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Introductory Problems 
 
 
4-1C 
Solution We are to define and explain kinematics and fluid kinematics.  
 
Analysis Kinematics means the study of motion. Fluid kinematics is the study of how fluids flow and how to 
describe fluid motion. Fluid kinematics deals with describing the motion of fluids without considering (or even 
understanding) the forces and moments that cause the motion. 
 
Discussion Fluid kinematics deals with such things as describing how a fluid particle translates, distorts, and rotates, 
and how to visualize flow fields. 

  

 
4-2 
Solution We are to write an equation for centerline speed through a nozzle, given that the flow speed increases 
parabolically.  
 
Assumptions 1 The flow is steady. 2 The flow is axisymmetric. 3 The water is incompressible. 
 
Analysis A general equation for a parabola in the x direction is 

General parabolic equation: ( )2u a b x c= + −  (1) 

We have two boundary conditions, namely at x = 0, u = uentrance and at x = L, u = uexit. By inspection, Eq. 1 is satisfied by 
setting c = 0, a = uentrance and b = (uexit - uentrance)/L2. Thus, Eq. 1 becomes 

Parabolic speed: 
( )exit entrance 2

entrance 2

u u
u u x

L
−

= +  (2) 

 
Discussion You can verify Eq. 2 by plugging in x = 0 and x = L. 

  

 
 
4-3 
Solution For a given velocity field we are to find out if there is a stagnation point. If so, we are to calculate its 
location.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis The velocity field is 

 ( ) ( ) ( ), 0.5 1.2 2.0 1.2V u v x i y j= = + + − −  (1) 

At a stagnation point, both u and v must equal zero. At any point (x,y) in the flow field, the velocity components u and v are 
obtained from Eq. 1, 

Velocity components: 0.5 1.2           2.0 1.2u x v y= + = − −  (2) 

Setting these to zero yields 

Stagnation point: 
0 0.5 1.2           0.4167
0 2.0 1.2         1.667

x x
y y

= + = −
= − − = −

 (3) 

So, yes there is a stagnation point; its location is x = -0.417, y = -1.67 (to 3 digits). 
 

Discussion If the flow were three-dimensional, we would have to set w = 0 as well to determine the location of the 
stagnation point. In some flow fields there is more than one stagnation point. 
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4-4 
Solution For a given velocity field we are to find out if there is a stagnation point. If so, we are to calculate its 
location.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis The velocity field is  

 ( ) ( )( ) ( )22 2, 2 2V u v a b cx i cby c xy j= = − − + − +  (1) 

At a stagnation point, both u and v must equal zero. At any point (x,y) in the flow field, the velocity components u and v are 
obtained from Eq. 1, 

Velocity components: ( )22 2          2 2u a b cx v cby c xy= − − = − +  (2) 

Setting these to zero and solving simultaneously yields 

Stagnation point: 
( )22

2

0           

2 2         0

b aa b cx x
c

v cby c xy y

−
= − − =

= − + =
 (3) 

So, yes there is a stagnation point; its location is x = (b – a)/c, y = 0. 
 
Discussion If the flow were three-dimensional, we would have to set w = 0 as well to determine the location of the 
stagnation point. In some flow fields there is more than one stagnation point. 

  

 
 
 
 
Lagrangian and Eulerian Descriptions 
 
 
 
4-5C 
Solution We are to define the Lagrangian description of fluid motion.  
 
Analysis In the Lagrangian description of fluid motion, individual fluid particles (fluid elements composed of a 
fixed, identifiable mass of fluid) are followed. 
 
Discussion The Lagrangian method of studying fluid motion is similar to that of studying billiard balls and other solid 
objects in physics. 

  

 
 
 
4-6C 
Solution We are to compare the Lagrangian method to the study of systems and control volumes and determine to 
which of these it is most similar.  
 
Analysis The Lagrangian method is more similar to system analysis (i.e., closed system analysis). In both cases, 
we follow a mass of fixed identity as it moves in a flow. In a control volume analysis, on the other hand, mass moves into 
and out of the control volume, and we don’t follow any particular chunk of fluid. Instead we analyze whatever fluid 
happens to be inside the control volume at the time. 
 
Discussion In fact, the Lagrangian analysis is the same as a system analysis in the limit as the size of the system shrinks 
to a point. 
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4-7C 
Solution We are to define the Eulerian description of fluid motion, and explain how it differs from the Lagrangian 
description.  
 
Analysis In the Eulerian description of fluid motion, we are concerned with field variables, such as velocity, 
pressure, temperature, etc., as functions of space and time within a flow domain or control volume. In contrast to the 
Lagrangian method, fluid flows into and out of the Eulerian flow domain, and we do not keep track of the motion of 
particular identifiable fluid particles. 
 
Discussion The Eulerian method of studying fluid motion is not as “natural” as the Lagrangian method since the 
fundamental conservation laws apply to moving particles, not to fields. 

  

 
 
4-8C 
Solution We are to determine whether a measurement is Lagrangian or Eulerian.  
 
Analysis Since the probe is fixed in space and the fluid flows around it, we are not following individual fluid 
particles as they move. Instead, we are measuring a field variable at a particular location in space. Thus this is an Eulerian 
measurement. 
 
Discussion If a neutrally buoyant probe were to move with the flow, its results would be Lagrangian measurements – 
following fluid particles. 

  

 
 
4-9C 
Solution We are to determine whether a measurement is Lagrangian or Eulerian.  
 
Analysis Since the probe moves with the flow and is neutrally buoyant, we are following individual fluid particles as 
they move through the pump. Thus this is a Lagrangian measurement. 
 
Discussion If the probe were instead fixed at one location in the flow, its results would be Eulerian measurements. 

  

 
 
4-10C 
Solution We are to determine whether a measurement is Lagrangian or Eulerian.  
 
Analysis Since the weather balloon moves with the air and is neutrally buoyant, we are following individual “fluid 
particles” as they move through the atmosphere. Thus this is a Lagrangian measurement. Note that in this case the “fluid 
particle” is huge, and can follow gross features of the flow – the balloon obviously cannot follow small scale turbulent 
fluctuations in the atmosphere. 
 
Discussion When weather monitoring instruments are mounted on the roof of a building, the results are Eulerian 
measurements. 

  

 
 
4-11C 
Solution We are to determine whether a measurement is Lagrangian or Eulerian.  
 
Analysis Relative to the airplane, the probe is fixed and the air flows around it. We are not following individual fluid 
particles as they move. Instead, we are measuring a field variable at a particular location in space relative to the moving 
airplane. Thus this is an Eulerian measurement. 
 
Discussion The airplane is moving, but it is not moving with the flow. 
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4-12C 
Solution We are to compare the Eulerian method to the study of systems and control volumes and determine to 
which of these it is most similar.  
 
Analysis The Eulerian method is more similar to control volume analysis. In both cases, mass moves into and out 
of the flow domain or control volume, and we don’t follow any particular chunk of fluid. Instead we analyze whatever fluid 
happens to be inside the control volume at the time. 
 
Discussion In fact, the Eulerian analysis is the same as a control volume analysis except that Eulerian analysis is 
usually applied to infinitesimal volumes and differential equations of fluid flow, whereas control volume analysis usually 
refers to finite volumes and integral equations of fluid flow. 

  

 
 
 
 
 
 
4-13C 
Solution We are to define a steady flow field in the Eulerian description, and discuss particle acceleration in such a 
flow.  
 
Analysis A flow field is defined as steady in the Eulerian frame of reference when properties at any point in the 
flow field do not change with respect to time. In such a flow field, individual fluid particles may still experience non-zero 
acceleration – the answer to the question is yes. 
 
Discussion Although velocity is not a function of time in a steady flow field, its total derivative with respect to time 

( )/a dV dt=  is not necessarily zero since the acceleration is composed of a local (unsteady) part which is zero and an 

advective part which is not necessarily zero. 
  

 
 
 
 
 
 
4-14C 
Solution We are to list three alternate names for material derivative.  
 
Analysis The material derivative is also called total derivative, particle derivative, Eulerian derivative, 
Lagrangian derivative, and substantial derivative. “Total” is appropriate because the material derivative includes both 
local (unsteady) and convective parts. “Particle” is appropriate because it stresses that the material derivative is one 
following fluid particles as they move about in the flow field. “Eulerian” is appropriate since the material derivative is used 
to transform from Lagrangian to Eulerian reference frames. “Lagrangian” is appropriate since the material derivative is 
used to transform from Lagrangian to Eulerian reference frames. Finally, “substantial” is not as clear of a term for the 
material derivative, and we are not sure of its origin. 
 
Discussion All of these names emphasize that we are following a fluid particle as it moves through a flow field. 
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4-15 
Solution We are to calculate the material acceleration for a given velocity field.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane. 
 
Analysis The velocity field is 

 ( ) ( )0,V u v U bx i byj= = + −  (1) 

The acceleration field components are obtained from its definition (the material acceleration) in Cartesian coordinates, 

 
( ) ( )

( ) ( ) ( )

0

0

0 0 0

0 0 +0

x

y

u u u ua u v w U bx b by
t x y z
v v v va u v w U bx by b
t x y z

∂ ∂ ∂ ∂
= + + + = + + + − +
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= + + + = + + + − −
∂ ∂ ∂ ∂

 (2) 

where the unsteady terms are zero since this is a steady flow, and the terms with w are zero since the flow is two-
dimensional. Eq. 2 simplifies to  

Material acceleration components: ( ) 2
0           x ya b U bx a b y= + =  (3) 

In terms of a vector, 

Material acceleration vector: ( ) 2
0a b U bx i b yj= + +  (4) 

 
Discussion For positive x and b, fluid particles accelerate in the positive x direction. Even though this flow is steady, 
there is still a non-zero acceleration field. 

  

 
 
 

4-16 
Solution For a given pressure and velocity field, we are to calculate the rate of change of pressure following a fluid 
particle.  
 

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane. 
 

Analysis The pressure field is 

Pressure field: ( )2 2 2
0 02

2
P P U bx b x yρ ⎡ ⎤= − + +⎣ ⎦  (1) 

By definition, the material derivative, when applied to pressure, produces the rate of change of pressure following a fluid 
particle. Using Eq. 1 and the velocity components from the previous problem, 

 

DP P
Dt t

∂
=

∂
Steady

P P Pu v w
x y z

∂ ∂ ∂
+ + +

∂ ∂ ∂

( )( ) ( )( )
Two-dimensional

2 2
0 0     U bx U b b x by b yρ ρ ρ= + − − + − −

 (2) 

where the unsteady term is zero since this is a steady flow, and the term with w is zero since the flow is two-dimensional. 
Eq. 2 simplifies to the following rate of change of pressure following a fluid particle: 

 ( )2 2 3 2 2
0 02DP U b U b x b y x

Dt
ρ ⎡ ⎤= − − + −⎣ ⎦  (3) 

 

Discussion The material derivative can be applied to any flow property, scalar or vector. Here we apply it to the 
pressure, a scalar quantity. 
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4-17 
Solution For a given velocity field we are to calculate the acceleration.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis The velocity components are 

Velocity components: 1.1 2.8 0.65           0.98 2.1 2.8u x y v x y= + + = − −  (1) 

The acceleration field components are obtained from its definition (the material acceleration) in Cartesian coordinates, 

 
( )( ) ( )( )

( )( ) ( )( )

0 1.1 2.8 0.65 2.8 0.98 2.1 2.8 0.65 0

0 1.1 2.8 0.65 2.1 0.98 2.1 2.8 2.8 +0

x

y

u u u ua u v w x y x y
t x y z
v v v va u v w x y x y
t x y z

∂ ∂ ∂ ∂
= + + + = + + + + − − +
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= + + + = + + + − + − − −
∂ ∂ ∂ ∂

 (2) 

where the unsteady terms are zero since this is a steady flow, and the terms with w are zero since the flow is two-
dimensional. Eq. 2 simplifies to  

Acceleration components: 3.717 6.475           5.054 6.475x ya x a y= + = − +  (3) 

At the point (x,y) = (-2,3), the acceleration components of Eq. 3 are 

Acceleration components at (-2,3): 9.233           14.371x ya a= − ≅ = ≅-9.23 14.4   

 
Discussion The final answers are given to three significant digits. No units are given in either the problem statement or 
the answers. We assume that the coefficients have appropriate units. 

  

 
 
4-18 
Solution For a given velocity field we are to calculate the acceleration.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis The velocity components are 

Velocity components: 0.20 1.3 0.85           0.50 0.95 1.3u x y v x y= + + = − + −  (1) 

The acceleration field components are obtained from its definition (the material acceleration) in Cartesian coordinates, 

 
( ) ( ) ( )( )

( )( ) ( )( )

0 0.20 1.3 0.85 1.3 0.50 0.95 1.3 0.85 0

0 0.20 1.3 0.85 0.95 0.50 0.95 1.3 1.3 +0

x

y

u u u ua u v w x y x y
t x y z
v v v va u v w x y x y
t x y z

∂ ∂ ∂ ∂
= + + + = + + + + − + − +
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= + + + = + + + + − + − −
∂ ∂ ∂ ∂

 (2) 

where the unsteady terms are zero since this is a steady flow, and the terms with w are zero since the flow is two-
dimensional. Eq. 2 simplifies to  

Acceleration components: 0.165 2.4975           0.84 2.4975x ya x a y= − + = +  (3) 

At the point (x,y) = (1,2), the acceleration components of Eq. 3 are 

Acceleration components at (1,2): 2.3325           5.835x ya a= ≅ = ≅2.33 5.84   

 
Discussion The final answers are given to three significant digits. No units are given in either the problem statement or 
the answers. We assume that the coefficients have appropriate units. 
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4-19 
Solution We are to generate an expression for the fluid acceleration for a given velocity. 
 
Assumptions 1 The flow is steady. 2 The flow is axisymmetric. 3 The water is incompressible. 
 
Analysis In Problem 4-2 we found that along the centerline, 

Speed along centerline of nozzle: 
( )exit entrance 2

entrance 2

u u
u u x

L
−

= +  (1) 

To find the acceleration in the x-direction, we use the material acceleration, 

Acceleration along centerline of nozzle: x
ua
t

∂
=

∂
u uu v
x y
∂ ∂

+ +
∂ ∂

uw
z
∂

+
∂

 (2) 

The first term in Eq. 2 is zero because the flow is steady. The last two terms are zero because the flow is axisymmetric, 
which means that along the centerline there can be no v or w velocity component. We substitute Eq. 1 for u to obtain 

Acceleration along centerline of nozzle: 
( ) ( ) ( )exit entrance exit entrance2

entrance 2 22x

u u u uua u u x x
x L L

⎛ ⎞− −∂
= = +⎜ ⎟⎜ ⎟∂ ⎝ ⎠

 (3) 

or 

 
( ) ( )2

exit entrance exit entrance 3
entrance 2 42 2x

u u u u
a u x x

L L
− −

= +  (4) 

 
Discussion Fluid particles are accelerated along the centerline of the nozzle, even though the flow is steady. 

  

 
 
 
 
 
 
4-20 
Solution We are to write an equation for centerline speed through a diffuser, given that the flow speed decreases 
parabolically.  
 
Assumptions 1 The flow is steady. 2 The flow is axisymmetric. 
 
Analysis A general equation for a parabola in x is 

General parabolic equation: ( )2u a b x c= + −  (1) 

We have two boundary conditions, namely at x = 0, u = uentrance and at x = L, u = uexit. By inspection, Eq. 1 is satisfied by 
setting c = 0, a = uentrance and b = (uexit - uentrance)/L2. Thus, Eq. 1 becomes 

Parabolic speed: 
( )exit entrance 2

entrance 2

u u
u u x

L
−

= +  (2) 

 
Discussion You can verify Eq. 2 by plugging in x = 0 and x = L. 
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4-21 
Solution We are to generate an expression for the fluid acceleration for a given velocity, and then calculate its value 
at two x locations. 
 
Assumptions 1 The flow is steady. 2 The flow is axisymmetric. 
 
Analysis In the previous problem, we found that along the centerline, 

Speed along centerline of diffuser: 
( )exit entrance 2

entrance 2

u u
u u x

L
−

= +  (1) 

To find the acceleration in the x-direction, we use the material acceleration, 

Acceleration along centerline of diffuser: x
ua
t

∂
=

∂
u uu v
x y
∂ ∂

+ +
∂ ∂

uw
z
∂

+
∂

 (2) 

The first term in Eq. 2 is zero because the flow is steady. The last two terms are zero because the flow is axisymmetric, 
which means that along the centerline there can be no v or w velocity component. We substitute Eq. 1 for u to obtain 

Acceleration along centerline of diffuser:

 
( ) ( ) ( )exit entrance exit entrance2

entrance 2 22x

u u u uua u u x x
x L L

⎛ ⎞− −∂
= = +⎜ ⎟⎜ ⎟∂ ⎝ ⎠

  

or 

 
( ) ( )2

exit entrance exit entrance 3
entrance 2 42 2x

u u u u
a u x x

L L
− −

= +  (3) 

 At the given locations, we substitute the given values. At x = 0, 

Acceleration along centerline of diffuser at x = 0: ( )0xa x = = 0  (4) 

At x = 1.0 m, 

Acceleration along centerline of diffuser at x = 1.0 m:

 ( ) ( ) ( )
( )

( ) ( )
( )

( )
2

3

2 4

25.0 m/s 25.0 m/s
1.0 m 2 30.0 m/s 1.0 m 2 1.0 m

2.0 m 2.0 m

                     

xa x
− −

= = +

= 2-297 m/s

 (5) 

 
Discussion ax is negative implying that fluid particles are decelerated along the centerline of the diffuser, even though 
the flow is steady. Because of the parabolic nature of the velocity field, the acceleration is zero at the entrance of the 
diffuser, but its magnitude increases rapidly downstream. 
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Flow Patterns and Flow Visualization 
 
  
 
 
 

4-22C 
Solution We are to define streamline and discuss what streamlines indicate.  
 
Analysis A streamline is a curve that is everywhere tangent to the instantaneous local velocity vector. It 
indicates the instantaneous direction of fluid motion throughout the flow field.  
 
Discussion If a flow field is steady, streamlines, pathlines, and streaklines are identical. 

  

 
 
 
 
4-23 
Solution For a given velocity field we are to generate an equation for the streamlines.  
 

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis  The steady, two-dimensional velocity field of Problem 4-15 is  

Velocity field: ( ) ( )0,V u v U bx i byj= = + −  (1) 

For two-dimensional flow in the x-y plane, streamlines are given by 

Streamlines in the x-y plane: 
along a streamline

dy v
dx u

⎞ =⎟
⎠

 (2) 

We substitute the u and v components of Eq. 1 into Eq. 2 and rearrange to get 

 
0

dy by
dx U bx

−
=

+
  

We solve the above differential equation by separation of variables: 

 
0

dy dx
by U bx

− =
+∫ ∫   

Integration yields 

 ( ) ( )0 1
1 1 1ln ln lnby U bx C
b b b

− = + +  (3) 

where we have set the constant of integration as the natural logarithm of some constant C1, with a constant in front in order 
to simplify the algebra (notice that the factor of 1/b can be removed from each term in Eq. 3). When we recall that ln(ab) = 
lna + lnb, and that –lna = ln(1/a), Eq. 3 simplifies to 

Equation for streamlines: ( )0

Cy
U bx

=
+

 (4) 

The new constant C is related to C1, and is introduced for simplicity. 
 
Discussion Each value of constant C yields a unique streamline of the flow. 
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4-24E 
Solution For a given velocity field we are to plot several 
streamlines for a given range of x and y values.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in 
the x-y plane. 
 
Analysis From the solution to the previous problem, an equation 
for the streamlines is 

Streamlines in the x-y plane: 
( )0

Cy
U bx

=
+

 (1) 

Constant C is set to various values in order to plot the streamlines. 
Several streamlines in the given range of x and y are plotted in Fig. 1. 
 The direction of the flow is found by calculating u and v at 
some point in the flow field. We choose x = 1 ft, y = 1 ft. At this point u 
= 9.6 ft/s and v = –4.6 ft/s. The direction of the velocity at this point is 
obviously to the lower right. This sets the direction of all the 
streamlines. The arrows in Fig. 1 indicate the direction of flow. 
 
Discussion The flow is type of converging channel flow. 

  

 
 

4-25C 
Solution We are to determine what kind of flow visualization is seen in a photograph.  
 
Analysis Since the picture is a snapshot of dye streaks in water, each streak shows the time history of dye that was 
introduced earlier from a port in the body. Thus these are streaklines. Since the flow appears to be steady, these streaklines 
are the same as pathlines and streamlines. 
 
Discussion It is assumed that the dye follows the flow of the water. If the dye is of nearly the same density as the water, 
this is a reasonable assumption. 

  

 
 

4-26C 
Solution We are to define pathline and discuss what pathlines indicate.  
 
Analysis A pathline is the actual path traveled by an individual fluid particle over some time period. It indicates 
the exact route along which a fluid particle travels from its starting point to its ending point. Unlike streamlines, pathlines 
are not instantaneous, but involve a finite time period.  
 
Discussion If a flow field is steady, streamlines, pathlines, and streaklines are identical. 

  

 
 

4-27C 
Solution We are to define streakline and discuss the difference between streaklines and streamlines.  
 
Analysis A streakline is the locus of fluid particles that have passed sequentially through a prescribed point in 
the flow. Streaklines are very different than streamlines. Streamlines are instantaneous curves, everywhere tangent to the 
local velocity, while streaklines are produced over a finite time period. In an unsteady flow, streaklines distort and then 
retain features of that distorted shape even as the flow field changes, whereas streamlines change instantaneously with the 
flow field. 
 
Discussion If a flow field is steady, streamlines and streaklines are identical. 
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FIGURE 1 
Streamlines (solid blue curves) for the given 
velocity field; x and y are in units of ft. 
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4-28C 
Solution We are to determine what kind of flow visualization is seen in a photograph.  
 

Analysis Since the picture is a snapshot of dye streaks in water, each streak shows the time history of dye that was 
introduced earlier from a port in the body. Thus these are streaklines. Since the flow appears to be unsteady, these 
streaklines are not the same as pathlines or streamlines. 
 

Discussion It is assumed that the dye follows the flow of the water. If the dye is of nearly the same density as the water, 
this is a reasonable assumption. 

  

 
 

4-29C 
Solution We are to determine what kind of flow visualization is seen in a photograph.  
 

Analysis Since the picture is a snapshot of smoke streaks in air, each streak shows the time history of smoke that was 
introduced earlier from the smoke wire. Thus these are streaklines. Since the flow appears to be unsteady, these streaklines 
are not the same as pathlines or streamlines. 
 

Discussion It is assumed that the smoke follows the flow of the air. If the smoke is neutrally buoyant, this is a 
reasonable assumption. In actuality, the smoke rises a bit since it is hot; however, the air speeds are high enough that this 
effect is negligible. 

  

 
 

4-30C 
Solution We are to determine what kind of flow visualization is seen in a photograph.  
 

Analysis Since the picture is a time exposure of air bubbles in water, each white streak shows the path of an 
individual air bubble. Thus these are pathlines. Since the outer flow (top and bottom portions of the photograph) appears to 
be steady, these pathlines are the same as streaklines and streamlines. 
 

Discussion It is assumed that the air bubbles follow the flow of the water. If the bubbles are small enough, this is a 
reasonable assumption. 

  

 
 

4-31C 
Solution We are to define timeline and discuss how timelines can be produced in a water channel. We are also to 
describe an application where timelines are more useful than streaklines. 
 

Analysis A timeline is a set of adjacent fluid particles that were marked at the same instant of time. Timelines 
can be produced in a water flow by using a hydrogen bubble wire. There are also techniques in which a chemical reaction is 
initiated by applying current to the wire, changing the fluid color along the wire. Timelines are more useful than streaklines 
when the uniformity of a flow is to be visualized. Another application is to visualize the velocity profile of a boundary layer 
or a channel flow. 
 

Discussion Timelines differ from streamlines, streaklines, and pathlines even if the flow is steady. 
  

 
 

4-32C 
Solution For each case we are to decide whether a vector plot or contour plot is most appropriate, and we are to 
explain our choice.  
 

Analysis In general, contour plots are most appropriate for scalars, while vector plots are necessary when vectors are 
to be visualized. 

(a) A contour plot of speed is most appropriate since fluid speed is a scalar. 
(b) A vector plot of velocity vectors would clearly show where the flow separates. Alternatively, a vorticity contour 

plot of vorticity normal to the plane would also show the separation region clearly. 
(c) A contour plot of temperature is most appropriate since temperature is a scalar. 
(d) A contour plot of this component of vorticity is most appropriate since one component of a vector is a scalar. 

 

Discussion There are other options for case (b) – temperature contours can also sometimes be used to identify a 
separation zone. 
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4-33 
Solution For a given velocity field we are to generate an equation for the streamlines and sketch several streamlines 
in the first quadrant.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis The velocity field is given by  

 ( ) ( ) ( ), 0.5 1.2 2.0 1.2V u v x i y j= = + + − −  (1) 

For two-dimensional flow in the x-y plane, streamlines are given by 

Streamlines in the x-y plane: 
along a streamline

dy v
dx u

⎞ =⎟
⎠

 (2) 

We substitute the u and v components of Eq. 1 into Eq. 2 and rearrange to get 

 2.0 1.2
0.5 1.2

dy y
dx x

− −
=

+
  

We solve the above differential equation by separation of variables: 

           
2.0 1.2 0.5 1.2 2.0 1.2 0.5 1.2

dy dx dy dx
y x y x
= → =

− − + − − +∫ ∫   

Integration yields 

 ( ) ( ) 1
1 1 1ln 2.0 1.2 ln 0.5 1.2 ln

1.2 1.2 1.2
y x C− − − = + −  (3) 

where we have set the constant of integration as the natural logarithm of 
some constant C1, with a constant in front in order to simplify the 
algebra. When we recall that ln(ab) = lna + lnb, and that –lna = ln(1/a), 
Eq. 3 simplifies to 

Equation for streamlines: ( )
1.667

1.2 0.5 1.2
Cy

x
= −

+
  

The new constant C is related to C1, and is introduced for simplicity. C 
can be set to various values in order to plot the streamlines. Several 
streamlines in the upper right quadrant of the given flow field are shown 
in Fig. 1. 
 The direction of the flow is found by calculating u and v at some 
point in the flow field. We choose x = 3, y = 3. At this point u = 4.1 and v 
= -5.6. The direction of the velocity at this point is obviously to the lower 
right. This sets the direction of all the streamlines. The arrows in Fig. 1 
indicate the direction of flow. 
 
Discussion The flow appears to be a counterclockwise turning flow in the upper right quadrant. 
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FIGURE 1 
Streamlines (solid black curves) for the 
given velocity field. 
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4-34 
Solution For a given velocity field we are to generate a velocity 
vector plot in the first quadrant.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in 
the x-y plane. 
 
Analysis The velocity field is given by 

 ( ) ( ) ( ), 0.5 1.2 2.0 1.2V u v x i y j= = + + − −  (1) 

At any point (x,y) in the flow field, the velocity components u and v are 
obtained from Eq. 1, 

Velocity components: 0.5 1.2           2.0 1.2u x v y= + = − −  (2) 
 

To plot velocity vectors, we simply pick an (x,y) point, calculate u and v 
from Eq. 2, and plot an arrow with its tail at (x,y), and its tip at 
(x+Su,y+Sv) where S is some scale factor for the vector plot. For the 
vector plot shown in Fig. 1, we chose S = 0.2, and plot velocity 
vectors at several locations in the first quadrant. 
 
Discussion The flow appears to be a counterclockwise turning flow in the upper right quadrant. 

  

 
 

4-35 
Solution For a given velocity field we are to generate an acceleration vector plot in the first quadrant.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis The velocity field is given by 

 ( ) ( ) ( ), 0.5 1.2 2.0 1.2V u v x i y j= = + + − −  (1) 

At any point (x,y) in the flow field, the velocity components u and v are 
obtained from Eq. 1, 

Velocity components: 0.5 1.2           2.0 1.2u x v y= + = − −  (2) 

The acceleration field is obtained from its definition (the material 
acceleration), 

Acceleration components:

 
( )( )

( )( )

0 0.5 1.2 1.2 0 0

0 0 2.0 1.2 1.2 +0

x

y

u u u ua u v w x
t x y z
v v v va u v w y
t x y z

∂ ∂ ∂ ∂
= + + + = + + + +
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= + + + = + + − − −
∂ ∂ ∂ ∂

 (3) 

where the unsteady terms are zero since this is a steady flow, and the terms 
with w are zero since the flow is two-dimensional. Eq. 3 simplifies to  

Acceleration components: 0.6 1.44           2.4 1.44x ya x a y= + = +  (4) 

To plot the acceleration vectors, we simply pick an (x,y) point, calculate ax 
and ay from Eq. 4, and plot an arrow with its tail at (x,y), and its tip at (x+Sax,y+Say) where S is some scale factor for 
the vector plot. For the vector plot shown in Fig. 1, we chose S = 0.15, and plot acceleration vectors at several 
locations in the first quadrant. 
 
Discussion Since the flow is a counterclockwise turning flow in the upper right quadrant, the acceleration vectors point 
to the upper right (centripetal acceleration). 
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FIGURE 1 
Velocity vectors for the given velocity field. 
The scale is shown by the top arrow. 
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FIGURE 1 
Acceleration vectors for the velocity field. 
The scale is shown by the top arrow. 
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4-36 
Solution For the given velocity field, the location(s) of stagnation point(s) are to be determined. Several velocity 
vectors are to be sketched and the velocity field is to be described. 
 
Assumptions 1 The flow is steady and incompressible. 2 The flow is two-dimensional, implying no z-component of 
velocity and no variation of u or v with z. 
 
Analysis (a) The velocity field is 

 ( ) ( ) ( ), 1 2.5 0.5 1.5 2.5V u v x y i x y j= = + + + − − −  (1) 

Since V  is a vector, all its components must equal zero in order for V  
itself to be zero. Setting each component of Eq. 1 to zero, 

Simultaneous equations: 
     1 2.5      0
0.5 1.5 2.5 0

u x y
v x y
= + + =
= − − − =

  

We can easily solve this set of two equations and two unknowns 
simultaneously. Yes, there is one stagnation point, and it is located at 

Stagnation point:           x y= =-0.421 m 0.0526 m   
 

(b) The x and y components of velocity are calculated from Eq. 1 for 
several (x,y) locations in the specified range. For example, at the point (x = 
2 m, y = 3 m), u = 9.00 m/s and v = -11 m/s. The magnitude of velocity (the 
speed) at that point is 14.21 m/s. At this and at an array of other locations, 
the velocity vector is constructed from its two components, the results of 
which are shown in Fig. 1. The flow can be described as a 
counterclockwise turning, accelerating flow from the upper left to the lower 
right. The stagnation point of Part (a) does not lie in the upper right 
quadrant, and therefore does not appear on the sketch. 
 
Discussion The stagnation point location is given to three significant digits. It will be verified in Chap. 9 that this flow 
field is physically valid because it satisfies the differential equation for conservation of mass. 
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FIGURE 1 
Velocity vectors in the upper right quadrant 
for the given velocity field. 
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4-37 
Solution For the given velocity field, the material acceleration is to be calculated at a particular point and plotted at 
several locations in the upper right quadrant.  
 
Assumptions 1 The flow is steady and incompressible. 2 The flow is two-dimensional, implying no z-component of 
velocity and no variation of u or v with z. 
 
Analysis (a) The velocity field is 

 ( ) ( ) ( ), 1 2.5 0.5 1.5 2.5V u v x y i x y j= = + + + − − −  (1) 

Using the velocity field of Eq. 1 and the equation for material acceleration in Cartesian coordinates, we write expressions 
for the two non-zero components of the acceleration vector: 

( )( ) ( )( )

                                                

    0 1 2.5 2.5 0.5 1.5 2.5 1  0

x
u u u ua u v w
t x y z

x y x y

∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂

= + + + + − − − +
  

and 

( )( ) ( )( )

                                                       

    0 1 2.5 1.5 0.5 1.5 2.5 2.5  0

y
v v v va u v w
t x y z

x y x y

∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂

= + + + − + − − − − +
  

At (x = 2 m, y = 3 m), ax = 11.5 m/s2 and ay = 14.0 m/s2. 
 

(b) The above equations are applied to an array of x and y values in the 
upper right quadrant, and the acceleration vectors are plotted in Fig. 1. 
 
Discussion The acceleration vectors plotted in Fig. 1 point to the upper 
right, increasing in magnitude away from the origin. This agrees 
qualitatively with the velocity vectors of Fig. 1 of the previous problem; 
namely, fluid particles are accelerated to the right and are turned in the 
counterclockwise direction due to centripetal acceleration towards the 
upper right. Note that the acceleration field is non-zero, even though the 
flow is steady. 
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FIGURE 1 
Acceleration vectors in the upper right 
quadrant for the given velocity field. 
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4-38 
Solution For a given velocity field we are to plot a velocity magnitude contour plot at five given values of speed.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-θ plane. 
 
Analysis Since ur = 0, and since ω is positive, the speed is equal to 
the magnitude of the θ-component of velocity, 

Speed: 2
rV u= 2

0

u u rθ θ ω+ = =   

Thus, contour lines of constant speed are simply circles of constant radius 
given by 

Contour line of constant speed: Vr
ω

=  

For example, at V = 2.0 m/s, the corresponding contour line is a circle 
of radius 2.0 m, 

Contour line at constant speed V = 2.0 m/s: 2.0 m/s 2.0 m
1.0 1/s

r = =  

We plot a circle at a radius of 2.0 m and repeat this simple calculation for 
the four other values of V. We plot the contours in Fig. 1. The speed 
increases linearly from the center of rotation (the origin). 
 
Discussion The contours are equidistant apart because of the linear nature of the velocity field. 

  

 
 
4-39 
Solution For a given velocity field we are to plot a velocity magnitude contour plot at five given values of speed.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-θ plane. 
 
Analysis Since ur = 0, and since K is positive, the speed is equal to 
the magnitude of the θ-component of velocity, 

Speed: 2
rV u= 2

0

Ku u
rθ θ+ = =   

Thus, contour lines of constant speed are simply circles of constant radius 
given by 

Contour line of constant speed: Kr
V

=   

For example, at V = 2.0 m/s, the corresponding contour line is a circle 
of radius 0.50 m, 

Contour line at constant speed V = 2.0 m/s: 
21.0 m /s 0.50 m

2.0 m/s
r = =  

We plot a circle at a radius of 0.50 m and repeat this simple calculation for 
the four other values of V. We plot the contours in Fig. 1. The speed near 
the center is faster than that further away from the center. 
 
Discussion The contours are not equidistant apart because of the nonlinear nature of the velocity field. 
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FIGURE 1 
Contour plot of velocity magnitude for solid 
body rotation. Values of speed are labeled in 
units of m/s. 
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FIGURE 1 
Contour plot of velocity magnitude for a line 
vortex. Values of speed are labeled in units 
of m/s. 
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4-40 
Solution For a given velocity field we are to plot a velocity magnitude contour plot at five given values of speed.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-θ plane. 
 
Analysis The velocity field is 

Line source:          0
2r
mu u

r θπ
= =  (1) 

Since uθ = 0, and since m is positive, the speed is equal to the magnitude of the r-component of velocity, 

Speed: 2 2
rV u uθ= +

0
2r
mu

rπ
= =  (2) 

Thus, contour lines of constant speed are simply circles of constant radius 
given by 

Contour line of constant speed: 2
2

m
mr

V V
π

π

⎛ ⎞
⎜ ⎟
⎝ ⎠= =  

(3) 

For example, at V = 2.0 m/s, the corresponding contour line is a circle 
of radius 0.50 m, 

Contour line at speed V = 2.0 m/s: 
21.0 m /s 0.50 m

2.0 m/s
r = =  (4) 

We plot a circle at a radius of 0.50 m and repeat this simple calculation for 
the four other values of V. We plot the contours in Fig. 1. The flow slows 
down as it travels further from the origin. 
 
Discussion The contours are not equidistant apart because of the 
nonlinear nature of the velocity field. 
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FIGURE 1 
Contour plot of velocity magnitude for a line 
source. Values of speed are labeled in units 
of m/s. 
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Motion and Deformation of Fluid Elements 
 
 
4-41C 
Solution We are to name and describe the four fundamental types of motion or deformation of fluid particles.  
 
Analysis  

1. Translation – a fluid particle moves from one location to another. 
2. Rotation – a fluid particle rotates about an axis drawn through the particle. 
3. Linear strain or extensional strain – a fluid particle stretches in a direction such that a line segment in that 

direction is elongated at some later time. 
4. Shear strain – a fluid particle distorts in such a way that two lines through the fluid particle that are initially 

perpendicular are not perpendicular at some later time. 
 
Discussion In a complex fluid flow, all four of these occur simultaneously. 

  

 
 
 
 
 
 
 
4-42 
Solution For a given velocity field, we are to determine whether the flow is rotational or irrotational.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane. 
 
Analysis The velocity field is 

 ( ) ( )0,V u v U bx i byj= = + −  (1) 

By definition, the flow is rotational if the vorticity is non-zero. So, we calculate the vorticity. In a 2-D flow in the x-y plane, 
the only non-zero component of vorticity is in the z direction, i.e. ζz, 

Vorticity component in the z direction: 0 0 0z
v u
x y

ζ ∂ ∂
= − = − =
∂ ∂

 (1) 

Since the vorticity is zero, this flow is irrotational. 
 
Discussion We shall see in Chap. 10 that the fluid very close to the walls is rotational due to important viscous effects 
near the wall (a boundary layer). However, in the majority of the flow field, the irrotational approximation is reasonable. 
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4-43 
Solution For a given velocity field we are to generate an equation for the x location of a fluid particle along the x-axis 
as a function of time.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis The velocity field is 

Velocity field: ( ) ( )0,V u v U bx i byj= = + −  (1) 

We start with the definition of u following a fluid particle, 

x-component of velocity of a fluid particle: particle
0 particle

dx
u U bx

dt
= = +  (2) 

where we have substituted u from Eq. 1. We rearrange and separate variables, dropping the “particle” subscript for 
convenience, 

 
0

dx dt
U bx

=
+

 (3) 

Integration yields 

 ( )0 1
1 1ln lnU bx t C
b b

+ = −  (4) 

where we have set the constant of integration as the natural logarithm of some constant C1, with a constant in front in order 
to simplify the algebra. When we recall that ln(ab) = lna + lnb, Eq. 4 simplifies to 

 ( )( )1 0ln C U bx t+ =   

from which 

 0 2
btU bx C e+ =  (5) 

where C2 is a new constant defined for convenience. We now plug in the known initial condition that at t = 0, x = xA to find 
constant C2 in Eq. 5. After some algebra, 

Fluid particle’s x location at time t: ( )A 0 A 0
1 btx x U bx e U
b′ ⎡ ⎤= = + −⎣ ⎦  (6) 

 
Discussion We verify that at t = 0, x = xA in Eq. 6. 
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4-44 
Solution For a given velocity field we are to generate an equation for the change in length of a line segment moving 
with the flow along the x-axis.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis Using the results of the previous problem, 

Location of particle A at time t: ( )A 0 B 0
1 btx U bx e U
b′ ⎡ ⎤= + −⎣ ⎦  (1) 

and 

Location of particle B at time t: ( )B 0 B 0
1 btx U bx e U
b′ ⎡ ⎤= + −⎣ ⎦  (2) 

Since length ξ = xB – xA and length ξ + Δξ = xB′ – xA′, we write an expression for Δξ, 

Change in length of the line segment:

 

( ) ( )

( ) ( ) ( )

B A B A

0 B 0 0 A 0 B A

B A B A

1 1    

    

bt bt

bt bt

x x x x

U bx e U U bx e U x x
b b
x e x e x x

ξ ′ ′Δ = − − −

⎡ ⎤ ⎡ ⎤= + − − + − − −⎣ ⎦ ⎣ ⎦

= − − +

 (3) 

Eq. 3 simplifies to 

Change in length of the line segment: ( )( )B A 1btx x eξΔ = − −  (4) 

 
Discussion We verify from Eq. 4 that when t = 0, Δξ = 0. 
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4-45 
Solution By examining the increase in length of a line segment along the axis of a converging duct, we are to 
generate an equation for linear strain rate in the x direction and compare to the exact equation given in this chapter.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis From the previous problem, we have an expression for the change in length of the line segment AB, 

Change in length of the line segment: ( )( )B A 1btx x eξΔ = − −  (1) 

The fundamental definition of linear strain rate is the rate of increase in length of a line segment per unit length of the line 
segment. For the case at hand, 

Linear strain rate in x direction: 
( )

B A
xx

d d d
dt dt dt x x

ξ ξ ξ ξ ξε
ξ ξ

+ Δ − Δ Δ
= = =

−
 (2) 

We substitute Eq. 1 into Eq. 2 to obtain 

Linear strain rate in x direction: 
( )( ) ( )B A

B A

1
1

bt
bt

xx

x x ed d e
dt x x dt

ε
− −

= = −
−

 (3) 

In the limit as t → 0, we apply the first two terms of the series expansion for ebt, 

Series expansion for ebt: 
( )2

1 ... 1
2!

bt bt
e bt bt= + + + ≈ +  (4) 

Finally, for small t we approximate the time derivative as 1/t, yielding 

Linear strain rate in x direction: ( )1 1 1xx bt b
t

ε → + − =  (5) 

Comparing to the equation for εxx, 

Linear strain rate in x direction: xx
u b
x

ε ∂
= =
∂

 (6) 

Equations 5 and 6 agree, verifying our algebra. 
 
Discussion Although we considered a line segment on the x-axis, it turns out that εxx = b everywhere in the flow, as 
seen from Eq. 6. We could also have taken the analytical time derivative of Eq. 3, yielding εxx = bebt. Then, as t → 0, εxx → 
b. 
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4-46 
Solution For a given velocity field we are to generate an equation for the y location of a fluid particle as a function of 
time.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis The velocity field is 

Velocity field: ( ) ( )0,V u v U bx i byj= = + −  (1) 

We start with the definition of v following a fluid particle, 

y-component of velocity of a fluid particle: particle
particle

dy
v by

dt
= = −  (2) 

where we have substituted v from Eq. 1. We and rearrange and separate variables, dropping the “particle” subscript for 
convenience, 

 dy bdt
y
= −  (3) 

Integration yields 

 ( ) 1ln lny bt C= − −  (4) 

where we have set the constant of integration as the natural logarithm of some constant C1, with a constant in front in order 
to simplify the algebra. When we recall that ln(ab) = lna + lnb, Eq. 4 simplifies to 

 ( )1ln C y t= −   

from which 

 2
bty C e−=  (5) 

where C2 is a new constant defined for convenience. We now plug in the known initial condition that at t = 0, y = yA to find 
constant C2 in Eq. 5. After some algebra, 

Fluid particle’s y location at time t: A A
bty y y e−

′= =  (6) 

 
Discussion The fluid particle approaches the x-axis exponentially with time. The fluid particle also moves downstream 
in the x direction during this time period. However, in this particular problem v is not a function of x, so the streamwise 
movement is irrelevant (u and v act independently of each other). 
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4-47 
Solution For a given velocity field we are to generate an equation for the change in length of a line segment in the y 
direction.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis Using the results of the previous problem, 

Location of particle A at time t: A A
bty y e−

′ =  (1) 

and 

Location of particle B at time t: B B
bty y e−

′ =  (2) 

Since length η = yB – yA and length η + Δη = yB′ – yA′, we write an expression for Δη, 

Change in length of the line segment:
 ( ) ( ) ( )B A B A B A B A B A B A

bt bt bt bty y y y y e y e y y y e y e y yη − − − −
′ ′Δ = − − − = − − − = − − +  

which simplifies to 

Change in length of the line segment: ( )( )B A 1bty y eη −Δ = − −  (3) 

 

Discussion We verify from Eq. 3 that when t = 0, Δη = 0. 
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4-48 
Solution By examining the increase in length of a line segment as it moves down a converging duct, we are to 
generate an equation for linear strain rate in the y direction and compare to the exact equation given in this chapter.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis From the previous problem we have an expression for the change in length of the line segment AB, 

Change in length of the line segment: ( )( )B A 1bty y eη −Δ = − −  (1) 

The fundamental definition of linear strain rate is the rate of increase in length of a line segment per unit length of the line 
segment. For the case at hand, 

Linear strain rate in y direction:

 
( )

B A
yy

d d d
dt dt dt y y

η η η η ηε
η η

+ Δ − Δ Δ
= = =

−
 (2) 

We substitute Eq. 1 into Eq. 2 to obtain 

Linear strain rate in y direction: 
( )( ) ( )B A

B A

1
1

bt
bt

yy

y y ed d e
dt y y dt

ε
−

−
− −

= = −
−

 (3) 

In the limit as t → 0, we apply the first two terms of the series expansion for e-bt, 

Series expansion for e-bt: ( ) ( )2

1 ... 1
2!

bt bt
e bt bt− −

= + − + + ≈ −  (4) 

Finally, for small t we approximate the time derivative as 1/t, yielding 

Linear strain rate in y direction: ( )1 1 1yy bt b
t

ε → − − = −  (5) 

Comparing to the equation for ε, 

Linear strain rate in y direction: yy
v b
y

ε ∂
= = −
∂

 (6) 

Equations 5 and 6 agree, verifying our algebra. 
 
Discussion Since v does not depend on x location in this particular problem, the algebra is simple. In a more general 
case, both u and v depend on both x and y, and a numerical integration scheme is required. We could also have taken the 
analytical time derivative of Eq. 3, yielding εyy = –be–bt. Then, as t → 0, εxx → –b.  
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4-49E  
 

Solution For a given velocity field and an initially square fluid particle, we are to calculate and plot its location and 
shape after a given time period.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the 
x-y plane. 
 
Analysis Using the results of Problems 4-43 and 4-46, we can 
calculate the location of any point on the fluid particle after the elapsed 
time. We pick 6 points along each edge of the fluid particle, and plot their x 
and y locations at t = 0 and at t = 0.2 s. For example, the point at the lower 
left corner of the particle is initially at x = 0.25 ft and y = 0.75 ft at t = 0. At 
t = 0.2 s,  

x-location of lower left corner of the fluid particle at time t = 0.2 s:

 ( ) ( )( ) ( )( )4.6 1/s 0.2 s1 5.0 ft/s 4.6 1/s 0.25 ft 5.0 ft/s
4.6 1/s

x e⎡ ⎤= + − =⎣ ⎦ 2.268 ft  

and 

y-location of lower left corner of the fluid particle at time t = 0.2 s:
 ( ) ( )( )4.6 1/s 0.2 s0.75 fty e−= = 0.2989 ft  

We repeat the above calculations at all the points along the edges of the 
fluid particle, and plot both their initial and final positions in Fig. 1 as dots. 
Finally, we connect the dots to draw the fluid particle shape.  It is clear 
from the results that the fluid particle shrinks in the y direction and 
stretches in the x direction. However, it does not shear or rotate. 
 
Discussion The flow is irrotational since fluid particles do not rotate. 

  

 
 
4-50E 
Solution By analyzing the shape of a fluid particle, we are to verify that the given flow field is incompressible.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis Since the flow is two-dimensional, we assume unit depth (1 ft) in the z direction (into the page in the 
figure). In the previous problem, we calculated the initial and final locations of several points on the perimeter of an 
initially square fluid particle. At t = 0, the particle volume is 

Fluid particle volume at t = 0 s: ( )( )( ) 30.50 ft 0.50 ft 1.0 ft 0.25 ft= =V  (1) 

At t = 0.2 s, the lower left corner of the fluid particle has moved to x = 2.2679 ft, y = 0.29889 ft, and the upper right corner 
has moved to x = 3.5225 ft, y = 0.49815 ft. Since the fluid particle remains rectangular, we can calculate the fluid particle 
volume from these two corner locations, 

Fluid particle volume at t = 0.2 s:
 ( )( )( ) 33.5225 ft 2.2679 ft 0.49815 ft 0.29889 ft 1.0 ft 0.2500 ft= − − =V  (2) 

Thus, to at least four significant digits, the fluid particle volume has not changed, and the flow is therefore 
incompressible. 
 
Discussion The fluid particle stretches in the horizontal direction and shrinks in the vertical direction, but the net 
volume of the fluid particle does not change. 
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Time t = 0
Time t = 0.2 s 

 

FIGURE 1 
Movement and distortion of an initially 
square fluid particle in a converging duct; x 
and y are in units of ft. Streamlines (solid 
blue curves) are also shown for reference. 



Chapter 4 Fluid Kinematics 

4-27 
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to 
teachers and educators for course preparation.  If you are a student using this Manual, you are using it without permission.  

4-51 
Solution For a given velocity field we are to use volumetric strain rate to verify that the flow field is incompressible..  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis The velocity field is 

Velocity field: ( ) ( )0,V u v U bx i byj= = + −  (1) 

We use the equation for volumetric strain rate in Cartesian coordinates, and apply Eq. 1, 

Volumetric strain rate:

 ( )1 0 0xx yy zz
D u v w b b
Dt x y z

ε ε ε ∂ ∂ ∂
= + + = + + = + − + =

∂ ∂ ∂
V

V
 (2) 

Where εzz = 0 since the flow is two-dimensional. Since the volumetric strain rate is zero everywhere, the flow is 
incompressible. 
 
Discussion The fluid particle stretches in the horizontal direction and shrinks in the vertical direction, but the net 
volume of the fluid particle does not change. 

  

 
 
 
 
 
 
 
4-52 
Solution For a given steady two-dimensional velocity field, we are to calculate the x and y components of the 
acceleration field.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis The velocity field is 

 ( ) ( ) ( )1 1 2 2,V u v U a x b y i V a x b y j= = + + + + +  (1) 

The acceleration field is obtained from its definition (the material acceleration). The x-component is 

x-component of material acceleration:

 x
ua
t

∂
=

∂
Steady

u u uu v w
x y z
∂ ∂ ∂

+ + +
∂ ∂ ∂

( ) ( )1 1 1 2 2 1

Two-D

U a x b y a V a x b y b= + + + + +  (2) 

The y-component is 

y-component of material acceleration:

 y
va
t

∂
=

∂
Steady

v v vu v w
x y z
∂ ∂ ∂

+ + +
∂ ∂ ∂

( ) ( )1 1 2 2 2 2

Two-D

U a x b y a V a x b y b= + + + + +  (3) 

 
Discussion If there were a z-component, it would be treated in the same fashion. 
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4-53 
Solution We are to find a relationship among the coefficients that causes the flow field to be incompressible.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis We use the equation for volumetric strain rate in Cartesian coordinates, and apply Eq. 1 of the previous 
problem, 

Volumetric strain rate: 1
xx yy zz

D u v w
Dt x y z

ε ε ε ∂ ∂ ∂
= + + = + +

∂ ∂ ∂
V

V 1 2

Two-D

a b= +  (1) 

We recognize that when the volumetric strain rate is zero everywhere, the flow is incompressible. Thus, the desired 
relationship is 

Relationship to ensure incompressibility: 1 2 0a b+ =  (2) 

 
Discussion If Eq. 2 is satisfied, the flow is incompressible, regardless of the values of the other coefficients. 

  

 
 
 
 
 
4-54 
Solution For a given velocity field we are to calculate the linear strain rates in the x and y directions.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis We use the equations for linear strain rates in Cartesian coordinates, and apply Eq. 1 of Problem 4-52, 

Linear strain rates: 1 2          xx yy
u va b
x y

ε ε∂ ∂
= = = =
∂ ∂

 (1) 

 

Discussion In general, since coefficients a1 and b2 are non-zero, fluid particles stretch (or shrink) in the x and y 
directions. 

  

 
 
 
 
 
4-55 
Solution For a given velocity field we are to calculate the shear strain rate in the x-y plane.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis We use the equation for shear strain rate εxy in Cartesian coordinates, and apply Eq. 1 of Problem 4-52, 

Shear strain rate in x-y plane: ( )1 2
1 1
2 2xy yx

u v b a
y x

ε ε
⎛ ⎞∂ ∂

= = + = +⎜ ⎟∂ ∂⎝ ⎠
 (1) 

Note that by symmetry εyx = εxy. 
 
Discussion In general, since coefficients b1 and a2 are non-zero, fluid particles distort via shear strain in the x and y 
directions. 
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4-56 
Solution For a given velocity field we are to form the 2-D strain rate tensor and determine the conditions necessary 
for the x and y axes to be principal axes.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis The two-dimensional form of the strain rate tensor is 

2-D strain rate tensor: xx xy
ij

yx yy

ε ε
ε

ε ε
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (1) 

We use the linear strain rates and the shear strain rate from the previous two problems to generate the tensor, 

2-D strain rate tensor: 
( )

( )

1 1 2

1 2 2

1
2

1
2

xx xy
ij

yx yy

a b a

b a b

ε ε
ε

ε ε

⎛ ⎞+⎜ ⎟⎛ ⎞
⎜ ⎟= =⎜ ⎟
⎜ ⎟⎝ ⎠ +⎜ ⎟
⎝ ⎠

 (2) 

If the x and y axes were principal axes, the diagonals of εij would be non-zero, and the off-diagonals would be zero. Here 
the off-diagonals go to zero when 

Condition for x and y axes to be principal axes: 1 2 0b a+ =  (3) 
 

Discussion For the more general case in which Eq. 3 is not satisfied, the principal axes can be calculated using tensor 
algebra. 

  

 
 
 
 
 
 
4-57 
Solution For a given velocity field we are to calculate the vorticity vector and discuss its orientation. 
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis We use the equation for vorticity vector ζ  in Cartesian coordinates, and apply Eq. 1 of Problem 4-52, 

Vorticity vector:

 
w
y

ζ ∂
=

∂
Two-D

v
z
∂

−
∂

Two-D

ui
z

⎛ ⎞
⎜ ⎟ ∂

+⎜ ⎟
∂⎜ ⎟⎜ ⎟

⎝ ⎠ Two-D

w
x

∂
−
∂

( )2 1

Two-D

v uj k a b k
x y

⎛ ⎞
⎜ ⎟ ⎛ ⎞∂ ∂

+ − = −⎜ ⎟⎜ ⎟ ∂ ∂⎝ ⎠⎜ ⎟
⎝ ⎠

 (1) 

The only non-zero component of vorticity is in the z (or –z) direction. 
 
Discussion For any two-dimensional flow in the x-y plane, the vorticity vector must point in the z (or –z) direction. The 
sign of the z-component of vorticity in Eq. 1 obviously depends on the sign of a2 – b1. 
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4-58 
Solution For the given velocity field we are to calculate the two-dimensional linear strain rates from fundamental 
principles and compare with the given equation.  
 
Assumptions 1 The flow is incompressible. 2 The flow is steady. 3 The flow is two-dimensional. 
 
Analysis First, for convenience, we number the equations in the problem statement: 

Velocity field: ( ) ( ), 0V u v a by i j= = + +  (1) 

Lower left corner at t + dt: ( )( ),x a by dt y+ +  (2) 

Linear strain rate in Cartesian coordinates:           xx yy
u v
x y

ε ε∂ ∂
= =
∂ ∂

 (3) 

 

(a) The lower right corner of the fluid particle moves the same amount as the lower left corner since u does not 
depend on y position. Thus, 

Lower right corner at t + dt: ( )( ),x dx a by dt y+ + +  (4) 

Similarly, the top two corners of the fluid particle move to the right at speed a + b(y+dy)dt. Thus, 

Upper left corner at t + dt: ( )( )( ),x a b y dy dt y dy+ + + +  (5) 

and 

Upper right corner at t + dt: ( )( )( ),x dx a b y dy dt y dy+ + + + +  (6) 

 

(b) From the fundamental definition of linear strain rate in the x-direction, we consider the lower edge of the fluid 
particle. Its rate of increase in length divided by its original length is found by using Eqs. 2 and 4, 

εxx: 
( ) ( )( )

Length of lower edge at Length of lower edge at 

1 0

t dt t

xx

x dx a by dt x a by dt dx

dt dx
ε

+⎡ ⎤
⎢ ⎥+ + + − + + −⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (6) 

We get the same result by considering the upper edge of the fluid particle. Similarly, using the left edge of the fluid particle 
and Eqs. 2 and 5 we get 

εyy: 

Length of left edge at Length of left edge at 

1 0

t dt t

yy
y dy y dy

dt dy
ε

+⎡ ⎤
⎢ ⎥+ − −

= =⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (7) 

We get the same result by considering the right edge of the fluid particle. Thus both the x- and y-components of linear strain 
rate are zero for this flow field. 
 

(c) From Eq. 3 we calculate 

Linear strain rates: 0          0xx yy
u v
x y

ε ε∂ ∂
= = = =
∂ ∂

 (8) 

 

Discussion Although the algebra in this problem is rather straight-forward, it is good practice for the more general case 
(a later problem). 
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4-59 
Solution We are to verify that the given flow field is incompressible using two different methods.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional. 
 
Analysis 
(a) The volume of the fluid particle at time t is. 

Volume at time t: ( )t dxdydz=V  (1) 

where dz is the length of the fluid particle in the z direction. At time t + dt, we assume that the fluid particle’s dimension dz 
remains fixed since the flow is two-dimensional. Thus its volume is dz times the area of the rhombus shown in Fig. P4-58, 
as illustrated in Fig. 1, 

Volume at time t + dt: ( )t dt dxdydz+ =V  (2) 

Since Eqs. 1 and 2 are equal, the volume of the fluid particle has not 
changed, and the flow is therefore incompressible. 
 

(b) We use the equation for volumetric strain rate in Cartesian 
coordinates, and apply the results of the previous problem, 

Volumetric strain rate: 1 0 0 0 0xx yy zz
D
Dt

ε ε ε= + + = + + =
V

V
 (3) 

Where εzz = 0 since the flow is two-dimensional. Since the volumetric 
strain rate is zero everywhere, the flow is incompressible. 
 
Discussion Although the fluid particle deforms with time, its height, its depth, and the length of its horizontal edges 
remain constant. 

  

 
 

dx 
dx 

dydy 

 
 

FIGURE 1 
The area of a rhombus is equal to its base 
times its height, which here is dxdy. 
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4-60 
Solution For the given velocity field we are to calculate the two-dimensional shear strain rate in the x-y plane from 
fundamental principles and compare with the given equation.  
 
Assumptions 1 The flow is incompressible. 2 The flow is steady. 3 The 
flow is two-dimensional. 
 
Analysis 
(a) The shear strain rate is 

Shear strain rate in Cartesian coordinates: 1
2xy

u v
y x

ε
⎛ ⎞∂ ∂

= +⎜ ⎟∂ ∂⎝ ⎠
 (1) 

From the fundamental definition of shear strain rate in the x-y plane, we 
consider the bottom edge and the left edge of the fluid particle, which 
intersect at 90o at the lower left corner at time t. We define angle α between 
the lower edge and the left edge of the fluid particle, and angle β, the 
complement of α (Fig. 1). The rate of decrease of angle α over time 
interval dt is obtained from application of trigonometry. First, we calculate 
angle β, 

Angle β at time t + dt: ( )arctan arctanbdydt bdt bdt
dy

β
⎛ ⎞

= = ≈⎜ ⎟
⎝ ⎠

 (2) 

The approximation is valid for very small angles. As the time interval dt → 
0, Eq. 2 is correct. At time t + dt, angle α is 

Angle α at time t + dt: 
2 2

bdtπ πα β= − ≈ −  (3) 

During this time interval, α changes from 90o (π/2 radians) to the expression given by Eq. 2. Thus the rate of change of α is 

Rate of change of angle α: 

 at  at 

1
2 2

tt dt

d bdt b
dt dt

αα

α π π

+

⎡ ⎤
⎢ ⎥⎛ ⎞= − − = −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥
⎣ ⎦

 (4) 

Finally, since shear strain rate is defined as half of the rate of decrease of angle α,  

Shear strain rate: 1
2xy

d
dt
αε = − =

2
b

 (5) 

 

(b) From Eq. 1 we calculate 

Shear strain rate: ( )1 1 0
2 2xy

u v b
y x

ε
⎛ ⎞∂ ∂

= + = + =⎜ ⎟∂ ∂⎝ ⎠ 2
b

 (6) 

Both methods for obtaining the shear strain rate agree (Eq. 5 and Eq. 6). 
 
Discussion Although the algebra in this problem is rather straight-forward, it is good practice for the more general case 
(a later problem). 

  

 
 

 

dx 

dy 

 ( )( ),x dx a by dt y+ + +   

 ( )( ),x a by dt y+ +   

 ( )( )( ),x a b y dy dt y dy+ + + +  

α 

β 

dy 

bdydt 

 
 

FIGURE 1 
A magnified view of the deformed fluid 
particle at time t + dt, with the location of 
three corners indicated, and angles α and β 
defined. 
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4-61 
Solution For the given velocity field we are to calculate the two-dimensional rate of rotation in the x-y plane from 
fundamental principles and compare with the given equation.  
 

Assumptions 1 The flow is incompressible. 2 The flow is steady. 3 The flow is two-dimensional. 
 

Analysis 
(a) The rate of rotation in Cartesian coordinates is 

Rate of rotation in Cartesian coordinates: 1
2z

v u
x y

ω
⎛ ⎞∂ ∂

= −⎜ ⎟∂ ∂⎝ ⎠
 (1) 

From the fundamental definition of rate of rotation in the x-y plane, we 
consider the bottom edge and the left edge of the fluid particle, which 
intersect at 90o at the lower left corner at time t. We define angle β in Fig. 
1, where β is the negative of the angle of rotation of the left edge of the 
fluid particle (negative because rotation is mathematically positive in the 
counterclockwise direction). We calculate angle β using trigonometry, 

Angle β at time t + dt: ( )arctan arctanbdydt bdt bdt
dy

β
⎛ ⎞

= = ≈⎜ ⎟
⎝ ⎠

 (2) 

The approximation is valid for very small angles. As the time interval dt → 
0, Eq. 2 is correct.  Meanwhile, the bottom edge of the fluid particle has not 
rotated at all. Thus, the average angle of rotation of the two line segments 
(lower and left edges) at time t + dt is 

 ( )1 0
2 2

bAVG dtβ= − ≈ −  (3) 

Thus the average rotation rate during time interval dt is 

Rate of rotation in x-y plane: 
( ) 1

2z

d AVG b dt
dt dt

ω ⎛ ⎞= = − =⎜ ⎟
⎝ ⎠ 2

b
−  (4) 

 

(b) From Eq. 1 we calculate 

Rate of rotation: ( )1 1 0
2 2z

v u b
x y

ω
⎛ ⎞∂ ∂

= − = − =⎜ ⎟∂ ∂⎝ ⎠ 2
b

−  (5) 

Both methods for obtaining the rate of rotation agree (Eq. 4 and Eq. 5). 
 

Discussion The rotation rate is negative, indicating clockwise rotation about the z-axis. This agrees with our intuition as 
we follow the fluid particle. 

  

 
 

4-62 
Solution We are to determine whether the shear flow of Problem 4-22 is rotational or irrotational, and we are to 
calculate the vorticity in the z direction.  
 

Analysis 
(a) Since the rate of rotation is non-zero, it means that the flow is rotational. 
 

(b) Vorticity is defined as twice the rate of rotation, or twice the angular velocity. In the z direction, 

Vorticity component: 2 2
2z z
b bζ ω ⎛ ⎞= = − = −⎜ ⎟

⎝ ⎠
 (1) 

 

Discussion Vorticity is negative, indicating clockwise rotation about the z-axis. 
  

 

dx 

dy 

 ( )( ),x dx a by dt y+ + +   

 ( )( ),x a by dt y+ +   

 ( )( )( ),x a b y dy dt y dy+ + + +  

β 

bdydt 

 
 

FIGURE 1 
A magnified view of the deformed fluid 
particle at time t + dt, with the location of 
three corners indicated, and angle β defined. 
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4-63 
Solution We are to prove the given expression for flow in the xy-plane.  
 
Assumptions 1 The flow is incompressible and two-dimensional. 
 
Analysis For flow in the xy-plane, we are to show that: 

Rate of rotation: 1
2z

v u
x y

ω ω
⎛ ⎞∂ ∂

= = −⎜ ⎟∂ ∂⎝ ⎠
 (1) 

By definition, the rate of rotation (angular velocity) at a point is the average rotation rate of two initially perpendicular lines 
that intersect at the point. In this particular problem, Line a (PA) and Line b (PB) are initially perpendicular, and intersect at 
point P. Line a rotates by angle αa, and Line b rotates by angle αb, Thus, the average angle of rotation is 

Average angle of rotation: a b

2
α α+

 (2) 

During time increment dt, point P moves a distance udt to the right and vdt up (to first order, assuming dt is very small). 

Similarly, point A moves a distance uu dx dt
x
∂⎛ ⎞+⎜ ⎟∂⎝ ⎠

 to the right and vv dx dt
x
∂⎛ ⎞+⎜ ⎟∂⎝ ⎠

 up, and point B moves a distance 

uu dy dt
y

⎛ ⎞∂
+⎜ ⎟∂⎝ ⎠

 to the right and vv dy dt
y

⎛ ⎞∂
+⎜ ⎟∂⎝ ⎠

 up. Since point A is initially 

at distance dx to the right of point P, the horizontal distance from point P′ 
to point A′ at the later time t2 is 

 udx dxdt
x
∂

+
∂

 

On the other hand, point A is at the same vertical level as point P at time 
t1. Thus, the vertical distance from point P′ to point A′ at time t2 is 

 v dxdt
x
∂
∂

 (3) 

Similarly, point B is located at distance dy vertically above point P at time 
t1, and thus the horizontal distance from point P′ to point B′ at time t2 is 

 u dydt
y
∂

−
∂

 (4) 

and 

Vertical distance from point P′ to point B′ at time t2: 
vdy dydt
y
∂

+
∂

 (5) 

We mark the horizontal and vertical distances between point A′ and point P′ and between point B′ and point P′ at time t2 in 
Fig. 1. From the figure we see that 

Angle αa in terms of velocity components: 1 1 1
a tan tan tan

v vdxdt dxdt v vx x dt dt
u dx x xdx dxdt
x

α − − −

∂ ∂⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ∂ ∂⎛ ⎞∂ ∂= ≈ = ≈⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎜ ⎟ ⎜ ⎟+⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

 (6) 

The first approximation in Eq. 6 is due to the fact that as the size of the fluid element shrinks to a point, dx → 0, and at the 
same time dt → 0. Thus, the second term in the denominator is second-order compared to the first-order term dx and can be 
neglected. The second approximation in Eq. 6 is because as dt → 0 angle αa is very small, and tanαa → αa. Similarly, angle 
αb is written in terms of velocity components as 

Fluid element 
at time t2 

αa 

αb 

P′ 

B′ 

A′ 

Line b 

Line a 

 udx dxdt
x
∂

+
∂

  

 vdy dydt
y
∂

+
∂

  

 u dydt
y
∂

−
∂

  

 v dxdt
x
∂
∂

 

 

FIGURE 1 
A close-up view of the distorted fluid element 
at time t2. 
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 1 1 1
b tan tan tan

u udydt dydt
u uy y dt dt

v dy y ydy dydt
y

α − − −

∂ ∂⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟ ⎛ ⎞∂ ∂∂ ∂⎜ ⎟ ⎜ ⎟= ≈ = − ≈ −⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎜ ⎟ ⎝ ⎠+⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

 (7) 

 Finally then, the average rotation angle (Eq. 2) becomes 

Average angle of rotation: a b 1
2 2 2

v u dt v udt dt
x y x y

α α ⎛ ⎞ ⎛ ⎞+ ∂ ∂ ∂ ∂
= − = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (8) 

and the average rate of rotation (angular velocity) of the fluid element about point P in the x-y plane becomes 

 a b 1
2 2z

d v u
dt x y

α α
ω ω

⎛ ⎞+ ∂ ∂⎛ ⎞= = = −⎜ ⎟⎜ ⎟ ∂ ∂⎝ ⎠ ⎝ ⎠
 (9) 

 
Discussion Eq. 9 can be extended to three dimensions by performing a similar analysis in the x-z and y-z planes. 
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4-64 
Solution We are to prove the given expression.  
 
Assumptions 1 The flow is incompressible and two-dimensional. 
 
Analysis  We are to prove the following: 

Linear strain rate in x-direction: xx
u
x

ε ∂
=
∂

 (1) 

By definition, the rate of linear strain is the rate of increase in length of a 
line segment in a given direction divided by the original length of the line 
segment in that direction. During time increment dt, point P moves a 
distance udt to the right and vdt up (to first order, assuming dt is very 

small). Similarly, point A moves a distance uu dx dt
x
∂⎛ ⎞+⎜ ⎟∂⎝ ⎠

 to the right and 

vv dx dt
x
∂⎛ ⎞+⎜ ⎟∂⎝ ⎠

 up. Since point A is initially at distance dx to the right of 

point P, its position to the right of point P′ at the later time t2 is 

 udx dxdt
x
∂

+
∂

 (2) 

On the other hand, point A is at the same vertical level as point P at time 
t1. Thus, the vertical distance from point P′ to point A′ at time t2 is 

Vertical distance from point P′ to point A′ at time t2: 
v dxdt
x
∂
∂

 (3) 

We mark the horizontal and vertical distances between point A′ and point P′ at time t2 in Fig. 1. From the figure we see that 

Linear strain rate in the x direction as line PA changes to P′A′ :

 

Length of P A  in  direction
Length of PA in  direction

Length of PA in  direction

dx

x
x

xx

x

udx dxdtd d u ux dt
dt dx dt x x

ε

′ ′⎛ ⎞
⎜ ⎟∂

+ −⎜ ⎟ ∂ ∂⎛ ⎞∂⎜ ⎟= = =⎜ ⎟∂ ∂⎜ ⎟ ⎝ ⎠
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (4) 

Thus Eq. 1 is verified. 
 
Discussion The distortion of the fluid element is exaggerated in Fig. 1. As time increment dt and fluid element length 
dx approach zero, the first-order approximations become exact. 
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+
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∂
∂

 

 

FIGURE 1 
A close-up view of the distorted fluid element 
at time t2. 
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4-65 
Solution We are to prove the given expression.  
 
Assumptions 1 The flow is incompressible and two-dimensional. 
 
Analysis  We are to prove the following: 

Shear strain rate in xy-plane: 1
2xy

u v
y x

ε
⎛ ⎞∂ ∂

= +⎜ ⎟∂ ∂⎝ ⎠
 (1) 

By definition, the shear strain rate at a point is half of the rate of decrease 
of the angle between two initially perpendicular lines that intersect at the 
point. In Fig. P4-63, Line a (PA) and Line b (PB) are initially 
perpendicular, and intersect at point P. Line a rotates by angle αa, and 
Line b rotates by angle αb. The angle between these two lines changes 
from π/2 at time t1 to αa-b at time t2 as sketched in Fig. 1. The shear strain 
rate at point P for initially perpendicular lines in the x and y directions is 
thus 

 a-b
1
2xy

d
dt

ε α= −  (2) 

During time increment dt, point P moves a distance udt to the right and vdt 
up (to first order, assuming dt is very small). Similarly, point A moves a 

distance uu dx dt
x
∂⎛ ⎞+⎜ ⎟∂⎝ ⎠

 to the right and vv dx dt
x
∂⎛ ⎞+⎜ ⎟∂⎝ ⎠

 up, and point B 

moves a distance uu dy dt
y

⎛ ⎞∂
+⎜ ⎟∂⎝ ⎠

 to the right and vv dy dt
y

⎛ ⎞∂
+⎜ ⎟∂⎝ ⎠

 up. Since point A is initially at distance dx to the right of 

point P, its position to the right of point P′ at the later time t2 is 

Horizontal distance from point P′ to point A′ at time t2: 
udx dxdt
x
∂

+
∂

 (3) 

On the other hand, point A is at the same vertical level as point P at time t1. Thus, the vertical distance from point P′ to 
point A′ at time t2 is 

Vertical distance from point P′ to point A′ at time t2: 
v dxdt
x
∂
∂

 (3) 

Similarly, point B is located at distance dy vertically above point P at time t1, and thus we write 

Horizontal distance from point P′ to point B′ at time t2: 
u dydt
y
∂

−
∂

 (4) 

and 

Vertical distance from point P′ to point B′ at time t2: 
vdy dydt
y
∂

+
∂

 (5) 

We mark the horizontal and vertical distances between point A′ and point P′ and between point B′ and point P′ at time t2 in 
Fig. 1. From the figure we see that 

Angle αa in terms of velocity components:

 1 1 1
a tan tan tan

v vdxdt dxdt v vx x dt dt
u dx x xdx dxdt
x

α − − −

∂ ∂⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ∂ ∂⎛ ⎞∂ ∂= ≈ = ≈⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎜ ⎟ ⎜ ⎟+⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

 (6) 
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αb 
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B′ 

A′ 

Line b 

Line a 

 udx dxdt
x
∂

+
∂

  

 vdy dydt
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+
∂
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y
∂

−
∂

  

 v dxdt
x
∂
∂
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FIGURE 1 
A close-up view of the distorted fluid element 
at time t2. 
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The first approximation in Eq. 6 is due to the fact that as the size of the fluid element shrinks to a point, dx → 0, and at the 
same time dt → 0. Thus, the second term in the denominator is second-order compared to the first-order term dx and can be 
neglected. The second approximation in Eq. 6 is because as dt → 0 angle αa is very small, and tanαa → αa. Similarly, 

Angle αb in terms of velocity components:

 1 1 1
b tan tan tan

u udydt dydt
u uy y dt dt

v dy y ydy dydt
y

α − − −

∂ ∂⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟ ⎛ ⎞∂ ∂∂ ∂⎜ ⎟ ⎜ ⎟= ≈ = − ≈ −⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎜ ⎟ ⎝ ⎠+⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

 (7) 

 Angle αa-b at time t2 is calculated from Fig. 1 as 

Angle αa-b at time t2 in terms of velocity components:

 a-b b a2 2
u vdt dt
y x

π πα α α ∂ ∂
= + − = − −

∂ ∂
 (8) 

where we have used Eqs. 6 and 7. Finally then, the shear strain rate (Eq. 2) becomes 

Shear strain rate, initially perpendicular lines in the x and y directions:

 

a-b 2 a-b 1 at  at 

a-b
1 1 1 1
2 2 2 2 2

t t

xy
d u v u vdt dt
dt dt y x y x

α α

π πε α

⎛ ⎞
⎜ ⎟ ⎛ ⎞∂ ∂ ∂ ∂

= − ≈ − − − − = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎜ ⎟ ⎝ ⎠⎜ ⎟
⎝ ⎠

 (9) 

which agrees with Eq. 1. Thus, Eq. 1 is proven. 
 
Discussion Eq. 9 can be easily extended to three dimensions by performing a similar analysis in the x-z plane and in the 
y-z plane. 

  

 
 
 
 
 
 
4-66 
Solution For a given linear strain rate in the x-direction, we are to calculate the linear strain rate in the y-direction.  
 
Analysis Since the flow is incompressible, the volumetric strain rate must be zero. In two dimensions, 

Volumetric strain rate in the x-y plane: 1 0xx yy
D u v
Dt x y

ε ε ∂ ∂
= + = + =

∂ ∂
V

V
 (1) 

Thus, the linear strain rate in the y-direction is the negative of that in the x-direction, 

Linear strain rate in y-direction: yy
v u
y x

ε ∂ ∂
= = − =
∂ ∂

-2.5 1/s  (2) 

 

Discussion The fluid element stretches in the x-direction since εxx is positive. Because the flow is incompressible, the 
fluid element must shrink in the y-direction, yielding a value of εyy that is negative. 
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4-67 
Solution We are to calculate the vorticity of fluid particles in a tank rotating in solid body rotation about its vertical 
axis.  
 
Assumptions 1 The flow is steady. 2 The z-axis is in the vertical direction. 
 
Analysis Vorticity ζ  is twice the angular velocity ω . Here, 

Angular velocity: rot 1 min 2  rad360 37.70  rad/s
min 60 s rot

k kπω ⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (1) 

where k  is the unit vector in the vertical (z) direction. The vorticity is thus 

Vorticity: 2 2 37.70  rad/s 75.4  rad/sk kζ ω= = × =  (2) 
 

Discussion Because the water rotates as a solid body, the vorticity is constant throughout the tank, and points vertically 
upward. 

  

 
 
4-68 
Solution We are to calculate the angular speed of a tank rotating about its vertical axis.  
 
Assumptions 1 The flow is steady. 2 The z-axis is in the vertical direction. 
 
Analysis Vorticity ζ  is twice the angular velocity ω . Thus, 

Angular velocity: 55.4  rad/s 27.7  rad/s
2 2

k kζω −
= = = −  (1) 

where k  is the unit vector in the vertical (z) direction. The angular velocity is negative, which by definition is in the 
clockwise direction about the vertical axis. We express the rate of rotation in units of rpm, 

Rate of rotation: rad 60 s rot rot27.7 265
s 1 min 2  rad min

n
π

⎛ ⎞⎛ ⎞= − = − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

-265 rpm  (2) 

 

Discussion Because the vorticity is constant throughout the tank, the water rotates as a solid body. 
  

 
 
4-69 
Solution For a tank of given rim radius and speed, we are to calculate the magnitude of the component of vorticity in 
the vertical direction.  
 
Assumptions 1 The flow is steady. 2 The z-axis is in the vertical direction. 
 
Analysis The linear speed at the rim is equal to rrimωz. Thus, 

Component of angular velocity in z-direction: rim

rim

2.6 m/s 7.429 rad/s
0.35 mz

V
r

ω = = =  (1) 

Vorticity ζ  is twice the angular velocity ω . Thus, 

z-component of vorticity: ( )2 2 7.429 rad/s 14.86 rad/sz zζ ω= = = ≅ 15.0 rad/s  (2) 

 

Discussion Radian is a non-dimensional unit, so we can insert it into Eq. 1. The final answer is given to two significant 
digits for consistency with the given information. 
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4-70C 
Solution We are to explain the relationship between vorticity and rotationality.  
 
Analysis Vorticity is a measure of the rotationality of a fluid particle. If a particle rotates, its vorticity is non-zero. 
Mathematically, the vorticity vector is twice the angular velocity vector. 
 
Discussion If the vorticity is zero, the flow is called irrotational. 

  

 
 

4-71 
Solution For a given deformation of a fluid particle in one direction, we are to calculate its deformation in the other 
direction.  
 
Assumptions 1 The flow is incompressible. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis Since the flow is incompressible and two-dimensional, the area of the fluid element must remain constant 
(volumetric strain rate must be zero in an incompressible flow). The area of the original fluid particle is a2. Hence, the 
vertical dimension of the fluid particle at the later time must be a2/2a = a/2. 
 
Discussion Since the particle stretches by a factor of two in the x-direction, it shrinks by a factor of two in the y-
direction. 

  

 
 

4-72 
Solution We are to calculate the percentage change in fluid density for a fluid particle undergoing two-dimensional 
deformation.  
 
Assumptions 1 The flow is two-dimensional in the x-y plane. 
 
Analysis The area of the original fluid particle is a2. Assuming that the mass of the fluid particle is m and its 
dimension in the z-direction is also a, the initial density is ρ = m/V = m/a3. As the particle moves and deforms, its mass 
must remain constant. If its dimension in the z-direction remains equal to a, the density at the later time is 

Density at the later time: 
( )( )( ) 31.013
1.06 0.931

m m m
a a a a

ρ = = =
V

 (1) 

Compared to the original density, the density has increased by about 1.3%. 
 
Discussion The fluid particle has stretched in the x-direction and shrunk in the y-direction, but there is nevertheless a 
net decrease in volume, corresponding to a net increase in density. 

  

 
 

4-73 
Solution For a given velocity field we are to calculate the vorticity.  
 
Analysis The velocity field is 

 ( ) ( ) ( ) ( ), , 3.0 2.0 2.0 2.0 0.5V u v w x y i x y j xy k= = + − + − +  (1) 

In Cartesian coordinates, the vorticity vector is 

Vorticity vector in Cartesian coordinates: w v u w v ui j k
y z z x x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
ζ  (2) 

We substitute the velocity components u = 3.0 + 2.0x – y, v = 2.0x – 2.0y, and w = 0.5xy from Eq. 1 into Eq. 2 to obtain 

Vorticity vector: ( ) ( ) ( )( ) ( ) ( ) ( )0.5 0 0 0.5 2.0 1 0.5 0.5 3.0x i y j k x i y j kζ = − + − + − − = − +  (3) 

 

Discussion The vorticity is non-zero implying that this flow field is rotational. 
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4-74 
Solution We are to determine if the flow is rotational, and if so calculate the z-component of vorticity.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane. 
 
Analysis  The velocity field is given by 

Velocity field, Couette flow: ( ), 0yV u v V i j
h

⎛ ⎞= = +⎜ ⎟
⎝ ⎠

 (1) 

If the vorticity is non-zero, the flow is rotational. So, we calculate the z-component of vorticity, 

z-component of vorticity: 0z
v u V V
x y h h

ζ ∂ ∂
= − = − = −
∂ ∂

 (2) 

Since vorticity is non-zero, this flow is rotational. Furthermore, the vorticity is negative, implying that particles rotate in 
the clockwise direction.  
 
Discussion The vorticity is constant at every location in this flow. 

  

 
 
 
 
 
 
 
4-75 
Solution For the given velocity field for Couette flow, we are to calculate the two-dimensional linear strain rates and 
the shear strain rate.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane. 
 
Analysis The linear strain rates in the x direction and in the y direction are 

Linear strain rates:           xx yy
u v
x y

ε ε∂ ∂
= = = =
∂ ∂

0 0  (1) 

The shear strain rate in the x-y plane is 

Shear strain rate: 
1 1 0
2 2 2xy

u v V V
y x h h

ε
⎛ ⎞∂ ∂ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠⎝ ⎠

 (2) 

Fluid particles in this flow have non-zero shear strain rate. 
 
Discussion Since the linear strain rates are zero, fluid particles deform (shear), but do not stretch in either the horizontal 
or vertical directions. 
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4-76 
Solution For the Couette flow velocity field we are to form the 2-D strain rate tensor and determine if the x and y 
axes are principal axes.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane. 
 
Analysis  The two-dimensional strain rate tensor, εij, is 

2-D strain rate tensor: xx xy
ij

yx yy

ε ε
ε

ε ε
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (1) 

We use the linear strain rates and the shear strain rate from the previous problem to generate the tensor, 

2-D strain rate tensor: 
0

2

0
2

xx xy
ij

yx yy

V
h

V
h

ε ε
ε

ε ε

⎛ ⎞
⎜ ⎟⎛ ⎞
⎜ ⎟= =⎜ ⎟
⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠

 (2) 

Note that by symmetry εyx = εxy. If the x and y axes were principal axes, the diagonals of εij would be non-zero, and the off-
diagonals would be zero. Here we have the opposite case, so the x and y axes are not principal axes. 
 
Discussion The principal axes can be calculated using tensor algebra. 
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Reynolds Transport Theorem 
 
 
 
4-77C 
Solution   
(a) False: The statement is backwards, since the conservation laws are naturally occurring in the system form. 
(b) False: The RTT can be applied to any control volume, fixed, moving, or deforming. 
(c) True: The RTT has an unsteady term and can be applied to unsteady problems. 
(d) True: The extensive property B (or its intensive form b) in the RTT can be any property of the fluid – scalar, vector, or 

even tensor. 
  

 
 
 

4-78 
Solution For the case in which Bsys is the mass m of a system, we are to use the RTT to derive the equation of 
conservation of mass for a control volume.  
 
Analysis  The general form of the Reynolds transport theorem is given by 

General form of the RTT: sys
rCV CS

dB d bd bV ndA
dt dt

ρ ρ= + ⋅∫ ∫V  (1) 

Setting Bsys = m means that b = m/m = 1. Plugging these and dm/dt = 0 into Eq. 1 yields 

Conservation of mass for a CV: rCV CS
0 d d V ndA

dt
ρ ρ= + ⋅∫ ∫V  (2) 

 
Discussion Eq. 2 is general and applies to any control volume – fixed, moving, or even deforming. 

  

 
 
 
4-79 
Solution For the case in which Bsys is the linear momentum mV  of a system, we are to use the RTT to derive the 
equation of conservation of linear momentum for a control volume.  
 
Analysis Newton’s second law is 

Newton’s second law for a system: ( )
sys

dV dF ma m mV
dt dt

= = =∑  (1) 

Setting Bsys = mV  means that b = mV m V= . Plugging these and Eq. 1 into the equation of the previous problem yields 

 ( ) ( )rCV CSsys

d dF mV Vd V V n dA
dt dt

ρ ρ= = + ⋅∑ ∫ ∫V   

or simply 

Conservation of linear momentum for a CV:

 ( )rCV CS

dF Vd V V n dA
dt

ρ ρ= + ⋅∑ ∫ ∫V  (2) 

 
Discussion Eq. 2 is general and applies to any control volume – fixed, moving, or even deforming. 
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4-80 
Solution For the case in which Bsys is the angular momentum H  of a system, we are to use the RTT to derive the 
equation of conservation of angular momentum for a control volume.  
 
Analysis  The conservation of angular momentum is expressed as 

Conservation of angular momentum for a system: sys
dM H
dt

=∑  (1) 

Setting Bsys = H  means that b = ( )r mV m r V× = × , noting that m = constant for a system. Plugging these and Eq. 1 into 

the equation of Problem 4-78 yields 

 ( ) ( )( )sys rCV CS

d dM H r V d r V V n dA
dt dt

ρ ρ= = × + × ⋅∑ ∫ ∫V   

or simply 

Conservation of angular momentum for a CV:

 ( ) ( )( )rCV CS

dM r V d r V V n dA
dt

ρ ρ= × + × ⋅∑ ∫ ∫V  (2) 

 
Discussion Eq. 2 is general and applies to any control volume – fixed, moving, or even deforming. 

  

 
 
 
 
 
 
4-81 
Solution F(t) is to be evaluated from the given expression.  
 
Analysis The integral is 

 ( ) 22x Bt x

x At

dF t e dx
dt

= −

=
= ∫  (1) 

We could try integrating first, and then differentiating, but we can instead use the 1-D Leibnitz theorem. Here, 
( ) 22xG x,t e−=  (G is not a function of time in this simple example). The limits of integration are a(t) = At and b(t) = Bt. 

Thus, 

 ( ) ( ) ( )
2 22 2           0        +     

b

a

b a

G db daF t dx G b,t G a,t
t dt dt

Be Ae− −

∂
= + −

∂

= −

∫  (2) 

or 

 ( ) 2 2 2 2B t A tF t Be Ae− −= −  (3) 

 
Discussion You are welcome to try to obtain the same solution without using the Leibnitz theorem. 
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Review Problems  
 
 
 
4-82 
Solution We are to determine if the flow is rotational, and if so calculate the z-component of vorticity.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane. 
 
Analysis  The velocity components are given by 

Velocity components, 2-D Poiseuille flow: ( )21        0
2

dPu y hy v
dxμ

= − =  (1) 

If the vorticity is non-zero, the flow is rotational. So, we calculate the z-component of vorticity, 

z-component of vorticity:

 ( ) ( )1 10 2 2
2 2z

v u dP dPy h y h
x y dx dx

ζ
μ μ

∂ ∂
= − = − − = − −
∂ ∂

 (2) 

Since vorticity is non-zero, this flow is rotational. Furthermore, in the lower half of the flow (y < h/2) the vorticity is 
negative (note that dP/dx is negative). Thus, particles rotate in the clockwise direction in the lower half of the flow. 
Similarly, particles rotate in the counterclockwise direction in the upper half of the flow. 
 
Discussion The vorticity varies linearly across the channel. 

  

 
 
 
 
 

4-83 
Solution For the given velocity field for 2-D Poiseuille flow, we are to calculate the two-dimensional linear strain 
rates and the shear strain rate.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane. 
 
Analysis The linear strain rates in the x direction and in the y direction are 

Linear strain rates:           xx yy
u v
x y

ε ε∂ ∂
= = = =
∂ ∂

0 0  (1) 

The shear strain rate in the x-y plane is 

Shear strain rate:

 ( ) ( )1 1 1 12 0 2
2 2 2 4xy

u v dP dPy h y h
y x dx dx

ε
μ μ

⎛ ⎞ ⎛ ⎞∂ ∂
= + = − + = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (2) 

Fluid particles in this flow have non-zero shear strain rate. 
 
Discussion Since the linear strain rates are zero, fluid particles deform (shear), but do not stretch in either the horizontal 
or vertical directions. 
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4-84 
Solution For the 2-D Poiseuille flow velocity field we are to form the 2-D strain rate tensor and determine if the x 
and y axes are principal axes.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane. 
 
Analysis  The two-dimensional strain rate tensor, εij, in the x-y plane, 

2-D strain rate tensor: xx xy
ij

yx yy

ε ε
ε

ε ε
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (1) 

We use the linear strain rates and the shear strain rate from the previous problem to generate the tensor, 

 
( )

( )

10 2
4

1 2 0
4

xx xy
ij

yx yy

dP y h
dx

dP y h
dx

ε ε μ
ε

ε ε
μ

⎛ ⎞−⎜ ⎟⎛ ⎞ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎝ ⎠ −⎜ ⎟
⎝ ⎠

 (2) 

Note that by symmetry εyx = εxy. If the x and y axes were principal axes, the diagonals of εij would be non-zero, and the off-
diagonals would be zero. Here we have the opposite case, so the x and y axes are not principal axes. 
 
Discussion The principal axes can be calculated using tensor algebra. 

  

 
 
 
4-85  
 

Solution For a given velocity field we are to plot several pathlines 
for fluid particles released from various locations and over a specified time 
period.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The 
flow is two-dimensional in the x-y plane. 
 
Properties For water at 40oC, μ = 6.53×10-4 kg/m⋅s. 
 
Analysis Since the flow is steady, pathlines, streamlines, and 
streaklines are all straight horizontal lines. We simply need to integrate 
velocity component u with respect to time over the specified time period. 
The horizontal velocity component is 

 ( )21
2

dPu y hy
dxμ

= −  (1) 

We integrate as follows: 

 
( )

( )( )

end

start

10 s 2
start 0

2

10
2

1 10 s
2

t

t

dPx x udt y hy dt
dx

dPx y hy
dx

μ

μ

⎛ ⎞
= + = + −⎜ ⎟

⎝ ⎠

= −

∫ ∫
 (2) 

We substitute the given values of y and the values of μ and dP/dx into Eq. 2 to calculate the ending x position of each 
pathline. We plot the pathlines in Fig. 1. 
 
Discussion Streaklines introduced at the same locations and developed over the same time period would look identical 
to the pathlines of Fig. 1. 
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FIGURE 1 
Pathlines for the given velocity field at t = 
12 s. Note that the vertical scale is greatly 
expanded for clarity (x is in m, but y is in 
mm). 
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4-86  [Also solved using EES on enclosed DVD] 
Solution For a given velocity field we are to plot several streaklines at a given time for dye released from various 
locations over a specified time period.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane. 
 
Properties For water at 40oC, μ = 6.53×10-4 kg/m⋅s. 
 
Analysis Since the flow is steady, pathlines, streamlines, and 
streaklines are all straight horizontal lines. We simply need to integrate 
velocity component u with respect to time over the specified time period. 
The horizontal velocity component is 

 ( )21
2

dPu y hy
dxμ

= −  (1) 

We integrate as follows to obtain the final x location of the first dye 
particle released: 

 
( )

( ) ( )

end

start

10 s 2
start 0

2

10
2

1 10 s
2

t

t

dPx x udt y hy dt
dx

dPx y hy
dx

μ

μ

⎛ ⎞
= + = + −⎜ ⎟

⎝ ⎠

= − ×

∫ ∫
 (2) 

We substitute the given values of y and the values of μ and dP/dx into Eq. 
2 to calculate the ending x position of the first released dye particle of each 
streakline. The last released dye particle is at x = xstart = 0, because it hasn’t 
had a chance to go anywhere. We connect the beginning and ending points 
to plot the streaklines (Fig. 1). 
 
Discussion These streaklines are introduced at the same locations and 
are developed over the same time period as the pathlines of the previous problem. They are identical since the flow is 
steady. 
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FIGURE 1 
Streaklines for the given velocity field at t = 
10 s. Note that the vertical scale is greatly 
expanded for clarity (x is in m, but y is in 
mm). 
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4-87  
 

Solution For a given velocity field we are to plot several streaklines at a given time for dye released from various 
locations over a specified time period.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The 
flow is two-dimensional in the x-y plane. 
 
Properties For water at 40oC, μ = 6.53×10-4 kg/m⋅s. 
 
Analysis Since the flow is steady, pathlines, streamlines, and 
streaklines are all straight horizontal lines. The horizontal velocity 
component is 

 ( )21
2

dPu y hy
dxμ

= −  (1) 

In the previous problem we generated streaklines at t = 10 s. Imagine the 
dye at the source being suddenly cut off at that time, but the streaklines are 
observed 2 seconds later, at t = 12 s. The dye streaks will not stretch any 
further, but will simply move at the same horizontal speed for 2 more 
seconds. At each y location, the x locations of the first and last dye particle 
are thus 

first dye particle of streakline: ( )( )21 12 s
2

dPx y hy
dxμ

= −  (2) 

and 

last dye particle of streakline: ( )( )21 2 s
2

dPx y hy
dxμ

= −  (3) 

We substitute the given values of y and the values of μ and dP/dx into Eqs. 2 and 3 to calculate the ending and beginning x 
positions of the first released dye particle and the last released dye particle of each streakline. We connect the beginning 
and ending points to plot the streaklines (Fig. 1). 
 
Discussion Both the left and right ends of each dye streak have moved by the same amount compared to those of the 
previous problem. 

  

 

 
 
 
4-88  
 

Solution For a given velocity field we are to compare streaklines at two different times and comment about linear 
strain rate in the x direction.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane. 
 
Properties For water at 40oC, μ = 6.53×10-4 kg/m⋅s. 
 
Analysis Comparing the results of the previous two problems we see that the streaklines have not stretched at all – 
they have simply convected downstream. Thus, based on the fundamental definition of linear strain rate, it is zero: 

Linear strain rate in the x direction: 0xxε =  (1) 
 

Discussion Our result agrees with that of Problem 4-83. 
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FIGURE 1 
Streaklines for the given velocity field at t = 
12 s. Note that the vertical scale is greatly 
expanded for clarity (x is in m, but y is in 
mm). 
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4-89  
 

Solution For a given velocity field we are to plot several timelines 
at a specified time. The timelines are created by hydrogen bubbles 
released from a vertical wire at x = 0. 
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The 
flow is two-dimensional in the x-y plane. 
 
Properties For water at 40oC, μ = 6.53×10-4 kg/m⋅s. 
 
Analysis Since the flow is steady, pathlines, streamlines, and 
streaklines are all straight horizontal lines, but timelines are completely 
different from any of the others. To simulate a timeline, we integrate 
velocity component u with respect to time over the specified time period 
from t = 0 to t = tend. We introduce the bubbles at x = 0 and at many values 
of y (we used 50 in our simulation). By connecting these x locations with 
a line, we simulate a timeline. The horizontal velocity component is 

x-velocity component: ( )21
2

dPu y hy
dxμ

= −  (1) 

We integrate as follows to find the x position on the timeline at tend: 

 
( )

( )

end end

start

2
start 0

2
end

1         0
2

1     
2

t t

t

dPx x udt y hy dt
dx

dPx y hy t
dx

μ

μ

⎛ ⎞
= + = + −⎜ ⎟

⎝ ⎠

→ = −

∫ ∫
 

We substitute the values of y and the values of μ and dP/dx into the above equation to calculate the ending x position of 
each point in the timeline. We repeat for the five values of tend. We plot the timelines in Fig. 1. 
 
Discussion Each timeline has the exact shape of the velocity profile. 

  

 
 
 
 

4-90 
Solution We are to determine if the flow is rotational, and if so calculate the θ-component of vorticity.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is axisymmetric about the x axis. 
 
Analysis  The velocity components are given by 

 ( )2 21        0        0
4 r

dPu r R u u
dx θμ

= − = =  (1) 

If the vorticity is non-zero, the flow is rotational. So, we calculate the θ-component of vorticity, 

θ-component of vorticity: 
10 2

4 2
ru u dP r dPr

z r dx dxθζ μ μ
∂ ∂

= − = − = −
∂ ∂

 (2) 

Since the vorticity is non-zero, this flow is rotational. The vorticity is positive since dP/dx is negative. In this coordinate 
system, positive vorticity is counterclockwise with respect to the positive θ direction. This agrees with our intuition since in 
the top half of the flow, θ points out of the page, and the rotation is counterclockwise. Similarly, in the bottom half of the 
flow, θ points into the page, and the rotation is clockwise. 
 
Discussion The vorticity varies linearly across the pipe from zero at the centerline to a maximum at the pipe wall. 
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FIGURE 1 
Timelines for the given velocity field at t = 
12.5 s, generated by a simulated hydrogen 
bubble wire at x = 0. Timelines created at t5 
= 10.0 s, t4 = 7.5 s, t3 = 5.0 s, t2 = 2.5 s, and 
t1 = 0 s. Note that the vertical scale is greatly 
expanded for clarity (x is in m, but y is in 
mm). 
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4-91 
Solution For the given velocity field for axisymmetric Poiseuille flow, we are to calculate the linear strain rates and 
the shear strain rate.  
 

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is axisymmetric about the x axis. 
 

Analysis The linear strain rates in the x direction and in the r direction are 

Linear strain rates:           r
xx rr

uu
x r

ε ε
∂∂

= = = =
∂ ∂

0 0  (1) 

Thus there is no linear strain rate in either the x or the r direction. The shear strain rate in the x-r plane is 

Shear strain rate: 
1 1 10 2
2 2 4 4

r
xr

u u dP r dPr
x r dx dx

ε
μ μ

⎛ ⎞∂ ∂⎛ ⎞= + = + =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (2) 

Fluid particles in this flow have non-zero shear strain rate. 
 
Discussion Since the linear strain rates are zero, fluid particles deform (shear), but do not stretch in either the horizontal 
or radial directions. 

  

 
 
 
 
 
 
 
4-92 
Solution For the axisymmetric Poiseuille flow velocity field we are to form the axisymmetric strain rate tensor and 
determine if the x and r axes are principal axes.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is axisymmetric about the x axis. 
 
Analysis  The axisymmetric strain rate tensor, εij, is 

Axisymmetric strain rate tensor: rr rx
ij

xr xx

ε ε
ε

ε ε
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (1) 

We use the linear strain rates and the shear strain rate from the previous problem to generate the tensor, 

Axisymmetric strain rate tensor: 
0

4

0
4

rr rx
ij

xr xx

r dP
dx

r dP
dx

ε ε μ
ε

ε ε
μ

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎝ ⎠
⎜ ⎟
⎝ ⎠

 (2) 

Note that by symmetry εrx = εxr. If the x and r axes were principal axes, the diagonals of εij would be non-zero, and the off-
diagonals would be zero. Here we have the opposite case, so the x and r axes are not principal axes. 
 
Discussion The principal axes can be calculated using tensor algebra. 
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4-93 
Solution We are to determine the location of stagnation point(s) in a given velocity field.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis  The velocity components are  

x-component of velocity: 
2 2 2

4 2 2 2 2 4 2 2 42 2 2
x x y bu

L x x y x b y y b bπ
− + +

=
+ + + − +

V  (1) 

and 

y-component of velocity: 
2 2 2

4 2 2 2 2 4 2 2 42 2 2
y x y bv

L x x y x b y y b bπ
− + −

=
+ + + − +

V  (2) 

Both u and v must be zero at a stagnation point. From Eq. 1, u can be zero only when x = 0. From Eq. 2, v can be zero either 
when y = 0 or when x2 + y2 –b2 = 0. Combining the former with the result from Eq. 1, we see that there is a stagnation 
point at (x,y) = (0,0), i.e. at the origin, 

Stagnation point: 0 and 0 at ( , ) (0,0)u v x y= = =  (3) 

Combining the latter with the result from Eq. 1, there appears to be another stagnation point at (x,y) = (0,b). However, at 
that location, Eq. 2 becomes 

y-component of velocity: 4 2 2 4

0 0
02

bv
L b b b bπ

−
= =

− +
V  (4) 

This point turns out to be a singularity point in the flow. Thus, the location (0,b) is not a stagnation point after all. 
 
Discussion There is only one stagnation point in this flow, and it is at the origin. 
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4-94 
Solution We are to draw a velocity vector plot for a given velocity field.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis We generate an array of x and y values in the given range and calculate u and v from Eqs. 1 and 2 
respectively at each location. We choose an appropriate scale factor for the vectors and then draw arrows to form the 
velocity vector plot (Fig. 1). 

0 

0.01 

0.02 

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

y 

Scale:

x 

10 m/s 

 V   

 
It is clear from the velocity vector plot how the air gets sucked into the vacuum cleaner from all directions. We also see that 
there is no flow through the floor.  
 
Discussion We discuss this problem in more detail in Chap. 10. 

  

 
 
 

4-95 
Solution We are to calculate the speed of air along the floor due to a vacuum cleaner, and find the location of 
maximum speed.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis At the floor, y = 0. Setting y = 0 in Eq. 2 of Problem 4-93 shows that v = 0, as expected – no flow through 
the floor. Setting y = 0 in Eq. 1 of Problem 4-93 results in the speed along the floor, 

Speed on the floor:

 
( ) ( )

2 2 2 2

4 2 2 4 2 2 22 22
x x b x x b xu

L Lx x b b L x bx bπ π π
− + − + −

= = =
+ + ++

V V V  (1) 

We find the maximum speed be differentiating Eq. 1 and setting the result to zero, 

Maximum speed on the floor: 
( )

2

2 2 22 2

2 1 0du x
dx L x bx bπ

⎡ ⎤
− −⎢ ⎥= + =

⎢ ⎥++⎢ ⎥⎣ ⎦

V  (2) 

After some algebraic manipulation, we find that Eq. 2 has solutions at x = b and x = -b. It is at x = b and x = -b where we 
expect the best performance. At the origin, directly below the vacuum cleaner inlet, the flow is stagnant. Thus, despite our 
intuition, the vacuum cleaner will work poorly directly below the inlet. 
 
Discussion Try some experiments at home to verify these results! 

  

 

FIGURE 1 
Velocity vector plot for the 
vacuum cleaner; the scale 
factor for the velocity vectors 
is shown on the legend. x and 
y values are in meters. The 
vacuum cleaner inlet is at the 
point x = 0, y = 0.02 m. 
 

V
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4-96 
Solution For a given expression for u, we are to find an expression for v such that the flow field is incompressible.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis  The x-component of velocity is given as 

x-component of velocity: ( )2u a b x c= + −  (1) 

In order for the flow field to be incompressible, the volumetric strain rate must be zero, 

Volumetric strain rate: 1
xx yy zz

D u v w
Dt x y z

ε ε ε ∂ ∂ ∂
= + + = + +

∂ ∂ ∂
V

V
Two-D

0=  (2) 

This gives us a necessary condition for v, 

Necessary condition for v: v u
y x
∂ ∂

= −
∂ ∂

 (3) 

We substitute Eq. 1 into Eq. 3 and integrate to solve for v, 

Expression for v: 
( )

( )( )

2

2 ( )

v u b x c
y x

vv dy b x c dy f x
y

∂ ∂
= − = − −

∂ ∂
∂

= = − − +
∂∫ ∫

  

Note that we must add an arbitrary function of x rather than a simple constant of integration since this is a partial integration 
with respect to y. v is a function of both x and y. The result of the integration is 

Expression for v: ( )2 ( )v b x c y f x= − − +  (4) 

 
Discussion We verify by plugging Eqs. 1 and 4 into Eq. 2, 

Volumetric strain rate: ( ) ( )1 2 2 0D u v b x c b x c
Dt x y

∂ ∂
= + = − − − =
∂ ∂

V
V

 (5) 

Since the volumetric strain rate is zero for any function f(x), Eqs. 1 and 4 represent an incompressible flow field. 
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4-97 
Solution For a given velocity field we are to determine if the flow is rotational or irrotational.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-θ plane. 
 
Analysis The velocity components for flow over a circular cylinder of radius r are 

 
2 2

2 2cos 1           sin 1r
a au V u V
r rθθ θ

⎛ ⎞ ⎛ ⎞
= − = − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (1) 

Since the flow is assumed to be two-dimensional in the r-θ plane, the only non-zero component of vorticity is in the z 
direction. In cylindrical coordinates, 

Vorticity component in the z direction: 
( )1 r

z

ru u
r r

θζ
θ

⎛ ⎞∂ ∂
= −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (2) 

We plug in the velocity components of Eq. 1 into Eq. 2 to solve for ζz, 

 
2 2 2 2

2 2 2

1 1sin sin 1 sin sin sin sin 0z
a a a aV r V V V V V

r r r rr r r
ζ θ θ θ θ θ θ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎡ ⎤∂
= − + + − = − + + − =⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎝ ⎠⎣ ⎦

 (3) 

Hence, since the vorticity is everywhere zero, this flow is irrotational. 
 
Discussion Fluid particles distort as they flow around the cylinder, but their net rotation is zero. 

  

 
 
4-98 
Solution For a given velocity field we are to find the location of the stagnation point.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-θ plane. 
 
Analysis The stagnation point occurs when both components of 
velocity are zero. We set ur = 0 and uθ = 0 in Eq. 1 of the previous 
problem, 

 

2
2 2

2

2
2 2

2

cos 1 =0          Either cos 0 or 

sin 1 0       Either sin 0 or 

r
au V r a
r

au V r a
rθ

θ θ

θ θ

⎛ ⎞
= − = =⎜ ⎟

⎝ ⎠
⎛ ⎞

= − + = = = −⎜ ⎟
⎝ ⎠

 (1) 

The second part of the uθ condition in Eq. 1 is obviously impossible since 
cylinder radius a is a real number. Thus sinθ = 0, which means that θ = 0o 
or 180o. We are restricted to the left half of the flow (x < 0); therefore we 
choose θ = 180o. Now we look at the ur condition in Eq. 1. At θ = 180o, cosθ = -1, and thus we conclude that r must equal 
a. Summarizing, 

Stagnation point: o       180r a θ= = −  (2) 

Or, in Cartesian coordinates, 

Stagnation point:        0x a y= − =  (3) 

The stagnation point is located at the nose of the cylinder (Fig. 1). 
 
Discussion This result agrees with our intuition, since the fluid must divert around the cylinder at the nose. 
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FIGURE 1 
The stagnation point on the upstream half of 
the flow field is located at the nose of the 
cylinder at r = a and θ = 180o. 
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4-99  
 

Solution For a given stream function we are to generate an equation 
for streamlines, and then plot several streamlines in the upstream half of 
the flow field.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the 
r-θ plane. 
 
Analysis  
(a) The stream function is 

 
2

sin aV r
r

ψ θ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (1) 

First we multiply both sides of Eq. 1 by r, and then solve the quadratic 
equation for r using the quadratic rule. This gives us an equation for r as a 
function of θ, with ψ, a, and V as parameters, 

Equation for a streamline: 
2 2 2 24 sin
2 sin

a V
r

V
ψ ψ θ

θ
± +

=  (2) 

 

(b) For the particular case in which V = 1.00 m/s and cylinder radius a = 10.0 cm, we choose various values of ψ in Eq. 2, 
and plot streamlines in the upstream half of the flow (Fig. 1). Each value of ψ corresponds to a unique streamline. 
 
Discussion The stream function is discussed in greater detail in Chap. 9. 

  

 
 
 
 
 
 
4-100 
Solution For a given velocity field we are to calculate the linear strain rates εrr and εθθ in the r-θ plane.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-θ plane. 
 
Analysis We substitute the equation of Problem 4-97 into that of Problem 4-91, 

Linear strain rate in r direction: 
2

32 cosr
rr

u aV
r r

ε θ
∂

= =
∂

 (1) 

and 

Linear strain rate in θ direction: 
2 2 2

2 2 3

1 1 cos 1 cos 1 2 cosr
u a a au V V V

r r r r r
θ

θθε θ θ θ
θ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂⎡ ⎤= + = − + + − = −⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥∂⎣ ⎦ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (2) 

The linear strain rates are non-zero, implying that fluid line segments do stretch (or shrink) as they move about in 
the flow field. 
 
Discussion The linear strain rates decrease rapidly with distance from the cylinder. 
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FIGURE 1 
Streamlines corresponding to flow over a 
circular cylinder. Only the upstream half of 
the flow field is plotted. 
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4-101 
Solution We are to discuss whether the flow field of the previous problem is incompressible or compressible.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-θ plane. 
 
Analysis For two-dimensional flow we know that a flow is incompressible if its volumetric strain rate is zero. In that 
case, 

Volumetric strain rate, incompressible 2-D flow in the x-y plane: 1 0xx yy
D u v
Dt x y

ε ε ∂ ∂
= + = + =

∂ ∂
V

V
 (1) 

We can extend Eq. 1 to cylindrical coordinates by writing 

Volumetric strain rate, incompressible 2-D flow in the r-θ plane: 1 1 0r
rr r r

uuD u
Dt r r

θ
θε ε

θ
∂∂ ⎡ ⎤= + = + + =⎢ ⎥∂ ∂⎣ ⎦

V
V

 (2) 

Plugging in the results of the previous problem we see that 

Volumetric strain rate for flow over a circular cylinder: 
2 2

3 3

1 2 cos 2 cos 0D a aV V
Dt r r

θ θ= − =
V

V
 (3) 

Since the volumetric strain rate is zero everywhere, the flow is incompressible. 
 
Discussion In Chap. 9 we show that Eq. 2 can be obtained from the differential equation for conservation of mass. 

  

 
 
 
4-102 
Solution For a given velocity field we are to calculate the shear strain rate εrθ.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-θ plane. 
 
Analysis We substitute the equation of Problem 4-97 into that of Problem 4-91, 

Shear strain rate in r-θ plane:

 
2 2

3 2

2 2 2

3 3 3

1 1
2

1 sin 1    sin sin 1
2

1 1 1    sin 3 2 sin
2

r
r

u ur
r r r

V a ar V V
r r rr r

a a aV V
r rr r r

θ
θε θ

θ θ θ

θ θ

⎡ ⎤∂∂ ⎛ ⎞= +⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞∂

= − − + − −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
⎡ ⎤

= + − + =⎢ ⎥
⎣ ⎦

 (1) 

which reduces to 

Shear strain rate in r-θ plane: 
2

32 sinr
aV
rθε θ=  (2) 

The shear strain rate is non-zero, implying that fluid line segments do deform with shear as they move about in the 
flow field. 
 
Discussion The shear strain rate decreases rapidly (as r-3) with distance from the cylinder. 
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