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General and Introductory Problems, Modified Pressure, Fluid Statics 
 
 
 
 
10-1C 
Solution We are to discuss the difference between an “exact” solution and an approximate solution of the Navier-
Stokes equation.  
 
Analysis In an “exact” solution, we begin with the full Navier-Stokes equation. As we solve the problem, some 
terms may drop out due to the specified geometry or other simplifying assumptions in the problem. In an approximate 
solution, we eliminate some terms in the Navier-Stokes equation right from the start. In other words, we begin with a 
reduced or simplified approximate form of the equation. 
 
Discussion The approximations are based on the class of flow problem and/or the region in which such approximations 
are appropriate (e.g. irrotational, boundary layer, etc.). 

  

 
 
 
 
10-2C 
Solution We are to label regions in a flow field where certain approximations are likely to be appropriate.  
 
Assumptions 1 The flow is incompressible. 2 The flow is steady in the 
mean (we ignore the unsteady flow field close to the rotating blades). 
 
Analysis A boundary layer grows along the floor, both upstream 
and downstream of the fan. The flow upstream of the fan is largely 
irrotational except very close to the floor. The air is nearly static far 
upstream and far above the fan. Downstream of the fan, the flow is most 
likely swirling and turbulent, and none of the approximations are expected 
to be appropriate there. In other words, the full Navier-Stokes equation 
must be solved in that region. We sketch all these regions in Fig. 1. 
 
 
Discussion The regions sketched in Fig. 1 are not well defined, nor 
are they necessarily to scale. 

  

 
 
 
 
10-3C 
Solution We are to discuss the role of nondimensionalization of the Navier-Stokes equations.  
 
Analysis When we properly nondimensionalize the Navier-Stokes equation, all the terms are re-written in the 
form of some nondimensional parameter times a quantity of order unity. Thus, we can simply compare the orders of 
magnitude of the nondimensional parameters to see which terms (if any) can be ignored because they are very small 
compared to other terms. For example, if the Strouhal number is much smaller than the Euler number, we can ignore the 
term that contains the Strouhal number, but must retain the term that contains the Euler number. 
 
Discussion This method works only if the characteristic scales of the problem (length, speed, frequency, etc.) are 
chosen properly. 

  

 

Irrotational 

Static Static 

Boundary layer 

Full Navier-
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FIGURE 1 
Regions of appropriate approximations for 
the flow produced by a box fan sitting on the 
floor of a large room. 
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10-4C 
Solution We are to discuss the most significant danger that arises with an approximate solution, and we are to come 
up with an example. 
 
Analysis The danger of an approximate solution of the Navier-Stokes equation is this: If the approximation is not 
appropriate to begin with, our solution will be incorrect – even if we perform all the mathematics correctly. There are 
many examples. For instance, we may assume that a boundary layer exists in a region of flow. However, if the Reynolds 
number is not large enough, the boundary layer is too thick and the boundary layer approximations break down. Another 
example is that we may assume a fluid statics region, when in reality there are swirling eddies in that region. The unsteady 
motion of the eddies makes the problem unsteady and dynamic – the approximation of fluid statics would be inappropriate.  
 
Discussion When you make an approximation and solve the problem, it is best to go back and verify that the 
approximation is appropriate. 

  

 
 
 
10-5C 
Solution We are to discuss the criteria used to determine whether an approximation of the Navier-Stokes equation is 
appropriate or not 
 
Analysis We determine if an approximation is appropriate by comparing the orders of magnitude of the various 
terms in the equations of motion. If the neglected terms are negligibly small compared to other terms, then the 
approximation is appropriate. If not, then it is not appropriate to neglect those terms. 
 
Discussion It is important that the proper scales be used for the nondimensionalization of the equation. Otherwise, the 
order of magnitude analysis may be incorrect. 

  

 
 
 
10-6C 
Solution We are to discuss the physical significance of the four nondimensional parameters in the 
nondimensionalized incompressible Navier-Stokes equation. 
 
Analysis The four parameters are discussed individually below: 
 

 Strouhal number: St is the ratio of some characteristic flow time to some period of oscillation. If St << 1, the 
oscillation period is very large compared to the characteristic flow time, and the problem is quasi-steady; the 
unsteady term in the Navier-Stokes equation may be ignored. If St >> 1, the oscillation period is very short 
compared to the characteristic flow time, and the unsteadiness dominates the problem; the unsteady term must 
remain. 

 Euler number: Eu is the ratio of a characteristic pressure difference to a characteristic pressure due to fluid 
inertia. If Eu << 1, pressure gradients are very small compared to inertial pressure, and the pressure term can be 
neglected in the Navier-Stokes equation. If Eu >> 1, the pressure term is very large compared to the inertial term, 
and must remain in the equation. 

 Froude number: Fr is the ratio of inertial forces to gravitational forces. Note that Fr appears in the denominator 
of the nondimensionalized Navier-Stokes equation. If Fr << 1, gravitational forces are very large compared to 
inertial forces, and the gravity term must remain in the Navier-Stokes equation. If Fr >> 1, gravitational forces are 
negligible compared to inertial forces, and the gravity term in the Navier-Stokes equation can be ignored. 

 Reynolds number: Re is the ratio of inertial forces to viscous forces. Note that Re appears in the denominator of 
the nondimensionalized Navier-Stokes equation. If Re << 1, viscous forces are very large compared to inertial 
forces, and the viscous term must remain. (In fact, it may dominate the other terms, as in creeping flow). If Re >> 
1, viscous forces are negligible compared to inertial forces, and the viscous term in the Navier-Stokes equation can 
be ignored. Note that this applies only to regions outside of boundary layers, because the characteristic length scale 
for a boundary layer is generally much smaller than that for the overall flow. 

 
Discussion You must keep in mind that the approximations discussed here are appropriate only in certain regions of the 
flow field. In other regions of the same flow field, different approximations may apply. 
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10-7C 
Solution We are to discuss the criterion for using modified pressure.  
 
Analysis Modified pressure can be used only when there are no free surface effects in the problem. 
 
Discussion Modified pressure is simply a combination of thermodynamic pressure and hydrostatic pressure. It turns out 
that if there are no free surface effects, the hydrostatic pressure component is independent of the flow pressure component, 
and these two can be separated. 

  

 
 
 
 
 
 
 
 
 
 
 
 
10-8C 
Solution We are to discuss which nondimensional parameter is eliminated by use of the modified pressure. 
 
Analysis Modified pressure effectively combines the effects of actual pressure and gravity. In the 
nondimensionalized Navier-Stokes equation in terms of modified pressure, the Froude number disappears. The reason 
Froude number is eliminated is because the gravity term is eliminated from the equation. 
 
Discussion Keep in mind that we can employ modified pressure only for flows without free surface effects. 
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10-9 
Solution We are to plug the given scales for this flow problem into the nondimensionalized Navier-Stokes equation 
to show that only two terms remain in the region consisting of most of the tank. 
 
Assumptions 1 The flow is incompressible. 2 d << D. 3 D is of the same order of magnitude as H. 
 
Analysis The characteristic frequency is taken as the inverse of the characteristic time, f = 1/tdrain. The Strouhal 
number is thus 

Strouhal number: 
drain

St ~ 1fL H
V t V

= =  (1) 

St is of order of magnitude 1 since the order of magnitude of tdrain is H/V. The Euler number is 

Euler number: 
2 4

jet0
2 2 2 4Eu ~ ~

VP P gH D
V V V d

ρ
ρ ρ

∞−
= =  (2) 

where we have used the order of magnitude estimate that jetV ~ gH . We have also used conservation of mass, namely 
Vjetd2 = VtankD2. Similarly, the Froude number is 

Froude number: 
2

2
jet

Fr ~ ~V V d
V DgH

=  (3) 

Finally, the Reynolds number is 

Reynolds number: 
2

jet
jet 2

jet

Re ~ ~ Re
V DVH VD V d

V D
ρρ ρ

μ μ μ
= =  (4) 

We plug Eqs. 1 through 4 into the nondimensionalized incompressible Navier-Stokes equation and compare orders of 
magnitude of each term, 

Nondimensionalized incompressible Navier-Stokes equation:

 [ ] ( ) [ ]
2

2 22
jet2 2

2
2

~1~1 ~
~ ~Re

* 1 1St * * * Eu * * * * *
* ReFr

D
D dd
d D

V V V P g V
t

∂ ⎡ ⎤ ⎡ ⎤+ ⋅∇ = − ∇ + + ∇⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦ ⎣ ⎦
 (5) 

Clearly, the first two terms (the unsteady and inertial terms) in Eq. 5 are negligible compared to the second two terms (the 
pressure and gravity terms) since D >> d. The last term (the viscous term) is a little trickier. We know that if the flow 
remains laminar, the order of magnitude of Rejet is at most 103. Thus, in order for the viscous term to be of the same order 
of magnitude as the inertial term, d2/D2 must be of order of magnitude 10-3. Thus, provided that these criteria are met, the 
only two remaining terms in the Navier-Stokes equation are the pressure and gravity terms. The final dimensional form of 
the equation is the same as that of fluid statics, 

Incompressible Navier-Stokes equation for fluid statics: P g∇ = ρ  (6) 

The criteria for Carrie’s approximation to be appropriate depends on the desired precision. For 1% error, D must be 
at least 10 times greater than d to ignore the unsteady term and the inertial term. The viscous term, however, depends on the 
value of Rejet. To be safe, Carrie should assume the highest possible value of Rejet, for which we know from the above order 
of magnitude estimates that D must be at least 103/2 times greater than d. 
 
Discussion We cannot use the modified pressure in this problem since there is a free surface. 
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10-10 
Solution We are to sketch the profile of modified pressure and 
shade in the region representing hydrostatic pressure.  
 
Assumptions 1 The flow is incompressible. 2 The flow is fully 
developed. 3 Gravity acts vertically downward. 4 There are no free 
surface effects in this flow field. 
 
Analysis By definition, modified pressure P′ = P + ρgz. So we add 
hydrostatic pressure component ρgz to the given profile for P to obtain 
the profile for P′. Recall from Example 9-16, that for the case in which 
gravity does not act in the x-z plane, the pressure would be constant along 
any slice x = x1. Thus we infer that here (with gravity), the linear increase 
in P as we move down vertically in the channel is due to hydrostatic 
pressure. Therefore, when we add ρgz to P to obtain the modified 
pressure, it turns out that P′ is constant at this horizontal location.  
 
 We show two solutions in Fig. 1: (a) datum plane z = 0 located 
at the bottom wall, and (b) datum plane z = 0 located at the top wall. The 
shaded region in Fig. 1b represents the hydrostatic pressure component. 
P′ is constant along the slice x = x1 for either case, and the datum plane 
can be drawn at any arbitrary elevation. 
 
 
Discussion It should be apparent why it is advantageous to use 
modified pressure; namely, the gravity term is eliminated from the 
Navier-Stokes equation, and P′ is in general simpler than P. 

  

 
 
 
 
 
 
10-11 
Solution We are to discuss how modified pressure varies with downstream distance in planar Poiseuille flow.  
 
Assumptions 1 The flow is incompressible. 2 The flow is fully 
developed. 3 Gravity acts vertically downward. 4 There are no free 
surface effects in this flow field. 
 
Analysis For fully developed planar Poiseuille flow between two 
parallel plates, we know that pressure P decreases linearly with x, the 
distance down the channel. Modified pressure is defined as P′ = P + ρgz. 
However, since the flow is horizontal, elevation z does not change as we 
move axially down the channel. Thus we conclude that modified 
pressure P′ decreases linearly with x. We sketch both P and P′ in Fig. 1 
at two axial locations, x = x1 and x = x2. The shaded region in Fig. 1 
represents the hydrostatic pressure component ρgz. Since channel height 
is constant, the hydrostatic component does not change with x. P′ is 
constant along any vertical slice, but its magnitude decreases linearly with x as sketched. 
 
Discussion The pressure gradient dP′/dx in terms of modified pressure is the same as the pressure gradient ∂P/∂x in 
terms of actual pressure. 
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FIGURE 1 
Actual pressure P (black arrows) and 
modified pressure P′ (gray arrows) for fully 
developed planar Poiseuille flow. (a) Datum 
plane at bottom wall and (b) datum plane at 
top wall. The hydrostatic pressure 
component ρgz is the shaded area in (b). 
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FIGURE 1 
Actual pressure P (black arrows) and 
modified pressure P′ (gray arrows) at two 
axial locations for fully developed planar 
Poiseuille flow. 
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10-12 
Solution We are to generate an “exact” solution of the Navier-Stokes equation for fully developed Couette flow, 
using modified pressure. We are to compare to the solution of Chap. 9 that does not use modified pressure. 
 
Assumptions We number and list the assumptions for clarity: 

1 The plates are infinite in x and z (z is out of the page in the figure associated with this problem). 
2 The flow is steady. 
3 This is a parallel flow (we assume the y component of velocity, v, is zero). 
4 The fluid is incompressible and Newtonian, and the flow is laminar. 
5 Pressure P = constant with respect to x. In other words, there is no applied pressure gradient pushing the flow in 

the x direction; the flow establishes itself due to viscous stresses caused by the moving upper wall. In terms of 
modified pressure, P′ is also constant with respect to x. 

6 The velocity field is purely two-dimensional, which implies that w = 0 and 

 ( )any velocity component 0
z
∂

=
∂

. 

7 Gravity acts in the negative z direction. 
 
Analysis To obtain the velocity and pressure fields, we follow the step-by-step procedure outlined in Chap. 9.  
 

Step 1 Set up the problem and the geometry. See the figure associated with this problem. 
Step 2 List assumptions and boundary conditions. We have already listed seven assumptions. The boundary conditions 

come from imposing the no slip condition: (1) At the bottom plate (y = 0), u = v = w = 0. (2) At the top plate (y = h), u 
= V, v = 0, and w = 0. (3) At z = 0, P = P0, and thus P′ = P + ρgz = P0. 

Step 3 Write out and simplify the differential equations. We start with the continuity equation in Cartesian coordinates, 

Continuity: u v
x y
∂ ∂

+
∂ ∂

Assumption 3

w
z

∂
+

∂
Assumption 6

0          or          0u
x
∂

= =
∂

 
(1) 

Equation 1 tells us that u is not a function of x. In other words, it doesn’t matter where we place our origin – the flow is 
the same at any x location. I.e., the flow is fully developed. Furthermore, since u is not a function of time (Assumption 
2) or z (Assumption 6), we conclude that u is at most a function of y, 

Result of continuity: ( ) onlyu u y=  (2) 

We now simplify the x momentum equation as far as possible: 

 u
t

ρ ∂
∂

Assumption 2

uu
x
∂

+
∂

Continuity

uv
y
∂

+
∂

Assumption 3

uw
z
∂

+
∂

Assumption 6

P
x

⎛ ⎞
⎜ ⎟ ′∂⎜ ⎟ = −

∂⎜ ⎟
⎜ ⎟
⎝ ⎠

2

2

Assumption 5

u
x

μ ∂
+

∂

2 2

2 2

Continuity

u u
y z
∂ ∂

+ +
∂ ∂

2

2

Assumption 6

         0d u
dy

⎛ ⎞
⎜ ⎟

→ =⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (3) 

All other terms in Eq. 3 have disappeared except for a lone viscous term, which must then itself equal zero. Notice that 
we have changed from a partial derivative (∂/∂y) to a total derivative (d/dy) in Eq. 3 as a direct result of Eq. 2. We do 
not show the details here, but you can show in similar fashion that every term except the pressure term in the y 
momentum equation goes to zero, forcing that lone term to also be zero, 

y momentum: 0P
y
′∂
=

∂
 (4) 

The same thing happens to the z momentum equation; the result is 

z momentum: 0P
z
′∂
=

∂
 (5) 

In other words, P′ is not a function of y or z. Since P′ is also not a function of time (Assumption 2) or x (Assumption 
5), P′ is a constant, 

Result of y and z momentum: 3 constantP C′ = =  (6) 
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Step 4 Solve the differential equations. Continuity, y momentum, and z momentum have already been “solved”, resulting 
in Eqs. 2 and 6. Equation 3 (x momentum) is integrated twice to get 

Integration of x momentum: 1 2u C y C= +  (7) 

where C1 and C2 are constants of integration. 
Step 5 We apply boundary condition (3), P′ = P0 at z = 0. Eq. 6 yields C3 = P0, and 

Final solution for pressure field: 0 0          P P P P gzρ′ = → = −  (9) 

We next apply boundary conditions (1) and (2) to obtain constants C1 and C2. 

Boundary condition (1): 1 2 2(0) 0          or          0u C C C= + = =   

and 

Boundary condition (2): 1 1( ) 0           or          Vu C h V C
h

= + = =   

Finally, Eq. 7 becomes 

Final result for velocity field: 
yu V
h

=  (10) 

The velocity field reveals a simple linear velocity profile from u = 0 at the bottom plate to u = V at the top plate. 
Step 6 Verify the results. You can plug in the velocity and pressure fields to verify that all the differential equations and 

boundary conditions are satisfied. 
 

 We verify that the results are identical to those of Example 9-15. Thus, we get the same result using modified 
pressure throughout the calculation as we do using the regular (thermodynamic) pressure throughout the calculation. 
 
Discussion Since there are no free surfaces in this problem, the gravity term in the Navier-Stokes equation is absorbed 
into the modified pressure, and the pressure and gravity terms are combined into one term. This is possible since flow 
pressure and hydrostatic pressure are uncoupled. 
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10-13 
Solution We are to write all three components of the Navier-Stokes equation in terms of modified pressure, and show 
that they are equivalent to the equations with regular pressure. We are also to discuss the advantage of using modified 
pressure.  
 
Analysis In terms of modified pressure, the Navier-Stokes equation is written in Cartesian components as 

x component: 2u u u u Pu v w u
t x y z x

ρ μ
′⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + + = − + ∇⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (1) 

and 

y component: 2v v v v Pu v w v
t x y z y

ρ μ
′⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + + = − + ∇⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (2) 

and 

z component: 2w w w w Pu v w w
t x y z z

ρ μ
′⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + + = − + ∇⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (3) 

The definition of modified pressure is 

Modified pressure: P P gz′ = + ρ  (4) 

When Eq. 4 is plugged into Eqs. 1 and 2, the gravity term disappears since z is independent of x and y. The result is 

x component: 2u u u u Pu v w u
t x y z x

ρ μ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + + = − + ∇⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (5) 

and 

y component: 2v v v v Pu v w v
t x y z y

ρ μ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + + = − + ∇⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (6) 

However, when Eq. 4 is plugged into Eq. 3, the result is 

z component: 2w w w w Pu v w g w
t x y z z

ρ ρ μ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + + = − − + ∇⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (7) 

Equations 5 through 7 are the appropriate components of the Navier-Stokes equation in terms of regular pressure, so long as 
gravity acts downward (in the −z direction). 
 The advantage of using modified pressure is that the gravity term disappears from the Navier-Stokes equation. 
 
Discussion Modified pressure can be used only when there are no free surfaces. 
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10-14 
Solution We are to sketch the profile of actual pressure and shade in the region representing hydrostatic pressure.  
 
Assumptions 1 The flow is incompressible. 2 Gravity acts vertically 
downward. 3 There are no free surface effects in this flow field. 
 
Analysis By definition, modified pressure P′ = P + ρgz. Thus, to 
obtain actual pressure P, we subtract the hydrostatic component ρgz from 
the given profile of P′. Using the given value of P at the mid-way point as 
a guide, we sketch the actual pressure in Fig. 1 such that the difference 
between P′ and P increases linearly. In other words, we subtract the 
hydrostatic pressure component ρgz from the modified pressure P′ to 
obtain the profile for actual pressure P. 
 
Discussion We assume that there are no free surface effects in the 
problem; otherwise modified pressure should not be used. The datum 
plane is set in the problem statement, but any arbitrary elevation could be 
used instead. If the datum plane were set at the top of the domain, P′ would be less than P everywhere because of the 
negative values of z in the transformation from P to P′.  

  

 
 
 
10-15 
Solution We are to solve the Navier-Stokes equation in terms of modified pressure for the case of steady, fully 
developed, laminar flow in a round pipe. We are to obtain expressions for the pressure and velocity fields, and compare the 
actual pressure at the top of the pipe to that at the bottom of the pipe. 
 
Assumptions We make the same assumptions as in Example 9-18, except we use modified pressure P′ in place of actual 
pressure P. 
 
Analysis The Navier-Stokes equation with gravity, written in terms of modified pressure P′, is identical to the 
Navier-Stokes equation with no gravity, written in terms of actual pressure P. In other words, all of the algebra of Example 
9-18 remains the same, except we use modified pressure P′ in place of actual pressure P. The velocity field does not 
change, and the result is 

Axial velocity field: ( )2 21
4

dPu r R
dx

= −
μ

 (1) 

The modified pressure field is 

Modified pressure field: ( ) 1
dPP P x P dx
dx
′

′ ′ ′= = +  (2) 

where 1P′  is the modified pressure at location x = x1. In Example 9-18, the actual pressure varies only with x. In fact it 
decreases linearly with x (note that the pressure gradient is negative for flow from left to right). Here, Eq. 2 shows that 
modified pressure behaves in the same way, namely P′ varies only with x, and in fact decreases linearly with x. 
 We simply subtract the hydrostatic pressure component ρgz from modified pressure P′ (Eq. 2) to obtain the final 
expression for actual pressure P, 

Actual pressure field: 1          dPP P gz P P dx gz
dx

ρ ρ
′

′ ′= − → = + −  (3) 

 Since the pipe is horizontal, the bottom of the pipe is lower than the top of the pipe. Thus, ztop is greater than zbottom, 
and therefore by Eq. 3 Ptop is less than Pbottom. This agrees with our experience that pressure increases downward. 
 
Discussion Since there are no free surfaces in this flow, the gravity term does not directly influence the velocity field, 
and a hydrostatic component is added to the pressure field. You can see the advantage of using modified pressure. 

  

 

z x 

 g  
P 

P′ 

 
 

FIGURE 1 
Actual pressure P (black arrows) and 
modified pressure P′ (gray arrows) for the 
given pressure field. 
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Creeping Flow 
 
 
 
 
10-16C 
Solution We are to name each term in the Navier-Stokes equation, and then discuss which terms remain when the 
creeping flow approximation is made.  
 
Analysis The terms in the equation are identified as follows: 
 

 I Unsteady term 
 II Inertial term 
 III Pressure term 
 IV Gravity term 
 V Viscous term 

 

When the creeping flow approximation is made, only terms III (pressure) and V (viscous) remain. The other three terms 
are very small compared to these two and can be ignored. The significance is that all unsteady and inertial effects (terms I 
and II) have disappeared, as has gravity. We are left with a flow in which pressure forces and viscous forces must balance. 
Another significant result is that density has disappeared from the creeping flow equation, as discussed in the text. 
 
Discussion There are other acceptable one-word descriptions of some of the terms in the equation. For example, the 
inertial term can also be called the convective term, the advective term, or the acceleration term. 

  

 
 
 
 
 
10-17 
Solution We are to estimate the maximum speed of honey through a hole such that the Reynolds number remains 
below 0.1, at two different temperatures.  
 
Analysis The density of honey is equal to its specific gravity times the density of water, 

Density of honey: ( )3 3
honey honey water 1.42 998.0 kg/m 1420 kg/mSGρ ρ= = =  (1) 

We convert the viscosity of honey from poise to standard SI units, 

Viscosity of honey at 20o:

 honey
g kg 100 cm kg190 poise 19.0

cm s poise 1000 g m m s
μ

⎛ ⎞⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎜ ⎟⋅ ⋅ ⋅⎝ ⎠⎝ ⎠⎝ ⎠
 (2) 

Finally, we plug Eqs. 1 and 2 into the definition of Reynolds number, and set Re = 0.1 to solve for the maximum speed to 
ensure creeping flow, 

Maximum speed for creeping flow at 20o:

 
( )( )

( )( )
max honey

max 3
honey

Re 0.1 19.0 kg/m s

1420 kg/m 0.0040 m
V

D
μ

ρ
⋅

= = = 0.33 m/s  (3) 

At the higher temperature of 40oC, the calculations yield Vmax = 0.035 m/s. Thus, it is much easier to achieve creeping flow 
with honey at lower temperatures since the viscosity of honey increases rapidly as the temperature drops. 
 
Discussion We used Re < 0.1 as the maximum Reynolds number for creeping flow, but experiments reveal that in 
many flows, the creeping flow approximation is acceptable at Reynolds numbers as high as nearly 1.0. 
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10-18 
Solution For each case we are to calculate the Reynolds number and determine if the creeping flow approximation is 
appropriate.  
 
Assumptions 1 The values given are characteristic scales of the motion. 
 
Properties For water at T = 20oC, ρ  = 998.0 kg/m3 and μ = 1.002 × 10-3 kg/m⋅s. For unused engine oil at T = 140oC, ρ  
= 816.8 kg/m3 and μ = 6.558 × 10-3 kg/m⋅s. For air at T = 30oC, ρ  = 1.164 kg/m3 and μ = 1.872 × 10-5 kg/m⋅s. 
 
Analysis (a) The Reynolds number of the microorganism is 

 
( )( )( )3 6

3

998.0 kg/m 5.0 10  m 0.2 mm/s mRe
1000 mm1.002 10  kg/m s

DVρ
μ

−

−

× ⎛ ⎞= = =⎜ ⎟× ⋅ ⎝ ⎠
-49.96×10   

Since Re << 1, the creeping flow approximation is certainly appropriate. 
 

(b) The Reynolds number of the oil in the gap is 

 
( )( )( )3

3

816.8 kg/m 0.0012 mm 20.0 m/s mRe
1000 mm6.558 10  kg/m s

DVρ
μ −

⎛ ⎞= = =⎜ ⎟× ⋅ ⎝ ⎠
2.99   

Since Re > 1, the creeping flow approximation is not appropriate. 
 

(c) The Reynolds number of the fog droplet is 

 
( )( )( )3 6

5

1.164 kg/m 10 10  m 3.0 mm/s mRe
1000 mm1.872 10  kg/m s

DVρ
μ

−

−

× ⎛ ⎞= = =⎜ ⎟× ⋅ ⎝ ⎠
-31.87×10   

Since Re << 1, the creeping flow approximation is certainly appropriate. 
 
Discussion At room temperature, the oil viscosity increases by a factor of more than a hundred, and the Reynolds 
number of the bearing of Part (b) would be of order 10-2, which is in the creeping flow range. 
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10-19 
Solution We are to estimate the speed and Reynolds number from a multiple-image photograph.  
 
Assumptions 1 The characteristic speed is taken as the average over 10 images. 
 
Properties For water at T = 20oC, ρ  = 998.0 kg/m3 and μ = 1.002 × 10-3 kg/m⋅s. 
 
Analysis By measurement with a ruler, we estimate the sperm’s diameter as 2.4 μm, and it moves about 7.7 μm in 10 
frames. This represents a time of 

Time for 10 frames: 10 frames 0.050 s
200 frames/s

T = =   

Thus the sperm’s speed is 

Approximate speed: 6

7.7 μm m
0.050 s 10  μm

xV
T

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
-41.5×10  m/s   

and its Reynolds number is 

Reynolds number: 
( )( )( )3 6 4

4
3

998.0 kg/m 2.4 10  m 1.5 10  m/s
Re 3.59 10

1.002 10  kg/m s
DVρ
μ

− −

−
−

× ×
= = = × ≅

× ⋅
-43.6×10   

Since Re << 1, the creeping flow approximation is certainly appropriate. 
 
Note: Students’ answers may differ widely since the measurements from the photograph are not very accurate. We report 
the final answer to only two significant digits because of the inherent error in measuring distances from the photograph. 
 
Discussion If you use the cell’s length rather than its diameter as the characteristic length scale, Re increases by a factor 
of about two, but the flow is still well within the creeping flow regime. 

  

 
 
 
 
 
10-20 
Solution We are to compare the number of body lengths per second of a swimming human and a swimming sperm. 
 
Analysis We let BLPS denote “body lengths per second”. For the human swimmer, 

Human: human
100 m/min min

1.8 m/body length 60 s
BLPS ⎛ ⎞= =⎜ ⎟

⎝ ⎠
0.93 body length/s   

For the sperm, we use the speed calculated in Problem 10-19. The total body length of the sperm (head and tail) is about 40 
μm, as measured from the figure. 

Sperm: 
4 6

sperm
1.5 10  m/s 10  μm

40 μm/body length m
BLPS

− ⎛ ⎞×
= =⎜ ⎟

⎝ ⎠
3.8 body length/s   

So, on an equal basis of comparison, the sperm swims faster than the human! This result is perhaps surprising since the 
human benefits from inertia, while the sperm feels no inertial effects. However, we must keep in mind that the sperm’s 
body is designed to swim, while the human body is designed for multiple uses – it is not optimized for swimming. 
 
Note: Students’ answers may differ widely since the measurements from the photograph are not very accurate. 
 
Discussion Perhaps a more fair comparison would be between a fish and a sperm. 
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10-21 
Solution We are to calculate how fast air must move vertically to keep a water drop suspended in the air.  
 
Assumptions 1 The drop is spherical. 2 The creeping flow approximation is appropriate. 
 
Properties For air at T = 25oC, ρ  = 1.184 kg/m3 and μ = 1.849 × 10-5 kg/m⋅s. The density of the water at T = 25oC is 
997.0 kg/m3. 
 
Analysis Since the drop is sitting still, its downward force must exactly balance its upward force when the vertical air 
speed V is “just right”. The downward force is the weight of the particle: 

Downward force on the particle: 
3

down particle6
DF gπ ρ=  (1) 

The upward force is the aerodynamic drag force acting on the particle plus the buoyancy force on the particle. The 
aerodynamic drag force is obtained from the creeping flow drag on a sphere, 

Upward force on the particle: 
3

up air3
6

DF VD gπμ π ρ= +  (2) 

We equate Eqs. 1 and 2, i.e., Fdown = Fup, 

Balance: ( )
3

particle air 3
6

D g VDπ ρ ρ πμ− =   

and solve for the required air speed V, 

 ( ) ( )
( ) ( ) ( )

262
3 2

particle air 5

30 10  m
998.0 1.184  kg/m 9.81 m/s

18 18 1.849 10  kg/m s
DV gρ ρ
μ

−

−

×
⎡ ⎤= − = − =⎣ ⎦× ⋅

0.0264 m/s  

Finally, we must verify that the Reynolds number is small enough that the creeping flow approximation is appropriate. 

Check of Reynolds number: 
( )( )( )3 6

air
5

1.184 kg/m 0.0264 m/s 30 10  m
Re

1.849 10  kg/m s
VDρ
μ

−

−

×
= = =

× ⋅
0.0507   

Since Re << 1, The creeping flow approximation is appropriate. 
 
Discussion Notice that although air density does appear in the calculation of V, it is very small compared to the density 
of water. (If we ignore ρair in that calculation, we get V = 0.0265 m/s, an error of less than 0.4%. However, ρair is required in 
the calculation of Reynolds number – to verify that the creeping flow approximation is appropriate. 

  

 
 
 
 
 
10-22 
Solution  We are to discuss why density is not a factor in aerodynamic drag on a particle in creeping flow. 
 
Analysis It turns out that fluid density drops out of the creeping flow equations, since the terms that contain ρ in 
the Navier-Stokes equation are negligibly small compared to the pressure and viscous terms (which do not contain 
ρ). Another way to think about this is: In creeping flow, there is no fluid inertia, and since inertia is associated with fluid 
mass (density), density cannot contribute to the aerodynamic drag on a particle moving in creeping flow. In creeping flow, 
there is a balance between pressure forces and viscous forces, neither of which depend on fluid density. 
 
Discussion Density does have an indirect influence on creeping flow drag. Namely, ρ is needed in the Reynolds 
number calculation, and Re determines whether the flow is in the creeping flow regime or not. 
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10-23 
Solution We are to generate a characteristic pressure scale for flow through a slipper-pad bearing.  
 
Assumptions 1 The flow is steady and incompressible. 2 The flow is two-dimensional in the x-y plane. 3 The creeping 
flow approximation is appropriate. 
 
Analysis The x component of the creeping flow momentum equation is 

x momentum: 
2 2 2

2
2 2 2          P P u u uu

x x x y z
μ μ∂ ∂ ∂ ∂ ∂

≈ ∇ → ≈ + +
∂ ∂ ∂ ∂ ∂

2 D−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  

We plug in the characteristic scales to get 

Orders of magnitude: 

2 2
0

2 2

2 2

P V V
L L h

P u u
x x y

μ μ

Δ

∂ ∂ ∂
≈ +

∂ ∂ ∂
 

(1) 

The first term on the right of Eq. 1 is clearly much smaller than the second term on the right since h0 << L. Equating the 
orders of magnitude of the two remaining terms,  

Characteristic pressure scale: 2
0

~P V
L h

μΔ  → 2
0

 ~ VLP
h
μ

Δ  (2) 

 
Discussion The characteristic pressure scale differs from that in the text because there are two length scales in this 
problem rather than just one. 

  

 
 



Chapter 10 Approximate Solutions of the Navier-Stokes Equation 

10-16 
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to 
teachers and educators for course preparation.  If you are a student using this Manual, you are using it without permission. 

10-24 
Solution We are to find a characteristic velocity scale for v, compare the inertial terms of the x momentum equation 
to the pressure and viscous terms, and discuss how the creeping flow equations can still be used even if Re is not small. 
 
Assumptions 1 The flow is steady and incompressible. 2 The flow is two-dimensional in the x-y plane. 3 Gravity forces 
are negligible. 
 
Analysis (a) We use the continuity equation to obtain the characteristic velocity scale for v, 

Continuity: 

0

=0

V v
L h

u v
x y
∂ ∂

+
∂ ∂

 → 0~
Vh

v
L

 
(1) 

 

(b) We analyze the orders of magnitude of each term in the steady, 2-D, incompressible x momentum equation without 
gravity, 

x momentum: 

2 2
0 2 2 20 00

2 2

2 2

V V VV Vh V V
h LL hL h L

u u P u uu v
x y x x y

μ μ μρ ρρ

ρ ρ μ μ

=

∂ ∂ ∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂ ∂
 

(2) 

where we have also used the result of Problem 10-23. The first viscous term of Eq. 2 is clearly much smaller than the 
second viscous term since h0 << L. We multiply the order of magnitude of all the remaining terms by L/(ρV2) to compare 
terms, 

Comparison of orders of magnitude: 

0 0 0 0

2

2

1 1 L L
Vh h Vh h

u u P uu v
x y x y

μ μ
ρ ρ

ρ ρ μ∂ ∂ ∂ ∂
+ = − +

∂ ∂ ∂ ∂
 

(3) 

We recognize the Reynolds number based on gap height, Re = ρVh0/μ. Since the pressure and viscous terms contain the 
product of 1/Re, which is large for creeping flow, and L/h0, which is also large, it is clear that the inertial terms (left side 
of Eq. 3) are negligibly small compared to the pressure and viscous terms. 
 

(c) Since the pressure and viscous terms contain the product of 1/Re and L/h0, when h0 << L, the creeping flow equations 
can still be appropriate even if Reynolds number is not less than one. For example, if L/h0 ~ 10,000 and Re ~ 10, the 
pressure and viscous terms are still three orders of magnitude larger than the inertial terms. 
 
Discussion In the limit as L/h0 → ∞, the inertial terms disappear regardless of the Reynolds number. This limiting case 
is the Couette flow problem of Chap. 9. 
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10-25 
Solution We are to analyze the y momentum equation by order of magnitude analysis, and we are to comment about 
the pressure gradient ∂P/∂y. 
 
Assumptions 1 The flow is steady and incompressible. 2 The flow is two-dimensional in the x-y plane. 3 Gravity forces 
are negligible. 
 
Analysis We analyze the orders of magnitude of each term in the steady, 2-D, incompressible y momentum equation 
without gravity, 

y momentum: 
2 2 2 2 0 00 0 00 0 2 32 3 22 2 00 00

2 2

2 2

11 11 Vh VhVh V h VL Vh VV h V hV L L LL L L LhL h hhL L

v v P v vu v
x y y x y

μρ μ μρ μρ μρ

ρ ρ μ μ

== ==

∂ ∂ ∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂ ∂
 

(1) 

The first viscous term of Eq. 1 is clearly much smaller than the second viscous term, since h0 << L. We multiply the order 
of magnitude of all the remaining terms by L2/(ρV2h0) to compare terms, 

Comparison of orders of magnitude: 

3

0 00 0

2

2

1 1 LL
Vh hVh h

v v P vu v
x y y y

μμ
ρρ

ρ ρ μ

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∂ ∂ ∂ ∂
+ = − +

∂ ∂ ∂ ∂
 

(2) 

We recognize the Reynolds number based on gap height, Re = ρVh0/μ. Since the pressure and viscous terms contain the 
product of 1/Re, which is large for creeping flow, and L/h0, which is also large, it is clear that the inertial terms (left side of 
Eq. 2) are negligibly small compared to the pressure and viscous terms. This is expected, of course, for creeping flow. Now 
we compare the pressure and viscous terms. Both contain 1/Re, but the pressure term has and additional factor of (L/h0)2, 
which is very large. Thus the pressure term is the only remaining term in Eq. 2. How can this be? Since there are no terms 
that can balance the pressure term, the pressure term itself must be very small. In other words, the y momentum equation 
reduces to 

Final form of y momentum: 0P
y

∂
≈

∂
 (3) 

In other words, pressure is a function of x, but a very weak, negligible function of y. 
 
Discussion The result here is very similar to that for boundary layers, where we also find that ∂P/∂y ≈ 0 through the 
boundary layer. 
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10-26 
Solution We are to list boundary conditions and solve the x momentum equation for u. Then we are to 
nondimensionalize our result. 
 
Assumptions 1 The flow is steady and incompressible. 2 Gravity forces are negligible. 3 The flow is two-dimensional in 
the x-y plane. 4 P is not a function of y. 
 
Analysis (a) From the figure associated with this problem, we write two boundary conditions on u, 

Boundary condition (1):  at  0  for all u V y x= =  (1) 

and 

Boundary condition (2): 0  at    for all u y h x= =  (2) 

We note that h is not a constant, but rather a function of x. 
 

(b) We write the creeping flow x momentum equation, and integrate once with respect to y, noting that P is not a function of 
y. This is a partial integration. 

Integration of x momentum: ( )
2

12

1 1          u dP u dP y f x
dx y dxy μ μ

∂ ∂
= → = +

∂∂
  

We integrate again to obtain 

Second integration: ( ) ( )2
1 2

1
2

dPu y yf x f x
dxμ

= + +  (3) 

We apply boundary conditions to find the two unknown functions of x. From Eq. 1, 

Result of boundary condition (1): ( )2f x V=   

and from Eq. 2, 

Result of boundary condition (2): ( )
2

1

1
2

dPV h
dxf x

h
μ

− −
=   

From these, the final expression for u is obtained, 

Final expression for u, dimensional: ( )
2

, 1 1
2

y h dP y yu x y V
h dx h hμ

⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4) 

We recognize two distinct components of the velocity profile in Eq. 4, namely a Couette flow component and a Poiseuille 
flow component. Thus, the axial velocity is a superposition of Couette flow due to the moving bottom wall and Poiseuille 
flow due to the pressure gradient. 
 

(c) We nondimensionalize Eq. 4 by applying the nondimensional variables given in the problem statement. After some 
algebra, 

Nondimensional expression for u: ( ) ( )
2* ** 1 * * * 1

2 *
h dPu y y y

dx
= − + −  (5) 

 
Discussion Although we have a final expression for u, it is in terms of the pressure gradient dP/dx, which is not known. 
Pressure boundary conditions and further algebra are required to solve for the pressure field. 
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10-27 
Solution We are to generate an expression for axial velocity for a slipper-pad bearing with arbitrary gap shape.  
 
Assumptions 1 The flow is steady and incompressible. 2 Gravity forces are negligible. 3 The flow is two-dimensional in 
the x-y plane. 4 P is not a function of y. 
 
Analysis In the solution of Problem 10-26, we never used the fact that h(x) was linear. In fact, our solution is in terms 
of h(x), the specific form of which was never specified. Thus, the solution of Problem 10-26 is still appropriate, and no 
further work needs to be done here. The result is 

Expression for u for arbitrary h(x): ( )
2

, 1 1
2

y h dP y yu x y V
h dx h hμ

⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (1) 

 
Discussion As gap height h(x) changes, so does the pressure distribution. 

  

 
 
 
 
 
 
 
10-28 
Solution We are to prove the given equation for the slipper-pad bearing. 
 
Assumptions 1 The flow is steady and incompressible. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis We solve the 2-D continuity equation for v by integration, 

Continuity:

 ( ) ( )
0 0 0

0                    0
h h hu v v u udy dy v h v dy

x y y x x
∂ ∂ ∂ ∂ ∂

+ = → = − → − = −
∂ ∂ ∂ ∂ ∂∫ ∫ ∫  (1) 

But the no-slip condition tells us that v = 0 at both the bottom (y = 0) and top (y = h) plates. Thus Eq. 1 reduces to 

Result of continuity: 
0

0
h u dy

x
∂

=
∂∫  (2) 

The 1-D Leibnitz theorem is discussed in Chap. 4 and is repeated here: 

1-D Leibnitz theorem:

 ( ) ( ) ( )
b( x ) b

a( x ) a

d G db daG x, y dy dy G x,b G x,a
dx x dx dx

∂
= + −

∂∫ ∫  
 
(3) 

In our case (comparing Eqs. 2 and 3), a = 0, b = h(x), and G = u. Thus, 

 ( )
0 0

h hd u dhudy dy u x,h
dx x dx

∂
= +

∂∫ ∫   
(4) 

But u(h) = 0 for all values of x (no-slip condition). Finally then, we combine Eqs. 2 and 4 to yield the desired result, 

Final result: 
0

0
hd udy

dx
=∫   

 
Discussion This result could also be obtained by control volume conservation of mass. Now we finally have the means 
of calculating the pressure distribution in the slipper-pad bearing. 
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10-29 
Solution We are to prove the given equation for flow through a 2-D slipper-pad bearing.  
 
Assumptions 1 The flow is steady and incompressible. 2 Gravity forces are negligible. 3 The flow is two-dimensional in 
the x-y plane. 4 P is not a function of y. 
 
Analysis We substitute the expression for u from Problem 10-26 into the equation of Problem 10-28, 

 
2

0 0
0          1 1 0

2
h hd d y h dP y yudy V dy

dx dx h dx h hμ
⎡ ⎤⎛ ⎞ ⎛ ⎞= → − + − =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫  (1) 

The integral in Eq. 1 is easily evaluated since both h and dP/dx are functions of x only. After some algebra, 

 
3

0
2 12

d h h dPV
dx dxμ

⎡ ⎤
− =⎢ ⎥

⎣ ⎦
 (2) 

Finally, we take the x derivative, recognizing that h and dP/dx are functions of x, 

Steady, 2-D Reynolds equation for lubrication: 3 6d dP dhh V
dx dx dx

μ⎛ ⎞ =⎜ ⎟
⎝ ⎠

 (3) 

 

Discussion For a given geometry (h as a known function of x), we can integrate Eq. 3 to obtain the pressure distribution 
along the slipper-pad bearing. 

  

 
 

10-30 
Solution We are to find the pressure distribution for flow through a 2-D slipper-pad bearing with linearly decreasing 
gap height and atmospheric pressure at both ends of the slipper-pad.  
 
Assumptions 1 The flow is steady and incompressible. 2 Gravity forces are negligible. 3 The flow is two-dimensional in 
the x-y plane. 4 P is not a function of y. 
 
Analysis We integrate the Reynolds equation of Problem 10-29, and rearrange: 

First integration: 3 2 3
1 16           6dP dPh Vh C Vh C h

dx dx
μ μ − −= + → = +  (1) 

where C1 is a constant of integration. Next we substitute the given equation for h, 

 ( ) ( )2 3
0 1 06dP V h x C h x

dx
μ α α− −

= + + +  (2) 

Equation 2 is in the desired form, i.e., dP/dx as a function of x. We integrate Eq. 2, 

Second integration: ( ) ( )1 21
0 0 2

6
2
CVP h x h x Cμ α α

α α
− −

= − + − + +  (3) 

where C2 is a second constant of integration. We plug in the two boundary conditions on P to find constants C1 and C2, 
namely P = Patm at x = 0 and P = Patm at x = L. After some algebra, the results are 

Constants: 
( )

0
1 2 atm

0 0

12 6     and     L

L L

Vh h VC C P
h h h h
μ μ

α
= − = +

+ +
 (4) 

with which we generate our final expression for P from Eq. 3. After some algebra, 

Pressure distribution: 
( )( )

0
atm 2

0 0

6 L

L

h h x
P P Vx

h h h x
α

μ
α

⎡ ⎤− +
⎢ ⎥= +
⎢ ⎥+ +⎣ ⎦

 (5) 

 

Discussion There are other equivalent ways to write the expression for P, but Eq. 5 is about as compact as we can get. 
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10-31E  [Also solved using EES on enclosed DVD] 
Solution We are to calculate α, we are to calculate Pgage at a given x location, and we are to plot nondimensional gage 
pressure as a function of nondimensional axial distance for the case of a 
slipper-pad bearing with linearly decreasing gap height. Finally, we are to 
estimate the total force that this slipper-pad bearing can support. 
 
Assumptions 1 The flow is steady and incompressible. 2 Gravity forces 
are negligible in the oil flow. 3 The flow is two-dimensional in the x-y 
plane. 4 P is not a function of y. 
 
Properties Unused engine oil at T = 40oC: ρ  = 876.0 kg/m3, μ = 
0.2177 kg/m⋅s. 
 
Analysis (a) The convergence is calculated by its definition (see 
Problem 10-30), and its tangent is also calculated, 

 

( )0 0.0005 0.001  inch
1.0 inch

     tan

Lh h
L

α

α

−−
= = =

→ =

-0.0005

-0.0005
 

 

Note that we must set α to radians when taking the tangent. 
 

(b) At x = 0.5 inches (0.0127 m), we calculate Pgage = P – Patm using the 
result of Problem 10-30; the gage pressure at the mid-way point is 
 
 

( )( )

( )
( ) ( )

( ) ( )

0
gage atm 2

0 0

-52 2

2-5 -5

6

2.54 1.27 10  m 0.0005 0.0127 mkg m N s Pa m 6 0.2177 3.048 0.0127 m
m s s kg m N 2.54 1.27 10  m 2.54 10  m 0.0005 0.0127 m

L

L

h h x
P P P Vx

h h h x
α

μ
α

⎡ ⎤− +⎢ ⎥= − =
⎢ ⎥+ +⎣ ⎦

⎡ ⎡ ⎤− × −⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞ ⎣ ⎦⎢= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝ ⎠ ⎡ ⎤ ⎡ ⎤⎝ ⎠⎝ ⎠ + × × −⎣ ⎦ ⎣ ⎦⎣
7 2.32 10  Pa = 3370 psig = 

⎤
⎥

⎢ ⎥
⎢ ⎥⎦

= × 229 atm

 

The gage pressure in the middle of the slipper-pad is more than 200 atmospheres. This is quite large, and illustrates how a 
small slipper-pad bearing can support a large amount of force. 
 

(c) We repeat the calculations of Part (b) for values of x between 0 and L. We nondimensionalize both x and Pgage using x* 
= x/L and P* = (P − Patm)h0

2/μVL. A plot of P* versus x* is shown in Fig. 1. The gage pressure is constrained to be zero at 
both ends of the pad, but reaches a peak near the middle, but more towards the end. For these conditions the maximum 
value of P* is 1.0. 
 

(d) To calculate the total weight that the slipper-pad bearing can support, we integrate pressure over the surface area of the 
plate. We used the trapezoidal rule to integrate numerically in a spreadsheet. The result is 

Total vertical force (load): load gage0
62,600 N = 

x L

x
F P bdx

=

=
= =∫ 14,100 lbf   

You can also obtain a reasonable estimate by simply taking the average pressure in the gap times the area – this yields Fload 
= 62,000 N = 13,900 lbf. 
 
Discussion This slipper-pad bearing can hold an enormous amount of weight (7 tons!) due to the extremely high 
pressures encountered in the oil passage. 
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FIGURE 1 
Nondimensional gage pressure in a slipper-
pad bearing as a function of nondimensional 
axial distance along the slipper-pad. 
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10-32 
Solution We are to discuss what happens to the load when the oil temperature increases.  
 
Analysis Oil viscosity appears only once in the equation for gap pressure. Thus, pressure and load increase linearly as 
oil viscosity increases. However, as the oil heats up, its viscosity goes down rapidly. For example, at T = 40oC, μ = 0.2177 
kg/m⋅s, but at T = 80oC, μ drops to 0.03232 kg/m⋅s. This is more than a factor of six decrease in viscosity for only a 20oC 
increase in temperature. So, the load would decrease rapidly as oil temperature rises. 
 
Discussion This problem illustrates why engineers need to look at extreme operating conditions when designing 
products – just in case. 

  

 
 
 
 
 
10-33 
Solution We are to see if the Reynolds number is low enough that the flow can be approximated as creeping flow.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Properties Unused engine oil at T = 40oC: ρ  = 876.0 kg/m3, μ = 0.2177 kg/m⋅s. 
 
Analysis We base Re on the largest gap height, h0, 

Reynolds number:

 
( )( )( )3 5

0
876.0 kg/m 2.54 10  m 3.048 m/s

Re 0.312
0.2177 kg/m s

h Vρ
μ

−×
= = =

⋅
 

 

We see that the Reynolds number is less than one, but we cannot say that Re << 1. So, the flow is not really in the creeping 
flow regime. However, the creeping flow approximation is generally reasonable up to Reynolds numbers near one. Also, as 
discussed in Problem 10-24, the creeping flow approximation is still reasonable in this case since L/h0 is so large.  
 
Discussion The error introduced by making the creeping flow approximation is probably less than the error associated 
with measurement of gap height. 

  

 
 
 
 
 
 
10-34  
 

Solution We are to calculate how much the gap compresses when the load on the bearing is doubled. 
 
Analysis There are several ways to approach this problem: You can try to integrate the pressure distribution 
analytically to calculate the total load, or you can integrate numerically on a spreadsheet or math program. This is an 
“inverse” problem in that we can calculate the load for a given value of h0, but we cannot do the reverse calculation directly 
– we must do it implicitly. One way to do this is graphically – plot load as a function of h0, and pick off the value of h0 
where the load has doubled. Another way is by trial and error, or by a convergence technique like Newton’s method. It 
turns out that the load is doubled when h0 = 0.0008535 inches (2.168 × 10-5 m). This represents a decrease in initial 
gap height of about 14.7%. 
 
Discussion The relationship between gap height and load is clearly nonlinear. When the load doubles, the gap height 
decreases by less than 15%. 
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10-35 
Solution We are to estimate the speed at which a human being swimming in water would be in the creeping flow 
regime.  
 
Properties For water at T = 20oC, ρ  = 998.0 kg/m3 and μ = 1.002 × 10-3 kg/m⋅s. 
 
Analysis The characteristic length scale of a human body is of order 1 m. To be in the creeping flow regime, the 
Reynolds number of the body should be below 1. Thus, 

 
( )( )

( )( )

3

3

1.002 10  kg/m s 1ReRe           ~
L 998 kg/m 1 m

LV Vρ μ
μ ρ

−× ⋅
= → = = -61×10  m/s   

So, we would have to move at about one-millionth of a meter per second, or less. This speed is so slow that it is not 
measurable. Natural currents in the water, even in a “stagnant” pool of water, would be much greater than this. Hence, we 
could never experience creeping flow in water. 
 
Discussion If we were to use a Reynolds number of 0.1 instead of 1, the result would be even slower. 

  

 
 
 
 
 
 
 
Inviscid Flow 
 
 
 
 
 
10-36C 
Solution We are to discuss the approximation associated with the Euler equation.  
 
Analysis The Euler equation is simply the Navier-Stokes equation with the viscous term neglected; it is therefore an 
inviscid approximation of the Navier-Stokes equation. The Euler equation is appropriate in high Reynolds number 
regions of the flow where net viscous forces are negligible, far away from walls and wakes. 
 
Discussion The Euler equation is not appropriate very close to solid walls, since frictional forces are always present 
there. Note that the same Euler equation is appropriate in an irrotational region of flow as well. 

  

 
 
 
 
 
10-37C 
Solution We are to discuss the main difference between the steady, incompressible Bernoulli equation when applied 
to irrotational regions of flow vs. rotational but inviscid regions of flow.  
 
Analysis The Bernoulli equation itself is identical in these two cases, but the “constant” for the case of rotational but 
inviscid regions of flow is constant only along streamlines of the flow, not everywhere. For irrotational regions of flow, 
the same Bernoulli constant holds everywhere. 
 
Discussion A simple example is that of solid body rotation, which is rotational but inviscid. In this flow, as discussed in 
the text, the Bernoulli “constant” changes from one streamline to another. 
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10-38 
Solution We are to show that the given vector identity is satisfied in Cartesian coordinates. 
 
Analysis We expand each term in the vector identity carefully. The first term is 

 ( ) u u u v v v w w wV V u v w i u v w j u v w k
x y z x y z x y z

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
⋅∇ = + + + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (1) 

The second term is 

 
2 2 2 2 2 2 2 2 2 21

2 2
V u v w u v w u v wi j k

x x x y y y z z z
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∇ = + + + + + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 

which reduces to 

 
2

2
V u v w u v w u v wu v w i u v w j u v w k

x x x y y y z z z
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞∇ = + + + + + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

 (2) 

The third term is 

 ( ) v u u w w v v u u w w vV V v w i w u j u v k
x y z x y z x y z x y z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞× ∇× = − − − + − − − + − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (3) 

When we substitute Eqs. 1 through 3 into the given equation, we see that all the terms disappear, and the equation is 
satisfied. We show this for the x direction only (all terms with unit vector i ): 

 uu
x
∂
∂

uv
y
∂

+
∂

uw
z
∂

+
∂

uu
x
∂

=
∂

vv
x
∂

+
∂

ww
x

∂
+

∂
vv
x
∂

−
∂

uv
y
∂

+
∂

uw
z
∂

+
∂

ww
x

∂
−

∂
 (4) 

The algebra is similar for the j  and k  terms, and the vector identity is shown to be true for Cartesian coordinates. 
 
Discussion Since we have a vector identity, it must be true regardless of our choice of coordinate system. 
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10-39 
Solution We are to use an alternative method to show that the Euler equation given in the problem statement reduces 
to the Bernoulli equation for regions of inviscid flow. 
 

Analysis We take the dot product of both sides of the equation with V . The Euler equation dotted with velocity 
becomes 

 ( )
2

2
P V gz V V Vζ
ρ

⎛ ⎞
∇ + + ⋅ = × ⋅⎜ ⎟
⎝ ⎠

 (1) 

The cross product on the right side of Eq. 1 is a vector that is perpendicular to V . However, the dot product of two 
perpendicular vectors is zero by definition of the dot product. Thus, the 
right hand side of Eq. 1 is identically zero, 

 
2

0
2

P V gz V
ρ

⎛ ⎞
∇ + + ⋅ =⎜ ⎟
⎝ ⎠

 (2) 

Now we use the same argument on the left hand side of Eq. 2, but in 
reverse. Namely, there are three ways for the dot product of the two 
vectors in Eq. 2 to be identically zero: (a) the first vector is zero, 

Option (a): 
2

0
2

P V gz
ρ

⎛ ⎞
∇ + + =⎜ ⎟
⎝ ⎠

 (3) 

(b) the second vector is zero, 

Option (b): 0V =  (4) 

or (c) the two vectors are everywhere perpendicular to each other, 

Option (c): 
2

2
P V gz V
ρ

⎛ ⎞
∇ + + ⊥⎜ ⎟
⎝ ⎠

 (5) 

Option (a) represents the restricted case in which the quantity in 
parentheses in Eq. 3 is constant everywhere. Option (b) is the trivial case 
in which there is no flow (fluid statics). Option (c) is the most general 
option, and we work with Eq. 5. Since V  is everywhere parallel to 

streamlines of the flow, 
2

2
P V gz
ρ

⎛ ⎞
∇ + +⎜ ⎟
⎝ ⎠

 must therefore be everywhere 

perpendicular to streamlines (Fig. 1). Finally, we argue that the gradient of a scalar is a vector that points perpendicular to 

an imaginary surface on which the scalar is constant. Thus, we argue that the scalar 
2

2
P V gz
ρ
+ +  must be constant along a 

streamline. Our final result is the steady incompressible Bernoulli equation for inviscid regions of flow, 

 
2

 constant along streamlines
2

P V gz
ρ
+ + =  (6) 

 

Discussion Since we have a vector identity, it must be true regardless of our choice of coordinate system. 
  

 

2

2
P V gz
ρ

⎛ ⎞
∇ + +⎜ ⎟
⎝ ⎠

 

Streamline 

 V   
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 V  

2

2
P V gz
ρ

⎛ ⎞
∇ + +⎜ ⎟
⎝ ⎠

 

 
FIGURE 1 

Along a streamline, 
2

2
P V gz
ρ

⎛ ⎞
∇ + +⎜ ⎟
⎝ ⎠

 is a 

vector everywhere perpendicular to the 

streamline; hence 
2

2
P V gz
ρ
+ +  is constant 

along the streamline. 
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10-40 
Solution We are to expand the Euler equation into Cartesian coordinates.  
 

Analysis We begin with the vector form of the Euler equation, 

Euler equation: ( )V V V P g
t

ρ ρ
⎛ ⎞∂

+ ⋅∇ = −∇ +⎜ ⎟⎜ ⎟∂⎝ ⎠
 (1) 

The x component of Eq. 1 is 

x component: x
u u u u Pu v w g
t x y z x

ρ ρ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + + = − +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (2) 

The y component of Eq. 1 is 

y component: y
v v v v Pu v w g
t x y z y

ρ ρ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + + = − +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (3) 

The z component of Eq. 1 is 

z component: z
w w w w Pu v w g
t x y z z

ρ ρ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + + = − +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (4) 

 

Discussion The expansion of the Euler equation into components is identical to that of the Navier-Stokes equation, 
except that the viscous terms are gone. 

  

 
 
 
 
10-41 
Solution We are to expand the Euler equation into cylindrical coordinates.  
 
Analysis We begin with the vector form of the Euler equation, 

Euler equation: ( )V V V P g
t

ρ ρ
⎛ ⎞∂

+ ⋅∇ = −∇ +⎜ ⎟⎜ ⎟∂⎝ ⎠
 (1) 

We must be careful to include the “extra” terms in the convective acceleration. The r component of Eq. 1 is 

r component: 
2

r r r r
r z r

u uu u u u Pu u g
t r r r z r

θ θρ ρ
θ

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + − + = − +⎜ ⎟

∂ ∂ ∂ ∂ ∂⎝ ⎠
 (2) 

The y component of Eq. 1 is 

θ component: 1r
r z

u u u u u u u Pu u g
t r r r z r
θ θ θ θ θ θ

θρ ρ
θ θ

∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + + = − +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (3) 

The z component of Eq. 1 is 

z component: z z z z
r z z

uu u u u Pu u g
t r r z z

θρ ρ
θ

∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + = − +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (4) 

 

Discussion The expansion of the Euler equation into components is identical to that of the Navier-Stokes equation, 
except that the viscous terms are gone. 
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10-42 
Solution We are to calculate the pressure field and the shape of the free surface for solid body rotation of water in a 
container.  
 

Assumptions 1 The flow is steady and incompressible. 2 The flow is rotationally symmetric, meaning that all derivatives 
with respect to θ are zero. 3 Gravity acts in the negative z direction. 
 

Properties For water at T = 20oC, ρ  = 998.0 kg/m3 and μ = 1.002 × 10-3 kg/m⋅s. 
 

Analysis We reduce the components of the Euler equation in cylindrical coordinates (Problem 10-41) as far as 
possible, noting that ur = uz = 0 and uθ = ωr. The θ component disappears. The r component reduces to 

r component of Euler equation: 
2

2          
u P P r
r r r
θρ ρω∂ ∂

− = − → =
∂ ∂

 (1) 

and the z component reduces to 

z component of Euler equation: 0           P Pg g
z z

ρ ρ∂ ∂
= − − → = −

∂ ∂
 (2) 

We find P(r,z) by cross integration. First we integrate Eq. 1 with respect to r, 

 
2 2

( )
2

rP f zρω
= +  (3) 

Note that we add a function of z instead of a constant of integration since this is a partial integration. We take the z 
derivative of Eq. 3, equate to Eq. 2, and integrate, 

 1( )           ( )P f z g f z gz C
z

ρ ρ∂ ′= = − → = − +
∂

 (4) 

Plugging Eq. 4 into Eq. 3 yields our expression for P(r,z), 

 
2 2

12
rP gz Cρω ρ= − +  (5) 

Now we apply the boundary condition at the origin to find the value of constant C1, 

Boundary condition: atm 1 1 atmAt 0 and 0,            r z P P C C P= = = = → =   

Finally, Eq. 5 becomes 

Pressure field: 
2 2

atm2
rP gz Pρω ρ= − +  (6) 

 At the free surface, we know that P = Patm, and Eq. 6 yields the equation for the shape of the free surface, 

Free surface shape: 
2 2

surface 2
rz
g

ω
=  (7) 

 

Discussion Since we know the velocity field from the start, the Euler equation is not needed for obtaining the velocity 
field. Instead, it is used only to calculate the pressure field. Similarly, the continuity equation is identically satisfied and is 
not needed here. 
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10-43 
Solution We are to calculate the pressure field and the shape of the free surface for solid body rotation of engine oil 
in a container.  
 
Assumptions 1 The flow is steady and incompressible. 2 The flow is rotationally symmetric, meaning that all derivatives 
with respect to θ are zero. 3 Gravity acts in the negative z direction. 
 
Analysis In Problem 10-42, water density appears only as a constant in the pressure equation. Thus, nothing is 
different here except the value of density, and the results are identical to those of Problem 10-42. 
 
Discussion In solid body rotation, the density of the fluid does not affect the shape of the free surface. For oil (less 
dense than water), pressure increases with depth at a slower rate compared to water.  

  

 
 
 
 
 
 
 
 
 
 
 
10-44 
Solution We are to calculate the Bernoulli constant for solid body rotation of water in a container.  
 
Assumptions 1 The flow is steady and incompressible. 2 The flow is rotationally symmetric, meaning that all derivatives 
with respect to θ are zero. 3 Gravity acts in the negative z direction. 
 
Analysis From Problem 10-42, we have the pressure field, 

Pressure field: 
2 2

atm2
rP gz Pρω ρ= − +  (1) 

The Bernoulli equation for steady, incompressible, inviscid regions of flow is 

 
2

constant along streamlines
2 r

P V gz C
ρ
+ + = =  (2) 

The velocity field is ur = uz = 0 and uθ = ωr, V2 = ω2r2, and Eq. 2 becomes 

 
2 2

2r
P rC gzω
ρ

= + +  (3) 

Substitution of Eq. 1 into Eq. 3 yields the final expression for Cr, 

Bernoulli “constant”: 
2 2 2 2

atm

2 2r
Pr rC gz gzω ω
ρ

= − + + +  → 2 2atm
r

P
C rω

ρ
= +  (4) 

 
Discussion Streamlines in this flow field are circles about the z axis (lines of constant r). The Bernoulli “constant” Cr is 
constant along any given streamline, but changes from streamline to streamline. This is typical of rotating flow fields.  
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10-45 
Solution For a given volume flow rate, we are to generate an expression for ur assuming inviscid flow, and then 
discuss the velocity profile shape for a real (viscous) flow. 
 
Assumptions 1 The flow remains radial at all times (no uθ component). 2 The flow is steady, two-dimensional, and 
incompressible. 
 
Analysis If the flow were inviscid, we could not enforce the no-slip condition at the walls of the duct. At any r 
location, the volume flow rate must be the same, 

Volume flow rate at any r location: ru rb θ= ΔV  (1) 

where Δθ is the angle over which the contraction is bound (see Fig. 1). 
Thus, 

 ru
rb θ

=
Δ

V  (2) 

At radius r = R, Eq. 2 becomes 

Radial velocity at r = R: ( )ru R
Rb θ

=
Δ

V  (3) 

Upon substitution of Eq. 3 into Eq. 2, we get 

Radial velocity at any r location: ( )r r
Ru u R
r

=  (4) 

In other words, the radial velocity component increases as the reciprocal of r as r approaches zero (the origin). 
 In a real flow (with viscous effects), we would expect that the velocity near the center of the duct is somewhat 
larger, while that near the walls is somewhat smaller. Right at the walls, of course, the velocity is zero by the no-slip 
condition. In Fig. 1 is a sketch of what the velocity profile might look like in a real flow. 
 
Discussion In either case, the radial velocity is infinite at the origin. This is actually a portion of a line sink, as 
discussed in this chapter. 

  

 
 
 
10-46 
Solution We are to show that the region of flow given by this velocity field is inviscid.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.  
 
Analysis We consider the viscous terms of the x and y momentum equations: 

x momentum viscous terms: 
2

2

u
x

μ ∂
∂

2

2

0

u
y
∂

+
∂

2

2

0

u
z
∂

+
∂

0 (2-D)

0

⎛ ⎞
⎜ ⎟

=⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (1) 

y momentum viscous terms: 
2

2

v
x

μ ∂
∂

2

2

0

v
y
∂

+
∂

2

2

0

v
z
∂

+
∂

0 (2-D)

0

⎛ ⎞
⎜ ⎟

=⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (2) 

Since the viscous terms are identically zero in both components of the Navier-Stokes equation, this region of flow can 
indeed be considered inviscid. 
 
Discussion With the viscous terms removed, the Navier-Stokes equation is reduced to the Euler equation. 

  

r 
ur(r) 

Δθ 

r = R 

 
 

FIGURE 1 
Possible shape of the velocity profile for a 
real (viscous) flow. 
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Irrotational (Potential) Flow 
 
 
 
10-47C 
Solution We are to discuss the flow property that determines whether a region of flow is rotational or irrotational. 
 
Analysis The vorticity determines whether a region of flow is rotational or irrotational. Specifically, if the vorticity is 
zero (or negligibly small), the flow is approximated as irrotational, but if the vorticity is not negligibly small, the flow is 
rotational. 
 
Discussion Another acceptable answer is the rate of rotation vector or the angular velocity vector of a fluid particle. 

  

 
 

10-48 
Solution We are to show that the vorticity components are zero in an irrotational region of flow.  
 
Analysis The first component of vorticity becomes 

r-component of vorticity vector: 
2 21 1 1 0z

r
uu

r z r z r z
θ φ φζ

θ θ θ
∂∂ ∂ ∂

= − = − =
∂ ∂ ∂ ∂ ∂ ∂

  

which is valid as long as φ is a smooth function of θ and z. Similarly, the second component of vorticity becomes 

θ-component of vorticity vector: 
2 2

0r zu u
z r z r r zθ

φ φζ
∂ ∂ ∂ ∂

= − = − =
∂ ∂ ∂ ∂ ∂ ∂

  

which is valid as long as φ is a smooth function of r and z. Finally, the third component of vorticity becomes 

z-component of vorticity vector: ( )
2 21 1 1 1 0r

z
u

ru
r r r r r r rθ

φ φζ
θ θ θ

∂∂ ∂ ∂
= − = − =

∂ ∂ ∂ ∂ ∂ ∂
  

which is valid as long as φ is a smooth function of r and z. Thus all three components of vorticity are zero. 
 
Discussion By mathematical identity, the velocity potential function is definable only when the vorticity vector is zero; 
therefore the results are not surprising. Note that in a three-dimensional flow, φ must be a smooth function of r, θ, and z. 

  

 
 

10-49 
Solution We are to verify that the Laplace equation holds in an irrotational flow field in cylindrical coordinates.  
 
Analysis We plug in the components of velocity from Problem 10-48 into the left hand side of the Laplace equation 
in cylindrical coordinates, 

Laplace equation in cylindrical coordinates: ( ) ( )2
2

1 1 z
r

u
ru ru

r r zr θφ
θ

∂∂ ∂
∇ = + +

∂ ∂ ∂
 (1) 

But since r is not a function of θ, we simplify Eq. 1 to 

 ( )2 1 1 z
r

u u
ru

r r r z
θφ
θ

∂ ∂∂
∇ = + +

∂ ∂ ∂
 (2) 

We recognize the terms on the right side of Eq. 2 as those of the incompressible form of the continuity equation in 
cylindrical coordinates; Eq. 2 is thus equal to zero, and the Laplace equation holds, 

 2 0φ∇ =  (3) 
 

Discussion The Laplace equation is valid for any incompressible irrotational region of flow, regardless of whether the 
flow is two- or three-dimensional. 
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10-50 
Solution We are to identify regions in the flow field that are irrotational, and regions that are rotational.  
 
Assumptions 1 The air in the room would be calm if not for the presence of the hair dryer. 
 
Analysis Flow in the air far away from the hair dryer and its jet is certainly irrotational. As the air approaches 
the inlet, it is irrotational except very close to the surface of the hair dryer. Flow in the jet is rotational, but flow 
outside of the jet can be approximated as irrotational. 
 
Discussion Flow near solid walls is nearly always rotational because of the viscous rotational boundary layer that grows 
there. There are sharp velocity gradients in a jet, so the vorticity cannot be zero in that region, and the flow must be 
rotational in the jet as well. 

  

 
 
 
10-51 
Solution We are to compare the Bernoulli equation and its restrictions for inviscid, rotational regions of flow and 
viscous, irrotational regions of flow. 
 
Assumptions 1 The flow is incompressible and steady. 
 
Analysis The Bernoulli equation is the same in both cases, namely 

Steady incompressible Bernoulli equation: 
2

2
P V gz C
ρ
+ + =  (1) 

However, in an inviscid, rotational region of flow, Eq. 1 is applicable only along a streamline. The Bernoulli “constant” C 
is constant along any particular streamline, but may change from streamline to streamline. In a viscous, irrotational region 
of flow, however, the Bernoulli constant is constant everywhere, even across streamlines. Thus, the inviscid, rotational 
region of flow has more restrictions on the use of the Bernoulli equation. 
 
Discussion In either case, the viscous terms in the Navier-Stokes equation disappear, but for different reasons. 

  

 
 
 
10-52 
Solution For a given set of streamlines, we are to sketch the 
corresponding set of equipotential curves and explain how we obtain 
them.  
 
Assumptions 1 The flow is steady and incompressible. 2 The flow is 
two-dimensional in the plane of the figure associated with this problem. 
3 The flow in the region shown in the figure is irrotational. 
 
Analysis Some possible equipotential lines are sketched in 
Fig. 1. We draw these based on the fact that the streamlines and 
equipotential curves must intersect at 90o angles. To find the “correct” 
shape, it helps to sketch a few extra streamlines in between the given 
ones to guide in construction of the equipotential curves. These 
“interpolated” streamlines are shown in Fig. 1 as thin, dotted blue lines. 
 
Discussion The exact shape of the equipotential curves is not 
known, and individuals may sketch curves of other shapes that are 
equally valid. The important thing to emphasize is that the curves of 
constant φ are everywhere perpendicular to the streamlines.  

  

Streamlines 90o 

Equipotential lines  
 

FIGURE 1 
Possible equipotential curves (dashed black 
lines) and intermediate streamlines (dotted 
blue lines). 
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10-53 
Solution We are to discuss the role of the momentum equation in an irrotational region of flow. 
 
Assumptions 1 The flow is steady and incompressible. 2 The region of interest in the flow field is irrotational. 
 
Analysis Although it is true that the momentum equation is not required in order to solve for the velocity field, it is 
required in order to solve for the pressure field. In particular, the Navier-Stokes equation reduces to the Bernoulli 
equation in an irrotational region of flow. 
 
Discussion Mathematically, it turns out that in an irrotational flow field the continuity equation is uncoupled from the 
momentum equation, meaning that we can solve continuity for φ by itself, without need of the momentum equation. 
However, the momentum equation cannot be solved by itself. 

  

 
 
 
 
10-54 
Solution For a given velocity field, we are to assess whether the flow field is irrotational. If so, we are to generate an 
expression for the velocity potential function. 
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.  
 
Analysis For the flow to be irrotational, the vorticity must be zero. Since the flow is planar in the x-y plane, the only 
non-zero component of vorticity is in the z direction, 

z-component of vorticity: 0 0 0z
v u
x y

ζ ∂ ∂
= − = − =
∂ ∂

 (1) 

Since the vorticity is zero, this flow field can be considered irrotational, and we should be able to generate a velocity 
potential function that describes the flow. In two dimensions we have 

Velocity components in terms of potential function:           u v
x y
φ φ∂ ∂

= =
∂ ∂

 (2) 

We pick one of these (the first one) and integrate to obtain an expression for φ, 

Velocity potential function: ( )
2

          
2
xu ax b a bx f y

x
φ φ∂
= = + = + +

∂
 (3) 

Note that we have added a function of y rather than a constant of integration since we have performed a partial integration 
with respect to x. Using Eq. 2, we differentiate Eq. 3 with respect to y and equate the result to the v component of velocity, 

 ( )f y v ay c
y
φ∂ ′= = = − +
∂

 (4) 

Equation 4 is integrated with respect to y to find function f(y), 

 ( )
2

12
yf y a cy C= − + +  (5) 

This time, a constant of integration (C1) is added since this is a total integration. Finally, we plug Eq. 5 into Eq. 3 to obtain 
our final expression for the velocity potential function, 

Result, velocity potential function: 
( )2 2

12

x y
a bx cy Cφ

−
= + + +  (6) 

 

Discussion You should plug Eq. 6 into Eq. 2 to verify that it is correct.  
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10-55 
Solution We are to discuss similarities and differences between two approximations: inviscid regions of flow and 
irrotational regions of flow. 
 

Assumptions 1 The flow is incompressible and steady. 
 

Analysis The two approximations are similar in that in both cases, the viscous terms in the Navier-Stokes equation 
drop out, leaving the Euler equation. Also, in both cases the Bernoulli equation results form integration of the Euler 
equation. However, these two approximations differ significantly from each other. When making the inviscid flow 
approximation, we assume that the viscous terms are negligibly small. A good example, as discussed in this chapter, is 
solid body rotation. In this case, although the fluid itself is viscous, all effects of viscosity are gone, and the flow field can 
be considered “inviscid” (although it is rotational). On the other hand, the irrotational approximation is made when the 
vorticity (a measure of rotationality of fluid particles) is negligibly small. In this case, viscosity still acts on fluid 
particles – it shears them and distorts them, yet the net rate of rotation of fluid particles is zero. In other words, in an 
irrotational region of flow, the net viscous force on a fluid particle is zero, but viscous stresses on the fluid particle are 
certainly not zero. Examples of irrotational, but viscous flows include any irrotational flow field with curved streamlines, 
such as a line vortex, a doublet, irrotational flow over a circular cylinder, etc. Freestream flow is both inviscid and 
irrotational since fluid particles do not shear or distort or rotate, and viscosity does not enter into the picture. 
 

Discussion In either case, the viscous terms in the Navier-Stokes equation disappear, but for different reasons. In the 
inviscid flow approximation, the viscous terms disappear because we neglect viscosity. In the irrotational flow 
approximation, the viscous terms disappear because they cancel each other out due to the fact that the vorticity (hence the 
rate of rotation) of fluid particles is negligibly small. 

  

 
 
 

10-56 
Solution We are to calculate the velocity components from a given potential function, verify that the velocity field is 
irrotational, and generate an expression for ψ.  
 
Assumptions 1 The flow is steady and incompressible. 2 The flow is two-dimensional in the x-y plane. 3 The flow is 
irrotational in the region in which Eq. 1 applies. 
 
Analysis (a) The velocity components are found by taking the x and y partial derivatives of φ, 

Velocity components: =10 2          10 4u x v y
x y
φ φ∂ ∂

= + = = − −
∂ ∂

 (1) 

 

(b) We plug in u and v from Eq. 1 into the z component of vorticity to get 

z-component of vorticity: 0 0 0z
v u
x y

ζ ∂ ∂
= − = − =
∂ ∂

 (2) 

Since ζz = 0, and the only component of vorticity in a 2-D flow in the x-y plane is in the z direction, the vorticity is zero, 
and the flow is irrotational in the region of interest. 
 

(c) The stream function is found by integration of the velocity components. We begin by integrating the x component, 
∂ψ/∂y = u, and then taking the x derivative to compare with the known value of v, 

 ( ) ( )10 2           10 10 4xy y f x v y f x y
x
ψψ ∂ ′= + + → = − = − − = − −
∂

 (3) 

From which we see that f ′(x) = 4. Integrating with respect to x, 

 ( ) 4 constantf x x= +  (4) 

The constant is arbitrary since velocity components are always derivatives of ψ. Thus, 

Stream function: 10 2 4 constantxy y xψ = + + +  (5) 
 

Discussion You can verify that the partial derivatives of Eq. 5 yield the same velocity components as those of Eq. 1. 
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10-57 
Solution We are to show that the stream function for a planar irrotational region of flow satisfies the Laplace 
equation in cylindrical coordinates.  
 
Assumptions 1 This region of flow is planar in the r-θ plane. 2 The flow is incompressible. 3 This region of flow is 
irrotational. 
 
Analysis  We defined stream function ψ as 

Planar flow stream function in cylindrical coordinates: 1           ru u
r r
∂ ∂

= = −
∂ ∂θ
ψ ψ
θ

 (1) 

We also know that for irrotational flow the vorticity must be zero. Since the only non-zero component of vorticity is in the z 
direction, 

z-component of vorticity: 
( )1 1 1 0r

z

ru u r
r r r r r r

θ ψ ψζ
θ θ θ

⎛ ⎞∂ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − = − − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
 (2) 

Since r is not a function of θ, it can come outside the derivative operator in the last term. Also, the negative sign in both 
terms can be disposed of. Thus, 

Result of irrotationality condition: 
2

2 2

1 1 0r
r r r r

ψ ψ
θ

∂ ∂ ∂⎛ ⎞ + =⎜ ⎟∂ ∂ ∂⎝ ⎠
 (3) 

Since Eq. 3 is the Laplace equation for 2-D planar flow in the r-θ plane, we have shown that the stream function indeed 
satisfies the Laplace equation. 
 
Discussion Since the Laplace equation for stream function is satisfied in Cartesian coordinates for the case of 2-D 
planar flow in the x-y plane, it must also be satisfied for the same flow in cylindrical coordinates. All we have done is use a 
different coordinate system to describe the same flow. 

  

 
 
 
 
 
 
 
 
 
10-58 
Solution We are to write the Laplace equation in two dimensions (r and θ) in spherical polar coordinates. 
 
Assumptions 1 The flow is independent of angle φ (about the x axis). 2 The flow is irrotational. 
 
Analysis We look up the Laplace equation in spherical polar coordinates in any vector analysis book. Ignoring 
derivatives with respect to φ, we get 

Laplace equation, axisymmetric flow, (r,θ): 2
2 2

1 1 sin 0
sin

r
r rr r

φ φθ
θ θθ

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
  

 
Discussion Even though φ satisfies the Laplace equation in an irrotational region of flow, ψ does not for the present 
case of axisymmetric flow. 
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10-59 
Solution We are to prove that the given stream function exactly satisfies the continuity equation for the case of 
axisymmetric flow in spherical polar coordinates.  
 
Assumptions 1 The flow is axisymmetric, implying that there is no variation rotationally around the axis of symmetry. 2 
The flow is incompressible. 
 
Analysis We plug the stream function into the continuity equation, and perform the algebra, 

 1 1 1 1 0
sin sinr r r r

ψ ψ
θ θ θ θ

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (1) 

since θ is not a function of r and vice-versa, Eq. 1 can be rearranged as 

 
2 2 2 21 1 0          0

sin sinr r r r r r
ψ ψ ψ ψ

θ θ θ θ θ θ
∂ ∂ ∂ ∂

− + = − + =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 (2) 

Equation 2 is identically satisfied as long as ψ is a smooth function of r and θ. 
 
Discussion If ψ were not smooth, the order of differentiation (r then θ versus θ then r) would be important and Eq. 2 
would not necessarily be zero. In the definition of stream function, it is somewhat arbitrary whether we put the negative 
sign on ur or uθ, and you may find the opposite sign convention in other textbooks. 
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10-60 
Solution We are to generate expressions for velocity potential function and stream function for the case of a uniform 
stream of magnitude V inclined at angle α.  
 
Assumptions 1 The flow is planar, incompressible, and irrotational. 2 The flow is uniform everywhere in the flow field, 
with magnitude V and inclination angle α. 
 
Analysis For planar flow in Cartesian coordinates, we write 

 cos           sinu V v V
x y y x
φ ψ φ ψα α∂ ∂ ∂ ∂

= = = = = − =
∂ ∂ ∂ ∂

 (1) 

By integrating the first of these with respect to x, and then differentiating the result with respect to y, we generate an 
expression for the velocity potential function for a uniform stream, 

 ( ) ( )cos           sinVx f y v f y V
y
φφ α α∂ ′= + = = =
∂

 (2) 

Integrating with respect to y, 

 ( ) sin constantf y Vy α= +  (3) 

The constant is arbitrary since velocity components are always derivatives of φ. We set the constant to zero, knowing that 
we can always add an arbitrary constant later on if desired. Thus, 

Velocity potential function: cos sinVx Vyφ α α= +  (4) 

We do a similar analysis for the stream function, beginning again with Eq. 1. 

 ( ) ( )cos           sinVy g x v g x V
x
ψψ α α∂ ′= + = − = − =
∂

 (5) 

Integrating with respect to x, 

 ( ) sin constantg x Vx α= − +  (6) 

The constant is arbitrary since velocity components are always derivatives of ψ. We set the constant to zero, knowing that 
we can always add an arbitrary constant later on if desired. Thus, 

Stream function: cos sinVy Vxψ α α= −  (7) 

 
Discussion You should be able to obtain the same answers by starting with the opposite equations in Eq. 1 (i.e., 
integrate first with respect to y to obtain φ and with respect to x to obtain ψ). 
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10-61 
Solution We are to generate expressions for the stream function and the velocity potential function for a line source, 
beginning with the first equation above.  
 
Assumptions 1 The flow is steady and incompressible. 2 The flow is irrotational in the region of interest. 3 The flow is 
two-dimensional in the x-y or r-θ plane. 
 
Analysis To find the stream function, we integrate the first equation with respect to θ, and then differentiate with 
respect to the other variable r, 

 ( ) ( )/ /                0
2 2

L L f r f r u
r θ

ψ ψψ θ
θ π π

∂ ∂ ′= → = + → = = − =
∂ ∂

V V  (1) 

We integrate Eq. 1 to obtain 

 ( ) constantf r =  (2) 

We set the arbitrary constant of integration to zero since we can add back a constant as desired at any time without 
changing the flow. Thus, 

Line source at the origin: 
/

2
Lψ θ
π

=
V

 (3) 

 We perform a similar analysis for φ by beginning with the first equation: 

 ( ) ( )/ /        ln         0
2 2

L L r f f ru
r r θ
φ φφ θ θ

π π θ
∂ ∂ ′= → = + → = = =
∂ ∂

V V  (4) 

We integrate Eq. 4 to obtain 

 ( ) constantf θ =   

We set the arbitrary constant of integration to zero since we can add back a constant as desired at any time without 
changing the flow. Thus, 

Line source at the origin: 
/ ln

2
L rφ
π

=
V

 (5) 

 
Discussion You can easily verify by differentiation that Eqs. 3 and 5 yield the correct velocity components. Also note 
that if / LV  is negative, the flow field is that of a line sink rather than a line source. 
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10-62 
Solution We are to generate expressions for the stream function and the velocity potential function for a line vortex.  
 
Assumptions 1 The flow is steady and incompressible. 2 The flow is irrotational in the region of interest. 3 The flow is 
two-dimensional in the x-y or r-θ plane. 
 
Analysis To find the stream function we integrate the first equation with respect to θ, and then differentiate with 
respect to the other variable r, 

 ( ) ( )0                    
2

f r f r u
r rθ

ψ ψψ
θ π

∂ ∂ Γ′= → = → = = − = −
∂ ∂

 (1) 

We integrate Eq. 1 to obtain 

 ( ) ln constant
2

f r r
π
Γ

= − +  (2) 

We set the arbitrary constant of integration to zero since we can add back a constant as desired at any time without 
changing the flow. Thus, 

Line vortex at the origin: ln
2

rψ
π
Γ

= −  (3) 

 We perform a similar analysis for φ . Beginning with the first equation: 

 ( ) ( )0                    
2

f f ru
r θ
φ φφ θ θ

θ π
∂ ∂ Γ′= → = → = = =
∂ ∂

 (4) 

We integrate Eq. 4 to obtain 

 ( ) constant
2

f θ θ
π
Γ

= +   

We set the arbitrary constant of integration to zero since we can add back a constant as desired at any time without 
changing the flow. Thus, 

Line vortex at the origin: 
2

φ θ
π
Γ

=  (5) 

 
Discussion You can easily verify by differentiation that Eqs. 3 and 5 yield the correct velocity components. Also note 
that if Γ is positive, the vortex is counterclockwise, and if Γ is negative, the vortex is clockwise. 
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10-63 
Solution For a given stream function, we are to calculate the velocity potential function  
 

Assumptions 1 The flow is steady and incompressible. 2 The flow is two-dimensional in the r-θ plane. 3 The flow is 
approximated as irrotational. 
 

Analysis There are two ways to approach this problem: (1) Calculate the velocity components from the stream 
function, and then integrate to obtain φ. (2) Superpose a freestream and a doublet to generate φ directly. We show both 
methods here. 
 

Method (1): We calculate the velocity components everywhere in the flow field by differentiating the stream function,  

Velocity components: 
2 2

2 2

1 cos 1           sin 1r
a au V u V

r rr rθ
ψ ψθ θ
θ ∞ ∞

⎛ ⎞ ⎛ ⎞∂ ∂
= = − = − = − +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (1) 

Now we integrate to obtain the velocity potential function. We begin by integrating the expression for ur in Eq. 1, 

 ( )
2 2

2cos 1               cosr
a au V V r f

r rr
φ θ φ θ θ∞ ∞

⎛ ⎞ ⎛ ⎞∂
= = − → = + +⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

 (2) 

We differentiate Eq. 2 with respect to θ and divide by r to get 

 
( )2 2

2 2

1 sin 1 sin 1
fa au V V

r rr rθ

θφ θ θ
θ ∞ ∞

′⎛ ⎞ ⎛ ⎞∂
= = − + + = − +⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

 (3) 

Equation 3 reduces to f′ (θ) = 0, or f(θ) = constant. The constant is arbitrary, and we set it to zero for convenience. Hence, 
Eq. 2 reduces to 

Velocity potential, flow over a cylinder: 
2

cos aV r
r

φ θ∞

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (4) 

 

Method (2): The velocity potential functions for a freestream and a doublet are superposed (added) to yield  

Superposition: coscosV r K
r
θφ θ∞= +  (5) 

To find the doublet strength (K), we set the radial velocity component ur to zero at the cylinder surface (r = a), 

 2 2

cos coscos           0 cosru V K V K
r r a
φ θ θθ θ∞ ∞

∂
= = − → = −
∂

 (6) 

Equation 6 reduces to K = a2V∞. Hence, Eq. 5 becomes 

Velocity potential, flow over a cylinder: 
2

cos aV r
r

φ θ∞

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (7) 

 

Discussion Both methods yield the same answer, as they must. 
  

 
 
 
10-64 
Solution We are to discuss D’Alembert’s paradox.   
 

Analysis D’Alembert’s paradox states that with the irrotational flow approximation, the aerodynamic drag force 
on any non-lifting body of any shape immersed in a uniform stream is zero. It is a paradox because we know from 
experience that bodies in a flow field have non-zero aerodynamic drag. 
 

Discussion Irrotational flow over a non-lifting immersed body has neither pressure drag nor viscous drag. In a real 
flow, both of these drag components are present.  
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Boundary Layers 
 
 
 
 
10-65C 
Solution We are to explain why the boundary layer approximation bridges the gap between the Euler equation and 
the Navier-Stokes equation. 
 
Analysis The Euler equation neglects the viscous terms compared to the inertial terms. For external flow around a 
body, this is a reasonable approximation over the majority of the flow field, except very close to the body, where viscous 
effects dominate. The Navier-Stokes equation, on the other hand, includes both viscous and inertial terms, but is much more 
difficult to solve. The boundary layer equations bridge the gap between these two: we solve the simpler Euler equation 
away from walls, and then fit in a thin boundary layer to account for the no-slip condition at walls. 
 
Discussion Students’ discussions should be in their own words. 

  

 
 
 
 
 
 
 
10-66C 
Solution   
(a) False: If the Reynolds number at a given x location were to increase, all else being equal, viscous forces would 

decrease in magnitude relative to inertial forces, rendering the boundary layer thinner. 
(b) False: Actually, as V increases, so does Re, and the boundary layer thickness decreases with increasing Reynolds 

number.  
(c) True: Since μ appears in the denominator of the Reynolds number, Re decreases as μ increases, causing the boundary 

layer thickness to increase. 
(d) False: Since ρ appears in the numerator of the Reynolds number, Re increases as ρ increases, causing the boundary 

layer thickness to decrease. 
  

 
 
 
 
 
 
 
10-67C 
Solution We are to name three flows (other than flow along a wall) where the boundary layer approximation is 
appropriate, and we are to explain why.  
 
Analysis The boundary layer approximation is appropriate for the three basic types of shear layers: wakes, jets, and 
mixing layers. These flows have a predominant flow direction, and for high Reynolds numbers, the shear layer is very thin, 
causing the viscous terms to be much smaller than the inertial terms, just as in the case of a boundary layer along a wall. 
 
Discussion For the wake and the mixing layer, there is an irrotational outer flow in the streamwise direction, but for the 
jet, the flow outside the jet is nearly stagnant. 
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Streamlines

Boundary layer 

10-68C 
Solution  We are to sketch several streamlines and discuss whether the curve representing δ(x) is a streamline or not. 
 
Analysis Five streamlines are sketched in Fig. 1. In order to satisfy conservation of mass, the streamlines must 
cross the curve δ(x). Thus, δ(x) cannot itself be a streamline of the flow. 
 

 
Discussion As the boundary layer grows in thickness, streamlines diverge slowly away from the wall (and become 
farther apart from each other) in order to conserve mass. However, the upward displacement of the streamlines is not as fast 
as the growth of δ(x). 

  

 
 
 

10-69C 
Solution We are to define trip wire and explain its purpose.  
 
Analysis A trip wire is a rod or wire stretched normal to the streamwise direction along the wall. Its purpose is 
to create a large disturbance in the laminar boundary layer that causes the boundary layer to “trip” to turbulence much more 
quickly than it would otherwise. 
 
Discussion Dimples on a golf ball serve the same purpose. 

  

 
 
 

10-70 
Solution We are to calculate the location of transition and turbulence along a flat plate boundary layer.  
 
Assumptions 1 The flow is incompressible and steady in the mean. 2 Freestream disturbances are small. 3 The surface of 
the plate is very smooth. 
 
Properties The density and viscosity of air at T = 30oC are 1.164 kg/m3 and 1.872 × 10-5 kg/m⋅s respectively. 
 
Analysis Transition begins at the critical Reynolds number, which is approximately 100,000 for “clean” flow along a 
smooth flat plate. Thus, 

Beginning of transition: critical
,criticalRe 100,000x

Vxρ
μ

= =  (1) 

Solving for x yields 

 
( )

( )( )

5
2

critical 3

100,000 1.872 10  kg/m s100,000 6.43 10  m
1.164 kg/m 25.0 m/s

x
V

μ
ρ

−

−
× ⋅

= = = ×  (2) 

That is, transition begins at x ≈ 6 or 7 cm. Fully turbulent flow in the boundary layer occurs at approximately 30 times 
xcritical, at Rex,transition ≈ 3 × 106. So, the boundary layer is expected to be fully turbulent by x ≈ 2 m. 
 
Discussion Final results are given to only one significant digit, since the locations of transition and turbulence are only 
approximations. The actual locations are influenced by many things, such as noise, roughness, vibrations, freestream 
disturbances, etc. 

  

FIGURE 1 
Several streamlines and the curve 
representing δ as a function of x for a 
flat plate boundary layer. Since 
streamlines cross the curve δ(x), δ(x) 
cannot itself be a streamline of the flow. 
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10-71E 
Solution We are to assess whether the boundary layer on the surface of a fin is laminar or turbulent or transitional.  
 
Assumptions 1 The flow is steady and incompressible. 2 The fin surface is smooth. 
 
Properties The density and viscosity of water at T = 40oF are 62.42 lbm/ft3 and 1.038 × 10-3 lbm/ft⋅s, respectively. The 
kinematic viscosity is thus ν = 1.663 × 10-5 ft2/s. 
 
Analysis Although the fin is not a flat plate, the flat plate boundary layer values are useful as a reasonable 
approximation to determine whether the boundary layer is laminar or turbulent. We calculate the Reynolds number at the 
trailing edge of the fin, using c as the approximate streamwise distance along the flat plate, 

 
( )( ) 5

5 2

6.0 mi/hr 1.6 ft 5280 ft hrRe 8.47 10
mi 3600 s1.663 10  ft /sx

Vc
ν −

⎛ ⎞⎛ ⎞= = = ×⎜ ⎟⎜ ⎟× ⎝ ⎠⎝ ⎠
  

The critical Reynolds number for transition to turbulence is 1 × 105 for the case of a smooth flat plate with very clean, low-
noise freestream conditions. Our Reynolds number is higher than this. The engineering value of critical Reynolds number 
for real engineering flows is Rex,cr = 5 × 105. Since Rex is greater than Rex,cr, but less than Rex,transition (30 × 105), the 
boundary layer is most likely transitional, but may be fully turbulent by the trailing edge of the fin.  
 
Discussion In a real-life situation, the freestream flow is not very “clean” – there are eddies and other disturbances, the 
fin surface is not perfectly smooth, and the vehicle may be vibrating. Thus, transition and turbulence are likely to occur 
much earlier than predicted for a smooth flat plate, and the boundary layer may be fully turbulent (or nearly so) by the 
trailing edge of the fin. 

  

 
 
 
 
 
 
10-72 
Solution We are to assess whether the boundary layer on the surface of a sign is laminar or turbulent or transitional.  
 
Assumptions 1 The flow is steady and incompressible. 2 The sign surface is smooth. 
 
Properties The density and viscosity of air at T = 25oC are 1.184 kg/m3 and 1.849 × 10-5 kg/m⋅s respectively. The 
kinematic viscosity is thus ν = 1.562 × 10-5 m2/s. 
 
Analysis Since the air flow is parallel to the sign, this flow is that of a flat plate boundary layer. We calculate the 
Reynolds number at the downstream edge of the sign, using W as the streamwise distance along the flat plate, 

 
( )( ) 5

5 2

5.0 m/s 0.45 m
Re 1.44 10

1.562 10  m /sx
VW
ν −= = = ×

×
 (1) 

The critical Reynolds number for transition to turbulence is 1 × 105 for the case of a smooth flat plate with very clean, low-
noise freestream conditions. Our Reynolds number is higher than this, but just barely so. The engineering value of critical 
Reynolds number for transition to a turbulent boundary layer in real engineering flows is Rex,cr = 5 × 105; our value of Rex 
is less than Rex,cr. Since Rex is a bit greater than Rex,critical, but less than Rex,cr (5 × 105), and much less than Rex,transition (30 × 
105), the boundary layer is laminar for a while, and then becomes transitional by the trailing edge of the fin.  
 
Discussion The flow over the sign is not very “clean” – there are eddies from the passing vehicles, and other 
atmospheric disturbances. In addition, the sign surface is not perfectly smooth, and most signs tend to oscillate somewhat in 
the wind. Thus, transition and turbulence are likely to occur much earlier than predicted for a smooth flat plate. The 
boundary layer on this sign is definitely transitional, but probably not turbulent, by the downstream edge of the sign. 
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10-73E 
Solution We are to assess whether the boundary layer on the wall of a wind tunnel is laminar or turbulent or 
transitional.  
 
Assumptions 1 The flow is steady and incompressible. 2 The surface of the wind tunnel is smooth. 3 There are minimal 
disturbances in the freestream flow. 
 
Properties The density and viscosity of air at T = 80oF are 0.07350 lbm/ft3 and 1.247 × 10-5 lbm/ft⋅s respectively. The 
kinematic viscosity is thus ν = 1.697 × 10-4 ft2/s. 
 
Analysis We calculate the Reynolds number at the downstream end of the wall, using L = 1.5 ft as the streamwise 
distance along the flat plate, 

 
( )( ) 4

4 2

7.5 ft/s 1.5 ft
Re 6.63 10

1.697 10  ft /sx
VL
ν −= = = ×

×
 (1) 

The engineering value of critical Reynolds number for transition to a turbulent boundary layer in real engineering flows is 
Rex,cr = 5 × 105; our value of Rex is much less than Rex,cr. In fact, our Reynolds number is even lower than the critical 
Reynolds number for transition to turbulence (1 × 105) for the case of a smooth flat plate with very clean, low-noise 
freestream conditions. Since the flow is clean and Rex is less than Rex,critical, the boundary layer is definitely laminar.  
 
Discussion There is typically a contraction just upstream of the test section of a wind tunnel. Upstream of that are 
typically some screens and/or honeycombs to make the flow clean and uniform. Thus, the disturbances are likely to be quite 
small, and the boundary layer is most likely laminar. 

  

 
 
 
 
 
 
 
10-74 
Solution We are to generate an expression for the outer flow velocity at point 2 in the boundary layer.  
 
Assumptions 1 The flow is steady, incompressible, and laminar. 2 The boundary layer approximation is appropriate. 
 
Analysis The boundary layer approximation tells us that P is constant normal to the boundary layer, but not 
necessarily along the boundary layer. Therefore, at any streamwise location along the boundary layer, the pressure in the 
outer flow region just above the boundary layer is the same as that at the wall. In the outer flow region, the Bernoulli 
equation reduces to 

Outer flow: 1 1         dU dP dU dPU
dx dx dx U dxρ ρ

= − → = −  (1) 

For small values of Δx, we can approximate U2 ≈ U1 + (dU/dx)Δx, and P2 ≈ P1 + (dP/dx)Δx. Substitution of these 
approximations into Eq. 1 yields 

 2 1
2 1 1

1 1

1 1 P PdPU U x U x
U dx U xρ ρ

−
≈ − Δ = − Δ

Δ
       →       2 1

2 1
1

P PU U
Uρ
−

≈ −  (2) 

 
Discussion It turns out that U2 does not depend on Δx or μ, but only on P1, P2, U1, and ρ. 
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10-75 
Solution We are to estimate U2, and explain whether it is less than, equal to, or greater than U1. 
 
Assumptions 1 The flow is steady, incompressible, and laminar. 2 The boundary layer approximation is appropriate. 
 
Properties The density and viscosity of air at T = 25oC are 1.184 kg/m3 and 1.849 × 10-5 kg/m⋅s respectively. 
 
Analysis The Bernoulli equation is valid in the outer flow region. Thus, we know that as P increases, U decreases, 
and vice-versa. In this case, P increases, and thus we expect U2 to be less than U1. From the results of Problem 10-74, 

 
( )( )

2
2 1

2 1 23
1

m 2.44 N/m kg m10.3
s N s1.186 kg/m 10.3 m/s

P P
U U

Uρ
− ⎛ ⎞≈ − = − =⎜ ⎟

⎝ ⎠
10.1 m/s   

Thus, the outer flow velocity indeed decreases by a small amount. 
 
Discussion The approximation is first order, and thus appropriate only if the distance between x1 and x2 is small. 

  

 
 
 

10-76 
Solution We are to list the five steps of the boundary layer procedure.  
 
Analysis We list the five steps below, with a description of each: 
 

Step 1 Solve for the outer flow, ignoring the boundary layer (assuming that the region of flow outside the boundary layer 
is approximately inviscid and/or irrotational). Transform coordinates as necessary to obtain U(x). 

Step 2 Assume a thin boundary layer – so thin in fact that it does not affect the outer flow solution of Step 1. 
Step 3 Solve the boundary layer equations. For this step we use the no-slip boundary condition at the wall, u = v = 0 at y = 

0, the known outer flow condition at the edge of the boundary layer, u → U(x) as y → ∞, and some known starting 
profile, u = ustarting(y) at x = xstarting. 

Step 4 Calculate quantities of interest in the flow field. For example, once the boundary layer equations have been solved 
(Step 3), we can calculate δ(x), shear stress along the wall, total skin friction drag, etc. 

Step 5 Verify that the boundary layer approximations are appropriate. In other words, verify that the boundary layer is 
indeed thin – otherwise the approximation is not justified. 

 
Discussion Students’ discussions should be in their own words. 

  

 
 
 

10-77 
Solution We are to list at least three “red flags” to look for when performing boundary layer calculations.  
 
Analysis We list four below. (Students are asked to list at least three.) 
 

- The boundary layer approximation breaks down if Reynolds number is not large enough. For example, δ/L ~ 0.01 
(1%) for ReL = 10,000. 

- The assumption of zero pressure gradient in the y direction breaks down if wall curvature is of similar magnitude 
as δ. In such cases, centripetal acceleration effects due to streamline curvature cannot be ignored. Physically, the 
boundary layer is not “thin” enough for the approximation to be appropriate when δ is not << R. 

- When Reynolds number is too high, the boundary layer does not remain laminar. The boundary layer 
approximation itself may still be appropriate, but the laminar boundary layer equations are not valid if the flow is 
transitional or fully turbulent. The laminar boundary layer on a smooth flat plate under clean flow conditions 
begins to transition towards turbulence at Rex ≈ 1 × 105. In practical engineering applications, walls may not be 
smooth and there may be vibrations, noise, and fluctuations in the freestream flow above the wall, all of which 
contribute to an even earlier start of the transition process. 

- If flow separation occurs, the boundary layer approximation is no longer appropriate in the separated flow region. 
The main reason for this is that a separated flow region contains reverse flow, and the parabolic nature of the 
boundary layer equations is lost. 

 

Discussion Students’ discussions should be in their own words. 
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10-78 

Solution We are to prove that 
2

0.332
Rew

x

Uρτ =  for a flat plate boundary layer.  

 

Assumptions 1 The flow is steady and incompressible. 2 The Reynolds number is in the range where the Blasius solution 
is appropriate. 
 
Analysis Equation 4 of Example 10-10 gives the definition of similarity variable η, which we re-write in terms of  y 
as a function of η, 

y as a function of η:           U xy y
x U

νη η
ν

= → =  (1) 

From the chain rule and Eq. 1, we obtain an expression for d/dη, 

Derivative with respect to similarity variable η: d d dy d x
d dy d dy U

ν
η η
= =  (2) 

We apply Eq. 2 above to Eq. 8 of Example 10-10, 

 
( )

3
00

/
0.332

y

d u U du x
d dy U

η

ν
η

==

⎞ ⎞
= =⎟ ⎟⎟ ⎠⎠

 (3) 

But by definition, 
0

w
y

u
y

τ μ
=

⎞∂
= ⎟∂ ⎠

, and Eq. 3 yields 

Shear stress at the wall: 
3 2

2
3

0

0.332 0.332 0.332
Rew

xy

du x U UU
dy x UxU

ν ν ρτ μ ρν ρ
ν

=

⎞
= = = =⎟

⎠
 (4) 

which is the desired expression for the shear stress at the wall in physical variables. 
 
Discussion The chain rule algebra is valid here since U and x are functions of x only – they are not functions of y. 
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10-79E 
Solution We are to calculate δ, δ*, and θ at the end of the wind tunnel test section.  
 
Assumptions 1 The flow is steady and incompressible. 2 The surface of the wind tunnel is smooth. 3 The boundary layer 
remains laminar all the way to the end of the test section. 
 
Properties The density and viscosity of air at T = 80oF are 0.07350 lbm/ft3 and 1.247 × 10-5 lbm/ft⋅s respectively. 
 
Analysis In Problem 10-73E, we calculated the Reynolds number at the downstream end of the wall, Rex = 6.63 × 104 
(keeping an extra digit for the calculations). All of the desired quantities are functions of Rex: 

Boundary layer thickness: 
( )

4

4.91 1.5 ft4.91 0.0286 ft 0.34 in
Re 6.63 10x

xδ = = = ≈
×

 (1) 

and 

Displacement thickness: 
( )

4

1.72 1.5 ft1.72* 0.0100 ft 0.12 in
Re 6.63 10x

xδ = = = ≈
×

 (2) 

and 

Momentum thickness: 
( )

4

0.664 1.5 ft0.664 0.00387 ft 0.046 in
Re 6.63 10x

xθ = = = ≈
×

 (3) 

Thus, δ = 0.34 inches, δ* = 0.12 inches, and θ  = 0.046 inches at the end of the wind tunnel test section. As expected, δ > 
δ* > θ . 
 
Discussion All answers are given to two significant digits. 

  

 
 
 
 
 
 
 
 
10-80 
Solution We are to determine which orientation of a rectangular flat plate produces the higher drag.  
 
Assumptions 1 The flow is steady and incompressible. 2 The Reynolds number is high enough for a laminar boundary 
layer to form on the plate, but not high enough for the boundary layer to become turbulent. 
 
Analysis Reynolds number appears in the denominator of the equation for shear stress along the wall of a laminar 
boundary layer. Thus, wall shear stress decreases with increasing x, the distance down the plate. Hence, the average wall 
shear stress is higher for the case with the plate oriented with its short dimension aligned with the wind (case (b) of Fig. 
P10-80). Since the surface area of the plate is the same regardless of orientation, the plate with the higher average value of 
τw has the higher overall drag. Case (b) has the higher drag. 
 
Discussion Another way to think about this problem is that since the boundary layer is thinner near the leading edge, 
the shear stress is higher there, and the front portion of the plate contributes to more of the total drag than does the rear 
portion of the plate. 
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10-81 
Solution We are to define displacement thickness and discuss whether it is larger or smaller than boundary layer 
thickness.  
 
Assumptions 1 The flow is steady and incompressible. 2 The boundary layer growing on the flat plate is laminar. 
 
Analysis The two definitions of displacement thickness are: 
 

• Displacement thickness is the distance that a streamline just outside of the boundary layer is deflected away from 
the wall due to the effect of the boundary layer. 

• Displacement thickness is the imaginary increase in thickness of the wall, as seen by the outer flow, due to the 
effect of the growing boundary layer. 

  

For a laminar boundary layer, δ  is larger than δ*. δ is defined by the overall thickness of the boundary layer, whereas δ* 
is an integrated thickness across the boundary layer that averages the mass deficit across the boundary layer. Therefore, it is 
not surprising that δ* is less than δ. 
 
Discussion The definitions given by students should be in their own words. 
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10-82 
Solution The acceleration of air through the round test section of a wind tunnel is to be calculated. 
 
Assumptions 1 The flow is steady and incompressible. 2 The walls are 
smooth, and disturbances and vibrations are kept to a minimum. 3 The 
boundary layers is laminar. 
 
Properties The kinematic viscosity of air at 20oC is ν = 1.516 × 10-5 
m2/s. 
 
Analysis (a) As the boundary layer grows along the wall of the wind 
tunnel test section, air in the region of irrotational flow in the central 
portion of the test section accelerates in order to satisfy conservation of 
mass. The Reynolds number at the end of the test section is 

( )( ) 4
5 2

2.0 m/s 0.60 m
Re 7.92 10

1.516 10 m /sx
Vx
ν −= = = ×

×
  

The engineering value of critical Reynolds number for transition to a turbulent boundary layer in real engineering flows is 
Rex,cr = 5 × 105; our value of Rex is less than Rex,cr. In fact, Rex is lower than the critical Reynolds number, Rex,critical ≈ 1 × 
105, for a smooth flat plate with a clean free stream. Since the walls are smooth and the flow is clean, we may assume that 
the boundary layer on the wall remains laminar throughout the length of the test section. We estimate the displacement 
thickness at the end of the test section, 

 
( ) 3

4

1.72 0.60 m1.72* 3.67 10  m 3.67 mm
Re 7.92 10x

xδ −≈ = = × =
×

 (1) 

Two cross-sectional views of the test section are sketched in Fig. 1, one at the beginning and one at the end of the test 
section. The effective radius at the end of the test section is reduced by δ* as calculated by Eq. 1. We apply conservation of 
mass to calculate the air speed at the end of the test section, 

 
( )

2

end end beginning beginning end beginning 2          
*

RV A V A V V
R
π

π δ
= → =

−
 (2) 

We plug in the numerical values to obtain 

Result: ( ) ( )
( )

2

end 23

0.20 m
2.0 m/s

0.20 m 3.67 10  m
V

−
= =

− ×
2.08 m/s  (3) 

Thus the air speed increases by approximately 4% through the test section, due to the effect of displacement thickness. 
 
Discussion The same displacement thickness technique may be applied to turbulent boundary layers; however, a 
different equation for δ*(x) is required. 

  

 
 

R-δ*R 

δ*

(b)(a)  
 
FIGURE 1 
Cross-sectional views of the test section of 
the wind tunnel: (a) beginning of test 
section, and (b) end of test section. 
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10-83 
Solution The acceleration of air through the square test section of a wind tunnel is to be calculated and compared to 
that through a round wind tunnel test section. 
 

Assumptions 1 The flow is steady and incompressible. 2 The walls are 
smooth, and disturbances and vibrations are kept to a minimum. 3 The 
boundary layers is laminar. 
 

Properties The kinematic viscosity of air at 20oC is ν = 1.516 × 10-5 
m2/s. 
 

Analysis (a) As the boundary layer grows along the walls of the 
wind tunnel test section, air in the region of irrotational flow in the central 
portion of the test section accelerates in order to satisfy conservation of 
mass. The Reynolds number at the end of the test section is 

( )( ) 4
5 2

2.0 m/s 0.60 m
Re 7.92 10

1.516 10 m /sx
Vx
ν −= = = ×

×
  

The engineering value of critical Reynolds number for transition to a turbulent boundary layer in real engineering flows is 
Rex,cr = 5 × 105; our value of Rex is less than Rex,cr. In fact, Rex is lower than the critical Reynolds number, Rex,critical ≈ 1 × 
105, for a smooth flat plate with a clean free stream. Since the walls are smooth and the flow is clean, we may assume that 
the boundary layer on the wall remains laminar throughout the length of the test section. We estimate the displacement 
thickness at the end of the test section, 

 
( ) 3

4

1.72 0.60 m1.72* 3.67 10  m 3.67 mm
Re 7.92 10x

xδ −≈ = = × =
×

 (1) 

Two cross-sectional views of the test section are sketched in Fig. 1, one at the beginning and one at the end of the test 
section. The effective dimensions at the end of the test section are reduced by 2δ*. We apply conservation of mass to 
calculate the air speed at the end of the test section, 

 
( )

2

end end beginning beginning end beginning 2          
2 *
aV A V A V V

a δ
= → =

−
 (2) 

We plug in the numerical values to obtain 

Result: ( ) ( )
( )

2

end 2
3

0.40 m
2.0 m/s

0.40 m 2 3.67 10  m
V

−
= =

⎡ ⎤− ×⎣ ⎦

2.08 m/s  (3) 

Thus the air speed increases by approximately 4% through the test section, due to the effect of displacement thickness. 
 The result for the square test section is identical to that of the round test section. We might have expected the 
square test section to do better since its cross-sectional area is larger than that of the round test section. However, the square 
test section also has more wall surface area than does the round test section, and thus, the acceleration due to displacement 
thickness on the walls is the same in both cases. 
 
Discussion The same displacement thickness technique may be applied to turbulent boundary layers; however, a 
different equation for δ*(x) is required. 

  

 
 

δ*

(b)(a) 

a-2δ*

a-2δ*a 

a

 
 
FIGURE 1 
Cross-sectional views of the test section of 
the wind tunnel: (a) beginning of test 
section, and (b) end of test section. 
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10-84 
Solution The height of a boundary layer scoop in a wind tunnel test section is to be calculated. 
 
Assumptions 1 The flow is steady and incompressible. 2 The walls are smooth. 3 The boundary layers starts growing at x 
= 0. 
 
Properties The kinematic viscosity of air at 20oC is ν = 1.516 × 10-5 m2/s. 
 
Analysis (a) As the boundary layer grows along the wall of the wind tunnel test section, the Reynolds number 
increases. The Reynolds number at location x is 

Rex: 
( )( ) 6

5 2

65.0 m/s 1.45 m
Re 6.22 10

1.516 10 m /sx
Vx
ν −= = = ×

×
  

Since Rex is greater than the transition Reynolds number, Rex,transition ≈ 3 × 106, we assume that the boundary layer is 
turbulent throughout the length of the test section. We estimate the boundary layer thickness at the location of the scoop, 

Table 10-4a: 
( )

( )
( )

2
1/ 7 1/ 76

0.16 1.45 m0.16 2.48 10  m 24.8 mm
Re 6.22 10x

xδ −≈ = = × =
×

 (1) 

or, 

Table 10-4b: 
( )

( )
( )

2
1/ 5 1/ 56

0.38 1.45 m0.38 2.41 10  m 24.1 mm
Re 6.22 10x

xδ −≈ = = × =
×

 (1) 

We design the scoop height to be greater than or equal to the boundary layer thickness at the location of the scoop. Thus, 
we set h ≈ δ ≈ 25. mm, or about an inch. 
 
Discussion The suction pressure of the scoop must be adjusted carefully so as not to suck too much or too little – 
otherwise it would disturb the flow. Since the early portion of the boundary layer is laminar, the actual boundary layer 
thickness will be somewhat lower than that calculated here. Thus, our calculation represents an upper limit. However, some 
of the large turbulent eddies in the boundary layer may actually exceed height δ, so our calculated h may actually not be 
sufficient to remove the complete boundary layer. 
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10-85E 
Solution The acceleration of air through the round test section of a wind tunnel is to be calculated. 
 
Assumptions 1 The flow is steady and incompressible. 2 The walls are 
smooth, and disturbances and vibrations are kept to a minimum. 3 The 
boundary layers is laminar. 
 
Properties The kinematic viscosity of air at 70oF is ν = 1.643 × 10-4 
ft2/s. 
 
Analysis (a) As the boundary layer grows along the wall of the 
wind tunnel test section, air in the region of irrotational flow in the central 
portion of the test section accelerates in order to satisfy conservation of 
mass. The Reynolds number at the end of the test section is 

( )( ) 4
4 2

5.0 ft/s 10.0 in 1ftRe 2.54 10
12 in1.643 10 ft /sx

Vx
ν −

⎛ ⎞= = = ×⎜ ⎟× ⎝ ⎠
  

The engineering value of critical Reynolds number for transition to a turbulent boundary layer in real engineering flows is 
Rex,cr = 5 × 105; our value of Rex is less than Rex,cr. In fact, Rex is lower than the critical Reynolds number, Rex,critical ≈ 1 × 
105, for a smooth flat plate with a clean free stream. Since the walls are smooth and the flow is clean, we may assume that 
the boundary layer on the wall remains laminar throughout the length of the test section. We estimate the displacement 
thickness at the end of the test section, 

 
( )

4

1.72 10.0 in1.72* 0.108 in
Re 2.54 10x

xδ ≈ = =
×

 (1) 

Two cross-sectional views of the test section are sketched in Fig. 1, one at the beginning and one at the end of the test 
section. The effective radius at the end of the test section is reduced by δ* as calculated by Eq. 1. We apply conservation of 
mass to calculate the air speed at the end of the test section, 

 
( )

2

end end beginning beginning end beginning 2          
*

RV A V A V V
R
π

π δ
= → =

−
 (2) 

We plug in the numerical values to obtain 

Result: ( ) ( )
( )

2

end 2

6.0 in
5.0 ft/s

6.0 in 0.108 in
V = =

−
5.18 ft/s  (3) 

Thus the air speed increases by approximately 4% through the test section, due to the effect of displacement thickness. 
 To eliminate this acceleration, the engineers can either diverge the test section walls, or add some suction 
along the sides to remove some air. 
 
Discussion The same displacement thickness technique may be applied to turbulent boundary layers; however, a 
different equation for δ*(x) is required. 

  

 
 

R-δ*R 

δ*

(b)(a)  
 
FIGURE 1 
Cross-sectional views of the test section of 
the wind tunnel: (a) beginning of test 
section, and (b) end of test section. 
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10-86E 
Solution We are to determine if a boundary layer is laminar, turbulent, or transitional, and then compare the laminar 
and turbulent boundary layer thicknesses.  
 
Properties The kinematic viscosity of air at 70oF is ν = 1.643 × 10-4 ft2/s. 
 
Analysis First, we calculate the Reynolds number at the end of the plate, 

Rex, end of plate: 
( )( ) 6

4 2

15.5 ft/s 10.6 ft
Re 1.00 10

1.643 10 ft /sx
Vx
ν −= = = ×

×
  

The engineering value of critical Reynolds number for transition to a turbulent boundary layer in real engineering flows is 
Rex,cr = 5 × 105; our value of Rex is greater than Rex,cr, leading us to suspect that the boundary layer is turbulent. However, 
Rex is lower than the transition Reynolds number, Rex,transition ≈ 3 × 106, for a smooth flat plate with a clean free stream. 
Thus, we suspect that this boundary layer is laminar at the front of the plate, and then transitional farther 
downstream. If the plate is vibrating and/or the freestream is noisy, the boundary layer may possibly be fully turbulent by 
the end of the plate. 
 If the boundary layer were to remain laminar to the end of the plate, its thickness would be 

Laminar: 
( )

6

4.91 10.6 ft4.91 0.0520 ft
Re 1.00 10x

xδ = = = =
×

0.625 in  (1) 

 If the boundary layer at the end of the plate were fully turbulent (and turbulent from the beginning of the plate), its 
thickness would be 

Turbulent, Table 10-4a: 
( )

( )
( )1/ 7 1/ 76

0.16 10.6 ft0.16 0.236 ft
Re 1.00 10x

xδ ≈ = = =
×

2.83 in  (1) 

or, 

Turbulent, Table 10-4b: 
( )

( )
( )1/ 5 1/ 56

0.38 10.6 ft0.38 0.254 ft
Re 1.00 10x

xδ ≈ = = =
×

3.05 in  (1) 

Thus, the turbulent boundary layer thickness is about 4.5 to 4.9 times thicker than the corresponding laminar boundary 
layer thickness at the same Reynolds number. We expect the actual boundary layer thickness to lie somewhere between 
these two extremes. 
 
Discussion The difference between the two turbulent boundary layer equations for δ is about 7 or 8 percent. This is 
larger than we might hope, but keep in mind that at Rex = 1.00 × 106, the boundary layer is not yet fully turbulent, and the 
equations for δ are not accurate at such low Reynolds numbers. 
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10-87 
Solution The apparent thickness of a flat plate is to be calculated. 
 
Assumptions 1 The flow is steady and incompressible. 2 The walls are smooth. 3 The boundary layers starts growing at x 
= 0. 
 
Properties The kinematic viscosity of air at 20oC is ν = 1.516 × 10-5 m2/s. 
 
Analysis (a) As the boundary layer grows along the plate, the Reynolds number increases. The Reynolds number at 
location x is 

Rex: 
( )( ) 4

5 2

5.0 m/s 0.25 m
Re 8.2454 10

1.516 10 m /sx
Vx
ν −= = = ×

×
  

The engineering value of critical Reynolds number for transition to a turbulent boundary layer in real engineering flows is 
Rex,cr = 5 × 105; our value of Rex is less than Rex,cr. In fact, Rex is lower than the critical Reynolds number, Rex,critical ≈ 1 × 
105, for a smooth flat plate with a clean free stream. Since Rex is lower than the critical Reynolds number, and since the 
walls are smooth and the flow is clean, we may assume that the boundary layer on the wall remains laminar, at least to 
location x. We estimate the displacement thickness at x = 25 cm, 

 
( ) 3

4

1.72 0.25 m1.72* 1.4975 10  m 0.14975 cm
Re 8.2454 10x

xδ −≈ = = × =
×

 (1) 

This “extra” thickness is seen by the outer flow. Since the plate is 0.75 cm thick, and since a similar boundary layer forms 
on the bottom as on the top, the total apparent thickness of the plate is 

Apparent thickness: ( )apparent 2 * 0.75 cm 2 0.14975 cmh h δ= + = + = 1.05 cm   

 
Discussion We have kept 5 digits of precision in intermediate steps, but report our final answer to three significant 
digits. The Reynolds number is pretty close to critical. If the freestream air flow were noisy and/or the plate were rough or 
vibrating, we might expect the boundary layer to be transitional, and then the apparent thickness would be greater. 
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10-88  [Also solved using EES on enclosed DVD] 
Solution We are to plot the mean boundary layer profile u(y) at the 
end of a flat plate using three different approximations. 
 
Assumptions 1 The plate is smooth. 2 The boundary layer is turbulent 
from the beginning of the plate. 3 The flow is steady in the mean. 4 The 
plate is infinitesimally thin and is aligned parallel to the freestream. 
 
Properties The kinematic viscosity of air at 20oC is ν = 1.516 × 10-5 
m2/s. 
 
Analysis First we calculate the Reynolds number at x = L, 

 
( )( ) 7

5 2

80.0 m/s 17.5 m
Re 9.23 10

1.516 10 m /sx
Vx
ν −= = = ×

×
  

This value of Rex is well above the transitional Reynolds number for a 
flat plate boundary layer, so the assumption of turbulent flow from the 
beginning of the plate is reasonable. 
 Using the column (a) values of Table 10-4, we estimate the 
boundary layer thickness and the local skin friction coefficient at the end 
of the plate, 

 
( ) ( )

3
,1/ 7 1/ 7

0.16 0.0270.204 m          1.97 10
Re Re

f x

x x

x Cδ −≈ = ≈ = ×  (1) 

We calculate the friction velocity by using the definition of Cf,x, 

 ( ) ( )3
* ,/ / 2 80.0 m/s 1.97 10 / 2 2.51 m/sw f xu U Cτ ρ −= = = × =  (2) 

where U(x) = V = constant for a flat plate. It is trivial to generate a plot of the one-seventh-power law. We follow Example 
10-13 to plot the log law, namely, 

 *

*

u B
uy e

u

κν
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠=  (3) 

Since we know that u varies from 0 at the wall to U at the boundary layer edge, we are also able to plot the log law velocity 
profile in physical variables. Finally, Spalding’s law of the wall is also written in terms of y as a function of u. We plot all 
three profiles on the same plot for comparison (Fig. 1). All three are close, and we cannot distinguish the log law from 
Spalding’s law on this scale. 
 
Discussion Neither the one-seventh-power law nor the log law are valid real close to the wall, but Spalding’s law is 
valid all the way to the wall. However, on the scale shown in Fig. 1, we cannot see the differences between the log law and 
the Spalding law very close to the wall. 

  

 
 
 

10-89 
Solution We are to discuss the difference between a favorable and an adverse pressure gradient.  
 
Analysis When the pressure decreases downstream, the boundary layer is said to experience to a favorable 
pressure gradient. When the pressure increases downstream, the boundary layer is subjected to an adverse pressure 
gradient. The term “favorable” is used because the boundary layer is unlikely to separate off the wall. On the other hand, 
“adverse” or “unfavorable” indicates that the boundary layer is more likely to separate off the wall. 
 
Discussion A favorable pressure gradient occurs typically at the front of a body, whereas an adverse pressure gradient 
occurs typically at the back portion of a body. 
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FIGURE 1 
Comparison of turbulent flat plate boundary 
layer profile expressions in physical 
variables at Rex =  9.23 × 107: one-seventh-
power approximation, log law, and 
Spalding’s law of the wall. 
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10-90 
Solution We are to discuss the role of an inflection point in a boundary layer profile.  
 
Analysis As sketched in Fig. 10-124, the existence of an inflection point in the boundary layer profile indicates 
an adverse or unfavorable pressure gradient. The reason for this is due to the fact that the second derivative of the 
velocity profile u(y) at the wall is directly proportional to the pressure gradient (Eq. 10-86). In an adverse pressure gradient 
field, dP/dx is positive, and thus, ∂2u/∂y2)y = 0 is also positive. However, since ∂2u/∂y2 must be negative as u approaches U(x) 
at the edge of the boundary layer, there has to be an inflection point (∂2u/∂y2 = 0) somewhere in the boundary layer. 
 
Discussion If the adverse pressure gradient is large enough, the boundary layer separates off the wall, leading to reverse 
flow near the wall. 

  

 
 
 

10-91 
Solution We are to compare laminar and turbulent boundary layer separation, and explain why golf balls have 
dimples.  
 
Analysis Turbulent boundary layers are more “full” than are laminar boundary layers. Because of this, a 
turbulent boundary layer is much less likely to separate compared to a laminar boundary layer under the same 
adverse pressure gradient. A smooth golf ball, for example, would maintain a laminar boundary layer on its surface, and 
the boundary layer would separate fairly easily, leading to large aerodynamic drag. Golf balls have dimples (a type of 
surface roughness) in order to create an early transition to a turbulent boundary layer. Flow still separates from the 
golf ball surface, but much farther downstream in the boundary layer, resulting in significantly reduced aerodynamic drag. 
 
Discussion Turbulent boundary layers have more skin friction drag than do laminar boundary layers, but this effect is 
less significant than the pressure drag caused by flow separation. Thus, a rough golf ball (at appropriate Reynolds numbers) 
ends up with less overall drag, compared to a smooth golf ball at the same conditions. 

  

 
 
 

10-92 
Solution We are to generate expressions for δ* and θ, and compare to Blasius.  
 
Analysis First, we set U(x) = V = constant for a flat plate. We integrate using the definition of δ*, 

 
2

0 0
0

* 1 1
2

y

y

u y ydy dy y
U

δ
δ

δ
δ δ

=
∞

=

⎡ ⎤⎛ ⎞ ⎡ ⎤= − = − = −⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦
∫ ∫   

We integrate only to y = δ, since beyond that, the integrand is identically zero. After substituting the limits of integration, 
we obtain δ* as a function of δ,  

 [ ] [ ]* / 2 0 0 / 2          δ δ δ δ= − − − = → /2δ* = δ   

Similarly, 

 
2 2 3

2 20 0
0

1
2 3

y

y

u u y y y ydy dy
U U

δ
δ

θ
δ δδ δ

=
∞

=

⎡ ⎤ ⎡ ⎤⎛ ⎞= − = − = −⎢ ⎥ ⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦ ⎣ ⎦

∫ ∫   

After substituting the limits of integration, we obtain θ as a function of δ,  

 [ ] [ ]/ 2 / 3 0 0 / 6          θ δ δ δ θ= − − − = → /6= δ   

 The ratios are δ*/δ = 1/2 = 0.500, and θ/δ = 1/6 = 0.167, to three significant digits. We compare these approximate 
results to those obtained from the Blasius solution, i.e., δ*/δ = 1.72/4.91 = 0.350, and θ/δ = 0.664/4.91 = 0.135. Thus, our 
approximate velocity profile yields δ*/δ to about 43% error, and θ/δ to about 23% error.  
 
Discussion The linear approximation is not very accurate. 
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10-93 
Solution We are to generate an expression for δ/x, and compare to Blasius.  
 
Analysis By definition of local skin friction coefficient Cf,x, 

 , 2 2 2
00

2 2 2 2w
f x

yy

du UC
dy UU U U

τ μμ μ
δ ρ δρ ρ ρ ==

⎛ ⎞ ⎡ ⎤= = = =⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
 (1) 

For a flat plate, the Kármán integral equation reduces to 

 ,
12 2
6f x

d dC
dx dx
θ δ⎛ ⎞= = ⎜ ⎟

⎝ ⎠
 (2) 

where we have used the expression for θ as a function of δ from Problem 10-92. Substitution of Eq. 1 into Eq. 2 gives 

 ,
63 f x

d C
dx U
δ μ

ρ δ
= =   

We separate variables and integrate, 

 
26 6            12

2
d dx x

U U x Ux
μ δ μ δ μδ δ

ρ ρ ρ
= → = → =   

or, collecting terms, rounding to three digits, and setting ρUx/μ = Rex,  

 
3.46
Rexx

δ
=   

Compared to the Blasius result, δ/x = 4.91/ Rex , our approximation based on the sine function velocity profile yields less 
than 30% error. 
 
Discussion The Kármán integral equation is useful for obtaining 
approximate relations, and is “forgiving” because of the integration. 
Even so, the linear approximation is not very good. Nevertheless, a 30% 
error is sometimes reasonable for “back of the envelope” calculations. 
The sine wave approximation does much better, as in the next problem. 

 

 
 
 
 
 
10-94 
 

 
Solution We are to compare the sine wave approximation to the 
Blasius velocity profile.  
 
Analysis We plot both profiles in Fig. 1. There is not much 
difference between the two, and thus, the sine wave profile is a very 
good approximation of the Blasius profile. 
 
Discussion The slope of the two profiles at the wall is 
indistinguishable on the plot (Fig. 1); thus, the sine wave approximation 
should yield reasonable results for skin friction (shear stress) along the wall as well. 
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FIGURE 1 
Comparison of Blasius and sine wave 
velocity profiles. 
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10-95 
Solution We are to generate expressions for δ* and θ, and compare to Blasius.  
 
Analysis First, we set U(x) = V = constant for a flat plate. We integrate using the definition of δ*, 

 
0 0

0

2* 1 1 sin cos
2 2

y

y

u y ydy dy y
U

δ
δ π π δδ

δ δ π

=
∞

=

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = − = +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫ ∫   

We integrate only to y = δ, since beyond that, the integrand is identically zero. After substituting the limits of integration, 
we obtain δ* as a function of δ,  

 [ ] 2 2* 0 0           δδ δ δ δ
π π

⎡ ⎤= + − + = − →⎢ ⎥⎣ ⎦
0.3634δ* = δ   

Similarly, 

 

2

0 0

0

1 sin sin
2 2

2  cos sin
2 2 2

y

y

u u y ydy dy
U U

y y y

δ

δ

π πθ
δ δ

π δ δ π
δ π π δ

∞

=

=

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪= − − −⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫
  

where we obtained the integral for sin2 from integration tables. After substituting the limits of integration, we obtain θ as a 
function of δ,  

 [ ]2 20 0 0 0           
2 2
δ δ δ δθ

π π
⎧ ⎫⎡ ⎤ ⎧ ⎫= − − − − − − = − + →⎨ ⎬ ⎨ ⎬⎢ ⎥⎣ ⎦ ⎩ ⎭⎩ ⎭

0.1366θ = δ   

 The ratios are δ*/δ = 0.363, and θ/δ = 0.137, to three significant digits. We compare these approximate results to 
those obtained from the Blasius solution, i.e., δ*/δ = 1.72/4.91 = 0.350, and θ/δ = 0.664/4.91 = 0.135. Thus, our 
approximate velocity profile yields δ*/δ to less than 4% error, and θ/δ to about 1% error.  
 
Discussion Integration is “forgiving”, and reasonable results can be obtained from integration, even when the velocity 
profile shape is not exact. 
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10-96 
Solution We are to generate an expression for δ/x, and compare to Blasius.  
 

Analysis By definition of local skin friction coefficient Cf,x, 

 , 2 2 2
00

2 2 2 2cos
2 2 2

w
f x

yy

du yC U
dy U UU U U

τ π π μ π μπμ μ
δ δ ρ δ ρ δρ ρ ρ

==

⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎡ ⎤= = = = =⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦⎝ ⎠
 (1) 

For a flat plate, the Kármán integral equation reduces to 

 ( ), 2 2 0.1366f x
d dC
dx dx
θ δ

= =  (2) 

where we have used the expression for θ as a function of δ from Problem 10-95. Substitution of Eq. 1 into Eq. 2 gives 

 
( )

,

2 0.1366 0.2732
f xCd

dx U
δ μπ

ρ δ
= =   

We separate variables and integrate, 

 
2 2            

0.2732 2 0.2732 0.2732
d dx x

U U x Ux
μπ δ μπ δ π μδ δ

ρ ρ ρ
= → = → =   

Collecting terms, rounding to three digits, and setting ρUx/μ = Rex,  

 
4.80
Rexx

δ
≈   

Compared to the Blasius result, δ/x = 4.91/ Rex , the approximation yields less than 3% error. 
 

Discussion The Kármán integral equation is useful for approximations, and is “forgiving” because of the integration. 
  

 
 
 
 

10-97 
Solution We are to compare H for laminar vs. turbulent boundary layers, and discuss its significance.  
 

Analysis Shape factor H is defined as the ratio of displacement thickness to momentum thickness. Thus, 

Shape factor: * * /
/

xH
x

δ δ
θ θ

= =  (1) 

For the laminar boundary layer on a flat plate, Eq. 1 becomes 

Laminar: 
1.72 / Re* /

/ 0.664 / Re
x

x

xH
x

δ
θ

= = = 2.59   

For the turbulent boundary layer, using both columns for comparison, Eq. 1 yields 

Table 10-4a: 
( )
( )

1/ 7

1/ 7

0.020 / Re* /
/ 0.016 / Re

x

x

xH
x

δ
θ

= = = 1.25  Table 10-4b: 
( )
( )

1/ 5

1/ 5

0.048 / Re* /
/ 0.037 / Re

x

x

xH
x

δ
θ

= = = 1.30  

Thus, the shape factor for a laminar boundary layer is about twice that of turbulent boundary layer. This implies that 
the smaller the value of H, the more full is the boundary layer. We may also infer that the smaller the value of H, the less 
likely is the boundary layer to separate. H depends on the shape of the velocity profile – hence its name, shape factor. 
 

Discussion In fact, at the separation point of a laminar boundary layer, H ≈ 3.5. 
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10-98 
Solution We are to calculate H for an infinitesimally thin boundary layer.  
 
Analysis By definition, 

Shape factor: 
0

0

1
*

1

u dy
UH

u u dy
U U

δ
θ

∞

∞

⎛ ⎞−⎜ ⎟
⎝ ⎠= =
⎛ ⎞−⎜ ⎟
⎝ ⎠

∫

∫
 (1) 

But for the limiting case under consideration, u/U = 1 through the entire boundary layer, yielding δ* = 0 and θ = 0. To 
calculate the ratio in Eq. 1, we use l’Hopital’s rule, where the variable u approaches U in the limit, 

 
0 0 0

00 0

1 11
lim lim

11 11 2
u U u U

d u dy dy dydu U U UH
d u u u dydy dy

Udu U U U U U

∞ ∞ ∞

∞→ →∞ ∞

⎛ ⎞− −⎜ ⎟
⎝ ⎠= = = =
⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫ ∫

∫∫ ∫
1   

In other words, H is always greater than unity for any real boundary layer. 
 
Discussion Since turbulent boundary layers are fuller than laminar boundary layers, it is no surprise that Hturbulent is 
closer to unity than is Hlaminar. 

  

 
 
 
 
 
 
 
 
 
10-99 
Solution We are to integrate an expression for δ.  
 
Analysis We start with Eq. 5 of Example 10-14, 

 ( )
1/ 7

1/ 772 0.027 Re 0.139
14 x

d Ux
dx
δ

ν

−
− ⎛ ⎞= = ⎜ ⎟

⎝ ⎠
  

Integration with respect to x yields 

 ( )
6 / 7 6 / 77 0.139           0.162

6
Ux Ux

U x Ux
ν δ νδ

ν ν
⎛ ⎞ ⎛ ⎞= → =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

or, collecting terms, rounding to two digits, and setting Ux/ν = Rex,  

 
( )1/ 7

0.16
Rex

x
δ
≈   

 
Discussion This approximate result is based on the 1/7th power law. 

  

 
 



Chapter 10 Approximate Solutions of the Navier-Stokes Equation 

10-60 
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to 
teachers and educators for course preparation.  If you are a student using this Manual, you are using it without permission. 

10-100 
Solution We are to generate an expression for δ/x.  
 
Analysis For a flat plate, the Kármán integral equation reduces to 

 ( ), 2 2 0.097f x
d dC
dx dx
θ δ

= =   

where we have used the given expression for θ as a function of δ. Substitution of the given expression for Cf,x gives 

 
( )

( ) 1/ 5 1/ 5
, 0.059 Re

0.304
2 0.097 0.194

f x xCd Ux
dx
δ

ν

− −
⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

  

Integration with respect to x yields 

 ( )
4 / 5 4 / 55 0.304           0.380

4
Ux Ux

U x Ux
ν δ νδ

ν ν
⎛ ⎞ ⎛ ⎞= → =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

or, collecting terms, rounding to two digits, and setting Ux/ν = Rex,  

 
( )1/ 5

0.38
Rex

x
δ
≈   

The result is identical to that of Table 10-4, column (b). 
 
Discussion The Kármán integral equation is useful for obtaining approximate relations like those of Table 10-4. 

  

 
 
 
 
 
 
 
 
 
Review Problems 
 
 
 
 
10-101C 
Solution   
(a) True: We do not have to make the 2-D approximation in order to define the velocity potential function – φ can be 

defined for any flow if the vorticity is zero. 
(b) False: The stream function is definable for any two-dimensional flow field, regardless of the value of vorticity. 
(c) True: The velocity potential function is valid only for irrotational flow regions where the vorticity is zero. 
(d) True: The stream function is defined from the continuity equation, and is valid only for two-dimensional flows. Note 

that some researchers have defined three-dimensional forms of the stream function, but these are beyond the scope of 
the present introductory text book. 
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10-102 
Solution We are to compute the viscous term for the given velocity field, and show that the flow is rotational.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-θ plane. 
 
Analysis We consider the viscous terms of the θ component of the Navier-Stokes equation, 

Viscous terms: 

2 2

2 2 2 2 2

1 1 2   

                    0         0       0 0

ru u u uu
r

r r r r r r z

r r

θ θ θ θμ
θθ

ω ωμ

⎛ ⎞∂ ∂ ∂∂∂ ⎛ ⎞ − + − +⎜ ⎟⎜ ⎟∂ ∂ ∂∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞= − + − + =⎜ ⎟
⎝ ⎠

  

The viscous terms are zero, implying that there are no net viscous forces acting on fluid elements. This does not 
necessarily mean that the flow is inviscid – it could also mean that the flow is irrotational, since the viscous terms disappear 
in both inviscid and irrotational flows. We obtain the z component of vorticity in cylindrical coordinates from Chap. 4, 

z component of vorticity: 
( ) ( )2

1 1 0 2r
z

rru u
r r r r

θ
ω

ζ ω
θ

⎛ ⎞∂⎛ ⎞∂ ∂ ⎜ ⎟= − = − =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
  

Thus, since the vorticity is non-zero, this flow field is rotational. Finally, since the flow is not irrotational, the only other 
way that the net viscous force can be zero is if the flow is inviscid. We conclude, then, that this flow field is also inviscid. 
 
Discussion The vorticity is twice the angular velocity, as discussed in Chap. 4. 

  

 
 
 
 
10-103 
Solution We are to calculate the viscous stress tensor for a given velocity field.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-θ plane. 
 
Analysis The viscous stress tensor is given in Chap. 9 as 

Viscous stress tensor in cylindrical coordinates:
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 (1) 

We plug in the velocity field from Problem 10-102 into Eq. 1, and we get 

 
0 0 0
0 0 0
0 0 0

rr r rz

ij r z

zr z zz
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θ θθ θ

θ
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⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2) 

Thus, we conclude that there are no viscous stresses in this flow field (solid body rotation). Thus, this flow can be 
considered inviscid. 
 
Discussion Since the fluid moves as a solid body, no fluid particles move relative to any other fluid particles; hence we 
expect no viscous stresses. 
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10-104 
Solution We are to compute the viscous term for the velocity field and show that the flow is irrotational.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-θ plane. 
 
Analysis First, we write out and simplify the viscous terms of the θ component of the Navier-Stokes equation, 

 
2 2

2 2 2 2 2 3 3

1 1 2     0  0 0 0
2 2

ru u u uu
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r r r r r r z r r
θ θ θ θμ μ

θθ π π
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The viscous terms are zero, implying that there are no net viscous forces acting on fluid elements. This does not 
necessarily mean that the flow is inviscid – it could also mean that the flow is irrotational, since the viscous terms disappear 
in both inviscid and irrotational flows. 
 We obtain the z component of vorticity in cylindrical coordinates from Chap. 4, 

z component of vorticity: 
( ) ( )1 1 0 0 0r

z

ru u
r r r

θζ
θ

⎛ ⎞∂ ∂
= − = − =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

  

Thus, since the vorticity is zero, this flow field is irrotational. 
 
Discussion We cannot say for sure whether the flow is inviscid unless we calculate the viscous shear stresses, as in the 
following problem. 

  

 
 
 
10-105 
Solution We are to calculate the viscous stress tensor for a given velocity field.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-θ plane. 
 
Analysis The viscous stress tensor in cylindrical coordinates is given in Chap. 9 as 
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 (1) 

We plug in the velocity field from Problem 10-104 into Eq. 1, and we get 
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Thus, we conclude that there are indeed some non-zero viscous stresses in this flow field. Hence, this flow is not inviscid, 
even though it is irrotational. 
 
Discussion The fluid particles move relative to each other, generating viscous shear stresses. However, the net viscous 
force on a fluid particle is zero since the flow is irrotational. 
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10-106 
Solution We are to calculate modified pressure P′ and sketch profiles of P′ at two vertical locations in the pipe.  
 

Assumptions 1 The flow is incompressible. 2 Gravity acts vertically downward. 
3 There are no free surface effects in this flow field. 
 

Analysis By definition, modified pressure P′ = P + ρgz. So we add 
hydrostatic pressure component ρgz to the given profile P = Patm to obtain the 
profile for P′. At any z location in the pipe, 

Modified pressure: atm          P P gz P P gzρ ρ′ ′= + → = +   

We see that P′ is uniform at any vertical location (P′ does not vary radially), but P′ 
varies with elevation z. At z = z1, 

Modified pressure at z1: 1 atm 1P P gzρ′= +  (1) 

and at z = z2, 

Modified pressure at z2: 2 atm 2P P gzρ′ = +  (2) 

Comparing Eqs. 1 and 2, the modified pressure is higher at location z2 since z2 is 
higher in elevation than z1. In this problem there is no forced pressure gradient in 
terms of actual pressure. However, in terms of modified pressure, there is a linearly 
decreasing modified pressure along the axis of the pipe. In other words, there is a forced pressure gradient in terms of 
modified pressure.  
 
Discussion Since modified pressure eliminates the gravity term from the Navier-Stokes equation, we have replaced the 
effect of gravity by a gradient of modified pressure P′. 

  

 
 

 

10-107 
Solution We are to calculate the required pressure drop between two axial locations of a horizontal pipe that would 
yield the same volume flow rate as that of the vertical pipe of Problem 10-106.  
 

Assumptions 1 The flow is incompressible. 2 Gravity acts vertically 
downward. 3 There are no free surface effects in this flow field. 
 

Analysis For the vertical case of Problem 10-106, we know that at 
z = z1, 

Modified pressure at z1: 1 atm 1P P gzρ′= +  (1) 

and at z = z2, 

Modified pressure at z2: 2 atm 2P P gzρ′ = +  (2) 

Since modified pressure effectively eliminates gravity from the problem, we expect that at the same volume flow rate, the 
difference in modified pressure from z2 to z1 does not change with changes in the orientation of the pipe. From Eqs. 1 and 2, 

Change in modified pressure from z2 to  z1: ( )2 1 2 1P P g z zρ′ ′− = −  (3) 

The modified pressure profiles at two axial locations in the horizontal pipe are sketched in Fig. 1. We convert the modified 
pressures in Eq. 3 to actual pressures using the definition of modified pressure, P = P′ − ρgz. We note however, that for the 
horizontal pipe, z does not change along the pipe. Thus we conclude that the required difference in actual pressure is 

Change in pressure from location 2 to location 1: ( )2 1 2 1P P g z zρ− = −  (4) 

where z2 and z1 are the elevations of the vertical pipe case. 
 

Discussion In order to achieve the same flow rate, the forced pressure gradient in the horizontal case must be the same 
as the hydrostatic pressure difference supplied by gravity in the vertical case. 
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FIGURE 1 
Modified pressure profiles at two 
vertical locations in the pipe. 
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FIGURE 1 
Modified pressure profiles at two horizontal 
locations in the pipe. 
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Design and Essay Problem 
 
 
 
 
10-108 
Solution We are to discuss the velocity overshoot in Fig. 10-136.  
 
Analysis The velocity overshoot is a direct result of the displacement effect and the effect of inertia. At very low 
values of ReL (less than about 101), where the displacement effect is most prominent, the velocity overshoot is almost non-
existent. This can be explained by the lack of inertia at these low Reynolds numbers. Without inertia, there is no 
mechanism to accelerate the flow around the plate; rather, viscosity retards the flow everywhere in the vicinity of the plate, 
and the influence of the plate extends tens of plate lengths beyond the plate in all directions. At moderate values of 
Reynolds number (ReL between about 101 and 104), the displacement effect is significant, and inertial terms are no longer 
negligible. Hence, fluid is able to accelerate around the plate and the velocity overshoot is significant. At very high values 
of Reynolds number (ReL > 104), inertial terms dominate viscous terms, and the boundary layer is so thin that the 
displacement effect is almost negligible – the small displacement effect leads to very small velocity overshoot at high 
Reynolds numbers. 
 
Discussion We can imagine that the flat plate appears thicker from the point of view of the outer flow, and therefore, 
the flow must accelerate around this “fat” plate. 
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