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Dimensions and Units, Primary Dimensions 
 
 
 
7-1C 
Solution We are to explain the difference between a dimension and a unit, and give examples.  
 
Analysis A dimension is a measure of a physical quantity (without numerical values), while a unit is a way to 
assign a number to that dimension. Examples are numerous – length and meter, temperature and oC, weight and lbf, mass 
and kg, time and second, power and watt,… 
 
Discussion When performing dimensional analysis, it is important to recognize the difference between dimensions and 
units. 

  

 
 
 

7-2C 
Solution We are to append the given table with other parameters and their primary dimensions.  
 
Analysis Students’ tables will differ, but they should add entries such as angular velocity, kinematic viscosity, work, 
energy, power, specific heat, thermal conductivity, torque or moment, stress, etc. 
 
Discussion This problem should be assigned as an ongoing homework problem throughout the semester, and then 
collected towards the end. Individual instructors can determine how many entries to be required in the table. 

  

 
 
 

7-3C 
Solution We are to list the seven primary dimensions and explain their significance.  
 
Analysis The seven primary dimensions are mass, length, time, temperature, electrical current, amount of light, 
and amount of matter. Their significance is that all other dimensions can be formed by combinations of these seven 
primary dimensions. 
 
Discussion One of the first steps in a dimensional analysis is to write down the primary dimensions of every variable or 
parameter that is important in the problem. 

  

 
 
 

7-4 
Solution We are to write the primary dimensions of the universal ideal gas constant.  
 
Analysis From the given equation, 

Primary dimensions of the universal ideal gas constant:

 { }
3

2
m Lpressure volume t L

mol temperature N TuR

⎧ ⎫×⎪ ⎪⎧ ⎫× ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬
× ×⎩ ⎭ ⎪ ⎪

⎪ ⎪⎩ ⎭

⎧ ⎫
⎨ ⎬
⎩ ⎭

2

2

mL
t TN

  

Or, in exponent form, {Ru} = {m1 L2 t-2 T-1 N-1}. 
 
Discussion The standard value of Ru is 8314.3 J/kmol⋅K. You can verify that these units agree with the dimensions of 
the result. 
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7-5 
Solution We are to write the primary dimensions of atomic weight.  
 
Analysis By definition, atomic weight is mass per mol, 

Primary dimensions of atomic weight: { } mass
mol

M ⎧ ⎫= =⎨ ⎬
⎩ ⎭

⎧ ⎫
⎨ ⎬
⎩ ⎭

m
N

 (1) 

Or, in exponent form, {M} = {m1 N-1}. 
 
Discussion In terms of primary dimensions, atomic mass is not dimensionless, although many authors treat it as such. 
Note that mass and amount of matter are defined as two separate primary dimensions. 

  

 
 
 
 
 
 
 
 
7-6 
Solution We are to write the primary dimensions of the universal ideal gas constant in the alternate system where 
force replaces mass as a primary dimension.  
 
Analysis From Newton’s second law, force equals mass times acceleration. Thus, mass is written in terms of force as 

Primary dimensions of mass in the alternate system:

 { }
2

2

force F Ftmass
acceleration LL/t

⎧ ⎫⎧ ⎫ ⎧ ⎫= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 (1) 

We substitute Eq. 1 into the results of Problem 7-4, 

Primary dimensions of the universal ideal gas constant:

 { }

2
2

2

2 2

Ft LmL L
Nt T Nt TuR

⎧ ⎫
⎪ ⎪⎧ ⎫ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎪ ⎪
⎪ ⎪⎩ ⎭

⎧ ⎫
⎨ ⎬
⎩ ⎭

FL
TN

 (2) 

Or, in exponent form, {Ru} = {F1 L1 T-1 N-1}. 
 
Discussion The standard value of Ru is 8314.3 J/kmol⋅K. You can verify that these units agree with the dimensions of 
Eq. 2. 
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7-7 
Solution We are to write the primary dimensions of the specific ideal gas constant, and verify are result by 
comparing to the standard SI units of Rair.  
 
Analysis We can approach this problem two ways. If we have already worked through Problem 7-4, we can use our 
results. Namely,  

Primary dimensions of specific ideal gas constant:

 { }
2

2

gas

mL
Nt T
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 (1) 

Or, in exponent form, {Rgas} = {L2 t-2 T-1}. Alternatively, we can use either form of the ideal gas law, 

Primary dimensions of specific ideal gas constant:

 { }
3

2

gas

m Lpressure volume t L
mass temperature m T

R

⎧ ⎫×⎪ ⎪⎧ ⎫× ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬
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2

2

L
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 (2) 

For air, Rair = 287.0 J/kg⋅K. We transform these units into primary dimensions, 

Primary dimensions of the specific ideal gas constant for air:

 { }

2

2

air

mL
J t287.0

kg×K m T
R

⎧ ⎫
⎪ ⎪⎧ ⎫ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬
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2

2

L
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 (3) 

Equation 3 agrees with Eq. 1 and Eq. 2, increasing our confidence that we have performed the algebra correctly. 
 
Discussion Notice that numbers, like the value 287.0 in Eq. 3 have no influence on the dimensions. 

  

 
 
 
 
7-8 
Solution We are to write the primary dimensions of torque and list its units.  
 
Analysis Torque is the product of a length and a force, 

Primary dimensions of torque: { } 2

lengthlength mass
time

M ⎧ ⎫= × =⎨ ⎬
⎩ ⎭

⎧ ⎫
⎨ ⎬
⎩ ⎭

2

2

Lm
t

 (1) 

Or, in exponent form, { M } = {m1 L2 t-2}. The common units of torque are newton-meter (SI) and inch-pound 
(English). In primary units, however, we write the primary SI units according to Eq. 1, 

Primary SI units: Units of torque = ⋅ 2 2kg m /s   

and in primary English units, 

Primary English units: Units of torque = ⋅ 2 2lbm ft /s   
 

Discussion Since torque is the product of a force and a length, it has the same dimensions as energy. Primary units are 
not required for dimensional analysis, but are often useful for unit conversions and for verification of proper units when 
solving a problem. 
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7-9 
Solution We are to determine the primary dimensions of each variable.  
 
Analysis  
(a) Energy is force times length (the same dimensions as work), 

Primary dimensions of energy:

 { } { } 2

mass lengthforce length length
time

E
⎧ ⎫×⎧ ⎫= × = × =⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭

2

2

mL
t

 (1) 

Or, in exponent form, {E} = {m1 L2 t-2}. 
 

(b) Specific energy is energy per unit mass, 

Primary dimensions of specific energy:

 { }
2

2

energy mass length 1
mass masstime

e
⎧ ⎫ ⎧ ⎫×⎧ ⎫= = × =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭ ⎩ ⎭

2

2

L
t

 (2) 

Or, in exponent form, {e} = { L2 t-2}. 
 

(c) Power is the rate of change of energy, i.e. energy per unit time, 

Primary dimensions of power:

 { }
2

2

energy mass length 1
time timetime

W
⎧ ⎫ ⎧ ⎫×⎧ ⎫= = × =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭ ⎩ ⎭

2

3

mL
t

 (3) 

Or, in exponent form, {W } = {m1 L2 t-3}. 
 
Discussion In dimensional analysis it is important to distinguish between energy, specific energy, and power. 

  

 
 
 
 
 
 
 
7-10 
Solution We are to determine the primary dimensions of electrical voltage. 
 
Analysis From the hint, 

Primary dimensions of voltage:

 { }

2

3
mass length

power timevoltage
current current

⎧ ⎫×
⎪ ⎪ ⎧ ⎫⎧ ⎫ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

2

3

mL
t I

 (1) 

Or, in exponent form, {E} = {m1 L2 t-3 I-1}. 
 
Discussion We see that all dimensions, even those of electrical properties, can be expressed in terms of primary 
dimensions. 
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7-11 
Solution We are to write the primary dimensions of electrical resistance.  
 
Analysis From Ohm’s law, we see that resistance has the dimensions of voltage difference divided by electrical 
current, 

Primary dimensions of resistance:

 { }

2

3
mass length
time current

current
ER
I

⎧ ⎫×
⎪ ⎪ ⎧ ⎫Δ⎧ ⎫ ⎪ ⎪×= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

2

3 2

mL
t I

  

Or, in exponent form, {R} = {m1 L2 t-3 I-2}, where we have also used the result of the previous problem. 
 
Discussion All dimensions can be written in terms of primary dimensions. 

  

 
 
 
 
 
 
 
 
7-12 
Solution We are to determine the primary dimensions of each variable.  
 
Analysis  
(a) Acceleration is the rate of change of velocity, 

Primary dimensions of acceleration:

 { } velocity length 1
time time time

a ⎧ ⎫ ⎧ ⎫ ⎧ ⎫= = × =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭ ⎩ ⎭2

L
t

 (1) 

Or, in exponent form, {a} = { L1 t-2}. 
 

(b) Angular velocity is the rate of change of angle, 

Primary dimensions of angular velocity: { } angle 1
time time

ω ⎧ ⎫ ⎧ ⎫ ⎧ ⎫= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭ ⎩ ⎭

1
t

 (2) 

Or, in exponent form, {ω} = { t-1}. 
 

(c) Angular acceleration is the rate of change of angular velocity, 

Primary dimensions of angular acceleration:

 { } angular velocity 1 1
time time time

α ω ⎧ ⎫ ⎧ ⎫ ⎧ ⎫= = = × =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭ ⎩ ⎭2

1
t

 (3) 

Or, in exponent form, {α} = { t-2}. 
 
Discussion In Part (b) we note that the unit of angle is radian, which is a dimensionless unit. Therefore the dimensions 
of angle are unity. 
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7-13 
Solution We are to write the primary dimensions of angular momentum and list its units.  
 
Analysis Angular momentum is the product of length, mass, and velocity, 

Primary dimensions of angular momentum:

 { } lengthlength mass
time

H
⎧ ⎫⎧ ⎫= × × =⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭

2mL
t

 (1) 

Or, in exponent form, { H } = {m1 L2 t-1}. We write the primary SI units according to Eq. 1, 

Primary SI units: Units of angular momentum ⋅
=

2kg m
s

  

and in primary English units, 

Primary English units: Units of angular momentum ⋅
=

2lbm ft
s

  

 

Discussion Primary units are not required for dimensional analysis, but are often useful for unit conversions and for 
verification of proper units when solving a problem. 

  

 
 
 
 
7-14 
Solution We are to determine the primary dimensions of each variable.  
 
Analysis  
(a) Specific heat is energy per unit mass per unit temperature, 

Primary dimensions of specific heat at constant pressure:

 { }
2

2
mL

energy t
mass temperature m Tpc

⎧ ⎫
⎪ ⎪ ⎧ ⎫⎧ ⎫ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

× ×⎩ ⎭ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

2

2

L
t T

 (1) 

Or, in exponent form, {cp} = { L2 t-2 T-1}. 
 

(b) Specific weight is density times gravitational acceleration, 

Primary dimensions of specific weight: { } 2

mass length
volume time

gρ ⎧ ⎫ ⎧ ⎫= =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭2 2

m
L t

 (2) 

Or, in exponent form, {ρg} = {m1 L-2 t-2}. 
 

(c) Specific enthalpy has dimensions of energy per unit mass, 

Primary dimensions of specific enthalpy: { }

2

2
mL

energy t
mass m

h

⎧ ⎫
⎪ ⎪ ⎧ ⎫⎧ ⎫ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

2

2

L
t

 (3) 

Or, in exponent form, {h} = { L2 t-2}. 
 
Discussion As a check, from our study of thermodynamics we know that dh = cpdT for an ideal gas. Thus, the 
dimensions of dh must equal the dimensions of cp times the dimensions of dT. Comparing Eqs. 1 and 3 above, we see that 
this is indeed the case. 
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7-15 
Solution We are to determine the primary dimensions of thermal conductivity.  
 
Analysis The primary dimensions of conductionQ  are energy/time, and the primary dimensions of dT/dx are 
temperature/length. From the given equation, 

Primary dimensions of thermal conductivity: { }

2

3

2

mLenergy
time t
temperature L Tlength

length

k

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎧ ⎫⎪ ⎪ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

× ⎩ ⎭⎪ ⎪ ⎪ ⎪×
⎪ ⎪⎪ ⎪ ⎩ ⎭⎩ ⎭

3

mL
t T

 (1) 

Or, in exponent form, {k} = {m1 L1 t-3 T-1}. We obtain a value of k from a reference book. E.g. kcopper = 401 W/m⋅K. These 
units have dimensions of power/length⋅temperature. Since power is energy/time, we see immediately that Eq. 1 is correct. 
Alternatively, we can transform the units of k into primary units, 

Primary SI units of thermal conductivity: copper 2

W N m kg m401 401
m K s W N s

k ⋅⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟ ⋅⎝ ⎠⎝ ⎠ 3

kg  m
s K

 (2) 

 
Discussion We have used the principle of dimensional homogeneity to determine the primary dimensions of k. Namely, 
we utilized the fact that the dimensions of both terms of the given equation must be identical. 

  

 
 
 

7-16 
Solution We are to determine the primary dimensions of each variable.  
 
Analysis  
(a) Heat generation rate is energy per unit volume per unit time, 

Primary dimensions of heat generation rate: { }

2

2

3

mL
energy t

volume time L t
g

⎧ ⎫
⎪ ⎪⎧ ⎫ ⎧ ⎫⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

×⎩ ⎭ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

3

m
Lt

 (1) 

Or, in exponent form, { g } = {m1 L-1 t-3}. 
 

(b) Heat flux is energy per unit area per unit time, 

Primary dimensions of heat flux: { }

2

2

2

mL
energy t

area time L t
q

⎧ ⎫
⎪ ⎪⎧ ⎫ ⎧ ⎫⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

×⎩ ⎭ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

3

m
t

 (2) 

Or, in exponent form, { q } = {m1 t-3}. 
 

(c) Heat flux is energy per unit area per unit time per unit temperature, 

Primary dimensions of heat transfer coefficient: { }

2

2

2

mL
energy t

area time temperature L t T
h

⎧ ⎫
⎪ ⎪⎧ ⎫ ⎧ ⎫⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

× × × × ⎩ ⎭⎩ ⎭ ⎪ ⎪
⎪ ⎪⎩ ⎭

3

m
t T

 (3) 

Or, in exponent form, {h} = {m1 t-3 T-1}. 
 
Discussion In the field of heat transfer it is critical that one be careful with the dimensions (and units) of heat transfer 
variables. 
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7-17 
Solution We are to choose three properties or constants and write out their names, their SI units, and their primary 
dimensions.  
 
Analysis There are many options. For example, 
 

Students may choose cv (specific heat at constant volume). The units are kJ/kg⋅K, which is energy per mass per 
temperature. Thus, 

Primary dimensions of specific heat at constant volume:

 { }

2

2
mL

energy t
mass temperature m Tvc

⎧ ⎫
⎪ ⎪ ⎧ ⎫⎧ ⎫ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

× ×⎩ ⎭ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

2

2

L
t T

 (1) 

Or, in exponent form, {cv} = { L2 t-2 T-1}. 
 

Students may choose v (specific volume). The units are m3/kg, which is volume per mass. Thus, 

Primary dimensions of specific volume: { } volume
mass

⎧ ⎫⎧ ⎫= =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

3L
m

v  (2) 

Or, in exponent form, {v} = {m-1 L3}. 
 

Students may choose hfg (latent heat of vaporization). The units are kJ/kg, which is energy per mass. Thus, 

Primary dimensions of latent heat of vaporization:

 { }
2

2

mL
energy t
mass mfgh

⎧ ⎫
⎪ ⎪ ⎧ ⎫⎧ ⎫ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

2

2

L
t

 (3) 

Or, in exponent form, {hfg} = {L2 t-2}. (The same dimensions hold for hf and hg.) 
 

Students may choose sf (specific entropy of a saturated liquid). The units are kJ/kg⋅K, which is energy per mass per 
temperature. Thus, 

Primary dimensions of specific entropy of a saturated liquid:

 { }
2

2

mL
energy t

mass temperature m Tfs

⎧ ⎫
⎪ ⎪ ⎧ ⎫⎧ ⎫ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

× ×⎩ ⎭ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

2

2

L
t T

 (4) 

Or, in exponent form, {sf} = { L2 t-2 T-1}. (The same dimensions hold for sfg and sg.) 
 
Discussion Students’ answers will vary. There are some other choices. 
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7-18E 
Solution We are to choose three properties or constants and write out their names, their SI units, and their primary 
dimensions.  
 
Analysis There are many options. For example, 
 

Students may choose cv (specific heat at constant volume). The units are Btu/lbm⋅R, which is energy per mass per 
temperature. Thus, 

Primary dimensions of specific heat at constant volume:

 { }

2

2
mL

energy t
mass temperature m Tvc

⎧ ⎫
⎪ ⎪ ⎧ ⎫⎧ ⎫ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

× ×⎩ ⎭ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

2

2

L
t T

 (1) 

Or, in exponent form, {cv} = { L2 t-2 T-1}. 
 

Students may choose v (specific volume). The units are ft3/lbm, which is volume per mass. Thus, 

Primary dimensions of specific volume: { } volume
mass

⎧ ⎫⎧ ⎫= =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

3L
m

v  (2) 

Or, in exponent form, {v} = {m-1 L3}. 
 

Students may choose hfg (latent heat of vaporization). The units are Btu/lbm, which is energy per mass. Thus, 

Primary dimensions of latent heat of vaporization:

 { }
2

2

mL
energy t
mass mfgh

⎧ ⎫
⎪ ⎪ ⎧ ⎫⎧ ⎫ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

2

2

L
t

 (3) 

Or, in exponent form, {hfg} = {L2 t-2}. (The same dimensions hold for hf and hg.) 
 

Students may choose sf (specific entropy of a saturated liquid). The units are Btu/lbm⋅R, which is energy per mass per 
temperature. Thus, 

Primary dimensions of specific entropy of a saturated liquid:

 { }
2

2

mL
energy t

mass temperature m Tfs

⎧ ⎫
⎪ ⎪ ⎧ ⎫⎧ ⎫ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

× ×⎩ ⎭ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

2

2

L
t T

 (4) 

Or, in exponent form, {sf} = { L2 t-2 T-1}. (The same dimensions hold for sfg and sg.) 
 
Discussion Students’ answers will vary. There are some other choices. 
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Dimensional Homogeneity 
 
 
7-19C 
Solution We are to explain the law of dimensional homogeneity.  
 
Analysis The law of dimensional homogeneity states that every additive term in an equation must have the same 
dimensions. As a simple counter example, an equation with one term of dimensions length and another term of dimensions 
temperature would clearly violate the law of dimensional homogeneity – you cannot add length and temperature. All terms 
in the equation must have the same dimensions. 
 
Discussion If in the solution of an equation you realize that the dimensions of two terms are not equivalent, this is a 
sure sign that you have made a mistake somewhere! 

  

 
 
 
 
7-20 
Solution We are to determine the primary dimensions of the gradient operator, and then verify that primary 
dimensions of each additive term in the equation are the same. 
 
Analysis  
(a) By definition, the gradient operator is a three-dimensional derivative operator. For example, in Cartesian coordinates, 

Gradient operator in Cartesian coordinates:

 , , i j k
x y z x y z

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
∇ = = + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

  

Therefore its dimensions must be 1/length. Thus, 

Primary dimensions of the gradient operator: { } ⎧ ⎫∇ = ⎨ ⎬
⎩ ⎭

1
L

  

Or, in exponent form, {∇ } = { L-1}. 
 

(b) Similarly, the primary dimensions of a time derivative (∂/∂t) are 1/time. Also, the primary dimensions of velocity are 
length/time, and the primary dimensions of acceleration are length/time2. Thus each term in the given equation can be 
written in terms of primary dimensions, 

{ } 2

length
time

a ⎧ ⎫= ⎨ ⎬
⎩ ⎭

 { } 2

L
t

a ⎧ ⎫= ⎨ ⎬
⎩ ⎭

 

2

length
lengthtime

time time
V
t

⎧ ⎫
⎪ ⎪⎧ ⎫∂ ⎧ ⎫⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬∂ ⎩ ⎭⎪ ⎪⎩ ⎭ ⎪ ⎪
⎪ ⎪⎩ ⎭

 2

L
t

V
t

⎧ ⎫∂ ⎧ ⎫⎪ ⎪ =⎨ ⎬ ⎨ ⎬
∂ ⎩ ⎭⎪ ⎪⎩ ⎭

 

( ){ } 2

length 1 length length
time length time time

V V
⎧ ⎫ ⎧ ⎫⋅∇ = × × =⎨ ⎬ ⎨ ⎬

⎩ ⎭⎩ ⎭
 ( ){ } 2

L
t

V V ⎧ ⎫⋅∇ = ⎨ ⎬
⎩ ⎭

 

Indeed, all three additive terms have the same dimensions, namely {L1 t-2}. 
 
Discussion If the dimensions of any of the terms were different from the others, it would be a sure sign that an error 
was made somewhere in deriving or copying the equation. 
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7-21 
Solution We are to determine the primary dimensions of each additive term in the equation, and we are to verify that 
the equation is dimensionally homogeneous.  
 

Analysis The primary dimensions of the time derivative (∂/∂t) are 1/time. The primary dimensions of the gradient 
vector are 1/length, and the primary dimensions of velocity are length/time. Thus each term in the equation can be written 
in terms of primary dimensions, 

2
mass×length

force time
mass mass

F
m

⎧ ⎫
⎪ ⎪⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭⎪ ⎪⎩ ⎭ ⎪ ⎪
⎪ ⎪⎩ ⎭

 2

L
t

F
m

⎧ ⎫ ⎧ ⎫⎪ ⎪ =⎨ ⎬ ⎨ ⎬
⎩ ⎭⎪ ⎪⎩ ⎭

 

length
time
time

V
t

⎧ ⎫
⎪ ⎪⎧ ⎫∂⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬

∂⎪ ⎪⎩ ⎭ ⎪ ⎪
⎪ ⎪⎩ ⎭

 2

L
t

V
t

⎧ ⎫∂ ⎧ ⎫⎪ ⎪ =⎨ ⎬ ⎨ ⎬
∂ ⎩ ⎭⎪ ⎪⎩ ⎭

 

( ){ } length 1 length
time length time

V V
⎧ ⎫

⋅∇ = × ×⎨ ⎬
⎩ ⎭

 ( ){ } 2

L
t

V V ⎧ ⎫⋅∇ = ⎨ ⎬
⎩ ⎭

 

Indeed, all three additive terms have the same dimensions, namely {L1 t-2}. 
 

Discussion The dimensions are, in fact, those of acceleration. 
  

 
 

7-22 
Solution We are to determine the primary dimensions of each additive term in Eq. 1, and we are to verify that the 
equation is dimensionally homogeneous. 
 

Analysis The primary dimensions of the material derivative (D/Dt) are 1/time. The primary dimensions of volume are 
length3, and the primary dimensions of velocity are length/time. Thus each term in the equation can be written in terms of 
primary dimensions, 

3

3

1 1 length 1
time timelength

D
Dt

⎧ ⎫⎧ ⎫ ⎧ ⎫= × =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭⎩ ⎭

V
V

 1 1
t

D
Dt

⎧ ⎫ ⎧ ⎫=⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

V
V

 

length
1time

length time
u
x

⎧ ⎫
⎪ ⎪∂⎧ ⎫ ⎧ ⎫⎪ ⎪= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

∂⎩ ⎭ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

 1
t

u
x
∂⎧ ⎫ ⎧ ⎫=⎨ ⎬ ⎨ ⎬
∂⎩ ⎭ ⎩ ⎭

 

length
1time

length time
v
y

⎧ ⎫
⎪ ⎪⎧ ⎫∂ ⎧ ⎫⎪ ⎪= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

∂ ⎩ ⎭⎩ ⎭ ⎪ ⎪
⎪ ⎪⎩ ⎭

 1
t

v
y

⎧ ⎫∂ ⎧ ⎫=⎨ ⎬ ⎨ ⎬
∂ ⎩ ⎭⎩ ⎭

 

length
1time

length time
w
z

⎧ ⎫
⎪ ⎪∂⎧ ⎫ ⎧ ⎫⎪ ⎪= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

∂⎩ ⎭ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

 1
t

w
z

∂⎧ ⎫ ⎧ ⎫=⎨ ⎬ ⎨ ⎬
∂⎩ ⎭ ⎩ ⎭

 

Indeed, all four additive terms have the same dimensions, namely {t-1}. 
 

Discussion If the dimensions of any of the terms were different from the others, it would be a sure sign that an error 
was made somewhere in deriving or copying the equation. 
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7-23 
Solution We are to determine the primary dimensions of each additive term, and we are to verify that the equation is 
dimensionally homogeneous. 
 
Analysis The primary dimensions of the velocity components are length/time. The primary dimensions of coordinates 
r and z are length, and the primary dimensions of coordinate θ are unity (it is a dimensionless angle). Thus each term in the 
equation can be written in terms of primary dimensions, 

( )
lengthlength1 1 1time

length length time
rru

r r

⎧ ⎫
⎧ ⎫ ⎪ ⎪∂ ⎧ ⎫⎪ ⎪ ⎪ ⎪= × =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

∂ ⎩ ⎭⎪ ⎪ ⎪ ⎪⎩ ⎭
⎪ ⎪⎩ ⎭

 
( )1 1

t
rru

r r
⎧ ⎫∂ ⎧ ⎫⎪ ⎪ =⎨ ⎬ ⎨ ⎬

∂ ⎩ ⎭⎪ ⎪⎩ ⎭
 

length
1 1 1time

length 1 time
u

r
θ

θ

⎧ ⎫
⎪ ⎪∂⎧ ⎫ ⎧ ⎫⎪ ⎪== × =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

∂ ⎩ ⎭⎩ ⎭ ⎪ ⎪
⎪ ⎪⎩ ⎭

 1 1
t

u
r

θ

θ
∂⎧ ⎫ ⎧ ⎫=⎨ ⎬ ⎨ ⎬
∂ ⎩ ⎭⎩ ⎭

 

length
1time

length time
zu

z

⎧ ⎫
⎪ ⎪∂⎧ ⎫ ⎧ ⎫⎪ ⎪= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

∂ ⎩ ⎭⎩ ⎭ ⎪ ⎪
⎪ ⎪⎩ ⎭

 1
t

zu
z

∂⎧ ⎫ ⎧ ⎫=⎨ ⎬ ⎨ ⎬
∂ ⎩ ⎭⎩ ⎭

 

Indeed, all three additive terms have the same dimensions, namely {t-1}. 
 
Discussion If the dimensions of any of the terms were different from the others, it would be a sure sign that an error 
was made somewhere in deriving or copying the equation. 
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7-24 
Solution We are to determine the primary dimensions of each additive term in the equation, and we are to verify that 
the equation is dimensionally homogeneous.  
 

Analysis The primary dimensions of heat transfer rate are energy/time. The primary dimensions of mass flow rate are 
mass/time, and those of specific heat are energy/mass⋅temperature, as found in Problem 7-14. Thus each term in the 
equation can be written in terms of primary dimensions, 

{ }
2

22

3

mL
energy mLt
time t t

Q

⎧ ⎫
⎪ ⎪ ⎧ ⎫⎧ ⎫ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

 { }
2

3

mL
t

Q
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 

{ }
2

22

out 3

mL
mass energy m mLttemperature T
time mass temperature t m T tpmC T

⎧ ⎫
⎪ ⎪ ⎧ ⎫⎧ ⎫ ⎪ ⎪= × × = × × =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

× ×⎩ ⎭ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

 { }
2

out 3

mL
tpmC T

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

 

{ }
2

22

in 3

mL
mass energy m mLttemperature T
time mass temperature t m T tpmC T

⎧ ⎫
⎪ ⎪ ⎧ ⎫⎧ ⎫ ⎪ ⎪= × × = × × =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

× ×⎩ ⎭ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

 { }
2

in 3

mL
tpmC T

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

 

Indeed, all three additive terms have the same dimensions, namely {m1 L2 t-3}. 
 

Discussion We could also have left the temperature difference in parentheses as a temperature difference (same 
dimensions as the individual temperatures), and treated the equation as having only two terms. 

  

 
 

7-25 
Solution We are to determine the primary dimensions of each additive term, and we are to verify that the equation is 
dimensionally homogeneous.  
 

Analysis The primary dimensions of the time derivative (d/dt) are 1/time. The primary dimensions of density are 
mass/length3, those of volume are length3, those of area are length2, and those of velocity are length/time. The primary 
dimensions of unit vector n  are unity, i.e. {1} (in other words n  has no dimensions). Finally, the primary dimensions of b, 
which is defined as B per unit mass, are {B/m}. Thus each term in the equation can be written in terms of primary 
dimensions, 

sys

time
dB B

dt
⎧ ⎫ ⎧ ⎫=⎨ ⎬ ⎨ ⎬

⎩ ⎭⎩ ⎭
 sys

t
dB B

dt
⎧ ⎫ ⎧ ⎫=⎨ ⎬ ⎨ ⎬

⎩ ⎭⎩ ⎭
 

3
3CV

1 mass length
time masslength

d Bbd
dt

ρ
⎧ ⎫⎧ ⎫ = × × ×⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
∫ V  

CV t
d Bbd
dt

ρ⎧ ⎫ ⎧ ⎫=⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭∫ V  

{ } 2
r 3CS

mass length 1 length
mass timelength

BbV ndAρ
⎧ ⎫

⋅ = × × × ×⎨ ⎬
⎩ ⎭

∫  { }rCS t
BbV ndAρ ⎧ ⎫⋅ = ⎨ ⎬

⎩ ⎭∫  

Indeed, all three additive terms have the same dimensions, namely {B t-1}. 
 

Discussion The RTT for property B has dimensions of rate of change of B. 
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7-26 
Solution We are to determine the primary dimensions of the first three additive term, and we are to verify that those 
terms are dimensionally homogeneous. Then we are to evaluate the dimensions of the adsorption coefficient. 
 
Analysis The primary dimensions of the time derivative (d/dt) are 1/time. Those of As are length2, those of V  are 
length3, those of c are mass/length3, and those of V  are length3/time. Thus the primary dimensions of the first three terms 
are 

3
3

mass
masslengthlength

time time
dc
dt

⎧ ⎫
⎪ ⎪⎧ ⎫ ⎧ ⎫⎪ ⎪= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

V  m
t

dc
dt

⎧ ⎫ ⎧ ⎫=⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭
V  

{ } mass
time

S ⎧ ⎫= ⎨ ⎬
⎩ ⎭

 { } m
t

S ⎧ ⎫= ⎨ ⎬
⎩ ⎭

 

{ }
3

3

length mass mass
time timelength

c
⎧ ⎫ ⎧ ⎫= × =⎨ ⎬ ⎨ ⎬

⎩ ⎭⎩ ⎭
V  { } m

t
c ⎧ ⎫= ⎨ ⎬

⎩ ⎭
V  

Indeed, the first three additive terms have the same dimensions, namely {m1 t-1}. Since the equation must be dimensionally 
homogeneous, the last term must have the same dimensions as well. We use this fact to find the dimensions of kw, 

{ } { }
2

3

mass mass
mass time time        

masstime length
length

s w w
s

cA k k
cA

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪⎧ ⎫ ⎪ ⎪ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎪ ⎪ ⎪ ⎪×
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

 { }wk ⎧ ⎫= ⎨ ⎬
⎩ ⎭

L
t

 

Or, in exponent form, {kw} = {L1 t-1}. The dimensions of wall adsorption coefficient are those of velocity. 
 
Discussion In fact, some authors call kw a “deposition velocity”. 
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Nondimensionalization of Equations 
 
 
7-27C 
Solution We are to give the primary reason for nondimensionalizing an equation.  
 
Analysis The primary reason for nondimensionalizing an equation is to reduce the number of parameters in the 
problem. 
 
Discussion As shown in the examples in the text, nondimensionalization of an equation reduces the number of 
independent parameters in the problem, simplifying the analysis. 

  

 
 
 
7-28 
Solution We are to nondimensionalize all the variables, and then re-write the equation in nondimensionalized form. 
 
Assumptions 1 The air in the room is well mixed so that c is only a function of time. 
 
Analysis  

(a) We nondimensionalize the variables by inspection according to their dimensions, 

Nondimensionalized variables:

 
2

3 3 2
limit limit

* ,  * ,  * ,  * ,  * ,  and  *s
s w w

Ac L Sc t t A k k S
cL L L c

= = = = = =
V VV

V V
  

 

(b) We substitute these into the equation to generate the nondimensionalized equation, 

 
( ) ( )( )limit3 2

limit limit limit 23

*
* * * * * *

*
s w

d c c
L S c c c c c A L k

LLd t

⎛ ⎞
= − − ⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟

⎝ ⎠

VV V V

V

 
(1) 

We notice that every term in Eq. 1 contains the quantity limitcV . We divide every term by this quantity to get a 
nondimensionalized form of the equation, 

Nondimensionalized equation: 
** * * * * *
* s w

dc S c c A k
dt

= − −V   

No dimensionless groups have arisen in this nondimensionalization. 
 
Discussion Since all the characteristic scales disappear, no dimensionless groups have arisen. Since there are no 
dimensionless parameters, one solution in nondimensionalized variables is valid for all combinations of L, V , and climit. 
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7-29 
Solution We are to nondimensionalize the equation, and identify the dimensionless parameters that appear in the 
nondimensionalized equation. 
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 
 
Analysis We plug the nondimensionalized variables into the equation. For example, u = u*U and x = x*L in the first 
term. The result is 

 * * * 0
* * *

U u U v U w
L x L y L z
∂ ∂ ∂

+ + =
∂ ∂ ∂

  

or, after simplifying, 

Nondimensionalized incompressible flow relationship:

 
* * * 0
* * *

u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (1) 

There are no nondimensional parameters in the nondimensionalized equation. The original equation comes from pure 
kinematics – there are no fluid properties involved in the equation, and therefore it is not surprising that no nondimensional 
parameters appear in the nondimensionalized form of the equation, Eq. 1.  
 
Discussion We show in Chap. 9 that the equation given in this problem is the differential equation for conservation of 
mass for an incompressible flow field – the incompressible continuity equation. 

  

 
 
 
 
 
7-30 
Solution We are to nondimensionalize the equation of motion and identify the dimensionless parameters that appear 
in the nondimensionalized equation. 
 
Analysis We plug in the nondimensionalized variables. For example, u = u*V and x = x*L in the first term. The result 
is 

 
3

3

1 * * * *
* * * * *

L f D V u V v V w
Dt L x L y L zL

∂ ∂ ∂
= + +

∂ ∂ ∂
V

V
  

or, after simplifying, 

 1 * * * *
* * * * *

fL D u v w
V Dt x y z

∂ ∂ ∂⎛ ⎞ = + +⎜ ⎟ ∂ ∂ ∂⎝ ⎠

V
V

 (1) 

We recognize the nondimensional parameter in parentheses in Eq. 1 as St, the Strouhal number. We can re-write Eq. 1 as 

Nondimensionalized oscillating compressible flow relationship:

 
1 * * * *St
* * * * *

D u v w
Dt x y z

∂ ∂ ∂
= + +
∂ ∂ ∂

V
V

  

 
Discussion We show in Chap. 9 that the given equation of motion is the differential equation for conservation of mass 
for an unsteady, compressible flow field – the general continuity equation. We may also use angular frequency ω (radians 
per second) in place of physical frequency f (cycles per second), with the same result. 
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7-31 
Solution We are to determine the primary dimensions of the stream function, nondimensionalize the variables, and 
then re-write the definition of ψ in nondimensionalized form. 
 
Assumptions 1 The flow is incompressible. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis (a) We use that fact that all equations must be dimensionally homogeneous. We solve for the dimensions of 
ψ, 

Primary dimensions of stream function: { } { } { } L L
t

u yψ
⎧ ⎫⎧ ⎫= × = × =⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭

2L
t

  

Or, in exponent form, {ψ} = {L2 t-1}. 
 

(b) We nondimensionalize the variables by inspection according to their dimensions, 

Nondimensionalized variables:

 2*         *         *         *         *x y t t tx y u u v v
L L L L L

ψ ψ= = = = =   

 

(c) We generate the nondimensionalized equations, 

 
( ) ( )

2 2

* *
*         *

* *

L L
t tL Lu v

t y L t x L

ψ ψ
⎛ ⎞ ⎛ ⎞

∂ ∂⎜ ⎟ ⎜ ⎟
⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎝ ⎠= = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 
 

We notice that every term in both parts of the above equation contains the ratio L/t. We divide every term by L/t to get the 
final nondimensionalized form of the equations, 

Nondimensionalized stream function equations: 
* **         *
* *

u v
y x
ψ ψ∂ ∂

= = −
∂ ∂

  

No dimensionless groups have arisen in this nondimensionalization. 
 
Discussion Since all the nondimensionalized variables scale with L and t, no dimensionless groups have arisen. 
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7-32 
Solution We are to nondimensionalize the equation of motion and identify the dimensionless parameters that appear 
in the nondimensionalized equation. 
 
Analysis We plug the nondimensionalized variables into the equation. For example, t = t*/ω and V V V *∞=  in the 
first term on the right hand side. The result is 

 ( ) ( )
2

2 */ * * * *
*

V UL F m U V V
t L

ω ω ∂
= + ⋅∇

∂
  

or, after simplifying by multiplying each term by L/ V∞
2, 

 ( ) ( )
2

*/ * * * *
*

L L VF m V V
V V t
ω ω

∞ ∞

⎛ ⎞ ⎛ ⎞ ∂
= + ⋅∇⎜ ⎟ ⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠

 (1) 

We recognize the nondimensional parameter in parentheses in Eq. 1 as St, the Strouhal number. We re-write Eq. 1 as 

Nondimensionalized Newton’s second law for incompressible oscillatory 

flow: ( ) ( ) ( ) ( )2 *St / * St * * *
*

VF m V V
t

∂
= + ⋅∇

∂
  

 
Discussion We used angular frequency ω in this problem. The same result would be obtained if we used physical 
frequency. Equation 1 is the basis for forming the differential equation for conservation of linear momentum for an 
unsteady, incompressible flow field. 

  

 
 
 
 
 
 
 
7-33 
Solution We are to nondimensionalize the Bernoulli equation and generate an expression for the pressure coefficient.  
 
Assumptions 1 The flow is incompressible. 2 Gravitational terms in the Bernoulli equation are negligible compared to the 
other terms. 
 

Analysis We nondimensionalize the equation by dividing each term by the dynamic pressure, 21
2

Vρ ∞ , 

Nondimensionalization: 
2

2
2 2

1
1 1
2 2

PP V
VV Vρ ρ

∞

∞
∞ ∞

+ = +   

Rearranging, 

Pressure coefficient: 
2

2
2

1
1
2

p
P P VC

VVρ

∞

∞
∞

−
= = −   

 
Discussion Pressure coefficient is a useful dimensionless parameter that is inversely related to local air speed – as local 
air speed V increases, Cp decreases. 
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Dimensional Analysis and Similarity 
 
 
 
7-34C 
Solution We are to list the three primary purposes of dimensional analysis. 
 
Analysis The three primary purposes of dimensional analysis are: 

1. To generate nondimensional parameters that help in the design of experiments and in the reporting of 
experimental results. 

2. To obtain scaling laws so that prototype performance can be predicted from model performance. 
3. To (sometimes) predict trends in the relationship between parameters. 

 
Discussion Dimensional analysis is most useful for difficult problems that cannot be solved analytically. 

  

 
 
7-35C 
Solution We are to list and describe the three necessary conditions for complete similarity between a model and a 
prototype. 
 
Analysis The three necessary conditions for complete similarity between a model and a prototype are: 

1. Geometric similarity – the model must be the same shape as the prototype, but scaled by some constant scale 
factor. 

2. Kinematic similarity – the velocity at any point in the model flow must be proportional (by a constant scale 
factor) to the velocity at the corresponding point in the prototype flow. 

3. Dynamic similarity – all forces in the model flow scale by a constant factor to corresponding forces in the 
prototype flow. 

 
Discussion Complete similarity is achievable only when all three of the above similarity conditions are met. 

  

 
 
7-36 
Solution For a scale model of a submarine being tested in air, we are to calculate the wind tunnel speed required to 
achieve similarity with the prototype submarine that moves through water at a given speed.  
 
Assumptions 1 Compressibility of the air is assumed to be negligible. 2 The wind tunnel walls are far enough away so as 
to not interfere with the aerodynamic drag on the model sub. 3 The model is geometrically similar to the prototype. 
 
Properties For water at T = 15oC and atmospheric pressure, ρ = 999.1 kg/m3 and μ = 1.138 × 10-3 kg/m⋅s. For air at T = 
25oC and atmospheric pressure, ρ = 1.184 kg/m3 and μ = 1.849 × 10-5 kg/m⋅s. 
 
Analysis Similarity is achieved when the Reynolds number of the model is equal to that of the prototype, 

Similarity: p p pm m m
m p

m p

Re Re
V LV L ρρ

μ μ
= = =  (1) 

We solve Eq. 1 for the unknown wind tunnel speed, 

 

( ) ( )

p pm
m p

p m m

5 3

3 3

1.849 10  kg/m s 999.1 kg/m   0.560 m/s 8
1.138 10  kg/m s 1.184 kg/m

L
V V

L
ρμ

μ ρ
−

−

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞× ⋅
= =⎜ ⎟⎜ ⎟× ⋅⎝ ⎠⎝ ⎠

61.4 m/s

  

 
Discussion At this air temperature, the speed of sound is around 346 m/s. Thus the Mach number in the wind tunnel is 
equal to 61.4/346 = 0.177. This is sufficiently low that the incompressible flow approximation is reasonable. 
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7-37 
Solution For a scale model of a submarine being tested in air, we are to calculate the wind tunnel speed required to 
achieve similarity with the prototype submarine that moves through water at a given speed.  
 
Assumptions 1 Compressibility of the air is assumed to be negligible. 2 The wind tunnel walls are far enough away so as 
to not interfere with the aerodynamic drag on the model sub. 3 The model is geometrically similar to the prototype. 
 
Properties For water at T = 15oC and atmospheric pressure, ρ = 999.1 kg/m3 and μ = 1.138 × 10-3 kg/m⋅s. For air at T = 
25oC and atmospheric pressure, ρ = 1.184 kg/m3 and μ = 1.849 × 10-5 kg/m⋅s. 
 
Analysis Similarity is achieved when the Reynolds number of the model is equal to that of the prototype, 

Similarity: p p pm m m
m p

m p

Re Re
V LV L ρρ

μ μ
= = =  (1) 

We solve Eq. 1 for the unknown wind tunnel speed, 

 ( )
5 3

p pm
m p 3 3

p m m

1.849 10  kg/m s 999.1 kg/m0.560 m/s 24
1.138 10  kg/m s 1.184 kg/m

L
V V

L
ρμ

μ ρ

−

−

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞× ⋅
= = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ × ⋅⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

184 m/s  

At this air temperature, the speed of sound is around 346 m/s. Thus the Mach number in the wind tunnel is equal to 
184/346 = 0.532. The Mach number is sufficiently high that the incompressible flow approximation is not 
reasonable. The wind tunnel should be run at a flow speed at which the Mach number is less than one-third of the 
speed of sound. At this lower speed, the Reynolds number of the model will be too small, but the results may still be 
usable, either by extrapolation to higher Re, or if we are fortunate enough to have Reynolds number independence, 
as discussed in Section 7-5.  
 
Discussion It is also unlikely that a small instructional wind tunnel can achieve such a high speed.  
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7-38E 
Solution For a prototype parachute and its model we are to calculate drag coefficient, and determine the wind tunnel 
speed that ensures dynamic similarity. Then we are to estimate the aerodynamic drag on the model. 
 
Assumptions 1 The model is geometrically similar to the prototype. 
 
Properties For air at 60oF and standard atmospheric pressure, ρ = 0.07633 lbm/ft3 and μ = 1.213 × 10-5 lbm/ft⋅s. 
 
Analysis  (a) The aerodynamic drag on the prototype parachute is equal to the total weight. We can then easily 
calculate the drag coefficient CD, 

Drag coefficient: 

( ) ( ) ( )
,p

2 2 21
p p p2 231

2

230 lbf 32.2 lbm ft
lbf s24 ft

0.07633 lbm/ft 20 ft/s
4

D
D

F
C

V Aρ
π

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

1.07  

 

(b) We must match model and prototype Reynolds numbers in order to achieve dynamic similarity, 

Similarity: p p pm m m
m p

m p

Re Re
V LV L ρρ

μ μ
= = =  (1) 

We solve Eq. 1 for the unknown wind tunnel speed, 

Wind tunnel speed: ( )( )( )( )p pm
m p

p m m

20 ft/s 1 1 12
L

V V
L

ρμ
μ ρ

⎛ ⎞⎛ ⎞⎛ ⎞
= = =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

240 ft/s  (2) 

 

(c) As discussed in the text, if the fluid is the same and dynamic similarity between the model and the prototype is 
achieved, the aerodynamic drag force on the model is the same as that on the prototype. Thus, 

Aerodynamic drag on model: ,m ,pD DF F= = 230 lbf  (3) 

 
Discussion We should check that the wind tunnel speed of Eq. 2 is not too high that the incompressibility 
approximation becomes invalid. The Mach number at this speed is about 240/1120 = 0.214. Since this is less than 0.3, 
compressibility is not an issue in this model test. The drag force on the model is quite large, and a fairly hefty drag balance 
must be available to measure such a large force. 
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7-39 
Solution We are to discuss why one would pressurize a wind tunnel.  
 
Analysis As we see in some of the example problems and homework problems in this chapter, it is often difficult to 
achieve a high-enough wind tunnel speed to match the Reynolds number between a small model and a large prototype. 
Even if we were able to match the speed, the Mach number would often be too high. A pressurized wind tunnel has higher 
density air. At the same Reynolds number, the larger density leads to a lower air speed requirement. In other words, a 
pressurized wind tunnel can achieve higher Reynolds numbers for the same scale model. 
 If the pressure were to be increased by a factor of 1.5, the air density would also go up by a factor of 1.5 (ideal gas 
law), assuming that the air temperature remains constant. Then the Reynolds number, Re = ρVL/μ, would go up by 
approximately 1.5. Note that we are also assuming that the viscosity does not change significantly with pressure, which is a 
reasonable assumption. 
 
Discussion The speed of sound is not a strong function of pressure, so Mach number is not affected significantly by 
pressurizing the wind tunnel. However, the power requirement for the wind tunnel blower increases significantly as air 
density is increased, so this must be taken into account when designing the wind tunnel. 

  

 
 
 
 
 
 
 
 
7-40 
Solution We are to estimate the drag on a prototype submarine in water, based on aerodynamic drag measurements 
performed in a wind tunnel.  
 
Assumptions 1 The model is geometrically similar. 2 The wind tunnel is run at conditions which ensure similarity 
between model and prototype. 
 
Properties For water at T = 15oC and atmospheric pressure, ρ = 999.1 kg/m3 and μ = 1.138 × 10-3 kg/m⋅s. For air at T = 
25oC and atmospheric pressure, ρ = 1.184 kg/m3 and μ = 1.849 × 10-5 kg/m⋅s. 
 
Analysis Since the Reynolds numbers have been matched, the nondimensionalized drag coefficient of the model 
equals that of the prototype, 

 ,p,m
2 2 2 2

m m m p p p

DD FF
V L V Lρ ρ

=  (1) 

We solve Eq. 1 for the unknown aerodynamic drag force on the prototype, FD,p, 

 ( ) ( )
2 2 2

2p p p
,p ,m

m m m

999.1 kg/m s 0.560 m/s2.3 N 8
1.184 kg/m s 61.4 m/sD D

V L
F F

V L
ρ
ρ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⋅ ⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⋅ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
10.3 N  

where we have used the wind tunnel speed calculated in Problem 7-36. 
 
Discussion Although the prototype moves at a much slower speed than the model, the density of water is much higher 
than that of air, and the prototype is eight times larger than the model. When all of these factors are combined, the drag 
force on the prototype is much larger than that on the model. 
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7-41E 
Solution The concept of similarity will be utilized to determine the speed of the wind tunnel. 
 
Assumptions 1 Compressibility of the air is ignored (the validity of this assumption will be discussed later). 2 The wind 
tunnel walls are far enough away so as to not interfere with the aerodynamic drag on the model car. 3 The model is 
geometrically similar to the prototype. 4 Both the air in the wind tunnel and the air flowing over the prototype car are at 
standard atmospheric pressure. 
 
Properties For air at T = 25oC and atmospheric pressure, ρ = 1.184 kg/m3 and μ = 1.849 × 10-5 kg/m⋅s. 
 
Analysis Since there is only one independent Π in this problem, similarity is achieved if Π2,m = Π2,p, where Π2 is the 
Reynolds number. Thus, we can write 

 p p pm m m
2,m m 2,p p

m p

Re Re
V LV L ρρ

μ μ
Π = = = Π = =   

which can be solved for the unknown wind tunnel speed for the model tests, Vm, 

 ( )( )( )( )p pm
m p

p m m

60.0 mph 1 1 4
L

V V
L

ρμ
μ ρ

⎛ ⎞⎛ ⎞⎛ ⎞
= = =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

240 mph   

 
Thus, to ensure similarity, the wind tunnel should be run at 240 miles per hour (to three significant digits). 
 
Discussion This speed is quite high, and the wind tunnel may not be able to run at that speed. We were never given the 
actual length of either car, but the ratio of Lp to Lm is known because the prototype is four times larger than the scale model. 
The problem statement contains a mixture of SI and English units, but it does not matter since we use ratios in the algebra. 

  

 
 
 
 
7-42E 
Solution We are to estimate the drag on a prototype car, based on aerodynamic drag measurements performed in a 
wind tunnel.  
 
Assumptions 1 The model is geometrically similar. 2 The wind tunnel is run at conditions which ensure similarity 
between model and prototype. 
 
Properties For air at T = 25oC and atmospheric pressure, ρ = 1.184 kg/m3 and μ = 1.849 × 10-5 kg/m⋅s. 
 
Analysis Following the example in the text, since the Reynolds numbers have been matched, the nondimensionalized 
drag coefficient of the model equals that of the prototype, 

 ,p,m
2 2 2 2

m m m p p p

DD FF
V L V Lρ ρ

=  (1) 

We solve Eq. 1 for the unknown aerodynamic drag force on the prototype, FD,p, 

 ( )( ) ( )
2 2 2

2p p p
,p ,m

m m m

60.0 mph36.5 lbf 1 4
240 mphD D

V L
F F

V L
ρ
ρ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
36.5 lbf  

where we have used the wind tunnel speed calculated in the previous problem. 
 
Discussion Since the air properties of the wind tunnel are identical to those of the air flowing around the prototype car, 
it turns out that the aerodynamic drag force on the prototype is the same as that on the model. This would not be the case if 
the wind tunnel air were at a different temperature or pressure compared to that of the prototype. 
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7-43 
Solution We are to discuss whether cold or hot air in a wind tunnel is better, and we are to support our answer by 
comparing air at two given temperatures.  
 
Properties For air at atmospheric pressure and at T = 10oC, ρ = 1.246 kg/m3 and μ = 1.778 × 10-5 kg/m⋅s. At T = 50oC, 
ρ = 1.092 kg/m3 and μ = 1.963 × 10-5 kg/m⋅s. 
 
Analysis As we see in some of the example problems and homework problems in this chapter, it is often difficult to 
achieve a high-enough wind tunnel speed to match the Reynolds number between a small model and a large prototype. 
Even if we were able to match the speed, the Mach number would often be too high. Cold air has higher density than warm 
air. In addition, the viscosity of cold air is lower than that of hot air. Thus, at the same Reynolds number, the colder air 
leads to a lower air speed requirement. In other words, a cold wind tunnel can achieve higher Reynolds numbers than 
can a hot wind tunnel for the same scale model, all else being equal. We support our conclusion by comparing air at two 
temperatures, 

Comparison of Reynolds numbers: 

cold
3 5

cold cold cold hot
3 5

hothot hot cold

hot

Re 1.246 kg/m 1.963 10  kg/m s
Re 1.092 kg/m 1.778 10  kg/m s

VL

VL

ρ
μ ρ μ
ρ ρ μ
μ

−

−

× ⋅
= = = =

× ⋅
1.26   

Thus we see that the colder wind tunnel can achieve approximately 26% higher Reynolds number, all else being 
equal. 
 
Discussion There are other issues however. First of all, the denser air of the cold wind tunnel is harder to pump – the 
cold wind tunnel may not be able to achieve the same wind speed as the hot wind tunnel. Furthermore, the speed of sound 
is proportional to the square root of temperature. Thus, at colder temperatures, the Mach number is higher than at warmer 
temperatures for the same value of V, and compressibility effects are therefore more significant at lower temperatures. 

  

 
 
7-44 
Solution We are to calculate the speed and angular velocity (rpm) of a spinning baseball in a water channel such that 
flow conditions are dynamically similar to that of the actual baseball moving and spinning in air.  
 
Properties For air at T = 20oC and atmospheric pressure, ρ = 1.204 kg/m3 and μ = 1.825 × 10-5 kg/m⋅s. For water at T = 
20oC and atmospheric pressure, ρ = 998.0 kg/m3 and μ = 1.002 × 10-3 kg/m⋅s. 
 
Analysis The model (in the water) and the prototype (in the air) are actually the same baseball, so their characteristic 
lengths are equal, Lm = Lp. We match Reynolds number, 

 p p pm m m
m p

m p

Re Re
V LV L ρρ

μ μ
= = =  (1) 

and solve for the required water tunnel speed for the model tests, Vm, 

 ( ) ( )
3 3

p pm
m p 5 3

p m m

1.002 10  kg/m s 1.204 kg/m80.0 mph 1
1.825 10  kg/m s 998.0 kg/m

L
V V

L
ρμ

μ ρ

−

−

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞× ⋅
= = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ × ⋅⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

5.30 mph  (2) 

We also match Strouhal numbers, recognizing that n  is proportional to f, 

 p pm m
m p

m p

St St
f Lf L

V V
= = =      →     p pm m

m p

n Ln L
V V

=  (3) 

from which we solve for the required spin rate in the water tunnel,  

 ( ) ( )p m
m p

m p

5.30 mph300 rpm 1
80.0 mph

L V
n n

L V
⎛ ⎞⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
19.9 rpm  (4) 

 

Discussion Because of the difference in fluid properties between air and water, the required water tunnel speed is much 
lower than that in air. In addition, the spin rate is much lower, making flow visualization easier. 
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Dimensionless Parameters and the Method of Repeating Variables 
 
 
7-45 
Solution We are to verify that the Archimedes number is dimensionless.  
 
Analysis Archimedes number is defined as 

Archimedes number: ( )
3

2Ar s
s

gLρ
ρ ρ

μ
= −  (1) 

We know the primary dimensions of density, gravitational acceleration, length, and viscosity. Thus, 

Primary dimensions of Archimedes number: { } { }
3

3 2

2 3

2 2

m L L mL tAr
m L
L t

⎧ ⎫
⎪ ⎪⎪ ⎪= =⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

1  (2) 

 
Discussion If the primary dimensions were not unity, we would assume that we made an error in the dimensions of one 
or more of the parameters. 

  

 
 
 
 
 
 
 
 
 
7-46 
Solution We are to verify that the Grashof number is dimensionless.  
 
Analysis Grashof number is defined as 

Grashof number: 
3 2

2Gr
g T Lβ ρ

μ
Δ

=  (1) 

We know the primary dimensions of density, gravitational acceleration, length, temperature, and viscosity. The dimensions 
of coefficient of thermal expansion β are 1/temperature. Thus, 

Primary dimensions of Grashof number: { } { }

2
3

2 6

2

2 2

L 1 mTL
Tt LGr

m
L t

⎧ ⎫
⎪ ⎪⎪ ⎪= =⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

1  (2) 

 
Discussion If the primary dimensions were not unity, we would assume that we made an error in the dimensions of one 
or more of the parameters. 
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7-47 
Solution We are to verify that the Rayleigh number is dimensionless, and determine what other established 
nondimensional parameter is formed by the ratio of Ra and Gr.  
 
Analysis Rayleigh number is defined as 

Rayleigh number: 
3 2

Ra pg T L c
k

β ρ
μ

Δ
=  (1) 

We know the primary dimensions of density, gravitational acceleration, length, temperature, and viscosity. The dimensions 
of coefficient of thermal expansion β are 1/temperature, those of specific heat cp are length2/time2⋅temperature (Problem 7-
14), and those of thermal conductivity k are mass⋅length/time3⋅temperature. Thus, 

Primary dimensions of Rayleigh number: { } { }

2 2
3

2 6 2

3

L 1 m LTL
Tt L t TRa

mL m
Ltt T

⎧ ⎫
⎪ ⎪⎪ ⎪= =⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

1  (2) 

 We take the ratio of Ra and Gr: 

Ratio of Rayleigh number and Grashof number: 

3 2

3 2

2

Ra
Gr

p

p

g T L c
ck

kg T L

β ρ
μμ

β ρ
μ

Δ

= =
Δ

 (3) 

We recognize Eq. 3 as the Prandtl number, 

Prandtl number: 
RaPr
Gr

p pc c
k k
μ ρ μ ν

ρ α
= = = =  (4) 

 
Discussion Many of the established nondimensional parameters are formed by the ratio or product of two (or more) 
other established nondimensional parameters. 
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7-48 
Solution We are to use dimensional analysis to find the functional relationship between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 
Step 1 There are five parameters in this problem; n = 5, 

List of relevant parameters: ( ), , ,           5h f g R nω ρ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

h ω ρ g R 

{ }1L  { }1t−  { }1 3m L−  { }1 2L t−  { }1L  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 5 3 2k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. Following the guidelines outlined in this chapter, we 
elect not to pick the viscosity. We choose 

Repeating parameters: ω, ρ, and R  

 
Step 5 The dependent Π is generated:  

1 1 1
1

a b ch Rω ρΠ =  { } ( )( ) ( ) ( ){ }1 1 11 1 1 3 1
1 L t m L L

a b c− −Π =  

 

mass: { } { }10m mb=  10 b=  1 0b =  

time: { } { }10t t a−=  10 a= −  1 0a =  

length: { } { }1 130 1L L L Lb c−=  1 10 1 3b c= − +  1 1c = −  

The dependent Π is thus 

Π1: 1
h
R

Π =   

 The second Pi (the only independent Π in this problem) is generated: 

2 2 2
2

a b cg Rω ρΠ =  { } ( )( ) ( ) ( ){ }2 2 21 2 1 1 3 1
2 L t t m L L

a b c− − −Π =  

 

mass: { } { }20m mb=  20 b=  2 0b =  

time: { } { }20 2t t t a−−=  20 2 a= − −  2 2a = −  
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length: 
{ } { }2 230 1L L L Lb c−=  2 2

2

0 1 3
0 1

b c
c

= − +
= +

 2 1c = −  

which yields 

Π2: 2 2

g
Rω

Π =   

If we take Π2 to the power –1/2 and recognize that ωR is the speed of the rim, we see that Π2 can be modified into a 
Froude number, 

Modified Π2: 2 Fr R
gR
ω

Π = =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: ( )Frh f
R
=  (2) 

 
Discussion In the generation of the first Π, h and R have the same dimensions. Thus, we could have immediately 
written down the result, Π1 = h/R. Notice that density ρ does not appear in the result. Thus, density is not a relevant 
parameter after all. 
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7-49 
Solution We are to use dimensional analysis to find the functional relationship between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 
Step 1 There are seven parameters in this problem; n = 7, 

List of relevant parameters: ( ), , , , ,           7h f g R t nω ρ μ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

h ω ρ g R t μ 

{ }1L  { }1t−  { }1 3m L−  { }1 2L t−  { }1L  { }1t  { }1 1 1m L t− −  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 7 3 4k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. For convenience we choose the same repeating 
parameters that we used in the previous problem, 

Repeating parameters: ω, ρ, and R  

 
Step 5 The first two Πs are identical to those of the previous problem: 

Π1: 1
h
R

Π =   

and 

Π2: 2
R

gR
ω

Π =   

where Π2 is identified as a form of the Froude number. The third Π is formed with time t. Since repeating parameter ω 
has dimensions of 1/time, it is the only one that remains in the Π. Thus, without the formal algebra, 

Π3: 3 tωΠ =   

Finally, Π4 is generated with liquid viscosity, 

4 4 4
4

a b cRμω ρΠ =  { } ( )( ) ( ) ( ){ }4 4 41 1 1 1 1 3 1
4 m L t t m L L

a b c− − − −Π =  

 

mass: { } { }40 1m m mb=  40 1 b= +  4 1b = −  

time: { } { }40 1t t t a−−=  40 1 a= − −  4 1a = −  

length: 
{ } { }1 130 1L L L Lb c−−=  4 4

4 4

0 1 3
1 3

b c
c b
= − − +
= +

 4 2c = −  

The final Π is thus 
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Π4: 4 2R
μ

ρ
Π =

Ω
 (2) 

If we invert Π4 and recognize that ωR is the speed of the rim, it becomes clear that Π4 of Eq. 2 can be modified into a 
Reynolds number, 

Modified Π4: 
2

4 ReRρω
μ

Π = =  (3) 

 
Step 6 We write the final functional relationship as 

Relationship between Πs: ( )Fr, ,Reh f t
R

ω=  (4) 

 
Discussion Notice that this time density ρ does appear in the result. There are other acceptable answers, but this one has 
the most established dimensionless groups. 
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7-50 
Solution We are to use dimensional analysis to find the functional relationship between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 
Step 1 There are five parameters in this problem; n = 5, 

List of relevant parameters: ( ), , ,           5kf f V D nρ μ= =   

 
Step 2 The primary dimensions of each parameter are listed, 
 

fk V ρ μ D 

{ }1t−  { }1 1L t−  { }1 3m L−  { }1 1 1m L t− −  { }1L  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 5 3 2k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. Following the guidelines outlined in this chapter, we 
elect not to pick the viscosity. We choose 

Repeating parameters: V, ρ, and D  

 
Step 5 The dependent Π is generated:  

1 1 1
1

a b c
kf V DρΠ =  { } ( )( ) ( ) ( ){ }1 1 11 1 1 1 3 1

1 t L t m L L
a b c− − −Π =  

 

mass: { } { }10m mb=  10 b=  1 0b =  

time: { } { }10 1t t t a−−=  10 1 a= − −  1 1a = −  

length: { } { }1 1 130L L L La b c−=  1 1 10 3a b c= − +  1 1c =  

The dependent Π is thus 

Π1: 1 Stkf D
V

Π = =   

where we have identified this Pi as the Strouhal number. 
 The second Pi (the only independent Π in this problem) is generated: 

2 2 2
2

a b cV Dμ ρΠ =  { } ( )( ) ( ) ( ){ }2 2 21 1 1 1 1 1 3 1
2 m L t L t m L L

a b c− − − −Π =  

 

mass: { } { }20 1m m mb=  20 1 b= +  2 1b = −  

time: { } { }20 1t t t a−−=  20 1 a= − −  2 1a = −  



Chapter 7 Dimensional Analysis and Modeling 

7-33 
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to 
teachers and educators for course preparation.  If you are a student using this Manual, you are using it without permission. 

length: 
{ } { }2 2 230 1L L L L La b c−−=  2 2 2

2

0 1 3
0 1 1 3

a b c
c

= − + − +
= − − + +

 2 1c = −  

which yields 

Π2: 2 VD
μ

ρ
Π =   

We recognize this Π as the inverse of the Reynolds number. So, after inverting, 

Modified Π2: 2 Reynolds number ReVDρ
μ

Π = = =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: ( )St Ref=   

 
Discussion We cannot tell from dimensional analysis the exact form of the functional relationship. However, 
experiments verify that the Strouhal number is indeed a function of Reynolds number. 
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7-51 
Solution We are to use dimensional analysis to find the functional relationship between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 
Step 1 There are six parameters in this problem; n = 6, 

List of relevant parameters: ( ), , , ,           6kf f V D c nρ μ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

fk V ρ μ D c 

{ }1t−  { }1 1L t−  { }1 3m L−  { }1 1 1m L t− −  { }1L  { }1 1L t−  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 6 3 3k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. Following the guidelines outlined in this chapter, we 
elect not to pick the viscosity. We choose 

Repeating parameters: V, ρ, and D  

 
Step 5 The dependent Π is generated:  

1 1 1
1

a b c
kf V DρΠ =  { } ( )( ) ( ) ( ){ }1 1 11 1 1 1 3 1

1 t L t m L L
a b c− − −Π =  

 

mass: { } { }10m mb=  10 b=  1 0b =  

time: { } { }10 1t t t a−−=  10 1 a= − −  1 1a = −  

length: { } { }1 1 130L L L La b c−=  1 1 10 3a b c= − +  1 1c =  

The dependent Π is thus 

Π1: 1 Stkf D
V

Π = =   

where we have identified this Pi as the Strouhal number. 
 The second Pi (the first independent Π in this problem) is generated: 

2 2 2
2

a b cV Dμ ρΠ =  { } ( )( ) ( ) ( ){ }2 2 21 1 1 1 1 1 3 1
2 m L t L t m L L

a b c− − − −Π =  

 

mass: { } { }20 1m m mb=  20 1 b= +  2 1b = −  

time: { } { }20 1t t t a−−=  20 1 a= − −  2 1a = −  
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length: 
{ } { }2 2 230 1L L L L La b c−−=  2 2 2

2

0 1 3
0 1 1 3

a b c
c

= − + − +
= − − + +

 2 1c = −  

which yields 

Π2: 2 VD
μ

ρ
Π =   

We recognize this Π as the inverse of the Reynolds number. So, after inverting, 

Modified Π2: 2 Reynolds number ReVDρ
μ

Π = = =   

 The third Pi (the second independent Π in this problem) is generated: 

3 3 3
3

a b ccV DρΠ =  { } ( )( ) ( ) ( ){ }3 3 31 1 1 1 1 3 1
3 L t L t m L L

a b c− − −Π =  

 

mass: { } { }30m mb=  30 b=  3 0b =  

time: { } { }30 1t t t a−−=  30 1 a= − −  3 1a = −  

length: 
{ } { }3 3 330 1L L L L La b c−=  3 3 3

3

0 1 3
0 1 1

a b c
c

= + − +
= − +

 3 0c =  

which yields 

Π3: 3
c
V

Π =   

We recognize this Π as the inverse of the Mach number. So, after inverting, 

Modified Π3: 3 Mach number MaV
c

Π = = =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: ( )St Re, Maf=   

 
Discussion We have shown all the details. After you become comfortable with the method of repeating variables, you 
can do some of the algebra in your head. 
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7-52 
Solution We are to use dimensional analysis to find the functional relationship between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 
Step 1 There are five parameters in this problem; n = 5, 

List of relevant parameters: ( ), , ,           5W f D nω ρ μ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

W  ω ρ μ D 

{ }1 2 3m L t−  { }1t−  { }1 3m L−  { }1 1 1m L t− −  { }1L  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 5 3 2k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. Following the guidelines outlined in this chapter, we 
elect not to pick the viscosity. We choose 

Repeating parameters: ω, ρ, and D  

 
Step 5 The dependent Π is generated:  

1 1 1
1

a b cW Dω ρΠ =  { } ( )( ) ( ) ( ){ }1 1 11 2 3 1 1 3 1
1 m L t t m L L

a b c− − −Π =  

 

mass: { } { }10 1m m mb=  10 1 b= +  1 1b = −  

time: { } { }10 3t t t a−−=  10 3 a= − −  1 3a = −  

length: { } { }1 130 2L L L Lb c−=  1 10 2 3b c= − +  1 5c = −  

The dependent Π is thus 

Π1: 1 5 3 P
W N
Dρ ω

Π = =   

where we have defined this Pi as the power number (Table 7-5). 
 The second Pi (the only independent Π in this problem) is generated: 

2 2 2
2

a b cDμω ρΠ =  { } ( )( ) ( ) ( ){ }2 2 21 1 1 1 1 3 1
2 m L t t m L L

a b c− − − −Π =  

 

mass: { } { }20 1m m mb=  20 1 b= +  2 1b = −  
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time: { } { }20 1t t t a−−=  20 1 a= − −  2 1a = −  

length: 
{ } { }2 230 1L L L Lb c−−=  2 2

2

0 1 3
0 1 3

b c
c

= − − +
= − + +

 2 2c = −  

which yields 

Π2: 2 2D
μ

ρ ω
Π =   

Since Dω is the speed of the tip of the rotating stirrer blade, we recognize this Π as the inverse of a Reynolds number. So, 
after inverting, 

Modified Π2: 
( )2

2 Reynolds number Re
D DD ρ ωρ ω

μ μ
Π = = = =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: ( )RePN f=  (2) 

 
Discussion After some practice you should be able to do some of the algebra with the exponents in your head. Also, we 
usually expect a type of Reynolds number when we combine viscosity with a density, a length, and some kind of speed, be 
it angular speed or linear speed. 

  

 
 
 
 
 
 
7-53 
Solution We are to determine the dimensionless relationship between the given parameters  
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The dimensional analysis is identical to the previous problem except that we add two additional 
independent parameters, both of which have dimensions of length. The two Πs of the previous problem remain. We get two 
additional Πs since n is now equal to 7 instead of 5. There is no need to go through all the algebra for the two additional Πs 
– since their dimensions match those of one of the repeating variables (D), we know that all the exponents in the Π will be 
zero except the exponent for D, which will be –1. The two additional Πs are 

Π3 and Π4: tank surface
3 4        

D h
D D

Π = Π =   

The final functional relationship is 

Relationship between Πs: tank surfaceRe, ,P
D h

N f
D D

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (1) 

 
Discussion We could also manipulate our Πs so that we have other length ratios like hsurface/Dtank, etc. Any such 
combination is acceptable. 
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7-54 
Solution We are to use dimensional analysis to find the functional relationship between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 
Step 1 There are five parameters in this problem; n = 5, 

List of relevant parameters: ( ), , ,           5f x V nδ ρ μ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

δ x V ρ μ 

{ }1L  { }1L  { }1 1L t−  { }1 3m L−  { }1 1 1m L t− −  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 5 3 2k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. We pick length scale x, density ρ, and freestream 
velocity V. 

Repeating parameters: , , and x Vρ   

 
Step 5 The Πs are generated. Note that for the first Π we can do the algebra in our heads since the relationship is 
very simple. Namely, the dimensions of δ are identical to those of one of the repeating variables (x). In such a case 
we know that all the exponents in the Π group are zero except the one for x, which is –1. The dependent Π is thus 

Π1: 1 x
δ

Π =   

The second Π is formed with viscosity, 

2
a b cx Vμ ρΠ =  { } ( )( ) ( ) ( ){ }1 1 1 1 1 3 1 1

2 m L t L m L L t
a b c− − − −Π =  

 

mass: { } { }0 1m m mb=  0 1 b= +  1b = −  

time: { } { }0 1t t t c− −=  0 1 c= − −  1c = −  

length: { } { }0 1 3L L L L La b c− −=  
0 1 3
0 1 3 1

a b c
a

= − + − +
= − + + −

 
1a = −  

which yields 

Π2: 2 Vx
μ
ρ

Π =   

We recognize this Π as the inverse of the Reynolds number, 
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Modified Π2 = Reynolds number based on x: 2 Rex
Vxρ
μ

Π =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: ( )Rexf
x
δ
=   

 
Discussion We cannot determine the form of the relationship by purely dimensional reasoning since there are two Πs. 
However, in Chap. 10 we shall see that for a laminar boundary layer, Π1 is proportional to the square root of Π2. 

  

 
 
 
 
 
 
 
 
 
 
 
 
7-55 
Solution We are to create a scale for volume flow rate and then define an appropriate Richardson number.  
 
Analysis By “back of the envelope” reasoning (or by inspection), we define a volume flow rate scale as L2V. Then 
the Richardson number can be defined as 

Richardson number: 
( )

5 5

2 22 2
Ri L g L g Lg

VL V

ρ ρ ρ
ρρ ρ

Δ Δ Δ
= = =

V
 (1) 

 
Discussion It is perhaps more clear from the form of Eq. 1 that Richardson number is a ratio of buoyancy forces to 
inertial forces. 
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7-56 
Solution We are to use dimensional analysis to find the functional relationship between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 
Step 1 There are six parameters in this problem; n = 6, 

List of relevant parameters: ( ), , , ,           6u f V h y nμ ρ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

u μ V h ρ y 

{ }1 1L t−  { }1 1 1m L t− −  { }1 1L t−  { }1L  { }1 3m L−  { }1L  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 6 3 3k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. Following the guidelines outlined in this chapter, we 
elect not to pick the viscosity. It is better to pick a fixed length (h) rather than a variable length (y); otherwise y would 
appear in each Pi, which would not be desirable. We choose 

Repeating parameters: V, ρ, and h  

 
Step 5 The dependent Π is generated:  

1 1 1
1

a b cuV hρΠ =  { } ( )( ) ( ) ( ){ }1 1 11 1 1 1 1 3 1
1 L t L t m L L

a b c− − −Π =  

 

mass: { } { }10m mb=  10 b=  1 0b =  

time: { } { }10 1t t t a−−=  10 1 a= − −  1 1a = −  

length: { } { }1 1 130 1L L L L La b c−=  1 1 10 1 3a b c= + − +  1 0c =  

The dependent Π is thus 

Π1: 1
u
V

Π =   

 The second Pi (the first independent Π in this problem) is generated: 

2 2 2
2

a b cV hμ ρΠ =  { } ( )( ) ( ) ( ){ }2 2 21 1 1 1 1 1 3 1
2 m L t L t m L L

a b c− − − −Π =  

 

mass: { } { }20 1m m mb=  20 1 b= +  2 1b = −  
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time: { } { }20 1t t t a−−=  20 1 a= − −  2 1a = −  

length: 
{ } { }2 2 230 1L L L L La b c−−=  2 2 2

2

0 1 3
0 1 1 3

a b c
c

= − + − +
= − − + +

 2 1c = −  

which yields 

Π2: 2 Vh
μ
ρ

Π =   

We recognize this Π as the inverse of the Reynolds number. So, after inverting, 

Modified Π2: 2 Reynolds number ReVhρ
μ

Π = = =   

 The third Pi (the second independent Π in this problem) is generated: 

3 3 3
3

a b cyV hρΠ =  { } ( )( ) ( ) ( ){ }3 3 31 1 1 1 3 1
3 L L t m L L

a b c− −Π =  

 

mass: { } { }30m mb=  30 b=  3 0b =  

time: { } { }30t t a−=  30 a= −  3 0a =  

length: 
{ } { }3 3 330 1L L L L La b c−=  3 3 3

3

0 1 3
0 1

a b c
c

= + − +
= +

 3 1c = −  

which yields 

Π3: 3
y
h

Π =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: Re,u yf
V h

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (2) 

 
Discussion We notice in the first and third Πs that when the parameter on which we are working has the same 
dimensions as one of the repeating parameters, the Π is simply the ratio of those two parameters (here u/V and y/h). 
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7-57 
Solution We are to use dimensional analysis to find the functional relationship between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 
Step 1 There are seven parameters in this problem; n = 7, 

List of relevant parameters: ( ), , , , ,           7u f V h y t nμ ρ= =  (1) 
 

Step 2 The primary dimensions of each parameter are listed, 
 

u μ V h ρ y t 

{ }1 1L t−  { }1 1 1m L t− −  { }1 1L t−  { }1L  { }1 3m L−  { }1L  { }1t  
 

Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 7 3 4k n j= − = − =   
 

Step 4 We need to choose three repeating parameters since j = 3. Following the guidelines outlined in this chapter, we do 
not pick the viscosity. It is better to pick a fixed length (h) rather than a variable length (y); otherwise y would appear in 
each Pi, which would not be desirable. It would also not be wise to have time appear in each parameter. We choose 

Repeating parameters: V, ρ, and h  
 

Step 5 The Πs are generated. The first three Πs are identical to those of the previous problem, so we do not include 
the details here. The fourth Π is formed by joining the new parameter t to the repeating variables, 

4 4 4
4

a b ctV hρΠ =  { } ( )( ) ( ) ( ){ }4 4 41 1 1 1 3 1
4 t L t m L L

a b c− −Π =  

 

mass: { } { }40m mb=  40 b=  4 0b =  

time: { } { }40 1t t t a−=  40 1 a= −  4 1a =  

length: { } { }1 4 430L L L La b c−=  4 4 40 3a b c= − +  4 1c = −  

This Π is thus 

Π4: 4
tV
h

Π =   

 

Step 6 Combining this result with the first three Πs from the previous problem, 

Relationship between Πs: Re, ,u y tVf
V h h

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (2) 

 
Discussion As t → ∞, Π4 becomes irrelevant and the result degenerates into that of the previous problem. 
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7-58 
Solution We are to use dimensional analysis to find the functional relationship between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 
Step 1 There are four parameters in this problem; n = 4, 

List of relevant parameters: ( )gas, ,           4c f k T R n= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed; the ratio of specific heats k is dimensionless. 
 

c k T Rgas 

{ }1 1L t−  { }1  { }1T  { }2 2 1L t T− −  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (T, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 4 3 1k n j= − = − =   

Thus we expect only one Π. 
 
Step 4 We need to choose three repeating parameters since j = 3. We only have one choice in this problem, since there are 
only three independent parameters on the right-hand side of Eq. 1. However, one of these is already dimensionless, so it is a 
Π all by itself. In this situation we reduce j by one and continue, 

Reduction: 3 1 2j = − =   

If this revised value of j is correct, the expected number of Πs is 

Number of expected Πs: 4 2 2k n j= − = − =   

We now expect two Πs. We choose two repeating parameters since j = 2, 

Repeating parameters: T and Rgas  

 
Step 5 The dependent Π is generated:  

1 1
1 gas

a bcT RΠ =  { } ( )( ) ( ){ }1 11 1 1 2 2 1
1 L t T L t T

a b− − −Π =  

 

time: { } { }11 20t t b− −=  10 1 2b= − −  1 1/ 2b = −  

temperature: { } { }1 10T Ta b−=  1 1a b=  1 1/ 2a = −  

length: { } { }120 1L L L b=  10 1 2b= +  1 1/ 2b = −  

Fortunately the two results for exponent b1 agree. The dependent Π is thus 

Π1: 1
gas

c
R T

Π =   
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The independent Π is already known, 

Π2: 2 kΠ =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: ( )
gas

c f k
R T

=  (2) 

 
Discussion We cannot tell from dimensional analysis the exact form of the functional relationship. However, in this 
case the result agrees with the known equation for speed of sound in an ideal gas, gasc kR T= . 
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7-59 
Solution We are to use dimensional analysis to find the functional relationship between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 
Step 1 There are five parameters in this problem; n = 5, 

List of relevant parameters: ( ), , ,           5uc f k T R M n= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed; the ratio of specific heats k is dimensionless. 
 

c k T Ru M 

{ }1 1L t−  { }1  { }1T  { }1 2 2 1 1m L t T N− − −  { }1 1m N−  
 
Step 3 As a first guess, j is set equal to 5, the number of primary dimensions represented in the problem (m, T, L, N, and 
t). 

Reduction: 5j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 5 5 0k n j= − = − =   

Obviously we cannot have zero Πs. We check that we have not missed a relevant parameter. Convinced that we have 
included all the relevant parameters we reduce j by 1: 

Reduction: 5 1 4j = − =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 5 4 1k n j= − = − =   

 
Step 4 We need to choose four repeating parameters since j = 4. We only have one choice in this problem, since there are 
only four independent parameters on the right-hand side of Eq. 1. However, one of these is already dimensionless, so it is a 
Π all by itself. In this situation we reduce j by one (again) and continue, 

Reduction: 4 1 3j = − =   

If this revised value of j is correct, the expected number of Πs is 

Number of expected Πs: 5 3 2k n j= − = − =   

We now expect two Πs. Since j = 3 we choose three repeating parameters, 

Repeating parameters: T, M, and Ru  

 
Step 5 The dependent Π is generated:  

1 1 1
1

a b c
ucT M RΠ =  { } ( )( ) ( ) ( ){ }1 1 11 1 1 1 1 1 2 2 1 1

1 L t T m n m L t T N
a b c− − − − −Π =  

 

time: { } { }120 1t t t c−−=  10 1 2c= − −  1 1/ 2c = −  

mass: { } { }1 10m m mb c=  1 1 1 10      b c b c= + = −  1 1/ 2b =  
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amount of 
matter: { } { }1 10N N Nb c− −=  1 1 1 10      b c b c= − − = −  1 1/ 2b =  

temperature: { } { }1 10T T Ta c−=  1 1 1 10       a c a c= − =  1 1/ 2a = −  

length: { } { }120 1L L L c=  10 1 2c= +  1 1/ 2c = −  

Fortunately the two results for exponent b1 agree, and the two results for exponent c1 agree. (If they did not agree, we would 
search for algebra mistakes. Finding none we would suspect that j is not correct or that we are missing a relevant parameter 
in the problem.) The dependent Π is thus 

Π1: 1
u

c M
R T

Π =   

The independent Π is already known, 

Π2: 2 kΠ =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: ( )1
u

c M f k
R T

Π = =  (2) 

 
Discussion Since we know that Rgas = Ru/M, we see that the result here is the same as that of the previous problem. 
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7-60 
Solution We are to use dimensional analysis to find the functional relationship between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 
Step 1 There are three parameters in this problem; n = 3, 

List of relevant parameters: ( )gas,           3c f T R n= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

c T Rgas 

{ }1 1L t−  { }1T  { }2 2 1L t T− −  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (T, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 3 3 0k n j= − = − =   

Obviously this is not correct, so we re-examine our initial assumptions. We can add another variable, k (the ratio of specific 
heats) to our List of relevant parameters. This problem would then be identical to Problem 7-58. Instead, for instructional 
purposes we reduce j by one and continue, 

Reduction: 3 1 2j = − =   

If this revised value of j is correct, the expected number of Πs is 

Number of expected Πs: 3 2 1k n j= − = − =   

We now expect only one Π. 
 
Step 4 We need to choose two repeating parameters since j = 2. We only have one choice in this problem, since there are 
only two independent parameters on the right-hand side of Eq. 1,  

Repeating parameters: T and Rgas  

 
Step 5 The dependent Π is generated:  

1 1
1 gas

a bcT RΠ =  { } ( )( ) ( ){ }1 11 1 1 2 2 1
1 L t T L t T

a b− − −Π =  

 

time: { } { }11 20t t b− −=  10 1 2b= − −  1 1/ 2b = −  

temperature: { } { }1 10T Ta b−=  1 1a b=  1 1/ 2a = −  

length: { } { }120 1L L L b=  10 1 2b= +  1 1/ 2b = −  

Fortunately the two results for exponent b1 agree. The dependent Π is thus 
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Π1: 1
gas

c
R T

Π =   

 
Step 6 Since there is only one Π, it is a function of nothing. This is only possible if we set the Π equal to a constant. We 
write the final functional relationship as 

Relationship between Πs: 1
gas

constantc
R T

Π = =  (2) 

 
Discussion Our result represents an interesting case of “luck”. Although we failed to include the ratio of specific heats k 
in our analysis, we nevertheless obtain the correct result. In fact, if we set the constant in Eq. 2 as the square root of k, our 
result agrees with the known equation for speed of sound in an ideal gas, gasc kR T= . 
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7-61 
Solution We are to use dimensional analysis to find the functional relationship between the given parameters, and 
compare to the known equation for an ideal gas. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 
Step 1 There are three parameters in this problem; n = 3, 

List of relevant parameters: ( ),           3c f P nρ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

c P ρ 

{ }1 1L t−  { }1 1 2m L t− −  { }1 3m L−  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 3 3 0k n j= − = − =   

Obviously this is not correct, so we re-examine our initial assumptions. If we are convinced that c is a function of only P 
and ρ, we reduce j by one and continue, 

Reduction: 3 1 2j = − =   

If this revised value of j is correct, the expected number of Πs is 

Number of expected Πs: 3 2 1k n j= − = − =   

We now expect only one Π. 
 
Step 4 We need to choose two repeating parameters since j = 2. We only have one choice in this problem, since there are 
only two independent parameters on the right-hand side of Eq. 1,  

Repeating parameters: P and ρ  

 
Step 5 The dependent Π is generated:  

1 1
1

a bcP ρΠ =  { } ( )( ) ( ){ }1 11 1 1 1 2 1 3
1 L t m L t m L

a b− − − −Π =  

 

time: { } { }120 1t t t a−−=  10 1 2a= − −  1 1/ 2a = −  

mass: { } { }1 10m m ma b=  1 10 a b= +  1 1/ 2b =  

length: 
{ } { }1 12 30 1L L L La b− −=  1 1

31
2 2

0 1 3
0 1

a b= − −

= + −
 

0 0=  

Fortunately the exponents for length agree with those of mass and time. The dependent Π is thus 
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Π1: 1 c
P
ρ

Π =   

 
Step 6 Since there is only one Π, it is a function of nothing. This is only possible if we set the Π equal to a constant. We 
write the final functional relationship as 

Relationship between Πs: 1 constant, or constant Pc c
P
ρ

ρ
Π = = =  (2) 

The ideal gas equation is P = ρRgasT, or P/ρ = RgasT. Thus, Eq. 2 can be written as 

Alternative result using ideal gas law: gasconstantc R T=  (3) 

Equation 3 is indeed consistent with the equation gasc kR T= . 
 
Discussion There is no way to obtain the value of the constant in Eq. 2 or 3 solely by dimensional analysis, but it turns 
out that the constant is the square root of k. 
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7-62 
Solution We are to use dimensional analysis to find a functional relationship between FD and variables V, L, and μ. 
 
Assumptions 1 We assume Re << 1 so that the creeping flow approximation applies. 2 Gravitational effects are irrelevant. 
3 No parameters other than those listed in the problem statement are relevant to the problem. 
 
Analysis We follow the step-by-step method of repeating variables.  
 
Step 1 There are four variables and constants in this problem; n = 4. They are listed in functional form, with the 
dependent variable listed as a function of the independent variables and constants: 

List of relevant parameters: ( ), ,           4DF f V L nμ= =  

 
Step 2 The primary dimensions of each parameter are listed. 
 

FD V L μ 

{ }1 1 2m L t−  { }1 1L t−  { }1L  { }1 1 1m L t− −  
 
Step 3 As a first guess, we set j equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =  

If this value of j is correct, the number of Πs expected is 

Number of expected Πs: 4 3 1k n j= − = − =  

 
Step 4 Now we need to choose three repeating parameters since j = 3. Since we cannot choose the dependent variable, our 
only choices are V, L, and μ. 
 
Step 5 Now we combine these repeating parameters into a product with the dependent variable FD to create the 
dependent Π,  

Dependent Π: 1 1 1
1

a b c
DF V L μΠ =  (1) 

We apply the primary dimensions of Step 2 into Eq. 1 and force the Π to be dimensionless, 

Dimensions of Π1:

 { } { } { } ( )( ) ( ) ( ){ }1 1 1
1 1 10 0 0 1 1 2 1 1 1 1 1 1

1 m L t m L t L t L m L t
a b ca b c

DF V L μ − − − −Π = = =   

Now we equate the exponents of each primary dimension to solve for exponents a1 through c1. 

mass: { } { }10 1m m mc=  10 1 c= +  1 1c = −  

time: { } { }1 10 2t t t ta c− −−=  1 10 2 a c= − − −  1 1a = −  

length: { } { }1 1 10 1L L L L La b c−=  1 1 10 1 a b c= + + −  1 1b = −  

Equation 1 thus becomes 

Π1: 1
DF

VLμ
Π =  (2) 

 
Step 6 We now write the functional relationship between the nondimensional parameters. In the case at hand, there is 
only one Π, which is a function of nothing. This is possible only if the Π is constant. Putting Eq. 2 into standard functional 
form, 
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Relationship between Πs: ( )1 nothing constantDF
f

VLμ
Π = = =  (3) 

or 

Result of dimensional analysis: constantDF VLμ= ⋅  (4) 

Thus we have shown that for creeping flow around an object, the aerodynamic drag force is simply a constant multiplied by 
μVL, regardless of the shape of the object. 
 
Discussion This result is very significant because all that is left to do is find the constant, which will be a function of 
the shape of the object (and its orientation with respect to the flow). 
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7-63 
Solution We are to find the functional relationship between the given parameters and name any established 
dimensionless parameters. 
 
Assumptions 1 The given parameters are the only ones relevant to the flow at hand. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 
Step 1 There are five parameters in this problem; n = 5, 

List of relevant parameters: ( )( ), , ,           5p pV f d g nρ ρ μ= − =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

V dp (ρp - ρ) μ g 

{ }1 1L t−  { }1L  { }1 3m L−  { }1 1 1m L t− −  { }1 2L t−  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 5 3 2k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. We pick length scale dp, density difference (ρp - ρ), and 
gravitational constant g. 

Repeating parameters: ( ), - , and p pd gρ ρ   

 
Step 5 The Πs are generated. Note that for the first Π we do the algebra in our heads since the relationship is very 
simple. The dependent Π is 

Π1 = a Froude number: 1
p

V
gd

Π =   

This Π is a type of Froude number. Similarly, the Π formed with viscosity is generated, 

( )2

ba c
p pd gμ ρ ρΠ = −  { } ( )( ) ( ) ( ){ }1 1 1 1 1 3 1 2

2 m L t L m L L t
a b c− − − −Π =  

 

mass: { } { }0 1m m mb=  0 1 b= +  1b = −  

time: { } { }0 1 2t t t c− −=  0 1 2c= − −  1
2

c = −  

length: 
{ } { }0 1 3L L L L La b c− −=  1

2

0 1 3
0 1 3

a b c
a

= − + − +

= − + + −
 

3
2

a = −  

which yields 
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Π2: 
( )

2 3
2

p pd g

μ

ρ ρ
Π =

−
  

We recognize this Π as the inverse of a kind of Reynolds number if we split the dp terms to separate them into a length 
scale and (when combined with g) a velocity scale. The final form is 

Modified Π2 = a Reynolds number: 
( )

2
p p pd gdρ ρ

μ

−
Π =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: 
( )p p p

p

d gdV f
gd

ρ ρ

μ

⎛ ⎞−
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (2) 

 
Discussion We cannot determine the form of the relationship by purely dimensional reasoning since there are two Πs. 
However, in Chap. 10 we shall see that Π1 is a constant times Π2. 
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7-64 
Solution We are to develop an equation for the settling speed of an aerosol particle falling in air under creeping flow 
conditions.  
 
Assumptions 1 The particle falls at steady speed V. 2 The Reynolds number is small enough that the creeping flow 
approximation is valid. 
 
Analysis We start by recognizing that as the particle falls at steady settling speed, its net weight W must equal the 
aerodynamic drag FD on the particle. We also know that W is proportional to (ρp - ρ)gdp

3. Thus, 

Equating forces: ( ) 3
1 2constant constantp p D pW gd F Vdρ ρ μ= − = =  (1) 

where we have converted the notation of the previous problem, and we have defined two different constants. The two 
constants in Eq. 1 can be combined into one new constant for simplicity. Solving for V, 

Settling speed: 
( ) 2

constant p pgd
V

ρ ρ

μ

−
=  (2) 

If we divide both sides of Eq. 2 by pgd  we see that the functional relationship given by Eq. 2 of the previous problem is 
consistent. 
 
Discussion This result is valid only if the Reynolds number is much smaller than one, as will be discussed in Chap. 10. 
If the particle is less dense than the fluid (e.g. bubbles rising in water), our result is still valid, but the particle rises instead 
of falls.  

  

 
 
 
 
 
 
 
 
 
7-65 
Solution We are to determine how the settling speed of an aerosol particle falling in air under creeping flow 
conditions changes when certain parameters are doubled.  
 
Assumptions 1 The particle falls at steady speed V. 2 The Reynolds number is small enough that the creeping flow 
approximation is valid. 
 
Analysis From the results of the previous problem, we see that if particle size doubles, the settling speed increases 
by a factor of 22 = 4. Similarly, if density difference doubles, the settling speed increases by a factor of 21 = 2. 
 
Discussion This result is valid only if the Reynolds number remains much smaller than unity, as will be discussed in 
Chap. 10. As the particle’s settling speed increases by a factor of 2 or 4, the Reynolds number will also increase by that 
same factor. If the new Reynolds number is not small enough, the creeping flow approximation will be invalid and our 
results will not be correct, although the error will probably be small.  
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7-66 
Solution We are to generate a nondimensional relationship between the given parameters. 
 
Assumptions 1 The flow is fully developed. 2 The fluid is incompressible. 3 No other parameters are significant in the 
problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters. 
 
Step 1 All the relevant parameters in the problem are listed in functional form: 

List of relevant parameters: ( ), , , , ,           7P f V D L nε ρ μΔ = =   

 
Step 2 The primary dimensions of each parameter are listed: 
 

ΔP V ε ρ μ D L 

{ }1 1 2m L t− −  { }1 1L t−  { }1L  { }1 3m L−  { }1 1 1m L t− −  { }1L  { }1L  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 7 3 4k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. Following the guidelines listed in Table 7-3, we cannot 
pick the dependent variable, ΔP. We cannot choose any two of parameters ε, L, and D since their dimensions are 
identical. It is not desirable to have μ or ε appear in all the Πs. The best choice of repeating parameters is thus V, D, and ρ. 

Repeating parameters: V, D, and ρ  

 
Step 5 The dependent Π is generated:  

1 1 1
1

a b cPV D ρΠ = Δ  { } ( )( ) ( ) ( ){ }1 1 11 1 2 1 1 1 1 3
1 m L t L t L m L

a b c− − − −Π =  

 

mass: { } { }10 1m m mc=  10 1 c= +  1 1c = −  

time: { } { }10 2t t t a−−=  10 2 a= − −  1 2a = −  

length: 
{ } { }1 1 130 1L L L L La b c−−=  1 1 1

1

0 1 3
0 1 2 3

a b c
b

= − + + −
= − − + +

 1 0b =  

The dependent Π is thus 

Π1: 1 2

P
Vρ
Δ

Π =   

From Table 7-5, the established nondimensional parameter most similar to our Π1 is the Euler number Eu. No 
manipulation is required. 
 We form the second Π with μ. By now we know that we will generate a Reynolds number, 

2 2 2
2

a b cV DΠ = μ ρ  2 Reynolds number ReVD
Π = = =

ρ
μ
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The final two Π groups are formed with ε and then with L. The algebra is trivial for these cases since their dimension 
(length) is identical to that of one of the repeating variables (D). The results are 

3 3 3
3

a b cV DΠ = ε ρ  3 Roughness ratio
D

Π = =
ε  

4 4 4
4

a b cLV D ρΠ =  4 Length-to-diameter ratio or aspect ratioL
D

Π = =  

 
Step 6 We write the final functional relationship as 

Relationship between Πs: 2Eu Re, ,P Lf
D DV
ε

ρ
Δ ⎛ ⎞= = ⎜ ⎟

⎝ ⎠
 (1) 

 
Discussion The result applies to both laminar and turbulent fully developed pipe flow; it turns out, however, that the 
second independent Π (roughness ratio) is not nearly as important in laminar pipe flow as in turbulent pipe flow. Since ΔP 
drops linearly with distance down the pipe, we know that ΔP is linearly proportional to L/D. It is not possible to determine 
the functional relationships between the other Πs by dimensional reasoning alone. 
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7-67 
Solution We are to determine by what factor volume flow rate increases in the case of fully developed laminar pipe 
flow when pipe diameter is doubled.  
 
Assumptions 1 The flow is steady. 2 The flow is fully developed, meaning that dP/dx is constant and the velocity profile 
does not change downstream. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters. 
 
Step 1 All the relevant parameters in the problem are listed in functional form: 

List of relevant parameters: , ,           4dPf D n
dx

μ⎛ ⎞= =⎜ ⎟
⎝ ⎠

V   

 
Step 2 The primary dimensions of each parameter are listed: 
 

V  D μ dP/dx 

{ }3 1L t−  { }1L  { }1 1 1m L t− −  { }1 2 2m L t− −  
  
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 4 3 1k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. Here we must pick all three independent parameters, 

Repeating parameters: D, μ, and dP/dx  

 
Step 5 The Π is generated:  

( ) 1 1 1
1 / a b cdP dx D μΠ =V  { } ( )( ) ( ) ( ){ }1 1 13 1 1 2 2 1 1 1 1

1 L t m L t L m L t
a b c− − − − −Π =  

 

mass: { } { }1 10m m ma c=  1 10 a c= +  1 1c a= −  

time: 
{ } { }1 120 1t t t ta c− −−=  1 1

1 1

0 1 2
0 1 2

a c
a a

= − − −
= − − +

 
1 1a = −  

1 1c =  

length: 
{ } { }1 1 120 3L L L L La b c− −=  1 1 1

1 1 1

0 3 2
3 2

a b c
b a c
= − + −
= − + +

 1 4b = −  

The dependent Π is thus 

Π1: 1
4 dPD

dx

μ
Π =

V   

 
Step 6 Since there is only one Π, we set it equal to a constant. We write the final functional relationship as 
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Relationship between Πs: 
4

1 constant,        constant D dP
dxμ

Π = =V  (1) 

We see immediately that if the pipe diameter is doubled with all other parameters fixed, the volume flow rate will 
increase by a factor of 24 = 16. 
 
Discussion We will see in Chap. 9 that the constant is π/8. There is no way to obtain the value of the constant from 
dimensional analysis alone. 
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7-68 
Solution We are to use dimensional analysis to find the functional relationship between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 
Step 1 There are four parameters in this problem; n = 4, 

List of relevant parameters: ( )( )out in, ,           4pQ f m c T T n= − =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

Q  m  cp Tout- Tin 

{ }1 2 3m L t−  { }1 1m t−  { }2 2 1L t T− −  { }1T  
 
Step 3 As a first guess, j is set equal to 4, the number of primary dimensions represented in the problem (m, T, L, and t). 

Reduction: 4j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 4 4 0k n j= − = − =   

Obviously this is not correct, so we re-examine our initial assumptions. We are convinced that our list of parameters is 
sufficient, so we reduce j by one and continue, 

Reduction: 4 1 3j = − =   

If this revised value of j is correct, the expected number of Πs is 

Number of expected Πs: 4 3 1k n j= − = − =   

We now expect only one Π. 
 
Step 4 We need to choose three repeating parameters since j = 3. We only have one choice in this problem, since there are 
only three independent parameters on the right-hand side of Eq. 1, 

Repeating parameters: ( )out in, , and pm c T T−   

 
Step 5 The dependent Π is generated:  

( ) 11 1
1 out in

ca b
pQm c T TΠ = −  { } ( )( ) ( ) ( ){ }1 1 11 2 3 1 1 2 2 1 1

1 m L t m t L t T T
a b c− − − −Π =  

 

mass: { } { }110m m a+=  10 1 a= +  1 1a = −  

length: { } { }120 2L L L b=  10 2 2b= +  1 1b = −  

temperature: { } { }1 10T T b c− +=  1 1c b=  1 1c = −  

time: { } { }1 13 20t t a b− − −=  1 10 3 2a b= − − −  3 1 2= +  

Fortunately the result for the time exponents is consistent with that of the other dimensions. The dependent Π is thus 



Chapter 7 Dimensional Analysis and Modeling 

7-61 
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to 
teachers and educators for course preparation.  If you are a student using this Manual, you are using it without permission. 

Π1: ( )1
out inp

Q
mc T T

Π =
−

  

 
Step 6 Since there is only one Π, it is a function of nothing. This is only possible if we set the Π equal to a constant. We 
write the final functional relationship as 

Relationship between Πs: ( )1
out in

constant
p

Q
mc T T

Π = =
−

 (2) 

 
Discussion When there is only one Π, we know the functional relationship to within some (unknown) constant. In this 
particular case, comparing to Eq. 1 of Problem 7-24, we see that the constant is unity, ( )out inpQ mc T T= − . There is no way 
to obtain the constant in Eq. 2 from dimensional analysis; however, one experiment would be sufficient to determine the 
constant. 

  

 
 
 
 
 
 
 
Experimental Testing and Incomplete Similarity 
 
 
 
7-69C 
Solution We are to define wind tunnel blockage and discuss its acceptable limit. We are also to discuss the source of 
measurement errors at high values of blockage. 
 
Analysis Wind tunnel blockage is defined as the ratio of model frontal area to cross-sectional area of the test-
section. The rule of thumb is that the blockage should be no more than 7.5%. If the blockage were significantly higher than 
this value, the flow would have to accelerate around the model much more than if the model were in an unbounded 
situation. Hence, similarity would not be achieved. We might expect the aerodynamic drag on the model to be too high 
since the effective freestream speed is too large due to the blockage. 
 
Discussion There are formulas to correct for wind tunnel blockage, but they become less and less reliable as blockage 
increases. 

  
 
 
 
 
7-70C 
Solution We are to discuss the rule of thumb concerning Mach number and incompressibility. 
 
Analysis The rule of thumb is that the Mach number must stay below about 0.3 in order for the flow field to be 
considered “incompressible”. What this really means is that compressibility effects, although present at all Mach 
numbers, are negligibly small compared to other effects driving the flow. If Ma is larger than about 0.3 in a wind tunnel 
test, the model flow field loses both kinematic and dynamic similarity, and the measured results are questionable. Of 
course, the error increases as Ma increases. 
 
Discussion Compressible flow is discussed in detail in Chap. 12. There you will see where the value 0.3 comes from. 
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7-71C 
Solution We are to discuss some situations in which a model should be larger than its prototype. 
 
Analysis There are many possible situations, and students’ examples should vary. Generally, any flow field that is 
very small and/or very fast benefits from simulation with a larger model. In most cases these are situations in which we 
want the model to be larger and slower so that experimental measurements and flow visualization are easier. Here are a few 
examples: 
 

− Modeling a hard disk drive. 
− Modeling insect flight. 
− Modeling the settling of very small particles in air or water. 
− Modeling the motion of water droplets in clouds. 
− Modeling flow through very fine tubing. 
− Modeling biological systems like blood flow through capillaries, flow in the bronchi of lungs, etc. 

 
Discussion You can think of several more examples. 

  

 
 
 
 
 
 
 
 
 
7-72C 
Solution We are to discuss the purpose of a moving ground belt 
and suggest an alternative. 
 
Analysis From the frame of reference of a moving car, both the air 
and the ground approach the car at freestream speed. When we test a 
model car in a wind tunnel, the air approaches at freestream speed, but 
the ground (floor of the wind tunnel) is stationary. Therefore we are not 
modeling the same flow. A boundary layer builds up on the wind tunnel 
floor, and the flow under the car cannot be expected to be the same as 
that under a real car. A moving ground belt solves this problem. Another 
way to say the same thing is to say that without the moving ground belt, 
there would not be kinematic similarity between the underside of the 
model and the underside of the prototype. 
 If a moving ground belt is unavailable, we could instead install 
a false wall – i.e., a thin flat plate just above the boundary layer on 
the floor of the wind tunnel. A sketch is shown in Fig. 1. At least then 
the boundary layer will be very thin and will not have as much influence 
on the flow under the model. 
 
Discussion We discuss boundary layer growth in Chap. 10. 

  

 
 

 

Wind tunnel 
test section V 

False wall

 
 

FIGURE 1 
A false wall along the floor of a wind tunnel 
to reduce the size of the ground boundary 
layer. 
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7-73 
Solution We are to show that Froude number and Reynolds number are the dimensionless parameters that appear in a 
problem involving shallow water waves.  
 
Assumptions 1 Wave speed c is a function only of depth h, gravitational acceleration g, fluid density ρ, and fluid 
viscosity μ. 
 
Analysis We perform a dimensional analysis using the method of repeating variables. 
 
Step 1 There are five parameters in this problem; n = 5, 

List of relevant parameters: ( ), , ,           5c f h g nρ μ= =   

 
Step 2 The primary dimensions of each parameter are listed, 
 

c h ρ μ g 

{ }1 1L t−  { }1L  { }1 3m L−  { }1 1 1m L t− −  { }1 2L t−  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 5 3 2k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. We pick length scale h, density difference ρ, and 
gravitational constant g. 

Repeating parameters: , , and h gρ   

 
Step 5 The Πs are generated. Note that for the first Π we do the algebra in our heads since the relationship is very 
simple. The dependent Π is 

Π1 = Froude number: 1 Fr c
gh

Π = =  (1) 

This Π is the Froude number. Similarly, the Π formed with viscosity is generated, 

2
a b ch gμ ρΠ =  { } ( )( ) ( ) ( ){ }1 1 1 1 1 3 1 2

2 m L t L m L L t
a b c− − − −Π =  

 

mass: { } { }0 1m m mb=  0 1 b= +  1b = −  

time: { } { }0 1 2t t t c− −=  0 1 2c= − −  1
2

c = −  

length: 
{ } { }0 1 3L L L L La b c− −=  1

2

0 1 3
0 1 3

a b c
a

= − + − +

= − + + −
 

3
2

a = −  

which yields 

Π2: 2 3
2h g

μ

ρ
Π =   
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We can manipulate this Π into the Reynolds number if we invert it and then multiply by Fr (Eq. 1) The final form is 

Modified Π2 = Reynolds number: 2 Re chρ
μ

Π = =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: ( )Fr Re   where  Rec chf
gh

ρ
μ

= = =   

 
Discussion As discussed in this chapter, it is often difficult to match both Fr and Re between a model and a prototype. 

  

 
 
7-74 
Solution We are to nondimensionalize experimental pipe data, plot 
the data, and determine if Reynolds number independence has been 
achieved. We are then to extrapolate to a higher speed. 
 
Assumptions 1 The flow is fully developed. 2 The flow is steady and 
incompressible. 
 
Properties For water at T = 20oC and atmospheric pressure, ρ = 
998.0 kg/m3 and μ = 1.002 × 10-3 kg/m⋅s. 
 
Analysis (a) We convert each data point in the table from V and ΔP 
to Reynolds number and Euler number. The calculations at the last 
(highest speed) data point are shown here: 

Reynolds number:

 
( )( ) ( )3

6
3

998.0 kg/m 50 m/s 0.104 m
Re 5.18 10

1.002 10  kg/m s
VDρ
μ −= = = ×

× ⋅
 

(1) 

and 

Euler number:  

( )( )

2

2 2 23

758,700 N/m kg mEu 0.304
s N998.0 kg/m 50 m/s

P
Vρ
Δ ⎛ ⎞= = =⎜ ⎟

⎝ ⎠
 (2) 

We plot Eu versus Re in Fig. 1. Although there is experimental scatter in the data, it appears that Reynolds number 
independence has been achieved beyond a Reynolds number of about 2 × 106. The average value of Eu based on the last 6 
data points is 0.3042. 
 

(b) We extrapolate to higher speeds. At V = 80 m/s, we calculate ΔP, assuming that Eu remains constant to higher values of 
Re, 

Extrapolated value:

 ( )( )
2

22 3 s NEu 0.3042 998.0 kg/m 80 m/s
kg m

P Vρ
⎛ ⎞

Δ = × = =⎜ ⎟
⎝ ⎠

21,940,000 N/m  (3) 

 
Discussion It is shown in Chap. 8 that Reynolds number independence is indeed achieved at high-enough values of Re. 
The threshold value above which Re independence is achieved is a function of relative roughness height, ε/D. 

  

0.303

0.304

0.305

0.306

0.307

0.308

0.309

0 2 4 6

 

Re × 10-6

Eu Reynolds number 
independence 

 
 

FIGURE 1 
Nondimensionalized experimental data from 
a section of pipe. 
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7-75 
Solution We are to calculate the wind tunnel blockage of a model truck in a wind tunnel and determine if it is within 
acceptable limits. 
 
Assumptions 1 The frontal area is equal to truck width times height. (Note that the actual area of the truck may be 
somewhat smaller than this due to rounded corners and the air gap under the truck, but a truck looks nearly like a rectangle 
from the front, so this is not a bad approximation.) 
 
Analysis Wind tunnel blockage is defined as the ratio of model frontal area to cross-sectional area of the test-section, 

Blockage: 
( )( )

( )( )
model

wind tunnel

0.159 m 0.257 m
0.034

1.2 m 1.0 m
A

Blockage
A

= = = = 3.4%  (1) 

The rule of thumb is that the blockage should be no more than 7.5%. Since we are well below this value, we need not worry 
about blockage effects. 
 
Discussion The length of the model does not enter our analysis since we are only concerned with the frontal area of the 
model. 

  

 
 
 
 
 
 
 
 
 
 
 
 
7-76C 
Solution We are to discuss whether Reynolds number independence has been achieved, and whether the researchers 
can be confident about it. 
 
Analysis We remove the last four data points from Table 7-7 and from Fig. 7-41. From the remaining data it appears 
that the drag coefficient is beginning to level off, but is still decreasing with Re. Thus, the researchers do not know if 
they have achieved Reynolds number independence or not. 
 
Discussion The wind tunnel speed is too low to achieve Reynolds number independence. 
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7-77E 
Solution We are to calculate the size and scale of the model truck to be constructed, and calculate its maximum 
Reynolds number. Then we are to determine whether this model in this wind tunnel will achieve Reynolds number 
independence.  
 
Assumptions 1 The model will be constructed carefully so as to achieve approximate geometric similarity. 2 The wind 
tunnel air is at the same temperature and pressure as that flowing over the prototype truck. 
 
Properties For air at T = 80oF and atmospheric pressure, ρ = 0.07350 lbm/ft3 and μ = 1.248 × 10-5 lbm/ft⋅s. 
 
Analysis  (a) The rule of thumb about blockage is that we should keep the blockage below 7.5%. Thus, the frontal 
area of the model truck must be no more than 0.075 × Awind tunnel. The ratio of height to width of the full-scale truck is Hp/Wp 
= 12/8.33 = 1.44. Thus, for the geometrically similar model truck, 

Equation for model truck width: wind tunnelm
m

m m

7.5%
1.44

AAW
H W

= =  (1) 

We solve Eq. 1 for Wm, 

Model truck width: 
( )2

wind tunnel
m

0.075 400 in7.5% 4.56 in
1.44 1.44
AW = = =  (2) 

Scaling the height and length geometrically, 

Model truck dimensions: m m m,  ,  W H L= = =4.56 in 6.57 in 28.5 in  (3) 

These dimensions represent a model that is scaled at approximately 1:22. 
 

(b) At the maximum speed, with Re based on truck width, 

Maximum Re:

 
( )( ) ( )3

m max
5

0.07350 lbm/ft 4.56 in 160 ft/s 1 ftRe
12 in1.248 10  lbm/ft s

W Vρ
μ −

⎛ ⎞= = =⎜ ⎟× ⋅ ⎝ ⎠
53.58×10  

(4) 

 

(c) Based on the data of Fig. 7-41, this Reynolds number is shy of the value needed to achieve Reynolds number 
independence. 
 
Discussion The students should run at the highest wind tunnel speed. Their measured values of CD will probably be 
higher than those of the prototype, but the relative difference in CD due to their modifications should still be valid. 
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7-78 
Solution We are to calculate and plot CD as a function of Re for a given set of wind tunnel measurements, and 
determine if dynamic similarity and/or Reynolds number independence have been achieved. Finally, we are to estimate the 
aerodynamic drag force acting on the prototype car.  
 
Assumptions 1 The model car is geometrically similar to the prototype car. 2 The aerodynamic drag on the strut holding 
the model car is negligible. 
 
Properties For air at atmospheric pressure and at T = 25oC, ρ = 
1.184 kg/m3 and μ = 1.849 × 10-5 kg/(m s). 
 
Analysis We calculate CD and Re for the last data point listed in 
the given table (at the fastest wind tunnel speed), 

Model drag coefficient at last data point:

 
( ) ( ) ( ) ( )

,m
,m 21

m m m2

2
231

2 2

4.91 N kg m       
1.69 m 1.30 m s N

1.184 kg/m 55 m/s
16

       0.319

D
D

F
C

V Aρ
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

 

and 

Model Reynolds number at last data point:

 
( )( )

m m m
m

m

3

5

5

Re

1.691.184 kg/m 55 m/s  m
16      

1.849 10  kg/m s
      3.72 10

V Wρ
μ

−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠=

× ⋅

= ×

 

(1) 

We repeat the above calculations for all the data points in the given table, and we plot CD verses Re in Fig. 1. 
 Have we achieved dynamic similarity? Well, we have geometric similarity between model and prototype, but the 
Reynolds number of the prototype car is 

Reynolds number of prototype car:
( ) ( )( )3

p p p 6
p 5

p

1.184 kg/m 29 m/s 1.69 m
Re 3.14 10

1.849 10  kg/m s
V Wρ
μ −= = = ×

× ⋅
 (2) 

where the width and speed of the prototype are used in the calculation of Rep. Comparison of Eqs. 1 and 2 reveals that the 
prototype Reynolds number is more than eight times larger than that of the model. Since we cannot match the independent 
Πs in the problem, dynamic similarity has not been achieved. 
 Have we achieved Reynolds number independence? From Fig. 1 we see that Reynolds number independence 
has indeed been achieved – at Re greater than about 3 × 105, CD has leveled off to a value of about 0.32 (to two significant 
digits). 
 Since we have achieved Reynolds number independence, we can extrapolate to the full scale prototype, assuming 
that CD remains constant as Re is increased to that of the full scale prototype. 

Aerodynamic drag on the prototype:

( )( ) ( )( )
2

22 3
,p p p p ,p

1 1 s N1.184 kg/m 29 m/s 1.69 m 1.30 m 0.32
2 2 kg mD DF V A Cρ

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
350 N  

 
Discussion We give our final result to two significant digits. 
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FIGURE 1 
Aerodynamic drag coefficient as a function 
of Reynolds number – results 
nondimensionalized from wind tunnel test 
data on a model car. 
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Review Problems 
 
 
 
7-79C 
Solution   
(a) False: Kinematic similarity is a necessary but not sufficient condition for dynamic similarity. 
(b) True: You cannot have dynamic similarity if the model and prototype are not geometrically similar. 
(c) True: You cannot have kinematic similarity if the model and prototype are not geometrically similar. 
(d) False: It is possible to have kinematic similarity (scaled velocities at corresponding points), yet not have dynamic 

similarity (forces do not scale at corresponding points). 
  

 
 
 
7-80C 
Solution We are to think of and describe a prototype and model flow in which there is geometric but not kinematic 
similarity even though Rem = Rep.  
 

Analysis Students’ responses will vary. Here are some examples: 
 

− A model car is being tested in a wind tunnel such that there is geometric similarity and the wind tunnel speed is 
adjusted so that Rem = Rep. However, there is not a moving ground belt, so there is not kinematic similarity 
between the model and prototype. 

− A model airplane is being tested in a wind tunnel such that there is geometric similarity and the wind tunnel speed 
is adjusted so that Rem = Rep. However, the Mach numbers are quite different, and therefore kinematic similarity is 
not achieved. 

− A model of a river or waterfall or other open surface flow problem in which there is geometric similarity and the 
speed is adjusted so that Rem = Rep. However, the Froude numbers do not match and therefore the velocity fields 
are not similar and kinematic similarity is not achieved. 

 

Discussion There are many more acceptable cases that students may imagine. 
  

 
 
 
7-81C 
Solution We are to find at least three established nondimensional parameters not listed in Table 7-5, and list these 
following the format of that table.  
 
Analysis Students’ responses will vary. Here are some examples: 
 

Name Definition Ratio of significance 

Bingham 
number 

Bm L
V

τ
μ

=  yield stress
viscous stress

 

Elasticity 
number 2El ct

L
μ

ρ
=  elastic force

inertial force
 

Galileo number 
3 2

2Ga gD ρ
μ

=  gravitational force
viscous force

 

 
In the above, tc is a characteristic time. 
 
Discussion There are many more established dimensionless parameters in the literature. Some sneaky students may 
make up their own! 
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7-82 
Solution We are to determine the primary dimensions of each variable, and then show that Hooke’s law is 
dimensionally homogeneous.  
 
Analysis  
(a) Moment of inertia has dimensions of length4, 

Primary dimensions of moment of inertia: { } { } { }4lengthI = = 4L  (1) 

 

(b) Modulus of elasticity has the same dimensions as pressure, 

Primary dimensions of modulus of elasticity:

 { } 2 2

force mass length 1
area time length

E
⎧ ⎫×⎧ ⎫ ⎧ ⎫= = × =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭⎩ ⎭
2

m
Lt

 (2) 

Or, in exponent form, {E} = {m1 L-1 t-2}. 
 

(c) Strain is defined as change in length per unit length, so it is dimensionless. 

Primary dimensions of strain: { } { }length
length

ε
⎧ ⎫

= =⎨ ⎬
⎩ ⎭

1  (3) 

 

(d) Stress is force per unit area, again just like pressure. 

Primary dimensions of stress: { } 2 2

force mass length
area time length

σ
⎧ ⎫×⎧ ⎫ ⎧ ⎫= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

×⎩ ⎭ ⎩ ⎭⎩ ⎭
2

m
Lt

 (4) 

Or, in exponent form, {σ} = {m1 L-1 t-2}. 
 

(e) Hooke’s law is σ = Eε. We write the primary dimensions of both sides: 

Primary dimensions of Hooke’s law: { } { } 2

m 1
Lt

Eσ ε⎧ ⎫ ⎧ ⎫ ⎧ ⎫= = = × =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭ ⎩ ⎭2 2

m m
Lt Lt

 (5) 

Or, in exponent form, the dimensions of both sides of the equation are {m1 L-1 t-2}. Thus we see that Hooke’s law is indeed 
dimensionally homogeneous. 
 
Discussion If the dimensions of Eq. 5 were not homogeneous, we would surely expect that we made an error 
somewhere. 
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7-83 
Solution We are to find the functional relationship between the given parameters and name any established 
dimensionless parameters. 
 
Assumptions 1 The given parameters are the only ones relevant to the flow at hand. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 
Step 1 There are five parameters in this problem; n = 5, 

List of relevant parameters: ( ), , ,           5dz f F L E I n= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

zd F L E I 

{ }1L  { }1 1 2m L t−  { }1L  { }1 1 2m L t− −  { }4L  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 5 3 2k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. We cannot pick both length L and moment of inertia I 
since their dimensions differ only by a power. We also notice that we cannot choose F, L, and E since these three 
parameters can form a Π all by themselves. So, we set j = 3 – 1 = 2, and we choose two repeating parameters, expecting 
5 – 2 = 3 Πs, 

Repeating parameters: and L E   

 
Step 5 The Πs are generated. Note that for the first Π we do the algebra in our heads since zd has the same 
dimensions as L. The dependent Π is 

Π1: 1
dz

L
Π =   

This Π is not an established dimensionless group, although it is a ratio of two lengths, similar to an aspect ratio. 
 We form the second Π with force F: 

2
a bFL EΠ =  { } ( )( ) ( ){ }1 1 2 1 1 1 2

2 m L t L m L t
a b− − −Π =  

 

mass: { } { }0 1m m mb=  0 1 b= +  1b = −  

time: { } { }0 2 2t t t b− −=  0 2 2b= − −  1b = −  

length: { } { }0 1L L L La b−=  
0 1

1
a b

a b
= + −
= − +

 
2a = −  

which yields 
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Π2: 2 2

F
L E

Π =   

We do not recognize Π2 as a named dimensionless parameter. 
 The final Π is formed with moment of inertia. Since {I} = {L4}, there is no need to go through the algebra – we 
write 

Π3: 3 4

I
L

Π =   

Again, we do not recognize Π2 as a named dimensionless parameter. 
 
Step 6 We write the final functional relationship as 

Relationship between Πs: 2 4,dz F If
L L E L

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (2) 

 
Discussion We cannot determine the form of the relationship by purely dimensional reasoning since there are three Πs. 
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7-84 
Solution We are to generate dimensionless relationships among given parameters, and then we are to discuss how ΔP 
decreases if the time is doubled. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis  (a) We perform dimensional analyses using the method of repeating variables. First we analyze ΔP: 
 
Step 1 There are four parameters in this problem; n = 4, 

List of relevant parameters: ( ), ,           4P f t c E nΔ = =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

ΔP t c E 

{ }1 1 2m L t− −  { }1t  { }1 1L t−  { }1 2 2m L t−  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 4 3 1k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. We pick all the independent parameters – time t, speed 
of sound c, and energy E, 

Repeating parameters: , , and t c E   

 
Step 5 The dependent Π is generated:  

1 1 1
1

a b cP t c EΠ = Δ ×  { } ( )( ) ( ) ( ){ }1 1 11 1 2 1 1 1 1 2 2
1 m L t t L t m L t

a b c− − − −Π =  

 

mass: { } { }10 1m m mc=  10 1 c= +  1 1c = −  

length: 
{ } { }1 120 1L L L Lb c−=  1 1

1 1

0 1 2
1 2

b c
b c
= − + +
= −

 1 3b =  

time: 
{ } { }1 1 120 2t t t t ta b c− −−=  1 1 1

1 1 1

0 2 2
2 2

a b c
a b c
= − + − −
= + +

 1 3a =  

The dependent Π is thus 

Π1 for ΔP: 
3 3

1
t c P

E
Δ

Π =   

This Π is not an established one, so we leave it as is. 
 
Step 6 We write the final functional relationship as 

Relationship between Πs: 3 3constant EP
t c

Δ =  (2) 
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 We perform a similar dimensional analysis using the same repeating variables, but this time for radius r. We do 
not show the algebra since the Π can be found by inspection. We get 

Π1 for r: 1
r
ct

Π =   

Since this is the only Π, it must be equal to a constant, 

Relationship between Πs: constantr ct= ⋅  (3) 
 

(b) From Eq. 2 we see that if t is doubled, ΔP decreases by a factor of 23 = 8. 
 
Discussion The pressure rise across the blast wave decays rapidly with time (and with distance from the explosion). 
The speed of sound depends on temperature. If the explosion is of sufficient strength, T will increase significantly and c 
will not remain constant. 

  

 
 
 
 
 
 
 
 
7-85 
Solution We are to find an alternate definition of Archimedes number, and list it following the format of Table 7-5. 
Then we are to find an established Π group that is similar. 
 
Analysis Students’ responses will vary. There seems to be a plethora of definitions of Archimedes number. Here is 
the one most appropriate for buoyant fluids: 
 

Name Definition Ratio of significance 

Archimedes 
number 2Ar gL

V
ρ

ρ
Δ

=  buoyant force
inertial force

 

 
In the above, Δρ is a characteristic density difference in the fluid (due to buoyancy) and ρ is a characteristic or average 
density of the fluid. A glance through Table 7-5 shows that the Richardson number is very similar to this alternative 
definition of Ar. In fact, the alternate form of Ri (Problem 7-55) is identical to our new Ar. 
 
Discussion Some students may find other definitions that are also valid. For example, Δρ/ρ may be replaced by ΔT/T. 
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7-86 
Solution We are to generate a dimensionless relationship between the given parameters.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 3 The flow is fully developed. 
 
Analysis  The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 
Step 1 There are five parameters in this problem; n = 5, 

List of relevant parameters: , , ,           5dPu f h y n
dx

μ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

u h dP/dx μ y 

{ }1 1L t−  { }1L  { }1 2 2m L t− −  { }1 1 1m L t− −  { }1L  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 5 3 2k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. We cannot pick both h and y since they have the same 
dimensions. We choose 

Repeating parameters: h, dP/dx, and μ  

 
Step 5 The dependent Π is generated:  

1

1 1
1

b
a cdPuh

dx
μ⎛ ⎞Π = ⎜ ⎟

⎝ ⎠
 { } ( )( ) ( ) ( ){ }1 1 11 1 1 1 2 2 1 1 1

1 L t L m L t m L t
a b c− − − − −Π =  

 

mass: { } { }1 10m m mb c=  1 10 b c= +  1 1c b= −  

time: 
{ } { }1 120 1t t t tb c− −−=  1 1

1

0 1 2
0 1

b c
b

= − − −
= − −

 1

1

1
1

b
c
= −
=

 

length: { } { }1 1 120 1L L L L La b c− −=  1 1 1

1

0 1 2
0 1 1

a b c
a

= + − −
= + +

 1 2a = −  

The dependent Π is thus 

Π1: 1
2

u
dPh
dx

μ
Π =   

The independent Π is generated with variable y. Since {y} = {L}, and this is the same as one of the repeating variables (h), 
Π2 is simply y/h,  
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Π2: 2
y
h

Π =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: 1
2

u yf
dP hh
dx

μ ⎛ ⎞Π = = ⎜ ⎟
⎝ ⎠

 (2) 

 
Discussion If we were to solve this problem exactly (using the methods of Chap. 9) we would see that the functional 
relationship of Eq. 2 is correct. 

  

 
 
 
 
 
 
 
 
 
7-87 
Solution We are to generate a dimensionless relationship between the given parameters and then analyze the 
behavior of umax when an independent variable is doubled.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 3 The flow is fully developed. 
 
Analysis  (a) A step-by-step dimensional analysis procedure could be performed. However, we notice that umax has 
the same dimensions as u. Therefore the algebra would be identical to that of the previous problem except that there is only 
one Π instead of two since y is no longer a parameter. The result is 

Relationship between Πs: max
1

2
constant

u
C

dPh
dx

μ
Π = = =  (1) 

or 

Final relationship for umax: 
2

max
h dPu C

dxμ
=  (2) 

Alternatively, we can use the results of the previous problem directly. Namely, since we know that the maximum velocity 
occurs at the centerline, y/h = 1/2 there, and is a constant. Hence, Eq. 2 of the previous problem reduces to Eq. 1 of the 
present problem. 
 

(b) If h doubles, we see from Eq. 2 that umax will increase by a factor of 22 = 4. 
 

(c) If dP/dx doubles, we see from Eq. 2 that umax will increase by a factor of 21 = 2. 
 

(d) Since there is only one Π in this problem, we would need to conduct only one experiment to determine the constant C in 
Eq. 2. 
 
Discussion The constant turns out to be -1/8, but there is no way to determine this from dimensional analysis alone. To 
obtain the constant, we would need to either do an experiment, or solve the problem exactly using the methods discussed in 
Chap. 9. 
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7-88  [Also solved using EES on enclosed DVD] 
Solution We are to generate a relationship for Darcy friction factor f in terms of Euler number Eu. We are then to 
plot f as a function of Re and discuss whether Reynolds number independence has been achieved. 
 
Assumptions 1 The flow is fully developed. 2 The flow is steady and 
incompressible. 
 
Properties For water at T = 20oC and atmospheric pressure, ρ = 
998.0 kg/m3 and μ = 1.002 × 10-3 kg/m⋅s. 
 
Analysis (a) Since the flow is fully developed, the control volume 
cuts through two cross sections in which the velocity profiles are 
identical. The flow is also steady, so the control volume momentum 
equation in the horizontal (x) direction reduces to 

Conservation of momentum: 

,  pressure , shear stress 0x x xF F F= + =∑ ∑ ∑  
(1) 

We multiply pressure by cross-sectional area to obtain the pressure force, 
and wall shear stress times inner pipe wall surface area to obtain the shear 
stress force, 

2

, pressure , shear stress        
4x x w
DF P F DLπ τ π= Δ = −∑ ∑  (2) 

Note the negative sign in the shear stress term since τw points to the left. 
We substitute Eq. 2 into Eq. 1. After some algebra, 

Result: 
4 wL

P
D
τ

Δ =  (3) 

Finally, we divide both sides of Eq. 3 by ρV2 to convert ΔP into an Euler number, 

Nondimensional relationship: 2 2 2

4 81Eu
2

w wLP L
DV V D V

τ τ
ρ ρ ρ

⎛ ⎞Δ
= = = ⎜ ⎟

⎝ ⎠
 (4) 

We recognize the term in parentheses on the right as the Darcy friction factor. Thus, 

Final nondimensional relationship: 
1Eu
2

L f
D

=      or     2 EuDf
L

=  (5) 

 

(b) We use Eq. 5 to calculate f at each data point of Table P7-74. We plot f as a function of Re in Fig. 1. We see that the 
behavior of f mimics that of Eu (as it must because of Eq. 5 where we see that f is just a constant times Eu). Since 
Eu shows Reynolds number independence for Re greater than about 2 × 106, so does f. We see Reynolds number 
independence for Re greater than about 2 × 106. From the plot, the extrapolated value of f at large Re is about 
0.04867, which agrees with Eq. 5 when we plug in the Re-independent value of Eu, 

Extrapolated value of f: ( )0.104 m2 Eu 2 0.3042
1.3 m

Df
L

= = = 0.0487  (6) 

 
Discussion We show in Chap. 8 (the Moody chart) that f does indeed flatten out at high enough values of Re, depending 
on the relative roughness height, ε/D. 
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Re × 10-6

f Reynolds number 
independence 

 
 

FIGURE 1 
Nondimensionalized experimental data from 
a section of pipe. 
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7-89 
Solution We are to create characteristic scales so that we can define a desired established dimensionless parameter.  
 
Analysis  (a) For Froude number we need a velocity scale, a length scale, and gravity. We already have a length 
scale and gravity. We create a velocity scale as / L′V . We then define a Froude number as 

Froude number: 
3

Fr V
gL L gL gL

′ ′
= = =

V V
  

 

(b) For Reynolds number we need a velocity scale, a length scale, and kinematic viscosity. Of these we only have the 
kinematic viscosity, so we need to create a velocity scale and a length scale. After a “back of the envelope” analysis, we 
create a velocity scale as / L′V  where L is some undefined characteristic length scale. Thus, 

Reynolds number: Re LV L
Lν ν ν
′ ′

= = =
V V

  

Note that in this case, the length scales drop out, so it doesn’t matter that we could not define a length scale from the given 
parameters. 
 

(c) For Richardson number we need a length scale, the gravitational constant, a volume flow rate, a density, and a density 
difference. Of these we have all but the volume flow rate, so we create a volume flow rate scale as  L′V . Thus, 

Richardson number: 
( ) ( )

5 5 3

2 22
Ri L g L g L g

L

ρ ρ ρ
ρ ρ ρ

Δ Δ Δ
= = =

′ ′V V V
  

 
Discussion You can verify that each of the parameters above is dimensionless. 
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7-90 
Solution We are to find the functional relationship between the given parameters and name any established 
dimensionless parameters. 
 
Assumptions 1 The given parameters are the only ones relevant to the flow at hand. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 
Step 1 There are seven parameters in this problem; n = 7, 

List of relevant parameters: ( ), , , , ,           7V f d D h g nρ μ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

V d D ρ μ h g 

{ }1 1L t−  { }1L  { }1L  { }1 3m L−  { }1 1 1m L t− −  { }1L  { }1 2L t−  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 7 3 4k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. We pick length scale h, fluid density ρ, and gravitational 
constant g. 

Repeating parameters: , , and h gρ   

 
Step 5 The Πs are generated. Note that in this case we do the algebra in our heads since these relationships are very 
simple. The dependent Π is 

Π1 = a Froude number: 1
V
gh

Π =   

This Π is a type of Froude number. Similarly, the two length-scale Πs are obtained easily, 

Π2: 2
d
h

Π =   

and 

Π3: 3
D
h

Π =   

Finally, the Π formed with viscosity is generated, 

4 4 4
4

a b ch gμ ρΠ =  { } ( )( ) ( ) ( ){ }4 4 41 1 1 1 1 3 1 2
4 m L t L m L L t

a b c− − − −Π =  

 

mass: { } { }40 1m m mb=  40 1 b= +  4 1b = −  

time: { } { }420 1t t t c−−=  40 1 2c= − −  4
1
2

c = −  
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length: 
{ } { }4 4 430 1L L L L La b c−−=  4 4 4

1
4 2

0 1 3
0 1 3

a b c
a

= − + − +

= − + + −
 4

3
2

a = −  

which yields 

Π4: 4 3
2h g

μ

ρ
Π =   

We recognize this Π as the inverse of a kind of Reynolds number. We also split the h terms to separate them into a length 
scale and (when combined with g) a velocity scale. The final form is 

Modified Π4 = a Reynolds number: 4

h ghρ
μ

Π =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: , ,
h ghV d Df

h hgh
ρ

μ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (2) 

 
Discussion You may choose different repeating variables, and may generate different nondimensional groups. If you do 
the algebra correctly, your answer is not “wrong” – you just may not get the same dimensionless groups. 
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7-91 
Solution We are to find a dimensionless relationship among the given parameters.  
 
Assumptions 1 The given parameters are the only ones relevant to the flow at hand. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 

Step 1 There are seven parameters in this problem; n = 7, 

List of relevant parameters: ( )empty , , , , ,           7t f d D h g nρ μ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

tempty d D ρ μ h g 

{ }1t  { }1L  { }1L  { }1 3m L−  { }1 1 1m L t− −  { }1L  { }1 2L t−  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 7 3 4k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. We pick length scale h, fluid density ρ, and gravitational 
constant g. (Note: these are the same repeating parameters as in the previous problem.) 

Repeating parameters: , , and h gρ   
 

Step 5 The Πs are generated. We leave out the details since the algebra is trivial and can be done by inspection in 
most cases. The dependent Π is 

Π1: 1 empty
gt
h

Π =   

The rest of the Πs are identical to those of the previous problem. 
 
Step 6 We write the final functional relationship as 

Relationship between Πs: empty , ,
h ghg d Dt f

h h h
ρ

μ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (2) 

 

Discussion You may choose different repeating variables, and may generate different nondimensional groups. If you do 
the algebra correctly, your answer is not “wrong” – you just may not get the same dimensionless groups. 
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7-92 
Solution We are to calculate the temperature of water in a model test to ensure similarity with the prototype, and we 
are to predict the time required to empty the prototype tank.  
 
Assumptions 1 The parameters specified in the previous problem are the only parameters relevant to the problem. 2 The 
model and prototype are geometrically similar. 
 
Properties For ethylene glycol at 60oC, ν = μ/ρ = 4.75×10-6 m2/s (given). 
 
Analysis  
(a) We use the functional relationship obtained in the previous problem, 

Dimensionless relationship: empty , ,
h ghg d Dt f

h h h
ρ

μ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (1) 

Since the model and prototype are geometrically similar, (d/h)model = (d/h)prototype and (D/h)model = (D/h)prototype. Thus, we are 
left with only one Π to match to ensure similarity. Namely, the Reynolds number parameter in Eq. 1 must be matched 
between model and prototype. Since g remains the same in either case, and using “m” for model and “p” for prototype, 

Similarity: 

3
2

p pm

m p mm p

  or  
hh gh h gh
h

ρρ ρ ρ
μ μ μ μ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (2) 

We recognize that ν = μ/ρ, and we know that hp/hm = 4. Thus, Eq. 2 reduces to 

Similarity: ( )
3

32
p 6 2 7 22

m p
m

4.75 10  m /s 4 5.94 10  m /s
h
h

ν ν

−
−

− −⎛ ⎞
= = × = ×⎜ ⎟

⎝ ⎠
 (3) 

For similarity we need to find the temperature of water where the kinematic viscosity is 5.94×10-7 m2/s. By interpolation 
from the property tables, the designers should run the model tests at a water temperature of 45.8oC. 
 

(b) At dynamically similar conditions, Eq. 1 yields 

At dynamically similar conditions:
 

p
empty empty empty,p empty,m

mp m

    4.53 min 4
hg gt t t t

h h h
⎛ ⎞ ⎛ ⎞

= → = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

9.06 min

 

(5) 

 
Discussion We set up Eqs. 3 and 5 in terms of ratios of hp to hm so that the actual dimensions are not needed – just the 
ratio is needed, and it is given. 
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7-93 
Solution For the simplified case in which V depends only on h and g, we are to determine how V increases when h is 
doubled. 
 
Assumptions 1 The given parameters are the only ones relevant to the problem. 
 
Analysis We employ the dimensional analysis results of Problem 7-90. Dropping d, D, ρ, and μ from the list of 
parameters, we are left with n = 3, 

List of relevant parameters: ( ),           3V f h g n= =  (1) 

We perform the analysis in our heads –only one Π remains, and it is therefore set to a constant. The final result of the 
dimensional analysis is 

Relationship between Πs: constantV
gh

=  (2) 

Thus, when h is doubled, we can easily calculate the factor by which V increases, 

Increase in V: 2 1 2
2 1 1

12 1

 or  2
V V h

V V V
hgh gh

= = =  (3) 

Thus, when h increases by a factor of 2, V increases by a factor of 2 . 
 
Discussion We don’t need to know the constant in Eq. 2 to solve the problem. However, it turns out that the constant is 

2  (see Chap. 5). 
  

 
 
 
 
 
 
7-94 
Solution We are to verify the dimensions of particle relaxation time τp, and then identify the established 
dimensionless parameter formed by nondimensionalization of τp. 
 
Analysis  First we obtain the primary dimensions of τp, 

Primary dimensions of τp: { } { }
2

3
m L
L

m
Lt

pτ

⎧ ⎫×⎪ ⎪⎪ ⎪= =⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

t   

A characteristic time scale for the air flow is L/V. Thus, we nondimensionalize τp, 

Nondimensionalized particle relaxation time: 
2

*
18

p p
p p

d V
L

ρ
τ τ

μ
= =   

From Table 7-5 we recognize this as the Stokes number, Stk, 

Stokes number: 
2

Stk
18

p pd V
L

ρ
μ

=   

 

Discussion Stokes number is useful when studying the flow of aerosol particles. 
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7-95 
Solution We are to compare the primary dimensions of each given property in mass-based and force-based primary 
dimensions, and discuss.  
 
Analysis From previous problems and examples in this chapter, we can write down the primary dimensions of each 
property in the mass-based system. We use the fundamental definitions of these quantities to generate the primary 
dimensions in the force-based system: 
 

(a) For pressure P the primary dimensions are 
 

Mass-based primary dimensions Force-based primary dimensions 

{ } 2

m
t L

P ⎧ ⎫= ⎨ ⎬
⎩ ⎭

 { } 2

force F
area L

P ⎧ ⎫ ⎧ ⎫= =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

 

 

(b) For moment M  the primary dimensions are 
 

Mass-based primary dimensions Force-based primary dimensions 

{ }
2

2

Lm
t

M
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 { } { } { }force moment arm FLM = × =  

 

(c) For energy E the primary dimensions are 
 

Mass-based primary dimensions Force-based primary dimensions 

{ }
2

2

Lm
t

E
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 
{ } { } { }force distance FLE = × =  

We see that (in these three examples anyway), the forced-base cases have only two primary dimensions represented (F and 
L), whereas the mass-based cases have three primary dimensions represented (m, L, and t). Some authors would prefer the 
force-based system because of its reduced complexity when dealing with forces, pressures, energies, etc.  
 
Discussion Not all variables have a simpler form in the force-based system. Mass itself for example has primary 
dimensions of {m} in the mass-based system, but has primary dimensions of {Ft2/L} in the force-based system. In 
problems involving mass, mass flow rates, and/or density, the force-based system may not have any advantage. 
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7-96 
Solution The pressure difference between the inside of a soap bubble and the outside air is to be analyzed with 
dimensional analysis and the method of repeating variables using the force-based system of primary dimensions. 
 
Assumptions 1 The soap bubble is neutrally buoyant in the air, and gravity is not relevant. 2 No other variables or 
constants are important in this problem. 
 
Analysis The step-by-step method of repeating variables is employed. 
 
Step 1 There are three variables and constants in this problem; n = 3, 

 ( ),           3sP f R nσΔ = =  (1) 
 

Step 2 The primary dimensions of each parameter are listed. The dimensions of pressure are force per area and those of 
surface tension are force per length. 
 

ΔP R σs 

{ }1 2F L−  { }1L  { }1 1F L−  
 

Step 3 As a first guess, j is set equal to 2, the number of primary dimensions represented in the problem (F and L). 

Reduction: 2j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 3 2 1k n j= − = − =   
 

Step 4 We choose two repeating parameters since j = 2. Our only choice is R and σs since ΔP is the dependent variable. 
 

Step 5 The dependent Π is generated:  

1 1
1

a b
sPR σΠ = Δ  { } { } ( ) ( ){ }1

10 0 1 2 1 1
1 F L F L L F L

ba− −Π = =  

 

force: { } { }10 1F F Fb=  10 1 b= +  1 1b = −  

length: 
{ } { }1 10 2L L L La b−−=  1 1

1 1

0 2
2

a b
a b
= − + −
= +

 1 1a =  

Eq. 1 thus becomes 

Π1: 1
s

PR
σ
Δ

Π =  (2) 

From Table 7-5, the established nondimensional parameter most similar to Eq. 2 is the Weber number, defined as a 
pressure times a length divided by surface tension. There is no need to further manipulate this Π. 
 

Step 6 We now write the functional relationship between the nondimensional parameters. Since there is only one Π, it is a 
function of nothing, which means it must be a constant, 

Relationship between Πs: ( )1 nothing constant        
s

PR f
σ
Δ

Π = = = → constant sP
R
σ

Δ =  (3) 

The result using force-based primary dimensions is indeed identical to the previous result using the mass-based system.  
 
Discussion Because only two primary dimensions are represented in the problem when using the force-based system, 
the algebra is in fact a lot easier. 
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7-97 
Solution We are to a third established nondimensional parameter that is formed by the product or ratio of two given 
established nondimensional parameters.  
 
Analysis  
(a) The product of Reynolds number and Prandtl number yields 

Reynolds number times Prandtl number: Re Pr P Pc LVcLV
k k
μ ρρ

μ
× = × =  (1) 

We recognize Eq. 1 as the Peclet number, 

Peclet number: Pe Re Pr PLVc LV
k

ρ
α

= × = =  (2) 

 

(b) The ratio of Schmidt number and Prandtl number yields 

Schmidt number divided by Prandtl number: Sc
Pr

AB

P P AB

D k
c c D

k

μ
ρ

μ ρ
= =  (3) 

We recognize Eq. 3 as the Lewis number, 

Lewis number: 
ScLe
Pr P AB AB

k
c D D

α
ρ

= = =  (4) 

 

(c) The product of Reynolds number and Schmidt number yields 

Reynolds number times Schmidt number: Re Sc
AB AB

LV LV
D D

ρ μ
μ ρ

× = × =  (5) 

We recognize Eq. 5 as the Sherwood number, 

Sherwood number: Sh Re Sc
AB

LV
D

= × =  (6) 

 
Discussion Can you find any other such combinations from Table 7-5? 
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7-98 
Solution We are to determine the relationship between four established nondimensional parameters, and then try to 
form the Stanton number by some combination of only two other established dimensionless parameters.  
 
Analysis We manipulate Re, Nu, and Pr, guided by the known result. After some trial and error, 

Stanton number: 
NuSt

Re Pr P p

Lh
hk

cVL c V
k
μρ ρ

μ

= = =
× ×

 (1) 

We recognize from Table 7-5 (or from the previous problem) that Peclet number is equal to the product of Reynolds 
number and Prandtl number. Thus, 

Stanton number: 
NuSt
Pe P p

Lh
hk

LVc c V
k

ρ ρ
= = =  (2) 

 

Discussion Not all named, established dimensionless parameters are independent of other named, established 
dimensionless parameters. 

  

 
 
7-99 
Solution We are to find the functional relationship between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis  First we do some thinking. If we imagine traveling at the same speed as the bottom plate, the flow would 
be identical to that of Problem 7-56 except that the top plate speed would be (Vtop – Vbottom) instead of just V. The step-by-
step method of repeating variables is otherwise identical to that of Problem 7-56, and the details are not included here. The 
final functional relationship is 

Relationship between Πs: 
top bottom

Re,u yf
V V h

⎛ ⎞= ⎜ ⎟− ⎝ ⎠
 (1) 

where 

Reynolds number: 
( )top bottomRe
V V hρ

μ

−
=  (2) 

 

Discussion It is always wise to look for shortcuts like this to save us time. 
  

 
 
7-100 
Solution We are to determine the primary dimensions of electrical charge.  
 
Analysis The fundamental definition of electrical current is charge per unit time. Thus, 

Primary dimensions of charge: { } { } { }current timeq = × = I t  (1) 

Or, in exponent form, {q} = {t1 I1}. 
 
Discussion We see that all dimensions, even those of electrical properties, can be expressed in terms of primary 
dimensions. 
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7-101 
Solution We are to determine the primary dimensions of electrical capacitance.  
 
Analysis Electrical capacitance C is measured in units of farads (F). By definition, a one-farad capacitor with an 
applied electric potential of one volt across it will store one coulomb of electrical charge. Thus, 

Primary dimensions of capacitance:

 { } { } 2

3

I tcharge / voltage
mL
t I

C

⎧ ⎫
⎪ ⎪ ⎧ ⎫⎪ ⎪= = =⎨ ⎬ ⎨ ⎬

⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

2 4

2

I t
mL

 (1) 

where the primary dimensions of voltage are obtained from Problem 7-10, and those of electric charge are obtained from 
the previous problem. Or, in exponent form, {C} = {m-1 L-2 t4 I2}. 
 
Discussion We see that all dimensions, even those of electrical properties, can be expressed in terms of primary 
dimensions. 

  

 
 
 
7-102 
Solution We are to determine the primary dimensions of electrical time constant RC, and discuss the significance of 
our result.  
 
Analysis The primary dimensions of electrical resistance are obtained from Problem 7-11. Those of electrical 
capacitance C are obtained from the previous problem. Thus, 

Primary dimensions of electrical time constant RC:

 { } { } { }
2 2 4

3 2 2

mL I tresistance capacitance
t I mL

RC
⎧ ⎫

= × = × =⎨ ⎬
⎩ ⎭

t  (1) 

Thus we see that the primary dimensions of RC are those of time. This explains why a resistor and capacitor in series is 
often used in timing circuits. 
 
Discussion The cut-off frequency of the low-pass filter is proportional to 1/R⋅C. If the resistor and the capacitor were to 
swap places we would have a high-pass rather than a low-pass filter. 

  

 
 
 
7-103 
Solution We are to determine the primary dimensions of both sides of the equation, and we are to verify that the 
equation is dimensionally homogeneous.  
 
Analysis The primary dimensions of the time derivative (d/dt) are 1/time. The primary dimensions of capacitance are 
current2×time4 / (mass×length2), as obtained from Problem 7-101. Thus both sides of the equation can be written in terms of 
primary dimensions, 

{ } { }currentI =  { } { }II =  

{ }

2

2 4 3

2

mass length
current time current time current

timemass length
dEC
dt

⎧ ⎫×
⎪ ⎪×⎪ ⎪×= =⎨ ⎬

×⎪ ⎪
⎪ ⎪⎩ ⎭

 { }IdEC
dt

⎧ ⎫ =⎨ ⎬
⎩ ⎭

 

Indeed, both sides of the equation have the same dimensions, namely {I}. 
 
Discussion Current is one of our seven primary dimensions. These results verify our algebra in Problem 7-101. 
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7-104 
Solution We are to find the functional relationship between the given parameters, and then answer some questions 
about scaling. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis 
(a) The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the Πs). 
 
Step 1 There are four parameters in this problem; n = 4, 

List of relevant parameters: ( ), ,           4P f D nδ ρ= =V  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

δP ρ V  D 

{ }1 1 2m L t− −  { }1 3m L−  { }3 1L t−  { }1L  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 4 3 1k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. We only have one choice in this problem, since there are 
only three independent parameters on the right-hand side of Eq. 1, 

Repeating parameters: ρ, V , and D  

 
Step 5 The dependent Π is generated:  

1 1 1
1

a b cP Dδ ρΠ = V  { } ( )( ) ( ) ( ){ }1 1 11 1 2 1 3 3 1 1
1 m L t m L L t L

a b c− − − −Π =  

 

mass: { } { }110m m a+=  10 1 a= +  1 1a = −  

time: { } { }120t t b− −=  10 2 b= − −  1 2b = −  

length: { } { }1 1 13 30 1L L L L La b c−−=  1 1 10 1 3 3a b c= − − + +  1 4c =  

The dependent Π is thus 

Π1: 
4

1 2

D Pδ
ρ

Π =
V

  

 
Step 6 Since there is only one Π, it is a function of nothing. This is only possible if we set the Π equal to a constant. We 
write the final functional relationship as 

Relationship between Πs: 
4

1 2
constantD Pδ

ρ
Π = =

V
 (2) 
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(b) We re-write Eq. 2 as 

Equation for δP: 
2

4constantP
D
ρδ =
V  (3) 

Thus, if we double the size of the cyclone, the pressure drop will decrease by a factor of 24 = 16. 
 

(c) Also from Eq. 3 we see that if we double the volume flow rate, the pressure drop will increase by a factor of 22 = 
4. 
 
Discussion The pressure drop would be smallest for the largest cyclone operating at the smallest volume flow rate. 
(This agrees with our intuition.) 
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7-105 
Solution We are to find the functional relationship between the given parameters, and then answer some questions 
about scaling. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis 
(a) The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the Πs). 
 
Step 1 There are five parameters in this problem; n = 5, 

List of relevant parameters: ( ), , ,           5p f pw f q E D nμ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

w qp Ef μ Dp 

{ }1 1L t−  { }1 1I t  { }1 1 3 1m L t I− −  { }1 1 1m L t− −  { }1L  
where the primary dimensions of voltage are obtained from Problem 7-10, and those of electric charge are obtained from 
Problem 7-100. 
 
Step 3 As a first guess, j is set equal to 4, the number of primary dimensions represented in the problem (m, L, t, and I). 

Reduction: 4j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 5 4 1k n j= − = − =   

 
Step 4 We need to choose four repeating parameters since j = 4. We only have one choice in this problem, since there are 
only four independent parameters on the right-hand side of Eq. 1, 

Repeating parameters: qp, E, Dp, and μ  

 
Step 5 The dependent Π is generated:  

1 1 1 1
1

a b c d
p f pwq E DμΠ =  { } ( )( ) ( ) ( ) ( ){ }1 1 1 11 1 1 1 1 1 3 1 1 1 1 1

1 L t I t m L t I m L t L
a b c d− − − − −Π =  

 

current: { } { }1 10I I Ia b−=  1 10 a b= −  1 1a b=  

mass: { } { }1 10m m mb c=  1 10 b c= +  1 1 1c b a= − = −  

time: 
{ } { }1 1 130 1t t t t ta b c− −−=  1 1 10 1 3a b c= − + − −  1 1

1

1
1

a b
c
= = −
=

 

length: { } { }1 1 10 1L L L L Lb c d−=  1 1 10 1 b c d= + − +  1 1d =  

The dependent Π is thus 

Π1: 1
p

p f

w D
q E
μ

Π =   
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Step 6 Since there is only one Π, it is a function of nothing. This is only possible if we set the Π equal to a constant. We 
write the final functional relationship as 

Relationship between Πs: 1 constantp

p

w D
q E
μ

Π = =  (2) 

 

(b) We re-write Eq. 2 as 

Equation for w: constant p f

p

q E
w

Dμ
=  (3) 

Thus, if we double the electric field strength, the drift velocity will increase by a factor of 2. 
 

(c) Also from Eq. 3 we see that if we double the particle size, the drift velocity will decrease by a factor of 2. 
 
Discussion These results agree with our intuition. Certainly we would expect the drift velocity to increase if we 
increase the field strength. Also, larger particles have more aerodynamic drag, so for the same charge, we would expect a 
larger dust particle to drift more slowly than a smaller dust particle. 

  

 
 



Chapter 7 Dimensional Analysis and Modeling 

7-92 
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to 
teachers and educators for course preparation.  If you are a student using this Manual, you are using it without permission. 

7-106 
Solution We are to generate a dimensionless functional relationship between the given parameters and then compare 
our results with a known exact analytical solution.  
 
Assumptions 1 There is no flow (hydrostatics). 2 The parameters listed here are the only relevant parameters in the 
problem. 
 
Analysis  (a) We perform a dimensional analysis using the method of repeating variables. 
 
Step 1 There are five parameters in this problem; n = 6, 

List of relevant parameters: ( ), , , ,           6sh f g D nρ σ φ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

h ρ g σs D φ 

{ }1L  { }1 3m L−  { }1 2L t−  { }1 2m t−  { }1L  { }1  

Note that the dimensions of the contact angle are unity (angles are dimensionless). 
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 6 3 3k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. We cannot choose φ since it is dimensionless. We 
choose a length (D) and a density (ρ). We’d rather have gravitational constant g than surface tension σs in our Πs. So, we 
choose 

Repeating parameters: ρ, g, D  

 
Step 5 The dependent Π is generated. Since h has the same dimensions as D, we immediately write 

Π1: 1
h
D

Π =   

The first independent Π is generated by combining σs with the repeating parameters, 

2 2 2
2

a b c
s g Dσ ρΠ =  { } ( )( ) ( ) ( ){ }2 2 21 2 1 3 1 2 1

2 m t m L L t L
a b c− − −Π =  

 

mass: { } { }20 1m m ma=  20 1 a= +  2 1a = −  

time: { } { }220 2t t t b−−=  20 2 2b= − −  2 1b = −  

length: { } { }2 2 230L L L La b c−=  2 2 2

2 2 2

0 3
3

a b c
c a b
= − + +
= −

 2 2c = −  

The first independent Π is thus 

Π2: 2 2
s

gD
σ

ρ
Π =   

Finally, the third Π (second independent Π) is simply angle φ itself since it is dimensionless, 
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Π3: 3 φΠ =   
 

Step 6 We write the final functional relationship as 

Relationship between Πs: 2 ,sh f
D gD

σ
φ

ρ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (2) 

 

(b) From Chap. 2 we see that the exact analytical solution is 

Exact relationship: 4 cossh
gD
σ

φ
ρ

=  (3) 

Comparing Eqs. 2 and 3, we see that they are indeed of the same form. In fact, 

Functional relationship: 1 2 3constant cosΠ = ×Π × Π  (4) 
 

Discussion We cannot determine the constant in Eq. 4 by dimensional analysis. However, one experiment is enough to 
establish the constant. Or, in this case we can find the constant exactly. Viscosity is not relevant in this problem since there 
is no fluid motion. 

  

 
 
 

7-107 
Solution We are to find a functional relationship for the time scale required for the liquid to climb up the capillary 
tube. 
 

Assumptions 1 trise is a function of the same parameters listed in the previous problem, but there is another relevant 
parameter. 
 

Analysis Since this is an unsteady problem, the rise time will surely depend also on fluid viscosity μ. The list of 
parameters now involves seven parameters, 

List of relevant parameters: ( )rise , , , , ,           7st f g D nρ σ φ μ= =  (1) 

and we expect four Πs. We choose the same repeating parameters and the algebra is similar to that of the previous problem. 
It turns out that 

Π1: 1 rise
gt
D

Π =   

The second and third Π are the same as those of the previous problem. Finally, the fourth Π is formed by combining μ 
with the repeating parameters. We expect some kind of Reynolds number. We can do the algebra in our head. Specifically, 
a velocity scale can be formed as gD . Thus, 

Π4: 4 Re
D gDρ
μ

Π = =   

The final functional relationship is 

Relationship between Πs: rise 2 , ,Resgt f
D gD

σ
φ

ρ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (2) 

 

Discussion If we would have defined a time scale as /D g , we could have written Π1 by inspection as well, saving 
ourselves some algebra. 
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7-108 
Solution We are to use dimensional analysis to find the functional relationship between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 
Step 1 There are four parameters in this problem; n = 4, 

List of relevant parameters: ( ), ,           4I f P c nρ= =  (1) 

 
Step 2 The dimensions of I are those of power per area. The primary dimensions of each parameter are listed, 
 

I P c ρ 

{ }1 3m t−  { }1 1 2m L t− −  { }1 1L t−  { }1 3m L−  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 4 3 1k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. The problem is that the three independent parameters 
form a Π all by themselves (c2ρ/P is dimensionless). Let’s see what happens if we don’t notice this, and we pick all three 
independent parameters as repeating variables, 

Repeating parameters: , , and P cρ   

 
Step 5 The Π is generated: 

1
a b cI P cρΠ = ×  { } ( )( ) ( ) ( ){ }1 3 1 1 2 1 3 1 1

1 m t m L t m L L t
a b c− − − − −Π =  

 

mass: { } { }0 1m m m ma b=  0 1 a b= + +  1a b= − −  

time: { } { }0 3 2t t t ta c− − −=  
0 3 2

3 2
a c

c a
= − − −
= − −

 1 2c b= − +  

length: { } { }0 3L L L La b c− −=  
0 3

3
a b c

c a b
= − − +
= +

 1 2c b= − +  

This is a situation in which two of the equations agree, but we cannot solve for unique exponents. If we knew b, we could 
get a and c. The problem is that any value of b we choose will make the Π dimensionless. For example, if we choose b = 1, 
we find that a = –2 and c = 1, yielding 

Π1 for the case with b = 1: 1 2

I c
P
ρ

Π =   

Since there is only one Π, we write 

Functional relationship for the case with b = 1: 
2

constant PI
cρ

= ×  (2) 
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However, if we choose a different value of b, say b = –1, then a = 0 and c = –3, yielding 

Π1 for the case with b = –1: 1 3

I
cρ

Π =   

Since there is only one Π, we write 

Functional relationship for the case with b = –1: 3constantI cρ= ×  (3) 

Similarly, you can come up with a whole family of possible answers, depending on your choice of b. We double check our 
algebra and realize that any value of b works. Hence the problem is indeterminate with three repeating variables. 
 We go back now and realize that something is wrong. As stated previously, the problem is that the three 
independent parameters can form a dimensionless group all by themselves. This is another case where we have to reduce j 
by 1. Setting j = 3 – 1 = 2, we choose two repeating parameters, 

Repeating parameters: and cρ   

We jump to Step 5 of the method of repeating variables, 
 
Step 5 The first Π is generated: 

1
a bI cρΠ =  { } ( )( ) ( ){ }1 3 1 3 1 1

1 m t m L L t
a b− − −Π =  

 

mass: { } { }0 1m m ma=  0 1 a= +  1a = −  

time: { } { }0 3t t t b− −=  0 3 b= − −  3b = −  

length: { } { }0 3L L La b−=  
0 3

3
a b

b a
= − +
=

 3b = −  

Fortunately, the results for time and length agree. The dependent Π is thus 

Π1: 1 3

I
cρ

Π =   

We form the second Π with sound pressure P, 

2
e fP cρΠ =  { } ( )( ) ( ){ }1 1 2 1 3 1 1

2 m L t m L L t
e f− − − −Π =  

 

mass: { } { }0 1m m me=  0 1 e= +  1e = −  

time: { } { }0 2t t t f− −=  0 2 f= − −  2f = −  

length: { } { }0 1 3L L L Le f− −=  
0 1 3

1 3
e f

f e
= − − +
= +

 
2f = −  

The second Π is thus 

Π2: 2 2

P
cρ

Π =   

 
Step 6 We write the final functional relationship as 
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Relationship between Πs: 3 2

I Pf
c cρ ρ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (4) 

 

(b) We try the force-based primary dimension system instead. 
 
Step 1 There are four parameters in this problem; n = 4, 

List of relevant parameters: ( ), ,           4I f P c nρ= =  (5) 

 
Step 2 The dimensions of I are those of power per area. The primary dimensions of each parameter are listed, 
 

I P c ρ 

{ }1 1 1F L t− −  { }1 2F L−  { }1 1L t−  { }1 2 4F t L−  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (F, L, and t). 
Again, however, the three independent parameters form a dimensionless group all by themselves. Thus we lower j by 1. 

Reduction: 2j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 4 2 2k n j= − = − =   

 
Step 4 We need to choose two repeating parameters since j = 2. We pick the same two parameters as in Part (a), 

Repeating parameters: and cρ   

 
Step 5 The first Π is generated: 

1
b cI cρΠ = ×  { } ( )( ) ( ){ }1 1 1 1 2 4 1 1

1 F L t F t L L t
b c− − − −Π =  

 

force: { } { }0 1F F Fb=  0 1 b= +  1b = −  

time: { } { }0 1 2t t t tb c− −=  
0 1 2

1 2
b c

c b
= − + −
= − +

 
3c = −  

length: { } { }0 1 4L L L Lb c− −=  
0 1 4

1 4
b c

c b
= − − +
= +

 
3c = −  

Again the two results for length and time agree. The dependent Π is thus 

Π1: 1 3

I
cρ

Π =   

We form the second Π with sound pressure P, 

2
e fP cρΠ = ×  { } ( )( ) ( ){ }1 2 1 2 4 1 1

2 F L F t L L t
e f− − −Π =  

 

force: { } { }0 1F F Fe=  0 1 e= +  1e = −  
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time: { } { }0 2t t te f− −=  
0 2

2
e f

f e
= − −
= −

 
2f = −  

length: { } { }0 2 4L L L Le f− −=  
0 2 4

2 4
e f

f e
= − − +
= +

 
2f = −  

The second Π is thus 

Π2: 2 2

P
cρ

Π =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: 3 2

I Pf
c cρ ρ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (6) 

 
Discussion Equations 4 and 6 are the same. This exercise shows that you should get the same results using mass-based 
or force-based primary dimensions. 
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7-109 
Solution We are to find the dimensionless relationship between the given parameters.  
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the 
Πs). 
 
Step 1 There are now five parameters in this problem; n = 5, 

List of relevant parameters: ( ), , ,           5I f P c r nρ= =  (1) 

 
Step 2 The dimensions of I are those of power per area. The primary dimensions of each parameter are listed, 
 

I P c ρ r 

{ }1 3m t−  { }1 1 2m L t− −  { }1 1L t−  { }1 3m L−  { }1L  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions represented in the problem (m, L, and t). 

Reduction: 3j =   

If this value of j is correct, the expected number of Πs is 

Number of expected Πs: 5 3 2k n j= − = − =   

 
Step 4 We need to choose three repeating parameters since j = 3. We pick the three simplest independent parameters (r 
instead of P), 

Repeating parameters: , , and r cρ   

 
Step 5 The first Π is generated: 

1
a b cI r cρΠ = ×  { } ( )( ) ( ) ( ){ }1 3 1 1 3 1 1

1 m t L m L L t
a b c− − −Π =  

 

mass: { } { }0 1m m mb=  0 1 b= +  1b = −  

time: { } { }0 3t t t c− −=  0 3 c= − −  3c = −  

length: { } { }0 3L L L La b c−=  
0 3

3
a b c

a b c
= − +
= −

 
0a =  

The first Π is thus 

Π1: 1 3

I
cρ

Π =   

We form the second Π with sound pressure P, 

2
d e fP r cρΠ = ×  { } ( )( ) ( ) ( ){ }1 1 2 1 1 3 1 1

2 m L t L m L L t
d e f− − − −Π =  

 

mass: { } { }0 1m m me=  0 1 e= +  1e = −  
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time: { } { }0 2t t t f− −=  0 2 f= − −  2f = −  

length: { } { }0 1 3L L L L Ld e f− −=  
0 1 3

1 3
d e f

d e f
= − + − +
= + −

 
0d =  

The second Π is thus 

Π2: 2 2

P
cρ

Π =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: 3 2

I Pf
c cρ ρ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (2) 

 
Discussion This is an interesting case in which we added another independent parameter (r), yet this new parameter 
does not even appear in the final functional relationship! The list of independent parameters is thus over specified. (It turns 
out that P is a function of r, so r is not needed in the problem.) The result here is identical to the result of the previous 
problem. It turns out that the function in Eq. 2 is a constant times Π2

2, which yields the correct analytical equation for I, 
namely 

Analytical result: 
2

constant PI
cρ

= ×  (3) 
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