supports: shaded area is ineffective against longitudinal bending in an unstiffened shell

The ends of the vessels will stiffen the shell if the position of the saddles is less than D/4 from the ends. Ring stiffeners, located at the supports, are used to stiffen the shells of long thin vessels. The rings may be fitted inside or outside the vessel.

In addition to the longitudinal bending stress, a vessel supported on saddles will be subjected to tangential shear stresses, which transfer the load from the unsupported sections of the vessel to the supports; and to circumferential bending stresses. All these stresses need to be considered in the design of large, thin-walled, vessels, to ensure that the resultant stress does not exceed the maximum allowable design stress or the critical buckling stress for the material. A detailed stress analysis is beyond the scope of this book. A complete analysis of the stress induced in the shell by the supports is given by Zick (1951). Zick's method forms the basis of the design methods given in the national codes and standards. The method is also given by Brownell and Young (1959), Escoe (1994) and Megyesy (1987).

## Design of saddles

The saddles must be designed to withstand the load imposed by the weight of the vessel and contents. They are constructed of bricks or concrete, or are fabricated from steel plate. The contact angle should not be less than  $120^{\circ}$ , and will not normally be greater than  $150^{\circ}$ . Wear plates are often welded to the shell wall to reinforce the wall over the area of contact with the saddle.




| U   |             | Dimensions (m) |      |      |      |       |       | mm                    |       |               |               |
|-----|-------------|----------------|------|------|------|-------|-------|-----------------------|-------|---------------|---------------|
|     | weight (kN) | v              | Y    | С    | Е    | J     | G     | <i>t</i> <sub>2</sub> | $t_1$ | Bolt<br>diam. | Bolt<br>holes |
| 0.6 | 35          | 0.48           | 0.15 | 0.55 | 0.24 | 0.190 | 0.095 | 6                     | 5     | 20            | 25            |
| 0.8 | 50          | 0.58           | 0.15 | 0.70 | 0.29 | 0.225 | 0.095 | 8                     | 5     | 20            | 25            |
| 0.9 | 65          | 0.63           | 0.15 | 0.81 | 0.34 | 0.275 | 0.095 | 10                    | 6     | 20            | 25            |
| 1.0 | 90          | 0.68           | 0.15 | 0.91 | 0.39 | 0.310 | 0.095 | 11                    | 8     | 20            | 25            |
| 1.2 | 180         | 0.78           | 0.20 | 1.09 | 0.45 | 0.360 | 0.140 | 12                    | 10    | 24            | 30            |

All contacting edges fillet welded

(a)

Figure 13.26. Standard steel saddles (adapted from Bhattacharyya, 1976). (a) for vessels up to 1.2 m



| Vessel<br>diam.<br>(m) | Maximum<br>weight<br>(kN) | Dimensions (m) |       |      |      |       |       |                       | mm                    |               |               |  |  |
|------------------------|---------------------------|----------------|-------|------|------|-------|-------|-----------------------|-----------------------|---------------|---------------|--|--|
|                        |                           | v              | Y     | С    | Е    | J     | G     | <i>t</i> <sub>2</sub> | <i>t</i> <sub>1</sub> | Bolt<br>diam. | Bolt<br>holes |  |  |
| 1.4                    | 230                       | 0.88           | 0.20  | 1.24 | 0.53 | 0.305 | 0.140 | 12                    | 10                    | 24            | 30            |  |  |
| 1.6                    | 330                       | 0.98           | 0.20  | 1.41 | 0.62 | 0.350 | 0.140 | 12                    | 10                    | 24            | 30            |  |  |
| 1.8                    | 380                       | 1.08           | 0.20  | 1.59 | 0.71 | 0.405 | 0.140 | 12                    | 10                    | 24            | 30            |  |  |
| 2.0                    | 460                       | 1.18           | 0.20  | 1.77 | 0.80 | 0.450 | 0.140 | 12                    | 10                    | 24            | 30            |  |  |
| 2.2                    | 750                       | 1.28           | 0.225 | 1.95 | 0.89 | 0.520 | 0.150 | 16                    | 12                    | 24            | 30            |  |  |
| 2.4                    | 900                       | 1.38           | 0.225 | 2.13 | 0.98 | 0.565 | 0.150 | 16                    | 12                    | 27            | 33            |  |  |
| 2.6                    | 1000                      | 1.48           | 0.225 | 2.30 | 1.03 | 0.590 | 0.150 | 16                    | 12                    | 27            | 33            |  |  |
| 2.8                    | 1350                      | 1.58           | 0.25  | 2.50 | 1.10 | 0.625 | 0.150 | 16                    | 12                    | 27            | 33            |  |  |
| 3.0                    | . 1750                    | 1.68           | 0.25  | 2.64 | 1.18 | 0.665 | 0.150 | 16                    | 12                    | 27            | 33            |  |  |
| 3.2                    | 2000                      | 1.78           | 0.25  | 2.82 | 1.26 | 0.730 | 0.150 | 16                    | 12                    | 27            | 33            |  |  |
| 3.6                    | 2500                      | 1.98           | 0.25  | 3.20 | 1.40 | 0.815 | 0.150 | 16                    | 12                    | 27            | 33            |  |  |

All contacting edges fillet welded

(b)

Figure 13.26. (b) for vessels greater than 1.2 m

The dimensions of typical "standard" saddle designs are given in Figure 13.26. To take up any thermal expansion of the vessel, such as that in heat exchangers, the anchor bolt holes in one saddle can be slotted.

Procedures for the design of saddle supports are given by Brownell and Young (1959), Megyesy (1987), Escoe (1994) and Moss (1987).

# 13.9.2. Skirt supports

A skirt support consists of a cylindrical or conical shell welded to the base of the vessel. A flange at the bottom of the skirt transmits the load to the foundations. Typical designs are shown in Figure 13.23. Openings must be provided in the skirt for access and for any connecting pipes; the openings are normally reinforced. The skirt may be welded to the bottom head of the vessel. Figure 13.27a; or welded flush with the shell, Figure 13.27b; or welded to the outside of the vessel shell, Figure 13.27c. The arrangement shown in Figure 13.27b is usually preferred.

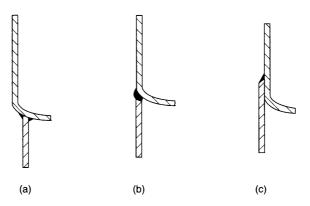



Figure 13.27. Skirt-support welds

Skirt supports are recommended for vertical vessels as they do not impose concentrated loads on the vessel shell; they are particularly suitable for use with tall columns subject to wind loading.

#### Skirt thickness

The skirt thickness must be sufficient to withstand the dead-weight loads and bending moments imposed on it by the vessel; it will not be under the vessel pressure.

The resultant stresses in the skirt will be:

$$\sigma_s \text{ (tensile)} = \sigma_{bs} - \sigma_{ws}$$
 (13.86)

and

$$\sigma_s$$
 (compressive) =  $\sigma_{bs} + \sigma_{ws}$  (13.87)

where  $\sigma_{bs}$  = bending stress in the skirt

$$=\frac{4M_s}{\pi(D_s+t_s)t_sD_s},$$
 (13.88)

 $\sigma_{ws}$  = the dead weight stress in the skirt,

$$=\frac{W}{\pi(D_s+t_s)t_s}\tag{13.89}$$

where  $M_s$  = maximum bending moment, evaluated at the base of the skirt (due to wind, seismic and eccentric loads, see Section 13.8),

W = total weight of the vessel and contents (see Section 13.8),

 $D_s$  = inside diameter of the skirt, at the base,

 $t_s = \text{skirt thickness.}$ 

The skirt thickness should be such that under the worst combination of wind and dead-weight loading the following design criteria are not exceeded:

$$\sigma_s \text{ (tensile)} \neq f_s J \sin \theta_s$$
 (13.90)

$$\sigma_s \text{ (compressive)} \neq 0.125E\left(\frac{t_s}{D_s}\right)\sin\theta_s$$
 (13.91)

where  $f_s$  = maximum allowable design stress for the skirt material, normally taken at ambient temperature, 20°C,

J = weld joint factor, if applicable,

 $\theta_s$  = base angle of a conical skirt, normally 80° to 90°.

The minimum thickness should be not less than 6 mm.

Where the vessel wall will be at a significantly higher temperature than the skirt, discontinuity stresses will be set up due to differences in thermal expansion. The British Standard BS 5500 requires that account should be taken of the thermal discontinuity stresses at the vessel to skirt junction where the product of the skirt diameter (mm), the skirt thickness (mm), and the temperature above ambient at the top of the skirt exceeds  $1.6 \times 10^7$  (mm<sup>2</sup> °C). Similar criteria are given in the other national codes and standards. Methods for calculating the thermal stresses in skirt supports are given by Weil and Murphy (1960) and Bergman (1963).

## Base ring and anchor bolt design

The loads carried by the skirt are transmitted to the foundation slab by the skirt base ring (bearing plate). The moment produced by wind and other lateral loads will tend to overturn the vessel; this will be opposed by the couple set up by the weight of the vessel and the tensile load in the anchor bolts. A variety of base ring designs is used with skirt supports. The simplest types, suitable for small vessels, are the rolled angle and plain flange rings shown in Figure 13.28a and b. For larger columns a double ring stiffened

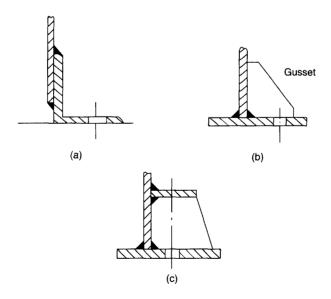



Figure 13.28. Flange ring designs (a) Rolled-angle (b) Single plate with gusset (c) Double plate with gusset

by gussets, Figure 13.18c, or chair supports, Figure 13.30, are used. Design methods for base rings, and methods for sizing the anchor bolts, are given by Brownell and Young (1959). For preliminary design, the short-cut method and nomographs given by Scheiman (1963) can be used. Scheiman's method is based on a more detailed proceedure for the design of base rings and foundations for columns and stacks given by Marshall (1958). Scheiman's method is outlined below and illustrated in Example 13.4.

The anchor bolts are assumed to share the overturning load equally, and the bolt area required is given by:

$$A_b = \frac{1}{N_b f_b} \left[ \frac{4M_s}{D_b} - W \right] \tag{13.92}$$

where  $A_b$  = area of one bolt at the root of the thread, mm<sup>2</sup>,

 $N_b$  = number of bolts,

 $f_b$  = maximum allowable bolt stress, N/mm<sup>2</sup>; typical design value 125 N/mm<sup>2</sup> (18,000 psi),

 $M_s$  = bending (overturning) moment at the base, Nm,

W = weight of the vessel, N,

 $D_b = \text{bolt circle diameter, m.}$ 

Scheiman gives the following guide rules which can be used for the selection of the anchor bolts:

- 1. Bolts smaller than 25 mm (1 in.) diameter should not be used.
- 2. Minimum number of bolts 8.
- 3. Use multiples of 4 bolts.
- 4. Bolt pitch should not be less than 600 mm (2 ft).

If the minimum bolt pitch cannot be accommodated with a cylindrical skirt, a conical skirt should be used.

The base ring must be sufficiently wide to distribute the load to the foundation. The total compressive load on the base ring is given by:

$$F_b = \left[ \frac{4M_s}{\pi D_s^2} + \frac{W}{\pi D_s} \right] \tag{13.93}$$

where  $F_b$  = the compressive load on the base ring, Newtons per linear metre,

 $D_s = \text{skirt diameter, m.}$ 

The minimum width of the base ring is given by:

$$L_b = \frac{F_b}{f_c} \times \frac{1}{10^3} \tag{13.94}$$

where  $L_b$  = base ring width, mm (Figure 13.29),

 $f_c$  = the maximum allowable bearing pressure on the concrete foundation pad, which will depend on the mix used, and will typically range from 3.5 to  $7 \text{ N/mm}^2$  (500 to 1000 psi).

The required thickness for the base ring is found by treating the ring as a cantilever beam.

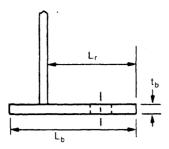
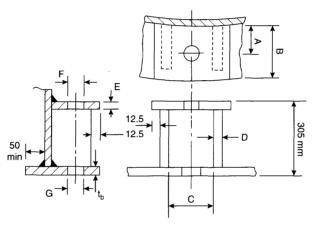




Figure 13.29. Flange ring dimensions



All contacting edges fillet welded

|              | Dimensions mm |    |     |     |    |    |    |    |
|--------------|---------------|----|-----|-----|----|----|----|----|
| Bolt<br>size | Root<br>area  | A  | В   | С   | D  | E  | F  | G  |
| M24          | 353           | 45 | 76  | 64  | 13 | 19 | 30 | 36 |
| M30          | 561           | 50 | 76  | 64  | 13 | 25 | 36 | 42 |
| M36          | 817           | 57 | 102 | 76  | 16 | 32 | 42 | 48 |
| M42          | 1120          | 60 | 102 | 76  | 16 | 32 | 48 | 54 |
| M48          | 1470          | 67 | 127 | 89  | 19 | 38 | 54 | 60 |
| M56          | 2030          | 75 | 150 | 102 | 25 | 45 | 60 | 66 |
| M64          | 2680          | 83 | 152 | 102 | 25 | 50 | 70 | 76 |
| 70           | _             | 89 | 178 | 127 | 32 | 64 | 76 | 83 |
| 76           |               | 95 | 178 | 127 | 32 | 64 | 83 | 89 |

Bolt size = Nominal dia. (BS 4190: 1967)

Figure 13.30. Anchor bolt chair design

The minimum thickness is given by:

$$t_b = L_r \sqrt{\frac{3f_c'}{f_r}} \tag{13.95}$$

where  $L_r$  = the distance from the edge of the skirt to the outer edge of the ring, mm; Figure 13.29,

 $t_b$  = base ring thickness, mm,

 $f'_c$  = actual bearing pressure on base, N/mm<sup>2</sup>,

 $f_r$  = allowable design stress in the ring material, typically 140 N/mm<sup>2</sup>.

Standard designs will normally be used for the bolting chairs. The design shown in Figure 13.30 has been adapted from that given by Scheiman.

### Example 13.4

Design a skirt support for the column specified in Example 13.3.

#### Solution

Try a straight cylindrical skirt ( $\theta_s = 90^{\circ}$ ) of plain carbon steel, design stress 135 N/mm<sup>2</sup> and Young's modulus 200,000 N/mm<sup>2</sup> at ambient temperature.

The maximum dead weight load on the skirt will occur when the vessel is full of water.

Approximate weight = 
$$\left(\frac{\pi}{4} \times 2^2 \times 50\right) 1000 \times 9.81$$
  
= 1,540,951 N  
= 1541 kN

Weight of vessel, from Example 13.3 = 842 kN

Total weight = 1541 + 842 = 2383 kN

Wind loading, from Example 13.4 = 2.79 kN/m

Bending moment at base of skirt = 
$$2.79 \times \frac{53^2}{2}$$
 (13.77)  
= 3919 kNm

As a first trial, take the skirt thickness as the same as that of the bottom section of the vessel. 18 mm.

$$\sigma_{bs} = \frac{4 \times 3919 \times 10^3 \times 10^3}{\pi (2000 + 18)2000 \times 18}$$
 (13.88)

 $= 68.7 \text{ N/mm}^2$ 

$$\sigma_{ws} \text{ (test)} = \frac{1543 \times 10^3}{\pi (2000 + 18)18} = 13.5 \text{ N/mm}^2$$
 (13.89)

$$\sigma_{ws}$$
 (operating) =  $\frac{842 \times 10^3}{\pi (2000 + 18)18} = 7.4 \text{ N/mm}^2$  (13.89)

*Note:* the "test" condition is with the vessel full of water for the hydraulic test. In estimating total weight, the weight of liquid on the plates has been counted twice. The weight has not been adjusted to allow for this as the error is small, and on the "safe side".

Maximum 
$$\hat{\sigma}_s$$
 (compressive) = 68.7 + 13.5 = 82.2 N/mm<sup>2</sup> (13.87)

Maximum 
$$\hat{\sigma}_s$$
 (tensile) = 68.7 – 7.4 = 61.3 N/mm<sup>2</sup> (13.86)

Take the joint factor J as 0.85.

Criteria for design:

$$\hat{\sigma}_s \text{ (tensile)} \neq f_s J \sin \theta$$

$$61.3 \neq 0.85 \times 135 \sin 90$$

$$61.3 \neq 115$$

$$(13.90)$$

$$\hat{\sigma}_s \text{ (compressive)} \neq 0.125E\left(\frac{t_s}{D_s}\right)\sin\theta$$

$$82.2 \neq 0.125 \times 200,000\left(\frac{18}{2000}\right)\sin90$$

$$82.2 \neq 225$$

$$(13.91)$$

Both criteria are satisfied, add 2 mm for corrosion, gives a design thickness of 20 mm

### Base ring and anchor bolts

Approximate pitch circle dia., say, 2.2 m

Circumference of bolt circle =  $2200\pi$ 

Number of bolts required, at minimum recommended bolt spacing

$$=\frac{2200\pi}{600}=11.5$$

Closest multiple of 4 = 12 bolts

Take bolt design stress =  $125 \text{ N/mm}^2$ 

 $M_s = 3919 \text{ kN m}$ 

Take W =operating value = 842 kN.

$$A_b = \frac{1}{12 \times 125} \left[ \frac{4 \times 3919 \times 10^3}{2.2} - 842 \times 10^3 \right]$$

$$= 4190 \text{ mm}^2$$
(13.92)

Bolt root dia. = 
$$\sqrt{\frac{4190 \times 4}{\pi}}$$
 = 73 mm, looks too large.

Total compressive load on the base ring per unit length

$$F_b = \left[ \frac{4 \times 3919 \times 10^3}{\pi \times 2.0^2} + \frac{842 \times 10^3}{\pi \times 2.0} \right]$$
= 1381 × 10<sup>3</sup> N/m

Taking the bearing pressure as 5 N/mm<sup>2</sup>

$$L_b = \frac{1381 \times 10^3}{5 \times 10^3} = 276 \text{ mm}$$
 (13.94)

Rather large — consider a flared skirt.

Take the skirt bottom dia. as 3 m

Skirt base angle 
$$\theta_s = \tan^{-1} \frac{3}{\frac{1}{2}(3-2)} = 80.5^{\circ}$$

Keep the skirt thickness the same as that calculated for the cylindrical skirt. Highest stresses will occur at the top of the skirt; where the values will be close to those calculated for the cylindrical skirt. Sin  $80.5^{\circ} = 0.99$ , so this term has little effect on the design criteria.

Assume bolt circle dia. = 3.2 m.

Take number of bolts as 16.

Bolt spacing = 
$$\frac{\pi \times 3.2 \times 10^3}{16}$$
 = 628 mm satisfactory.  

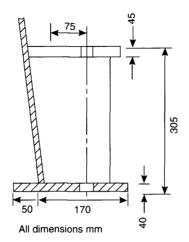
$$A_b = \frac{1}{16 \times 125} \left[ \frac{4 \times 3919 \times 10^3}{3.2} - 842 \times 10^3 \right]$$
=  $\frac{2029 \text{ mm}^2}{3.2}$ 

Use M56 bolts (BS 4190:1967) root area =  $2030 \text{ mm}^2$ ,

$$F_b = \left[ \frac{4 \times 3919 \times 10^3}{\pi \times 3.0^2} + \frac{842 \times 10^3}{\pi \times 3.0} \right]$$
$$= 644 \text{ kN/m}.$$
$$L_b = \frac{644 \times 10^3}{5 \times 10^3} = 129 \text{ mm}$$

This is the minimum width required; actual width will depend on the chair design. Actual width required (Figure 13.30):

$$= L_r + t_s + 50 \text{ mm}$$
$$= 150 + 20 + 50 = \underline{220 \text{ mm}}$$


Actual bearing pressure on concrete foundation:

$$f'_c = \frac{644 \times 10^3}{220 \times 10^3} = 2.93 \text{ N/mm}^2$$

$$t_b = 150\sqrt{\frac{3 \times 2.93}{140}} = 37.6 \text{ mm}$$
round off to  $\frac{40 \text{ mm}}{1}$ 

Chair dimensions from Figure 13.30 for bolt size M56.

Skirt to be welded flush with outer diameter of column shell.



### 13.9.3. Bracket supports

Brackets, or lugs, can be used to support vertical vessels. The bracket may rest on the building structural steel work, or the vessel may be supported on legs; Figure 13.24.

The main load carried by the brackets will be the weight of the vessel and contents; in addition the bracket must be designed to resist the load due to any bending moment due to wind, or other loads. If the bending moment is likely to be significant skirt supports should be considered in preference to bracket supports.

As the reaction on the bracket is eccentric, Figure 13.31, the bracket will impose a bending moment on the vessel wall. The point of support, at which the reaction acts, should be made as close to the vessel wall as possible; allowing for the thickness of any

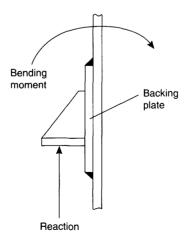



Figure 13.31. Loads on a bracket support

insulation. Methods for estimating the magnitude of the stresses induced in the vessel wall by bracket supports are given by Brownell and Young (1959) and by Wolosewick (1951). Backing plates are often used to carry the bending loads.

The brackets, and supporting steel work, can be designed using the usual methods for structural steelwork. Suitable methods are given in the Institute of Welding Handbook for structural steel, I. Weld (1952), and by Azbel and Cheremisinoff (1982), Bednar (1986), and Moss (1987).

A quick method for sizing vessel reinforcing rings (backing plates) for bracket supports is given by Mahajan (1977).

Typical bracket designs are shown in Figures 13.32a and b. The loads which steel brackets with these proportions will support are given by the following formula:

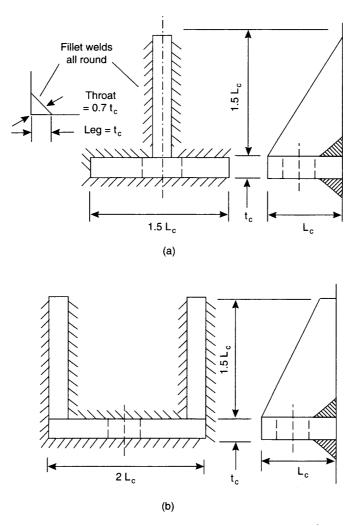



Figure 13.32. Bracket designs (a) Single gusset plate (b) Double gusset plate

Single-gusset plate design, Figure 13.32a:

$$F_{bs} = 60L_c t_c \tag{13.96}$$

Double-gusset plate design, Figure 13.32b:

$$F_{hs} = 120L_c t_c (13.97)$$

where  $F_{bs}$  = maximum design load per bracket, N,

 $L_c$  = the characteristic dimension of bracket (depth), mm,

 $t_c$  = thickness of plate, mm.

### 13.10. BOLT FLANGED JOINTS

Flanged joints are used for connecting pipes and instruments to vessels, for manhole covers, and for removable vessel heads when ease of access is required. Flanges may also be used on the vessel body, when it is necessary to divide the vessel into sections for transport or maintenance. Flanged joints are also used to connect pipes to other equipment, such as pumps and valves. Screwed joints are often used for small-diameter pipe connections, below 40 mm. Flanged joints are also used for connecting pipe sections where ease of assembly and dismantling is required for maintenance, but pipework will normally be welded to reduce costs.

Flanges range in size from a few millimetres diameter for small pipes, to several metres diameter for those used as body or head flanges on vessels.

### 13.10.1. Types of flange, and selection

Several different types of flange are used for various applications. The principal types used in the process industries are:

- 1. Welding-neck flanges.
- 2. Slip-on flanges, hub and plate types.
- 3. Lap-joint flanges.
- 4. Screwed flanges.
- 5. Blank, or blind, flanges.

Welding-neck flanges, Figure 13.33a: have a long tapered hub between the flange ring and the welded joint. This gradual transition of the section reduces the discontinuity stresses between the flange and branch, and increases the strength of the flange assembly. Welding-neck flanges are suitable for extreme service conditions; where the flange is likely to be subjected to temperature, shear and vibration loads. They will normally be specified for the connections and nozzles on process vessels and process equipment.

Slip-on flanges, Figure 13.33b: slip over the pipe or nozzle and are welded externally, and usually also internally. The end of the pipe is set back from 0 to 2.0 mm. The strength of a slip-on flange is from one-third to two-thirds that of the corresponding standard welding-neck flange. Slip-on flanges are cheaper than welding-neck flanges and are easier to align, but have poor resistance to shock and vibration loads. Slip-on flanges

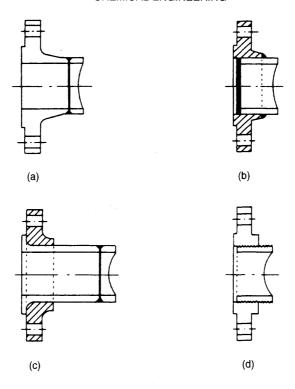



Figure 13.33. Flange types (a) Welding-neck (b) Slip-on (c) Lap-joint (d) Screwed

are generally used for pipe work. Figure 13.33b shows a forged flange with a hub; for light duties slip-on flanges can be cut from plate.

Lap-joint flanges, Figure 13.33c: are used for piped work. They are economical when used with expensive alloy pipe, such as stainless steel, as the flange can be made from inexpensive carbon steel. Usually a short lapped nozzle is welded to the pipe, but with some schedules of pipe the lap can be formed on the pipe itself, and this will give a cheap method of pipe assembly.

Lap-joint flanges are sometimes known as "Van-stone flanges".

Screwed flanges, Figure 13.33d: are used to connect screwed fittings to flanges. They are also sometimes used for alloy pipe which is difficult to weld satisfactorily.

Blind flanges (blank flanges): are flat plates, used to blank off flange connections, and as covers for manholes and inspection ports.

#### 13.10.2. Gaskets

Gaskets are used to make a leak-tight joint between two surfaces. It is impractical to machine flanges to the degree of surface finish that would be required to make a satisfactory seal under pressure without a gasket. Gaskets are made from "semi-plastic" materials; which will deform and flow under load to fill the surface irregularities between the flange faces, yet retain sufficient elasticity to take up the changes in the flange alignment that occur under load.

Table 13.4. Gasket materials (Based on a similar table in BS 5500: 1991)

| Gasket material                                                           |                                                                                 | Gasket factor m              | Min.<br>design<br>seating<br>stress<br>$y(N/mm^2)$ | Sketches | Minimum<br>gasket<br>width<br>(mm) |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------|----------------------------------------------------|----------|------------------------------------|
| Rubber without fabric or a high pe                                        | rcentage of                                                                     |                              |                                                    |          |                                    |
| asbestos fibre; hardness:<br>below 75° IRH                                | C                                                                               | 0.50                         | 0                                                  |          | 10                                 |
| 75° IRH or higher                                                         |                                                                                 | 1.00                         | 1.4                                                |          |                                    |
| Asbestos with a suitable binder for the operating conditions              | 3.2 mm thick 1.6 mm thick 0.8 mm thick                                          | 2.00<br>2.75<br>3.50         | 11.0<br>25.5<br>44.8                               |          | 10                                 |
| Rubber with cotton fabric insertion                                       | •                                                                               | 1.25                         | 2.8                                                | 1        | 10                                 |
| Rubber with cotton rabite insertion                                       | (3-ply                                                                          | 2.25                         | 15.2                                               |          | 10                                 |
| Rubber with asbestos fabric insertion, with or without wire reinforcement | 2-ply                                                                           | 2.50                         | 20.0                                               |          | 10                                 |
|                                                                           | l-ply                                                                           | 2.75                         | 25.5                                               |          |                                    |
| Vegetable fibre                                                           | ( 1 pty                                                                         | 1.75                         | 7.6                                                | 12       | 10                                 |
| vegemere nere                                                             | ( Carbon                                                                        | 2.50                         | 20.0                                               |          | 10                                 |
| Spiral-wound metal, asbestos filled                                       | Stainless or monel                                                              | 3.00                         | 31.0                                               |          | 10                                 |
| Corrugated metal,<br>asbestos inserted<br>or<br>Corrugated metal,         | Soft aluminium Soft copper or brass Iron or soft steel Monel or 4 to 6          | 2.50<br>2.75<br>3.00         | 20.0<br>25.5<br>31.0                               |          | 10                                 |
| jacketed asbestos filled                                                  | per cent chrome<br>Stainless steels                                             | 3.25<br>3.50                 | 37.9<br>44.8                                       |          |                                    |
| Corrugated metal                                                          | Soft aluminium<br>Soft copper or brass<br>Iron or soft steel<br>Monel or 4 to 6 | 2.75<br>3.00<br>3.25         | 25.5<br>31.0<br>37.9                               | ////     | 10                                 |
|                                                                           | per cent chrome<br>Stainless steels                                             | 3.50<br>3.75                 | 44.8<br>52.4                                       | 22227    |                                    |
| Flat metal jacketed asbestos filled                                       | Soft aluminium Soft copper or brass Iron or soft steel Monel 4 to 6 per cent    | 3.25<br>3.50<br>3.75<br>3.50 | 37.9<br>44.8<br>52.4<br>55.1                       |          | 10                                 |
|                                                                           | chrome<br>Stainless steels                                                      | 3.75<br>3.75                 | 62.0<br>62.0                                       |          |                                    |
| Grooved metal                                                             | Soft aluminium Soft copper or brass Iron or soft steel Monel or 4 to 6          | 3.25<br>3.50<br>3.75         | 37.9<br>44.8<br>52.4                               |          | 10                                 |
|                                                                           | per cent chrome<br>Stainless steels                                             | 3.75<br>4.25                 | 62.0<br>69.5                                       |          |                                    |
|                                                                           | Soft aluminium<br>Soft copper or brass                                          | 4.00<br>4.75                 | 60.6<br>89.5                                       |          |                                    |

(continued overleaf)

Table 13.4. (continued)

| Gasket material  |                                       | Gasket<br>factor<br>m | Min.<br>design<br>seating<br>stress<br>y(N/mm <sup>2</sup> ) | Sketches | Minimum<br>gasket<br>width<br>(mm) |
|------------------|---------------------------------------|-----------------------|--------------------------------------------------------------|----------|------------------------------------|
| Solid flat metal | Iron or soft steel<br>Monel or 4 to 6 | 5.50                  | 124                                                          |          | 6                                  |
|                  | per cent chrome                       | 6.00                  | 150                                                          |          |                                    |
|                  | Stainless steels                      | 6.50                  | 179                                                          |          |                                    |
| Ring joint       | Iron or soft steel<br>Monel or 4 to 6 | 5.50                  | 124                                                          |          |                                    |
|                  | per cent chrome                       | 6.00                  | 150                                                          |          | 6                                  |
|                  | Stainless steels                      | 6.50                  | 179                                                          |          |                                    |

A great variety of proprietary gasket materials is used, and reference should be made to the manufacturers' catalogues and technical manuals when selecting gaskets for a particular application. Design data for some of the more commonly used gasket materials are given in Table 13.4. Further data can be found in the pressure vessel codes and standards and in various handbooks; Perry *et al.* (1997). The minimum seating stress *y* is the force per unit area (pressure) on the gasket that is required to cause the material to flow and fill the surface irregularities in the gasket face.

The gasket factor m is the ratio of the gasket stress (pressure) under the operating conditions to the internal pressure in the vessel or pipe. The internal pressure will force the flanges' faces apart, so the pressure on the gasket under operating conditions will be lower than the initial tightening-up pressure. The gasket factor gives the minimum pressure that must be maintained on the gasket to ensure a satisfactory seal.

The following factors must be considered when selecting a gasket material:

- 1. The process conditions: pressure, temperature, corrosive nature of the process fluid.
- 2. Whether repeated assembly and disassembly of the joint is required.
- 3. The type of flange and flange face (see Section 13.10.3).

Up to pressures of 20 bar, the operating temperature and corrosiveness of the process fluid will be the controlling factor in gasket selection. Vegetable fibre and synthetic rubber gaskets can be used at temperatures of up to  $100^{\circ}$ C. Solid polyfluorocarbon (Teflon) and compressed asbestos gaskets can be used to a maximum temperature of about  $260^{\circ}$ C. Metal-reinforced gaskets can be used up to around  $450^{\circ}$ C. Plain soft metal gaskets are normally used for higher temperatures.

# 13.10.3. Flange faces

Flanges are also classified according to the type of flange face used. There are two basic types:

1. Full-faced flanges, Figure 13.34a: where the face contact area extends outside the circle of bolts; over the full face of the flange.

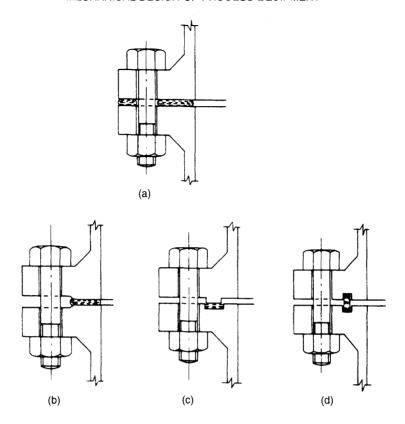



Figure 13.34. Flange types and faces (a) Full-face (b) Gasket within bolt circle (c) Spigot and socket (d) Ring type joint

2. Narrow-faced flanges, Figure 13.34b, c, d: where the face contact area is located within the circle of bolts.

Full face, wide-faced, flanges are simple and inexpensive, but are only suitable for low pressures. The gasket area is large, and an excessively high bolt tension would be needed to achieve sufficient gasket pressure to maintain a good seal at high operating pressures.

The raised face, narrow-faced, flange shown in Figure 13.34b is probably the most commonly used type of flange for process equipment.

Where the flange has a plain face, as in Figure 13.34b, the gasket is held in place by friction between the gasket and flange surface. In the spigot and socket, and tongue and grooved faces, Figure 13.34c, the gasket is confined in a groove, which prevents failure by "blow-out". Matched pairs of flanges are required, which increases the cost, but this type is suitable for high pressure and high vacuum service. Ring joint flanges, Figure 13.34d, are used for high temperatures and high pressure services.

### 13.10.4. Flange design

Standard flanges will be specified for most applications (see Section 13.10.5). Special designs would be used only if no suitable standard flange were available; or for large

flanges, such as the body flanges of vessels, where it may be cheaper to size a flange specifically for the duty required rather than to accept the nearest standard flange, which of necessity would be over-sized.

Figure 13.35 shows the forces acting on a flanged joint. The bolts hold the faces together, resisting the forces due to the internal pressure and the gasket sealing pressure. As these forces are offset the flange is subjected to a bending moment. It can be considered as a cantilever beam with a concentrated load. A flange assembly must be sized so as to have sufficient strength and rigidity to resist this bending moment. A flange that lacks sufficient rigidity will rotate slightly, and the joint will leak; Figure 13.36. The principles of flange design are discussed by Singh and Soler (1984), and Azbel and Cheremisinoff (1982). Singh and Soler give a computer programme for flange design.

Design procedures and work sheets for non-standard flanges are given in the national codes and standards. The design methods given in the current British Standard BS 5500

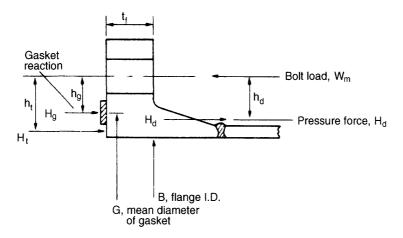



Figure 13.35. Forces acting on an integral flange

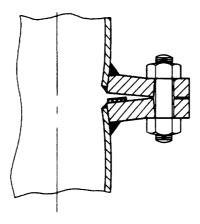



Figure 13.36. Deflection of a weak flange (exaggerated)

and the American code, ASME Section VIII, are based on a theoretical analysis of the stresses in flanges published by Waters *et al.* (1934, 1937), who modified an earlier analysis by Waters and Taylor (1927). The design methods given in the codes and standards are discussed and compared by Rose (1970).

In the analysis of Waters *et al.*, the flange is considered as a flat plate, and the hub and nozzle (or pipe section) as a beam on an elastic foundation. They assume that no plastic deformation occurs and that the bolt load remains constant. Lake and Boyd (1957) presented a method of analysis that took account of the plastic strain that will occur in most practical flanges. Their design method was used as the basis of the flange-design procedure given in the earlier British Standard, BS 1500, (now withdrawn). The method allowed lighter flange designs than the current British Standard and American code methods. It was generally considered satisfactory for flange sizes up to 1.5 m (5 ft) diameter; see Rose (1970).

For design purposes, the flanges are classified as integral or loose flanges.

Integral flanges are those in which the construction is such that the flange obtains support from its hub and the connecting nozzle (or pipe). The flange assembly and nozzle neck form an "integral" structure. A welding-neck flange would be classified as an integral flange.

Loose flanges are attached to the nozzle (or pipe) in such a way that they obtain no significant support from the nozzle neck and cannot be classified as an integral attachment. Screwed and lap-joint flanges are typical examples of loose flanges.

The design procedures given in the codes and standards can be illustrated by considering the forces and moments which act on an integral flange, Figure 13.35.

The total moment  $M_{op}$  acting on the flange is given by:

$$M_{op} = H_d h_d + H_t h_t + H_g h_g (13.98)$$

Where  $H_g$  = gasket reaction (pressure force), =  $\pi G(2b)mP_i$ 

 $H_t$  = pressure force on the flange face =  $H - H_d$ ,

 $H = \text{total pressure force} = (\pi/4)G^2P_i$ ,

 $H_d$  = pressure force on the area inside the flange =  $(\pi/4)B^2P_i$ ,

G = mean diameter of the gasket,

B =inside diameter of the flange,

2b = effective gasket pressure width,

b =effective gasket sealing width,

 $h_d$ ,  $h_g$  and  $h_t$  are defined in Figure 13.35.

The minimum required bolt load under the operating conditions is given by:

$$W_{m1} = H + H_g (13.99)$$

The forces and moments on the flange must also be checked under the bolting-up conditions.

The moment  $M_{atm}$  is given by:

$$M_{atm} = W_{m2}h_g \tag{13.100}$$

where  $W_{m2}$  is the bolt load required to seat the gasket, given by:

$$W_{m2} = y\pi Gb \tag{13.101}$$

where y is the gasket seating pressure (stress).

The flange stresses are given by:

longitudinal hub stress, 
$$\sigma_{bb} = F_1 M$$
 (13.102)

radial flange stress, 
$$\sigma_{rd} = F_2 M$$
 (13.103)

tangential flange stress, 
$$\sigma_{tg} = F_3 M - F_4 \sigma_{rd}$$
 (13.104)

where M is taken as  $M_{op}$  or  $M_{atm}$ , whichever is the greater; and the factors  $F_1$  to  $F_4$  are functions of the flange type and dimensions, and are obtained from equations and graphs given in the codes and standards (BS 5500, clause 3.8).

The flange must be sized so that the stresses given by equations 13.102 to 13.104 satisfy the following criteria:

$$\sigma_{hb} \neq 1.5 f_{f0} \tag{13.105}$$

$$\sigma_{rd} \not> f_{f0} \tag{13.106}$$

$$\frac{1}{2}(\sigma_{hb} + \sigma_{rd}) \neq f_{f0} \tag{13.107}$$

$$\frac{1}{2}(\sigma_{hb} + \sigma_{tg}) \neq f_{f0} \tag{13.108}$$

where  $f_{f0}$  is the maximum allowable design stress for the flange material at the operating conditions.

The minimum bolt area required  $A_{bf}$  will be given by:

$$A_{bf} = \frac{W_m}{f_b} \tag{13.109}$$

where  $W_m$  is the greater value of  $W_{m1}$  or  $W_{m2}$ , and  $f_b$  the maximum allowable bolt stress. Standard size bolts should be chosen, sufficient to give the required area. The bolt size will not normally be less than 12 mm, as smaller sizes can be sheared off by over-tightening.

The bolt spacing must be selected to give a uniform compression of the gasket. It will not normally be less than 2.5 times the bolt diameter, to give sufficient clearance for tightening with a wrench or spanner. The following formula can be used to determine the maximum bolt spacing:

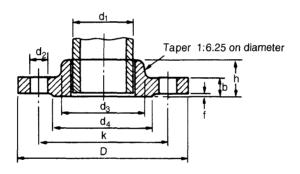
$$p_b = 2d_b + \frac{6t_f}{(m+0.5)} \tag{13.110}$$

where  $p_b$  = bolt pitch (spacing), mm,

 $d_b = \text{bolt diameter, mm,}$ 

 $t_f$  = flange thickness, mm,

m = gasket factor.


### 13.10.5. Standard flanges

Standard flanges are available in a range of types, sizes and materials; and are used extensively for pipes, nozzles and other attachments to pressure vessels.

The proportions of standard flanges are set out in the various codes and standards. A typical example of a standard flange design is shown in Figure 13.37. The relevant British Standards are BS 1560, Part 3 and BS 4504, Part 3, which cover flanges for pipes, valves and fittings; in carbon and alloy steels, cast iron, and copper alloys. BS 1560 covers nominal pipe sizes up to 24 inches (610 mm), and BS 4504 sizes up to 4000 mm. Carbon steel flange sizes above 24 inches are also covered by BS 3293. In BS 1560 and BS 4504 the flange dimensions are given in metric units (SI), but BS 3293 gives the values in inches.

In the United States, flanges are covered by standards issued by the American National Standards Institute (ANSI). An abstract of the American standards is given in Perry and Green (1984), and in the TEMA standards (see Chapter 12).

# STEEL SLIP-ON BOSS FLANGE FOR WELDING Nominal pressure 6 bar



| Nom.<br>size | Pipe o.d. $d_1 \approx$ | Flange |    | Raised face |       | Bolting | Drilling |     |       | Boss |       |
|--------------|-------------------------|--------|----|-------------|-------|---------|----------|-----|-------|------|-------|
|              |                         | D      | b  | h           | $d_4$ | f       |          | No. | $d_2$ | k    | $d_3$ |
| 10           | 17.2                    | 75     | 12 | 20          | 35    | 2       | M10      | 4   | 11    | 50   | 25    |
| 15           | 21.3                    | 80     | 12 | 20          | 40    | 2       | M10      | 4   | 11    | 55   | 30    |
| 20           | 26.9                    | 90     | 14 | 24          | 50    | 2       | M10      | 4   | 11    | 65   | 40    |
| 25           | 33.7                    | 100    | 14 | 24          | 60    | 2       | M10      | 4   | 11    | 75   | 50    |
| 32           | 42.4                    | 120    | 14 | 26          | 70    | 2       | M12      | 4   | 14    | 90   | 60    |
| 40           | 48.3                    | 130    | 14 | 26          | 80    | 3       | M12      | 4   | 14    | 100  | 70    |
| 50           | 60.3                    | 140    | 14 | 28          | 90    | 3       | M12      | 4   | 14    | 110  | 80    |
| 65           | 76.1                    | 160    | 14 | 32          | 110   | 3       | M12      | 4   | 14    | 130  | 100   |
| 80           | 88.9                    | 190    | 16 | 34          | 128   | 3       | M16      | 4   | 18    | 150  | 110   |
| 100          | 114.3                   | 210    | 16 | 40          | 148   | 3       | M16      | 4   | 18    | 170  | 130   |
| 125          | 139.7                   | 240    | 18 | 44          | 178   | 3       | M16      | 8   | 18    | 200  | 160   |
| 150          | 168.3                   | 265    | 18 | 44          | 202   | 3       | M16      | 8   | 18    | 225  | 185   |
| 200          | 219.1                   | 320    | 20 | 44          | 258   | 3       | M16      | 8   | 18    | 280  | 240   |
| 250          | 273                     | 375    | 22 | 44          | 312   | 3       | M16      | 12  | 18    | 335  | 295   |
| 300          | 323.9                   | 440    | 22 | 44          | 365   | 4       | M20      | 12  | 22    | 395  | 355   |

Figure 13.37. Typical standard flange design, (BS 4504) (All dimensions mm)

Standard flanges are designated by a class, or rating number, which corresponds to the primary service rating for the flange. BS 4504 provides for six classes: 2.5, 6, 10, 16, 25 and 40 (bar, gauge). BS 1560 also provides for six classes, but the rating numbers correspond to the nominal pressure in pounds force per square inch gauge: 150, 300, 600, 900, 1500, and 2500 (psig). Such standard flanges are often referred to as 150 pound, 300 pound, etc., flanges.

The flange class number required for a particular duty will depend on the design pressure and temperature, and the flange material. The reduction in strength at elevated temperatures is allowed for by selecting a flange with a higher nominal rating than the design pressure. For example, for a design pressure of 10 bar (150 psi) a BS 1560, carbon steel class 150 flange would be specified for temperatures below 300°C; whereas for a temperature of, say, 400°C a class 300 flange would be specified. The pressure-temperature rating for carbon steel flanges to BS 4504 are given in Table 13.5. Pressure-temperature ratings for the full range of materials covered can be obtained from the standards. The dimensions of steel welding-neck flanges to BS 4504, for classes 6, 10, 25 and 40 bar are given in Appendix F. The appropriate standard should be consulted for the dimensions of other flange types and materials, and for the full specification of standard flanges.

| Nominal pressure (bar) |              | Des  | sign pressur | e at tempera | rature, °C (ba | ar)  |      |
|------------------------|--------------|------|--------------|--------------|----------------|------|------|
| ()                     | up to<br>120 | 150  | 200          | 250          | 300            | 350  | 400  |
|                        | 120          | 130  | 200          | 230          | 300            | 330  | 400  |
| 2.5                    | 2.5          | 2.3  | 2.0          | 1.8          | 1.5            | 1.3  | 0.9  |
| 6                      | 6.0          | 5.4  | 4.8          | 4.2          | 3.6            | 3.0  | 2.1  |
| 10                     | 10           | 9.0  | 8.0          | 7.0          | 6.0            | 5.0  | 3.5  |
| 16                     | 16           | 14.4 | 12.8         | 11.2         | 9.6            | 8.0  | 5.6  |
| 25                     | 25           | 2.5  | 20.0         | 17.5         | 15.0           | 12.5 | 8.8  |
| 40                     | 40           | 36.0 | 32.0         | 28.0         | 24.0           | 20.0 | 14.0 |

Table 13.5. Typical pressure-temperature ratings for carbon steel flanges, BS 4504.

#### 13.11. HEAT-EXCHANGER TUBE-PLATES

The tube-plates (tube-sheets) in shell and tube heat exchangers support the tubes, and separate the shell and tube side fluids (see Chapter 12). One side is subject to the shell-side pressure and the other the tube-side pressure. The plates must be designed to support the maximum differential pressure that is likely to occur. Radial and tangential bending stresses will be induced in the plate by the pressure load and, for fixed-head exchangers, by the load due to the differential expansion of the shell and tubes.

A tube-plate is essentially a perforated plate with an unperforated rim, supported at its periphery. The tube holes weaken the plate and reduce its flexual rigidity. The equations developed for the stress analysis of unperforated plates (Section 13.3.5) can be used for perforated plates by substituting "virtual" (effective) values for the elastic constants E and v, in place of the normal values for the plate material. The virtual elastic constants E' and v' are functions of the plate ligament efficiency, Figure 13.38; see O'Donnell and Langer (1962). The ligament efficiency of a perforated plate is defined as:

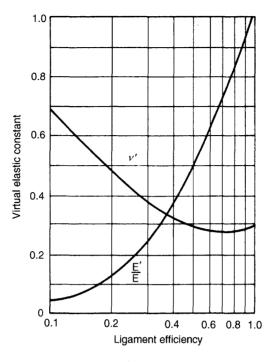



Figure 13.38. Virtual elastic constants

$$\lambda = \frac{p_h - d_h}{p_h} \tag{13.111}$$

where  $p_h$  = hole pitch,

 $d_h$  = hole diameter.

The "ligament" is the material between the holes (that which holds the holes together). In a tube-plate the presence of the tubes strengthens the plate, and this is taken into account when calculating the ligament efficiency by using the inside diameter of the tubes in place of the hole diameter in equation 13.111.

Design procedures for tube-plates are given in BS 5500, and in the TEMA heat exchanger standards (see Chapter 12). The tube-plate must be thick enough to resist the bending and shear stresses caused by the pressure load and any differential expansion of the shell and tubes. The minimum plate thickness to resist bending can be estimated using an equation of similar form to that for plate end closures (Section 13.5.3).

$$t_p = C_{ph} D_p \sqrt{\frac{\Delta P'}{\lambda f_p}} \tag{13.112}$$

where  $t_p$  = the minimum plate thickness,

 $\Delta P'$  = the effective tube plate design pressure,

 $\lambda = ligament efficiency,$ 

 $f_p$  = maximum allowable design stress for the plate,

 $C_{ph}$  = a design factor,  $D_p$  = plate diameter.

The value of the design factor  $C_{ph}$  will depend on the type of head, the edge support (clamped or simply supported), the plate dimensions, and the elastic constants for the plate and tube material, and can be obtained from the design charts and equations given in BS 5500, clause 3.9.

The tube-sheet design pressure  $\Delta P'$  depends on the type of exchanger. For an exchanger with confined heads or U-tubes it is taken as the maximum difference between the shell-side and tube-side operating pressures; with due consideration being given to the possible loss of pressure on either side. For exchangers with unconfined heads (plates fixed to the shell) the load on the tube-sheets due to differential expansion of the shell and tubes must be added to that due to the differential pressure.

The shear stress in the tube-plate can be calculated by equating the pressure force on the plate to the shear force in the material at the plate periphery. The minimum plate thickness to resist shear is given by:

$$t_p = \frac{0.155D_p \Delta P'}{\lambda \tau_p} \tag{13.113}$$

where  $\tau_p$  = the maximum allowable shear stress, taken as half the maximum allowable design stress for the material (see Section 13.3.2).

The design plate thickness is taken as the greater of the values obtained from equations 13.112 and 13.113 and must be greater than the minimum thickness given below:

| Tube o.d. (mm) | Minimum plate thickness (mm)    |  |  |  |  |
|----------------|---------------------------------|--|--|--|--|
| 25             | $0.75 \times \text{ tube o.d.}$ |  |  |  |  |
| 25-30          | 22                              |  |  |  |  |
| 30-40          | 25                              |  |  |  |  |
| 40-50          | 30                              |  |  |  |  |

For exchangers with fixed tube-plates the longitudinal stresses in the tubes and shell must be checked to ensure that the maximum allowable design stresses for the materials are not exceeded. Methods for calculating these stresses are given in the standards.

A detailed account of the methods used for the stresses analysis of tube sheets is given by Bickell and Ruiz (1967), Jawad and Farr (1989), and Singh and Soler (1984). Singh and Soler give computer programs for the design of the principal types of tube-plate.

#### 13.12. WELDED JOINT DESIGN

Process vessels are built up from preformed parts: cylinders, heads, and fittings, joined by fusion welding. Riveted construction was used extensively in the past (prior to the 1940s) but is now rarely seen.

Cylindrical sections are usually made up from plate sections rolled to the required curvature. The sections (strakes) are made as large as is practicable to reduce the number of welds required. The longitudinal welded seams are offset to avoid a conjunction of welds at the corners of the plates.

Many different forms of welded joint are needed in the construction of a pressure vessel. Some typical forms are shown in Figures 13.39 to 13.41.

The design of a welded joint should satisfy the following basic requirements:

- 1. Give good accessibility for welding and inspection.
- 2. Require the minimum amount of weld metal.
- 3. Give good penetration of the weld metal; from both sides of the joint, if practicable.
- 4. Incorporate sufficient flexibility to avoid cracking due to differential thermal expansion.

The preferred types of joint, and recommended designs and profiles, are given in the codes and standards.

The correct form to use for a given joint will depend on the material, the method of welding (machine or hand), the plate thickness, and the service conditions. Double-sided V- or U-sections are used for thick plates, and single V- or U-profiles for thin plates. A backing strip is used where it is not possible to weld from both sides. Lap joints are seldom used for pressure vessels construction, but are used for atmospheric pressure storage tanks.

Where butt joints are made between plates of different thickness, the thicker plate is reduced in thickness with a slope of not greater than 1 in 4 (14°) (Figure 13.42).

The local heating, and consequent expansion, that occurs during welding can leave the joint in a state of stress. These stresses are relieved by post-welding heat treatment. Not all vessels will be stress relieved. Guidance on the need for post-welding heat treatment is

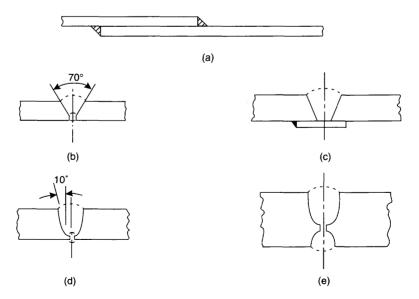



Figure 13.39. Weld profiles; (b to e) butt welds (a) Lap joint (b) Single 'V' (c) Backing strip (d) Single 'U' (e) Double 'U'

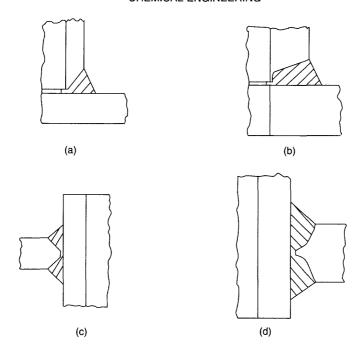



Figure 13.40. Typical weld profiles — Branches (a), (b) Set-on branches (c), (d) Set-in branches

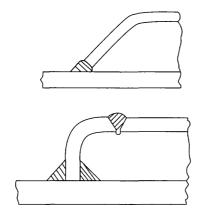



Figure 13.41. Typical construction methods for welded jackets

given in the codes and standards, and will depend on the service and conditions, materials of construction, and plate thickness.

To ensure that a satisfactory quality of welding is maintained, welding-machine operators and welders working on the pressure parts of vessels are required to pass welder approval tests; which are designed to test their competence to make sound welds. In the UK the testing of welders is covered by British Standards BS 4870, BS 4871, and BS 4872.

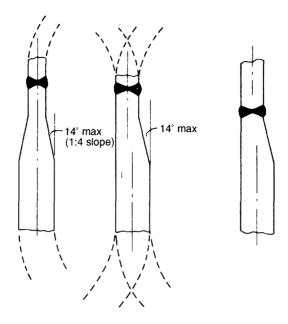



Figure 13.42. Transition between plates of unequal thickness

### 13.13. FATIGUE ASSESSMENT OF VESSELS

During operation the shell, or components of the vessel, may be subjected to cyclic stresses. Stress cycling can arise from the following causes:

- 1. Periodic fluctuations in operating pressure.
- 2. Temperature cycling.
- 3. Vibration.
- 4. "Water hammer".
- 5. Periodic fluctuation of external loads.

A detailed fatigue analysis is required if any of these conditions is likely to occur to any significant extent. Fatigue failure will occur during the service life of the vessel if the endurance limit (number of cycles for failure) at the particular value of the cyclic stress is exceeded. The codes and standards should be consulted to determine when a detailed fatigue analysis must be undertaken; see also Langer (1971).

#### 13.14. PRESSURE TESTS

The national pressure vessel codes and standards require that all pressure vessels be subjected to a pressure test to prove the integrity of the finished vessel. A hydraulic test is normally carried out, but a pneumatic test can be substituted under circumstances where the use of a liquid for testing is not practical. Hydraulic tests are safer because only a small amount of energy is stored in the compressed liquid. A standard pressure

test is used when the required thickness of the vessel parts can be calculated in accordance with the particular code or standard. The vessel is tested at a pressure above the design pressure, typically 25 to 30 per cent. The test pressure is adjusted to allow for the difference in strength of the vessel material at the test temperature compared with the design temperature, and for any corrosion allowance.

Formulae for determining the appropriate test pressure are given in the codes and standards; such as that in BS 5500:

Test pressure = 1.25 
$$\left[ P_d \frac{f_a}{f_n} \times \frac{t}{(t-c)} \right]$$
 (13.114)

where  $P_d$  = design pressure, N/mm<sup>2</sup>,

 $f_a$  = nominal design strength (design stress) at the test temperature, N/mm<sup>2</sup>,

 $f_n$  = nominal design strength at the design temperature, N/mm<sup>2</sup>,

c =corrosion allowance, mm,

t = actual plate thickness, mm.

Equation 13.114 applies to category 1 and 2 vessels. For category 3 vessel either that equation is used or the relationship below, whichever gives the greater pressure.

Test pressure = 
$$1.5 P_d$$

When the required thickness of the vessel component parts cannot be determined by calculation in accordance with the methods given, the codes and standards require that a hydraulic proof test be carried out. In a proof test the stresses induced in the vessel during the test are monitored using strain gauges, or similar techniques. The requirements for the proof testing of vessels are set out in the codes and standards.

#### 13.15. HIGH-PRESSURE VESSELS

High pressures are required for many commercial chemical processes. For example, the synthesis of ammonia is carried out at reactor pressures of up to 1000 bar, and high-density polyethylene processes operate up to 1500 bar.

Only a brief discussion of the design of vessels for operation at high pressures will be given in this section; sufficient to show the fundamental limitations of single-wall (monobloc) vessels, and the construction techniques that are used to overcome this limitation. A full discussion of the design and construction of high-pressure vessels and ancillary equipment (pumps, compressors, valves and fittings) is given in the books by Tonge (1959), Manning and Labrow (1974), and Jawad and Farr (1989); see also the safety code published by the High Pressure Technology Association (1975).

# 13.15.1. Fundamental equations

Thick walls are required to contain high pressures, and the assumptions made in the earlier sections of this chapter to develop the design equations for "thin-walled" vessels will not be valid. The radial stress will not be negligible and the tangential (hoop) stress will vary across the wall.

Consider the forces acting on the elemental section of the wall of the cylinder shown in Figure 13.43. The cylinder is under an internal pressure  $P_i$  and an external pressure  $P_e$ . The conditions for static equilibrium, with the forces resolved radially, give:

$$\sigma_r r \delta \phi - 2\sigma_t \delta r \sin \frac{\delta \phi}{2} - (\sigma_r + \delta \sigma_r)(r + \delta r)\delta \phi = 0$$

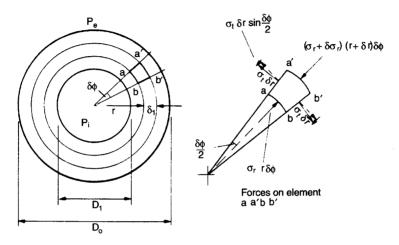



Figure 13.43. Thick cylinder

multiplying out taking the limit gives:

$$\sigma_t + r \frac{d\sigma_r}{dr} + \sigma_r = 0 \tag{13.115}$$

A second equation relating the radial and tangential stresses can be written if the longitudinal strain  $\varepsilon_L$  and stress  $\sigma_L$  are taken to be constant across the wall; that is, that there is no distortion of plane sections, which will be true for sections away from the ends. The longitudinal strain is given by:

$$\varepsilon_L = \frac{1}{E} [\sigma_L - (\sigma_t - \sigma_r)v]$$
 (13.116)

If  $\varepsilon_L$  and  $\sigma_L$  are constant, then the term  $(\sigma_t - \sigma_r)$  must also be constant, and can be written as:

$$(\sigma_t - \sigma_r) = 2A \tag{13.117}$$

where A is an arbitrary constant.

Substituting for  $\sigma_t$  in equation 13.115 gives:

$$2\sigma_r + r\frac{\mathrm{d}\sigma_r}{\mathrm{d}r} = -2A.$$

and integrating

$$\sigma_r = -A + \frac{B'}{r^2} \tag{13.118}$$

where B' is the constant of integration.

In terms of the cylinder diameter, the equations can be written as:

$$\sigma_r = -A + \frac{B}{d^2} \tag{13.119}$$

$$\sigma_t = A + \frac{B}{d^2} \tag{13.120}$$

These are the fundamental equations for the design of thick cylinders and are often referred to as Lamé's equations, as they were first derived by Lamé and Clapeyron (1833). The constants A and B are determined from the boundary conditions for the particular loading condition.

Most high-pressure process vessels will be under internal pressure only, the atmospheric pressure outside a vessel will be negligible compared with the internal pressure. The boundary conditions for this loading condition will be:

$$\sigma_r = P_i$$
 at  $d = D_i$ 

$$\sigma_r = 0$$
 at  $d = D_o$ 

Substituting these values in equation 13.119 gives

$$P_i = -A + \frac{B}{D_i^2}$$

and

$$0 = -A + \frac{B}{D_0^2}$$

subtracting gives

$$P_i = B \left[ \frac{1}{D_i^2} - \frac{1}{D_o^2} \right]$$

hence

$$B = P_i \frac{(D_i^2 D_o^2)}{(D_o^2 - D_i^2)}$$

and

$$A = P_i \frac{D_i^2}{(D_o^2 - D_i^2)}$$

Substituting in equations 13.119 and 13.120 gives:

$$\sigma_r = P_i \left[ \frac{D_i^2 (D_o^2 - d^2)}{d^2 (D_o^2 - D_i^2)} \right]$$
 (13.121)

$$\sigma_t = P_i \left[ \frac{D_i^2 (D_o^2 + d^2)}{d^2 (D^2 - D_i^2)} \right]$$
 (13.122)

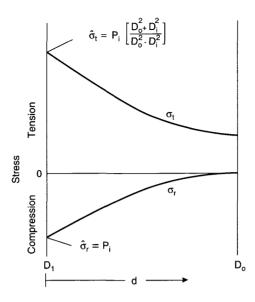



Figure 13.44. Stress distribution in wall of a monobloc cylinder

The stress distribution across the vessel wall is shown plotted in Figure 13.44. The maximum values will occur at the inside surface, at  $d = D_i$ .

Putting  $K = D_o/D_i$ , the maximum values are given by:

$$\hat{\sigma}_r = P_i \text{ (compressive)}$$
 (13.123)

$$\hat{\sigma}_t = P_i \left[ \frac{K^2 + 1}{K^2 - 1} \right] \tag{13.124}$$

An expression for the longitudinal stress can be obtained by equating forces in the axial direction:

$$\sigma_L \frac{\pi}{4} (D_o^2 - D_i^2) = P_i \frac{\pi D_i^2}{4}$$

$$\sigma_L = \frac{P_i D_i^2}{(D_o^2 - D_i^2)} = \frac{P_i}{(K^2 - 1)}$$
(13.125)

hence

The maximum shear stress will be given by (see Section 13.3.1):

$$\hat{\tau} = \frac{1}{2}(\hat{\sigma}_t + \hat{\sigma}_r) = \frac{P_i K^2}{(K^2 - 1)}$$
 (13.126)

# Theoretical maximum pressure

If the maximum shear stress theory is taken as the criterion of failure (Section 13.3.2), then the maximum pressure that a monobloc vessel can be designed to withstand without

failure is given by:

$$\hat{\tau} = \frac{\sigma'_e}{2} = \frac{P_i K^2}{(K^2 - 1)}$$
 hence 
$$\hat{P}_i = \frac{\sigma'_e}{2} \left[ \frac{K^2 - 1}{K^2} \right]$$
 (13.127)

where  $\sigma'_e$  is the elastic limit stress for the material of construction divided by a suitable factor of safety. As the wall thickness is increased the term  $(K^2 - 1)/K^2$  tends to 1,

and 
$$\hat{P}_i = \frac{\sigma'_e}{2} \tag{13.128}$$

which sets an upper limit on the pressure that can be contained in a monobloc cylinder. Manning (1947) has shown that the maximum shear strain energy theory of failure (due to Mises (1913)) gives a closer fit to experimentally determined failure pressures for monobloc cylinders than the maximum shear stress theory. This criterion of failure gives:

$$\hat{P}_i = \frac{\sigma'_e}{\sqrt{3}} \tag{13.129}$$

From Figure (13.44) it can be seen that the stress falls off rapidly across the wall and that the material in the outer part of the wall is not being used effectively. The material can be used more efficiently by prestressing the wall. This will give a more uniform stress distribution under pressure. Several different "prestressing" techniques are used; the principal methods are described briefly in the following sections.

### 13.15.2. Compound vessels

# Shrink-fitted cylinders

Compound vessels are made by shrinking one cylinder over another. The inside diameter of the outer cylinder is made slightly smaller than the outer diameter of the inner cylinder, and is expanded by heating to fit over the inner. On cooling the outer cylinder contracts and places the inner under compression. The stress distribution in a two-cylinder compound vessel is shown in Figure 13.45; more than two cylinders may be used.

Shrink-fitted compound cylinders are used for small-diameter vessels, such as compressor cylinder barrels. The design of shrink-fitted compound cylinders is discussed by Manning (1947) and Jawad and Farr (1989).

### Multilayer vessels

Multilayer vessels are made by wrapping several layers of relatively thin plate round a central tube. The plates are heated, tightened and welded, and this gives the desired stress distribution in the compound wall. The vessel is closed with forged heads. A typical design is shown in Figure 13.46. This construction technique is discussed by Jasper and Scudder (1941) and Jawad and Farr (1989).

.

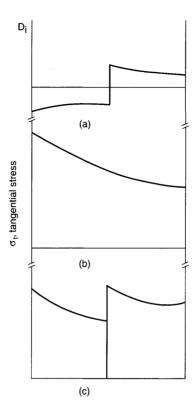



Figure 13.45. Stress distribution in a shrink-fitted compound cylinder (a) Due to shrinkage (b) Due to pressure (c) Combined (a+b)

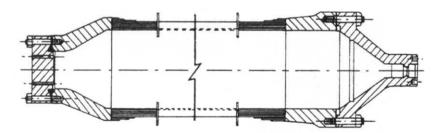



Figure 13.46. Multilayer construction

#### Wound vessels

Cylindrical vessels can be reinforced by winding on wire or thin ribbons. Winding on the wire under tension places the cylinder under compression. For high-pressure vessels special interlocking strips are used, such as those shown in Figure 13.47. The interlocking gives strength in the longitudinal direction and a more uniform stress distribution. The strips may be wound on hot to increase the prestressing. This type of construction is described by Birchall and Lake (1947). Wire winding was used extensively for the barrels of large guns.

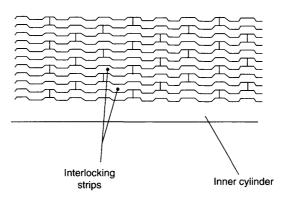



Figure 13.47. Strip wound vessel

### 13.15.3. Autofrettage

Autofrettage is a technique used to prestress the inner part of the wall of a monobloc vessel, to give a similar stress distribution to that obtained in a shrink-fitted compound cylinder. The finished vessel is deliberately over-pressurised by hydraulic pressure. During this process the inner part of the wall will be more highly stressed than the outer part and will undergo plastic strain. On release of the "autofrettage" pressure the inner part, which is now over-size, will be placed under compression by the elastic contraction of the outer part, which gives a residual stress distribution similar to that obtained in a two-layer shrink-fitted compound cylinder. After straining the vessel is annealed at a relatively low temperature, approximately 300°C. The straining also work-hardens the inner part of the wall. The vessel can be used at pressures up to the "autofrettage" pressure without further permanent distortion.

The autofrettage technique is discussed by Manning (1950) and Jawad and Farr (1989).

### 13.16. LIQUID STORAGE TANKS

Vertical cylindrical tanks, with flat bases and conical roofs, are universally used for the bulk storage of liquids at atmospheric pressure. Tank sizes vary from a few hundred gallons (tens of cubic metres) to several thousand gallons (several hundred cubic metres).

The main load to be considered in the design of these tanks is the hydrostatic pressure of the liquid, but the tanks must also be designed to withstand wind loading and, for some locations, the weight of snow on the tank roof.

The minimum wall thickness required to resist the hydrostatic pressure can be calculated from the equations for the membrane stresses in thin cylinders (Section 13.3.4):

$$e_s = \frac{\rho_L H_{Lg}}{2f_s J} \frac{D_t}{10^3} \tag{13.130}$$

where  $e_s$  = tank thickness required at depth  $H_L$ , mm,

 $H_L = \text{liquid depth, m,}$ 

 $\rho_L = \text{liquid density, kg/m}^3,$ 

J = joint factor (if applicable),

 $g = \text{gravitational acceleration}, 9.81 \text{ m/s}^2,$ 

 $f_t = \text{design stress for tank material, N/mm}^2$ ,

 $D_t = \text{tank diameter, m.}$ 

The liquid density should be taken as that of water (1000 kg/m³), unless the process liquid has a greater density.

For small tanks a constant wall thickness would normally be used, calculated at the maximum liquid depth.

With large tanks, it is economical to take account of the variation in hydrostatic pressure with depth, by increasing the plate thickness progressively from the top to bottom of the tank. Plate widths of 2 m (6 ft) are typically used in tank construction.

The roofs of large tanks need to be supported by a steel framework; supported on columns in very large-diameter tanks.

The design and construction of atmospheric storage tanks for the petroleum industry are covered by British Standard BS 2654, and the American Petroleum Industry standards API 650 (1980) and 620 (1982). The design of storage tanks is covered in the books by Brownell and Young (1959), and Jawad and Farr (1989). See also the papers by Debham *et al.* (1968) and Zick and McGarth (1968).

#### 13.17. MECHANICAL DESIGN OF CENTRIFUGES

### 13.17.1. Centrifugal pressure

The fluid in a rotating centrifuge exerts pressure on the walls of the bowl or basket. The minimum wall thickness required to contain this pressure load can be determined in a similar manner to that used for determining the wall thickness of a pressure vessel under internal pressure. If the bowl contains a single homogeneous liquid, Figure 13.48a, the fluid pressure is given by:

$$P_f = \frac{1}{2}\rho_L \omega^2 (R_1^2 - R_2^2) \tag{13.131}$$

where  $P_f$  = centrifugal pressure, N/m<sup>2</sup>,

 $\rho_L = \text{liquid density, kg/m}^3$ ,

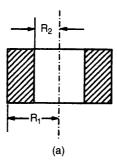
 $\omega$  = rotational speed of the centrifuge, radians/s,

 $R_1$  = inside radius of the bowl, m,

 $R_2$  = radius of the liquid surface, m.

For design, the maximum fluid pressure will occur when the bowl is full,  $R_2 = 0$ .

If the centrifuge is separating two immiscible liquids, Figure 13.48*b*, the pressure will be given by:


$$P_f = \frac{1}{2}\omega^2 [\rho_{L1}(R_1^2 - R_i^2) + \rho_{L2}(R_i^2 - R_2^2)]$$
 (13.132)

where  $\rho_{L1}$  = density of the heavier liquid, kg/m<sup>3</sup>,

 $\rho_{L2}$  = density of the lighter liquid, kg/m<sup>3</sup>,

 $R_i$  = radius of the interface between the two liquids, m.

If the machine is separating a solid-liquid mixture, the mean density of the slurry in the bowl should be used in equation 13.131.



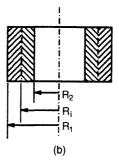



Figure 13.48. Centrifugal fluid pressure (a) Single fluid (b) Two fluids

The shell of an empty centrifuge bowl will be under stress due to the rotation of the bowl's own mass; this "self-pressure"  $P_m$  is given by:

$$P_m = \frac{1}{2}\omega^2 \rho_m [(R_1 + t)^2 - R_1^2]$$
 (13.133)

where  $\rho_m$  = density of the bowl material, kg/m<sup>3</sup>,

t = bowl wall thickness, m.

The minimum wall thickness required can be estimated using the equations for membrane stress derived in Section 13.3.4. For a solid bowl

$$e_c = \frac{P_t R_1}{f_m \times 10^3} \tag{13.134}$$

where  $P_t$  = the total (maximum) pressure (fluid + self-pressure), N/m<sup>2</sup>,

 $f_m = \text{maximum allowable design stress for the bowl material, N/mm}^2$ ,

 $e_c$  = wall thickness, mm.

With a perforated basket the presence of the holes will weaken the wall. This can be allowed for by introducing a "ligament efficiency" into equation 13.134 (see Section 13.11)

$$e_c = \frac{P_t R_1}{f_m \times 10^3 \lambda} \tag{13.135}$$

where  $\lambda = \text{ligament efficiency} = (p_h - d_h)/(p_h),$  $p_h = \text{hole pitch},$ 

 $d_h$  = hole diameter.

Equations 13.134 and 13.135 can also be used to estimate the maximum safe load (or speed) for an existing centrifuge, if the service is to be changed.

In deriving these equations no account was taken of the strengthening effect of the bottom and top rings of the bowl or basket; so the equations will give estimates that are on the safe side. Strengthening hoops or bands are used on some basket designs.

The mechanical design of centrifugal separators is covered by British Standard BS 767.

### 13.17.2. Bowl and spindle motion: critical speed

Centrifuges are classified according to the form of mounting used: fixed or free spindle. With fixed-spindle machines, the bearings are rigidly mounted; whereas, in a free spindle, or self-balancing, machine a degree of "free-play" is allowed in the spindle mounting. The amount of movement of the spindle is restrained by some device, such as a rubber buffer. This arrangement allows the centrifuge to operate with a certain amount of out-of-balance loading without imposing an undue load on the bearings. Self-balancing centrifuges can be under or over-driven; that is, with the drive mounted below or above the bowl. Severe vibration can occur in the operation of fixed-spindle centrifuges and these are often suspended on rods, supported from columns mounted on an independent base, to prevent the vibration being transmitted to the building structure.

# Critical speed

If the centre of gravity of the rotating load does not coincide with the axis of rotation of the bowl an uneven force will be exerted on the machine spindle. In a self-balancing machine (or a suspended fixed-spindle machine) this will cause the spindle to deflect from the vertical position and the bowl will develop a whirling vibration. The phenomenon is analogous with the whirling of the shafts in other rotating machinery; such as compressors, pumps, and agitators; which is considered under the general heading of the "whirling of shafts" in standard texts on the "Theory of Machines".

The simple analysis given below is based on that used to determine the whirling speed of a shaft with a single concentrated mass. Figure 13.49 shows the position of the centre of gravity of a rotating mass  $m_c$  with an initial displacement  $h_c$ . Let  $x_c$  be the additional displacement caused by the action of centrifugal force, and s the retoring force, assumed to be proportional to the displacement. The radial outward centrifugal force due to the displacement of the centre of the gravity from the axis of rotation will be  $m_c \omega^2(x + h_c)$ . This is balanced by the inward action of the restoring force  $m_c \omega^2(x + h_c)$ .

Equating the two forces:

$$m_c\omega^2(x_c+h_c)=sx_c$$

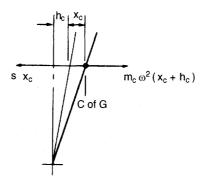



Figure 13.49. Displacement of centre of gravity of a centrifuge bowl

from which

$$\frac{x_c}{h_c} = \frac{1}{\left(\frac{s}{m_c \omega^2}\right) - 1} \tag{13.136}$$

It can be seen by inspection of equation 13.136 that the deflection (the ratio  $x_c/h_c$ ) will become indefinitely large when the term  $s/m_c\omega^2=1$ ; the corresponding value of  $\omega$  is known as the critical, or whirling, speed. Above the critical speed the term  $s/m_c\omega^2$  becomes negative, and  $x_c/h_c$  tends to a limiting value of -1 at high speeds. This shows that if the centrifuge is run at speeds in excess of the critical speed the tendency is for the spindle to deflect so that the axis of rotation passes through the centre of gravity of the system. The sequence of events as a self-balancing centrifuge run up to speed is shown in Figure 13.50. In practice, a centrifuge is accelerated rapidly to get through the critical speed range quickly, and the observed deflections are not great.

It can be seen from equation 13.136 that the critical speed of a centrifuge will depend on the mass of the bowl and the magnitude of the restoring force; it will also depend on the dimensions of the machine and the length of the spindle. The critical speed of a simple system can be calculated, but for a complex system, such as loaded centrifuges, the critical speed must be determined by experiment. It can be shown that the critical speed of a rotating system corresponds with the natural frequency of vibration of the system.

A low critical speed is desired, as less time is then spent accelerating the bowl through the critical range. Suspended fixed-spindle centrifuges generally have a low critical speed.

#### Precession

In addition to the whirling vibration due to an out-of-balance force, another type of motion can occur in a free-spindle machine. When the bowl or basket is tilted the spindle may move in a circle. This slow gyratory motion is known as "precession", and is similar to the "precession" of a gyroscope. It is usually most pronounced at high speeds, above the critical speed.

A complete analysis of the motion of centrifuges is given by Alliott (1924, 1926).

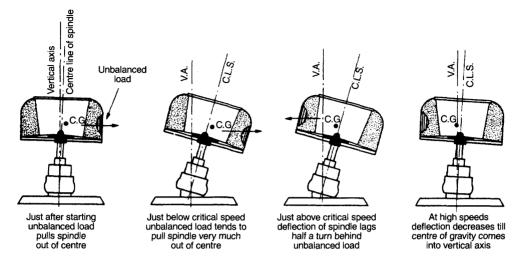



Figure 13.50. Diagram of action of self-balancing centrifuge, showing motion of centre of gravity and unbalanced load with increasing speed

#### 13.18. REFERENCES

ALLIOT, E. A. (1924) Trans. Inst. Chem. Eng. 2, 39. Self-balancing centrifugals.

ALLIOT, E. A. (1926) Centrifugal dryers and separators (Benn).

API 620 (1982) Recommended rules for the design and construction of large, welded, low pressure storage tanks, 7th edn (American Petroleum Institute).

API 650 (1980) Welded steel tanks for oil storage, 7th edn (American Petroleum Institute).

AZBEL, D. S. and CHEREMISINOFF, N. P. (1982) Chemical and Process Equipment Design: vessel design and selection (Ann Arbor Science).

BEDNAR, H. H. (1986) Pressure Vessel Design Handbook, 2nd edn (Van Nostrand Reinhold).

BHATTACHARYYA, B. C. (1976) Introduction to Chemical Equipment Design, Mechanical Aspects (Indian Institute of Technology).

BERGMAN, D. J. (1963) Trans. Am. Soc. Mech. Eng. (J. Eng. for Ind.) 85, 219. Temperature gradients for skirt supports of hot vessels.

BICKELL, M. B. and Ruiz, C. (1967) Pressure Vessel Design and Analysis (Macmillan).

BIRCHALL, H. and LAKE, G. F. (1947) Proc. Inst. Mech. Eng. 56, 349. An alternative form of pressure vessel of novel construction.

BROWNELL, L. E. (1963) Hyd. Proc. and Pet. Ref. 42 (June) 109. Mechanical design of tall towers.

BROWNELL, L. E. and YOUNG, E. H. (1959) Process Equipment Design: Vessel design (Wiley).

CASE, J. and CHILVER, A. H. (1971) Strength of Materials: an introduction to the mechanics of solids and structures (Arnold).

CHUSE, R. (1977) Pressure Vessels: the ASME code simplified, 5th edn (McGraw-Hill).

CHUSE, R. (1984) Pressure Vessels: the ASME code simplified, 6th edn (McGraw-Hill).

DEBHAM, J. B., RUSSEL, J. and Wills, C. M. R. (1968) *Hyd. Proc.* **47** (May) 137. How to design a 600,000 b.b.l. tank.

Deghetto, K. and Long, W. (1966) Hyd. Proc. and Pet. Ref. 45 (Feb.) 143. Check towers for dynamic stability. ESCOE, A. K. (1994) Mechanical Design of Process Equipment, Vol. 1. 2nd edn Piping and Pressure Vessels (Gulf).

FAUPEL, J. H. and FISHER, F. E. (1981) Engineering Design, 2nd edn (Wiley).

FREESE, C. E. (1959) Trans. Am. Soc. Mech. E. (J. Eng. Ind.) 81, 77. Vibrations of vertical pressure vessels.

GILL, S. S. (ed.) (1970) The Stress Analysis of Pressure Vessels and Pressure Vessel Components (Pergamon).

HARVEY, J. F. (1974) Theory and Design of Modern Pressure Vessels, 2nd ed. (Van Nostrand-Reinhold).

HEARN, E. J. (1985) Mechanics of materials, 2 Vols., 2nd ed. (Pergamon).

HENRY, B. D. (1973) Aust. Chem. Eng. 14 (Mar.) 13. The design of vertical, free standing process vessels.

HETENYI, M. (1958) Beams on Elastic Foundations (University of Michigan Press).

HIGH PRESS. TECH. ASSOC. (1975) High Pressure Safety Code (High Pressure Technology Association, London).
JASPER, MCL, T. and SCUDDER, C. M. (1941) Trans. Am. Inst. Chem. Eng. 37, 885. Multi-layer construction of thick wall pressure vessels.

I. WELD. (1952) Handbook for Welded Structural Steel Work, 4th ed. (The Institute of Welding).

JAWAD, M. H. and FARR, J. R. (1989) Structural Design of Process Equipment, 2nd edn (Wiley).

KARMAN, VON T. and, TSIEN, H-S. (1939) J. Aeronautical Sciences 7 (Dec.) 43. The buckling of spherical shells by external pressure.

LAKE, G. F. and BOYD, G. (1957) *Proc. Inst. Mech. Eng.* 171, No. 31, 843. Design of bolted flanged joints of pressure vessels.

LAMÉ, G. and CLAPEYRON, B. P. E. (1833) Mém presintes par Divers Savart 4, Paris.

LANGER, B. T. (1971) Design of vessels involving fatigue, in *Pressure Vessel Engineering Technology*, Nichols, R. W. (ed.) (Elsevier).

MAHAJAN, K. K. (1977) Hyd. Proc. 56 (4) 207. Size vessel stiffners quickly.

Manning, W. R. D. (1947) *Engineering* 163 (May 2nd) 349. The design of compound cylinders for high pressure service.

Manning, W. R. D. (1950) Engineering 169 (April 28th) 479, (May 5th) 509, (May 15th) 562, in three parts. The design of cylinders by autofrettage.

MANNING, W. R. D. and LABROW, S. (1974) High Pressure Engineering (Leonard Hill).

MARSHALL, V. O. (1958) *Pet. Ref.* 37 (May) (supplement). Foundation design handbook for stacks and towers. MEGYESY, E. F. (1977) *Pressure Vessel Handbook*, 4th edn (Pressure Vessel Handbook Publishing Inc., Tulsa, USA).

MEGYESY, E. F. (1986) Pressure Vessel Hand Book, 7th edn (Pressure Vessel Hand Book Publishers).

MISES VON R. (1913) Math. Phys. Kl., 582. Göttinger nachrichten.

Moss, D. R. (1987) Pressure Vessel Design Manual (Hemisphere).

NEATHING, R. F. (1982) Applied Strength of Materials (Wiley).

NELSON, J. G. (1963) Hyd. Proc. and Pet. Ref. 42 (June) 119. Use calculation form for tower design.

O'DONNELL, W. J. and LANGER, B. F. (1962) Trans. Am. Soc. Mech. Eng. (J. Eng. Ind.) 84, 307. Design of perforated plates.

PERRY, R. H. and CHILTON, C. H. (eds) (1973) Chemical Engineers Handbook, 5th edn (McGraw-Hill).

Perry, R. H. and Green, D. W. (eds) (1984) Perry's Chemical Engineers Handbook, 6th edn (McGraw-Hill). Perry, R. H., Green, D. W. and Maloney, J. O. (eds) (1997) Perry's Chemical Engineers' Handbook, 7th edn. (McGraw-Hill)

RYDER, G. H. (1969) Strength of Materials, 3rd edn (Macmillan).

Rose, R. T. (1970) Flanges, in *The Stress Analysis of Pressure Vessels and Pressure Vessel Components*, Gill, S. S. (ed.) (Pergamon).

SCHEIMAN, A. D. (1963) Hyd. Proc. and Pet. Ref. 42 (June) 130. Short cuts to anchor bolting and base ring sizing.

SINGH, K. P. and Soler, A. I. (1984) Mechanical Design of Heat Exchangers and Pressure Vessel Components (Arcturus).

SOUTHWELL, R. V. (1913) Phil. Trans. 213A, 187. On the general theory of elastic stability.

TANG, S. S. (1968) Hyd. Proc. 47 (Nov.) 230. Shortcut methods for calculating tower deflections.

TIMOSHENKO, S. (1936) Theory of Elastic Stability (McGraw-Hill).

TIMOSHENKO, S. and YOUNG, D. H. (1968) Elements of Strength of Materials, 5th edn (Van Nostrand).

TONGUE, H. (1959) *The Design and Construction of High Pressure Chemical Plant*, 2nd edn (Chapman & Hall). WATERS, E. O., WESSTROM, D. B. and WILLIAMS, F. S. G. (1934) *Mechanical Engineering* **56**, 736. Design of bolted flanged connections.

WATERS, E. O., WESSTROM, D. B. ROSSHEIM, D. B. and WILLIAMS, F. S. G. (1937) *Trans. Am. Soc. Mech. Eng.* **59**, 161. Formulas for stresses in bolted flange connections.

WATERS, E. O. and TAYLOR, J. H. (1927) Mechanical Engineering 49 (May) 531. The strength of pipe flanges. Well, N. A. and Murphy, J. J. (1960) Trans. Am. Soc. Mech. Eng. (J. Eng. Ind.) 82 (Jan.) 1. Design and analysis of welded pressure vessel skirt supports.

WINDENBURG, D. F. and TRILLING, D. C. (1934) *Trans. Am. Soc. Mech. Eng.* **56**, 819. Collapse by instability of thin cylindrical shells under external pressure.

WOLOSEWICK, F. E. (1951) Pet. Ref. 30 (July) 137, (Aug.) 101, (Oct.) 143, (Dec.) 151, in four parts. Supports for vertical pressure vessels.

YOKELL, S. (1986) Chem. Eng., NY 93 (May 12th) 75. Understanding pressure vessel codes.

ZICK, L. P. (1951) Welding J. Research Supplement 30, 435. Stresses in large horizontal cylindrical pressure vessels on two saddle supports.

ZICK, L. P. and McGrath, R. V. (1968) Hyd. Proc. 47 (May) 143. New design approach for large storage tanks.

### **Bibliography**

Useful references on pressure vessel design.

AZBEL, D. S. and CHEREMISINOFF, N. P. Chemical and Process Equipment Design: vessel design and selection (Ann Arbor Science, 1982).

BEDNAR, H. H. Pressure Vessel Design Handbook, 2nd edn (Van Nostrand Reinhold, 1986).

CHUSE, R. Pressure Vessels: the ASME code simplified, 6th edn (McGraw-Hill, 1984).

ESCOE, A. K. Mechanical Design of Process Equipment, Vol. 1. Piping and Pressure Vessels. Vol. 2. Shell-and-tube Heat Exchangers, Rotating Equipment, Bins, Silos and Stacks (Gulf, 1986).

GUPTA, J. P. Fundamentals of Heat Exchanger and Pressure Vessel Technology (Hemisphere, 1986).

JAWAD, M. H. and FARR, J. R. Structural Design of Process Equipment, 2nd edn (Wiley, 1989).

MEGYESY, E. F. Pressure Vessel Hand Book, 7th edn (Pressure Vessel Hand Book Publishers, 1986).

Moss, D. R. Pressure Vessel Design Manual (Hemisphere, 1987).

SINGH, K. P. and Soler, A. I. Mechanical Design of Heat Exchangers and Pressure Vessel Components (Arcturus, 1984).

YOUNG, W. C. (1989) Roark's Formulas for Stress and Strain, 6th edn. (McGraw-Hill)

#### **British Standards**

BS 767: 1983 (1990): Specification for centrifuges of the basket and bowl type for use in industrial and commercial applications.

BS 1501: Steels for pressure vessels

Part 1: 1980 (1990): Specification for carbon and carbon manganese steels

Part 2: 1982 (1990): Specification for alloy steels

Part 3: 1982: Specification for corrosion and heat resistant steels.

BS 1502: 1982 (1990): Specification for steels for fired and unfired pressure vessels: sections and bars.

BS 1503: 1989: Specification for steel forgings for pressure purposes.

BS 1504: 1976 (1984): Specification for steel castings for pressure purposes.

BS 1506: 1990: Specification for carbon, low alloy and stainless steel bars and billets for bolting material to be used in pressure retaining applications.

BS 1560: Part 3: Circular flanges for pipes, valves and fittings.

Section 3.1 (1989) Specification for steel flanges.

Section 3.2 (1989) Specification for cast iron flanges.

Section 3.3 (1989) Specification for copper alloy and composite flanges.

BS 2594: 1975: Specification for carbon steel welded horizontal storage tanks.

BS 2654: 1989: Specification for manufacture of welded non-refrigerated storage tanks for the petroleum industry.

BS 4504: Part 3: Circular flanges for pipes, valves and fittings (PN designation).

Section 3.1 (1989) Specification for steel flanges.

Section 3.2 (1989) Specification for cast iron flanges.

Section 3.3 (1989) Specification for copper alloy and composite flanges.

BS 4741: 1971: Specification for vertical cylindrical welded steel storage tanks for low temperature service. Single walled tanks for temperatures down to  $-50^{\circ}$ C.

BS 4870: Specification for approval testing of welding procedures.

Part 1: 1981: Fusion welded steel.

Part 2: 1982: TIG and MIG welded aluminium and its alloys.

Part 3: 1985: Arc welding of tube to tube-plate joints in metallic materials.

Part 4: 1988: Specification for automatic fusion welding of metallic materials, including welder operating approval.

BS 4871: Specification for approval tests for welders working to welding procedures.

Part 1: 1982: Fusion welded steel.

Part 2: 1982: TIG and MIG welded aluminium and its alloys.

Part 3: 1982: Arc welding of tube to tube-plate joints in metallic materials.

BS 4872: Specification for approval tests for welders when welding procedure approval is not required.

Part 1: 1982: Fusion welded steel.

Part 2: 1982: TIG and MIG welded aluminium and its alloys.

BS 4994: 1987: Specification for vessels and tanks in reinforced plastics.

BS 5500: 1997: Specification for unfired fusion welded pressure vessels.

#### Codes of practice

CP 3: Code of basic data for the design of buildings Chapter V: Part 2: 1972 Wind loads.

Special publications

- PD 6550: 1989: Part 2: Openings and branch connections.
- PD 6433: 1969 Guide to the application of stress analysis to design.
- PD 6437: 1969 A review of design methods given in the present standards and codes and design proposals for nozzles and openings in pressure vessels.
- PD 6438: 1969 A review of the present methods for design of bolted flanges for pressure vessels.
- PD 6439: 1969 A review of the methods of calculating stress due to local loads and local attachments of pressure vessels.

#### ASME Boiler and Pressure Vessel Code

- Section I. Power boilers
  - II. Material specifications
  - III. Nuclear power plant components
  - IV. Heating boilers
  - V. Nondestructive examination
  - VI. Recommended rules for care and operation of heating boilers
  - VII. Recommended rules for the care of power boilers
  - VIII. Pressure vessels: Division 1
    Division 2. alternative rules
  - IX. Welding qualifications
  - X. Fiberglass-reinforced plastic pressure vessels
  - XI. Rules for inservice inspection of nuclear coolant systems.

American Society of Mechanical Engineers, New York, USA.

#### 13.19. NOMENCLATURE

|           |                                            | Dimensions                                 |
|-----------|--------------------------------------------|--------------------------------------------|
|           |                                            | in <b>MLT</b>                              |
| Α         | Arbitrary constant in equation 13.117      | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ |
| $A_{bf}$  | Total bolt area required for a flange      | $\mathbf{L}^2$                             |
| $A_1$     | Area removed in forming hole               | $\mathbf{L}^2$                             |
| $A_2$     | Area of compensation                       | $\mathbf{L}^2$                             |
| a         | Diameter of flat plate                     | L                                          |
| 2a        | Major axis of ellipse                      | ${f L}$                                    |
| $a_e$     | Acceleration due to an earthquake          | $\mathbf{L}\mathbf{T}^{-2}$                |
| $\vec{B}$ | Inside diameter of flange                  | ${f L}$                                    |
| В         | Arbitrary constant in equation 13.120      | $MLT^{-2}$                                 |
| B'        | Constant of integration in equation 13.118 | $MLT^{-2}$                                 |
| b         | Effective sealing width of gasket          | L                                          |
| 2b        | Minor axis of ellipse                      | ${f L}$                                    |
| C         | Constant in equation 13.34                 | _                                          |
| $C_c$     | Design factor in equation 13.46            | <del>_</del>                               |
| $C_d$     | Drag coefficient in equation 13.79         |                                            |
| $C_e$     | Seismic constant                           |                                            |
| $C_h$     | Constant in equation 13.85                 | _                                          |
| $C_p$     | Constant in equation 13.34                 | _                                          |
| $C_{ph}$  | Design factor in equation 13.112           | _                                          |
| $C_s$     | Design factor in equation 13.44            | -                                          |
| <u>c</u>  | Corrosion allowance                        | Ĺ                                          |
| D         | Diameter                                   | L 2- 2                                     |
| D         | Flexual rigidity                           | $\mathbf{ML}^{2}\mathbf{T}^{-2}$           |
| $D_b$     | Bolt circle diameter                       | L                                          |
| $D_c$     | Diameter of cone at point of interest      | L                                          |
| $D_e$     | Nominal diameter of flat end               | L                                          |

| _                  |                                                                      | -                                                                 |
|--------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|
| $D_{ m eff}$       | Effective diameter of column for wind loading                        | L                                                                 |
| $D_i$              | Internal diameter Mean diameter                                      | L<br>L                                                            |
| $D_m \ D_o$        | Outside diameter                                                     | Ĺ                                                                 |
| $D_p$              | Plate diameter, tube-sheet                                           | Ĺ                                                                 |
| $D_r^p$            | Diameter of stiffening ring                                          | Ĺ                                                                 |
| $D_s$              | Skirt internal diameter                                              | Ĺ                                                                 |
| $D_t$              | Tank diameter                                                        | L                                                                 |
| ď                  | Diameter at point of interest, thick cylinder                        | L                                                                 |
| $d_b$              | Bolt diameter                                                        | L                                                                 |
| $d_h$              | Hole diameter                                                        | L                                                                 |
| $d_r$              | Diameter of reinforcement pad                                        | L                                                                 |
| E                  | Young's modulus                                                      | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$                        |
| e                  | Minimum plate thickness                                              | Ĺ                                                                 |
| $e_c$              | Minimum thickness of conical section                                 | Ļ                                                                 |
| $e_k$              | Minimum thickness of conical transition section                      | L<br>L                                                            |
| $e_m$              | Minimum wall thickness, centrifuge Minimum thickness of tank         | L                                                                 |
| $\frac{e_s}{F_b}$  |                                                                      | $MT^{-2}$                                                         |
| *                  | Compressive load on base ring, per unit length                       | $MLT^{-2}$                                                        |
| $F_{bs}$           | Load supported by bracket                                            | $MT^{-2}$                                                         |
| $F_c$              | Critical buckling load for a ring, per unit length                   | •                                                                 |
| $F_p$              | Local, concentrated, wind load                                       | $egin{array}{c} \mathbf{MLT}^{-2} \ \mathbf{MT}^{-2} \end{array}$ |
| $F_r$              | Load on stiffening ring, per unit length                             |                                                                   |
| $F_s$              | Shear force due an earthquake                                        | MLT <sup>-2</sup>                                                 |
| $F_w$              | Loading due to wind pressure, per unit length                        | $MT^{-2}$                                                         |
| $F_1$              | Factor in equation 13.102                                            | $\mathbf{L}^{-3}$                                                 |
| $\boldsymbol{F}_2$ | Factor in equation 13.103                                            | $\mathbf{L}^{-3}$                                                 |
| $F_3$              | Factor in equation 13.104                                            | $\mathbf{L}^{-3}$                                                 |
| $F_4$              | Factor in equation 13.104                                            | —<br>                                                             |
| f                  | Maximum allowable stress (design stress)                             | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$                                 |
| $f_a$              | Nominal design strength at test temperature                          | $ML^{-1}T^{-2}$                                                   |
| $f_b$              | Maximum allowable bolt stress                                        | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$                                 |
| $f_{c}$            | Maximum allowable bearing pressure                                   | $ML^{-1}T^{-2}$                                                   |
| $f_{c}^{\prime}$ . | Actual bearing pressure                                              | $ML^{-1}T^{-2}$                                                   |
| $f_f$              | Maximum allowable design stress for flange material                  | $ML^{-1}T^{-2}$                                                   |
| $f_m$              | Maximum allowable stress for centrifuge material                     | $ML^{-1}T^{-2}$                                                   |
| $f_n$              | Nominal design strength at design temperature                        | $ML^{-1}T^{-2}$                                                   |
| $f_p$              | Maximum allowable design stress for plate                            | $ML^{-1}T^{-2}$                                                   |
| $f_r$              | Maximum allowable design stress for ring material                    | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$                                 |
| $f_s$              | Maximum allowable design stress for skirt material                   | $ML^{-1}T^{-2}$                                                   |
| $f_t$              | Maximum allowable design stress for tank material                    | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$                        |
| G                  | Mean diameter of gasket                                              | L                                                                 |
| g                  | Gravitational acceleration                                           | $LT^{-2}$                                                         |
| H                  | Total pressure force on flange                                       | $MLT^{-2}$                                                        |
| $H_d$              | Pressure force on area inside flange                                 | $MLT^{-2}$                                                        |
| $H_g$              | Gasket reaction                                                      | $MLT^{-2}$                                                        |
| $H_L$              | Liquid depth                                                         | Ļ                                                                 |
| $H_p$              | Height of local load above base                                      | L                                                                 |
| $H_t$              | Pressure force on flange face                                        | $MLT^{-2}$                                                        |
| $H_v$              | Height (length) of cylindrical section between tangent lines         | L                                                                 |
| h<br>h             | Height of domed head from tangent line Initial displacement of shaft | L<br>L                                                            |
| $h_c$ $h_d$        | Moment arm of force $H_d$                                            | L<br>L                                                            |
| $h_d$ $h_g$        | Moment arm of force $H_g$                                            | L                                                                 |
| $h_i^g$            | Internal height of branch allowed as compensation                    | Ĺ                                                                 |
| $h_o$              | External height of branch allowed as compensation                    | Ĺ                                                                 |
| $h_t$              | Moment arm of force $H_t$                                            | L                                                                 |
| Í                  | Second moment of area (moment of inertia)                            | $\mathbf{L}^4$                                                    |
| I'                 | Second moment of area per unit length                                | $\mathbf{L}^3$                                                    |
|                    |                                                                      |                                                                   |

| _                   |                                                                | - 1                                        |
|---------------------|----------------------------------------------------------------|--------------------------------------------|
| $I_h$               | Second moment of area of shell, horizontal vessel              | L <sup>4</sup>                             |
| $I_p$               | Polar second moment of area                                    | L <sup>4</sup>                             |
| $I_r$               | Second moment of area of ring                                  | $\mathbf{L}_{\perp}^{4}$                   |
| $I_v$               | Second moment of area of vessel                                | $\mathbf{L}^{4}$                           |
| J                   | Joint factor, welded joint                                     |                                            |
| K                   | Ratio of diameters of thick cylinder = $D_o/D_i$               |                                            |
| $K_c$               | Collapse coefficient in equation 13.52                         |                                            |
| $L_{I'}$            | Unsupported length of vessel                                   | Ļ                                          |
| L'                  | Effective length between stiffening rings                      | Ļ                                          |
| $L_c$               | Critical distance between stiffening rings                     | L                                          |
| $L_k$               | Length of conical transition section                           | L                                          |
| $L_o$               | Distance between centre line of equipment and column           | L<br>L                                     |
| L <sub>r</sub><br>M | Distance between edge of skirt to outer edge of flange         | $ML^2T^{-2}$                               |
|                     | Bending moment                                                 | MIL-1 2                                    |
| M <sub>atm</sub>    | Moment acting on flange during bolting up                      | $ML^2T^{-2}$                               |
| $M_e$               | Bending moment due to offset equipment                         | $ML^2T^{-2}$                               |
| $M_{L1}$            | Longitudinal bending moment at mid-span                        | $ML^2T^{-2}$                               |
| $M_{L2}$            | Longitudinal bending moment at saddle support                  | $ML^2T^{-2}$                               |
| $M_{op}$            | Total moment acting on flange                                  | $\mathbf{ML}^{2}\mathbf{T}^{-2}$           |
| $M_s$               | Bending moment at base of skirt                                | $\mathbf{ML}^{2}\mathbf{T}^{-2}$           |
| $M_v$               | Bending moment acting on vessel                                | $\mathbf{ML}^{2}\mathbf{T}^{-2}$           |
| $M_{x}$             | Bending moment at point $x$ from free end of column            | $\mathbf{ML}^2\mathbf{T}^{-2}$             |
| $M_1$               | Bending moment acting along cylindrical sections               | $\mathbf{ML}^2\mathbf{T}^{-2}$             |
| $M_2$               | Bending moment acting along diametrical sections               | $ML^2T^{-2}$                               |
| $m_c$               | Displaced mass, centrifuge                                     | M                                          |
| $N_b$               | Number of bolts                                                | <del>-</del>                               |
| n                   | Number of lobes                                                | 1- 2                                       |
| P                   | Pressure                                                       | $ML^{-1}T^{-2}$                            |
| $P_c$               | Critical buckling pressure                                     | $ML^{-1}T^{-2}$                            |
| $P_c'$              | Critical pressure to cause local buckling in a spherical shell | $ML^{-1}T^{-2}$                            |
| $P_d$               | Design pressure                                                | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$          |
| $P_e$               | External pressure                                              | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$          |
| $P_f$               | Centrifugal pressure                                           | $ML^{-1}T^{-2}$                            |
| $P_i$               | Internal pressure                                              | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ |
| $P_m$               | Self-pressure, centrifuge                                      | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$          |
| $P_t$               | Total pressure acting on centrifuge wall                       | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$          |
| $P_w$               | Wind pressure loading                                          | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ |
| $\Delta P'$         | Effective tube-plate design pressure difference                | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ |
| $p_b$               | Bolt pitch                                                     | L                                          |
| $p_h$               | Hole pitch                                                     | <u>L</u>                                   |
| $R_c$               | Crown radius                                                   | L                                          |
| $R_k$               | Knuckle radius                                                 | L                                          |
| $R_i$               | Radius of interface                                            | L<br>L                                     |
| $R_o$               | Major radius of torus                                          | L<br>L                                     |
| $R_p R_s$           | Radius of curvature of plate Outside radius of sphere          | L<br>L                                     |
| $R_1$               | Inside radius of centrifuge bowl                               | Ĺ                                          |
| $R_2$               | Radius of liquid surface                                       | Ĺ                                          |
| r                   | Radius                                                         | $	ilde{	ilde{\mathbf{L}}}$                 |
| $r_1$               | Meridional radius of curvature                                 | L                                          |
| $r_2$               | Circumferential radius of curvature                            | L                                          |
| s                   | Resisting force per unit displacement                          | $\mathbf{M}\mathbf{T}^{-2}$                |
| T                   | Torque                                                         | $\mathbf{ML}^{2}\mathbf{T}^{-2}$           |
| t                   | Thickness of plate (shell)                                     | L                                          |
| $t_b$               | Thickness of base ring                                         | L                                          |
| $t_c$               | Thickness of bracket plate                                     | L                                          |
| $t_f$               | Thickness of flange                                            | Ļ                                          |
| $t_n$               | Actual thickness of branch                                     | Ļ                                          |
| $t_p$               | Tube-plate thickness                                           | L                                          |
|                     |                                                                |                                            |

| 4                                | China aki alimana                                         | T                                          |
|----------------------------------|-----------------------------------------------------------|--------------------------------------------|
| $t_s$                            | Skirt thickness                                           | L<br>LT <sup>1</sup>                       |
| u <sub>w</sub>                   | Wind velocity                                             | $MLT^{-2}$                                 |
| W                                | Total weight of vessel and contents                       | $MLT^{-2}$                                 |
| $W_e$                            | Weight of ancillary equipment                             |                                            |
| $W_m$                            | Greater value of $W_{m1}$ and $W_{m2}$ in equation 13.109 | $MLT^{-2}$                                 |
| $W_{m1}$                         | Minimum bolt load required under operating conditions     | MLT <sup>-2</sup>                          |
| $W_{m2}$                         | Minimum bolt load required to seal gasket                 | $MLT^{-2}$                                 |
| $\mathbf{W}_v$                   | Weight of vessel                                          | MLT <sup>-2</sup>                          |
| w                                | Deflection of flat plate                                  | L                                          |
| w                                | Loading per unit length                                   | $\mathbf{M}\mathbf{T}^{-2}$                |
| x                                | Radius from centre of flat plate to point of interest     | Ļ                                          |
| x                                | Distance from free end of cantilever beam                 | L                                          |
| $x_c$                            | Displacement caused by centrifugal force                  | L                                          |
| У                                | Minimum seating pressure for gasket                       | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ |
| α                                | Cone half cone apex angle                                 | L                                          |
| Δ                                | Dilation Dilation of cylinder                             | L                                          |
| $\Delta_c$                       | Dilation of cylinder Dilation of sphere                   | Ĺ                                          |
| $rac{\Delta_s}{arepsilon}$      | Strain                                                    |                                            |
| $\varepsilon_1,  \varepsilon_2$  | Principal strains                                         |                                            |
| $\theta$                         | Angle                                                     | <del></del>                                |
| $\theta_s$                       | Base angle of conical section                             |                                            |
| λ                                | Ligament efficiency                                       |                                            |
| ν                                | Poisson's ratio                                           |                                            |
| $\rho_m$                         | Density of vessel material                                | $ML^{-3}$                                  |
| $\rho_a$                         | Density of air                                            | $ML^{-3}$                                  |
| $\rho_L$                         | Liquid density                                            | $ML^{-3}$                                  |
| $\rho_{L1}$                      | Density of heavier liquid                                 | $ML^{-3}$                                  |
| $\rho_{L2}$                      | Density of lighter liquid                                 | $ML^{-3}$                                  |
| $\sigma$                         | Normal stress                                             | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$          |
|                                  | Bending stress                                            | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$          |
| $\sigma_b$                       | Bending stress at mid-span                                | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$          |
| $\sigma_{b1}$                    | Bending stress at saddle supports                         | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$          |
| $\sigma_{b2}$                    | • • • • • • • • • • • • • • • • • • • •                   | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$          |
| $\sigma_e$                       | Stress at elastic limit of material                       | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$          |
| $\sigma_e'$                      | Elastic limit stress divided by factor of safety          | $ML^{-1}T^{-2}$                            |
| $\sigma_h$                       | Circumferential (hoop) stress                             | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$          |
| $\sigma_{hb}$                    | Longitudinal hub stress                                   | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$          |
| $\sigma_L$                       | Longitudinal stress                                       |                                            |
| $\sigma_r$                       | Radial stress                                             | $ML^{-1}T^{-2}$                            |
| $\sigma_{rd}$                    | Radial flange stress                                      | $ML^{-1}T^{-2}$                            |
| $\sigma_s$                       | Stress in skirt support                                   | $ML^{-1}T^{-2}$                            |
| $\sigma_t$                       | Tangential (hoop) stress                                  | $ML^{-1}T^{-2}$                            |
| $\sigma_{tg}$                    | Tangential flange stress                                  | $ML^{-1}T^{-2}$                            |
| $\sigma_{ws}$                    | Stress in skirt due to weight of vessel                   | $ML^{-1}T^{-2}$                            |
| $\sigma_{_{X}}$                  | Normal stress in x direction                              | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$          |
| $\sigma_y$                       | Normal stress in y direction                              | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$          |
| $\sigma_z$                       | Axial stresses in vessel                                  | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ |
| $\sigma_1,  \sigma_2,  \sigma_3$ | Principal stresses                                        | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ |
| τ                                | Torsional shear stress                                    | $\mathbf{ML}^{-1}\mathbf{T}^{-2}$          |
| $\tau_{xy}$                      | Shear stress                                              | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ |
| $\tau_1, \tau_2, \tau_3$         | Shear stress maxima                                       | $\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}$ |
| φ                                | Slope of flat plate                                       |                                            |
| $\phi$                           | Angle                                                     | <del></del> .                              |
| ω                                | Rotational speed                                          | $\mathbf{T}^{-1}$                          |
|                                  |                                                           |                                            |

## Superscript

#### **13.20. PROBLEMS**

- **13.1.** Calculate the maximum membrane stress in the wall of shells having the shapes listed below. The vessel walls are 2 mm thick and subject to an internal pressure of 5 bar.
  - 1. An infinitely long cylinder, inside diameter 2 m.
  - 2. A sphere, inside diameter 2 m.
  - 3. An ellipsoid, major axis 2 m, minor axis 1.6 m.
  - 4. A torus, mean diameter 2 m, diameter of cylinder 0.3 m.
- **13.2.** Compare the thickness required for a 2 m diameter flat plate, designed to resist a uniform distributed load of 10 kN/m<sup>2</sup>, if the plate edge is:
  - (a) completely rigid,
  - (b) free to rotate.

Take the allowable design stress for the material as 100 MN/m<sup>2</sup> and Poisson's ratio for the material as 0.3.

- **13.3.** A horizontal, cylindrical, tank, with hemispherical ends, is used to store liquid chlorine at 10 bar. The vessel is 4 m internal diameter and 20 m long. Estimate the minimum wall thickness required to resist this pressure, for the cylindrical section and the heads. Take the design pressure as 12 bar and the allowable design stress for the material as 110 MN/m<sup>2</sup>.
- **13.4.** The thermal design of a heat exchanger to recover heat from a kerosene stream by transfer to a crude oil stream was carried in Chapter 12, Example 12.2. Make a preliminary mechanical design for this exchanger. Base your design on the specification obtained from the CAD design procedure used in the example. All material of construction to be carbon steel (semi-killed or silicon killed). Your design should cover:
  - (a) choice of design pressure and temperature,
  - (b) choice of the required corrosion allowances,
  - (c) choice of the type of end covers,
  - (d) determination of the minimum wall thickness for the shell, headers and ends,
  - (e) a check on the pressure rating of the tubes,
  - (f) a suggested thickness for the tube sheets—detailed stressing is not required,
  - (g) selection the flange types and dimensions—use standard flanges,
  - (h) design of the exchanger supports.
- **13.5.** Make a preliminary mechanical design for the vertical thermosyphon reboiler for which the thermal design was done as Example 12.9 in Chapter 12. The inlet liquid nozzle and the steam connections will be 50 mm inside diameter. Flat plate end closures will be used on both headers. The reboiler will be hung from four bracket supports, positioned 0.5 m down from the top tube plate. The shell and tubes will be of semi-killed carbon steel.

Your design should cover:

- (a) choice of design pressure and temperature,
- (b) choice of the required corrosion allowances,

- (c) selection of the header dimensions.
- (d) determination of the minimum wall thickness for the shell, headers and ends,
- (e) a check on the pressure rating of the tubes,
- (f) a suggested thickness for the tube sheets—detailed stressing is not required,
- (g) selection the flanges types and dimensions—use standard flanges,
- (h) reinforcement at the nozzles, if required,
- (i) design of the exchanger support brackets.
- **13.6.** The specification for of a sieve plate column is given below. Make a preliminary mechanical design for the column. You design should include:
  - (a) column wall thickness.
  - (b) selection and sizing of vessel heads,
  - (c) reinforcement, if any, of openings,
  - (d) the nozzles and flanges (use standard flanges),
  - (e) column supporting skirt and base ring/flange.

You need not design the plates or plate supports.

You should consider the following design loads:

- (a) internal pressure,
- (b) wind loading,
- (c) dead weight of vessel and contents (vessel full of water).

There will be no significant loading from piping and external equipment. Earthquake loading need not be considered.

## Column specification:

Length of cylindrical section 37 m

Internal diameter 1.5 m

Heads, standard ellipsoidal

50 sieve plates

Nozzles: feed, at mid-point, 50 mm inside diameter,

vapour out, 0.7 m below top of cylindrical section, 250 mm inside diameter

bottom product, centre of vessel head, 50 mm inside diameter reflux return, 1.0 m below top of cylindrical section, 50 mm inside diameter

Two 0.6~m diameter access ports (manholes) situated 1.0~m above the bottom and 1.5~m below the top of the column

Support skirt height 2.5 m

Access ladder with platforms

Insulation, mineral wool, 50 mm thick

Materials of construction: vessel stainless steel, unstabilised (304)

nozzles as vessel

skirt carbon steel, silicon killed

Design pressure 1200 kN/m<sup>2</sup>

Design temperature 150 °C

Corrosion allowance 2 mm.

Make a dimensioned sketch of your design and fill out the column specification sheet given in Appendix H.

13.7. A jacketed vessel is to be used as a reactor. The vessel has an internal diameter of 2 m and is fitted with a jacket over a straight section 1.5 m long. Both the vessel and jacket walls are 25 mm thick. The spacing between the vessel and jacket is 75 mm.

The vessel and jacket are made of carbon steel. The vessel will operate at atmospheric pressure and the jacket will be supplied with steam at 20 bar. Check if the thickness of the vessel and jacket is adequate for this duty.

Take the allowable design stress as 100 N/mm<sup>2</sup> and the value of Young's modulus at the operating temperature as 180,000 N/mm<sup>2</sup>.

- **13.8.** A high pressure steam pipe is 150 mm inside diameter and 200 mm outside diameter. If the steam pressure is 200 bar, what will be the maximum shear stress in the pipe wall?
- 13.9. A storage tank for concentrated nitric acid will be constructed from aluminium to resist corrosion. The tank is to have an inside diameter of 6 m and a height of 17 m. The maximum liquid level in the tank will be at 16 m. Estimate the plate thickness required at the base of the tank. Take the allowable design stress for aluminium as 90 N/mm<sup>2</sup>.

#### CHAPTER 14

## General Site Considerations

#### 14.1. INTRODUCTION

In the discussion of process and equipment design given in the previous chapters no reference was made to the plant site. A suitable site must be found for a new project, and the site and equipment layout planned. Provision must be made for the ancillary buildings and services needed for plant operation; and for the environmentally acceptable disposal of effluent. These subjects are discussed briefly in this chapter.

#### 14.2. PLANT LOCATION AND SITE SELECTION

The location of the plant can have a crucial effect on the profitability of a project, and the scope for future expansion. Many factors must be considered when selecting a suitable site, and only a brief review of the principal factors will be given in this section. Site selection for chemical process plants is discussed in more detail by Vilbrandt and Dryden (1959), Rase and Barrow (1964), Merims (1966) and Mecklenburgh (1985). The principal factors to consider are:

- 1. Location, with respect to the marketing area.
- 2. Raw material supply.
- 3. Transport facilities.
- 4. Availability of labour.
- 5. Availability of utilities: water, fuel, power.
- 6. Availability of suitable land.
- 7. Environmental impact, and effluent disposal.
- 8. Local community considerations.
- 9. Climate.
- 10. Political and strategic considerations.

## Marketing area

For materials that are produced in bulk quantities; such as cement, mineral acids, and fertilisers, where the cost of the product per tonne is relatively low and the cost of transport a significant fraction of the sales price, the plant should be located close to the primary market. This consideration will be less important for low volume production, high-priced products; such as pharmaceuticals.

In an international market, there may be an advantage to be gained by locating the plant within an area with preferential tariff agreements; such as the European Community (EC).

#### Raw materials

The availability and price of suitable raw materials will often determine the site location. Plants producing bulk chemicals are best located close to the source of the major raw material; where this is also close to the marketing area.

#### **Transport**

The transport of materials and products to and from the plant will be an overriding consideration in site selection.

If practicable, a site should be selected that is close to at least two major forms of transport: road, rail, waterway (canal or river), or a sea port. Road transport is being increasingly used, and is suitable for local distribution from a central warehouse. Rail transport will be cheaper for the long-distance transport of bulk chemicals.

Air transport is convenient and efficient for the movement of personnel and essential equipment and supplies, and the proximity of the site to a major airport should be considered.

## Availability of labour

Labour will be needed for construction of the plant and its operation. Skilled construction workers will usually be brought in from outside the site area, but there should be an adequate pool of unskilled labour available locally; and labour suitable for training to operate the plant. Skilled tradesmen will be needed for plant maintenance. Local trade union customs and restrictive practices will have to be considered when assessing the availability and suitability of the local labour for recruitment and training.

## **Utilities (services)**

Chemical processes invariably require large quantities of water for cooling and general process use, and the plant must be located near a source of water of suitable quality. Process water may be drawn from a river, from wells, or purchased from a local authority.

At some sites, the cooling water required can be taken from a river or lake, or from the sea; at other locations cooling towers will be needed.

Electrical power will be needed at all sites. Electrochemical processes that require large quantities of power; for example, aluminium smelters, need to be located close to a cheap source of power.

A competitively priced fuel must be available on site for steam and power generation.

## Environmental impact, and effluent disposal

All industrial processes produce waste products, and full consideration must be given to the difficulties and cost of their disposal. The disposal of toxic and harmful effluents will be covered by local regulations, and the appropriate authorities must be consulted during the initial site survey to determine the standards that must be met.

An environmental impact assessment should be made for each new project, or major modification or addition to an existing process, see Section 14.6.5.

## Local community considerations

The proposed plant must fit in with and be acceptable to the local community. Full consideration must be given to the safe location of the plant so that it does not impose a significant additional risk to the community.

On a new site, the local community must be able to provide adequate facilities for the plant personnel: schools, banks, housing, and recreational and cultural facilities.

## Land (site considerations)

Sufficient suitable land must be available for the proposed plant and for future expansion. The land should ideally be flat, well drained and have suitable load-bearing characteristics. A full site evaluation should be made to determine the need for piling or other special foundations.

#### Climate

Adverse climatic conditions at a site will increase costs. Abnormally low temperatures will require the provision of additional insulation and special heating for equipment and pipe runs. Stronger structures will be needed at locations subject to high winds (cyclone/hurricane areas) or earthquakes.

## Political and strategic considerations

Capital grants, tax concessions, and other inducements are often given by governments to direct new investment to preferred locations; such as areas of high unemployment. The availability of such grants can be the overriding consideration in site selection.

#### 14.3. SITE LAYOUT

The process units and ancillary buildings should be laid out to give the most economical flow of materials and personnel around the site. Hazardous processes must be located at a safe distance from other buildings. Consideration must also be given to the future expansion of the site. The ancillary buildings and services required on a site, in addition to the main processing units (buildings), will include:

- 1. Storages for raw materials and products: tank farms and warehouses.
- 2. Maintenance workshops.
- 3. Stores, for maintenance and operating supplies.
- 4. Laboratories for process control.
- 5. Fire stations and other emergency services.
- 6. Utilities: steam boilers, compressed air, power generation, refrigeration, transformer stations.

- 7. Effluent disposal plant.
- 8. Offices for general administration.
- 9. Canteens and other amenity buildings, such as medical centres.
- 10. Car parks.

When roughing out the preliminary site layout, the process units will normally be sited first and arranged to give a smooth flow of materials through the various processing steps, from raw material to final product storage. Process units are normally spaced at least 30 m apart; greater spacing may be needed for hazardous processes.

The location of the principal ancillary buildings should then be decided. They should be arranged so as to minimise the time spent by personnel in travelling between buildings. Administration offices and laboratories, in which a relatively large number of people will be working, should be located well away from potentially hazardous processes. Control rooms will normally be located adjacent to the processing units, but with potentially hazardous processes may have to be sited at a safer distance.

The siting of the main process units will determine the layout of the plant roads, pipe alleys and drains. Access roads will be needed to each building for construction, and for operation and maintenance.

Utility buildings should be sited to give the most economical run of pipes to and from the process units.

Cooling towers should be sited so that under the prevailing wind the plume of condensate spray drifts away from the plant area and adjacent properties.

The main storage areas should be placed between the loading and unloading facilities and the process units they serve. Storage tanks containing hazardous materials should be sited at least 70 m (200 ft) from the site boundary.

A typical plot plan is shown in Figure 14.1.

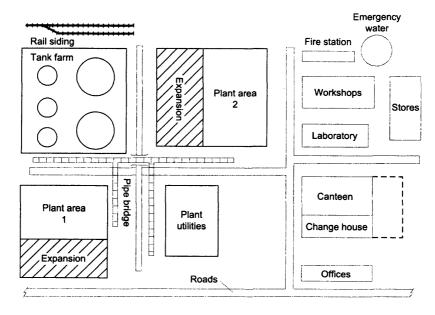



Figure 14.1. A typical site plan

A comprehensive discussion of site layout is given by Mecklenburgh (1985); see also House (1969), Kaess (1970) and Meissner and Shelton (1992).

#### 14.4. PLANT LAYOUT

The economic construction and efficient operation of a process unit will depend on how well the plant and equipment specified on the process flow-sheet is laid out.

A detailed account of plant layout techniques cannot be given in this short section. A fuller discussion can be found in the book edited by Mecklenburg (1985) and in articles by Kern (1977, 1978), Meissner and Shelton (1992), Brandt *et al.* (1992), and Russo and Tortorella (1992).

The principal factors to be considered are:

- 1. Economic considerations: construction and operating costs.
- 2. The process requirements.
- 3. Convenience of operation.
- 4. Convenience of maintenance.
- 5. Safety.
- 6. Future expansion.
- 7. Modular construction.

#### Costs

The cost of construction can be minimised by adopting a layout that gives the shortest run of connecting pipe between equipment, and the least amount of structural steel work. However, this will not necessarily be the best arrangement for operation and maintenance.

## **Process requirements**

An example of the need to take into account process considerations is the need to elevate the base of columns to provide the necessary net positive suction head to a pump (see Chapter 5) or the operating head for a thermosyphon reboiler (see Chapter 12).

## Operation

Equipment that needs to have frequent operator attention should be located convenient to the control room. Valves, sample points, and instruments should be located at convenient positions and heights. Sufficient working space and headroom must be provided to allow easy access to equipment.

#### Maintenance

Heat exchangers need to be sited so that the tube bundles can be easily withdrawn for cleaning and tube replacement. Vessels that require frequent replacement of catalyst or packing should be located on the outside of buildings. Equipment that requires dismantling for maintenance, such as compressors and large pumps, should be placed under cover.

#### Safety

Blast walls may be needed to isolate potentially hazardous equipment, and confine the effects of an explosion.

At least two escape routes for operators must be provided from each level in process buildings.

## Plant expansion

Equipment should be located so that it can be conveniently tied in with any future expansion of the process.

Space should be left on pipe alleys for future needs, and service pipes over-sized to allow for future requirements.

#### Modular construction

In recent years there has been a move to assemble sections of plant at the plant manufacturer's site. These modules will include the equipment, structural steel, piping and instrumentation. The modules are then transported to the plant site, by road or sea.

The advantages of modular construction are:

- 1. Improved quality control.
- 2. Reduced construction cost.
- 3. Less need for skilled labour on site.
- 4. Less need for skilled personnel on overseas sites.

Some of the disadvantages are:

- 1. Higher design costs.
- 2. More structural steel work.
- 3. More flanged connections.
- 4. Possible problems with assembly, on site.

A fuller discussion of techniques and applications of modular construction is given by Shelley (1990), Hesler (1990), Clement (1989), and Whitaker (1984).

#### General considerations

Open, structural steelwork, buildings are normally used for process equipment; closed buildings are only used for process operations that require protection from the weather.

The arrangement of the major items of equipment will usually follow the sequence given on the process flow-sheet: with the columns and vessels arranged in rows and the ancillary equipment, such as heat exchangers and pumps, positioned along the outside. A typical preliminary layout is shown in Figure 14.2.

## 14.4.1. Techniques used in site and plant layout

Cardboard cut-outs of the equipment outlines can be used to make trial plant layouts. Simple models, made up from rectangular and cylindrical blocks, can be used to study

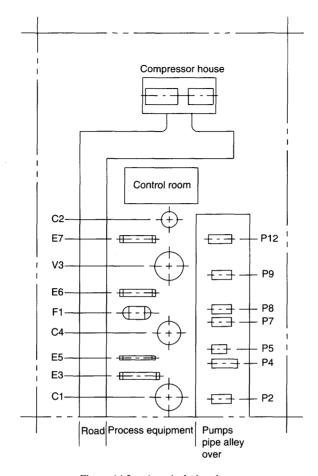



Figure 14.2. A typical plant layout

alternative layouts in plan and elevation. Cut-outs and simple block models can also be used for site layout studies. Once the layout of the major pieces of equipment has been decided, the plan and elevation drawings can be made and the design of the structural steel-work and foundations undertaken.

Large-scale models, to a scale of at least 1:30, are normally made for major projects. These models are used for piping design and to decide the detailed arrangement of small items of equipment, such as valves, instruments and sample points. Piping isometric diagrams are taken from the finished models. The models are also useful on the construction site, and for operator training. Proprietary kits of parts are available for the construction of plant models.

Computers are being increasingly used for plant layout studies, and computer models are complementing, if not yet replacing, physical models. Several proprietary programs are available for the generation of 3-dimensional models of plant layout and piping. Present systems allow designers to zoom in on a section of plant and view it from various angles. Developments of computer technology will soon enable engineers to

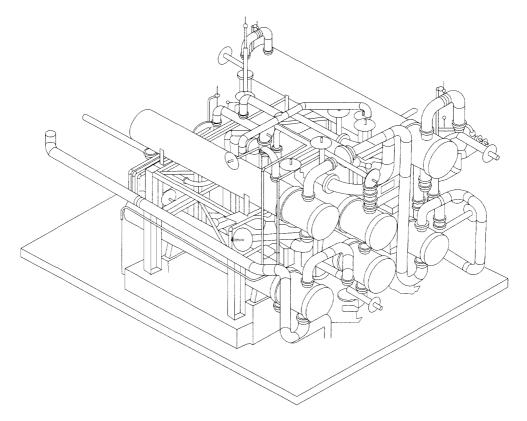



Figure 14.3. Computer generated layout "model" (Courtesy: Babcock Construction Ltd.)

virtually walk through the plant. A typical computer generated model is shown in Figure 14.3.

Some of the advantages of computer graphics modelling compared with actual scale models are:

- 1. The ease of electronic transfer of information. Piping drawings can be generated directly from the layout model. Bills of quantities: materials, valves, instruments, are generated automatically.
- 2. The computer model can be part of an integrated project information system, covering all aspects of the project from conception to operation.
- 3. It is easy to detect interference between pipe runs, and pipes and structural steel: occupying same space.
- 4. A physical model of a major plant construction can occupy several hundred square metres. The computer model is contained on a few discs.
- 5. The physical model has to be transported to the plant site for use in the plant construction and operator training. A computer model can be instantly available in the design office, the customer's offices, and at the plant site.
- 6. Expert systems and optimisation programs can be incorporated in the package to assist the designer to find the best practical layout; see Madden (1990).

#### 14.5. UTILITIES

The word "Utilities" is now generally used for the ancillary services needed in the operation of any production process. These services will normally be supplied from a central site facility; and will include:

- 1. Electricity.
- 2. Steam, for process heating.
- 3. Cooling water.
- 4. Water for general use.
- 5. Demineralised water.
- 6. Compressed air.
- 7. Inert-gas supplies.
- 8. Refrigeration.
- 9. Effluent disposal facilities.

The provision of plant utility systems is covered in a guide published by the Institution of Chemical Engineers, IChemE (1994).

## **Electricity**

The power required for electrochemical processes; motor drives, lighting, and general use, may be generated on site, but will more usually be purchased from the local supply company (the national grid system in the UK). The economics of power generation on site are discussed by Caudle (1975).

The voltage at which the supply is taken or generated will depend on the demand. For a large site the supply will be taken at a very high voltage, typically 11,000 or 33,000 V. Transformers will be used to step down the supply voltage to the voltages used on the site. In the United Kingdom a three-phase 415-V system is used for general industrial purposes, and 240-V single-phase for lighting and other low-power requirements. If a number of large motors is used, a supply at an intermediate high voltage will also be provided, typically 6000 or 11,000 V.

A detailed account of the factors to be considered when designing electrical distribution systems for chemical process plants, and the equipment used (transformers, switch gear and cables), is given by Clay (1960); see also Silverman (1964).

#### Steam

The steam for process heating is usually generated in water tube boilers; using the most economical fuel available. The process temperatures required can usually be obtained with low-pressure steam, typically 2.5 bar (25 psig), and steam is distributed at a relatively low mains pressure, typically around 8 bar (100 psig). Higher steam pressures, or proprietary heat-transfer fluids, such as Dowtherm (see Conant and Seifert, 1963), will be needed for high process temperatures. The generation, distribution and utilisation of steam for process heating in the manufacturing industries is discussed in detail by Lyle (1963).

## Combined heat and power (co-generation)

The energy costs on a large site can be reduced if the electrical power required is generated on site and the exhaust steam from the turbines used for process heating. The overall

thermal efficiency of such systems can be in the range 70 to 80 per cent; compared with the 30 to 40 per cent obtained from a conventional power station, where the heat in the exhaust steam is wasted in the condenser. Whether a combined heat and power system scheme is worth considering for a particular site will depend on the size of the site, the cost of fuel, the balance between the power and heating demands; and particularly on the availability of, and cost of, standby supplies and the price paid for any surplus power electricity generated. The economics of combined heat and power schemes for chemical process plant sites in the United Kingdom is discussed by Grant (1979).

On any site it is always worth while considering driving large compressors or pumps with steam turbines and using the exhaust steam for local process heating.

## Cooling water

Natural and forced-draft cooling towers (see Volume 1, Chapter 13) are generally used to provide the cooling water required on a site; unless water can be drawn from a convenient river or lake in sufficient quantity. Sea water, or brackish water, can be used at coastal sites, but if used directly will necessitate the use of more expensive materials of construction for heat exchangers (see Chapter 7).

#### Water for general use

The water required for general purposes on a site will usually be taken from the local mains supply, unless a cheaper source of suitable quality water is available from a river, lake or well.

#### Demineralised water

Demineralised water, from which all the minerals have been removed by ion-exchange, is used where pure water is needed for process use, and as boiler feed-water. Mixed and multiple-bed ion-exchange units are used; one resin converting the cations to hydrogen and the other removing the acid radicals. Water with less than 1 part per million of dissolved solids can be produced (see Volume 2, Chapter 18).

## Refrigeration

Refrigeration will be needed for processes that require temperatures below those that can be economically obtained with cooling water. For temperatures down to around  $10^{\circ}$ C chilled water can be used. For lower temperatures, down to  $-30^{\circ}$ C, salt brines (NaCl and CaCl<sub>2</sub>) are used to distribute the "refrigeration" round the site from a central refrigeration machine. Vapour compression machines are normally used.

## Compressed air

Compressed air will be needed for general use, and for the pneumatic controllers that are usually used for chemical process plant control. Air is normally distributed at a mains pressure of 6 bar (100 psig). Rotary and reciprocating single-stage or two-stage compressors are used. Instrument air must be dry and clean (free from oil).

#### Inert gases

Where large quantities of inert gas are required for the inert blanketing of tanks and for purging (see Chapter 9) this will usually be supplied from a central facility. Nitrogen is normally used, and is manufactured on site in an air liquefaction plant, or purchased as liquid in tankers.

#### Effluent disposal

Facilities will be required at all sites for the disposal of waste materials without creating a public nuisance; see Section 14.6.1.

#### 14.6. ENVIRONMENTAL CONSIDERATIONS

All individuals and companies have a duty of care to their neighbours, and to the environment in general. In the United Kingdom this is embodied in the Common Law. In addition to this moral duty, stringent controls over the environment are being introduced in the United Kingdom, the European Community, the United States, and in other industrialised countries and developing countries.

Vigilance is required in both the design and operation of process plant to ensure that legal standards are met and that no harm is done to the environment.

Consideration must be given to:

- 1. All emissions to land, air, water.
- 2. Waste management.
- 3. Smells.
- 4. Noise.
- 5. The visual impact.
- 6. Any other nuisances.
- 7. The environmental friendliness of the products.

## 14.6.1. Waste management

Waste arises mainly as byproducts or unused reactants from the process, or as off-specification product produced through mis-operation. There will also be fugitive emissions from leaking seals and flanges, and inadvertent spills and discharges through mis-operation. In emergency situations, material may be discharged to the atmosphere through vents normally protected by bursting discs and relief values.

The designer must consider all possible sources of pollution and, where practicable, select processes that will eliminate or reduce (minimise) waste generation. The Institution of Chemical Engineers has published a guide to waste minimisation, IChemE (1995).

Unused reactants can be recycled and off-specification product reprocessed. Integrated processes can be selected: the waste from one process becoming the raw material for another. For example, the otherwise waste hydrogen chloride produced in a chlorination process can be used for chlorination using a different reaction; as in the balanced, chlorination-oxyhydrochlorination process for vinyl chloride production. It may be possible to sell waste to another company, for use as raw material in their manufacturing

processes. For example, the use of off-specification and recycled plastics in the production of lower grade products, such as the ubiquitous black plastics bucket.

Processes and equipment should be designed to reduce the chances of mis-operation; by providing tight control systems, alarms and interlocks. Sample points, process equipment drains, and pumps should be sited so that any leaks flow into the plant effluent collection system, not directly to sewers. Hold-up systems, tanks and ponds, should be provided to retain spills for treatment. Flanged joints should be kept to the minimum needed for the assembly and maintenance of equipment.

When waste is produced, processes must be incorporated in the design for its treatment and safe disposal. The following techniques can be considered:

- 1. Dilution and dispersion.
- 2. Discharge to foul water sewer (with the agreement of the appropriate authority).
- 3. Physical treatments: scrubbing, settling, absorption and adsorption.
- 4. Chemical treatment: precipitation (for example, of heavy metals), neutralisation.
- 5. Biological treatment: activated sludge and other processes.
- 6. Incineration on land, or at sea.
- 7. Landfill at controlled sites.
- 8. Sea dumping (now subject to tight international control).

A British Standard has been published to assist with the management of waste systems, BS 7750. This standard is linked to the standard on management for quality control, BS 5750.

Hazardous waste management practice in the United States is covered in a book by Wentz (1989).

#### Gaseous wastes

Gaseous effluents which contain toxic or noxious substances will need treatment before discharge into the atmosphere. The practice of relying on dispersion from tall stacks is seldom entirely satisfactory. Witness the problems with acid rain in Scandinavian countries attributed to discharges from power stations in the United Kingdom. Gaseous pollutants can be removed by absorption or adsorption (see Volume 2, Chapters 8 and 10). Finely dispersed solids can be removed by scrubbing, or using electrostatic precipitators; see Chapter 10. Flammable gases can be burnt. The treatment and disposal of gaseous pollutants is discussed by Nonhebel (1972). The subject of air pollution is covered by Strauss and Mainwarring (1984).

## Liquid wastes

The waste liquids from a chemical process, other than aqueous effluent, will usually be flammable and can be disposed of by burning in suitably designed incinerators. Care must be taken to ensure that the temperatures attained in the incinerator are high enough to completely destroy any harmful compounds that may be formed; such as the possible formation of dioxins when burning chlorinated compounds. The gases leaving an incinerator may be scrubbed, and acid gases neutralised. A typical incinerator for burning gaseous or liquid wastes is shown in Chapter 3, Figure 3.16. The design of incinerators

for hazardous waste and the problems inherent in the disposal of waste by incineration are discussed by Butcher (1990) and Baker-Counsell (1987).

In the past, small quantities of liquid waste, in drums, has been disposed of by dumping at sea or in land-fill sites. This is not an environmentally acceptable method and is now subject to stringent controls.

#### Solid wastes

Solid waste can be burnt in suitable incinerators or disposed by burial at licensed land-fill sites. As for liquid wastes, the dumping of toxic solid waste at sea is now not acceptable.

#### Aqueous wastes

The principal factors which determine the nature of an aqueous industrial effluent and on which strict controls will be placed by the responsible authority are:

- 1. pH.
- 2. Suspended solids.
- 3. Toxicity.
- 4. Biological oxygen demand.

The pH can be adjusted by the addition of acid or alkali. Lime is frequently used to neutralise acidic effluents.

Suspended solids can be removed by settling, using clarifiers (see Chapter 10, and Volume 2, Chapter 5).

For some effluents it will be possible to reduce the toxicity to acceptable levels by dilution. Other effluents will need chemical treatment. Some data on the toxicity of specific chemicals and trade wastes to fish is given by Klein (1962).

The oxygen concentration in a water course must be maintained at a level sufficient to support aquatic life. For this reason, the biological oxygen demand of an effluent is of utmost importance. It is measured by a standard test: the BOD5 (five-day biological oxygen demand). This test measures the quantity of oxygen which a given volume of the effluent (when diluted with water containing suitable bacteria, essential inorganic salts, and saturated with oxygen) will absorb in 5 days, at a constant temperature of 20°C. The results are reported as parts of oxygen absorbed per million parts effluent (ppm). The BOD5 test is a rough measure of the strength of the effluent: the organic matter present. It does not measure the total oxygen demand, as any nitrogen compounds present will not be completely oxidised in 5 days. The Ultimate Oxygen Demand (UOD) can be determined by conducting the test over a longer period, up to 90 days. If the chemical composition of the effluent is known, or can be predicted from the process flow-sheet, the UOD can be estimated by assuming complete oxidation of the carbon present to carbon dioxide, and the nitrogen present to nitrate:

$$UOD = 2.67C + 4.57N$$

where C and N are the concentrations of carbon and nitrogen in ppm.

A full description of the procedures for carrying out the standard BOD tests, and other tests carried out to monitor and control effluent quality, is given by Klein (1959).

Activated sludge processes are frequently used to reduce the bilogical oxygen demand of an aqueous effluent before discharge.

A full discussion of aqueous effluent treatment is given by Eckenfelder *et al.* (1985); see also Eckenfelder (1989).

Where waste water is discharged into the sewers with the agreement of the local water authorities, a charge will normally be made according to the BOD value, and any treatment required. Where treated effluent is discharged to water courses, with the agreement of the appropriate regulatory authority, the BOD5 limit will typically be set at 20 ppm.

#### 14.6.2. Noise

Noise can cause a serious nuisance in the neighbourhood of a process plant. Care needs to be taken when selecting and specifying equipment such as compressors, air-cooler fans, induced and forced draught fans for furnaces, and other noisy plant. Excessive noise can also be generated when venting through steam and other relief valves, and from flare stacks. Such equipment should be fitted with silencers. Vendors' specifications should be checked to ensure that equipment complies with statutory noise levels; both for the protection of employees (see Chapter 9), as well as for noise pollution considerations. Noisy equipment should, as far as practicable, be sited well away from the site boundary. Earth banks and screens of trees can be used to reduce the noise level perceived outside the site.

## 14.6.3. Visual impact

The appearance of the plant should be considered at the design stage. Few people object to the fairyland appearance of a process plant illuminated at night, but it is a different scene in daylight. There is little that can be done to change the appearance of a modern style plant, where most of the equipment and piping will be outside and in full view, but some steps can be taken to minimise the visual impact. Large equipment, such as storage tanks, can be painted to blend in with, or even contrast with, the surroundings. Landscaping and screening by belts of trees can also help improve the overall appearance of the site.

## 14.6.4. Legislation

It is not feasible to review the growing body of legislation covering environmental control in this short chapter. All that can be done is to give a brief résumé of the principal legislation current in the United Kingdom. Legislation and control procedures in other countries are likely to be similar in scope and practice.

A review of legislation in the United States is given in a series of articles by Davenport (1992a, b, c).

Stricter legislation and tighter control of discharges into the environment are being introduced in most countries. The specialist texts brought out by publishers catering for management topics, and by the government departments, should be consulted for

up-to-date information on environmental legislation. Current environmental legislation in the United Kingdom is covered by *Croner's Environmental Management*, Croner (1991a) and *Croner's Waste Management*, Croner (1991b).

The key legislation in the United Kingdom is:

- 1. The Environmental Protection Act (EPA), 1991, which subsumes previous acts; such as the alkali act (1906), and the clean air act (1956/68). The act covers air pollution, noise, and other matters causing a statutory nuisance.
- 2. The Water Resources Act, 1991, which covers discharges into inland water ways. Consent from the National Rivers Authority (NRA) is needed for such discharges.
- 3. The Water Industries Act, 1991, and the Trade Effluent Regulations, 1989, which cover discharges into the sewers.
- 4. The Town and Country Planning Act, 1990, which covers planning consents.
- 5. Some aspects of the Control of Substances Hazardous to Health Act (COSHH) regulations and the Health and Safety at Work Act, will also apply to waste handling, treatment and disposal; see Chapter 9.

Legislation and control procedures in the United Kingdom are increasingly being derived from regulations promulgated by the European Commission (EC); see N. Haigh (1990).

Kiely (1996) gives a comprehensive summary of EU and US environmental legislation.

All the legislation embodies the concept of *Best Practicable Means* (BPM). This requires the designer to use the most appropriate treatment to comply with the regulation, whilst taking into account: local conditions, current technology and cost. The concept of BPM also applies to the installation, maintenance and operation of the plant.

## 14.6.5. Environmental auditing

An environmental audit is a systematic examination of how a business operation affects the environment. It will include all emissions to air, land, and water; and cover the legal constraints, the effect on community, the landscape, and the ecology. Products will be considered, as well as processes.

When applied at the design stage of a new development it is more correctly called an environmental impact assessment.

The aim of the audit or assessment is to:

- 1. Identify environmental problems associated with manufacturing process and the use of the products, before they become liabilities.
- 2. To develop standards for good working practices.
- 3. To provide a basis for company policy.
- 4. To ensure compliance with environmental legislation.
- 5. To satisfy requirements of insurers.
- 6. To be seen to be concerned with environmental questions: important for public relations.
- 7. To minimise the production of waste: an economic factor.

Environmental auditing is discussed by Grayson (1992). His booklet is a good source of references for commentary on the subject, and to government bulletins.

#### 14.7. REFERENCES

BAKER-COUNSELL, J. (1987) Process Eng. (April) 26. Hazardous wastes: the future for incineration.

Brandt, D., George, W., Hathaway C. and McClintock, N. (1992) Chem. Eng., NY, 99 (April) 97. Plant layout, Part 2: The impact of codes, standards and regulations.

BUTCHER, C. (1990) Chem. Engr., London No. 471 (April 12th) 27. Incinerating hazardous waste.

CAUDLE, P. G. (1975) *Chemistry & Industry* (Sept. 6th) 717 The comparative economics of self generated and purchased power.

CLAY, Sir HENRY (1960) Electrical installations, in *Chemical Engineering Practice*, Vol. 10, *Ancillary Services*, Cremer, H. W. and Watkins, S. B. (eds) (Butterworths).

CONANT, A. R. and SEIFERT, W. F. (1963) *Chem. Eng. Prog.* **59** (May) 46. High temperature heating media: Dowtherm.

CRONER (1991a) Croner's Environmental Management (Croner Publications, London).

CRONER (1991b) Croner's Waste Management (Croner Publications, London).

DANIEL, P. T. (1971) *Chem. Engr, London* No. 252 (Aug.) 297. An integrated system of pipework estimating, detailing and control (ISOPEDAC): some experiences during development and implementation.

DAVENPORT, G. B. (1992a) Chem. Eng. Prog. 88 (April) 30. Understanding the air-pollution laws that affect CP plants.

DAVENPORT, G. B. (1992b) Chem. Eng. Prog. 88 (May) 45. The ABC of hazardous waste legislation.

DAVENPORT, G. B. (1992c) Chem. Eng. Prog. 88 (Sept.) 30. Understanding the water pollution laws governing CPI plants.

ECKENFELDER, W. W., PATOCZKA, J. and WATKIN, A. T. (1985) Chem. Eng., NY, 92 (Sept.) 60. Wastewater treatment.

ECKENFELDER, W. W. (1989) Industrial Water Pollution Control, 2nd edn (McGraw-Hill).

GARNER, J. F. (1975) Control of Pollution Act, 1974 (Butterworths).

GRANT, C. D. (1979) Energy Conservation in the Chemical and Petroleum Industries (IChemE/Godwin).

GRAYSON, L. (ed.) (1992) Environmental Auditing (Technical Communications, UK).

HAIGH, N. (1990) ECC Environmental Policy and Britain, 2nd edn (Longmans).

HESLER, W. E. (1990) Chem. Eng. Prog. 86 (10) 76. Modular design: where it fits.

HOUSE, F. F. (1969) Chem. Eng., NY 76 (July 28) 120. Engineers guide to plant layout.

ICHEME (1994) Process Utility Systems (Institution of Chemical Engineers), London.

ICHEME (1995) Waste Minimisation, a practical guide (Institution of Chemical Engineers), London.

KAESS, D. (1970) Chem. Eng., NY 77 (June 1st) 122. Guide to trouble free plant layouts.

KERN, R. (1977) Chem. Eng., NY 84:

(May 23rd) 130. How to manage plant design to obtain minimum costs.

(July 4th) 123. Specifications are the key to successful plant design.

(Aug. 15th) 153. Layout arrangements for distillation columns.

(Sept. 12th) 169. How to find optimum layout for heat exchangers.

(Nov. 7th) 93. Arrangement of process and storage vessels.

(Dec. 5th) 131. How to get the best process-plant layouts for pumps and compressors.

KERN, R. (1978) Chem. Eng., NY 85:

(Jan. 30th) 105. Pipework design for process plants.

(Feb. 27th) 117. Space requirements and layout for process furnaces.

(April 10th) 127. Instrument arrangements for ease of maintenance and convenient operation.

(May 8th) 191. How to arrange plot plans for process plants.

(July 17th) 123. Arranging the housed chemical process plant.

(Aug. 14th) 141. Controlling the cost factor in plant design.

KIELY, G. (1996) Environmental Engineering (McGraw-Hill)

KLEIN, L. (1959) River Pollution, Vol. 1. Chemical Analysis (Butterworths).

KLEIN, L. (1962) River Pollution, Vol. 2. Causes and Effects (Butterworths).

KLEIN, L. (1966) River Pollution, Vol. 3. Control (Butterworths).

LEESLEY, M. E. and NEWALL, R. G. (1972) *Inst. Chem. Eng. Symp. Ser.* No. 35, 2.20. The determination of plant layout by interactive computer methods.

Lyle, O. (1963) The Efficient Use of Steam (HMSO).

MADDEN, J., PULFORD, C. and SHADBOLT, N. (1990) Chem. Engr., London No. 474 (May 24th) 32. Plant layout-untouched by human hand?

McLoughlin, I. (1976a) Law and Practice Relating to Pollution Control in the U.K. (Graham Trotman).

McLOUGHLIN, I. (1976b) Law and Practice Relating to Pollution Control in the European Community (Graham Trotman).

MECKLENBURGH, J. C. (ed.) (1985) Process Plant Layout (Godwin/Longmans).

MEISSNER, R. E. and SHELTON, D. C. (1992) Chem. Eng., NY, 99 (April) 97. Plant layout, Part 1: Minimizing problems in plant layout.

MERIMS, R. (1966) Plant location and site considerations, in *The Chemical Plant*, Landau, R. (ed.) (Reinhold). Nonhebell, G. (1972) *Gas Purification Processes for Air Pollution Control* (Butterworths).

RASE, H. F. and BARROW, M. H. (1964) Project Engineering of Process Plants (Wiley).

Russo, T. J. and Tortorella, A. J. (1992) Chem. Eng., NY 99 (April) 97. Plant layout, Part 3: The contribution of CAD.

SILVERMAN, D. (1964) Chem. Eng., NY 71 (May 25th) 131, (June 22nd) 133, (July 6th) 121, (July 20th), 161, in four parts. Electrical design.

SPITZER, H. (1971) Chem. Engr, London No. 252 (Aug.) 305. The computer approach to pipe detailing.

STRAUSS, W. and MAINWARRING, S. J. (1984) Air Pollution (Arnold).

SHELLEY, S. (1990) Chem. Eng. NY, 97 (Aug.) 30. Making inroads with modular construction.

TEARLE, K. (1973) Industrial Pollution Control (Business Books).

VILBRANDT, F. C. and DRYDEN, C. E. (1959) Chemical Engineering Plant Design, 4th edn (McGraw-Hill).

WALKER, A. (1979) Law of Industrial Pollution Control (Godwin).

WENTZ, C. A. (1989) Hazardous Waste Management (McGraw-Hill).

WHITTAKER, R. (1984) Chem. Eng. NY, 92 (May 28th) 80. Onshore modular construction.

#### **British Standards**

BS 5750: 1987-91: Specification for Quality Systems (7 parts).

BS 7750: 1992: Specification for Environmental Management Systems.

#### APPENDIX A

# Graphical Symbols for Piping Systems and Plant

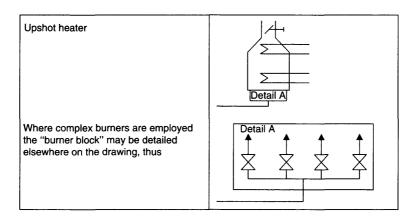
**BASED ON BS 1553: PART 1: 1976** 

## Scope

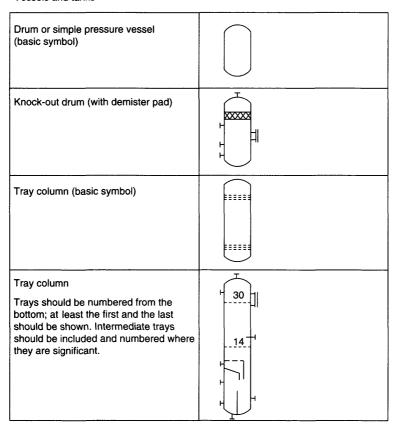
This part of BS 1553 specifies graphical symbols for use in flow and piping diagrams for process plant.

# Symbols (or elements of symbols) for use in conjunction with other symbols

| Mechanical linkage                     |          |
|----------------------------------------|----------|
| Weight device                          | $\nabla$ |
| Electrical device                      |          |
| Vibratory or loading device (any type) | #        |
| Spray device                           |          |
| Rotary movement                        |          |
| Stirring device                        | <b>→</b> |
| Fan                                    | $\infty$ |


| Access point                                                                                                                           |  |
|----------------------------------------------------------------------------------------------------------------------------------------|--|
| Equipment branch:<br>general symbol<br>Note. The upper repres-<br>entation does not<br>necessarily imply a<br>flange, merely the term- |  |
| ination point. Where a<br>breakable connection is<br>required the branch/pipe<br>would be as shown in the<br>lower symbol              |  |
| Equipment penetration (fixed)                                                                                                          |  |
| Equipment penetration (removable)                                                                                                      |  |
| Boundary line                                                                                                                          |  |
| Point of change                                                                                                                        |  |
| Discharge to atmosphere                                                                                                                |  |

APPENDIX A 909


## Basic and developed symbols for plant and equipment

## Heat transfer equipment

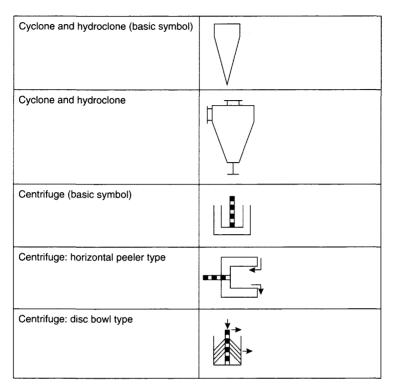
| Heat exchanger (basic symbols)          |     |
|-----------------------------------------|-----|
| Alternative:                            |     |
| Shell and tube: fixed tube sheet        | + T |
| Shell and tube: U tube or floating head |     |
| Shell and tube: kettle reboiler         | T T |
| Air - blown cooler                      |     |
| Plate type                              |     |
| Double pipe type                        |     |
| Heating/cooling coil (basic symbol)     |     |
| Fired heater/boiler (basic symbol)      |     |



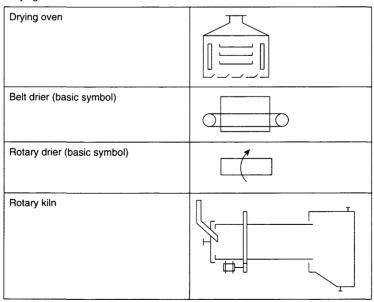
#### Vessels and tanks

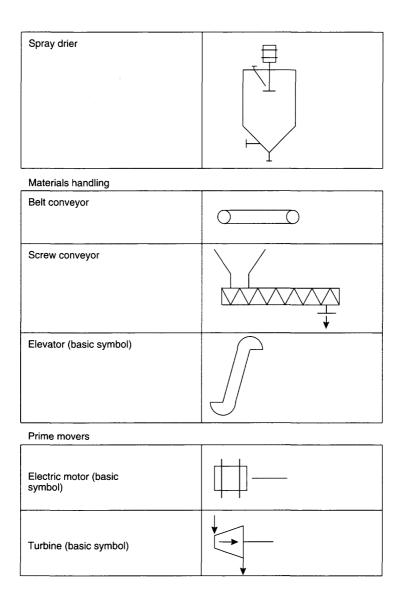


| Fluid contacting vessel (basic symbol)                                                                                          |  |
|---------------------------------------------------------------------------------------------------------------------------------|--|
| Fluid contacting vessel                                                                                                         |  |
| Support grids and distribution details may be shown                                                                             |  |
| Reaction or absorption vessel (basic symbol)                                                                                    |  |
| Reaction or absorption vessel Where it is necessary to show more than one layer of material alternative hatching should be used |  |
| Autoclave (basic symbol)                                                                                                        |  |
| Autoclave                                                                                                                       |  |


|                                           | r                                       |
|-------------------------------------------|-----------------------------------------|
| Open tank (basic symbol)                  |                                         |
| Open tank                                 | H                                       |
| Clarifier or settling tank                | H                                       |
| Sealed tank                               | 4 T                                     |
| Covered tank                              | + + + + + + + + + + + + + + + + + + + + |
| Tank with fixed roof (with draw-off sump) |                                         |
| Tank with floating roof (with roof drain) |                                         |
| Storage sphere                            | T T                                     |
| Gas holder (basic symbol for all types)   |                                         |

#### Pumps and compressors


| Rotary pump, fan or simple compressor (basic symbol)   | -                                                 |
|--------------------------------------------------------|---------------------------------------------------|
| Centrifugal pump or centrifugal fan                    |                                                   |
| Centrifugal pump (submerged suction)                   |                                                   |
| Positive displacement rotary pump or rotary compressor | <del>                                      </del> |
| Positive displacement pump (reciprocating)             |                                                   |
| Axial flow fan                                         | <u> </u>                                          |
| Compressor: centrifugal / axial flow ( basic symbol )  |                                                   |
| Compressor: centrifugal / axial flow                   |                                                   |
| Compressor: reciprocating (basic symbol)               |                                                   |
| Ejector / injector ( basic symbol )                    | <b>→</b>                                          |


#### Solids handling

| Size reduction                      | */         |
|-------------------------------------|------------|
| Breaker gyratory                    |            |
| Roll crusher                        | *          |
| Pulverizer : ball mill              |            |
| Mixing (basic symbol)               | Y          |
| Kneader                             |            |
| Ribbon blender                      | $\sim$     |
| Double cone blender                 |            |
| Filter (basic symbol, simple batch) | 7          |
| Filter press (basic symbol)         |            |
| Rotary filter, film drier or flaker | <b>→ ↓</b> |



#### Drying





#### APPENDIX B

# A Simple Flow-sheeting Program MASSBAL

MM1-SETS UP DATA FILE MM2-EDITS DATA FILE MM3-RUNS CALCULATIONS

#### PROGRAM MM1.BAS

PROGRAM FOR SETTING UP SPLIT FRACTION MATRICES AND FRESH FEED VECTORS

```
10 REM PROGRAM MM1.BAS
20 REM REVISED FOR GWBASIC 25/12/92
30 REM GETTING RID OF THE ZERO START FOR ARRAYS
40 OPTION BASE 1
50 DIM D(50,50), B(50)
60 PRINT
                      MASS BALANCE CALCULATIONS USING NAGIEV'S METHOD"
70 PRINT
80 PRINT
90 PRINT
100 PRINT "DO YOU WANT FULL INSTRUCTIONS ? ANSWER Y OR N"
110 A$ = INKEY$: IF A$ = "" THEN 110
120 IF A$ = "N" THEN 1940
130 IF A$ = "Y" THEN 170
140 PRINT " ERROR: Y OR N EXPECTED, CAPITALS "
150 GOTO 100
160 CLS
170 REM INSTRUCTIONS FOR RUNNING PROGRAMS
180 PRINT
190 PRINT
                              INSTRUCTIONS FOR RUNNING MASBAL "
200 PRINT "
210 PRINT
220 PRINT " NOTE: THE INSTRUCTIONS COVER SEVERAL PAGES AND IT IS BEST "
230 PRINT " TO PRINT THEM OUT FOR STUDY.
240 PRINT " USE LLIST TO PRINT LINES 200 TO 1900 "
250 PRINT
260 PRINT " IF YOU TYPE Y TO THE NEXT QUESTION THE INSTRUCTIONS WILL BE "
270 PRINT " BROKEN UP AND DISPLAYED A SCREEN FULL AT A TIME
280 PRINT
290 PRINT " PRESS RETURN AFTER READING EACH SCREEN "
300 PRINT
310 PRINT " DO YOU WANT THE INSTRUCTIONS DISPLAYED ON THE SCREEN ? "
320 PRINT " TYPE Y OR N
330 A1$ = INKEY$: IF A1$ = "" THEN 330
340 IF A1$ = "Y" GOTO 380
350 IF Als = "N" GOTO 1910
360 PRINT " ERROR: Y OR N EXPECTED, CAPITALS "
370 GOTO 310
380 CLS
390 PRINT
                               DISPLAY INSTRUCTIONS ON SCREEN "
400 PRINT
410 PRINT " THE PROGRAMS CALCULATE THE FEEDS TO EACH UNIT FROM ESTIMATES "
420 PRINT " OF THE SPLIT FRACTION COEFFICIENTS AND THE FRESH FEEDS
430 PRINT " THREE SEPARATE BASIC PROGRAMS ARE USED
440 PRINT
450 PRINT " PROG MM1 (THIS PROGRAM) "
```

```
460 PRINT
470 PRINT " WHICH CONTAINS THIS LIST OF INSTRUCTIONS AND A PROCEDURE TO "
480 PRINT " SET UP A DATA FILE CONTAINING THE INITIAL ESTIMATES OF THE
490 PRINT " SPLIT FRACTION COEFFICIENTS AND FRESH FEEDS "
500 PRINT " PROG MM2, WHICH CONTAINS A PROCEDURE TO ENABLE THE VALUES IN THE "
510 PRINT " DATA FILE TO BE AMENDED AS REQUIRED "
520 PRINT " PROG MM3, WHICH CONTAINS A ROUTINE TO SOLVE THE "
530 PRINT " EQUATIONS, AND PRINT OUT THE RESULTS "
540 PRINT
550 PRINT " IN BRIEF, THE PROCEDURE FOR USING THESE PROGRAMS IS: "
560 PRINT
570 PRINT " 1. DRAW UP A BLOCK DIAGRAM OF THE PROCESS ", 580 PRINT " ONE BLOCK FOR EACH PROCESSING UNIT "
                 ONE BLOCK FOR EACH PROCESSING UNIT '
590 PRINT
600 PRINT " 2. PUT IN THE CONNECTIONS BETWEEN THE BLOCKS "
610 PRINT
620 PRINT " 3. FOR EACH COMPONENT, DRAW UP A TABLE OF THE UNIT "
630 PRINT " CONNECTIONS, AS BELOW: 640 K$ = INKEY$:IF K$ = "" THEN 640
650 PRINT " TO UNIT NO. FROM UNIT NO. SPLIT FRACTION COEFF. "
660 PRINT " (ROW NO.) (COLN. NO.) (ALPHA) "
670 PRINT "
                 M
                                   N
680 PRINT
                 " THIS GIVES THE ADDRESS AND VALUE OF THE SPLIT FRACTIONS "
690 PRINT
                 " FOR EACH COMPONENT, AND MAKES IT EASIER TO TYPE THESE "
700 PRINT
710 PRINT
                 " INTO THE PROGRAMS WHEN REQUESTED "
720 PRINT
730 PRINT " 4. FOR EACH COMPONENT, DRAW UP A TABLE OF THE FRESH FEEDS INTO " 740 PRINT " EACH UNIT. REMEMBER ANY PSEUDO FRESH FEEDS FOR DEACHEDS."
750 PRINT
760 PRINT " 5. CALL PROGRAM MM1 (IF NOT ALREADY USING IT)
770 PRINT
780 PRINT " 6. TYPE IN THE COEFFICIENTS AND FRESH FEEDS "
790 PRINT "
800 PRINT "
               FOLLOW THE INSTRUCTIONS GIVEN IN THE PROGRAM "
                 THE PROGRAM INCLUDES A ROUTINE FOR CORRECTING MISTAKES "
810 PRINT
820 PRINT " 7. CALL PROGRAM MM3
830 K$ = INKEY$:IF K$ = "" THEN 830
840 PRINT "
               NOTE: THIS PROGRAM GIVES THE OPTION OF A COMPLETE "
850 PRINT "
860 PRINT "
                 PRINT OUT OF THE RESULTS, OR JUST THE RESULTS FOR "
                 SELECTED UNITS. THIS WILL SAVE TIME WHEN ITERATING "
870 PRINT "
                ON VALUES THAT EFFECT ONLY A FEW UNITS "
880 PRINT
890 PRINT " 8. CHECK THAT THE CALCULATED FLOWS AND COMPOSITIONS "
900 PRINT "
                 CONFORM TO THE PROCESS PARAMETERS (DESIGN CONSTRAINTS) "
910 PRINT
920 PRINT " 9. CALL PROGRAM MM2, THE EDITING PROGRAM, MAKE ANY CHANGES " 930 PRINT " IN THE VALUES OF THE COEFFICIENTS AND FRESH FEEDS TO GET "
940 PRINT "
                 THE COMPOSITIONS AND FLOWS TO FIT THE DESIGN CONSTRAINTS "
950 PRINT
960 PRINT " 10. CALL PROGRAM MM3: CHECK OUTPUT AGAINST CONSTRAINTS '
970 PRINT
980 PRINT " 11. ITERATE ROUND STEPS 8 TO 10 AS NECESSARY "
990 PRINT
1000 PRINT
1010 PRINT " NOTE: IT IS ONLY NECESSARY TO CALL PROGRAM MM1 TO INPUT THE "
1020 PRINT " INITIAL VALUES FOR A NEW PROBLEM "
1030 K$ = INKEY$:IF K$ = "" THEN 1030
1040 PRINT
1050 PRINT " NOTES ON THE WAY THE PROGRAMS HANDLE AND FILE DATA "
1060 PRINT
1070 PRINT " (1) PROGRAM MM1: DATA INPUT AND FILES "
1080 PRINT
1090 PRINT " TAKING ONE COMPONENT AT A TIME, THIS PROGRAM SETS UP "
1100 PRINT " IN CORE AN IDENTITY MATRIX (ONES ON THE LEADING DIAGONAL) "
1110 PRINT " WITH DIMENSIONS EQUAL TO THE NUMBER OF UNITS "
1120 PRINT " WHEN THE ROW NUMBER, COLUMN NUMBER, AND VALUE OF THE "
1130 PRINT " NON-ZERO COEFFICIENTS ARE TYPED IN, THE PROGRAM "
1140 PRINT " SUBSTITUTES THESE VALUES AT THE CORRECT POSITIONS IN THE "
1150 PRINT " MATRIX "
1160 PRINT " NOTE: ALL COEFFICIENTS WILL BE NEGATIVE AND MUST BE TYPED "
1170 PRINT " IN AS SUCH "
1180 PRINT " IF ANY UNIT HAS A SELF-RECYCLE STREAM, THE VALUE ON THE "
1190 PRINT " LEADING DIAGONAL WILL NOT BE ONE AND MUST BE TYPED IN "
1200 PRINT " AS (1 - COEFF.) AT THE CORRECT POSITION (ROW NO. = COLN. NO.). "
1210 PRINT " WHEN THE MATRIX IS COMPLETE IT IS SCANNED AND ALL THE "
```

```
1220 PRINT " NON-ZERO VALUES AND THEIR ADDRESSES ARE FILED. "
1230 PRINT " THE FRESH FEEDS ARE INPUT AND FILED IN THE SAME WAY.
1240 PRINT " A ZERO VECTOR IS SET UP TO RECEIVE THE VALUES. "
1250 PRINT " ONLY THE VALUES FOR THOSE UNITS THAT HAVE A FRESH FEED "
1260 PRINT " OF THE PARTICULAR COMPONENT NEED BE TYPED IN; IT IS NOT "
1270 PRINT " NECESSARY TO TYPE IN ANY ZERO VALUES " 1280 K$ = INKEY$: IF K$ = "" THEN 1280
1290 PRINT
1300 PRINT " THE 'BASIC' LANGUAGE FILE FACILITY IS USED TO SET UP "
1310 PRINT " THE DATA FILES AUTOMATICALLY.
1320 PRINT " THE PROGRAM INCLUDES A ROUTINE TO ALLOW THE CORRECTION "
1330 PRINT " OF ANY INPUT ERRORS BEFORE THE VALUES ARE FILED "
1340 PRINT
1350 PRINT " UNITS AND NEW FRESH FEEDS CAN BE ADDED WHEN EDITING "
1360 PRINT " BUT NOT NEW UNITS. TO ADD NEW UNITS IT IS NECESSARY TO "
1370 PRINT " REDIMENSION THE MATRIX. TO ADD NEW UNITS START AGAIN
1380 PRINT " AT PROGRAM MM1 "
1390 PRINT
1400 PRINT " (2) PROGRAM MM2: EDITING FILES "
1410 PRINT
1420 PRINT " THIS PROGRAM CONTAINS A ROUTINE TO GAIN RANDOM ACCESS TO "
1430 PRINT " THE DATA FILE. THIS ENABLES ANY COMPONENT SUB-FILE TO "
1440 PRINT " BE PICKED OUT FOR EDITING. IT DOES THIS BY WRITING THE "
1450 PRINT " VALUES INTO A SECOND FILE (DATA FILE 2) UNTIL THE "
1460 PRINT " REQUIRED SUB-FILE IS REACHED, THE DATA IN THE
1470 PRINT " FILE REQUIRED IS THEN READ INTO THE COEFFICIENT MATRIX "
1480 PRINT " AND FRESH FEED VECTOR, FOR EDITING "
1490 PRINT " AFTER EDITING, THE VALUES FROM THE CORRECTED MATRIX "
1500 PRINT " AND VECTOR ARE WRITTEN TO FILE 2, TOGETHER WITH THE "
1510 PRINT " REMAINING DATA FROM FILE 1. THE DATA FROM FILE 2 IS "
1520 PRINT " THEN WRITTEN BACK INTO FILE 1 "
1530 K$ = INKEY$: IF K$ = "" THEN 1530
1540 PRINT
1550 PRINT " TO CHECK THE CONTENTS OF A DATA FILE THE FILE CAN BE "
1560 PRINT " LISTED AS A DATA FILE '
1570 PRINT
1580 PRINT " NEW COEFFICIENTS (REPRESENTING NEW CONNECTIONS BETWEEN "
1590 PRINT " BETWEEN UNITS) AND NEW FRESH FEEDS CAN BE ADDED WHEN "
1600 PRINT " EDITING A FILE, BUT NOT NEW UNITS. TO ADD NEW UNITS "
1610 PRINT " THE MATRIX MUST BE REDIMENSIONED BY STARTING AGAIN "
1620 PRINT " AT PROGRAM MM1
1630 PRINT
1640 PRINT " (3) PROGRAM MM3: CALCULATION AND PRINT "
1650 PRINT
1660 PRINT " THE CALCULATION PROCEDURE USES AN EFFICIENT ALGORITHM "
1670 PRINT " FOR THE SOLUTION OF SPARSE MATRICES, TO SAVE MEMORY
1680 PRINT " THIS IS SELDOM NEEDED WITH PRESENT DAY PC'S, AND ANY "
1690 PRINT " SUITABLE PROGRAM FOR THE INVERSION OF MATRICES CAN BE "
1700 PRINT " SUBSTITUTED FOR MM3; IF GUNN'S METHOD FAILS TO CONVERGE "
1710 PRINT " WITH ANY PROBLEM "
1720 PRINT
1730 PRINT " FOR GUNN'S METHOD THE DATA STORED IN CORE IN 4 VECTORS: "
1740 PRINT
1750 PRINT "
                  VECTOR A: CONTAINS THE COEFFICIENT VALUES "
1760 PRINT "
                  VECTOR B: THE FRESH FEEDS "
1770 PRINT "
                  VECTOR Z: THE COLUMN ADDRESS OF EACH COEFFICIENT "
1780 PRINT "
                  VECTOR L: THE POSITION IN THE Z VECTOR OF THE FIRST "
1790 PRINT "
                            COEFFICIENT IN EACH ROW
1800 PRINT
1810 K$ = INKEY$: IF K$ = "" THEN 1810
1820 PRINT " THE PROGRAM READS THE DATA FROM THE DATA FILE, SETS UP "
1830 PRINT " THESE VECTORS, AND SOLVES THE SET OF SIMULTANEOUS "
1840 PRINT " EQUATIONS TO DETERMINE THE FEEDS TO EACH UNIT, ONE "
1850 PRINT " COMPONENT AT A TIME. THE RESULTS ARE STORED IN A MATRIX "
1860 PRINT " AND WHEN ALL COMPONENT FLOWS HAVE BEEN CALCULATED, THE "
1870 PRINT " TOTAL FLOW TO EACH UNIT AND THE PERCENTAGE OF EACH
1880 PRINT " COMPONENT ARE CALCULATED AND PRINTED OUT "
1890 PRINT
1900 K$ = INKEY$: IF K$ = "" THEN 1900
1910 PRINT
1920 PRINT "
                                RETURNED TO PROGRAM "
1930 PRINT
1940 REM PROG. TO SET UP DATA FILES
1950 OPEN "MDATA1.DAT" FOR OUTPUT AS #1
1960 PRINT
1970 PRINT " PROG. TO SET UP DATA FILES; COEFF. AND FRESH FEEDS "
```

```
1980 PRINT
1990 PRINT " NUMBER OF UNITS ? (MAX 50) "
2000 INPUT NO
2010 PRINT " NUMBER OF COMPONENTS ? (MAX 20) "
2020 INPUT C2
2030 WRITE #1, NO, C2
2040 FOR E=1 TO C2
2050 CLS
2060 PRINT "
                              FOR COMPONENT ": E
2070 PRINT
2080 REM SETTING UP IDENTITY MATRIX
2090 FOR I = 1 TO NO
2100 FOR J = 1 TO NO
2110 D(I,J) = 0
2120 IF I = J THEN D(I,J) = 1
2130 NEXT J
2140 NEXT I
2150 PRINT " NUMBER OF NON-ZERO COEFFS. ? (EXCL. 1'S ON DIAGONAL) "
2160 INPUT N5
2170 N1=N5+N0
2180 PRINT " NUMBER OF NON-ZERO FRESH FEEDS ? "
2190 INPUT N2
2200 REM SETTING UP ZERO VECTOR
2210 \text{ FOR I} = 1 \text{ TO NO}
2220 B(I) = 0
2230 NEXT I
2240 WRITE #1, N1, N2
2250 PRINT
2260 PRINT " INPUT COEFFS.: ROW NO., COLN NO., VALUE "
2270 PRINT
2280 FOR E1=1 TO N5
2290 PRINT " NEXT M, N, A "
2300 INPUT R, S, D
2310 D(R,S) = D
2320 NEXT E1
2330 PRINT " NUMBER OF CORRECTIONS "
2340 INPUT N
2350 FOR E1=1 TO N
2360 PRINT " NEXT M, N, A "
2370 INPUT R, S, D
2380 D(R,S) = D
2390 NEXT E1
2400 PRINT " INPUT FRESH FEEDS, ROW NO., VALUE "
2410 FOR E1=1 TO N2
2420 PRINT " NEXT M, B "
2430 INPUT R, B
2440 B(R) = B
2450 NEXT E1
2460 PRINT " NUMBER OF CORRECTIONS ? "
2470 INPUT N
2480 FOR E1=1 TO N
2490 PRINT " NEXT M, A "
2500 INPUT R, B
2510 B(R) = B
2520 NEXT E1
2530 REM SUB PROG TO FILE COEFFS
2540 FOR R=1 TO NO
2550 FOR S=1 TO NO
2560 \text{ IF } D(R,S) = 0 \text{ THEN } 2580
2570 WRITE #1, R, S, D(R,S)
2580 NEXT S
2590 NEXT R
2600 REM SUB PROG TO FILE FEEDS
2610 FOR R=1 TO NO
2620 \text{ IF B(R)} = 0 \text{ THEN } 2640
2630 WRITE #1, R, B(R)
2640 NEXT R
2650 NEXT E
2660 CLOSE #1
2670 PRINT
2680 PRINT
2690 PRINT "
                    END OF INPUT, CALL MM3 FOR CALCULATION "
2700 PRINT
2710 PRINT
2720 END
```

### PROGRAM MM2.BAS

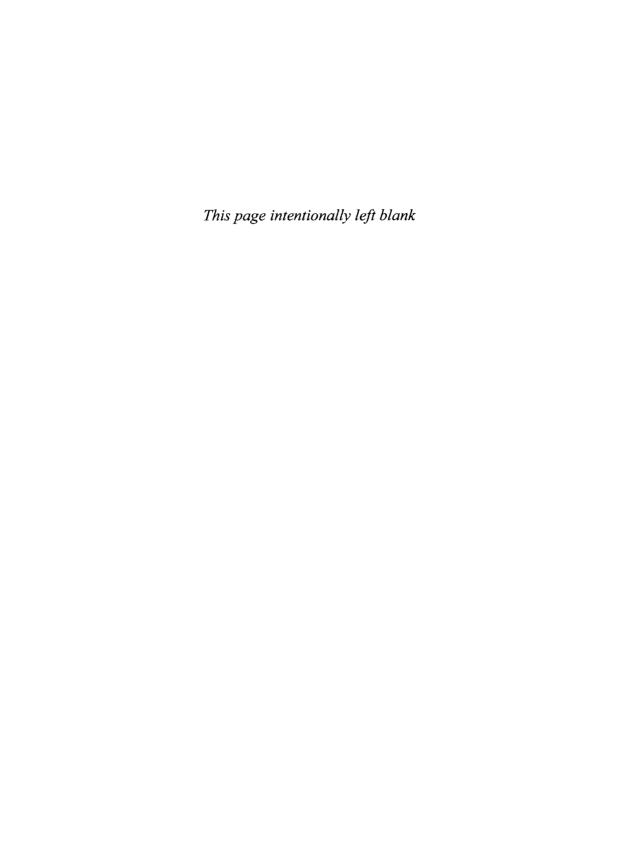
## PROGRAM TO EDIT DATA SET UP USING MM1

```
10 REM PROG TO EDIT DATA FILES
20 REM REVISED FOR GWBASIC 17-12-92
30 OPTION BASE 1
40 DIM D(50,50), B(50)
50 OPEN "MDATA1.DAT" FOR INPUT AS #1
60 OPEN "MDATA2.DAT" FOR OUTPUT AS #2
70 PRINT '
                          PROGRAM TO EDIT DATA FILE "
80 PRINT
90 PRINT
100 F1=1
110 F1=1
120 F2=2
130 ON ERROR GOTO 1240
140 PRINT " INPUT THE NUMBER OF THE COMPONENT TO BE ALTERED "
150 INPUT C1
160 REM TRANSFER DATA TO FILE 2 - UP TO COMP. WANTED
170 IF EOF(F1) THEN 1230
180 INPUT #1, NO, C2
190 IF C2 >= C1 THEN 230
200 PRINT " COMPONENT NUMBER NOT IN DATA FILE "
210 PRINT " NUMBER OF COMPONENTS IS " C2
220 STOP
230 WRITE #2, NO, C2
240 IF C1=1 THEN 280
250 FOR E=1 TO (C1-1)
260 GOSUB 1100
270 NEXT E
280 REM SETTING UP MATRIX FOR CORRECTION
290 INPUT #1, N1, N2
300 REM SETTING UP ZERO MATRIX
310 FOR I = 1 TO NO
320 \text{ FOR J} = 1 \text{ TO NO}
330 D(I,J) = 0
340 NEXT J
350 NEXT I
360 FOR I=1 TO N1
370 INPUT #1, R, S, D
380 D(R,S) = D
390 NEXT I
400 REM SETTING UP ZERO VECTOR
410 \text{ FOR I} = 1 \text{ TO NO}
420 B(I) = 0
430 NEXT I
440 FOR I=1 TO N2
450 INPUT #1, R, B
460 B(R) = B
470 NEXT I
480 REM CORRECTIONS
490 PRINT " INPUT THE NUMBER OF COEFFS. TO BE ALTERED "
500 INPUT P1
510 IF P1=0 THEN 660
520 PRINT " INPUT NEW VALUE; ROW NO., COLN. NO., VALUE "
530 FOR E1=1 TO P1
540 PRINT " NEXT M, N, A "
550 INPUT R, S, D
560 D(R,S) = D
570 NEXT E1
580 REM COUNTING NUMBER OF COEFFS.
590 N1=0
600 FOR E3=1 TO NO
610 FOR E4=1 TO NO
620 IF D(E3, E4) = 0 THEN 640
630 N1=N1+1
640 NEXT E4
650 NEXT E3
660 PRINT " NUMBER OF FRESH FEEDS TO BE ALTERED ? "
670 INPUT P2
680 IF P2=0 THEN 810
690 PRINT " INPUT NEW VALUE; ROW NO., VALUE "
```

```
700 FOR I=1 TO P2
710 PRINT " NEXT M, B "
720 INPUT R, B
730 B(R) = B
740 NEXT T
750 REM COUNTING NUMBER OF FRESH FEEDS
760 N2=0
770 FOR E3=1 TO NO
780 \text{ IF B(E3)} = 0 \text{ THEN } 800
790 N2=N2+1
800 NEXT E3
810 REM FILE CORRECTED MATRICES, FILE 2
820 WRITE #2, N1, N2
830 FOR E3=1 TO N0
840 FOR E4=1 TO NO
850 IF D(E3, E4) = 0 THEN 870
860 WRITE #2, E3, E4, D(E3,E4)
870 NEXT E4
880 NEXT E3
890 FOR E3=1 TO NO
900 \text{ IF B(E3)} = 0 \text{ THEN } 920
910 WRITE #2, E3, B(E3)
920 NEXT E3
930 REM WRITING REST OF FILE TO FILE 2
940 \text{ F1} = 1
950 F2 = 2
960 FOR E=1 TO (C2 - C1)
970 GOSUB 1100
980 NEXT E
990 REM SWITCHING FILES BACK
1000 CLOSE
1010 OPEN "MDATA1.DAT" FOR OUTPUT AS #1
1020 OPEN "MDATA2.DAT" FOR INPUT AS #2
1030 F1 = 2
1040 F2 = 1
1050 INPUT #F1, NO, C2
1060 WRITE #F2, NO, C2
1070 FOR E=1 TO C2
1080 GOSUB 1100
1090 NEXT E
1100 INPUT #F1, N1, N2
1110 WRITE #F2, N1, N2
1120 FOR E5=1 TO N1
1130 INPUT #F1, R, S, D
1140 WRITE #F2, R, S, D
1150 NEXT E5
1160 FOR E5=1 TO N2
1170 INPUT #F1, R, B
1180 WRITE #F2, R, B
1190 NEXT E5
1200 IF EOF(F1) THEN 1260
1210 RETURN
1220 GOTO 1260
1230 END OF FILE FOUND
1240 PRINT " ERROR "; ERR; " FOUND "; PRINT " LINE "; ERL: GOTO 1400
1250 PRINT
1260 PRINT " ANY MORE COMPONENTS TO ALTER ? ANSWER Y OR N "
1270 PRINT
1280 CLOSE
1290 A$ = INKEY$: IF A$ = "" THEN 1290
1300 IF AS = "Y" THEN 50
1310 IF A$ = "N" THEN 1350
1320 PRINT
1330 PRINT " ERROR: Y OR N EXPECTED, CAPITALS "
1340 GOTO 1250
1350 PRINT
1360 PRINT
1370 PRINT "
                                 EDITING COMPLETED "
1380 PRINT
1390 PRINT "
                          CALL MM3 FOR CALCULATION "
1400 END
```

## APPENDIX B

### PROGRAM MM3.BAS


### PROGRAM TO CALCULATE FLOWS AND COMPOSITIONS

```
10 REM PROG TO READ FROM FILES TO GUNN'S VECTORS
20 REM REVISED FOR GWBASIC 18/12/92
30 OPTION BASE 1
40 DIM B(50), Z(201), D(201), L(50), W(50,20)
50 OPEN "MDATA1.DAT" FOR INPUT AS #1
60 INPUT #1, NO, C2
70 REM SETTING UP ZERO MATRIX
80 FOR I = 1 TO NO
90 FOR J = 1 TO (C2+1)
100 W(I,J) = 0
110 NEXT J
120 NEXT I
130 FOR Q=1 TO C2
140 R1 = 1
150 INPUT #1, N1, N2
160 FOR E1 = 1 TO N1
170 INPUT #1, R, S, D
180 D(E1) = D
190 \ Z(E1) = S
200 IF R1-R <> 0 THEN 220
210 L(R) = E1
220 R1 = R+1
230 NEXT E1
240 REM SETTING UP ZERO VECTOR
250 FOR I = 1 TO NO
260 B(I) = 0
270 NEXT I
280 REM SETTING UP FRESH FEED VECTOR
290 \text{ FOR E2} = 1 \text{ TO N2}
300 INPUT #1, R, B
310 B(R) = B
320 NEXT E2
330 REM GUNN'S CALC. PROCEDURE
340 L(N0+1) = N1
350 \text{ FOR I} = 1 \text{ TO N1}
360 D(200-N1+I) = D(I)
370 Z(200-N1+I) = Z(I)
380 NEXT I
390 I1 = 200-N1
400 \text{ FOR I} = 1 \text{ TO NO}
410 \ J0 = L(I)
420 \ J1 = L(I+1)
430 IF I <> NO THEN 450
440 J1 = J1+1
450 \text{ FOR I2} = J0 \text{ TO J1-1}
460 \ Z(I2) = Z(I2+I1)
470 D(I2) = D(I2+I1)
480 NEXT 12
490 IF I < 1.5 THEN 1150
500 IF Z(J0) > I-.1 THEN 1150
510 J9 = 0
520 I3 = 0
530 J8 = 1
540 \text{ K3} = 1
550 C = D(J0)/D(L(Z(J0)))
560 B1 = B(Z(J0))
570 \text{ M3} = L(Z(J0)) + 1
580 \text{ M4} = L(Z(J0)+1)-1
590 IF M4 >= M3 THEN 620
600 \text{ K8} = 3
610 GOTO 680
620 FOR I5 = M3 TO M4
630 FOR K = J8 TO J1-J0-1
640 IF Z(J0+K+K3-1) > Z(I5) THEN 870
650 IF Z(J0+K+K3-1) = Z(I5) THEN 810
660 IF K3 <> 1 THEN 1030
670 \text{ K8} = 1
680 I3 = I3-1
690 FOR I6 = J0 TO J1-2
```

```
700 D(I6) = D(I6+1)
710 Z(I6) = Z(I6+1)
720 NEXT 16
730 \text{ FOR J6} = I+1 \text{ TO N0}+1
740 L(J6) = L(J6) + I3
750 NEXT J6
760 \text{ I1} = \text{I1-I3}
770 J1 = J1+I3
780 I3 = 0
790 \text{ K3} = 0
800 ON K8 GOTO 1030, 1040, 1130
810 J9 = J9+1
820 D(J0+K+K3-1) = D(J0+K+K3-1) -C*D(I5)
830 J8 = K+1-K3
840 IF K3 <> 1 THEN 1040
850 \text{ K8} = 2
860 GOTO 680
870 J9 = J9+1
880 IF K3 <> 1 THEN 930
890 \text{ K3} = 0
900 D(J0) = -C*D(I5)
910 Z(J0) = Z(I5)
920 GOTO 1040
930 I3 = I3+1
940 \text{ FOR } J5 = J0+K-1 \text{ TO } J1-1
950 \ J6 = J1+J0+K-J5
960 D(J6) = D(J6-1)
970 Z(J6) = Z(J6-1)
980 NEXT J5
990 D(J6-1) = -C*D(I5)
1000 Z(J6-1) = Z(I5)
1010 \text{ K8} = 2
1020 GOTO 730
1030 NEXT K
1040 NEXT I5
1050 \text{ M5} = \text{M4}-\text{M3}+1-\text{J9}
1060 \text{ FOR } 16 = 1 \text{ TO M5}
1070 D(J1+I6-1) = -C*D(M4+I6-M5)
1080 \text{ Z}(J1+I6-1) = \text{Z}(M4+I6-M5)
1090 I3 = I3+1
1100 NEXT 16
1110 \text{ K8} = 3
1120 GOTO 730
1130 B(I) = B(I) - C*B1
1140 IF I1 > 0 THEN 500
1150 NEXT I
1160 \text{ N3} = \text{N0-1}
1170 \text{ FOR I} = 1 \text{ TO N3}
1180 B(N0-I+1) = B(N0-I+1)/(D(L(N0-I+1)))
1190 FOR 16 = 1 TO N0-1
1200 \text{ M1} = L(16) + 1
1210 \text{ M2} = \text{L}(\text{I}6+1)-1
1220 \text{ FOR } 18 = M1 \text{ TO } M2
1230 IF Z(I8) \iff Z(L(N0-I+1)) THEN 1250
1240 B(I6) = B(I6) - D(I8) * B(N0 - I + 1)
1250 NEXT 18
1260 NEXT 16
1270 NEXT I
1280 B(1) = B(1)/D(1)
1290 REM SUBPROG. TO STORE RESULTS AND CALC. TOTALS
1300 FOR E3 = 1 TO NO
1310 IF Q > 1 THEN 1330
1320 \text{ W}(\text{E3}, (\text{C2+1})) = 0
1330 W(E3,Q) = B(E3)
1340 \text{ W}(E3,(C2+1)) = \text{W}(E3,(C2+1)) + \text{W}(E3,Q)
1350 NEXT E3
1360 NEXT Q
1370 REM DECISION ON PRINT OUT
1380 PRINT " RESULTS FOR ALL UNITS WANTED ? ANSWER Y OR N "
1390 B$ = INKEY$: IF B$ = "" THEN 1390
1400 \text{ IF B} = "Y" THEN 1440
1410 IF B$ = "N" THEN 1550
1420 PRINT " Y OR N EXPECTED, CAPITALS "
1430 GOTO 1380
```

```
1440 \text{ FOR C3} = 1 \text{ TO N0}
1450 PRINT
1460 PRINT " PRESS RETURN FOR NEXT UNIT "
1470 A$ = INKEY$: IF A$ = "" THEN 1470
1480 PRINT
1490 PRINT
1500 PRINT "
                                      UNIT "; C3
1510 PRINT
1520 GOSUB 1710
1530 NEXT C3
1540 GOTO 1670
1550 PRINT
1560 PRINT " HOW MANY UNITS WANTED ? "
1570 INPUT C4
1580 FOR E7 = 1 TO C4
1590 PRINT " NEXT UNIT ? "
1600 INPUT C3
1610 PRINT
1620 PRINT
1630 PRINT "
                                    UNIT "; C3
1640 PRINT
1650 GOSUB 1710
1660 NEXT E7
1670 PRINT "
                      CALCULATIONS COMPLETE CALL MM2 TO MODIFY DATA "
1680 PRINT
1690 PRINT
1700 STOP
1710 REM SUB PROG TO CALCULATE PERCENTS AND PRINT RESULTS
1720 PRINT " COMPONENT
                                     FLOW
1730 PRINT
1740 FOR E6=1 TO C2
1750 PRINT TAB(5); E6; TAB(20); W(C3, E6); TAB(40); W(C3, E6)*100/W(C3, (C2+1))
1760 NEXT E6
1770 PRINT " TOTAL "; TAB(20); W(C3, (C2+1))
1780 PRINT
1790 PRINT
1800 RETURN
1810 END
```

,



## APPENDIX C

# Corrosion Chart

An R indicates that the material is resistant to the named chemical up to the temperature shown, subject to the limitations given in the notes. The notes are given at the end of the table.

A *blank* indicates that the material is unsuitable. ND indicates that no data was available for the particular combination of material and chemical.

This chart is reproduced with the permission of IPC Industrial Press Ltd.

## NOTE

This appendix should be used as a guide only—before a material is used its suitability should be cross-checked with the manufacturer.

|                                                                                                          |                                                                         |                                                                           |                                       | ME                                                  | ΓALS                                             |                                             |                                                                       |                                                                   |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------|--------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------|
|                                                                                                          | Aluminium (a)                                                           | Aluminium<br>Bronze                                                       | Brass (b)                             | Cast Iron (c)                                       | Copper                                           | Gunmetal and<br>Bronze (d)                  | High Si Iron<br>(14%, Si) (c)<br>Lead                                 | Mild Steel<br>BSS 15<br>Nickel (cast)                             |
| Centigrade                                                                                               | 20° 60° 100                                                             | ° 20° 60° 100°                                                            | 20° 60° 100°                          | 20° 60° 100°                                        | 20° 60° 100°                                     | 20° 60° 100°                                | 20° 60° 100° 20° 60° 10                                               | 0° 20° 60° 100° 20° 60° 100                                       |
| Acetaldehyde Acetic acid (10%) Acetic acid (glac. & anh.) Acetic anhydride Acetone Other ketones         | R R R R R R R R R R R R R R R R                                         | R R R<br>R R R<br>R R R<br>R R R<br>R R R                                 | R R R<br>R R R<br>R R R               | R NDND R R R R R R R R R                            | R R R R R R R R R R R R R R R R                  | R R R<br>R R R<br>R R R<br>R R<br>R R R     | R R R R ND<br>R R R R ND<br>R R R R ND<br>R R R<br>R R R R<br>R R R R | No data                                                           |
| Acetylene<br>Acid fumes<br>Alcohols (most fatty)<br>Aliphatic esters<br>Alkyl chlorides                  | R R R<br>R <sup>2</sup> R R<br>R <sup>1</sup> R R<br>R R R<br>No data   | R <sup>2</sup> R <sup>2</sup> R <sup>2</sup><br>R R R<br>R R R<br>No data | R R R <sup>82</sup><br>R R R<br>R R R | R R R R R R R R R R R R                             | R R R<br>R R R<br>R R R                          | R R R<br>R R R<br>R R R                     | R R R R R R R R R R R R R R R R R R R                                 | R R R R R R R No data R R R R                                     |
| Alum<br>Aluminium chloride<br>Ammonia, anhydrous<br>Ammonia, aqueous<br>Ammonium chloride                | R R R<br>R <sup>11</sup> ND ND<br>R R R<br>R R R<br>R <sup>84</sup> R R | R R R<br>R <sup>20</sup> R <sup>20</sup><br>R R R                         |                                       | R<br>R R<br>R                                       | R R R<br>R R R<br>R R R <sup>83</sup>            | R R R<br>R R R<br>R R R                     | R R R R R R R R R R R R R R R R R R R                                 |                                                                   |
| Amyl acetate Aniline Antimony trichloride Aqua regia Aromatic solvents                                   | R R R<br>R R R                                                          | R R R No data                                                             | RRR                                   | R <sup>11</sup> R R<br>R R R<br>R <sup>11</sup> R R | R R R No data                                    |                                             | R R R R R NDN R R R R R R <sup>11</sup> R R R R                       | D No data R R R R R R R R R R R R R R R R R R                     |
| Beer<br>Benzoic acid<br>Boric acid<br>Brines, saturated<br>Bromine                                       | R R R R R R R R R R R R R                                               | R R R<br>R R R<br>R R R<br>R R R                                          | R R R<br>R R R<br>R R R               | R R ND<br>R <sup>84</sup><br>R <sup>11</sup> R      | R R R<br>R R R<br>R R R<br>R R R <sup>20</sup>   | R R R<br>R R R<br>R R R<br>R R              | R R ND R R R R R R R R R R R R R R R R R                              | R R R<br>R R R                                                    |
| Calcium chloride<br>Carbon disulphide<br>Carbonic acid<br>Carbon tetrachloride<br>Caustic soda & potash  | R R R<br>R R R<br>R R R                                                 | R R R<br>R<br>R R R<br>R R R                                              | R R R<br>R R R                        | R R R R R R R R R R                                 | R R R<br>R R R<br>R R R                          | R R R<br>R R R<br>R R R                     | R R R R R R R R R R R R R R ND R R R R R                              | R <sup>20</sup> R R<br>R<br>R<br>R <sup>11</sup> R R R R<br>R R R |
| Chlorates of Na, K, Ba<br>Chlorine, dry<br>Chlorine, wet<br>Chlorides of Na, K, Mg<br>Chloroacetic acids | R <sup>11</sup> RR<br>RRR<br>RRR                                        | R R R<br>R R R<br>R R R<br>No data                                        | RRR                                   | RRR                                                 | R R R<br>R R R<br>R R R <sup>20</sup><br>No data | R R R<br>R R R<br>R R R<br>No data          | R R R R R R R R R R R R R R R R R R R                                 | R R R R R R R R R R R R R R R R R R R                             |
| Chlorobenzene Chloroform Chlorosulphonic acid Chromic acid (80%) Citric acid                             | R ND ND<br>R <sup>1</sup> R R<br>R R R                                  | R R R<br>R R R<br>R <sup>20</sup> R <sup>20</sup> R <sup>20</sup>         | No data<br>R R R<br>No data           | R R R<br>R R<br>R <sup>11</sup> R R                 | No data<br>R R R<br>R R R                        | R R R<br>R R R                              | R R R R R R No data R R R R R R R R R R R R R R R R R 25              | R 11 R R R R R R R R R R R R R R R R R                            |
| Copper salts (most) Cresylic acids (50%) Cyclohexane Detergents, synthetic Emulsifiers (all conc.)       | R R R<br>R R R<br>R R R                                                 | R R R<br>R R R<br>R R R<br>No data<br>R R R                               | R R R<br>R R R<br>No data             | R R R<br>No data<br>No data                         | R R R<br>R R R<br>R R R<br>R R R                 | R R R<br>R R R<br>R R R<br>R R R<br>No data | R 16 R R R R R R R R R R R R R R R R R R                              | R R R R R R R R R R R R R R R No data R R R R No data No data     |
| Ether Fatty acids (> C <sub>6</sub> ) Ferric chloride Ferrous sulphate Fluorinated refrigerants,         | R <sup>1</sup> R R<br>R R R                                             | R R R<br>R R R<br>R <sup>20</sup> R <sup>20</sup> R <sup>26</sup>         | RRR                                   | RRR                                                 | R R R<br>R R R                                   | R R R<br>R R R                              | R R R R R R R R R R R R R R R R R R R                                 | R R R R R R R R R                                                 |
| aerosols, e.g. Freon Fluorine, dry Fluorine, wet Fluosilicic acid Formaldehyde (40%) Formic acid         | R <sup>11</sup> ND ND<br>R R R<br>R<br>R                                | R R R R III                                                               | R R R R No data                       | R R R No data                                       | R R R<br>R R R<br>R R R<br>R R R                 | R R R<br>R R R<br>R R R<br>R R R            | R R R R R R R R R R R R R R R R R R R                                 |                                                                   |

| METALS                                               |                                                            |                                                              |                                                                                                |                                                                                                                    |                                                       |                                                        |                                                    |                                                                                                       |  |  |
|------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|
| Nickel-Copper<br>Alloys (c)<br>Ni Resist<br>(Hieb Ni | Iron) (c) Platinum                                         | Silver                                                       | Stainless Steel<br>18/8 (f)                                                                    | Molybdenum<br>Stainless<br>Steel 18/8 (f)                                                                          | Austernitic Ferric<br>Stainless Steel (x)<br>Tantalum | Tin (g)                                                | Titanium                                           | Zirconium                                                                                             |  |  |
| 20° 60° 100° 20° 60                                  | 100° 20° 60° 10                                            | 0° 20° 60° 100°                                              | 20° 60° 100°                                                                                   | 20° 60° 100°                                                                                                       | 20° 60° 100° 20° 60° 100°                             | 20° 60° 100°                                           | 20° 60° 100°                                       | 20° 60° 100°                                                                                          |  |  |
| R R R R R R R R R R R R R R R R R R R                | R R R R R R R R R R R R R R R R R R R                      | R R R R R R R R R R R R R R R R R R R                        | R R R R R R R R R R R R R R R R R R R                                                          | R R R R R R R R R R R R R R R R R R R                                                                              | R R R R R R R R R R R R R R R R R R R                 | R R R R R R R R R R R R R R R R R R R                  | R R R R R R R R R R R R R R R R R R R              | R R R R R R R R R R R R R R R R R R R                                                                 |  |  |
| R ND ND                                              | RRR                                                        | RRR                                                          | Rii                                                                                            | R'' R''                                                                                                            | R R R R R R R R                                       |                                                        | R R ND<br>R                                        | No data                                                                                               |  |  |
| R R R R R R R R R R R R R R R R R R R                | R R R R ND R R R R R R R R R                               | R R R<br>R R R<br>R R R<br>R R R<br>R R R                    | R R R<br>R R R<br>R R R<br>R R R                                                               | R R R<br>R R R<br>R R R<br>R R R                                                                                   | R R R R R R R R R R R R R R R R R R R                 | RRR<br>RR<br>RRR<br>RRR                                | RRND<br>RRRR<br>RRR<br>RRR<br>RRR<br>RRR           | R R R R R R R R R R R R R R R R R R R                                                                 |  |  |
| R R R R R R R R R R R R R R R R R                    | R                                                          | R R R<br>R R R<br>R R R<br>R R R                             | R R ND<br>R R R<br>R <sup>11</sup> R R<br>R R R <sup>13</sup>                                  | R R ND<br>R R R<br>R <sup>11</sup> R R<br>R R R <sup>13</sup>                                                      | R R R R R R R R R R R R R R R R R R R                 | R<br>R R<br>R R R<br>R <sup>11</sup> R R               | R R R R R R R R R R R R R R R 19 R 15              | R R R R R R R R R R R R                                                                               |  |  |
| R                                                    | R R R R R R R R R R R R R R R R R R R                      | R R R R R R R R R R R R R R R R R R R                        | R <sup>16</sup> R R<br>R R R<br>R <sup>84</sup><br>R <sup>11</sup> R ND<br>R <sup>11</sup> R R | R <sup>16</sup> R R<br>R R R<br>R <sup>84</sup> R<br>R <sup>11</sup> R R<br>R <sup>11</sup> R R<br>R <sup>84</sup> | R R R R R R R R R R R R R R R R R R R                 | R R  R <sup>57</sup> R R  No data  R <sup>11</sup> R R | R 79 R 79 R 79 R R R R R R R R R R R R R R NO data | R <sup>25</sup> R <sup>25</sup> R <sup>25</sup> R <sup>91</sup> R R R R R R R R R R R R R R R R R R R |  |  |
| R R                                                  | R <sup>30</sup> R R<br>R R R<br>R R R<br>ND R R R<br>R R R | R <sup>30</sup> R R<br>R R R<br>R <sup>30</sup> R R<br>R R R | R <sup>13</sup> R R<br>R <sup>16</sup> R R<br>R R R<br>R R R                                   | R R R <sup>13</sup><br>R <sup>16</sup> R R<br>R R R<br>R R R                                                       | R R R R R R R R R R R R R R R R R R R                 | R R R<br>R <sup>20</sup> R R<br>R<br>R R R             | R R R R R R R R R R ND ND R R R                    | R R R <sup>19</sup><br>R R R<br>R <sup>16</sup> R R<br>R R R<br>R R R                                 |  |  |
| R R R NO C<br>No data No C<br>R R R R R<br>R R .R R  | ta RRR<br>ta RRR                                           | R R R<br>R R R<br>R R R                                      | R R R<br>R R R<br>R R R                                                                        | R R R<br>R R R<br>R R R<br>R R R                                                                                   | R R R R R R R R R R R R R R R R R R R                 | R R R<br>R<br>R R R<br>R R                             | R R ND<br>No data<br>R R ND<br>R R R<br>R R R      | R R R<br>R R R<br>R R R<br>R R R                                                                      |  |  |
| R R R R R R R R R R R R No c                         | R R R R R R R R R R R R R                                  | RRR                                                          | R R R<br>R" R R<br>R ND ND                                                                     | R R R<br>R <sup>11</sup> R R<br>R ND ND<br>R ND ND                                                                 | R R R R R R R R R R R R R R R R R R R                 | RRR                                                    | R R R<br>R R R<br>R <sup>5</sup> R R               | R R R<br>R R R                                                                                        |  |  |
| R R R R R R R R R                                    |                                                            | R R R<br>R R R<br>R R R                                      | R Ř R                                                                                          | R R R<br>R R                                                                                                       | R R R R R R R                                         | R R                                                    | R R R<br>R <sub>69</sub> R R <sub>20</sub>         | R R R<br>R R R                                                                                        |  |  |

|                                                                                                                                                                                                          |                                                                   |                                                                                                                                                     |                                               | ME                                                           | ΓALS                                           |                                                                    |                                                                                            |                                                           |                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|
|                                                                                                                                                                                                          | Aluminium (a)                                                     | Aluminium<br>Bronze                                                                                                                                 | Brass (b)                                     | Cast Iron (c)                                                | Copper                                         | Gunmetal and<br>Bronze (d)                                         | High Si Iron<br>(14% Si) (c)<br>Lead                                                       | Mild Steel<br>BSS 15                                      | Nickel (cast)                                                    |
| Centigrade                                                                                                                                                                                               | 20° 60° 100°                                                      | 20° 60° 100°                                                                                                                                        | 20° 60° 100°                                  | 20° 60° 100°                                                 | 20° 60° 100°                                   | 20° 60° 100°                                                       | 20° 60° 100° 20° 60°                                                                       | 100° 20° 60° 100°                                         | 20° 60° 100°                                                     |
| Fruit juices Gelatine Glycerine Glycols Hexamine                                                                                                                                                         | R R R<br>R R R<br>R R R<br>R R R                                  | R R R<br>R R R<br>R R R<br>R R R                                                                                                                    | R R R<br>R R R<br>R R R                       | R R R<br>R R R<br>R R R                                      | R R R<br>R R R<br>R R R<br>R R R               | R R R<br>R R R<br>R R R<br>R R R                                   | R R R R R R R R R R R R R R R R R R                                                        | No data<br>No data<br>R R                                 | R R R<br>R R R<br>R R R<br>R R R                                 |
| Hydrazine Hydrobromic acid (50%) Hydrochloric acid (10%) Hydrochloric acid (conc.) Hydrocyanic acid                                                                                                      | R NDND                                                            | R<br>R <sup>62</sup><br>R <sup>20</sup> R <sup>20</sup> R <sup>20</sup>                                                                             |                                               | No data<br>ND ND                                             |                                                |                                                                    | No data ND R R R R <sup>4,11</sup>                                                         | RRR                                                       | R NDND R R R R R <sup>20</sup>                                   |
| Hydrofluoric acid (40%)<br>Hydrofluoric acid (75%)<br>Hydrogen peroxide (30%)<br>(30-90%)<br>Hydrogen sulphide<br>Hypochlorites                                                                          | R R R<br>R R R<br>R R R                                           | R <sup>62</sup> R <sup>11</sup> R R                                                                                                                 | R <sup>11</sup> R R                           | R                                                            | R <sup>II</sup> R R                            | R <sup>II</sup> R R                                                | R R R R R R R R R R R R R R R R R R R                                                      | R <sup>11</sup> R R                                       | R<br>R<br>R                                                      |
| Lactic acid (100° <sub>o</sub> ) Lead acetate Lime (CaO) Maleic acid Meat juices                                                                                                                         | R R R<br>R <sup>11</sup> R R<br>R <sup>11</sup><br>R R R<br>R R R | R R<br>No data<br>R R R<br>No data<br>R R R                                                                                                         | R R R<br>No data                              | No data<br>R R R<br>No data                                  | R R R<br>R R R                                 | R <sup>4</sup> R <sup>4</sup><br>R R R<br>No data                  | R R R ND R R R R R R ND No data No d                                                       | R <sup>11</sup> R R<br>No data<br>ata No data             | R R R<br>R R R<br>R R R<br>R R R                                 |
| Mercuric chloride Mercury Milk & its products Moist air Molasses Naphtha Naphthalene Nickel salts Nitrates of Na, K, NH,                                                                                 | R R R R R R R R R R R R R R R R R R R                             | R R R<br>R R R<br>R <sup>30</sup> R <sup>30</sup> R <sup>30</sup><br>R R R<br>No data<br>No data<br>R <sup>73</sup> R <sup>73</sup> R <sup>73</sup> | R <sup>30</sup> R<br>R R R<br>No data         | R R R No data R R R R R R R R R No data R <sup>11</sup> R R  | R R R<br>R <sup>30</sup> R R<br>R R R<br>R R R | R R R<br>R R R<br>R <sup>30</sup> R R<br>R R R<br>No data<br>R R R | R R R R No data R R R R R R R R R R R R R R R R R R                                        | R R R  No data  R  R                                      | R <sup>27</sup> R R<br>R R R<br>R R R<br>R R R<br>R R R<br>R R R |
| Nitric acid (< 25%) Nitric acid (50%) Nitric acid (95%) Oils, essential Oils, mineral Oils, vegetable & animal Oxalic acid Ozone | R R R R R ND ND R R R R R R R R R R R R                           | RRRR<br>RRR<br>RRR<br>RRR                                                                                                                           | R R R<br>R R R<br>R R R<br>No data<br>No data | R R R<br>R R R<br>R R R                                      | RRRR<br>RRR<br>RRR<br>RRR                      | R R R<br>R R R<br>R R R<br>R R R                                   | R R R R R R R R R R R R R R R R R R R                                                      | R R<br>R R                                                | RRRR<br>RRR<br>RRR                                               |
| Paraffin wax Perchloric acid  Phenol Phosphoric acid (25%) Phosphoric acid (50%) Phosphoric acid (95%)                                                                                                   | R R R<br>R R R<br>R                                               | R R R<br>R R R<br>R R R<br>R R R                                                                                                                    | R R R<br>No data<br>R R R                     |                                                              | R R R<br>R R R<br>R R R                        | R R R                                                              | R R ND R R R R R R R R R R R R R R R R R                                                   | R R R <sup>19</sup> No data R R <sup>4</sup>              |                                                                  |
| Phosphorus chlorides Phosphorus pentoxide Phthalic acid Picric acid Pyridine Sea water                                                                                                                   | RII ND ND<br>R R R<br>R ND ND<br>R R R<br>R R R                   | R <sup>11</sup> R <sup>11</sup> R <sup>11</sup> No data R R R  No data R R R                                                                        | No data<br>R <sup>62</sup> R R                | R 11 R<br>R R R<br>R84                                       |                                                |                                                                    | R R R <sup>11</sup> R R<br>R R R R<br>R R R R R<br>R R R R R<br>R R R R R                  | R R <sup>11</sup> R R R <sup>11</sup> R R No data No data | R R R No data R R R R <sup>11</sup> R R R R ND ND                |
| Silicic acid Silicone fluids Silver nitrate Sodium carbonate Sodium peroxide                                                                                                                             | R R R R R R R R R R                                               | R R R R                                                                                                                                             | No data<br>R R R<br>R R R                     | R R R<br>ND ND<br>R <sup>11</sup> R R<br>R <sup>10</sup> R R | R R R<br>R R R                                 | No data<br>R R R<br>R R R                                          | R R ND R R<br>No data<br>R R R<br>R R R<br>R <sup>10</sup> R <sup>10</sup> R <sup>10</sup> | No data<br>No data<br>R R R                               | R R ND<br>R R R<br>R R R                                         |

|                                                      | METALS                                                                                                                         |                                                       |                                                                          |                                                       |                                                        |                                                                                 |                                                                              |  |  |  |  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|
| Nickel-Copper<br>Alloys (e)                          | Ni Resist<br>(High Ni<br>Iron) (c)                                                                                             | Platinum<br>Silver                                    | Stainless Steel<br>18/8 (f)<br>Molybdenum<br>Stainless<br>Steel 18/8 (f) | Austernitic Ferric<br>Stainless Steel (x)<br>Tantalum | Tin (g)                                                | Titanium                                                                        | Zirconium                                                                    |  |  |  |  |
| 20° 60° 100°                                         | 20° 60° 100°                                                                                                                   | 20° 60° 100° 20° 60° 100                              | 20° 60° 100° 20° 60° 100° 20                                             | 0° 60° 100° 20° 60° 100°                              | 20° 60° 100°                                           | 20° 60° 100° 2                                                                  | 20° 60° 100°                                                                 |  |  |  |  |
| R<br>R<br>R R R<br>R R R<br>R                        | R R<br>R R R<br>R R R<br>R R R<br>R ND ND                                                                                      | R R R R R R R R R R R R R R R R R R R                 | R*4 R R R R R R R R R R R R R R R R R R                                  | RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR                | R R R R R R R R R R R ND                               | R° R ND I<br>R R ND I<br>R R ND I<br>No data                                    | R R R<br>R R R<br>R R R<br>R R R<br>R R R<br>R ND ND                         |  |  |  |  |
| R R<br>R<br>R R R<br>R R R<br>R R                    | R<br>R R R                                                                                                                     | R <sup>70</sup> R R R R R R R R R R R R R R R R R R R | R R R R R R                                                              | R R R R R R R R R R R R R R R R R R R                 | R R<br>R R                                             | R R <sup>49</sup> R 1<br>R <sup>78</sup> R <sup>78</sup> ND 1<br>No data        | R R R<br>R <sup>92</sup> R <sup>92</sup> R <sup>92</sup><br>No data<br>R R R |  |  |  |  |
| R <sup>87</sup><br>R R<br>R R<br>R R<br>R R R<br>R R | R R<br>R'<br>R<br>No data<br>R R R<br>R R R                                                                                    | R <sup>87</sup> R R   R R R R R R R R R R R R R R R R | R R R <sup>87</sup> R R R R R'  R R R R R R R R R  R R R R               | R R R R R R R R R R R R R R R R R R R                 | R R<br>R <sup>11</sup> R R<br>R<br>R <sup>20</sup> R R | R R R R R R R R R R ND ND No data                                               | RRRR<br>RRRR<br>RRRR<br>No data<br>RRR<br>RRR                                |  |  |  |  |
| No data  R R R R R R R R R R R R R R R R R R         | R R R ND ND R R R R R R R R R R R R R R R R R R R                                                                              | R                                                     | R R R R R R R R R R R R R R R R R R R                                    | R R R R R R R R R R R R R R R R R R R                 | R R R R R R R R R R R R R R                            | R R R'<br>R R ND<br>No data<br>R R R<br>No data<br>No data<br>R R ND<br>R R 312 | R R R R R R R R R R R R R R R R R R R                                        |  |  |  |  |
| R R R R R R R R                                      |                                                                                                                                | R R R R R R R R R R R R R R R R R R R                 | R R R R R R R R R R R R R R R R R R R                                    | R R R R R R R R R R R R R R R R R R R                 | R R R R ND R R R R R                                   | R R R<br>R R R<br>R R R                                                         | RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR                                       |  |  |  |  |
| R R R<br>R R<br>R R R                                | R R R<br>R R R<br>R R R<br>R R R                                                                                               | R R R R R R R R R R R R R R R R R R R                 | R R R R R R R R R R R R R R R R R R R                                    | R R R R R R R R R R R R R R R R R R R                 | R R R<br>R <sup>20</sup> R R<br>R R ND<br>R R R        | R R ND<br>R <sup>23</sup><br>No data<br>R R R<br>R R ND                         | RRRR<br>RRR<br>No data<br>RRR<br>R <sup>32</sup> RR                          |  |  |  |  |
| R<br>R R<br>R R<br>R                                 | R R R                                                                                                                          | R                                                     | R R R R                                                                  |                                                       | R R                                                    | R R R <sup>49</sup><br>R <sup>49</sup> R R<br>R <sup>49</sup>                   | RRRR<br>RRRR<br>RR<br>No data                                                |  |  |  |  |
| R R R R R R R R R R R R R R R R R R R                | R ND ND<br>ND ND<br>R R R<br>R R R<br>R R R<br>No data<br>ND ND ND<br>R R R<br>R <sup>10</sup> R <sup>10</sup> R <sup>10</sup> | R R R R R R R R R R R R R R R R R R R                 | 1 1                                                                      | No data                                               | R R ND<br>R R R<br>R R R<br>R R R                      | R ND ND No data R R ND R R R No data R R R R R R R R R R R R R R R R R          |                                                                              |  |  |  |  |

|                                                                                                                   | METALS                                                  |                                                                     |                           |                                                          |                                              |                                                |                                                 |                                                     |  |  |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|---------------------------|----------------------------------------------------------|----------------------------------------------|------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|--|--|
|                                                                                                                   | Aluminium (a)                                           | Aluminium<br>Bronze                                                 | Brass (b)                 | Cast Iron (c)                                            | Copper                                       | Gunmetal and<br>Bronze (d)                     | High Si Iron<br>(14% Si) (c)<br>Lead            | Mild Steel<br>BSS 15<br>Nickel (cast)               |  |  |
| Centigrade                                                                                                        | 20° 60° 100′                                            | 20° 60° 100°                                                        | 20° 60° 100°              | 20° 60° 100°                                             | 20° 60° 100°                                 | 20° 60° 100°                                   | 20° 60° 100° 20° 60° 100                        | 0° 20° 60° 100° 20° 60° 100°                        |  |  |
| Sodium silicate<br>Sodium sulphide<br>Stannic chloride<br>Starch<br>Sugar, syrups, jams                           | R R R<br>R R R<br>R R R                                 | R R R R <sup>11</sup> R R R R R                                     | R R R<br>No data<br>R R R | R R R<br>R R R<br>R R R<br>R R ND                        | R R R<br>R R R<br>R R R                      | R R R<br>R R R<br>R R R                        | R R R R R R R R R R R R R R NO data R R No data | R R R R R R R R R R R No data R R R                 |  |  |
| Sulphamic acid<br>Sulphates (Na, K, Mg, Ca)<br>Sulphites<br>Sulphonic acids<br>Sulphur                            | R <sup>50</sup><br>RRRR<br>RRR<br>No data<br>RRR        | No data<br>RRR<br>RRR<br>No data                                    | R R R<br>No data          | R R R<br>R <sup>38</sup> R R<br>R <sup>11</sup><br>R R   | R R R<br>R R R                               | R R R<br>R R R<br>No data                      | R R R R R R R R R R R R R R R R R R R           | No data R R R R R R R No data R R R R R R R         |  |  |
| Sulphur dioxide, dry<br>Sulphur dioxide, wet<br>Sulphur trioxide<br>Sulphuric acid (<50%)<br>Sulphuric acid (70%) | RRR<br>R <sup>4</sup> RR                                | R R R<br>R R R<br>R <sup>11</sup> R R<br>R R R<br>R R <sup>62</sup> | R R R                     | R R<br>R                                                 | R R R<br>R <sup>II</sup> R R<br>R R R        | R R R                                          | R R R R R R R R R R R R R R R R R R R           | R R R R R R R R R R R R R R R R R R R               |  |  |
| Sulphuric acid (95%) Sulphuric acid, furning Sulphur chlorides Tallow Tannic acid (10%)                           | R <sup>4</sup><br>R R R<br>R R R                        | R <sup>62</sup> RRR RRR                                             | No data<br>R R R          | R R<br>R R R<br>R <sup>11</sup> R <sup>11</sup><br>R R R | R R R<br>R R R                               | No data<br>R R R                               | R R R R R R R R R R R R R R R R R R R           | R R R No data No data R ND ND                       |  |  |
| Tartaric acid Trichlorethylene Vinegar Water, distilled Water, soft                                               | R R R<br>R R R<br>R R R<br>R R R<br>R <sup>43</sup> R R | R R R<br>R R R<br>R R R<br>R <sup>53</sup> R<br>R R R               | R R R<br>R R R            | R R<br>R R R<br>R                                        | R R R<br>R R R<br>R <sup>53</sup> R<br>R R R | R R R<br>R R R<br>R <sup>53</sup> R R<br>R R R | R R R R R R R R R R R R R R R R R R R           | R <sup>11</sup> R R R R R R R R R R R R R R R R R R |  |  |
| Water, hard<br>Yeast /<br>Zinc chloride                                                                           | R <sup>43</sup> R R<br>R R R                            | R R R<br>No data<br>R R R                                           | R R R<br>No data          | R R<br>R R                                               | R R R<br>R R R                               | R R R<br>R R R                                 | R R R R No data                                 | R R R R R R R R R R R R R R R                       |  |  |

|                                      | METALS                 |                            |                  |                                                     |                          |                                                  |                                      |                                   |                                                                                             |                                     |                                          |                       |                                                 |                                 |                                   |                                       |                                           |                            |                            |                                       |                             |                                 |                                                          |                                                                                             |                                                        |                       |                  |                       |                                       |                                                      |                                |                       |                       |
|--------------------------------------|------------------------|----------------------------|------------------|-----------------------------------------------------|--------------------------|--------------------------------------------------|--------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------|-----------------------|-------------------------------------------------|---------------------------------|-----------------------------------|---------------------------------------|-------------------------------------------|----------------------------|----------------------------|---------------------------------------|-----------------------------|---------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------|------------------|-----------------------|---------------------------------------|------------------------------------------------------|--------------------------------|-----------------------|-----------------------|
|                                      | Minted Course          | Nickel-Copper              | Anoys (c)        |                                                     | Ni Resist                | Iron) (c)                                        |                                      | Platinum                          |                                                                                             |                                     | Silver                                   |                       |                                                 | Stainless Steel                 | 18/8 (t)                          |                                       | Molybdenum<br>Stainless                   | Steel 18/8 (f)             |                            | Austernitic Ferric                    | Stainless Steel (x)         |                                 | Tantalum                                                 |                                                                                             |                                                        | Tin (g)               | i                |                       | Titanium                              |                                                      |                                | Zirconium             |                       |
| 20                                   | ° 6                    | 60°                        | 100°             | 20                                                  | · 60                     | ° 100°                                           | 20°                                  | 60°                               | 100°                                                                                        | 20°                                 | 60°                                      | 100°                  | 20°                                             | 60°                             | 100°                              | 20°                                   | 60°                                       | 100°                       | 20                         | 60°                                   | 100°                        | 20°                             | 60°                                                      | 100°                                                                                        | 20°                                                    | 60°                   | 100°             | 20°                   | 60°                                   | 100°                                                 | 20°                            | 60°                   | 100°                  |
| R<br>R<br>R<br>R<br>R<br>R<br>R<br>R | No<br>1                | R<br>R<br>R<br>R<br>R<br>R | R<br>R<br>R<br>R | R<br>R<br>R<br>R<br>R <sup>2</sup><br>R R<br>R<br>R | R<br>R<br>No C<br>R<br>R | R<br>R<br>R<br>R<br>R<br>Iata<br>R<br>ND<br>D ND | RRRR RRRR RRRRR R                    | R R R R R R R R R R R R R R R R R | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R | R<br>R <sup>48</sup><br>R<br>R<br>R | R<br>R<br>R<br>R<br>R<br>R               | R<br>R<br>R<br>R<br>R | R R R 844 R N R R R R R R R R R R R R R R R R R | R<br>R<br>R<br>R<br>R<br>R<br>R | R<br>R<br>R<br>R<br>R<br>ata<br>R | R R R R R R R R R R R R R R R R R R R | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R | R<br>R<br>R                | RR RRR RRR RRR RRR RR      | R R R R R R R R R R R R R R R R R R R | R ata R R R R R R R R Ata R | R R R R R R R R R R R R R R R   | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R | R<br>R<br>R<br>R<br>R                                  | R<br>R<br>R<br>R<br>R | R<br>R<br>R<br>R | R<br>R                | R ND R15 R lo da R ND lo da R R R R R | R <sup>15</sup><br>ND<br>ita<br>R<br>R <sub>34</sub> | R<br>R<br>R <sup>11</sup><br>R | R R R R R R R R R     | R<br>R                |
| R<br>R<br>R                          | 1                      | R<br>R<br>R                | R<br>R           | R<br>R                                              | R<br>R                   | R<br>R                                           | R<br>R<br>R                          | R<br>R<br>R                       | R<br>R<br>R                                                                                 | R<br>R                              | R<br>R                                   | R<br>R                | R<br>R<br>R                                     | R <sup>80</sup><br>R<br>R       | R<br>R                            | R <sup>86</sup><br>R<br>R             | R<br>R<br>R                               | R<br>R                     | R<br>R                     | R<br>Nod<br>R<br>R                    | ata<br>R<br>R               | R<br>R<br>R                     | R<br>R<br>R                                              | R<br>R<br>R                                                                                 | R<br>R                                                 | R<br>R                |                  | R<br>R                | ioda<br>R<br>R                        | ta<br>R<br>R                                         | R<br>R                         | R<br>R                | R<br>R                |
| R<br>R<br>R<br>R                     | i<br>i<br>i<br>i<br>No | R<br>R<br>R<br>R<br>R<br>R | R<br>R<br>R<br>R | R<br>R<br>R<br>R<br>R<br>R<br>R                     | R<br>R<br>R<br>R<br>R    | R<br>R<br>R<br>R<br>R                            | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R | R<br>R<br>R<br>R<br>R<br>R<br>R   | R<br>R<br>R<br>R<br>R                                                                       | R<br>R<br>R<br>R<br>R<br>R          | R <sup>70</sup><br>R<br>R<br>R<br>R<br>R |                       | R<br>R <sup>11</sup><br>R<br>R<br>R             | R<br>R<br>R<br>R<br>R           | R<br>R<br>R<br>R<br>R             | R<br>R<br>R<br>R<br>84<br>R           | R<br>R<br>R<br>R                          | R<br>R<br>R<br>R<br>R<br>R | R<br>R<br>R<br>R<br>R<br>R | R<br>R<br>R<br>R<br>R                 | R<br>R<br>R<br>R<br>R       | R<br>R<br>R<br>R<br>R<br>R<br>R | R<br>R<br>R<br>R<br>R                                    | R<br>R<br>R<br>R<br>R<br>R                                                                  | R <sup>20</sup><br>R <sup>11</sup><br>R<br>R<br>R<br>R | R<br>R<br>R           | R<br>R<br>R<br>R | R<br>R<br>R<br>R<br>R | R<br>R<br>R<br>R<br>R                 | R <sup>19</sup><br>R<br>R<br>R<br>R<br>R             | R<br>R<br>R<br>R<br>R          | R<br>R<br>R<br>R<br>R | R<br>R<br>R<br>R<br>R |

| THERMOPLASTIC RESINS                                                                                     |                                                             |                                                     |                                                            |                                                                              |                                                                                         |                                                                                    |                                                                                                                            |                                              |                                                     |  |  |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|--|--|
|                                                                                                          | Acrylic Sheet<br>(e.g. Perspex)                             | Acrylonitrile<br>Butadiene<br>Styrene<br>Resins (1) | Nylon 66<br>Fibre (m)                                      | Nylon 66<br>Plastics (m)                                                     | PCTFE                                                                                   | PTFE (n)                                                                           | PVDF (y)                                                                                                                   | Rigid<br>Unplasticised<br>PVC                | Plasticised<br>PVC                                  |  |  |
| Centigrade                                                                                               | 20° 60° 100°                                                | 20° 60° 100°                                        | 20° 60° 100°                                               | 20° 60° 100°                                                                 | 20° 60° 100°                                                                            | 20° 60° 100°                                                                       | 20° 60° 100°                                                                                                               | 20° 60° 100°                                 | 20° 60° 100°                                        |  |  |
| Acetaldehyde Acetic acid (10%) Acetic acid (glac. & anh.) Acetic anhydride Acetone Other ketones         | R R <sup>50</sup>                                           | R                                                   | R ND ND R R R R R R                                        | R R <sup>50</sup> ND<br>R <sup>50</sup><br>No data<br>R R<br>R ND ND         | R R ND<br>R R R<br>R R R <sup>50</sup><br>R R<br>R R <sup>37</sup><br>R R <sup>37</sup> |                                                                                    | R R R<br>R R R<br>R R<br>R ND ND<br>R <sup>106</sup> ND ND                                                                 | R <sup>6</sup><br>R R<br>R <sup>50</sup>     | R                                                   |  |  |
| Acetylene Acid fumes Alcohols (most fatty) Aliphatic esters Alkyl chlorides                              | No data<br>R R <sup>68</sup><br>No data                     | No data                                             | No data RRRR RRR                                           | No data R R <sup>50</sup> R <sup>50</sup> R ND R <sup>46</sup> ND ND         | No data<br>R R R<br>R R R<br>R R R<br>R ND ND                                           | R R R<br>R R R<br>R R R<br>R <sup>50</sup> R R<br>No data                          | R ND ND<br>R R R<br>R R R<br>R R R<br>R R R                                                                                | R R<br>R R<br>R <sup>33</sup>                | No data<br>No data<br>No data<br>No data<br>No data |  |  |
| Alum Aluminium chloride Ammonia, anhydrous Ammonia, aqueous Ammonium chloride                            | R R<br>R R <sup>68</sup><br>R R <sup>4</sup><br>R R         | R R<br>R R<br>R<br>R                                | R R R<br>R <sup>43</sup> R R<br>No data<br>R R ND<br>R R R | R R R<br>R ND ND<br>R ND ND<br>R ND ND<br>R ND ND                            | R R R<br>R R R<br>R R R<br>R R R                                                        | R R R<br>R <sup>50</sup> R R<br>R R R<br>R R R<br>R <sup>50</sup> R R              | R R R<br>R R R<br>R <sup>107</sup> R <sup>107</sup> R <sup>107</sup><br>R <sup>107</sup> R <sup>107</sup> R <sup>107</sup> | R R<br>R R<br>R R<br>R R                     | R R<br>R R<br>No data<br>R R                        |  |  |
| Amyl acetate Aniline Antimony trichloride Aqua regia Aromatic solvents                                   | R <sup>68</sup> R                                           | R R                                                 |                                                            | R ND ND<br>R <sup>50</sup> ND ND<br>R R <sup>50</sup> R                      | R R R ND No data R R R R                                                                | RRRR<br>RRR<br>No data<br>RRR                                                      | R R R<br>R R<br>R R R                                                                                                      | R R<br>R R <sup>13</sup>                     | R R<br>No data<br>No data                           |  |  |
| Beer<br>Benzoic acid<br>Boric acid<br>Brines, saturated<br>Bromine                                       | R R<br>R ND<br>R R <sup>68</sup><br>R R                     | R R<br>R R<br>R R                                   | R R R<br>No data<br>R <sup>43</sup> R R<br>R R R           | R R R<br>R <sup>50</sup><br>R R R<br>R R R                                   | R R R<br>R R ND<br>R R R<br>R R R                                                       | R R R R R R R R R R R R R R R R R R R                                              | R R R<br>R R R<br>R R R<br>R R R                                                                                           | R ND<br>R R <sup>80</sup><br>R R<br>R R      | R<br>ND<br>R<br>R R                                 |  |  |
| Calcium chloride Carbon disulphide Carbonic acid Carbon tetrachloride Caustic soda & potash              | R R<br>R R<br>R R                                           | R R<br>R R<br>R R                                   | R R <sup>43</sup> R<br>R R ND<br>No data<br>R R R<br>R R R | R <sup>50</sup> ND ND<br>R <sup>50</sup> ND ND<br>R R ND<br>R ND ND<br>R R R | R R R<br>R R ND<br>R R R<br>R                                                           | R R R<br>R R R<br>R R R<br>R R R<br>R R R                                          | R R R<br>R R ND<br>R R R<br>R R R<br>R <sup>107</sup> R <sup>107</sup> R <sup>107</sup>                                    | R R<br>R R<br>R <sup>14</sup><br>R R         | R R<br>R R<br>No data                               |  |  |
| Chlorates of Na, K, Ba<br>Chlorine, dry<br>Chlorine, wet<br>Chlorides of Na, K, Mg<br>Chloroacetic acids | R R <sup>68</sup><br>ND<br>R <sup>4</sup><br>R R<br>No data | R R<br>R R<br>R R                                   | RRR                                                        | R R ND                                                                       | R R R<br>R R R<br>R R R<br>R R R                                                        | R R R R R R R R R R R R R R R R R R R                                              | RRRR<br>RRRR<br>RRRR<br>RRRNDND                                                                                            | R R<br>R<br>R R                              | No data<br>No data<br>No data<br>R R<br>No data     |  |  |
| Chlorobenzene Chloroform Chlorosulphonic acid Chromic acid (80%) Citric acid                             | R R                                                         | R<br>R R                                            | R R R<br>R R R<br>R R <sup>43</sup> R                      | R ND ND                                                                      | R<br>R<br>R R ND<br>R R R<br>R R R                                                      | R <sup>14</sup> R R<br>R <sup>14</sup> R R<br>R R R<br>R R R<br>R R R              | RRR<br>RRR<br>No data<br>RRR                                                                                               | ND<br>R <sup>19</sup> R <sup>19</sup><br>R R | R                                                   |  |  |
| Copper salts (most) Cresylic acids (50%) Cyclohexane Detergents, synthetic Emulsifiers (all conc.)       | R <sup>68</sup> R<br>R R<br>R R                             | R R R No data                                       | R R R R R R R R R R R R R                                  | R R R<br>R ND ND<br>R R R<br>R R R                                           | R R R<br>R R ND<br>R R R<br>R R R                                                       | R R R<br>R R R<br>R R R<br>R R R                                                   | R R R<br>R R R<br>R R R<br>R R R                                                                                           | R R<br>R R                                   | R R<br>No data<br>R<br>R R                          |  |  |
| Ether Fatty acids ( > C <sub>6</sub> ) Ferric chloride Ferrous sulphate Fluorinated refrigerants,        | R ND<br>R R<br>R R                                          | R R<br>R R<br>R R                                   | R R R<br>R R ND<br>R R <sup>43</sup><br>R R R              | R ND ND<br>R ND ND<br>R <sup>30,50</sup><br>R R R                            | R R R<br>R R R<br>R R R                                                                 | R R R<br>R R R<br>R <sup>50</sup> R R<br>R R R                                     | R R R<br>R R R<br>R R R<br>R R R                                                                                           | R R<br>R R<br>R R                            | No data<br>No data<br>R R<br>R R                    |  |  |
| aerosols, e.g. Freon Fluorine, dry Fluorine, wet Fluosilicic acid Formaldehyde (40%) Formic acid         | No data No data No data No data No data R ND R 10           | R R<br>R <sup>32</sup> R <sup>10</sup>              | No data                                                    | R ND ND                                                                      | R<br>R R<br>R R<br>No data<br>R R ND                                                    | R <sup>14</sup> R R<br>R <sup>48</sup> R R<br>No data<br>No data<br>R R R<br>R R R | R R R<br>R R R<br>R R R<br>R R R<br>R R R                                                                                  | R R R R R <sup>15</sup> R R R <sup>30</sup>  | No data<br>R<br>No data                             |  |  |

|                                                   | THEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RMOPL.                                                   |                                          |                                                 | THE                                               | RMOSET<br>RESINS                                                                                                                                  |                                          |                                                                                                   |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------|
| Polyethylene<br>Low Density                       | Polyethylene<br>High Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Polycarbonate<br>Resins                                  | Polypropylene                            | Polystyrene Melamine Resins (o)                 | Furanc<br>Resin                                   | Epoxy<br>Resins (p)                                                                                                                               | Phenol Form-<br>aldehyde<br>Resins (r)   | Polyester<br>Resins                                                                               |
| 20° 60° 100°                                      | 20° 60° 100°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20° 60° 100°                                             | 20° 60° 100° 20° 6                       | 0° 100° 20° 60° 100°                            | 20° 60° 100°                                      | 20° 60° 100°                                                                                                                                      | 20° 60° 100°                             | 20° 60° 100°                                                                                      |
| R <sup>27</sup><br>R R<br>R <sup>27</sup><br>ND   | R R <sup>80</sup> R <sup>56</sup> R R <sup>56</sup> R <sup>50</sup> .56 R R <sup>50</sup> R R <sup>50</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R R ND<br>No data                                        | R R ND R<br>R R<br>R R NO                | data  R <sup>4</sup> ND ND  No data  R  R  R  R | No data<br>R R R<br>R R R<br>R R ND<br>R R ND     | R R<br>R ND<br>R <sup>30</sup> ND<br>R <sup>68</sup> ND                                                                                           | R ND ND<br>R R R<br>R R<br>R ND ND<br>R  | No data<br>R R <sup>23</sup><br>R <sup>30</sup>                                                   |
| No data No data No data R <sup>27</sup> No data   | R R R R R R R R R R R R R R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R ND ND<br>No data<br>R <sup>46</sup> ND ND<br>ND<br>R   | No data No                               | data R R R                                      | No data RRRR RRR RRRR                             | R <sub>30</sub> ND No data R <sup>2</sup> R <sup>30</sup> R <sup>50</sup> R <sup>30,71</sup> R <sup>50</sup> R <sup>30,71</sup> R <sup>30</sup> R | No data<br>RRRR<br>RRR<br>RRR<br>No data | No data<br>No data<br>R R<br>No data<br>No data                                                   |
| R R<br>R R<br>R R<br>R R                          | R R R R R R R R R R R R R R R R R R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R ND ND ND ND ND ND ND ND                                | R R R R F                                | R<br>ND ND<br>R<br>R<br>R<br>R                  | R R R ND ND ND ND ND ND R R R R R R               | R R R R No data R ND R ND R ND R <sup>30</sup> ND R <sup>30</sup> ND                                                                              | RRRR RRR No data RRR RR                  | R R <sup>30</sup> R <sup>65</sup><br>R R <sup>30</sup><br>R <sup>30</sup><br>R <sup>30</sup><br>R |
| R R                                               | R R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R' ND ND                                                 | R <sup>56</sup>                          | data ND ND                                      | No data                                           | R <sup>68</sup> ND                                                                                                                                | R ND ND                                  |                                                                                                   |
| No data R R R R R R R R                           | R R R R R R R R R R R R R R R R R R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R ND ND<br>R<br>R ND ND<br>R R ND                        | R R ND R F<br>R R ND R<br>R R R<br>R R R | R<br>R R ND                                     | R R R No data R R R R R R R                       | R R <sup>4.30</sup> R R R R R R                                                                                                                   | R R R<br>R R R<br>R R R<br>R R R         | R R R<br>R <sup>30</sup> R<br>R R <sup>30</sup> R <sup>65</sup><br>R R R <sup>65</sup>            |
| R R<br>R R                                        | R R R R R R R R R R R R R R R R R R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R R R<br>R ND ND                                         | R R R R R R R R R R R R R R R R R        | R<br>R R R<br>R R                               | R R R<br>R ND ND<br>No data<br>R R ND<br>R R R    | R R<br>No data<br>R <sup>30</sup> R <sup>30</sup>                                                                                                 | R R R<br>R R<br>R R R<br>R R ND          | R R <sup>30</sup> R R R <sup>30</sup> R <sup>13</sup>                                             |
| R R                                               | R R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R <sup>7</sup><br>ND                                     | 1                                        | data ND ND<br>No data                           | No data                                           | R R<br>R R <sup>4,30</sup>                                                                                                                        | R ND ND                                  | R R <sup>30</sup> R <sup>65</sup><br>R R <sup>30</sup>                                            |
| R R<br>No data                                    | R R R Lader of the state of the | R ND ND<br>ND                                            | R R R R R R R R R NO                     | R R R R R R R R R                               | R R R<br>R ND ND<br>R R R<br>R R ND               | R R<br>R <sup>44</sup> ND<br>R <sup>30</sup> ND<br>R <sup>30</sup> ND                                                                             | R R R<br>No data<br>R ND ND<br>R R R     | R R <sup>30</sup><br>R R <sup>30</sup> R <sup>65</sup><br>R <sup>30</sup>                         |
| R R<br>R R<br>R R                                 | R Source R Source R Source R R R R Source R R R R R R R R R R R R R R R R R R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND<br>ND<br>R R<br>R R                                   | R ND ND R R R ND R                       | data No data  R ND ND  No data                  | R R R                                             | No data  R R <sup>4,30</sup> R R                                                                                                                  | R R R<br>R R R                           | R <sup>10</sup><br>R R R <sup>30</sup><br>R R <sup>30</sup>                                       |
| No data<br>R <sup>56</sup> R<br>R <sup>56</sup> R | R <sup>50</sup> R <sup>50</sup> R<br>R <sup>56</sup> R<br>R <sup>56</sup> R Q. O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R<br>R** R**<br>ND                                       | RRRRR                                    | data R R R R data R R R R R R R R R R           | No data R R ND R R R R R R R ND ND                | R <sup>68</sup> R <sup>68</sup><br>R R<br>R R                                                                                                     | R R<br>R R R<br>R ND ND<br>R R R<br>R    | No data<br>R <sup>62</sup> R <sup>62</sup><br>No data                                             |
| No data<br>R R<br>R R                             | R <sup>56</sup> R R R R R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND<br>R R<br>R ND                                        | R R ND R R<br>R R R R<br>R R R R         | R R<br>No data                                  | R R R<br>R ND ND<br>R ND ND<br>R ND ND<br>R ND ND | R R<br>R R<br>R R                                                                                                                                 | R R R<br>R R R<br>R R R                  | R R <sup>30</sup> R R <sup>30</sup> R <sup>65</sup> R R <sup>30</sup> R <sup>65</sup>             |
| R <sup>3</sup> R <sup>3</sup><br>R R<br>R R       | R <sup>6</sup> R<br>R <sup>56</sup> R<br>R <sup>56</sup> R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND<br>ND<br>ND<br>R R<br>R <sup>32</sup> R <sup>32</sup> |                                          | No data No data R R                             | No data<br>No data<br>R R ND<br>R R ND            | R <sup>30</sup> R<br>R <sup>30</sup> R <sup>4,30</sup><br>R <sup>4,30</sup><br>R <sup>4,30</sup>                                                  | R ND ND R R R R                          | No data No data No data R <sup>15</sup> R <sup>30</sup> R R <sup>15</sup>                         |

|                                                                                                                                                                                                                                                                                                                                                                                                            | THERMOPLASTIC<br>RESINS                                                                          |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                              |                                                             |                                                                         |                                                               |                                                                           |                                                                                             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                            | Acrylic Sheet<br>(c.g. Perspex)                                                                  | Acrylonitric<br>Butadiene<br>Styrene<br>Resins (1)                    | Nylon 66<br>Fibre (m)                                                                                                                                                                                                                                                                                                                                                                         | Nylon 66<br>Plastics (m)                                                                                                                                     | PCTFE                                                       | PTFE (n)                                                                | PVDF (y)                                                      | Rigid<br>Unplasticised<br>PVC                                             | Plasticised<br>PVC                                                                          |  |
| Centigrade                                                                                                                                                                                                                                                                                                                                                                                                 | 20° 60° 100°                                                                                     | 20° 60° 100°                                                          | 20° 60° 100°                                                                                                                                                                                                                                                                                                                                                                                  | 20° 60° 100°                                                                                                                                                 | 20° 60° 100°                                                | 20° 60° 100°                                                            | 20° 60° 100°                                                  | 20° 60° 100°                                                              | 20° 60° 100°                                                                                |  |
| Fruit juices Gelatine Glycerine Glycols Hexamine Hydrazine Hydrobromic acid (50%) Hydrochloric acid (10%) Hydrochloric acid (60%) Hydrochloric acid (40%) Hydrofluoric acid (40%) Hydrofluoric acid (75%) Hydrofluoric acid (75%) Hydrogen peroxide (30%) Hydrogen sulphide Hypochlorites Lactic acid (100%) Lead acetate Lime (CaO) Maleic acid Meat juices Mercuric chloride Mercury Milk & its products | R <sup>66</sup> R R R R R NO No data R R R R R R R R R R R R R R R R R R                         | R R R R R R R R R R R R R R R R R R R                                 | R R ND R R ND R R R R R R R No data  R R R R R No data  R 13 R R R R R No data  R43 R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R | R R R R R R R R R R R S <sup>50</sup> ND R <sup>50</sup> R <sup>50</sup> ND No data No data  R ND ND R R ND R ND ND R R ND R R R R <sup>50</sup> R R R R R R | R R R R R R R R R R R R R R R R R R R                       | RRRR RRRR RRRRR RRRRR RRRRR RRRRR RRRRR RRRR                            | R R R R R R R R R R R R R R R R R R R                         | R R R R R R R R R R R R R R R R R R R                                     | No data R No data No data R R R R R NO No data R R R R R NO No data R R No data R R No data |  |
| Moist air Molasses Naphtha Naphthalene Nickel salts Nitrates of Na, K, NH, Nitric acid (< 25 %) Nitric acid (50 %)                                                                                                                                                                                                                                                                                         | R R<br>R R<br>R4<br>R R<br>R R                                                                   | R R<br>R<br>R<br>R R                                                  | R R R<br>R R ND<br>R R R<br>No data<br>R <sup>43</sup> R <sup>31</sup> R<br>No data                                                                                                                                                                                                                                                                                                           | R R R<br>R R R<br>No data<br>R ND ND<br>No data<br>R R ND                                                                                                    | R R R R R R R R R R R R R R R R R R R                       | R R R R R R R R R R R R R R R R R R R                                   | R R R R R R R R R R R R R R R R R R R                         | R R R R R R R R R R R R R R R R R R R                                     | No data R R No data R R R R R R R ND R ND                                                   |  |
| Nitric acid (95%) Nitric acid, fuming Oils, essential Oils, mineral Oils, vegetable & animal Oxalic acid Ozone Paraffin wax Perchloric acid                                                                                                                                                                                                                                                                | R <sup>62</sup> R <sup>62</sup><br>R R<br>R<br>R R<br>R ND<br>R R<br>No data                     | R R<br>R R<br>R R<br>R<br>No data                                     | R R R<br>R R R<br>R R R<br>R ND ND<br>No data<br>R R R                                                                                                                                                                                                                                                                                                                                        | R R R<br>R R R<br>R R R<br>R <sup>50</sup> ND ND<br>R <sup>50</sup> ND ND<br>R R R                                                                           | RRRND No data RRRND RRRND RRRRRRRRRRRRRRRRRRRRRRRRRR        | R R R R R R R R R R R R R R R R R R R                                   | R ND ND<br>R R R<br>R R R<br>R R R<br>R R R<br>R R R<br>R R R | R <sup>66</sup> R<br>R <sup>62</sup> R<br>R R<br>R R<br>R R<br>R R<br>R R | No data<br>No data<br>No data<br>R<br>R<br>No data<br>ND                                    |  |
| Phenol Phosphoric acid (25%) Phosphoric acid (50%) Phosphoric acid (95%) Phosphorus chlorides                                                                                                                                                                                                                                                                                                              | R R<br>R<br>No data                                                                              | R<br>R<br>R<br>No data                                                | No data                                                                                                                                                                                                                                                                                                                                                                                       | No data                                                                                                                                                      | R R<br>R R R<br>R R R<br>R R R<br>R ND ND                   | R R R R R R R R R R R R                                                 | R R R<br>R R R<br>R R R<br>R R R<br>R R R                     | R<br>R R<br>R R<br>R <sup>55</sup> R                                      | ND<br>R R<br>No data<br>No data<br>No data                                                  |  |
| Phosphorus pentoxide Phthalic acid Pyridine Sea water Silicic acid Silicic acid Silicon fluids Silver nitrate Sodium carbonate Sodium peroxide                                                                                                                                                                                                                                                             | R <sup>68</sup> R No data R <sup>68</sup> No data R R No data R <sup>4</sup> R R R R R R R R R R | No data No data No data R R R R No data R R <sup>64</sup> R R R R R R | No data No data R R R R R R R R ND ND R R R R R R R                                                                                                                                                                                                                                                                                                                                           | R R ND R R ND ND ND R R R ND ND ND ND ND ND ND ND                                                                            | No data R R ND No data R R ND R R R R R R R R R R R R R R R | No data R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R | R R R R R R R R R R R R R R R R R R R                         | R R <sup>68</sup> R R R <sup>10</sup> R ND R R No data R R R R            | R ND  R 105 ND  No data  R R  No data  No data  No data  R NO data  R ND  R R               |  |

|                                                                                                           | THEI                                                    | RMOPLA<br>RESINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |                                                                                               | THE                                                                                                                                                                                                                                                              | RMOSET                                                                                                                                                                                                |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Polyethylene<br>Low Density                                                                               | Polyethylene<br>High Density                            | Polycarbonate<br>Resins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Polypropylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Polystyrene                                                                                                                                                          | Melamine<br>Resins (o)                                                                        | Furanc<br>Resin                                                                                                                                                                                                                                                  | Epoxy<br>Resins (p)                                                                                                                                                                                   | Phenol Form-<br>aldehyde<br>Resins (r)                                                                                                                                               | Polyester<br>Resins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20° 60° 100°                                                                                              | 20° 60° 100°                                            | 20° 60° 100°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20° 60° 100°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20° 60° 100°                                                                                                                                                         | 20° 60° 100°                                                                                  | 20° 60° 100°                                                                                                                                                                                                                                                     | 20° 60° 100°                                                                                                                                                                                          | 20° 60° 100°                                                                                                                                                                         | 20° 60° 100°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| R R<br>R R<br>R R                                                                                         | R R R R R R R R R R R R R R R R R R R                   | NA Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R R ND R R R <sup>10</sup> R R ND R R R <sup>10</sup> R R ND No data R <sup>13</sup> ND ND R <sup>36</sup> R <sup>27</sup> R R R ND R ND ND R R R R R ND R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R | R 13 No data R R R R No data No data No data No data R R No data R R No data R R No data R R R R R R R R R R R R R R R R R R | R R R R R R R NO data  R No data  R No data  R No data  R R R R R R R R R R R R R R R R R R R | No data R R R R R R ND ND ND No data R ND ND R R R No data R R ND No data R R ND No data R R R R R R R R R R R R R R R R R R R R R R R R No data R ND ND R R R R R R R R R No data R ND ND R R R R R R R R No data R ND ND R R R R R R R R R R R R R R R R R R R | R R4.30<br>R R<br>R R R<br>R R R<br>R R4.30<br>R R4.30<br>R4.30<br>No data<br>No data<br>No data<br>No data<br>R50 ND ND<br>R4.30 ND ND<br>R4.30 R R<br>R R R<br>R R R<br>R R R<br>R R R<br>R R R R R | R R R No data R R R R R R R R R R R NO ND R NO ND ND NO data R R ND ND No data R R R R R R R R R R R R R R R R R R R | R R R <sup>65</sup> No data R R R <sup>65</sup> R ND ND No data No data No data No data R <sup>10</sup> R R <sup>65</sup> R ND R <sup>10</sup> R R <sup>65</sup> R ND R R <sup>13</sup> R R <sup>30</sup> R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R |
| R 50 R R R R ND ND R 10 R 10 R R R R R R R R R R No data R 13 No data R R R R R R R R R R R R R R R R R R | R50 R R62 R R62 R R R66 R R R R66 R R R R R R R R R R R | NAN A CACA NAN A CACA NAN A CACA CACA NAN A CACA CACA NAN A CACA C | R R R SO R SO R SO R SO R R R R ND R R R ND R R R ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R R R R R R R R No data No data No data No data No data No data R R R R R R R R R R                                                                                  | R R R R R R R No data R R R ND ND ND ND R R R R R R R R R R R                                 | No data R R R No data R ND ND No data R R R No data                                                                                              | R R R R R R R R R P NO Modata R R R <sup>44,30</sup> R <sup>44,30</sup> R <sup>4,30</sup> No data R <sup>10</sup> R ND R R R ND R R R R R R R                                                         | R R R R R R R ND ND No data R R R R R R R R R R ND                                                                                               | No data R R R No data R R R No data R R R R R R R R R R R R R R R R R R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|                                                                                                                                                                                                                                                                      | THERMOPLASTIC<br>RESINS                                                                   |                                                               |                                         |                                                                                       |                                             |                                       |                                                     |                                                            |                                                                                                          |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|-----------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                      | Acrylic Sheet<br>(e.g. Perspex)                                                           | Acrylonitrile<br>Butadiene<br>Styrene<br>Resins (1)           | Nylon 66<br>Fibre (m)                   | Nylon 66<br>Plastics (m)                                                              | PCTFE                                       | PTFE (n)                              | PVDF (y)                                            | Rigid<br>Unplasticised<br>PVC                              | Plasticised<br>PVC                                                                                       |  |  |
| Centigrade                                                                                                                                                                                                                                                           | 20° 60° 100°                                                                              | 20° 60° 100°                                                  | 20° 60° 100°                            | 20° 60° 100°                                                                          | 20° 60° 100°                                | 20° 60° 100°                          | 20° 60° 100°                                        | 20° 60° 100°                                               | 20° 60° 100°                                                                                             |  |  |
| Sodium silicate Sodium sulphide Stanch Starch Sugar, syrups, jams Sulphamic acid Sulphates (Na, K, Mg, Ca) Sulphites Sulphonic acids Sulphur Sulphur dioxide, dry Sulphur dioxide, wet Sulphur tioxide Sulphur tioxide Sulphuric acid (< 50%) Sulphuric acid (< 50%) | R R R R R R R R R R R R R R No data R R R R R No data R R R R R R R R R R R R R R R R R R | R R R R R No data R R No data R R No data R R R R R R R R R R | R R R R R R R R R R R R R R R R R R R   | R R R R ND ND R** ND ND R R R R R No data R R R No data R ND ND R ND ND R ND ND R**   | R R R R R R R R R R R R R R R R R R R       | R R R R R R R R R R R R R R R R R R R | R R R R R R R R R R R R R R R R R R R               | R R R R R R R R R R R R R R R R R R R                      | R R R R R R R R No data No data No data No data No data No data R R ND No data R ND No data R ND No data |  |  |
| Sulphuric acid (95 %) Sulphuric acid, fuming Sulphur chlorides Tallow Tannic acid (10 %) Tartaric acid Trichlorethylene Vinegar Water, distilled Water, soft Water, hard Yeast Zinc chloride                                                                         | No data R <sup>68</sup> R ND R R R R R R R R R R R R R R R R R R                          | No data R R No data R R R R R R R R R R                       | R R R R ND ND R R R R R R R R R R R R R | No data R ND ND R ND ND R R50 ND R R 850 ND R R 850 R R R50 R R R50 R R R50 R R R50 R | R R R R R R R R R R R R R ND R R ND R R R R | R R R R R R R R R R R R R R R R R R R | R R R No data R R R R R R R R R R R R R R R R R R R | R R <sup>50</sup> ND R R R R R R R R R R R R R R R R R R R | No data No data R ND R ND R ND No data R R R R R ND R ND                                                 |  |  |

|                                                                 |                                                   | THE                                                                      | RMOPLA<br>RESINS                                                                                                           |                                                                                                         |                                                          |                                                   | THE                                                                              | RMOSET<br>RESINS                                   |                                                                                                                   |                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                 | Polyethylene<br>Low Density                       | Polyethylene<br>High Density                                             | Polycarbonate<br>Resins                                                                                                    | Polypropylene                                                                                           | Polystyrene                                              | Melamine<br>Resins (0)                            | Furanc<br>Resin                                                                  | Epoxy<br>Resins (p)                                | Phenol Form-<br>aldehyde<br>Resins (r)                                                                            | Polyester<br>Resins                                                                                                                                                                                                                           |
| 20°                                                             | 60° 100°                                          | 20° 60° 100°                                                             | 20° 60° 100°                                                                                                               | 20° 60° 100°                                                                                            | 20° 60° 100°                                             | 20° 60° 100°                                      | 20° 60° 100°                                                                     | 20° 60° 100°                                       | 20° 60° 100°                                                                                                      | 20° 60° 100°                                                                                                                                                                                                                                  |
| R<br>R<br>R<br>R<br>R<br>ND<br>R<br>34<br>N<br>R<br>R<br>R<br>R | R<br>R<br>R<br>R<br>NID<br>R<br>Io data<br>R<br>R | R R R R R R R R No data R R R R R R R R R R R R R R R R R R R            | ND No data No data R ND R No data R R ND No data R R ND ND ND R R R R R ND | R R R R R R R R R R R ND No data R R R R R R R R R R R R R R R R R R | No data No data R' R R R R R R R No data R R R R No data | R R ND ND R R R R ND ND R R R R R R R R R R R R R | R R R R R R R R ND No data No data R ND ND R R R R R R R R R R R R R R R R R R R | R R R R R R R R R R R R R R R R R R R              | R No data R ND ND R R R R R No data R R R R No data No data R ND ND R ND ND R R R R R R R R R R R R R R R R R R R | R R R <sup>65</sup> R R R <sup>65</sup> No data No data No data R R <sup>30</sup> R <sup>65</sup> R R <sup>30</sup> R <sup>65</sup> No data R NO DATA R ND ND R <sup>30</sup> ND ND R <sup>30</sup> ND ND R <sup>30</sup> R R <sup>30</sup> R |
| ND<br>R<br>R                                                    | ND<br>R                                           | R <sup>60</sup><br>No data<br>R <sup>50</sup> ND ND<br>R <sup>56</sup> R | R <sup>60</sup><br>R ND<br>ND                                                                                              | No data<br>R R ND<br>R R ND                                                                             | No data<br>R                                             | ND ND<br>R R<br>R R                               | R R R<br>No data<br>No data                                                      | No data<br>R R<br>R R <sup>30</sup>                | R ND ND<br>R R R<br>R R R                                                                                         | No data<br>No data<br>R R R                                                                                                                                                                                                                   |
| R<br>R<br>R<br>R<br>R<br>R                                      | R <sup>10</sup> R R R R R R ND                    | R R<br>R <sup>50</sup><br>R R<br>R R<br>R R<br>R R                       | No data RRR RR RR RRR RRR RRR ND                                                                                           | R R ND R R ND R R R R R R R R R R R R R ND R R ND                                                       | R R<br>R R<br>R R<br>R R<br>No data<br>R R               | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R         | No data R R R No data R R R R R R R R R R R R R R R R R R R                      | R R <sup>30</sup> R R <sup>4</sup> R R R R R R R R | R R R R R R ND ND R R R R R R R R R R R                                                                           | R R R R R R R R R R R R R R R R R R R                                                                                                                                                                                                         |

|                                                                                                                       |                                                                                                   |                                                                                                                  |                                                                                                                               | RUBBE                                                             | CRS                                                                         |                                         |                                                              |                                                                         |                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                                                                       | Butyl Rubber<br>and Halo-Butyl<br>Rubber                                                          | Ethylene Propylene<br>Rubber (q)                                                                                 | Hard Rubber<br>(Ebonite) (h)                                                                                                  | Soft Natural<br>Rubber (h)                                        | Neoprene (i)                                                                | Nitrile Rubber                          | Chlorosulphonated<br>Polyethylene                            | Polyurethane<br>Rubber (v)                                              | Silicone<br>Rubbers (k)                                                                            |
|                                                                                                                       | 20° 60° 100°                                                                                      | 20° 60° 100° 2                                                                                                   | 20° 60° 100°                                                                                                                  | 20° 60° 100°                                                      | 20° 60° 100°                                                                | 20° 60° 100°                            | 20° 60° 100°                                                 | 20° 60° 100°                                                            | 20° 60° 100°                                                                                       |
| Acetaldehyde Acetic acid (10%) Acetic acid (glac. & anh.) Acetic anhydride Acetone Other ketones                      | R R ND<br>R <sup>14</sup> R R<br>R <sup>14</sup> R R<br>R <sup>80</sup> R R<br>R R                | R R <sup>14</sup> ND I<br>R <sup>14</sup> R <sup>14</sup> ND I<br>No data I<br>R <sup>60</sup> R <sup>60</sup> I | R R R<br>R R R<br>R R <sup>14</sup> R<br>R R <sup>30</sup><br>R R R<br>R <sup>13</sup> R R                                    | R <sup>60</sup> R ND<br>R <sup>60</sup> R ND<br>R <sup>60</sup> R | R R R <sup>14</sup><br>R <sup>95</sup><br>R R ND                            | R R<br>R <sup>4</sup>                   | R R ND<br>R <sup>85</sup><br>R R ND<br>R <sup>15</sup> ND ND | ND ND<br>R <sup>80</sup> R <sup>80</sup><br>R <sup>80</sup>             | R R R R R R R R R R R R R R R R R R R                                                              |
| Acetylene Acid fumes Alcohols (most fatty) Aliphatic esters Alkyl chlorides                                           | R R <sup>80</sup><br>R <sup>2</sup> R R<br>R R                                                    | No data R <sup>2</sup> R <sup>2</sup> R <sup>2</sup>                                                             | R <sup>80</sup> R R<br>R <sup>2</sup> R R<br>R <sup>30</sup> R R                                                              | R <sup>2</sup> R R <sup>2,80</sup><br>R <sup>60</sup> R           | R <sup>14</sup> R R<br>R <sup>2</sup> R R<br>R R R <sup>14</sup><br>No data | R ND ND<br>R <sup>2</sup><br>R R R      | R <sup>14</sup> R R<br>R R R <sup>2</sup><br>R R R           | ND ND<br>R <sup>2</sup> R <sup>2</sup><br>R <sup>4</sup> R <sup>4</sup> | No data<br>R <sup>2</sup> R R<br>R R R <sup>30</sup><br>R <sup>30</sup> R R<br>R <sup>21</sup> R R |
| Alum Aluminium chloride Ammonia, anhydrous Ammonia, aqueous Ammonium chloride                                         | R R R<br>R R R<br>R R ND<br>R R R<br>R R R                                                        | R R R F<br>R R ND F<br>R R R                                                                                     | RRRR<br>RRR<br>RRR<br>RRR                                                                                                     | R R R<br>R R R<br>R <sup>80</sup><br>R R R <sup>80</sup><br>R R R | R R R<br>R R R<br>R R R<br>R R R                                            | R R R<br>R R R<br>R R<br>R R            | R R R<br>R R R<br>R <sup>10</sup> ND ND<br>R R R<br>R R R    | R R<br>R R<br>R <sup>80</sup><br>R <sup>30</sup> R <sup>80</sup><br>R R | R R R<br>R R R <sup>4</sup><br>R R R<br>R R R                                                      |
| Amyl acetate Aniline Antimony trichloride Aqua regia Aromatic solvents                                                | R R ND<br>R R R                                                                                   | No data                                                                                                          | RRR                                                                                                                           | RRR                                                               | No data                                                                     | No data<br>R <sup>62</sup> R            | R R R<br>R <sup>50</sup>                                     | ND ND                                                                   | R <sup>21</sup> R R R R R R R R R R R                                                              |
| Beer Benzoic acid Boric acid Brines, saturated Bromine                                                                | R R R<br>R R R<br>R R R<br>R R R                                                                  | R R R F                                                                                                          | R R R<br>R R R<br>R R R<br>R R R                                                                                              | R R<br>R R R<br>R R R<br>R R R                                    | R R R<br>R R R<br>R R R                                                     | R R R<br>R R R<br>R R R                 | R <sup>86</sup> R R<br>No data<br>R R R<br>R R R             | R R<br>R R<br>R R                                                       | R R R<br>R R R<br>R R R                                                                            |
| Calcium chloride Carbon disulphide Carbonic acid Carbon tetrachloride Caustic soda & potash                           |                                                                                                   | RRR                                                                                                              | R R R<br>R R R<br>R R R <sup>13</sup>                                                                                         | R R R<br>R R R<br>R R R                                           | R R R<br>R R R                                                              | RRR<br>RNDND<br>RRR<br>RRR              | R R R<br>R R R<br>R R R                                      | R R<br>R R<br>R R                                                       | R R R<br>R R R<br>R R R<br>R <sup>21</sup> R R<br>R R R <sup>30</sup>                              |
| Chlorates of Na, K, Ba<br>Chlorine, dry<br>Chlorine, wet<br>Chlorides of Na, K, Mg<br>Chloroacetic acids              | R R R<br>R <sup>50</sup> R R<br>R <sup>80</sup> R R<br>R R R                                      | R R R R R R R R R R R R R R R R R                                                                                | R R R<br>R <sup>30</sup> R R<br>R <sup>13</sup> R R<br>R R R<br>R <sup>2</sup> R R                                            | R R R                                                             | No data<br>R R R<br>R R ND                                                  | No data                                 | R R R<br>No data<br>R <sup>3</sup> ND ND<br>R R R<br>R       | R R<br>R R<br>R <sup>80</sup>                                           | R R <sup>30</sup> R<br>R R R<br>R R R<br>R R R                                                     |
| Chlorobenzene<br>Chloroform<br>Chlorosulphonic acid<br>Chromic acid (80%)<br>Citric acid                              | R <sup>13</sup> R <sup>13</sup>                                                                   | RRRR                                                                                                             | R <sup>13</sup> R ND                                                                                                          | R R                                                               | RRR                                                                         | RRR                                     | No data<br>R <sup>30</sup> R ND<br>R R R                     | R <sup>30</sup> ND<br>R R                                               | No data<br>R <sup>19</sup> R R<br>R R R                                                            |
| Copper salts (most) Cresylic acids (50%) Cyclohexane Detergents, synthetic Emulsifiers (all conc.)                    | R R R<br>R <sup>4</sup><br>R <sup>13</sup> R R<br>R R R                                           | No data<br>R <sup>13</sup> R <sup>13</sup> R <sup>13</sup> R                                                     | RRR<br>RRR<br>RR*R*                                                                                                           | R R R  R <sup>80</sup> R <sup>80</sup> R  No data                 | R R R R R R R <sup>30</sup> R R                                             | R R ND<br>R R R<br>R R R<br>R R R       | R R R R R R R R R R R R R                                    | R R<br>ND ND<br>R <sup>30</sup> R <sup>30</sup><br>ND ND                | R R R<br>R <sup>21</sup> R R<br>R <sup>21</sup> ND ND<br>R R R<br>R R R                            |
| Ether Fatty acids (> C <sub>6</sub> ) Ferric chloride Ferrous sulphate Fluorinated refrigerants, aerosols, e.g. Freon | R <sup>1</sup> R <sup>80</sup> R<br>R R R<br>R R R<br>R <sup>4</sup> ND ND                        | RRRR                                                                                                             | R <sup>80</sup> R <sup>13</sup><br>R R R<br>R R R                                                                             | R <sup>80</sup> R R<br>R R R<br>No data                           | R R R<br>R R R<br>R R R                                                     | R<br>R R <sup>4</sup><br>R R R<br>R R R | R R R<br>R R R<br>R R R                                      | R <sub>30</sub> R <sup>80</sup><br>R R<br>R R<br>ND ND<br>ND ND         | R R R R R R R R R R R                                                                              |
| Fluorine, dry Fluorine, wet Fluosilicic acid Formaldehyde (40%) Formic acid                                           | R <sup>80</sup> ND ND<br>R <sup>80</sup> ND ND<br>R R R<br>R <sup>80</sup><br>R <sup>13</sup> R R | R <sup>80</sup> ND ND R<br>R R R R<br>R <sup>80</sup> R                                                          | R <sup>13</sup> R <sup>13</sup> ND<br>R <sup>13</sup> R <sup>13</sup> ND<br>R R R<br>R R <sup>30</sup> R<br>R R <sup>80</sup> | R R R<br>R <sup>14</sup><br>R <sup>80</sup>                       | No data<br>No data<br>R R R<br>R ND ND<br>R R R                             | No data<br>R<br>R                       | No data<br>No data<br>RRR<br>R<br>R                          | R R<br>ND ND<br>R <sup>80</sup> R <sup>80</sup>                         | RRR<br>RRR<br>RNDND                                                                                |

|                                                                                     |                                                                     | MISCEL                                         | LANEO                                               | US                                                 |                                                  |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|--------------------------------------------------|
| Concrete (s)                                                                        | Glass (t)                                                           | Graphite (u)                                   | Porcelain and<br>Stoneware                          | Vitreous<br>Enamel (w)                             | Wood (z)                                         |
| 20° 60° 100°                                                                        | 20° 60° 100°                                                        | 20° 60° 100°                                   | 20° 60° 100°                                        | 20° 60° 100°                                       | 20° 60° 100°                                     |
| No data                                                                             | No data<br>R R R<br>R R R<br>No data<br>R R R                       | R R R<br>R R R<br>R R R<br>R R R               | R R R<br>R R R<br>R R R<br>R R R                    | R R R<br>R R R<br>R R R<br>R ND ND<br>R R R        | R R R<br>R R                                     |
| RRR                                                                                 | No data                                                             | RRR                                            | RRR                                                 | RRR                                                | RRR                                              |
|                                                                                     | R R R<br>R <sup>5</sup> R R<br>R R R<br>R R R                       | R R R<br>R R R<br>R R R                        | R R R<br>R R R<br>R R R                             | R R R<br>R <sub>11</sub> R ND<br>R R R<br>R R R    | No data RRRRR                                    |
| No data<br>R R R                                                                    | R R R<br>R R R<br>R <sup>30</sup><br>No data<br>R R R <sup>50</sup> | R R R<br>R R R<br>R R R<br>R R R               | R R R<br>R R R<br>R R R<br>R R R                    | R R ND<br>R R R ND<br>R R R<br>R ND                | R R<br>R R                                       |
| No data<br>No data                                                                  | R R R<br>R R R<br>R R R<br>R R R                                    | R R R<br>R R R<br>R R R                        | R R R R R R R R R R R R R R                         | R ND<br>R R R<br>R R R<br>R R R<br>R R ND          | R R<br>R R<br>R R                                |
| R R R                                                                               | RRR                                                                 | RRR                                            | RRR                                                 | RRR                                                | RRR                                              |
| No data<br>RRR<br>RRR                                                               | R R R<br>R R R<br>R R R                                             | R R R<br>R R R<br>R R R                        | R R R<br>R R R<br>R R R                             | R R ND<br>R R ND<br>R R ND<br>No data              | R R R<br>R R R<br>R                              |
| R <sup>44</sup> R R<br>R R R<br>R <sup>50</sup> R R<br>R R R<br>R <sup>72</sup> R R | R ND ND<br>R ND ND<br>R R R<br>R R R                                | R R R R R R R R R R R R R R R R R R R          | R R R<br>R R R<br>R R R<br>R R R<br>R <sup>10</sup> | R ND<br>R R R<br>R R R<br>R R R<br>R <sup>10</sup> | R R<br>R<br>R R R<br>R R R                       |
| R R R<br>No data                                                                    | R R R<br>No data<br>ND                                              | R R R<br>R R R                                 | R R R<br>R R R<br>R R R                             | No data<br>R R R<br>No data                        | R ND ND                                          |
| R12 R R                                                                             | RRR                                                                 | R R R<br>R R R                                 | R R R<br>R R R                                      | R R<br>R ND ND                                     | R R                                              |
| R R R<br>R R R                                                                      | R R R<br>R R R<br>No data<br>R R ND<br>R R ND                       | R R R<br>R R R                                 | R R R<br>R R R<br>R R R                             | R R R<br>R R R<br>No data<br>R ND ND               | R R<br>R R R                                     |
| R <sup>51</sup> R R                                                                 | R R ND<br>R R R<br>No data                                          | R R R<br>R R R<br>R R R                        | R R R<br>R R R<br>R R R                             | R R R<br>R R R<br>R R ND                           | R R<br>R R R                                     |
| R R R<br>R <sup>81</sup> R R<br>No data                                             | No data<br>No data<br>R <sup>13</sup> R <sup>30</sup><br>R R R      | R R R<br>R R R<br>R R R                        | R R R<br>R R R<br>R R R                             | R R R<br>R R R<br>R R R                            | R R R<br>R R<br>R R                              |
| RRR                                                                                 | R R R<br>R R R<br>R R R<br>R R R                                    | R R R<br>R R R<br>R <sup>13</sup> R R<br>R R R | R R R<br>R R R<br>R R R<br>R R R                    | R R R<br>R R R<br>R ND<br>R ND                     | R<br>R R R<br>R <sup>14</sup><br>R <sup>14</sup> |
| RRR                                                                                 | No data                                                             | RRR                                            | R <sup>39</sup> R R                                 | No data                                            | RRR                                              |
| No data<br>No data<br>R R R<br>R <sup>80</sup>                                      | R R R                                                               | R R R<br>R R R<br>R R R                        | R R R                                               | R ND<br>No data                                    | No data<br>No data<br>No data<br>R R             |
| 1                                                                                   | RRR                                                                 | RRR                                            | RRR                                                 | RRR                                                | -                                                |

## NOTES

Explanatory notes at lower temperatures may be taken to apply also at higher temperatures unless otherwise shown.

2 Depending on the acid 3 35 % 4 Fair resistance 5 Not HF fumes 5 Not HF tumes
6 Up to 40 %
7 Saturated solution
8 Pineapple and grapefruit juices 20°C
9 Photographic emulsions up to 20°C

1 Not anhydrous

- 9 Photographic emuisions up to 20 C 10 10 ½ 11 Anhydrous 12 Not Mg 13 Depending on concentration 14 Discoloration and/or swelling and softening 14 Discoloration and/or swelling and soften
  15 Up to 25 %
  16 Not chloride/not if chloride ions present
  17 Not fluorinated silicone rubbers
  18 Up to 60 %
  19 Up to 50 %
  20 Not aerated solutions

- 21 Fluorinated silicone rubbers only 22 ND for Mg
- 23 5 % 24 Pure only

- 24 Pure only
  25 Up to 30 %
  26 If no iron salts or free chlorine
  27 May crack under stressed conditions
  28 45 %
  29 55 %
- 30 Depending upon composition 31 Chloride

- 32 20 % 33 Depending on alcohol
- 34 Data for sodium 35 Fresh
- 36 Over 85 %
- 37 Some attack at high temperature
- 38 Neutral
- 39 Attacked by fluoride ions 40 Sulphate and nitrate
- 41 Softening point 42 In strong solutions only when inhibited
  43 Depending on water conditions
  44 Dilute
- 45 Up to 15 %

- 46 Not methyl 47 Drawn wire 48 Some attack, but protective coating forms
- 49 Using anodic passivation techniques 50 Some attack/absorption/slow erosion
- 51 Not sulphate

- 52 70% 53 In absence of dissolved O<sub>2</sub> and CO<sub>2</sub> 54 75 % 55 80 % 56 May cause stress cracking

- 57 Pitting possible in stagnant solutions 58 In presence of H<sub>2</sub>SO<sub>4</sub>

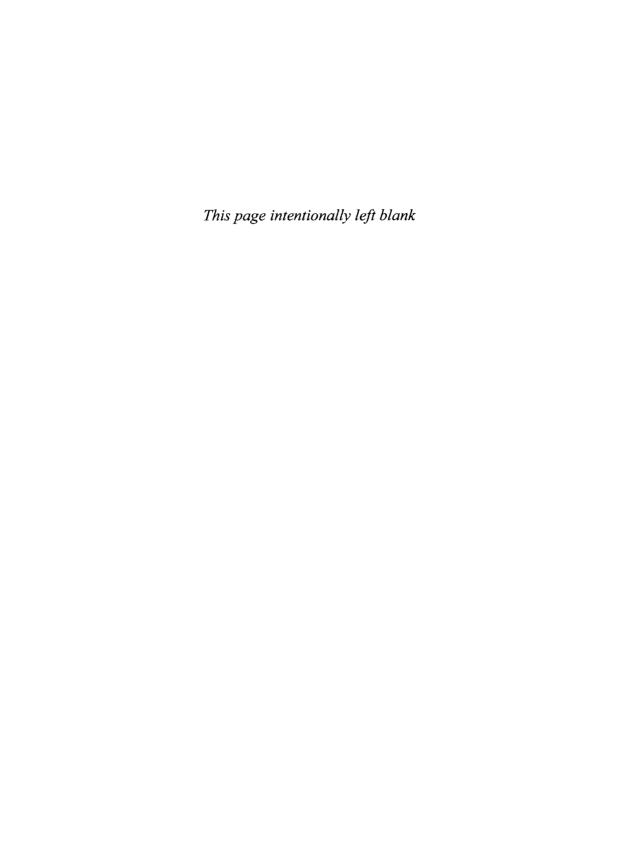
- 59 Not ethyl
  60 May discolour liquid
  61 The material can cause decomposition
- 62 Depending on type
- 63 95%
  64 Slight plating will occur
  65 Not recommended under certain conditions of

- temperature, etc. 66 65 %
  67 Aerated solution 68 Estimated effect

- 56 Estimated effect
  69 Up to 90 %
  70 Not oxidising conditions
  71 Not lower members of series
  72 Not high alumina cement concrete

|                                                                                                                                                                                 |                                                                                                         |                                                                                        |                                                                                                                 | RUBBE                                                                                      | RS                                                       |                                                   |                                                                                                  |                                                             |                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|
|                                                                                                                                                                                 | Butyl Rubber<br>and Halo-Butyl<br>Rubber                                                                | Ethylene Propylene<br>Rubber (q)                                                       | Hard Rubber<br>(Ebonite) (h)                                                                                    | Soft Natural<br>Rubber (h)                                                                 | Neoprene (i)                                             | Nitrik Rubber                                     | Chlorosuiphonated<br>Polyethylene                                                                | Polyurethane<br>Rubber (v)                                  | Silicone<br>Rubbers (k)                                                 |
|                                                                                                                                                                                 | 20° 60° 100°                                                                                            | 20° 60° 100°                                                                           | 20° 60° 100°                                                                                                    | 20° 60° 100°                                                                               | 20° 60° 100°                                             | 20° 60° 100°                                      | 20° 60° 100°                                                                                     | 20° 60° 100°                                                | 20° 60° 100°                                                            |
| Fruit juices Gelatine Glycerine Glycols Hexamine Hydrazine                                                                                                                      | R <sup>80</sup> R <sup>80</sup><br>R R R<br>R R R<br>R R R<br>R R ND<br>R R ND                          | R <sup>60</sup> R <sup>60</sup><br>R R<br>R R R<br>R R R<br>No data<br>R ND ND         | R <sup>65</sup> R R<br>R R R<br>R R R<br>R R R<br>R R ND                                                        | R R R<br>R R R<br>R R R<br>R R R                                                           | R R R R R R R R R R R R R R R R R R R                    | R R R<br>R R R<br>R R R<br>No data                | R R R<br>R R R<br>R R R<br>R R R<br>No data                                                      | R R<br>R R<br>R R<br>R R<br>ND ND                           | R R R<br>R R R<br>R R R<br>No data                                      |
| Hydrobromic acid (50 %)<br>Hydrochloric acid (10 %)<br>Hydrochloric acid (conc.)<br>Hydrocyanic acid<br>Hydrofluoric acid (40 %)                                                | R R R R R R R R R R R R R R R R R R R                                                                   | R R ND<br>R R R<br>R R <sup>4</sup> R <sup>80</sup><br>R R R                           | R R <sup>37</sup> R <sup>37</sup><br>R R R<br>R R <sup>37</sup> R <sup>37</sup><br>R R R                        | R <sup>65</sup> R.<br>R R<br>R R <sup>80</sup><br>R R R                                    | R ND ND<br>R R R<br>R R <sup>95</sup> ND<br>R R R        | R<br>R R<br>R                                     | R R ND<br>R R<br>R R ND<br>R R ND                                                                | R <sup>15</sup> R <sup>15</sup><br>R R<br>R R               | R R R<br>R <sup>30</sup><br>No data                                     |
| Hydrofluoric acid (75° <sub>o</sub> )<br>Hydrogen peroxide (30° <sub>o</sub> )<br>(30-90° <sub>o</sub> )<br>Hydrogen sulphide<br>Hypochlorites                                  | R <sup>80</sup> R R<br>R <sup>80</sup> R <sup>87</sup> ND<br>R R R<br>R <sup>30</sup> R <sup>80</sup> R | R <sup>30</sup> ND ND<br>R <sup>80</sup> ND ND<br>R R R<br>R R ND                      | R <sup>80</sup><br>R <sup>87</sup><br>R R R<br>R <sup>30</sup> <sub>13</sub> R                                  | R R R R 80.76                                                                              | R<br>R R<br>R R<br>R R ND<br>R R                         | R                                                 | R R ND<br>R <sup>87</sup> R <sup>87</sup><br>R <sup>87</sup> R <sup>87</sup><br>R ND ND<br>R R R | R <sup>4</sup> ND<br>R R<br>R <sup>30</sup> ND              | RRR<br>R <sup>30</sup> RR<br>No data<br>RRR                             |
| Lactic acid (100%)<br>Lead acetate<br>Lime (CaO)<br>Maleic acid<br>Meat juices                                                                                                  | R R ND<br>R R R<br>R R R<br>R R R                                                                       | R R ND<br>R R R<br>R R R<br>R R R                                                      | R R R R R R R R R R R R R R R                                                                                   | R <sup>14,80</sup> R <sup>80</sup> R R R R R R R R R <sup>13</sup> R R                     | R R R<br>R R R<br>R R R<br>R R R                         | R R<br>R ND ND<br>R R R<br>ND<br>R R R            | R R R<br>No data<br>R R R<br>No data<br>R R R                                                    | R <sup>23</sup> R <sup>23</sup><br>R R<br>R R<br>R R<br>R R | R R R<br>R R <sup>30</sup> R<br>R R R<br>R R R                          |
| Mercuric chloride<br>Mercury<br>Milk & its products<br>Moist air<br>Molasses                                                                                                    | R R R<br>R R R<br>R <sup>80</sup> R R<br>R R R<br>R R R                                                 | R R R<br>R R R<br>R <sup>80</sup> R <sup>80</sup><br>R R R<br>R R R                    | R R R<br>R R R<br>R R R<br>R R R                                                                                | R R R<br>R R R<br>R R R                                                                    | R R R<br>R R R<br>R R R<br>R R R                         | R R R R R R R R R R R R R                         | R R R<br>R R R<br>R R R<br>R R R                                                                 | R R<br>R R<br>R R<br>R R                                    | R R R<br>R R R<br>R R R<br>R R R                                        |
| Naphtha<br>Naphthalene<br>Nickel salts<br>Nitrates of Na, K, NH <sub>3</sub><br>Nitric acid (<25° <sub>6</sub> )                                                                | R R R<br>R R R<br>R <sup>23</sup> R <sup>23</sup> R <sup>23</sup>                                       | R R R<br>R R R                                                                         | R R R<br>R R R<br>R <sup>101</sup> R                                                                            | R R R<br>R R R<br>R <sup>101</sup>                                                         | R R R<br>R R R<br>R R                                    | R R R R R R R R                                   | R R R R R R R R R                                                                                | R R<br>R R                                                  | R <sup>21</sup> R R<br>R <sup>21</sup> R R<br>R R R<br>R R R<br>R R R   |
| Nitric acid (50%)<br>Nitric acid (95%)<br>Nitric acid, fuming<br>Oils, essential<br>Oils, mineral                                                                               | R <sup>14</sup> R ND                                                                                    | R <sup>60</sup> ND ND<br>R <sup>80</sup> R <sup>80</sup> R <sup>80</sup>               | R14                                                                                                             | No data                                                                                    | R <sup>14</sup> ND ND<br>R ND ND                         | R <sup>4</sup> R <sup>4</sup><br>R R R            | R R<br>R<br>R <sup>89</sup><br>R <sup>30</sup><br>R <sup>30</sup>                                | R R<br>R R                                                  | R <sup>21</sup><br>R<br>R <sup>36</sup> R R<br>R <sup>30</sup> R R      |
| Oils, vegetable & animal<br>Oxalic acid<br>Ozone<br>Paraffin wax<br>Perchloric acid                                                                                             | R R <sup>14</sup><br>R R R<br>R R<br>R R R                                                              | R <sup>14</sup> R <sup>14</sup><br>No data<br>R R<br>R R ND<br>R                       | R <sup>80</sup> R R<br>R R R<br>R R R<br>R R R                                                                  | R <sup>14</sup> R<br>R <sup>80</sup> R R<br>R R <sup>14</sup>                              | R <sup>14</sup> ND ND<br>R R R<br>R R R<br>R R R         | R R R<br>R R<br>R <sup>30</sup><br>R R R          | R <sup>30</sup><br>R ND ND<br>R R R<br>R R R<br>No data                                          | R R<br>ND ND<br>R R<br>R R<br>ND ND                         | R R R<br>R R R<br>R R R<br>R R R<br>No data                             |
| Phenol Phosphoric acid (25 ° <sub>o</sub> ) Phosphoric acid (50 ° <sub>o</sub> ) Phosphoric acid (95 ° <sub>o</sub> ) Phosphoric acid (95 ° <sub>o</sub> ) Phosphorus chlorides | R R <sup>80</sup> ND<br>R R R<br>R R R<br>R R R                                                         | R <sup>80</sup><br>R R R<br>R R R<br>R R R<br>No data                                  | R <sub>80</sub> R<br>R R R <sup>60</sup><br>R R R <sup>60</sup><br>R <sup>36</sup> R R <sup>60</sup><br>No data | R R R <sup>60</sup><br>R R R <sup>60</sup><br>R <sup>36</sup> R R <sup>60</sup><br>No data | RRRR<br>RRR<br>RRR<br>No data                            | R R ND<br>R<br>R                                  | R R R<br>R R R<br>R R R                                                                          | R R<br>R R<br>ND ND                                         | R R R<br>R R R<br>R <sup>30</sup> R R<br>R <sup>30</sup> R R<br>No data |
| Phosphorus pentoxide<br>Phthalic acid<br>Picric acid<br>Pyridine<br>Sea water                                                                                                   | R R ND<br>R <sup>13</sup> R R<br>R <sup>80</sup> R R<br>R <sup>4</sup><br>R R R                         | R R ND<br>R <sup>13</sup> R <sup>13</sup> ND<br>No data                                | R R<br>R <sup>80</sup> R <sup>80</sup> R <sup>80</sup><br>R R <sup>30</sup> R                                   | R R R R R R R                                                                              | R R R<br>R R R<br>R R R                                  | R ND ND                                           | No data<br>No data<br>R R R                                                                      | ND ND<br>R ND<br>ND ND<br>R R                               | R R R<br>R R R<br>No data<br>No data<br>R R R                           |
| Silicic acid Silicone fluids Silver nitrate Sodium carbonate Sodium peroxide                                                                                                    | R R R<br>R R ND<br>R R R<br>R R R                                                                       | R R R<br>No data<br>R <sup>60</sup> R <sup>60</sup> R <sup>60</sup><br>R R R<br>R R ND | R R R<br>R R R<br>R <sup>61</sup><br>R R R<br>R <sup>13</sup> R                                                 | R R R<br>R R R<br>R <sup>80</sup> R<br>R R R<br>R <sup>80</sup> R <sup>80</sup> ND         | R R R<br>R R R<br>R R R<br>R R R<br>R R <sup>97</sup> ND | ND<br>R R R<br>R R ND<br>R R R<br>R <sup>13</sup> | R R R<br>R R R<br>R R R<br>R R R                                                                 | R R<br>R ND<br>R R<br>R R<br>ND ND                          | R R R<br>R <sub>30</sub> R R<br>R R R<br>R R R<br>R R R                 |

|                                                  | ]                                                                        | MISCEL                                    | LANEO                            | US                                            |                                     |
|--------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------|----------------------------------|-----------------------------------------------|-------------------------------------|
| Concrete (s)                                     | Glass (t)                                                                | Graphite (u)                              | Porcelain and<br>Stoneware       | Vitreous<br>Enamel (w)                        | Wood (z)                            |
| 20° 60° 100°                                     | 20° 60° 100°                                                             | 20° 60° 100°                              | 20° 60° 100°                     | 20° 60° 100°                                  | 20° 60° 100°                        |
| R R R                                            | R R R<br>R R R<br>R R R<br>R R R<br>R ND ND                              | R R R<br>R R R<br>R R R<br>R R R          | R R R<br>R R R<br>R R R<br>R R R | R R R<br>R R R<br>R R R<br>R R R              | R R R<br>R R R<br>R<br>R            |
| No data                                          | RRR                                                                      | RRR                                       | RRR                              | RRR                                           | No data                             |
|                                                  | R R R <sup>50</sup><br>R R R <sup>50</sup><br>R R R <sup>50</sup><br>R R | R R R<br>R R R<br>R R R                   | R R R<br>R R R<br>R R R          | No data RRRR RRND RNDND                       | R<br>R R                            |
| No data<br>No data<br>R <sup>72</sup> R R        |                                                                          | R R R R R R R R R R R R R R R R R R R     | R R R<br>R R R<br>R R R          | R R R<br>R R R<br>R R R<br>R R ND             | R R R                               |
|                                                  | No data                                                                  | RRR                                       | RRR                              | RRR                                           | R                                   |
| No data<br>R R R                                 | R R R<br>R R R                                                           | R R R                                     | RRR                              | R R R<br>R R ND                               | R R R<br>R <sup>14</sup>            |
| No data<br>No data                               | No data<br>RRR                                                           | R R R<br>R R R                            | R R R<br>R R R                   |                                               | R R R<br>R R R                      |
| R R R<br>R <sup>35</sup> R R<br>R R R<br>R       | R R R R R R R R R R R R R                                                | R R R<br>R R R<br>R R R<br>R R R<br>R R R | R R R<br>R R R<br>R R R<br>R R R | No data R R ND R R R R R R R                  | R R R R R R R R R R R R R R R       |
| R R R<br>R R R<br>No data<br>R <sup>73</sup> R R | No data<br>No data<br>R R R<br>R ND ND<br>R R R <sup>50</sup>            | R R R<br>R R R<br>R R R<br>R R R          | R R R<br>R R R<br>R R R<br>R R R | R R R<br>R R R<br>No data<br>R ND ND<br>R R R | R R R<br>R R R<br>R R R             |
|                                                  | R R R <sup>50</sup>                                                      |                                           | R R R<br>R R R                   | R R ND<br>R R ND                              |                                     |
| No data                                          | R R R <sup>50</sup>                                                      | RRR                                       |                                  | R ND ND                                       | RRR                                 |
| RRR                                              | RRR                                                                      | RRR                                       | RRR                              | RRR                                           | RRR                                 |
| RRR                                              | RRR                                                                      | R R R<br>R R R                            | RRR                              | R R R<br>R R R                                | R R R                               |
| R R R<br>R R R                                   | R R R<br>R R R<br>R R R                                                  | R R R<br>R <sup>15</sup> R <sup>10</sup>  | R R R<br>R R R<br>R R R          | No data<br>R R R<br>No data                   | No data<br>R R R                    |
|                                                  | R ND ND<br>R R R                                                         | R R R<br>R R R                            |                                  | R R R<br>R R R                                |                                     |
|                                                  | R R R                                                                    | R R R                                     | R R R<br>R R R <sup>4</sup>      | R R ND<br>R R ND                              |                                     |
|                                                  | R ND ND                                                                  | RRR                                       | RRR                              | No data                                       |                                     |
|                                                  |                                                                          | RRR                                       |                                  | No data<br>R R R                              | R R                                 |
| No data                                          | R R R<br>R R R<br>R R R                                                  | R R R<br>R R R<br>R R R                   | R R R<br>R R R<br>R R R          | R R R<br>R R R                                | No data<br>R <sup>14</sup><br>R R R |
| RRR                                              | R R ND                                                                   | RRR                                       | RRR                              | R R ND                                        | RRR                                 |
| R <sup>74</sup> R R<br>No data                   | R R R                                                                    | R R R<br>R R R                            | R R R<br>R R R                   | R R R<br>R R R                                | R R R<br>R R                        |
| R <sup>72</sup> R R<br>R <sup>72</sup> R R       | R<br>R ND ND                                                             | R R R<br>No data                          | R R R<br>R R R                   | R R R<br>No data                              |                                     |


- 73 Not ammonium
- 74 Not chlorsilanes
- 75 Data for ammonium
- 76 Data for calcium 77 Data for potassium
- 78 In presence of heavy metal ions
  79 ND for Ba
- 80 Limited service
- 81 Except those containing sulphate 82 Provided less than 70% copper
- 83 Water less than 150 ppm 84 May cause some localized pitting
- 85 60 % in one month 86 Low taste and odou
- 87 Catalyses decomp. of H2O2
- 88 65 % 89 1-2 days
- 90 Wet gas
- 91 Less than 0.005 % water
- 92 In absence of heavy metal ions oxidising agents 93 Stress corrosion in MeOH and halides (not in
- other alcohols)
- 94 When free of SO2

- 95 50 % swell in 28 days 96 60 % swell in 3 days 97 Could be dangerous in black loaded compounds
- 98 Not alkaline
- 99 Ozone 2 % Oxygen 98 %
- 100 This is the softening point
  101 Nitric acid less than 5 % concentration
  102 Acid fumes dry. Attack might occur if moisture present and concentrated condensate built up
- 103 Stainless steels not normally recommended for caustic applications
- 104 In the absence of impurities
- 105 10 % w/w in alcohol
- 106 Swelling with some ketones
- 107 Some stress cracking at high pH
- (a) Aluminium: In many cases where the chart indicates that aluminium is a suitable material there is some attack, but the corrosion is slight enough to allow aluminium to be used economically.
- (b) Brass: Some types of brass have less corrosion resistance than is shown on the chart, others have more, e.g. Al brass.
- (c) Cast iron: This is considered to be resistant if the material corrodes at a rate of less than 0.25 mm per annum. When choosing cast iron, Ni-Resist or high Si iron for a particular application the very different physical properties of these materials must be taken into account.
- (d) Gunmetal: The data refer only to high tin gunmetals.
- (e) Nickel-copper alloys: The physical properties are for annealed material. Both the tensile strength and hardness can vary with form and heat treatment condition.
- (f) Stainless steels: Less expensive 13 % chromium steels may be used for some applications instead of 18/8 steels. Under certain conditions the addition of titanium increases the corrosion resistance of 18/8 steels. Also, it produces materials which can be welded without the need for subsequent heat treatment. These steels are, however, inferior in corrosion resistance to the more expensive 18/8/Mo steels.
- (g) Tin: Data refer to pure or lightly alloyed tin; not to discontinuous tin coatings.
- (h) Soft natural rubber and ebonite: Performance at higher tem-peratures depends on method of compounding.
- (i) Neoprene: Brush or spray applied 1-5 mm thick, and properly cured.
- (k) Silicone rubbers: Withstand temperatures ranging from 90°C to above 250°C and are resistant to many oils and chemicals. In some cases particularly good resistance is shown by the fluorinated type.

| , , , , , , , , , , , , , , , , , , , ,                                                                           |                  |                                |                     |                                |                     |                             |                                                  |                               |                               | RU                                           | JE                          | BE               | RS               | <b>.</b>          |                        |                                 |                  |                    |                          |                          |                         |                  |                                   |                                |                                |                    |
|-------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------|---------------------|--------------------------------|---------------------|-----------------------------|--------------------------------------------------|-------------------------------|-------------------------------|----------------------------------------------|-----------------------------|------------------|------------------|-------------------|------------------------|---------------------------------|------------------|--------------------|--------------------------|--------------------------|-------------------------|------------------|-----------------------------------|--------------------------------|--------------------------------|--------------------|
|                                                                                                                   |                  | Butyl Rubber<br>and Halo-Butyl | Rubber              |                                | Ethylene Propylene  | Kubber (q)                  |                                                  | Hard Rubber                   | (Ebonite) (h)                 |                                              | Soft Natural                | Kuober (n)       |                  | Neoprene (i)      |                        |                                 | Nitrile Rubber   |                    |                          | Chlorosulphonated        | rotyemylene             |                  | Polyurethane<br>Rubber (v)        |                                | Silicone<br>Pubbon (b)         | vaccets (F)        |
|                                                                                                                   | 20°              | 60°                            | 100°                | 20°                            | 60°                 | 100°                        | 20°                                              | 60°                           | 100°                          | 20°                                          | 60°                         | 100°             | 20°              | 60°               | 100°                   | 20°                             | 60°              | 100°               | 20°                      | 60°                      | 100°                    | 20°              | 60° 100°                          | 20°                            | 60°                            | 100°               |
| Sodium silicate<br>Sodium sulphide<br>Stannic chloride<br>Starch<br>Sugar, syrups, jams                           | R<br>R<br>R<br>R | R<br>R<br>R<br>R               | R<br>R<br>R<br>R    | R<br>R<br>R<br>R               | R<br>R<br>R<br>R    | R<br>R<br>R<br>R            | R<br>R<br>R<br>R                                 | R<br>R<br>R<br>R              | R<br>R<br>R<br>R              | R<br>R<br>R<br>R                             | R<br>R<br>R<br>R            | R<br>R<br>R<br>R | R<br>R<br>R<br>R | R<br>R<br>R<br>R  | R<br>R<br>R<br>R       | R<br>R<br>R<br>R                | R<br>R<br>R<br>R | ND<br>ND<br>R<br>R | R<br>R<br>R              | R<br>Noda<br>R<br>R<br>R | R<br>ata<br>R<br>R<br>R | R<br>R<br>R<br>R | R<br>ND<br>R<br>R                 | R<br>R<br>R<br>R               | R<br>R<br>R<br>R               | R<br>R<br>R<br>R   |
| Sulphamic acid<br>Sulphates (Na, K, Mg, Ca)<br>Sulphites<br>Sulphonic acids<br>Sulphur                            |                  | Nod<br>R<br>R<br>R<br>R<br>R   | ata<br>R<br>R<br>R  | R<br>R<br>R<br>R <sup>12</sup> | R<br>R<br>R<br>R    | ND<br>R<br>R<br>R R 13<br>R | R <sup>13</sup><br>R<br>R<br>R <sup>2</sup><br>R | R<br>R<br>R<br>R <sup>2</sup> | R<br>R<br>R <sup>2</sup><br>R | R                                            | Nod<br>R<br>R <sup>84</sup> | R                | R<br>R<br>R<br>R | NI<br>R<br>R<br>R | ND<br>R<br>R<br>R<br>R | R<br>R<br>ND<br>R <sup>36</sup> |                  | R<br>R<br>R        | R<br>R<br>R<br>R         | R<br>R<br>R<br>R         | R<br>R<br>R<br>R        | R<br>R<br>R<br>R | R<br>R<br>R<br>ND<br>OND          | R<br>R                         | lod<br>R<br>R<br>R<br>lod<br>R | R<br>R             |
| Sulphur dioxide, dry<br>Sulphur dioxide, wet<br>Sulphur trioxide<br>Sulphuric acid (<50%)<br>Sulphuric acid (70%) | R<br>R<br>R      | R<br>R                         | R<br>R<br>R         | R<br>R<br>R                    | R<br>R<br>R         | R<br>R<br>R                 | R<br>R<br>R                                      | R<br>R                        | R<br>R <sup>4</sup>           | R                                            | R                           |                  | R<br>R<br>R      | R<br>R<br>R       | R<br>R                 | R ?                             | No da            | ata                | R <sup>4</sup><br>R<br>R | R<br>R<br>R              | R<br>R                  | NE               | O ND<br>O ND<br>O R <sub>80</sub> | R<br>R<br>R                    | R<br>R<br>R<br>R<br>lod        | ND<br>ND<br>R<br>R |
| Sulphuric acid (95%) Sulphuric acid, fuming Sulphur chlorides Tallow Tannic acid (10%)                            | R                | R<br>R                         | R <sup>4</sup><br>R | R                              | R <sup>4</sup><br>R | ND<br>R                     | R                                                | R<br>R                        | R<br>R                        | R<br>R                                       | R<br>R                      | R                | R                | R<br>R            | R<br>R                 | R<br>R                          | No da<br>R<br>R  | ata<br>R           | R<br>!<br>R              | No d<br>R<br>R           | ata<br>R<br>R           | R<br>R           | ND<br>R                           | R <sup>30</sup>                | R<br>R                         | R<br>R             |
| Tartaric acid Trichlorethylene Vinegar Water, distilled Water, soft                                               | R<br>R<br>R<br>R | R<br>R<br>R<br>R               | R<br>R<br>R<br>R    | R<br>R<br>R                    | R<br>R''<br>R<br>R  | R                           | R<br>R<br>R <sup>30</sup><br>R                   | R<br>R                        | R<br>R<br>R<br>R              | R<br>R <sup>80</sup><br>R <sup>30</sup><br>R | R                           | R<br>R<br>R      | R<br>R<br>R      | R<br>R<br>R<br>R  | R<br>R<br>R<br>R       | R<br>R <sup>65</sup><br>R<br>R  | R                | R<br>R<br>R        | R<br>R<br>R              | R<br>R<br>R<br>R         | R<br>R<br>R<br>R        | R<br>R<br>R      | R                                 | R<br>R <sup>21</sup><br>R<br>R | R<br>R<br>R<br>R               | R<br>R<br>R<br>R   |
| Water, hard<br>Yeast<br>Zinc chloride                                                                             | R<br>R<br>R      | R<br>R<br>R                    | R<br>R<br>R         | R<br>R                         | R<br>Nod<br>R       | R<br>ata<br>R               | R<br>R<br>R                                      | R<br>R<br>R                   | R<br>R<br>R                   | R<br>R<br>R                                  | R<br>R<br>R                 | R<br>R<br>R      | R<br>R<br>R      | R<br>R<br>R       | R<br>R<br>R            | R<br>R<br>R                     | R<br>ND<br>R     | R<br>ND<br>ND      | R<br>R<br>R              | R<br>R<br>R              | R<br>R<br>R             | R<br>NE<br>R     | R<br>ND<br>R                      | R<br>R<br>R                    | R<br>R<br>R                    | R<br>R<br>R        |

|     |                                       |      | ·   |           |        | MI     | SC           | EL     | LA     | N             | EO             | US  | <b>S</b> |            |          |          |      |
|-----|---------------------------------------|------|-----|-----------|--------|--------|--------------|--------|--------|---------------|----------------|-----|----------|------------|----------|----------|------|
|     | Concrete (s)                          | Ē.   |     | Glass (t) |        |        | Graphite (u) | •      |        | Porcelain and | Stoneware      |     | Vitreous | Enamei (W) |          | Wood (z) |      |
| 20° | 60°                                   | 100° | 20° | 60°       | 100°   | 20°    | 60°          | 100°   | 20°    | 60°           | 100°           | 20° | 60°      | 100°       | 20°      | 60°      | 100° |
| R   | R R R R R R R R R R R R R R R R R R R |      |     |           |        | R<br>R | R<br>R       | R<br>R | R<br>R |               | No da<br>No da |     | R        |            |          |          |      |
|     |                                       |      | 1   |           |        |        |              | R      | R      | R             | R              | R   | R        | R          |          |          |      |
| R   | R                                     | R    | R   |           | R<br>R | R      |              | R      | R      | R             | R              | R   | R<br>R   | R          | R        | R        | R    |
|     |                                       |      |     | R         |        |        | R            | R      |        | R             | R              |     |          | R          |          |          | R    |
|     | No d                                  | ata  | R   | R         | R      | R      | R            | R      | R      | R             | R              | ı   | No da    |            |          | No d     | ata  |
|     |                                       |      | R   | R<br>R    | R<br>R | R      | R<br>R       | R<br>R | R      | R<br>R        | R<br>R         | R   | R<br>R   | ND<br>R    | R        | R        |      |
|     |                                       |      | R   | R         | R      | R      | R            | R      | R      | R             | R              | R   | R        | ND.        | <b>"</b> |          |      |
| R   | R                                     | R    | R   | R         | R      | R      | R            | R      | R      | R             | R              | R   | R        | R          | R        | R        |      |
|     | No d                                  | ata  | R   | R         | ND     | R      | R            | R      | R      | R             | R              | R   | R        | R          |          |          |      |
|     | 110 4                                 | ata  | R   | R         | 110    | R      | R            | R      | R      | R             | R              | R   | R        | R          |          |          |      |
|     |                                       |      | R   | R         | R      |        | -            |        | R      | R             | R              | R   | R        | R          |          |          |      |
|     |                                       |      | R   | R         | R      | R      | R            | R      | R      | R             | R              | R   | R        | R          | R1       | 0        |      |
|     |                                       |      | R   | R         | R      | R      | R            | R      | R      | R             | R              | R   | R        | R          |          |          |      |
|     |                                       |      | R   | R         | R      | R2     | R            |        | R      | R             | R              | R   | R        | R          |          |          |      |
|     |                                       |      | R   | R         | R      | ļ      |              |        | R      | R             | R              | R   | ND       |            |          |          |      |
|     | No d                                  | ata  | R   | R         | R      | R      | R            | R      | R      | R             | R              | R   | R        | ND         | İ        | No d     | ata  |
| ١.  |                                       |      | 1   | No da     |        | R      | R            | R      | R      | R             | R              | R   | R        | R          | R        | R        | R    |
| R86 | ,                                     |      | R   | R         | R      | R      | R            | R      | R      | R             | R              | R   | R        | R          | Ŗ        | R        | R    |
|     |                                       |      | R   | ND        | ND     | R      | R            | R      | R      | R             | R              | R   | R        | R          | R        | R        | R    |
| R   | R                                     | R    | R   | R         | R      | R      | R            | R      | R      | R             | R              | R   | R        | R          | R        | R        | R    |
|     |                                       |      | R   | R         | R      | R      | R            | R      | R      | R             | R              | R   | R        | R          | R        | R        |      |
| R50 |                                       | R    | R   | R         | R      | R      | R            | R      | R      | R             | R              | R   | R        | R          | R        | R        | R    |
| R50 | R                                     | R    | R   | R         | R      | R      | R            | R      | R      | R             | R              | R   | R        | R          | R        | R        | R    |
| R   | R                                     | R    | R   | R         | R      | R      | R            | R      | R      | R             | R              | R   | R        | R          | R        | R        | R    |
| R   | R                                     | R    | R   | R         | R      | R      | R            | R      | R      | R             | R              | R   | R        | R          | R        | R        | R    |
|     |                                       |      | R   | ND        | ND     | R      | R            | R      | R      | R             | R              | R   | R        | ND         |          |          |      |

- (1) Acrylonitrile butadiene styrene resins: The information refers to a general purpose moulding grade material.
- (m) Nylon: Prolonged heating may cause oxidation and embrittlement. Data on nylon 66 plastics refer to Maranyl products. Other nylons, such as types 6 and 610, can behave differently, e.g. towards aqueous solutions of salts.
- (n) P.T.F.E.: Is attacked by alkali metals (molten or in solution) and by certain rare fluorinated gases at high temperatures and pressures. Some organic and halogenated solvents can cause swelling and slight dimensional changes but the effects are physical and reversible.
- (o) Melamine resins: The information refers mainly to laminates surfaced with melamine resins, Melamine coating resins are always used in conjunction with alkyd resins and the specifications will depend on the alkyd resin used.
- (p) Epoxy resins: Data are for cold curing systems
- (q) The information given is based on compounds made from ethylene propylene terpolymer rubber.
- (r) Phenol formaldehyde resins: These are of several types and care should be taken that the right type is chosen.
- (s) Concrete: Usually made from Portland cement, but if made from Ciment Fondu or gypsum slag cement might have superior resistance in particular applications.
- (t) Glass: The information refers to heat-resistant borosilicate glass.
- (u) Graphite: Data refer to resin-impregnated graphite. Other specially treated graphites have improved corrosion resistance to many chemicals.
- (v) Chemical resistance of polyurethanes is dependent on the particular structure of the material and is not necessarily applicable to all polyurethanes. Specially designed polyurethanes can be used at higher temperatures than 60°C but chemical resistance is temperature dependent.
- (w) Vitreous enamel: Special enamels may be required to withstand particular reagents.
  - (x) Data is based on Ferralium alloy 255.
  - (y) Data is based on Solef.
  - (2) Wood: The behaviour of wood depends both on the species used and on the physical conditions of service. Aqueous solutions of some chemicals may cause more rapid degradation. Organic solvents may dissolve out resins, etc. Hydrogen peroxide (over 50 % w/w) produces a fire risk.



## APPENDIX D

## Physical Property Data Bank

Inorganic compounds are listed in alphabetical order of the principal element in the empirical formula.

Organic compounds with the same number of carbon atoms are grouped together, and arranged in order of the number of hydrogen atoms, with other atoms in alphabetical order.

NO = Number in list
MOLWT = Molecular weight

TFP = Normal freezing point, deg C
TBP = Normal boiling point, deg C
TC = Critical temperature, deg K
PC = Critical pressure, bar

VC = Critical volume, cubic metre/mol LDEN = Liquid density, kg/cubic metre

TDEN = Reference temperature for liquid density, deg C HVAP = Heat of vaporisation at normal boiling point, J/mol

VISA, VISB = Constants in the liquid viscosity equation:

LOG[viscosity] = [VISA] \* [(1/T) - (1/VISB)], viscosity mNs/sq.m, T deg K.

DELHF = Standard enthalpy of formation of vapour at 298 K, kJ/mol.

DELGF = Standard Gibbs energy of formation of vapour at 298 K, kJ/mol.

CPVAPA, CPVAPB, CPVAPC, CPVAPD = Constants in the ideal gas heat capacity equation:

 $\begin{aligned} & \text{Cp} = \text{CPVAPA} + (\text{CPVAPB}) * \text{T} + (\text{CPVAPC}) * \text{T} **2 + (\text{CPVAPD}) * \text{T} **3, \\ & \text{Cp} \quad \text{J/mol K, T deg K.} \end{aligned}$ 

ANTA, ANTB, ANTC = Constants in the Antione equation:

Ln (vapour pressure) = ANTA - ANTB/(T + ANTC), vap. press. mmHg, T deg K.

To convert mmHg to N/sq.m multiply by 133.32.

To convert degrees Celsius to Kelvin add 273.15.

TMN = Minimum temperature for Antoine constant, deg C

TMX = Maximum temperature for Antoine constant, deg C

Most of the values in this data bank were taken, with the permission of the publishers, from: The Properties of Gases and Liquids, by Reid, R. C., Sherwood, T. K. and Prausnitz, J. M., 3rd edn, McGraw-Hill.

| NO   | FORMULA | COMPOUND NAME           | MOLWT   | TFP    | ТВР    | TC    | PC    | ve    | LDEN | TDEN | HVAP   | NO |
|------|---------|-------------------------|---------|--------|--------|-------|-------|-------|------|------|--------|----|
| 1    | AR      | ARGON                   | 39.948  | -189.9 | -185.9 | 150.8 | 48.7  | 0.075 | 1373 | -183 | 6531   | 1  |
| 2    | BCL3    | BORON TRICHLORIDE       | 117.169 | -107.3 | 12.5   | 452.0 | 38.7  |       | 1350 | 11   |        | 2  |
| 3    | BF3     | BORON TRIFLUORIDE       | 67.805  | -126.7 | -99.9  | 260.8 | 49.9  |       |      |      |        | 3  |
| 4    | BR2     | BROMINE                 | 159.808 | -7.2   | 58.7   | 584.0 | 103.4 | 0.127 | 3119 | 20   | 30,187 | 4  |
| 5    | CLNO    | NITROSYL CHLORIDE       | 65.459  | -59.7  | -5.5   | 440.0 | 91.2  | 0.139 | 1420 | -12  | 25,707 | 5  |
| 6    | CL2     | CHLORINE                | 70.906  | -101.0 | -34.5  | 417.0 | 77.0  | 0.124 | 1563 | -34  | 20,432 | 6  |
| 7    | CL3P    | PHOSPHORUS TRICHLORIDE  | 137.333 | -112.2 | 75.8   | 563.0 |       | 0.260 | 1574 | 21   |        | 7  |
| 8    | CL4SI   | SILICON TETRACHLORIDE   | 169.898 | -68.9  | 57.2   | 507.0 | 37.5  | 0.326 | 1480 | 20   | 27,549 | 8  |
| 9    | D2      | DEUTERIUM               | 4.032   | -254.5 | -249.5 | 38.4  | 16.6  | 0.060 | 165  | -250 | 1223   | 9  |
| 10   | D2O     | DEUTERIUM OXIDE         | 20.031  | 3.8    | 101.4  | 644.0 | 216.6 | 0.056 | 1105 | 20   | 41,366 | 10 |
| 11   | F2      | FLUORINE                | 37.997  | -219.7 | -188.2 | 144.3 | 52.2  | 0.066 | 1510 | -188 | 6531   | 11 |
| 12   | F3N     | NITROGEN TRIFLUORIDE    | 71.002  | -206.8 | -129.1 | 234.0 | 45.3  |       | 1537 | -129 |        | 12 |
| 13   | F4SI    | SILICON TETRAFLUORIDE   | 104.080 | -90.2  | -86.2  | 259.0 | 37.2  |       | 1660 | -95  |        | 13 |
| 14   | F6S     | SULPHUR HEXAFLUORIDE    | 146.050 | -50.7  | -63.9  | 318.7 | 37.6  | 0.198 | 1830 | -50  | ,      | 14 |
| 15   | HBR     | HYDROGEN BROMIDE        | 80.912  | -86.1  | -67.1  | 363.2 | 85.5  | 0.100 | 2160 | -57  | 17,668 | 15 |
| 16   | HCL     | HYDROGEN CHLORIDE       | 36.461  | -114.2 | -85.1  | 324.6 | 83.1  | 0.081 | 1193 | -85  | 16,161 | 16 |
| 17   | HF      | HYDROGEN FLUORIDE       | 20.006  | -83.2  | 19.5   | 461.0 | 64.8  | 0.069 | 967  | 20   | 6699   | 17 |
| 18   | HI      | HYDROGEN IODIDE         | 127.912 | -50.8  | -35.6  | 424.0 | 83.1  | 0.131 | 2803 | -36  | 19,778 | 18 |
| 19   | H2      | HYDROGEN                | 2.016   | -259.2 | -252.8 | 33.2  | 13.0  | 0.065 | 71   | -253 | 904    | 19 |
| 20   | H2O     | WATER                   | 18.015  | 0.0    | 100.0  | 647.3 | 220.5 | 0.056 | 998  | 20   | 40,683 | 20 |
| 21   | H2S     | HYDROGEN SULPHIDE       | 34.080  | -85.6  | -60.4  | 373.2 | 89.4  | 0.099 | 993  | -60  | 18,673 | 21 |
| 22   | H3N     | AMMONIA                 | 17.031  | -77.8  | -33.5  | 405.6 | 112.8 | 0.073 | 639  | 0    | 23,362 | 22 |
| 23   | H3P     | PHOSPHINE               | 33.998  | -133.8 | -87.5  | 324.8 | 62.7  | 0.113 |      |      | 14,725 | 23 |
| 24   | H4N2    | HYDRAZINE               | 32.045  | 1.5    | 113.5  | 653.0 | 146.9 | 0.096 | 1008 | 20   | 44,799 | 24 |
| 25   | H4SI    | SILANE                  | 32.112  | -185.0 | -112.2 | 269.7 | 48.4  |       | 680  | 88   |        | 25 |
| 26   | HE(4)   | HELIUM-4                | 4.003   |        | -269.0 | 5.2   | 2.3   | 0.057 | 123  | -269 | 92     | 26 |
| 27   | 12      | IODINE                  | 253.808 | 113.6  | 184.3  | 819.0 | 116.5 | 0.155 | 3740 | 180  | 41,868 | 27 |
| 28   | KR      | KRYPTON                 | 83.800  | -157.4 | -153.4 | 209.4 | 55.0  | 0.091 | 2420 | -153 | 9667   | 28 |
| 29   | NO      | NITRIC OXIDE            | 30.006  | -163.7 | -151.8 | 180.0 | 64.8  | 0.058 | 1280 | -152 | 13,816 | 29 |
| 30   | NO2     | NITROGEN DIOXIDE        | 46.006  | -11.3  | 21.1   | 431.4 | 101.3 | 0.170 | 1447 | 20   | 19,071 | 30 |
| 31 - | N2      | NITROGEN                | 28.013  | -209.9 | -195.8 | 126.2 | 33.9  | 0.090 | 805  | -195 | 5581   | 31 |
| 32   | N2O     | NITROUS OXIDE           | 44.013  | -90.9  | -88.5  | 309.6 | 72.4  | 0.097 | 1226 | -90  | 16,559 | 32 |
| 33   | NE      | NEON                    | 20.183  | -248.7 | -246.2 | 44.4  | 27.6  | 0.042 | 1204 | -246 | 1842   | 33 |
| 34   | O2      | OXYGEN                  | 31.999  | -218.8 | -183.0 | 154.6 | 50.5  | 0.073 | 1149 | -183 | 6824   | 34 |
| 35   | O2S     | SULPHUR DIOXIDE         | 64.063  | -75.5  | -10.2  | 430.8 | 78.8  | 0.122 | 1455 | -10  | 24,932 | 35 |
| 36   | O3      | OZONE                   | 47.998  | -192.7 | -111.9 | 261.0 | 55.7  | 0.089 | 1356 | -112 | 11,179 | 36 |
| 37   | O3S     | SULPHUR TRIOXIDE        | 80.058  | 16.8   | 44.8   | 491.0 | 82.1  | 0.130 | 1780 | 45   | 40,679 | 37 |
| 38   | XE      | XENON                   | 131.300 | -111.9 | -108.2 | 289.7 | 58.4  | 0.118 | 3060 | -108 | 13,013 | 38 |
| 39   | CBRF3   | TRIFLUOROBROMOMETHANE   | 148.910 |        | -59.2  | 340.2 | 39.7  | 0.200 |      |      |        | 39 |
| 40   | CCLF3   | CHLOROTRIFLUOROMETHANE  | 104.459 | -181.2 | -81.5  | 302.0 | 39.2  | 0.180 |      |      | 15,516 | 40 |
| 41   | CCL2F2  | DICHLORODIFLUOROMETHANE | 120.914 | -157.8 | -29.8  | 385.0 | 41.2  | 0.217 | 1750 | -115 | 19,979 | 41 |
| 42   | CCL2O   | PHOSGENE                | 98.916  | -128.2 | 7.6    | 455.0 | 56.7  | 0.190 | 1361 | 20   | 24,409 | 42 |
| 43   | CCL3F   | TRICHLOROFLUOROMETHANE  | 137.368 | -111.2 | 23.8   | 471.2 | 44.1  | 0.248 |      |      | 24,786 | 43 |
| 44   | CCL4    | CARBON TETRACHLORIDE    | 153.823 | -23.2  | 76.5   | 556.4 | 45.6  | 0.276 | 1584 | 25   | 30,019 | 44 |
| 45   | CF4     | CARBON TETRAFLUORIDE    | 88.005  | -186.8 | -128.0 | 227.6 | 37.4  | 0.140 |      |      | 11,974 | 45 |
| 46   | CO      | CARBON MONOXIDE         | 28.010  | -205.1 | -191.5 | 132.9 | 35.0  | 0.093 | 803  | -192 | 6046   | 46 |
| 47   | COS     | CARBONYL SULPHIDE       | 60.070  | -138.9 | -50.3  | 375.0 | 58.8  | 0.140 | 1274 | -99  |        | 47 |
| 48   | CO2     | CARBON DIOXIDE          | 44.010  | -56.6  | -78.5  | 304.2 | 73.8  | 0.094 | 777  | 20   | 17,166 | 48 |
| 49   | CS2     | CARBON DISULPHIDE       | 76.131  | -111.9 | 46.2   | 552.0 | 79.0  | 0.170 | 1293 | 0    | 26,754 | 49 |
| 50   | CHBR3   | BROMOFORM               | 94.940  | -178.3 | 3.5    | 464.0 | 66.1  | 0.162 | 1733 | 0    | 24,241 | 50 |
|      |         |                         |         |        |        |       |       |       |      |      |        |    |

| NO       | VISA             | VISB             | DELHF            | DELGF    | CPVAPA | CPVAPB     | CPVAPC     | CPVAPD     | ANTA               | ANTB              | ANTC           | TMN          | TMX          | NO       |
|----------|------------------|------------------|------------------|----------|--------|------------|------------|------------|--------------------|-------------------|----------------|--------------|--------------|----------|
| 1 2      | 107.57           | 58.76            |                  |          | 20.804 | -3.211E-05 | 51.665E-09 |            | 15.2330            | 700.51            | -5.84          | -192         | -179         | 1        |
| 3        |                  |                  |                  |          |        |            |            |            |                    |                   |                |              |              | 2        |
| 4        | 387.82           | 292.79           |                  |          | 33.859 | 11.254E-03 | -1.192E-05 | 45.343E-10 | 15.8441            | 2582.32           | -51.56         | -14          | 81           | 4        |
| 5        |                  |                  | 52.63            | 66.99    | 34.097 | 44.715E-03 | -3.340E-05 | 10.149E-09 | 16.9505            | 2520.70           | -23.46         | -63          | 12           | 5        |
| 6        | 191.96           | 172.35           |                  |          | 26.929 | 33.838E-03 | -3.869E-05 | 15.470E-09 | 15.9610            | 1978.32           | -27.01         | -101         | _9           | 6        |
| 7        |                  |                  |                  |          |        |            |            |            |                    |                   |                |              |              | 7        |
| 8        |                  |                  |                  |          |        |            |            |            | 15.8019            | 2634.16           | -43.15         | -35          | 91           | 8        |
| 9        | 19.67            | 8.38             | 240.44           | ****     | 30.250 | -6.406E-03 | 11.698E-06 | -3.684E-09 | 13.2954            | 157.89            |                | -254         | -248         | 9        |
| 10       | 757.92<br>84.20  | 304.58           | -249.41          | -234.80  | 22.216 | 26.5600.02 | 2.4425.05  | 12.0115.00 |                    |                   |                |              |              | 10       |
| 11<br>12 | 84.20            | 52.52            | -124.68          | -127.19  | 23.216 | 36.568E-03 | -3.462E-05 | 12.041E-09 | 15.6700            | 714.10            | -6.00          | -214         | -182         | 11       |
| 13       |                  |                  | -124.08          | -127.19  |        |            |            |            | 15.6107            | 1155.69           | -15.37         | -170         | -118         | 12       |
| 14       | 251.29           | 180.75           | -1221.71         | -1117.88 |        |            |            |            | 19.3785            | 2524.78           | -11.16         | -114         | -53          | 13<br>14 |
| 15       | 88.08            | 166.32           | -36.26           | -53.30   | 30.647 | -9.462E-03 | 17.224E-06 | -6.238E-09 | 14.4687            | 1242.53           | -47.86         | -89          | -52          | 15       |
| 16       | 372.78           | 277.74           | -92.36           | -95.33   | 30.291 | -7.201E-03 | 12.460E-06 | -3.898E-09 | 16.5040            | 1714.25           | -14.45         | -136         | -73          | 16       |
| 17       | 438.74           | 199.62           | -271.30          | -273.40  | 29.061 | 66.110E-05 | -2.032E-06 | 25.037E-10 | 17.6958            | 3404.49           | 15.06          | -67          | 40           | 17       |
| 18       | 155.15           | 285.43           | 26.38            | 1.59     | 31.158 | -1.428E-02 | 29.722E-06 | -1.353E-08 | 12.9149            | 957.96            | -85.06         | -58          | -17          | 18       |
| 19       | 13.82            | 5.39             |                  |          | 27.143 | 92.738E-04 | -1.381E-05 | 76.451E-10 | 13.6333            | 164.90            | 3.19           | -259         | -248         | 19       |
| 20       | 658.25           | 283.16           | -242.00          | -228.77  | 32.243 | 19.238E-04 | 10.555E-06 | -3.596E-09 | 18.3036            | 3816.44           | -46.13         | 11           | 168          | 20       |
| 21       | 342.79           | 165.54           | -20.18           | -33.08   | 31.941 | 14.365E-04 | 24.321E-06 | -1.176E-08 | 16.1040            | 1768.69           | -26.06         | -83          | -43          | 21       |
| 22       | 349.02           | 169.63           | -45.72           | -16.16   | 27.315 | 23.831E-03 | 17.074E-06 | -1.185E-08 | 16.9481            | 2132.50           | -32.98         | -94          | -12          | 22       |
| 23       |                  |                  | 229.44           |          | 23.228 | 44.003E-03 | 13.029E-06 | -1.593E-08 |                    |                   |                |              |              | 23       |
| 24       | 524.98           | 290.88           | 95.25            | 158.64   | 9.768  | 18.945E-02 | -1.657E-04 | 60.248E-09 | 17.9899            | 3877.65           | -45.15         | 15           | 70           | 24       |
| 25       |                  |                  | 32.66            | 54.93    | 11.179 | 12.200E-02 | -5.548E-05 | 68.412E-10 | 16.3424            | 1629.99           | 5.35           | -111         | -179         | 25       |
| 26<br>27 | 559.62           | E20 EE           |                  |          | 25 502 | 65 147E 04 | ( 000E 0(  | 20.7455.10 | 12.2514            | 33.73             | 1.79           | -269         | -269         | 26       |
| 28       | 339.02           | 520.55           |                  |          | 35.592 | 65.147E-04 | -6.988E-06 | 28.345E-10 | 16.1597            | 3709.23           | -68.16         | 110          | 214          | 27       |
| 29       |                  |                  | 90.43            | 86.75    | 29.345 | -9.378E-04 | 97.469E-07 | -4.187E-09 | 15.2677<br>20.1314 | 958.75<br>1572.52 | -8.71<br>-4.88 | -160<br>-178 | -144<br>-133 | 28<br>29 |
| 30       | 406.20           | 230.21           | 33.87            | 52.00    | 24.233 | 48.358E-03 | -2.081E-05 | 29.308E-11 | 20.1314            | 4141.29           | 3.65           | -178<br>-43  | +133<br>47   | 30       |
| 31       | 90.30            | 46.14            |                  | 52.00    | 31.150 | -1.357E-02 | 26.796E-06 | -1.168E-08 | 14.9542            | 588.72            | -6.60          | -43<br>-219  | -183         | 31       |
| 32       |                  |                  | 81.60            | 103.71   | 21.621 | 72.808E-03 | -5.778E-05 | 18.301E-09 | 16.1271            | 1506.49           | -25.99         | -129         | -73          | 32       |
| 33       |                  |                  |                  |          | 20.786 |            |            | 1012012    | 14.0099            | 180.47            | -2.61          | -249         | -244         | 33       |
| 34       | 85.68            | 51.50            |                  |          | 28.106 | -3.680E-06 | 17.459E-06 | -1.065E-08 | 15.4075            | 734.55            | -6.45          | -210         | -173         | 34       |
| 35       | 397.85           | 208.42           | -297.05          | -300.36  | 23.852 | 66.989E-03 | -4.961E-05 | 13.281E-09 | 16.7680            | 2302.35           | 35.97          | -78          | 7            | 35       |
| 36       | 313.79           | 120.34           | 142.77           | 162.91   | 20.545 | 80.093E-03 | -6.243E-05 | 16.973E-09 | 15.7427            | 1272.18           | -22.16         | -164         | -99          | 36       |
| 37       | 1372.80          | 315.99           | -395.53          | -370.62  | 16.370 | 14.591E-02 | -1.120E-04 | 32.423E-09 | 20.8403            | 3995.70           | -36.66         | 17           | 59           | 37       |
| 38       |                  |                  |                  |          |        |            |            |            | 15.2958            | 1303.92           | 14.50          | -115         | -95          | 38       |
| 39       |                  |                  | -649.37          | -623.00  |        |            |            |            |                    |                   |                |              |              | 39       |
| 40       |                  |                  | -695.01          | -654.40  | 22.814 | 19.113E-02 | 1.576E-04  | 44.589E-09 |                    |                   |                |              |              | 40       |
| 41       | 215.09           | 165.55           | -481.48          | -442.54  | 31.598 | 17.823E-02 | -1.509E-04 | 43.417E-09 |                    |                   |                |              |              | 41       |
| 42       |                  |                  | -221.06          | -206.91  | 28.089 | 13.607E-02 | -1.374E-04 | 50.702E-09 | 15.7565            | 2167.31           | -43.15         | -60          | 68           | 42       |
| 43       |                  |                  | -284.70          | -245.51  | 40.985 | 16.308E-02 | -1.416E-04 | 41.462E-09 | 15.8516            | 2401.61           | -36.30         | -33          | 27           | 43       |
| 44       | 540.15           | 290.84           | -100.48          | -58.28   | 40.717 | 20.486E-02 | -2.270E-04 | 88.425E-09 | 15.8742            | 2808.19           | -45.99         | -20          | 101          | 44       |
| 45       | 0.4.0.4          |                  | -933.66          | -889.03  | 13.980 | 20.256E-02 | -1.625E-04 | 45.134E-09 | 16.0543            | 1244.55           | -13.06         | -180         | -125         | 45       |
| 46       | 94.06            | 48.90            | -110.62          | -137.37  | 30.869 | -1.285E-02 | 27.892E-06 | -1.272E-08 | 14.3686            | 530.22            | -13.15         | -210         | 165          | 46       |
| 47<br>48 | 570.00           | 105.24           | -138.50          | -165.76  | 23.567 | 79.842E-03 | -7.017E-05 | 24.535E-09 | 22 5000            | 2402.25           |                |              |              | 47       |
| 48<br>49 | 578.08<br>274.08 | 185.24<br>200.22 | -393.77          | -394.65  | 19.795 | 73.436E-03 | -5.602E-05 | 17.153E-09 | 22.5898            | 3103.39           | -0.16          | -119         | -69          | 48       |
| 50       | 274.08           | 200.22           | 117.15<br>-36.34 | 66.95    | 27.444 | 81.266E-03 | -7.666E-05 | 26.729E-09 | 15.9844            | 2690.85           | -31.62         | -45          | 69           | 49       |
| 50       |                  |                  | -30.34           |          |        |            |            |            | 15.7078            | 3163.17           | -72.18         | 101          | 30           | 50       |

| NO       | FORMULA            | COMPOUND NAME                                                                    | MOLWT              | TFP              | ТВР             | TC             | PC           | VC             | LDEN         | TDEN      | HVAP             | NO       |
|----------|--------------------|----------------------------------------------------------------------------------|--------------------|------------------|-----------------|----------------|--------------|----------------|--------------|-----------|------------------|----------|
| 51       | CHCLF2             | CHLORODIFLUOROMETHANE                                                            | 86.469             | -160.2           | -40.8           | 369.2          | 49.8         | 0.165          | 1230         | 16        | 20,205           | 51       |
| 52       | CHCL2F             | DICHLOROFLUOROMETHANE                                                            | 102.923            | -135.2           | 8.8             | 451.6          | 51.7         | 0.197          | 1380         | 9         | 24,953           | 52       |
| 53       | CHCL3              | CHLOROFORM                                                                       | 119.378            | -63.6            | 61.1            | 536.4          | 54.7         | 0.239          | 1489         | 20        | 29,726           | 53       |
| 54       | CHN                | HYDROGEN CYANIDE                                                                 | 27.026             | -13.3            | 25.7            | 456.8          | 53.9         | 0.139          | 688          | 20        | 25,234           | 54       |
| 55       | CH2BR2             | DIBROMOMETHANE                                                                   | 173.835            | -52.6            | 96.8            | 583.0          | 71.9         |                | 2500         | 20        |                  | 55       |
| 56       | CH2CL2             | DICHLOROMETHANE                                                                  | 84.993             | 95.1             | 39.8            | 510.0          | 60.8         | 0.193          | 1317         | 25        | 28,010           | 56       |
| 57       | CH2O               | FORMALDEHYDE                                                                     | 30.026             | -117.2           | -19.2           | 408.0          | 65.9         |                | 815          | -20       | 23,027           | 57       |
| 58       | CH2O2              | FORMIC ACID                                                                      | 46.025             | 8.3              | 100.6           | 580.0          |              |                | 1226         | 15        | 21,939           | 58       |
| 59       | CH3BR              | METHYL BROMIDE                                                                   | 94.939             | -93.7            | 3.5             | 464.0          | 86.1         |                | 1737         | -5        | 23,928           | 59       |
| 60       | CH3CL              | METHYL CHLORIDE                                                                  | 50.488             | -97.8            | -24.3           | 416.3          | 66.8         | 0.139          | 915          | 20        | 21,436           | 60       |
| 61       | CH3F               | METHYL FLUORIDE                                                                  | 34.033             | -141.8           | -78.4           | 317.8          | 58.8         | 0.124          | 843          | -60       | 27.214           | 61       |
| 62<br>63 | CH3I<br>CH3NO2     | METHYL IODIDE<br>NITROMETHANE                                                    | 141.939<br>61.041  | 66.5<br>28.6     | 42.4            | 528.0          | 65.9         | 0.190          | 2279         | 20        | 27,214           | 62       |
| 64       | CH3NO2<br>CH4      | METHANE                                                                          | 16.043             | -28.6<br>-182.5  | 101.2<br>-161.5 | 588.0<br>190.6 | 63.1<br>46.0 | 0.173<br>0.099 | 1138<br>425  | 20<br>161 | 34,436<br>8185   | 63<br>64 |
| 65       | CH4O               | METHANOL                                                                         | 32.042             | -162.3<br>97.7   | 64.6            | 512.6          | 81.0         | 0.099          | 791          | 20        | 35,278           | 65       |
| 66       | CH4S               | METHYL MERCAPTAN                                                                 | 48.107             | -123.2           | 5.9             | 470.0          | 72.3         | 0.116          | 866          | 20        | 24,577           | 66       |
| 67       | CH5N               | METHYL AMINE                                                                     | 31.058             | -93.5            | -6.4            | 430.0          | 74.6         | 0.140          | 703          | -14       | 26,000           | 67       |
| 68       | CH6N2              | METHYL HYDRAZINE                                                                 | 46.072             | 75.5             | 90.8            | 567.0          | 80.4         | 0.140          | 705          | -14       | 20,000           | 68       |
| 69       | CH6SI              | METHYL SILANE                                                                    | 46.145             | -156.5           | -57.6           | 352.5          | 00.4         | 0.271          |              |           |                  | 69       |
|          |                    |                                                                                  |                    |                  |                 |                | 21.6         | 0.252          |              |           | 10.460           |          |
| 70<br>71 | C2CLF5<br>C2CL2F4  | CHLOROPENTAFLUOROETHANE                                                          | 154.467            | -106.2           | -39.2           | 353.2          | 31.6         | 0.252          | 1455         | 25        | 19,469           | 70       |
| 71       | C2CL2F4<br>C2CL2F4 | 1;1-DICHLORO-1;2;2;2-TETRAFLUOROETHANE<br>1;2-DICHLORO-1;1;2;2-TETRAFLUOROETHANE | 170.992<br>170.922 | $-94.2 \\ -93.9$ | 3.8             | 418.6          | 33.0         | 0.294          | 1455         | 25        | 22.270           | 71       |
| 73       | C2CL2F4<br>C2CL3F3 | 1;2-DICHLORO-1;1;2;2-TETRAFLUOROETHANE                                           | 187.380            | -93.9<br>-35.0   | 3.7<br>47.5     | 418.9<br>487.2 | 32.6<br>34.1 | 0.293<br>0.304 | 1480<br>1580 | 4<br>16   | 23,279<br>27,507 | 72<br>73 |
| 74       | C2CL3F3            | TETRACHLOROETHYLENE                                                              | 165.834            | -33.0            | 121.1           | 620.0          | 34.1<br>44.6 | 0.304          | 1620         | 20        | 34,750           | 73<br>74 |
| 75       | C2CL4F2            | 1;1;2;2-TETRACHLORO-1;2-DIFLUOROETHANE                                           | 203.831            | 24.8             | 91.5            | 551.0          | 44.0         | 0.290          | 1645         | 25        | 34,730           | 74<br>75 |
| 76       | C2F4               | TETRAFLUOROETHYLENE                                                              | 100.016            | -142.5           | -75.7           | 306.4          | 39.4         | 0.175          | 1519         | -76       |                  | 76       |
| 77       | C2F6               | HEXAFLUOROETHANE                                                                 | 138.012            | -100.8           | -78.3           | 292.8          | 37.4         | 0.173          | 1590         | -78       | 16,161           | 77       |
| 78       | C2N2               | CYANOGEN                                                                         | 52.035             | -27.9            | -20.7           | 400.0          | 59.8         | 0.224          | 1390         | -76       | 10,101           | 78       |
| 79       | C2HCL3             | TRICHLOROETHYLENE                                                                | 131.389            | -116.4           | 87.2            | 571.0          | 49.1         | 0.256          | 1462         | 20        | 31.401           | 79       |
| 80       | C2HF3O2            | TRIFLUROROACETIC ACID                                                            | 114.024            | -15.3            | 72.4            | 491.3          | 32.6         |                | 1535         | 0         | ,                | 80       |
| 81       | C2H2               | ACETYLENE                                                                        | 26.038             | -80.8            | -84.0           | 308.3          | 61.4         | 0.113          | 615          | -84       | 16,957           | 81       |
| 82       | C2H2F2             | 1;1-DIFLUOROETHYLENE                                                             | 64.035             |                  |                 | 302.8          | 44.6         | 0.154          |              |           |                  | 82       |
| 83       | C2H2O              | KETENE                                                                           | 42.038             | -135.2           | -41.2           | 380.0          | 64.8         | 0.145          |              |           | 20,641           | 83       |
| 84       | C2H3CL             | VINYL CHLORIDE                                                                   | 62.499             | -153.8           | -13.4           | 429.7          | 56.0         | 0.169          | 969          | -14       | 20,641           | 84       |
| 85       | C2H3CLF2           | 1-CHLORO-1;1-DIFLUOROETHANE                                                      | 100.490            | -131.2           | -9.8            | 410.2          | 41.2         | 0.231          | 1100         | 30        |                  | 85       |
| 86       | C2H3CLO            | ACETYL CHLORIDE                                                                  | 78.498             | -113.0           | 50.7            | 508.0          | 58.8         | 0.204          | 1104         | 20        | 28,680           | 86       |
| 87       | C2H3CL3            | 1;1;2-TRICHLOROETHANE                                                            | 133.400            | -36.7            | 113.7           | 602.0          | 41.5         | 0.294          | 1441         | 20        | 33,327           | 87       |
| 88       | C2H3F              | VINYL FLUORIDE                                                                   | 46.044             | -143.2           | -37.7           | 327.8          | 52.4         | 0.144          |              |           |                  | 88       |
| 89       | C2H3F3             | 1;1;1-TRIFLUOROETHANE                                                            | 84.041             | -111.3           | -47.7           | 346.2          | 37.6         | 0.221          |              |           | 19,176           | 89       |
| 90       | C2H3N              | ACETONITRILE                                                                     | 41.053             | 43.9             | 81.6            | 548.0          | 48.3         | 0.173          | 782          | 20        | 31,401           | 90       |
| 91       | C2H3NO             | METHYL ISOCYANATE                                                                | 57.052             | 160.0            | 38.8            | 491.0          | 55.7         | 0.120          | 958          | 20        | 29,601           | 91       |
| 92<br>93 | C2H4               | ETHYLENE                                                                         | 28.054             | -169.2           | -103.8          | 282.4          | 50.4         | 0.129          | 577          | -110      | 13,553           | 92       |
| 93<br>94 | C2H4CL2<br>C2H4CL2 | 1;1-DICHLOROETHANE<br>1:2-DICHLOROETHANE                                         | 98.960<br>98.960   | 97.0<br>35.7     | 57.2<br>83.4    | 523.0<br>561.0 | 50.7         | 0.240          | 1168         | 25        | 28,721           | 93       |
| 95       | C2H4CL2<br>C2H4F2  | 1:1-DIFLUOROETHANE                                                               | 66.051             | -33.7<br>-117.0  | -24.8           | 386.6          | 53.7<br>45.0 | 0.220<br>0.181 | 1250         | 16        | 32,029<br>21,353 | 94<br>95 |
| 96       | C2H4F2<br>C2H4O    | ACETALDEHYDE                                                                     | 44.054             | -117.0           | 20.4            | 461.0          | 55.7         | 0.151          | 778          | 20        | 25,749           | 95<br>96 |
| 97       | C2H4O              | ETHYLENE OXIDE                                                                   | 44.054             | -112.2           | 10.3            | 469.0          | 71.9         | 0.134          | 899          | 0         | 25,623           | 90<br>97 |
| 98       | C2H4O2             | ACETIC ACID                                                                      | 60.052             | 16.6             | 117.9           | 594.4          | 57.9         | 0.140          | 1049         | 20        | 23,623           | 98       |
| 99       | C2H4O2             | METHYL FORMATE                                                                   | 60.052             | -99.0            | 31.7            | 487.2          | 60.0         | 0.171          | 974          | 20        | 28,219           | 99       |
| 100      | C2H5BR             | ETHYL BROMIDE                                                                    | 108.966            | -118.6           | 38.3            | 503.8          | 62.3         | 0.172          | 1451         | 25        | 26,502           | 100      |
|          |                    |                                                                                  |                    |                  | 20.0            | 505.0          | 02.5         | 0.2.5          | 1 101        |           | 20,502           | .00      |

| NO  | VISA   | VISB   | DELHF    | DELGF    | CPVAPA | CPVAPB     | CPVAPC     | CPVAPD     | ANTA    | ANTB    | ANTC   | TMN  | TMX  | NO  |
|-----|--------|--------|----------|----------|--------|------------|------------|------------|---------|---------|--------|------|------|-----|
| 51  |        |        | -502.00  | -470.89  | 17.300 | 16.182E-02 | -1.170E-04 | 30.585E-09 | 15.5602 | 1704.80 | -41.30 | -48  | -33  | 51  |
| 52  |        |        | -298.94  | -268.37  | 23.664 | 15.814E-02 | -1.200E-04 | 32.636E-09 |         |         |        |      |      | 52  |
| 53  | 394.81 | 246.50 | -101.32  | -68.58   | 24.003 | 18.933E-02 | -1.841E-04 | 66.570E-09 | 15.9732 | 2696.79 | -46.16 | -13  | 97   | 53  |
| 54  | 194.70 | 145.31 | 130.63   | 120.20   | 21.863 | 60.625E-03 | -4.961E-05 | 18.154E-09 | 16.5138 | 2585.80 | -37.15 | 39   | 57   | 54  |
| 55  | 428.91 | 294.57 | -4.19    | -5.61    |        |            |            |            |         |         |        |      |      | 55  |
| 56  | 359.55 | 225.13 | -95.46   | -68.91   | 12.954 | 16.232E-02 | -1.302E-04 | 42.077E-09 | 16.3029 | 2622.44 | -41.70 | 44   | 59   | 56  |
| 57  | 319.83 | 171.35 | -115.97  | -109.99  | 23.475 | 31.568E-03 | 29.852E-06 | -2.300E-08 | 16.4775 | 2204.13 | -30.15 | -88  | -2   | 57  |
| 58  | 729.35 | 325.72 | -378.86  | -351.23  | 11.715 | 13.578E-02 | -8.411E-05 | 20.168E-09 | 16.9882 | 3599.58 | -26.09 | -2   | 136  | 58  |
| 59  | 298.15 | 211.15 | -37.68   | -28.18   | 14.428 | 10.911E-02 | -5.401E-05 | 95.836E-10 | 16.0252 | 2271.71 | -34.83 | -58  | 53   | 59  |
| 60  | 426.45 | 193.56 | -86.37   | -62.93   | 13.875 | 10.140E-02 | -3.889E-05 | 25.665E-10 | 16.1052 | 2077.97 | -29.55 | -93  | -7   | 60  |
| 61  |        |        | -234.04  | -210.14  | 13.825 | 86.164E-03 | -2.071E-05 | -1.985E-09 | 16.3428 | 1704.41 | -19.27 | -132 | -64  | 61  |
| 62  | 336.19 | 229.95 | 13.98    | 15.66    | 10.806 | 13.892E-02 | 1.041E-04  | 34.855E-09 | 16.0905 | 2629.55 | -36.50 | -13  | 52   | 62  |
| 63  | 452.80 | 261.21 | -74.78   | -6.95    | 7.423  | 19.778E-02 | -1.081E-04 | 20.850E-09 | 16.2193 | 2972.64 | -64.15 | 5    | 136  | 63  |
| 64  | 114.14 | 57.60  | -74.86   | -50.87   | 19.251 | 52.126E-03 | 11.974E-06 | -1.132E-08 | 15.2243 | 597.84  | -7.16  | -180 | -153 | 64  |
| 65  | 555.30 | 260.64 | -201.30  | -162.62  | 21.152 | 70.924E-03 | 25.870E-06 | -2.852E-08 | 18.5875 | 3626.55 | -34.29 | -16  | 91   | 65  |
| 66  |        |        | -22.99   | -9.92    | 13.268 | 14.566E-02 | -8.545E-05 | 20.750E-09 | 16.1909 | 2338.38 | -34.44 | -73  | 27   | 66  |
| 67  | 311.80 | 176.30 | -23.03   | 32.28    | 11.476 | 14.273E-02 | -5.334E-05 | 47.520E-10 | 17.2622 | 2484.83 | -32.92 | -61  | 38   | 67  |
| 68  |        |        | 85.41    | 177.98   |        |            |            |            | 15.1424 | 2319.84 | -91.70 | -3   | 127  | 68  |
| 69  |        |        |          |          |        |            |            |            |         |         |        |      |      | 69  |
| 70  |        |        |          |          | 27.834 | 34.918E-02 | -2.891E-04 | 81.391E-09 | 15.7343 | 1848.90 | -30.88 | -98  | -43  | 70  |
| 71  |        |        |          |          | 40.453 | 32.783E-02 | -2.752E-04 | 78.209E-09 |         |         |        |      |      | 71  |
| 72  |        |        | -898.49  |          | 38.778 | 34.399E-02 | -2.950E-04 | 85.076E-09 |         |         |        |      |      | 72  |
| 73  |        |        | -745.67  |          | 61.140 | 28.742E-02 | -2.420E-04 | 69.040E-09 | 15.8424 | 2532.61 | -45.67 | -23  | 87   | 73  |
| 74  | 392.58 | 281.82 | -12.14   | 22.61    | 45.971 | 22.554E-02 | -2.294E-04 | 83.820E-09 | 16.1642 | 3259.29 | -52.15 | 34   | 187  | 74  |
| 75  |        |        |          |          |        |            |            |            |         |         |        |      |      | 75  |
| 76  |        |        | -659.00  | -624.13  | 29.010 | 22.772E-02 | -2.037E-04 | 67.784E-09 | 15.8800 | 1574.60 | -27.22 | -133 | -63  | 76  |
| 77  |        |        | -1343.96 | -1258.22 | 26.816 | 34.579E-02 | 2.869E-04  | 81.350E-09 | 15.6422 | 1512.94 | -26.94 | -103 | -73  | 77  |
| 78  |        |        | 309.15   | 297.39   | 35.935 | 92.528E-03 | -8.223E-05 | 29.496E-09 |         |         |        |      |      | 78  |
| 79  | 145.67 | 196.60 | -5.86    | 19.89    | 30.174 | 22.868E-02 | -2.229E-04 | 82.438E-09 | 16.1827 | 3028.13 | -43.15 | -13  | 127  | 79  |
| 80  |        |        |          |          |        |            |            |            |         |         |        |      |      | 80  |
| 81  |        |        | 226.88   | 209.34   | 26.821 | 75.781E-03 | -5.007E-05 | 14.122E-09 | 16.3481 | 1637.14 | -19.77 | -79  | -71  | 81  |
| 82  |        |        | -345.41  | -321.71  | 3.073  | 24.447E-02 | -2.099E-04 | 70.213E-09 |         |         |        |      |      | 82  |
| 83  |        |        | -61.13   | -60.33   | 6.385  | 16.383E-02 | -1.084E-04 | 26.984E-09 | 16.0197 | 1849.21 | -35.15 | -103 | -18  | 83  |
| 84  | 276.90 | 167.04 | 35.17    | 51.54    | 5.949  | 20.193E-02 | -1.536E-04 | 47.730E-09 | 14.9601 | 1803.84 | -43.15 | -88  | 17   | 84  |
| 85  |        |        |          |          | 16.818 | 27.566E-02 | -1.992E-04 | 53.047E-09 |         |         |        |      |      | 85  |
| 86  |        |        | -244.09  | -206.37  | 25.020 | 17.107E-02 | -9.856E-05 | 22.190E-09 | 15.7514 | 2447.33 | -55.53 | -36  | 82   | 86  |
| 87  | 346.72 | 304.43 | -138.58  | -77.54   | 6.322  | 34.307E-02 | -2.958E-04 | 97.929E-09 | 16.0381 | 3110.79 | -56.16 | 29   | 155  | 87  |
| 88  |        |        |          |          |        |            |            |            |         |         |        |      |      | 88  |
| 89  |        |        | -746.09  | -679.22  | 5.744  | 31.409E-02 | -2.597E-04 | 84.155E-09 | 15.8965 | 1814.91 | -29.92 | -3   | 27   | 89  |
| 90  | 334.91 | 210.05 | 87.92    | 105.67   | 20.482 | 10.831E-02 | -4.492E-05 | 32.029E-10 | 16.2874 | 2945.47 | -49.15 | -13  | 117  | 90  |
| 91  | 616.78 | 227.47 | -90.02   |          | 35.764 | 10.396E-02 | -5.820E-06 | -1.687E-08 | 16.3258 | 2480.37 | -56.31 | -43  | 67   | 91  |
| 92  | 168.98 | 93.94  | 52.33    | 68.16    | 3.806  | 15.659E-02 | -8.348E-05 | 17.551E-09 | 15.5368 | 1347.01 | -18.15 | -153 | -91  | 92  |
| 93  | 412.27 | 239.10 | -130.00  | -73.14   | 12.472 | 26.959E-02 | -2.050E-04 | 63.011E-09 | 16.0842 | 2697.29 | 45.03  | -31  | 79   | 93  |
| 94  | 473.95 | 277.98 | -129.79  | -73.90   | 20.486 | 23.103E-02 | -1.438E-04 | 33.888E-09 | 16.1764 | 2927.17 | -50.22 | -33  | 100  | 94  |
| 95  | 319.27 | 186.56 | -494.04  | -436.52  | 8.675  | 23.957E-02 | -1.457E-04 | 33.942E-09 | 16.1871 | 2095.35 | -29.16 | -35  | 0    | 95  |
| 96  | 368.70 | 192.82 | -166.47  | -133.39  | 7.716  | 18.225E-02 | -1.007E-04 | 23.802E-09 | 16.2418 | 2465.15 | -37.15 | -63  | 47   | 96  |
| 97  | 341.88 | 194.22 | -52.67   | -13.10   | -7.519 | 22.224E-02 | -1.256E-04 | 25.916E-09 | 16.7400 | 2567.61 | -29.01 | -73  | 37   | 97  |
| 98  | 600.94 | 306.21 | -435.13  | -376.94  | 4.840  | 25.485E-02 | -1.753E-04 | 49.488E-09 | 16.8080 | 3405.57 | -56.34 | 17   | 157  | 98  |
| 99  | 363.19 | 212.70 | -350.02  | -297.39  | 1.432  | 27.001E-02 | -1.949E-04 | 57.024E-09 | 16.5104 | 2590.87 | -42.60 | -48  | 51   | 99  |
| 100 | 369.80 | 220.68 | -64.06   | -26.33   | 6.657  | 23.480E-02 | -1.472E-04 | 38.041E-09 | 15.9338 | 2511.68 | -41.44 | -47  | 60   | 100 |

| NO    | FORMULA | COMPOUND NAME          | MOLWT   | TFP    | TBP   | TC    | PC   | VC    | LDEN | TDEN | HVAP   | NO  |
|-------|---------|------------------------|---------|--------|-------|-------|------|-------|------|------|--------|-----|
| 101   | C2H5CL  | ETHYL CHLORIDE         | 64.515  | -136.4 | 12.2  | 460.4 | 52.7 | 0.199 | 896  | 20   | 24,702 | 101 |
| 102   | C2H5F   | ETHYL FLUORIDE         | 48.060  | -143.3 | -37.8 | 375.3 | 50.3 | 0.169 |      |      |        | 102 |
| 103   | C2H5N   | ETHYLENE IMIDE         | 43.069  | -78.2  | 56.6  |       |      |       | 833  | 25   | 32,071 | 103 |
| 104   | C2H5NO2 | NITROETHANE            | 75.068  | -89.2  | 114.0 | 595.0 | 48.5 | 0.228 | 1047 | 20   | 35,994 | 104 |
| 105   | C2H6    | ETHANE                 | 30.070  | -183.3 | -88.7 | 305.4 | 48.8 | 0.148 | 548  | -90  | 14,717 | 105 |
| 106   | C2H6O   | DIMETHYL ETHER         | 46.069  | -141.5 | -24.9 | 400.0 | 53.7 | 0.178 | 667  | 20   | 21,520 | 106 |
| 107   | C2H6O   | ETHANOL                | 46.069  | -114.1 | 78.3  | 516.2 | 63.8 | 0.167 | 789  | 20   | 38,770 | 107 |
| 108   | C2H6O2  | ETHYLENE GLYCOL        | 62.069  | -13.0  | 197.2 | 645.0 | 77.0 | 0.186 | 1114 | 20   | 52,544 | 108 |
| 109   | C2H6S   | ETHYL MERCAPTAN        | 62.134  | 147.9  | 35.0  | 499.0 | 54.9 | 0.207 | 839  | 20   | 26,796 | 109 |
| 110   | C2H6S   | DIMETHYL SULPHIDE      | 62.130  | -98.3  | 37.3  | 503.0 | 55.3 | 0.201 | 848  | 20   | 26,963 | 110 |
| 111   | C2H7N   | ETHYL AMINE            | 45.085  | -81.2  | 16.5  | 456.0 | 56.2 | 0.178 | 683  | 20   | 28.052 | 111 |
| 112   | C2H7N   | DIMETHYL AMIDE         | 45.085  | -92.2  | 6.8   | 437.6 | 53.1 | 0.187 | 656  | 20   | 26,502 | 112 |
| 113   | C2H7NO  | MONOETHANOLAMINE       | 61.084  | 10.3   | 170.3 | 614.0 | 44.6 | 0.196 | 1016 | 20   | 50,242 | 113 |
| 114   | C2H8N2  | ETHYLENEDIAMINE        | 60.099  | 10.8   | 117.2 | 593.0 | 62.8 | 0.206 | 896  | 20   | 41,868 | 114 |
| 115   | C3H3N   | ACRYLONITRILE          | 53.064  | -83.7  | 77.3  | 536.0 | 35.5 | 0.210 | 806  | 20   | 32,657 | 115 |
| 116   | C3H4    | PROPADIENE             | 40.065  | -136.3 | -34.5 | 393.0 | 54.7 | 0.162 | 658  | -35  | 18,631 | 116 |
| 117   | C3H4    | METHYL ACETYLENE       | 40.065  | -102.7 | -23.2 | 402.4 | 56.2 | 0.164 | 706  | -50  | 22,148 | 117 |
| 118   | C3H4O   | ACROLEIN               | 56.064  | -87.2  | 52.8  | 506.0 | 51.7 |       | 839  | 20   | 28,345 | 118 |
| . 119 | C3H4O2  | ACRYLIC ACID           | 72.064  | 11.8   | 140.8 | 615.0 | 56.7 | 0.210 | 1051 | 20   | 46,055 | 119 |
| 120   | C3H4O2  | VINYL FORMATE          | 72.064  | -57.7  | 46.4  | 475.0 | 57.8 | 0.210 | 963  | 20   | 32,155 | 120 |
| 121   | C3H5CL  | ALLYL CHLORIDE         | 76.526  | -134.5 | 45.1  | 514.0 | 47.6 | 0.234 | 937  | 20   | 27,110 | 121 |
| 122   | C3H5CL3 | 1;2;3-TRICHLOROPROPANE | 147.432 | -14.7  | 155.8 | 651.0 | 39.5 | 0.348 | 1389 | 20   | 38,435 | 122 |
| 123   | C3H5N   | PROPIONITRILE          | 55.080  | -92.7  | 97.3  | 564.4 | 41.8 | 0.230 | 782  | 20   | 32,280 | 123 |
| 124   | C3H6    | CYCLOPROPANE           | 42.081  | -127.5 | -32.8 | 397.8 | 54.9 | 0.170 | 563  | 15   | 20,055 | 124 |
| 125   | C3H6    | PROPYLENE              | 42.081  | -185.3 | -47.8 | 365.0 | 46.2 | 0.181 | 612  | -50  | 18,422 | 125 |
| 126   | C3H6CL2 | 1;2-DICHLOROPROPANE    | 112.987 | -100.5 | 96.3  | 577.0 | 44.6 | 0.226 | 1150 | 20   | 31,401 | 126 |
| 127   | C3H6O   | ACETONE                | 58.080  | -95.0  | 56.2  | 508.1 | 47.0 | 0.209 | 790  | 20   | 29,140 | 127 |
| 128   | C3H6O   | ALLYL ALCOHOL          | 58.080  | -129.2 | 96.8  | 545.0 | 57.1 | 0.203 | 855  | 15   | 39,984 | 128 |
| 129   | C3H6O   | PROPIONALDEHYDE        | 58.080  | -80.2  | 47.8  | 496.0 | 47.6 | 0.223 | 797  | 20   | 28,303 | 129 |
| 130   | C3H6O   | PROPYLENE OXIDE        | 58.080  | -112.2 | 34.3  | 482.2 | 49.2 | 0.186 | 829  | 20   | 27,005 | 130 |
| 131   | C3H6O   | VINYL METHYL ETHER     | 58.080  | -121.7 | 4.8   | 436.0 | 47.6 | 0.205 | 750  | 20   | 19,050 | 131 |
| 132   | C3H6O2  | PROPIONIC ACID         | 74.080  | -20.7  | 140.8 | 612.0 | 53.7 | 0.230 | 993  | 20   | 32,238 | 132 |
| 133   | C3H6O2  | ETHYL FORMATE          | 74.080  | -79.4  | 54.2  | 508.4 | 47.4 | 0.229 | 927  | 16   | 30,145 | 133 |
| 134   | C3H6O2  | METHYL ACETATE         | 74.080  | -98.2  | 56.9  | 506.8 | 46.9 | 0.228 | 934  | 20   | 30,145 | 134 |
| 135   | C3H7CL  | PROPYL CHLORIDE        | 78.542  | -122.8 | 46.4  | 503.0 | 45.8 | 0.254 | 891  | 20   | 27,256 | 135 |
| 136   | C3H7CL  | ISOPROPYL CHLORIDE     | 78.452  | -117.2 | 35.7  | 485.0 | 47.2 | 0.230 | 862  | 20   | 26,293 | 136 |
| 137   | C3H8    | PROPANE                | 44.097  | -187.7 | -42.1 | 369.8 | 42.5 | 0.203 | 582  | -42  | 18,786 | 137 |
| 138   | C3H8O   | N-PROPYL ALCOHOL       | 60.096  | -126.3 | 97.2  | 536.7 | 51.7 | 0.219 | 804  | 20   | 41,784 | 138 |
| 139   | C3H8O   | ISOPROPYL ALCOHOL      | 60.096  | -88.5  | 82.2  | 508.3 | 47.6 | 0.220 | 786  | 20   | 39,858 | 139 |
| 140   | C3H8O   | METHYL ETHYL ETHER     | 60.096  | -139.2 | 7.3   | 437.8 | 44.0 | 0.221 | 700  | 20   | 24,702 | 140 |
| 141   | C3H8O2  | METHYLAL               | 76.096  | -105.2 | 41.8  | 497.0 |      |       | 888  | 18   |        | 141 |
| 142   | C3H8O2  | 1;2-PROPANEDIOL        | 76.096  | -60.2  | 187.3 | 625.0 | 60.8 | 0.237 | 1036 | 20   | 54,177 | 142 |
| 143   | C3H8O2  | 1;3-PROPANEDIOL        | 76.096  | -26.8  | 214.4 | 658.0 | 59.8 | 0.241 | 1053 | 20   | 56,522 | 143 |
| 144   | C3H8O3  | GLYCEROL               | 92.095  | 17.8   | 289.8 | 726.0 | 66.9 | 0.255 | 1261 | 20   | 61,127 | 144 |
| 145   | C3H8S   | METHYL ETHYL SULPHIDE  | 76.157  | -106.0 | 66.6  | 533.0 | 42.6 |       | 837  | 20   | 29,517 | 145 |
| 146   | C3H9N   | N-PROPYL AMINE         | 59.112  | -83.2  | 48.6  | 497.0 | 47.4 | 0.233 | 717  | 20   | 29,726 | 146 |
| 147   | C3H9N   | ISOPROPYL AMINE        | 59.112  | -95.3  | 32.4  | 476.0 | 50.7 | 0.229 | 688  | 20   | 27,214 | 147 |
| 148   | C3H9N   | TRIMETHYL AMINE        | 59.112  | -117.2 | 2.9   | 433.2 | 40.7 | 0.254 | 633  | 20   | 24,116 | 148 |
| 149   | C4H2O3  | MALEIC ANHYDRIDE       | 98.058  | 52.8   | 199.6 |       |      |       | 1310 | 60   |        | 149 |
| 150   | C4H4    | VINYL ACETYLENE        | 52.076  | -45.6  | 4.9   | 455.0 | 49.6 | 0.202 | 710  | 0    | 24,493 | 150 |
|       |         |                        |         |        |       |       |      |       |      |      |        |     |

| NO  | VISA    | VISB   | DELHF   | DELGF           | CPVAPA  | CPVAPB                   | CPVAPC                   | CPVAPD      | ANTA               | ANTB               | ANTC             | TMN         | TMX          | NO         |
|-----|---------|--------|---------|-----------------|---------|--------------------------|--------------------------|-------------|--------------------|--------------------|------------------|-------------|--------------|------------|
| 101 | 320.94  | 190.83 | -111.79 | -60.04          | -0.553  | 26.063E-02               | -1.840E-04               | 55.475E-09  | 15.9800            | 2332.01            | -36.48           | -73         | 37           | 101        |
| 102 |         | 170100 | -261.67 | -209.67         | 4.346   | 21.801E-02               | -1.166E-04               | 24.103E-09  | 16.0686            | 1966.89            | -27.00           | -103        | -21          | 102        |
| 103 |         |        | 123.51  | 178.11          | -20.771 | 30.225E-02               | -2.063E-04               | 56.480E-09  | 16.4227            | 2610.44            | -63.15           | -25         | 86           | 103        |
| 104 |         |        | -101.32 |                 |         | 5012252 02               | 2.0002                   | 50.1002 07  | 17.4716            | 3848.24            | -31.96           | 114         | -21          | 104        |
| 105 | 156.60  | 95.57  | -84.74  | -32.95          | 5.409   | 17.811E-02               | -6.938E-05               | 87.127E-10  | 15.6637            | 1511.42            | -17.16           | -143        | -74          | 105        |
| 106 |         |        | -184.18 | -113.00         | 17.015  | 17.907E-02               | -5.233E-05               | -1.918E-09  | 16.8467            | 2361.44            | -17.10           | -94         | -8           | 106        |
| 107 | 686.64  | 300.88 | -234.96 | -168.39         | 9.014   | 21.407E-02               | -8.390E-05               | 13.733E-10  | 18.9119            | 3803.98            | -41.68           | -3          | 96           | 107        |
| 108 | 1365.00 | 402.41 | -389.58 | -304.67         | 35.697  | 24.832E-02               | -1.497E-04               | 30.103E-09  | 20.2501            | 6022.18            | -28.25           | 91          | 221          | 108        |
| 109 | 419.60  | 206.21 | -46.14  | -4.69           | 14.922  | 23.509E-02               | -1.369E-04               | 31.619E-09  | 16.0077            | 2497.23            | -41.77           | -49         | 57           | 109        |
| 110 | 267.34  | 184.24 | -37.56  | 6.95            | 24.304  | 18.748E-02               | -6.875E-05               | 40.989E-10  | 16.0001            | 2511.56            | -42.35           | -47         | 58           | 110        |
| 111 | 340.54  | 192.44 | -46.05  | 37.30           | 3.693   | 27.516E-02               | -1.583E-04               | 38.083E-09  | 17.0073            | 2616.73            | -37.30           | -58         | 43           | 111        |
| 112 |         |        | -18.84  | 68.04           | -0.172  | 26.955E-02               | -1.329E-04               | 23.392E-09  | 16.2653            | 2358.77            | -35.15           | -55         | 37           | 112        |
| 113 | 1984.10 | 367.03 | -201.72 |                 | 9.311   | 30.095E-02               | -1.818E-04               | 46.557E-09  | 17.8174            | 3988.33            | -86.93           | 71          | 204          | 113        |
| 114 | 839.76  | 316.41 |         |                 | 38.297  | 24.070E-02               | -4.338E-05               | -3.948E-08  | 16.4082            | 3108.49            | -72.15           | 19          | 152          | 114        |
| 115 | 343.31  | 210.42 | 185.06  | 195.44          | 10.693  | 22.077E-02               | -1.565E-04               | 46.013E-09  | 15.9253            | 2782.21            |                  |             |              |            |
| 116 | 343.31  | 210.42 | 192.26  | 202.52          | 9.906   | 19.774E-02               | -1.182E-04               | 27.821E-09  |                    |                    | -51.15           | -18<br>-99  | 112<br>-16   | 115        |
| 117 |         |        | 185.56  | 194.56          | 14.708  | 19.774E-02<br>18.644E-02 | -1.174E-04               | 32.243E-09  | 13.1563<br>15.6227 | 1054.72<br>1850.66 | -77.08<br>-44.07 |             |              | 116        |
| 118 | 388.17  | 217.14 | ~70.92  | -65.19          | 11.970  | 21.055E-02               | -1.071E-04               | 19.058E-09  | 15.0227            | 2606.53            | -44.07<br>-45.15 | -90<br>-38  | -6<br>87     | 117<br>118 |
| 119 | 733.02  | 307.15 | -336.45 | -286.25         | 1.742   | 31.908E-02               | -2.352E-04               | 69.752E-09  | 16.5617            |                    |                  |             | 177          | 119        |
| 120 | 428.40  | 224.83 | -330.43 | -200.23         | 27.813  | 18.388E-02               | -2.552E-04<br>-3.560E-05 | -2.335E-07  | 16.6531            | 3319.18<br>2569.68 | -80.15 $-63.15$  | 42<br>-33   | 77           | 120        |
| 121 | 368.27  | 210.61 | -0.63   | 43.63           | 2.529   | 30.467E-02               | -2.278E-04               | 72.934E-09  | 15.9772            | 2531.92            | -03.13<br>-47.15 | -33<br>-43  | 77           | 120        |
| 122 | 818.63  | 342.88 | -185.89 | -97.85          | 26.883  | 36.220E-02               | -2.787E-04               | 87.881E-09  | 16.1246            | 3417.27            | -47.13<br>-69.15 | -43<br>42   | 197          | 121        |
| 123 | 366.77  | 225.86 | 50.66   | -97.83<br>96.21 | 15.403  | 22.454E-02               | -2.787E-04<br>-1.100E-04 | 19.540E-09  | 15.9571            | 2940.86            | -69.13<br>-55.15 | -3          | 132          | 123        |
| 124 | .500.77 | 223.60 | 53.34   | 104.46          | -35.240 | 38.133E-02               | -2.881E-04               | 90.351E-09  | 15.8599            | 1971.04            | -33.13<br>-26.65 | -93         | -28          | 123        |
| 125 | 273.84  | 131.63 | 20.43   | 62.76           | 3.710   | 23.454E-02               | -2.001E-04<br>-1.160E-04 | 22.048E-09  | 15.7027            | 1807.53            | -26.65<br>-26.15 | -93<br>-113 | $-28 \\ -33$ | 124        |
| 126 | 514.36  | 281.03 | -165.80 | -83.15          | 10.450  | 36.547E-02               | -2.604E-04               | 77.414E-09  | 16.0385            | 2985.07            | -20.13<br>-52.16 | 15          | -33<br>135   | 125        |
| 127 | 367.25  | 209.68 | -217.71 | -153.15         | 6.301   | 26.059E-02               | -1.253E-04               | 20.377E-09  | 16.6513            | 2940.46            | -35.93           | -32         | 77           | 120        |
| 128 | 793.52  | 307.26 | -132.09 | -71.30          | -1.105  | 31.464E-02               | -2.032E-04               | 53.214E-09  | 16.9066            | 2928.20            | -85.15           | -32<br>13   | 127          | 127        |
| 129 | 343.44  | 219.33 | -192.17 | -130.54         | 11.723  | 26.142E-02               | -1.300E-04               | 21.261E-09  | ·16.2315           | 2659.02            | -83.13<br>-44.15 | -38         | 77           | 128        |
| 130 | 377.43  | 213.36 | -92.82  | -25.79          | -8.457  | 32.569E-02               | -1.989E-04               | 48.232E-09  | 15.3227            | 2107.58            | -44.13<br>-64.87 | 38<br>48    | 67           | 130        |
| 131 | 318.41  | 180.98 | - 72.62 | 23.17           | 15.629  | 23.413E-02               | -9.697E-05               | 10.622E-09  | 14.4602            | 1980.22            | -25.15           | -46<br>-83  | 42           | 131        |
| 132 | 535.04  | 299.32 | -455.44 | -369.57         | 5.669   | 36.890E-02               | -2.865E-04               | 98.767E-09  | 17.3789            | 3723.42            | -67.48           | -83<br>42   | 177          | 132        |
| 133 | 400.91  | 226.23 | -371.54 | 307.51          | 24.673  | 23.161E-02               | -2.120E-05               | -5.359E-08  | 16.1611            | 2603.30            | -54.15           | -33         | 87           | 133        |
| 134 | 408.62  | 224.03 | -409.72 |                 | 16.550  | 22.454E-02               | -4.342E-05               | 29.144E-09  | 16.1295            | 2601.92            | -56.15           | -28         | 87           | 134        |
| 135 | 374.77  | 215.00 | -130.21 | -50.70          | -3.345  | 36.258E-02               | -2.508E-04               | 74.483E-09  | 15.9594            | 2581.48            | -42.95           | -43         | 77           | 135        |
| 136 | 306.25  | 212.24 | -146.54 | -62.55          | 1.842   | 34.876E-02               | -2.244E-04               | 58.615E-09  | 16.0384            | 2490.48            | -43.15           | -48         | 67           | 136        |
| 137 | 222.67  | 133.41 | -103.92 | -23.49          | -4.224  | 30.626E-02               | -1.586E-04               | 32.146E-09  | 15.7260            | 1872.46            | -25.16           | -109        | -24          | 137        |
| 138 | 951.04  | 327.83 | -256.57 | -161.90         | 2.470   | 33.252E-02               | -1.855E-04               | 42.957E-09  | 17.5439            | 3166.38            | -80.15           | 12          | 127          | 138        |
| 139 | 1139.70 | 323.44 | -272.60 | -173.50         | 32.427  | 18.862E-02               | 64.058E-06               | -9.261E-08  | 18.6929            | 3640.20            | -53.54           | 0           | 111          | 139        |
| 140 | 303.82  | 171.66 | -216.58 | -117.73         | 18.669  | 26.854E-02               | -1.025E-04               | 89.514E-10  | 13.5435            | 1161.63            | -112.40          | -68         | 37           | 140        |
| 141 |         |        | 210.20  | ,               | 10,007  | 20.00 12 02              | 1.0252 01                | 07.51112.10 | 15.8237            | 2415.92            | -52.58           | -3          | 42           | 141        |
| 142 | 1404.20 | 426.74 | -424.25 |                 | 0.632   | 42.119E-02               | -2.981E-04               | 89.514E-09  | 20.5324            | 6091.95            | -22.46           | 84          | 210          | 142        |
| 143 | 1813.00 | 406.96 | -409.09 |                 | 8.269   | 36.756E-02               | -2.162E-04               | 50.535E-09  | 17.2917            | 3888.84            | -123.20          | 107         | 252          | 143        |
| 144 | 3337.10 | 406.00 | -585.31 |                 | 8.424   | 44.422E-02               | -3.159E-04               | 93.784E-09  | 17.2392            | 4487.04            | -140.20          | 167         | 327          | 144        |
| 145 |         |        | -59.66  | 11.43           | 19.527  | 28.906E-02               | -1.209E-04               | 12.866E-09  | 15.9765            | 2722.95            | -48.37           | -23         | 87           | 145        |
| 146 |         |        | -72.43  | 39.82           | 6.691   | 34.985E-02               | -1.822E-04               | 35.864E-09  | 15.9957            | 2551.72            | -49.15           | -38         | 77           | 146        |
| 147 | 433.64  | 228.46 | -83.82  |                 | -7.486  | 41.755E-02               | -2.826E-04               | 83.485E-09  | 16.3637            | 2582.35            | -40.15           | -34         | 64           | 147        |
| 148 |         |        | -23.86  | 98.98           | -8.206  | 39.716E-02               | -2.189E-04               | 46.222E-09  | 16.0499            | 2230.51            | -39.15           | -58         | 32           | 148        |
|     | 052.40  | 2/5 01 |         |                 |         |                          |                          |             |                    |                    |                  |             |              |            |
| 149 | 952.48  | 365.81 | 204.00  | 207.10          | -13.075 | 34.847E-02               | -2.184E-04               | 48.399E-09  | 16.2747            | 3765.65            | -82.15           | 79          | 243          | 149        |
| 150 |         |        | 304.80  | 306.18          | 6.757   | 28.407E-02               | -2.265E-04               | 74.609E-09  | 16.0100            | 2203.57            | -43.15           | -73         | 32           | 150        |
|     |         |        |         |                 |         |                          |                          |             |                    |                    |                  |             |              |            |

| STATE   CHHO   FURAN   68.075   -85.7   31.3   34.1   570.4   550.0   0.218   9.98   20   27.005   151   152   CHHO   CHHONEN   88.537   -80.0   0.78   32.7   35.2   0.26   0.98   20   20.568   153   153   153   153   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   15 | NO  | FORMULA | COMPOUND NAME       | MOLWT   | TFP    | ТВР   | TC    | PC   | VC    | LDEN | TDEN | HVAP   | NO  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|---------------------|---------|--------|-------|-------|------|-------|------|------|--------|-----|
| 1515   CHISCL   CHLOROPERENE   88.537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 151 | C4H4O   | FURAN               | 68.075  | -85.7  | 31.3  | 490.2 | 55.0 | 0.218 | 938  | 20   | 27,105 | 151 |
| 154   CHISCL CHLOROBUTADENE   88.337   -6.00   67.8   527.2   39.5   0.265   96.3   20   29.038   15.5     155   CHISN ALLAL CYANIDE   67.091   -6.5   118.8   585.0   39.5   0.265   83.5   20   34.332   15.5     156   CHISN PYRROLE   67.091   -7.005   129.8   640.0   -7.005   16.0   14.005   15.7     157   CHIG ETHYLACETYLENE   54.092   -125.8   8.00.37   47.1   0.220   6.00   16.0   24.995   15.7     158   CHIG DIMETHYLACETYLENE   54.092   -125.8   8.00   0.21   60.0   0.21   60.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   20.0   2 | 152 | C4H4S   | THIOPHENE           | 84.136  | -38.3  | 84.1  | 579.4 | 56.9 | 0.219 | 1071 | 16   | 31,485 | 152 |
| 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 153 | C4H5CL  | CHLOROPRENE         | 88.537  |        | 59.4  | 511.2 | 42.5 | 0.266 | 958  | 20   | 29,658 | 153 |
| 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 154 | C4H5CL  | CHLOROBUTADIENE     | 88.537  | -60.0  | 67.8  | 527.2 | 39.5 | 0.265 | 963  | 20   | 29,038 | 154 |
| 157   C416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 155 | C4H5N   | ALLYL CYANIDE       | 67.091  | -86.5  | 118.8 | 585.0 | 39.5 | 0.265 | 835  | 20   | 34,332 | 155 |
| 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 156 | C4H5N   | PYRROLE             | 67.091  |        | 129.8 | 640.0 |      |       | 967  | 21   |        | 156 |
| 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 157 | C4H6    | ETHYLACETYLENE      | 54.092  | -125.8 | 8.0   | 463.7 | 47.1 | 0.220 | 650  | 16   | 24,995 | 157 |
| 161   C4160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 158 | C4H6    | DIMETHYL ACETYLENE  | 54.092  | -32.3  | 27.0  | 488.6 | 50.9 | 0.221 | 691  | 20   | 26,670 | 158 |
| 161   C44H6Q2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 159 | C4H6    | 1;2-BUTADIENE       | 54.092  | -136.2 | 10.8  | 443.7 | 45.0 | 0.219 | 652  | 20   | 24,283 | 159 |
| 163   C41603   ACETICANHYDRIDE   102,089   -74.2   138.8   59.90   46.8   0.290   1087   20   41,249   162   163   164   C441604   SUCCINIC ACID   118,090   152.8   2348.**   150   15   163   164   C44170   METHYLORAITRILE   69.107   -112.2   117.8   58.22   37.9   0.285   792   20   34,415   165   165   C44170   METHYLACRYLATE   86.091   -76.5   80.3   356.0   42.6   0.265   956   20   32,029   166   166   C44170   METHYLACRYLATE   86.091   -76.5   80.3   356.0   42.6   0.265   956   20   32,029   166   166   C44170   METHYLACRYLATE   56.108   -188.4   -6.3   34.96   37.2   0.240   595   20   21,930   167   168   C4418   TANNS-2BUTENE   56.108   -188.9   3.7   435.6   42.0   0.234   621   20   23,362   168   169   C4418   TANNS-2BUTENE   56.108   -105.6   0.8   428.6   41.0   0.238   640   20   22,772   169   170   C4418   CVCLOBITANE   56.108   -105.6   0.8   428.6   41.0   0.238   640   20   22,772   169   170   C4418   CVCLOBITANE   56.108   -140.4   -6.9   417.9   40.0   0.239   594   20   22,131   171   171   C418   SOBUTYLENE   72,107   -65.0   63.8   513.0   452.6   45.9   49.9   0.210   694   20   24,200   170   171   C418   C4180   TANNS-2BUTENE   72,107   -65.0   63.8   513.0   45.8   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61.5   61. | 160 | C4H6    | 1;3-BUTADIENE       | 54.092  | -108.9 | -4.5  | 425.0 | 43.3 | 0.221 | 621  | 20   | 22,483 | 160 |
| 163   C4H004   DIMETHYL OXALATE   118.090   152.8   163.4   628.0   39.8   115.0   15   163   164   164   164   164   164   165   164   165   164   165   164   165   164   165   164   165   164   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165    | 161 | C4H6O2  | VINYL ACETATE       | 86.091  | -100.2 | 72.8  | 525.0 | 43.6 | 0.265 | 932  | 20   |        | 161 |
| 104   C4HOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 162 | C4H6O3  | ACETIC ANHYDRIDE    | 102.089 | -74.2  | 138.8 | 569.0 | 46.8 | 0.290 | 1087 | 20   | 41,240 | 162 |
| 165   C4H70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 163 | C4H6O4  | DIMETHYL OXALATE    | 118.090 | 53.8   | 163.4 | 628.0 | 39.8 |       | 1150 | 15   |        | 163 |
| 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 164 | C4H6O4  | SUCCINIC ACID       | 118.090 | 182.8  | 234.8 |       |      |       |      |      |        | 164 |
| 168 C4H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 165 | C4H7N   | BUTYRONITRILE       | 69.107  | -112.2 | 117.8 | 582.2 | 37.9 | 0.285 | 792  | 20   | 34,415 | 165 |
| 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 166 | C4H7O2  | METHYL ACRYLATE     | 86.091  | -76.5  | 80.3  | 536.0 | 42.6 | 0.265 | 956  | 20   | 32,029 | 166 |
| 169   C4H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 167 | C4H8    | 1-BUTENE            | 56.108  | -185.4 | -6.3  | 419.6 | 37.2 | 0.240 | 595  | 20   | 21,930 | 167 |
| 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 168 | C4H8    | CIS-2-BUTENE        | 56.108  | -138.9 | 3.7   | 435.6 | 42.0 | 0.234 | 621  | 20   | 23,362 | 168 |
| 171   C4H8   ISOBUTYLENE   56.108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 169 | C4H8    | TRANS-2-BUTENE      | 56.108  | -105.6 | 0.8   | 428.6 | 41.0 | 0.238 | 604  | 20   | 22,772 | 169 |
| 172   C4H8O   N-BUTYRALDEHYDE   72.107   -96.4   74.8   524.0   40.5   0.278   802   20   31.527   172   173   C4H8O   ISOBUTYRALDEHYDE   72.107   -86.7   79.6   535.6   41.5   0.267   805   20   31.401   173   174   C4H8O   MERTYL ETHYL KETONE   72.107   -108.5   65.9   340.2   51.9   0.224   889   20   29.601   175   175   C4H8O   TETRAHYDROFURAN   72.107   -115.3   35.6   475.0   40.7   0.260   793   20   26.502   176   177   C4H8O   N-BUTYRIC ACID   88.107   -5.3   163.2   628.0   52.7   0.292   958   20   42.035   177   178   C4H8O2   N-BUTYRIC ACID   88.107   -5.3   163.2   628.0   52.7   0.292   958   20   42.035   177   178   C4H8O2   ETHYL ACETATE   88.107   -83.6   77.1   523.2   38.3   0.286   901   20   32.238   179   179   C4H8O2   ETHYL ACETATE   88.107   -46.0   154.7   69.0   40.5   0.282   915   20   32.238   179   179   C4H8O2   METYL PROPIONATE   88.107   -46.0   154.7   69.0   40.5   0.282   915   20   32.573   181   182   C4H8O2   METYL PROPIONATE   88.107   -87.5   79.8   530.6   40.0   0.282   915   20   32.573   181   182   C4H8O2   N-PROPYL FORMATE   88.107   -87.5   79.8   530.6   40.0   0.282   915   20   32.573   181   183   C4H9CL   C-HILOROBUTANE   92.569   -123.1   78.4   542.0   36.9   0.312   86.6   20   30.019   183   184   C4H9CL   2-CHILOROBUTANE   92.569   -131.4   68.2   520.6   39.5   0.305   873   20   29.224   184   185   C4H9OL   2-CHILORODUTANE   92.569   -131.4   68.2   520.6   39.5   0.305   873   20   29.224   184   185   C4H9OL   N-BUTANE   58.124   -138.4   -0.5   425.2   38.0   0.255   579   20   22.408   188   189   C4H10   N-BUTANE   58.124   -138.4   -0.5   425.2   38.0   0.255   579   20   22.408   188   189   C4H100   2-BUTANOL   74.123   -14.8   2.9   6.6   -11.9   40.1   3.6   5.0   6.3   5.7   20   21.311   189   191   C4H100   2-BUTANOL   74.123   -116.3   34.5   46.6   0.316   111.6   20   37.631   191   191   C4H100   2-BUTANOL   74.123   -116.3   34.5   46.6   0.316   111.6   20   37.631   191   191   C4H100   2-BUTANOL   74.123   -116.3   34.5   46 | 170 | C4H8    | CYCLOBUTANE         | 56.108  | -90.8  | 12.5  | 459.9 | 49.9 | 0.210 | 694  | 20   | 24,200 | 170 |
| 173   C4H8O   ISOBUTYRALDEHYDE   72,107   -65.0   63.8   513.0   41.5   0.274   789   20   31,401   173   174   175   C4H8O   MERTYL ETHYL KETONE   72,107   -108.5   65.9   540.2   51.9   0.224   889   20   29,601   175   176   C4H8O   VINYL ETHYL ETHER   72,107   -118.3   35.6   475.0   40.7   0.260   793   20   20,602   176   177   178   C4H8O2   VINYL ETHYL ETHER   72,107   -118.3   35.6   475.0   40.7   0.260   793   20   20,602   176   177   178   C4H8O2   1.4-DIOXANE   88.107   -15.3   63.2   628.0   52.7   0.292   958   20   42,035   177   178   C4H8O2   1.4-DIOXANE   88.107   -83.6   77.1   523.2   38.3   0.286   901   20   32,238   179   180   C4H8O2   ISOBUTYRIC ACID   88.107   -87.6   77.1   523.2   38.3   0.286   901   20   32,238   179   180   C4H8O2   ISOBUTYRIC ACID   88.107   -48.6   154.7   609.0   40.5   0.292   968   20   41,156   180   181   C4H8O2   METYL PROPIONATE   88.107   -48.7   79.8   53.06   40.0   0.282   915   20   32,573   181   182   C4H8O2   N-PROPYL FORMATE   88.107   -48.7   79.8   53.06   40.0   0.282   915   20   32,573   181   183   C4H9CL   2-CHLOROBUTANE   92.569   -123.1   78.4   452.0   36.9   0.312   886   20   30,019   183   184   C4H9CL   2-CHLOROBUTANE   92.569   -123.1   78.4   452.0   36.9   0.312   886   20   37,681   187   185   C4H9OL   2-CHLOROMETHYL PROPANE   92.569   -131.4   68.2   520.6   39.5   0.305   873   20   29.224   184   185   185   C4H9OL   2-CHLOROMETHYL PROPANE   92.569   -131.4   68.2   520.6   39.5   0.305   873   20   29.224   184   188   C4H9OL   3-CHLOROMETHYL PROPANE   92.569   -131.4   68.2   520.6   39.5   0.305   873   20   27,424   186   187   C4H9OL   3-CHLOROMETHYL PROPANE   92.569   -131.4   68.2   520.6   39.5   0.305   873   20   27,424   186   187   C4H9OL   3-CHLOROMETHYL PROPANE   3-CHLOROMETHYL PROPA                             | 171 | C4H8    | ISOBUTYLENE         | 56.108  | -140.4 | -6.9  | 417.9 | 40.0 | 0.239 | 594  | 20   | 22,131 | 171 |
| 174   C4H8O   MERTYL ETHYL KETONE   72.107   -86.7   79.6   535.6   41.5   0.267   805   20   31.234   174   175   175   175   175   175   176   175   176   175   176   175   175   176   175   177   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175 | 172 | C4H8O   | N-BUTYRALDEHYDE     | 72.107  | -96.4  | 74.8  | 524.0 | 40.5 | 0.278 | 802  | 20   | 31,527 | 172 |
| 175   CAHRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 173 | C4H8O   | ISOBUTYRALDEHYDE    | 72.107  | -65.0  | 63.8  | 513.0 | 41.5 | 0.274 | 789  | 20   | 31,401 | 173 |
| 176   C4H8O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 174 | C4H8O   | MERTYL ETHYL KETONE | 72.107  | -86.7  | 79.6  | 535.6 | 41.5 | 0.267 | 805  | 20   | 31,234 | 174 |
| 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 175 | C4H8O   | TETRAHYDROFURAN     | 72.107  | 108.5  | 65.9  | 540.2 | 51.9 | 0.224 | 889  | 20   | 29,601 | 175 |
| 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 176 | C4H8O   | VINYL ETHYL ETHER   | 72.107  | -115.3 | 35.6  | 475.0 | 40.7 | 0.260 | 793  | 20   | 26,502 | 176 |
| 179   C4H8O2   ETHYL ACETATE   88.107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 177 | C4H8O2  | N-BUTYRIC ACID      | 88.107  | -5.3   | 163.2 | 628.0 | 52.7 | 0.292 | 958  | 20   | 42,035 | 177 |
| 180   C4H8O2   ISOBUTYRIC ACID   88.107   -46.0   154.7   609.0   40.5   0.292   968   20   41.156   180   181   C4H8O2   METYL PROPIONATE   88.107   -87.5   79.8   530.6   40.0   0.282   915   20   32.573   181   182   C4H8O2   N-PROPYL FORMATE   88.107   -92.9   80.5   538.0   40.6   0.285   911   16   32.490   182   183   C4H9CL   I-CHLOROBUTANE   92.569   -123.1   78.4   542.0   36.9   0.312   886   20   30.019   183   184   C4H9CL   2-CHLOROBUTANE   92.569   -131.4   68.2   520.6   39.5   0.305   873   20   29.224   184   185   C4H9CL   2-CHLORO-2-METHYL PROPANE   92.569   -25.4   50.8   507.0   39.5   0.295   842   20   27.424   185   186   C4H9N   PYRROLIDINE   71.123   86.5   568.6   56.1   0.249   852   22   186   187   C4H9NO   MORPHOLINE   87.122   -4.8   128.2   618.0   54.7   0.253   1000   20   37.681   187   188   C4H10   N-BUTANE   58.124   -138.4   -0.5   425.2   38.0   0.255   579   20   22.408   188   189   C4H10   ISOBUTANE   58.124   -138.4   -159.6   -11.9   408.1   36.5   0.263   557   20   21.311   189   189   C4H10O   2-BUTANOL   74.123   -114.7   99.5   536.0   41.9   0.268   807   20   40.821   191   192   C4H10O   2-BUTANOL   74.123   -114.7   99.5   536.0   41.9   0.268   807   20   40.821   191   192   C4H10O   2-BUTANOL   74.123   -114.7   99.5   536.0   41.9   0.268   807   20   40.821   191   192   C4H10O   2-BUTANOL   74.123   -114.7   99.5   536.0   41.9   0.268   807   20   40.821   191   192   C4H10O   2-BUTANOL   74.123   -114.7   99.5   536.0   41.9   0.268   807   20   40.821   191   192   C4H10O   2-BUTANOL   74.123   -114.7   99.5   536.0   41.9   0.268   807   20   40.821   191   192   C4H10O   2-BUTANOL   74.123   -116.3   34.5   466.7   36.4   0.280   71.3   20   26.712   194   195   C4H10O   2-BUTANOL   74.123   -116.3   34.5   466.7   36.4   0.280   71.3   20   26.712   194   195   C4H10O   2-BUTANOL   74.123   -116.3   34.5   466.7   36.4   0.280   71.3   20   26.712   194   195   C4H10O   2-BUTANOL   2-BUTANOL   2-BUTANOL   2-BUTANOL   2-BUTANOL   2-BUTANOL   2 | 178 | C4H8O2  | 1;4-DIOXANE         | 88.107  | 11.8   | 101.3 | 587.0 | 52.1 | 0.238 | 1033 | 20   | 36,383 | 178 |
| 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 179 | C4H8O2  | ETHYL ACETATE       |         | -83.6  | 77.1  | 523.2 | 38.3 | 0.286 | 109  | 20   | 32,238 | 179 |
| 182   C4H8O2   N-PROPYL FORMATE   88.107   -92.9   80.5   538.0   40.6   0.285   911   16   32,490   182   183   C4H9CL   1-CHLOROBUTANE   92.569   -123.1   78.4   542.0   36.9   0.312   886   20   30,019   183   184   C4H9CL   2-CHLORO-2-METHYL PROPANE   92.569   -131.4   68.2   520.6   39.5   0.305   873   20   29.224   184   185   C4H9CL   2-CHLORO-2-METHYL PROPANE   92.569   -25.4   50.8   507.0   39.5   0.025   842   20   27.424   185   186   C4H9N   PYRROLIDINE   71.123   86.5   568.6   56.1   0.249   852   22   186   187   C4H9NO   MORPHOLINE   87.122   -4.8   128.2   618.0   54.7   0.253   1000   20   37.681   187   188   C4H10   N-BUTANE   58.124   -138.4   -0.5   425.2   38.0   0.255   579   20   22.408   188   189   C4H10   ISOBUTANE   58.124   -159.6   -11.9   408.1   36.5   0.263   557   20   21.311   189   191   C4H10O   2-BUTANOL   74.123   -114.7   99.5   536.0   41.9   0.268   807   20   43.124   190   191   C4H10O   2-BUTANOL   74.123   -114.7   99.5   536.0   41.9   0.268   807   20   40.821   191   192   C4H10O   2-METHYL-2-PROPANOL   74.123   -116.3   34.5   466.7   36.4   0.280   713   20   26.712   194   194   195   194   C4H10O   ETHYL ETHER   74.123   -116.3   34.5   466.7   36.4   0.280   713   20   26.712   194   195   C4H10O   12-DIMETHOXYETHANE   90.123   -71.2   85.4   536.0   38.7   0.271   867   20   31,443   195   196   C4H10O   DIETHYLENG GLYCOL   106.122   -8.2   245.8   681.0   46.6   0.316   1116   20   57.234   196   197   C4H10S   DIMETHYL SULPHIDE   90.184   -104.0   92.1   557.0   39.6   0.318   837   20   31,778   197   198   C4H10S   DIETHYL DISULPHIDE   90.184   -104.0   92.1   554.0   642.0   41.5   0.288   739   20   37,723   198   199   C4H11N   N-BUTYL AMINE   73.139   -49.1   77.4   524.0   41.5   0.288   739   20   37,723   198   199   C4H11N   N-BUTYL AMINE   73.139   -49.1   77.4   524.0   41.5   0.288   739   20   37,713   199   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10 | 180 |         | ISOBUTYRIC ACID     | 88.107  |        | 154.7 | 609.0 | 40.5 |       |      |      | 41,156 | 180 |
| 183   C4H9CL   1-CHLOROBUTANE   92.569   -123.1   78.4   542.0   36.9   0.312   886   20   30,019   183   184   C4H9CL   2-CHLOROBUTANE   92.569   -131.4   68.2   520.6   39.5   0.305   873   20   29.224   184   185   C4H9CL   2-CHLORO-AMETHYL PROPANE   92.569   -25.4   50.8   507.0   39.5   0.295   842   20   27.424   185   186   C4H9N   PYRROLIDINE   71.123   86.5   568.6   56.1   0.249   852   22   186   187   C4H9NO   MORPHOLINE   87.122   -4.8   128.2   618.0   54.7   0.253   1000   20   37.681   187   188   C4H10   N-BUTANE   58.124   -138.4   -0.5   425.2   38.0   0.255   579   20   22.408   188   189   C4H10   ISOBUTANE   58.124   -159.6   -11.9   408.1   36.5   0.263   557   20   21.311   189   190   C4H10O   N-BUTANOL   74.123   -89.3   117.7   562.9   44.2   0.274   810   20   43.124   190   191   C4H10O   2-BUTANOL   74.123   -114.7   99.5   536.0   41.9   0.268   807   20   40,821   191   192   C4H10O   ISOBUTANOL   74.123   -114.7   99.5   536.0   41.9   0.268   807   20   40,821   191   192   C4H10O   2-METHYL-2-PROPANOL   74.123   -116.3   34.5   466.7   36.4   0.280   713   20   26,712   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194  | 181 |         | METYL PROPIONATE    | 88.107  | -87.5  | 79.8  | 530.6 | 40.0 | 0.282 | 915  | 20   | 32,573 | 181 |
| 184   C4H9CL   2-CHLOROBUTANE   92.569   -131.4   68.2   520.6   39.5   0.305   873   20   29.224   184   185   C4H9CL   2-CHLORO-2-METHYL PROPANE   92.569   -25.4   50.8   507.0   39.5   0.295   842   20   27.424   185   186   C4H9N   PYRROLIDINE   71.123   86.5   568.6   56.1   0.249   852   22   186   187   C4H9NO   MORPHOLINE   87.122   -4.8   128.2   618.0   54.7   0.253   1000   20   37.681   187   188   C4H10   N-BUTANE   58.124   -138.4   -0.5   425.2   38.0   0.255   579   20   22.408   188   189   C4H110   ISOBUTANE   58.124   -159.6   -11.9   408.1   36.5   0.263   557   20   21.311   189   190   C4H10O   N-BUTANOL   74.123   -89.3   117.7   562.9   44.2   0.274   810   20   43.124   190   191   C4H10O   2-BUTANOL   74.123   -114.7   99.5   536.0   41.9   0.268   807   20   40.821   191   192   C4H10O   2-METHYL-2-PROPANOL   74.123   -118.0   107.8   547.7   43.0   0.273   802   20   42.077   192   193   C4H10O   2-METHYL-2-PROPANOL   74.123   -116.3   34.5   466.7   36.4   0.280   713   20   26.712   194   195   C4H10O   ETHYL ETHER   74.123   -116.3   34.5   466.7   36.4   0.280   713   20   26.712   194   195   C4H10O3   DIETHYLENE GLYCOL   106.122   -8.2   245.8   681.0   46.6   0.316   1116   20   57.234   196   197   C4H10S   DIMETHYL SULPHIDE   90.184   -104.0   92.1   557.0   39.6   0.318   837   20   31.778   197   198   C4H10S   DIMETHYL SULPHIDE   122.244   -101.5   154.0   642.0   41.5   0.288   739   20   37.713   198   199   C4H11N   N-BUTYL AMINE   73.139   -49.1   77.4   524.0   41.5   0.288   739   20   37.713   199   190   C4H11N   N-BUTYL AMINE   73.139   -49.1   77.4   524.0   41.5   0.288   739   20   37.113   199   190   C4H11N   N-BUTYL AMINE   73.139   -49.1   77.4   524.0   41.5   0.288   739   20   37.113   199   190   C4H11N   N-BUTYL AMINE   73.139   -49.1   77.4   524.0   41.5   0.288   739   20   37.113   199   190   C4H11N   N-BUTYL AMINE   73.139   -49.1   77.4   524.0   41.5   0.288   739   20   37.113   199   10.268   10.268   10.268   10.268   10.268   10.268   10 |     |         |                     |         |        | 80.5  | 538.0 | 40.6 | 0.285 | 911  |      | 32,490 |     |
| 185   C4H9CL   2-CHLORO-2-METHYL PROPANE   92.569   -25.4   50.8   507.0   39.5   0.295   842   20   27.424   185   186   C4H9N   PYRROLIDINE   71.123   86.5   568.6   56.1   0.249   852   22   186   187   C4H9NO   MORPHOLINE   87.122   -4.8   128.2   618.0   54.7   0.253   1000   20   37.681   187   188   C4H10   N-BUTANE   58.124   -138.4   -0.5   425.2   38.0   0.255   579   20   22.408   188   189   C4H10   ISOBUTANE   58.124   -159.6   -11.9   408.1   36.5   0.263   557   20   21.311   189   190   C4H10O   N-BUTANOL   74.123   -89.3   117.7   562.9   44.2   0.274   810   20   43.124   190   191   C4H10O   2-BUTANOL   74.123   -114.7   99.5   536.0   41.9   0.268   807   20   42.077   192   193   C4H10O   ETHYL-2-PROPANOL   74.123   -108.0   107.8   547.7   43.0   0.273   802   20   42.077   192   193   C4H10O   ETHYL-2-PROPANOL   74.123   -116.3   34.5   466.7   36.4   0.280   713   20   26.712   194   195   C4H10O2   12-DIMETHOXYETHANE   90.123   -71.2   85.4   536.0   38.7   0.271   867   20   31,443   195   196   C4H10O3   DIETHYLENE GLYCOL   106.122   -8.2   245.8   681.0   46.6   0.316   1116   20   57.234   196   197   C4H10S   DIMETHYL SULPHIDE   90.184   -104.0   92.1   557.0   39.6   0.318   837   20   31,778   197   198   C4H10S   DIETHYL DISULPHIDE   90.184   -104.0   92.1   557.0   39.6   0.318   837   20   31,773   198   199   C4H11N   N-BUTYL AMINE   73.139   -49.1   77.4   524.0   41.5   0.288   739   20   37,713   199   190   C4H11N   N-BUTYL AMINE   73.139   -49.1   77.4   524.0   41.5   0.288   739   20   37,713   199   190   C4H11N   N-BUTYL AMINE   73.139   -49.1   77.4   524.0   41.5   0.288   739   20   37,713   199   190   C4H11N   N-BUTYL AMINE   73.139   -49.1   77.4   524.0   41.5   0.288   739   20   37,713   199   190   C4H11N   N-BUTYL AMINE   73.139   -49.1   77.4   524.0   41.5   0.288   739   20   37,713   199   190   C4H11N   N-BUTYL AMINE   73.139   -49.1   77.4   524.0   41.5   0.288   739   20   37,713   199   190   C4H11N   N-BUTYL AMINE   73.139   -49.1   77.4   524. | 183 |         | 1-CHLOROBUTANE      |         |        | 78.4  | 542.0 | 36.9 | 0.312 | 886  | 20   | 30,019 | 183 |
| 186   C4H9N   PYRROLIDINE   71.123   86.5   568.6   56.1   0.249   852   22   186   187   C4H9NO   MORPHOLINE   87.122   -4.8   128.2   618.0   54.7   0.253   1000   20   37.681   187   188   C4H10   N-BUTANE   58.124   -138.4   -0.5   425.2   38.0   0.255   579   20   22.408   188   189   C4H10   ISOBUTANE   58.124   -159.6   -11.9   408.1   36.5   0.263   557   20   21.311   189   190   C4H10O   N-BUTANOL   74.123   -89.3   117.7   562.9   44.2   0.274   810   20   43.124   190   191   C4H10O   2-BUTANOL   74.123   -114.7   99.5   536.0   41.9   0.268   807   20   40.821   191   192   C4H10O   ISOBUTANOL   74.123   -108.0   107.8   547.7   43.0   0.273   802   20   42.077   192   193   C4H10O   2-METHYL-2-PROPANOL   74.123   -108.0   107.8   547.7   43.0   0.273   802   20   42.077   192   193   C4H10O   2-METHYL-2-PROPANOL   74.123   -116.3   34.5   466.7   36.4   0.280   713   20   26.712   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   19 | 184 | C4H9CL  | 2-CHLOROBUTANE      | 92.569  | -131.4 | 68.2  | 520.6 | 39.5 | 0.305 | 873  | 20   | 29,224 | 184 |
| 187         C4H9NO         MORPHOLINE         87.122         -4.8         128.2         618.0         54.7         0.253         1000         20         37.681         187           188         C4H10         N-BUTANE         58.124         -138.4         -0.5         425.2         38.0         0.255         579         20         22.408         188           189         C4H10         ISOBUTANE         58.124         -159.6         -11.9         408.1         36.5         0.263         557         20         21.311         189           190         C4H100         N-BUTANOL         74.123         -89.3         117.7         562.9         44.2         0.274         810         20         43,124         190           191         C4H100         2-BUTANOL         74.123         -114.7         99.5         536.0         41.9         0.268         807         20         43,124         190           192         C4H100         ISOBUTANOL         74.123         -108.0         107.8         547.7         43.0         0.273         802         20         42,077         192           193         C4H100         2-METHYL-2-PROPANOL         74.123         -16.0         107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 185 |         |                     | 92.569  | -25.4  | 50.8  | 507.0 | 39.5 |       |      |      | 27,424 | 185 |
| 188         C4H10         N-BUTANE         58.124         -138.4         -0.5         425.2         38.0         0.255         579         20         22,408         188           189         C4H10         ISOBUTANE         58.124         -159.6         -11.9         408.1         36.5         0.263         557         20         21,311         189           190         C4H100         N-BUTANOL         74.123         -89.3         117.7         562.9         44.2         0.274         810         20         43,124         190           191         C4H100         2-BUTANOL         74.123         -114.7         99.5         536.0         41.9         0.268         807         20         42,077         192           192         C4H100         ISOBUTANOL         74.123         -108.0         107.8         547.7         43.0         0.273         802         20         42,077         192           193         C4H100         ETHYL E-PROPANOL         74.123         -16.3         34.5         466.7         36.4         0.280         713         20         39,063         193           194         C4H100         ETHYL ETHER         74.123         -116.3         34.5<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |         |                     |         |        | 86.5  | 568.6 | 56.1 | 0.249 | 852  |      |        | 186 |
| 189         C4H10         ISOBUTANE         58.124         -159.6         -11.9         408.1         36.5         0.263         557         20         21,311         189           190         C4H100         N-BUTANOL         74.123         -89.3         117.7         562.9         44.2         0.274         810         20         43,124         190           191         C4H100         2-BUTANOL         74.123         -114.7         99.5         536.0         41.9         0.268         807         20         40,821         191           192         C4H100         ISOBUTANOL         74.123         -108.0         107.8         547.7         43.0         0.273         802         20         42,077         192           193         C4H100         2-METHYL-2-PROPANOL         74.123         -16.3         34.5         466.2         39.7         0.275         787         20         39,063         193           194         C4H100         ETHYL ETHER         74.123         -116.3         34.5         466.7         36.4         0.280         713         20         26,712         194           195         C4H1002         1:2-DIMETHOXYETHANE         90.123         -71.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 187 | C4H9NO  | MORPHOLINE          | 87.122  | -4.8   | 128.2 | 618.0 | 54.7 | 0.253 | 1000 | 20   | 37,681 | 187 |
| 190   C4H100   N-BUTANOL   74.123   -89.3   117.7   562.9   44.2   0.274   810   20   43,124   190     191   C4H100   2-BUTANOL   74.123   -114.7   99.5   536.0   41.9   0.268   807   20   40,821   191     192   C4H100   ISOBUTANOL   74.123   -108.0   107.8   547.7   43.0   0.273   802   20   42,077   192     193   C4H100   2-METHYL-2-PROPANOL   74.123   25.6   82.4   506.2   39.7   0.275   787   20   39,063   193     194   C4H100   ETHYL ETHER   74.123   -116.3   34.5   466.7   36.4   0.280   713   20   26,712   194     195   C4H1002   1:2-DIMETHOXYETHANE   90.123   -71.2   85.4   536.0   38.7   0.271   867   20   31,443   195     196   C4H1003   DIETHYLENE GLYCOL   106.122   -8.2   245.8   681.0   46.6   0.316   1116   20   57,234   196     197   C4H10S   DIMETHYL SULPHIDE   90.184   -104.0   92.1   557.0   39.6   0.318   837   20   31,778   197     198   C4H10S   DIETHYL DISULPHIDE   122.244   -101.5   154.0   642.0   18.8   739   20   37,723   198     199   C4H11N   N-BUTYL AMINE   73.139   -49.1   77.4   524.0   41.5   0.288   739   20   32,113   199     190   C4H11N   N-BUTYL AMINE   73.139   -49.1   77.4   524.0   41.5   0.288   739   20   32,113   199     190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190  |     |         |                     |         |        |       |       |      |       |      |      |        |     |
| 191   C4H10O   2-BUTANOL   74.123   -114.7   99.5   536.0   41.9   0.268   807   20   40,821   191     192   C4H10O   ISOBUTANOL   74.123   -108.0   107.8   547.7   43.0   0.273   802   20   42,077   192     193   C4H10O   2-METHYL-2-PROPANOL   74.123   25.6   82.4   506.2   39.7   0.275   787   20   39.063   193     194   C4H10O   ETHYL ETHER   74.123   -116.3   34.5   466.7   36.4   0.280   713   20   26,712   194     195   C4H10O2   1;2-DIMETHOXYETHANE   90.123   -71.2   85.4   536.0   38.7   0.271   867   20   31,443   195     196   C4H10O3   DIETHYLENE GLYCOL   106.122   -8.2   245.8   681.0   46.6   0.316   1116   20   57.234   196     197   C4H10S   DIMETHOXYETHANE   90.184   -104.0   92.1   557.0   39.6   0.318   837   20   31,778   197     198   C4H10S2   DIETHYL SULPHIDE   122.244   -101.5   154.0   642.0   998   20   37,723   198     199   C4H11N   N-BUTYL AMINE   73.139   -49.1   77.4   524.0   41.5   0.288   739   20   32,113   199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |         |                     |         |        |       |       |      |       |      |      |        |     |
| 192   C4H10O   ISOBUTANOL   74.123   -108.0   107.8   547.7   43.0   0.273   802   20   42.077   192     193   C4H10O   2-METHYL-2-PROPANOL   74.123   25.6   82.4   506.2   39.7   0.275   787   20   39.063   193     194   C4H10O   ETHYL ETHER   74.123   -116.3   34.5   466.7   36.4   0.280   713   20   26.712   194     195   C4H10O2   12-DIMETHOXYETHANE   90.123   -71.2   85.4   536.0   38.7   0.271   867   20   31,443   195     196   C4H10O3   DIETHYLENE GLYCOL   106.122   -8.2   245.8   681.0   46.6   0.316   1116   20   57.234   196     197   C4H10S   DIMETHYL SULPHIDE   90.184   -104.0   92.1   557.0   39.6   0.318   837   20   31,778   197     198   C4H10S2   DIETHYL DISULPHIDE   122.244   -101.5   154.0   642.0   998   20   37.723   198     199   C4H11N   N-BUTYL AMINE   73.139   -49.1   77.4   524.0   41.5   0.288   739   20   32.113   199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 190 | C4H10O  | N-BUTANOL           | 74.123  | -89.3  | 117.7 | 562.9 | 44.2 | 0.274 | 810  | 20   | 43,124 | 190 |
| 193   C4H10O   2-METHYL-2-PROPANOL   74.123   25.6   82.4   506.2   39.7   0.275   787   20   39.063   193     194   C4H10O   ETHYL ETHER   74.123   -116.3   34.5   466.7   36.4   0.280   713   20   26.712   194     195   C4H10O2   12-DIMETHOXYETHANE   90.123   -71.2   85.4   536.0   38.7   0.271   867   20   31.443   195     196   C4H10O3   DIETHYLENE GLYCOL   106.122   -8.2   245.8   681.0   46.6   0.316   1116   20   57.234   196     197   C4H10S   DIMETHYL SULPHIDE   90.184   -104.0   92.1   557.0   39.6   0.318   837   20   31.778   197     198   C4H10S2   DIETHYL DISULPHIDE   122.244   -101.5   154.0   642.0   998   20   37.723   198     199   C4H11N   N-BUTYL AMINE   73.139   -49.1   77.4   524.0   41.5   0.288   739   20   32.113   199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |         |                     |         |        | 99.5  |       |      |       |      |      | 40,821 |     |
| 194         C4H10O         ETHYL ETHER         74.123         -116.3         34.5         466.7         36.4         0.280         713         20         26,712         194           195         C4H10O2         1;2-DIMETHOXYETHANE         90.123         -71.2         85.4         536.0         38.7         0.271         867         20         31,443         195           196         C4H10O3         DIETHYLENE GLYCOL         106.122         -8.2         245.8         681.0         46.6         0.316         1116         20         57.234         196           197         C4H10S         DIMETHYL SULPHIDE         90.184         -104.0         92.1         557.0         39.6         0.318         837         20         31,778         197           198         C4H10S2         DIETHYL DISULPHIDE         122,244         -101.5         154.0         642.0         98         20         37,723         198           199         C4H11N         N-BUTYL AMINE         73.139         -49.1         77.4         524.0         41.5         0.288         739         20         32,113         199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | C4H10O  | ISOBUTANOL          | 74.123  | -108.0 | 107.8 | 547.7 | 43.0 | 0.273 | 802  | 20   | 42,077 | 192 |
| 195         C4H1002         1;2-DIMETHOXYETHANE         90.123         -71.2         85.4         536.0         38.7         0.271         867         20         31,443         195           196         C4H1003         DIETHYLENE GLYCOL         106,122         -8.2         245.8         681.0         46.6         0.316         1116         20         57,234         196           197         C4H10S         DIMETHYL SULPHIDE         90.184         -104.0         92.1         557.0         39.6         0.318         837         20         31,778         197           198         C4H10S2         DIETHYL DISULPHIDE         122,244         -101.5         154.0         642.0         998         20         37,723         198           199         C4H11N         N-BUTYL AMINE         73,139         -49.1         77.4         524.0         41.5         0.288         739         20         32,113         199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |         |                     |         | 25.6   | 82.4  | 506.2 | 39.7 |       |      | 20   | 39,063 | 193 |
| 196         C4H10O3         DIETHYLENE GLYCOL         106.122         -8.2         245.8         681.0         46.6         0.316         1116         20         57,234         196           197         C4H10S         DIMETHYL SULPHIDE         90.184         -104.0         92.1         557.0         39.6         0.318         837         20         31,778         197           198         C4H10S2         DIETHYL DISULPHIDE         122,244         -101.5         154.0         642.0         998         20         37,723         198           199         C4H11N         N-BUTYL AMINE         73.139         -49.1         77.4         524.0         41.5         0.288         739         20         32,113         199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |                     |         |        |       |       |      |       |      |      |        |     |
| 197         C4H10S         DIMETHYL SULPHIDE         90.184         -104.0         92.1         557.0         39.6         0.318         837         20         31,778         197           198         C4H10S2         DIETHYL DISULPHIDE         122.244         -101.5         154.0         642.0         998         20         37,723         198           199         C4H11N         N-BUTYL AMINE         73.139         -49.1         77.4         524.0         41.5         0.288         739         20         32,113         199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |         |                     |         |        |       |       |      |       | 867  |      |        |     |
| 198         C4H10S2         DIETHYL DISULPHIDE         122.244         -101.5         154.0         642.0         998         20         37,723         198           199         C4H11N         N-BUTYL AMINE         73.139         -49.1         77.4         524.0         41.5         0.288         739         20         32,113         199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |         |                     |         |        |       |       |      |       |      |      |        |     |
| 199 C4H1IN N-BUTYL AMINE 73.139 -49.1 77.4 524.0 41.5 0.288 739 20 32,113 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |         |                     |         |        |       |       | 39.6 | 0.318 |      |      |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |                     |         |        |       |       |      |       |      |      |        |     |
| 200 C4H11N ISOBUTYL AMINE 73.139 -85.2 67.4 516.0 42.6 0.284 30,982 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |         |                     |         |        |       |       |      |       | 739  | 20   |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200 | C4H11N  | ISOBUTYL AMINE      | 73.139  | -85.2  | 67.4  | 516.0 | 42.6 | 0.284 |      |      | 30,982 | 200 |

| 151   152   153   154   154   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155  | NO  | VISA   | VISB   | DELHF   | DELGF   | CPVAPA  | CPVAPB     | CPVAPC     | CPVAPD     | ANTA    | ANTB    | ANTC   | TMN | TMX | NO  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|--------|---------|---------|---------|------------|------------|------------|---------|---------|--------|-----|-----|-----|
| 152   478.60   264.90   118.81   126.86   -30.606   44.799E.02   -3.772E.04   12.27E.08   16.0243   286.907   -51.80   -13   107   152   153   154   155   154   155   154   155   154   155   154   155   154   155   154   155   154   155   154   155   154   155   154   155   154   155   154   155   154   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   | 151 | 389.40 | 222.70 | -34.71  | 0.88    | -35.529 | 43.208E-02 | -3.455E-04 | 10.743E-08 | 16.0612 | 244.70  | -45.41 | -35 | 90  | 151 |
| 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 152 | 498.60 | 264.90 | 115.81  |         |         |            |            |            |         |         |        |     |     |     |
| 154   155   157   157   158   155   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158  | 153 |        |        | 65.86   |         |         |            |            |            |         |         |        |     |     |     |
| 155   521.30   252.03   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188.25   188. | 154 |        |        | 79.97   |         |         |            |            |            |         |         |        |     | -   |     |
| 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 155 | 521.30 | 252.03 |         |         | 21.700  | 25.715E-02 | -1.192E-04 | 12.292E-09 | 16.0019 | 3128.75 | -58.15 | 127 | 157 |     |
| 188   189   162,32   198,58   162,32   198,58   11,200   27,255602   -1,668644   30,800640   16,1030   2397,26   -30,88   -28, 32   159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 156 |        |        | 108.35  |         |         |            |            |            | 16.7966 | 3457.47 | -62.73 | 57  | 167 |     |
| 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 157 |        |        | 165.29  | 202.22  | 12.548  | 27.436E-02 | -1.545E-04 | 34.499E-09 | 16.0605 | 2271.42 | -40.30 | -73 | 27  | 157 |
| 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 158 |        |        |         | 185.56  | 15.927  | 23.815E-02 | -1.070E-04 | 17.534E-09 | 16.2821 | 2536.78 | -37.34 | -33 | 47  | 158 |
| 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 159 |        |        | 162.32  | 198.58  | 11.200  | 27.235E-02 | -1.468E-04 | 30.890E-09 | 16.1039 | 2397.26 | -30.88 | -28 | 32  |     |
| 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 160 | 300.59 | 163.12 | 110.24  | 150.77  | -1.687  | 34.185E-02 | -2.340E-04 | 63.346E-09 | 15.7727 | 2142.66 | -34.30 | -58 | 17  | 160 |
| 164   0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 161 | 457.89 | 235.35 | -316.10 |         | 15.160  | 27.951E-02 | -8.805E-05 | -1.660E-08 | 16.1003 | 2744.68 | -56.15 | -18 | 106 |     |
| 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 162 | 502.33 | 286.04 | -576.10 | -477.00 | -23.128 | 50.870E-02 | -3.580E-04 | 98.348E-09 | 16.3982 | 3287.56 | -75.11 | 35  | 164 | 162 |
| 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 163 |        |        |         |         |         |            |            |            |         |         |        |     |     | 163 |
| 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 164 | 0.00   |        |         |         |         | 15.072E+00 | 46.892E-03 | -3.143E-04 |         |         |        |     |     | 164 |
| 168   286.94   155.34   -6.99   6.59   6.044   29.544.62   -1.082.04   -6.155.06   15.75.64   2132.42   -33.15   -8.3   22   167.06   168   289.04   153.30   -11.18   63.01   18.317   225.636E.02   -7.013E.05   -8.898E.09   15.8177   2210.31   -30.15   -73   27   169.04   -6.155.06   -73.15   -73   -73   27   169.04   -70.15   -73   -73   -73   -73   -73   -73   -73   -73   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   -74   | 165 | 438.04 | 256.84 | 34.08   | 108.73  | 15.211  | 32.058E-02 | -1.638E-04 | 29.823E-09 | 16.2092 | 3202.21 | -56.16 | 34  | 160 | 165 |
| 168   268,94   155,34   -6.99   65.90   0.440   29.54E-02   -1.018E-04   -6.155E-10   15.8171   2210.71   -36.15   -7.3   3.2   168   169   169   259   170   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7.0   -7. | 166 | 451.02 | 245.30 |         |         | 15.165  | 27.959E-02 | -8.805E-05 | -1.660E-08 | 16.1088 | 2788.43 | -59.15 | 13  | 117 | 166 |
| 168   268,94   155,34   -6.99   65.90   0.440   29.534E-02   -1.018E-04   -6.15SE-10   15.8171   2210.71   -30.15   -73   32   168   169   259.01   153.30   -1.118   63.01   18.31   25.536E-02   -7.018E-05   -8.989E-09   15.8177   221.22   -3.31.5   -7.3   2.7   169   170   -1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018   1.018    | 167 | 256.30 | 151.86 | -0.13   | 71.34   | -2.994  | 35.320E-02 | -1.982E-04 | 44.631E-09 | 15.7564 | 2132.42 | -33.15 | -83 | 22  | 167 |
| 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 168 | 268.94 | 155.34 | -6.99   | 65.90   | 0.440   | 29.534E-02 | -1.018E-04 | -6.155E-10 | 15.8171 | 2210.71 | -36.15 | -73 |     | 168 |
| T72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 169 | 259.01 | 153.30 | -11.18  | 63.01   | 18.317  | 25.636E-02 | -7.013E-05 | -8.989E-09 | 15.8177 | 2212.32 | -33.15 | -73 |     | 169 |
| 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 170 |        |        | 26.67   | 110.11  | -50.254 | 50.242E-02 |            | 10.471E-08 | 15.9254 | 2359.09 | -31.78 | -73 | 17  | 170 |
| 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 171 |        |        | -16.91  | 58.11   | 16.052  | 28.043E-02 | 1.091E-04  | 90.979E-10 | 15.7528 | 2125.75 | -33.15 | -83 | 17  | 171 |
| 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 172 | 472.31 | 233.42 | -205.15 | -114.84 | 14.080  | 34.570E-02 | -1.723E-04 | 28.872E-09 | 16.1668 | 2839.09 | -50.15 | -18 | 107 | 172 |
| 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 173 | 464.06 | 253.64 | -215.87 | -121.42 | 24.463  | 33.557E-02 | -2.057E-04 | 63.681E-09 | 15.9888 | 2676.98 | -51.15 | -26 | 97  | 173 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 174 | 423.84 | 231.67 | -238.52 | -146.16 | 10.944  | 35.592E-02 | -1.900E-04 | 39.197E-09 | 16.5986 | 3150.42 | -36.65 | -16 | 103 | 174 |
| 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 175 | 419.79 | 244.46 | -184.34 |         | 19.104  | 51.623E-02 | -4.132E-04 | 14.541E-08 | 16.1069 | 2768.38 | -46.90 | -3  | 97  | 175 |
| 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 176 | 349.95 | 189.02 | -140.26 |         | 17.279  | 32.360E-02 | -1.471E-04 | 21.495E-09 | 15.8911 | 2449.26 | -44.15 | -48 | 67  | 176 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 177 | 640.42 | 321.13 | -476.16 |         | 11.740  | 41.370E-02 | -2.430E-04 | 55.308E-09 | 17.9240 | 4130.93 | -70.55 | 62  | 197 | 177 |
| 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 660.36 | 308.77 | -315.27 | -180.91 | -53.574 | 59.871E-02 | -4.085E-04 | 10.622E-08 | 16.1327 | 2966.88 | -62.15 | 2   | 137 | 178 |
| 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 427.38 | 235.98 | -443.21 | -327.62 | 7.235   | 40.717E-02 | -2.092E-04 | 28.546E-09 | 16.1516 | 2790.50 | -57.15 | -13 | 112 | 179 |
| 182   452.97   246.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 180 | 588.65 | 311.24 | -484.25 |         | 9.814   | 46.683E-02 | -3.720E-04 | 13.502E-08 | 16.7792 | 3385.49 | -94.15 | 57  | 192 | 180 |
| 183         783.72         260.03         -147.38         -38.81         -2.613         44.966E-02         -2.937E-04         80.805E-09         15.9750         2826.26         -49.05         -18         112         183           184         480.77         237.30         -161.61         -53.51         -3.433         45.946-02         -2.981E-04         82.564E-09         15.9907         2753.43         -47.15         -23         102         184           185         543.41         253.35         -183.38         -64.14         -3.931         46.515E-02         -2.886E-04         78.712E-09         15.912         2567.15         -44.15         -38         87         185           186         -3.60         114.76         -51.531         53.382E-02         -3.240E-04         75.279E-09         15.9444         2717.03         -67.90         27         127         186           187         914.14         332.75         -42.802         53.884E-02         -2.666E-04         41.994E-09         16.2364         3171.35         -71.15         27         167         187           188         265.84         160.20         -126.23         -17.17         9.487         33.130E-02         -1.108E-04         -2.822E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 442.88 | 238.39 |         |         | 18.204  | 31.397E-02 | -9.353E-05 | -1.828E-08 | 16.1693 | 2804.06 | -58.92 | -13 | 112 | 181 |
| 184         480.77         237.30         -161.61         -53.51         -3.433         45.594E-02         -2.981E-04         82.564E-09         15.9907         2753.43         -47.15         -23         102         184           185         543.41         253.35         -183.38         -64.14         -3.931         46.515E-02         -2.886E-04         78.712E-09         15.9121         2567.15         -44.15         -38         87         185           186         -3.60         114.76         -51.531         53.882E-02         -3.240E-04         75.279E-09         15.9444         2717.03         -67.90         27         127         186           187         914.14         332.75         -42.802         53.884E-02         -2.666E-04         41.994E-09         16.2364         3171.35         -71.15         27         167         187           188         265.84         160.20         -126.23         -17.17         9.487         33.130E-02         -1.108E-04         -2.822E-09         15.6782         2154.90         -34.42         -78         17         188           189         302.51         170.20         -134.61         20.89         -1.390         38.43E-02         -2.242E-04         46.850E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        | 246.09 |         |         |         |            |            |            | 15.7671 | 2593.95 | -69.69 | 7   | 87  | 182 |
| 185         543.41         253.35         -183.38         -64.14         -3.931         46.515E-02         -2.886E-04         78.712E-09         15.8121         2567.15         -44.15         -38         87         185           186         -3.60         114.76         -51.531         53.382E-02         -3.240E-04         75.279E-09         15.9444         2717.03         -67.90         27         127         186           187         914.14         332.75         -42.802         53.884E-02         -2.666E-04         41.994E-09         16.2364         3171.35         -71.15         27         167         187           188         265.84         160.20         -126.23         -17.17         9.487         33.130E-02         -1.108E-04         -2.822E-09         15.6782         2154.90         -34.42         -78         17         188           189         302.51         170.20         -134.61         20.89         -1.390         38.473E-02         -1.846E-04         28.952E-09         15.5381         2032.73         -33.15         -86         7         189           190         984.54         341.12         -274.86         -150.89         3.266         41.801E-02         -2.242E-04         46.850E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 183 | 783.72 | 260.03 | 147.38  | -38.81  | -2.613  | 44.966E-02 |            | 80.805E-09 | 15.9750 | 2826.26 | -49.05 | -18 | 112 | 183 |
| 186         -3.60         114.76         -51.531         53.382E-02         -3.240E-04         75.279E-09         15.9444         2717.03         -67.90         27         127         186           187         914.14         332.75         -42.802         53.884E-02         -2.666E-04         41.994E-09         16.2364         3171.35         -71.15         27         167         187           188         265.84         160.20         -126.23         -17.17         9.487         33.130E-02         -1.108E-04         -2.822E.09         15.5782         2154.90         -34.42         -78         17         188           189         302.51         170.20         -134.61         20.89         -1.390         38.473E-02         -1.846E-04         28.952E-09         15.5381         2032.73         -33.15         -86         7         189           190         984.54         341.12         -274.86         -150.89         3.266         41.801E-02         -2.242E-04         46.850E-09         17.2160         3137.02         -94.43         15         131         190           192         119.1041.0         343.85         -283.40         -167.43         -7.708         46.892E-02         -2.884E-04         47.30E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        |        |         |         |         |            |            |            | 15.9907 | 2753.43 | -47.15 | -23 | 102 | 184 |
| 187         914.14         332.75         -42.802         53.884E-02         -2.666E-04         41.994E-09         16.2364         3171.35         -71.15         27         167         187           188         265.84         160.20         -126.23         -17.17         9.487         33.130E-02         -11.08E-04         -2.822E-09         15.6782         2154.90         -34.42         -78         17         188           189         302.51         170.20         -134.61         20.89         -1.390         38.473E-02         -18.466e-04         28.895E-09         15.5381         203.273         -33.15         -86         7         189           190         984.54         341.12         -274.86         -150.89         3.266         41.801E-02         -2.242E-04         46.850E-09         17.2160         3137.02         -94.43         15         131         190           191         1441.70         331.50         -292.82         -167.72         5.753         42.4546-02         -2.328E-04         47.730E-09         17.2160         3137.02         -94.43         15         131         190           192         1199.10         343.85         -283.40         -167.43         -7.708         46.892E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 543.41 | 253.35 |         |         |         |            |            | 78.712E-09 | 15.8121 | 2567.15 | -44.15 | -38 | 87  | 185 |
| 188         265.84         160.20         -126.23         -17.17         9.487         33.130E-02         -1.108E-04         -2.822E-09         15.6782         2154.90         -34.42         -78         17         188           189         302.51         170.20         -134.61         20.89         -1.390         38.473E-02         -1.846E-04         28.952E-09         15.5381         2032.73         -33.15         -86         7         189           190         984.54         341.12         -274.86         -150.89         3.266         41.801E-02         -2.242E-04         46.850E-09         17.2160         3137.02         -94.43         15         131         190           191         1441.70         331.50         -292.82         -167.72         5.753         42.454E-02         -2.328E-04         47.730E-09         17.2102         3026.03         -86.65         25         120         191           192         1199.10         343.85         -283.40         -167.43         -7.708         46.892E-02         -2.884E-04         72.306E-09         16.8712         2874.73         -100.30         20         115         192           193         972.10         363.38         -312.63         -177.77 <t< td=""><td></td><td></td><td></td><td>-3.60</td><td>114.76</td><td></td><td></td><td>-3.240E-04</td><td>75.279E-09</td><td>15.9444</td><td>2717.03</td><td>-67.90</td><td>27</td><td>127</td><td>186</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        |        | -3.60   | 114.76  |         |            | -3.240E-04 | 75.279E-09 | 15.9444 | 2717.03 | -67.90 | 27  | 127 | 186 |
| 189         302.51         170.20         -134.61         20.89         -1.390         38.473E-02         -1.846E-04         28.952E-09         15.5381         2032.73         -33.15         -86         7         189           190         984.54         341.12         -274.86         -150.89         3.266         41.801E-02         -2.242E-04         46.850E-09         17.2160         3137.02         -94.43         15         131         190           191         1441.70         331.50         -292.82         -167.72         5.753         42.454E-02         -2.328E-04         47.730E-09         17.2102         3026.03         -86.65         25         120         191           192         1199.10         343.85         -283.40         -167.43         -7.708         46.892E-02         -2.884E-04         72.306E-09         16.8712         2874.73         -100.30         20         115         192           193         972.10         363.38         -312.63         -177.77         -48.613         71.720E-02         -7.084E-04         29.199E-08         16.8548         2658.29         -95.50         20         103         193           194         353.14         190.58         -252.38         -12.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        |        |         |         |         |            |            |            | 16.2364 | 3171.35 | -71.15 | 27  | 167 | 187 |
| 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        |        |         |         |         |            |            |            | 15.6782 | 2154.90 | -34.42 | -78 | 17  | 188 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |        |        |         |         |         |            |            | 28.952E-09 | 15.5381 | 2032.73 | -33.15 | -86 | 7   | 189 |
| 192 1199.10 343.85 -283.40 -167.43 -7.708 46.892E-02 -2.884E-04 72.306E-09 16.8712 2874.73 -100.30 20 115 192 193 972.10 363.38 -312.63 -177.77 -48.613 71.720E-02 -7.084E-04 29.199E-08 16.8548 2658.29 -95.50 20 103 193 194 353.14 190.58 -252.38 -122.42 21.424 33.587E-02 -1.035E-04 -9.357E-09 16.0828 2511.29 -41.95 -48 67 194 195 - 32.234 35.672E-02 -1.336E-04 83.987E-10 16.0241 2869.79 -53.15 -11 120 195 196 1943.00 385.24 -571.50 73.060 34.441E-02 -1.468E-04 18.464E-09 17.0326 4122.52 -122.50 129 287 196 197 407.59 233.32 -83.53 17.79 13.595 39.595E-02 -1.780E-04 26.490E-09 15.9531 2896.27 -54.49 -13 117 197 198 -74.69 22.27 26.896 46.013E-02 -2.710E-04 59.704E-09 16.0605 3012.70 -48.96 -14 100 199 199 472.06 243.98 -92.11 49.24 5.079 44.757E-02 -2.407E-04 75.990E-09 16.6085 3012.70 -48.96 -14 100 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        |        |         |         |         |            |            | 46.850E-09 | 17.2160 | 3137.02 | -94.43 | 15  | 131 | 190 |
| 193 972.10 363.38 -312.63 -177.77 -48.613 71.720E-02 -7.084E-04 29.199E-08 16.8548 2658.29 -95.50 20 103 193 194 353.14 190.58 -252.38 -122.42 21.424 33.587E-02 -1.035E-04 -9.357E-09 16.0828 2511.29 -41.95 -48 67 194 195 195 194 194 194 194 194 195 195 195 195 195 195 195 195 195 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |        |        |         |         |         |            |            |            |         |         | -86.65 |     | 120 |     |
| 194 353.14 190.58 -252.38 -122.42 21.424 33.587E-02 -1.035E-04 -9.357E-09 16.0828 2511.29 -41.95 -48 67 194 195 194 195 194 195 195 195 195 195 195 195 195 195 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        |        |         |         |         |            |            |            |         |         |        |     |     |     |
| 195 32.234 35.672E-02 -1.336E-04 83.987E-10 16.0241 2869.79 -53.15 -11 120 195 196 1943.00 385.24 -571.50 73.060 34.441E-02 -1.468E-04 18.464E-09 17.0326 4122.52 -122.50 129 287 196 197 407.59 233.32 -83.53 17.79 13.595 39.595E-02 -1.780E-04 26.490E-09 15.9531 2896.27 -54.49 -13 117 197 198 -74.69 22.27 26.896 46.013E-02 -2.710E-04 59.704E-09 16.0607 3421.57 -64.19 39 182 198 199 472.06 243.98 -92.11 49.24 5.079 44.757E-02 -2.407E-04 75.990E-09 16.6085 3012.70 -48.96 -14 100 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        |        |         |         |         |            |            |            |         |         |        | 20  | 103 | 193 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 353.14 | 190.58 | -252.38 | -122.42 |         |            |            |            |         |         |        | -48 |     |     |
| 197     407.59     233.32     -83.53     17.79     13.595     39.595E-02     -1.780E-04     26.490E-09     15.9531     2896.27     -54.49     -13     117     197       198     -74.69     22.27     26.896     46.013E-02     -2.710E-04     59.704E-09     16.0607     3421.57     -64.19     39     182     198       199     472.06     243.98     -92.11     49.24     5.079     44.757E-02     -2.407E-04     75.990E-09     16.6085     3012.70     -48.96     -14     100     199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |        |        |         |         |         |            |            |            |         |         |        |     | 120 | 195 |
| 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        |        |         |         |         |            |            |            |         |         |        |     |     |     |
| 199 472.06 243.98 -92.11 49.24 5.079 44.757E-02 -2.407E-04 75.990E-09 16.6085 3012.70 -48.96 -14 100 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 407.59 | 233.32 |         |         |         |            |            |            |         |         |        |     |     |     |
| Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total To   |     |        |        |         |         |         |            |            |            | 16.0607 |         | -64.19 |     |     |     |
| 200 9.491 44.296E-02 -2.110E-04 23.329E-09 16.1419 2704.16 -56.15 -22 100 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 472.06 | 243.98 | -92.11  | 49.24   |         |            |            |            |         |         |        |     |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200 |        |        |         |         | 9.491   | 44.296E-02 | -2.110E-04 | 23.329E-09 | 16.1419 | 2704.16 | -56.15 | -22 | 100 | 200 |

| NO         | FORMULA          | COMPOUND NAME                            | MOLWT              | TFP              | ТВР            | TC             | PC           | VC             | LDEN       | TDEN     | HVAP             | NO         |
|------------|------------------|------------------------------------------|--------------------|------------------|----------------|----------------|--------------|----------------|------------|----------|------------------|------------|
| 201        | C4H11N           | DIETHYL AMINE                            | 73.139             | -49.8            | 55.4           | 496.6          | 37.1         | 0.301          | 707        | 20       | 27.842           | 201        |
| 202        | C4H12SI          | TETRAMETHYLSILANE                        | 88.225             | -102.2           | 27.6           | 448.6          | 28.2         | 0.362          | 646        | 20       | 24,685           | 202        |
| 203        | C5H4O2           | FURFURAL                                 | 96.085             | -31.0            | 161.7          | 657.1          | 49.2         | 0.270          | 1156       | 25       |                  | 203        |
| 204        | C5H5N            | PYRIDINE                                 | 79.102             | -41.7            | 115.3          | 620.0          | 56.3         | 0.254          | 983        | 20       | 35,169           | 204        |
| 205        | C5H8             | CYCLOPENTENE                             | 68.119             | -135.1           | 44.2           | 506.0          | 2,010        | 0.25           | 772        | 20       | 27.005           | 205        |
| 206        | C5H8             | 1;2-PENTADIENE                           | 68.119             | -137.3           | 44.8           | 503.0          | 40.7         | 0.276          | 693        | 20       | 27,591           | 206        |
| 207        | C5H8             | 1-TRANS-3-PENTADIENE                     | 68.119             | -87.5            | 42.0           | 496.0          | 39.9         | 0.275          | 676        | 20       | 27,047           | 207        |
| 208        | C5H8             | 1;4-PENTADIENE                           | 68.119             | -148.3           | 25.9           | 478.0          | 37.9         | 0.276          | 661        | 20       | 25,163           | 208        |
| 209        | C5H8             | 1-PENTYNE                                | 68.119             | -105.7           | 40.1           | 493.4          | 40.5         | 0.278          | 690        | 20       |                  | 209        |
| 210        | C5H8             | 2-METHYL-1;3-BUTADIENE                   | 68.119             | -146.0           | 34.0           | 484.0          | 38.5         | 0.276          | 681        | 20       | 26,084           | 210        |
| 211        | C5H8             | 3-METHYL-1;2-BUTADIENE                   | 68.119             | -113.7           | 40.8           | 496.0          | 41.1         | 0.267          | 686        | 20       | 27,256           | 211        |
| 212        | C5H8O            | CYCLOPENTONE                             | 84.118             | -50.7            | 130.7          | 626.0          | 53.7         | 0.268          | 950        | 20       | 36,593           | 212        |
| 213        | C5H8O2           | ETHYL ACRYLATE                           | 100.118            | -72.2            | 99.8           | 552.0          | 37.5         | 0.320          | 921        | 20       | 33,285           | 213        |
| 214        | C5H10            | CYCLOPENTANE                             | 70.135             | -93.9            | 49.2           | 511.6          | 45.1         | 0.260          | 745        | 20       | 27,315           | 214        |
| 215        | C5H10            | 1-PENTENE                                | 70.135             | -165.3           | 29.9           | 464.7          | 40.5         | 0.300          | 640        | 20       | 25,213           | 215        |
| 216        | C5H10            | CIS-2-PENTENE                            | 70.135             | -151.4           | 36.9           | 476.0          | 36.5         | 0.300          | 656        | 20       | 26,126           | 216        |
| 217<br>218 | C5H10<br>C5H10   | TRANS-2-PENTENE<br>2-METHYL-1-BUTENE     | 70.135             | -140.3           | 36.3           | 475.0          | 36.6         | 0.300          | 649        | 20       | 26,084           | 217        |
| 219        | C5H10            | 2-METHYL-1-BUTENE<br>2-METHYL-2-BUTENE   | 70.135<br>70.135   | -137.6<br>-133.8 | 31.1<br>38.5   | 465.0<br>470.0 | 34.5<br>34.5 | 0.294<br>0.318 | 650<br>662 | 20<br>20 | 25,514<br>26,322 | 218<br>219 |
| 220        | C5H10            | 3-METHYL-1-BUTENE                        | 70.135             | -155.6<br>-168.5 | 20.1           | 450.0          | 35.2         | 0.318          | 627        | 20       | 24,116           | 219        |
| 221        | C5H10O           | VALERALDEHYDE                            | 86.134             | -91.2            | 102.8          | 554.0          | 35.5         | 0.333          | 810        | 20       | 33,662           | 221        |
| 222        | C5H10O           | METHYL N-PROPYL KETONE                   | 86.134             | -77.2            | 102.3          | 564.0          | 38.9         | 0.301          | 806        | 20       | 33,494           | 222        |
| 223        | C5H10O           | METHYL ISOPROPYL KETONE                  | 86.134             | -92.2            | 94.2           | 553.4          | 38.5         | 0.301          | 803        | 20       | 30,647           | 223        |
| 224        | C5H10O           | DIETHYL KETONE                           | 86.134             | -39.0            | 101.9          | 561.0          | 37.4         | 0.336          | 814        | 20       | 33,746           | 224        |
| 225        | C5H10O2          | N-VALERIC ACID                           | 102.134            | -34.2            | 185.5          | 651.0          | 38.5         | 0.340          | 939        | 20       | 49,823           | 225        |
| 226        | C5H10O2          | ISOBUTYL FORMATE                         | 102.134            | -95.2            | 98.4           | 551.0          | 38.8         | 0.350          | 885        | 20       | 34,206           | 226        |
| 227        | C5H10O2          | N-PROPYL ACETATE                         | 102.134            | -95.2            | 101.6          | 549.4          | 33.3         | 0.345          | 887        | 20       | 34,206           | 227        |
| 228        | C5H10O2          | ETHYL PROPIONATE                         | 102.134            | -73.9            | 98.8           | 546.0          | 33.6         | 0.345          | 895        | 16       | 34,248           | 228        |
| 229        | C5H10O2          | METHYL BUTYRATE                          | 102.134            | -84.8            | 102.6          | 554.4          | 34.8         | 0.340          | 898        | 20       | 34,101           | 229        |
| 230        | C5H10O2          | METHYL ISOBUTYRATE                       | 102.134            | -87.8            | 92.2           | 540.8          | 34.3         | 0.339          | 891        | 20       | 33,386           | 230        |
| 231        | C5H11N           | PIPERIDINE                               | 85.150             | -10.5            | 106.5          | 594.0          | 47.6         | 0.289          | 862        | 20       | 34,248           | 231        |
| 232        | C5H12            | N-PENTANE                                | 72.151             | -129.8           | 36.0           | 469.6          | ,33.7        | 0.304          | 626        | 20       | 25,791           | 232        |
| 233        | C5H12            | 2-METHYL BUTANE                          | 72.151             | -159.3           | 27.8           | 460.4          | 33.8         | 0.306          | 620        | 20       | 24,702           | 233        |
| 234        | C5H12            | 2;2-DIMETHYL PROPANE                     | 72.151             | -16.6            | 9.4            | 433.8          | 32.0         | 0.303          | 591        | 20       | 22,768           | 234        |
| 235        | C5H12O           | I-PENTANOL                               | 88.150             | -78.2            | 137.8          | 586.0          | 38.5         | 0.326          | 815        | 20       | 44,380           | 235        |
| 236<br>237 | C5H12O<br>C5H12O | 2-METHYL-1-BUTANOL<br>3-METHYL-1-BUTANOL | 88.150<br>88.150   | -70.2<br>-117.2  | 128.7<br>131.2 | 571.0<br>579.5 | 38.5         | 0.322<br>0.329 | 819        | 20<br>20 | 45,217           | 236        |
| 237        | C5H12O           | 2-METHYL-2-BUTANOL                       | 88.150             | -117.2           | 102.0          | 545.0          | 38.5<br>39.5 | 0.329          | 810<br>809 | 20       | 44,129<br>40,612 | 237<br>238 |
| 239        | C5H12O           | 2;2-DIMETHYL-1-PROPANOL                  | 88.150             | 53.8             | 113.1          | 549.0          | 39.5         | 0.319          | 783        | 54       | 43,124           | 239        |
| 240        | C5H12O           | ETHYL PROPYL ETHER                       | 88.150             | -126.8           | 63.6           | 500.6          | 32.5         | 0.519          | 733        | 20       | 30,522           | 240        |
| 241        | C5H12O           | METHYL-T-BUTYL ETHER                     | 88.150             | -108.2           | 55.1           | 407.1          | 34.3         | 0.339          | 741        | 20       | 27,646           | 241        |
| 242        | C5H12O           | BUTYLMETHYL ETHER                        | 88.150             | -115.5           | 70.1           | 512.8          | 34.3         | 0.329          | ,          | 20       | 27,040           | 242        |
| 243        | C6F6             | PERFLUOROBENZENE                         |                    |                  |                |                |              | 0.025          |            |          |                  |            |
| 243        | C6F12            | PERFLUOROGENZENE<br>PERFLUOROCYCLOHEXANE | 186.056<br>300.047 |                  | 80.2<br>52.5   | 516.7<br>457.2 | 33.0         |                |            |          |                  | 243        |
| 244        | C6F12<br>C6F14   | PERFLUORO-N-HEXANE                       | 338.044            | -87.2            | 57.1           | 451.7          | 24.3<br>19.0 | 0.442          |            |          |                  | 244<br>245 |
| 246        | C6H3CL3          | 1;2;4-TRICHLOROBENZENE                   | 181.449            | 16.8             | 213.0          | 734.9          | 39.8         | 0.442          |            |          |                  | 245        |
| 247        | C6H4CL2          | O-DICHLOROBENZENE                        | 147.004            | -17.1            | 180.4          | 697.3          | 41.0         | 0.401          | 1306       | 20       | 39,691           | 240        |
| 248        | C6H4CL2          | M-DICHLOROBENZENE                        | 147.004            | -24.8            | 172.8          | 684.0          | 38.5         | 0.359          | 1288       | 20       | 38,644           | 248        |
| 249        | C6H4CL2          | P-DICHLOROBENZENE                        | 147.004            | 53.1             | 174.1          | 685.0          | 39.5         | 0.372          | 1248       | 55       | 38,812           | 249        |
| 250        | C6H5BR           | BROMOBENZENE                             | 157.010            | -30.9            | 156.0          | 670.0          | 45.2         | 0.324          | 1495       | 20       | ,                | 250        |
|            |                  |                                          |                    |                  |                |                |              |                |            |          |                  |            |

| NO  | VISA    | VISB   | DELHF   | DELGF   | CPVAPA  | CPVAPB     | CPVAPC     | CPVAPD      | ANTA    | ANTB    | ANTC    | TMN | TMX | NO  |
|-----|---------|--------|---------|---------|---------|------------|------------|-------------|---------|---------|---------|-----|-----|-----|
| 201 | 473.89  | 229.29 | -72.43  | 72.14   | 2.039   | 44.296E-02 | -2.183E-04 | 36.530E-09  | 16.0545 | 2595.01 | -53.15  | -31 | 77  | 201 |
| 202 | 175.07  | 227.27 | -232.41 | 72.14   | 2.057   | 44.270E-02 | 2.10.7E-04 | 30.33015-07 | 16.0999 | 2570.24 | -28.73  | 27  | -84 | 202 |
| 203 |         |        |         |         | 18.196  | 28.198E-02 | -6.523E-05 | -5.476E-08  | 18.7949 | 5365.88 | 5.40    | 77  | 277 | 203 |
| 204 | 618.50  | 291.58 | 140.26  | 190.33  | 39.791  | 49.279E-02 | -3.558E-04 | 10.044E-08  | 16.0910 | 3095.13 | -61.15  | 12  | 152 | 204 |
| 205 | 396.83  | 218.66 | 32.95   | 110.66  | -41.512 | 46.306E-02 | -2.579E-04 | 54.345E-09  | 15.9356 | 2583.07 | -39.70  | -29 | 105 | 205 |
| 206 |         |        | 145.70  | 210.55  | 8.826   | 38.799E-02 | -2.280E-04 | 52.461E-09  | 15.9297 | 2544.34 | -44.30  | -23 | 67  | 206 |
| 207 |         |        | 77.87   | 146.83  | 30.689  | 28.110E-02 | -6.711E-05 | -2.352E-08  | 15.9182 | 2541.69 | -41.43  | -23 | 67  | 207 |
| 208 |         |        | 105.51  | 170.36  | 6.996   | 39.515E-02 | -2.374E-04 | 55.978E-09  | 15.7392 | 2344.02 | -41.69  | -33 | 47  | 208 |
| 209 |         |        | 144.44  | 210.39  | 18.066  | 35.035E-02 | -1.913E-04 | 40.976E-09  | 16.0429 | 2515.62 | -45.97  | -43 | 62  | 209 |
| 210 | 328.49  | 182.48 | 75.78   | 145.95  | -34.122 | 45.845E-02 | -3.337E-04 | 10.002E-08  | 15.8548 | 2467.40 | -39.64  | -23 | 57  | 210 |
| 211 |         |        | 129.79  | 198.75  | 14.687  | 35.977E-02 | -1.976E-04 | 42.622E-09  | 15.9880 | 2541.83 | -42.26  | -23 | 62  | 211 |
| 212 | 574.71  | 303.44 | -192.76 |         | -40.641 | 52.251E-02 | -3.035E-04 | 71.301E-09  | 16.0897 | 3193.92 | -66.15  | 27  | 167 | 212 |
| 213 | 438.08  | 256.84 |         |         | 16.810  | 36.898E-01 | -1.382E-04 | -5.732E-09  | 16.0890 | 2974.94 | -58.15  | 1   | 136 | 213 |
| 214 | 406.69  | 231.67 | -77.29  | 38.64   | -53.625 | 54.261E-02 | -3.031E-04 | 64.854E-09  | 15.8574 | 2588.48 | -41.79  | -43 | 72  | 214 |
| 215 | 305.25  | 174.70 | -20.93  | 79.17   | -0.134  | 43.292E-02 | -2.317E-04 | 46.808E-09  | 15.7646 | 2405.96 | -39.63  | -53 | 52  | 215 |
| 216 | 305.31  | 175.72 | -28.09  | 71.89   | ~13.151 | 46.013E-02 | -2.541E-04 | 54.554E-09  | 15.8251 | 2459.05 | -42.56  | -53 | 57  | 216 |
| 217 | 349.33  | 176.62 | -31.78  | 69.96   | 1.947   | 41.818E-02 | -2.178E-04 | 44.045E-09  | 15.9011 | 2495.97 | -40.18  | -53 | 57  | 217 |
| 218 | 369.27  | 193.39 | -36.34  | 65.65   | 10.572  | 39.971E-02 | -1.946E-04 | 33.139E-09  | 15.8260 | 2426.42 | -40.36  | -53 | 52  | 218 |
| 219 | 322.47  | 180.43 | -42.58  | 59.70   | 11.803  | 35.090E-02 | -1.117E-04 | -5.807E-09  | 15.9238 | 2521.53 | -40.31  | -47 | 62  | 219 |
| 220 |         |        | -28.97  | 74.82   | 21.742  | 38.895E-02 | -2.007E-04 | 40.105E-09  | 15.7179 | 2333.61 | -36.33  | 63  | 42  | 220 |
| 221 | 521.30  | 252.03 | -227.97 | -108.35 | 14.239  | 43.292E-02 | -2.107E-04 | 31.623E-09  | 16.1623 | 3030.20 | -58.15  | -46 | 139 | 221 |
| 222 | 437.94  | 243.03 | -258.83 | -137.16 | 1.147   | 48.023E-02 | -2.818E-04 | 66.612E-09  | 16.0031 | 2934.87 | -62.25  | 2   | 137 | 222 |
| 223 |         |        |         |         | -2.914  | 49.907E-02 | -2.935E-04 | 66.654E-09  | 14.1779 | 1993.12 | -103.20 | -2  | 133 | 223 |
| 224 | 409.17  | 236.65 | -258.83 | 135.36  | 30.011  | 39.394E-02 | -1.907E-04 | 33.976E-09  | 16.8138 | 3410.51 | -40.15  | 2   | 127 | 224 |
| 225 | 729.09  | 341.13 | -490.69 | -357.43 | 13.389  | 50.325E-02 | -2.931E-04 | 66.193E-09  | 17.6306 | 4092.15 | -86.55  | 77  | 222 | 225 |
| 226 |         |        |         |         | 19.850  | 40.336E-02 | -1.436E-04 | -7.402E-09  | 16.2292 | 2980.47 | -64.15  | 5   | 136 | 226 |
| 227 | 489.53  | 255.83 | -466.03 |         | 15.420  | 45.008E-02 | -1.686E-04 | -1.439E-08  | 16.2291 | 2980.47 | -64.15  | 7   | 137 | 227 |
| 228 | 463.31  | 248.72 | -470.18 | -323.72 | 19.854  | 40.344E-02 | -1.437E-04 | 7.402E-09   | 16.1620 | 2935.11 | -64.16  | 3   | 123 | 228 |
| 229 | 479.35  | 254.66 |         |         |         |            |            |             |         |         |         |     |     | 229 |
| 230 | 451.21  | 246.09 |         |         |         |            |            |             |         |         |         |     |     | 230 |
| 231 | 772.79  | 313.49 | -49.03  |         | -53.068 | 62.886E-02 | -3.358E-04 | 64.267E-09  | 16.1004 | 3015.46 | -61.15  | 7   | 143 | 231 |
| 232 | 313.66  | 182.48 | -146.54 | -8.37   | -3.626  | 48.734E-02 | -2.580E-04 | 53.047E-09  | 15.8333 | 2477.07 | -39.94  | -53 | 57  | 232 |
| 233 | 367.32  | 191.58 | -154.58 | -14.82  | 9.525   | 50.660E-02 | -2.729E-04 | 57.234E-09  | 15.6338 | 2348.67 | -40.05  | -57 | 49  | 233 |
| 234 | 355.54  | 196.35 | -166.09 | -15.24  | -16.592 | 55.517E-02 | -3.306E-04 | 76.325E-09  | 15.2069 | 2034.15 | -45.37  | -13 | 32  | 234 |
| 235 | 1151.10 | 349.62 | -298.94 | -146.12 | 3.869   | 50.451E-02 | -2.639E-04 | 51.205E-09  | 16.5270 | 3026.89 | -105.00 | 37  | 138 | 235 |
| 236 | 1259.40 | 349.85 | -302.71 | -165.71 | -9.483  | 56.773E-02 | -3.481E-04 | 86.374E-09  | 16.2708 | 2752.19 | -116.30 | 34  | 129 | 236 |
| 237 | 1148.80 | 349.51 | -302.29 |         | -9.542  | 56.815E-02 | 3.485E-04  | 86.499E-09  | 16.7127 | 3026.43 | -104.10 | 25  | 153 | 237 |
| 238 | 1502.00 | 336.75 | -329.92 | -165.38 | -12.087 | 60.960E-02 | -4.204E-04 | 12.284E-08  | 15.0113 | 1988.08 | -137.80 | 25  | 102 | 238 |
| 239 |         |        | -293.08 | -125.52 | 12.154  | 53.968E-02 | -3.160E-04 | 71.217E-09  | 18.1336 | 3694.96 | -65.00  | 55  | 133 | 239 |
| 240 | 399.87  | 213.39 |         |         |         |            |            |             | 15.3549 | 2423.41 | -62.28  | -27 | 87  | 240 |
| 241 |         |        | -292.99 | -125.52 | 2.533   | 51.372E-02 | -2.596E-04 | 43.040E-09  | 16.4174 | 2913.70 | -30.63  | -88 | 88  | 241 |
| 242 |         |        |         |         |         |            |            |             | 15.8830 | 2666.26 | -53.70  | 69  | 23  | 242 |
| 243 |         |        | -957.27 | -879.98 | 36.283  | 52.670E-02 | -4.547E-04 | 14.558E-08  | 16.1940 | 2827.53 | -57.66  | -3  | 117 | 243 |
| 244 |         |        |         |         |         |            |            |             | 13.9087 | 1374.07 | -136.80 | 7   | 127 | 244 |
| 245 |         |        |         |         |         |            |            |             | 15.8307 | 2488.59 | -59.73  | -3  | 57  | 245 |
| 246 |         |        |         |         | -14.361 | 60.876E-02 | -5.623E-04 | 20.725E-08  | 16.8979 | 4452.50 | -53.00  | 127 | 327 | 246 |
| 247 | 554.35  | 319.07 | 29.98   | 82.73   | -14.302 | 55.056E-02 | -4.513E-04 | 14.294E-08  | 16.2799 | 3798.23 | -59.84  | 58  | 210 | 247 |
| 248 | 402.20  | 300.89 | 26.46   | 78.63   | -13.590 | 54.931E-02 | -4.505E-04 | 14.269E-08  | 16.8173 | 4104.13 | -43.15  | 53  | 202 | 248 |
| 249 | 483.82  | 312.03 | 23.03   | 77.20   | -14.344 | 55.349E-02 | -4.559E-04 | 14.478E-08  | 16.1135 | 3626.83 | -64.64  | 54  | 204 | 249 |
| 250 | 508.18  | 302.42 | 105.09  | 138.62  | -28.805 | 53.507E-02 | 4.080E-04  | 12.117E-08  | 15.7972 | 3313.00 | -67.71  | 47  | 177 | 250 |
|     |         |        |         |         |         |            |            |             |         |         |         |     |     |     |

| NO         | FORMULA        | COMPOUND NAME                  | MOLWT            | TFP              | ТВР          | TC             | PC           | VC             | LDEN       | TDEN     | HVAP             | NO         |
|------------|----------------|--------------------------------|------------------|------------------|--------------|----------------|--------------|----------------|------------|----------|------------------|------------|
| 251        | C6H5CL         | CHLOROBENZENE                  | 112.559          | -45.6            | 131.7        | 632.4          | 45.2         | 0.308          | 1106       | 20       | 36,572           | 251        |
| 252        | C6H5F          | FLUOROBENZENE                  | 96.104           | -39.2            | 85.3         | 560.1          | 45.5         | 0.271          | 1024       | 20       |                  | 252        |
| 253        | C6H5I          | IODOBENZENE                    | 204.011          | -31.4            | 188.2        | 721.0          | 45.2         | 0.351          | 1855       | 4        | 39,523           | 253        |
| 254        | C6H5NO2        | NITROBENZENE                   | 123.112          | 4.8              | 210.6        | 712.0          | 35.0         | 0.337          | 1203       | 20       | 44,031           | 254        |
| 255        | C6H6           | BENZENE                        | 78.114           | 5.5              | 80.1         | 562.1          | 48.9         | 0.259          | 885        | 16       | 30,781           | 255        |
| 256        | C6H6O          | PHENOL                         | 94.113           | 40.8             | 181.8        | 694.2          | 61.3         | 0.229          | 1059       | 40       | 45,636           | 256        |
| 257        | C6H7N          | ANILINE                        | 93.129           | -6.2             | 184.3        | 699.0          | 53.1         | 0.270          | 1022       | 20       | 41,868           | 257        |
| 258        | C6H7N          | 4-METHYL PYRIDINE              | 93.129           | 3.7              | 145.3        | 646.0          | 44.6         | 0.311          | 955        | 20       | 37,472           | 258        |
| 259        | C6H10          | 1;5-HEXADIENE                  | 82.146           | -141.2           | 59.4         | 507.0          | 34.5         | 0.328          | 692        | 20       | 27,470           | 259        |
| 260        | C6H10          | CYCLOHEXENE                    | 82.146           | -103.5           | 82.9         | 560.4          | 43.5         | 0.292          | 816        | 16       | 30,480           | 260        |
| 261        | C6H10O         | CYCLOHEXANONE                  | 98.145           | -31.2            | 155.6        | 629.0          | 38.5         | 0.312          | 951        | 15       | 39,775           | 261        |
| 262        | C6H12          | CYCLOHEXANE                    | 84.162           | 6.5              | 80.7         | 553.4          | 40.7         | 0.308          | 779        | 20       | 29,977           | 262        |
| 263        | C6H12          | METHYLCYCLOPENTANE             | 84.162           | -142.5           | 71.8         | 532.7          | 37.9         | 0.319          | 754        | 16       | 29,098           | 263        |
| 264        | C6H12          | 1-HEXENE                       | 84.162           | -139.9           | 63.4         | 504.0          | 31.7         | 0.350          | 673        | 20       | 28,303           | 264        |
| 265        | C6H12          | CIS-2-HEXENE                   | 84.162           | -141.2           | 68.8         | 518.0          | 32.8         | 0.351          | 687        | 20       | 29,140           | 265        |
| 266        | C6H12<br>C6H12 | TRANS-2-HEXENE                 | 84.162           | -133.2<br>-137.9 | 67.8         | 516.0          | 32.7         | 0.351          | 678        | 20       | 28,931           | 266        |
| 267<br>268 | C6H12 ·        | CIS-3-HEXENE<br>TRANS-3-HEXENE | 84.162<br>84.162 | -137.9<br>-113.5 | 66.4<br>67.1 | 517.0<br>519.9 | 32.8<br>32.5 | 0.350<br>0.350 | 680        | 20       | 28,721           | 267<br>268 |
| 269        | C6H12          | 2-METHYL-2-PENTENE             | 84.162           | -113.3<br>-135.1 | 67.1         | 518.0          | 32.8         | 0.351          | 677<br>691 | 20<br>16 | 28,973<br>29.015 | 268<br>269 |
| 270        | C6H12          | 3-METHYL-CIS-2-PENTENE         | 84.162<br>84.162 | -133.1<br>-134.9 | 67.7         | 518.0          | 32.8         | 0.351          | 694        | 20       | 28,847           | 209        |
| 270        | C6H12          | 3-METHYL-TRANS-2-PENTENE       | 84.162           | -134.9           | 70.4         | 521.0          | 32.8         | 0.350          | 698        | 20       | 29,308           | 270        |
| 272        | C6H12          | 4-METHYL-CIS-2-PENTENE         | 84.162           | -134.2           | 56.4         | 490.0          | 30.4         | 0.360          | 669        | 20       | 27,508           | 272        |
| 273        | C6H12          | 4-METHYL-TRANS-2-PENTENE       | 84.162           | -141.2           | 58.5         | 493.0          | 30.4         | 0.360          | 669        | 20       | 27,968           | 273        |
| 274        | C6H12          | 2;3-DIMETHYL-1-BUTENE          | 84.162           | -157.3           | 55.6         | 501.0          | 32.4         | 0.343          | 678        | 20       | 27,424           | 274        |
| 275        | C6H12          | 2;3-DIMETHYL-2-BUTENE          | 84.162           | -74.3            | 73.2         | 524.0          | 33.6         | 0.351          | 708        | 20       | 29,655           | 275        |
| 276        | C6H12          | 3;3-DIMETHYL-1-BUTENE          | 84.162           | -115.2           | 41.2         | 490.0          | 32.5         | 0.340          | 653        | 20       | 25,665           | 276        |
| 277        | C6H12O         | CYCLOHEXANOL                   | 100.161          | 24.8             | 161.1        | 625.0          | 37.5         | 0.327          | 942        | 30       | 45,511           | 277        |
| 278        | C6H12O         | METHYL ISOBUTYL KETONE         | 100.161          | -84.2            | 116.4        | 571.0          | 32.7         | 0.371          | 801        | 20       | 35,588           | 278        |
| 279        | C6H12O2        | N-BUTYL ACETATE                | 116.160          | -73.5            | 126.0        | 579.0          | 31.4         | 0.400          | 898        | 0        | 36,006           | 279        |
| 280        | C6H12O2        | ISOBUTYL ACETATE               | 116.160          | -98.9            | 116.8        | 561.0          | 30.4         | 0.414          | 875        | 20       | 35,873           | 280        |
| 281        | C6H12O2        | ETHYL BUTYRATE                 | 116.160          | -93.2            | 120.8        | 566.0          | 31.4         | 0.395          | 879        | 20       | 34,332           | 281        |
| 282        | C6H12O2        | ETHYL ISOBUTYRATE              | 116.160          | -88.2            | 111.0        | 553.0          | 30.4         | 0.410          | 869        | 20       | 35,023           | 282        |
| 283        | C6H12O2        | N-PROPYL PROPIONATE            | 116.160          | -75.9            | 122.5        | 578.0          |              |                | 188        | 20       | 36,383           | 283        |
| 284        | C6H14          | N-HEXANE                       | 86.178           | -95.4            | 68.7         | 507.4          | 29.7         | 0.370          | 659        | 20       | 28,872           | 284        |
| 285        | C6H14          | 2-METHYL PENTANE               | 86.178           | -153.7           | 60.2         | 497.5          | 30.1         | 0.367          | 653        | 20       | 27,800           | 285        |
| 286        | C6H14          | 3-METHYL PENTANE               | 86.178           | -118.2           | 63.2         | 504.4          | 31.2         | 0.367          | 664        | 20       | 28,093           | 286        |
| 287        | C6H14          | 2;2-DIMETHYL BUTANE            | 86.178           | -99.9            | 49.7         | 488.7          | 30.8         | 0.359          | 649        | 20       | 26,322           | 287        |
| 288        | C6H14          | 2;3-DIMETHYL BUTANE            | 86.178           | -128.6           | 58.0         | 499.9          | 31.3         | 0.358          | 662        | 20       | 27,298           | 288        |
| 289        | C6H14O         | 1-HEXANOL                      | 102.177          | -44.0            | 157.0        | 610.0          | 40.5         | 0.381          | 819        | 20       | 48,567           | 289        |
| 290        | C6H14O         | ETHYL BUTYL ETHER              | 102.177          | -103.2           | 92.2         | 531.0          | 30.4         | 0.390          | 749        | 20       | 31,820           | 290        |
| 291        | C6H14O         | DIISOPROPYL ETHER              | 102.177          | -85.5            | 68.3         | 500.0          | 28.8         | 0.386          | 724        | 20       | 29,349           | 291        |
| 292        | C6H15N         | DIPROPYLAMINE                  | 101.193          | -63.2            | 109.2        | 550.0          | 31.4         | 0.407          | 738        | 20       | 37,011           | 292        |
| 293        | C6H15N         | TRIETHYLAMINE                  | 101.193          | -114.8           | 89.5         | 535.0          | 30.4         | 0.390          | 728        | 20       | 31,401           | 293        |
| 294        | C7F14          | PERFLUOROMETHYLCYCLOHEXANE     | 350.055          |                  | 76.3         | 486.8          | 23.3         |                |            |          |                  | 294        |
| 295        | C7F16          | PERFLUORO-N-HEPTANE            | 388.051          | -78.2            | 82.5         | 474.8          | 16.2         | 0.664          | 1733       | 20       |                  | 295        |
| 296        | C7H5N          | BENZONITRILE                   | 103.124          | -13.2            | 190.8        | 699.4          | 42.2         |                | 1010       | 15       |                  | 296        |
| 297        | C7H6O          | BENZALDEHYDE                   | 106.124          | -57.2            | 178.8        | 695.0          | 46.6         |                | 1045       | 20       | 42,705           | 297        |
| 298        | C7H6O2         | BENZOIC ACID                   | 122.124          | 122.4            | 249.8        | 752.0          | 45.6         | 0.341          | 1075       | 130      | 50,660           | 298        |
| 299        | C7H7NO2        | O-NITROTOLUENE                 | 137.139          | -9.2             | 222.1        | 720.0          | 34.0         | 0.371          | 1167       | 20       | 45,487           | 299        |
| 300        | C7H7NO2        | M-NITROTOLUENE                 | 137.139          | 16.0             | 233.1        | 725.0          | 30.5         | 0.371          | 1158       | 20       | 46,090           | 300        |

959

| NO         | VISA             | VISB             | DELHF              | DELGF         | CPVAPA           | CPVAPB                   | CPVAPC                   | CPVAPD                   | ANTA               | ANTB               | ANTC             | TMN         | TMX        | NO         |
|------------|------------------|------------------|--------------------|---------------|------------------|--------------------------|--------------------------|--------------------------|--------------------|--------------------|------------------|-------------|------------|------------|
| 251        | 477.76           | 276.22           | 51.87              | 99.23         | -33.888          | 56.312E-02               | -4.522E-04               | 14.264E-08               | 16.0676            | 3295.12            | -55.60           | 47          | 147        | 251        |
| 252        | 452.06           | 252.89           | -116.64            | -69.08        | -38.728          | 56.689E-02               | -4.434E-04               | 13.553E-08               | 16.5487            | 3181.78            | -37.59           | -23         | 97         | 252        |
| 253        | 565.72           | 331.21           | 162.66             | 187.90        | -29.274          | 55.643E-02               | -4.509E-04               | 14.432E-08               | 16.1454            | 3776.53            | -64.38           | 17          | 197        | 253        |
| 254        |                  |                  | -67.49             |               |                  |                          |                          |                          | 16.1484            | 4032.66            | -71.81           | 44          | 211        | 254        |
| 255        | 545.64           | 265.34           | 82.98              | 129.75        | -33.917          | 47.436E-02               | -3.017E-04               | 71.301E-09               | 15.9008            | 2788.51            | -52.36           | 7           | 104        | 255        |
| 256        | 1405.50          | 370.07           | -96.67             | -32.91        | -35.843          | 59.829E-02               | -4.827E-04               | 15.269E-08               | 16.4279            | 3490.89            | -98.59           | 72          | 208        | 256        |
| 257        | 1074.60          | 357.21           | 86.92              | 166.80        | -40.516          | 63.849E-02               | -5.133E-04               | 16.333E-08               | 16.6748            | 3857.52            | -73.15           | 67          | 227        | 257        |
| 258        | 500.97           | 285.50           | 102.28             |               | -17.430          | 48.818E-02               | -2.798E-04               | 54.512E-09               | 16.2143            | 3409.40            | -62.65           | 27          | 187        | 258        |
| 259        |                  |                  | 83.74              |               |                  |                          |                          |                          | 16.1351            | 2728.54            | -45.45           | 9           | 77         | 259        |
| 260        | 506.92           | 264.54           | -5.36              | 106.93        | -68.651          | 72.515E-02               | -5.414E-04               | 16.442E-08               | 15.8243            | 2813.53            | -49.98           | 27          | 87         | 260        |
| 261        | 787.38           | 336.47           | -230.27            | -90.81        | -37.807          | 55.391E-02               | -1.953E-04               | -1.534E-08               |                    |                    |                  |             |            | 261        |
| 262        | 653.62           | 290.84           | -123.22            | 31.78         | -54.541          | 61.127E-02               | -2.523E-04               | 13.214E-09               | 15.7527            | 2766.63            | -50.50           | 7           | 107        | 262        |
| 263        | 440.52           | 243.24           | -105.93            | 35.80         | 50.108           | 63.807E-02               | -3.642E-04               | 80.135E-09               | 15.8023            | 2731.00            | -47.11           | -23         | 102        | 263        |
| 264        | 357.43           | 197.74           | -41.70             | 87.50         | -1.746           | 53.089E-02               | -2.903E-04               | 60.541E-09               | 15.8089            | 2654.81            | -47.30           | -33         | 87         | 264        |
| 265        | 344.33           | 197.95           | -52.38             | 76.28         | -9.810           | 53.089E-02               | -2.717E-04               | 48.274E-09               | 16.2057            | 2897.97            | -39.30           | 28          | 97         | 265        |
| 266        | 344.33           | 197.95           | -53.93             | 76.49         | -32.925          | 69.292E-02               | -5.619E-04               | 20.046E-08               | 15.8727            | 2701.72            | -48.62           | -28         | 92         | 266        |
| 267        | 344.33           | 197.95           | -47.65             | 83.07         | -21.729          | 58.113E-02               | -3.362E-04               | 74.567E-09               | 15.8384            | 2680.52            | -48.40           | -28         | 92         | 267        |
| 268        | 344.33           | 197.95           | -54.47             | 77.67         | -4.338           | 55.098E-02               | -3.282E-04               | 80.470E-09               | 15.9288            | 2718.68            | -47.77           | -28         | 92         | 268        |
| 269        |                  |                  | -59.79             | 71.26         | -14.750          | 56.689E-02               | -3.341E-04               | 79.633E-09               | 15.9423            | 2725.89            | -47.64           | -28         | 97         | 269        |
| 270        |                  |                  | -57.78             | 73.27         | -14.750          | 56.689E-02               | -3.341E-04               | 79.633E-09               | 15.9124            | 2731.79            | -46.76           | -25         | 91         | 270        |
| 271        |                  |                  | -58.70             | 71.34         | -14.750          | 56.689E-02               | -3.341E-04               | 79.633E-09               | 15.9484            | 2750.50            | -48.33           | -23         | 93         | 271        |
| 272        |                  |                  | -50.37             | 82.19         | -1.675           | 53.759E-02               | -3.044E-04               | 67.533E-09               | 15.7527            | 2580.52            | -46.56           | -35         | 79         | 272        |
| 273        |                  |                  | -54.39             | 79.67         | 12.627           | 51.540E-02               | -3.007E-04               | 73.269E-09               | 15.8425            | 2631.57            | -46.00           | -33         | 18         | 273        |
| 274        |                  |                  | -55.77             | 79.09         | 7.025            | 55.852E-02               | -3.696E-04               | 10.630E-08               | 15:8012            | 2612.69            | -43.78           | -38         | 87         | 274 .      |
| 275        |                  |                  | -59.24             | 75.91         | 2.294            | 48.274E-02               | -2.199E-04               | 30.417E-09               | 16.0043            | 2798.63            | -47.71           | -23         | 102        | 275        |
| 276        |                  |                  | -43.17             | 98.22         | -12.556          | 54.847E-02               | -2.915E-04               | 52.084E-09               | 15.3755            | 2326.80            | -48.24           | -48         | 67         | 276        |
| 277        |                  |                  | -294.75            | -117.98       | -55.534          | 72.139E-02               | -4.086E-04               | 82.354E-09               |                    |                    |                  |             |            | 277        |
| 278        | 473.65           | 259.03           | -284.03            |               | 3.894            | 56.564E-02               | -3.318E-04               | 82.312E-09               | 15.7165            | 2893.66            | -70.75           | 12          | 152        | 278        |
| 279        | 537.58           | 272.30           | -486.76            |               | 13.620           | 54.889E-02               | -2.278E-04               | -7.913E-10               | 16.1836            | 3151.09            | -69.15           | 22          | 162        | 279        |
| 280        | 533.99           | 270.49           | -495.47            |               | 7.310            | 57.401E-02               | -2.576E-04               | 11.011E-09               | 16.1714            | 3092.83            | -66.15           | 16          | 154        | 280        |
| 281        | 489.95           | 264.22           |                    |               | 21.508           | 49.279E-02               | -1.938E-04               | 35.588E-10               | 15.9987            | 3127.60            | -60.15           | 15          | 159        | 281        |
| 282        |                  |                  |                    |               |                  |                          |                          |                          | 160641             | 2552.10            | 477.04           |             |            | 282        |
| 283<br>284 | 262.70           | 207.00           | 167.20             | 0.25          | 4.412            | 50 1075 03               | 2 1105 04                | ( 4 027F 00              | 16.8641            | 3558.18            | -47.86           | 19          | 147        | 283        |
|            | 362.79           | 207.09           | -167.30            | -0.25         | -4.413           | 58.197E-02               | -3.119E-04               | 64.937E-09               | 15.8366            | 2697.55            | -48.78           | -28         | 97         | 284        |
| 285        | 384.13<br>372.11 | 208.27           | -174.42<br>-171.74 | -5.02         | -10.567          | 61.839E-02               | -3.573E-04               | 80.847E-09               | 15.7476            | 2614.38            | -46.58           | -33         | 97         | 285        |
| 286<br>287 | 438.44           | 207.55<br>226.67 | -171.74<br>-185.68 | -2.14 $-9.63$ | -2.386           | 56.899E-02               | -2.870E-04               | 50.325E-09               | 15.7701            | 2653.43            | -46.02           | -33         | 92         | 286        |
| 288        | 436.44           | 228.86           | -183.08<br>-177.90 | -4.10         | -16.634          | 62.928E-02               | -3.481E-04               | 68.496E-09               | 15.5536            | 2489.50            | -43.81           | -43         | 77         | 287        |
| 289        | 1179.40          | 354.94           | -317.78            | -135.65       | -14.608<br>4.811 | 61.504E-02<br>58.908E-02 | -3.376E-04<br>-3.010E-04 | 68.203E-09               | 15.6802            | 2595.44            | -44.25           | -38         | 81         | 288        |
| 290        | 443.32           | 234.68           | -317.76            | -155.05       | 23.626           | 53.675E-02               | -2.528E-04               | 54.261E-09<br>41.567E-09 | 18.0994            | 4055.45<br>2921.52 | -76.49           | 35          | 157<br>127 | 289<br>290 |
| 291        | 410.58           | 219.67           | -319.03            | -121.96       | 7.503            | 58.490E-02               | -2.328E-04<br>-3.027E-04 | 58.448E-09               | 16.0477            | 2895.73            | -55.15           | $-8 \\ -24$ | 91         | 290<br>291 |
| 292        | 561.11           | 257.39           | -319.03            | -121.90       | 6.460            | 62.928E-02               | -3.390E-04               | 70.715E-09               | 16.3417<br>16.5939 | 3259.08            | -43.15<br>-55.15 | -24<br>29   | 149        | 291        |
| 293        | 355.52           | 214.48           | -99.65             | 110.36        | -18.430          | 71.552E-02               | -4.392E-04               | 10.923E-08               | 15.8853            | 2882.38            | -51.15           | -13         | 127        | 292        |
|            | 333.32           | 214.40           |                    | 110.50        | -16.430          | /1.332E-02               | -4.392E-04               | 10.9236-06               |                    |                    |                  |             |            |            |
| 294        |                  |                  | -2898.10           |               |                  |                          |                          |                          | 15.7130            | 2610.57            | -61.93           | 17          | 112        | 294        |
| 295        |                  |                  | -3386.70           | -3089.31      |                  |                          |                          |                          | 15.9747            | 2719.68            | -64.50           | -3          | 117        | 295        |
| 296        |                  |                  | 218.97             | 261.05        | -26.004          | 57.317E-02               | -4.430E-04               | 13.490E-08               |                    |                    |                  |             |            | 296        |
| 297        | 686.84           | 314.66           | -36.80             | 22.40         | -12.142          | 49.614E-02               | -2.845E-04               | 51.665E-09               | 16.3501            | 3748.62            | -66.12           | 27          | 187        | 297        |
| 298        | 2617.60          | 407.88           | -290.40            | -210.55       | -51.292          | 62.928E-02               | -4.237E-04               | 10.622E-08               | 17.1634            | 4190.70            | -125.20          | 132         | 287        | 298        |
| 299        |                  |                  | -265.86            |               |                  |                          |                          |                          | 14.2028            | 2603.49            | -151.52          | 222         | 129        | 299        |
| 300        |                  |                  | -265.86            |               |                  |                          |                          |                          |                    |                    |                  |             |            | 300        |

| NO  | FORMULA | COMPOUND NAME                  | MOLWT   | TFP    | ТВР   | TC    | PC   | VC    | LDEN | TDEN | HVAP   | NO  |
|-----|---------|--------------------------------|---------|--------|-------|-------|------|-------|------|------|--------|-----|
| 301 | C7H7NO2 | P-NITROTOLUENE                 | 137.139 | 54.8   | 238.0 | 735.0 | 30.1 | 0.371 | 1164 | 20   | 46,875 | 301 |
| 302 | C7H8    | TOLUENE                        | 92.141  | -95.2  | 110.6 | 591.7 | 41.1 | 0.316 | 867  | 20   | 33,201 | 302 |
| 303 | C7H8O   | METHYL PHENYL ETHER            | 108.140 | -37.5  | 153.6 | 641.0 | 41.7 |       | 996  | 20   |        | 303 |
| 304 | C7H8O   | BENZYL ALCOHOL                 | 108.140 | -15.4  | 205.4 | 677.0 | 46.6 | 0.334 | 1041 | 25   | 50,535 | 304 |
| 305 | C7H8O   | O-CRESOL                       | 108.140 | 30.9   | 191.0 | 697.6 | 50.1 | 0.282 | 1028 | 40   | 45.217 | 305 |
| 306 | C7H8O   | M-CRESOL                       | 108.140 | 12.2   | 202.2 | 705.8 | 45.6 | 0.310 | 1034 | 20   | 47,436 | 306 |
| 307 | C7H8O   | P-CRESOL                       | 108.140 | 34.7   | 201.9 | 704.6 | 51.5 |       | 1019 | 40   | 47,478 | 307 |
| 308 | C7H9N   | 2;3-DIMETHYLPYRIDINE           | 107.156 |        | 160.8 | 655.4 |      |       | 942  | 25   |        | 308 |
| 309 | C7H9N   | 2;5-DIMETHYLPYRIDINE           | 107.156 |        | 157.0 | 644.2 |      |       | 938  | 0    |        | 309 |
| 310 | C7H9N   | 3;4-DIMETHYLPYRIDINE           | 107.156 |        | 179.1 | 683.8 |      |       | 954  | 25   |        | 310 |
| 311 | C7H9N   | 3;5-DIMETHYLPYRIDINE           | 107.156 |        | 171.9 | 667.2 |      |       | 939  | 25   |        | 311 |
| 312 | C7H9N   | METHYLPHENYLAMINE              | 107.156 | -57.2  | 195.9 | 701.0 | 52.0 |       | 989  | 20   |        | 312 |
| 313 | C7H9N   | O-TOLUIDINE                    | 107.156 | -14.8  | 200.1 | 694.0 | 37.5 | 0.343 | 998  | 20   | 45,364 | 313 |
| 314 | C7H9N   | M-TOLUIDINE                    | 107.156 | -30.4  | 203.3 | 709.0 | 41.5 | 0.343 | 989  | 20   | 45,636 | 314 |
| 315 | C7H9N   | P-TOLUIDINE                    | 107.156 | 43.7   | 200.1 | 667.0 |      |       | 964  | 50   | 44,799 | 315 |
| 316 | C7H14   | CYCLOHEPTANE                   | 98.189  | -8.2   | 118.7 | 589.0 | 37.2 | 0.390 | 810  | 20   | 33,076 | 316 |
| 317 | C7H14   | 1;1-DIMETHYLCYCLOPENTANE       | 98.189  | -69.8  | 87.8  | 547.0 | 34.5 | 0.360 | 759  | 16   | 30,312 | 317 |
| 318 | C7H14   | CIS-1;2-DIMETHYLCYCLOPENTANE   | 98.189  | -53.9  | 99.5  | 564.8 | 34.5 | 0.368 | 777  | 16   | 31,719 | 318 |
| 319 | C7H14   | TRANS-1;2-DIMETHYLCYCLOPENTANE | 98.189  | -117.6 | 91.8  | 553.2 | 34.5 | 0.362 | 756  | 16   | 30,878 | 319 |
| 320 | C7H14   | ETHYLCYCLOPENTANE              | 98.189  | -138.5 | 103.4 | 569.5 | 33.9 | 0.375 | 771  | 16   | 32,301 | 320 |
| 321 | C7H14   | METHYLCYCLOHEXANE              | 98.189  | -126.6 | 100.9 | 572.1 | 34.8 | 0.368 | 774  | 16   | 31,150 | 321 |
| 322 | C7H14   | 1-HEPTENE                      | 98.189  | -118.9 | 93.6  | 537.2 | 28.4 | 0.440 | 679  | 20   | 31,108 | 322 |
| 323 | C7H14   | 2;3;3-TRIMETHYL-1-BUTENE       | 98.189  | -109.9 | 77.8  | 533.0 | 29.0 | 0.400 | 705  | 20   | 28.889 | 323 |
| 324 | C7H16   | N-HEPTANE                      | 100.250 | -90.6  | 98.4  | 540.2 | 27.4 | 0.432 | 684  | 20   | 31,719 | 324 |
| 325 | C7H16   | 2-METHYLHEXANE                 | 100.205 | -118.3 | 90.0  | 530.3 | 27.4 | 0.421 | 679  | 20   | 30,689 | 325 |
| 326 | C7H16   | 3-METHYLHEXANE                 | 100.205 | -173.2 | 91.8  | 535.2 | 28.2 | 0.404 | 687  | 20   | 30,815 | 326 |
| 327 | C7H16   | 2;2-DIMETHYLPENTANE            | 100.205 | -123.8 | 79.2  | 520.4 | 27.8 | 0.416 | 674  | 20   | 29,182 | 327 |
| 328 | C7H16   | 2;3-DIMETHYLPENTANE            | 100.205 |        | 89.7  | 537.3 | 29.1 | 0.393 | 965  | 20   | 30,409 | 328 |
| 329 | C7H16   | 2;4-DIMETHYLPENTANE            | 100.205 | -119.2 | 80.5  | 519.7 | 27.4 | 0.418 | 673  | 20   | 29,517 | 329 |
| 330 | C7H16   | 3;3-DIMETHYLPENTANE            | 100.205 | -134.5 | 86.0  | 536.3 | 29.5 | 0.414 | 693  | 20   | 29,668 | 330 |
| 331 | C7H16   | 3-ETHYLPENTANE                 | 100.205 | -118.6 | 93.4  | 540.6 | 28.9 | 0.416 | 698  | 20   | 30,978 | 331 |
| 332 | C7H16   | 2;2;3-TRIMETHYLBUTANE          | 100.205 | -24.9  | 80.8  | 531.1 | 29.6 | 0.398 | 690  | 20   | 28,968 | 332 |
| 333 | C7H16O  | 1-HEPTANOL                     | 116.204 | -34.0  | 176.3 | 633.0 | 30.4 | 0.435 | 822  | 20   | 48,148 | 333 |
| 334 | C8H4O3  | PHTHALIC ANHYDRIDE             | 148.118 | 130.8  | 286.8 | 810.0 | 47.6 | 0.368 |      |      | 49,614 | 334 |
| 335 | C8H8    | STYRENE                        | 104.152 | -30.7  | 145.1 | 647.0 | 39.9 | on o  | 906  | 20   | 36,844 | 335 |
| 336 | C8H8O   | METHYL PHENYL KETONE           | 120.151 | 19.6   | 201.7 | 701.0 | 38.5 | 0.376 | 1032 | 15   | ,      | 336 |
| 337 | C8H8O2  | METHYL BENZOATE                | 136.151 | -12.4  | 199.0 | 692.0 | 36.5 | 0.396 | 1083 | 20   | 43,124 | 337 |
| 338 | C8H10   | O-XYLENE                       | 106.168 | -25.2  | 144.4 | 630.2 | 37.3 | 0.369 | 880  | 20   | 36,844 | 338 |
| 339 | C8H10   | M-XYLENE                       | 106.168 | -47.9  | 139.1 | 617.0 | 35.5 | 0.376 | 864  | 20   | 36,383 | 339 |
| 340 | C8H10   | P-XYLENE                       | 106.168 | 13.2   | 138.3 | 616.2 | 35.2 | 0.379 | 861  | 20   | 36,006 | 340 |
| 341 | C8H10   | ETHYL BENZENE                  | 106.168 | -95.0  | 136.1 | 617.1 | 36.1 | 0.374 | 867  | 20   | 35,588 | 341 |
| 342 | C8H10O  | O-ETHYLPHENOL                  | 122.167 | -3.4   | 204.5 | 703.0 |      |       | 1037 | 0    | 48,106 | 342 |
| 343 | C8H10O  | M-ETHYLPHENOL                  | 122.167 | -4.2   | 218.4 | 716.4 |      |       | 1025 | 0    | 50,828 | 343 |
| 344 | C8H10O  | P-ETHYLPHENOL                  | 122.167 | 44.8   | 217.8 | 716.4 |      |       |      |      | 50,660 | 344 |
| 345 | C8H10O  | ETHYL PHENYL ETHER             | 122.167 | -30.2  | 169.8 | 647.0 | 34.2 |       | 979  | 4    |        | 345 |
| 346 | C8H10O  | 2;3-XYLENOL                    | 122.167 | 74.8   | 216.9 | 722.8 |      |       |      |      | 47,311 | 346 |
| 347 | C8H10O  | 2;4-XYLENOL                    | 122.167 | 24.8   | 210.8 | 707.6 |      |       |      |      | 47,143 | 347 |
| 348 | C8H10O  | 2,5-XYLENOL                    | 122.167 | 74.8   | 211.1 | 723.0 |      |       |      |      | 46,892 | 348 |
| 349 | C8H10O  | 2;6-XYLENOL                    | 122.167 | 48.8   | 200.9 | 701.0 |      |       |      |      | 44,380 | 349 |
| 350 | C8H10O  | 3;4-XYLENOL                    | 122.167 | 64.8   | 226.8 | 729.8 |      |       |      |      | 49,823 | 350 |
|     |         |                                |         |        |       |       |      |       |      |      |        |     |

| NO  | VISA    | VISB   | DELHF              | DELGF            | CPVAPA  | CPVAPB     | CPVAPC     | CPVAPD     | ANTA    | ANTB    | ANTC    | TMN | TMX | NO  |
|-----|---------|--------|--------------------|------------------|---------|------------|------------|------------|---------|---------|---------|-----|-----|-----|
| 301 |         |        |                    |                  |         |            |            |            | 16.0433 | 3914.07 | -90.45  | 233 | 129 | 301 |
| 302 | 467.33  | 255.24 | 50.03              | 122.09           | -24.355 | 51.246E-02 | -2.765E-04 | 49.111E-09 | 16.0137 | 3096.52 | -53.67  | 7   | 137 | 302 |
| 303 | 388.84  | 325.85 | 50.05              | 122.07           | 44.000  | 31.240E-02 | 2.7031-04  | 49.111L-02 | 16.2394 | 3430.82 | -69.58  | 97  | 167 | 303 |
| 304 | 1088.00 | 367.21 | -94.08             |                  | -7.398  | 54.805E-02 | -3.357E-04 | 77.707E-09 | 17.4582 | 4384.81 | -73.15  | 112 | 330 | 304 |
| 305 | 1533.40 | 365.61 | -128.70            | -37.10           | -32.276 | 70.045E-02 | -5.924E-04 | 21.240E-08 | 15.9148 | 3305.37 | -108.00 | 97  | 207 | 305 |
| 306 | 1785.60 | 370.75 | ~132.43            | -40.57           | -45.008 | 72.641E-02 | -6.029E-04 | 20.775E-08 | 17.2878 | 4274.42 | -74.09  | 97  | 207 | 306 |
| 307 | 1826.90 | 370.73 | -132.43<br>-125.48 | -40.37<br>-30.90 | -40.633 | 70.548E-02 | -5.757E-04 | 19.674E-08 | 16.1989 | 3479.39 | -111.30 | 97  | 207 | 307 |
| 308 | 1020.90 | 372.00 | 68.29              | -50.90           | -40.033 | /U.J40E-U2 | -3.737E-04 | 19.074E-08 |         | 4219.74 | -33.04  |     |     |     |
| 309 |         |        | 66.44              |                  |         |            |            |            | 17.1492 |         |         | 147 | 167 | 308 |
| 310 |         |        | 70.05              |                  |         |            |            |            | 16.3046 | 3545.14 | -63.59  | 77  | 162 | 309 |
| 311 |         |        | 70.03              |                  |         |            |            |            | 16.9517 | 4237.04 | -41.65  | 127 | 187 | 310 |
| 312 | 015.13  | 222.74 |                    | 199.33           |         |            |            |            | 16.8850 | 4106.95 | -44.45  | 127 | 187 | 311 |
|     | 915.12  | 332.74 | 85.41              | 199.55           |         |            |            |            | 16.3066 | 3756.28 | -80.71  | 47  | 207 | 312 |
| 313 | 1085.10 | 356.46 |                    |                  | 15.000  | #/ 015E 02 | 2.0227.04  | 44 4225 00 | 16.7834 | 4072.58 | -72.15  | 102 | 227 | 313 |
| 314 | 928.12  | 354.07 |                    |                  | -15.989 | 56.815E-02 | -3.033E-04 | 46.432E-09 | 16.7498 | 4080.32 | -73.15  | 82  | 227 | 314 |
| 315 | 738.90  | 356.02 |                    |                  |         |            |            |            | 16.6968 | 4041.04 | -72.15  | 77  | 227 | 315 |
| 316 |         |        | -119.41            | 63.05            | -76.187 | 78.670E-02 | -4.204E-04 | 75.614E-09 | 15.7818 | 3066.05 | -56.80  | 57  | 162 | 316 |
| 317 |         |        | -138.37            | 39.06            | -57.891 | 76.702E-02 | -4.501E-04 | 10.103E-08 | 15.6973 | 2807.94 | -51.20  | -13 | 117 | 317 |
| 318 |         |        | -129.62            | 45.76            | -55.643 | 76.158E-02 | -4.484E-04 | 10.140E-08 | 15.7729 | 2922.30 | -52.94  | -3  | 127 | 318 |
| 319 |         |        | -136.78            | 38.39            | -54.521 | 75.907E-02 | -4.480E-04 | 10.170E-08 | 15.7594 | 2861.53 | -51.46  | -13 | 117 | 319 |
| 320 | 433.81  | 249.72 | -127.15            | 44.59            | -55.312 | 75.111E-02 | -4.396E-04 | 10.040E-08 | 15.8581 | 2990.13 | -52.47  | -3  | 129 | 320 |
| 321 | 528.41  | 271.58 | -154.87            | 27.30            | -61.919 | 78.419E-02 | -4.438E-04 | 93.659E-09 | 15.7105 | 2926.04 | -51.75  | -3  | 127 | 321 |
| 322 | 368.69  | 214.32 | -62.34             | 95.88            | -3.303  | 62.969E-02 | -3.512E-04 | 76.074E-09 | 15.8894 | 2895.51 | -53.97  | -8  | 127 | 322 |
| 323 |         |        | -86.54             |                  |         |            |            |            | 15.6536 | 2719.47 | -49.56  | -20 | 102 | 323 |
| 324 | 436.73  | 232.53 | -187.90            | 8.00             | -5.146  | 67.617E-02 | -3.651E-04 | 76.577E-09 | 15.8737 | 2911.32 | -56.51  | -3  | 127 | 324 |
| 325 | 417.46  | 225.13 | 195.06             | 3.22             | -39.389 | 86.416E-02 | -6.289E-04 | 18.363E-08 | 15.8261 | 2845.06 | -53.60  | -9  | 117 | 325 |
| 326 |         |        | -192.43            | 4.61             | -7.046  | 68.370E-02 | -3.734E-04 | 78.335E-09 | 15.8133 | 2855.66 | -53.93  | -8  | 117 | 326 |
| 327 | 417.37  | 226.19 | -206.28            | 0.08             | -50.099 | 89.556E-02 | -6.360E-04 | 17.358E-08 | 15.6917 | 2740.15 | -49.85  | -19 | 105 | 327 |
| 328 |         |        | ~199.38            | 0.67             | -7.046  | 70.476E-02 | -3.734E-04 | 78.335E-09 | 15.7815 | 2850.64 | -51.33  | -11 | 115 | 328 |
| 329 |         |        | -202.14            | 3.10             | -7.046  | 68.370E-02 | -3.734E-04 | 78.335E-09 | 15.7179 | 2744.78 | -51.52  | -17 | 105 | 329 |
| 330 |         |        | -201.68            | 2.64             | -7.046  | 68.370E-02 | -3.734E-04 | 78.335E-09 | 15.7190 | 2829.10 | -47.83  | -13 | 112 | 330 |
| 331 |         |        | -189.79            | 10.11            | -7.046  | 68.370E-02 | -3.734E-04 | 78.335E-09 | 15.8317 | 2882.44 | -53.26  | -7  | 119 | 331 |
| 332 |         |        | -204.94            | 4.27             | -22.944 | 75.195E-02 | -4.421E-04 | 10.048E-08 | 15.6398 | 2764.40 | -47.10  | -19 | 106 | 332 |
| 333 | 1287.00 | 361.83 | -332.01            | -121.00          | 4.907   | 67.784E-02 | -3.447E-04 | 60.457E-09 | 15.3068 | 2626.42 | -146.60 | 60  | 176 | 333 |
| 334 |         |        | -371.79            |                  | -4.455  | 65.398E-02 | -4.283E-04 | 10.094E-08 | 15.9984 | 4467.01 | -83.15  | 136 | 342 | 334 |
| 335 | 528.64  | 276.71 | 147.46             | 213.95           | -28.248 | 61.588E-02 | -4.023E-04 | 99.353E-09 | 16.0193 | 3328.57 | -63.72  | 32  | 187 | 335 |
| 336 | 1316.40 | 310.82 | -86.92             | 1.84             | -29.580 | 64.100E-02 | -4.071E-04 | 97.217E-09 | 16.2384 | 3781.07 | -81.15  | 77  | 247 | 336 |
| 337 | 768.94  | 332.33 | ~254.06            |                  | -21.210 | 55.015E-02 | -1.799E-04 | 44.254E-09 | 16.2272 | 3751.83 | -81.15  | 77  | 243 | 337 |
| 338 | 513.54  | 277.98 | 19.01              | 122.17           | -15.851 | 59.620E-02 | -3.443E-04 | 75.279E-09 | 16.1156 | 3395.57 | -59.46  | 32  | 172 | 338 |
| 339 | 453.42  | 257.18 | 17.25              | 118.95           | -29.165 | 62.969E-02 | -3.747E-04 | 84.783E-09 | 16.1390 | 3366.99 | -58.04  | 27  | 167 | 339 |
| 340 | 475.16  | 261.40 | 17.96              | 121.21           | -25.091 | 60.416E-02 | -3.374E-04 | 68.203E-09 | 16.0963 | 3346.65 | -57.84  | 27  | 167 | 340 |
| 341 | 472.82  | 264.22 | 29.81              | 130.67           | -43.099 | 70.715E-02 | -4.811E-04 | 13.008E-08 | 16.0195 | 3272.47 | -59.95  | 27  | 177 | 341 |
| 342 |         |        | -145.78            |                  |         |            |            |            | 17.9610 | 4928.36 | -45.75  | 77  | 227 | 342 |
| 343 |         |        | -146.58            |                  |         |            |            |            | 17.1955 | 4272.77 | -86.08  | 97  | 227 | 343 |
| 344 |         |        | -144.65            |                  |         |            |            |            | 19.0905 | 5579.62 | -44.15  | 97  | 227 | 344 |
| 345 | 646.88  | 305.91 |                    |                  |         |            |            |            | 16.1673 | 3473.20 | -78.66  | 112 | 187 | 345 |
| 346 |         |        | -157.34            |                  |         |            |            |            | 16.2424 | 3724.58 | -102.40 | 147 | 227 | 346 |
| 347 |         |        | -162.78            |                  |         |            |            |            | 13.2456 | 3655.26 | -103.80 | 137 | 227 | 347 |
| 348 |         |        | -161.53            |                  |         |            |            |            | 16.2328 | 3667.32 | -102.40 | 137 | 217 | 348 |
| 349 |         |        | -161.95            |                  |         |            |            |            | 16.2809 | 3749.35 | -85.55  | 127 | 207 | 349 |
| 350 |         |        | -156.50            |                  |         |            |            |            | 16.3004 | 3733.53 | -113.90 | 157 | 247 | 350 |
|     |         |        |                    |                  |         |            |            |            |         |         |         |     |     |     |

| NO  | FORMULA | COMPOUND NAME                             | MOLWT   | TFP    | ТВР   | TC    | PC   | VC    | LDEN | TDEN | HVAP             | NO         |
|-----|---------|-------------------------------------------|---------|--------|-------|-------|------|-------|------|------|------------------|------------|
| 351 | C8H10O  | 3;5-XYLENOL                               | 122.167 | 63.8   | 221.6 | 715.6 |      |       |      |      | 49,404           | 351        |
| 352 | C8H11N  | N:N-DIMETHYLANILINE                       | 121.183 | 2.4    | 193.5 | 687.0 | 36.3 |       | 956  | 20   | .,,              | 352        |
| 353 | C8H16   | 1;1-DIMETHYLCYCLOHEXANE                   | 112.216 | -33.5  | 119.5 | 591.0 | 29.7 | 0.416 | 785  | 16   | 32,615           | 353        |
| 354 | C8H16   | CIS-1;2-DIMETHYLCYCLOHEXANE               | 112.216 | -50.1  | 129.7 | 606.0 | 29.7 |       | 796  | 20   | 33,662           | 354        |
| 355 | C8H16   | TRANS-1;2-DIMETHYLCYCLOHEXANE             | 112.216 | -88.2  | 123.4 | 596.0 | 29.7 |       | 776  | 20   | 32,908           | 355        |
| 356 | C8H16   | CIS-1;3-DIMETHYLCYCLOHEXANE               | 112.216 | -75.6  | 120.1 | 591.0 | 29.7 |       | 766  | 20   | 32,825           | 356        |
| 357 | C8H16   | TRANS-1;3-DIMETHYLCYCLOHEXANE             | 112.216 | 90.2   | 124.4 | 598.0 | 29.7 |       | 785  | 20   | 33,871           | 357        |
| 358 | C8H16   | CIS-1;4-DIMETHYLCYCLOHEXANE               | 112.216 | -87.5  | 124.3 | 598.0 | 29.7 |       | 783  | 20   | 33,787           | 358        |
| 359 | C8H16   | TRANS-1:4-DIMETHYLCYCLOHEXANE             | 112.216 | -37.0  | 119.3 | 590.0 | 29.7 |       | 763  | 20   | 32,615           | 359        |
| 360 | C8H16   | ETHYLCYCLOHEXANE                          | 112.216 | -111.4 | 131.7 | 609.0 | 30.3 | 0.450 | 788  | 20   | 34,332           | 360        |
| 361 | C8H16   | 1;1;2-TRIMETHYLCYCLOPENTANE               | 112.216 |        | 113.7 | 579.5 | 29.4 |       |      |      | 32,615           | 361        |
| 362 | C8H16   | 1;1;3-TRIMETHYLCYCLOPENTANE               | 112.216 |        | 104.8 | 569.5 | 28.3 |       |      |      | 31,694           | 362        |
| 363 | C8H16   | CIS;CIS;TRANS-1;2;4-TRIMETHYLCYCLOPENTANE | 112.216 |        | 117.8 | 579.0 | 28.8 |       |      |      | 33,076           | 363        |
| 364 | C8H16   | CIS:TRANS:CIS-1:2:4-TRIMETHYLCYCLOPENTANE | 112.216 |        | 109.2 | 571.0 | 28.1 |       |      |      | 33,076           | 364        |
| 365 | C8H16   | 1-METHYL-1-ETHYLCYCLOPENTANE              | 112.216 |        | 121.5 | 592.0 | 29.9 |       |      |      | 33,662           | 365        |
| 366 | C8H16   | N-PROPYLCYCLOPENTANE                      | 112.216 | -117.4 | 130.9 | 603.0 | 30.0 | 0.425 | 781  | 16   | 34,131           | 366        |
| 367 | C8H16   | ISOPROPYLCYCLOPENTANE                     | 112.216 | -112.7 | 126.4 | 601.0 | 30.0 |       | 776  | 20   | 34,122           | 367        |
| 368 | C8H16   | 1-OCTENE                                  | 112.216 | -101.8 | 121.2 | 566.6 | 26.2 | 0.464 | 715  | 20   | 33,787           | 368        |
| 369 | C8H16   | TRANS-2-OCTENE                            | 112.216 | -87.8  | 124.9 | 580.0 | 27.7 |       | 720  | 20   | 34,332           | 369        |
| 370 | C8H18   | N-OCTANE                                  | 114.232 | -56.8  | 125.6 | 568.8 | 24.8 | 0.492 | 703  | 20   | 34,436           | 370        |
| 371 | C8H18   | 2-METHYLHEPTANE                           | 114.232 | -109.2 | 117.6 | 559.6 | 24.8 | 0.488 | 702  | 16   | 33,829           | 371        |
| 372 | C8H18   | 3-METHYLHEPTANE                           | 114.232 | -120.5 | 118.9 | 563.6 | 25.4 | 0.464 | 706  | 20   | 33,913           | 372        |
| 373 | C8H18   | 4-METHYLHEPTANE                           | 114.232 | -121.0 | 117.7 | 561.7 | 25.4 | 0.476 | 705  | 20   | 33,913           | 373        |
| 374 | C8H18   | 2;2-DIMETHYLHEXANE                        | 114.232 | -121.2 | 108.8 | 549.8 | 25.3 | 0.478 | 695  | 20   | 32,280           | 374        |
| 375 | C8H18   | 2;3-DIMETHYLHEXANE                        | 114.232 |        | 115.6 | 563.4 | 26.2 | 0.468 | 712  | 20   | 33,226           | 375        |
| 376 | C8H18   | 2:4-DIMETHYLHEXANE                        | 114.232 |        | 109.4 | 553.5 | 25.5 | 0.472 | 700  | 20   | 32,615           | 376        |
| 377 | C8H18   | 2;5-DIMETHYLHEXANE                        | 114.232 | -91.3  | 109.1 | 550.0 | 24.8 | 0.482 | 693  | 20   | 32,657           | 377        |
| 378 | C8H18   | 3;3-DIMETHYLHEXANE                        | 114.232 | -126.2 | 111.9 | 562.0 | 26.5 | 0.443 | 710  | 20   | 32,490           | 378        |
| 379 | C8H18   | 3;4-DIMETHYLHEXANE                        | 114.232 |        | 117.7 | 568.8 | 27.0 | 0.466 | 719  | 20   | 33,298           | 379        |
| 380 | C8H18   | 3-ETHYLHEXANE                             | 114.232 |        | 118.5 | 565.4 | 26.0 | 0.455 | 718  | 16   | 33,633           | 380        |
| 381 | C8H18   | 2;2;3-TRIMETHYLPENTANE                    | 114.232 | -112.3 | 109.8 | 563.4 | 27.3 | 0.436 | 716  | 20   | 32,029           | 381        |
| 382 | C8H18   | 2;2;4-TRIMETHYLPENTANE                    | 114.232 | -107.4 | 99.2  | 543.9 | 25.6 | 0.468 | 692  | 20   | 31,028           | 382        |
| 383 | C8H18   | 2;3;3-TRIMETHYLPENTANE                    | 114.232 | -100.7 | 114.7 | 573.5 | 28.2 | 0.455 | 726  | 20   | 32,364           | 383        |
| 384 | C8H18   | 2;3;4-TRIMETHYLPENTANE                    | 114.232 | 109.3  | 113.4 | 566.3 | 27.3 | 0.461 | 719  | 20   | 32,753           | 384        |
| 385 | C8H18   | 2-METHYL-3-ETHYLPENTANE                   | 114.232 | -115.0 | 115.6 | 567.0 | 27.1 | 0.443 | 719  | 20   | 32,988           | 385        |
| 386 | C8H18   | 3-METHYL-3-ETHYLPENTANE                   | 114.232 | -90.9  | 118.2 | 576.5 | 28.1 | 0.455 | 727  | 20   | 32,816           | 386        |
| 387 | C8H18O  | 1-OCTANOL                                 | 130.231 | -15.5  | 195.2 | 658.0 | 34.5 | 0.490 | 826  | 20   | 50,660           | 387        |
| 388 | C8H18O  | 2-OCTANOL                                 | 130.231 | -32.0  | 179.7 | 637.0 | 27.4 | 0.494 | 821  | 20   | 44,380           | 388        |
| 389 | C8H18O  | 2-ETHYLHEXANOL                            | 130.231 | -70.0  | 184.6 | 613.0 | 27.6 | 0.494 | 833  | 20   | 46,599           | 389        |
| 390 | C8H18O  | BUTYL ETHER                               | 130.231 | -97.9  | 142.4 | 580.0 | 25.3 | 0.500 | 768  | 20   | 37,263           | 390        |
| 391 | C8H18O5 | TETRAETHYLENE GLYCOL                      | 194.229 |        | 318.9 | 795.8 | 21.0 | 0.646 |      |      |                  | 391        |
| 392 | C8H19N  | DIBUTYLAMINE                              | 129.247 | -62.2  | 159.6 | 596.0 | 25.3 | 0.517 | 767  | 20   | 39,775           | 392        |
| 393 | C8H20SI | TETRAETHYL SILANE                         | 144.333 | -82.5  | 153.4 | 603.7 | 26.0 | 0.582 | 766  | 20   | 36,473           | 393        |
| 394 | C9H8    | INDENE                                    | 116,163 |        | 181.9 | 691.9 | 38.2 | 0.377 |      |      |                  | 394        |
| 395 | C9H10   | INDAN                                     | 118.179 |        | 177.0 | 681.1 | 36.3 | 0.377 |      |      |                  | 394        |
| 396 | C9H10   | ALPHA-METHYL STYRENE                      | 118.179 |        | 165.3 | 654.0 | 34.0 | 0.392 | 911  | 20   | 38,309           | 395<br>396 |
| 397 | C9H10O2 | ETHYL BENZOATE                            | 150.178 | -34.9  | 212.7 | 697.0 | 32.4 | 0.397 | 1046 | 20   | 38,309<br>44,799 | 396<br>397 |
| 398 | C9H12   | N-PROPYLBENZENE                           | 120.175 | -99.5  | 159.2 | 638.3 | 32.4 | 0.440 | 862  | 20   | 38,267           | 397        |
| 399 | C9H12   | ISOPROPYLBENZENE                          | 120.195 | -96.1  | 152.4 | 631.0 | 32.0 | 0.440 | 862  | 20   | 37,556           | 398        |
| 400 | C9H12   | 1-METHYL-2-ETHYLBENZENE                   | 120.195 | -80.9  | 165.1 | 651.0 | 30.4 | 0.460 | 881  | 20   | 38,895           | 400        |
|     |         |                                           |         |        |       |       |      |       |      |      |                  |            |

| No.   No.   No.   DeLife   CPVAP   CPVAP   CPVAP   CPVAP   ANIA   ANIB   ANIB   MAY   No.   No.   No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NO  | 1//64   | HIAD   | DEL HE  | DEL GE  | GDI II DI | con a no   | ODI II DO  | CDI II DD  |         | 4.3.70000 |        | <b>50.5</b> 1 |     |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|--------|---------|---------|-----------|------------|------------|------------|---------|-----------|--------|---------------|-----|-----|
| 553.02   \$32.03   \$84.15   \$21.36   \$97.16   \$99.74E   \$02   \$-5.020E   \$44.04   \$-5.020E   \$44.04   \$-5.020E   \$44.04   \$-5.020E   \$44.04   \$-63.70   \$89.74E   \$02   \$-5.020E   \$44.04   \$-5.020E   \$44.04   \$-63.70   \$89.74E   \$02   \$-5.020E   \$44.04   \$-5.020E   \$44.04   \$-63.70   \$89.74E   \$02   \$-5.020E   \$44.04   \$-63.70   \$89.74E   \$02   \$-5.020E   \$44.04   \$-63.70   \$89.74E   \$02   \$-5.020E   \$44.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15.04   \$15. | NO  | VISA    | VISB   | DELHF   | DELGF   | CPVAPA    | CPVAPB     | CPVAPC     | CPVAPD     | ANTA    | ANTB      | ANTC   | TMN           | TMX | NO  |
| 155   156   157   157   157   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158                                                                                                                                                                                                                                   |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12   1-12                                                                                                                                                                                                                                     |     | 553.02  | 320.03 |         |         |           |            |            |            |         |           |        |               |     |     |
| 1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848   1848                                                                                                                                                                                                                                     |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 1-14   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15   1-15                                                                                                                                                                                                                                     |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 1975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184                                                                                                                                                                                                                                   |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect                                                                                                                                                                                                                                  |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 15,7084   3015.51   3-45.99   6-13.13   3015.51   3-45.99   6-13.13   3015.51   3-45.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-13.15   3-15.99   3-15.15   3-15.99   3-15.15   3-15.99   3-15.15   3-15.99   3-15.15   3-15                                                                                                                                                                                                                                  |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 15,0794   2938,09   -53,25   0   131   362   363   364   365   366   364   365   366   364   365   366   364   365   366   364   365   366   364   365   366   365   366   365   366   365   366   365   366   365   366   365   366   365   366   365   365   366   365   366   365   366   365   366   365   366   365   366   365   366   365   366   365   366   365   366   365   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   366   3                                                                                                                                                                                                                                  |     | 506.43  | 280.76 | -171.87 | 39.27   | -63.891   | 88.928E-02 | -5.108E-04 | 11.028E-08 |         |           |        |               |     |     |
| 15,754   15,754   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   15,756   1                                                                                                                                                                                                                                  |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 1862   1862   1864   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865   1865                                                                                                                                                                                                                                     |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 18.85   18.82   237.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 18.82   237.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 454.23  | 264.22 | -148.17 | 52.63   | -55.973   | 84.490E-02 | -4.924E-04 | 11.175E-08 |         |           |        |               |     |     |
| \$\begin{array}{c c c c c c c c c c c c c c c c c c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 371   643.61   259.51   -215.62   12.77   -89.744   12.422E-01   -1.176E-03   46.180E-08   15.9278   3097.63   -59.46   12   144   371     372   -212.73   1.373   -9.215   78.586E-02   -4.400E-04   96.96E-09   15.8865   3065.96   -60.74   13   145   372     373   -224.87   10.72   -9.215   78.586E-02   -4.400E-04   96.96E-09   15.8893   3057.05   -60.59   12   144   373     374   -224.87   10.72   -9.215   78.586E-02   -4.400E-04   96.96E-09   15.7431   2932.56   -58.08   3   132   374     375   -212.78   10.77   -9.215   78.586E-02   -4.400E-04   96.96E-09   15.7431   2932.56   -58.08   3   132   375     376   -212.56   11.72   -9.215   78.586E-02   -4.400E-04   96.96E-09   15.7797   2965.44   -58.36   5   135   376     377   -222.78   10.47   -9.215   78.586E-02   -4.400E-04   96.96E-09   15.7797   2965.44   -58.36   5   135   376     378   446.20   244.67   -220.27   13.27   -9.215   78.586E-02   -4.400E-04   96.96E-09   15.7795   2964.06   -58.74   5   135   377     378   446.20   244.67   -220.27   13.27   -9.215   78.586E-02   -4.400E-04   96.96E-09   15.7755   3011.51   -55.71   6   138   378     379   -213.15   17.33   -9.215   78.586E-02   -4.400E-04   96.96E-09   15.8757   3011.51   -55.71   6   138   378     381   474.57   257.61   -220.27   17.12   -9.215   78.586E-02   -4.400E-04   96.96E-09   15.8613   3005.25   -58.29   11   144   379     382   467.04   246.43   -224.29   13.69   -7.461   77.791E-02   -4.287E-04   91.733E-09   15.6850   2896.28   -52.41   -4   125   382     383   384   -27.759   18.92   -9.215   78.586E-02   -4.400E-04   96.96E-09   15.7818   3028.09   -55.62   7   140   384     385   387   388   387   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389   389                                                                                                                                                                                                                                   |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 643.61  | 259.51 |         |         |           |            |            |            |         |           |        |               |     |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 378         446,20         244,67         -220,27         13,27         -9,215         78,586E-02         -4,400E-04         96,96E-09         15,7755         3011,51         -55,71         6         138         378           379         -213,15         17,33         -9,215         78,586E-02         -4,400E-04         96,966E-09         15,8415         306,252         -58,29         11         144         379           380         437,60         238,33         -211,01         16,54         -9,215         78,586E-02         -4,400E-04         96,966E-09         15,8671         3057,57         -60,55         13         145         380           381         474,57         257,61         -220,27         17,12         -9,215         78,586E-02         -4,400E-04         96,966E-09         15,7162         2981,56         -54,73         4         136         381           382         467,04         246,43         -224,29         13,69         -7,461         77,71E-02         -4,400E-04         96,966E-09         15,7818         305,794         -52,77         7         142         383           384         -215,12         19,93         -9,215         78,586E-02         -4,400E-04         96,966E-09 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 380         437.60         238.33         -211.01         16.54         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.8671         3057.57         -60.55         13         145         380           381         474.57         257.61         -220.27         17.12         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.7162         2981.56         -54.73         4         136         381           382         467.04         246.43         -224.29         13.69         -7.461         77.791E-02         -4.287E-04         91.733E-09         15.6850         2896.28         -52.41         -4         125         382           383         -216.58         18.92         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.7818         3057.94         -52.77         7         142         383           384         -217.59         18.92         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.7818         3028.09         -55.62         7         140         384           385         -211.35         212.7         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.8166         302.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 446.20  | 244.67 |         |         |           |            |            |            |         |           |        |               |     |     |
| 381         474.57         257.61         -220.27         17.12         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.7162         2981.56         -54.73         4         136         381           382         467.04         246.43         -224.29         13.69         -7.461         77.791E-02         -4.287E-04         91.733E-09         15.6850         2896.28         -52.41         -4         125         382           383         -216.58         18.92         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.7818         3028.09         -55.62         7         140         384           384         -217.59         18.92         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.7818         3028.09         -55.62         7         140         384           385         211.35         21.27         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.818         3028.09         -55.62         7         140         384           386         -215.12         19.93         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.818         3028.09         -55.62         7         140<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 382         467.04         246.43         -224.29         13.69         -7.461         77.791E-02         -4.287E-04         91.733E-09         15.6850         2896.28         -52.41         -4         125         382           383         -216.58         18.92         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.7818         3057.94         -52.77         7         142         383           384         -217.59         18.92         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.7818         3028.09         -55.62         7         140         384           385         211.35         21.27         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.8040         3035.08         -57.84         9         142         385           386         -215.12         19.93         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.8040         3035.08         -57.84         9         142         385           387         1312.10         369.97         -360.06         -120.16         6.171         76.074E-02         -3.279TE-04         62.635E-09         15.7428         3017.81         -137.10         70         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 383         -216.58         18.92         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.7578         3057.94         -52.77         7         142         383           384         -217.59         18.92         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.7818         3028.09         -55.62         7         140         384           385         211.35         21.27         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.8040         3035.08         -57.84         9         142         385           386         -215.12         19.93         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.8126         3102.06         -53.47         10         145         386           387         1312.10         369.97         -360.06         -120.16         6.171         76.074E-02         -3.797E-04         62.635E-09         15.7428         3017.81         -137.10         70         195         387           388         1798.00         351.17         -365.55         -14.993         86.541E-02         -5.280E-04         12.845E-08         15.3614         2773.46         -140.00         75         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 384         -217.59         18.92         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.7818         3028.09         -55.62         7         140         384           385         211.35         21.27         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.8040         3035.08         -57.84         9         142         385           386         -215.12         19.93         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.8040         3035.08         -57.84         9         142         385           387         1312.10         369.97         -360.06         -120.16         6.171         76.074E-02         -3.797E-04         62.635E-09         15.7428         3017.81         -137.10         70         195         387           388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 467.04  | 246.43 |         |         |           |            |            |            |         |           |        |               |     |     |
| 385         211.35         21.27         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.8040         3035.08         -57.84         9         142         385           386         -215.12         19.93         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.8040         3035.08         -57.84         9         142         385           387         1312.10         369.97         -360.06         -120.16         61.71         76.074E-02         -3.797E-04         62.635E-09         15.7428         3017.81         -137.10         70         195         387           388         1798.00         351.17         -365.55         -14.993         86.541E-02         -5.280E-04         12.845E-08         15.3614         2773.46         -140.00         75         185         389           390         473.50         266.56         -334.11         -88.59         6.054         77.288E-02         -4.085E-04         80.847E-09         16.0778         3296.15         -66.15         32         182         390           391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 386         -215.12         19.93         -9.215         78.586E-02         -4.400E-04         96.966E-09         15.8126         3102.06         -53.47         10         145         386           387         1312.10         369.97         -360.06         -120.16         6.171         76.074E-02         -3.797E-04         62.635E-09         15.7428         3017.81         -137.10         70         195         387           388         -1798.00         351.17         -365.55         -14.993         86.541E-02         -5.280E-04         12.845E-08         15.3614         2773.46         -140.00         75         185         389           390         473.50         266.56         -334.11         -88.59         6.054         77.288E-02         -4.085E-04         80.847E-09         16.0778         3296.15         -66.15         32         182         390           391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 387         1312.10         369.97         -360.06         -120.16         6.171         76.074E-02         -3.797E-04         62.635E-09         15.7428         3017.81         -137.10         70         195         387           388         1798.00         351.17         -365.55         -14.993         86.541E-02         -52.80E-04         12.845E-08         15.3614         2773.46         -14.000         75         185         389           390         473.50         266.56         -334.11         -88.59         6.054         77.288E-02         -4.085E-04         80.847E-09         16.0778         3296.15         -66.15         32         182         390           391         7.164         86.164E-02         -2.904E-04         -9.115E-08         20.5564         8215.28         -11.50         227         427         391           392         581.42         286.54         9.764         80.805E-02         -4.392E-04         92.486E-09         16.7307         372.190         -64.15         49         186         392           393         -314.93         -314.93         -42.944         68.957E-02         -4.340E-04         91.482E-09         16.4380         3994.97         -49.40         77         277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 388         1798.00         351.17         -365.55         -14.993         86.541.602         -52.80E-04         90.644E-09         14.7108         2441.66         -150.70         72         180         388           389         1798.00         351.17         -365.55         -14.993         86.541E-02         -52.80E-04         12.845E-08         15.3614         2773.46         -140.00         75         185         389           390         473.50         266.56         -334.11         -88.59         6.054         77.288E-02         -4.085E-04         80.847E-09         16.0778         3296.15         -66.15         32         182         390           391         7.164         86.164E-02         -2.904E-04         -9.115E-08         20.5564         8215.28         -11.50         227         427         391           392         581.42         286.54         9.764         80.805E-02         -4.392E-04         92.486E-09         16.7307         372.190         -64.15         49         186         392           393         -314.93         -42.944         68.957E-02         -4.340E-04         91.482E-09         16.4380         3994.97         -49.40         77         277         394 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 389     1798.00     351.17     -365.55     -14.993     86.541E-02     -5.280E-04     12.845E-08     15.3614     2773.46     -140.00     75     185     389       390     473.50     266.56     -334.11     -88.59     6.054     77.288E-02     -4.085E-04     80.847E-09     16.0778     3296.15     -66.15     32     182     390       391     7.164     86.64E-02     -2.904E-04     -9.115E-08     20.5564     821.528     -11.50     227     427     391       392     581.42     286.54     9.764     80.805E-02     -4.392E-04     92.486E-09     16.7307     3721.90     -64.15     49     186     392       393     -314.93     -42.944     68.957E-02     -4.340E-04     91.482E-09     16.4380     3994.97     -49.40     77     277     394       395     -59.639     78.126E-02     -4.340E-04     91.482E-09     16.4380     399.86     -57.00     77     277     394       396     354.34     270.80     -24.329     69.333E-02     -4.530E-04     11.807E-08     16.303     364.30     -67.15     75     220     396       397     746.50     338.47     20.670     68.873E-02     -3.608E-04     50.618E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 1312.10 | 369.97 | -360.06 | -120.16 |           |            |            |            |         |           |        |               |     |     |
| 390       473.50       266.56       -334.11       -88.59       6.054       77.288E-02       -4.085E-04       80.847E-09       16.0778       3296.15       -66.15       32       182       390         391       -392       581.42       286.54       9.764       80.805E-02       -2.994E-04       -9.115E-08       20.5564       8215.28       -11.50       227       427       391         392       581.42       286.54       9.764       80.805E-02       -4.392E-04       92.486E-09       16.7307       3721.90       -64.15       49       186       392         393       -314.93       -42.944       68.957E-02       -4.340E-04       91.482E-09       16.4380       3994.97       -49.40       77       277       394         395       -57.00       -59.639       78.126E-02       -4.841E-04       98.474E-09       16.2601       378.986       -57.00       77       277       395         396       354.34       270.80       -24.329       69.333E-02       -4.530E-04       11.807E-08       16.2061       378.986       -57.00       77       277       395         397       746.50       338.47       20.670       68.873E-02       -3.608E-04       50.618E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 1700.00 | 251.5  | 246.66  |         |           |            |            |            |         |           |        |               |     |     |
| 391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |         |        |         | 00.50   |           |            |            |            |         |           |        |               |     |     |
| 392     581.42     286.54     9.764     80.805E-02     -4.392E-04     92.486E-09     16.7307     3721.90     -64.15     49     186     392       393     -314.93     -314.93     -314.93     -42.944     68.957E-02     -4.340E-04     91.482E-09     16.4380     3994.97     -49.40     77     277     394       395     -59.639     78.126E-02     -4.841E-04     98.474E-09     16.2601     3789.86     -57.00     77     277     395       396     354.34     270.80     -24.329     69.33E-02     -4.530E-04     11.807E-08     16.308     364.30     -67.15     75     220     396       397     746.50     338.47     20.670     68.873E-02     -3.608E-04     50.618E-09     16.2065     3845.09     -84.15     88     258     397       398     527.45     282.65     7.83     137.33     -31.288     74.860E-02     -4.601E-04     10.810E-08     16.0062     343.384     -66.01     43     188     398       399     517.17     276.22     3.94     137.08     -39.364     78.419E-02     -5.087E-04     12.912E-08     15.9722     343.36.0     -66.01     43     188     399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 4/3.50  | 266.56 | -334.11 | -88.59  |           |            |            |            |         |           |        |               |     |     |
| 393 -314.93 -153 -1 393 -153 -1 393 -153 -1 393 -153 -1 393 -1 394 -154 -154 -155 -155 -155 -155 -155 -15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 581.42  | 286.54 | 21102   |         | 9.764     | 80.805E-02 | -4.392E-04 | 92.486E-09 |         |           |        |               |     |     |
| 395         -59.639         78.126E-02         -4.841E-04         98.474E-09         16.2601         378.986         -57.00         77         277         395           396         354.34         270.80         -24.329         69.333E-02         -4.530E-04         11.807E-08         16.3308         3644.30         -67.15         75         220         396           397         746.50         338.47         20.670         68.873E-02         -3.608E-04         50.618E-09         16.2065         3845.09         -84.15         88         258         397           398         527.45         282.65         7.83         137.33         -31.288         74.860E-02         -4.601E-04         10.810E-08         16.0062         343.84         -66.01         43         188         398           399         517.17         276.22         3.94         137.08         -39.364         78.419E-02         -5.087E-04         12.912E-08         15.9722         336.60         -63.37         38         181         399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 393 |         |        | -314.93 |         |           |            |            |            | 16.6385 | 3873.18   | -39.33 | 153           | -1  | 393 |
| 395         -59.639         78.126E-02         -4.841E-04         98.474E-09         16.2601         378.986         -57.00         77         277         395           396         354.34         270.80         -24.329         69.333E-02         -4.530E-04         11.807E-08         16.3308         3644.30         -67.15         75         220         396           397         746.50         338.47         20.670         68.873E-02         -3.608E-04         50.618E-09         16.2065         3845.09         -84.15         88         258         397           398         527.45         282.65         7.83         137.33         -31.288         74.860E-02         -4.601E-04         10.810E-08         16.0062         343.84         -66.01         43         188         398           399         517.17         276.22         3.94         137.08         -39.364         78.419E-02         -5.087E-04         12.912E-08         15.9722         336.60         -63.37         38         181         399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 394 |         |        |         |         | -42.944   | 68.957E-02 | -4.340E-04 | 91.482E-09 | 16.4380 | 3994.97   | -49.40 | 77            | 277 | 394 |
| 396     354.34     270.80     -24.329     69.333E-02     -4.530E-04     11.807E-08     16.3308     3644.30     -67.15     75     220     396       397     746.50     338.47     20.670     68.873E-02     -3.608E-04     50.618E-09     16.2065     3845.09     -84.15     88     258     397       398     527.45     282.65     7.83     137.33     -31.288     74.860E-02     -4.601E-04     10.810E-08     16.0062     3433.84     -66.01     43     188     398       399     517.17     276.22     3.94     137.08     -39.364     78.419E-02     -5.087E-04     12.912E-08     15.9722     336.36     -63.37     38     181     399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |         |        |         |         |           |            |            |            |         |           |        |               |     |     |
| 397     746.50     338.47     20.670     68.873E-02     -3.608E-04     50.618E-09     16.2065     3845.09     -84.15     88     258     397       398     527.45     282.65     7.83     137.33     -31.288     74.860E-02     -4.601E-04     10.810E-08     16.0062     3433.84     -66.01     43     188     398       399     517.17     276.22     3.94     137.08     -39.364     78.419E-02     -5.087E-04     12.912E-08     15.9722     3363.60     -63.37     38     181     399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 354.34  | 270.80 |         |         |           |            |            |            |         |           |        |               |     |     |
| 399 517.17 276.22 3.94 137.08 -39.364 78.419E-02 -5.087E-04 12.912E-08 15.9722 3363.60 -63.37 38 181 399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 397 | 746.50  | 338.47 |         |         |           |            |            |            |         |           |        |               |     |     |
| 399 517.17 276.22 3.94 137.08 -39.364 78.419E-02 -5.087E-04 12.912E-08 15.9722 3363.60 -63.37 38 181 399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 398 | 527.45  | 282.65 | 7.83    | 137.33  |           |            |            |            |         |           |        |               | 188 |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 399 | 517.17  | 276.22 | 3.94    | 137.08  |           | 78.419E-02 | -5.087E-04 |            |         |           |        |               |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 400 |         |        | 1.21    | 131.17  | -16.446   | 69.961E-02 | -4.120E-04 | 93.282E-09 | 16.1253 | 3535.33   | 65.85  | 48            | 194 | 400 |

| NO  | FORMULA  | COMPOUND NAME                 | MOLWT   | TFP    | TBP   | TC    | PC   | VC    | LDEN | TDEN | HVAP   | NO  |
|-----|----------|-------------------------------|---------|--------|-------|-------|------|-------|------|------|--------|-----|
| 401 | C9H12    | 1-METHYL-3-ETHYLBENZENE       | 120.195 | -95.6  | 161.3 | 637.0 | 28.4 | 0.490 | 865  | 20   | 38,560 | 401 |
| 402 | C9H12    | I-METHYL-4-ETHYLBENZENE       | 120.195 | -62.4  | 162.0 | 640.0 | 29.4 | 0.470 | 861  | 20   | 38,435 | 402 |
| 403 | C9H12    | 1;2;3-TRIMETHYLBENZENE        | 120.195 | -25.5  | 176.0 | 664.5 | 34.6 | 0.430 | 894  | 20   | 40,068 | 403 |
| 404 | C9H12    | 1;2;4-TRIMETHYLBENZENE        | 120.195 | -46.2  | 169.3 | 649.1 | 32.3 | 0.430 | 880  | 16   | 39,272 | 404 |
| 405 | C9H12    | 1;3;5-TRIMETHYLBENZENE        | 120.195 | -44.8  | 164.7 | 637.3 | 31.3 | 0.433 | 865  | 20   | 39,063 | 405 |
| 406 | C9H18    | N-PROPYLCYCLOHEXANE           | 126.243 | -94.5  | 156.7 | 639.0 | 28.1 | 0.155 | 793  | 20   | 36,090 | 406 |
| 407 | C9H18    | ISOPROPYLCYCLOHEXANE          | 126.243 | -89.8  | 154.5 | 640.0 | 28.4 |       | 802  | 20   | 50,070 | 407 |
| 408 | C9H18    | 1-NONENE                      | 126.243 | -81.4  | 146.8 | 592.0 | 23.4 | 0.580 | 745  | 0    | 36,341 | 408 |
| 409 | C9H20    | N-NONANE                      | 128.259 | -53.5  | 150.8 | 594.6 | 23.1 | 0.548 | 718  | 20   | 36,940 | 409 |
| 410 | C9H20    | 2;2;3-TRIMETHYLHEXANE         | 128.259 | 55.5   | 133.6 | 588.0 | 24.9 | 0.510 | 710  | 20   | 34,792 | 410 |
| 411 | C9H20    | 2;2;4-TRIMETHYLHEXANE         | 128.259 | -120.2 | 126.5 | 573.7 | 23.7 |       | 720  | 16   | 34,039 | 411 |
| 412 | C9H20    | 2:2:5-TRIMETHYLHEXANE         | 128.259 | -105.8 | 124.1 | 568.0 | 23.3 | 0.519 | 717  | 16   | 33,787 | 412 |
| 413 | C9H20    | 3;3-DIMETHYLPENTANE           | 128.259 | 105.0  | 146.1 | 610.0 | 26.7 | 0.517 | 752  | 20   | 36,006 | 413 |
| 414 | C9H20    | 2;2;3;3-TETRAMETHYLPENTANE    | 128.259 |        | 140.2 | 607.6 | 27.4 |       | 132  | 20   | 35,295 | 414 |
| 415 | C9H20    | 2:2:3:4-TETRAMETHYLPENTANE    | 128.259 |        | 133.0 | 592.7 | 26.0 |       |      |      | 34,290 | 415 |
| 416 | C9H29    | 2;2;4;4-TETRAMETHYLPENTANE    | 128.259 | -67.2  | 122.2 | 574.7 | 24.8 |       | 719  | 20   | 32,866 | 416 |
| 417 | C9H20    | 2;3;3;4-TETRAMETHYLPENTANE    | 128.259 | 07.2   | 141.5 | 607.6 | 27.2 |       | /1/  | 20   | 34,960 | 417 |
|     |          |                               |         |        |       |       |      |       |      |      |        |     |
| 418 | C10H8    | NAPHTHALENE                   | 128.174 | 80.3   | 217.9 | 748.4 | 40.5 | 0.410 | 971  | 90   | 43,292 | 418 |
| 419 | C10H12   | 1;2;3;4-TETRAHYDRONAPHTHALENE | 132.206 | -31.2  | 207.5 | 719.0 | 35.2 |       | 973  | 20   | 39,733 | 419 |
| 420 | C10H14   | N-BUTYLBENZENE                | 134.222 | -88.0  | 183.2 | 660.5 | 28.9 | 0.497 | 860  | 20   | 39,272 | 420 |
| 421 | C10H14   | ISOBUTYLBENZENE               | 134.222 | -51.5  | 172.7 | 650.0 | 31.4 | 0.480 | 853  | 20   | 37,849 | 421 |
| 422 | C10H14   | SEC-BUTYLBENZENE              | 134.222 | -75.5  | 173.3 | 664.0 | 29.5 |       | 862  | 20   | 37,974 | 422 |
| 423 | C10H14   | TERT-BUTYLBENZENE             | 134.222 | -57.9  | 169.1 | 660.0 | 29.7 |       | 867  | 20   | 37,639 | 423 |
| 424 | C10H14   | 1-METHYL-2-ISOPROPYLBENZENE   | 134.222 |        | 178.3 | 670.0 | 29.0 |       | 876  | 20   |        | 424 |
| 425 | C10H14   | 1-METHYL-3-ISOPROPYLBENZENE   | 134.222 |        | 175.1 | 666.0 | 29.4 |       | 861  | 20   | 38,142 | 425 |
| 426 | C10H14   | 1-METHYL-4-ISOPROPYLBENZENE   | 134.222 | -73.2  | 177.1 | 653.0 | 28.3 |       | 857  | 20   |        | 426 |
| 427 | C10H14   | 1;4-DIETHYLBENZENE            | 134.222 | -42.2  | 183.7 | 657.9 | 28.1 | 0.480 | 862  | 20   | 39,398 | 427 |
| 428 | C10H14   | 1;2;4;5-TETRAMETHYLBENZENE    | 134.222 | 78.8   | 196.8 | 675.0 | 29.4 | 0.480 | 838  | 81   | 45,552 | 428 |
| 429 | C10H15N  | N-BUTYLANILINE                | 149.236 | -14.2  | 240.7 | 721.0 | 28.4 | 0.518 | 932  | 20   | 48,944 | 429 |
| 430 | C10H18   | CIS-DECALIN                   | 138.254 | -43.2  | 195.7 | 702.2 | 31.4 |       | 897  | 20   | 39,356 | 430 |
| 431 | C10H18   | TRANS-DECALIN                 | 138.254 | -30.4  | 187.2 | 690.0 | 31.4 |       | 870  | 20   | 38,519 | 431 |
| 432 | C10H19N  | CAPRYLONITRILE                | 153.269 | -17.9  | 242.8 | 622.0 | 32.5 |       | 820  | 20   |        | 432 |
| 433 | C10H20   | N-BUTYLCYCLOHEXANE            | 140.270 | -74.8  | 180.9 | 667.0 | 31.5 |       | 799  | 20   | 38,519 | 433 |
| 434 | C10H20   | ISOBUTYLCYCLOHEXANE           | 140.270 |        | 171.3 | 659.0 | 31.2 |       | 795  | 20   |        | 434 |
| 435 | C10H20   | SEC-BUTYLCYCLOHEXANE          | 140.270 |        | 179.3 | 669.0 | 26.7 |       | 813  | 20   |        | 435 |
| 436 | C10H20   | TERT-BUTYLCYCLOHEXANE         | 140.270 | -41.2  | 171.5 | 659.0 | 26.6 |       | 813  | 20   |        | 436 |
| 437 | C10H20   | 1-DECENE                      | 140.270 | -66.3  | 170.5 | 615.0 | 22.1 | 0.650 | 741  | 20   | 38,686 | 437 |
| 438 | C10H20O  | MENTHOL                       | 156.269 | 42.8   | 216.3 | 694.0 |      |       |      |      |        | 438 |
| 439 | C10H22   | N-DECANE                      | 142.286 | -29.7  | 174.1 | 617.6 | 21.1 | 0.603 | 730  | 20   | 39,306 | 439 |
| 440 | C10H22   | 3;3;5-TRIMETHYLHEPTANE        | 142.286 |        | 155.6 | 609.6 | 23.2 |       |      |      | 36,676 | 440 |
| 441 | C10H22   | 2;2;3;3-TETRAMETHYLHEXANE     | 142.286 |        | 160.3 | 623.1 | 25.1 |       |      |      | 36,383 | 441 |
| 442 | C10H22   | 2;2;5;5-TETRAMETHYLHEXANE     | 142.286 |        | 137.4 | 581.5 | 21.9 |       |      |      | 35,295 | 442 |
| 443 | C10H22O  | 1-DECANOL                     | 158.285 | 6.9    | 230.2 | 700.0 | 22.3 | 0.600 | 830  | 20   | 50,242 | 443 |
| 444 | C11H10   | 1-METHYLNAPHTHALENE           | 142.201 | -30.5  | 244.6 | 772.0 | 35.7 | 0.445 | 1020 | 20   | 46,055 | 444 |
| 445 | C11H10   | 2-METHYLNAPHTHALENE           | 142.201 | 34.5   | 241.0 | 761.0 | 35.1 | 0.462 | 990  | 40   | 46,055 | 445 |
| 446 | C11H1402 | BUTYL BENZOATE                | 178.232 | -22.2  | 249.8 | 723.0 | 26.3 | 0.561 | 1006 | 20   | 48,986 | 446 |
| 447 | C11H22   | N-HEXYLCYCLOPENTANE           | 154.297 |        | 203.1 | 660.1 | 21.4 |       |      | -0   | 41,198 | 447 |
| 448 | C11H22   | I-UNDECENE                    | 154.297 | -49.2  | 192.6 | 637.0 | 20.0 |       | 751  | 20   | 40,905 | 448 |
| 449 | C11H24   | N-UNDECANE                    | 156.313 | -25.6  | 195.9 | 638.8 | 19.7 | 0.660 | 740  | 20   | 41,533 | 449 |
| 450 | C12H8    |                               |         |        |       |       |      |       |      | 20   | 11,000 |     |
| 450 | C12H6    | ACENAPHTHALENE                | 152.196 | 95.0   | 270.0 | 796.9 | 32.2 | 0.487 |      |      |        | 450 |

| NO  | VISA    | VISB   | DELHF   | DELGF   | CPVAPA   | CPVAPB     | CPVAPC     | CPVAPD     | ANTA    | ANTB    | ANTC             | TMN | TMX | NO  |
|-----|---------|--------|---------|---------|----------|------------|------------|------------|---------|---------|------------------|-----|-----|-----|
| 401 |         |        | -1.93   | 126.53  | -28.998  | 72.934E-02 | -4.363E-04 | 99.981E-09 | 16.1545 | 3521.08 | -64.64           | 45  | 190 | 401 |
| 402 | 463.17  | 266.08 | -2.05   | 126.78  | -27.310  | 71.762E-02 | -4.224E-04 | 95.417E-09 | 16.1135 | 3516.31 | -64.23           | 45  | 190 | 402 |
| 403 |         |        | -9.59   | 124.64  | -6.942   | 63.346E-02 | -3.326E-04 | 66.110E-09 | 16.2121 | 3670.22 | -66.07           | 56  | 206 | 403 |
| 404 | 872.74  | 297.75 | -13.94  | 117.02  | -4.668   | 62.383E-02 | -3.263E-04 | 63.765E-09 | 16.2190 | 3622.58 | -64.59           | 51  | 198 | 404 |
| 405 | 437.52  | 268.27 | -16.08  | 118.03  | -19.590  | 67.240E-02 | -3.692E-04 | 76.995E-09 | 16.2893 | 3614.19 | -63.57           | 48  | 193 | 405 |
| 406 | 549.08  | 293.93 | -193.43 | 47.35   | -62.517  | 98.892E-02 | -5.795E-04 | 12.912E-08 | 15.8567 | 3363.62 | -65.21           | 40  | 186 | 406 |
| 407 |         |        |         |         |          |            | 5.77525 01 | 12.7120 00 | 15.8260 | 3346.12 | -63.71           | 57  | 167 | 407 |
| 408 | 471.00  | 258.92 | -103.58 | 112.75  | -3.718   | 81.224E-02 | -4.509E-04 | 97.050E-09 | 16.0118 | 3305.03 | -67.61           | 35  | 175 | 408 |
| 409 | 525.56  | 272.12 | -229.19 | 24.83   | 3.144    | 67.742E-02 | -1.928E-04 | -2.981E-08 | 15.9671 | 3291.45 | -71.33           | 39  | 179 | 409 |
| 410 |         |        | -241.37 | 24.53   | -45.632  | 10.555E-01 | -7.172E-04 | 19.866E-08 | 15.8017 | 3164.17 | -61.66           | 24  | 163 | 410 |
| 411 |         |        | -243.38 | 22.52   | -60.311  | 11.045E-01 | -7.712E-04 | 21.876E-08 | 15.7639 | 3084.08 | -61.94           | 18  | 155 | 411 |
| 412 |         |        | 254.18  | 13.44   | -54.106  | 10.948E-01 | -7.746E-04 | 22.546E-08 | 15.7445 | 3052.17 | -62.24           | 42  | 147 | 412 |
| 413 |         |        | 231.95  | 35.09   | -67.269  | 11.262E-01 | -7.988E-04 | 23.061E-08 | 15.8709 | 3341.62 | -57.57           | 77  | 167 | 413 |
| 414 |         |        | -237.39 | 34.33   | -54.583  | 10.890E-01 | -7.570E-04 | 21.420E-08 | 15.7280 | 3220.55 | -59.31           | 55  | 167 | 414 |
| 415 |         |        | -237.22 | 32.66   | -54.583  | 10.890E-01 | -7.570E-04 | 21.420E-08 | 15.7363 | 3167.42 | -58.21           | 45  | 157 | 415 |
| 416 |         |        | -242.12 | 34.04   | -67.403  | 11.681E-01 | -8.612E-04 | 25.736E-08 | 15.6488 | 3049.98 | -58.21<br>-57.13 | 40  | 140 | 416 |
| 417 |         |        | -236.39 | 34.12   | -54.918  | 10.911E-01 | -7.603E-04 | 21.579E-08 | 15.8029 | 3269.07 | -58.19           | 52  | 152 | 417 |
|     |         |        |         |         |          |            |            |            |         |         |                  |     |     |     |
| 418 | 873.32  | 352.57 | 151.06  | 223.74  | -68.802  | 84.992E-02 | -6.506E-04 | 19.808E-08 | 16.1426 | 3992.01 | -71.29           | 87  | 252 | 418 |
| 419 |         |        | 27.63   | 167.05  |          |            |            |            | 16.2805 | 4009.49 | -64.98           | 92  | 227 | 419 |
| 420 | 563.84  | 296.01 | -13.82  | 144.78  | -22.990  | 79.340E-02 | -4.396E-04 | 85.704E-09 | 16.0793 | 3633.40 | -71.77           | 62  | 213 | 420 |
| 421 |         |        | -21.56  |         |          |            |            |            | 15.9524 | 3512.47 | -69.03           | 53  | 203 | 421 |
| 422 | 582.82  | 295.82 | -17.46  |         | -65.147  | 98.934E-02 | -7.214E-04 | 21.520E-08 | 15.9999 | 3544.19 | -68.10           | 52  | 203 | 422 |
| 423 |         |        | -22.69  |         | -86.001  | 11.020E-01 | -8.746E-04 | 28.265E-08 | 15.9300 | 3462.28 | -69.87           | 50  | 199 | 423 |
| 424 |         |        |         |         |          |            |            |            | 15.9809 | 3564.52 | -70.00           | 57  | 208 | 424 |
| 425 |         |        | -29.31  |         | -48.759  | 90.644E-02 | -6.054E-04 | 16.274E-08 | 15.9811 | 3543.79 | -69.22           | 55  | 205 | 425 |
| 426 |         |        |         |         |          |            |            |            | 15.9424 | 3539.21 | -70.10           | 56  | 207 | 426 |
| 427 |         |        | -22.27  | 137.96  | -37.417  | 86.709E-02 | -5.560E-04 | 14.110E-08 | 16.1140 | 3657.22 | -71.18           | 62  | 214 | 427 |
| 428 |         |        | -45.30  | 119.53  | 15.265   | 65.188E-02 | -2.879E-04 | 32.569E-09 | 16.3023 | 3850.91 | -71.72           | 88  | 227 | 428 |
| 429 | 1111.10 | 341.28 |         |         | -34.068  | 91.440E-02 | -5.560E-04 | 12.874E-08 | 16.3994 | 4079.72 | -96.15           | 112 | 287 | 429 |
| 430 |         |        | -169.06 | 85.87   | -112.457 | 11.183E-01 | -6.607E-04 | 14.369E-08 | 15.8312 | 3671.61 | -69.74           | 95  | 222 | 430 |
| 431 | 702.27  | 339.66 | -182.42 | 73.48   | -97.670  | 10.446E-01 | -5.476E-04 | 89.807E-09 | 15.7989 | 3610.66 | -66.49           | 90  | 197 | 431 |
| 432 |         |        |         |         |          |            |            |            |         |         |                  |     |     | 432 |
| 433 | 598.30  | 311.39 | -213.32 | 56.48   | -62.957  | 10.627E-01 | -6.305E-04 | 14.001E-08 | 15.9116 | 3542.57 | -72.32           | 59  | 212 | 433 |
| 434 |         |        |         |         |          |            |            |            | 15.8141 | 3437.99 | -69.99           | 82  | 182 | 434 |
| 435 |         |        |         |         |          |            |            |            | 15.8670 | 3524.57 | -70.78           | 87  | 197 | 435 |
| 436 |         |        |         |         |          |            |            |            | 15.7884 | 3457.85 | -67.04           | 84  | 177 | 436 |
| 437 | 518.37  | 277.80 | -124.22 | 121.12  | -4.664   | 90.770E-02 | -5.058E-04 | 10.953E-08 | 16.0129 | 3448.18 | -76.09           | 83  | 187 | 437 |
| 438 |         |        |         |         |          |            |            |            | 19.0161 | 5539.90 | -37.85           | 212 | 56  | 438 |
| 439 | 558.61  | 288.37 | -249.83 | 33.24   | -7.913   | 96.087E-02 | -5.288E-04 | 11.309E-08 | 16.0114 | 3456.80 | -78.67           | 57  | 203 | 439 |
| 440 |         |        | -258.74 | 33.58   | -70.372  | 12.322E-01 | -8.646E-04 | 24.551E-08 | 15.7848 | 3305.20 | -67.66           | 40  | 275 | 440 |
| 441 |         |        |         |         | -58.833  | 12.313E-01 | -8.834E-04 | 25.849E-08 | 15.7598 | 3371.05 | -64.09           | 41  | 190 | 441 |
| 442 |         |        |         |         | -62.341  | 12.447E-01 | -8.956E-04 | 26.180E-08 | 15.8446 | 3172.92 | -66.15           | 27  | 165 | 442 |
| 443 | 1481.80 | 380.00 | -401.93 | -104.25 | 14.570   | 89.472E-02 | -3.921E-04 | 34.508E-09 | 15.9395 | 3389.43 | -139.00          | 103 | 230 | 443 |
|     |         |        |         |         |          |            |            |            |         |         |                  |     |     |     |
| 444 | 862.89  | 361.76 | 116.94  | 217.84  | -64.820  | 93.868E-02 | -6.942E-04 | 20.155E-08 | 16.2008 | 4206.70 | -78.15           | 107 | 278 | 444 |
| 445 | 695.42  | 351.79 | 116.18  | 216.29  | -56.518  | 89.974E-02 | -6.469E-04 | 18.401E-08 | 16.2758 | 4237.37 | -74.75           | 104 | 275 | 445 |
| 446 | 882.36  | 350.34 | 200.45  | go a -  | -17.367  | 86.751E-02 | 4.610E-04  | 72.348E-09 | 16.3363 | 4158.47 | -94.15           | 117 | 297 | 446 |
| 447 | 617.57  | 318.65 | -209.63 | 78.25   | -58.322  | 11.279E-01 | -6.536E-04 | 14.729E-08 | 16.0140 | 3702.56 | -81.55           | 78  | 234 | 447 |
| 448 | 566.26  | 294.89 | -144.86 | 129.54  | -5.585   | 10.027E-01 | -5.602E-04 | 12.163E-08 | 16.0412 | 3597.72 | -83.41           | 72  | 223 | 448 |
| 449 | 605.50  | 305.01 | -270.47 | 41.62   | -8.395   | 10.538E-01 | -5.799E-04 | 12.368E-08 | 16.0541 | 3614.07 | -85.45           | 75  | 225 | 449 |
| 450 |         |        |         |         | -64.623  | 88.509E-02 | -5.853E-04 | 13.054E-08 | 16.3091 | 4470.92 | -81.40           | 177 | 377 | 450 |

966

| NO                | FORMULA                     | COMPOUND NAME                                      | MOLWT                         | TFP          | TBP                     | TC                      | PC                   | VC    | LDEN        | TDEN     | HVAP                       | NO                |
|-------------------|-----------------------------|----------------------------------------------------|-------------------------------|--------------|-------------------------|-------------------------|----------------------|-------|-------------|----------|----------------------------|-------------------|
| 451<br>452<br>453 | C12H10<br>C12H10O<br>C12H24 | DIPHENYL<br>DIPHENYL ETHER<br>N-HEPTYLCYCLOPENTANE | 154.212<br>170.211<br>168.324 | 69.2<br>26.8 | 255.2<br>258.0<br>224.1 | 789.0<br>766.0<br>679.0 | 38.5<br>31.4<br>19.5 | 0.502 | 990<br>1066 | 74<br>30 | 45,636<br>47,143<br>43,375 | 451<br>452<br>453 |
| 454               | C12H24                      | I-DODECENE                                         | 168.324                       | -35.2        | 213.3                   | 657.0                   | 18.5                 |       | 758         | 20       | 42,998                     | 454               |
| 455               | C12H26                      | N-DODECANE                                         | 170.340                       | -9.6         | 216.3                   | 658.3                   | 18.2                 | 0.713 | 748         | 20       | 43,668                     | 455               |
| 456               | C12H260                     | DIHEXYL ETHER                                      | 186.339                       | -43.2        | 226.4                   | 657.0                   | 18.2                 | 0.720 | 794         | 20       | 45,636                     | 456               |
| 457               | C12H26O                     | DODECANOL                                          | 186.339                       | 23.9         | 259.9                   | 679.0                   | 19.3                 | 0.718 | 835         | 20       |                            | 457               |
| 458               | C12H27N                     | TRIBUTYLAMINE                                      | 185.355                       |              | 213.4                   | 643.0                   | 18.2                 |       | 779         | 20       | 44,380                     | 458               |
| 459               | C13H10                      | FLUORENE                                           | 166.223                       | 114.0        | 297.9                   | 822.3                   | 29.9                 | 0.534 |             |          |                            | 459               |
| 460               | C13H12                      | DIPHENYLMETHANE                                    | 168.239                       | 26.8         | 264.3                   | 767.0                   | 29.8                 |       | 1006        | 20       |                            | 460               |
| 461               | C13H26                      | N-OCTYLCYCLOPENTANE                                | 182.351                       |              | 243.7                   | 694.0                   | 17.9                 |       |             |          | 45,427                     | 461               |
| 462               | C13H26                      | 1-TRIDECENE                                        | 182.351                       | -23.1        | 232.7                   | 674.0                   | 17.0                 |       | 766         | 20       | 45,008                     | 462               |
| 463               | C13H28                      | N-TRIDECANE                                        | 184.367                       | -5.4         | 235.4                   | 675.8                   | 17.2                 | 0.780 | 756         | 20       | 45,678                     | 463               |
| 464               | C14H10                      | ANTHRACENE                                         | 178.234                       | 216.5        | 341.2                   | 883.0                   |                      |       |             |          | 56,522                     | 464               |
| 465               | C14H10                      | PHENANTHRENE                                       | 178.234                       | 100.5        | 339.4                   | 878.0                   |                      |       |             |          | 55,684                     | 465               |
| 466               | C14H28                      | N-NONYLCYCLOPENTANE                                | 196.378                       |              | 262.1                   | 710.5                   | 16.5                 |       |             |          | 47,269                     | 466               |
| 467               | C14H28                      | 1-TETRADECENE                                      | 196.378                       | -12.9        | 251.1                   | 689.0                   | 15.6                 |       | 786         | 0        | 46,934                     | 467               |
| 468               | C14H30                      | N-TETRADECANE                                      | 198.394                       | 5.8          | 253.5                   | 694.0                   | 16.2                 | 0.830 | 763         | 20       | 47,646                     | 468               |
| 469               | C15H12                      | 1-PHENYLINDENE                                     | 192.261                       |              | 322.0                   | 843.7                   | 27.0                 | 0.598 |             |          |                            | 469               |
| 470               | C15H14                      | 2-ETHYLFLUORENE                                    | 194.277                       |              | 309.0                   | 811.1                   | 24.6                 | 0.629 |             |          |                            | 470               |
| 471               | C15H30                      | N-DECYLCYCLOPENTANE                                | 210.405                       |              | 279.3                   | 723.8                   | 15.2                 |       |             |          | 49,027                     | 471               |
| 472               | C15H30                      | 1-PENTADECENE                                      | 210.405                       | -3.8         | 268.3                   | 704.0                   | 14.6                 |       | 791         | 0        | 48,692                     | 472               |
| 473               | C15H32                      | N-PENTADECANE                                      | 212.421                       | 9.8          | 270.6                   | 707.0                   | 15.2                 | 0.880 | 769         | 20       | 49,488                     | 473               |
| 474               | C16H10                      | FLUORANTHENE                                       | 202.256                       | 110.0        | 393.0                   | 936.6                   | 26.0                 | 0.660 |             |          |                            | 474               |
| 475               | C16H10                      | PYRENE                                             | 202.256                       | 151.0        | 362.0                   | 892.1                   | 26.0                 | 0.637 |             |          |                            | 475               |
| 476               | C16H12                      | N-PHENYLNAPHTHALENE                                | 204.272                       |              | 316.0                   | 840.1                   | 26.3                 | 0.605 |             |          |                            | 476               |
| 477               | C16H22O4                    | DIBUTYL-O-PHTHALATE                                | 278.350                       | -35.2        | 334.8                   |                         |                      |       | 1047        | 20       | 79,131                     | 477               |
| 478               | C16H32                      | N-DECYLCYCLOHEXANE                                 | 224.432                       |              | 297.6                   | 750.0                   | 13.6                 |       |             |          | 50,409                     | 478               |
| 479               | C16H32                      | 1-HEXADECENE                                       | 224.432                       | 4.1          | 284.8                   | 717.0                   | 13.4                 | 0.046 | 788         | 10       | 50,451                     | 479               |
| 480<br>481        | C16H32O2<br>C16H34          | PALMIC ACID<br>N-HEXADECANE                        | 256.431                       | 63.0         | 348.5                   | 791.0                   | 19.0                 | 0.946 | 828         | 102      | 66,992                     | 480               |
|                   |                             |                                                    | 226.448                       | 17.8         | 286.8                   | 717.0                   | 14.2                 |       | 773         | 20       | 51,246                     | 481               |
| 482               | C17H34                      | N-DODECYLCYCLOPENTANE                              | 238.459                       |              | 310.9                   | 750.0                   | 13.0                 |       |             |          | 52,628                     | 482               |
| 483               | C17H36O                     | HEPTADECANOL                                       | 256.474                       | 53.8         | 323.8                   | 736.0                   | 14.2                 |       | 848         | 54       | 60,709                     | 483               |
| 484               | C17H36                      | N-HEPTADECANE                                      | 240.475                       | 21.8         | 302.0                   | 733.0                   | 13.2                 | 1.000 | 778         | 20       | 52,921                     | 484               |
| 485               | C18H12                      | CHRYSENE                                           | 228.294                       | 255.0        | 448.0                   | 993.6                   | 23.9                 | 0.736 |             |          |                            | 485               |
| 486               | C18H14                      | O-TERPHENYL                                        | 230.310                       | 56.8         | 331.8                   | 891.0                   | 39.0                 | 0.769 |             |          |                            | 486               |
| 487               | C18H14                      | M-TERPHENYL                                        | 230.310                       | 86.8         | 364.8                   | 924.8                   | 35.1                 | 0.784 |             |          |                            | 487               |
| 488               | C18H14                      | P-TERPHENYL                                        | 230.310                       | 211.8        | 375.8                   | 926.0                   | 33.2                 | 0.779 | 000         | ••       |                            | 488               |
| 489<br>490        | C18H34O2<br>C18H36          | OLEIC ACID<br>1-OCTADECENE                         | 282.469                       | 13.3         | 362.3                   | 797.0                   | 17.0                 | 1.035 | 893         | 20       | 68,131                     | 489               |
| 490               | C18H36                      | N-TRIDECYLCYCLOPENTANE                             | 252.486<br>252.486            | 17.6         | 314.8<br>325.4          | 739.0<br>761.0          | 11.3<br>12.1         |       | 789         | 20       | 54,303<br>54,345           | 490<br>491        |
| 492               | C18H36O2                    | STEARIC ACID                                       | 284.485                       | 70.0         | 371.9                   | 810.0                   | 16.5                 | 1.054 | 844         | 70       | 70,049                     | 491               |
| 493               | C18H38                      | N-OCTADECANE                                       | 254.502                       | 28.1         | 316.3                   | 745.0                   | 12.1                 | 1.054 | 777         | 28       | 54,512                     | 493               |
| 494               | C18H38O                     | 1-OCTADECANOL                                      | 270.501                       | 57.8         | 334.8                   | 747.0                   | 14.2                 |       | 812         | 59       | 37,312                     | 494               |
| 495               | C19H38                      | N-TETRADECYLCYCLOPENTANE                           | 266.513                       |              |                         | 772.0                   |                      |       |             |          | 56.010                     |                   |
| 493               | C19H38<br>C19H40            | N-NONADECANE                                       | 268.529                       | 31.8         | 325.8<br>329.9          | 772.0<br>756.0          | 11.2<br>11.1         |       | 789         | 32       | 56,019<br>56,061           | 495<br>496        |
|                   |                             |                                                    |                               | 51.0         |                         |                         |                      |       | 109         | 32       |                            |                   |
| 497               | C20H40                      | N-PENTADECYLCYCLOPENTANE                           | 280.540                       | 26.0         | 351.8                   | 780.0                   | 10.2                 |       |             | 40       | 57,694                     | 497               |
| 498<br>499        | C20H42<br>C20H42O           | N-EICOSANE<br>I-EICOSANOL                          | 282.556<br>298.555            | 36.8<br>65.8 | 343.8                   | 767.0<br>770.0          | 11.1                 |       | 775         | 40       | 57,527                     | 498               |
|                   |                             |                                                    |                               | 03.8         | 355.8                   |                         | 12.2                 |       |             |          | 65,314                     | 499               |
| 500               | C21H42                      | N-HEXADECYLCYCLOPENTANE                            | 294.567                       |              | 363.8                   | 791.0                   | 9.7                  |       |             |          | 59,369                     | 500               |

| NO         | VISA    | VISB   | DELHF              | DELGF  | CPVAPA             | CPVAPB                   | CPVAPC                   | CPVAPD                   | ANTA               | ANTB               | ANTC              | TMN        | TMX        | NO         |
|------------|---------|--------|--------------------|--------|--------------------|--------------------------|--------------------------|--------------------------|--------------------|--------------------|-------------------|------------|------------|------------|
| 451        | 733.87  | 369.58 | 182.21             | 280.26 | -97.067            | 11.057E-01               | -8.855E-04               | 27.901E-08               | 16.6832            | 4602.23            | -70.42            | 70         | 272        | 451        |
| 452        | 1146.00 | 379.29 | 49.99              |        | -60.730            | 92.821E-02               | -5.870E-04               | 13.586E-08               | 16.3459            | 4310.25            | -87.31            | 145        | 325        | 452        |
| 453        | 654.77  | 333.12 | -230.27            | 86.67  | -59.264            | 12.234E-01               | -7.084E-04               | 15.964E-08               | 16.0589            | 3850.38            | -88.75            | 95         | 256        | 453        |
| 454        | 615.67  | 310.07 | -165.46            | 138.00 | -6.544             | 10.978E-01               | -6.155E-04               | 13.410E-08               | 16.0610            | 3729.87            | -90.88            | 88         | 244        | 454        |
| 455        | 631.63  | 318.78 | -291.07            | 50.07  | -9.328             | 11.489E-01               | -6.347E-04               | 13.590E-08               | 16.1134            | 3774.56            | -91.31            | 91         | 247        | 455        |
| 456        | 723.43  | 323.35 |                    |        | 33.536             | 10.735E-01               | -5.535E-04               | 16.777E-08               | 16.3372            | 3982.78            | -89.15            | 100        | 272        | 456        |
| 457        | 1417.80 | 398.89 | -443.13            | -87.13 | 9.224              | 11.032E-01               | -5.338E-04               | 77.791E-09               | 15.2638            | 3242.04            | -157.10           | 134        | 307        | 457        |
| 458        | 889.06  | 312.48 |                    | *****  | 7.993              | 11.978E-01               | -6.703E-04               | 14.486E-08               | 16.2878            | 3865.58            | -86.15            | 89         | 258        | 458        |
| 459        |         |        |                    |        | 54.401             |                          |                          |                          |                    |                    |                   |            |            |            |
| 460        |         |        |                    |        | -54.491            | 90.351E-02               | -5.388E-04               | 92.570E-09               | 18.2166            | 6462.60<br>2902.44 | -13.40            | 207        | 407        | 459        |
| 461        | 695.83  | 346.19 | -250.87            | 95.12  | -59.951            | 13.167E-01               | -7.612E-04               | 17.082E-08               | 14.4856            |                    | -167.90<br>-95.85 | 200<br>112 | 290        | 460        |
| 462        | 658.16  | 323.71 | -230.87<br>-186.10 | 146.37 | -39.931<br>-7.118  |                          |                          |                          | 16.0941            | 3983.01            |                   |            | 276        | 461        |
| 463        | 664.10  | 332.10 | -311.71            | 58.49  | -7.116<br>-10.463  | 11.911E-01<br>12.452E-01 | -6.674E-04<br>-6.912E-04 | 14.511E-08<br>14.897E-08 | 16.0850            | 3856.23            | -97.94            | 104        | 264        | 462        |
|            |         |        |                    | 30.49  |                    |                          |                          |                          | 16.1355            | 3892.91            | -98.93            | 107        | 267        | 463        |
| 464        | 513.28  | 405.81 | 224.83             |        | -58.979            | 10.057E-01               | -6.594E-04               | 16.056E-08               | 17.6701            | 6492.44            | -26.13            | 217        | 382        | 464        |
| 465        |         |        | 202.64             |        | -58.979            | 10.057E-01               | -6.594E-04               | 16.056E-08               | 16.7187            | 5477.94            | -69.39            | 177        | 382        | 465        |
| 466        | 735.19  | 357.74 | -271.51            | 103.50 | -60.809            | 14.118E-01               | -8.156E-04               | 18.347E-08               | 16.1089            | 4096.30            | -103.00           | 127        | 296        | 466        |
| 467        | 697.49  | 336.13 | -206.66            | 154.87 | -7.967             | 12.858E-01               | 7.210E-04                | 15.692E-08               | 16.1643            | 4018.01            | -102.70           | 119        | 284        | 467        |
| 468        | 689.85  | 344.21 | -332.35            | 66.86  | -10.982            | 13.377E-01               | -7.423E-04               | 15.981E-08               | 16.1480            | 4008.52            | -105.40           | 121        | 287        | 468        |
| 469        |         |        |                    |        | -96.154            | 11.865E-01               | -7.786E-04               | 17.650E-08               | 16.4170            | 4872.90            | -97.30            | 227        | 427        | 469        |
| 470        |         |        |                    |        | -107.036           | 12.611E-01               | -8.156E-04               | 17.928E-08               | 16.5199            | 4789.44            | -97.90            | 207        | 407        | 470        |
| 471        | 771.74  | 368.30 | -292.15            | 111.91 | -61.923            | 15.077E-01               | -8.717E-04               | 19.590E-08               | 16.1261            | 4203.94            | -109.70           | 140        | 313        | 471        |
| 472        | 739.13  | 347.46 | -227.39            | 163.16 | -9.203             | 13.825E-01               | -7.783E-04               | 17.028E-08               | 16.1539            | 4103.15            | -110.60           | 133        | 301        | 472        |
| 473        | 718.51  | 355.92 | -352.99            | 75.28  | -11.916            | 14.327E-01               | 7.972E-04                | 17.199E-08               | 16.1724            | 4121.51            | -111.80           | 135        | 304        | 473        |
| 474        |         |        |                    |        | -80.706            | 11.715E-01               | -7.938E-04               | 18.600E-08               |                    |                    |                   |            |            |            |
| 475        |         |        |                    |        | -80.706<br>-94.379 | 11.715E-01<br>11.916E-01 |                          |                          | 16.4523            | 5438.77            | -112.40           | 287        | 487        | 474        |
| 476        |         |        |                    |        | -94.379<br>-99.516 |                          | -7.930E-04               | 17.559E-08               | 16.4842            | 5203.08            | -107.20           | 257        | 477        | 475        |
| 477        | 2588.10 | 336.24 |                    |        | 1.880              | 11.463E-01<br>12.539E-01 | -6.113E-04<br>-6.121E-04 | 60.612E-09<br>69.710E-09 | 16.9691            | 5351.04            | -81.70            | 227        | 427        | 476        |
| 478        | 925.84  | 378.69 |                    |        | -69.015            | 16.542E-01               | -9.613E-04               | 21.428E-08               | 16.9539            | 4852.47            | -138.10           | 196        | 384        | 477        |
| 479        | 767.48  | 357.85 | -247.98            | 171.62 | -9.705             | 14.750E-01               | 8.298E-04                |                          | 16.1627            | 4373.37            | -111.80           | 190        | 300        | 478        |
| 480        | 707.40  | 337.63 | -723.06            | 171.02 | -9.703             | 14.730E-01               | ~0.290E-04               | 18.104E-08               | 16.2203            | 4245.00<br>7049.18 | -115.20<br>-55.08 | 147        | 319        | 479        |
| 481        | 738.30  | 366.11 | -373.59            | 83.74  | -13.017            | 15.290E-01               | -8.537E-04               | 18.497E-08               | 18.9558<br>16.1841 | 4214.91            | -33.08<br>-118.70 | 353<br>150 | 153<br>321 | 480<br>481 |
|            |         |        |                    |        |                    |                          |                          |                          |                    |                    |                   |            |            |            |
| 482        | 853.53  | 385.53 | -336.12            | 126.02 | -63.263            | 16.952E-01               | -9.768E-04               | 21.855E-08               | 16.1915            | 4395.87            | -124.20           | 168        | 346        | 482        |
| 483        |         | 200    | -546.25            | -44.67 | -7.792             | 16.529E-01               | -9.345E-04               | 20.436E-08               | 15.6161            | 3672.62            | -188.10           | 191        | 383        | 483        |
| 484        | 757.88  | 375.90 | -394.19            | 92.15  | -13.967            | 16.241E-01               | -9.081E-04               | 19.720E-08               | 16.1510            | 4294.55            | -124.00           | 161        | 337        | 484        |
| 485        |         |        |                    |        | -115.757           | 13.415E-01               | -8.311E-04               | 15.412E-08               | 16.6038            | 5915.26            | -128.10           | 377        | 577        | 485        |
| 486        | 1094.10 | 461.27 |                    |        |                    |                          |                          |                          |                    |                    |                   |            |            | 486        |
| 487        | 940.58  | 460.94 |                    |        |                    |                          |                          |                          |                    |                    |                   |            |            | 487        |
| 488        | 911.01  | 461.10 |                    |        |                    |                          |                          |                          |                    |                    |                   |            |            | 488        |
| 489        |         |        | -646.02            |        |                    |                          |                          |                          | 18.2445            | 5884.49            | -127.26           | 360        | 176        | 489        |
| 490        | 816.19  | 376.93 | -289.22            | 188.45 | 11.329             | 16.643E-01               | -9.374E-04               | 20.486E-08               | 16.2221            | 4416.13            | -127.30           | 171        | 350        | 490        |
| 491        | 891.80  | 392.78 | -353.99            | 137.08 | -64.209            | 17.903E-01               | -1.032E-03               | 23.094E-08               | 16.2270            | 4483.13            | -131.30           | 180        | 361        | 491        |
| 492        |         |        | -764.51            |        |                    |                          |                          |                          | 19.8034            | 7709.35            | -57.83            | 370        | 174        | 492        |
| 493        | 777.40  | 385.00 | -414.83            | 100.57 | -14.470            | 17.170E-01               | -9.592E-04               | 20.783E-08               | 16.1232            | 4361.79            | -129.90           | 172        | 352        | 493        |
| 494        |         |        | -566.85            | -36.22 | -8.704             | 17.476E-01               | -8.524E-04               | 21.575E-08               | 15.6898            | 3757.82            | -193.10           | 201        | 385        | 494        |
| 495        | 924.60  | 399.62 | -374.63            | 145.58 | -64.929            | 18.845E-01               | -1.085E-03               | 24.258E-08               | 16.2632            | 4439.38            | -138.10           | 192        | 375        | 495        |
| 496        | 793.62  | 393.54 | -435.43            | 108.98 | -15.491            | 18.125E-01               | -1.015E-03               | 22.052E-08               | 16.1533            | 4450.44            | -135.60           | 183        | 366        | 496        |
| 497        | 950.57  | 406.33 | -395.28            |        |                    |                          |                          |                          |                    |                    |                   |            |            |            |
|            |         |        |                    | 153.99 | -66.093            | 19.804E-01               | -1.140E-03               | 25.498E-08               | 16.3092            | 4642.01            | -145.10           | 203        | 388        | 497        |
| 498<br>499 | 811.29  | 401.67 | -456.07            | 117.40 | -22.383            | 19.393E-01               | -1.117E-03               | 25.284E-08               | 16.4685            | 4680.46            | -141.10           | 198        | 379        | 498        |
|            |         |        | -608.13            | -19.43 | -12.581            | 19.498E-01               | -1.118E-03               | 25.158E-08               | 15.8233            | 3912.10            | -203.10           | 219        | 406        | 499        |
| 500        | 977.42  | 412.29 | -415.87            | 162.41 | -66.683            | 20.741E-01               | -1.237E-03               | 26.682E-08               | 16.3553            | 4715.69            | -152.10           | 215        | 401        | 500        |
|            |         |        |                    |        |                    |                          |                          |                          |                    |                    |                   |            |            |            |

## APPENDIX E

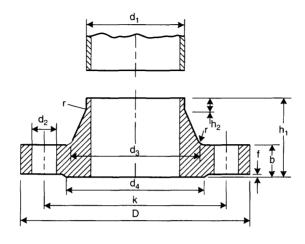
# Conversion Factors for Some Common SI Units

An asterisk (\*) denotes an exact relationship.

| An asteri           | SK ( | ) denotes an exact re | iauonsii | np.                         |
|---------------------|------|-----------------------|----------|-----------------------------|
| Length              | * 1  | in.                   | :        | 25.4 mm                     |
|                     | * 1  | ft                    | :        | 0.3048 m                    |
|                     | * 1  | yd                    | :        | 0.9144 m                    |
|                     | 1    | mile                  | :        | 1.6093 km                   |
|                     | * 1  | Å(angstrom)           | :        | $10^{-10} \text{ m}$        |
| Time                | * 1  | min                   | :        | 60 s                        |
|                     | * 1  | h                     | :        | 3.6 ks                      |
|                     | * 1  | day                   | :        | 86.4 ks                     |
|                     | 1    | year                  | :        | 31.5 Ms                     |
| Area                | * 1  | in. <sup>2</sup>      | :        | 645.16 mm <sup>2</sup>      |
|                     | 1    | ft <sup>2</sup>       | :        | $0.092903 \text{ m}^2$      |
|                     | 1    | $vd^2$                | :        | $0.83613 \text{ m}^2$       |
|                     | 1    | acre                  | :        | $4046.9 \text{ m}^2$        |
|                     |      | mile <sup>2</sup>     | :        | $2.590 \text{ km}^2$        |
| Volume              | 1    | in. <sup>3</sup>      | :        | 16.387 cm <sup>3</sup>      |
| voidine             | _    | ft <sup>3</sup>       |          | $0.02832 \text{ m}^3$       |
|                     | -    | $yd^3$                |          | 0.76453 m <sup>3</sup>      |
|                     |      | UK gal                |          | 4546.1 cm <sup>3</sup>      |
|                     |      | US gal                |          | 3785.4 cm <sup>3</sup>      |
| Mass                |      | OZ gai                |          | 28.352 g                    |
| 141433              |      | lb                    | :        | 0.45359237 kg               |
|                     |      | cwt                   | •        | 50.8023 kg                  |
|                     |      | ton                   | :        | 1016.06 kg                  |
| Force               |      | pdl                   | :        | 0.13826 N                   |
|                     |      | lbf                   | :        | 4.4482 N                    |
|                     | 1    | kgf                   | •        | 9.8067 N                    |
|                     |      | tonf                  | :        | 9.9640 kN                   |
|                     | * 1  | dyn                   | :        | $10^{-5} N$                 |
| Temperature         |      | - 7                   |          |                             |
| difference          | *1   | deg F (deg R)         | :        | $\frac{5}{9}$ deg C (deg K) |
| Energy (work, heat) |      | ft lbf                | •        | 1.3558 J                    |
| Energy (work, near) |      | ft pdl                | :        | 0.04214 J                   |
|                     |      | cal (internat.        | •        | 0.0.21.0                    |
|                     |      | table)                | :        | 4.1868 J                    |
|                     | 1    | erg                   | :        | $10^{-7} \text{ J}$         |
|                     |      | Btu                   | :        | 1.05506 kJ                  |
|                     |      | hp h                  | :        | 2.6845 MJ                   |
|                     |      | kW h                  | :        | 3.6 MJ                      |
|                     | 1    | therm                 | :        | 105.51 MJ                   |
|                     | 1    | thermie               | :        | 4.1855 MJ                   |
| Calorific value     |      |                       |          |                             |
| (volumetric)        | 1    | Btu/ft <sup>3</sup>   | :        | $37.259 \text{ kJ/m}^3$     |
| * *                 |      |                       |          |                             |

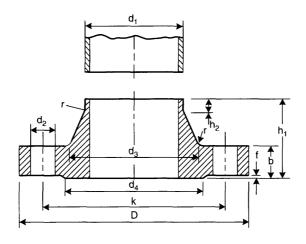
|                        |                                 | i.                                                                |
|------------------------|---------------------------------|-------------------------------------------------------------------|
| Velocity               | 1 ft/s                          | : 0.3048 m/s                                                      |
|                        | 1 mile/h                        | : 0.44704 m/s                                                     |
| Volumetric flow        | 1 ft <sup>3</sup> /s            | : $0.028316 \text{ m}^3/\text{s}$                                 |
|                        | 1 ft <sup>3</sup> /h            | : $7.8658 \text{ cm}^3/\text{s}$                                  |
|                        | 1 UK gal/h                      | : $1.2628 \text{ cm}^3/\text{s}$                                  |
|                        | 1 US gal/h                      | : $1.0515 \text{ cm}^3/\text{s}$                                  |
| Mass flow              | 1 lb/h                          | : 0.12600 g/s                                                     |
|                        | 1 ton/h                         | : 0.28224 kg/s                                                    |
| Mass per unit area     | 1 lb/in. <sup>2</sup>           | : 703.07 kg/m <sup>2</sup>                                        |
| •                      | 1 lb/ft <sup>2</sup>            | : $4.8824 \text{ kg/m}^2$                                         |
|                        | 1 ton/sq mile                   | : 392.30 kg/km <sup>2</sup>                                       |
| Density                | 1 lb/in <sup>3</sup>            | : 27.680 g/cm <sup>3</sup>                                        |
|                        | 1 lb/ft <sup>3</sup>            | : $16.019 \text{ kg/m}^3$                                         |
|                        | 1 lb/UK gal                     | : 99.776 kg/m <sup>3</sup>                                        |
|                        | 1 lb/US gal                     | : 119.83 kg/m <sup>3</sup>                                        |
| Pressure               | 1 lbf/in. <sup>2</sup>          | : 6.8948 kN/m <sup>2</sup>                                        |
| riessure               | 1 tonf/in. <sup>2</sup>         | : 15.444 MN/m <sup>2</sup>                                        |
|                        | 1 lbf/ft <sup>2</sup>           | : 47.880 N/m <sup>2</sup>                                         |
|                        |                                 | : 47.880 N/III<br>: 101.325 kN/m <sup>2</sup>                     |
|                        | *1 standard atm                 |                                                                   |
|                        | *1 atm (1 kgf/cm <sup>2</sup> ) | : 98.0665 kN/m <sup>2</sup><br>: 10 <sup>5</sup> N/m <sup>2</sup> |
|                        | *1 bar                          |                                                                   |
|                        | 1 ft water                      | : $2.9891 \text{ kN/m}^2$                                         |
|                        | 1 in. water                     | : 249.09 N/m <sup>2</sup>                                         |
|                        | 1 in. Hg                        | : $3.3864 \text{ kN/m}^2$                                         |
|                        | 1 mmHg (1 torr)                 | : $133.32 \text{ N/m}^2$                                          |
| Power (heat flow)      | 1 hp (British)                  | : 745.70 W                                                        |
|                        | 1 hp (metric)                   | : 735.50 W                                                        |
|                        | 1 erg/s                         | : $10^{-7} \text{ W}$                                             |
|                        | 1 ft lbf/s                      | : 1.3558 W                                                        |
|                        | 1 Btu/h                         | : 0.29307 W                                                       |
|                        | 1 ton of                        | 25160 ***                                                         |
|                        | refrigeration                   | : 3516.9 W                                                        |
| Moment of inertia      | 1 lb ft <sup>2</sup>            | : $0.042140 \text{ kg m}^2$                                       |
| Momentum               | 1 lb ft/s                       | : 0.13826 kg m/s                                                  |
| Angular momentum       | 1 lb $ft^2/s$                   | : $0.042140 \text{ kg m}^2/\text{s}$                              |
| Viscosity, dynamic     | *1 P (Poise)                    | : 0.1 N* s/m <sup>2</sup>                                         |
|                        | 1 lb/ft h                       | : $0.41338 \text{ mN s/m}^2$                                      |
|                        | 1 lb/ft s                       | : 1.4882 N s/m <sup>2</sup>                                       |
| Viscosity, kinematic   | *1 S (Stokes)                   | : $10^{-4} \text{ m}^2/\text{s}$                                  |
|                        | 1 ft <sup>2</sup> /h            | : $0.25806 \text{ cm}^2/\text{s}$                                 |
| Surface energy         | 1 erg/cm <sup>2</sup>           | : $10^{-3} \text{ J/m}^2$                                         |
| (surface tension)      | (1 dyn/cm)                      | $(10^{-3} \text{ N/m})$                                           |
| Mass flux density      | 1 lb/h ft <sup>2</sup>          | : $1.3562 \text{ g/s m}^2$                                        |
| Heat flux density      | 1 Btu/h ft <sup>2</sup>         | : 3.1546 W/m <sup>2</sup>                                         |
| 22000 22002            | *1 kcal/h m <sup>2</sup>        | : 1.163 W/m <sup>2</sup>                                          |
| Heat transfer          | A ALTERNA A AAA                 |                                                                   |
| coefficient            | 1 Btu/h ft <sup>2</sup> F       | : 5.6783 W/m <sup>2</sup> K                                       |
| Specific enthalpy      | 1 2001111                       | . 2.3.32 11                                                       |
| (latent heat, etc.)    | *1 Btu/lb                       | : 2.326 kJ/kg                                                     |
| Specific heat capacity | *1 Btu/lb °F                    | : 4.1868 kJ/kg K                                                  |
| Thermal                | 1 Btu/h ft °F                   | : 1.7307 W/m K                                                    |
| conductivity           | 1 kcal/h m °C                   | : 1.163 W/m K                                                     |
| •                      |                                 |                                                                   |

(Taken from MULLIN, J. W.: *The Chemical Engineer* No. 211 (Sept. 1967), 176. SI units in chemical engineering.)


## APPENDIX F

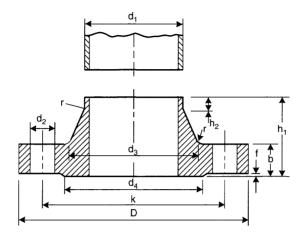
## Standard Flanges

## **ADAPTED FROM BS 4504**


Steel welding-neck flanges for nominal pressure ratings of 6, 10, 25, 40 bar.

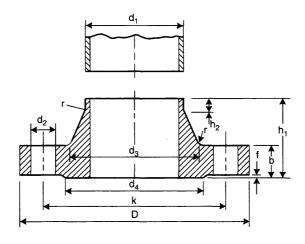
## STEEL WELDING NECK FLANGES Nominal pressure 6 bar (1 bar = 10<sup>5</sup> N/m<sup>2</sup>)




| Nom. | Pipe                          | ]    | Flange |       | Raised     | face | Dolting |     | Drilli | ng   |       | Neck          |    |
|------|-------------------------------|------|--------|-------|------------|------|---------|-----|--------|------|-------|---------------|----|
| size | o.d.<br><i>d</i> <sub>1</sub> | D    | b      | $h_1$ | <u>d</u> 4 | f    | Bolting | No. | $d_2$  | k    | $d_3$ | $h_2 \approx$ | r  |
| 10   | 17.2                          | 75   | 12     | 28    | 35         | 2    | M10     | 4   | 11     | 50   | 26    | 6             | 4  |
| 15   | 21.3                          | 80   | 12     | 30    | 40         | 2    | M10     | 4   | 11     | 55   | 30    | 6             | 4  |
| 20   | 26.9                          | 90   | 14     | 32    | 50         | 2    | M10     | 4   | 11     | 65   | 38    | 6             | 4  |
| 25   | 33.7                          | 100  | 14     | 35    | 60         | 2    | M10     | 4   | 11     | 75   | 42    | 6             | 4  |
| 32   | 42.4                          | 120  | 14     | 35    | 70         | 2    | M12     | 4   | 14     | 90   | 55    | 6             | 6  |
| 40   | 48.3                          | 130  | 14     | 38    | 80         | 3    | M12     | 4   | 14     | 100  | 62    | 7             | 6  |
| 50   | 60.3                          | 140  | 14     | 38    | 90         | 3    | M12     | 4   | 14     | 110  | 74    | 8             | 6  |
| 65   | 76.1                          | 160  | 14     | 38    | 110        | 3    | M12     | 4   | 14     | 130  | 88    | 9             | 6  |
| 80   | 88.9                          | 190  | 16     | 42    | 128        | 3    | M16     | 4   | 18     | 150  | 102   | 10            | 8  |
| 100  | 114.3                         | 210  | 16     | 45    | 148        | 3    | M16     | 4   | 18     | 170  | 130   | 10            | 8  |
| 125  | 139.7                         | 240  | 18     | 48    | 178        | 3    | M16     | 8   | 18     | 200  | 155   | 10            | 8  |
| 150  | 168.3                         | 265  | 18     | 48    | 202        | 3    | M16     | 8   | 18     | 225  | 184   | 12            | 10 |
| 200  | 219.1                         | 320  | 20     | 55    | 258        | 3    | M16     | 8   | 18     | 280  | 236   | 15            | 10 |
| 250  | 273                           | 375  | 22     | 60    | 312        | 3    | M16     | 12  | 18     | 335  | 290   | 15            | 12 |
| 300  | 323.9                         | 440  | 22     | 62    | 365        | 4    | M20     | 12  | 22     | 395  | 342   | 15            | 12 |
| 350  | 355.6                         | 490  | 22     | 62    | 415        | 4    | M20     | 12  | 22     | 445  | 385   | 15            | 12 |
| 400  | 406.4                         | 540  | 22     | 65    | 465        | 4    | M20     | 16  | 22     | 495  | 438   | 15            | 12 |
| 450  | 457.2                         | 595  | 24     | 65    | 520        | 4    | M20     | 16  | 22     | 550  | 492   | 15            | 12 |
| 500  | 508                           | 645  | 24     | 68    | 570        | 4    | M20     | 20  | 22     | 600  | 538   | 15            | 12 |
| 600  | 609.6                         | 755  | 24     | 70    | 670        | 5    | M24     | 20  | 26     | 705  | 640   | 16            | 12 |
| 700  | 711.2                         | 860  | 24     | 70    | 775        | 5    | M24     | 24  | 26     | 810  | 740   | 16            | 12 |
| 800  | 812.8                         | 975  | 24     | 70    | 880        | 5    | M27     | 24  | 30     | 920  | 842   | 16            | 12 |
| 900  | 914.4                         | 1075 | 26     | 70    | 980        | 5    | M27     | 24  | 30     | 1020 | 942   | 16            | 12 |
| 1000 | 1016                          | 1175 | 26     | 70    | 1080       | 5    | M27     | 28  | 30     | 1120 | 1045  | 16            | 16 |
| 1200 | 1220                          | 1405 | 28     | 90    | 1295       | 5    | M30     | 32  | 33     | 1340 | 1248  | 20            | 16 |
| 1400 | 1420                          | 1630 | 32     | 90    | 1510       | 5    | M33     | 36  | 36     | 1560 | 1452  | 20            | 16 |
| 1600 | 1620                          | 1830 | 34     | 90    | 1710       | 5    | M33     | 40  | 36     | 1760 | 1655  | 20            | 16 |
| 1800 | 1820                          | 2045 | 36     | 100   | 1920       | 5    | M36     | 44  | 39     | 1970 | 1855  | 20            | 16 |
| 2000 | 2020                          | 2265 | 38     | 110   | 2125       | 5    | M39     | 48  | 42     | 2180 | 2058  | 25            | 16 |

## STEEL WELDING NECK FLANGES Nominal pressure 10 bar (1 bar = $10^5$ N/m<sup>2</sup>)




| Nom. Pipe |            | Flange |    | Raised | face  | Bolting        |        | Drillin | ıg               |      | Neck  |               |    |
|-----------|------------|--------|----|--------|-------|----------------|--------|---------|------------------|------|-------|---------------|----|
| size      | o.d. $d_1$ | D      | b  | $h_1$  | $d_4$ | $\overline{f}$ | Doming | No.     | $\overline{d_2}$ | k    | $d_3$ | $h_2 \approx$ | r  |
| 200       | 219.1      | 340    | 24 | 62     | 268   | 3              | M20    | 8       | 22               | 295  | 235   | 16            | 10 |
| 250       | 273        | 395    | 26 | 68     | 320   | 3              | M20    | 12      | 22               | 350  | 292   | 16            | 12 |
| 300       | 323.9      | 445    | 26 | 68     | 370   | 4              | M20    | 12      | 22               | 400  | 344   | 16            | 12 |
| 350       | 355.6      | 505    | 26 | 68     | 430   | .4             | M20    | 16      | 22               | 460  | 385   | 16            | 12 |
| 400       | 406.4      | 565    | 26 | 72     | 482   | 4              | M24    | 16      | 25               | 515  | 440   | 16            | 12 |
| 450       | 457.2      | 615    | 28 | 72     | 532   | 4              | M24    | 20      | 26               | 565  | 492   | 16            | 12 |
| 500       | 508        | 670    | 28 | 75     | 585   | 4              | M24    | 20      | 26               | 620  | 542   | 16            | 12 |
| 600       | 609.6      | 780    | 28 | 80     | 685   | 5              | M27    | 20      | 30               | 725  | 642   | 18            | 12 |
| 700       | 711.2      | 895    | 30 | 80     | 800   | 5              | M27    | 24      | 30               | 840  | 745   | 18            | 12 |
| 800       | 812.8      | 1015   | 32 | 90     | 905   | 5              | M30    | 24      | 33               | 950  | 850   | 18            | 12 |
| 900       | 914.4      | 1115   | 34 | 95     | 1005  | 5              | M30    | 28      | 33               | 1050 | 950   | 20            | 12 |
| 1000      | 1016       | 1230   | 34 | 95     | 1110  | 5              | M33    | 28      | 36               | 1160 | 1052  | 20            | 16 |
| 1200      | 1220       | 1455   | 38 | 115    | 1330  | 5              | M36    | 32      | 39               | 1380 | 1255  | 25            | 16 |
| 1400      | 1420       | 1675   | 42 | 120    | 1535  | 5              | M39    | 36      | 42               | 1590 | 1460  | 25            | 16 |
| 1600      | 1620       | 1915   | 46 | 130    | 1760  | 5              | M45    | 40      | 48               | 1820 | 1665  | 25            | 16 |
| 1800      | 1820       | 2115   | 50 | 140    | 1960  | 5              | M45    | 44      | 48               | 2020 | 1868  | 30            | 16 |
| 2000      | 2020       | 2325   | 54 | 150    | 2170  | 5              | M45    | 48      | 48               | 2230 | 2072  | 30            | 16 |

## STEEL WELDING NECK FLANGES Nominal pressure 25 bar (1 bar = $10^5$ N/m<sup>2</sup>)



| Nom. Pipe size o.d. $d_1$ |       | ]    | Flange |       | Raised           | face | Bolting | Drilling |       |      | Neck  |               |    |
|---------------------------|-------|------|--------|-------|------------------|------|---------|----------|-------|------|-------|---------------|----|
|                           |       | D    | b      | $h_1$ | $\overline{d_4}$ | f    | Doming  | No.      | $d_2$ | k    | $d_3$ | $h_2 \approx$ | r  |
| 175                       | 193.7 | 330  | 28     | 75    | 248              | 3    | M24     | 12       | 26    | 280  | 218   | 15            | 10 |
| 200                       | 219.1 | 360  | 30     | 80    | 278              | 3    | M24     | 12       | 26    | 310  | 244   | 16            | 10 |
| 250                       | 273   | 425  | 32     | 88    | 335              | 3    | M27     | 12       | 30    | 370  | 298   | 18            | 12 |
| 300                       | 323.9 | 485  | 34     | 92    | 395              | 4    | M27     | 16       | 30    | 430  | 352   | 18            | 12 |
| 350                       | 355.6 | 555  | 38     | 100   | 450              | 4    | M30     | 16       | 33    | 490  | 398   | 20            | 12 |
| 400                       | 406.4 | 620  | 40     | 110   | 505              | 4    | M33     | 16       | 36    | 550  | 452   | 20            | 12 |
| 450                       | 457.2 | 670  | 42     | 110   | 555              | 4    | M33     | 20       | 36    | 600  | 505   | 20            | 12 |
| 500                       | 508   | 730  | 44     | 125   | 615              | 4    | M33     | 20       | 36    | 660  | 558   | 20            | 12 |
| 600                       | 609.6 | 845  | 46     | 125   | 720              | 5    | M36     | 20       | 39    | 770  | 660   | 20            | 12 |
| 700                       | 711.2 | 960  | 46     | 125   | 820              | 5    | M39     | 24       | 42    | 875  | 760   | 20            | 12 |
| 800                       | 812.8 | 1085 | 50     | 135   | 930              | 5    | M45     | 24       | 48    | 990  | 865   | 22            | 12 |
| 900                       | 914.4 | 1185 | 54     | 145   | 1030             | 5    | M45     | 28       | 48    | 1090 | 968   | 24            | 12 |
| 1000                      | 1016  | 1320 | 58     | 155   | 1140             | 5    | M52     | 28       | 56    | 1210 | 1070  | 24            | 16 |

## STEEL WELDING NECK FLANGES Nominal pressure 40 bar (1 bar = $10^5$ N/m<sup>2</sup>)



| Nom. | Pipe<br>o.d.        |                  | Flange |        | Raise | d face | Bolting |                       | Drilling      | 3   |     | Neck |    |
|------|---------------------|------------------|--------|--------|-------|--------|---------|-----------------------|---------------|-----|-----|------|----|
| SIZC | $d_1$ $D$ $b$ $h_1$ | $\overline{d_4}$ | f      | Doming | No.   | $d_2$  | k       | <i>d</i> <sub>3</sub> | $h_2 \approx$ | r   |     |      |    |
| 10   | 17.2                | 90               | 16     | 35     | 40    | 2      | M12     | 4                     | 14            | 60  | 28  | 6    | 4  |
| 15   | 21.3                | 95               | 16     | 38     | 45    | 2      | M12     | 4                     | 14            | 65  | 32  | 6    | 4  |
| 20   | 26.9                | 105              | 18     | 40     | 58    | 2      | M12     | 4                     | 14            | 75  | 40  | 6    | 4  |
| 25   | 33.7                | 115              | 18     | 40     | 68    | 2      | M12     | 4                     | 14            | 85  | 46  | 6    | 4  |
| 32   | 42.4                | 140              | 18     | 42     | 78    | 2      | M16     | 4                     | 18            | 100 | 56  | 6    | 6  |
| 40   | 48.3                | 150              | 18     | 45     | 88    | 3      | M16     | 4                     | 18            | 110 | 64  | 7    | 6  |
| 50   | 60.3                | 165              | 20     | 48     | 102   | 3      | M16     | 4                     | 18            | 125 | 75  | 8    | 6  |
| 65   | 76.1                | 185              | 22     | 52     | 122   | 3      | M16     | 8                     | 18            | 145 | 90  | 10   | 6  |
| 80   | 88.9                | 200              | 24     | 58     | 138   | 3      | M16     | 8                     | 18            | 160 | 105 | 12   | 8  |
| 100  | 114.3               | 235              | 24     | 65     | 162   | 3      | M20     | 8                     | 22            | 190 | 134 | 12   | 8  |
| 125  | 139.7               | 270              | 26     | 68     | 188   | 3      | M24     | 8                     | 26            | 220 | 162 | 12   | 8  |
| 150  | 168.3               | 300              | 28     | 75     | 218   | 3      | M24     | 8                     | 26            | 250 | 192 | 12   | 10 |
| 175  | 193.7               | 350              | 32     | 82     | 260   | 3      | M27     | 12                    | 30            | 295 | 218 | 15   | 10 |
| 200  | 219.1               | 375              | 34     | 88     | 285   | 3      | M27     | 12                    | 30            | 320 | 244 | 16   | 10 |
| 250  | 273                 | 450              | 38     | 105    | 345   | 3      | M30     | 12                    | 33            | 385 | 306 | 18   | 12 |
| 300  | 323.9               | 515              | 42     | 115    | 410   | 4      | M30     | 16                    | 33            | 450 | 362 | 18   | 12 |
| 350  | 355.6               | 580              | 46     | 125    | 465   | 4      | M33     | 16                    | 36            | 510 | 408 | 20   | 12 |
| 400  | 406.4               | 660              | 50     | 135    | 535   | 4      | M36     | 16                    | 39            | 585 | 462 | 20   | 12 |
| 450  | 457.2               | 685              | 50     | 135    | 560   | 4      | M36     | 20                    | 39            | 610 | 500 | 20   | 12 |
| 500  | 508                 | 755              | 52     | 140    | 615   | 4      | M39     | 20                    | 42            | 670 | 562 | 20   | 12 |

#### APPENDIX G

## Design Projects

EIGHT typical design exercises are given in this appendix. They have been adapted from Design Projects set by the Institution of Chemical Engineers as the final part of the Institution's qualifying examinations for professional Chemical Engineers.

A model answer to exercise G.3 is given in the book: *The Manufacture of Methyl Ethyl Ketone from 2-Butanol*, by D. G. Austin and G. V. Jeffreys, IChemE/Godwin, 1979.

## G.1 ETHYLHEXANOL FROM PROPYLENE AND SYNTHESIS GAS The project

Design a plant to produce 40,000 tonnes/year of 2-ethylhexanol from propylene and synthesis gas, assuming an operating period of 8000 hours on stream.

#### The process

The first stage of the process is a hydroformylation (oxo) reaction from which the main product is n-butyraldehyde. The feeds to this reactor are synthesis gas (CO/ $H_2$  mixture) and propylene in the molar ratio 2:1, and the recycled products of isobutyraldehyde cracking. The reactor operates at  $130^{\circ}$ C and 350 bar, using cobalt carbonyl as catalyst in solution. The main reaction products are n- and isobutyraldehyde in the ratio of 4:1, the former being the required product for subsequent conversion to 2-ethylhexanol. In addition, 3 per cent of the propylene feed is converted to propane whilst some does not react.

Within the reactor, however, 6 per cent of the n-butyraldehyde product is reduced to n-butanol, 4 per cent of the isobutyraldehyde product is reduced to isobutanol, and other reactions occur to a small extent yielding high molecular weight compounds (heavy ends) to the extent of 1 per cent by weight of the butyraldehyde/butanol mixture at the reactor exit.

The reactor is followed by a gas-liquid separator operating at 30 bar from which the liquid phase is heated with steam to decompose the catalyst for recovery of cobalt by filtration. A second gas-liquid separator operating at atmospheric pressure subsequently yields a liquid phase of aldehydes, alcohols, heavy ends and water, which is free from propane, propylene, carbon monoxide and hydrogen.

This mixture then passes to a distillation column which gives a top product of mixed butyraldehydes, followed by a second column which separates the two butyraldehydes into an isobutyraldehyde stream containing 1.3 per cent mole n-butyraldehyde and an n-butyraldehyde stream containing 1.2 per cent mole isobutyraldehyde.

A cracker converts isobutyraldehyde at a pass yield of 80 per cent back to propylene, carbon monoxide and hydrogen by passage over a catalyst with steam. After separation of the water and unreacted isobutyraldehyde the cracked gas is recycled to the hydroformylation reactor. The isobutyraldehyde is recycled to the cracker inlet. The operating conditions of the cracker are 275°C and 1 bar.

The n-butyraldehyde is treated with a 2 per cent w/w aqueous sodium hydroxide and undergoes an aldol condensation at a conversion efficiency of 90 per cent. The product of this reaction, 2-ethylhexanal, is separated and then reduced to 2-ethylhexanol by hydrogen in the presence of a Raney nickel catalyst with a 99 per cent conversion rate. In subsequent stages of the process (details of which are not required), 99.8 per cent of the 2-ethylhexanol is recovered at a purity of 99 per cent by weight.

#### Feed specifications

- (i) Propylene feed: 93 per cent propylene, balance propane.
- (ii) Synthesis gas: from heavy fuel oil, after removal of sulphur compounds and carbon dioxide:

H<sub>2</sub> 48.6 per cent; CO 49.5 per cent; CH<sub>4</sub> 0.4 per cent; N<sub>2</sub> 1.5 per cent.

#### **Utilities**

- (i) Dry saturated steam at 35 bar.
- (ii) Cooling water at 20°C.
- (iii) 2 per cent w/w aqueous sodium hydroxide solution.
- (iv) Hydrogen gas: H<sub>2</sub> 98.8 per cent; CH<sub>4</sub> 1.2 per cent.

## Scope of design work required

## 1. Process design

- (a) Prepare a material balance for the complete process.
- (b) Prepare a process diagram for the plant showing the major items of equipment. Indicate the materials of construction and the operating temperatures and pressures.
- (c) Prepare energy balances for the hydroformylation reactor and for the isobutyraldehyde cracking reactor.

## 2. Chemical engineering design

Prepare a chemical engineering design of the second distillation unit, i.e. for the separation of n- and isobutyraldehyde. Make dimensioned sketches of the column, the reboiler and the condenser.

## 3. Mechanical design

Prepare a mechanical design with sketches suitable for submission to a drawing office of the n- and isobutyraldehyde distillation column.

## 4. Control system

For the hydroformylation reactor prepare a control scheme to ensure safe operation.

#### Data

#### 1. Reactions

### 2. Boiling points at 1 bar

| Propylene        | −47.7°C |
|------------------|---------|
| Propane          | −42.1°C |
| n-Butyraldehyde  | 75.5°C  |
| Isobutyraldehyde | 64.5°C  |
| n-Butanol        | 117.0°C |
| Isobutanol       | 108.0°C |
| 2-Ethylhexanol   | 184.7°C |

## 3. Solubilities of gases at 30 bar in the liquid phase of the first gas-liquid separator

| $H_2$     | $0.08 \times 10^{-3}$ | kg dissolved/kg liquid |
|-----------|-----------------------|------------------------|
| CO        | $0.53 \times 10^{-3}$ | kg dissolved/kg liquid |
| Propylene | $7.5 \times 10^{-3}$  | kg dissolved/kg liquid |
| Propane   | $7.5 \times 10^{-3}$  | kg dissolved/kg liquid |

## 4. Vapour-liquid equilibrium of the butyraldehydes at 1 atm (Ref. 7)

| $T^{\circ}C$ | x   | у     |
|--------------|-----|-------|
| 73.94        | 0.1 | 0.138 |
| 72.69        | 0.2 | 0.264 |
| 71.40        | 0.3 | 0.381 |
| 70.24        | 0.4 | 0.490 |
| 69.04        | 0.5 | 0.589 |
| 68.08        | 0.6 | 0.686 |
| 67.07        | 0.7 | 0.773 |
| 65.96        | 0.8 | 0.846 |
| 64.95        | 0.9 | 0.927 |

where x and y are the mol fractions of the more volatile component (isobutyraldehyde) in the liquid and vapour phases respectively.

#### REFERENCES

- 1. Propylene and its Industrial Derivatives, HANCOCK, E. G. (ed.), John Wiley & Sons N. Y., 1973, Chapter 9, pp. 333-367.
- 2. Carbon Monoxide in Organic Synthesis. Falbe-Springer Verlag, New York, 1970, pp. 1-75.
- 3. Chemical Engineering, 81, Sept. 30th, 1974, pp. 115-122. Physical and thermodynamic properties of CO and CO<sub>2</sub>.
- 4. Chemical Engineering, 82, Jan. 20th, 1975, pp. 99-106. Physical and thermodynamic properties of  $H_2/N_2/O_2$ .
- Chemical Engineering, 82, Mar. 31st, 1975, pp. 101-109. Physical and thermodynamic properties of C<sub>2</sub>H<sub>4</sub>/C<sub>3</sub>H<sub>6</sub>/iC<sub>4</sub>H<sub>8</sub>.
- 6. Chemical Engineering, 82, May 12th, 1975, pp. 89-97. Physical and thermodynamic properties of CH<sub>4</sub>/C<sub>2</sub>H<sub>6</sub>/C<sub>3</sub>H<sub>8</sub>.
- 7. J. G. WOJTASINSKI. *J. Chem. Eng. Data*, 1963 (July), pp. 381–385. Measurement of total pressures for determining liquid-vapour equilibrium relations of the binary system isobutyraldehyde-n-butyraldehyde.
- 8. H. Weber and J. Falbe. Ind. Eng. Chem. 1970 (April), pp. 33-7. Oxo Synthesis Technology.
- 9. Hydrocarbon Processing, Nov. 1971, p. 166.
- 10. Hydrocarbon Processing, Nov. 1975, p. 148.

#### G.2 CHLOROBENZENES FROM BENZENE AND CHLORINE

#### The project

Design a plant to produce 20,000 tonnes/year of monochlorobenzene together with not less than 2000 tonnes/year of dichlorobenzene, by the direct chlorination of benzene.

## The process

Liquid benzene (which must contain less than 30 ppm by weight of water) is fed into a reactor system consisting of two continuous stirred tanks operating in series at 2.4 bar. Gaseous chlorine is fed in parallel to both tanks. Ferric chloride acts as a catalyst, and is produced *in situ* by the action of hydrogen chloride on mild steel. Cooling is required to maintain the operating temperature at 328 K. The hydrogen chloride gas leaving the reactors is first cooled to condense most of the organic impurities. It then passes to an activated carbon adsorber where the final traces of impurity are removed before it leaves the plant for use elsewhere.

The crude liquid chlorobenzenes stream leaving the second reactor is washed with water and caustic soda solution to remove all dissolved hydrogen chloride. The product recovery system consists of two distillation columns in series. In the first column (the "benzene column") unreacted benzene is recovered as top product and recycled. In the second column (the "chlorobenzene column") the mono- and dichlorobenzenes are separated. The recovered benzene from the first column is mixed with the raw benzene feed and this combined stream is fed to a distillation column (the "drying column") where water is removed as overhead. The benzene stream from the bottom of the drying column is fed to the reaction system.

#### Feed specifications

(i) Chlorine: 293 K, atmospheric pressure, 100 per cent purity.

(ii) Benzene: 293 K, atmospheric pressure, 99.95 wt per cent benzene, 0.05 wt per cent water.

#### **Product specifications**

(i) Monochlorobenzene: 99.7 wt per cent.

(ii) Dichlorobenzene: 99.6 wt per cent.

(iii) Hydrogen chloride gas: less than 250 ppm by weight benzene.

#### **Utilities**

(i) Stream: dry saturated at 8 bar and at 28 bar.

(ii) Cooling water: 293 K.

(iii) Process water: 293 K.

(iv) Caustic soda solution: 5 wt per cent NaOH, 293 K.

(v) Electricity: 440 V, 50 Hz, 3 phase.

#### Scope of design work required

#### 1. Process design

- (a) Prepare a materials balance for the process including an analysis of each reactor stage (the kinetics of the chlorination reactions are given below). Onstream time may be taken as 330 days per year.
- (b) Prepare energy balances for the first reactor and for the chlorobenzene column (take the reflux ratio for this column as twice the minimum reflux ratio).
- (c) Prepare a process flow diagram for the plant. This should show the major items of equipment with an indication of the materials of construction and of the internal layout. Temperatures and pressures should also be indicated.

## 2. Chemical engineering design

Prepare a sieve-plate column design for the chlorobenzene distillation and make dimensioned sketches showing details of the plate layout including the weir and the downcomer.

## 3. Mechanical design

Prepare a mechanical design of the chlorobenzene column, estimating the shell thickness, the positions and sizes of all nozzles, and the method of support for the plates and the column shell. Make a dimensioned sketch suitable for submission to a drawing office.

## 4. Safety

Indicate the safety measures required for this plant bearing in mind the toxic and inflammable materials handled.

#### Data

#### 1. The reactions

$$(1) C_6H_6 + Cl_2 \rightarrow C_6H_5Cl + HCl$$

(2) 
$$C_6H_5Cl + Cl_2 \rightarrow C_6H_4Cl_2 + HCl$$

The dichlorobenzene may be assumed to consist entirely of the para-isomer and the formation of trichlorobenzenes may be neglected.

The rate equations can be written in first-order form when the concentration of dissolved chlorine remains essentially constant. Thus:

$$r_{B} = -k_{1}x_{B}$$

$$r_{M} = k_{1}x_{B} - k_{2}x_{M}$$

$$r_{D} = k_{2}x_{M}$$

where r is the reaction rate.

 $k_1$  is the rate constant for reaction (1) at 328 K =  $1.00 \times 10^{-4}$  s<sup>-1</sup>,

 $k_2$  is the rate constant for reaction (2) at 328 K =  $0.15 \times 10^{-4}$ s<sup>-1</sup>

and x denotes mol fraction.

The subscripts B, M and D denote benzene, monochlorobenzene and dichlorobenzene respectively.

Yields for the reactor system should be calculated on the basis of equal liquid residence times in the two reactors, with a negligible amount of unreacted chlorine in the vapour product streams. It may be assumed that the liquid product stream contains 1.5 wt per cent of hydrogen chloride:

Reference: BODMAN, SAMUEL W. The Industrial Practice of Chemical Process Engineering, 1968, The MIT Press.

#### 2. Solubilities

Solubility of the water/benzene system (taken from Seidell, A. S., *Solubilities of Organic Compounds*, 3rd edn, Vol. II, 1941, Van Nostrand).

| Temperature (K)                                         | 293   | 303   | 313   | 323   |
|---------------------------------------------------------|-------|-------|-------|-------|
| g H <sub>2</sub> O/100 g C <sub>6</sub> H <sub>6</sub>  | 0.050 | 0.072 | 0.102 | 0.147 |
| g C <sub>6</sub> H <sub>6</sub> /100 g H <sub>2</sub> O | 0.175 | 0.190 | 0.206 | 0.225 |

## 3. Thermodynamic and physical properties

|                            | C <sub>6</sub> H <sub>6</sub><br>liquid | C <sub>6</sub> H <sub>6</sub><br>gas | C <sub>6</sub> H <sub>5</sub> Cl<br>liquid | C <sub>6</sub> H <sub>5</sub> Cl<br>gas | C <sub>6</sub> H <sub>4</sub> Cl <sub>2</sub><br>liquid | C <sub>6</sub> H <sub>4</sub> Cl <sub>2</sub><br>gas |
|----------------------------|-----------------------------------------|--------------------------------------|--------------------------------------------|-----------------------------------------|---------------------------------------------------------|------------------------------------------------------|
| Heat of formation at 298 K |                                         |                                      |                                            |                                         |                                                         |                                                      |
| (kJ/kmol)                  | 49.0                                    | 82.9                                 | 7.5                                        | 46.1                                    | -42.0                                                   | 5.0                                                  |
| Heat capacity (kJ/kmol K)  |                                         |                                      |                                            |                                         |                                                         |                                                      |
| 298 K                      | 136                                     | 82                                   | 152                                        | 92                                      |                                                         | 103                                                  |
| 350 K                      | 148                                     | 99                                   | 161                                        | 108                                     | 193                                                     | 118                                                  |
| 400 K                      | 163                                     | 113                                  | 170                                        | 121                                     | 238                                                     | 131                                                  |
| 450 K                      | 179                                     | 126                                  | 181                                        | 134                                     | 296                                                     | 143                                                  |
| 500 K                      | 200                                     | 137                                  | 192                                        | 145                                     | 366                                                     | 155                                                  |

|                                | C <sub>6</sub> H <sub>6</sub><br>liquid | C <sub>6</sub> H <sub>6</sub><br>gas | C <sub>6</sub> H <sub>5</sub> Cl<br>liquid | C <sub>6</sub> H <sub>5</sub> Cl<br>gas | C <sub>6</sub> H <sub>4</sub> Cl <sub>2</sub><br>liquid | C <sub>6</sub> H <sub>4</sub> Cl <sub>2</sub><br>gas |
|--------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------------|-----------------------------------------|---------------------------------------------------------|------------------------------------------------------|
| Density (kg/m <sup>3</sup> )   |                                         |                                      |                                            |                                         |                                                         |                                                      |
| 298 k                          | 872                                     |                                      | 1100                                       |                                         |                                                         |                                                      |
| 350 k                          | 815                                     |                                      | 1040                                       |                                         | 1230                                                    |                                                      |
| 400 k                          | 761                                     |                                      | 989                                        |                                         | 1170                                                    |                                                      |
| 450 k                          | 693                                     |                                      | 932                                        |                                         | 1100                                                    |                                                      |
| 500 k                          | 612                                     |                                      | 875                                        |                                         | 1020                                                    |                                                      |
| Viscosity (Ns/m <sup>2</sup> ) |                                         |                                      |                                            |                                         |                                                         |                                                      |
| 298 K                          | $0.598 \times 10^{-3}$                  |                                      | $0.750 \times 10^{-3}$                     |                                         |                                                         |                                                      |
| 350 K                          | 4                                       |                                      | $0.435 \times 10^{-3}$                     |                                         | $0.697 \times 10^{-3}$                                  |                                                      |
| 400 K                          |                                         |                                      | $0.305 \times 10^{-3}$                     |                                         | $0.476 \times 10^{-3}$                                  |                                                      |
| 450 K                          | $0.134 \times 10^{-3}$                  |                                      | $0.228 \times 10^{-3}$                     |                                         | $0.335 \times 10^{-3}$                                  |                                                      |
| 500 K                          |                                         |                                      | $0.158 \times 10^{-3}$                     |                                         | $0.236 \times 10^{-3}$                                  |                                                      |
| Surface tension (N/m)          |                                         |                                      |                                            |                                         |                                                         |                                                      |
| 298 K                          | 0.0280                                  |                                      | 0.0314                                     |                                         |                                                         |                                                      |
| 350 K                          | 0.0220                                  |                                      | 0.0276                                     |                                         | 0.0304                                                  |                                                      |
| 400 K                          | 0.0162                                  |                                      | 0.0232                                     |                                         | 0.0259                                                  |                                                      |
| 450 K                          | 0.0104                                  |                                      | 0.0177                                     |                                         | 0.0205                                                  |                                                      |
| 500 K                          | 0.0047                                  |                                      | 0.0115                                     |                                         | 0.0142                                                  |                                                      |

#### **REFERENCES**

- 1. PERRY, R. H. and CHILTON, C. H. Chemical Engineers' Handbook, 5th edn, 1973, McGraw-Hill.
- 2. KIRK-OTHMER, Encyclopaedia of Chemical Technology, 2nd edn, 1964, John Wiley & Sons.

## G.3 METHYL ETHYL KETONE FROM BUTYL ALCOHOL

## The project

Design a plant to produce  $1 \times 10^7$  kg/year of methyl ethyl ketone (MEK).

Feedstock: Secondary butyl alcohol.

Services available:

Dry saturated steam at 140°C.

Cooling water at 24°C.

Electricity at 440 V three-phase 50 Hz.

Flue gases at 540°C.

## The process

The butyl alcohol is pumped from storage to a steam-heated preheater and then to a vaporiser heated by the reaction products. The vapour leaving the vaporiser is heated to its reaction temperature by flue gases which have previously been used as reactor heating medium. The superheated butyl alcohol is fed to the reaction system at 400°C to 500°C where 90 per cent is converted on a zinc oxide-brass catalyst to methyl ethyl ketone, hydrogen and other reaction products. The reaction products may be treated in one of the following ways:

- (a) Cool and condense the MEK in the reaction products and use the exhaust gases as a furnace fuel.
- (b) Cool the reaction products to a suitable temperature and separate the MEK by absorption in aqueous ethanol. The hydrogen off gas is dried and used as a furnace

fuel. The liquors leaving the absorbers are passed to a solvent extraction column, where the MEK is recovered using trichlorethane. The raffinate from this column is returned to the absorber and the extract is passed to a distillation unit where the MEK is recovered. The trichlorethane is recycled to the extraction plant.

#### Scope of design work required

- 1. Prepare material balances for the two processes.
- 2. On the basis of the cost data supplied below decide which is the preferable process.
- 3. Prepare a material flow diagram of the preferred process.
- 4. Prepare a heat balance diagram of the preheater-vaporiser-superheater-reactor system.
- 5. Prepare a chemical engineering design of the preheater-vaporiser-superheater-reactor system and indicate the type of instrumentation required.
- 6. Prepare a mechanical design of the butyl alcohol vaporiser and make a dimensioned sketch suitable for submission to a drawing office.

#### Data

#### Process data

Outlet condenser temperature =  $32^{\circ}$ C.

C > 4557

Vapour and liquid are in equilibrium at the condenser outlet.

Calorific value of MEK = 41,800 kJ/kg.

#### Cost data

| Selling price of MEK                                    | = | £9.60 per 100kg              |
|---------------------------------------------------------|---|------------------------------|
| Steam raising cost                                      | = | £0.53 per 10 <sup>6</sup> kJ |
| Cost of tower shell                                     | = | £2000                        |
| Cost of plates                                          | = | £2000                        |
| Cost of reboiler                                        | = | £2500                        |
| Cost of heat exchanger (per distillation column)        | = | £8000                        |
| Cost of solvent extraction auxiliaries                  | = | £1000                        |
| Cost of absorbtion and distillation column packing,     |   |                              |
| supports and distributors                               | = | £2000                        |
| Cost of tanks (surge, etc.)                             | = | £1000                        |
| Cost of control of whole plant                          | = | £9000                        |
| Cost of instrumentation for control of recovery section | = | £4500                        |
| Cost of electricity for pumps                           | = | £5000                        |
| Pump costs (total)                                      | = | £3000                        |
| Cost of cooling water for whole plant                   | = | £5000                        |

#### Reactor data

The "short-cut" method proposed in Ref.1 may be used only to obtain a preliminary estimate of the height of catalyst required in the reactor. The reactor should be designed

from first principles using the rate equation, below, taken from Ref. 1.

$$r_{A} = \frac{C(P_{A,i} - P_{K,i}P_{H,i}/K)}{P_{K,i}(1 + K_{A}P_{A,i} + K_{AK}P_{A,i}/P_{K,i})}$$

where  $P_{A,i}$ ,  $P_{H,i}$ , and  $P_{K,i}$  are the interfacial partial pressures of the alcohol, hydrogen and ketone in bars, and the remaining quantities are as specified by the semi-empirical equations below:

$$\log_{10} C = -\frac{5964}{T_i} + 8.464$$
$$\log_{10} K_A = -\frac{3425}{T_i} + 5.231$$
$$\log_{10} K_{AK} = +\frac{486}{T_i} - 0.1968$$

In these equations, the interfacial temperature  $T_i$  is in Kelvin, the constant C is in kmol/m<sup>2</sup>h,  $K_A$  is in bar<sup>-1</sup>, and  $K_{AK}$  is dimensionless.

The equilibrium constant, K is given in Ref. 1 (although the original source is Ref. 2) by the equation:

$$\log_{10} K = -\frac{2790}{T_{i}} + 1.510 \log_{10} T_{i} + 1.871$$

where K is in bar.

Useful general information will be found in Ref. 3.

#### REFERENCES

- 1. PERONA, J. J. and THODOS, G. AIChE Jl, 1957, 3, 230.
- 2. KOLB, H. J. and BURWELL, R. L. (Jr.) J. Am. Chem. Soc., 1945, 67, 1084.
- 3. RUDD, D. F. and WATSON, C. C. Strategy of Process Engineering, 1968 (New York: John Wiley & Sons Inc.).

#### G.4 ACRYLONITRILE FROM PROPYLENE AND AMMONIA

## The project

Design a plant to produce  $1\times10^8$  kg/year of acrylonitrile (CH<sub>2</sub>:CH.CN) from propylene and ammonia by the ammoxidation process.

Feedstock:

Ammonia: 100 per cent NH<sub>3</sub>.

Propylene: Commercial grade containing 90 per cent C<sub>3</sub>H<sub>6</sub>, 10 per cent paraffins, etc., which do not take any part in the reaction.

Services available:

Dry saturated steam at 140°C.

Cooling water at 24°C.

Other normal services.

#### The process

Propylene, ammonia, steam and air are fed to a vapour-phase catalytic reactor (item A). The feedstream composition (molar per cent) is propylene 7; ammonia 8; steam 20; air 65. A fixed-bed reactor is employed using a molybdenum-based catalyst at a temperature of 450°C, a pressure of 3 bar absolute, and a residence time of 4 seconds. Based upon a pure propylene feed, the carbon distribution by weight in the product from the reactor is:

| Acrylonitrile       | 58 per cent |
|---------------------|-------------|
| Acetonitrile        | 2 per cent  |
| Carbon dioxide      | 16 per cent |
| Hydrogen cyanide    | 6 per cent  |
| Acrolein            | 2 per cent  |
| Unreacted propylene | 15 per cent |
| Other by products   | 1 per cent  |

The reactor exit gas is air-cooled to  $200^{\circ}$ C and then passes to a quench scrubber (B) through which an aqueous solution containing ammonium sulphate 30 wt per cent and sulphuric acid 1 wt per cent is circulated. The exit gas temperature is thereby reduced to  $90^{\circ}$ C.

From the quench scrubber (B) the gas passes to an absorption column (C) in which the acrylonitrile is absorbed in water to produce a 3 wt per cent solution. The carbon dioxide, unreacted propylene, oxygen, nitrogen and unreacted hydrocarbons are not absorbed and are vented to atmosphere from the top of column (C).

The solution from the absorber (C) passes to a stripping column (D) where acrylonitrile and lower boiling impurities are separated from water. Most of the aqueous bottom product from the stripping column (D), which is essentially free of organics, is returned to the absorber (C), the excess being bled off. The overhead product is condensed and the aqueous lower layer returned to the stripping column (D) as reflux.

The upper layer which contains, in addition to acrylonitrile, hydrogen cyanide, acrolein, acetonitrile, and small quantities of other impurities, passes to a second reactor (E) where, at a suitable pH, all the acrolein is converted to its cyanohydrin. (Cyanohydrins are sometimes known as cyanhydrins.) The product from the reactor (E) is fed to a cyanohydrin separation column (F), operating at reduced temperature and pressure, in which acrolein cyanohydrin is separated as the bottom product and returned to the ammoxidation reactor (A) where it is quantitatively converted to acrylonitrile and hydrogen cyanide.

The top product from column (F) is fed to a stripping column (G) from which hydrogen cyanide is removed overhead.

The bottom product from column (G) passes to the hydroextractive distillation column (H). The water feed rate to column (H) is five times that of the bottom product flow from column (G). It may be assumed that the acetonitrile and other by-products are discharged as bottom product from column (H) and discarded. The overhead product from column (H), consisting of the acrylonitrile water azeotrope, is condensed and passed to a separator. The lower aqueous layer is returned to column (H).

The upper layer from the separator is rectified in a column (I) to give 99.95 wt per cent pure acrylonitrile.

APPENDIX G 985

#### Scope of design work required

- 1. Prepare a material balance for the process.
- 2. Prepare a material flow diagram of the process.
- 3. Prepare a heat balance for the reactor (A) and quench column (B).
- 4. Prepare a chemical engineering design of reactor (A) and either column (B) OR column (D).
- 5. Prepare a mechanical design of the condenser for stripping column (D) and make a dimensioned sketch suitable for submission to a drawing office.
- 6. Indicate the instrumentation and safety procedure required for this plant bearing in mind the toxic and inflammable materials being handled.

#### REFERENCES

- 1. HANCOCK, E. H. (ed.) Propylene and its Industrial Derivatives, 1973 (London: Ernest Benn Ltd.).
- 2. SOKOLOV, N. M., SEVRYUGOVA, N. N. and ZHAVORONKOV, N. M. Proceedings of the International Symposium on Distillation, 1969, pages 3:110-3:117 (London: I Chem E).

#### G.5 UREA FROM AMMONIA AND CARBON DIOXIDE

#### The project

A plant is to be designed for the production of 300,000 kg per day of urea by the reaction of ammonia and carbon dioxide at elevated temperature and pressure, using a total-recycle process in which the mixture leaving the reactor is stripped by the carbon dioxide feed (DSM process, references 1 to 4).

#### Materials available

- (1) Liquid ammonia at 20°C and 9 bar, which may be taken to be 100 per cent pure.
- (2) Gaseous carbon dioxide at 20°C and atmospheric pressure, also 100 per cent pure.
- All normal services are available on site. In particular, electricity, 440-V three-phase 50 Hz; cooling water at a maximum summer temperature of 22°C; steam at 40 bar with 20°C of superheat.

The on-stream time is to be 330 days/year, and the product specification is fertiliser-grade urea prills containing not more than 1.0 per cent biuret.

## The process

The reaction which produces urea from ammonia and carbon dioxide takes place in two stages; in the first, ammonium carbamate is formed:

$$2NH_3 + CO_2 \rightleftharpoons NH_2COONH_4$$

In the second, the carbamate is dehydrated to give urea:

$$NH_2COONH_4 \rightleftharpoons CO(NH_2)_2 + H_2O$$

Both reactions are reversible, the first being exothermal and going almost to completion, whilst the second is endothermal and goes to 40 to 70 per cent of completion.

Ammonia and carbon dioxide are fed to the reactor, a stainless steel vessel with a series of trays to assist mixing. The reactor pressure is 125 bar and the temperature is 185°C.

The reactor residence time is about 45 minutes, a 95 per cent approach to equilibrium being achieved in this time. The ammonia is fed directly to the reactor, but the carbon dioxide is fed to the reactor upwardly through a stripper, down which flows the product stream from the reactor. The carbon dioxide decomposes some of the carbamate in the product stream, and takes ammonia and water to a high-pressure condenser. The stripper is steam heated and operates at 180°C, whilst the high-pressure condenser is at 170°C and the heat released in it by recombination of ammonia and carbon dioxide to carbamate is used to raise steam. Additional recycled carbamate solution is added to the stream in the high-pressure condenser, and the combined flow goes to the reactor.

The product stream leaving the stripper goes through an expansion valve to the low-pressure section, the operating pressure there being 5 bar. In a steam-heated rectifier, further ammonia and carbon dioxide are removed and, with some water vapour, are condensed to give a weak carbamate solution. This is pumped back to the high-pressure condenser.

A two-stage evaporative concentration under vacuum, with a limited residence-time in the evaporator to limit biuret formation, produces a urea stream containing about 0.5 per cent water which can be sprayed into a prilling tower.

#### Physico-chemical data

```
Heats of reactions: 2NH_3 + CO_2 \rightarrow NH_2COONH_4 + 130 \text{ kJ}

NH_2COONH_4 \rightarrow CO(NH_2)_2 + H_2O - 21 \text{ kJ}
```

Properties of urea: Density at  $20^{\circ}C - 1$ 

Density at  $20^{\circ}$ C = 1.335 g/cm<sup>3</sup>

Heat of solution in water = -250 J/g

Melting point =  $133^{\circ}$ C

Specific heat = 1.34 J/g at  $20^{\circ}\text{C}$ 

## Reactor and stripper design

The relationships between temperature, pressure, and composition for the Urea— $CO_2$ — $NH_3$ — $H_2O$  system are given in References 5 and 6. These are equilibrium relationships. The reaction velocity may be obtained from the graph in Figure 5 of Reference 5, which is reproduced below for ease of reference (Figure G1). Some stripper design data appear in Reference 7.

## Scope of design work required

- 1. Prepare a mass balance diagram for the process, on a weight per hour basis, through to the production of urea prills.
- 2. Prepare an energy balance diagram for the reactor-stripper-high-pressure condenser complex.

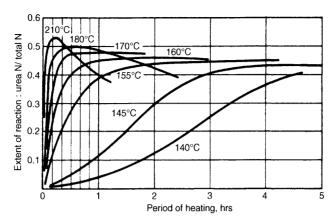



Figure G1. Rate of dehydration of carbamate

- 3. Prepare a process flow diagram, showing the major items of equipment in the correct elevation, with an indication of their internal construction. Show all major pipe lines and give a schematic outline of the probable instrumentation of the reactor and its subsidiaries.
- 4. Prepare an equipment schedule, listing the main plant items with their size, throughput, operating conditions, materials of construction, and services required.
- 5. Prepare an outline design of the reactor and carry out the chemical engineering design of the stripper, specifying the interfacial contact area which will need to be provided between the carbon dioxide stream and the product stream to enable the necessary mass transfer to take place.
- 6. Prepare a mechanical design of the stripper, which is a vertical steam-heated tube-bundle rather like a heat exchanger. Show how liquid is to be distributed to the tubes, and how the shell is to be constructed to resist the high pressure and the corrosive process material.
- 7. Prepare a detailed mechanical design of the reactor in the form of a general arrangement drawing with supplementary detail drawings to show essential constructional features. Include recommendations for the feed of gaseous ammonia, carbon dioxide and carbamate solution, the latter being very corrosive. The design should ensure good gas-liquid contact; suitable instrumentation should be suggested, and provision included for its installation. Access must be possible for maintenance.
- 8. Specify suitable control systems for the maintenance of constant conditions in the reactor against a 15 per cent change in input rate of ammonia or carbon dioxide, and examine the effect of such a change, if uncorrected, on the steam generation capability of the high-pressure condenser.

#### REFERENCES

- 1. KAASENBROOD, P. J. C. and LOGEMANN, J. D. Hydrocarbon Processing, April 1969, pp. 117-121.
- 2. PAYNE, A. J. and CANNER, J. A. Chemical and Process Engineering, May 1969, pp. 81-88.
- 3. Cook, L. H. Hydrocarbon Processing, Feb. 1966, pp. 129-136.
- 4. Process Survey: Urea. Booklet published with European Chemical News, Jan. 17th, 1969, p. 17.

- 5. Frejacques, M. Chimie et Industrie, July 1948, pp. 22-35.
- 6. KUCHERYAVYY, V. I. and GORLOVSKIY, D. M. Soviet Chemical Industry, Nov. 1969, pp. 44-46.
- 7. VAN KREVELEN, D. W. and HOFTYZER, P. J. Chemical Engineering Science, Aug. 1953, 2(4) pp. 145-156.

#### G.6 HYDROGEN FROM FUEL OIL

#### The project

A plant is to be designed to produce 20 million standard cubic feet per day  $(0.555 \times 10^6 \text{ standard m}^3/\text{day})$  of hydrogen of at least 95 per cent purity. The process to be employed is the partial oxidation of oil feedstock.<sup>1-3</sup>

#### Materials available

(1) Heavy fuel oil feedstock of viscosity 900 seconds Redwood One  $(2.57 \times 10^{-4} \text{ m}^2/\text{s})$  at  $100^{\circ}\text{F}$  with the following analysis:

| Carbon          | 85 per cent wt             |
|-----------------|----------------------------|
| Hydrogen        | 11 per cent wt             |
| Sulphur         | 4 per cent wt              |
| Calorific value | 18,410 Btu/lb (42.9 MJ/kg) |
| G 16 1.         | 0.0405                     |

Specific gravity 0.9435

The oil available is pumped from tankage at a pressure of 30 psig (206.9 kN/m $^2$  gauge) and at 50°C.

(2) Oxygen at 95 per cent purity (the other component assumed to be wholly nitrogen) and at 20°C and 600 psig (4140 kN/m<sup>2</sup> gauge).

#### Services available

- (1) Steam at 600 psig (4140 kN/m<sup>2</sup> gauge) saturated.
- (2) Cooling water at a maximum summer temperature of 25°C.
- (3) Demineralised boiler feedwater at 20 psig (138 kN/m² gauge) and 15°C suitable for direct feed to the boilers.
- (4) Electricity at 440 V, three-phase 50 Hz, with adequate incoming cable capacity for all proposed uses.
- (5) Waste low-pressure steam from an adjacent process.

#### On-stream time

8050 hours/year.

## **Product specification**

Gaseous hydrogen with the following limits of impurities:

| CO     | 1.0 per cent vol maximum (dry basis) |
|--------|--------------------------------------|
| $CO_2$ | 1.0 per cent vol maximum (dry basis) |
| $N_2$  | 2.0 per cent vol maximum (dry basis) |
| $CH_4$ | 1.0 per cent vol maximum (dry basis) |
| $H_2S$ | Less than 1 ppm                      |

APPENDIX G 989

The gas is to be delivered at 35°C maximum temperature, and at a pressure not less than 300 psig (2060 kN/m² gauge). The gas can be delivered saturated, i.e. no drying plant is required.

#### The process

Heavy fuel oil feedstock is delivered into the suction of metering-type ram pumps which feed it via a steam preheater into the combustor of a refractory-lined flame reactor. The feedstock must be heated to 200°C in the preheater to ensure efficient atomisation in the combustor. A mixture of oxygen and steam is also fed to the combustor, the oxygen being preheated in a separate steam preheater to 210°C before being mixed with the reactant steam.

The crude gas, which will contain some carbon particles, leaves the reactor at approximately 1300°C and passes immediately into a special waste-heat boiler where steam at 600 psig (4140 kN/m² gauge) is generated. The crude gas leaves the waste heat boiler at 250°C and is further cooled to 50°C by direct quenching with water, which also serves to remove the carbon as a suspension. The analysis of the quenched crude gas is as follows:

```
\begin{array}{cccc} H_2 & 47.6 & per cent vol (dry basis) \\ CO & 42.1 & per cent vol (dry basis) \\ CO_2 & 8.3 & per cent vol (dry basis) \\ CH_4 & 0.1 & per cent vol (dry basis) \\ H_2S & 0.5 & per cent vol (dry basis) \\ N_2 & 1.40 & per cent vol (dry basis) \\ \hline \hline 100.0 & per cent vol (dry basis) \\ \end{array}
```

For the primary flame reaction steam and oxygen are fed to the reactor at the following rates:

```
Steam 0.75 kg/kg of heavy fuel oil feedstock
Oxygen 1.16 kg/kg of heavy fuel oil feedstock
```

The carbon produced in the flame reaction, and which is subsequently removed as carbon suspension in water, amounts to 1.5 per cent by weight of the fuel oil feedstock charge. Some H<sub>2</sub>S present in the crude gas is removed by contact with the quench water.

The quenched gas passes to an  $H_2S$  removal stage where it may be assumed that  $H_2S$  is selectively scrubbed down to 15 parts per million with substantially nil removal of  $CO_2$ . Solution regeneration in this process is undertaken using the waste low-pressure steam from another process. The scrubbed gas, at 35°C and saturated, has then to undergo CO conversion, final  $H_2S$  removal, and  $CO_2$  removal to allow it to meet the product specification.

CO conversion is carried out over chromium-promoted iron oxide catalyst employing two stages of catalytic conversion; the plant also incorporates a saturator and desaturator operating with a hot water circuit.

Incoming gas is introduced into the saturator (a packed column) where it is contacted with hot water pumped from the base of the desaturator; this process serves to preheat the gas and to introduce into it some of the water vapour required as reactant. The gas then passes to two heat exchangers in series. In the first, the unconverted gas is heated

against the converted gas from the second stage of catalytic conversion; in the second heat exchanger the unconverted gas is further heated against the converted gas from the first stage of catalytic conversion. The remaining water required as reactant is then introduced into the unconverted gas as steam at 600 psig (4140 kN/m² gauge) saturated and the gas/steam mixture passes to the catalyst vessel at a temperature of  $370^{\circ}$ C. The catalyst vessel is a single shell with a dividing plate separating the two catalyst beds which constitute the two stages of conversion. The converted gas from each stage passes to the heat exchangers previously described and thence to the desaturator, which is a further packed column. In this column the converted gas is contacted countercurrent with hot water pumped from the saturator base; the temperature of the gas is reduced and the deposited water is absorbed in the hot-water circuit. An air-cooled heat exchanger then reduces the temperature of the converted gas to  $40^{\circ}$ C for final  $H_2$ S removal.

Final  $H_2S$  removal takes place in four vertical vessels each approximately 60 feet (18.3 m) in height and 8 feet (2.4 m) in diameter and equipped with five trays of iron-oxide absorbent. Each vessel is provided with a locking lid of the autoclave type. The total pressure drop across these vessels is 5 psi (35 kN/m²). Gas leaving this section of the plant contains less than 1 ppm of  $H_2S$  and passes to the  $CO_2$  removal stage at a temperature of 35°C.

CO<sub>2</sub> removal is accomplished employing high-pressure potassium carbonate wash with solution regeneration.<sup>4</sup>

#### Data

#### I. Basic data for CO conversion section of the plant

(a) Space velocity

The space velocity through each catalyst stage should be assumed to be 3500 volumes of gas plus steam measured at NTP per volume of catalyst per hour. It should further be assumed that use of this space velocity will allow a  $10^{\circ}$ C approach to equilibrium to be attained throughout the possible range of catalyst operating temperatures listed below.

(b) Equilibrium data for the CO conversion reaction For

$$K_p = \frac{p_{\text{CO}} \times p_{\text{H}_2\text{O}}}{p_{\text{CO}_2} \times p_{\text{H}_2}}$$
Temp. (K)  $K_p$ 

$$600 \qquad 3.69 \times 10^{-2}$$

$$700 \qquad 1.11 \times 10^{-1}$$

$$800 \qquad 2.48 \times 10^{-1}$$

(c) Heat of reaction

$$CO + H_2O \rightleftharpoons CO_2 + H_2$$
  $\Delta H = -9.84$  kcal.

## II. Basic data for CO<sub>2</sub> removal using hot potassium carbonate solutions

The data presented in Ref. 4 should be employed in the design of the  $CO_2$  removal section of the plant. A solution concentration of 40 per cent wt equivalent  $K_2$   $CO_3$  should be employed.

#### Scope of design work required

#### 1. Process design

- (a) Calculate, and prepare a diagram to show, the gas flows, compositions, pressures and temperatures, at each main stage throughout the processes of gasification and purification.
- (b) Prepare a mass balance diagram for the CO conversion section of the plant including the live steam addition to the unconverted gas. Basic data which should be employed for the CO conversion process are presented in the Appendix.
- (c) Prepare an energy-balance diagram for the flame reactor and for the associated waste-heat boiler.
- (d) Prepare a process flow-diagram showing all major items of equipment. This need not be to scale but an indication of the internal construction of each item (with the exception of the flame reactor, waste-heat boiler and quench tower) should be given. The primary  $H_2S$  removal stage need not be detailed.
- (e) Prepare an equipment schedule for the CO conversion section of the plant, specifying major items of equipment.

#### 2. Chemical engineering design

- (a) Prepare a detailed chemical engineering design of the absorber on the CO<sub>2</sub> removal stage.
- (b) Prepare a chemical engineering design for the saturator on the CO conversion section.

## 3. Mechanical design

Make recommendations for the mechanical design of the CO<sub>2</sub> removal absorber, estimating the shell and end-plate thickness and showing, by means of sketches suitable for submission to a design office, how:

- (a) the beds of tower packing are supported,
- (b) the liquid is distributed.

Develop a detailed mechanical design of the CO conversion reactor, paying particular attention to the choice of alloy steels versus refractory linings, provisions for thermal expansion, inlet gas distribution, catalyst bed-support design, facilities for charging and discharging catalyst and provisions for instrumentation.

#### 4. Control

Prepare a full instrumentation of flow-sheet of the CO conversion section of the plant, paying particular attention to the methods of controlling liquid levels in the circulating water system and temperatures in the catalyst beds. Derive the unsteady-state equations which would have to be employed in the application of computer control to the CO conversion section of the plant.

#### REFERENCES

- 1. J. H. GARVIE, Chem. Proc. Engng, Nov. 1967, pp. 55-65. Synthesis gas manufacture.
- 2. Hydrocarbon Processing Refining Processes Handbook. Issue A, Sept. 1970, p. 269.

- 3. S. C. SINGER and L. W. TER HAAR, *Chem. Eng Prog.*, 1961, **57**, pp. 68-74. Reducing gases by partial oxidation of hydrocarbons.
- 4. H. E. Benson, J. H. Field and W. P. Haynes, *Chem. Eng Prog.*, 1956, **52**, pp. 433-438. Improved process for CO<sub>2</sub> absorption uses hot carbonate solutions.

# G.7 CHLORINE RECOVERY FROM HYDROGEN CHLORIDE

# The project

A plant is to be designed for the production of 10,000 tonnes per annum of chlorine by the catalytic oxidation of HCl gas.

#### Materials available

- (1) HCl gas as by-product from an organic synthesis process. This may be taken to be 100 per cent pure and at 20°C and absolute pressure of 14.7 psi (100 kN/m²).
- (2) Air. This may be taken to be dry and at  $20^{\circ}$ C and absolute pressure of 14.7 psi  $(100 \text{ kN/m}^2)$ .

# Services available

- (1) Steam at 200 psig  $(1400 \text{ kN/m}^2)$ .
- (2) Cooling water at a maximum summer temperature of 24°C.
- (3) A limited supply of cooling water at a constant temperature of 13°C is also available.
- (4) Electricity at 440 V, three-phase, 50 Hz.

#### On-stream time

8000 hours/year.

# Product specification

Gaseous chlorine mixed with permanent gases and HCl. The HCl content not to exceed  $5 \times 10^{-5}$  part by weight of HCl per unit weight of chlorine.

# The process

HCl is mixed with air and fed into a fluidised bed reactor containing cupric chloride/pumice catalyst and maintained at a suitable temperature in the range 300–400°C. The HCl in the feed is oxidised, and the chlorine and water produced in the reaction, together with unchanged HCl and permanent gases, are passed to a packed tower cooler/scrubber, operating somewhat above atmospheric pressure, where they are contacted with aqueous HCl containing 33–36 per cent by weight of HCl. This acid enters the cooler/scrubber at about 20°C. Most of the water and some of the HCl contained in the gases entering the cooler/scrubber are dissolved in the acid. The liquid effluent from the base of the cooler/scrubber flows to a divider box from which one stream passes to the top of the cooler/scrubber, via a cooler which lowers its temperature to 20°C, and another

stream passes to a stripping column ("expeller"). Gas containing 98 per cent by weight of HCl (the other constituents being water and chlorine) leaves the top of the expeller and is recycled to the reactor. A mixture of water and HCl containing 20–22 per cent by weight of HCl leaves the base of the expeller. This liquid passes, *via* a cooler, to the top of an HCl absorber, which is required to remove almost the whole of the HCl contained in the gases leaving the cooler/scrubber. The liquid leaving the base of the HCl absorber, containing 33–36 per cent by weight of HCl, is divided into two streams, one of which flows to the expeller while the other is collected as product. The gaseous chlorine leaving the top of the HCl absorber passes to a drier.

#### Data

#### Reactor

Catalyst particle size distribution (U.S. Patent 2746 844/1956)

| Size range (μm) | Cumulative weight percentage undersize (at upper limit) |
|-----------------|---------------------------------------------------------|
| 50-100          | 0.39                                                    |
| 100-150         | 15.0                                                    |
| 150-200         | 58.0                                                    |
| 200-250         | 85.0                                                    |
| 250-300         | 96.6                                                    |
| 300-350         | 99.86                                                   |

Density of catalyst: 40 lb/ft<sup>3</sup> (640 kg/m<sup>3</sup>). Voidage at onset of fluidisation: 0.55.

Particle shape factor: 0.7.

Heat of reaction: 192 kcal/kg of HCl ( $\Delta H = -29$ , 340 kJ/kmol). (Arnold, C. W. and Kobe, K. A., *Chem. Eng., Prog.*, 1952, **48**, 293.)

Gas residence time in reactor: 25 seconds,

Quant, J. et al., Chem. Engr, Lond., 1963, p. (CE224).

# Cooler/scrubber and expeller

The overall heat-transfer coefficient between the gas and liquid phases can be taken to be 5.0 Btu/h ft<sup>2</sup> degF (28 W/m<sup>2</sup>  $^{\circ}$ C).

# Scope of design work required

- 1. Prepare a mass balance diagram for the process, up to but not including the drier, on the basis of weight/hour. Base the calculation on 10,000 long tons/year of chlorine entering the drier together with permanent gases, water and not more than  $5 \times 10^{-5}$  parts by weight of HCl per unit weight of chlorine.
- 2. Prepare an energy balance diagram for the reactor and cooler/scrubber system.
- 3. Prepare a process flow diagram, up to but not including the drier, showing all the major items of equipment, with indications of the type of internal construction, as

- far as possible in the corrected evaluation. The diagram should show all major pipe lines and the instrumentation of the reactor and the cooler/scrubber system.
- 4. Prepare an equipment schedule listing all major items of equipment and giving sizes, capacities, operating pressures and temperatures, materials of construction, etc.
- 5. Present a specimen pipeline sizing calculation.
- 6. Work out the full chemical engineering design of the reactor and cooler/scrubber systems.
- 7. Calculate the height and diameter of the expeller.
- 8. Prepare a mechanical design of the cooler/scrubber showing by dimensioned sketches suitable for submission to a draughtsman how:
  - (a) The tower packing is to be supported.
  - (b) The liquid is to be distributed in the tower.
  - (c) The shell is to be constructed so as to withstand the severely corrosive conditions inside it.
- 9. Discuss the safety precautions involved in the operation of the plant, and the procedure to be followed in starting the plant up and shutting it down.
- 10. Develop the mechanical design of the reactor and prepare a key arrangement drawing, supplemented by details to make clear the essential constructional features. The study should include recommendations for the design of the bed and means of separation and disposal of dust from the exit gas stream, and should take account of needs connected with thermal expansion, inspection, maintenance, starting and stopping, inlet gas distribution, insertion and removal of catalyst, and the positioning and provision for reception of instruments required for control and operational safety. Written work should be confined, as far as possible, to notes on engineering drawings, except for the design calculations, the general specification and the justification of materials of construction.
- 11. Assuming that the plant throughout may vary by 10 per cent on either side of its normal design value due to changes in demand, specify control systems for:
  - (i) regulation of the necessary recycle flow from the cooler/scrubber base, at the design temperature; and
  - (ii) transfer of the cooler/scrubber make liquor to the expeller.

# REFERENCES

Arnold, C. W. and Kobe, K. A. (1952) *Chem. Engng Prog.* **48**, 293. Fleurke, K. H. (1968) *Chem. Engr., Lond.*, p. CE41.

QUANT, J., VAN DAM, J., ENGEL, W. F., and WATTIMENA, F. (1963) Chem. Engr., Lond., p. CE224.

Sconce, J. S. (1962) Chlorine: Its Manufacture, Properties, and Uses (New York: Rheinhold Publishing Corporation).

# **G.8 ANILINE FROM NITROBENZENE**

# The project

Design a plant to make 20,000 tonnes per annum of refined aniline by the hydrogenation of nitro-benzene. The total of on-stream operation time plus regeneration periods will be 7500 hours per year.

APPENDIX G 995

#### Materials available:

Nitrobenzene containing < 10 ppm thiophene.

Hydrogen of 99.5 per cent purity at a pressure of 50 psig (350 kN/m<sup>2</sup>).

Copper on silica gel catalyst.

#### Services available:

Steam at 200 psig (1400 kN/m<sup>2</sup>) 197°C, and 40 psig (280 kN/m<sup>2</sup>) 165°C.

Cooling water at a maximum summer temperature of 24°C.

Town's water at 15°C.

Electricity at 440 V, three-phase 50 Hz.

# Product specification:

Aniline 99.9 per cent w/w min.

Nitrobenzene 2 ppm max. Cyclohexylamine 100 ppm max.

Water 0.05 per cent w/w max.

# The process

Nitrobenzene is fed to a vaporiser, where it is vaporised in a stream of hydrogen (three times stoichiometric). The mixture is passed into a fluidised bed reactor containing copper on silica gel catalyst, operated at a pressure, above the bed, of 20 psig (140 kN/m²). The contact time, based on superficial velocity at reaction temperature and pressure and based on an unexpanded bed, is 10 seconds. Excess heat of reaction is removed to maintain the temperature at 270°C by a heat-transfer fluid passing through tubes in the catalyst bed. The exit gases pass through porous stainless-steel candle filters before leaving the reactor.

The reactor gases pass through a condenser/cooler, and the aniline and water are condensed. The excess hydrogen is recycled, except for a purge to maintain the impurity level in the hydrogen to not more than 5 per cent at the reactor inlet. The crude aniline and water are let down to atmospheric pressure and separated in a liquid/liquid separator, and the crude aniline containing 0.4 per cent unreacted nitrobenzene and 0.1 per cent cyclo-hexylamine as well as water, is distilled to give refined aniline. Two stills are used, the first removing water and lower boiling material, and the second removing the higher boiling material (nitrobenzene) as a mixture with aniline. The vapour from the first column is condensed, and the liquid phases separated to give an aqueous phase and an organic phase. A purge is taken from the organic stream to remove the cyclo-hexylamine from the system, and the remainder of the organic stream recycled. The cyclo-hexylamine content of the purge is held to not greater than 3 per cent to avoid difficulty in phase separation. In the second column, 8 per cent of the feed is withdrawn as bottoms product.

The purge and the higher boiling mixture are processed away from the plant, and the recovered aniline returned to the crude aniline storage tank. The aniline recovery efficiency in the purge unit is 87.5 per cent, and a continuous stream of high-purity aniline may be assumed.

The aqueous streams from the separators (amine-water) are combined and steam stripped to recover the aniline, the stripped water, containing not more than 30 ppm aniline or 20 ppm cyclo-hexylamine, being discharged to drain.

Regeneration of the catalyst is accomplished in place using air at 250-350°C to burn off organic deposits. Regeneration takes 24 hours, including purging periods.

The overall yield of aniline is 98 per cent theory from nitrobenzene, i.e. from 100 mols of nitrobenzene delivered to the plant, 98 mols of aniline passes to final product storage.

# Scope of design work required

- 1. Prepare a material balance on an hourly basis for the complete process in weight units.
- 2. Prepare a heat balance for the reactor system, comprising vaporiser, reactor and condenser/cooler.
- 3. Draw a process flow diagram for the plant. This should show all items of equipment approximately to scale and at the correct elevation. The catalyst regeneration. equipment should be shown.
- 4. Chemical engineering design.
  - (a) Vaporiser

Give the detailed chemical engineering design, and give reasons for using the type chosen. Specify the method of control.

# (b) Reactor

Give the detailed chemical engineering design for the fluidised bed and heat transfer surfaces. Select a suitable heat transfer fluid and give reasons for your selection. Do *not* attempt to specify the filters or to design the condenser/cooler in detail.

# (c) Crude aniline separator

Specify the diameter, height and weir dimensions and sketch the method of interface level control which is proposed.

# (d) Amine water stripper

Give the detailed chemical engineering design of the column.

- 5. Prepare a full mechanical design for the reactor. Make a dimensioned sketch suitable for submission to a drawing office, which should include details of the distributor, and show how the heat transfer surfaces will be arranged. An indication of the method of supporting the candle filters should be shown, but do not design this in detail
- 6. Prepare an equipment schedule detailing all major items of equipment, including tanks and pumps. A specimen pipeline sizing calculation for the reactor inlet pipe should be given. All materials of construction should be specified.
- 7. Describe briefly how the plant would be started up and shut down, and discuss safety aspects of operation.
- 8. Write a short discussion, dealing particularly with the less firmly based aspects of the design, and indicating the semi-technical work which is desirable.

#### Data

- 1. Catalyst properties:
  - (a) Grading:

| $0$ – $20~\mu m$ :         | Negligible      |
|----------------------------|-----------------|
| $20-40~\mu m$ :            | 3 per cent w/w  |
| $40-60 \ \mu \text{m}$ :   | 7 per cent w/w  |
| $60-80 \; \mu \text{m}$ :  | 12 per cent w/w |
| $80-100 \ \mu \text{m}$ :  | 19 per cent w/w |
| $100-120 \ \mu m$ :        | 25 per cent w/w |
| 120–140 $\mu$ m:           | 24 per cent w/w |
| 140–150 μm:                | 10 per cent w/w |
| $> 150 \ \mu \mathrm{m}$ : | Negligible.     |

- (b) Voidage at minimum fluidisation, 0.45.
- (c) Shape factor, 0.95.
- (d) Bulk density at minimum fluidisation, 50 lb/ft<sup>3</sup> (800 kg/m<sup>3</sup>).
- (e) Life between regenerations 1500 tonne of aniline per ton of catalyst, using the feedstock given.
- 2. Exothermic heat of hydrogenation.  $-\Delta H_{298} = 132,000$  CHU/lb mol (552,000 kJ/k mol).
- 3. Mean properties of reactor gases at reactor conditions:

| Viscosity                          | $0.02$ centipoise $(0.02 \text{ mNs/m}^2)$                                           |
|------------------------------------|--------------------------------------------------------------------------------------|
| Heat capacity at constant pressure | 0.66 CHU/lb°C (2.76 kJ/kg°C)                                                         |
| Thermal conductivity               | $0.086 \text{ CHU/hr ft}^2 (^{\circ}\text{C/ft}) (0.15 \text{ W/m}^{\circ}\text{C})$ |

- 4. Pressure drop through candle filters =  $5 \text{ psi}(35 \text{ kN/m}^2)$ .
- 5. Density of nitrobenzene:

| Temp. °C | Density g/cm <sup>3</sup> |
|----------|---------------------------|
| 0        | 1.2230                    |
| 15       | 1.2083                    |
| 30       | 1.1934                    |
| 50       | 1.1740                    |

6. Latent heat of vaporisation of nitrobenzene:

| Temp. °C | Latent heat CHU/lb | (kJ/kg) |
|----------|--------------------|---------|
| 100      | 104                | (434)   |
| 125      | 101                | (422)   |
| 150      | 97                 | (405)   |
| 175      | 92.5               | (387)   |
| 200      | 85                 | (355)   |
| 210      | 79                 | (330)   |

7. Latent heat of vaporisation of aniline:

| Temp. °C | Latent heat CHU/lb | (kJ/kg) |
|----------|--------------------|---------|
| 100      | 133.5              | (558)   |
| 125      | 127                | (531)   |
| 150      | 120                | (502)   |
| 175      | 110                | (460)   |
| 183      | 103.7              | (433)   |

- 8. Specific heat of aniline vapour =  $0.43 \text{ CHU/lb}^{\circ}\text{C}$  (1.80 kJ/kg $^{\circ}\text{C}$ ).
- 9. Solubility of aniline in water:

| Temp. °C | per cent w/w aniline |
|----------|----------------------|
| 20       | 3.1                  |
| 40       | 3.3                  |
| 60       | 3.8                  |
| 100      | 7.2                  |

10. Solubility of water in aniline:

| Temp. °C | per cent w/w water |
|----------|--------------------|
| 20       | 5.0                |
| 40       | 5.3                |
| 60       | 5.8                |
| 100      | 8.4                |

11. Density of aniline/water system:

|          | Density g/cm <sup>3</sup> |               |
|----------|---------------------------|---------------|
| Temp. °C | Water layer               | Aniline layer |
| 0        | 1.003                     | 1.035         |
| 10       | 1.001                     | 1.031         |
| 20       | 0.999                     | 1.023         |
| 30       | 0.997                     | 1.014         |
| 40       | 0.995                     | 1.006         |
| 50       | 0.991                     | 0.998         |
| 60       | 0.987                     | 0.989         |
| 70       | 0.982                     | 0.982         |

12. Partition of cyclo-hexylamine between aniline and water at 30°C:

| w/w per cent cyclo-<br>hexylamine in<br>aniline | w/w per cent water<br>in aniline | w/w per cent cyclo-<br>hexylamine in<br>water | w/w per cent aniline<br>in water |
|-------------------------------------------------|----------------------------------|-----------------------------------------------|----------------------------------|
| 1.0                                             | 5.7                              | 0.12                                          | 3.2                              |
| 3.0                                             | 6.6                              | 0.36                                          | 3.2                              |
| 5.0                                             | 7.7                              | 0.57                                          | 3.2                              |

13. Partition coefficient of nitrobenzene between aniline layer and water layer:

$$C_{a.l.}/C_{w.l.} = 300.$$

- 14. Design relative velocity in crude aniline-water separator: 10 ft/h (3 m/h).
- 15. Equilibrium data for water-aniline system at 760 mm Hg abs:

|         | Mole fraction water |        |
|---------|---------------------|--------|
| Temp °C | Liquid              | Vapour |
| 184     | 0                   | 0      |
| 170     | 0.01                | 0.31   |
| 160     | 0.02                | 0.485  |
| 150     | 0.03                | 0.63   |
| 140     | 0.045               | 0.74   |
| 130     | 0.07                | 0.82   |
| 120     | 0.10                | 0.88   |
| 110     | 0.155               | 0.92   |
| 105     | 0.20                | 0.94   |
| 100     | 0.30                | 0.96   |
| 99      | 0.35 - 0.95         | 0.964  |
|         | 0.985               | 0.9641 |
|         | 0.9896              | 0.9642 |
|         | 0.9941              | 0.9735 |
|         | 0.9975              | 0.9878 |
|         | 0.9988              | 0.9932 |

16. Equilibrium data for cyclo-hexylamine-water system at 760 mm Hg abs:

| Liquid | Vapour |
|--------|--------|
| 0.005  | 0.065  |
| 0.010  | 0.113  |
| 0.020  | 0.121  |
| 0.030  | 0.123  |
| 0.040  | 0.124  |
| 0.050  | 0.125  |
| 0.100  | 0.128  |
| 0.150  | 0.131  |
| 0.200  | 0.134  |
| 0.250  | 0.137  |

17. Temperature coefficient for aniline density — 0.054 lb/ft<sup>3</sup> °C(0.86 kg/m<sup>3</sup> °C) (range 0-100 °C).

# REFERENCES

- 1. U.S. Patent 2,891,094 (American Cyanamid Co.).
- 2. PERRY, R. H., CHILTON, C. H. and KIRKPATRICK, S. D. (eds) Chemical Engineers' Handbook, 1963, 4th edn, Section 3 (New York: McGraw-Hill Book Company, Inc.).
- 3. Leva, M. Fluidization, 1959 (New York: McGraw-Hill Book Company, Inc.).
- 4. ROTTENBURG, P. A. *Trans. Instn. Chem Engrs*, 1957, **35**, 21.

  As an alternative to Reference 1 above, any of the following may be read as background information to the process:
- 5. Hyd. Proc. and Pet. Ref., 1961, 40, No. 11, p. 225.
- STEPHENSON, R. M. Introduction to the Chemical Process Industries, 1966 (New York: Reinhold Publishing Corporation).
- 7. FAITH, W. L., KEYES, D. B. and CLARK, R. L. *Industrial Chemicals*, 3rd edn, 1965 (New York: John Wiley & Sons Inc.).
- 8. SITTIG, M. Organic Chemical Processes, 1962 (New York: Noyes Press).

#### APPENDIX H

# Equipment Specification (Data) Sheets

- (1) Vessel data sheet
- (2) Column tray data sheet
- (3) Heat exchanger data sheet
- (4) Plate heat exchanger data sheet
- (5) Centrifugal pump data sheet
- (6) Reciprocating pump data sheet
- (7) Rotary positive pump data sheet
- (8) Mixer data sheet
- (9) Conveyor data sheet
- (10) Relief and safety valve data sheet

# **Design Data Sheets**

(1) Data sheet for pressure vessel design

|         | Vessel data sheet Equipment No. (Tag)  Descript. (Func.) |                                                  |          |               |                |                                                  |                |               |         |             |           |        |           |                                                  |          |       |          |
|---------|----------------------------------------------------------|--------------------------------------------------|----------|---------------|----------------|--------------------------------------------------|----------------|---------------|---------|-------------|-----------|--------|-----------|--------------------------------------------------|----------|-------|----------|
|         |                                                          |                                                  |          |               |                |                                                  |                |               |         |             |           |        | Sheet N   | lo.                                              |          |       |          |
| ĺ       |                                                          |                                                  |          |               |                |                                                  | Ope            | ratin         | g Da    | ıta         |           |        |           |                                                  |          |       | 2        |
| No. RE  | QUIRED                                                   |                                                  |          |               |                |                                                  |                |               |         | CA          | PACITY    |        |           |                                                  |          | т     | 3        |
|         |                                                          | TY OF CONTE                                      | ENTS     |               |                |                                                  | -              |               |         |             | ED (yes o | or no) |           |                                                  | -        | +     | 4        |
|         |                                                          |                                                  |          |               | SHEL           | Ĺ                                                |                |               |         | JACKET F    |           |        |           | T                                                | INTERNAL | COIL  | 5        |
| CONTE   |                                                          |                                                  |          |               |                |                                                  |                |               |         |             |           |        |           |                                                  |          |       | 6        |
| DIAME   |                                                          |                                                  |          |               | 1              |                                                  |                |               |         | _           |           |        |           | ļ                                                |          |       | 7        |
| LENGT   | N CODE                                                   |                                                  |          |               |                |                                                  |                |               |         |             |           |        |           | <u> </u>                                         |          |       | 8        |
|         |                                                          | PRESSURE                                         |          |               |                |                                                  |                | -             |         |             |           |        |           | <u> </u>                                         |          |       | 10       |
|         | N PRESSU                                                 |                                                  |          |               | +              |                                                  |                | +             |         |             |           |        |           | <del> </del>                                     |          |       | 11       |
|         | WORKING                                                  |                                                  |          |               |                |                                                  |                | -             |         |             |           |        |           | <del> </del>                                     |          |       | 12       |
|         | N TEMP                                                   |                                                  |          |               | +              |                                                  |                |               |         |             |           |        |           | <del>                                     </del> |          |       | 13       |
|         |                                                          | (HYDROSTAT                                       | TC)      |               |                |                                                  |                |               |         |             |           |        |           |                                                  |          |       | 14       |
|         | RESSURE                                                  | (AIR)                                            |          |               |                |                                                  |                |               |         |             |           |        |           |                                                  |          |       | 15       |
| MATER   |                                                          |                                                  |          |               |                |                                                  |                |               |         |             |           |        |           |                                                  |          |       | 16       |
|         | FACTOR<br>DSION ALI                                      | ONU VICE                                         |          |               | +              |                                                  |                |               |         |             |           |        |           | ļ                                                |          |       | 17       |
| THICK   |                                                          | OTANCE                                           |          |               | +              |                                                  |                | +             |         | <del></del> |           |        |           | <del> </del>                                     |          |       | 19       |
| END T   |                                                          |                                                  |          |               | 1              | THI                                              | CKNESS         | <br>S         |         |             |           | Т      | JOINT FAC | TOR                                              |          |       | 20       |
| END T   |                                                          |                                                  |          |               |                |                                                  | CKNESS         |               |         |             |           | 1      | JOINT FAC |                                                  |          | -+    | 21       |
| TYPE C  | OF SUPPO                                                 | ĸτ                                               |          |               |                |                                                  | CKNESS         |               |         |             |           | †      | MATERIAL  |                                                  |          |       | 22       |
|         | LOAD DES                                                 |                                                  |          |               |                |                                                  | OOGRA          | PHY %         |         |             |           |        | STRESS R  | ELIEF                                            |          |       | 23       |
|         |                                                          | S MATERIAL                                       |          |               |                | TYP                                              |                |               |         |             |           |        | NUTS      |                                                  |          |       | 24       |
|         |                                                          | S MATERIAL                                       |          |               |                | TYP                                              |                | A C VILLENANT | 10.00   |             |           |        | NUTS      |                                                  |          |       | 25       |
|         | T MATER                                                  | P. ORDER)                                        |          |               |                |                                                  | PECTIO         |               | NG ALLA | ACHMENT B   | Υ         |        |           |                                                  |          |       | 26<br>27 |
| PAINTI  |                                                          |                                                  |          |               | -              | 1143                                             | FECTIO         | N D 1         |         |             |           |        | L         |                                                  |          |       | 28       |
| WEIGH   |                                                          |                                                  |          |               |                | EM                                               | PTY            |               |         |             |           | T      |           |                                                  |          |       | 29       |
|         | OF LIQUID                                                |                                                  |          |               |                |                                                  | ERATING        | G             |         |             |           |        |           |                                                  |          |       | 30       |
| INTER   | NALS and                                                 | EXTERNALS                                        |          | DA            | TE OF E        | NQUIRY                                           |                |               |         |             | DATE OF   | ORDER  |           |                                                  | 31       |       |          |
| ORDER   |                                                          |                                                  |          |               |                | DR                                               | J. No.         |               |         |             |           |        |           |                                                  |          |       | 32       |
|         | FACTURE                                                  |                                                  |          |               |                |                                                  |                |               |         |             |           |        |           |                                                  |          |       | 33       |
| REMAR   | RKS AND                                                  |                                                  |          |               | TATED ALL FLA  |                                                  |                |               |         |             | _         |        |           |                                                  |          |       | 34       |
|         |                                                          | OFF-0                                            | CENTRE ( | JF VESSE      | EL CENTRE LINE | S N/S and E/V                                    | V (NOT         | KADIAL        | LY)     |             |           |        |           |                                                  |          |       | 35<br>37 |
|         |                                                          |                                                  |          |               |                |                                                  |                |               |         |             | ·         |        |           |                                                  |          | -     | 38       |
| -       |                                                          |                                                  |          |               |                |                                                  |                |               |         | _           |           |        |           | -                                                |          |       | 39       |
|         |                                                          |                                                  |          |               |                |                                                  |                |               |         |             |           |        |           |                                                  |          |       | 40       |
| A       |                                                          |                                                  |          |               |                |                                                  |                |               |         |             |           |        |           | I                                                |          |       | 41       |
| В       |                                                          | <del> </del>                                     |          |               |                | _                                                |                | $\perp$       |         |             |           |        |           |                                                  |          |       | 42       |
| C       |                                                          | <del> </del>                                     |          |               |                |                                                  |                |               |         | -           |           |        |           | <b>_</b>                                         |          |       | 43<br>44 |
| E       |                                                          | <del> </del>                                     |          | -             |                | +                                                |                | +             |         |             |           |        |           | <del>                                     </del> |          |       | 45       |
| F       |                                                          | <del>                                     </del> |          |               |                | +                                                |                | +             |         | +           |           |        |           | <del> </del>                                     |          |       | 46       |
| G       |                                                          |                                                  |          | -+            |                | <u> </u>                                         |                |               |         |             |           |        |           |                                                  |          |       | 47       |
| н       |                                                          |                                                  |          |               |                |                                                  |                |               |         |             |           |        |           |                                                  |          |       | 48       |
| н       |                                                          |                                                  |          |               |                |                                                  |                |               |         |             |           |        |           |                                                  |          |       | 49       |
| K       |                                                          | -                                                |          |               |                | +                                                |                | +             |         |             |           |        |           | <del>  -</del>                                   |          |       | 50       |
| K<br>M  |                                                          | +                                                |          | +             |                | +                                                |                | +             |         |             |           |        |           | -                                                |          |       | 51<br>52 |
| N       |                                                          | +                                                |          | $\rightarrow$ |                | -                                                |                |               |         |             |           |        | · ·       | -                                                |          |       | 53       |
| P       |                                                          | <del>                                     </del> |          |               |                | +-                                               |                | +             |         | _           |           |        |           | <del> </del>                                     |          |       | 54       |
| REF     | No.                                                      |                                                  |          |               | NOM BORE       | PIPE                                             | WALL.          |               | TYPE    | CL.         | ASS       | MA     | TERIAL    | BRANG                                            | ЭН       |       | 55       |
| BRA?    |                                                          | _ D                                              | UTY      |               | mm/Ins         |                                                  | KNESS          | $\vdash$      |         |             | IGE SPEC  |        |           | СОМРЕ                                            |          | REMAR |          |
|         |                                                          |                                                  |          |               |                |                                                  |                |               |         |             |           |        |           | •                                                |          |       | 57       |
| Prepar  | ed                                                       |                                                  |          |               |                | 3                                                | T              |               |         |             | 1         |        | 6         |                                                  | L        |       | 58       |
| Checke  | ed                                                       |                                                  |          |               |                | 2                                                |                |               |         |             |           |        | 5         |                                                  |          |       | 59       |
| Appro   | ved                                                      |                                                  |          |               |                | 1                                                | $\neg \dagger$ |               |         |             |           |        | 4         |                                                  |          |       | 60       |
|         | -1-                                                      | Date                                             | Eng      | ineering      | Process        | RE'                                              | v I            | Ву            | , +     | Appr.       | Da        | ite    | REV       | By                                               | Appr.    | D.    | ate 61   |
| Service | <del></del>                                              |                                                  |          |               | 1.             | Compa                                            | ıny            |               |         |             |           |        | Address   |                                                  |          |       | 62       |
|         | nent No.                                                 |                                                  |          |               |                | <del>                                     </del> |                |               |         |             |           |        |           |                                                  |          |       | 63       |
| Project |                                                          |                                                  |          |               |                | +                                                |                |               |         |             |           |        |           |                                                  |          |       | 64       |
|         |                                                          |                                                  |          |               |                |                                                  |                |               |         |             |           |        |           |                                                  |          |       |          |

| Column Tray data sheet                     |                                         |                   |          |              |               |          |              |             | Equip       | nent No. (Ta | g)       |                                                  |        |      |          |
|--------------------------------------------|-----------------------------------------|-------------------|----------|--------------|---------------|----------|--------------|-------------|-------------|--------------|----------|--------------------------------------------------|--------|------|----------|
|                                            | iy data                                 | SHCCt             |          |              | (P)           | ROCEED)  |              | pt. (Func.) |             |              |          |                                                  |        |      |          |
|                                            |                                         |                   |          |              |               |          |              |             |             | Sheet        | No.      |                                                  |        |      | _        |
|                                            |                                         | Operation         | ig D     | ata          |               |          |              | TOP         |             | вотт         | OM       |                                                  | OR TOP |      | 2        |
| TOWER INSIDE D                             | IAMETED (Inc                            | has (mm)          |          |              |               |          |              | 101         |             | вот          |          | _ ^.·                                            | D BOTT | OM   | 3        |
| TRAY SPACE (Inch                           |                                         | ues/ (iiiii)      |          |              |               |          |              |             |             |              |          | <del> </del>                                     |        |      | 4        |
| TOTAL TRAYS IN                             |                                         |                   |          |              |               |          | -            |             |             |              |          | <del> </del>                                     |        |      | 5        |
|                                            |                                         |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 6        |
| In                                         | ternal C                                | Condition         | s at [   | Tray Nu      | mber          |          |              |             |             |              |          |                                                  |        |      | 7        |
| VAPOUR TO TRAY                             |                                         |                   |          |              |               |          |              |             |             |              |          | Г                                                |        |      | 8        |
| RATE (lb/hr) (kg/hr)                       |                                         |                   |          |              |               |          |              |             |             |              |          | <del> </del>                                     |        |      | 9        |
| DENSITY (lb/ft3) (l                        | kg/m³)                                  |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 10       |
| PRESSURE (psi) (k                          |                                         | (Bar a)           |          |              |               |          |              |             |             |              |          |                                                  |        |      | Ш        |
| TEMPERATURE (*)                            |                                         |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 12       |
| LIQUID FROM TR.                            |                                         |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 13       |
| RATE (lb/hr) (kg/m2<br>DENSITY (lb/ft3) (l |                                         |                   |          |              |               |          | -            |             |             |              |          |                                                  |        |      | 14<br>15 |
| TEMPERATURE (*                             |                                         |                   |          |              |               |          | <del> </del> |             | <del></del> |              |          | <del> </del>                                     |        |      | 16       |
| VISCOSITY cP                               | .,, .,                                  |                   |          |              |               |          |              |             |             |              |          | <del> </del>                                     |        |      | 17       |
| NUMBER OF LIQU                             | JID FLOW PA                             | THS               |          |              |               |          |              |             |             |              |          | <del> </del>                                     |        |      | 18       |
|                                            |                                         |                   |          |              |               |          |              |             |             |              |          | L                                                |        |      | 19       |
|                                            | Techi                                   | nical/Me          | hani     | cal Data     | ı             |          |              |             |             |              |          |                                                  |        |      | 20       |
| TOWER MANHOL                               |                                         |                   |          |              |               |          |              |             | Т           |              |          |                                                  |        |      | 21       |
| TRAY MATERIAL                              | 2 11.0122 211.                          |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 22       |
| TRAY THICKNESS                             | 3                                       |                   |          |              |               |          |              |             |             |              |          |                                                  | •      |      | 23       |
| CAP MATERIAL                               |                                         |                   |          |              | **            |          |              |             |             |              |          |                                                  |        |      | 24       |
| HOLDDOWN MAT                               | ERIAL                                   |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 25       |
| NUTS and BOLTS                             |                                         |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 26       |
| SUPPORT RING M                             |                                         |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 27       |
| SUPPORT RING SI                            |                                         |                   |          |              |               |          | ļ            |             |             |              |          | <u> </u>                                         |        |      | 28       |
| DOWNCOMER BO                               | LI BAR THIC                             | KNESS (Inches)    | (mm)     |              |               |          | L            |             |             |              |          |                                                  |        |      | 29<br>30 |
| CORROSION ALLO                             | OWANCE                                  |                   |          |              |               |          | _            |             |             |              |          | <del></del>                                      |        |      | 31       |
| TRAYS (Inches) (mi                         |                                         |                   |          |              |               |          | <del> </del> |             |             |              |          |                                                  |        |      | 32       |
| TOWER ATTACHM                              |                                         | (mm)              |          |              | <u> </u>      |          |              |             |             |              |          | <del> </del>                                     |        |      | 33       |
| TRAYS NUMBERE                              |                                         |                   |          |              |               |          |              |             |             |              |          | <del>                                     </del> |        | •    | 34       |
| TRAY MANWAY R                              | REMOVAL FRO                             | OM                |          | -            |               |          |              |             |             |              |          |                                                  | -      |      | 35       |
|                                            | • • • • • • • • • • • • • • • • • • • • |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 36       |
|                                            |                                         |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 37       |
| DATE OF ENQUIR                             | Y                                       |                   |          |              |               |          |              | TE OF ORDER |             |              | ļ        |                                                  |        |      | 38       |
| ORDER No.                                  |                                         |                   |          |              |               |          | DRO          | 3. No.      |             |              | 1        |                                                  |        |      | 39       |
| MANUFACTURER                               |                                         |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 40       |
| NOTES                                      |                                         |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 42       |
|                                            | DOLID AND LI                            | OUR LOADIN        | CO AT TI | E LIMITING   | SECTIONS ARE  | DEOLIDE  | ED TO E      | NEUDE DRODE | D TDAY DECL | CN           |          |                                                  |        |      |          |
| (1) INTERNAL VAL                           |                                         |                   |          |              | TIONS OF TEMP |          |              |             |             |              |          |                                                  |        |      | 43<br>44 |
|                                            |                                         | ER THAN 0.7 c     |          | - ALK CONDI  | ons of TEMP   | OR       | u F          | TOURL VIOL  | 5511 15 110 | <u> </u>     |          |                                                  |        |      | 45       |
|                                            | 0.10/11                                 |                   |          |              | ,             |          |              |             |             |              |          |                                                  |        |      | 46       |
| (2) CROSS OUT DI                           | IMENSION UN                             | ITS WHICH DO      | NOT A    | PPLY. TRAY S | UPPLIER TO AD | VISE.    |              |             |             |              |          |                                                  |        |      | 47       |
| REMARKS                                    |                                         |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 48       |
|                                            |                                         |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 49       |
|                                            |                                         |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 50       |
|                                            |                                         |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 51       |
|                                            |                                         |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 52       |
|                                            |                                         |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 53       |
|                                            |                                         |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 54<br>55 |
| <u> </u>                                   |                                         |                   |          |              |               |          |              | -           |             |              |          |                                                  |        |      | 56       |
|                                            |                                         |                   |          |              |               |          |              |             |             |              |          |                                                  |        |      | 57       |
| Prepared                                   |                                         |                   | Т        |              | 3             |          |              |             |             | 6            | T        | Т                                                |        |      | 58       |
| Checked                                    |                                         | · · · · · · · · · | -+       |              | 2             | +        |              |             |             | 5            | <b>-</b> | +                                                |        |      | 59       |
|                                            |                                         |                   | -+       |              |               |          |              |             |             | 4            | <b> </b> | +                                                | -      |      | -        |
| Approved                                   |                                         |                   |          |              | 1             | <u> </u> |              |             |             | 4            |          |                                                  |        |      | 60       |
|                                            | Date                                    | Engineeri         | ng       | Process      | REV           | В        | у            | Appr.       | Date        | REV          | Ву       | Appı                                             | r.     | Date | 61       |
| Service                                    |                                         |                   |          |              | Company       |          |              |             |             | Addre        | ss       |                                                  |        |      | 62       |
| Equipment No.                              |                                         |                   |          |              |               |          |              |             |             | 1            |          |                                                  |        |      | 63       |
| Project No.                                |                                         |                   |          |              |               |          |              |             |             | +            |          |                                                  |        |      | 64       |
| 1                                          |                                         |                   |          |              | 1             |          |              |             |             | 1            |          |                                                  |        |      | -111     |

| Heat Exchanger data sheet  (PROCEED) Equipment No. (Tag)  Descript. (Func.)  Sheet No. |                             |             |          |             |          |             |                                        |            |                |               |             | _           |                                                  |   |               |    |
|----------------------------------------------------------------------------------------|-----------------------------|-------------|----------|-------------|----------|-------------|----------------------------------------|------------|----------------|---------------|-------------|-------------|--------------------------------------------------|---|---------------|----|
|                                                                                        |                             |             |          | Oj          | peratir  | ıg Da       | ata                                    |            |                |               |             |             |                                                  |   |               | 2  |
| SIZE                                                                                   |                             |             |          | TYPE        |          |             |                                        | 1          | No             | OF UNITS      |             |             |                                                  | т |               | 3  |
| SHELLS PER                                                                             | RUNIT                       |             |          | HORIZON     | TAL CON  | NECTED      | IN (p.                                 | araliel or |                |               |             |             |                                                  |   |               | 4  |
| SURFACE PI                                                                             | ER UNIT                     |             |          | SURFACE     | PER SHE  | LL          |                                        | <u> </u>   |                |               |             |             |                                                  |   |               |    |
|                                                                                        |                             |             |          | Perforr     | nance    | of o        | ne 1                                   | Unit       |                |               |             |             |                                                  |   |               | 7  |
|                                                                                        |                             |             |          | 4.          | SHELI    | L SIDE      |                                        |            |                |               | TU          | BE SIDE     |                                                  |   |               | 1  |
| FLUID CIRC                                                                             |                             |             |          |             |          |             |                                        |            |                |               |             |             |                                                  |   |               | 5  |
| TOTAL FLU                                                                              | ID ENTERING                 |             |          |             | L        |             | _ـــــــــــــــــــــــــــــــــــــ |            |                |               | Ь           | т —         |                                                  |   |               | 10 |
| VAPOUR                                                                                 |                             |             |          | IN          | $\neg$   | $\neg \tau$ |                                        | DUT        |                | IN            |             | +           | OUT                                              |   | _             | 12 |
| LIQUID                                                                                 |                             |             |          |             | -        | $\dashv$    |                                        |            |                | <u> </u>      |             | +-+         |                                                  | - |               | 13 |
| STEAM                                                                                  |                             |             |          | <b>†</b>    |          |             |                                        |            |                | <u> </u>      |             |             |                                                  |   | $\Box$        | 14 |
| WATER                                                                                  |                             |             |          |             |          |             |                                        |            |                |               |             | 11          |                                                  |   | -             | 15 |
| NON-CONDI                                                                              | ENSABLES<br>OURISED OR COND | PAGED       |          |             | $\perp$  |             |                                        |            |                |               | _           | -           |                                                  |   |               | 10 |
|                                                                                        | RAVITY LIQUID               | ENSED       | -        |             | $\vdash$ |             | 1                                      |            |                | <u> </u>      | <del></del> |             |                                                  |   |               | 18 |
| Mol Wt VAP                                                                             |                             |             |          |             | f        |             | +-                                     |            |                |               | 1           |             | <del>                                     </del> |   |               | 15 |
| Mol Wt NON                                                                             | CONDENSABLES                |             |          |             |          |             | 1                                      |            |                |               |             |             | <del> </del>                                     |   |               | 20 |
| VISCOSITY                                                                              |                             |             |          |             |          |             |                                        |            |                |               |             |             |                                                  |   |               | 21 |
| LATENT HE                                                                              |                             |             |          |             | ļ        |             | 1                                      |            |                |               | -           |             |                                                  |   |               | 22 |
| SPECIFIC HI                                                                            | CONDUCTIVITY                |             |          |             |          |             | +                                      |            |                |               | +           |             |                                                  |   |               | 23 |
| TEMPERATU                                                                              |                             |             |          |             | <b>└</b> |             | ــــــــــــــــــــــــــــــــــــــ |            | _ <del> </del> | 1             | Щ-          | П           |                                                  |   |               | 25 |
| OPERATING                                                                              |                             |             |          |             |          |             | Т                                      |            | L              | -             | T           |             | T                                                |   |               | 26 |
| VELOCITY                                                                               |                             |             |          |             |          |             | †-                                     |            |                |               |             |             |                                                  |   |               | 21 |
| No. OF PASS                                                                            |                             |             |          |             |          |             | 1                                      |            |                |               | Ι           |             |                                                  |   |               | 28 |
| PRESSURE I                                                                             |                             |             |          | ALLOW       |          | CALC.       | $\perp$                                |            |                | LLOW          |             | CALC        |                                                  |   |               | 29 |
| FOULING RI                                                                             |                             |             |          |             |          |             | +-                                     |            | TD (CORRECT    | TED           | +           |             | <del> </del>                                     |   |               | 30 |
|                                                                                        | RATE SERVICE                |             |          |             | <u> </u> |             | +                                      | CLEA       |                | I E.D         | +           |             | <del> </del>                                     |   |               | 32 |
|                                                                                        |                             |             |          |             | L        |             |                                        |            |                |               | 1           |             |                                                  |   |               | 33 |
|                                                                                        |                             |             |          | Constru     | ection   | of or       | ne S                                   | Shell      |                |               |             |             |                                                  |   |               | 34 |
| DESIGN PRE                                                                             | ESSURE                      |             |          |             | T        |             | Т                                      |            |                |               | I           |             | Т                                                |   |               | 35 |
| TEST PRESS                                                                             |                             |             |          |             |          |             |                                        |            |                |               |             |             |                                                  |   |               | 30 |
| DESIGN TEN                                                                             |                             |             |          |             |          |             |                                        |            |                |               |             |             |                                                  |   |               | 37 |
| METAL TEN                                                                              | 1PERATURE                   | -           |          | N. OD       | 4        | T           |                                        |            | - LEVO         | 1             | Ц.          | РІТСН       | -                                                |   |               | 38 |
| SHELL                                                                                  |                             |             |          | No. OD      |          | THIC        | KNESS                                  | `          | LENG           | SHELL CO      |             | итсн        | +                                                |   | -             | 4( |
| CHANNEL                                                                                |                             |             |          | CHANNEL     | COVED    |             |                                        |            |                | FLTNG HEA     |             |             | +                                                |   |               | 41 |
|                                                                                        | T STATIONARY                |             |          | CHITAINE    | COTER    |             |                                        |            |                | FLOATING      | ID CO VER   |             | +                                                |   | 1 1           | 42 |
| BAFFLES CE                                                                             |                             |             |          | TYPE        | -        |             | П                                      |            | T              | SPACING %     | CUT         |             | +                                                |   | -             | 43 |
| TUBE SUPPO                                                                             |                             |             |          | TYPE        |          |             | $\dashv$                               |            |                | SPACING       |             |             | +                                                |   |               | 44 |
| LONG BAFF                                                                              |                             |             |          | TYPE        |          |             | $\dashv$                               |            |                | SEAL          |             |             | +                                                |   | -             | 45 |
| IMPINGEME                                                                              | NT BAFFLE                   |             |          | TYPE        |          |             |                                        |            |                | SEAL STRI     | PS          |             | +                                                |   | $\vdash$      | 46 |
| TYPE OF JO                                                                             |                             |             |          | TUBE        |          |             | $\dashv$                               |            |                | TUBE ATTA     |             |             |                                                  |   | $\Box$        | 47 |
| GASKETS S                                                                              | HELL IN                     |             |          | CHANNEL     |          |             |                                        |            |                | FLOATING      | HEAD        |             |                                                  |   | П             | 48 |
| CONNECTIO                                                                              | ONS SHELL IN                |             |          | INTERCON    | ίΝ       |             |                                        |            |                | SHELL OU      | r           |             |                                                  |   |               | 49 |
| CONNECTIO                                                                              | ONS CHANNEL IN              |             |          | INTERCON    | ₹N       |             |                                        |            |                | CHANNEL       | OUT         |             |                                                  |   |               | 50 |
|                                                                                        | ALLOWABLE SHE               | LL SIDE     |          |             |          |             |                                        |            |                | TUBE SIDE     |             |             |                                                  |   |               | 51 |
| EXPANSION                                                                              |                             |             |          | BOLTS       |          |             |                                        |            |                | NUTS          |             |             |                                                  |   |               | 52 |
| DESIGN CO                                                                              |                             |             |          | X-RAY       |          |             |                                        |            |                | S.R.          |             |             |                                                  |   |               | 53 |
| INSPECTION                                                                             |                             |             |          | PAINTING    |          |             |                                        |            |                | INSULATIO     |             |             |                                                  |   |               | 54 |
|                                                                                        | ONE UNIT EMPTY              |             |          | OPERATIN    |          |             |                                        |            |                | DATE OF E     | NQUIRY      |             |                                                  |   |               | 55 |
| DATE OF OF                                                                             |                             | ATIVE DIV   |          | ORDER No.   |          |             |                                        |            |                | DRG. No.      |             | <del></del> |                                                  |   | 1 1           | 56 |
|                                                                                        | FITTING ATTACH!             | MENT BY     | Т        | <del></del> | -T       | _4          |                                        |            | MANUFAC        | $\overline{}$ |             | Ι           |                                                  |   |               | 57 |
| Prepared                                                                               |                             |             |          | 3           | _        |             |                                        |            |                | 6             |             |             |                                                  | L |               | 58 |
| Checked                                                                                |                             |             | <b> </b> | 2           |          |             |                                        |            | ļ              | 5             |             |             |                                                  | ļ |               | 59 |
| Approved                                                                               |                             |             |          | 1           |          |             |                                        |            |                | 4             |             |             |                                                  |   | $\rightarrow$ | 60 |
|                                                                                        | Date                        | Engineering | Process  | REV         | В        | у           | A                                      | .ppr.      | Date           | REV           | Ву          |             | Appr.                                            | D |               | 61 |
| Service                                                                                |                             |             |          | Company     |          |             |                                        |            |                | Addres        | is          |             |                                                  |   | ]             | 62 |
| Equipment                                                                              | No.                         |             |          |             |          |             |                                        |            |                |               |             |             |                                                  |   | ]             | 63 |
| Project No.                                                                            |                             |             |          |             |          |             |                                        |            |                |               |             |             |                                                  |   |               | 64 |

| Plate Heat Exchanger data sheet                           |                                 |                |                   |              |              |        |          |                      |                 |         |      |          |
|-----------------------------------------------------------|---------------------------------|----------------|-------------------|--------------|--------------|--------|----------|----------------------|-----------------|---------|------|----------|
| Trate freat Ex                                            | Tiate Heat Exchanger data sheet |                |                   |              |              |        |          | unc.)                |                 |         |      |          |
|                                                           |                                 |                |                   |              |              | Shee   | t No.    |                      |                 |         |      | _        |
|                                                           |                                 | (              | Operating         | Data         |              |        |          |                      |                 |         |      | 1        |
| TYPE                                                      |                                 |                |                   | PROCE        | ec           |        |          |                      |                 |         |      | 3        |
| SERVICE OF UNITS                                          |                                 | -              |                   | No. OF U     |              |        | -+       |                      |                 |         |      | 4        |
| TOTAL HEAT LOAD FOR ALL UNITS                             |                                 | kca            | l/hr:Btu/hr       |              |              |        |          |                      |                 |         |      | 5        |
|                                                           |                                 |                |                   |              |              |        |          |                      |                 |         |      | 6        |
|                                                           | Process                         | s Data f       | or one Pla        | ate Heat I   | Exchanger    |        |          |                      |                 |         |      | 7        |
|                                                           |                                 |                | HO                | T FLUID      | COLD F       | LUID   |          |                      |                 |         |      | 8        |
| FLUID CIRCULATED                                          |                                 |                |                   |              |              |        |          |                      |                 |         |      | 9        |
| TOTAL FLUID                                               |                                 |                |                   |              |              |        |          | hr:lb/hr             |                 |         |      | 10       |
| LIQUID<br>STEAM                                           |                                 |                |                   |              | ļ            |        |          | hr:lb/hr             |                 |         |      | 11       |
| VAPOUR                                                    |                                 | -              |                   |              |              |        |          | hr:lb/hr<br>hr:lb/hr |                 |         |      | 13       |
| NON-CONDENSABLES                                          |                                 |                |                   |              |              |        |          | hr :lb/hr            |                 |         |      | 14       |
| FLUID CONDENSED                                           |                                 | -              |                   |              |              |        | _        | /hr :lb/hr           |                 |         |      | 15       |
| Mol Wt VAPOUR                                             |                                 |                |                   |              |              |        |          |                      |                 |         |      | 16       |
| TEMPERATURE IN                                            |                                 |                |                   |              |              |        | · C      |                      |                 |         |      | 17       |
| TEMPERATURE OUT                                           |                                 |                |                   |              | <b> </b>     |        | C :      | F                    |                 |         |      | 18       |
| SPECIFIC GRAVITY SPECIFIC HEAT                            |                                 |                | <del> </del>      |              | +            |        | +-       |                      | •               |         |      | 19<br>20 |
| THERMAL CONDUCTIVITY                                      |                                 |                | +                 |              | +            |        | kca      | ıl/hr/: C/m          | n :Btu/hr/° F/f | ì       |      | 21       |
| VISCOSITY                                                 |                                 |                |                   |              | †            |        | cP       |                      |                 |         |      | 22       |
| LATENT HEAT                                               |                                 |                |                   |              |              |        | kca      | d/kg :Btu/           | ı/lb            |         |      | 23       |
| PASSES                                                    |                                 |                |                   |              |              |        |          |                      |                 |         |      | 24       |
| PASSAGES PER PASS                                         |                                 |                |                   |              | <u> </u>     |        |          |                      |                 |         |      | 25       |
| ALLOWABLE/CALCULATED PRESSURE LOSS                        |                                 |                |                   |              | l            |        | kg/      | cm2 :psi             |                 |         |      | 26<br>27 |
| TOTAL No. OF PLATES HEAT TRANSFER AREA                    |                                 | m2 :ft2        |                   |              | -            |        |          |                      |                 |         |      | 28       |
| HEAT LOAD                                                 |                                 | kcal/hr :Btu   | ı/hr              |              |              |        |          |                      |                 |         |      | 29       |
| OVERALL COEFFICIENT (CLEAN)                               |                                 |                | C :Btu/hr/ft2/: F |              |              |        |          |                      |                 |         |      | 30       |
| OVERALL COEFFICIENT (DESIGN)                              |                                 | kcal/hr/m2/    | C :Btu/hr/ft2/:F  |              |              |        |          |                      |                 |         |      | 31       |
| FOULING                                                   |                                 |                |                   |              |              |        |          |                      |                 |         |      | 32       |
|                                                           |                                 |                |                   |              |              |        |          |                      |                 |         |      | 33       |
|                                                           | Mechanic                        | cal Data       | for one           | Plate Hea    | t Exchang    | er     |          |                      |                 |         |      | 34       |
| LMTD. (CORR)                                              |                                 |                |                   | ME SIZE      |              |        |          |                      |                 |         |      | 35       |
| EMPTY WEIGHT                                              |                                 | kg:lb          |                   | ODED WEIGHT  |              |        |          |                      |                 | g :lb   |      | 36       |
| DESIGN PRESSURE kg/cm2 DESIGN TEMPERATURE                 |                                 | psig<br>°C :°F | TES               | T PRESSURE   |              | kg/cm2 |          |                      | p               | sig     |      | 37<br>38 |
| CONNECTIONS                                               |                                 | 1-0.7          |                   | •            |              |        |          |                      |                 |         |      | 39       |
|                                                           |                                 |                |                   |              |              |        |          |                      |                 |         |      | 40       |
|                                                           |                                 |                |                   |              |              |        |          |                      |                 |         |      | 41       |
|                                                           |                                 | Mater          | ials of Co        | onstruction  | n            |        |          |                      |                 |         |      | 42       |
| FRAME                                                     |                                 | T              | FIN               | USH          |              |        |          |                      |                 |         |      | 43       |
| PLATES                                                    |                                 |                | FD                | IISH         |              |        |          |                      |                 |         |      | 44       |
| GASKETS                                                   |                                 | L              |                   |              |              |        |          |                      |                 |         |      | 45       |
| BUSHES                                                    |                                 | L.,            |                   |              |              |        |          |                      |                 |         |      | 46       |
| SHIELD RECOMMENDED FOR TEMPERATURE ABO<br>DATE OF ENQUIRY | OVE 100 C 212 F                 | ·              |                   | ATE OF ORDER |              | INCLU  | DED/NO   | T INCLU              | UDED            |         |      | 47       |
| ORDER No.                                                 |                                 | <del> </del>   |                   | DRG. No.     |              |        |          |                      |                 |         |      | 49       |
| MANUFACTURER                                              |                                 | 1              |                   |              |              |        |          |                      |                 |         |      | 50       |
| REMARKS                                                   |                                 |                |                   |              |              |        |          |                      |                 |         |      | 51       |
|                                                           |                                 |                |                   |              |              |        |          |                      |                 |         |      | 52       |
|                                                           |                                 |                |                   |              |              |        |          |                      | -               |         |      | 53       |
|                                                           |                                 |                |                   |              |              |        |          |                      |                 |         |      | 54       |
|                                                           |                                 |                |                   |              |              |        |          |                      |                 |         |      | 55       |
|                                                           |                                 |                |                   |              |              |        |          |                      |                 |         |      | 56       |
| Prepared                                                  |                                 |                | 1                 |              |              | -      |          |                      |                 | $\neg$  |      | 57       |
| Prepared                                                  | ļ                               | 3              | ļ                 |              | ļl           | 6      | <u> </u> |                      | _               | +       |      | 58       |
| Checked                                                   |                                 | 2              | 1                 | <u> </u>     | $\vdash$     | 5      |          |                      |                 | 4       |      | 59       |
| Approved                                                  |                                 | 1              |                   |              | $oxed{oxed}$ | 4      |          |                      |                 | $\perp$ |      | 60       |
| Date Engineering                                          | Process                         | REV            | Ву                | Appr.        | Date         | REV    | В        | у                    | Appr.           | $\perp$ | Date | 61       |
| Service                                                   |                                 | Company        |                   |              |              | Addres | s        |                      |                 |         |      | 62       |
| Equipment No.                                             |                                 |                |                   |              |              |        |          |                      |                 |         |      | 63       |
| Project No.                                               |                                 |                |                   | ,            |              |        |          | -                    |                 |         |      | 64       |
|                                                           |                                 |                |                   |              |              |        |          |                      |                 |         |      |          |

| Centrifug                                             | ump data | cheat    |                 |                       |              | Equip  | nent No. (Tag) |              |           |                    |             |
|-------------------------------------------------------|----------|----------|-----------------|-----------------------|--------------|--------|----------------|--------------|-----------|--------------------|-------------|
| Centinug                                              | gai I    | ump data | SHEEL           |                       | (PR          | OCEED) | Functi         |              |           |                    |             |
|                                                       |          |          |                 |                       |              |        | Sheet          | No.          |           |                    | <del></del> |
|                                                       |          |          | Opera           | ting Dat              | a            |        |                |              |           |                    | 1           |
| NUMBER OF MACHINES                                    |          |          | Installed       |                       |              | work   | ing            |              |           | standby            | 3           |
| TYPE                                                  |          |          |                 |                       |              |        |                |              |           |                    | 4           |
| LIQUID                                                |          |          |                 |                       |              |        |                |              |           |                    | 5           |
| AVAILABLE N.P.S.H.                                    |          |          | Bar a           |                       |              |        |                |              |           |                    | 6           |
| CAPACITY<br>PRESSURES                                 |          |          | max,<br>suction |                       |              | min    | harge          |              |           | normal<br>differen |             |
| ELECTRICAL SUPPLY                                     |          |          | Volts           |                       |              | pha    |                |              |           | cycles             | 9           |
| COOLING WATER SUPPLY                                  | -        |          | press.          |                       |              | tem    |                | +            |           | flow               | 10          |
| SEALING WATER SUPPLY                                  |          |          | press.          |                       |              | tem    |                |              |           | flow               | 11          |
| STEAM SUPPLY                                          | 1        |          | press.          |                       |              | tem    | p.             |              |           | flow               | 12          |
| VISCOSITY                                             |          |          |                 | 9                     |              | pres   | is.            |              |           | temp.              | 13<br>14    |
| Sp GRAVITY                                            |          |          | © press. temp.  |                       |              |        |                |              |           |                    |             |
| VAPOUR PRESSURE                                       |          |          |                 |                       |              |        |                |              |           |                    | 15          |
| WORKING TEMPERATURE  DH                               | -        |          |                 |                       |              |        |                |              |           |                    | 16<br>17    |
| ANALYSIS                                              |          |          |                 |                       |              |        |                |              |           |                    | 18          |
|                                                       |          |          |                 |                       |              |        |                |              |           |                    | 19          |
|                                                       |          |          | Techn           | ical Dat              | a            |        |                |              |           |                    | 20          |
| PUMP DRAWING No.                                      |          |          |                 | R ITEM No             |              |        |                | T            |           |                    | 21          |
| SPEED rcm                                             |          |          | TYPE C          | F DRIVE               |              |        |                |              |           |                    | 22          |
| AFE MINIMUM FLOW ABSORBED POWER REQD. max normal 23   |          |          |                 |                       |              |        |                |              |           |                    |             |
| SHUT OFF HEAD                                         |          |          |                 |                       | KW OF DRIV   | ER     |                |              |           |                    | 24          |
| N.P.S.H.                                              |          |          |                 | LED kW OF D           | RIVER        |        |                |              |           |                    | 25          |
| PUMP EFFICIENCY                                       |          |          |                 | OF DRIVER             |              |        |                |              |           |                    | 26          |
| PERFORMANCE CURVE No.  DRTN OF ROTN (FACING COUPLING) |          |          | SPEED           | FACTOR                |              |        |                |              |           |                    | 27<br>28    |
| TYPE OF GLAND OR SEAL                                 |          |          |                 | REFFICIENCY           |              |        |                | <del> </del> |           |                    | 29          |
| BALANCE ARRANGEMENT                                   |          |          |                 | R ITEM No.            |              |        |                | +            |           |                    | 30          |
| COOLING WATER REQUIRED                                |          |          |                 |                       |              |        |                |              |           |                    |             |
| SEALING WATER REQUIRED                                |          | 4        | TYPE C          | F BASEPLATE           |              |        |                |              |           |                    | 32          |
| DETAILS OF CONNECTIONS                                |          |          | SUPPLI          | ER OF DRIVE           |              |        |                |              |           |                    | 33          |
| SUCTION                                               |          |          | COUPL           |                       |              |        |                |              |           |                    | 34          |
| DISCHARGE                                             | <u> </u> |          |                 | F COUPLING            |              |        |                |              |           |                    | 35          |
| TYPE OF COUPLING GUARD  TYPE OF THRUST BEARING        |          |          |                 | ATION BOLT S          | ING FITTED B | Υ      |                |              |           |                    | 36<br>37    |
| TYPE OF IGNOST BEARING                                |          |          |                 | DESIGN COD            |              |        |                |              |           |                    | 38          |
| TYPE OF GEAR AND MAKER                                |          |          |                 | TEMP CLASS            |              |        |                |              |           |                    | 39          |
| FULL LOAD TORQUE                                      |          |          |                 | PROTECTION            | TYPE         |        |                | <del></del>  |           |                    | 40          |
| STARTING TORQUE                                       |          | ******   | IMPEL1          | ER SIZE (MA)          | (.)          |        |                | 1            |           |                    | 41          |
| IMPELLER SIZE (MIN.)                                  |          |          | IMPELL          | ER SIZE (INST         | ALLED)       |        |                |              |           |                    | 42          |
|                                                       |          |          |                 |                       |              |        |                |              |           |                    | 43          |
|                                                       |          | M        | laterials o     |                       | uction       |        |                |              |           |                    | 44          |
| SHAFT                                                 | ļ        |          |                 | SLEEVE                |              |        | LINING         |              |           |                    | 45          |
| IMPELLER  PALANCE DISC OF DISTON                      |          |          | NECK I          |                       | CE AL        |        |                |              |           |                    | 46          |
| BALANCE DISC OR PISTON<br>IMPELLER WEAR RINGS         | -        |          |                 | PACKING OR<br>RN RING | SEAL         |        |                | <del></del>  |           |                    | 47<br>48    |
| CASING WEARING RINGS                                  |          |          |                 | T BEARING             |              |        |                | +            |           |                    | 49          |
| CASING                                                |          | ~~~      | BASEPI          |                       |              |        |                |              | -+        |                    | 50          |
|                                                       |          | Desig    | n Standa        | rds and I             | nspectio     | n      |                |              | · · · · · |                    | 51<br>52    |
| HYDROSTATIC TEST PRESS                                |          |          | DESIGN          |                       |              |        |                |              |           |                    | 53          |
| MAX ERECTION WEIGHT                                   |          |          | SHIPPIN         | G WEIGHT              |              |        | Т              | OTAL WEIGHT  |           | $\neg$             | 54          |
| DRG. and DATA REQUIREMENTS                            |          |          |                 | G VOLUME              |              |        |                | SPECTION     |           |                    | 55          |
| DATE OF ORDER                                         |          |          | ORDER           |                       |              |        | D              | RG. No.      |           |                    | 56          |
| DATE OF ENQUIRY                                       |          |          |                 | ACTURER               |              |        |                |              |           |                    | 57          |
| Prepared                                              |          |          | 3               |                       |              |        | 6              | L.,          |           |                    | 58          |
| Checked                                               |          |          | 2 5             |                       |              |        |                |              | 59        |                    |             |
| Approved                                              |          |          | 1 4             |                       |              |        |                |              | 60        |                    |             |
| Date Engine                                           | ering    | Process  | REV             | By                    | Appr.        | Date   | REV            | Ву           | Appr.     | Dat                | te 61       |
| Service                                               |          |          | Company         |                       |              |        | Addre          |              |           |                    | 62          |
| Equipment No.                                         |          | ··       | · · · · · · · · | ····                  |              |        |                |              |           |                    | 63          |
| Project No.                                           |          |          |                 |                       |              |        |                |              |           |                    | 64          |

|                                               | Recipr                      | ta she       | et      |                |                      |              |            | nent No. (   | Tag)            |                    |                                                  |                                                  |               |
|-----------------------------------------------|-----------------------------|--------------|---------|----------------|----------------------|--------------|------------|--------------|-----------------|--------------------|--------------------------------------------------|--------------------------------------------------|---------------|
|                                               |                             |              | р       | 31.0           |                      |              | (PROCI     | EED)         | Descri<br>Sheet | pt. (Func.)<br>No. |                                                  |                                                  | _             |
|                                               |                             |              |         | Оро            | erating              | Data         |            |              |                 |                    |                                                  |                                                  | 1 2           |
| NUMBER OF                                     | MACHINES                    |              |         | Installed      |                      |              | wor        | king         |                 |                    |                                                  | standby                                          | - 3           |
| TYPE                                          |                             |              |         |                | 1                    |              |            |              |                 | <u> </u>           |                                                  |                                                  | - 4           |
| LIQUID                                        |                             |              |         |                |                      |              |            |              |                 |                    |                                                  |                                                  | - 3           |
| AVAILABLE 1                                   | N.P.S.H.                    |              |         | Bar a          |                      |              |            |              |                 |                    |                                                  |                                                  | . (           |
| CAPACITY                                      |                             |              |         | max.           |                      |              | min.       |              |                 |                    |                                                  | normal                                           |               |
| PRESSURES                                     |                             |              |         | suction        |                      |              |            | harge        |                 |                    |                                                  | differentic                                      |               |
| ELECTRICAL                                    |                             |              |         | Volts          |                      |              | pha        |              |                 |                    |                                                  | cycles                                           | 1             |
| COOLING WA                                    |                             |              |         | press.         |                      |              | tem        |              |                 |                    |                                                  | flow                                             | - 10          |
| SEALING WA                                    |                             |              |         | press.         |                      |              | tem        |              |                 | _                  |                                                  | flow                                             | - 1           |
| STEAM SUPP                                    | PLY                         |              |         | press.         |                      |              | tem        |              |                 | _                  |                                                  | flow                                             | 1             |
| VISCOSITY                                     |                             |              |         | 0              |                      |              | pres       |              | ···             |                    |                                                  | temp.                                            | - 1           |
| Sp GRAVITY<br>VAPOUR PRE                      | Secure                      |              |         | 0              |                      |              | pres       | is.          | -               |                    |                                                  | temp.                                            | 1             |
|                                               | EMPERATURE                  |              |         |                |                      |              |            |              | . 8             |                    |                                                  | temp.                                            | 1.            |
| ANALYSIS                                      | EMPERATURE                  |              |         | pH             |                      |              |            |              |                 |                    |                                                  |                                                  | - 11          |
| ANALISIS                                      |                             |              |         |                |                      |              |            |              |                 |                    |                                                  |                                                  | -             |
|                                               |                             |              |         | Tr.            |                      | Dot-         |            |              |                 |                    |                                                  |                                                  | 18            |
|                                               |                             |              |         | lec            | hnical               |              |            |              |                 |                    |                                                  | ,                                                | 19            |
| PUMP DRAW                                     | /ING No.                    |              |         |                |                      | AX. ABSORB   | ED POWER I | REQD.        |                 |                    |                                                  | <b></b>                                          | 26            |
| SPEED rpm                                     |                             |              |         |                |                      | FFICIENCY    |            |              |                 |                    |                                                  |                                                  | 2             |
| PLUNGER DI                                    | IA and SPEED                |              |         |                |                      | AX. RECOM!   |            |              | ER              |                    |                                                  | 1                                                | 2.            |
| STROKE                                        |                             |              |         |                |                      | STALLED KV   |            |              |                 |                    |                                                  | -                                                | 2.            |
| N.P.S.H. REQUIRED SPEED OF DRIVER 24          |                             |              |         |                |                      |              |            |              |                 |                    |                                                  |                                                  |               |
| CAPACITY CO                                   |                             |              |         |                |                      | PEED RATIO   |            |              |                 |                    |                                                  |                                                  | 2:            |
| TYPE OF DRIVE DIR'N OF ROTN (FACING COUPLING) |                             |              |         |                |                      |              |            |              |                 | 20                 |                                                  |                                                  |               |
| TYPE OF GLA                                   |                             |              |         |                |                      | ETAILS OF LI |            |              |                 |                    |                                                  |                                                  | 2             |
| TYPE VALVE                                    |                             |              |         |                |                      | YPE OF BASE  |            |              |                 | _                  |                                                  |                                                  | 21            |
|                                               | ATER REQUIRED               |              |         |                |                      | ELIEF VALVE  |            | JRE          |                 |                    |                                                  | <del></del>                                      | 30            |
|                                               | ATER REQUIRED               |              |         |                |                      | YPE OF BEAF  |            |              |                 |                    |                                                  |                                                  | 31            |
| SUCTION                                       | CONNECTIONS                 |              |         |                |                      | OUPLING      | JRIVER     |              |                 | _                  |                                                  |                                                  | 31            |
| DISCHARGE                                     |                             |              |         |                |                      | RIVER HALF   | COLUMNICA  | TTTED D      |                 |                    |                                                  | -                                                | 33            |
| STARTING TO                                   | ORCUE                       |              |         |                |                      | YPE OF COUL  |            |              | 1               |                    |                                                  | +                                                | 3             |
|                                               | AR and MAKER                |              |         |                |                      | YPE OF TOR   |            |              | MAKED           |                    |                                                  |                                                  | 31            |
| TYPE OF DRI                                   |                             |              |         | -              | DIR                  |              | QCE CONVE  | KILK and     | GE              | A.D.               |                                                  |                                                  | 36            |
| TITE OF DIC                                   |                             |              |         |                | DIK.                 | be.          |            |              | GL.             | 1                  |                                                  |                                                  | 37            |
|                                               |                             |              | N       | Aaterial:      | s of Co              | nstructi     | on         |              |                 |                    |                                                  |                                                  | 38            |
| CYLINDERS                                     | <del></del>                 |              |         | Taterran       |                      | CRANK CA     |            |              |                 | T                  |                                                  |                                                  | 30            |
| VALVE HEAD                                    |                             |              |         |                |                      | CRANKSH      |            |              |                 |                    |                                                  |                                                  | 40            |
| VALVE READ                                    |                             |              |         |                |                      | CONNECT      |            |              |                 |                    |                                                  |                                                  | 41            |
| VALVE SPRIN                                   |                             |              |         |                |                      | CROSS HE     |            |              |                 |                    |                                                  |                                                  | 4:            |
|                                               | ORE SURFACE HEAD            | <del></del>  |         |                |                      |              | AD GUIDES  |              |                 |                    |                                                  |                                                  | 4.            |
| PLUNGER                                       | OKE SUKFACE HEAD            |              |         |                |                      | CROSSHEA     |            |              |                 |                    |                                                  | -                                                | 4             |
| PISTON RING                                   | is .                        |              |         |                |                      | BEARINGS     |            |              |                 |                    |                                                  | <del> </del>                                     | 4             |
| GLAND CASI                                    |                             | <del> </del> |         |                |                      | BASEPLAT     |            |              |                 |                    |                                                  |                                                  | 44            |
| GLAND PACK                                    |                             |              |         |                |                      | RELIEF VA    |            |              |                 |                    |                                                  | -                                                | 41            |
| LANTERN RE                                    |                             | -            |         |                |                      | GASKETS/     |            |              |                 | -                  |                                                  | <del>                                     </del> | 41            |
| u.u.r.ku Kii                                  |                             |              |         |                |                      | 0.13KL13/    | - 11103    |              |                 | l                  |                                                  | 1                                                | 49            |
|                                               |                             |              | Deci    | an Stan        | darde e              | nd Insp      | ection     |              |                 |                    |                                                  |                                                  | ⊢             |
| DEGION OCT                                    | AF.                         | <del></del>  | DESI    | ğıı Stall      | uaius a              |              |            | 1177         |                 | 1                  |                                                  | T                                                | 50            |
| DESIGN COD                                    |                             |              |         |                |                      |              | CTION WEIG | nı           |                 |                    |                                                  | -                                                | 5             |
|                                               | IC TEST PRESS. REQUIREMENTS |              |         |                |                      | SHIPPING     |            |              |                 |                    |                                                  | <del> </del>                                     | 5             |
|                                               | TA REQUIREMENTS             |              |         |                | SHIPPING<br>TOTAL WE |              |            |              | -               |                    | <del>                                     </del> | 5                                                |               |
|                                               |                             | <del></del>  |         |                |                      |              |            |              |                 |                    |                                                  |                                                  | 1             |
| DRG. No.                                      | QUIK1                       |              |         |                |                      | ORDER No     |            |              |                 |                    |                                                  |                                                  | 5             |
| MANUFACTU                                     | IRER                        |              |         |                |                      | OKDEK NO     | •          |              |                 | l                  |                                                  | <del> </del>                                     | - 5           |
|                                               | - KEN                       | 1            |         |                |                      |              | 1          |              | - T             |                    | T                                                | <del> </del>                                     | 5             |
| Drapared                                      |                             | <del> </del> | ļ       | 3              |                      | ļ            |            | 6            |                 |                    | -                                                |                                                  | $\rightarrow$ |
| Prepared                                      |                             |              |         | 2              |                      | <u> </u>     |            | 5            |                 |                    |                                                  |                                                  | 5             |
| Prepared<br>Checked                           |                             | 1            |         | 1              |                      |              |            | 4            |                 |                    |                                                  |                                                  | 6             |
|                                               |                             |              |         |                |                      | +            |            |              |                 |                    |                                                  |                                                  | +             |
| Checked                                       | Date                        | Engineering  | Process | REV            | Bv                   | Appr.        | Date       | RF.          | v               | Bv                 | Appr.                                            | Date                                             | 6             |
| Checked<br>Approved                           | Date                        | Engineering  | Process | REV            | Ву                   | Appr.        | Date       | RE<br>Addres |                 | Ву                 | Appr.                                            | Date                                             | 6             |
| Checked Approved Service                      |                             | Engineering  | Process | REV<br>Company | Ву                   | Appr.        | Date       | RE<br>Addre  |                 | Ву                 | Appr.                                            | Date                                             | 6.            |
| Checked<br>Approved                           |                             | Engineering  | Process |                | Ву                   | Appr.        | Date       |              |                 | Ву                 | Appr.                                            | Date                                             | -             |

| Rotary                                        | ata ch                       | eet                                              |                       |            |                                                  | Eq                       | uipment No. (   | Tag)        |                |              |             |                |        |
|-----------------------------------------------|------------------------------|--------------------------------------------------|-----------------------|------------|--------------------------------------------------|--------------------------|-----------------|-------------|----------------|--------------|-------------|----------------|--------|
| Rotary                                        | ata SII                      | cci                                              |                       | (PROC      | EED)                                             |                          | script. (Func.) |             |                |              |             |                |        |
|                                               |                              |                                                  |                       |            |                                                  |                          |                 |             | She            | eet No.      |             |                |        |
|                                               |                              |                                                  |                       | Op         | erating                                          | Data                     |                 |             |                |              |             |                | 1      |
| NUMBER OF MACHINES                            |                              |                                                  |                       | Installe   | d                                                | -                        |                 | worl        | sing           |              |             | standby        |        |
| TYPE                                          |                              | <del></del>                                      |                       |            | -                                                |                          |                 |             |                |              |             |                | 1      |
| LIQUID                                        |                              |                                                  |                       |            |                                                  |                          |                 |             |                |              |             |                | 1      |
| AVAILABLE N.P.S.H.                            |                              |                                                  |                       | Bar a      | -                                                |                          |                 |             |                |              |             |                | - (    |
| CAPACITY                                      |                              |                                                  |                       | max.       |                                                  |                          |                 | min.        |                |              |             | normal         | 7      |
| PRESSURES                                     |                              |                                                  |                       | suction    |                                                  |                          |                 | discl       | narge          |              |             | differer       | ntic 8 |
| ELECTRICAL SUPPLY                             |                              |                                                  |                       | Volts      |                                                  |                          |                 | phas        | e              |              |             | cycles         | 9      |
| COOLING WATER SUPPLY                          |                              |                                                  |                       | press.     |                                                  |                          |                 | temp        | )              |              |             | flow           | 10     |
| SEALING WATER SUPPLY                          |                              |                                                  |                       | press.     |                                                  |                          |                 | temp        |                |              |             | flow           | 11     |
| STEAM SUPPLY<br>VISCOSITY                     |                              |                                                  |                       | press.     |                                                  |                          |                 | temp        |                |              |             | flow           | 10     |
|                                               |                              |                                                  |                       |            | 0                                                |                          |                 | press.      |                |              |             | temp.          | 13     |
| Sp GRAVITY VAPOUR PRESSURE                    |                              |                                                  |                       |            | 0                                                |                          |                 | press       |                |              |             | temp.          | 12     |
| WORKING TEMPERATURE                           |                              |                                                  |                       |            |                                                  |                          |                 |             | - ¢            |              | <del></del> | temp.          | 16     |
| pH pH                                         |                              | <del>                                     </del> |                       |            |                                                  |                          |                 |             |                |              |             |                | - 10   |
| ANALYSIS                                      |                              | <del> </del> -                                   |                       |            |                                                  |                          |                 |             |                |              |             |                | 18     |
|                                               |                              |                                                  |                       |            |                                                  |                          |                 |             |                |              |             |                | 19     |
|                                               |                              |                                                  |                       | Tec        | chnical                                          | Data                     |                 |             |                |              |             |                | 20     |
| PUMP DRAWING No.                              |                              | T                                                |                       | 100        |                                                  | DRIVER ITEM              | I No            |             |                |              |             | <del>- 1</del> | 21     |
| SPEED rpm                                     |                              | <del> </del>                                     |                       |            |                                                  | TYPE OF DRI              |                 |             |                |              |             | +              | 22     |
| SAFE MINIMUM FLOW                             |                              |                                                  |                       |            |                                                  | ABSORBED F               |                 | 1           | ma             | 1            |             | normal         | 23     |
| SHUT OFF HEAD                                 |                              |                                                  |                       |            |                                                  | MAX. RECON               |                 | W OF DRI    | _              | -            |             |                | 24     |
| N.P.S.H.                                      |                              | <del> </del>                                     |                       |            |                                                  | INSTALLED I              |                 |             |                |              |             |                | 25     |
| PUMP EFFICIENCY                               |                              | <del> </del>                                     |                       |            |                                                  | SPEED OF DE              | RIVER           |             |                |              |             |                | 26     |
| PERFORMANCE CURVE No.                         |                              |                                                  |                       |            |                                                  | SPEED RATIO              | )               |             |                |              |             |                | 27     |
| DR'N OF ROTN (FACING COUPL'G)                 | FACING COUPL'G) POWER FACTOR |                                                  |                       |            |                                                  |                          |                 |             |                | 28           |             |                |        |
| TYPE OF GLAND OR SEAL                         |                              |                                                  |                       |            |                                                  |                          |                 |             |                | 29           |             |                |        |
| BALANCE ARRANGEMENT                           |                              |                                                  | DRIVER ITEM No.       |            |                                                  |                          |                 |             |                |              |             | 30             |        |
| COOLING WATER REQUIRED                        |                              |                                                  | DETAILS OF LUBRICATOR |            |                                                  |                          |                 |             |                |              | 31          |                |        |
| SEALING WATER REQUIRED                        |                              |                                                  |                       |            |                                                  | TYPE OF BAS              |                 |             |                |              |             |                | 32     |
| DETAILS OF CONNECTIONS                        |                              |                                                  |                       |            |                                                  | SUPPLIER OF              | DRIVER          |             |                |              |             |                | 33     |
| SUCTION                                       |                              |                                                  |                       |            |                                                  | COUPLING                 |                 |             |                |              |             |                | 34     |
| DISCHARGE                                     |                              |                                                  |                       |            |                                                  | TYPE OF CO               |                 | a rummero a |                |              |             |                | 35     |
| TYPE OF TUPLIST DEADING                       |                              |                                                  |                       |            |                                                  | DRIVER HAL               |                 |             | 5 Y            | +            |             |                | 37     |
| TYPE OF THRUST BEARING TYPE OF GEAR AND MAKER |                              |                                                  |                       |            |                                                  | FOUNDATION<br>MOTOR DESI |                 | PLIER       |                |              |             |                | 38     |
| FULL LOAD TORQUE                              |                              | <del> </del>                                     | -                     |            |                                                  | MOTOR TEM                |                 |             |                | _            |             |                | 39     |
| STARTING TORQUE                               |                              | <del>                                     </del> |                       |            |                                                  | MOTOR PRO                |                 | PF          |                |              |             |                | 40     |
| MOTOR PROTECTION TYPE                         |                              | <del> </del>                                     |                       |            |                                                  |                          |                 |             |                |              |             |                | 41     |
|                                               |                              |                                                  |                       |            |                                                  |                          |                 |             |                |              |             |                | 42     |
|                                               |                              |                                                  | 1                     | Material   | s of Co                                          | onstruct                 | ion             |             |                |              |             |                | 43     |
| SHAFT                                         |                              |                                                  |                       | · racerran |                                                  | GLAND SLEE               |                 | 1 ,         | JNINC          |              |             |                | 44     |
| ROTOR                                         |                              |                                                  |                       |            |                                                  | GLAND SLEE<br>GLAND PACK |                 |             | 41140          | <del>'</del> |             | +              | 45     |
| STATOR                                        |                              |                                                  |                       |            |                                                  | LANTERN I                |                 |             |                | +            |             | +              | 46     |
| CASING                                        |                              | -                                                |                       |            |                                                  | THRUST BEA               |                 |             |                | <del></del>  |             | +-             | 47     |
| LANTERN RING                                  |                              |                                                  |                       |            |                                                  |                          |                 |             |                |              |             |                | 48     |
|                                               |                              | ·                                                |                       |            |                                                  |                          |                 |             |                |              |             |                | 49     |
|                                               |                              |                                                  | Desi                  | gn Stan    | idards :                                         | and Inst                 | ection          |             |                |              |             |                | 50     |
| DESIGN CODE-PUMP                              |                              |                                                  |                       | o          |                                                  | SHIPPING VO              |                 |             |                | 1            |             |                | 51     |
| HYDROSTATIC TEST PRESS.                       |                              |                                                  |                       | -          |                                                  | MAX. EREC                |                 | IT.         |                |              |             |                | 52     |
| INSPECTION                                    | _                            |                                                  |                       |            |                                                  | SHIPPING W               |                 |             |                | -            |             |                | 53     |
| DRG. and DATA REQUIREMENTS                    |                              |                                                  |                       |            |                                                  | TOTAL WE                 | GHT             |             |                |              |             |                | 54     |
| DATE OF ORDER                                 |                              |                                                  |                       |            |                                                  | ORDER No.                |                 |             |                |              |             |                | 55     |
| DATE OF ENQUIRY                               |                              |                                                  |                       |            |                                                  | DRG. No.                 |                 |             |                |              |             |                | 56     |
| MANUFACTURER                                  |                              |                                                  |                       |            |                                                  |                          |                 |             |                |              |             |                | 57     |
| Prepared                                      |                              |                                                  | 1                     | 3          |                                                  |                          |                 | 6           |                |              |             |                | 58     |
| Checked                                       | <b>†</b>                     |                                                  |                       | 2          | <del>                                     </del> | -                        |                 | 5           |                |              |             | <b>——</b>      | 59     |
| Approved                                      | $\vdash$                     |                                                  | -                     | 1          | <del>                                     </del> | 1                        | <del> </del>    | 4           |                | <del> </del> | -           | <del></del>    | 60     |
|                                               | <del>  _</del> _             |                                                  | - D                   |            | -                                                | 1.                       | D :             | <del></del> | <del>,</del> — | F .          | -           |                | -      |
| Date                                          | E                            | ingineering                                      | Process               | REV        | Ву                                               | Appr.                    | Date            | RE          |                | Ву           | Appr.       | Date           | 61     |
| Service                                       |                              |                                                  |                       | Company    |                                                  |                          |                 | Addres      | s              |              |             |                | 62     |
| Equipment No.                                 |                              |                                                  |                       |            |                                                  |                          |                 | 1           |                |              |             |                | 63     |
| Project No.                                   |                              |                                                  |                       |            |                                                  |                          |                 |             |                |              |             |                | 64     |
|                                               |                              |                                                  |                       |            |                                                  |                          |                 | 1           |                |              |             |                |        |

|                                                                                                     |                                           | Mi            | v e t | data s      | heet       |                                |            |             |              | Equipme  | nt No    | . (Tag)      |          |                                                  |          |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------|---------------|-------|-------------|------------|--------------------------------|------------|-------------|--------------|----------|----------|--------------|----------|--------------------------------------------------|----------|
|                                                                                                     |                                           | (PROCEE       | (D)   | Descript    | . (Fun     | c.)                            |            |             |              |          |          |              |          |                                                  |          |
|                                                                                                     |                                           |               |       |             |            |                                |            |             |              | Sheet No | D.       |              |          |                                                  |          |
|                                                                                                     |                                           |               |       |             | O          | perating                       | Data       |             |              |          |          |              |          |                                                  | 1        |
| No. OF MAC                                                                                          | MINES                                     |               |       |             | WORKING    | 7                              |            |             | STANDB       | v        |          |              |          |                                                  | 3        |
| SIZE OF CHA                                                                                         |                                           |               |       |             | WORKEN     |                                |            |             | JIANDE       | •        |          |              |          |                                                  | 4        |
| RATE OF CH                                                                                          | IARGING                                   |               | _     |             |            |                                |            |             |              |          |          |              |          |                                                  | 5        |
| TIME ACTU                                                                                           | ALLY MIXING                               |               |       | -           | CONTIN.    | DUTY                           |            |             | INTERM       | IT. DUTY |          |              |          | T                                                | - 6      |
|                                                                                                     | XING (turbulent/mo                        | derate/light) |       |             |            |                                |            |             |              |          |          |              |          |                                                  | 7        |
| SOLIDS CON                                                                                          |                                           |               |       |             | SOLIDS S   |                                |            | _           |              |          |          |              |          |                                                  | 8        |
| LIQUID VISC                                                                                         | COSITY (APPARE                            | NTT:          |       |             | LIQUIDS    | S.G.                           |            |             |              |          |          |              |          |                                                  | 9<br>10  |
|                                                                                                     | ZE ANALYSIS                               | (41)          |       |             |            |                                |            |             |              |          |          |              |          |                                                  | 11       |
|                                                                                                     | TLING VELOCITY                            |               | _     | <del></del> |            |                                |            |             |              |          |          |              |          |                                                  | 12       |
|                                                                                                     | _                                         |               |       |             | I          |                                |            |             |              |          |          |              |          |                                                  | 13       |
|                                                                                                     |                                           |               |       |             |            | Vessel D                       | ata        |             |              |          |          |              |          |                                                  | 14       |
| DEPTH OF V                                                                                          | ESSEL                                     |               |       |             |            |                                |            |             |              |          |          |              |          |                                                  | 15       |
| DEPTH OF L                                                                                          |                                           |               |       |             | MAX        |                                | NORM.      | AL          |              | MIN      |          |              |          |                                                  | 16       |
| ANGLE OF A                                                                                          |                                           |               |       |             |            |                                |            |             |              |          |          |              |          |                                                  | 17       |
|                                                                                                     | RTURE FOR IMPI                            | LLER          |       |             |            |                                |            |             |              |          |          |              |          |                                                  | 18       |
| WORKING P                                                                                           |                                           |               |       |             |            |                                |            |             |              |          |          |              |          |                                                  | 19<br>20 |
|                                                                                                     | WORKING TEMPERATURE 20 DEPTH OF VESSEL 21 |               |       |             |            |                                |            |             |              |          |          |              |          |                                                  |          |
|                                                                                                     |                                           |               |       |             | l          |                                | _          |             |              |          |          |              |          |                                                  | 22       |
|                                                                                                     |                                           |               |       |             | T          | echnical                       | Data       |             |              |          |          |              |          |                                                  | 23       |
| TYPE OF MIX                                                                                         | XER                                       | -             | Γ     |             | Γ          |                                |            |             | -            |          |          |              |          |                                                  | 24       |
| No. OF BLAD                                                                                         | DES                                       |               |       | ****        | I          | ORAWING No.                    |            |             |              |          |          | -            |          |                                                  | 25       |
|                                                                                                     | OF BLADES                                 |               |       |             |            | ELECTRICITY S                  |            | Volts       |              |          | phase    |              |          | Hz                                               | 26       |
| SPEED                                                                                               |                                           |               |       |             |            | ABSORBED POV                   |            |             |              |          | _        |              | _        |                                                  | 27       |
| SHAFT DIAM                                                                                          |                                           |               |       |             |            | TYPE OF MOTO                   |            | TD 0 4310   |              |          |          |              |          |                                                  | 28<br>29 |
| CRITICAL SPEED RECOMMENDED MOTOR POWER (hp/kW)  TYPE OF SEAL OR GLAND RECOMMENDED MOTOR SPEED (rpm) |                                           |               |       |             |            |                                |            |             | <del> </del> | 30       |          |              |          |                                                  |          |
|                                                                                                     | METHOD OF SUPPORT                         |               |       |             |            | NERTIA                         | MOTOR SPEE | (ipili)     |              |          |          |              |          | +                                                | 31       |
|                                                                                                     | METHOD OF SUPPORT TOTAL LOAD              |               |       |             |            | STARTING TOR                   | QUE        |             |              |          |          |              |          | +                                                | 32       |
| WITHDRAWA                                                                                           | AL HEIGHT REQU                            | IRED          |       |             | (          | DPERATING TO                   | RQUE       |             |              |          |          |              |          | <b>†</b>                                         | 33       |
| TYPE OF BE.                                                                                         |                                           |               |       |             |            | TYPE OF GEAR                   |            |             |              |          |          |              |          |                                                  | 33       |
| ANGLE OF B                                                                                          | BLADES                                    |               |       |             |            | EE BELT/DIRE                   | CT DRIVE   |             |              |          |          |              |          |                                                  | 34       |
|                                                                                                     |                                           |               |       |             |            |                                |            |             |              |          |          |              |          |                                                  | 36       |
|                                                                                                     |                                           |               |       | 1           | Design Sta |                                |            | cuon        |              |          |          |              |          |                                                  | 37       |
| DESIGN COD                                                                                          | IC TEST PRESSUE                           | o E           |       |             |            | MAX. ERECTION<br>SHIPPING WEIG |            |             |              |          |          |              |          |                                                  | 38<br>39 |
| DRGS and DA                                                                                         |                                           |               |       |             |            | SHIPPING VOLU                  | _          |             |              |          | -        |              |          | ┼──                                              | 40       |
| INSPECTION                                                                                          |                                           | _             |       |             |            | TOTAL WEIGHT                   |            |             |              |          | $\neg$   |              |          | <del>                                     </del> | 41       |
|                                                                                                     |                                           |               |       |             |            |                                |            |             |              |          |          |              |          |                                                  | 42       |
|                                                                                                     |                                           |               |       |             | Materi     | als of co                      | nstructior | 1           |              |          |          |              |          |                                                  | 43       |
| SHAFT                                                                                               |                                           |               |       |             | ī          | MPELLER                        |            |             |              |          |          |              |          |                                                  | 44       |
| SUPPORTS                                                                                            |                                           |               |       |             |            |                                |            |             |              |          |          |              |          |                                                  | 45       |
| VESSEL                                                                                              |                                           |               |       |             | S          | EAL OR GLAN                    | DS         |             |              |          |          |              |          | Ь                                                | 46       |
| BEARINGS                                                                                            |                                           |               |       |             |            |                                |            |             |              |          |          |              |          |                                                  | 47<br>48 |
| DATE OF EN                                                                                          | OLIBA                                     |               |       |             |            | DATE OF ORDER                  |            |             |              |          | - 1      |              |          | _                                                | 48       |
| DRG. No.                                                                                            | <u> </u>                                  |               |       |             |            | ORDER No.                      | -          | <del></del> |              |          | $\dashv$ |              |          | +                                                | 50       |
| MANUFACTU                                                                                           | TRER                                      |               |       |             | L          |                                |            |             |              |          |          |              |          |                                                  | 51       |
| REMARKS                                                                                             | S                                         |               |       |             | James III  | •                              |            |             |              |          |          |              |          |                                                  | $\top$   |
|                                                                                                     | _                                         |               |       |             |            |                                |            |             |              | •••••    |          |              |          |                                                  | 53       |
|                                                                                                     |                                           |               |       |             |            |                                |            |             |              |          |          |              |          |                                                  | 54       |
|                                                                                                     |                                           |               |       |             |            |                                |            |             |              |          |          |              |          |                                                  | 55       |
|                                                                                                     | _                                         |               |       |             |            |                                |            |             |              |          |          |              |          |                                                  | 56       |
| Dran d                                                                                              | Γ                                         | Ι             | -     |             | 1 -        | Τ                              | 1          | Τ           | T ,          | 1        |          | Т            |          |                                                  | 57       |
| Prepared                                                                                            | ļ                                         | ļ             | _     |             | 3          |                                |            |             | 6            | +        |          | <del> </del> | $\dashv$ |                                                  |          |
| Checked                                                                                             |                                           |               |       |             | 2          | L                              | ļ          | <u> </u>    | 5            | 1        |          | ļ            |          |                                                  | 59       |
| Approved                                                                                            |                                           |               |       |             | 1          |                                |            |             | 4            |          |          |              |          |                                                  | 60       |
|                                                                                                     | Date                                      | Engineeri     | ng    | Process     | REV        | Ву                             | Appr.      | Date        | REV          | В        | у        | App          | r.       | Date                                             | 61       |
| Service                                                                                             |                                           |               |       | ·           | Company    |                                |            |             | Addr         | ess      |          |              |          |                                                  | 62       |
| Equipment                                                                                           | No.                                       |               |       |             |            |                                |            |             |              |          |          |              |          |                                                  | 63       |
| Project No.                                                                                         |                                           |               |       |             |            |                                |            |             | T            |          |          |              |          |                                                  | 64       |

| Conveyor data sheet Equipment No. (Tag) |                 |                                         |         |             |            |         |         |         |             |       |      |          |
|-----------------------------------------|-----------------|-----------------------------------------|---------|-------------|------------|---------|---------|---------|-------------|-------|------|----------|
|                                         |                 | Conveyor                                | data si | ieet        |            | (P      | ROCEED1 | Descri  | pt. (Func.) |       |      |          |
|                                         |                 |                                         | ·       |             |            |         |         | Sheet   | No.         |       |      |          |
|                                         |                 |                                         |         | Op          | erating [  | )ata    |         |         |             |       |      | 2        |
| No. REQUI                               | IRED            |                                         |         | OVERALL LE  | NGTH       |         |         | $ \tau$ |             |       |      | 3        |
| HOPPER W                                |                 | -                                       |         | WEIGHT UNL  |            |         |         |         |             |       |      | 4        |
|                                         |                 |                                         |         | WEIGHT LAD  |            |         |         |         |             |       |      | 5        |
| CONVEYO                                 | R TYPE          |                                         |         | WIDTH       |            |         |         |         | ******      |       |      | 6        |
| CONVEYO                                 | R LENGTH HORZ.  | SECTN                                   |         | ELEVATED SE | CTION      |         |         |         |             |       |      | 7        |
| BUCKET T                                |                 |                                         |         | SPACING     |            |         |         |         |             |       |      | 8        |
| BELT SPEE                               |                 |                                         |         | VARIABLE/RN | ED         |         |         |         |             |       |      | 9        |
| BELT TENS                               |                 |                                         |         | DRIVE       |            |         |         |         |             |       |      | 10       |
| POWER CO                                | INSUMPTION      |                                         |         | POWER SUPP  | LY         |         |         |         |             |       |      | П        |
|                                         |                 |                                         |         | Safety      | Characte   | ristics |         |         |             |       |      | 12       |
| MATERIAL                                | . TO BE CONVEYE | D [                                     |         | 54.01)      |            |         |         |         |             |       |      | 14       |
| MASS FLO                                |                 |                                         |         |             |            |         |         |         |             |       |      | 15       |
| BULK DEN                                |                 |                                         |         |             |            |         |         |         |             |       |      | 16       |
|                                         | OF CONSTRUCTI   | ON                                      |         |             |            |         |         |         |             |       |      | 17       |
| BELT                                    |                 |                                         |         | BEARING TY  | ય <u>ે</u> |         |         |         |             | Γ     |      | 18       |
| HOPPER                                  |                 |                                         |         |             |            |         |         |         |             | 1     |      | 19       |
| BUCKET                                  |                 |                                         |         | BEARING SPA | CING       |         |         |         |             |       |      | 20       |
|                                         |                 |                                         |         |             |            |         |         |         |             |       |      | 21       |
| DATE OF E                               | NQUIRY          |                                         |         | DATE OF ORL | )ER        |         |         |         |             |       |      | 22       |
| DRG, No.                                |                 |                                         |         | ORDER No.   |            |         |         |         |             |       |      | 23       |
| MANUFAC                                 | TURER           |                                         |         |             |            |         |         |         |             |       |      | 24       |
|                                         |                 |                                         |         |             |            |         |         |         |             |       |      | 25       |
| SPECIAL C                               | HARACTERISTICS  |                                         |         |             |            |         |         |         |             |       |      | 26       |
|                                         |                 |                                         |         |             |            |         |         |         |             |       |      | 27       |
| <u> </u>                                |                 |                                         |         |             |            |         |         |         |             |       |      | 28<br>29 |
| <u> </u>                                |                 |                                         |         |             |            |         |         |         |             |       |      | .30      |
|                                         |                 |                                         |         |             |            |         |         |         |             |       |      | 31       |
| <del></del>                             |                 |                                         |         |             |            |         |         |         |             |       |      | 32       |
|                                         |                 |                                         |         |             |            |         |         |         |             |       |      | 33       |
|                                         |                 |                                         | *****   |             |            |         |         |         |             |       |      | 34       |
|                                         |                 |                                         |         |             |            |         |         |         |             |       |      | 35       |
|                                         |                 |                                         |         |             | ***        |         |         |         |             |       |      | 36       |
|                                         |                 |                                         |         |             |            |         |         |         |             |       |      | 37       |
|                                         |                 |                                         |         |             |            |         |         |         |             |       |      | 38       |
|                                         |                 |                                         |         |             |            |         |         |         |             |       |      | žų,      |
|                                         |                 |                                         |         |             |            | _       |         |         |             |       |      | 40       |
|                                         |                 |                                         |         |             |            |         |         |         |             |       |      | 41       |
|                                         |                 |                                         |         |             |            |         |         |         |             |       |      | 42       |
|                                         |                 |                                         |         |             |            |         |         |         |             |       |      | 43       |
| <b></b>                                 |                 |                                         |         |             |            | _       |         |         |             |       |      | 44       |
| <u> </u>                                |                 |                                         |         |             |            |         |         |         |             |       |      | 45       |
| <del> </del>                            |                 |                                         |         |             |            |         |         |         |             |       |      | 47       |
| <del></del>                             |                 |                                         |         |             |            |         |         |         |             |       |      | 48       |
| <b></b>                                 |                 |                                         |         |             |            |         |         |         |             |       |      | 49       |
|                                         |                 |                                         |         |             |            |         |         |         |             |       |      | 50       |
|                                         |                 | *************************************** |         |             |            |         |         |         |             |       |      | 51       |
|                                         |                 |                                         |         |             |            |         |         |         |             |       |      | 52       |
|                                         |                 |                                         |         |             |            |         |         |         |             |       |      | 53       |
|                                         |                 |                                         |         |             |            |         |         |         |             |       |      | 54       |
|                                         |                 |                                         |         |             |            |         |         |         |             |       |      | 55       |
|                                         |                 |                                         |         |             |            |         |         |         |             |       |      | 56       |
| <u> </u>                                |                 |                                         |         |             |            |         |         |         |             |       |      | 57       |
| Prepared                                | <u></u>         |                                         |         | 3           |            |         |         | 6       |             |       |      | 58       |
| Checked                                 |                 |                                         |         | 2           |            |         |         | - 5     |             |       |      | 59       |
| Approved                                |                 |                                         |         | ı           |            |         |         | 4       |             |       |      | 60       |
|                                         | Date            | Engineering                             | Process | REV         | By         | Appr.   | Date    | REV     | By          | Appr. | Date | 61       |
| Samina                                  |                 |                                         |         | Company     | 1          |         |         |         |             |       |      | 62       |
| Service                                 |                 |                                         |         | Company     |            |         |         | Addres  |             |       |      | _        |
| Equipment                               |                 |                                         |         |             |            | ·       |         |         |             |       |      | 63       |
| Project No.                             |                 |                                         |         |             |            |         |         |         |             |       |      | 64       |

|             | Relief          | f and Safe       | ety Val    | ne data           | sheet            |             |           | Equi   | pment No   | o. (Tag) |             |         |        |
|-------------|-----------------|------------------|------------|-------------------|------------------|-------------|-----------|--------|------------|----------|-------------|---------|--------|
|             | Iteliei         | and Sar          | cty vai    | uc data           | SHEEt            |             | (PROCEED) |        | ript. (Fun | ıc.)     |             |         |        |
|             |                 |                  |            |                   |                  |             |           | Shee   | t No.      |          |             |         | _      |
|             |                 |                  |            | (                 | Operating        | Data        |           |        |            |          |             |         | L      |
| LOCATION    |                 |                  |            |                   |                  |             |           |        |            |          | т           |         | +      |
| PURPOSE     |                 |                  |            |                   |                  |             | -         |        |            |          |             |         | $^{+}$ |
| SET PRESS   | URE             |                  |            | Bar a             |                  |             |           |        |            |          |             |         | †      |
| CAPACITY    |                 |                  | **         | kg/hr             | MEDIUM           |             |           |        | at         |          |             | ·C      | †      |
| MOLECUL     | AR WEIGHT       |                  |            |                   |                  |             |           |        |            |          |             |         | Ι      |
| DENSITY     |                 |                  |            | kg/m <sup>3</sup> |                  |             |           |        |            |          |             |         | I      |
| VISCOSITY   |                 |                  |            | сP                |                  |             |           |        |            |          |             |         | 1      |
|             |                 |                  |            | ·                 |                  |             |           |        |            |          |             |         | 1      |
| ACCUMUL     |                 |                  |            |                   | DESIGN CO        | ODE         |           |        |            |          |             |         | 1      |
| BLOWDOW     |                 |                  |            |                   |                  |             |           |        |            |          |             |         | 1      |
|             | BACK PRESSURE   | LOWING (EXIT FRO | M NOZZI E) | L                 |                  |             |           |        |            |          |             |         | +      |
| TYPE OF V   |                 | LOWING (EXIT PRO | M NOZZEC)  |                   |                  |             |           |        |            |          |             |         | 1      |
| CALCULAT    |                 |                  |            | <del> </del>      |                  |             |           |        |            |          |             |         | ť      |
| INSTALLE    |                 |                  |            |                   | MAXIMUM          | CAPACITY    |           |        |            |          |             | kg/hr   | ť      |
|             | NT OF DISCHARO  | ie.              |            | -                 |                  |             |           | -      |            |          |             | - ng/m  | ť      |
|             | EL DESIGN PRESS |                  |            |                   | DESIGN TE        | MPERATURE   |           |        | 1          |          | <del></del> |         | 1      |
|             | EL HYDROSTATIC  |                  |            |                   |                  |             |           |        |            |          |             |         | 1      |
|             | EL DRG. No.     |                  |            | <b> </b>          |                  |             |           |        |            |          |             |         | 1/2    |
|             | 22              |                  |            |                   |                  |             |           |        |            |          |             |         |        |
|             |                 |                  |            | 7                 | <b>Fechnical</b> | Data        |           |        |            |          |             |         | 2      |
| MANUFAC     | TURER'S TYPE A  | ND SERIAL No.    |            |                   |                  |             |           | -      |            |          |             |         | 2      |
| VALVE INL   | ET CONNECTION   |                  |            | · ·               |                  |             |           |        |            |          |             |         | 2      |
| VALVE OU    | TLET CONNECTIO  | ON               |            |                   |                  |             |           |        |            |          |             |         | 2      |
| ADJUSTING   | G SCREW CAP     |                  |            |                   | LIFTING G        | EAR Yes/No  |           |        |            |          |             |         | 2      |
| ADJUSTING   | G BLOWD'N RING  | Yes/No           |            |                   | TEST GAG         | Yes/No      |           |        |            |          |             |         | 2      |
|             |                 |                  |            |                   |                  |             |           |        |            |          |             |         | 2      |
|             |                 |                  |            | Mater             | ials of Co       | onstruction | n         |        |            |          |             |         | 31     |
| SPRING      |                 |                  |            |                   |                  |             |           |        |            |          |             |         | 3      |
| BODY        |                 |                  |            |                   |                  |             |           |        |            |          |             |         | 3      |
| TRIM        |                 |                  |            |                   |                  |             |           |        |            |          |             |         | 3      |
|             | IGN PRESSURE    |                  |            |                   | ERECTION         |             |           |        |            |          |             |         | 3      |
| BODY HYD    | PROSTATIC TEST  | PRESS            |            |                   | SHIPPING         |             |           |        |            |          |             |         | 13     |
|             |                 |                  |            |                   | SHIPPING         | VOLUME      |           |        |            |          |             |         | 3      |
| INSPECTIO   |                 |                  | EN 4EN III |                   |                  |             |           |        |            |          |             |         | 3      |
| CERTIFICA   | HON and DOCUM   | ENTATION REQUIR  | EMENT      |                   | -                |             |           |        |            |          |             |         | 3      |
| DATE OF E   | NOURY           |                  |            |                   | DATE OF C        | RDER        |           |        |            |          | T           |         | 4      |
| ORDER No.   |                 |                  |            |                   | DRG. No.         |             |           |        |            |          |             |         | 4      |
| MANUFAC     |                 |                  |            |                   |                  |             |           |        |            |          |             |         | 4      |
|             |                 |                  |            |                   |                  |             |           |        |            |          |             |         | 4      |
| REMARI      | KS              |                  |            |                   |                  |             |           |        |            |          |             |         | 4      |
|             |                 |                  |            |                   |                  |             |           |        | -          |          |             |         | 4      |
|             |                 |                  |            | <del>-</del>      |                  |             |           |        |            |          |             |         | 4      |
|             |                 |                  |            |                   |                  |             |           |        |            |          |             |         | 4      |
|             |                 |                  |            |                   |                  |             |           |        |            |          |             |         | 4      |
|             |                 |                  |            |                   |                  |             |           |        |            |          |             |         | 4      |
|             |                 |                  |            |                   |                  |             |           |        |            |          |             |         | 5      |
|             |                 |                  |            |                   |                  |             |           |        |            |          |             |         | 5      |
|             |                 |                  |            |                   |                  |             |           |        |            |          |             |         | 5      |
|             |                 |                  |            | _                 |                  |             |           |        |            |          |             |         | 5      |
|             |                 |                  |            |                   |                  |             |           |        |            |          |             |         | 5      |
|             |                 |                  |            |                   |                  |             |           |        |            |          |             |         | 5      |
|             |                 |                  |            |                   |                  |             |           |        |            |          |             |         | _      |
| D           | T               |                  |            |                   | T                | Τ           |           |        | 1          |          |             |         | 5      |
| Prepared    |                 | ļ                |            | 3                 | 1                | <u> </u>    |           | 6      |            | $\perp$  |             | <b></b> | 5      |
| Checked     |                 |                  |            | 2                 | <u> </u>         |             |           | 5      |            |          |             |         | 5      |
| Approved    |                 |                  |            | 1                 |                  |             |           | 4      |            |          |             |         | 6      |
|             | Date            | Engineering      | Process    | REV               | Ву               | Appr.       | Date      | REV    | Ву         |          | Appr.       | Date    | 6      |
| Service     | 1               | <u> </u>         |            | Company           |                  | <u> </u>    | ·         | Addres | 1          |          |             | 1       | 6      |
| Equipment   | No              |                  |            |                   |                  |             |           |        | •          |          |             |         | 6      |
| · ·         | 110.            |                  |            | <del> </del>      |                  |             |           |        |            |          |             |         | +      |
| Project No. |                 |                  |            |                   |                  |             |           |        |            |          |             |         | 6      |

| Data Sheet for Pressure Vessel Design |                           |  |  |  |  |  |  |  |
|---------------------------------------|---------------------------|--|--|--|--|--|--|--|
| Customer                              | Order No                  |  |  |  |  |  |  |  |
| Vessel name                           | Equipment No              |  |  |  |  |  |  |  |
| Description                           |                           |  |  |  |  |  |  |  |
| Drawing/sketch No                     |                           |  |  |  |  |  |  |  |
| Design Code                           |                           |  |  |  |  |  |  |  |
| Design pressure                       |                           |  |  |  |  |  |  |  |
| Design liquid level                   | m                         |  |  |  |  |  |  |  |
| Contents                              | Density kg/m <sup>3</sup> |  |  |  |  |  |  |  |
| Service connections                   |                           |  |  |  |  |  |  |  |
| Hydraulic test pressure               | kN/m <sup>2</sup>         |  |  |  |  |  |  |  |
| Vessel classification                 |                           |  |  |  |  |  |  |  |
| Joint efficiencies:                   | Shell Heads               |  |  |  |  |  |  |  |
| Materials of construction             | n: Shell                  |  |  |  |  |  |  |  |
|                                       | Heads                     |  |  |  |  |  |  |  |
|                                       | Nozzles                   |  |  |  |  |  |  |  |
|                                       | Flanges                   |  |  |  |  |  |  |  |
| Corrosion alowances:                  | shell mm Heads mm         |  |  |  |  |  |  |  |
|                                       | Nozzles mm                |  |  |  |  |  |  |  |
| Notes/comments                        |                           |  |  |  |  |  |  |  |
| Prepared by                           | Checked by                |  |  |  |  |  |  |  |
| Date                                  | Date                      |  |  |  |  |  |  |  |

#### APPENDIX I

# ENRGYBAL A Simple Energy Balance Program

#### PROGRAM ENRGYBAL.BAS

PROGRAM TO CALCULATE PROCESS UNIT HEAT/COOLING REQUIREMENTS

```
10 REM NEW ENERGY BALANCE PROGRAM, WITH FILES
20 REM CALCULATES HEAT OF REACTION FROM HEATS OF FORMATION
30 REM REVISION, GWBASIC 23/11/92
40 ON ERROR GOTO 2200
50 PRINT" DO YOU WANT FULL INSTRUCTIONS ? ANSWER Y OR N"
60 A2$ = INKEY$: IF A2$ = ``'' THEN 60 70 IF A2$ = ``Y'' THEN 1500
80 IF A2$ = ''N'' THEN 130
90 PRINT
100 PRINT'' ERROR: Y OR N EXPECTED, CAPITALS''
110 PRINT
120 GOTO 50
130 REM CALCULATES HEATING OR COOLING REQUIRED
140 CLS
150 REM USES HEATS FORMATION AND LATENT HEATS
160 CLS
170 PRINT
180 PRINT
190 PRINT''
                        HEAT BALANCE PROGRAM; DATUM 298K, IATM''
200 PRINT
210 PRINT
220 PRINT ''NEW DATA? ANSWER Y OR N''
230 PRINT
240 PRINT'' NOTE: SELECTING NEW DATA WILL ERASE PREVIOUS FILE''
250 PRINT
260 PRINT
270 A$ = INKEY$: IF A$ = ''' THEN 270
280 IF A$ = ''N'' THEN 570
290 IF A$ = ''Y'' THEN 350
300 PRINT
310 PRINT'' ERROR: Y OR N EXPECTED, CAPITALS''
320 PRINT
330 GOTO 220
340 REM SETTING UP FILE FOR DATA STORAGE
350 OPEN ''CPDATA1.DAT'' FOR OUTPUT AS #1
360 PRINT'' INPUT THE NUMBER OF COMPONENTS, MAX. 50''
370 PRINT
380 INPUT N1
390 PRINT #1,
                N1
400 PRINT'' NOW INPUT THE DATA FOR EACH COMPONENT''
410 PRINT'' NOTE: IF A VALUE IS NOT REQUIRED FOR THIS, OR FUTURE CALCULATIONS,''
420 PRINT'' INPUT ZERO''
430 PRINT'' NOTE: IF MESSAGE -REDO FORM START- APPEARS RETYPE LINE''
440 FOR I=1 TO N1
450 PRINT
460 PRINT''
                     INPUT THE DATA FOR COMPONENT''; I
470 PRINT
480 PRINT'' FOR GAS/VAPOUR PHASE INPUT THE COEFFS. A, B, C, D''
490 INPUT A(I), B(I), C(I), D(I)
500 PRINT'' FOR LIQUID PHASE, INPUT THE COEFFS. A, D, AND THE LATENT HEAT''
```

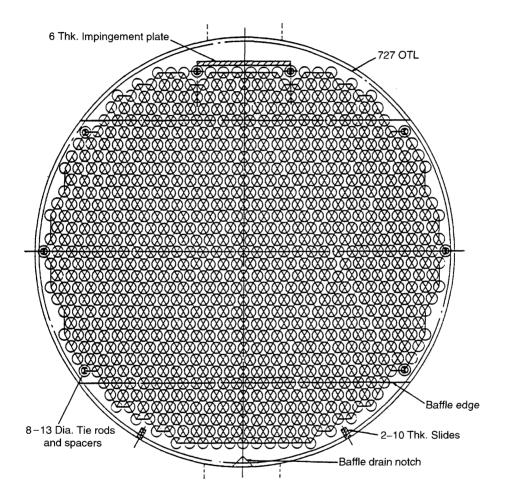
```
510 INPUT P(I), Q(I), L(I)
520 PRINT'' INPUT THE HEAT OF FORMATION''
530 INPUT F(I)
540 PRINT #1, A(I), B(I), C(I), D(I), P(I), Q(I), L(I), F(I)
550 NEXT I
560 CLOSE #1
570 OPEN ''CPDATA1.DAT'' FOR INPUT AS #1
580 IF EOF(1) GOTO 2220
590 INPUT #1, N1
600 FOR I=1 TO N1
610 INPUT #1, A(I), B(I), C(I), D(I), P(I), Q(I), L(I), F(I)
620 NEXT T
630 H4=0: H5=0: H6=0: Q1=0
640 PRINT'' NOTE: IF MESSAGE -REDO FORM START- APPEARS RETYPE LINE''
650 PRINT
660 PRINT'' INPUT THE NUMBER OF FEED STREAMS''
670 INPUT S1
680 FOR I=1 TO S1
690 PRINT
700 PRINT'' FOR FEED STREAM '': I:'' INPUT STREAM TEMP. AND NUMBER OF COMPONENTS''
710 PRINT
720 PRINT
730 INPUT T1, N2
740 GOSUB 1240
750 REM TOTAL HEAT FEED STREAMS
760 H5=H5+H4
770 NEXT I
780 PRINT ''INPUT THE NUMBER OF PRODUCT STREAMS'
790 INPUT S1
800 FOR I=1 TO S1
810 PRINT
820 PRINT'' FOR PRODUCT STREAM ' ';I; '' INPUT STREAM TEMP. AND NUMBER OF COMPONENTS''
830 INPUT T1, N2
840 GOSUB 1240
850 REM TOTAL HEAT PRODUCT STREAMS
860 H6=H6+H4
870 NEXT I
880 REM HEAT BALANCE
890 O=H6-H5
900 IF Q<0 THEN 940
910 PRINT
920 PRINT''
            HEATING REQUIRED = '';Q;'' KJ/H''
930 GOTO 950
940 PRINT'' COOLING REQUIRED = '';-Q;'' KJ/H''
950 PRINT
960 PRINT
970 PRINT'' REPEAT CALCULATION WANTED ?, Y OR N''
980 A1$ = INKEY$: IF A1$ = '\'' THEN 980
990 IF A1$ = '\N'' THEN 1030
1000 IF A1$ = 'Y'' THEN 560
1010 PRINT' Y OR N EXPECTED'
1020 GOTO 970
1030 CLS
1040 PRINT
1050 PRINT
1060 PRINT
1070 PRINT
1080 PRINT
1090 PRINT
1100 PRINT
1110 PRINT
1120 PRINT'
                               CALCULATIONS FINISHED'
1130 PRINT
1140 PRINT''
                     DATA WILL BE FILED ON HARD DISC IN THE''
1150 PRINT''
                       DIRECTORY IN WHICH YOU HAVE GWBASIC'
1160 PRINT
1170 PRINT'
                                 FILE NAME CPDATA1 DAT'
1180 PRINT
1190 PRINT''
                                 TAKE A COPY ON A FLOPPY''
1200 PRINT
1210 PRINT
1220 PRINT
1230 STOP
1240 REM SUB-ROUTINE TO CALCULATE STREAM ETHALPHY PLUS HEAT OF FORMATION
1250 PRINT
1260 PRINT'' FOR EACH COMPONENT, INPUT THE COMPONENT NO., FLOW RATE''
```

```
1270 PRINT'' AND V IF VAPOUR AT STREAM CONDITIONS, L IF LIQUID''
1280 H4=0
1290 FOR I1=1 TO N2
1300 PRINT
1310 PRINT'' INPUT NEXT COMPONENT NUMBER, FLOWRATE, AND IF VAPOUR OR LIQUID''
1320 INPUT J, F, A3$
1330 IF A3$ <> ``V'' THEN 1420
1340 PRINT
             ' ' COMPONENT
                                                ``;F;''
1350 PRINT
                            ``;J;''
                                        FLOW
                                                             VAPOUR''
1360 PRINT
1370 REM HEAT CAPACITY EQUATION IS SPLIT ONTO TWO LINES, FOR GASES
1380 H1 = A(J) * (T1-298) + B(J) * (T1^2-298^2) / 2
1390 H2 = C(J)*(T1^3-298^3)/3+D(J)*(T1^4-298^4)/4
1400 \text{ H3} = F*(H1+H2+F(J))
1410 GOTO 1470
1420 PRINT
1430 PRINT'' COMPONENT ''; J;'' FLOW ''; F;''
                                                      LIOUTD''
1440 PRINT
1450 \text{ H1} = P(J) * (T1-298) + O(J) * (T1^2-298^2) / 2
1460 \text{ H3} = F*(H1+F(J)-L(J))
1470 \text{ H4} = \text{H4+H3}
1480 NEXT I1
1490 RETURN
1500 REM INSTRUCTIONS FOR RUNNING PROGRAM
1510 CLS
1520 PRINT''
                          PROGRAM INSTRUCTIONS''
1530 PRINT
1540 PRINT
1550 PRINT'' PROGRAM CALCULATES HEATING OR COOLING REQUIRED BY UNIT''
1560 PRINT'' REFERENCE CONDITIONS ARE 298K AND 1 ATM'
1570 PRINT'' UNITS USED ARE: TEMP K, ENERGY kJ/kMOL AND kJ/H, FLOW kMOL/H''
1580 PRINT
1590 PRINT'' SENSIBLE HEATS ARE CALCULATED USING THE SPECIFIC HEAT EON.''
1600 PRINT'' CP = A+BT+CT**2+DT**3 FOR GASES, AND A+BT FOR LIQUIDS'
1610 PRINT
1620 PRINT'' STREAM ENTHALPY IS CALCULATED BY ADDING LATENT HEAT'
1630 PRINT'' AT THE DATUM TEMP. TO THE SENSIBLE HEAT FOR THOSE''
1640 PRINT' COMPONENTS LIQUID AT THE REFERENCE CONDITIONS BUT VAPOUR'
1650 PRINT'' AT THE INLET OR OUTLET CONDITIONS'
1660 PRINT'' NOTE: FOR ANY COMPONENT WHICH IS VAPOUR AT BOTH INLET''
1670 PRINT'' AND OUTLET (OR LIQUID AT BOTH) THE LATENT HEAT IS NOT''
1680 PRINT'' REQUIRED AND MAY BE INPUT AS ZERO'
1690 PRINT
1700 PRINT
1710 PRINT''
                PRESS ANY KEY TO CONTINUE''
1720 A$ = INKEY$: IF A$ = '\'' THEN 1720
1730 CLS
1740 PRINT
1750 PRINT
1760 PRINT
1770 PRINT'' HEATS OF REACTION ARE CALCULATED FROM THE HEATS OF FORMATION''
1780 PRINT'' OF THE COMPONENTS IN THE GASEOUS STATE''
1790 PRINT'' NOTE: THE HEAT OF FORMATION FOR ANY COMPONENT THAT DOES NOT''
1800 PRINT'' TAKE PART IN A REACTION IS NOT REQUIRED AND MAY BE INPUT AS ZERO''
1810 PRINT
1820 PRINT
1830 PRINT'' DATA REQUIRED FOR EACH COMPONENTS IS:''
1840 PRINT''
              1. CP CONSTANTS A, B, C, D FOR GASES, AND A, B FOR LIQUIDS''

IF A TRUNCATED FORM OF THE EQN. IS TO BE USED FOR LIQUIDS''
1850 PRINT''
1860 PRINT''
                   ENTER UNUSED COEFFICIENTS AS ZERO''
1870 PRINT''
              2. LATENT HEATS ( IF A PHASE CHANGE OCCURS ) ''
1880 PRINT
1890 PRINT''
              HEATS OF FORMATION (IF A REACTOR) ''
1900 PRINT
1910 PRINT'' NOTE: THE PROGRAM FILES THIS DATA FOR FUTURE USE,''
1920 PRINT''
                    SO ENTER THE DATA FOR ALL COMPONENTS IN THE FIRST RUN''
1930 PRINT
1940 PRINT''
                 PRESS ANY KEY TO CONTINUE'
1950 A$ = INKEY$: IF A$ = '\'' THEN 1950
1960 CLS
1970 PRINT
1980 PRINT
1990 PRINT
2000 PRINT''
                  DATAFILE NAME IS CPDATA1.DATA''
2010 PRINT
2020 PRINT
```

```
2030 PRINT'' TO CALCULATE THE BALANCE ON ANY UNIT THE FOLLOWING INFORMATION''
2040 PRINT'' IS NEEDED: ''
2050 PRINT
2060 PRINT''
              1. NUMBER OF FEED AND PRODUCT STREAMS (INLET AND OUTLET) ''
2070 PRINT
2080 PRINT''
             2. FEED AND PRODUCT STREAM TEMPERATURES'
2090 PRINT
2100 PRINT''
2110 PRINT
               3. COMPONENT FLOW-RATES IN FEED AND PRODUCT STREAMS'
2120 PRINT''
             4. IF COMPONENT IS VAPOUR AT FEED OR PRODUCT CONDITIONS'
2130 PRINT
2140 PRINT
2150 PRINT
2160 PRINT''
                  PRESS ANY KEY TO CONTINUE''
2170 A$ = INKEY$: IF A$ = ''' THEN 2170
2180 GOTO 130
2190 GOTO 2230
2200 CLOSE: CLS
2210 PRINT' ERROR NO. 'ERR' IN LINE'ERL
2220 PRINT ''END OF FILE FOUND''
```

2230 END

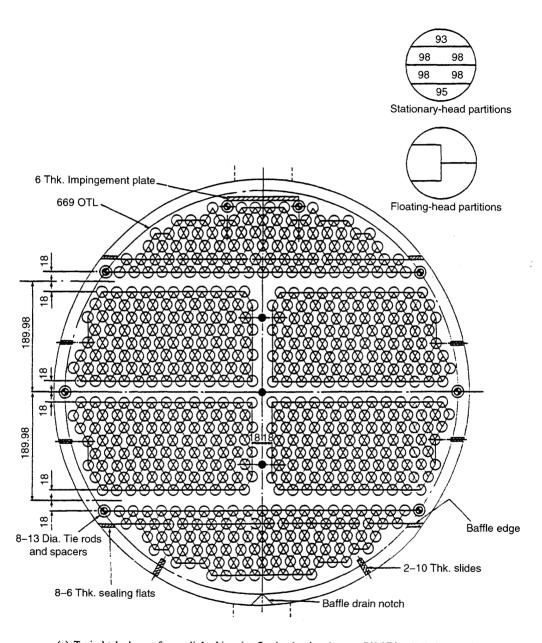

# APPENDIX J

# Typical Shell and Tube Heat Exchanger Tube-sheet Layouts

- (a) Fixed tube-sheet exchanger
- (b) U-tube exchanger
- (c) Floating-head exchanger with split backing ring
- (d) Pull through floating-head exchanger

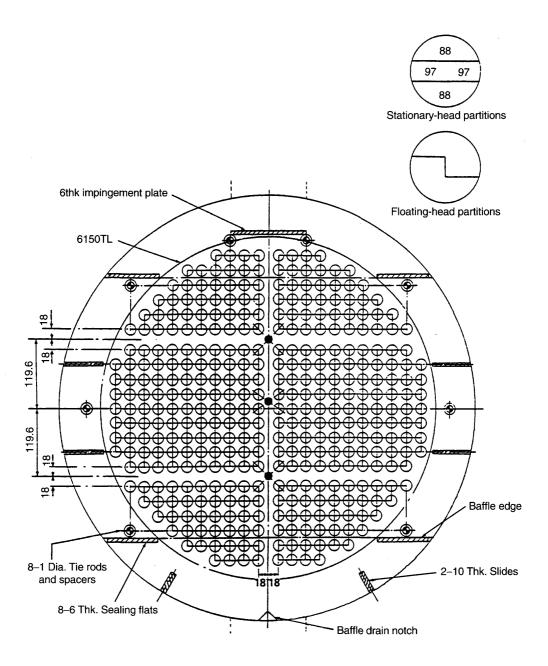
Reproduced with permission from "Heat Exchanger Design", E. A. D. Saunders (Longman Group).

APPENDIX J 1017




(a) Typical tube layout for a fixed tubesheet exchanger 740 i/Dia. shell, single pass, 780-tubes, 19.05 o/Dia. on 23.8125 pitch,  $30^\circ$  angle.




(b) Typical tube layout for a U-tube exchanger 740 i/Dia. shell, 2-pass, 246 U-tubes, 19.05 o/Dia. on 25.4 pitch, 45° angle.

APPENDIX J



(c) Typical tube layout for a split backing ring floating-head exchanger. 740 i/Dia. shell, 6-pass, 580 tubes, 19.05 o/Dia. on 25.4 pitch, 30° angle.

<sup>•</sup> Denotes 13 Dia. sealing bars.



(d) Typical tube layout for a pull-through floating-head exchanger. 740 i/Dia. shell, 4-pass, 370 tubes 19.05 o/Dia. on 25.4 pitch, 90° angle.

<sup>•</sup> Denotes 13 Dia. sealing bars.

# Author Index

Abrams 343 Benson, S. W. Aerstin, F. 741 Berge, C. 20 Ailor, W. H. 291 Bergman, D. J. 847 Alani, G. H. 335 767, 770, 771 Bergman, H. L. Bernstein, I. M. Alders, L. 617 297 Ale, B. J. M. 393 Bertrand, L. 232 Alfred, A. M. 269 Beveridge, G. S. G. 25, 28 Allen, D. H. 29, 269 Bhattacharyya, B. C. 844 Alleva, R. Q. 506 Alliot, E. A. 880 Bickell, M. B. 866 Billet, R. 432, 546, 587, 591 Ambler, C. M. 413, 416, 417 Billingsley, D. S. 520, 544 Amundson, N. R. 545 Birchall, H. 875 Ang, M. L. 392 Biskup, B. 70, 313 Antoine, C. 330 Bloch, H. P. 104, 477 Antony, A. 309 Boas, A. H. 27, 28 Aoki, T. 640 Bodrutha, F. T. 364 Aries, R. S. 242, 250, 252 Bohn 634 Aris, R. 29 Boland, D. 98 Arlt, W. 619 Bolles, W. L. 547, 555, 565, 574 Arpe, H. 310 Bolliger 774 Askquith, W. 366 Bond, M. P. 755 Austin, D. G. 130, 194, 379 Bott, T. R. 636, 640, 741, 755 Austin, G. T. 310 Boublik, T. 338 Azbel, D. S. 854, 860 Bowersox, J. P. 401 Boyd, G. M. 285, 286, 861 Boyko, L. D. 709 Baasel, W. D. 10, 28 Bradley, D. 413, 419, 421 Baines, D. 302 Brandt, D. 895 Baker, J. R. 467 Bravo, J. L. 593 Baker-Counsell, J. 903 Bretsznajder, S. 313, 319, 320, 321 Balemans, A. W. M. 390 Brian, P. L. T. 345 Ball, A. M. 468 Bridgewater, A. V. 248 Bamford, A. W. 435 Briggs, D. E. 765 Barlow, J. A. 104 Brinkley, W. K. 516, 522 Barnea, E. 441 Brodkey, R. S. 468 Barnicki, S. D. 565 Bromley, L. A. 319, 731 Barnwell, J. 106 Bronkala, W. J. 405 Barrow, M. H. 10, 891 Brown, R. 766 Bartnecht, W. 364 Brown, R. L. 477 Bass, H. G. 365 Brownell, L. E. 816, 825, 833, 836, 844, 845, 848, Battino, R. 349 854, 877 Beams, J. W. 417 Browning, E. 360 Bechtel, L. B. 243 Buckley, P. S. 232 Bednar, H. H. 807, 836, 854 Bullington, L. A. 575, 576 Begg, G. A. J. 476 Burchard, J. K. 548 Beightler, C. S. 25 Bell, K. J. 671, 690, 713, 718 Burklin, C. R. 12 Burley, J. R. 762 Bellman, R. 29 Bendall, K. 297 Burman, C. R. 309 Bendict, M. 340 Buse, F. 105 Benedek, P. 165 Bustin, W. M. 365

Butcher, C. 592, 903

Bennett, J. G. 423

Butt, L. T. 300, 302

#### **AUTHOR INDEX**

| Butt, L. 1. 300, 302                               |
|----------------------------------------------------|
| Butterworth, D. 659, 663, 668, 690, 696, 707, 710, |
| 736                                                |
|                                                    |
|                                                    |
| Cajander, B. C. 341                                |
| Callahan, J. L. 547                                |
| Carrana I A 104 477                                |
| Cameron, J. A. 104, 477                            |
| Capps, R. W. 218                                   |
| Capsey, S. R. 310                                  |
| Carson, P. A. 358, 361, 390                        |
| Case, J. 792                                       |
| Casey, R. J. 4                                     |
| Caudle, P. G. 899                                  |
|                                                    |
| Chada, N. 105                                      |
| Chaddock, D. H. 3                                  |
| Chaffin, S. 198                                    |
| Champion, F. A. 291                                |
| Chan, H. 548, 552                                  |
| Chand, J. 757                                      |
| Chang, H. Y. 527                                   |
|                                                    |
| Chang, P. 332, 555                                 |
| Chantry, W. A. 726                                 |
| Chao, K. C. 341                                    |
| Chapman, F. S. 200, 468, 477                       |
| Chase, J. D. 565, 569, 577                         |
| Chen, J. C. 733                                    |
| Chen-Chia, H. 764                                  |
| Cheremisinoff, N. P. 408, 854, 860                 |
|                                                    |
| Cheryan, M. 432                                    |
| Chilton, C. H. 146, 252                            |
| Chilver, A. H. 792                                 |
| Chittenden, D. H. 4                                |
| Chlumsky, V. 477                                   |
| Christensen, J. H. 20                              |
| Chu, J. C. 338                                     |
| Chudgar, M. M. 312                                 |
|                                                    |
| Chueh, C. F. 322<br>Chueh, P. L. 347               |
|                                                    |
| Church, D. M. 726, 742                             |
| Chuse, R. 793                                      |
| Cicalese, J. J. 577                                |
| Clapeyron, B. P. E. 872                            |
| Clark, B. 299                                      |
| Clark, E. E. 295                                   |
| Clark, R. L. 310                                   |
| Clay, Sir Henry 899                                |
| Clayton C G 469                                    |
| Clayton, C. G. 468                                 |
| Clement 896                                        |
| Clever, H. L. 349                                  |
| Cockram, M. D. 366                                 |
| Colburn, A. P. 183, 525, 555, 596, 709, 718, 720   |
| Cole, J. 432                                       |
| Colijn, H. 480                                     |
| Collier, J. G. 720, 728                            |
|                                                    |
|                                                    |
| Comyns, A. E. 310                                  |
| Conant, A. R. 899                                  |
| Conder, J. R. 345                                  |
| Connison, J. 366                                   |
| Considine, D. M. 226                               |
| Constantingson S 448                               |

Constantinescu, S. 448

Cooper, A. 755
Cooper, P. J. 457
Cornell, C. F. 407
Cornell, D. 597, 598
Costich, E. W. 471
Coughanowr, D. R. 227
Cran, J. 244
Crawley, F. 359
Crittenden, B. 444
Cross, J. 364
Crowe, C. M. 165
Cruickshank, F. R. 338
Czermann, J. J. 602

Dabyburjor, D. B. 345 Dahlstrom, D. A. 407 Daley, F. L. 441 Dano, S. 29 Danowsky, F. M. 104, 477 Dantzig, G. 29 Davenport, G. B. 904 Davies, G. A. 458 Davies, J. A. 577 Davies, J. F. 565 Day, M. F. 286 Day, R. W. 421 De Minjer 312 Deal, C. H. 345 Debham, J. B. 877 DeGhetto, K 836 Deily, J. E. 299 Denyer, M. 304 Derr, E. L. 345 DeSantis, G. J. 200 Deshpande, P. B. 544 Devore, A. 670, 702 Devotta, S. 107 Dewitt, D. P. 634, 636 Diaz, H. E. 252 Dillon, C. P. 283 Dimoplon, W. 475 Dol, J. D. 547 Domalski, E. S. 338 Donaldson, R. A. B. 98 Donohue, D. A. 670 Doolin, J. H. 199, 200, 211 Doraiswamy L. K. 324, 325 Dorman, R. G. 446 Dorsey, J. W. 742 Douglas, J.M. 107 Dreisbach, R. R. 330 Drew, T. B. 718 Driebeek, N. J. 29 Dryden, C. E. 252, 891 Dryden, I. 99 Duffin, J. H. 501, 502, 545 Dukek, W. G. 365 Dunford, H. 120 Dunn, K. S. 103

Duxbury, H. A. 367

Eagle, A. 666 Eckenfelder, W. W. 904 Eckert, J. S. 233, 591, 593, 597 Eckhoff, R. K. 364 Edgar, T. E. 25, 28, 29 Edison, A. G. 720 Edmister, W. C. 70, 516 Eduljee, H. E. 549, 569, 571 Edwards, M. F. 468, 471, 776 Eichel, F. G. 365 Ellerbe, R. W. 546 Emerson, W. H. 659, 755 Erbar, J. H. 523, 524 Escoe, A. K. 792, 836, 837, 844, 845 ESDU-86018 636 ESDU-87019 654 Estrup, C. 246 Eucken, A. 320 Evans, F. L. 616, 668, 768 Evans, J. B. 269 Evans, L. S. 294, 300, 302 Evans, U. R. 283 Evans, V. 301 Everett, H. J. 471

Fair, J. R. 547, 548, 552, 565, 569, 574, 593, 597, 598, 619, 739, 764 Faith, W. L. 310 Falcke, F. K. 304 Fang, C. S. 527 Farr, J. R. 792, 807, 836, 866, 870, 874, 876, 877 Farrer, D. 364 Faupel, J. H. 792, 825 Fawcett, H. H. 358 Featherstone, W. 518 Fedons, R. F. 336 Fenoglio, F. 713 Fenske, M. R. 523 Fensom, D. H. 299 Ferguson, R.M. 666 Field, P. 364 Fischer, R. 433 Fisher, F. E. 792, 825 Fisher, G. H. 367 Fisher, J. 659 Fitzsimmons, P. E. 366 Fletcher, P. 776 Flood, J. E. 409 Flower, J. R. 111 Fontana, M. G. 283, 290, 301 Fossett, H. 474 Foster, K. 729 Frank, D. 661, 668, 708, 718, 719, 720, 739, 766 Frank, O. 638 Frazer, M. J. 4 Fredenslund, A. 345, 545 Freese, C. E. 836

Fuller, E. N. 330, 331

Furzer, I. A. 742

Gambil, W. R. 333 Ganic, E. N. 634 Garrett, D. E. 242, 246, 250, 252 Garrett-Price, B. A. 640 Garside, J. 435 Geddes, R. L. 527, 544 Generaux, R. P. 218, 219 George 623 George, W. 895 Gerunda, A. 458 Gester, J. A. 547 Ghaly, M. A. 718 Gibson, S. B. 388 Giddings, J, C. 330, 331 Gilissen, F. A. H. 560 Gill, D. R. 593 Gilliland, E. R. 492, 501, 506, 523, 546 Gilmore, G. H. 719 Glitsch, H. C. 561, 564, 565 Glor, M. 365 Glover, W. 720 Gmehling, J. 345, 545 Golden, D. M. 338 Gordon, J. E. 285 Graham, R. W. 728 Grant, C. D. 900 Grant, I. D. R. 671, 720 Gray, J. B. 468, 472, 473, 776 Grayson, H. G. 341 Grayson, L. 905 Green, A. E. 358 Green, D. W. 101, 203, 216, 217, 226, 227, 291, 294, 313, 348, 399, 408, 419, 424, 435, 445, 446, 466, 474, 619, 623, 636, 649, 710, 770, 793, 858, 863 Greenbaum, S. 314 Gretton, A. T. 474 Grichar, C. N. 421 Grills, D. M. 137 Groggins, P. 310 Grootscholten, P. A. M. 435 Grossel, S. S. 597 Gugan, K. 364 Guha, P. 297 Gundersen, T. 107 Gunn, D. J. 186 Gupte, N. S. 733 Guthrie, K. M. 242, 250, 252, 278 Gyokhegyi, S. L. 602

Haas, J. R. 542 Hachmuth, K. H. 184 Hadley, W. 358 Haggenmacher, J. E. 328 Haigh, N. 905 Hala, E. 330, 338 Hall, R. S. 252 Hall-Taylor, N. S. 710 Hamielee, A. E. 165 Hamner, N. E. 291

| Hanson, 617                            | Incropera, F. P. 634, 636                      |
|----------------------------------------|------------------------------------------------|
| Hanson, D. N. 501, 502, 542, 545, 575  | Irving, J. B. 320                              |
| Happle, J. 242, 250, 265               | Issacs, M. 366                                 |
| Harnby, N. 468                         | 155455, 1.2.                                   |
| Harries, D. P. 296                     |                                                |
|                                        | Jackson, J. 602                                |
| Harrington, P. J. 577                  |                                                |
| Harris, W. J. 285                      | Jacob, L. T. 440                               |
| Hartnell, J. P. 634                    | Jacobs, J. K. 200                              |
| Harvey, J. F. 807                      | James, R. 104, 477                             |
| Hathaway, C. 895                       | Jamieson, D. T. 320                            |
| Haughen, G. R. 338                     | Janie, S. J. 435                               |
| Hay, J. J. 602                         | Jasper, J. J. 334                              |
| Hearn, E. J. 792                       | Jasper, McL. T. 874                            |
| Henglein, F. A. 399, 408, 527          | Jawad, M. H. 792, 807, 836, 866, 870,          |
| Hengstebeck, R. J. 492, 499, 506, 516, | 874, 876, 877                                  |
| 518, 526, 544, 546                     | Jefffeys, G. V. 379, 718                       |
| Henke, G. E. 545                       | Jenike, A. W. 480                              |
|                                        | Jennett, E. 105                                |
| Henley, E. J. 23, 54, 169              | Johnson, A. I. 165                             |
| Henry, B. D. 836                       | Jones, C. T. 4                                 |
| Hepner, I. L. 294, 300                 | Jones, J. B. 232                               |
| Hesler, W. E. 896                      | Jones, R. L. 474                               |
| Hetenyi, M. 807                        | Jordan, D. G. 250, 265                         |
| Hewitt, G. F. 634, 636, 710, 741, 755  | Jordan, D. J. 242, 484                         |
| Heywood, N. 480                        | Josefowitz, S. 334                             |
| Hicks, R. W. 471                       | Jowitt, R. 294                                 |
| Hill, R. F. 296                        | 50 Will, 10. 25 1                              |
| Hilland, A. 304                        |                                                |
| Himmelblau, D. M. 25, 28, 29, 75       | Kaess, D. 895                                  |
| Hinchley, P. 99                        | Kalani, G. 237                                 |
|                                        |                                                |
|                                        | Karman, Von T. 826                             |
| Hiplin, H. G. 341                      | Kayser, D. S. 366                              |
| Hirata, M. 330, 338, 342, 343          | Keey, R. B. 426                                |
| Hirshland, H. E. 474                   | Kehat, E. 165, 167                             |
| Ho, C. Y. 319                          | Keith, F. W. 417                               |
| Hodson, J. R. 565, 568                 | Keller, G. E. 617, 623                         |
| Hoffman, T. N. 165                     | Kelly, R. E. 575, 576                          |
| Holdridge, D. A. 303                   | Kenny, W. F. 97                                |
| Holland, C. D. 520, 542, 544           | Kentish, D. N. W. 217                          |
| Holland, F. A. 107, 200, 265, 468, 477 | Kern, D. Q. 319, 649, 656, 668, 670, 671, 681, |
| Holman, J. P. 634                      | 707, 718, 720, 738, 741, 748, 764, 765, 766,   |
| Holmann, E. C. 117                     | 768                                            |
| Holmes, E. 193, 216, 217               | Kern, R. 200, 895                              |
| Holmes, R. C. 312                      | Kesler, M. G. 341                              |
| Hooper, W. B. 440, 441                 | Keyes, W. L. 310                               |
| • •                                    | Kift, M. H. 137                                |
| • *                                    | Kimla, A. 481                                  |
| Horzella, T. I. 457                    | King, J. C. 492, 499                           |
| Hougen, O. A. 718                      | King, R. 358                                   |
| Houghland, G. S. 577                   | King, R. C. 217                                |
| House, F. F. 895                       | Kirk, R. E. 310                                |
| Howard, W. B. 362                      | Kirkbride, G. G. 526                           |
| Hoyle, R. 212                          | Kister, H. Z. 492, 547, 591, 593, 615          |
| Hsu, Y. 728                            | Klein, L. 903                                  |
| Huang, C. J. 565, 568                  | Kletz, T. A. 359, 379, 388, 389                |
| Hughmark, G. A. 739                    | Klip, A. 739                                   |
| Hullcoop, R. 304                       | Knapp, H. 341                                  |
| Humphrey, J. L. 617, 619, 623          | Knapp, H. 541<br>Knapp, W. G. 597, 598         |
| Hunt, C. 575                           | Kobe, K. A. 69, 335, 349                       |
| Husain, A. 164                         |                                                |
| Hutchinson, A. J. L. 577               | Koch, R. 565                                   |
|                                        | Koch, W. H. 448                                |
| Hutchinson, H. P. 165                  | Kojima, K. 312, 345                            |

Kovat, A. 477
Kraus, A. D. 765, 766
Kraus, M. N. 456
Kreith, F. 634
Kremser, A. 183
Kruzhilin, G. N. 709
Kudchadker, A. P. 335
Kumar, A. 517
Kumar, H. 755
Kutateladze, S. S. 709
Kuzniar, J. 565
Kwauk, M. 18, 19, 501
Kwong, J. N. S. 340

Labrow, S. 870 Lacey, R. E. 432 Lake, G. F. 861, 875 Lamé G. 872 Lamit, L. G. 217 Landels, H. H. 303 Lang, H. J. 249 Langer, B. T. 864, 869 Lapidus, L. 98 Larson, M. A. 438 Lavanchy, A. C. 417, 418 Lavery, K. 366 Lawley, H. G. 379, 388 Lee, B. I. 341 Lee, C. Y. 555 Lee, D. C. 742 Lee, J. 468 Lee, W. 20, 24 Lee, W. C. 707 Lees, F. P. 358, 361, 364, 388, 392 Leesley, M. E. 164, 165 Lenoir, J. M. 341 Lerner, J. E. Leva, M. 603 Lever, D. A. 301 Levy, S. L. 312, 338 Lewis, D. J. 376 Lewis, J. R. 360, 362 Lewis, W. K. 318, 503, 519, 543, 547 Licht, W. 448 Lieberry, F. 310 Liebson, I. 575, 576 Liley, P. E. 319 Linek, J. 338 Linley, J. 413 Linnhoff, B. 98, 107, 111, 118, 120 Lipcombe, D. M. 368 Liu, Y. A. 98 Llewellyn, D. T. 295 Lo 617 Lockett, M. F. 565 Loeb, S. 432 Long, W. 836 LoPinto, L. 720

Lord, R. C. 668

Lorentz, G. 304

Lowe, R. E. 762

Lowenstien, J. G. 556 Lowrance, W. W. 360 Lowrie, R. S. 441 Lowrison, G. C. 463, 466 Ludwig, E. E. 200, 561, 565, 636, 640, 649, 656, 671, 766 Luyben, W. L. 232 Lyda, T. B. 243 Lydersen, A. L. 335 Lyderson, A. L. 337 Lyle, Ö. 304, 899 Lynn, R. E. 335 Lyster, W. N. 520, 544

Maas, J. H. 446 Macfarland, A. 551 MacMichael, D. B. A. 106 Madden, J. 898 Maddox, R. N. 523, 524 Magid, J. 358 Magnussen, T. 345 Mah, S. H. 165 Mahajan, K. K. 854 Mainwarring, S. J. 902 Mais, L. G. 408 Makovitz, R. E. 774 Malleson, J. H. 302 Maloney, J. O. 203, 216, 226, 227, 313, 445, 619, 623, 636, 793, 858 Manning, W. R. D. 870, 874, 876 Markham, A. E. 349 Marshall, D. 479 Marshall, V. C. 364, 463, 464, 466 Marshall, V. O. 848 Masek, J. A. 216, 217 Mason, D. R. 118 Mason, J. C. 176 Masso, A. H. 98 Masters, K. 430 Matheson, G. L. 519, 543 Mathews, J. F. 335 Mathews, T. 366 Matthews, C. W. 401 Maxwell, J. B. 535 Mayfield, F. D. 742 McCabe, W. L. 504 McClain, R. W. McClintock, N. 895 McGarth, R. V. 877 McGregor, W. C. 432 McKetta, J. J. 310 McNaught, J. M. 718 McNaughton, J. 200 Mead, W. J. 399, 408, 424, 474 Meade, A. 477 Meares, P. 432 Mecklenburgh, J. C. 891, 895 Megyesy, E. F. 833, 836, 837, 844, 845 Mehra, Y. R. 616 Mehta, M. 401 Meili, A. 106

Meissner, R. E. 895 Mendoza, V. A. 362 Merims, R. 891 Merrett, A. J. 269 Merrick, R. C. 197 Mersham, A. 435 Micha, K. 481 Michelsen, M. L. 345 Milberger, E. F. 547 Miles, F. D. 100, 146 Miller, R. 97 Miller, S. A. 310 Mills, D. 480 Minton, P. E. 668, 762 Mises, Von R. 874 Mizrahi, J. 441 Moir, D. N. 421 Moore, A. 366 Moore, G. Z. 742 Moore, R. E. 290 Morley, P. G. 366 Morris, B. G. 413, 417 Morris, C. P. 106 Morris, G. A. 602 Moser, F. 107 Moss, A. A. H. 426 Moss, D. R. 792, 836, 837, 845, 854 Mostinski, I. L. 730 Motard, R. L. 165 Mottram, S. 301 Mount, E. 309 Mueller, A. C. 656, 659, 670, 690, 692 Mukherjee, R. 766 Mullin, J. W. 435 Mumford, C. J. 358, 361, 390 Munday, G. 364 Murphree, E. V. 546 Murphy, G. 366 Murphy, J. J. 847 Murril, P. W. 227 Murti, P. S. 739 Mutzenburg, A. B. 433 Myers 468 Myers, A. L. 54

Naess, L. 107
Nagahama, K. 338, 342, 343
Nagata, S. 468, 471, 776
Nagiev, M. F. 169
Naphtali, L. M. 545
Napier, D.H. 365
Neathing, R. F. 792
Neerkin, R. F. 200
Nelson, J. G. 833
Nemhauser, G. L. 29
Nesmeyanov, A. N. 330
Newman, 633
Newman, 633
Newman, S. A. 347
Newton, R. D. 242, 250, 252
Nienow, A. W. 468
Nishida, N. 98

Nolte, C. B. 218 Nonhebel, S. 426, 446, 902 Norman, W. S. 492, 616 Norton, F. H. 304 Null, H. R. 341, 345, 347, 348, 547 Nusselt, W. 707 Nyvlt, J. 435

O'Connell, H. E. 548 O'Donnell, W. J. 864 O'Neal, H. E. 338 Ohe, S. 330, 338, 342, 343 Okumoto, Y. 600 Oldershaw, C. F. 547 Oldshue, J. Y. 474 Oliver, E. D. 492, 499, 544 Olsen, P. I. 547, 597 Onda, K. 600 Orr, C. 408 Othmer, D. F. 310, 312, 334 Owen, R. G. 707 Ozisik, M. N. 634, 636

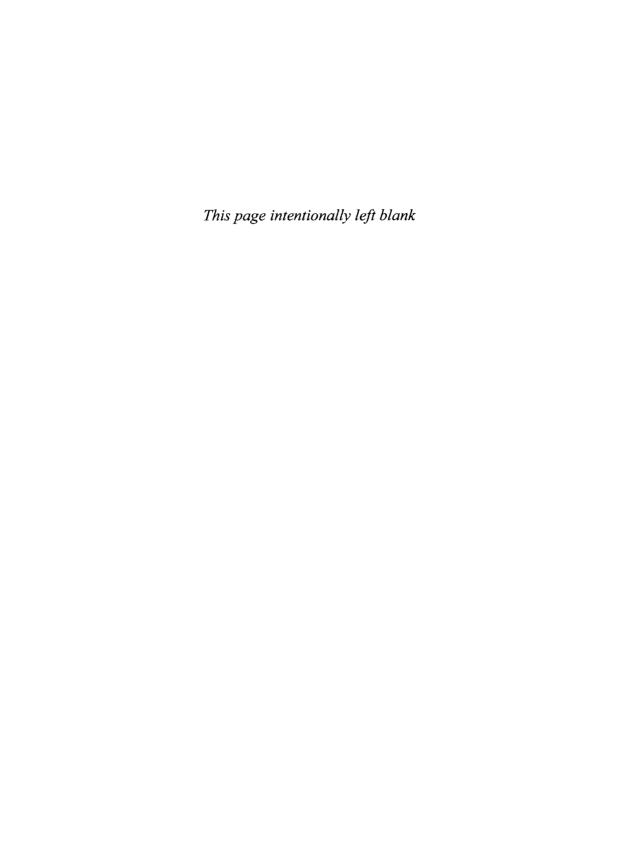
Page, J. S. 242, 252 Palen, J. W. 640, 671, 729, 742, 748, 749 Palmer, K. N. 364 Pantelides, C. C. 165 Parker, D. V. 754 Parker, N. 426, 433 Parker, R. D. 659 Parkins, R. 232 Parkinson, J. S. 366 Parry, C. F. 366 Patel, P. M. 527 Patoczka, J. 904 Patton, B. A. 564 Paul, R. 338 Pearson, G. H. 198 Peckner, D. 297 Peng, D. Y. 341 Penney, N. R. 470 Penny, W. R. 776 Perry, R. H. 101, 203, 216, 217, 226, 227, 291, 294, 313, 348, 399, 408, 419, 424, 435, 445, 446, 466, 474, 619, 623, 636, 649, 710, 770, 793, 858, 863 Peters, M. S. 27, 218, 221 Pickett, D. J. 481 Pieratti, G. J. 345 Pigford, R. L. 546, 596 Pikulik, A. 252

Pigford, R. L. 546, 596
Pikulik, A. 252
Pitlado, R. M. 394
Pitts, F. H. 527
Plocker, U. 341
Polak, J. 338
Poling, B. E. 313, 319, 338, 340, 341, 344, 345
Pollak, F. 477
Polya, G. 4
Pontinen, A. J. 545

| Poole, G. 367 Porter, H. F. 409 Porter, K. E. 718 Porton, J. W. 98 Powell, R. W. 319 Power, R. B. 477 Prabhudesai, R. K. 445 Prasher, C. L. 463 Prausnitz, J. M. 313, 319, 327, 338, 340, 341, 343, 344, 345, 348 Precce, P. E. 137 Prickett, R. D. 739 Pritchard, B. L. 564 Prosser, L. E. 474 Prugh, R. N. 388 Purchas, D. B. 408, 409 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 345 Pasmussen, P. 345, 545 Rasmussen, E. J. 235 Rasmussen, E. J. 235 Rasmussen, E. J. 235 Ragmin, G. D. 340 Redinon, O. C. 443 Redi, C. E. 501 Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345 Reid, R. W. 474 Reid, R. W. 474 Reid, R. W. 474 Reinders, W. 312 Reinners, W. 312 Reinners, W. 312 Reinners, W. 409 Rennie, F. W. 409 Rennie, F. W. 409 Ruiz, C. 866 Rumford, F. 294 Russtol, J. H. 471 Russel, D. A. 365 Russel, J. R. 314 Ryder, G. H. 792 Ryon, A. D. 441 Sandholm, D. P. 545 Santoleri, J. J. 103 Sargent, G. D. 446 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sax, N. I. 360 Sax, N. I. 360 Sax, N. I. 360 Saxman, T. E. 302 Schechter, R. S. 25, 28 Scheiman, A. D. 848 Schettler, P. D. 330, 331 Schlünder, E. U. 634 Schmutzler, A. F. 334 Schmitzler, P. D. 330, 331 Schlünder, E. U. 634 Schmutzler, A. F. 334 Schmitzler, P. D. 330, 331 Schlünder, E. U. 634 Schwitzler, P. D. 350, 303 Schrieder, G. G. 457 Schriotzer, H. 107 Schriott, V. N. 545 Schriotzer, H. 107 Schriott, V. N. 545 Schriotzer, P. A. 283, 291, 399, 408, 432, 435 446 Schwitzer, P. A. 283, 291, 399, 408, 432, 435 Scott, D. 359 Scieder, W. D. 54, 165 Seifert, W. F. 899 Sevens, G. 394 Shacham, M. 165, 167 Shaddock, A. K. 302 Shah, A. N. 578 Shah, M. M. 733 Shannon, P. T. 165                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Porter, H. F. 409 Porter, K. E. 718 Porter, K. E. 718 Powerl, R. W. 319 Powerl, R. B. 477 Prabhudesai, R. K. 445 Prasher, C. L. 463 Prasher, C. L. 463 Precce, P. E. 137 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 303 Sargent, G. D. 446 Sarma, N. V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sax, N. I. 360 Saxman, T. E. 302 Schechter, R. S. 25, 28 Scheiman, A. D. 848 Schettler, P. D. 330, 331 Schlünder, E. U. 634 Schmutzler, A. F. 334 Schmitzler, A. F. 334 Schmitzler, A. F. 334 Schmitzler, H. 107 Schrodt, V. N. 545 Schroeder, T. 413, 487 Schultz, J. M. 84 Scott, D. 340 Redinon, O. C. 443 Reed, C. E. 501 Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345 Redich, O. 340 Redimon, O. C. 443 Reed, C. E. 501 Reid, R. W. 474 Reindeers, W. 312 Reisner, R. 480 Rennie, F. W. 409 Renon, H. 343 Rehain, D. N. 324, 325 Ritter, R. B. 640 Scott, D. 341 Scott, W. D. 54, 165 Seifert, W. F. 899 Sevens, G. 394 Shacham, M. 165, 167 Shaddock, A. K. 302 Shah, A. N. 578 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                   |
| Porter, K. E. 718 Porton, J. W. 98 Powell, R. W. 319 Power, R. B. 477 Prabhudesai, R. K. 445 Prasher, C. L. 463 Prausnitz, J. M. 313, 319, 327, 338, 340, 341, 343, 344, 345, 348 Preece, P. E. 137 Prickett, R. D. 739 Pritchard, B. L. 564 Prosser, L. E. 474 Prugh, R. N. 388 Pryce Bayley, D. 458 Purchas, D. B. 408, 409 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 352 Rabild, E. 291 Raju, K. S. N. 757 Rase, H. F. 10, 481, 483, 484, 891 Rasmussen, E. J. 235 Ray, D. A. 106 Reddy, P. J. 739 Redlich, O. 340 Reddon, O. C. 443 Red, C. E. 501 Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345 Reid, R. W. 474 Reindeers, W. 312 Reiner, R. 480 Rennie, F. W. 409 Renon, H. 343 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Robinson, D. B. 341 Rocha, J. A. 619 Rushton, J. H. 471 Russel, D. A. 365 Russel, D. A. 365 Russel, D. A. 365 Russel, J. R77 Russo, J. T. 895 Rutledge, G. P. 314 Russe, J. T. 895 Rutledge, G. P. 314 Russe, J. T. 895 Rutledge, G. P. 314 Russe, J. T. 895 Rutledge, G. P. 314 Russo, J. T. 895 Rutledge, G. P. 314 Russe, J. T. 895 Rutledge, G. P. 314 Ryder, G. H. 792 Ryon, A. D. 441 Sarpher, J. I. 103 Sargent, G. D. 446 Sarma, N. V. L. S. 739 Rantoleri, J. J. 103 Sargent, G. D. 446 Sarma, N. V. L. S. 739 Santoleri, J. J. 103 Sargent, G. D. 446 Sarma, N. V. L. S. 739 Ryon, A. D. 441 Sarther, G. H. 792 Ryon, A. D. 441 Sarther, G. H. 792 Ryder, A. D. 646 Samma, N. L. 65 Santoler, G. D. 646 Samma, N. V. L. S. 7 |
| Porton, J. W. 98 Powell, R. W. 319 Power, R. B. 477 Prabhudesai, R. K. 445 Prasher, C. L. 463 Prausnitz, J. M. 313, 319, 327, 338, 340, 341, 343, 344, 345, 348 Precee, P. E. 137 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickard, B. L. 564 Prugh, R. N. 388 Pryce Bayley, D. 458 Pryce Bayley, D. 458 Pryce Bayley, D. 458 Prychas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 406 Saxman, T. E. 302 Schechter, R. S. 25, 28 Scheiman, A. D. 848 Schettler, P. D. 330, 331 Schlünder, E. U. 634 Scheiman, A. D. 848 Schettler, P. D. 330, 331 Schlünder, E. U. 634 Scheit, R. W. 474 Rasmussen, P. 345, 545 Reay, D. A. 106 Reddy, P. J. 739 Redlich, O. 340 Redmon, O. C. 443 Reed, C. E. 501 Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345 Reid, R. W. 474 Reindeers, W. 312 Reinders, W. 312 Reinders, R. 480 Rennie, F. W. 409 Rennon, H. 343 Rihani, D. N. 324, 325 Ritter, R. B. 640 Robbins, L. A. 623 Roberts, E. J. 401 Robinson, D. B. 341 Rocha, J. A. 619 Russel, D. A. 365 Russel, D. A. 365 Russel, D. A. 365 Russel, D. A. 365 Russel, D. A. 365 Russel, D. A. 365 Russel, D. A. 365 Russel, D. A. 365 Russel, D. A. 365 Rusled, E. 877 Russo, J. T. 895 Rutledge, G. P. 314 Ryder, G. H. 792 Ryon, A. D. 441 Syder, G. H |
| Powerl, R. W. 319 Power, R. B. 477 Power, R. B. 477 Pashudesai, R. K. 445 Prasher, C. L. 463 Prausnitz, J. M. 313, 319, 327, 338, 340, 341, 343, 344, 345, 348 Preece, P. E. 137 Prickett, R. D. 739 Pritchard, B. L. 564 Prosser, L. E. 474 Prugh, R. N. 388 Pryce Bayley, D. 458 Purchas, D. B. 408, 409 Purchas, D. P. 406 Purchit, G. P. 252  Rabald, E. 291 Raju, K. S. N. 757 Rase, H. F. 10, 481, 483, 484, 891 Rasmussen, E. J. 235 Rasmussen, E. J. 235 Rasmussen, P. 345, 545 Reay, D. A. 106 Reddy, P. J. 739 Redlich, O. 340 Redidh, C. 313, 319, 327, 338, 340, 341, 344, 345 Reid, R. W. 474 Reindeers, W. 312 Reiner, R. 480 Rennie, F. W. 409 Renon, H. 343 Ribani, D. N. 324, 325 Ritter, R. B. 640 Robbins, L. A. 623 Roberts, E. J. 401 Robinson, D. B. 341 Rocha, J. A. 619 Russel, J. 877 Russo, J. T. 895 Rutledge, G. P. 314 Ryder, G. H. 792 Ryon, A. D. 441 Sarder, G. H. 792 Ryon, A. D. 441 Sarder, G. D. 446 Ryder, G. H. 792 Ryon, A. D. 441 Sarder, G. H. 792 Ryon, A. D |
| Power, R. B. 477 Prabhudesai, R. K. 445 Prasher, C. L. 463 Prasnitz, J. M. 313, 319, 327, 338, 340, 341, 343, 344, 345, 348 Preece, P. E. 137 Prickett, R. D. 739 Pritchard, B. L. 564 Prosser, L. E. 474 Prugh, R. N. 388 Pryce Bayley, D. 458 Purchas, D. P. 406 Purohit, G. P. 252  Rabald, E. 291 Raju, K. S. N. 757 Rase, H. F. 10, 481, 483, 484, 891 Rasmussen, E. J. 235 Rasmussen, P. 345, 545 Ready, P. J. 739 Rediich, O. 340 Redmon, O. C. 443 Reid, R. W. 474 Reindeers, W. 312 Reiner, R. 480 Rennie, F. W. 409 Renon, H. 343 Rihani, D. N. 324, 325 Ritter, R. B. 640 Robbins, L. A. 623 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Robinson, D. B. 341 Rocha, J. A. 619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Prabhudesai, R. K. 445 Prasher, C. L. 463 Prasher, C. L. 463 Prausnitz, J. M. 313, 319, 327, 338, 340, 341, 343, 344, 345, 348 Preece, P. E. 137 Prickett, R. D. 739 Pritchard, B. L. 564 Prosser, L. E. 474 Prosser, L. E. 474 Prosser, L. E. 474 Proshable, D. B. 408, 409 Purchas, D. B. 408, 409 Purchas, D. P. 406 Purchais, D. P. 406 Purchia, G. P. 252 Purchas, D. P. 406 Purchia, G. P. 252 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 407 Prosser, L. E. 302 Purchas, D. P. 408, 409 Purchas, D. P. 408 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 407 Prosser, L. E. 302 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 408 Prosser, L. E. 302 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 407 Prosser, L. E. 474 Prosser, L. E. 474 Prosser, L. E. 474 Prosser, L. L. 401 Prosser, L. E. 474 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. E. 474 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 401 Prosser, L. L. 404 Prosser, L. L. 401 Prosser, L. L. 404 Prosser, L. L. 401 Prosser, L. L. 404 Prosser, L. L. 405 Prosser, L. L. 404 Prosser, L. L. 401 Prosser, L. L. 404 Prosser, L. L. 404 Prosser, L. L. 404 Prosser, L. L. 405 Prosser, L. L. 404 Prosser, L. L. 404 Prosser, L. L. 404 Prosser, L. L. 404 Prosser, L. L. 404 Prosser, L. L. 405 Prosser, L. L. 406 Prosser, L. L. 406 Prosser, L. L. 407 Prosser, L. L. 406 Prosser, L. L. 407 Prosser, L. L. 406 Prosser, L. L. 407 Prosser, L. L. 407 Prosser, L. L. 406 |
| Prasher, C. L. 463 Prausnitz, J. M. 313, 319, 327, 338, 340, 341, 343, 344, 345, 348 Precec, P. E. 137 Prickett, R. D. 739 Prichard, B. L. 564 Prosser, L. E. 474 Prugh, R. N. 388 Pryce Bayley, D. 458 Purchas, D. B. 408, 409 Purchas, D. P. 252 Purohit, G. P. 252 Rabald, E. 291 Raju, K. S. N. 757 Rase, H. F. 10, 481, 483, 484, 891 Rasmussen, E. J. 235 Rasmussen, P. 345, 545 Reay, D. A. 106 Reddy, P. J. 739 Redlich, O. 340 Redmon, O. C. 443 Red, C. E. 501 Reid, R. W. 474 Reindeers, W. 312 Reinser, R. 480 Rennie, F. W. 409 Renon, H. 343 Rihani, D. N. 324, 325 Ritter, R. B. 640 Robbins, L. A. 623 Robal, A. M. 1973 Rocha, J. A. 619 Rend, M. M. 733 Rocha, J. A. 619 Rend, M. M. 733 Rocha, J. A. 619 Reyer, G. H. 792 Ryon, A. D. 441 Sarnd, D. A. 41 Samdholm, D. P. 545 Santoleri, J. J. 103 Sargent, G. D. 446 Sarma, N.V. L. S. 739 Sandholm, D. P. 545 Santoleri, J. J. 103 Sargent, G. D. 446 Sarma, N.V. L. S. 739 Sanders, E. A. D. 646, 649, 654, 762 Sax, N. I. 360 Saxman, T. E. 302 Sax, N. I. 360 Saxman, T. E. 302 Sax, N. I. 360 Saxman, T. E. 302 Santholeri, J. J. 103 Sargent, G. D. 446 Sarma, N.V. L. S. 739 Sandholm, D. P. 545 Santoleri, J. J. 103 Sargent, G. D. 446 Sarma, N.V. L. S. 739 Sandholm, D. P. 545 Santoleri, J. J. 103 Sargent, G. D. 446 Sarma, N.V. L. S. 739 Santholeri, J. J. 103 Sargent, G. D. 446 Sarma, N.V. L. S. 739 Santholeri, J. J. 103 Sargent, G. D. 446 Sarma, N.V. L. S. 739 Santholm, D. P. 545 Santoleri, J. J. 103 Sargent, G. D. 446 Sarma, N.V. L. S. 739 Santholm, D. P. 545 Santoleri, J. J. 103 Sargent, G. D. 446 Sarma, N.V. L. S. 739 Santholm, D. P. 545 Santoleri, J. J. 103 Sargent, G. D. 446 Sarma, N.V. L. S. 739 Santholm, N.V. L. S. 739 Santheric, G. D. 446 Sarma, N.V. L. S. 739 Santheric, J. J. 103 Sargent, G. D. 446 Sarma, N.V. L. S. 739 Santheric, J. J. 103 Sargent, G. D. 446 Sarma, N.V. L. S. 739 Santheric, J. J. 103 Sargent, G. D. 446 Sarma, N.V. L. S. 739 Santheric, J. J. 103 Sargent, G. D. 446 Sarma, N.V. L. S. 739 Santheric, L. 646, 649, 654, 762 Santheric, J. J. 103 Sargent, G. D. 446 Sarma, N. |
| Prausnitz, J. M. 313, 319, 327, 338, 340, 341, 343, 344, 345, 348 Precec, P. E. 137 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 739 Prickett, R. D. 744 Prugh, R. N. 388 Pryce Bayley, D. 458 Purchas, D. B. 408, 409 Purchas, D. P. 406 Purchas, D. P. 406 Purchas, D. P. 406 Purohit, G. P. 252 Schechter, R. S. 25, 28 Scheiman, A. D. 848 Schettler, P. D. 330, 331 Schlünder, E. U. 634 Schmutzler, A. F. 334 Schmutzler, A. F. 334 Schmitzler, A. F. 345 Schnitzer, H. 107 Schrodt, V. N. 545 Schroeder, T. 413, 487 Schultz, J. M. 84 Schwitzer, P. A. 283, 291, 399, 408, 432, 435 Add Scott, D. 359 Scott, K. 481 Scott, D. 359 Scott, K. 481 Scott, D. 340 Sedris, A. J. 297 Seider, W. D. 54, 165 Seifert, W. F. 899 Sevens, G. 394 Shacham, M. 165, 167 Shaddock, A. K. 302 Shah, A. M. 578 Shah, A. M. 578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 344, 345, 348 Preece, P. E. 137 Prickett, R. D. 739 Pritchard, B. L. 564 Prosser, L. E. 474 Prugh, R. N. 388 Pryce Bayley, D. 458 Purchas, D. P. 406 Purchas, D. P. 406 Purohit, G. P. 252 Scheiman, A. D. 848 Schettler, P. D. 330, 331 Rabald, E. 291 Raju, K. S. N. 757 Rase, H. F. 10, 481, 483, 484, 891 Rasmussen, P. 345, 545 Reay, D. A. 106 Reddy, P. J. 739 Redlich, O. 340 Reddich, O. 540 Reddich, O. 540 Reddich, O. 540 Reid, R. W. 474 Reindeers, W. 312 Reisner, R. 480 Rennie, F. W. 409 Renon, H. 343 Rihani, D. N. 324, 325 Ritter, R. B. 640 Robbins, L. A. 623 Roberts, E. J. 401 Rocha, J. A. 619 Samdholm, D. P. 545 Santoleri, J. J. 103 Sargent, G. D. 446 Sarma, N.V. L. S. 739 Sangent, G. D. 446 Sarma, N.V. L. S. 739 Sangent, G. D. 446 Sarma, N.V. L. S. 739 Sangent, G. D. 446 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sax, N. I. 360 Saxman, T. E. 302 Schechter, R. S. 25, 28 Scheiman, A. D. 848 Schettler, P. D. 330, 331 Schlünder, E. U. 634 Schmitzer, H. 107 Schimder, G. G. 457 Schnitzer, H. 107 Schridter, V. N. 545 Schrodet, V. N. 545 Schrodet, V. N. 545 Schrodet, V. N. 545 Schweitzer, P. A. 283, 291, 399, 408, 432, 435 446 Scott, D. 359 Scott, K. 481 Scott, R. 243 Scudder, C. M. 874 Seader, J. D. 341 Sedriks, A. J. 297 Seibert 407 Seibert 407 Seibert, W. F. 899 Sevens, G. 394 Shacham, M. 165, 167 Shaddock, A. K. 302 Shah, A. N. 578 Shah, A. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Preece, P. E. 137 Prickett, R. D. 739 Pritchard, B. L. 564 Prosser, L. E. 474 Prugh, R. N. 388 Pryce Bayley, D. 458 Purchas, D. B. 408, 409 Purchas, D. P. 406 Purohit, G. P. 252 Schechter, R. S. 25, 28 Scheiman, A. D. 848 Schettler, P. D. 330, 331 Schlünder, E. U. 634 Scheittler, P. D. 330, 331 Schlünder, E. U. 634 Scheittler, P. D. 330, 331 Schlünder, E. U. 634 Scheittler, P. D. 330, 331 Schlünder, E. U. 634 Scheittler, P. D. 330, 331 Schlünder, E. U. 634 Scheittler, P. D. 330, 331 Schlünder, E. U. 634 Scheittler, P. D. 330, 331 Schlünder, E. U. 634 Scheittler, P. D. 330, 331 Schlünder, E. U. 634 Scheittler, P. D. 330, 331 Schlünder, E. U. 634 Scheittler, P. D. 330, 331 Schlünder, E. U. 634 Schweizler, A. F. 345 Schnitzer, H. 107 Schrizer, H. 107 Schrizer, H. 107 Schrizer, P. A. 283, 291, 399, 408, 432, 435 Schiltz, J. M. 84 Schweitzer, P. A. 283, 291, 399, 408, 432, 435 446 Scott, D. 359 Scott, K. 481 Scott, D. 359 Scott, K. 481 Scott, D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, J. D. 341 Seader, |
| Prickett, R. D. 739 Pritchard, B. L. 564 Prosser, L. E. 474 Prugh, R. N. 388 Pryce Bayley, D. 458 Purchas, D. B. 408, 409 Purchas, D. P. 406 Purohit, G. P. 252  Rabald, E. 291 Raju, K. S. N. 757 Rase, H. F. 10, 481, 483, 484, 891 Rasmussen, E. J. 235 Rasmussen, P. 345, 545 Ready, P. J. 739 Rediich, O. 340 Reddo, C. E. 501 Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345 Reid, R. W. 474 Reindeers, W. 312 Reinne, F. W. 409 Renon, H. 343 Roberts, E. J. 401 Robbins, L. A. 623 Roberts, E. J. 401 Robbins, L. A. 619 Rocha, J. A. 619 Rasmussen, D. B. 341 Rocha, J. A. 619 Randon, M. D. P. 545 Santoleri, J. J. 103 Sargent, G. D. 446 Sargent, G. D. 446 Sargent, R. D. 646, 649, 654, 762 Sargent, R. D. 646, 649, 654, 762 Sargent, R. D. 646, 649, 654, 762 Sargent, R. D. 646, 649, 654, 762 Sargent, R. D. 646, 649, 654, 762 Sargent, G. D. 446 Sargent, R. D. 646, 649, 654, 762 Sargent, G. D. 446 Sargent, R. D. 646, 649, 654, 762 Sargent, G. D. 446 Sargent, R. D. 646, 649, 654, 762 Sargent, C. D. 446 Sargent, R. D. 646, 649, 654, 762 Sargent, R. D. 646, 649, 654, 762 Sargent, R. D. 646, 649, 654, 762 Sargent, R. D. 446 Sargent, R. D. 646, 649, 654, 762 Sargent, C. D. 446 Sargent, R. D. 646, 649, 654, 762 Sargent, R. D. 646, 649, 654, 762 Sargent, R. D. 646, 649, 654, 762 Sargent, R. D. 646, 649, 654, 762 Sargent, R. D. 466 Sarma, N. V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sargent, R. D. 646 Scott, R. S. 25, 28 Scheitler, R. S. 25, 28 Scheitler, R. B. 620 Samana, T. E. Jou 64, 644 Sc |
| Pritchard, B. L. 564 Prosser, L. E. 474 Prugh, R. N. 388 Pryce Bayley, D. 458 Purchas, D. B. 408, 409 Purchas, D. P. 406 Purohit, G. P. 252 Schechter, R. S. 25, 28 Scheiman, A. D. 848 Schettler, P. D. 330, 331 Schlünder, E. U. 634 Scheider, G. G. 457 Schmutzler, A. F. 334 Schneider, G. G. 457 Schneider, G. G. 457 Schrodt, V. N. 545 Reay, D. A. 106 Reddy, P. J. 739 Redlich, O. 340 Redmon, O. C. 443 Reid, R. W. 474 Reindeers, W. 312 Reiders, R. 480 Rennie, F. W. 409 Renon, H. 343 Rihani, D. N. 324, 325 Ritter, R. B. 640 Robinson, C. S. 492, 506, 546 Robinson, C. S. 492, 506, 546 Rocha, J. A. 619 Sargent, G. D. 446 Sargent, G. D. 446 Sargent, G. D. 446 Sargent, G. D. 446 Sargent, G. D. 446 Sargent, G. D. 446 Sargent, G. D. 446 Sargent, G. D. 446 Sargent, G. D. 446 Sargent, G. D. 446 Sargent, G. D. 446 Sargent, G. D. 446 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sarma, N.V. L. S. 739 Saunders, E. J. 90 Saunders, E. J. 90 Saunders, E. J. 90 Saunders, E. J. 90 Saunders, E. J. 90 Saunders, E. J. 90 Saunders, E. J. 90 Saunders, E. J. 90 Saunders, E. J. 90 Saunders, E. J. 90 Saunders, E. J. 90 Saunders, E. J. 90 Saunders, E. J. 90 Saunders, E. J. 90 Saunders, E. J. 90 Saunder, E. J. 90 Saunders, E. J. 90 Saunders, E. J. 90 Saunders, E. J |
| Prosser, L. E. 474 Prugh, R. N. 388 Pryce Bayley, D. 458 Purchas, D. B. 408, 409 Purchas, D. P. 406 Purohit, G. P. 252 Schechter, R. S. 25, 28 Scheiman, A. D. 848 Schettler, P. D. 330, 331 Schlünder, E. U. 634 Schmitzler, A. F. 334 Rase, H. F. 10, 481, 483, 484, 891 Rasmussen, E. J. 235 Rasmussen, P. 345, 545 Reay, D. A. 106 Reddy, P. J. 739 Redlich, O. 340 Redmon, O. C. 443 Red, C. E. 501 Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345 Reid, R. W. 474 Reindeers, W. 312 Reiner, R. 480 Rennie, F. W. 409 Rennie, F. W. 409 Rennie, F. W. 409 Rennie, F. W. 409 Robbins, L. A. 623 Roberts, E. J. 401 Rocha, J. A. 619 Rocha, J. A. 619 Schal, C. Shah, A. N. 578 Shah, M. M. 733 Ragent, G. D. 446 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sarma, N.V. L. S. 739 Saunders, E. A. D. 646, 649, 654, 762 Sax, N. I. 360 Saxman, T. E. 302 Schechter, R. S. 25, 28 Schechter, R. S. 25, 28 Scheiter, P. D. 330, 331 Schlüder, E. U. 634 Scheitler, P. D. 330, 331 Schlünder, E. U. 634 Schmitzler, A. F. 334 Schmitzler, A. F. 334 Schmitzler, A. F. 334 Schweitzer, P. A. 283, 291, 399, 408, 432, 435 Scott, K. 48I Scott, D. 359 Scott, K. 48I Scott, R. 243 Scott, R. 243 Scott, R. 243 Scott, R. 243 Scott, R. 243 Scott, R. 243 Scott, R. 243 Scott, R. 243 Scott, R. 243 Scott, R. 243 Scott, R. 312 Scudder, C. M. 874 Seader, J. D. 341 Schweitzer, P. A. 283, 291, 399, 408, 432, 435 Scott, R. 243 Scott, R. 243 Scott, R. 243 Scott, R. 243 Scott, R. 243 Scott, R. 243 Scott, R. 243 Scott, R. 243 Scott, R. 312 Scott, R. 32 
| Prugh, R. N. 388 Pryce Bayley, D. 458 Purchas, D. B. 408, 409 Purchas, D. P. 406 Purchas, D. P. 406 Purchit, G. P. 252 Schechter, R. S. 25, 28 Scheiman, A. D. 848 Schettler, P. D. 330, 331 Schlünder, E. U. 634 Schmutzler, A. F. 334 Schneider, G. G. 457 Schmutzler, A. F. 334 Schneider, G. G. 457 Schnitzer, H. 107 Schroder, T. 413, 487 Schultz, J. M. 84 Schweitzer, P. A. 283, 291, 399, 408, 432, 435 Redon, O. C. 443 Redo, C. E. 501 Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345 Reid, R. W. 474 Reindeers, W. 312 Reinders, W. 312 Reinder, F. W. 409 Rennie, F. W. 409 Rennie, F. W. 409 Rennie, F. W. 409 Rennie, F. W. 409 Renon, H. 343 Rihani, D. N. 324, 325 Ritter, R. B. 640 Schweitzer, P. A. 283, 291, 399, 408, 432, 435 Scider, C. M. 874 Seader, J. D. 341 Sedriks, A. J. 297 Seider, W. D. 54, 165 Seifert, W. F. 899 Robbins, L. A. 623 Roberts, E. J. 401 Schadock, A. K. 302 Shah, A. N. 578 Shah, A. N. 578 Shah, A. N. 578 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pryce Bayley, D. 458 Purchas, D. B. 408, 409 Purchas, D. P. 406 Purchit, G. P. 252 Schechter, R. S. 25, 28 Scheiman, A. D. 848 Schettler, P. D. 330, 331 Schlünder, E. U. 634 Schneider, E. J. 235 Schlitzer, P. A. 283, 291, 399, 408, 432, 435 446 Scott, D. 359 Scott, K. 481 Scott, R. 243 Scudder, C. M. 874 Seader, J. D. 341 Sedriks, A. J. 297 Seibert 407 Shaddock, A. K. 302 Shah, A. N. 578 Shah, A. N. 578 Shah, A. N. 578 Shah, A. N. 578 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Purchas, D. B. 408, 409 Purchas, D. P. 406 Purchas, D. P. 406 Purchit, G. P. 252 Schechter, R. S. 25, 28 Scheiman, A. D. 848 Schettler, P. D. 330, 331 Rabald, E. 291 Raju, K. S. N. 757 Rase, H. F. 10, 481, 483, 484, 891 Rasmussen, E. J. 235 Rasmussen, P. 345, 545 Reay, D. A. 106 Reddy, P. J. 739 Redlich, O. 340 Reddich, O. 340 Reddich, O. 340 Reddich, C. 313, 319, 327, 338, 340, 341, 344, 345 Reid, R. W. 474 Reindeers, W. 312 Reindeers, W. 312 Reinneers, W. 409 Renon, H. 343 Rennie, F. W. 409 Renon, H. 343 Rihani, D. N. 324, 325 Ritter, R. B. 640 Robbins, L. A. 623 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Rocha, J. A. 619 Sax, N. I. 360 Saxman, T. E. 302 Sax, N. I. 360 Saxman, T. E. 302 Sax, N. I. 360 Saxman, T. E. 302 Schechter, R. S. 25, 28 Scheiman, A. D. 848 Scheitler, P. D. 330, 331 Schlünder, E. U. 634 Schmitzler, A. F. 334 Schmitzler, A. F. 364 Schmitzler, A. F. 364 Schmitzler, A. F. 364 Schmitzler, A. F. 37 Schritzler, A. F. 334 Schmitzler, A. F. 354 Schmitzler, A. F. 340 Schmitzler, A. F. 340 Schmitzler, A. F. 340 Schmitzler, A. F. 340 Schmitzler, A. F. 340 Schmitzler, A. F. 340 Schmitzler, A. F. 340 Schmitzler, A. F. 340 Schmitzler, A. F. 340 Schmitzler, A. F. 340 Schmitzler, A. F. 340 Schmitzler, A. F. 340 Schmitzler, A. F. 340 Schmitzler, A. F. 340 Schmitzler, A. F. 340 Schmitzler, A. F. 340 Schmitzler, A. F. 340 Schmitzler, A. F. 340 Schmitzler, A. F. 340 Schmitzle |
| Purchas, D. P. 406 Purohit, G. P. 252 Schechter, R. S. 25, 28 Scheiman, A. D. 848 Schettler, P. D. 330, 331 Schlünder, E. U. 634 Schmutzler, A. F. 334 Schmutzler, A. F. 334 Schmutzler, A. F. 334 Schmutzler, A. F. 334 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schrodt, V. N. 545 Schrodt, V. N. 545 Schrodt, V. N. 545 Schrodt, V. N. 545 Schrodter, C. G. 457 Schnitzer, H. 107 Schrodt, V. N. 545 Schrodter, T. 413, 487 Scheider, G. G. 457 Schrodt, V. N. 545 Schrodter, T. 413, 487 Schnitzer, H. 107 Schrodter, T. 413, 487 Schultz, J. M. 84 Schweitzer, P. A. 283, 291, 399, 408, 432, 435 446 Scott, D. 359 Scott, K. 481 Scott, R. 243 Scudder, C. M. 874 Seader, J. D. 341 Sedriks, A. J. 297 Seibert 407 Seibert 407 Seibert, W. F. 899 Scotts, E. J. 401 Schringer, W. D. 54, 165 Seifert, W. F. 899 Schechter, R. S. 25, 28 Schechter, R. S. 25, 28 Scheiman, A. D. 848 Scheitler, R. D. 330, 331 Schlünder, E. U. 634 Schmutzler, A. F. 334 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitze |
| Purohit, G. P. 252  Rabald, E. 291  Rabald, E. 291  Raju, K. S. N. 757  Rase, H. F. 10, 481, 483, 484, 891  Rasmussen, E. J. 235  Rasmussen, P. 345, 545  Redy, P. J. 739  Redlich, O. 340  Reddy, P. J. 739  Redlich, C. 313, 319, 327, 338, 340, 341, 344, 345  Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345  Reid, R. W. 474  Reindeers, W. 312  Reinne, F. W. 409  Renne, F. W. 409  Rebert, E. U. 634  Schmutzler, A. F. 334  Schmitzer, H. 107  Schnitzer, H. 107  Schrodt, V. N. 545  Schroeder, T. 413, 487  Schweitzer, P. A. 283, 291, 399, 408, 432, 435  446  Scott, C. 313, 319, 327, 338, 340, 341, 344, 345  Scott, R. 243  Scudder, C. M. 874  Seader, J. D. 341  Sedriks, A. J. 297  Seibert 407  Seibert 407  Seifert, W. F. 899  Sobbins, L. A. 623  Roberts, E. J. 401  Robinson, C. S. 492, 506, 546  Robinson, D. B. 341  Scoth, A. R. 302  Shah, A. N. 578  Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rabald, E.       291       Scheitler, P. D.       330, 331         Raju, K. S. N.       757       Schlünder, E. U.       634         Rase, H. F.       10, 481, 483, 484, 891       Schneider, G. G.       457         Rasmussen, E. J.       235       Schneider, G. G.       457         Rasmussen, P.       345, 545       Schrodt, V. N.       545         Reay, D. A.       106       Schroeder, T.       413, 487         Reddich, O.       340       Schultz, J. M.       84         Redmon, O. C.       443       Schultz, J. M.       84         Red, R. C.       313, 319, 327, 338, 340, 341, 344, 345       Scott, D.       359         Reid, R. W.       474       Scott, D.       359         Reindeers, W.       312       Scott, K.       481         Reinner, R.       480       Seader, J. D.       341         Rennie, F. W.       409       Sedriks, A. J.       297         Renon, H.       343       Seider, W. D.       54, 165         Ritter, R. B.       640       Seifert, W. F.       899         Robotinson, C. S.       492, 506, 546       Shaddock, A. K.       302         Robinson, D. B.       341       Shab, A. N.       578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Schettler, P. D. 330, 331 Rabald, E. 291 Raju, K. S. N. 757 Rase, H. F. 10, 481, 483, 484, 891 Rasmussen, E. J. 235 Rasmussen, P. 345, 545 Reay, D. A. 106 Reddy, P. J. 739 Redlich, O. 340 Redmon, O. C. 443 Reed, C. E. 501 Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345 Reid, R. W. 474 Reindeers, W. 312 Reisner, R. 480 Rennie, F. W. 409 Renon, H. 343 Rihani, D. N. 324, 325 Ritter, R. B. 640 Robbins, L. A. 623 Roberts, E. J. 401 Rocha, J. A. 619 Reshard, Schwitzer, P. D. 334 Schmutzler, A. F. 334 Schmitzer, H. 107 Schnitzer, H. 107 Schroder, T. 413, 487 Schoetter, P. A. 283, 291, 399, 408, 432, 435 Schweitzer, P. A. 283, 291, 399, 408, 432, 435 Scott, D. 359 Scott, K. 481 Scott, R. 243 Scott, R. 243 Scott, R. 243 Scider, C. M. 874 Seader, J. D. 341 Sedriks, A. J. 297 Seibert 407 Seider, W. D. 54, 165 Seifert, W. F. 899 Sevens, G. 394 Roberts, E. J. 401 Shacham, M. 165, 167 Shaddock, A. K. 302 Robinson, D. B. 341 Schab, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Rabald, E. 291 Raju, K. S. N. 757 Rasmussen, E. J. 0, 481, 483, 484, 891 Rasmussen, P. 345, 545 Reay, D. A. 106 Reddy, P. J. 739 Redlich, O. 340 Redmon, O. C. 443 Reed, C. E. 501 Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345 Reindeers, W. 312 Reisner, R. 480 Rennie, F. W. 409 Renon, H. 343 Rihani, D. N. 324, 325 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Rocha, J. A. 619 Ressen, R. 480 Rocha, J. A. 619 Robinson, D. B. 341 Rocha, J. A. 619 Rocha, J. A. 619 Schlüder, E. U. 634 Schmutzler, A. F. 334 Schmitzler, H. G. 634 Schmitzler, H. G. 634 Schmitzler, A. F. 334 Schmitzler, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schnitzer, H. 107 Schrodt, V. N. 545 Schrodt, V. N. 545 Schrode, T. 413, 487 Schultz, J. M. 84 Schweitzer, P. A. 283, 291, 399, 408, 432, 435 446 Scott, D. 359 Scott, K. 481 Scott, R. 243 Scudder, C. M. 874 Seader, J. D. 341 Sedriks, A. J. 297 Seibert 407 Seider, W. D. 54, 165 Seifert, W. F. 899 Sevens, G. 394 Shacham, M. 165, 167 Shaddock, A. K. 302 Shah, A. N. 578 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Raju, K. S. N. 757 Rase, H. F. 10, 481, 483, 484, 891 Rasmussen, E. J. 235 Rasmussen, P. 345, 545 Reay, D. A. 106 Reddy, P. J. 739 Redlich, O. 340 Redmon, O. C. 443 Reed, C. E. 501 Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345 Reid, R. W. 474 Reindeers, W. 312 Reisner, R. 480 Rennie, F. W. 409 Renon, H. 343 Rihani, D. N. 324, 325 Ritter, R. B. 640 Robbins, L. A. 623 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Rocha, J. A. 619 Resmussen, P. 345, 545 Schmutzler, A. F. 334 Schneider, G. G. 457 Schnitzer, H. 107 Schrodt, V. N. 545 Schroeder, T. 413, 487 Schultz, J. M. 84 Schweitzer, P. A. 283, 291, 399, 408, 432, 435 Scott, D. 359 Scott, D. 359 Scott, K. 481 Scott, R. 243 Scudder, C. M. 874 Seader, J. D. 341 Seibert 407 Seider, W. D. 54, 165 Seifert, W. F. 899 Sevens, G. 394 Shacham, M. 165, 167 Shaddock, A. K. 302 Shah, A. N. 578 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rase, H. F. 10, 481, 483, 484, 891 Rasmussen, E. J. 235 Rasmussen, P. 345, 545 Reay, D. A. 106 Reddy, P. J. 739 Redlich, O. 340 Redmon, O. C. 443 Reed, C. E. 501 Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345 Reid, R. W. 474 Reindeers, W. 312 Reisner, R. 480 Rennie, F. W. 409 Renon, H. 343 Rihani, D. N. 324, 325 Ritter, R. B. 640 Robbins, L. A. 623 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Rocha, J. A. 619 Resemussen, R. 480 Renon, B. 341 Rocha, J. A. 619 Schneider, G. G. 457 Schnitzer, H. 107 Schrodt, V. N. 545 Schroeder, T. 413, 487 Schultz, J. M. 84 Schultz, J. M. 84 Schultz, J. M. 84 Schultz, J. M. 84 Schultz, J. M. 84 Schultz, J. M. 84 Scott, D. 359 Scott, K. 481 Scott, R. 243 Scudder, C. M. 874 Seader, J. D. 341 Sedriks, A. J. 297 Seider, W. D. 54, 165 Seifert, W. F. 899 Sevens, G. 394 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rasmussen, E. J. 235 Rasmussen, P. 345, 545 Reay, D. A. 106 Reddy, P. J. 739 Redlich, O. 340 Redmon, O. C. 443 Reed, C. E. 501 Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345 Reid, R. W. 474 Reindeers, W. 312 Reisner, R. 480 Rennie, F. W. 409 Rennie, F. W. 409 Rennon, H. 343 Rihani, D. N. 324, 325 Ritter, R. B. 640 Robbins, L. A. 623 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Rocha, J. A. 619 Ready, D. A. 107 Schrodt, V. N. 545 Schroeder, T. 413, 487 Schultz, J. M. 84 Schweitzer, P. A. 283, 291, 399, 408, 432, 435 Scott, K. 481 Scott, R. 243 Scott, R. 243 Scudder, C. M. 874 Seader, J. D. 341 Sedriks, A. J. 297 Seider, W. D. 54, 165 Seifert, W. F. 899 Sevens, G. 394 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Shaddock, A. K. 302 Robinson, D. B. 341 Scott, R. 302 Shah, A. N. 578 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Rasmussen, P. 345, 545 Reay, D. A. 106 Reddy, P. J. 739 Redlich, O. 340 Redmon, O. C. 443 Reed, C. E. 501 Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345 Reindeers, W. 312 Reinneers, W. 312 Reinne, F. W. 409 Rennie, F. W. 409 Rennie, F. W. 409 Rennon, H. 343 Rihani, D. N. 324, 325 Ritter, R. B. 640 Robbins, L. A. 623 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Robcha, J. A. 619 Reddy, V. N. 545 Schrodt, V. N. 545 Schultz, J. M. 84 Schweitzer, P. A. 283, 291, 399, 408, 432, 435  Scott, D. 359 Scott, R. 243 Scudder, C. M. 874 Seader, J. D. 341 Sedriks, A. J. 297 Seibert 407 Seibert 407 Seibert, W. F. 899 Sevens, G. 394 Shacham, M. 165, 167 Shaddock, A. K. 302 Shah, A. N. 578 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Reay, D. A. 106 Reddy, P. J. 739 Redlich, O. 340 Redmon, O. C. 443 Reed, C. E. 501 Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345 Reid, R. W. 474 Reindeers, W. 312 Reinne, F. W. 409 Rennie, F. W. 409 Renon, H. 343 Rihani, D. N. 324, 325 Ritter, R. B. 640 Robbins, L. A. 623 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Robcha, J. A. 619 Reddy, P. J. 739 Schroeder, T. 413, 487 Schultz, J. M. 84 Schweitzer, P. A. 283, 291, 399, 408, 432, 435 Scott, D. 359 Scott, K. 481 Scott, R. 243 Scudder, C. M. 874 Seader, J. D. 341 Sedriks, A. J. 297 Seibert 407 Seibert 407 Seifert, W. F. 899 Sevens, G. 394 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Shaddock, A. K. 302 Robinson, D. B. 341 Scott, R. 302 Shah, A. N. 578 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Reddy, P. J. 739 Redlich, O. 340 Redmon, O. C. 443 Reed, C. E. 501 Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345 Reid, R. W. 474 Reindeers, W. 312 Reisner, R. 480 Rennie, F. W. 409 Renon, H. 343 Rihani, D. N. 324, 325 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Robinson, D. B. 341 Rocha, J. A. 619  Schultz, J. M. 84 Schweitzer, P. A. 283, 291, 399, 408, 432, 435 446 Scott, D. 359 Scott, K. 481 Scott, R. 243 Scudder, C. M. 874 Seader, J. D. 341 Sedriks, A. J. 297 Seibert 407 Seider, W. D. 54, 165 Seifert, W. F. 899 Sevens, G. 394 Shacham, M. 165, 167 Shaddock, A. K. 302 Shah, A. N. 578 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Redlich, O. 340 Redmon, O. C. 443 Reed, C. E. 501 Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345 Reid, R. W. 474 Reindeers, W. 312 Reinne, F. W. 409 Rennie, F. W. 409 Renon, H. 343 Rihani, D. N. 324, 325 Robbins, L. A. 623 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Rocha, J. A. 619  Schweitzer, P. A. 283, 291, 399, 408, 432, 435 446 Scott, D. 359 Scott, K. 481 Scott, R. 243 Scudder, C. M. 874 Seader, J. D. 341 Sedriks, A. J. 297 Seibert 407 Seibert 407 Seifert, W. F. 899 Sevens, G. 394 Shacham, M. 165, 167 Shaddock, A. K. 302 Shah, A. N. 578 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Redmon, O. C. 443 Reed, C. E. 501 Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345 Reid, R. W. 474 Reindeers, W. 312 Reinsner, R. 480 Rennie, F. W. 409 Renon, H. 343 Rihani, D. N. 324, 325 Ritter, R. B. 640 Robbins, L. A. 623 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Rocha, J. A. 619 Redmon, O. C. 443 Scott, D. 359 Scott, K. 481 Scott, R. 243 Scudder, C. M. 874 Seader, J. D. 341 Seader, J. D. 341 Seibert 407 Seider, W. D. 54, 165 Seifert, W. F. 899 Sevens, G. 394 Shacham, M. 165, 167 Shaddock, A. K. 302 Shah, A. N. 578 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Reed, C. E. 501 Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345 Reid, R. W. 474 Reindeers, W. 312 Reisner, R. 480 Rennie, F. W. 409 Rennie, F. W. 409 Renon, H. 343 Rihani, D. N. 324, 325 Ritter, R. B. 640 Robbins, L. A. 623 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Roberts, C. M. 874 Seader, J. D. 341 Seader, J. D. 341 Seibert 407 Seider, W. D. 54, 165 Seifert, W. F. 899 Robbins, L. A. 623 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Robinson, D. B. 341 Shacham, M. 165, 167 Shaddock, A. K. 302 Robinson, D. B. 341 Shah, A. N. 578 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Reid, R. C. 313, 319, 327, 338, 340, 341, 344, 345 Reid, R. W. 474 Reindeers, W. 312 Reisner, R. 480 Rennie, F. W. 409 Renon, H. 343 Rihani, D. N. 324, 325 Ritter, R. B. 640 Robbins, L. A. 623 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Robinson, D. B. 341 Rocha, J. A. 619 Rocha, J. A. 619 Scott, K. 481 Scott, K. 481 Scott, R. 481 Scott, R. 243 Scudder, C. M. 874 Seader, J. D. 341 Sedriks, A. J. 297 Seider, W. D. 54, 165 Seifert, W. F. 899 Sevens, G. 394 Shacham, M. 165, 167 Shaddock, A. K. 302 Shah, A. N. 578 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Reid, R. W. 474 Reindeers, W. 312 Scudder, C. M. 874 Reisner, R. 480 Seader, J. D. 341 Rennie, F. W. 409 Sedriks, A. J. 297 Renon, H. 343 Rihani, D. N. 324, 325 Seider, W. D. 54, 165 Ritter, R. B. 640 Robbins, L. A. 623 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Robinson, D. B. 341 Shah, A. N. 578 Rocha, J. A. 619 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Reindeers, W. 312 Reisner, R. 480 Seader, J. D. 341 Rennie, F. W. 409 Sedriks, A. J. 297 Renon, H. 343 Rihani, D. N. 324, 325 Ritter, R. B. 640 Robbins, L. A. 623 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Robinson, D. B. 341 Rocha, J. A. 619 Schadder, C. M. 874 Seader, J. D. 341 Seider, W. D. 54, 165 Seifert, W. F. 899 Sevens, G. 394 Roberts, E. J. 401 Shacham, M. 165, 167 Shaddock, A. K. 302 Robinson, D. B. 341 Shah, A. N. 578 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Reisner, R. 480  Rennie, F. W. 409  Renon, H. 343  Rihani, D. N. 324, 325  Ritter, R. B. 640  Robbins, L. A. 623  Roberts, E. J. 401  Robinson, C. S. 492, 506, 546  Robinson, D. B. 341  Rocha, J. A. 619  Seader, J. D. 341  Seider, W. D. 54, 165  Seider, W. D. 54, 165  Seifert, W. F. 899  Sevens, G. 394  Shacham, M. 165, 167  Shaddock, A. K. 302  Robinson, D. B. 341  Shacham, M. 578  Shah, A. N. 578  Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Rennie, F. W. 409 Renon, H. 343 Rihani, D. N. 324, 325 Robbins, L. A. 623 Roberts, E. J. 401 Robinson, C. S. 492, 506, 546 Robinson, D. B. 341 Rocha, J. A. 619 Rocha, J. A. 619 Sedriks, A. J. 297 Seibert 407 Seibert 407 Seider, W. D. 54, 165 Seifert, W. F. 899 Sevens, G. 394 Shacham, M. 165, 167 Shaddock, A. K. 302 Robinson, D. B. 341 Shacham, M. 578 Shah, A. N. 578 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Renon, H. 343 Rihani, D. N. 324, 325 Seider, W. D. 54, 165 Ritter, R. B. 640 Seifert, W. F. 899 Robbins, L. A. 623 Roberts, E. J. 401 Shacham, M. 165, 167 Robinson, C. S. 492, 506, 546 Robinson, D. B. 341 Shah, A. N. 578 Rocha, J. A. 619 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rihani, D. N. 324, 325  Ritter, R. B. 640  Robbins, L. A. 623  Roberts, E. J. 401  Robinson, C. S. 492, 506, 546  Robinson, D. B. 341  Rocha, J. A. 619  Seider, W. D. 54, 165  Seifert, W. F. 899  Sevens, G. 394  Shacham, M. 165, 167  Shaddock, A. K. 302  Shah, A. N. 578  Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ritter, R. B. 640  Robbins, L. A. 623  Roberts, E. J. 401  Robinson, C. S. 492, 506, 546  Robinson, D. B. 341  Rocha, J. A. 619  Seifert, W. F. 899  Sevens, G. 394  Shacham, M. 165, 167  Shaddock, A. K. 302  Shah, A. N. 578  Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Robbins, L. A. 623       Sevens, G. 394         Roberts, E. J. 401       Shacham, M. 165, 167         Robinson, C. S. 492, 506, 546       Shaddock, A. K. 302         Robinson, D. B. 341       Shah, A. N. 578         Rocha, J. A. 619       Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Roberts, E. J. 401       Shacham, M. 165, 167         Robinson, C. S. 492, 506, 546       Shaddock, A. K. 302         Robinson, D. B. 341       Shah, A. N. 578         Rocha, J. A. 619       Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Robinson, C. S. 492, 506, 546       Shaddock, A. K. 302         Robinson, D. B. 341       Shah, A. N. 578         Rocha, J. A. 619       Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Robinson, D. B. 341 Shah, A. N. 578<br>Rocha, J. A. 619 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Rocha, J. A. 619 Shah, M. M. 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rogowski, Z. W. 362 Sharland, I. 368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Rohsenow, W. M. 634, 728 Shaw, R. 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Rose, A. 545 Shaw, S. J. 394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Rose, H. E. 446, 457 Shelley, S. 896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Rose, L. M. 164 Shelton, D. C. 895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Rose, R. T. 861 Sherwood, D. R. 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Rosen, E. M. 23, 54, 169 Sherwood, T. K. 546, 596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Rosenzwieg, M. D. 467 Shih, C. C. 742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ross, T. K. 283 Shinskey, F. G. 227, 232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Rossheim, D. B. 861 Shreve, R. N. 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Rothe, M. E. 480 Shunta, J. P. 232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Rousar, I. 481 Sieder, E. N. 663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rowe, D. 299 Sigmund, P. M. 551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rubin, F. L. 694, 766 Signales, B. 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Rubin, L. C. 340 Siirola, J. J. 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Rudd, D. F. 5, 20, 24, 25, 29, 98 Silver, L. 718, 719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ruff, C. 304 Silverman, D. 899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### **AUTHOR INDEX**

| Simpson, D. 361                                | Taborek, J. 640, 671, 707, 713, 729, 742, 748    |
|------------------------------------------------|--------------------------------------------------|
| Simpson, L. L. 200, 218                        | Takeuchi, H. 600                                 |
| Simpson, W. G. 361                             | Tang, S. S. 836                                  |
| Singh, J. 101                                  | Tate, G. E. 663                                  |
| Singh, K. P. 654, 792, 860, 866                | Tatterson, G. B. 468                             |
|                                                | Tausk, P. 70, 313, 468                           |
| Skellene, K. R. 742                            | Taylor, A. C. 368                                |
| Slusser, R. P. 668                             | Taylor, J. H. 248, 861                           |
| Small, W. M. 748, 749                          | Thiele, E. W. 504, 544                           |
| Smith, B. D. 19, 492, 499, 516, 522, 523, 542, |                                                  |
| 544, 552, 555, 561                             | Thomas, W. J. 444, 578                           |
| Smith, E. 197                                  | Thome, J. R. 720, 728                            |
| Smith, N. 477                                  | Thrift, C. 564                                   |
| Smith, R. 120, 517                             | Timmerhaus, K. D. 27, 218, 221                   |
| Smith, W. T. 314                               | Timoshenko, S. 792, 826, 831                     |
| Smoker, E. H. 511                              | Timperley, D. A. 294                             |
| Smolensky, J. F. 362                           | Tinker, T. 668, 670                              |
| Snyder, N. H. 742                              | Tochigi, K. 345                                  |
| Soave, G. 340                                  | Tomkins, A. G. 103                               |
|                                                | Tongue, H. 870                                   |
| Sohnel, O. 435                                 | Toor, H. L. 548                                  |
| Soler, A. I. 654, 792, 860, 866                | Tortorella, A. J. 895                            |
| Somerville, G. F. 501, 502, 542, 545           | Touloukian, Y. S. 311                            |
| Sorel, E. 502                                  | Townsend, D. W. 107, 120                         |
| Sorensen, J. M. 619                            | Treybal, R. E. 345, 546, 596, 617, 619, 621, 623 |
| Souders, M. 315                                | Tribus, M. 730                                   |
| Southwell, R. V. 823                           | Trilling, D. C. 822                              |
| Spackman, R. 468                               | Trom, L. 754                                     |
| Spiegel, P. J. 457                             | Trouton, F. T. 327                               |
| Spiers, H. M. 142                              | Trowbridge, M. E. O'K. 416                       |
| Spires, G. L. 636, 741, 755                    | Tsederberg, N. V. 319                            |
| Squires, L. 318                                | Tsien, H. S. 826                                 |
| Stairmand, C. J. 448, 451                      |                                                  |
| Stantiland, C. J. 440, 451                     | Tudhope, J. S. 320                               |
| Steinkopff, T. 74                              | Turner, M. 297                                   |
| Steinmeyer, D. E. 720                          |                                                  |
| Stepanoff, A. J. 480                           | III W W 400 470 470 770                          |
| Stephens, M. B. 137                            | Uhl, W. W. 468, 472, 473, 776                    |
| Stephenson, R. M. 146, 310, 338                | Uhlig H. H. 283                                  |
| Sterbacek, Z. 70, 313, 468                     | Ulrich, G. D. 252                                |
| Sternling, C. V. 742                           | Underwood, A. J. V. 525                          |
| Stevens, G. 394                                | Urbaniec, K. 27, 29                              |
| Stoecker, W. F. 25, 27, 28, 29                 | Usher, J. D. 755                                 |
| Stout, E. 303                                  |                                                  |
| Straitz, J. F. 362                             |                                                  |
| Strauss, N. 446, 448, 457                      | Valle-Riestra, J. F. 265, 269                    |
| Strauss, W. 902                                | Van Edmunds, S. 741                              |
|                                                | Van Hook, A. 435                                 |
| Stravenger, P. 401                             | Van Winkle, M. 546, 551                          |
| Stread, C. W. 341                              | Veatch, F. 547                                   |
| Street, G. 741                                 | Vela, M. A. 184                                  |
| Strelzoff, S. 146                              | Verburg, H. 560                                  |
| Strigle, R. F. 587, 591                        | Vilbrandt, F. C. 891                             |
| Sugden, S. 334, 335                            | Vital, T. J. 547, 597                            |
| Sullivan, S. L. 520, 544                       | Vivian, B. E. 197                                |
| Sutherland, K. S. 414                          | 111tan, B. E. 151                                |
| Suttle, H. K. 408                              |                                                  |
| Suziki, M. 444                                 | Wakeman, R. J. 406, 408                          |
| Svarovsky, L. 406, 421                         | Walas, S. M. 200, 209, 340, 341, 344,            |
| Swanson, A. C. 322                             |                                                  |
| Swanson, R. W. 547                             | 399, 445<br>Wolch P 338                          |
| Swearingen, J. S. 104, 477                     | Walsh, R. 338                                    |
|                                                | Walsh, T. J. 577                                 |
| Sweeney, R. F. 545                             | Walton, A. K. 401                                |
| Sykes, A. 269                                  | Wang, J. C. 545                                  |
|                                                |                                                  |


#### **AUTHOR INDEX**

| Wang, S. L. 338                                                       |
|-----------------------------------------------------------------------|
| Ward, D. J. 718                                                       |
| Warde, E. 297                                                         |
| Wardle, I. 118                                                        |
| Warring, R. H. 368, 477                                               |
| Waterman, L. L. 443                                                   |
| Waters, E. O. 861                                                     |
| Watkin, A. T. 904                                                     |
| Waters, E. O. 861<br>Watkin, A. T. 904<br>Watson, C. C. 5, 24, 25, 29 |
| Watson, F. A. 265                                                     |
| Watson, K. M. 328                                                     |
| Webb, G. B. 340                                                       |
| Webb, R. L. 733                                                       |
| Webber, W. D. 765                                                     |
| Weber, H. F. 320                                                      |
| Webster, G. R. 215                                                    |
| Weightman, M. E. 104, 477                                             |
| Weil, N. A. 847                                                       |
| Weisert, E. D. 298                                                    |
| Weissermal, K. 310                                                    |
| Wells, A. A. 286                                                      |
| Wells, G. L. 5, 27, 29, 164, 358, 379, 388, 390,                      |
| 392                                                                   |
| Wentz, C. A. 902                                                      |
| Werner, R. R. 321                                                     |
| Wessel, H. E. 264                                                     |
| Wesstrom, D. B. 861                                                   |
| Westerburg, A. W. 165                                                 |
| Westlake, J. R. 176                                                   |
| Westwater, J. W. 728, 730                                             |
| Whitaker, R. 896                                                      |
| White, S. L. 349                                                      |
| Whitehouse, J. J. 393                                                 |
| Wichterle, I. 338                                                     |
| Wigley, D. A. 286                                                     |
| Wilcon, R. F. 349                                                     |
| Wilde, D. J. 25                                                       |
| Wilke, C. R. 332, 546, 555, 575, 596                                  |

Wilkinson, J. K. 265 Wilkinson, W. L. 471, 776 Williams, F. S. G. 861 Williams, N. 29 Williams-Gardener, A. 426 Wills, C. M. R. 877 Wilson, G. M. 341 Wilson, G. T. 248 Wimpress, N. 768, 770 Windenburg, D. F. 822 Winfield, M. D. 252 Winn, F. W. 525 Winter, P. 165 Wolosewick, F. E. 854 Wood, A. J. 446, 457 Wood, W. S. 358 Woods, D. R. 165 Wright, D. C. 300, 302

Yang, R. T. 444
Yarden, A. 742, 748
Yaws, C. L. 527
Yilmaz, S. B. 739, 742
York, O. H. 458
York, R. 312
Yorkell, S. 793
Young, C. L. 345
Young, D. H. 792
Young, E. H. 765, 816, 825, 833, 844, 845, 848, 854, 877

Zanker, A. 421, 422 Zick, L. P. 844, 877 Zuber, N. 729, 730 Zuiderweg, F. J. 560, 565 Zwolinsk, B. J. 335



# Subject Index

| Absorption 587                                     | Bag filters 456                                                                      |
|----------------------------------------------------|--------------------------------------------------------------------------------------|
| Acceptable corrosion rates 287                     | Balancing chemical equations 36                                                      |
| Acceptable risk, and safety priorities 388         | Ball valve 197                                                                       |
| Accuracy required, of engineering data 311         | Bar, pressure unit 14                                                                |
| Acetone manufacture 172                            | Bara 14                                                                              |
| Acid-resistant bricks and tiles 303                | Barg 14                                                                              |
| Activity coefficient:                              | Barrels 14                                                                           |
| correlations for 341                               | Base rings, skirt supports 847                                                       |
| liquid 339                                         | Basis for calculations 40                                                            |
| prediction of 344                                  | Batch distillation 546                                                               |
| Adiabatic expansion and compression 61             | control of 234                                                                       |
| Adsorption 444                                     | Batch processes 7                                                                    |
| Agitated vessels:                                  | vs continuous processing 7                                                           |
| heat transfer 775                                  | Batch reactors 481-2                                                                 |
| power requirements 471                             | Battery limits, definition of 251                                                    |
| Agitation nozzles, jackets 772                     |                                                                                      |
| Agitator power consumption 471                     | Bellman's Principal of Optimality 29 Bell's method for heat exchanger design 690-706 |
| Agitators:                                         |                                                                                      |
| selection 470                                      | by-pass correction factor 693, 696                                                   |
| side-entering 474                                  | end zone pressure drop 699                                                           |
| types of 468, 469                                  | ideal tube bank pressure drop 695                                                    |
| Air filters 456                                    | leakage correction factor 694, 696<br>shell-side heat transfer 690-5                 |
| Air-cooled heat exchangers 766                     |                                                                                      |
| Alarms (safety) 234                                | tube row correction factor 692                                                       |
| Algebraic method, for material balances 42         | window zone correction factor 695                                                    |
| Allocation of fluid streams in heat exchangers 659 | window zone pressure drop 696                                                        |
| Aluminium 299                                      | Belt conveyors 479                                                                   |
| Aluminium alloys 299                               | Belt filter 411  Panidist Webb Pubin equation 340                                    |
| American cost figures, conversion of 252           | Benidict-Webb-Rubin equation 340 Berl saddles 589                                    |
| ANSI (American National Standards Institute) 12,   |                                                                                      |
| 863                                                | Best practical means (BPM) 905                                                       |
| flow-sheet symbols 130                             | Biological oxygen demand (BOD) 903                                                   |
| API (American Petroleum Institute) 12              | Biological treatment of waste (activated sludge)                                     |
| API 620 877                                        | 904<br>Binanta aranha 20                                                             |
| API 650 877                                        | Biparte graphs 20                                                                    |
| Aqueous wastes 903                                 | BLEVE 364                                                                            |
| ASME (American Society of Mechanical Engineers)    | Blind (blank) flanges 856                                                            |
| 12                                                 | Block diagrams 130                                                                   |
| ASME code 793                                      | BMHB see British Materials Handling Board                                            |
| ASOG 345                                           | (BMHB)                                                                               |
| Aspen-107 165                                      | BOD see Biological oxygen demand (BOD)                                               |
| Attainment (plant) 7, 139                          | Boiling heat-transfer coefficient, mixtures 749                                      |
| Autofrettage 876                                   | Boiling heat-transfer fundamentals 728                                               |
| Autoignition temperature 362                       | Boiling liquid expanding vapour cloud explosions                                     |
| Automatic control schemes 227                      | 364<br>Partial and 6 and 403                                                         |
| Azeotropes 344                                     | Bowl classifiers 403                                                                 |
|                                                    | Boyko-Kruzhilin correlation 709                                                      |
| D (0)                                              | BPM (Best Practical Means) 905                                                       |
| Baffles:                                           | Bracket supports 853                                                                 |
| agitated vessels 468, 776                          | Branches and openings, compensation for 819–22                                       |
| for condensers 649                                 | Bricks 303                                                                           |
| for heat exchangers 649                            | British Materials Handling Board (BMHB) 480                                          |

| British Standards:                              | CAD see Computer Aided Design                                                               |
|-------------------------------------------------|---------------------------------------------------------------------------------------------|
| BS 18 284                                       | Calculations, basis for 40                                                                  |
| BS 131 286                                      | Calorific value, calculation of 102                                                         |
| BS 240 285                                      | Canned pumps 215                                                                            |
| BS 308 11                                       | CAPCOS 277                                                                                  |
| BS 410 400                                      | Capital charges 264                                                                         |
| BS 427 285                                      | Capital cost estimation 242                                                                 |
| BS 490 480                                      | Capital costs, indirect 250                                                                 |
| BS 767 879                                      | Carbon, as a material of construction                                                       |
| BS 860 285                                      | 304                                                                                         |
| BS 970 295                                      | Cascade control 230<br>Cash flow 269                                                        |
| BS 1500 861                                     | Centrifugal filters 412                                                                     |
| BS 1501 289, 295, 808                           | Centrifugal niters 412  Centrifugal pump data sheet 1005                                    |
| BS 1502 295, 808                                | Centrifugal pump efficiency 206                                                             |
| BS 1503 295, 808                                | Centrifugal pump selection 198,                                                             |
| BS 1504 295, 808                                | 199                                                                                         |
| BS 1553 908<br>Part 1 130                       | Centrifugal separators 444                                                                  |
|                                                 | Centrifuges 413                                                                             |
| BS 1560 863, 864<br>BS 1600 215                 | disc bowl 415                                                                               |
| BS 1646 194                                     | filtration 413                                                                              |
| BS 1796 400                                     | mechanical design 877                                                                       |
| BS 2654 877                                     | scroll discharge 415                                                                        |
|                                                 | sedimentation 413                                                                           |
|                                                 | solid bowl 416                                                                              |
| BS 3274 644, 645, 646                           | tubular bowl 415                                                                            |
| BS 3293 863                                     | Chao-Seader equation 341                                                                    |
| BS 4175 285                                     | Check lists, safety 390                                                                     |
| BS 4504 863, 864, 970                           | Check valve 198                                                                             |
| BS 4870 868                                     | CHEMCAD 165                                                                                 |
| BS 4871 868                                     | Chemical Abstracts 311                                                                      |
| BS 4872 868                                     | Chemical engineering projects, organisation of 7                                            |
| BS 4994 793                                     | Chemical manufacturing processes, anatomy of 5                                              |
| BS 5345 365                                     | Chemical Marketing Reporter (CMR) 260                                                       |
| BS 5500 215, 644, 652, 793, 809, 810, 812, 815, | Chen's method for forced convective boiling 733                                             |
| 818, 823, 857, 860, 865, 866                    | Chromatography 444                                                                          |
| B\$ 5501 365<br>B\$ 5750 002                    | CIMAH regulations 392                                                                       |
| BS 5750 902<br>BS 5908 363                      | Clad plate 293                                                                              |
| BS 5938 365                                     | Clamp-ring type floating-head heat exchanger 643                                            |
| BS 6374 302                                     | Clarifiers 406, 407                                                                         |
| BS 7550 902                                     | Classification:                                                                             |
| BS CP 3 836                                     | of mixtures 348                                                                             |
| BS PD 6437 822                                  | of pressure vessels 792                                                                     |
| BS PD 6550 822                                  | Classifiers 403                                                                             |
| British Standards Institution Catalogue 12      | bowl type 403                                                                               |
| British Valve and Actuators Manufacturers       | rake type 403                                                                               |
| Association (BVAMA) 198                         | thickeners 403                                                                              |
| Brittle fracture, in metals 286                 | Classifying centrifuges 404                                                                 |
| Brown K10 equation 341                          | Coalescers 443                                                                              |
| BSI (British Standards Institution) 12          | Codes and Standards 12                                                                      |
| flow-sheet symbols 130                          | pressure vessels 792                                                                        |
| Bubble point calculations 497                   | Coefficient of performance <i>see</i> Heat pumps Cogeneration (combined heat and power) 899 |
| Bubble-cap plates 557                           | Coils:                                                                                      |
| Bucket elevators 480                            | heat transfer 774                                                                           |
| Budgeting estimates 242                         | pressure drop 775                                                                           |
| Bunkers 480                                     | Column auxiliaries 616                                                                      |
| Burn-out, boiling 729                           |                                                                                             |
| Butterfly valve 198                             | Column packing, cost of 257 Column pressure, selection of in distillation 495               |
| BVAMA see British Valve and Actuators           | Column sizing, approximate 556                                                              |
| Manufacturers Association (BVAMA)               | Combined heat and power (cogeneration) 899                                                  |
| By-pass streams 53                              | Combined loading on pressure vessels 828–41                                                 |
| D) pass sucams 55                               | Comonica routing on pressure vessels 020-41                                                 |

| Comminution 463                                         | Convective boiling 732                           |
|---------------------------------------------------------|--------------------------------------------------|
| Community considerations in site selection 893          | Conversion, in chemical reactors 47              |
| Compensation for branches and openings 819-22           | Conversion factors, for units 15, 968            |
| Compound pressure vessels 874                           | Conveyor data sheet 1009                         |
| Compressed air:                                         | Conveyor dryers 428                              |
| cost 263                                                | Conveyors 479                                    |
| supplies 900                                            | cost of 258                                      |
| Compressibility factor 82                               | Cooler-condensers see Partial condensers         |
| Compression, work done 81                               | Cooling water 900                                |
| Compressor selection 475                                | cost 263                                         |
| Compressors 474                                         | COP (Coefficient of performance) 107             |
| cost of 258                                             | Copper 298                                       |
| Computer Aided Design (CAD):                            | Copper alloys 298                                |
| drawings 11<br>flow-sheet drafting 136-7                | Correction factor, for log mean temperature      |
| flow-sheeting 164                                       | difference 656                                   |
| heat exchangers 671, 688                                | Corresponding states, physical properties 313    |
| plant layout 897                                        | Corrosion 286                                    |
| Computer generated layout models 897                    | effect of stress on 289                          |
| Computer methods:                                       | erosion-corrosion 290                            |
| costing 277                                             | galvanic 288                                     |
| process control 235                                     | high temperature oxidation 290 intergranular 289 |
| project evaluation 277                                  | pitting 289                                      |
| Computers, use of in quantitative risk analysis 393     | selection of materials 291                       |
| Condensation:                                           | uniform 287                                      |
| heat transfer fundamentals 707                          | Corrosion allowance 810                          |
| on horizontal tube bundles 707                          | Corrosion charts 291, 927                        |
| inside horizontal tubes 713                             | Corrosion fatigue 290                            |
| inside and outside vertical tubes 708                   | Corrosion rate:                                  |
| of mixtures 716                                         | acceptable rates 287                             |
| outside horizontal tubes 707<br>Condenser design 706–25 | definition of (ipy, mdd) 287                     |
| Confined vapour cloud explosions (CVCE) 364             | effect of concentration on 288                   |
| Conical sections, pressure vessels 816                  | effect of temperature on 288                     |
| Conservation of energy 60                               | Corrosion resistance, designing for 305          |
| Conservation of mass 34                                 | Corrosion resistance chart 927                   |
| Constraints, on flows and compositions 41               | COSHH regulations 361, 905                       |
| Construction categories, pressure vessels 809           | Cost escalation 244                              |
| Contamination, by corrosion products 293                | Cost estimation 242–69                           |
| Control:                                                | computer programs 277                            |
| of condensers 229                                       | factorial method 249                             |
| of distillation columns 230-2                           | rapid methods 246                                |
| of major industrial accident hazards 392                | step counting method 248                         |
| of reactors 232                                         | Cost indices 244 Costing 242-69                  |
| of reboilers 229                                        | Costs:                                           |
| of toxic materials 361                                  | of equipment 251-8                               |
| of vaporisers 229 Control and instrumentation 226-8     | general overheads 260                            |
| Control of Substances Hazardous to Health               | maintenance 261                                  |
| regulations 361                                         | of materials of construction 292                 |
| Control systems 228–34                                  | miscellaneous materials 260                      |
| cascade 230                                             | operating labour 261                             |
| design guide rules 227                                  | plant overheads 264                              |
| distillation columns 230-2                              | of plastics 301                                  |
| flow 228                                                | raw materials 260                                |
| level 228                                               | shipping and packing 261                         |
| pressure 228                                            | supervision 264                                  |
| ratio 230                                               | utilities 261, 263                               |
| temperature 229                                         | CPE cost index 244                               |
| Control valve pressure drop 200                         | Creep 808                                        |
| Control valve sizing 198                                | Critical buckling pressure 822                   |
| Control valve symbols, failure mode 194                 | Critical constants 335                           |

| Critical host flux:                                     | Dacian variables:                                                              |
|---------------------------------------------------------|--------------------------------------------------------------------------------|
| Critical heat flux:                                     | Design variables:<br>in distillation 500                                       |
| in boiling 729, 730, 731                                |                                                                                |
| forced convection reboilers 738<br>kettle reboilers 748 | and information flow 15                                                        |
| thermosyphon reboilers 742                              | selection of 19                                                                |
| Critical speed, centrifuges 879                         | Desuperheating in condensers 715 Detonations 363                               |
| Cross-flow plates 556                                   |                                                                                |
| Crushers, cost of 258                                   | Dew point calculations 497                                                     |
| Crushing and grinding, equipment selection 463,         | Diaphragm valve 197                                                            |
| 464                                                     | DIERS see Design Institute for Emergency Relief                                |
| Crystallisation 435                                     | Systems Diffusion coefficients (diffusivities) 330                             |
| Crystallisers:                                          | Diffusion coefficients (diffusivities) 330 gases 330                           |
| circulating liquor 437                                  |                                                                                |
| circulating magma 436                                   | liquids 332                                                                    |
| scraped surface 436                                     | Diffusivity see Diffusion coefficient                                          |
| tank 436                                                | Dilation of vessels 806                                                        |
| Cyclone design 448                                      | Dimpled jackets 774                                                            |
| Cyclones:                                               | DIN 28004 130, 194                                                             |
| for liquid separation 458                               | DIN flow-sheet symbols 130                                                     |
| pressure drop 451                                       | Direct contact heat exchangers 763                                             |
| Cylindrical pressure vessels 812                        | Dirt factor see Fouling factor                                                 |
|                                                         | Disc bowl centrifuges 415 Disc filters 411                                     |
|                                                         |                                                                                |
| Data collection 3                                       | Discontinuity stresses 806                                                     |
| Data sheets, equipment 1000                             | Discounted cash flow (DCF) 271 Discounted cash flow rate of return (DCFRR) 272 |
| Decanters 438-43                                        | Discounted cash flow rate of return (DCFRR) 272<br>Distillation 492            |
| DECHEMA-liquid-liquid data collection 348               |                                                                                |
| DECHEMA-vapour-liquid data collection 342, 344          | basic principles 492                                                           |
| Deflection, of tall columns 836                         | binary systems, design methods 502–15<br>low product concentrations 506        |
| Degrees of freedom, in design 15                        | multicomponent, short-cut methods 517                                          |
| Delaware research program, heat exchanger design 671    | number of columns 517                                                          |
| Demineralised water 900                                 | q-line 504                                                                     |
| cost 263                                                | rigorous solution procedures 542                                               |
| Demister pads 458                                       | sequencing of columns 517                                                      |
| Dense-medium separators 404                             | short-cut methods for 517                                                      |
| Density 313                                             | Distillation column control 230–2                                              |
| of insulation 833                                       | Distillation column design 492–556                                             |
| prediction of 313                                       | column pressure 495                                                            |
| prediction using equations of state                     | feed point location 495, 505, 526                                              |
| 349                                                     | reflux considerations 494                                                      |
| Depreciation 271                                        | Distillation columns, energy balance 63                                        |
| DePriester charts 345, 346, 347                         | Distribution coefficient (K factor) 339                                        |
| Description rule 501                                    | Dollars (US) conversion to Pounds Sterling 252                                 |
| Design:                                                 | Domed heads 813, 815                                                           |
| for corrosion resistance 305<br>of flanges 859          | Double seals 214                                                               |
| nature of 1                                             | Double tube-sheets 652                                                         |
| Design constraints 2                                    | Double-pipe heat exchangers 765                                                |
| in flow sheet calculations 137                          | Dow fire and explosion index 369–79                                            |
| Design Council 283                                      | Dow index:                                                                     |
| Design factors (factors of safety) 13                   | calculation form 372, 378                                                      |
| DESIGN II 165                                           | general process hazards 370                                                    |
| Design Institute for Emergency Relief Systems 367       | material factors 369                                                           |
| Design loads for pressure vessels 811                   | potential loss 373                                                             |
| Design objective 3                                      | preventive and protective measures 375                                         |
| Design pressure, pressure vessels 807                   | special process hazards 371                                                    |
| Design projects (exercises) 975                         | Down-comers 562                                                                |
| Design relationships 16                                 | Drawings 10, 11                                                                |
| Design strength (stress) 808, 809                       | Dropwise condensation 707                                                      |
| Design stress factor 808                                | Drum dryers 431<br>Drum filter 411                                             |
| Design temperature, pressure vessels 807                | Drum mer 411                                                                   |

| Dryers: cost of 258 conveyor 428 drum 431 fluidised bed 429 pneumatic 430 rotary 428 spray 430 tray 426 Drying 424 equipment selection 425, 426 Duplex steels 297 Dust explosions 364 Dynamic programming (optimisation) 29 Dynamic simulation progams 165 | ENRGYBAL, computer program 1012 Enthalpy: calculation of 67 definition of 63 of mixtures 71 prediction using equations of state 349 specific, calculation of 67 Enthalpy of formation see Heats of formation Enthalpy of reaction see Heats of reaction Enthalpy of vaporisation see Latent heat Enthalpy-concentration diagrams 73 Entrainment: from sieve plates 569, 570 plate design 555 Environmental auditing 905 Environmental considerations in plant design 901 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Forthquake loads 927                                                                                                                                                                                                                                       | Environmental control legislation 904                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Earthquake loads 837 Eccentric loads on pressure vessels 837 Economic evaluation 269–77                                                                                                                                                                    | Environmental Impact Assessment 893 Environmental protection act (EPA) 905                                                                                                                                                                                                                                                                                                                                                                                               |
| Economic pipe diameter 218                                                                                                                                                                                                                                 | Equal area method of compensation 820                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| for carbon steel 220<br>general formulae 219                                                                                                                                                                                                               | Equation-based simulation programs 165 Equations of state 340                                                                                                                                                                                                                                                                                                                                                                                                            |
| for stainless steel 220                                                                                                                                                                                                                                    | Equilibria data sources 338                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Economic Trends (Central Statistical Office) 244                                                                                                                                                                                                           | Equipment costs 251-8                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ECONOMIST 277                                                                                                                                                                                                                                              | Equipment specification sheets 1000                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| EEC (European Economic Community) 892                                                                                                                                                                                                                      | Equivalence, of mass and energy 34                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Effect of temperature on material properties 286<br>Effectiveness-NTU method 636                                                                                                                                                                           | Equivalent diameter 662, 663 Equivalent length of pipe 223                                                                                                                                                                                                                                                                                                                                                                                                               |
| Effluent disposal 901                                                                                                                                                                                                                                      | Equivalent pipe diameters 201                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Elastic stability 831                                                                                                                                                                                                                                      | Erbar-Maddox correlation, multicomponent                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Electrical drives 91                                                                                                                                                                                                                                       | distillation 523                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Electricity:                                                                                                                                                                                                                                               | Erosion-corrosion 290                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| cost 263<br>supplies 899                                                                                                                                                                                                                                   | ESDU 67016 663<br>ESDU 68006 663                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Electrostatic precipitators 457                                                                                                                                                                                                                            | ESDU 68007 663                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Electrostatic separators 406                                                                                                                                                                                                                               | ESDU 78031 775                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ellipsoidal heads 816                                                                                                                                                                                                                                      | ESDU 83038 670                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Encyclopedia of Chemical Technology, Kirk and                                                                                                                                                                                                              | ESDU 84023 708, 720                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Othmer 310<br>Energy:                                                                                                                                                                                                                                      | ESDU (Engineering Sciences Data Unit) 311, 663 wind loading reports 836                                                                                                                                                                                                                                                                                                                                                                                                  |
| electrical 62                                                                                                                                                                                                                                              | Estimates, types of 242                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| heat 62                                                                                                                                                                                                                                                    | Evaporation 432                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| internal 61                                                                                                                                                                                                                                                | auxiliary equipment 435                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| kinetic 61                                                                                                                                                                                                                                                 | Evaporator selection 433, 435                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| potential 61<br>Energy balances 60, 62, 91                                                                                                                                                                                                                 | Evaporators 432 cost of 258                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| fundamentals 60–128                                                                                                                                                                                                                                        | direct-heated 432                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| over reactors 75                                                                                                                                                                                                                                           | forced-circulation 433                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| unsteady state 95                                                                                                                                                                                                                                          | long-tube 432                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Energy recovery 97–107                                                                                                                                                                                                                                     | wiped film 433                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| by heat exchange 97<br>from high-pressure streams 102                                                                                                                                                                                                      | Excess air in combustion 45 Excess reagent 46                                                                                                                                                                                                                                                                                                                                                                                                                            |
| from high-temperature reactors 99                                                                                                                                                                                                                          | Expansion, work done 81                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| from vent gases 101                                                                                                                                                                                                                                        | Expert systems, in plant layout 898                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| from wastes 103                                                                                                                                                                                                                                            | Explosions:                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| savings from 97                                                                                                                                                                                                                                            | deflagrations 363                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| waste-heat boilers 98 ENERGYI (simple energy balance program) 91,                                                                                                                                                                                          | detonations 363<br>dust 364                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 158                                                                                                                                                                                                                                                        | sources of ignition 364                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Engineering data, accuracy required of 311 Engineering Index 311                                                                                                                                                                                           | unconfined vapour cloud 364 External floating-head heat exchanger 644                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Extraction see Solvent extraction               | Flooding:                                         |
|-------------------------------------------------|---------------------------------------------------|
| Extraction equipment 617, 623                   | in packed columns 599                             |
| Extrinsic safety 359                            | in plate columns 565                              |
|                                                 | in vertical tubes 710                             |
|                                                 | FLOSHEET 137                                      |
|                                                 | Flow-induced tube vibrations 654                  |
| Factorial cost estimates 249                    | Flow-sheet presentation 129                       |
| Factors of safety 808                           | of batch processes 136                            |
| FAFR (Fatal Accident Frequency Rate) 389        | equipment identification 136                      |
| Failure, theories of 794                        | information to be shown 131                       |
|                                                 | layout 132                                        |
| Failure mode, control valves 194                | *                                                 |
| Fatal Accident Frequency Rate (FAFR) 389        | -                                                 |
| Fatigue in pressure vessels 869                 | symbols 130                                       |
| Feed preparation 6                              | utilities (services) 136                          |
| Feed-point location, distillation 495, 505, 526 | Flow-sheet symbols 130, 908                       |
| Fenske equation 523                             | Flow-sheeting, computer aided 164                 |
| Film boiling 731                                | Flow-sheeting calculations 137-64                 |
| Filmwise condensation 707                       | equilibrium stage 139                             |
| Filter media 408, 409                           | liquid-liquid equilibria 145                      |
| Filters 407                                     | liquid-vapour equilibria 142-5                    |
| cost of 258                                     | nitric acid plant 146-64                          |
| centrifugal 412, 418                            | reactors 139                                      |
| disc 411                                        | scaling factor 139                                |
| drum 411                                        | time basis 138                                    |
|                                                 | Flows and compositions, constraints on 41         |
| gas-solids 456                                  | FLOWTRAN 165                                      |
| leaf 410                                        | Fluid streams, allocation of, heat exchangers 659 |
| nutsche 410                                     | Fluidised bed dryers 429, 483                     |
| pan 412                                         | Fog formation in condensers 720                   |
| plate and frame 410                             | Forced circulation evaporators 433                |
| Filtration 407                                  | Forced circulation reboiler design 737            |
| of gases 456                                    | Forster-Zuber equation, boiling 729               |
| of liquids 407                                  | Fouling, effect on pressure drop 702              |
| Filtration centrifuges, types of 418            | Fouling factors 635, 638                          |
| Fin effectiveness 764                           | Froth-flotation 405                               |
| Finned-tube heat exchangers 764                 | Fuel, cost 263                                    |
| Fire precautions 363                            | Fugacity coefficient 339                          |
| Fire protection of structures 368               | Full-faced flanges 858                            |
| Fired heaters 766-72                            | Furnaces:                                         |
| construction 767                                | cost of 258                                       |
|                                                 | see also Fired heaters                            |
| design 768                                      | see also Thed heaters                             |
| stack design 771                                |                                                   |
| thermal efficiency 772                          | Gallons:                                          |
| types 768                                       | imperial (UK) 14                                  |
| Fixed capital 243                               | US 14                                             |
| Fixed operating costs 259                       | Galvanic corrosion 288                            |
| Fixed tube-plate heat exchanger 642             | Gas cleaning see Gas-solids separation            |
| Flame proofing 365                              | Gas holders 477                                   |
| Flame traps 362                                 | Gas mixing 466                                    |
| Flammability 361                                | Gas solubilities 349                              |
| Flammability limits 362                         |                                                   |
| Flanged joints 855-64                           | Gas-liquid separators 458–63                      |
| flange design 859                               | Gas-solid separation 446–57                       |
| flange faces 858                                | equipment 447                                     |
| gaskets 856                                     | Gas-solid separators:                             |
| types of flange 855                             | cyclones 448                                      |
| Flanges, standard 863, 970                      | gravity settlers 446                              |
|                                                 | impingement separators 448                        |
| Flash distillation 17, 498                      | Gaseous waste 902                                 |
| Flash point 362                                 | Gaskets 856                                       |
| Flat plate end-closures 814                     | Gate valve 196                                    |
| Flat plates, stress in 802                      | Glass 303                                         |

| Class Balance 202                                  |                                                     |
|----------------------------------------------------|-----------------------------------------------------|
| Glass linings 303                                  | in conduits 662                                     |
| Glass-fibre reinforced plastics (GRP) 302          | film boiling 731                                    |
| Globe valve 197                                    | overall 635, 636, 639                               |
| Gold 300                                           | water in tubes 666                                  |
| Gravity settlers (gas-solids) 446                  | Heats of combustion 80                              |
|                                                    |                                                     |
| , ,                                                | nitrogen compounds 80                               |
| Grid representation, heat exchanger networks 113   | Heats of formation 79                               |
| Grinding 463                                       | Heats of mixing (solution) 71                       |
| Grizzly screens 400                                | Heats of reaction:                                  |
| Group contribution techniques, physical properties | correction for temperature 75                       |
| 313                                                | effect of pressure on 77                            |
| Guest's theory 795                                 | prediction of 338                                   |
| Guest's theory 175                                 |                                                     |
|                                                    | standard 75                                         |
|                                                    | Height of a equivalent theoretical plate (HETP) 593 |
| Half-pipe jackets 772                              | Height of a transfer unit (HTU) see Transfer units  |
| Hardness 285                                       | Hemispherical heads 812, 815                        |
| Hastelloys 298                                     | Hengstebeck's method, multicomponent distillation   |
| Hazard analysis 387                                | 518                                                 |
| Hazard and operability studies (HAZOP) 379-87      | HETP see Height of a equivalent theoretical plate   |
|                                                    |                                                     |
| Hazardous zone classification (electrical) 365     | (HETP)                                              |
| Hazards 359                                        | High alloy stainless steels 297                     |
| HAZOP see Hazard and operability studies           | High-pressure streams, energy recovery from 102     |
| Heads and closures for pressure vessels 812–19     | High-pressure vessels 870-6                         |
| choice of 812                                      | compound vessels 874                                |
| conical ends 816                                   | fundamental equations 870                           |
| domed ends 815                                     | High-temperature reactors 99                        |
| flat ends 814                                      |                                                     |
|                                                    | Hold-down plates, in packed columns 614             |
| Health and Safety at Work Act (HSAWA) 361, 905     | Hoppers 480                                         |
| Health and Safety Executive (HSE) 361, 392         | HSAWA see Health and Safety at Work Act             |
| Heat capacity 67                                   | (HSAWA)                                             |
| effect of pressure on 7                            | HTFS (Heat Transfer and Fluid Services) 634         |
| ideal gas state 70                                 | HTRI (Heat Transfer Research Incorporated) 634      |
| Heat cascade, in problem table method 112          | HTU see Transfer units                              |
| Heat exchanger networks 97, 113                    | Hydraulic gradient, on plates 574                   |
| Heat exchangers:                                   | Hydraulic jigs 403                                  |
| <del></del>                                        |                                                     |
| air-cooled 766                                     | Hydraulic mean diameter 663, 664                    |
| allocation of fluid streams 659                    | Hydrocyclones 402, 420, 444                         |
| CAD 671                                            | Hydrogen embrittlement 291                          |
| cost of 253                                        | Hypac 589                                           |
| data sheet 1003                                    | HYSIS 165                                           |
| design methodology 679                             |                                                     |
| minimum number in a network 117                    |                                                     |
| minimum shell thickness 646                        | Ideal tube bank:                                    |
| minimum temperature difference in 118, 660         | heat transfer coefficients 690                      |
| •                                                  | pressure drop 695                                   |
| pressure drop limitations 702                      |                                                     |
| shells 646                                         | Ignition sources 365                                |
| tube sheets 652                                    | Imperial gallons 14                                 |
| tubes 645                                          | Impingement separators (gas-solids) 446             |
| types 634                                          | Inconel 298                                         |
| plate-fin 761                                      | Independent components, number of 38                |
| spiral heat exchanger 762                          | Indirect capital costs 250                          |
| welded plate 761                                   | Industrial hygiene 359                              |
| Heat pumps 106                                     | Inert gas:                                          |
| Heat transfer:                                     | cost 263                                            |
|                                                    |                                                     |
| basic theory 635                                   | supplies 901                                        |
| j-factor 664                                       | Inflammable see Flammability                        |
| to vessels 772                                     | Inflation, of costs 244, 273                        |
| Heat transfer coefficients:                        | Information:                                        |
| boiling 729                                        | on manufacturing processes 309                      |
| convective 732                                     | sources of on physical properties 311               |
| mixtures 749                                       | Information flow 20                                 |
| condensing steam 714                               | and design variables 15                             |
| COMMUNICATION / 1 T                                | and design variables 12                             |

| Information flow diagrams 167                                             | Limiting reagent 46                                     |
|---------------------------------------------------------------------------|---------------------------------------------------------|
| Inherently safe equipment (electrical) 359, 365<br>Inline mixers 467, 468 | Linear algebra methods, multicomponent distillation 545 |
| Instrumentation and control objectives 226                                | Linear programming (optimisation) 29                    |
| Instrumentation symbols 194                                               | Liquid distributors, packed columns 611                 |
| Instruments 226                                                           | Liquid extraction see Solvent extraction                |
|                                                                           |                                                         |
| Insulation, density of 833<br>Insurance 265                               | Liquid hold-up, in packed columns 615                   |
|                                                                           | Liquid mixing 466                                       |
| Intalox saddles 589                                                       | Liquid phase activity coefficient: ASOG method 345      |
| Intergranular corrosion 289                                               | sour water 346                                          |
| Interlocks (safety) 235                                                   | UNIFAC method 345                                       |
| Internal floating-head heat exchanger 642, 643                            | UNIQUAC equation 343                                    |
| Internal reboilers 727 International Critical Tables 311                  | Wilson equation 341                                     |
|                                                                           | Liquid redistribution, packed columns 612               |
| Interval temperature, in problem table method 111                         | Liquid storage 479                                      |
| Intrinsic safety 359 Intrinsically safe againment (electrical) 350, 365   | Liquid waste 902                                        |
| Intrinsically safe equipment (electrical) 359, 365                        | Liquid-liquid equilibrium data 348                      |
| Ionising radiation 366                                                    | Liquid-liquid separators 438-44                         |
| Isentropic efficiency 83                                                  | Liquid-solid separation 40                              |
| Isentropic expansion and compression 61                                   | Loads on pressure vessels 811, 832                      |
| ISO (International Organisation for Standardisation)                      | Local taxes 265                                         |
| 12                                                                        | Lockhart-Martenelli two-phase flow parameter 733        |
| Isothermal expansion and compression 62                                   | Logarithmic mean temperature difference (LMTD)          |
|                                                                           | 654                                                     |
| j-factor, in heat transfer 664                                            | correction factor for 656                               |
| Jacketed vessels 772                                                      | Long-tube evaporators 432                               |
| mechanical design 824                                                     | Loss prevention 358                                     |
| Jackets:                                                                  | Low fin tubes 765                                       |
| heat transfer 774                                                         | Low grade fuels 101                                     |
| pressure drop 774                                                         | Low grade racis 101                                     |
| Joint efficiency, welds 809                                               |                                                         |
| Journal of Chemical Engineering Data 311                                  | M-TASC 688                                              |
| ·                                                                         | Magnetic separators 405                                 |
| V values for hydrogerhons 245                                             | Mains frequencies, UK and USA 15                        |
| K-values for hydrocarbons 345                                             | Major hazard installations 393                          |
| Kettle reboiler design 747                                                | Manufacturing processes, sources of information on      |
| Key components, selection of 516                                          | 309                                                     |
| Kinetic energy 61                                                         | Marshall and Stevens index 244                          |
| Kirk and Othmer, Encyclopedia of Chemical                                 | Mass and energy, equivalence of 34                      |
| Technology 310                                                            | Mass-transfer coefficients:                             |
| Knock-out pot (drum) 458                                                  | film 601                                                |
|                                                                           | overall 594                                             |
| Laboratory costs 264                                                      | MASSBAL (a simple material balance program)             |
| Ladders, weight of 833                                                    | 165, 169, 184, 917                                      |
| Lam\u00e92's equations 872                                                | Material balance calculations, unsteady-state 54        |
| Landfill 902                                                              | Material balances:                                      |
| Lang factors 249                                                          | fundamentals 34-59                                      |
| Lap-joint flanges 856                                                     | general procedure 56                                    |
| Latent heat of vaporisation:                                              | Material factor, Dow F & E index 369                    |
| effect of temperature on 328                                              | Material properties 283                                 |
| of mixtures 328                                                           | creep 286                                               |
| prediction of 327                                                         | effect of temperature on 286                            |
| LD <sub>50</sub> (Lethal dose fifty) 360                                  | fatigue 285                                             |
| Leaching 445                                                              | hardness 285                                            |
| Lead 299                                                                  | stiffness 284                                           |
| Leakage and by-passing, heat exchangers 668                               | tensile strength 284                                    |
| Lee-Kesler-Plocker equation 341                                           | toughness 285                                           |
| Lewis-Matheson method, multicomponent                                     | Materials of construction 294–304                       |
| distillation 543                                                          | cost of 292                                             |
| Lewis-Sorel method, distillation 503                                      | selection chart 927                                     |
| Licence fees 265                                                          | aluminium and its alloys 299                            |

| bricks and tiles 303 carbon 304 copper and its alloys 298 glass 303 Hastelloy 298 Inconel 298 iron and steel 294 lead 299 Monel 298 nickel 298 plastics 300 refractories 304 stainless steels 295 stoneware 303 tantalum 299 titanium 299 | enthalpy of 71 specific heat 322 thermal conductivity 321 viscosity of 318 Modular construction 896 Mollier diagrams 82 Mond index 376 Monel 298 Mostinski equation, boiling 730 Multicomponent distillation 515-42 distribution of non-key components 526 general considerations 515 Multilayer pressure vessels 874 Multiple pinches 120 Multiple utilities (pinch technology) 120 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Materials for pressure vessels 808                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                      |
| Materials selection, mechanical properties 383                                                                                                                                                                                            | Narrow-faced flanges 859                                                                                                                                                                                                                                                                                                                                                             |
| Maximum heat flux see Critical heat flux                                                                                                                                                                                                  | National Rivers Authority (NRA) 905                                                                                                                                                                                                                                                                                                                                                  |
| Maximum principal stress theory of failure 794                                                                                                                                                                                            | Net future value (NPV) see Net future worth                                                                                                                                                                                                                                                                                                                                          |
| Maximum shear stress theory of failure 794                                                                                                                                                                                                | Net future worth (NFW) 271                                                                                                                                                                                                                                                                                                                                                           |
| Maximum strain energy theory of failure 795                                                                                                                                                                                               | Net positive suction head (NPSH) 200                                                                                                                                                                                                                                                                                                                                                 |
| McCabe-Thiele method, distillation 504                                                                                                                                                                                                    | Net present value (NPV) see Net present worth                                                                                                                                                                                                                                                                                                                                        |
| Mean heat capacities 68-9                                                                                                                                                                                                                 | Net present worth (NPW) 271                                                                                                                                                                                                                                                                                                                                                          |
| Mean temperature difference:                                                                                                                                                                                                              | Nickel 298                                                                                                                                                                                                                                                                                                                                                                           |
| boiling 749                                                                                                                                                                                                                               | Nitric acid manufacture 132                                                                                                                                                                                                                                                                                                                                                          |
| reboilers 749                                                                                                                                                                                                                             | Nitrogen compounds, heats of combustion 80                                                                                                                                                                                                                                                                                                                                           |
| vaporisers 749                                                                                                                                                                                                                            | Noise 904                                                                                                                                                                                                                                                                                                                                                                            |
| Mean temperature difference in condensation 714                                                                                                                                                                                           | Noise control 368                                                                                                                                                                                                                                                                                                                                                                    |
| Mechanical design:                                                                                                                                                                                                                        | Non-key components, distribution of in                                                                                                                                                                                                                                                                                                                                               |
| jacketed vessels 824                                                                                                                                                                                                                      | multicomponent distillation 526                                                                                                                                                                                                                                                                                                                                                      |
| piping systems 215                                                                                                                                                                                                                        | Non-return valves 198                                                                                                                                                                                                                                                                                                                                                                |
| Mechanical seals 213                                                                                                                                                                                                                      | Nozzles, jacketed vessels 702                                                                                                                                                                                                                                                                                                                                                        |
| Membrane filtration 432                                                                                                                                                                                                                   | NPSH see net positive suction head (NPSH).                                                                                                                                                                                                                                                                                                                                           |
| Membrane stresses 795–802                                                                                                                                                                                                                 | NRA see National Rivers Authority (NRA)                                                                                                                                                                                                                                                                                                                                              |
| MESH equations 497, 542                                                                                                                                                                                                                   | NRTL equation 343                                                                                                                                                                                                                                                                                                                                                                    |
| Methodology, of heat exchanger design 679                                                                                                                                                                                                 | NTU, heat exchangers 636                                                                                                                                                                                                                                                                                                                                                             |
| Microprocessors, in process control 235                                                                                                                                                                                                   | Nucleate boiling 729                                                                                                                                                                                                                                                                                                                                                                 |
| Minimum number of heat exchangers, in a network                                                                                                                                                                                           | Number of columns 517                                                                                                                                                                                                                                                                                                                                                                |
| 117                                                                                                                                                                                                                                       | Number of independent components                                                                                                                                                                                                                                                                                                                                                     |
| Minimum reflux ratio, Underwood equation 525                                                                                                                                                                                              | 38                                                                                                                                                                                                                                                                                                                                                                                   |
| Minimum shell thickness 646                                                                                                                                                                                                               | Number of velocity heads 201                                                                                                                                                                                                                                                                                                                                                         |
| Minimum temperature difference in heat exchangers                                                                                                                                                                                         | Nutsche filter 410                                                                                                                                                                                                                                                                                                                                                                   |
| 118, 660 Minimum well thickness pressure vessels 211                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                      |
| Minimum wall thickness, pressure vessels 811 Minimum wetting rate 615                                                                                                                                                                     | Occupational Exposure Limit (OEL) 360                                                                                                                                                                                                                                                                                                                                                |
| Miscellaneous materials, cost of 260                                                                                                                                                                                                      | O'Connell's method 548                                                                                                                                                                                                                                                                                                                                                               |
| Miscellaneous pressure losses 201                                                                                                                                                                                                         | Oldershaw column 547                                                                                                                                                                                                                                                                                                                                                                 |
| Mixer data sheet 1008                                                                                                                                                                                                                     | Operating costs 259                                                                                                                                                                                                                                                                                                                                                                  |
| Mixing:                                                                                                                                                                                                                                   | Operating costs 259                                                                                                                                                                                                                                                                                                                                                                  |
| of gases 466                                                                                                                                                                                                                              | cost of 264                                                                                                                                                                                                                                                                                                                                                                          |
| of liquids 466                                                                                                                                                                                                                            | requirements 264                                                                                                                                                                                                                                                                                                                                                                     |
| of pastes 474                                                                                                                                                                                                                             | Operating manuals 11                                                                                                                                                                                                                                                                                                                                                                 |
| of solids 474                                                                                                                                                                                                                             | Optimisation 24–30                                                                                                                                                                                                                                                                                                                                                                   |
| Mixing equipment 466                                                                                                                                                                                                                      | analytical methods 27                                                                                                                                                                                                                                                                                                                                                                |
| for gases 466                                                                                                                                                                                                                             | of batch process 29                                                                                                                                                                                                                                                                                                                                                                  |
| for liquids 466                                                                                                                                                                                                                           | of a cylinder 26                                                                                                                                                                                                                                                                                                                                                                     |
| for solids and pastes 474                                                                                                                                                                                                                 | gradient method 29                                                                                                                                                                                                                                                                                                                                                                   |
| Mixtures:                                                                                                                                                                                                                                 | method of steepest ascent 29                                                                                                                                                                                                                                                                                                                                                         |
| boiling heat transfer coefficient 749                                                                                                                                                                                                     | multiple variable problems 27                                                                                                                                                                                                                                                                                                                                                        |
| classes of 348                                                                                                                                                                                                                            | search methods 28                                                                                                                                                                                                                                                                                                                                                                    |
| classification of 348                                                                                                                                                                                                                     | Optimum dimensions, cylindrical vessels 26                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                      |

| Optimum pipe diameter 218                           | Pipe fittings 216                                                                                |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Organisation, of chemical engineering projects 7    | Pipe friction factors 202                                                                        |
| Orifice scrubbers 457                               | Pipe roughness 201                                                                               |
| Oscillating screens 401                             | Pipe schedule 215                                                                                |
| Ovality of vessels 823                              | Pipe size selection 217                                                                          |
| Overall heat transfer coefficients:                 | Pipe stressing 216                                                                               |
| definition of 635                                   | Pipe supports 216                                                                                |
| typical values 636, 639                             | Pipe velocities, typical values 217                                                              |
| Overheads:                                          | Pipe-line calculations (pressure drop) 200, 221                                                  |
| direct 264                                          | Piping and instrumentation 193–241                                                               |
| general 260                                         | Piping and instrumentation diagrams 129, 193                                                     |
| plant 264                                           | symbols 194                                                                                      |
| Oxidation, of steel at high temperatures 290        | Piping, mechanical design of 215                                                                 |
| Oxidation, or steel at Mgn temperatures 250         | Piping systems, layout and design 217                                                            |
|                                                     | Pitting 289                                                                                      |
| P and I diagrams see Piping and instrumentation     | Plant attainment 7, 139                                                                          |
| diagrams                                            | Plant layout 895-8                                                                               |
| Packed bed reactors 483                             | techniques 896                                                                                   |
| Packed column design 587-616                        | visual impact 904                                                                                |
|                                                     | Plant layout models:                                                                             |
| choice of packing 587                               | · · · · · · · · · · · · · · · · · · ·                                                            |
| design procedure 588-616                            | computer generated 897                                                                           |
| packing size 591                                    | expert systems 898                                                                               |
| plates versus packing 587 Packed columns:           | physical 897<br>Plant location 891                                                               |
|                                                     | Plant overheads 264                                                                              |
| hold-down plates 614                                |                                                                                                  |
| internal fittings 609                               | Plant services (utilities), on flow-sheets 136 Plant supplies <i>see</i> Miscellaneous materials |
| liquid distributors 599                             |                                                                                                  |
| liquid redistribution 612                           | Plastics, as materials of construction 300 Plate construction 560                                |
| packing supports 609                                |                                                                                                  |
| Packed glands 212  Packing characteristics 501      | sectional plates 561                                                                             |
| Packing characteristics 591                         | stacked plates 561                                                                               |
| Packing, effective area of 600                      | structural design 563                                                                            |
| Packing efficiencies, typical values                | tolerances 564                                                                                   |
| 598  Position installation 614                      | Plate efficiency 546-55                                                                          |
| Packing installation 614                            | AIChE method 551                                                                                 |
| Packing size considerations 591                     | definition of 546                                                                                |
| Packings:<br>for columns 589                        | effect of plate parameters on 555<br>O'Connell's method 548                                      |
| cost of 258                                         |                                                                                                  |
|                                                     | prediction of 547                                                                                |
| Paints see Protective coatings Pall rings 589       | typical values 547<br>Van Winkle's method 551                                                    |
| Pan filter 412                                      |                                                                                                  |
| Partial condensers 716                              | *                                                                                                |
| coefficients 718                                    | Plate heat exchangers 753<br>data sheet 1004                                                     |
| temperature profile 717                             |                                                                                                  |
| Parts per billion (ppb) 36                          | pressure drop 758                                                                                |
|                                                     | thermal design 756                                                                               |
| Parts per million (ppm) 36<br>Pastes, mixing of 474 | Plate separators 443                                                                             |
| Patents 310                                         | Plate spacing 556                                                                                |
| Pay-back time 270, 273                              | Plates (contacting):<br>cost of 257                                                              |
|                                                     |                                                                                                  |
| Peclet number 554 Peng-Robinson equation 341        | liquid flow pattern on 559                                                                       |
| Percentage by volume (v/v) 35                       | selection of 559                                                                                 |
|                                                     | weight of 833                                                                                    |
| Percentage by weight (w/w) 35                       | Platinum 300                                                                                     |
| Petrochemicals Note Book 310                        | Plug valve 196                                                                                   |
| PFD (Process Flow Diagram) 129                      | Pneumatic conveying 480                                                                          |
| Phase equilibria, choice of method for design 349   | Pneumatic dryers 430                                                                             |
| Physical property data hash(a) 167, 047             | Poly-tetrafluoroethylene (PTFE) 301                                                              |
| Physical property data bank(s) 167, 947             | Poly-vinyl chloride (PVC) 301                                                                    |
| PID see Piping and instrumentation diagrams         | Polyethylene 301                                                                                 |
| Pinch technology 107                                | Polypropylene 301                                                                                |
| Pinch temperature, significance of 111              | Polytropic efficiency 83                                                                         |

| Polytropic expansion and compression 84           | problem table method 111                           |
|---------------------------------------------------|----------------------------------------------------|
| Polyvinylidene (PVDF) 302                         | stream splitting 116                               |
| Pool boiling 729                                  | Process manuals 11                                 |
| č                                                 | Process water 900                                  |
| Positive displacement pumps 198, 200, 477         |                                                    |
| selection 479                                     | Product storage 6                                  |
| Power (electricity), cost 263                     | Project documentation 10                           |
| PPDS (Physical Property Data Service) 311         | Project evaluation 269-77                          |
| Precession in centrifuges 880                     | computer programs 277                              |
| Precipitation 435                                 | Project manager 9                                  |
| Prediction of physical properties:                | Project organisation 8                             |
| critical constants 335                            | Proof stress 284                                   |
| density 313                                       | Protective coatings (paints) 304                   |
| diffusion coefficients 330                        | Pseudo-binary systems, multicomponent distillation |
|                                                   | 518                                                |
| latent heat 327                                   | Pseudo-fresh feeds 172                             |
| specific heat 321-7                               | Pump efficiency, centrifugal pumps 206             |
| surface tension 334                               |                                                    |
| thermal conductivity 319                          | Pump shaft seals 212                               |
| vapour pressure 330                               | Pumping power 204                                  |
| Present worth see Net present worth               | Pumps 198, 477                                     |
| Pressing (Expression) 424                         | data sheets 1005-7                                 |
| Pressure drop:                                    | power requirements 478                             |
| in condensers 720                                 | selection 479                                      |
| control valves 200                                | specification sheets 226                           |
|                                                   | Purchased equipment cost see Equipment costs       |
| cyclones 451                                      | Purge streams 52                                   |
| heat exchanger tubes 666                          | PVDF (Polyvinylidene) 302                          |
| in pipelines 200                                  | 1 , 21 (1 o.j ,,,                                  |
| pipes 200                                         |                                                    |
| plate heat exchangers 758                         | q-line 504                                         |
| sieve plates 574                                  | <b>4</b>                                           |
| Pressure drop considerations, heat exchangers 661 | Quantitative risk analysis 387, 393                |
| Pressure losses, miscellaneous 201                | computer software for 393                          |
| Pressure relief 366                               | Quench towers 763                                  |
| Pressure testing, pressure vessels 869            | QUESTIMATE 277                                     |
| Pressure vessel design 791–876                    |                                                    |
| for external pressure 822-8                       |                                                    |
| general considerations 807-11                     | Rake classifiers 403                               |
| Pressure vessels:                                 | Rapid cost estimation 246                          |
|                                                   | Raschig rings 589                                  |
| codes and standards 792                           | Rate of return 272                                 |
| cost of 252, 255                                  | Rating methods for distillation columns 543        |
| materials for 808                                 | Ratio control 230                                  |
| minimum wall thickness 811                        | Raw materials:                                     |
| Principal stresses 792, 793                       | costs 260, 262                                     |
| PRO/II 165                                        | storage 5-6                                        |
| Problem table, process integration 111            | Reaction yield 48                                  |
| PROCEDE (Flow-sheet Drafting Program) 137,        | Reactor design 481                                 |
| 194                                               | procedure 484                                      |
| Process control, use of computers 235             | Reactor types 481                                  |
| Process design 9                                  | batch 481                                          |
| Process Engineering Index 244                     |                                                    |
| Process flow diagram (PFD) 129                    | fluidised bed 483                                  |
| Process integration 107–23                        | packed bed 483                                     |
| composite curve 110                               | stirred tank 482                                   |
|                                                   | tubular 482, 483                                   |
| distillation columns 120                          | Reactors, cost of 258                              |
| exchanger networks 113                            | Reboiler design 737–53                             |
| heat cascade 112                                  | forced circulation 737                             |
| heat engines 120                                  | kettle 747                                         |
| heat pumps 120                                    | thermosyphon 738                                   |
| importance of 107                                 | Reboilers 725                                      |
| maximum energy recovery 114                       | selection 726                                      |
| minimum number of exchangers 117                  | Reciprocating pump data sheet 1006                 |
| power plants 120                                  | Reciprocating pumps 198                            |
|                                                   |                                                    |

| Reciprocating screens 401                              | crystallisation 435                                   |
|--------------------------------------------------------|-------------------------------------------------------|
| Recycle processes 50                                   | cyclones 408                                          |
| Recycling, of waste 901                                | drying 424                                            |
| Redlich-Kwong equation 340                             | evaporation 432                                       |
| Redlich-Kwong-Soave equation 340                       | filters                                               |
| Reflux, in distillation 494                            | gas 456                                               |
| Reflux ratio:                                          | liquid 407                                            |
| minimum 494                                            | gas-liquid 458                                        |
| optimum 495                                            | gas-solid 446                                         |
| total 494                                              | solid-solid 399                                       |
| Refractory materials 304                               | Sequencing, of columns 517                            |
| Refrigeration 900                                      | Sequential-modular simulation programs 165            |
| cost 263                                               | Settling chambers 446                                 |
| Relative volatility 339, 504                           | shaft seals 212                                       |
| Relaxation methods, multicomponent distillation 545    | Shah's method for forced convective boiling 733       |
| Relief valve 1010                                      | Shell passes (types) in best exchangers 640           |
|                                                        | Shell and tube exchangers 649                         |
| Revolving screens 401<br>Riffle tables 403             | Shell and tube exchangers: advantages of 640          |
| Rotary dryers 428                                      | Bell's method for design of 690                       |
| Rotary pump data sheet 1007                            | fluid physical properties in design of 661            |
| Royalties 265                                          | general considerations 659                            |
| Rubber 302                                             | Kern's method for design of 671                       |
| Rubbel 502                                             | passes in 646                                         |
|                                                        | shell to bundle clearance 647                         |
| Saddle supports 841, 842                               | shell types (passes) 649                              |
| SAFETI 393                                             | shell-side geometry 699                               |
| Safety cases 392, 393                                  | shells 646                                            |
| Safety check lists 390                                 | standards and codes 644                               |
| Safety factors (design factors) 13                     | support plates 652                                    |
| Safety hazards 359                                     | tube arrangement 645                                  |
| Safety literature 358                                  | tube count 647                                        |
| Scaling factor, in flow-sheet calculations 139         | tube sheets 652                                       |
| Screening (sieving) 399                                | tube sizes 645                                        |
| Screens:                                               | tube-sheet layout 647                                 |
| selection of 401                                       | types of 641                                          |
| grizzly 400                                            | typical fluid velocities in 660                       |
| oscillating 401                                        | Shell and tube heat exchanger construction 641-54     |
| reciprocating 401                                      | baffles 649                                           |
| sifting 401                                            | tie rods 652                                          |
| vibrating 401                                          | Shell-side coefficient:                               |
| Screw conveyors 480                                    | Bell's method 690-5                                   |
| Screwed flanges 856                                    | Kern's method 671–89                                  |
| Screwed joints 855<br>Scroll discharge centrifuges 415 | Shell-side nozzle pressure drop 675                   |
| Scrubbers, for gas cleaning 457                        | Shell-side pressure drop 668 Shells of revolution 795 |
| Sea dumping of waste 902                               | Shipping costs 261                                    |
| Seal-less pumps 215                                    | Short-cut methods for distillation 517                |
| Sealing strips in pull-through bundle exchangers       | SI units, conversion factors 15, 968                  |
| 669                                                    | Side streams, take-off from plates 563                |
| Secondary stresses 806                                 | Side-entering agitators 474                           |
| Sedimentation centrifuges 413                          | Sieve plate design 566-84                             |
| Segmental baffles, in heat exchangers 650              | diameter 566                                          |
| Seismic analysis 837                                   | down-comer back-up 576                                |
| Selection, of contacting plate type 559                | hole pitch 573                                        |
| Sensitivity analysis, of costs 273                     | hole size 573                                         |
| Separation:                                            | inlet weirs 572                                       |
| of dissolved liquids 444-5                             | pressure drop 574                                     |
| of dissolved solids 432-8                              | weir dimensions 571                                   |
| Separation processes 399-463                           | Sieve plates 557                                      |
| selection of 400                                       | Sifting screens 401                                   |
| centrifuges 413                                        | Sigma theory, centrifuges 416                         |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.100 1 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Silver 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stiffening rings for pressure (vacuum) vessels 823,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Simple material balance programs 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SIMPLEX algorithm 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stirred (agitated) tanks 468–74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Simulation packages 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stoichiometric factor 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Site layout 893                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stoichiometry 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Site selection:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stoneware 303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| climate 893                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Storage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| environmental impact 892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of gases 477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| labour 892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of liquids 479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| land 893                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of solids 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| local community 893                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Storage tanks, design of 876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| marketing area 891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stress, in flat plates 802-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| political considerations 893                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stress corrosion cracking 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| raw materials 892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stress factors 808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| transport 892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Structured packing 592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| utilities 892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sub-cooling in condensers 715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Skirt supports 842, 845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Supercritical extraction 623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| base ring design 847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Supervision costs 264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Slip-on flanges 855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Surface finish 294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Smith-Brinkley method, multicomponent distillation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Surface tension:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mixtures 334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Smoker equation 511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | prediction of 334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Solid bowl centrifuges 416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Surge tanks (hold-up tanks) 616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Solid waste 903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | System boundary 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Solid-solids separators 399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | choice of 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Solvent extraction 444, 616–23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Solvent selection 616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Souder and Brown's equation 556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tanks, cost of 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sour-water systems 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tantalum 299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Specific enthalpy, calculation of 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tax 265, 271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Specific heats 321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TEMA standards 640, 644, 646, 656, 863, 865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| of mixtures 322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Temperature correction factor, heat exchangers 656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Specific speed of pumps 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Temperature cross, heat exchangers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Specification sheets (equipment data sheets) 10, 11,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Temperature, effect of on material properties 286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1000<br>Spherical pressure vessels 812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Temperature, effect of on material properties 286<br>Tensile strength 284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1000 Spherical pressure vessels 812 Split-fraction coefficient 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169                                                                                                                                                                                                                                                                                                                                                                                                                                         | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430                                                                                                                                                                                                                                                                                                                                                                                                                        | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets:                                                                                                                                                                                                                                                                                                                                                                                                          | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets: for NPW 272                                                                                                                                                                                                                                                                                                                                                                                              | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662 mixtures 321                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets: for NPW 272 for optimum pipe diameter 219                                                                                                                                                                                                                                                                                                                                                                | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662 mixtures 321 solids 320                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets: for NPW 272 for optimum pipe diameter 219 use of in economic analysis 272                                                                                                                                                                                                                                                                                                                                | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662 mixtures 321 solids 320 Thermal design of plate heat exchanger 756                                                                                                                                                                                                                                                                                                                                                                                                        |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets: for NPW 272 for optimum pipe diameter 219 use of in economic analysis 272 use of in mass balances 176                                                                                                                                                                                                                                                                                                    | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662 mixtures 321 solids 320 Thermal design of plate heat exchanger 756 Thermal stresses 806                                                                                                                                                                                                                                                                                                                                                                                   |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets: for NPW 272 for optimum pipe diameter 219 use of in economic analysis 272 use of in mass balances 176 Stack design (fired heaters) 771                                                                                                                                                                                                                                                                   | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662 mixtures 321 solids 320 Thermal design of plate heat exchanger 756 Thermal stresses 806 Thermosyphon reboiler design 738                                                                                                                                                                                                                                                                                                                                                  |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets: for NPW 272 for optimum pipe diameter 219 use of in economic analysis 272 use of in mass balances 176 Stack design (fired heaters) 771 Stainless steels 295                                                                                                                                                                                                                                              | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662 mixtures 321 solids 320 Thermal design of plate heat exchanger 756 Thermal stresses 806 Thermosyphon reboiler design 738 Thick cylinders (vessels) 792, 870-6                                                                                                                                                                                                                                                                                                             |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets: for NPW 272 for optimum pipe diameter 219 use of in economic analysis 272 use of in mass balances 176 Stack design (fired heaters) 771 Stainless steels 295 corrosion resistance 297                                                                                                                                                                                                                     | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662 mixtures 321 solids 320 Thermal design of plate heat exchanger 756 Thermal stresses 806 Thermosyphon reboiler design 738 Thick cylinders (vessels) 792, 870-6 Thickeners 406                                                                                                                                                                                                                                                                                              |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets: for NPW 272 for optimum pipe diameter 219 use of in economic analysis 272 use of in mass balances 176 Stack design (fired heaters) 771 Stainless steels 295 corrosion resistance 297 Duplex steels 297                                                                                                                                                                                                   | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662 mixtures 321 solids 320 Thermal design of plate heat exchanger 756 Thermal stresses 806 Thermosyphon reboiler design 738 Thick cylinders (vessels) 792, 870-6 Thickeners 406 Thiele-Geddes method, multicomponent distillation                                                                                                                                                                                                                                            |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets: for NPW 272 for optimum pipe diameter 219 use of in economic analysis 272 use of in mass balances 176 Stack design (fired heaters) 771 Stainless steels 295 corrosion resistance 297 Duplex steels 297 high alloy 297                                                                                                                                                                                    | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662 mixtures 321 solids 320 Thermal design of plate heat exchanger 756 Thermal stresses 806 Thermosyphon reboiler design 738 Thick cylinders (vessels) 792, 870-6 Thickeners 406 Thiele-Geddes method, multicomponent distillation 544                                                                                                                                                                                                                                        |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets: for NPW 272 for optimum pipe diameter 219 use of in economic analysis 272 use of in mass balances 176 Stack design (fired heaters) 771 Stainless steels 295 corrosion resistance 297 Duplex steels 297 high alloy 297 types of 295                                                                                                                                                                       | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662 mixtures 321 solids 320 Thermal design of plate heat exchanger 756 Thermal stresses 806 Thermosyphon reboiler design 738 Thick cylinders (vessels) 792, 870-6 Thickeners 406 Thiele-Geddes method, multicomponent distillation 544 Thin cylinders 792                                                                                                                                                                                                                     |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets: for NPW 272 for optimum pipe diameter 219 use of in economic analysis 272 use of in mass balances 176 Stack design (fired heaters) 771 Stainless steels 295 corrosion resistance 297 Duplex steels 297 high alloy 297 types of 295 Standard flanges 863, 970                                                                                                                                             | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662 mixtures 321 solids 320 Thermal design of plate heat exchanger 756 Thermal stresses 806 Thermosyphon reboiler design 738 Thick cylinders (vessels) 792, 870-6 Thickeners 406 Thiele-Geddes method, multicomponent distillation 544 Thin cylinders 792 Tie components, in material balances 44                                                                                                                                                                             |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets: for NPW 272 for optimum pipe diameter 219 use of in economic analysis 272 use of in mass balances 176 Stack design (fired heaters) 771 Stainless steels 295 corrosion resistance 297 Duplex steels 297 high alloy 297 types of 295 Standard flanges 863, 970 Standards 12                                                                                                                                | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662 mixtures 321 solids 320 Thermal design of plate heat exchanger 756 Thermal stresses 806 Thermosyphon reboiler design 738 Thick cylinders (vessels) 792, 870-6 Thickeners 406 Thiele-Geddes method, multicomponent distillation 544 Thin cylinders 792 Tie components, in material balances 44 Tiles 303                                                                                                                                                                   |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets: for NPW 272 for optimum pipe diameter 219 use of in economic analysis 272 use of in mass balances 176 Stack design (fired heaters) 771 Stainless steels 295 corrosion resistance 297 Duplex steels 297 high alloy 297 types of 295 Standard flanges 863, 970 Standards 12 see also Codes                                                                                                                 | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662 mixtures 321 solids 320 Thermal design of plate heat exchanger 756 Thermal stresses 806 Thermosyphon reboiler design 738 Thick cylinders (vessels) 792, 870-6 Thickeners 406 Thiele-Geddes method, multicomponent distillation 544 Thin cylinders 792 Tie components, in material balances 44 Tiles 303 Titanium 299                                                                                                                                                      |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets: for NPW 272 for optimum pipe diameter 219 use of in economic analysis 272 use of in mass balances 176 Stack design (fired heaters) 771 Stainless steels 295 corrosion resistance 297 Duplex steels 297 high alloy 297 types of 295 Standard flanges 863, 970 Standards 12 see also Codes Static electricity 365                                                                                          | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662 mixtures 321 solids 320 Thermal design of plate heat exchanger 756 Thermal stresses 806 Thermosyphon reboiler design 738 Thick cylinders (vessels) 792, 870-6 Thickeners 406 Thiele-Geddes method, multicomponent distillation 544 Thin cylinders 792 Tie components, in material balances 44 Tiles 303 Titanium 299 TLV (Threshold Limit Value) 360                                                                                                                      |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets: for NPW 272 for optimum pipe diameter 219 use of in economic analysis 272 use of in mass balances 176 Stack design (fired heaters) 771 Stainless steels 295 corrosion resistance 297 Duplex steels 297 high alloy 297 types of 295 Standard flanges 863, 970 Standards 12 see also Codes Static electricity 365 Steam, condensing heat transfer coefficient 713,                                         | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662 mixtures 321 solids 320 Thermal design of plate heat exchanger 756 Thermal stresses 806 Thermosyphon reboiler design 738 Thick cylinders (vessels) 792, 870-6 Thickeners 406 Thiele-Geddes method, multicomponent distillation 544 Thin cylinders 792 Tie components, in material balances 44 Tiles 303 Titanium 299 TLV (Threshold Limit Value) 360 Torispherical heads 812, 816                                                                                         |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets: for NPW 272 for optimum pipe diameter 219 use of in economic analysis 272 use of in mass balances 176 Stack design (fired heaters) 771 Stainless steels 295 corrosion resistance 297 Duplex steels 297 high alloy 297 types of 295 Standard flanges 863, 970 Standards 12 see also Codes Static electricity 365 Steam, condensing heat transfer coefficient 713, 714                                     | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662 mixtures 321 solids 320 Thermal design of plate heat exchanger 756 Thermal stresses 806 Thermosyphon reboiler design 738 Thick cylinders (vessels) 792, 870-6 Thickeners 406 Thiele-Geddes method, multicomponent distillation 544 Thin cylinders 792 Tie components, in material balances 44 Tiles 303 Titanium 299 TLV (Threshold Limit Value) 360 Torispherical heads 812, 816 Torque loads on pressure vessels 838                                                    |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets: for NPW 272 for optimum pipe diameter 219 use of in economic analysis 272 use of in mass balances 176 Stack design (fired heaters) 771 Stainless steels 295 corrosion resistance 297 Duplex steels 297 high alloy 297 types of 295 Standard flanges 863, 970 Standards 12 see also Codes Static electricity 365 Steam, condensing heat transfer coefficient 713, 714 Steam ejectors 477                  | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662 mixtures 321 solids 320 Thermal design of plate heat exchanger 756 Thermal stresses 806 Thermosyphon reboiler design 738 Thick cylinders (vessels) 792, 870-6 Thickeners 406 Thiele-Geddes method, multicomponent distillation 544 Thin cylinders 792 Tie components, in material balances 44 Tiles 303 Titanium 299 TLV (Threshold Limit Value) 360 Torispherical heads 812, 816 Torque loads on pressure vessels 838 Total reflux 494                                   |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets: for NPW 272 for optimum pipe diameter 219 use of in economic analysis 272 use of in mass balances 176 Stack design (fired heaters) 771 Stainless steels 295 corrosion resistance 297 Duplex steels 297 high alloy 297 types of 295 Standard flanges 863, 970 Standards 12 see also Codes Static electricity 365 Steam, condensing heat transfer coefficient 713, 714 Steam ejectors 477 Steam supply 899 | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662 mixtures 321 solids 320 Thermal design of plate heat exchanger 756 Thermal stresses 806 Thermosyphon reboiler design 738 Thick cylinders (vessels) 792, 870-6 Thickeners 406 Thiele-Geddes method, multicomponent distillation 544 Thin cylinders 792 Tie components, in material balances 44 Tiles 303 Titanium 299 TLV (Threshold Limit Value) 360 Torispherical heads 812, 816 Torque loads on pressure vessels 838 Total reflux 494 Town and Country Planning Act 905 |
| Spherical pressure vessels 812 Split-fraction coefficient 169 estimation of 173, 182 Split-fraction concept 169 Spray dryers 430 Spreadsheets: for NPW 272 for optimum pipe diameter 219 use of in economic analysis 272 use of in mass balances 176 Stack design (fired heaters) 771 Stainless steels 295 corrosion resistance 297 Duplex steels 297 high alloy 297 types of 295 Standard flanges 863, 970 Standards 12 see also Codes Static electricity 365 Steam, condensing heat transfer coefficient 713, 714 Steam ejectors 477                  | Temperature, effect of on material properties 286 Tensile strength 284 Theories of failure 794 Thermal conductivity 319 gases 320 liquids 320 metals 662 mixtures 321 solids 320 Thermal design of plate heat exchanger 756 Thermal stresses 806 Thermosyphon reboiler design 738 Thick cylinders (vessels) 792, 870-6 Thickeners 406 Thiele-Geddes method, multicomponent distillation 544 Thin cylinders 792 Tie components, in material balances 44 Tiles 303 Titanium 299 TLV (Threshold Limit Value) 360 Torispherical heads 812, 816 Torque loads on pressure vessels 838 Total reflux 494                                   |

| Transfer units:                                  | Vaporisers /25                               |     |
|--------------------------------------------------|----------------------------------------------|-----|
| Cornell's method 598                             | see also Reboilers                           |     |
| definition 594                                   | Vapour pressure, prediction of 330           |     |
| height prediction 596                            | Vapour-liquid equilibria, at high pressures  | 347 |
| Onda's method 600                                | Vapour-liquid equilibrium data 338           |     |
| Transport:                                       | Variable operating costs 260                 |     |
| of gases 475                                     | Velocity heads, number of 201                |     |
| of liquids 477                                   | Vent gases, energy recovery from 101         |     |
| of solids 479                                    | Vent piping design 367                       |     |
| Tray data sheet 1002                             | Venturi scrubbers 457                        |     |
| Trays see Plates                                 | Vessel data sheet 1001                       |     |
| Tresca's theory 795                              | Vessel heads 812-19                          |     |
| Trips (safety) 234                               |                                              |     |
| Tube plate see Tube sheets                       | external pressure 826                        |     |
| Tube rolling 652                                 | Vessel supports 841 55                       |     |
| Tube sheets (plates) 652                         | Vessel supports 841–55 selection of 841      |     |
| design procedures 864                            | brackets 853                                 |     |
| layouts 1016                                     |                                              |     |
| Tube vibrations, flow-induced 654                | saddles 842                                  |     |
| Tube-side coefficients, heat exchangers 662      | skirts 845                                   |     |
| Tube-side pressure drop, heat exchangers 666     | Vibrating screens 401                        |     |
| Tubular bowl centrifuges 415                     | Vibration:                                   |     |
| Tubular Heat Exchangers Manufactures Association | of tubes in heat exchangers 654              |     |
| see TEMA                                         | wind-induced, in columns 836                 |     |
| Turn-down ratio, definition of 560               | Viscosity:                                   |     |
|                                                  | gases 319                                    |     |
|                                                  | liquids 315                                  |     |
| U-tube heat exchanger 642                        | mixtures 318                                 |     |
| Ullman's Encyclopedia of Industrial Technology   | Viscosity correction factor in heat transfer | 664 |
| 310                                              | Visual impact, plant layout 904              |     |
| Ultimate oxygen demand (UOD) 903                 |                                              |     |
| Unconfined vapour cloud explosions 364           |                                              |     |
| Underwood equation 525                           | Waste:                                       |     |
| UNIFAC method 345                                | aqueous, treatment of 903                    |     |
| UNIOPT 165                                       | biological treatment 904                     |     |
| UNIQUAC equation 343                             | discharge to sewers 904                      |     |
| Units:                                           | energy recovery from 103                     |     |
| conversion factors 15, 968                       | hold up systems 902                          |     |
| systems of 14                                    | incineration 103, 902                        |     |
| Unsteady-state material balance calculations 54  | landfill 902                                 |     |
| UOD see Ultimate oxygen demand                   | reduction of 901                             |     |
| (UOD)                                            | sea dumping 902                              |     |
| US gallons 14                                    | Waste management 901                         |     |
| Utilities (services) 6, 899                      | Waste recycling 901                          |     |
| cost of 261                                      | Waste-heat boilers 98                        |     |
| UTS (Ultimate Tensile Strength) 284              | Water:                                       |     |
|                                                  | cost 263                                     |     |
| **                                               | heat transfer coefficient in tubes           |     |
| Vacuum pumps 477                                 | 666                                          |     |
| Vacuum relief 367                                | towns/cities 900                             |     |
| Vacuum vessels see Pressure vessel design, for   | Water gas reaction 140                       |     |
| external pressure                                | Water Industries Act 905                     |     |
| Valve plates 558                                 | Water Resources Act 905                      |     |
| Valve selection 196                              | Weep point, sieve plates 569, 571            |     |
| Valve types 196-8                                | Weight:                                      |     |
| ball 197                                         | of contacting plates 833                     |     |
| butterfly 198                                    | of insulation 833                            |     |
| check 198                                        | of ladders 833                               |     |
| diaphragm 197                                    | of platforms 833                             |     |
| gate 196                                         | •                                            |     |
| globe 197                                        | of vessels 832                               |     |
| plug 198                                         | Weight loads, pressure vessels 832           |     |

Welded joints:
design 866
efficiency 809
Welded plate heat exchanger 761
Welding-neck flanges 855
Wet scrubbers 457
Wetting rates, packing 615
Whirling of shafts 879
Wilson equation 341
Wind loads 834
Wind pressure on columns 835

Wind-induced vibrations in columns 836 Wiped-film evaporators 433 Wire wound vessels 875 Working capital 248 WWW (World Wide Web) 310

Yield, of chemical reactors 48

Zirconium 299 Zirconium alloys 299

## Senthil Kumar's eBooks Collection - 2007

