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Preface

Nearly three decades ago, it was uncovered that silicon can be an excellent me-
chanical material. The excellent electronic properties of silicon combined with
the excellent mechanical properties led to revolutionary advances in the devel-
opment of microelectromechanical technology. Microelectromechanical systems
(MEMS) are miniaturized sensors, actuators, devices and systems with a criti-
cal dimension of the order of micrometers. Even though many initial concepts
for MEMS were based on silicon, a variety of other materials and fabrication
techniques have been developed over the last two decades for applications in me-
chanical, electrical, chemical, biological and other disciplines. MEMS devices
such as accelerometers, gyroscopes, high performance mirror displays, pressure
sensors, micro motors, micro engines, RF switches, valves, pumps, ultra sensi-
tive membranes, single-chip microfluidic systems such as chemical analyzers or
synthesizers, single-chip micro total analysis systems (also referred to as lab-on-
a-chip) and many more devices and systems have been designed and fabricated
over the last one to two decades. MEMS technology has already impacted many
industries (e.g., defense, aerospace, health care, etc.) even though a number of
fundamental and practical challenges still remain. On the other hand, advances
in nanotechnology as well as in nanomachining techniques over the last decade
have enabled development of novel nanoelectromechanical systems (NEMS).
Nanoelectromechanical systems (NEMS) are nanometer scale sensors, actuators,
devices and systems with critical feature sizes ranging from 100 nanometers to a
few nanometers. The effective masses, heat capacities and power consumption of
NEMS are proportional to the critical feature size, either linearly or nonlinearly,
while the fundamental frequencies, mass/force sensitivities, mechanical quality
factors are inversely proportional to the critical feature size.

A number of experimental and fabrication approaches, and computational de-
sign tools have been developed over the last decade to accelerate progress in the
area of MEMS. In the area of NEMS, fundamental aspects are slowly being under-
stood and experimental measurement techniques and computational design tools
are starting to emerge. While many NEMS devices can be modeled using MEMS
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physical theories or MEMS computational tools, a large class of NEMS devices
demand new simulation capabilities because of the new physics encountered at
nanoscale. In addition, the break-down of a continuum approximation for some
NEMS devices poses new challenges. As a result, the development of quantum,
atomistic, multiscale and continuum simulation tools based on advanced physical
theories becomes critical.

Covering at length computational techniques for both classes of devices in one
single book is not realistic and we have chosen to focus on the more mature world
of MEMS, with several openings towards the NEMS world. In particular, we
privilege fundamental aspects and computational design tools. Moreover, a few
chapters addressing experimental techniques for MEMS and NEMS have been
included. Indeed, not only numerical models have to be validated against experi-
ments, but it is also true that experiments at the micro/nanoscale often give access
to the quantities of interest often in an indirect way and data-reduction procedures
strongly relying on numerical simulations are required. The thin borderline be-
tween experiments and simulation becomes immaterial at these scales.

Many experts have written excellent chapters in this book summarizing the
state-of-the-art, fundamental issues, computational methods, experimental mea-
surements, validation and future challenges. In the first part of the book (Chapters
1-6) focus is set on micro/nanofluidics, while in the latter (Chapters 7-12) more
emphasis is given to truly multiphysics analyses concerning mainly advanced top-
ics of solid mechanics and electrostatics.

Microfluidics has deep roots in MEMS and NEMS. Microducts are used in
infrared detectors, diode lasers, miniature gas chromatographs and high-frequency
fluidic control systems. Micropumps are used for ink jet printing, environmental
testing and electronic cooling. Potential medical applications for small pumps
include controlled delivery and monitoring of minute amount of medication,
manufacturing of nanoliters of chemicals and development of artificial pancreas.
Moreover, microfluidics affects the dynamical behavior of almost all microsys-
tems through dissipation even when it is not the mechanical phenomenon of direct
interest. Hence, flows in micro and nanochannels have always attracted and de-
served considerable attention in the scientific community, even though many open
challenges remain, as stressed in Chapter 1. The customary continuum, Navier—
Stokes modeling is ordinarily applicable for flows in macrodevices. Even for
common fluids such as air or water, such modeling is bound to fail at sufficiently
small scales, but the onset for such failure is different for the two forms of matter.
Moreover, when the no-slip, quasi-equilibrium Navier—Stokes system is no longer
applicable, the alternative modeling schemes are different for gases and liquids.
For liquid flows, the dense nature of the matter precludes the use of the kinetic



Preface vii

theory of gases, and numerically intensive molecular dynamics simulations are
the only alternative rooted in first principles, as discussed in Chapter 1.

For dilute gases, statistical methods are applied and the Boltzmann equa-
tion is the cornerstone of such approaches. This topic is addressed in Chapter 2.
The application of kinetic theory methods is first illustrated by deriving a general-
ized Reynolds equation from the linearized Boltzmann equation. The analysis,
valid for arbitrary Knudsen number, is based on two different kinetic models of
the collisional operator: the Bhatnagar, Gross and Krook (BGK) model and the
ellipsoidal statistical (ES) model. The semi-analytical results described also form
the basis for the modified viscosity approach, a simplified technique discussed
in Chapter 5 and frequently applied to extend the validity of continuum models
to the transition regime. In Chapter 2 it also shown that gas flows occurring
in inertial MEMS having a complex geometry can be successfully studied by
numerical deterministic solution of linearized kinetic model equations (BGK)
whose predictions are in very good agreement with the experimental data
presented.

The most well-known numerical tool for the solution of the Boltzmann equa-
tion in general strongly nonequilibrium conditions is the Direct Simulation Monte
Carlo (DSMC) approach, analysed in detail in Chapter 3. Even DSMC is com-
putationally more demanding than most continuum CFD methods it is shown that
this problem can be partially alleviated by its superior parallel performance. An-
other feature of DSMC is the lack of numerical instabilities even for the most
physically and geometrically complicated problems which, together with its un-
matched accuracy, makes DSMC a unique method to study physical phenomena
at the mean-free-path level. Besides the cases for which DSMC is the only ap-
plicable method, DSMC can be used concurrently with continuum methods and
analytical approaches to develop empirical models that can be implemented in
engineering codes.

However, using DSMC for subsonic-flow MEMS simulations is not without
issues. A problem arises when the characteristic velocities of the micro-gas flow
become very small since the use of conventional DSMC in such instances often in-
cur in large statistical errors. Unfortunately, the typical gas flow velocities in most
MEMS devices are in the low velocity range. This issue has stimulated many
investigation and novel numerical approaches, like the multiscale coarse-grain
molecular block (or “big molecule”) described in Chapter 4. Molecular blocks
are used to replace the particles in the DSMC method, and a molecular block di-
rect simulation Monte Carlo (MB-DSMC) method is established. As the mass
of the molecular block is larger, the statistical error of the MB-DSMC method is
expected to be sensibly smaller.
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Even if all the approaches presented in these chapters are rooted in the
molecular nature of fluids, the evaluation of gas damping for MEMS working
at ambient pressure can be still conveniently addressed by means of continuum
models. Estimating dissipation in air-packaged MEMS like inertial sensors seems,
for several reasons, to be an ideal application for fast integral equation methods
as shown in Chapter 5. First, the micromechanical structures are innately three-
dimensional and geometrically complicated. Second, in order to provide an es-
timate of the mechanical dissipation, the only quantities of interest are velocities
and forces on the structure surface. Surface-only integral equations have a dimen-
sional advantage over volume methods in such a setting. Third, the velocities and
displacements for many MEMS of interest are small enough, and the surround-
ing air is viscous enough, that the flow, at moderate frequencies, can be often
described by a linear quasi-static Stokes model with slip boundary conditions.
For the above reasons, there have been a number of experimentally-verified suc-
cesses in evaluating gas damping for air-packaged MEMS as discussed at length in
Chapter 5.

As a conclusion for the microfluidics section and as a transition towards the
second part of the book, Chapter 6 reviews experimental techniques that are suit-
able for quality factor measurements of in-plane, out-of-plane and torsional vi-
brations of microresonators and comments on optical techniques applicable to
nanoresonators.

Interestingly enough, one major open issue for MEMS working in near
vacuum-conditions, is that dissipation predicted by experiments is much larger
than expected for resonators having high aspect ratios and there is strong evi-
dence that it should be linked to surface phenomena even if no reliable physical
models are available. The classical theory of thermoelastic coupling can however
explain intrinsic dissipation in specific conditions and is the object of several in-
vestigations and extensions, as done in Chapter 7. A full-Lagrangian multiphysics
Newton method is proposed for the dynamic analysis of electrostatic MEMS in
the presence of damping. This new scheme has several advantages over conven-
tional MEMS simulation tools in terms of speed and convergence rates and is
used to explore new nonlinear dynamic properties of electrostatic MEMS. Com-
plex nonlinear oscillations and the period doubling route to chaos are observed
under superharmonic excitations and the effect of these complex oscillations on
thermoelastic damping in electrostatic MEMS is also studied.

A similar approach to electromechanical coupling is addressed in Chapter 8
which focuses on the quasi static response behavior of MEMS devices made up
of very thin conducting plates. A convenient way to model such a problem is to
assume plates with vanishing thickness, solve for sum of the charges on the upper
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and lower surfaces of each plate and adopt a full-Lagrangian scheme both for the
solid-mechanics and elecrostatics analysis.

One major and truly multiphysics issue in vibrating MEMS is pull-in instabil-
ity, which is investigated in Chapter 9 for MEM membranes subjected to Coulomb
and Casimir forces. The Casimir force represents the attraction between two un-
charged material bodies due to modification of the zero-point energy associated
with the electromagnetic modes in the space between them. An important feature
of the Casimir effect is that even though its nature is quantistic, it predicts a force
between macroscopic bodies. This nonlinear multiphysics problem is analyzed
by the meshless local Petrov-Galerkin (MLPG) method. It is shown that beyond a
critical size, the geometric effect modeled by the Casimir force becomes dominant
over the Coulomb force, and the device collapses with zero applied voltage.

Dielectrophoresis, addressed in Chapter 10, is an effective tool for particle
separation and manipulation which is increasingly used in various BioMEMS ap-
plications for the analysis and separation of biological particles, such as cells, bac-
teria, viruses and DNA. The term alternating current (AC) electrokinetics refers
to the particle movement arising from the interaction of non-uniform AC electric
field with polarizable particles. One of these techniques is the dielectrophore-
sis (DEP), which arises from the interaction of AC electric field and the induced
dipole in a particle. One of the DEP techniques is the field flow fractionation
(FFF) method, in which DEP force levitates different particles to different vertical
heights above the surface, and hydrodynamic force drives the particles traveling at
different speed according to their heights from the surface to achieve the separa-
tion. Another well-known DEP technique is the traveling wave dielectrophoresis
(twDEP), in which the particle motion is induced by traveling electric field. Both
these techniques are simulated by means of a novel meshfree method named the
linearly conforming point interpolation method (LC-PIM).

Chapter 11, the last contribution of the book addressing specific numerical
techniques, discusses topology optimization issues emerging in the context of
MEMS and focuses, in particular, on two problems related to manufacturing con-
straints in surface-micromachined structures and in protein sequence design.

All the numerical methods detailed in previous chapters make indeed use of
material parameters which have to be evaluated from experiments. As in other
technologies, the ability to exploit materials in MEMS and NEMS is limited by
our knowledge of their properties. In particular, the successful fabrication and
the reliable use of micro/nanostructures is strongly contingent on a sufficiently
rigorous understanding of their length scale-dependent and process-dependent
mechanical properties. In turn, such understanding requires the ability to perform
mechanical measurements on microstructures. Hence, the challenging task of
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mechanical characterization requires an entirely new set of techniques to achieve
the force and displacement resolution required. The issue of mechanical char-
acterization of polysilicon often used in MEMS is discussed in Chapter 12. An
innovative approach based on a fully on-chip testing procedure is described and
three ad hoc designed electrostatically actuated microsystems are here used in
order to determine experimentally the Young’s modulus and the rupture strength
of thin and thick polysilicon. The accurate data-reduction procedure relying on
electromechanical numerical simulations is discussed. The rupture values are in-
terpreted by means of the Weibull approach and statistical size effects and stress
gradient effects are taken into account thus allowing for a direct comparison of the
data obtained from the different test structures.

Curiously enough, MEMS can be adopted as test machine for nanostruc-
tures, as demonstrated in Chapter 13. The need to characterize nanometer-scale
materials and structures has grown tremendously in the past decade and a brief
review of some of the methods used in mechanical characterization of nanoscale
specimens, is presented first, followed by a detailed description of a MEMS-
based material testing system. This MEMS-based system allows for continuous
observation of specimen deformation and failure with sub-nanometer resolution
by scanning or transmission electron microscope while simultaneously measur-
ing the applied load electronically with nano-Newton resolution. Special em-
phasis is placed on modeling and analysis of a thermal actuator used to apply
a displacement-controlled load to the tensile specimen as well as the electrostatic
load sensor. Finally, experimental results demonstrating the advantages of the
MEMS-based system are presented.

N. Aluru

C. Cercignani
A. Frangi

S. Mukherjee
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Chapter 1

Challenges in Modeling Liquid and Gas Flows in Micro/Nano Devices

Mohamed Gad-el-Hak

Department of Mechanical Engineering
Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
gadelhak@vcu.edu

Traditional fluid mechanics edifies the indifference between liquid and gas
flows as long as certain similarity parameters—most prominently the Reynolds
number—are matched. This may or may not be the case for flows in nano- or
microdevices. The customary continuum, Navier—Stokes modeling is ordinarily
applicable for both air and water flowing in macrodevices. Even for common flu-
ids such as air or water, such modeling is bound to fail at sufficiently small scales,
but the onset for such failure is different for the two forms of matter. Moreover,
when the no-slip, quasi-equilibrium Navier—Stokes system is no longer applica-
ble, the alternative modeling schemes are different for gases and liquids. For
dilute gases, statistical methods are applied and the Boltzmann equation is the
cornerstone of such approaches. For liquid flows, the dense nature of the matter
precludes the use of the kinetic theory of gases, and numerically intensive molec-
ular dynamics simulations are the only alternative rooted in first principles. The
present chapter discusses the above issues, emphasizing the differences between
liquid and gas transport at the microscale and the physical phenomena unique to
liquid flows in minute devices.
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In a little time [ felt something alive moving on my left leg, which advancing
gently forward over my breast, came almost up to my chin; when bending my
eyes downward as much as I could, I perceived it to be a human creature not six
inches high, with a bow and arrow in his hands, and a quiver at his back. ...I
had the fortune to break the strings, and wrench out the pegs that fastened my left
arm to the ground; for, by lifting it up to my face, I discovered the methods they
had taken to bind me, and at the same time with a violent pull, which gave me
excessive pain, I a little loosened the strings that tied down my hair on the left
side, so that I was just able to turn my head about two inches. ... These people are
most excellent mathematicians, and arrived to a great perfection in mechanics by
the countenance and encouragement of the emperor, who is a renowned patron of
learning. This prince has several machines fixed on wheels, for the carriage of
trees and other great weights.

(From “Gulliver’s Travels—A Voyage to Lilliput,” by Jonathan Swift, 1726.)

In the Nevada desert, an experiment has gone horribly wrong. A cloud of
nanoparticles—micro-robots—has escaped from the laboratory. This cloud is self-
sustaining and self-reproducing. It is intelligent and learns from experience. For
all practical purposes, it is alive. It has been programmed as a predator. It is
evolving swiftly, becoming more deadly with each passing hour.

Every attempt to destroy it has failed.
And we are the prey.
(From Michael Crichton’s novel “Prey,” HarperCollins Publishers, 2002.)

1.1. Introduction

Almost three centuries apart, the imaginative novelists quoted above contemplated
the astonishing, at times frightening possibilities of living beings much bigger or
much smaller than us. In 1959, the physicist Richard Feynman envisioned the
fabrication of machines minutely small as compared to their makers. Tool making
has always differentiated our species from all others on Earth. Aerodynamically
correct wooden spears were carved by archaic Homo sapiens close to 400,000
years ago. Man builds things consistent with his size, typically in the range of two
orders of magnitude larger or smaller than himself, as indicated in Fig. 1.1. But
humans have always striven to explore, build and control the extremes of length
and time scales. In the voyages to Lilliput and Brobdingnag of Gulliver’s Trav-
els, Jonathan Swift speculated on the remarkable possibilities which diminution
or magnification of physical dimensions provides. The Great Pyramid of Khufu
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was originally 147 m high when completed around 2600 B.C., while the Empire
State Building, constructed in 1931, is presently—after the addition of a televi-
sion antenna mast in 1950—449 m high. At the other end of the spectrum of
man-made artifacts, a dime is slightly less than 2 cm in diameter. Watchmakers
have practised the art of miniaturization since the thirteenth century. The inven-
tion of the microscope in the seventeenth century opened the way for direct ob-
servation of microbes and plant and animal cells. Smaller things were man-made
in the latter half of the twentieth century. The transistor—invented in 1947—in
today’s integrated circuits has a gate length of 45 nanometers, and approaches
10 nm in research laboratories (source: International Technology Roadmap for
Semiconductors <http://public.itrs.net>). But what about the miniaturization of
mechanical parts—machines—envisioned by Richard Feynman' in a legendary
lecture delivered in 19597

Microelectromechanical systems (MEMS) refer to devices that have charac-
teristic length of less than 1 mm but more than 1 micron, that combine electrical
and mechanical components, and that are fabricated using integrated circuit batch-
processing technologies. MEMS are finding an increasing number of applications
in a variety of industrial and medical fields, with a potential worldwide market
in the billions of dollars. Accelerometers for automobile airbags, keyless entry
systems, dense arrays of micromirrors for high-definition optical displays, scan-
ning electron microscope tips to image single atoms, micro-heat-exchangers for
cooling of electronic circuits, reactors for separating biological cells, blood an-
alyzers and pressure sensors for catheter tips are but a few examples of current
usage. Microducts are used in infrared detectors, diode lasers, miniature gas chro-
matographs and high-frequency fluidic control systems. Micropumps are used for
ink jet printing, environmental testing and electronic cooling. Potential medical
applications for small pumps include controlled delivery and monitoring of minute
amount of medication, manufacturing of nanoliters of chemicals and development
of artificial pancreas. The much sought-after lab-on-a-chip is promising to auto-
mate biology and chemistry to the same extent the integrated circuit has allowed
large-scale automation of computation.?

Not all MEMS devices involve fluid flows, but the present paper will focus
on the ones that do. Gas flows will first be briefly discussed, but the emphasis
of the paper will be on liquid flows. Microducts, micropumps, microturbines,
microvalves, microcombustors, synthetic jets and lab-on-a-chip are examples of
small devices involving the flow of liquids and gases. Because of length limita-
tion, the present paper only touches on its broad subject matter, with particular
emphasis on liquid flows and surface phenomena, and the reader is referred to
several other sources for further details.>™
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Fig. 1.1. The scale of things in meter. Lower scale continues in the upper bar from left to right.

Reproduced with permission from Ref. [3].

1.2. Fluid Mechanics Issues

The rapid progress in fabricating and utilizing microelectromechanical systems
during the last decade has not been matched by corresponding advances in
our understanding of the unconventional physics involved in the operation and
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manufacture of small devices. Providing such understanding is crucial to design-
ing, optimizing, fabricating and operating improved MEMS devices.

Fluid flows in small devices differ from those in macroscopic machines. The
operation of MEMS-based ducts, nozzles, valves, bearings, turbomachines, com-
bustors, synthetic jets, efc., cannot always be predicted from conventional flow
models such as the Navier—Stokes equations with no-slip boundary condition at a
fluid—solid interface, as routinely and successfully applied for larger flow devices.
Many questions have been raised when the results of experiments with microde-
vices could not be explained via traditional flow modeling. The pressure gradient
in a long microduct was observed to be non-constant and the measured flowrate
was higher than that predicted from the conventional continuum flow model. Slip
flow has been observed in microchannels. Load capacities of microbearings were
diminished and electric currents needed to move micromotors were extraordinar-
ily high. The dynamic response of micromachined accelerometers operating at
atmospheric conditions was observed to be over-damped.

In the early stages of development of this exciting new field, the objective was
to build MEMS devices as productively as possible. Microsensors were reading
something, but not many researchers seemed to know exactly what. Microactu-
ators were moving, but conventional modeling could not precisely predict their
motion. After a decade of unprecedented progress in MEMS technology, perhaps
the time is now ripe to take stock, slow down a bit and answer the many questions
that arose. The ultimate aim of this long-term exercise is to achieve rational-design
capability for useful microdevices and to be able to characterize definitively and
with as little empiricism as possible the operations of microsensors and microac-
tuators.

In dealing with fluid flow through microdevices, one is faced with the question
of which model to use, which boundary condition to apply and how to proceed to
obtain solutions to the problem at hand. Obviously surface effects dominate in
small devices. The surface-to-volume ratio for a machine with a characteristic
length of 1 m is 1 m~*!, while that for a MEMS device having a size of 1 um
is 10 m~!. The million-fold increase in surface area relative to the mass of the
minute device substantially affects the transport of mass, momentum and energy
through the surface. The small length scale of microdevices may invalidate the
continuum approximation altogether. Slip flow, thermal creep, rarefaction, vis-
cous dissipation, compressibility, intermolecular forces and other unconventional
effects may have to be taken into account, preferably using only first principles
such as conservation of mass, Newton’s second law, and conservation of energy.

In this chapter, I shall discuss liquid flows and surface phenomena. To place
the topic in perspective, gas flows in microdevices will first be discussed briefly.
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Microfluid mechanics of liquids is more complicated than that for gases. The
liquid molecules are much more closely packed at normal pressures and tempera-
tures, and the attractive or cohesive potential between the liquid molecules as well
as between the liquid and solid ones plays a dominant role if the characteristic
length of the flow is sufficiently small. In cases when the traditional continuum
model fails to provide accurate predictions or postdictions, expensive molecular
dynamics simulations seem to be the only first-principle approach available to ra-
tionally characterize liquid flows in microdevices. Such simulations are not yet
feasible for realistic flow extent or number of molecules. As a consequence, the
microfluid mechanics of liquids is much less developed than that for gases.

1.3. Fluid Modeling

There are basically two ways of modeling a flowfield. Either as the fluid really
is—a collection of molecules—or as a continuum where the matter is assumed
continuous and indefinitely divisible. The former modeling is subdivided into
deterministic methods and probabilistic ones, while in the latter approach the ve-
locity, density, pressure, efc., are defined at every point in space and time, and
conservation of mass, energy and momentum lead to a set of nonlinear partial
differential equations (Euler, Navier—Stokes, Burnett, efc.). Fluid modeling clas-
sification is depicted schematically in Fig. 1.2.

Fluid and heat flows in conventional macrodevices is traditionally modeled us-
ing the principles of conservation of mass, momentum (Newton’s second law), and
energy (first law of thermodynamics). Additionally, all processes are constrained
by the second law of thermodynamics. Those principles are typically expressed in
the form of partial differential field equations, where the macroscopic quantities of
interest such as velocity, temperature, pressure, efc., depend on a continuum space
and time. The first principles, as expressed to describe fluid-transport phenomena
in conventional devices, are collectively called the Navier—Stokes equations, a
system of nonlinear partial differential equations subject to a sufficient number of
initial and boundary conditions, the latter is typically in the form of no velocity
slip and no temperature jump at a fluid—solid interface.

There are three fundamental assumptions that must be satisfied in order for the
Navier—Stokes equations to be valid:

e The Newtonian framework of mechanics—which specifies that mass and
energy are conserved separately and that, in an inertial frame of refer-
ence, the sum of all forces is equal to the rate of change of momentum—
is valid.
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Fig. 1.2. Molecular and continuum flow models. Reproduced with permission from Ref. [3].

e The continuum approximation—which assumes that space and time are
indefinitely divisible continuum—is applicable.

e Thermodynamic equilibrium or at least quasi-equilibrium—which per-
mits linear relations between stress and rate of strain and between heat
flux and temperature gradient—is assumed.
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Fluid isotropy and stress tensor symmetry are also typically, albeit not always,
assumed. Violation of any one of the three assumptions listed above invalidates the
Navier—Stokes equations and alternative modeling is then called for. We elaborate
on the three assumptions in turn.

Newtonian framework: The fluid motions under consideration are assumed
non-relativistic, i.e., their characteristic velocities are far below the speed of light.
Thus, mass and energy are not interchangeable and each is separately conserved.
As long as we are not dealing with atomic or subatomic particles or, at the other
extreme of length scale, with stars and galaxies, the Newtonian framework is an
excellent modeling tool for most problems in mechanics including those dealing
with microelectromechanical systems. Quantum and relativistic mechanics are
clearly beyond the scope of the present paper. Therefore, the Newtonian assump-
tion is one that we no longer have to revisit for the rest of this article.

Continuum model: In both solid and fluid mechanics, the continuum approx-
imation implies that the spatial and temporal derivatives of all the macroscopic
dependent variables exist in some reasonable sense. In other words, local prop-
erties such as density, velocity, stress and heat flux are defined as averages over
elements sufficiently large compared with the microscopic structure in order to
guarantee a sufficiently large number of molecules inside each fluid element and
thus to effect molecular chaos, but small enough in comparison with the scale of
the macroscopic phenomena to permit the use of differential calculus to describe
those properties. The continuum approximation is almost always met, but ex-
ceptions do exist. The resulting equations therefore cover a very broad range of
situations, the exception being flows with spatial scales that are not much larger
than the mean distance between the fluid molecules, as for example in the case of
rarefied gases, shock waves that are thin relative to the molecular distances, and
some flows in micro- and nanodevices. We will describe later the precise condi-
tions under which the continuum approximation fails for certain minute devices.

It should be emphasized that the continuum approximation in and by itself
leads to an indeterminate set of equations, i.e., more unknowns than equations. To
close the resulting system of partial differential equations, relations between the
stress and rate of strain and between the heat flux and temperature gradient are
needed. At least for compressible flows, two equations of state, relating density
and internal energy each to pressure and temperature, are also required. The fact
that the continuum approximation does not necessarily lead to the Navier—Stokes
equations is a subtle point that is often confused in the literature.

Thermodynamic equilibrium: Thermodynamic equilibrium implies that the
macroscopic quantities have sufficient time to adjust to their changing surround-
ings. In motion, exact thermodynamic equilibrium is impossible as each fluid
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particle is continuously having volume, momentum or energy added or removed,
and so in fluid dynamics and heat transfer we speak of quasi-equilibrium. The
second law of thermodynamics imposes a tendency to revert to equilibrium state,
and the defining issue here is whether or not the flow quantities are adjusting fast
enough. The reversion rate will be very high if the molecular time and length
scales are very small as compared to the corresponding macroscopic flow-scales.
This will guarantee that numerous molecular collisions will occur in sufficiently
short time to equilibrate fluid particles whose properties vary little over distances
comparable to the molecular length scales. For gases, the characteristic length for
molecular collision is the mean free path, £, the average distance traveled by a
molecule before colliding with another. When L is, say, one order of magnitude
smaller than the flow length scale, L, macroscopic quantities such as velocity and
temperature will have nearly linear gradients over molecular distances, and it is on
these gradients alone that departure from equilibrium will depend. Therefore, the
quasi-equilibrium assumption signifies that the stress is linearly related to the rate
of strain (Newtonian fluids) and the heat flux is linearly related to the temperature
gradient (Fourier fluids). These issues have been described quite eloquently by
Lighthill.® Thermodynamic equilibrium additionally gives rise to the no-slip and
no-temperature-jump boundary conditions.®°

As is the case with the continuum approximation, the quasi-equilibrium as-
sumption can be violated under certain circumstances relevant to microdevices.
In these cases, alternatives to the no-slip condition or even to the Navier—Stokes
equations themselves must be sought. We are now ready to quantify the conditions
under which the continuum approximation or the quasi-equilibrium assumption
can be made. For gases at least, the answer to both questions is well known from
statistical thermodynamics particularly as was extensively applied to rarefied gas
dynamics half a century ago.”!° For that reason we discuss gas flows first defer-
ring the discussion of liquid flows to afterward.

1.4. Gas Flows

The well-known chart reproduced in Fig. 1.3 clearly illustrates the answer we are
seeking. All scales in this plot are logarithmic. The bottom abscissa represents the
density normalized with a reference density, p/pg, or equivalently the normalized
number density (number of molecules per unit volume), n/ng. The top abscissa is
the average distance between molecules normalized with the molecular diameter,
d/o. Clearly, the density ratio is proportional to the inverse cube of 6/c. The
left ordinate represents a characteristic flow dimension, L, in meter. This can be
computed from a characteristic macroscopic property, such as density, divided by
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the absolute value of its gradient. The right ordinate is the length scale normalized
with the molecular diameter, L /o. The chart in Fig. 1.3 depicts a gas having a
molecular diameter of ¢ = 4 x 10~ '° m, which diameter very closely represents
air modeled as rigid spheres. Similar charts can be drawn for other gases.
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Fig. 1.3. Effective limits of different flow models. Reproduced with permission from Ref. [10].

The vertical line inserted in Fig. 1.3 represents the boundary between dilute
gas and dense one. Dilute gas is to the left of this line where §/0 > 7. For
such gas, intermolecular forces play no role and the molecules spend most of
their time in free flight between brief collisions at which instances the molecules’
direction and speed abruptly change. Additionally, the probability of more than
two molecules colliding is minuscule. We then speak of only binary collisions,
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and all the simplifications of the powerful kinetic theory of gases can be invoked
when dealing with dilute gases. Dry air at standard conditions has a pressure of
1.01 x 105 N/m?, temperature of 288 K, density ratio of 1, and § /o = 9. Standard
air is therefore a dilute, ideal gas, but barely.

The gently sloped line in Fig. 1.3 indicates the limit of molecular chaos. When
averaging over many molecules to compute macroscopic quantities, insignificant
statistical fluctuations occur when there is at least 100 molecules to the side
L/o > 100, in other words when at least 1 million molecules reside inside the
smallest macroscopic fluid volume of interest. Therefore, the continuum approxi-
mation is valid only on top of that line. The molecular chaos restriction improves
the accuracy of computing the macroscopic quantities from the microscopic in-
formation. In essence, the volume over which averages are computed has to have
sufficient number of molecules to reduce statistical errors. It can be shown that
computing macroscopic flow properties by averaging over a number of molecules
will result in statistical fluctuations with a standard deviation of approximately
0.1% if one million molecules are used, around 3% if one thousand molecules are
used, and so on.

The steeper line in Fig. 1.3 indicates the boundary of validity of the quasi-
equilibrium assumption. This limit is governed by the Knudsen number, Kn =
L/L, which is the ratio of the mean free path to the characteristic macroscopic
length. Navier—Stokes equations are valid only if Kn < 0.1 (above the steeper
line), although the no-slip condition demands the stricter limit of Kn < 0.001.
The line corresponding to the stricter limit is parallel to the steeper line in Fig. 1.3
but shifted upward by two decades. The mean free path is proportional to n =1, and
therefore the slope of the quasi-equilibrium line, in the logarithmic plot, is three
times steeper than that of the molecular chaos line. Much of that has been known
since the classical experiments conducted by Knudsen.!! These experiments have
been recently repeated with great precision at the U.S. National Institute of Stan-
dards and Technology by Tison'? and reported by Beskok et al.'?

How does all that relate to microdevices? As density is reduced, the gas
changes from dense to dilute. As size shrinks for a low-density gas, the flow slips,
followed by a failure of the Navier—Stokes equation, followed by a failure of the
continuum approximation altogether. For a dense gas, a reverse trend is observed
as L is reduced: the continuum approximation fails first followed by a failure of
the quasi-equilibrium assumption. Clearly, the continuum approximation and the
quasi-equilibrium assumption are two different things. The two lines in Fig. 1.3
describing the two respective limits meet only at a single point.

To give a concrete example, for air at 1 atm, slip occurs if L < 100 microns,
(stress)—(rate of strain) relation becomes nonlinear if L < 1 micron, and the



12 M. Gad-el-Hak

continuum approximation fails altogether if L < 0.4 micron. For air at 102 atm,
slip occurs if L < 100 mm, (stress)—(rate of strain) relation becomes nonlinear
if L < 1 mm, and the continuum approximation fails if L < 4 microns. Light
gases such as Helium will reach those limits at considerably larger characteristic
lengths. All of those conditions are well within the operating ranges of micro-
and nanodevices. Thus, there are circumstances when transport in microdevices
should not be modeled using the traditional equations.

The next step for both gas and liquid flows is to figure out what to do if con-
ventional modeling fails. For gases at least, there are first-principles equations that
give the precise amount of slip or temperature jump to include in case the Knud-
sen number exceeds the critical limit of 0.001.> Higher-order equations such as
those of Burnett can replace the Navier—Stokes equations when Kn exceeds 0.1.
Finally, if the continuum approximation fails altogether, the fluid can be modeled
as it really is, a collection of molecules. There, one can use molecular dynamics
simulations (for liquids), Boltzmann equation (for dilute gases), or direct simula-
tions Monte Carlo (also for dilute gases). Subject to their own limitations, all the
molecular-based models can also be used in lieu of higher-order momentum and
energy equations, i.e., for non-equilibrium, continuum situations. All the strate-
gies listed here are schematically depicted in Fig. 1.2, and described in greater
details in the books by Karniadakis and Beskok® and Gad-el-Hak.’

1.5. Liquid Flows

From the continuum point of view, liquids and gases are both fluids obeying the
same equations of motion. For incompressible flows, for example, the Reynolds
number is the primary dimensionless parameter that determines the character of
the flowfield for a given geometry. True, water, for example, has density and vis-
cosity that are, respectively, three and two orders of magnitude higher than those
for air, but if the Reynolds number and geometry are matched, liquid and gas
flows should be identical.* For MEMS applications, however, we anticipate the
possibility of non-equilibrium flow conditions and the consequent invalidity of
the Navier—Stokes equations and the no-slip boundary conditions. Such circum-
stances can best be researched using the molecular approach. This was discussed
for gases in the previous section, and the corresponding arguments for liquids
will be given in the present section. The literature on non-Newtonian fluids in
general and polymers in particular is vast (for example, the bibliographic survey
by Nadolink and Haigh'* cites over 4,900 references on polymer drag reduction

2Barring phenomena unique to liquids such as cavitation, free surface flows, etc.
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alone) and provides a rich source of information on the molecular approach for
liquid flows.

Solids, liquids and gases are distinguished merely by the degree of proxim-
ity and the intensity of motions of their constituent molecules. In solids, the
molecules are packed closely and confined, each hemmed in by its neighbors.”
Only rarely would one solid molecule slip from its neighbors to join a new set. As
the solid is heated, molecular motion becomes more violent and a slight thermal
expansion takes place. At a certain temperature that depends on ambient pressure,
sufficiently intense motion of the molecules enables them to pass freely from one
set of neighbors to another. The molecules are no longer confined but are never-
theless still closely packed, and the substance is now considered a liquid. Further
heating of the matter eventually releases the molecules altogether, allowing them
to break the bonds of their mutual attractions. Unlike solids and liquids, the re-
sulting gas expands to fill any volumeavailable to it.

Unlike solids, both liquids and gases cannot resist finite shear force without
continuous deformation; that is the definition of a fluid medium. In contrast to the
reversible, elastic, static deformation of a solid, the continuous deformation of a
fluid resulting from the application of a shear stress results in an irreversible work
that eventually becomes random thermal motion of the molecules; that is viscous
dissipation. There are around 25 million molecules of STP air in a one-micron
cube. The same cube would contain around 34 billion molecules of water. So,
liquid flows are continuum even in extremely small devices through which gases
would not be considered continuum. The average distance between molecules
in the gas example is one order of magnitude higher than the diameter of its
molecules, while that for the liquid phase approaches the molecular diameter. As
a result, liquids are almost incompressible. Their isothermal compressibility co-
efficient o and bulk expansion coefficient 5 are much smaller compared to those
for gases. For water, for example, a hundred-fold increase in pressure leads to
less than 0.5% decrease in volume. Sound speeds through liquids are also high
relative to those for gases, and as a result most liquid flows are incompressible.”
Notable exceptions to that are propagation of ultra-high-frequency sound waves
and cavitation phenomena.

The mechanisms through which liquids transport mass, momentum and energy
must be very different from those of gases. In dilute gases, intermolecular forces
play no role and the molecules spend most of their time in free flight between
brief collisions at which instances the molecules’ direction and speed abruptly
change. The random molecular motions are responsible for gaseous transport

YNote that we distinguish between a fluid and a flow being compressible/incompressible. For example,
the flow of the highly compressible air can be either compressible or incompressible.



14 M. Gad-el-Hak

processes. In liquids, on the other hand, the molecules are closely packed though
not fixed in one position. In essence, the liquid molecules are always in a collision
state. Applying a shear force must create a velocity gradient so that the molecules
move relative to one another, ad infinitum as long as the stress is applied. For
liquids, momentum transport due to the random molecular motion is negligible
compared to that due to the intermolecular forces. The straining between liquid
molecules causes some to separate from their original neighbors, bringing them
into the force field of new molecules. Across the plane of the shear stress, the
sum of all intermolecular forces must, on the average, balance the imposed shear.
Liquids at rest transmit only normal force, but when a velocity gradient occurs,
the net intermolecular force will have a tangential component.

The incompressible Navier—Stokes equations describe liquid flows under most
circumstances. But what are the conditions for which the no-slip Navier—Stokes
equations fail to adequately describe liquid flows? In other words, how small does
a device have to be before a particular liquid flow starts slipping perceptibly and
for the stress—strain relation to become nonlinear? Answering this question from
first principles is the holy grail of microfluidic modeling. Liquids do not have
a well-advanced molecular-based theory as that for dilute gases. The concept
of mean free path is not very useful for liquids and the conditions under which
a liquid flow fails to be in quasi-equilibrium state are not well defined. There
is no Knudsen number for liquid flows to guide us through the maze. We do
not know, from first principles, the conditions under which the no-slip boundary
condition becomes inaccurate, or the point at which the (stress)—(rate of strain)
relation or the (heat flux)—(temperature gradient) relation fails to be linear. Certain
empirical observations indicate that those simple relations that we take for granted
occasionally fail to accurately model liquid flows. For example, it has been shown
in rheological studies'> that non-Newtonian behavior commences when the strain
rate approximately exceeds twice the molecular frequency-scale

. ou
V—ay_

where the molecular time scale  is given by

R (1.1)

273
S = {mg } (1.2)
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where m is the molecular mass, and o and e are respectively the characteristic
length and energy scales for the molecules. For ordinary liquids such as water,
this time scale is extremely small and the threshold shear rate for the onset of
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non-Newtonian behavior is therefore extraordinarily high. For high-molecular-
weight polymers, on the other hand, m and o are both many orders of magnitude
higher than their respective values for water, and the linear stress—strain relation
breaks down at realistic values of the shear rate.

As is the case for gas flows, the threshold for the occurrence of measurable
slip in liquid flows is expected to be higher (in terms of, say, channel height)
than that necessary for the occurrence of nonlinear stress—strain relation. The
moving contact line when a liquid spreads on a solid substrate is an example where
slip flow must be allowed to avoid singular or unrealistic behavior in the Navier—
Stokes solutions.!"!® Other examples where slip-flow must be admitted include
corner flows?*2! and extrusion of polymer melts from capillary tubes.?’>* Wall
slip in polymer extrusion is discussed extensively by Den.?> The recent chapter
by Lauga, Brenner and Stone®® provides a comprehensive treatment of the no-slip
boundary condition for Newtonian and non-Newtonian fluids as well as for polar
and non-polar liquids. These authors trace the issue to its 19th century roots, and
survey both the experimental and analytical aspects of the problem.

Existing experimental results of liquid flow in microdevices are contradictory.
This is not surprising given the difficulty of such experiments and the lack of a
guiding rational theory. References [27-30] summarize the relevant literature. For
small-length-scale flows, a phenomenological approach for analyzing the data is to
define an apparent viscosity u, calculated so that if it were used in the traditional
no-slip Navier—-Stokes equations instead of the actual fluid viscosity p, the results
would be in agreement with experimental observations. Israelachvili*! and Gee et
al.?? found that ji, = p for thin-film flows as long as the film thickness exceeds
10 molecular layers (= 5 nm). For thinner films, p, depends on the number of
molecular layers and can be as much as 10° times larger than . Chan and Horn’s
results’3 are somewhat different: the apparent viscosity deviates from the fluid
viscosity for films thinner than 50 nm.

In polar-liquid flows through capillaries, Migun and Prokhorenko®* report that
Lt increases for tubes smaller than 1 micron in diameter. In contrast, Debye and
Cleland® report s, smaller than j for paraffin flow in porous glass with average
pore size several times larger than the molecular length scale. Experimenting with
microchannels ranging in depths from 0.5 micron to 50 microns, Pfahler et al.?’
found that p, is consistently smaller than g for both liquid (isopropyl alcohol;
silicone oil) and gas (nitrogen; helium) flows in microchannels. For liquids, the
apparent viscosity decreases with decreasing channel depth. Other researchers
using small capillaries report that s, is about the same as y.36*!

More recently, Sharp*? and Sharp er al.** asserted that, despite the signifi-
cant inconsistencies in the literature regarding liquid flows in microchannels, such
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flows are well predicted by macroscale continuum theory. A case can be made
to the contrary, however, as will be seen at the end of Section 1.7, and the final
verdict on this controversy is yet to come.

The above contradictory results point to the need for replacing phenomeno-
logical models by first-principles ones. The lack of molecular-based theory of
liquids—despite extensive research by the rheology and polymer communities—
leaves molecular dynamics simulations (MD) as the nearest weapon to first-
principles arsenal. MD simulations offer a unique approach to checking the
validity of the traditional continuum assumptions. However, as was pointed out
earlier, such simulations are limited to exceedingly minute flow extent. Koplik and
Banavar?! offer a useful primer on the history, principles, applications and limita-
tions of molecular dynamics simulations. We provide in the following section a
brief discussion of MD simulations.

1.6. Molecular Dynamics Simulations

The molecular models recognize the fluid as a myriad of discrete particles:
molecules, atoms, ions and electrons. The goal here is to determine the position,
velocity and state of all particles at all times. The molecular approach is either
deterministic or probabilistic (refer to Fig. 1.2), and the former is the most funda-
mental of the molecular approaches. The motion of the molecules are governed
by the laws of classical mechanics, although, at the expense of greatly complicat-
ing the problem, the laws of quantum mechanics can also be considered in special
circumstances. The modern molecular dynamics computer simulations have been
pioneered by Alder and Wainwright,**~6 and reviewed by Ciccotti and Hoover,*’
Allen and Tildesley,*® Haile,*> and Koplik and Banavar.?!

The MD simulation begins with a set of N molecules in a region of space,
each assigned a random velocity corresponding to a Boltzmann distribution at the
temperature of interest. The interaction between the particles is prescribed typ-
ically in the form of a two-body potential energy and the time evolution of the
molecular positions is determined by integrating Newton’s equations of motion,
one for each molecule. Because MD is based on the most basic set of equations, it
is valid in principle for any flow extent and any range of parameters. The method
is straightforward in principle but there are two hurdles: choosing a proper and
convenient potential for particular fluid and solid combinations, and the colossal
computer resources required to simulate a reasonable flowfield extent. A signifi-
cant advantage of molecular dynamics simulations is that the relation between the
stress and rate of strain as well as between the heat flux and temperature gradient
comes out as part of the answer. In other words, whether the fluid is Newtonian/
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non-Newtonian or Fourier/non-Fourier does not have to be assumed. Likewise,
the presence/absence of momentum or energy slip at a solid wall comes out as
part of the answer. The issue of thermodynamic equilibrium or lack thereof is
therefore moot.

For purists, the difficulty of choosing a potential is a sticky one. Aside from
computer-intensive quantum mechanics calculations, there is currently no totally
rational methodology by which a convenient potential can be favored. Part of
the art of molecular dynamics simulations is to pick an appropriate potential and
validate the simulation results with experiments or other analytical/computational
results. By astutely choosing the potential and its parameters, one can essentially
obtain any desired result; a clear weakness of the MD approach. A commonly
used potential between two molecules is the generalized Lennard-Jones 6—12 po-
tential, to be used and further discussed in the sections.

The second difficulty, and by far the most serious limitation of molecular dy-
namics simulations, is the number of molecules N that can realistically be mod-
eled on a digital computer. Since the computation of an element of trajectory for
any particular molecule requires consideration of all other molecules as potential
collision partners, the amount of computation required by the MD method is pro-
portional to N2, Some saving in computer time can be achieved by cutting off
the weak tail of the potential (see Fig. 1.4) at, say, r. = 2.50, and shifting the
potential by a linear term in 7 so that the force goes smoothly to zero at the cutoff.
As a result, only nearby molecules are treated as potential collision partners, and
the computation time for N molecules no longer scales with N2.

The state of the art of molecular dynamics simulations in the early 2000s is
such that with a few hours of CPU time, general-purpose supercomputers can han-
dle around 100,000 molecules. At enormous expense, the fastest parallel machine
available can simulate around 10 million particles, although more recent reports
of an order-of-magnitude higher number of molecules have been made (MIT’s
Nicolas G. Hadjiconstantinou; private communication). Because of the extreme
diminution of molecular scales, the 10 million figure translates into regions of lig-
uid flow of about 0.06 mm (600 Angstroms) in linear size, over time intervals of
around 0.001 ms, enough for continuum behavior to set in for simple molecules.
To simulate 1 s of real time for complex molecular interactions, e.g., including vi-
bration modes, reorientation of polymer molecules, collision of colloidal particles,
etc., requires unrealistic CPU time measured in hundreds of years.

MD simulations are highly inefficient for dilute gases where the molecular
interactions are infrequent. The simulations are more suited for dense gases and
liquids. Clearly, molecular dynamics simulations are reserved for situations where
the continuum approach or the statistical methods are inadequate to compute from
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Fig. 1.4. Typical Lennard-Jones 6—12 potential and the intermolecular force field resulting from it.
Only a small portion of the potential function is shown for clarity.

first principles important flow quantities. Slip boundary condition for a liquid flow

in an extremely small device is such a case, as will be discussed in the following
section.

1.7. A Typical MD Result

Thompson and Troian>® provide molecular dynamics simulations to quantify the
slip-flow boundary condition dependence on shear rate. Recall the linear Navier
boundary condition introduced' in 1823,

Aul,, = Ufuid — Uwan = Ls? (1.3)

)

where L is the constant slip length, and (Ou/0y)|,, is the strain rate computed
at the wall. The goal of Thompson and Troian’s simulations was to determine
the degree of slip at a solid-liquid interface as the interfacial parameters and the
shear rate change. In their simulations, a simple liquid underwent planar shear in
a Couette cell as shown in Fig. 1.5. The typical cell measured 12.51 x 7.22 X h,
in units of molecular length scale o, where the channel depth h varied in the
range of 16.710-24.570, and the corresponding number of molecules simulated
ranged from 1,152 to 1,728. The liquid is treated as an isothermal ensemble of

w
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spherical molecules. A shifted Lennard-Jones 6-12 potential is used to model
intermolecular interactions, with energy and length scales € and o, and cut-off
distance r. = 2.20:

V(r) = 4e [(r)” (5 () Ry (%)1 (1.4)
g g g g
The truncated potential is set to zero for r > r..

The fluid—solid interaction is also modeled with a truncated Lennard-Jones po-
tential, with energy and length scales €*/ and ¢/, and cut-off distance r.. The
equilibrium state of the fluid is a well-defined liquid phase characterized by num-
ber density n = 0.810 2 and temperature 7' = 1.1¢/k, where k is the Boltzmann
constant.

The steady state velocity profiles resulting from Thompson and Troian’s MD
simulations®® are depicted in Fig. 1.5 for different values of the interfacial param-
eters ¢/, 0 and n®. Those parameters, shown in units of the corresponding
fluid parameters ¢, o and n, characterize, respectively, the strength of the liquid—
solid coupling, the thermal roughness of the interface and the commensurability
of wall and liquid densities. The macroscopic velocity profiles recover the ex-
pected flow behavior from continuum hydrodynamics with boundary conditions
involving varying degrees of slip. Note that when slip exists, the shear rate ¥ no
longer equals U/h. The degree of slip increases (i.e., the amount of momentum
transfer at the wall-fluid interface decreases) as the relative wall density n" in-
creases or the strength of the wall-fluid coupling o/ decreases; in other words
when the relative surface energy corrugation of the wall decreases. Conversely,
the corrugation is maximized when the wall and fluid densities are commensurate
and the strength of the wall-fluid coupling is large. In this case, the liquid feels the
corrugations in the surface energy of the solid owing to the atomic close-packing.
Consequently, there is efficient momentum transfer and the no-slip condition ap-
plies, or in extreme cases, a ‘stick’ boundary condition takes hold.

Variations of the slip length L, and viscosity p as functions of shear rate
are shown in parts (a) and (b) of Fig. 1.6, for five different sets of interfacial
parameters. For Couette flow, the slip length is computed from its definition,
Aul, /4 = (U/¥ —h) /2. The slip length, viscosity and shear rate are nor-
malized in the figure using the respective molecular scales for length, viscosity,
and inverse time. The viscosity of the fluid is constant over the entire range of
shear rates (Fig. 1.6b), indicating Newtonian behavior. As indicated earlier, non-
Newtonian behavior is expected for y > 231, well above the shear rates used in
Thompson and Troian’s simulations.
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Fig. 1.5. Velocity profiles in a Couette flow geometry at different interfacial parameters. All three
profiles are for U = oS!, and h = 2,4570. The dashed line is the no-slip Couette-flow solution.
Reproduced with permission from Ref. [50].

At low shear rates, the slip length behavior is consistent with the Navier model,
i.e., is independent of the shear rate. Its limiting value ranges from 0 to ~17¢ for
the range of interfacial parameters chosen (Fig. 1.6a). In general, the amount of
slip increases with decreasing surface energy corrugation. Most interestingly, at
high shear rates the Navier condition breaks down as the slip length increases
rapidly with 4. The critical shear-rate value for the slip length to diverge, 7.,
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Fig. 1.6. Variation of slip length and viscosity as functions of shear rate. Reproduced with permission
from Ref. [50].

decreases as the surface energy corrugation decreases. Surprisingly, the bound-
ary condition is nonlinear even though the liquid is still Newtonian. In dilute
gases, the linear slip condition and the Navier—Stokes equations, with their linear
stress—strain relation, are both valid to the same order of approximation in Knud-
sen number. In other words, deviation from linearity is expected to take place at
the same value of Kn = 0.1. In liquids, in contrast, the slip length appears to be-
come nonlinear and to diverge at a critical value of shear rate well below the shear
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rate at which the linear stress—strain relation fails. Moreover, the boundary condi-
tion deviation from linearity is not gradual but is rather catastrophic. The critical
value of shear rate 7. signals the point at which the solid can no longer impart mo-
mentum to the liquid. This means that the same liquid molecules sheared against
different substrates will experience varying amounts of slip and vice versa.

Based on the above results, Thompson and Troian>® suggest a universal bound-
ary condition at a solid—liquid interface. Scaling the slip length L by its asymp-
totic limiting value L2 and the shear rate by its critical value 7., collapses the
data in the single curve shown in Fig. 1.7. The data points are well described by
the relation

1
L2
Ly = L° [1 - ” (1.5)
The nonlinear behavior close to a critical shear rate suggests that the boundary
condition can significantly affect flow behavior at macroscopic distances from the
wall. Experiments with polymers confirm this observation.’> The rapid change
in the slip length suggests that for flows in the vicinity of 4., small changes in
surface properties can lead to large fluctuations in the apparent boundary condi-
tion. Thompson and Troian®® conclude that the Navier slip condition is but the
low-shear-rate limit of a more generalized universal relationship which is nonlin-
ear and divergent. Their relation provides a mechanism for relieving the stress
singularity in spreading contact lines and corner flows, as it naturally allows for
varying degrees of slip on approach to regions of higher rate of strain.

To place the above results in physical terms, consider water® at a temperature
of T' = 288 K. The energy-scale in the Lennard-Jones potential is then € = 3.62 x
1021 J. For water, m = 2.99 x 10726 kg, 0 = 2.89 x 10~'° m, and at standard
temperature n. = 3.35 x 10%® molecules/m®. The molecular time-scale can thus
be computed,

1/2

S =[mo?/e]’" =831 x 1075 (1.6)

For the third case depicted in Fig. 1.7 (the open squares), 7. & = 0.1, and the
critical shear rate at which the slip condition diverges is thus 4. = 1.2 x 10! s~ 1,

“Water molecules are complex ones, forming directional, short-range covalent bonds. Thus requiring
a more complex potential than the Lennard-Jones to describe the intermolecular interactions. For
the purpose of the qualitative example described here, however, we use the computational results of
Thompson and Troian (1997) who employed the L-J potential.
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Fig. 1.7.  Universal relation of slip length as a function of shear rate. Reproduced with permission
from Ref. [50].

Such an enormous rate of strain? may be found in extremely small devices having
extremely high speeds. On the other hand, the conditions to achieve a measurable
slip of 170 (the solid circles in Fig. 1.6) are not difficult to encounter in microde-
vices: density of solid four times that of liquid, and energy-scale for wall-fluid
interaction that is one fifth of energy-scale for liquid.

The limiting value of slip length is independent of the shear rate and can be
computed for water as L2 = 170 = 4.91 x 10~ m. Consider a water microbear-
ing having a shaft diameter of 100 pm and rotation rate of 20,000 rpm and a
minimum gap of & = 1 pym. In this case, U = 0.1 m/s and the no-slip shear rate is
U/h = 10° s~1. When slip occurs at the limiting value just computed, the shear
rate and the wall slip-velocity are computed as follows:

o U _ 4 -1
¥ = m = 990 X ].0 S (17)
Au| = AL, = 4.87x10"* m/s. (1.8)

w

dNote however that 4. for high-molecular-weight polymers would be many orders of magnitude
smaller than the value developed here for water.
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As a result of the Navier slip, the shear rate is reduced by 1% from its no-slip
value, and the slip velocity at the wall is about 0.5% of U, small but not insignifi-
cant.

1.8. Hybrid Methods

At sufficiently small device scale for both liquid and gas flows, the continuum
and the quasi-equilibrium hypotheses eventually fail or at least yield increasingly
inaccurate results. This is true even for simple fluids such as air or water where
non-equilibrium effects, e.g., velocity slip, temperature jump, non-Newtonian and
non-Fourier behavior, are not ordinarily observed in macrodevices operating near
room pressure and temperature. Because of widely different molecular spacings,
the scale at which the traditional assumptions should no longer be made clearly
differs for dilute gases and for dense gases and liquids.

Noting the difficulty of obtaining reliable experimental data at the micro/nano
scales, the no-slip Navier—Stokes equations themselves should not be used to de-
termine the scale at which those assumptions fail to provide accurate modeling of
the flow under consideration, as that is clearly a circular argument. The kinetic
theory of dilute gases provides powerful answers, and enables us to determine
from first principles the scales at which the no-slip assumption, the linear stress—
rate of strain relation, and the continuum hypothesis are no longer valid. Note that
those three assumptions fail at progressively smaller device size, much the same
as they do fail at progressively lower density or higher altitude. For dense gases
and liquids, on the other hand, no such straightforward strategy as the kinetic the-
ory exists, first to answer the question of whether or not the Navier—Stokes system
is usable, and second to provide a more accurate alternative.

A molecular dynamics simulation offers a first-principles solution to the prob-
lem, but is limited to unrealistically small spatial and temporal scales. For ex-
ample, the time step needed to simulate pure water with fixed O-H bonds and
H-O-H angles is dictated by the fastest frequency needed to be resolved and is of
the order of 2 fs. To simulate a mere 1 ms of real time, a whopping 500 million
time steps are needed, requiring well above one year of CPU time. The physi-
cal phenomena investigated in a typical microdevice occur over a broad range of
spatial and temporal scales. One way out of this conundrum is to use a hybrid
method, where the expensive, high-resolution atomistic model is confined to flow
regions in which it is needed, e.g., near strong flow gradients and fluid—solid inter-
faces, and the continuum model is used in the rest of the computational domain.
Such hybrid methods can in principle be used in solids,>> > dilute gases,’*** and
liquids.5>~7! In all cases, however, the challenge is to choose the correct coupling
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method and to properly match the interface between the atomistic and continuum
regions. Coupling is done based on the physics of the particular flow problem in-
vestigated (whether the continuum flow is compressible or incompressible; steady
or unsteady), and is considered more or less a solved problem.®>’ On the other
hand, passing information from the continuum to the molecular subdomain is a
more subtle problem that at present has no satisfactory solution for dense gases
and liquids. This is caused by our inability to unambiguously define and recre-
ate the interacting molecular state for a dense gas (or a liquid) from knowledge
of the continuum solution, which is essentially the first few moments of the non-
equilibrium distribution function (Nicolas G. Hadjiconstantinou; private commu-
nication).

For dilute gases, the atomistic calculation of choice is the Boltzmann equation
simulation tool known as the direct simulation Monte Carlo (DSMC).® Baker
and Hadjiconstantinou’? assert that considerable saving in computational time can
be achieved by considering only the deviation from thermodynamic equilibrium.
This is particularly important in the low Mach number limit where DSMC is slow
to converge as it computes the Boltzmann collision integral. In this Mach number
limit, important for typical MEMS flows, the deviation from equilibrium is mod-
est and quicker convergence of the statistical sampling of macroscopic observ-
ables such as flow velocity is achieved by Baker and Hadjiconstantinou’s variance
reduction technique.

Continuum—DSMC hybrid methods allows the simulation of complex phe-
nomena at the microscale without the prohibitive cost of a purely atomistic calcu-
lation. The two computational regimes are matched over a region of space where
both are assumed to be valid. For compressible flows, the continuum and atom-
istic time steps are comparable, and explicit time integration with a finite-volume-
type coupling technique is feasible. The adaptive mesh and algorithm refinement
(AMAR) scheme proposed by Wijesinghe et al.”’ provides a robust flux-based
method for coupling an atomistic fluid representation to a continuum model. The
algorithm extends adaptive mesh refinement by introducing the molecular descrip-
tion at the finest level of refinement. This is not possible generally for incompress-
ible, dilute gas flows, as explicit integration at the molecular time step becomes
prohibitive. An implicit method, based on a domain decomposition approach
known as the Schwarz alternating method, has been successfully demonstrated by
Wijesinghe and Hadjiconstantinou.®® This coupling method uses state variables
instead of fluxes to achieve the matching, and provides time-scale decoupling
between the very small atomistic time and the much larger Courant—Friedrich—
Lewy (CFL) stability time step in the stiff continuum calculations. Convergence
to the global problem steady state is reached via iteration between the steady state
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solutions of the continuum and atomistic subdomains. Imposition of the bound-
ary conditions on the molecular simulations is accomplished by extending the
molecular subdomain through the artifice of a reservoir region in which molecules
are generated using a Chapman—Enskog distribution that is parametrized by the
Navier—Stokes flow field in the continuum subdomain.

For dense gases and liquids, molecular dynamics simulations are used in
the very near proximity of rigid or compliant walls, while the Navier—Stokes
equations are discretized in the bulk of the flow.”® As mentioned earlier, the out-
standing difficulty in such hybrid simulation is passing the information from the
continuum to the molecular subdomain. We are simply unable to unambiguously
define and recreate the liquid interacting molecular state from knowledge of the
continuum solution. In that case, heuristic approaches inevitably replace first-
principles strategies. Very recently, Werder et al.”' proposed an MD simulation
coupled to a finite volume discretization of the N—S equations. The two descrip-
tions were combined in a domain decomposition formulation using the Schwarz
alternating method. The method avoids direct imposition of fluxes but ensures
flux continuity by matching the transport coefficients in the overlap region. Non-
periodic velocity boundary conditions were imposed from the continuum to the
atomistic domain based on an effective boundary potential, consistent body forces,
particle insertion algorithm and specular walls. The strategy iteratively finds a
consistent solution in the atomistic and continuum domains. An overlap region
heuristically facilitates information exchange between the two subdomains in the
form of state (Dirichlet) boundary conditions. Convergence is reached in succes-
sive Schwarz iterations when the solutions in the continuum and atomistic subdo-
mains become identical in the overlap region. This technique was applied to the
flow of liquid argon around a carbon nanotube and the resulting flow field was
found to agree with a fully atomistic reference solution.

1.9. Surface Phenomena

The surface-to-volume ratio for a machine with a characteristic length of 1 m is
1 m~!, while that for a MEMS device having a size of 1 ym is 10 m~!. The
million-fold increase in surface area relative to the mass of the minute device sub-
stantially affects the transport of mass, momentum and energy through the surface.
Obviously surface effects dominate in small devices. The surface boundary con-
ditions in MEMS flows have been discussed above and in the extensive literature
cited in Refs. [26] and [73]. In microdevices, it has been shown that it is possible
to have measurable slip-velocity and temperature jump at a solid—fluid interface.
Liquids such as macromolecule polymers would slip even in minichannels (mm
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scale).?’ In this section, we illustrate other ramifications of the large surface-
to-volume ratio unique to MEMS, and provide a molecular viewpoint to surface
forces.

In microdevices, both radiative and convective heat loss/gain are enhanced by
the huge surface-to-volume ratio. Consider a device having a characteristic length
L. Use of the lumped capacitance method to compute the rate of convective heat
transfer, for example, is justified if the Biot number (= h L;/ks, where h is the
convective heat transfer coefficient of the fluid and «; is the thermal conductivity
of the solid) is less than 0.1. Small L, implies small Biot number, and a nearly
uniform temperature within the solid. Within this approximation, the rate at which
heat is lost to the surrounding fluid is given by

dT,
dt

where p; and c, are respectively the density and specific heat of the solid, T is its
(uniform) temperature, and 7, is the ambient fluid temperature. Solution of the
above equation is trivial, and the temperature of a hot surface drops exponentially
with time from an initial temperature 7},

ps L3 cq = —hL* (T, — Ts) (1.9)

T?(t) B Too t
—_— = —= 1.1
T~ T exp{ T] (1.10)
where the time constant 7 is given by
pS LS CS
T = ——— 1.11
h (L11)

For small devices, the time it takes the solid to cool down is proportionally small.
Clearly, the million-fold increase in surface-to-volume ratio implies a proportional
increase in the rate at which heat escapes. Identical scaling arguments can be made
regarding mass transfer.

Another effect of the diminished scale is the increased importance of surface
forces and the waning importance of body forces. Based on biological studies,
Went™* concludes that the demarcation length scale is around 1 mm. Below that,
surface forces dominate over gravitational forces. A 10 mm piece of paper will
fall down when gently placed on a smooth, vertical wall, while a 0.1 mm piece
will stick. Try it! Stiction is a major problem in MEMS applications. Certain
structures such as long, thin polysilicon beams and large, thin comb drives have a
propensity to stick to their substrates and thus fail to perform as designed.”>’¢
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Conventional dry friction between two solids in relative motion is proportional
to the normal force which is usually a component of the moving device weight.
The friction is independent of the contact-surface area because the van der Waals
cohesive forces are negligible relative to the weight of the macroscopic device. In
MEMS applications, the cohesive intermolecular forces between two surfaces are
significant and the stiction is independent of the device mass but is proportional to
its surface area. The first micromotor did not move—despite large electric current
through it—until the contact area between the 100 micron rotor and the substrate
was reduced significantly by placing dimples on the rotor’s surface.”’~”

One last example of surface effects that to my knowledge has not been inves-
tigated for microflows is the adsorbed layer in gaseous wall-bounded flows. It is
well known®® that when a gas flows in a duct, the gas molecules are attracted to
the solid surface by the van der Waals and other forces of cohesion. The poten-
tial energy of the gas molecules drops on reaching the surface. The adsorbed layer
partakes the thermal vibrations of the solid, and the gas molecules can only escape
when their energy exceeds the potential energy minimum. In equilibrium, at least
part of the solid would be covered by a monomolecular layer of adsorbed gas
molecules. Molecular species with significant partial pressure—relative to their
vapor pressure—may locally form layers two or more molecules thick. Consider,
for example, the flow of a mixture of dry air and water vapor at STP. The energy
of adsorption of water is much larger than that for nitrogen and oxygen, making it
more difficult for water molecules to escape the potential energy trap. It follows
that the life time of water molecules in the adsorbed layer significantly exceeds
that for the air molecules (by 60,000 folds, in fact) and, as a result, the thin sur-
face layer would be mostly water. For example, if the proportion of water vapor in
the ambient air is 1:1,000 (i.e., very low humidity level), the ratio of water to air
in the adsorbed layer would be 60:1. Microscopic roughness of the solid surface
causes partial condensation of the water along portions having sufficiently strong
concave curvature. So, surfaces exposed to non-dry airflows are mainly liquid wa-
ter surfaces. In most applications, this thin adsorbed layer has little effect on the
flow dynamics, despite the fact that the density and viscosity of liquid water are
far greater than those for air. In MEMS applications, however, the layer thickness
may not be an insignificant portion of the characteristic flow dimension and the
water layer may have a measurable effect on the gas flow. A hybrid approach of
molecular dynamics and continuum flow simulations or MD-Monte Carlo simu-
lations may be used to investigate this issue.

It should be noted that recently, Majumdar and Mezic®'%? have studied the
stability and rupture into droplets of thin liquid films on solid surfaces. They point
out that the free energy of a liquid film consists of a surface tension component
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as well as highly nonlinear volumetric intermolecular forces resulting from van
der Waals, electrostatic, hydration and elastic strain interactions. For water films
on hydrophilic surfaces such as silica and mica, Majumdar and Mezic®' estimate
the equilibrium film thickness to be about 0.5 nm (2 monolayers) for a wide range
of ambient-air relative humidities. The equilibrium thickness grows very sharply,
however, as the relative humidity approaches 100%.

Majumdar and Mezic’s results®!%? open many questions. What are the stabil-
ity characteristics of their water film in the presence of airflow above it? Would
this water film affect the accommodation coefficient for microduct airflow? In
a modern Winchester-type hard disk, the drive mechanism has a read/write head
that floats 50 nm above the surface of the spinning platter. The head and platter to-
gether with the air layer in between form a slider bearing. Would the computer per-
formance be affected adversely by the high relative humidity on a particular day
when the adsorbed water film is no longer ‘thin’? If a microduct hauls liquid water,
would the water film adsorbed by the solid walls influence the effective viscosity
of the water flow? Electrostatic forces can extend to almost 1 micron (the Debye
length), and that length is known to be highly pH-dependent. Would the water
flow be influenced by the surface and liquid chemistry? Would this explain the
contradictory experimental results of liquid flows in microducts discussed earlier?

The few examples above illustrate the importance of surface effects in small
devices. From the continuum viewpoint, forces at a solid—fluid interface are the
limit of pressure and viscous forces acting on a parallel elementary area displaced
into the fluid, when the displacement distance is allowed to tend to zero. From
the molecular point of view, all macroscopic surface forces are ultimately traced
to intermolecular forces, which subject is extensively covered in the book by Is-
raelachvilli®? and references therein. Here we provide a very brief introduction
to the molecular viewpoint. The four forces in nature are (i) the strong and (ii)
weak forces describing the interactions between neutrons, protons, electrons, etc.;
(iii) the electromagnetic forces between atoms and molecules; and (iv) gravita-
tional forces between masses. The range of action of the first two forces is around
10~° nm, and hence neither concerns us overly in MEMS applications. The elec-
tromagnetic forces are effective over a much larger though still small distance
on the order of the inter-atomic separations (0.1-0.2 nm). Effects over longer
range—several orders of magnitude longer—can and do rise from the short-range
intermolecular forces. For example, the rise of liquid column in capillaries and
the action of detergent molecules in removing oily dirt from fabric are the re-
sult of intermolecular interactions. Gravitational forces decay with the distance to
second power, while intermolecular forces decay much quicker, typically with the
seventh power. Cohesive forces are therefore negligible once the distance between
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molecules exceeds few molecular diameters, while massive bodies like stars and
planets are still strongly interacting, via gravity, over astronomical distances.

Electromagnetic forces are the source of all intermolecular interactions and
the cohesive forces holding atoms and molecules together in solids and liquids.
They can be classified into (i) purely electrostatic arising from the Coulomb force
between charges, interactions between charges, permanent dipoles, quadrupoles,
etc.; (ii) polarization forces arising from the dipole moments induced in atoms and
molecules by the electric field of nearby charges and permanent dipoles; and (iii)
quantum mechanical forces that give rise to covalent or chemical bonding and to
repulsive steric or exchange interactions that balance the attractive forces at very
short distances. The Hellman—Feynman theorem of quantum mechanics states that
once the spatial distribution of the electron clouds has been determined by solving
the appropriate Schrdinger equation, intermolecular forces may be calculated on
the basis of classical electrostatics, in effect reducing all intermolecular forces to
Coulombic forces. Note however that intermolecular forces exist even when the
molecules are totally neutral. Solutions of the Schrodinger equation for general
atoms and molecules are not easy of course, and alternative modeling are sought
to represent intermolecular forces. The van der Waals attractive forces are usually
represented with a potential that varies as the inverse-sixth power of distance,
while the repulsive forces are represented with either a power or an exponential
potential.

A commonly used potential between two molecules is the generalized
Lennard-Jones (L-J 6-12) pair potential given by

Vij(r) = 4e [cij (g)_u— di; (;)_6] (1.12)

where V;; is the potential energy between two particles ¢ and j, r is the distance
between the two molecules, € and o are respectively characteristic energy- and
length-scales, and ¢;; and d;; are parameters to be chosen for the particular fluid
and solid combinations under consideration. The first term in the right-hand side
is the strong repulsive force that is felt when two molecules are at extremely close
range comparable to the molecular length-scale. That short-range repulsion pre-
vents overlap of the molecules in physical space. The second term is the weaker,
van der Waals attractive force that commences when the molecules are sufficiently
close (several times o). That negative part of the potential represents the attractive
polarization interaction of neutral, spherically symmetric particles. The power of
6 associated with this term is derivable from quantum mechanics considerations,
while the power of the repulsive part of the potential is found empirically. The
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Lennard-Jones potential is zero at very large distances, has a weak negative peak
at r slightly larger than o, is zero at r = o, and is infinite as r — 0.
The force field resulting from this potential is given by

ro == T (R 0] o

g

A typical L-J 6-12 potential and force field was shown in Fig. 1.4, forc = d = 1.
The minimum potential V,;, = —e¢, corresponds to the equilibrium position (zero
force) and occurs at » = 1.12 0. The attractive van der Waals contribution to the
minimum potential is —2 ¢, while the repulsive energy contribution is +e€. Thus
the inverse 12th-power repulsive force term decreases the strength of the binding
energy at equilibrium by 50%.

The L-J potential is commonly used in molecular dynamics simulations to
model intermolecular interactions between dense gas or liquid molecules and be-
tween fluid and solid molecules. As mentioned earlier, such potential is not ac-
curate for complex substances such as water whose molecules form directional
covalent bonds. As a result, MD simulations for water are much more involved.

1.10. Conclusions

The traditional Navier—Stokes model of fluid flows with no-slip boundary con-
ditions works only for a certain range of the governing parameters. This model
basically demands three conditions: (i) Newtonian mechanics, and not quantum
or relativistic mechanics, applies; (ii) The fluid is a continuum, which is typically
satisfied as there are usually more than 1 million molecules in the smallest vol-
ume in which appreciable macroscopic changes take place. This is the molecular
chaos restriction, which can be violated for rarefied gas flows in macrodevices or
for STP airflows in nanodevices; and (iii) The flow is not too far from thermo-
dynamic equilibrium, which is satisfied if there is sufficient number of molecular
encounters during a time period small compared to the smallest time scale for
flow changes. During this time period the average molecule would have moved a
distance small compared to the smallest flow length scale.

For gases, the Knudsen number determines the degree of rarefaction and the
applicability of traditional flow models. As Kn — 0, the time and length scales
of molecular encounters are vanishingly small compared to those for the flow, and
the velocity distribution of each element of the fluid instantaneously adjusts to the
equilibrium thermodynamic state appropriate to the local macroscopic properties
as this molecule moves through the flowfield. From the continuum viewpoint,
the flow is isentropic and heat conduction and viscous diffusion and dissipation
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vanish from the continuum conservation relations, leading to the Euler equations
of motion. At small but finite Kn, the Navier—Stokes equations describe quasi-
equilibrium, continuum flows.

Slip flow must be taken into account for Kn > 0.001. The slip boundary con-
dition is at first linear in Knudsen number, then nonlinear effects take over beyond
a Knudsen number of 0.1. At the same transition regime, i.e., 0.1 < Kn < 10, the
linear stress—rate of strain and heat flux—temperature gradient relations—needed
to close the field equations—also break down, and alternative continuum equa-
tions (e.g., Burnett or higher-order equations) or molecular-based models must
be invoked. In the transition regime, provided that the dilute gas and molecular
chaos assumptions hold, solutions to the difficult Boltzmann equation are sought,
but physical simulations such as Monte Carlo methods are more readily executed
in this range of Knudsen number. In the free-molecule flow regime, i.e., Kn > 10,
the nonlinear collision integral is negligible and the Boltzmann equation is drasti-
cally simplified. Analytical solutions are possible in this case for simple geome-
tries and numerical integration of the Boltzmann equation is straightforward for
arbitrary geometries, provided that the surface-reflection characteristics are accu-
rately modeled.

Gaseous flows are often compressible in microdevices even at low Mach num-
bers. Viscous effects can cause sufficient pressure drop and density changes for
the flow to behave as compressible. In a long, constant-area microduct, all Knud-
sen number regimes may be encountered and the degree of rarefaction increases
along the tube. The pressure drop is nonlinear and the Mach number increases
downstream, limited only by choked-flow condition.

Similar deviation and breakdown of the traditional Navier—Stokes equations
occur for liquids as well, but at considerably smaller device scale. Existing ex-
periments are contradictory, and the situation for dense gases and liquids is more
murky than that for dilute gases. There is no kinetic theory of liquids, and first-
principles prediction methods are scarce. Molecular dynamics simulations can be
used, but they are limited to extremely small flow extents. Nevertheless, measur-
able slip is predicted from MD simulations at realistic shear rates in microdevices.
Hybrid atomistic—continuum methods hold promise to provide first-principles so-
lutions while remaining computationally affordable. Though requiring consider-
able numerical erudition, the use of hybrid strategies for dilute gases is within
reach. Further development is needed for implementing hybrid methods for liquid
and dense gas flows.

Much non-traditional physics is still to be learned and many exciting appli-
cations of microdevices are yet to be discovered. The future is bright for this
emerging field of nanoscience and nanotechnology.
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Micro and nano-devices are often operated in gaseous environments (typically
air) and thus their performances are affected by the gas around them. Since the
smallest characteristic length of MEMS/NEMS is comparable with (or smaller
than) the mean free path of the gas molecules, the traditional computational fluid
dynamics (CFD) methods, based on the Euler or the Navier-Stokes equations, fail
to predict the flows related with these devices. Therefore, an accurate analysis
of such micro-fluidic systems in the entire Knudsen regime requires the solu-
tion of the Boltzmann equation, which describes the behavior of the distribution
function of the gas molecules. The application of kinetic theory methods is illus-
trated by deriving a generalized Reynolds equation from the linearized Boltz-
mann equation. The analysis, valid for arbitrary Knudsen number, is based on
two different kinetic models of the collisional operator: the Bhatnagar, Gross
and Krook (BGK) model and the ellipsoidal statistical (ES) model. The gas-
wall interaction model and the resulting boundary conditions allow for bounding
surfaces with different physical structure. It is further shown that MEMS flows
having a complex geometry can be successfully studied by numerical solution of
kinetic equations whose predictions are in very good agreement with experimen-
tal data. Finally, it is shown that kinetic theory methods can be extended to dense
fluids by a simple generalization of Enskog kinetic equation which describes a
fluid whose molecules interact through Sutherland’s potential.
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2.1. Introduction

The presence of a fluid film is known to reduce the sliding friction between solid
objects. Although one usually thinks of a liquid (typically, oil), the case of a gas
lubricant (typically, air) is also very important in several applications. Sometimes,
problems of gas lubrication are not so obvious, because air is so easily available
that one tends to disregard its presence. As technology expands and the size of
components becomes smaller and smaller, the role of rarefied gases as lubricants
becomes increasingly important. We recall that a gas is called rarefied when the
mean free path between collisions (of the order of 60 nanometers at room pressure
and temperature) is comparable with a typical size of the region where it flows.
A typical example is provided by modern computers: the read/write head must be
as close as possible to a rotating disk, and the air in between has accordingly a
thickness of the order of a mean free path.

In lubrication theory, the thickness of the gas layer is extremely small com-
pared with its lateral dimensions. Properly handled, this observation can be used
to eliminate from the equations the dependence upon one of the three space vari-
ables. This possibility was exploited since long time by the famous hydrodynam-
icist Osborne Reynolds' to integrate the mass balance equation across the layer
and to use the linearized Navier—Stokes equation for momentum balance to eval-
uate the quantities appearing as integrands. Fortunately, Reynolds’s argument can
be extended to rarefied gases; the only difference is that the linearized Boltzmann
equation (Sec. 2.3) must now be used to evaluate the averaged velocity compo-
nents in the mass balance equation.

From a very superficial consideration of the matter one might expect that the
main problem of lubrication theory is to predict the friction which results from a
given configuration of solid objects. However, a little more reflection reveals that
the real problem is quite different. Lubricating layers are usually found between
two solid bodies which are acted upon by forces (such as gravity) tending to push
them together. To carry this load, the gas layer must develop normal stresses,
largely dominated by pressure. Thus the first task of lubrication theory is to predict
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the pressure distribution and from it the load-carrying capacity. Therefore we must
relate the velocity components to the pressure gradients and to the motion of the
solid surfaces bounding the gas layer. Since the variations of thickness are very
slow, this result is obtained by solving highly idealized problems between parallel
plates, such as plane Couette and Poiseuille flows, which will be considered in
Sec. 2.7. Thus these problems, far from being didactic exercises, play a very
important role in applications of enormous practical importance.

The application of kinetic theory methods described below is not restricted to
problems involving rarefied gas flows. As shown in last section of the chapter, it
is possible to formulate kinetic equations for dense fluids using approximate (but
reasonable) models for molecular correlations. In spite of their phenomenological
nature, such kinetics equations provide a description of the fluid which is more
general than hydrodynamics which appears as a particular case, hence they can
be used to bridge hydrodynamic fluid treatment with molecular dynamics simula-
tions.

2.2. The Boltzmann Equation

The phenomena associated with the dynamics of molecules are not so simple,
especially because the number of molecules usually considered is extremely large:
there are about 2.7 x 10*? in a cubic centimeter of a gas at atmospheric pressure
and a temperature of 0°C.

Given the vast number of particles to be considered, it would of course be
a hopeless task to attempt to describe the state of the gas by specifying the so-
called microscopic state, i.e., the position and velocity of every individual sphere;
we must have recourse to statistics. A description of this kind is made possible
because, in practice, all that our typical observations can detect are changes in the
macroscopic state of the gas, described by quantities such as density, bulk velocity,
temperature, stresses, heat flow, which are related to some suitable averages of
quantities depending on the microscopic state.

The exact dynamics of N particles is a useful conceptual tool, but cannot in
any way be used in practical calculations because it requires a huge number of real
variables (of the order of 10%°). This was realized by Maxwell and Boltzmann
when they started to work with the distribution function f(x,&,t). The latter
is a function of seven variables, i.e., the components of the two vectors x (the
position of a molecule) and £ (the velocity of a molecule) and time ¢. In particular,
Boltzmann wrote an evolution equation for f by means of a heuristic argument,
which we shall try to present in such a way as to show where extra assumptions
are introduced.
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In order to simplify the treatment, we shall for the moment assume that the
molecules are hard spheres, whose center has position x. When the molecules
collide, momentum and kinetic energy must be conserved; thus the velocities after
the impact, £’ and &', are related to those before the impact, £ and &,, by

§=€—nn-(£-¢&)
§. =& +nn-(£-¢)]

2.1)

where n is the unit vector along & — &’.
In the absence of collisions, f would remain unchanged along the trajectory
of a particle and would satisfy

of of of
- X- =0 2.2
o TS ax T B 22)
where X is any external force per unit mass, such as gravity, acting on the
molecule, which will be neglected in the rest of this chapter.
In order to evaluate the effects of collisions on the time evolution of f, we

need to write an equation of the following form:

of f

ateg

=G- L. (2.3)
Here Ldxd£dt gives the expected number of particles with position between x and
X + dx and velocity between & and & + d€ which disappears from these ranges of
values because of a collision in the time interval between ¢ and t+dt and Gdxd€dt
gives the analogous number of particles entering the same range in the same time
interval. The count of these numbers is not difficult, if a bit long, provided that we
know the joint probability of finding two molecules at given positions with given
velocities (see Refs. 2 and 3).

However, if the number of particles [V is very large and the molecular diameter
o (expressed in common units, such as, e.g., centimeters) is very small, we can
obtain an equation which is rigorously valid only in the so called Boltzmann-Grad
limit, when N — 00,0 — 0 with No? finite.

In this situation, the collisions between two preselected particles are rather
rare events. Thus two spheres that happen to collide can be thought to be two ran-
domly chosen particles and it makes sense to assume that the probability density
of finding the first molecule at x with velocity £ and the second at x,, with velocity
&.. is the product of the probability density of finding the first molecule at x with
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velocity & times the probability density of finding the second molecule at x, with
velocity &,. If we accept this we can write (assumption of molecular chaos) the
Boltzmann equation in the following form:

T et — o | [ e

—f(%,&,8) f(%, &, 1)][ (&« — §) - n|d€.dn. (24)

So far we have assumed the molecules to be identical hard spheres. There are
several possible generalizations of this molecular model, the most obvious being
the case of molecules which are identical point masses interacting with a central
force, a good general model for monatomic gases. If the range of the force ex-
tends to infinity, there is a complication due to the fact that two molecules are
always interacting and the analysis in terms of “collisions” is no longer possible.
If, however, the gas is sufficiently dilute, we can take into account that the molec-
ular interaction is negligible for distances larger than a certain o (the “molecular
diameter””) and assume that when two molecules are at a distance smaller than o,
then no other molecule is interacting with them and the binary collision analy-
sis considered in the previous section can be applied. The only difference arises
in the factor o2|(¢, — &) - n| which turns out to be replaced by a function of
V = |€&. — €| and the angle 6 between n and V (see Refs. 2 and 4). Thus the
Boltzmann equation for monatomic molecules takes on the following form:

%Jré or N/Rd/ f(x, &) f(x,€.,t)

where e is the other angle which, together with 6, identifies the unit vector n. The
function B(#, V') depends, of course, on the specific law of interaction between
the molecules. In the case of hard spheres, of course

B(0, & — &|) = cosOsinb|E, — E|. (2.6)

In spite of the fact that the force is cut at a finite range o when writing the Boltz-
mann equation, infinite range forces are frequently used. This has the disadvan-
tage of making the integral in Eq. (2.5) rather hard to handle; in fact, one cannot
split it into the difference of two terms (the loss and the gain), because each of
them would be a divergent integral. This disadvantage is compensated in the case
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of power law forces, because one can separate the dependence on 6 from the de-
pendence upon |V|. In fact, one can show?# that, if the intermolecular force varies
as the n-th inverse power of the distance, then

B(@,|£* _£|) = ﬁ(9)|£* 3

where (3(0) is a non-elementary function of 6 (in the simplest cases it can be
expressed by means of elliptic functions). In particular, for n = 5 one has the
so-called Maxwell molecules, for which the dependence on V' disappears.

Sometimes the artifice of cutting the grazing collisions corresponding to small
values of |6 — 7| is used (angle cutoff). In this case one has both the advantage of
being able to split the collision term and of preserving a relation of the form (2.7)
for power-law potentials.

Since solving the Boltzmann equation with actual cross sections is compli-
cated, in many numerical simulations use is made of the so-called variable hard
sphere (VHS) model in which the diameter of the spheres is an inverse power law
function of the relative speed |V|.

n—>5
= @.7)

2.3. The Linearized Boltzmann Equation and the BGK Model

The solutions describing equilibria of the Boltzmann equation are the so-called
Maxwellians, i.e., distributions of the form

M = po(27RTy) /2 exp|—|€ — vo|*/(2RT})] (2.8)

where pg, vo, T are parameters having the meaning of density, bulk velocity and
temperature in an equilibrium state. The vector vq is usually taken to be zero.
We can look for solutions written as

f=M(+h). 2.9)

Then the Boltzmann equation takes on the form:

oh oh
aJrg‘a—x7Lh+l“(h,h) (2.10)

where L is the linearized collision operator:

Lh=2M"*Q(Mh, M) (2.11)

and T'(h, h) the nonlinear part (assumed to be small compared to the linear one):
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T'(h,h) = M~'Q(Mh, Mh). (2.12)

Here Q(f, g) is the bilinear symmetric operator uniquely associated with Q(f, f).
The rigorous theory for solutions of the form (2.9) was given by S. Ukai (see
Ref. 5 for more details).

In many applications, the collision term in the Boltzmann equation is replaced
by the so-called BGK model (see Refs. 4 and 6 for more details):

J(f) = v[®(§) — f(£)] (2.13)

where the collision frequency v depends on the local density p and the local tem-
perature 7', whereas @ is the local Maxwellian:

® = p(2rRT)3/? exp[—|€ — v|>/(2RT)] (2.14)

having the same density, temperature and bulk velocity v as f. Notice that from
the viewpoint of nonlinearity the BGK model is worse than the Boltzmann equa-
tion, but offers the advantage that one can derive integral equations for p, v, T
The linearized form reads:

Liax = uo[ / NI(€)h(E.)dE. +— / €. NI(€.)h(E,)dE.

2/ 1€ 3 &2 3 -
3 <2RTO - 2) / (QRTO - Q)M(’S*)h(&)dé* — h] (2.15)

where M = M /po and is extremely useful, as we shall see.

2.4. The Macroscopic Balance Equations

In this section we compare the microscopic description supplied by kinetic the-
ory with the macroscopic description supplied by continuum gas dynamics. For
definiteness, in this section f will be assumed to be an expected mass density in
phase space. In order to obtain a density p = p(z,t) in ordinary space, we must
integrate f with respect to &:

P / fde (2.16)
R3
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The bulk velocity v of the gas (e.g., the velocity of a wind), is the average of the
molecular velocities £ at a certain point x and time instant ¢; since f is propor-
tional to the probability for a molecule to have a given velocity, v turns out to
be

o Justrde
Jrs f €
(the denominator is required even if f is taken to be a probability density in phase
space, because we are considering a conditional probability, referring to the posi-
tion x). Equation (2.17) can also be written as follows:

(2.17)

v = /R £fde (2.18)

or, using components:

pvi = / GfdE (i=1,2,3) (2.19)
R3

The bulk velocity v is what we can directly perceive of the molecular motion by
means of macroscopic observations; it is zero for a gas in equilibrium in a box at
rest. Each molecule has its own velocity £ which can be decomposed into the sum
of v and another velocity

c=&—v (2.20)

called the random or peculiar velocity; c is clearly due to the deviations of £ from
v. Itis also clear that the average of c is zero.

The quantity pv; which appears in Eq. (2.19) is the ¢-th component of the
mass flow or, alternatively, of the momentum density of the gas. Other quantities
of similar nature are: the momentum flow

mij = /RS &i&ifds  (i,5=1,2,3); (2.21)

the energy density per unit volume:

1
w=g / €[ fdg; (2.22)
RS

the energy flow:
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n=g [ elefrae =123, 223)

Equation (2.21) shows that the momentum flow is described by the components
of a symmetric tensor of second order, because we must describe the flow in the
i-th direction of the j-th component of momentum. It is to be expected that in
a macroscopic description only a part of this tensor will be identified as a bulk
momentum flow, because, in general, m;; will be different from zero even in the
absence of a macroscopic motion (v = 0). It is thus convenient to re-express the
integral in m;; in terms of ¢ and v. Then we have:

Mij = PV;V; + Pij (2.24)

where:

po= [ ceifde (.7=12.3) (225)
RS

plays the role of the stress tensor (because the microscopic momentum flow asso-
ciated with it is equivalent to forces distributed on the boundary of any region of
gas, according to the macroscopic description).

Similarly one has:

1
w=3p Iv|? + pe, (2.26)

where e is the internal energy per unit mass (associated with random motions)
defined by:

1

pe=15 / el fdg: (227)
R3
and:
1 3
2 .

n=m¢ﬂ4+@+2?mfwi (i=1,2,3), (2.28)

o

where ¢; are the components of the so called heat flow vector:

%zé/imq%@. (2.29)
RS
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The decomposition in Eq. (2.28) shows that the microscopic energy flow is a sum
of a macroscopic flow of energy (both kinetic and internal), of the work (per unit
area and unit time) done by stresses, and of the heat flow.

In order to complete the connection, as a simple mathematical consequence of
the Boltzmann equation, one can derive five differential relations satisfied by the
macroscopic quantities introduced above; these relations describe the balance of
mass, momentum and energy and have the same form as in continuum mechanics.
To this end let us consider the Boltzmann equation

of 6f

S S = QUL f). (2:30)

If we multiply both sides by one of the so-called collision invariants v, (@ =
0,1,2,3,4), defined as vy = 1, ¢; = & (i = 1,2,3), 94 = |£|? and integrate with
respect to &, we have, thanks to the fact that collisions preserve mass, momentum
and energy (see Refs. 2 and 3):

/ Ya(€ ,[)dé =0, (2.31)

and hence, if it is permitted to change the order by which we differentiate with
respect to ¢ and integrate with respect to &:

B 5.8
> / wafds+;6—m / CbafdE=0 (a=0,1,2,3.4)  (232)

If we take successively o = 0, 1,2, 3,4 and use the definitions introduced above,
we obtain

3

i
o 0, (2.33)
1
d 9
a(pvj) + ; a—%(pvivj +pij) =0, (j=1,2,3) (2.34)
B 9 i
a(1/2p|V|2+pe)+Z . pvi(1/2|v]> + €) + Zvjpij +qi| =0. (2.35)
i=1 v j=1

These equations have the so-called conservation form because they express the
circumstance that a certain quantity (whose density appears differentiated with
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1Y

Fig. 2.1. The velocity & of a re-emerging molecule is not uniquely determined by the velocity pos-
sessed by the same molecule before hitting the wall, unless specular reflection applies (dashed line).

respect to time) is created or destroyed in a certain region {2 because something
is flowing through the boundary 0€2. In fact, when integrating both sides of the
equations with respect to x over €, the terms differentiated with respect to the
space coordinates can be replaced by surface integrals over OS2, thanks to the
divergence theorem.

2.5. Boundary Conditions

The Boltzmann equation must be accompanied by boundary conditions, which
describe the interaction of the gas molecules with solid or liquid walls. It is to this
interaction that one can trace the origin of the drag and lift exerted by the gas on
another body and the heat transfer between the gas and the boundaries.

The study of gas-surface interaction may be regarded as a bridge between the
kinetic theory of gases and solid state physics and is an area of research by it-
self. The difficulties of a theoretical investigation are due, mainly, to our lack of
knowledge of the structure of surface layers of solid and liquid bodies and hence
of the effective interaction potential of the gas molecules with the wall. When a
molecule impinges upon a surface, it is adsorbed and may form chemical bonds,
dissociate, become ionized or displace surface molecules. Its interaction with the
solid surface depends on the surface finish, the cleanliness of the surface, its tem-
perature, efc. It may also vary with time because of outgassing from the surface.
Preliminary heating of a surface also promotes purification of the surface through
emission of adsorbed molecules. In general, adsorbed layers may be present; in
this case, the interaction of a given molecule with the surface may also depend on
the distribution of molecules impinging on a surface element. For a more detailed
discussion the reader should consult Ref. 4.
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In general, a molecule striking a surface with a velocity & reemerges from
it with a velocity & which is strictly determined only if the path of the molecule
within the wall can be computed exactly. This computation is very hard, because it
depends upon a great number of details, such as the locations and velocities of all
the molecules of the wall and an accurate knowledge of the interaction potential.
Hence it is more convenient to think in terms of a probability density R(¢" —
&;x,t;7) that a molecule striking the surface with velocity between &’ and &’ +
dg’ at the point x and time ¢ will re-emerge at practically the same point with a
velocity between £ and £ + d€ (Fig. 2.1) after a time interval 7 (adsorption or
sitting time). If the function (or distribution) R is known, then we can easily write
down the boundary condition for the distribution function f(x, &, ¢). If the surface
is assumed to be at rest, then

focglen= [ i [ RE = e tin) e gt — g -nlag
(2.36)
(x €99, & -n > 0).

The kernel R can be assumed to be independent of f under suitable conditions
which we shall not detail here.* If, in addition, the effective adsorption time is
small compared to any characteristic time of interest in the evolution of f, we can
let 7 = 0 in the argument of f appearing in the right hand side of Eq. (2.36); in
this case the latter becomes:

ﬂ&awm«n:/ RE — &x,0)f(x.€,0)[¢’ - n|de’ 2.37)

£'-n<0

(x€Q,& - n>0).

where

R(¢ — &x,t) = /O‘X’ dTR(& — & x,t;7) (2.38)

Eq. (2.37) is, in particular, valid for steady problems.

The scattering kernel is a fundamental concept in gas-surface interaction, by
means of which other quantities should be defined. Frequently its use is avoided
by using the so-called accommodation coefficients, with the consequence of lack
of clarity, misinterpretation of experiments, bad definitions of terms and misun-
derstanding of concepts. The basic information on gas-surface interaction, which
should be in principle obtained from a detailed calculation based on a physical
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model, is summarized in a scattering kernel. The further reduction to a small set
of accommodation coefficients can be advocated for practical purposes, provided
this concept is firmly related to the scattering kernel (see Refs. 3 and 4).

In view of the difficulty of computing the kernel R(¢' — &) from a physi-
cal model of the wall, a different procedure, which is less physical in nature, is
usually adopted. The idea is to construct a mathematical model in the form of a
kernel R(& — &) which satisfies certain basic physical requirements (see Refs. 2
and 3) and is not otherwise restricted except by the condition of not being too
complicated.

One of the simplest kernels is

R(E' — &) = aM ()€ -n[+ (1 —a)i(€ — & +2n(¢' - n)) (2.39)
0<a<l)

This kernel corresponds to Maxwell’s model, according to which a fraction (1—«)
of molecules undergoes a specular reflection, while the remaining fraction « is
diffused with the Maxwellian distribution of the wall M,,. This model contains
pure diffusion according to a nondrifting Maxwellian as a limiting case (Eq. (2.39)
with a = 1). The use of this particular model is justified for low-velocity flows
over technical surfaces, but is inaccurate for flows with orbital velocity.

2.6. The Modified Reynolds Equation

The starting point to obtain the rarefied version of the Reynolds equation for lu-
brication is the mass balance equation, Eq. (2.33), which, as we have seen, is a
consequence of the Boltzmann equation. This equation is considerably simplified
by the fact that the variations of density do not show up for slow motion in the
steady case, which is the most important in applications and we shall consider
henceforth. Thus

ou Jv Ow
o "oy oz
where the three components of the bulk velocity are denoted by u, v, w.

Let us consider a layer of gas between two walls located at z = 0 and z =
D(z,y); the lower wall moves in its own plane (see Fig. 2.2, where, for simplicity,
the y-direction has been suppressed). If we integrate Eq. (2.40) across the layer,
we obtain

=0 (2.40)

2/ udz—l—f/ vdz = 0. (2.41)
ox
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Since the problem is linear and the pressure gradient is assumed to be constant
across the layer, each component u, v is proportional to the sum of the velocities
given by a Poiseuille flow with pressure gradient dp/dx, dp/dy, respectively, and
a Couette flow with the lower wall moving with velocity components U and V.

Fig. 2.2. Geometry of a slider bearing.

In the case of Couette flow the evaluation of the integral: Fg) = fOD ucdz
is easy, if the walls are assumed to be identical. In fact, in this situation the
profile is antisymmetric with respect to the midpoint and F; él) = UD/2. Similarly
Fé?) = fOD vedz = VD/2. The behavior of the flow rate for plane Poiseuille
flow is much more complicated and is given by

D
1 Op
F(l):/ dz= ——— L p20(6);
P 0 upaz pO\/2RT0 ox Q( )

D

(2) _/ o 1 8p 2

FO = [ wpdz = ————Z2D2Q(5 (2.42)
L o2 oy Q)

where ¢ is the ratio between the distance and the (unperturbed) mean free path:
__pD
~ uV/2RT
and Q(9) is the nondimensional flow rate which can be obtained by solving the
problem of plane Poiseuille flow. Thus the modified Reynolds equation reads as
follows

Or | Oz Ay | dy 20r 20y
(2.43)

9 {%DQQ@} Lo {%DQQ@} ZPOM{U(?DJF vap]
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Given D = D(xz,y), this is an (elliptic) partial differential equation for p which
must be solved for an assigned value of p (usually constant) at the boundary.

We have assumed so far that the linearization assumption holds everywhere.
It may turn out, however, that the pressure undergoes a significant change. In
this case, one can still utilize the linearized Boltzmann equation to compute the
local flow rate, but one should use the local pressure p throughout, rather than the
unperturbed pressure py. The modified Reynolds equation then reads as follows

2 [D00 ], 0 [DQ0 ] 1 [,06D) D
8${\/m3x Yoyl varr oyl "2V s TV ey | B

This generalized Reynolds equation was first introduced by Fukui and Kaneko.”*
In the continuum limit we have

_1_ »D
Q@%—6uiﬁf

and Eq. (2.44) becomes

N v 9eD)

9 {PDW?’} L0 [PDgap] _6 {Ua(pD) (2.45)
Ox Oy ’

%uaw@uay

which is essentially the equation originally given by Reynolds.'

2.7. The Reynolds Equation and the Poiseuille-Couette Problem

The micromachinery fabrication techniques have become more and more mature
in the last ten years. In particular, the micro-electro-mechanical systems (MEMS)
developed rapidly and found many applications in microelectronics, medicine, bi-
ology, optics, aerospace and other high technology fields. Both experimental and
computational efforts have been undertaken to understand the specific features of
the microscale flows. A basic constituent of the MEMS devices is the microchan-
nel, the region between two parallel plates that can reveal many specific features
of the low speed internal flows in microdevices. Typically the first devices were
integrated micro-channel/pressure sensor systems. The Knudsen number at the
outlet of the channel at room conditions is 0.05 for nitrogen, and even higher for
helium; hence the flow is surely beyond the slip flow regime. The pressure dis-
tribution along the channel and the flow rates across these channels are found to
deviate from the linear distribution of the Poiseuille flow. Monte Carlo methods
were used to simulate microchannel flows but they meet with the excessively high
demands to the storage and computation time. The gradual regulation of the inlet
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and outlet boundary conditions of the channel seems to be tremendously difficult
for DSMC in solving the long channel flows. In fact the typical DSMC simulation
of the micro channel flow is limited to high speeds. Recently, the so called infor-
mation preservation (IP) method was proposed;>!” it uses a conservative scheme
and a super-relaxation technique, which results in excellent agreement with ex-
perimental data.

However, the kinetic theory of MEMS does not require heavy computational
tools. The generalized Reynolds equation can be used to calculate the gas film
lubrication problem provided that the flow rate of Poiseuille flow is calculated
from the linearized Boltzmann equation. The case of a microchannel with parallel
plates was treated by C. Shen.'!

Following Refs. 6 and 12, let us consider again two plates separated by a
distance D and a gas flowing parallel to them, in the z direction, due to a pressure
gradient. The lower boundary (z = —D/2) moves to the right with velocity U,
while the upper boundary (z = D/2) is fixed. Both boundaries are held at a
constant temperature T,,. However, at variance with our previous discussions, we
assume the gas-surface interaction to be different at the wall.

As usual, if the pressure gradient and the velocity U are taken to be small,
it can be assumed that the Boltzmann equation can be linearized about a
Maxwellian. If we consider the linearized BGK model for the collision opera-
tor, the Boltzmann equation reads:

1 0Z 1 [ _1 [T _.
gk—ﬁ—cza:z |:7T 2/ e “17(z,¢,, ) dey, — Z(2,¢2) (2.46)

where by definition

2

+o0 —+o0
Z(z,¢.) =71 / / e_cw_cicmh(z, c)de, dey

_10p 10p

[ e
pOx  pox

with p and p being the gas pressure and density, respectively, and £ the mean free

path. Consequently, the bulk velocity of the gas is given by:

+oo
q(z) =n"2 / e~ Z(z, ¢y ) des, - (2.47)

— 00
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From Eq. (2.46) we obtain the integral relation:

gsgncz)/(czé))Z(—gsgncz, c,) +

/'Z exp <:i|;> lq(t) — k€/2]/(c.0) dt  (2.48)

D
— 5 sgnc,

Z(z,¢;) = exp(—(z +

with the values at the boundary, Z (—%sgncz, ¢,), depending on the model of
boundary condition chosen. This problem was first treated by Cercignani and
Daneri® for completely diffusing walls. In the following, we will take into account
the Maxwell boundary conditions as in Ref. 12 and consider two walls having
different physical properties, i.e., with two accommodation coefficients (o, as).
In this case, the boundary conditions can be written as:

Zt(D/2,c.) = (1 —a1)Z~(D/2,—c.)

—D/2,¢c,) = U+ (1 —a2)Z~(—=D/2,—c,)

where U is expressed in units of (2RT,)/?; Z=(—=D/2,c.), Z~(D/2,c.) are
the distribution functions of the molecules impinging upon the walls; similarly,

—D/2,¢c,), Zt(D/2,c,) are the distribution functions of the molecules
reemerging from the same walls.

Once the function at the boundary, Z(— %sgncz, ¢.), has been evaluated fol-
lowing the analytical procedure reported in Refs. 12 and 13, the substitution of the
integral formula (2.48) in the definition (2.47) of ¢(z) gives the following expres-
sion for the bulk velocity of the gas:

az) = SR~y )] + U, (2.49)

Equation (2.49) shows that the gas velocity is induced by the superposition of two
distinct effects. The gas moves by an imposed pressure gradient (Poiseuille flow)
and by the shear driven flow due to the motion of the bottom surface (Couette
flow). The non-dimensional functions 1, () and ¢.(u), giving the Poiseuille and
Couette contributions, respectively, satisfy the following integral equations:

5/2
Yp(u _1_‘_7/ dw ¢, (w {(1—a1)51((5—u—w)+

6/2
(1 — 042) _1(5+U+IU) + (1 — 041)(1 — OéQ)[S_l(ZCS — u+w)+

_1(25—|—u—w)]—|—T_1(|u—w|)} (2.50)
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O b+ (- )8, )

+(1—-a)(1- ag)So(% + u)]

f/é/Q duw (1w {(1—a1)5_1(5_u_w)

5/2
+(1-a)S_1(0+u+w)+ (1 —a)(l —a)[S-1(20 —u+ w)
+Sl(26+u—w)]+T1(|u—w|)} (2.51)

where T, (x) is the Abramowitz function defined by

+oo
To(z) = / t" exp(—t? — 2 /t) dt
0
Sp(z) is a generalized Abramowitz function defined by

t"exp(—t% — z/t)

1— o) (1 — ag) exp(—26/t) o

—+o0
Sn('ra 6) a, a?) = /
o 1-(
and the following non-dimensional variables have been introduced:
0=DJt, w=t/t, u=z/l.
Using Eq. (2.49), the flow rate (per unit time through unit thickness) defined by:
D/2
F = p/ q(z)dz (2.52)
-D/2

can be expressed as the sum of the Poiseuille flow (F},) and the Couette flow (F7.)
as follows:

dp UD
F=F,+F, = fa—D%)p(a an,a2) + 2220006, a1, a2) (2.53)
where
1 §/2
Qp(d,a1,0) = -5t 7/ 1/117( )
Q.(d, a1, az) 5 Pe(u)
—5/2

are the non-dimensional volume flow rates.
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2.8. The Generalized Reynolds Equation for Unequal Walls

One can easily extend the generalized Reynolds equation to the case of unequal
walls:

d (dp pUD
% (dl‘DzQP(d’al’ Ckz) - TQC((;? i, a2)> =0 (2.54)

For the purpose of a direct comparison with the classical Reynolds equation
(2.45), let us introduce the Poiseuille relative flow rate:

Q;U(daal,ag) - QMZQW‘Q)

where Q.on, = 0/6. If one introduces the following dimensionless quantities

X:I/l, P:p/poa H:D/Dov

(2.55)

the rarefaction parameter § can be expressed as: § = 6,PH, where §, is the
characteristic inverse Knudsen number defined by the minimum film thickness,
D, and the ambient pressure p,, as:

5, = PoDo .

1\/2RT,
(see Fig. 2.2). Finally, assuming that the heat generation in the gas is very small,
so that an isothermal process can be considered, the non-dimensional generalized

Reynolds equation reads:

d [~ dpP
e (Qp(éoPH, as, @Pfﬂﬁ —Q.(6,PH, 1, o@APH) =0. (2.56)

The bearing number A in Eq. (2.56) is defined as

A 6uUl

PoD g

where p is the viscosity coefficient. If the two walls are identical (v = ag = ),

the Couette flow rate is independent of the Knudsen number regardless of the value

of the accommodation coefficient o and Eq. (2.56) reduces to the generalized
Reynolds equation introduced by Fukui and Kaneko.”3

Writing the non-dimensional film thickness H in terms of the longitudinal

coordinate X,
HZDI—Z(D1—1>X (2.58)

(2.57)
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such that

dP_ 1 (Di_\dP
D,

dX L dH’
Equation (2.56) can be immediately integrated to give:

I (D ~ dP
L(L%—1>QA&JULahagPHiH{+QJ&J¥Laha9APH::K1
(2.59)
where K is a constant of integration. The substitution of
PH = (2.60)
in Eq. (2.59) gives:
d c(0oC, a1, a0)AN — K
¢ _ ¢ [Qe(doG, ar, a2)AC — K] 2.61)

dH — H  1/L(D1/Dy ~ 1)Qp(00C, a1, a2) HC'
The boundary conditions to be matched to Eq. (2.61) read
CZDl/Do at H:Dl/DO

(=1 at H=L

Equation (2.61) can be solved numerically using relaxation methods. To ap-
ply this numerical scheme, the differential equations have to be replaced by finite-
difference equations on a point mesh. The solution of the resulting set of equations
is determined by starting with a guess and improving it iteratively using New-
ton’s method. The Poiseuille and Couette flow rate coefficients, Q, (0, a1, a2),
Q.(0, a1, v2), have been evaluated by means of the numerical method described
in Ref. 13 and a variational technique for the integrodifferential form of the Boltz-
mann equation based on the BGK model.'>!#

Once ((H) has been numerically evaluated on a grid that spans the domain of
interest, Egs. (2.58) and (2.60) give the pressure field in the gas film as a function
of X. Furthermore, a prediction of the vertical force acting on the upper surface
of the slider bearing, crucial for practical design, may be obtained from the load
carrying capacity W, defined as

[ L/
IV:—/T(P—UdX (2.62)
L 0
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and o = 0.1 (dot dashed). The bearing number A is 10 (top) and 50 (bottom).
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Pressure profile for §, = 0.5. The line styles indicate @ = 0.8 (solid), « = 0.3 (dashed),

Fig. 2.4. Pressure profile for 6, = 0.5. The line styles indicate &« = 0.8 (solid), « = 0.3 (dashed),
and a = 0.1 (dot dashed). The bearing number A is 200.
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In order to investigate the effects of the rarefaction parameter d,, and the bear-
ing number A on the basic lubrication characteristics (pressure distribution and
load carrying capacity), the parameters describing the gas film geometric configu-
ration were fixed at the following values: Dy /D, = 2, L/D, = 100. Figures 2.3
and 2.4 show the pressure field as a function of the longitudinal coordinate X at
three different bearing numbers: A = 10, 50, 200. To assess the influence of the
boundary conditions, the profiles corresponding to different accommodation coef-
ficients (for bounding walls supposed physically identical) are drawn in Figs. 2.3
and 2.4.

Looking at the pictures, one sees that the pressure distribution in the gas film
increases with increasing A. Furthermore, at fixed bearing number, the pressure
field reduces by increasing the fraction of gas molecules specularly reflected by
the walls. Figures 2.5 and 2.6 report the pressure profiles for the same parameters
as in Figs. 2.3 and 2.4, except that now the two bounding plates are allowed to
re-emit the impinging gas molecules differently, so that two accommodation co-
efficients must be used. We keep the accommodation coefficient of the upper wall
(ap) fixed and vary the other one (a2).

A comparison with Figs. 2.3 and 2.4 shows that, for every A, the pressure
distribution significantly depends on a» and only weakly on o .

It is worth noting that, when A increases, the Couette contribution to the lubri-
cation flow rate becomes dominant compared with the Poiseuille flow. Therefore,
if the two walls are identical, the influence of the Knudsen number on the load
carrying capacity decreases as A increases, since ). is independent of § and «.
On the contrary, if the two walls have a different physical structure the load carry-
ing capacity shows a dependence on both the Knudsen number and the accom-
modation coefficients o, as.

In order to investigate more specifically the effects of the rarefaction parameter
0, and the accommodation coefficients, Fig. 2.7 shows the pressure profiles in the
near-free molecular flow and near-continuum flow limits for different values of
a1 and ap. The picture reveals that, for small d,, if one keeps the accommodation
coefficient of the slider («) fixed and varies the other one (as), the pressure
distribution in the gas film, at fixed bearing number, increases with increasing
g, as it always happens in the continuum region, while at fixed as, the pressure
distribution decreases by increasing «;. Such kind of inverted pressure profiles,
which appear in studying the slider air bearing problem in the free-molecular flow
regime, are triggered by the Couette contribution to the lubrication flow rate.'*
For the validation of the code, the results obtained with the modified Reynolds
equation have been compared with the numerical findings obtained from DSMC
(Direct Simulation Monte Carlo) simulations (Alexander et al. 1994)!> and IP
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Fig. 2.5. Pressure profile for §, = 0.5. The line styles indicate a; = 0.5a2 = 0.8 (solid),
a1 = 0.5a2 = 0.3 (dashed), and a1 = 0.5 a2 = 0.1 (dot dashed). The bearing number A is 10
(top) and 50 (bottom).
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Fig. 2.6. Pressure profile for 6, = 0.5. The line styles indicate a1 = 0.5a2 = 0.8 (solid),
a1 = 0.5 ag = 0.3 (dashed), and a1 = 0.5 a2 = 0.1 (dot dashed). The bearing number A is 200.
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Fig. 2.7. Pressure profiles, from the Reynolds equation, versus X for A = 50. The line styles
indicate a; = 0.1 a2 = 0.8 (dashed), @1 = 0.8 ao = 0.8 (solid), @1 = 0.8 g = 0.1 (dot
dashed). The inverse Knudsen number 6, is 10~3 (top panels) and 10 (bottom panels).

(Information Preservation) method (Jiang et al. 2005)'¢ in the case of Maxwell’s
boundary conditions on two physically identical walls (see Figs. 2.8 and 2.9).
The parameters describing the gas film geometric configuration were fixed at the
following values: D1/D, =2, L/D, = 100.

In Figs. 2.8 and 2.9 two different Reynolds equation solutions have been pre-
sented, obtained using the BGK model and a more refined kinetic model of the
collisional Boltzmann operator, that is the linearized ellipsoidal statistical (ES)
model, which allows the Prandtl number to assume its proper value. Because of
its simplicity compared to the Boltzmann equation, the BGK model is widely used
in the kinetic theory of gases, although one of the best known shortcomings of this
model is that the Prandtl number turns out to be unity. Since the classical value
for a monoatomic gas is known to be Pr = 2/3, one cannot make both viscosity
and thermal conductivity agree with the Chapman—Enskog values for a Maxwell
gas. This circumstance is easily avoided in linearized problems since viscosity
and temperature effects can be decoupled. However, even in the frame of a lin-
earized analysis, one is induced to suspect that the incorrect Prandtl number can
be influent in the transitional regime. Therefore, it appears worthwhile to investi-
gate the slider bearing problem through the generalized Reynolds equation based
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Fig. 2.8. Pressure profile versus X. Comparison between the Reynolds-BGK results (solid line), the
Reynolds-ES results (dashed line) and DSMC data (Alexander et al. 1994) (open circles). The param-
eters are: d, = 0.7, A = 61.6, a = 1 (left); 6o = 0.2, A = 1264, o = 1 (right).

13 . | .

1.25— —

Fig. 2.9. Pressure profile versus X. Comparison between the Reynolds-BGK results (solid line), the
Reynolds-ES results (dashed line), DSMC data (Alexander et al. 1994) (open circles) and the IP data
(Jiang et al. 2005) (open squares). The parameters are: 6, = 0.7, A = 61.6, o = 0.7.

on a model more refined than the BGK one. Figures 2.8 and 2.9 show that the
present Reynolds equation solutions, obtained using the ES and BGK models, are
in good agreement with the DSMC data presented by Alexander et al. (1994) and
the IP results reported by Jiang et al. (2005). It is worth noting that, in Fig. 2.9,
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the results of the IP method given by Jiang et al. (2005) are closer to the Reynolds
equation numerical solutions than the DSMC data obtained previously by Alexan-
der et al. (1994). Furthermore, the solution of the Reynolds equation based on the
ES model slightly underestimates the pressure profiles given by the DSMC and
IP simulations suggesting that in isothermal conditions and at low Mach num-
bers the corrections introduced by a more refined kinetic model of the collisional
Boltzmann operator are extremely small. The load capacity values, corresponding
to the set of parameters listed in Figs. 2.8 and 2.9, are summarized in Table 2.1.
Finally, it is worth stressing that the inverted pressure profiles, showed in Fig. 2.7,
arise irrespective of which of the two kinetic models (BGK or ES) have been con-
sidered to derive the Reynolds equation.

2.9. A Kinetic Approach for the Evaluation of Damping in MEMS

Beyond the lubrication problems, shear-and pressure-driven gas flows are encoun-
tered in several MEMS applications like surface-micromachined inertial sensors,
resonating filter structures for signal processing and micromachined capacitive
accelerometers, where the distance between the capacitor plates is minimized in
order to increase the efficiency of actuation and improve the sensitivity of detec-
tion. The damping, due to the internal friction of the flowing gas, in the small gaps
between these oscillating microstructures, is an important design parameter since
it determines, e.g., the frequency-domain behavior of the sensor or the quality
factor of the vibrating filter structure. At low pressures or in ultra thin films, the

Table 2.1.  Summary of load capacity values.

do 0.7 0.2 0.7

A 61.6 1264 61.6

aq 1. 1. 0.7

[e %>} 1. 1. 0.7

Load capacity

Reynolds (BGK) 0.174 0.347 0.122
Reynolds (ES) 0.167 0.345 0.117
DSMC 0.175 0.357 0.129

(Alexanderet al., 1994)
(from pressure)
DSMC 0.174 0.329 0.132
(Alexanderet al., 1994)
(from force)
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Fig. 2.10. Geometry of a two-dimensional microchannel. The fixed parameters of the apparatus are:
diy = 2.6 um; de = 4.2um; L1 = 15 um; Lo = 3.9 um. The central shuttle-plate, of thickness
Lo, moves with velocity Uy, in the y direction while the external boundaries are fixed.

gas rarefaction effects and the molecular interaction with the surfaces effectively
change the viscosity. In this flow regime, the continuum equations are no longer
valid and the Boltzmann equation must be considered to understand and compute
the rarefied flows related with these devices. In spite of its apparently complex
structure, a real micromechanical accelerometer usually has a highly repetitive
layout whose basic units consist of two or three-dimensional microchannels where
different sets of bounding walls move in the direction perpendicular or parallel to
their surfaces.

Let us consider the two-dimensional microchannel shown in Fig. 2.10 where
the plates parallel to the = direction generate a Poiseuille-like flow, while those
parallel to the y direction induce a Couette-like flux. Since the gaps between the
moving elements and the fixed boundaries are only a few micrometres wide, the
mean free path of the gas molecules is not negligible compared to the gap width
and the gas cannot be treated as a continuous medium. Therefore, the behavior of
a gas as it moves along the tube must be studied through the Boltzmann equation.
Since the various types of motions experienced by the accelerometer compo-
nents are typically at very low Mach number, it can be assumed that the velo-
city distribution of the gas flow only slightly deviates from that occurring at
an equilibrium state. Moreover, if one assumes that the flow field can be de-
scribed quasi-statically, it is convenient to linearize the Boltzmann equation about
a Maxwellian M by setting:

f=M(1+h) (2.63)

where h(X, &) is the small perturbation of the basic equilibrium state, with X being
the coordinate vector and £ the molecular velocity. The above mentioned absolute
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Maxwellian M is given by:

_ Po (E2+&+¢€2)
Mg = @rRTy)2 exp{ - 72]%7}0 } (2.64)

where pg and Tj are the equilibrium density and temperature, respectively, and
R is the gas constant. If one assumes the linearized Bhatnagar, Gross and Krook
(BGK) model for the collision operator (see Eq. (2.15)), which describes the effect
of molecular interactions, the steady state Boltzmann equation reads:

h h —3/2 ’ ,
cm% +cyg—g S E/ {/eczh(f,g},c’)dc’—i—%x/ c;efc2h(:§,gj,c’)dc’

+2¢, / c;eC,Qh(:i:,g,c’)dc'} — W&, §,c)/l (2.65)

where £ is the mean free path and the following non-dimensional velocity variable
has been introduced:

£
V2RT,

In Eq. (2.65) integrations are extended to the whole velocity space. Since the
microchannel walls are mantained at the same constant temperature, the thermal
perturbation, which would have to appear in Eq. (2.65), has been dropped out.

Multiplying Eq. (2.65) by (1/y/7) exp(—c?) and integrating with respect to
c., we obtain the following equation

(2.66)

0
Cy %Q(Z', Y, Cx, Cy) +Cy a@yg($7 Y, Cx, Cy) = _g(xa Y, Cx, Cy)
+p(z,y) + 2505 (2, y) + 2¢yvy (2, y) (2.67)
for the reduced distribution function G(x, y, ¢, ¢,) defined by
+oo 5
G(x,y,ca,0y) = 7r_1/2/ e “h(x,y,c)dec, (2.68)
where the spatial variables have been rescaled as follows
x=z/l; y=79/l

In Eq. (2.67), the macroscopic fields associated to the perturbation are defined as

+oo +oo 5 o
p(x,y):w*/ / e~ (=G (2, y, e, ¢y) degdey (2.69)

+oo +oo
vg(2,y) =7 / / cwe_(ciJrci)g(az, Y, Cz, Cy) degdey (2.70)
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+oo +oo 9 o
vy(z,y) = Wﬁl/ / cyef(cfrcv)g(x,y,cw,cy) degdey, 2.71)

with p(x, y) being the perturbation part of the density of molecules, v, (z,y) and
vy(, y) the  and y components of the bulk velocity of the gas, respectively. This
transformation permits to greatly simplify the numerical solution of the Boltz-
mann equation since it reduces the three-dimensional molecular velocity field to
two-dimensional.

Appropriate boundary conditions on the plates, describing the gas-wall inter-
actions, must be supplied for Eq. (2.67) to be solved. Assuming the diffuse-
specular reflection condition of Maxwell’s type, according to which the reemitted
molecules are partly reflected by the wall in a specular fashion and partly dif-
fused with a Maxwellian distribution described by the wall properties (i.e., its
temperature and velocity) (see Eq. (2.39)), the linearized boundary conditions to
be matched to Eq. (2.67), can be derived inserting Eq. (2.63) in Eq. (2.37) where
the kernel R is given by Eq. (2.39).

The solution of the problem described by Eq. (2.67) can be determined by
pursuing the long-time behavior of the solution of the initial and boundary-value
problem. That is, we consider Eq. (2.67) with the additional 9G/Jt term on the
left-hand side and an initial condition (e.g., G = 0) beyond the boundary condi-
tions of Maxwell’s type. The time-dependent problem can then be solved numer-
ically by a deterministic finite-difference method.

The structure of the simulated gas flow is summarized in Fig. 2.11 where the
vector plot of the velocity field corresponding to a Knudsen number in the transi-
tional flow regime (Kn ~ 0.29) is shown.

In order to complement this global visualization, the contour plot of the x and
y components of the macroscopic gas velocity along the channel are presented in
Figs. 2.12 and 2.13, respectively.

The most apparent features are the v, parabolic profiles in the cross-stream
directions of the longest branches of the channel where a Poiseuille-like flow is
induced and similar parabolic profiles of the y component of the gas velocity in
the stream-wise direction of the transversal section of the channel where a coupled
Poiseuille-Couette flow develops.

In order to model the damping forces occurring as a result of the internal
friction of the flowing gas underneath the plates, the following elements of the
stress tensor have been evaluated:

Lo Po +oo Hoo 2 7(C2+62)
Pm(x,y):g — degdeycze™ TG (x,y, cp,cy)  (2.72)
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Fig. 2.11. Velocity field corresponding to Kn ~ 0.29.

Fig. 2.12. z-component of the bulk velocity field, v, at Kn ~ 0.29.

po | po [T [T 2 —(24e?)
Pyy(z,y) = > + - degdeyc e VG (2, y, ey 0y)  (2.73)
—oco J—0o0

po [T [T —(2+c?)
Pym(x,y):? degdeyczeye™ =T WG (x,y, cq, cy). (2.74)
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Fig. 2.13.  y-component of the bulk velocity field, vy, at Kn ~ 0.29.

Figure 2.14 shows a comparison between our numerical findings and the
experimental data collected on a silicon biaxial accelerometer produced by
STMicroelectronics,'” where quantitatively correct outcomes can be achieved by
analyzing and scaling the results obtained on a single unit like the one depicted in
Fig. 2.10.

Our numerical outputs, obtained assuming two different values for the accom-
modation coefficient of the bounding walls, o = 1 (circles) and o = 0.9 (crosses),
which is the current value assigned to the accommodation coefficient of silicon
surfaces, compare very well with experiments in the transitional flow regime as
well as in the near-free molecular flow limit.

2.10. Kinetic Theory Extension to Dense Fluids

Nanofluidics is a relatively young and interdisciplinary science whose aim is the
study of fluid flows around or within nanosized structures.'®!* The growing num-
ber of applications requires the development of theoretical tools capable of provid-
ing a general description of fluids (liquids and gases) at length scales comparable
with molecular sizes. Such a description cannot be based only on hydrodynamic
equations (HE), since several studies?® have shown that HE do not always give
a correct description of fluid flows in nano-channels. The reasons for HE failure
can be found in the strongly non-local structure of some fundamental fluid proper-
ties (stress tensor, heat flux vector) which appears at the nanoscale and cannot be
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Fig. 2.14. Damping forces F' (expressed in micro-Newton) exerted by the gas on the rotor versus the
pressure p (expressed in bar). Comparison between the experimental data collected by STMicroelec-
tronics (solid line) and our numerical findings for two values of the accommodation coefficient: o = 1
(circles), a = 0.9 (crosses).

easily approximated by local expressions.?' In many situations, the largest devia-
tions from hydrodynamic behavior are observed in the vicinity of solid boundaries,
whereas the fluid bulk can often be accurately described by HE. Therefore, it is
tempting to try extending the validity of HE by developing slip boundary con-
ditions, following the methods of kinetic theory of dilute gases.* However, the
task appears considerably more complex in the case of dense gases or liquids?
and slip coefficients have been often obtained from molecular dynamics (MD)
simulations.”®> Although MD techniques provide an extremely powerful tool in
nanofluidics studies, it is clear that an intermediate level of fluid description is
necessary to bridge the gap between pure MD numerical experiments and hy-
drodynamics. Kinetic theory of dense fluids?* provides a number of theoretical
methods of various sophistication and complexity which may be applied to obtain
a generalized hydrodynamic approach?? in the form of slip boundary conditions
or non-local constitutive relationships.?> The kinetic approach can also be conve-
nient from the numerical point of view, since kinetic equations can be efficiently
solved by particle schemes which are computationally less demanding that MD.%6
The formulation of kinetic equations for dense fluids in which the molecular mean
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free path is of the order of the molecular size, is still an open problem, the main
difficulty being the correct modeling of molecular correlations necessary to obtain
the closure relationships to truncate the BBGKY hierarchy.?* The phenomenolog-
ical theory proposed by Enskog?’ to describe a dense hard sphere fluid has been
later improved,?®?® however the generalization has been obtained at the expense
of tractability of the resulting equation. In this short note we describe a simple
extension of Enskog kinetic equation which describes a fluid whose molecules
interact through Sutherland’s potential which combines hard sphere interaction
with a soft attractive potential tail. As shown in Refs. 30 and 31, the adoption of
simplifying assumptions on pair correlations leads to a closed kinetic equation for
the one-particle distribution function. The resulting equation is often referred to
as Enskog-Vlasov (EV) equation since it differs from the original Enskog equa-
tion because of an additional term which describes a self-consistent force field
generated by the attractive potential tail. Kinetic equations of the EV type have
been applied in several studies of equilibrium and non-equilibrium structure of
non-uniform dense fluids.3>>>* In most of available studies, EV equation is used
to obtain non-uniform equilibrium density profiles and/or hydrodynamic equa-
tions. However, Enskog-like kinetic equations can be solved numerically by parti-
cle schemes®®33 without introducing additional assumptions beside those intrinsic
in the equation itself. Next sections describe and discuss the results of the appli-
cation of EV equation to flows in nanochannels of simple geometry. Furthermore,
it is shown that the kinetic model can be extended to incorporate the interaction of
the fluid with solid walls within the same formalism.

2.10.1. The Mathematical Model

Following Refs. 30 and 31, we consider a fluid composed by spherical and identi-
cal molecules of mass m, interacting by Sutherland potential

+oo p<o1

o) =1 _m —yD : (2.75)
—(15( ) (J%) p =01

which results from the superposition of a hard sphere potential and a soft potential
tail depending on the distance p between the centers of two interacting molecules.
The hard sphere diameter is 01, whereas 5(11) and (1) are two positive constants
which are related to the value of the right limit of ¢(11)(p) at p = o and to the
range of the soft interaction, respectively. It is possible to obtain the following
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exact kinetic equation for the one-particle distribution function

0 - d (11)
S reoVahi=-Veo| [ R e ol iz de| +
i p>01 dp

0-%/ |:f2($a€*a T+ J,;:véﬂt) - fQ(m,ga T — Ukagl‘t)} (€T o I;:)+ d£1 d2]23
(2.76)

In Eq. (2.76) f1(x, &|t) denotes the one-particle distribution function of molecular
velocity £ at spatial location x at time ¢, whereas fo(x, &, 1, &1|t) is the pair
distribution function. The first integral at r.h.s of Eq. (2.76) represents the soft
tail contribution to the rate of change of fi, being p = |z — x| and k the
unit vector & — x1/p. The contribution of hard collisions is given by the second
integral where £* and &7 are the post-collisional velocity vectors of two colliding
molecules, &, is the relative velocity &, — &. The integral over E is limited to the
hemisphere where the condition &, o k > 0 holds.

Equation (2.76) is exact but of little use, since it also involves the pair distribu-
tion function f2(x, &, @1, €1]t). A closed equation for the one-particle distribution
function is obtained by the following two approximations:

(a) In the hard sphere collision integral in Eq. (2.76), it is assumed that

fo(x, & @ — 01’%7§1|t) = X(H)(fﬂvw - 01’A€| {n}) fi(z, &lt)
fi(@ — o1k, &1]t) 2.77)

being x'V)(z, & — o1k|{n}) the contact value of the pair correlation
function in a hard sphere fluid.

(b) Pair correlations are completely neglected in the soft potential contribu-
tion in Eq. (2.76). Accordingly, it is assumed that

fa(x, & 21, 61t) = fi(z, &[t) fr(z1, &1]t) (2.78)

Taking into account Eqs. (2.77) and (2.78) and dropping the subscript, Eq. (2.76)
takes the form

of FY (z)t)

o tEoVaf+ o Vef =CUI(f. ) (279)
Aoz —x
F (g]t) = / — — —_n(xy|t) dx (2.80)
||z1—z||>01 dp le - iL'H ! !
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() =0t [ (X @+ orb| () fla + ork €100 (2,7 10)-

N (@, @ — o1k] {n})f (@ — o, €110)f (@, €[1) } (& o k)" déad?k.
(2.81)

Equation (2.79), also named Enskog-Vlasov kinetic equation, describes a hard
sphere fluid under the action of the self-consistent force field (see Eq. (2.80))
generated by the soft attractive tail. In the Standard Enskog Theory (SET)
X' (z, x — o1k| {n}) is approximated by using the value of the pair correlation
function in a fluid in uniform equilibrium with density n(=£2%|¢). An approxi-
mate, but accurate expression for ysgr(n) can be obtained from the equation of

state of the hard sphere fluid proposed by Carnahan and Starling,? as

1 [ phs 1 2—n 270 nosn
XSET(”) nb (TLF&T ) 9 (1 — 7’])37 3 n 6
(2.82)

SET theoretical properties have been considerably improved in Revised Enskog
Theory (RET)? where x (1) is the contact value of the pair correlation function in
a fluid in non-uniform equilibrium. The use of RET formulation is more difficult
since YY) (,  — o1 k| {n}) is a functional of the density field n(z|t). Although
an expression for y(x, x — ok| {n}) can be obtained as a formal cluster expansion
in the density, in practical applications simpler approximations are recommended.
Following Ref. 36, in the present work the pair correlation function at contact has

been computed as

- k
(@, z — o1k|{n}) = xser[(z — 03] (2.83)
3
n(x|t) = o /n(w1|t)w(w,w1)d9:1 (2.84)
. 1 ||w1 — 3’5” < 0q
w(x,x1) = {O |z — 2] > o1 (2.85)

According to the three expressions above, a functional form for (1) is obtained
from the simpler x sgr by replacing the actual value of the density at the contact
point of two colliding spheres with the value of the density field averaged over a
spherical volume of radius o;. Similar approximations are used in density func-
tional theories of non-uniform fluids and considerably improve the results of SET.
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2.10.2. Fluid-Wall Interaction and Boundary Conditions

When dealing with problems in which the fluid interacts with solid walls, it is nec-
essary to formulate appropriate boundary conditions for Eq. (2.79). The simplest
approach to fluid-wall interaction modeling is obtained by replacing the wall with
a smooth and impenetrable surface which acts on f(x, £|t) through the scattering
kernel described in Sec. 2.5. Although the adoption of boundary conditions in
the form given by Eq. (2.39) is possible in modeling dense fluid flows, it is worth
stressing that their simplest time independent formulation is based on the assump-
tion that the time scale of fluid-wall interaction is much shorter than the time scale
of fluid-fluid interaction. Such an assumption is certainly justified in dilute gas
dynamics, but it represents an oversimplification in studying dense fluids flows
which require a more detailed modeling of fluid-wall interaction.>* As a com-
promise between the completely phenomenological approach outlined above and
a more realistic (but computationally expensive) approach based on MD simula-
tions,? a kinetic model of fluid wall interaction can be formulated. For simplicity,
we consider the one-dimensional flow of a liquid in a channel bounded by two in-
finite planar parallel walls. The walls separation is denoted by 2L, and the motion
of the fluid is observed in a Cartesian reference frame whose x and y axis are par-
allel to the walls, whereas the coordinate z spans the gap between the walls. The
origin O of the reference frame is located at distance L, from the walls.

It is assumed that the walls are composed by spherical molecules having a di-
ameter o9, mass mo and number density no(z) given by the following expression:

| nw |z| > L,
ng(z) = { 0 2 < L. (2.86)

n,, being the constant value of the wall density. Although no explicit assumption
is made about the interaction among wall molecules, it is assumed that each wall
is in a state of equilibrium described by the velocity distribution functions

N _ (6—up)? _
Fulz,€) = BRI SPAT 2RTL Peke (2.87)
w\ % = Y (6+ur)? .
T P |~ SRy 2> L,

In the above expressions, 77, and T denote the temperature of the left and right
wall, respectively. The walls are allowed to have velocities uy, and u g, parallel to
the wall themselves. Accordingly, it is assumed that u;, = —ur = U, &, being
& a unit vector parallel to the x axis. The gas constant R is defined as kp/ma,
where kg is the Boltzmann constant.

In complete analogy with the treatment of fluid molecules interaction, it is
assumed that wall molecules interact with fluid molecules through the following
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Sutherland potential

—+00 p < 012
p12(p) = —(2) ( ) )—7(12) (2.88)

—¢ p =012

where the hard sphere radius is now defined as o152 = (01 4 02)/2. The micro-
scopic description of the fluid motion can be strongly simplified if one assumes
that the superposition of long range tails of the interaction potential (') (p) only
produces an average steady force field. Fluctuations due to the random motion of
wall and fluid molecules are taken into account only in the short range hard sphere
potential, as described below. It can be easily shown that the force field i (2)
generated by the soft tails of wall molecules is given by the following expression:

12 ! !/
FO2(2) = 251 lﬂ; ) / (2 = 2ma()
|z—2"|>012

|Z _ Z/|fy<12)

—|—/ (2 — z)ng(z’)dz'l . (2.89)
|z—2|<o12

The short range interaction of fluid and wall molecules can be described by a term
having the same structure of the collision integral C!D (£, f) :

CU (fo, f) = 0%2/{X(12)(zaz+Ulez‘{TLQ})fw(Z+0.12kZ7€T)f(Z7£*|t)

X" (2,2 = o1ak=[{na}) fu(z — 012kz,€1\t)f(z75|t)} :
(& o k)tded®k  (2.90)
The collision term in Eq. (2.90) is a linear functional of f since f,, is given and it
is not modified by collisions. The pair correlation function x('?) can be approx-
imated by the expression given in Eq. (2.82) in which n is set equal to the wall
number density n.,,.
The final form of the kinetic equation for f is obtained by adding the field
i (z) and the fluid-wall collision term to Eq. (2.79)
of of | F.(z|t) 0f
Ly, 2L z ZL — o c2(f. 2.91
F.(2|t) = F3?(2) + FY (2]t) (2.92)
o7 / (2" —2)m (')
|z—2"|>01

|Z _ Z/|'y(11)

FOY(z)t) = 2mg

+/ (2" = 2)n1(2']t) dz'] . (2.93)
[z—2'|<o1
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2.11. Numerical Results

Kinetic equations in the form described above can be efficiently solved numeri-
cally by the particles schemes described in Refs. 26 and 33. The numerical method
has been applied to study a simple Couette flow as a model problem and obtain the
dependence of its properties from the relevant flow parameters. In a first series of
computations, the soft tail of the interaction potential ¢(*!) has been suppressed
and Maxwell model has been adopted to describe fluid-wall interactions. A num-
ber of solutions have been obtained varying the wall separation 2L, and the aver-
aged fluid density ng = i ff];z n(z) dz. The nominal shear rate 3 = U,,/L,
has been fixed to a small value to obtain an almost isothermal flow. A parallel
series of MD simulations have also been performed to obtain the “exact” behavior
of a dense hard sphere fluid and assess the accuracy of kinetic theory predictions
in the simplest situation. The same boundary conditions given in Eq. (2.39) have
been used in MD simulations in which the motion of 10* hard spheres has been
computed from the exact collision dynamics. Figure 2.15 shows normalized den-
sity profiles in a hard sphere liquid for two different values of the average reduced
density ny = Wafno /6. The channel width is 1107, but the region accessible to
the centers of the spherical molecules is only 1007 wide along z.

It is interesting to observe that density is not constant since collisions push
molecules toward the walls. Density oscillations indicate partial ordering of
molecular layers which becomes more evident for higher values of ng. The com-
parison of EV results with companion MD simulations shows that in the density
range considered here, the agreement is rather good. Velocity profiles are shown
in Fig. 2.16. In spite of the strong density variations in the vicinity of the walls,
velocity profiles exhibit a more regular shape and show little deviation from an
overall linear behavior which would be found in a hydrodynamic treatment of the
problem. However, the average slope of u,(z) profiles is different from the nom-
inal slope 3 since the fluid velocity at locations (L, — o1/2) is not equal to the
velocity of the walls.

The deviation from hydrodynamic behavior of Couette flow in nanosized
channels is best appreciated by considering the behavior of the P,, component
of the stress tensor which, both in the hydrodynamic and kinetic treatment, is
constant across the channel and depends only on external flow parameters. Fig-
ure 2.17 shows the numerical value of P,, obtained by solving EV equation for
different Couette flows in which the nominal shear rate 5 and average density ng
were kept fixed while varying the channel width 2L ,. The results obtained from
kinetic theory have been compared with the values of P, . obtained from the vis-
cosity of a dense hard sphere gas p(ng, T,) (see Ref. 24) using both the nominal
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Fig. 2.15. Density profiles in the Couette flow of a dense hard sphere gas between rigid walls with
full accommodation [av = 1, in Eq. (2.39)]. Solid line: EV density profile no = 0.2, 8 = Uw/L, =
0.0597; dashed line: EV density profile no = 0.3, 8 = Uw/L, = 0.1262; circles: MD density
profileno = 0.2, 8 = Uw/L. = 0.0597; diamonds: MD density profile no = 0.3, 8 = Uw/L, =
0.1262.

shear rate 3 and an effective value of the shear rate, 5. The latter has been ob-
tained by fitting the EV velocity profile with a straight line, hence it takes into
account velocity slip at the walls.

The results clearly show that hydrodynamic predictions based on nominal
shear rate are not accurate, on the other hand including slip effects through the
effective shear rate considerably reduces the distance between kinetic theory and
hydrodynamic values of P,,.

A more realistic description of fluid-wall interaction can be obtained by re-
placing the rigid wall, which scatters molecules according to Eq. (2.39), with the
kinetic model which includes the collision term C(*2)(f,,, f). Although a com-
plete account of the model properties cannot be given here, it is worth mentioning
that numerical experiments show that the scattering patterns of molecules from
a ”’solid” surface described by Eq. (2.90) compare well with experimental data*
which exhibit a rather marked deviation from Maxwell’s model. Moreover, the
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Fig. 2.16. Velocity profiles in the Couette flow of a dense hard sphere gas between rigid walls
with full accommodation [« = 1, in Eq. (2.39)]. Solid line: EV velocity profile ng = 0.2,
B8 = Uw/L, = 0.0597; dashed line: EV velocity profile nop = 0.3, 8 = Uw/L, = 0.1262;
circles: MD velocity profile ng = 0.2, 8 = Uw/L, = 0.0597; diamonds: MD velocity profile
no = 0.3, 8 = Uw/L, = 0.1262; dotted lines: hydrodynamic prediction with nominal shear rate.

model predicts different accommodation coefficients for energy and momentum
as well as the correct behavior of the energy accommodation coefficient when the
mass ratio ms/m is changed. Figure 2.18 shows the results of a Couette flow
simulation in a hard sphere liquid (¢(*') = 0) having an average reduced density
1o equal to 0.3 and flowing between two walls described by Eq. (2.90). The wall
separation is 1207, the wall velocities are +0.21/RT,, and the mass ratio m- /my
is set equal to 4.875. The finite extent of fluid-wall interaction causes the fluid
to “feel” walls when molecule centers are at distance 015 from the nominal wall
“surface”. However, the walls are no longer impenetrable and the liquid confine-
ment observed in Fig. 2.18(a) is a result of the collisions with wall molecules. An
adsorbed layer of liquid molecules can be clearly observed in the regions where
the density falls rapidly to zero in the vicinity of the walls and the velocity profile
suffers an abrupt deviation from the almost linear behavior shown in liquid bulk.
The velocity slip effect is stronger than in the simulations described above, indi-
cating that the effective tangential momentum accommodation coefficient is not
unity.
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Fig. 2.17. Py versus channel width in the Couette flow of a dense hard sphere gas between rigid
walls with full accommodation [« = 1, in Eq. (2.39)]. Squares: EV prediction, no = 0.2, § =
0.0597; circles: hydrodynamics predictions with effective shear rate B, no = 0.2, 8 = 0.0597; solid
line: hydrodynamics predictions with nominal shear rate 3, no = 0.2, 8 = 0.0597; filled squares:
EV prediction, 9 = 0.25, 8 = 0.088; filled circles: hydrodynamics predictions with effective shear
rate 3, o = 0.25, 3 = 0.088; dashed line: hydrodynamics predictions with nominal shear rate /3,
no = 0.25, 8 = 0.088.
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Chapter 3

Applying the Direct Simulation Monte Carlo (DSMC) Method to
Gas-Filled MEMS Devices
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The Direct Simulation Monte Carlo (DSMC) method is presented as a tool to
investigate gas force and heat transfer in microscale geometries. The princi-
ples, characteristics, and convergence behavior of DSMC are examined. The
ability and accuracy of DSMC for near-equilibrium and strongly nonequilib-
rium conditions are demonstrated by comparison with analytical solutions of the
Boltzmann equation from Chapman—Enskog theory and the Moment—Hierarchy
method. Solutions in the noncontinuum hydrodynamic regime address the issue
of continuum breakdown. Finally, real-world microsystem applications are pre-
sented where DSMC is used either to simulate the flow field directly or to provide
more accurate boundary conditions for continuum solvers.
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3.1. Introduction

As Micro-Electro-Mechanical-System (MEMS) technology matures and advances
towards further miniaturization and more sophisticated designs, the need for an
accurate and reliable description of fluid mechanics and heat transfer at the mi-
croscale increases.!™

It is well known that, in principle, the conservation equations of classical
mechanics are valid for all flow regimes but do not form a closed set of equa-
tions: their closure depends on constitutive relations. The Navier—Stokes equa-
tions achieve closure by using Newton’s and Fourier’s laws* to relate shear stress,
heat flux, and mass diffusion to velocity, temperature, and density gradients. Thus,
their applicability is limited to the continuum hydrodynamic regime, where these
constitutive relations are valid. The addition of velocity-slip and temperature-
jump boundary conditions extends their applicability to cases where noncontin-
uum effects are limited to thin layers adjacent to solid boundaries. Typically, the
velocity-slip and temperature-jump boundary conditions break down before the
constitutive relationships become invalid.?

Many MEMS devices operate outside this continuum hydrodynamic regime.
Large gradients and large surface-to-volume ratios create significant departures
from equilibrium even at ambient conditions. Departure from equilibrium can be
achieved in two ways: through rarefaction effects (molecules colliding with solid
boundaries more frequently than with each other) and through gradients in flow
properties.

One way of describing the noncontinuum regime is to consider two types of
Knudsen numbers: a systemm Knudsen number, defined as the ratio of the mean
free path to a characteristic geometric length scale, and a local Knudsen number,
defined as the ratio of the mean free path to a local hydrodynamic length scale
determined from the heat flux or shear stress. If both types of Knudsen numbers
are small, then the flow is both the system Knudsen number is not small, then

1,2
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the flow is not hydrodynamic, with noncontinuum effects produced by molecule
collisions with solid surfaces. On the other hand, if the system Knudsen number
is small but the local Knudsen number is finite, then the flow is hydrodynamic,
with noncontinuum effects produced by flow gradients.

The exact Knudsen number for which the continuum approach ceases to be
reliable depends on the particular application and the desired accuracy. For a
Knudsen number of 0.01, deviations become noticeable, while the error of the
continuum approach becomes significant when the Knudsen number exceeds 0.1.
In this case, the Navier—Stokes equations are superseded by the Boltzmann equa-
tion,> which is the fundamental mathematical model for gases at the molecular
level.

The Boltzmann equation (see Chapter 2) describes the rate of change of the
molecular velocity distribution function of a dilute gas under the assumption of
molecular chaos:

nf)  nf)

a % Tor

0 oo 4
+E ((;ch) :/m/o n?(f*ff — ffi)e dQdeq, (3.1)

where ¢ is time, r is the position in physical space, c is the molecular velocity,
F is the external force per unit mass (here, independent of velocity), n is the
number density, the distribution functions f and f* are evaluated at the molecule’s
pre-collision and post-collision velocities ¢ and c*, and the distribution functions
f1 and f{ are evaluated at the collision partner’s pre-collision and post-collision
velocities ¢q and cj.

In physical terms, the left side of the equation describes changes to the veloc-
ity distribution function from molecular transport while the right side describes
changes from molecular collisions.

Despite the physical simplicity of the Boltzmann equation, analytical closed-
form solutions are extremely rare and exist only for simplified geometries and
molecular interactions (see the examples treated in Chapter 2). The best known
analytical solution is the Chapman—Enskog solution® which applies only in the
hydrodynamic near-equilibrium regime, i.e., only when the velocity distribution
function differs from equilibrium by a small perturbation.

The Boltzmann equation is generally not tractable for continuous-variable
techniques, such as finite-element or finite-volume.”® The application of CFD-
type methods to obtain solutions to the Boltzmann equations is constrained by the
need to discretize the velocity distribution function in phase space, which, even for
a single-species monatomic gas, is seven-dimensional and of infinite extent. The
problem is even more acute for polyatomic molecules, for which the Boltzmann
equation cannot be formulated as rigorously as for monatomic gases.””’
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The advent of digital computers in the 1960s led to a new type of method
that provides a microscopic, rather than macroscopic, simulation of the flow. In
1963, Bird® proposed a method for simulating nonequilibrium gas behavior based
on kinetic theory that calculates molecular collisions using stochastic procedures
rather than the deterministic procedures used in Molecular Dynamics. This im-
proved the computational efficiency greatly compared to other Monte Carlo and
“particle” methods. As a result, Bird’s Direct Simulation Monte Carlo (DSMC)
method is used almost universally in rarefied gas dynamics and whenever mean-
free-path phenomena are of interest. DSMC has been applied to an impressive
array of problems ranging from hypersonic to subsonic flows and from chemical
and physical vapor deposition (CVD/PVD) to plasma flows.!%!!

In this chapter, we will review the DSMC method, examine its accuracy, and
assess its convergence characteristics. Finally, we will apply DSMC to real-world
MEMS problems.

3.2. Basic Method

A detailed exposition of the DSMC algorithm can be found in Bird’s mono-
graphs'®!! and in the references within. Herein, we will review some of the most
important points in the DSMC algorithm.

DSMC uses a molecule-based, stochastic algorithm (see Fig. 3.1) to approxi-
mate the continuous molecular velocity distribution function with a discrete num-
ber of computational molecules, or “simulators”.!" It has been theoretically
shown!? that the DSMC algorithm provides an exact solution to the Boltzmann
equation in the limit of infinite simulators and vanishing discretization errors (time
step and cell size). The simplicity of the DSMC algorithm is one of its most attrac-
tive features. DSMC uses computational molecules that move, reflect from walls,
and collide with each other to simulate the noncontinuum behavior of a dilute gas
under the assumption of molecular chaos. Each computational molecule typically
represents a large number of real molecules. The basic assumption of DSMC is
that the molecular motion and collision phase can be decoupled, which is appro-
priate when the time step is much smaller than the mean collision time. Thus, the
molecular motion and collisions that take place simultaneously are broken into
two cyclically repeated parts. This separation reflects the processes described by
the left and right sides of the Boltzmann equation (convective and collision part),
respectively. It is noted that the Boltzmann equation, when originally proposed
by Boltzmann, was based on physical arguments similar to those used to describe
DSMC.
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Fig. 3.1. DSMC algorithm schematic diagram: left, move phase; right, collide phase.

During a time step, each molecule moves ballistically at its velocity. The
time step is selected so that it is smaller than the mean time between collisions.
Molecules that cross a solid boundary during the move phase are reflected back
into the computational domain. These reflections can be specular, diffuse at the
wall temperature, diffuse without energy change, or a linear combination of these
(in a probabilistic sense). More complicated reflection models are also avail-
able.s’”’13

Between moves, pairs of molecules within each cell are randomly selected
to collide at the appropriate rate. The stochastic collisions of computational
molecules reproduce the statistics of collisions of real molecules. In the estab-
lished DSMC algorithm,!" collision candidates are selected from anywhere within
a computational cell. However, refinements of the collision algorithm have been
implemented where neighboring molecules are preferentially selected for colli-
sion.'*!5 Collision dynamics are treated by molecular collision models that pro-
vide a compromise between physical realism and computational efficiency. The
most popular models are the variable-soft-sphere (VSS) model of Koura and Mat-
sumoto' "1 and the variable-hard-sphere (VHS) model of Bird."" These models
represent the hard-sphere interaction exactly and provide good approximations
to inverse-power-law (IPL) interactions, including the Maxwell interaction. Al-
though more complicated models can be devised, these simple models are pre-
ferred since the most important feature of the model is the variation of the cross
section with relative speed. Other inputs, such as the scattering angle, have a
relatively smaller effect on observable gas properties.

The computational mesh in DSMC serves two functions. First, the compu-
tational mesh enables identification of pairs of molecules as possible collision
partners. Second, it provides a means for accumulating statistical information
about the flow, (e.g., number density, velocity, temperature, shear stress, heat flux,
and other moments of the velocity distribution function). The cell size is selected
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as a fraction of the local mean free path. Thus, any collision pair selected from
within it satisfies the condition of geometric proximity. As in continuum meth-
ods, adaptive-grid schemes have been used in DSMC to allow the grid to adapt to
changes in the local density and temperature.!”-!

Moments of the velocity distribution function are sampled within each mesh
cell over one or more time steps to provide macroscopic quantities. Sampling in
the standard DSMC algorithm takes place after collisions are performed. How-
ever, sampling can be done either before collisions or both before and after colli-
sions. If the flow is statistically steady, long-time averages can be used to reduce
statistical uncertainty (the ergodic hypothesis).

As a numerical technique, DSMC is an explicit time-marching method that
therefore can simulate unsteady flows.'%?3 Steady-state solutions are obtained as
asymptotic limits of unsteady solutions.

Some of the advantages of DSMC, not shared by other methods that predict
nonequilibrium noncontinuum flows, are its simplicity and lack of numerical in-
stabilities. Complicated physical effects, such as chemical reactions and radiation,
can be added to the molecular model without any changes to the algorithm or its
stability as a numerical technique.?*

The advantages of DSMC come at a cost: DSMC is computationally intense
like most Monte Carlo methods. Therefore, its successful application to real prob-
lems depends heavily on its parallel performance. Monte Carlo methods usually
have good parallel performance. This is because the workload depends mainly
on the simulators within a cell: there is relatively less need to communicate in-
formation between cells. DSMC codes have demonstrated near-linear scaling up
to several thousand processors. With the advent of massively parallel computers,
problems considered impossible only a few years ago, such as transient three-
dimensional simulations, are currently within reach.

Figure 3.2 presents the performance of the DSMC code Icarus® on a 3-Tflop
9000-processor platform. All physical and numerical parameters are fixed except
for the number of simulators per cell, which is adjusted to keep the number of
simulators per processor constant. The number of computational cells is kept the
same, which increases the communication load as the number of processors is
increased. Thus, this constitutes a worst-case scenario for a scaling assessment.
Here, the performance is defined as the number of time steps per hour normalized
by the 1000-processor result. The performance is reduced by only 15% as the
number of processors is increased by 800%. This improvement is typical of what
can be expected for DSMC with parallel processing.
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Fig. 3.2. Parallel performance of a DSMC simulation: good scaling is observed.

3.2.1. Statistical Error

The ability of DSMC to deal with complicated physical and chemical phenomena
in gases”* stems from using a stochastic scheme to represent the distribution func-
tion instead of solving the Boltzmann equation directly. Due to this stochastic
representation, moments of the distribution, which provide macroscopic quanti-
ties, are recovered via sampling. From a numerical standpoint, this means that
additional computational work must be performed to recover the desired quanti-
ties from a flow that has reached steady state (considered “converged” in some
simulation methods). In fact, it is common for DSMC simulations to consume the
majority of their computational time after the flow reaches steady state. The dif-
ficulty associated with distinguishing a quantity from background noise increases
if its magnitude is small compared to the background, a common occurrence in
MEMS flows. In these systems, mean flow speeds are often more than two orders
of magnitude smaller than the thermal speeds of the molecules themselves.

Bird observes that statistical fluctuations decrease with the inverse square root
of the sample size and thus can be reduced to any desired level by continuing the
simulation (time averaging) or by repeating it with different initial random seeds
(ensemble averaging).!! Several authors?®-3! offer expressions that relate statisti-
cal error in DSMC to the square root of the sample size. Garcia®? points out that
DSMC fluctuations have the same characteristics as real fluctuations. This implies
that the statistical noise in a flow with a one-to-one representation of simulators to
real molecules is the real physical noise, which is something that is missing from
the Boltzmann equation.
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3.2.2. Discretization Error

Besides the number of samples, which controls the statistical error, three other
parameters control the numerical accuracy of a DSMC simulation: the number of
simulators per cell, N.; the time step, At; and the cell size, Az. This deterministic
error (hereafter referred to as discretization error) has recently been the target of
extensive investigation. A review of the most important findings is given herein.

To determine the convergence behavior of a numerical technique, a conver-
gence functional is needed that is sensitive to small changes of the velocity dis-
tribution function and for which a theoretical prediction exists. Rader et al.3
indicate that radically different convergence behavior is obtained if different func-
tionals are used. In particular, they point out that temperature is a very insensitive
convergence functional.

3.2.3. Number of Simulators per Cell

In the limit of vanishing time step and cell size and for infinite sample size, the
remaining discretization error for any functional is inversely proportional to the
number of simulators per cell, N...>-33 For the ratio of the DSMC thermal con-
ductivity, Kpsmc, to the actual value, K, the discretization error from approx-
imating the velocity distribution function with a finite number of simulators has
the form

: DSMC A
NC—NEDI,HAt—»O K L+ N’ (3-2)
Rader et al.3 calculated the A parameter to be negative (—0.083), which has an

important and counter-intuitive effect on convergence since it actually reduces the
error for small number of simulators.

3.2.4. Cell Size

Alexander et al.** apply Green—Kubo theory to derive expressions for the cell-
size discretization error of hard-sphere gas transport coefficients. Their expression
for the thermal-conductivity ratio, in the limit of vanishing time step and infinite
number of simulators per cell, is
K 32 -
DSMC ( AI)Q,

li Z2DSMC .
Neooohi—0 K 2257 (3-3)

where AZ = Ax/), us is a dimensionless cell size, A\, s = (ﬂwdfefno)_
is the hard-sphere molecular mean free path, d,.r is the molecular diameter, and
n is the number density. This spatial discretization error arises from selecting

1
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collision partners from anywhere within a cell of finite size Az. To reduce this
error, modifications to DSMC have been proposed that preferentially select nearby
molecules as collision partners. These “nearest neighbor collision schemes” have
been demonstrated to reduce this error at a small computational cost'*!> when
collision-partner selection is performed either by the use of sub-cells within a
cell, from which collision partners are selected, or by sorting molecules in an
one-dimensional array based on their geometrical proximity. It should be noted,
however, that no formal convergence study of these “nearest neighbor” schemes
has yet been performed.

3.2.5. Time Step

Hadjiconstantinou® applies Green—Kubo theory to derive expressions for the
time-step discretization error of hard-sphere gas transport coefficients. His ex-
pression for the thermal-conductivity ratio, in the limit of vanishing cell size and
infinite simulators per cell, is

K 64 -

li — 4
Noooo At—0 K 6757 G4

where At = At /to is a dimensionless time step, t, = A\, /¢y, is the mean collision
time, ¢,, = \/2kgT,/m is the most probable molecular speed at temperature T’
for a molecule of mass m, and kg is the Boltzmann constant. This error arises
from the fact that DSMC performs collisions at discrete times between the move
operations, whereas collisions actually occur continually throughout time. Garcia
and Wagner®® provide DSMC simulations in which, for all functionals and in all
cases, both transient and steady-state DSMC calculations agree with Green—Kubo
theory to within the stated computational uncertainties.

Modifications to the standard DSMC procedure have been suggested to reduce
time-step discretization errors. Rebrov and Skovorodko®’ propose that sampling
be performed twice per time step: before and after the collision operation, i.e.,
move-sample-collide-sample. This minor adjustment to standard DSMC greatly
improves cell-based averages for higher moments of the distribution function,
(e.g., heat and momentum fluxes). Ohwada®® proposes that true second-order
convergence is achieved in unbounded problems for all functionals if, for each
time step At, advection takes place for At/2, collision for At, advection for an
additional At/2, followed by sampling.
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3.2.6. Comprehensive Study of Discretization Error

The apparent convergence rate for one discretization parameter can be influenced
by the value of the other parameters. Thus, the theoretical convergence rate for
one parameter is achieved only in the limit where contributions from the other two
discretization parameters vanish.

Rader et al.®3 studied the convergence behavior of DSMC for the Fourier
problem with a hard-sphere argon-like gas. The calculations are performed for
many combinations of cell size, time step, and number of simulators per cell. Fig-
ure 3.3 shows the results of their finite-simulator-number calculations: the left plot
shows the dependence of the thermal-conductivity ratio on At for Az = 0.416 at
7 values of N, and the right plot shows the dependence on AZ for At = 0.492. A
least-squares fitting procedure using a Taylor-series expansion in the error param-
eters is applied to obtain a best-fit expression for the thermal-conductivity ratio,
shown with solid lines in Fig. 3.3.

Kuya . . 0.083 o1
K“ — 1.001 + 0.0287AL +0.0405AF% 4+ — N T AR AL ). (35)

Fig. 3.3.  Convergence of DSMC: (a) effect of time step; (b) effect of cell size.

The first three terms in the above expression indicate the following. First,
DSMC reproduces the actual value of the thermal conductivity to within 0.1%.
Second, the coefficients of AZ? and At? are in good agreement with the Green—
Kubo expressions in Egs. (3.3) and (3.4).
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According to Rader et al. 33 the function F contains another 12 terms that are
needed to adequately correlate the discretization error, besides the three lowest-
order, “pure” terms shown above. The function F' is a polynomial of higher-order
terms in Af, A%, and 1 /N.. The need for so many higher-order terms reveals the
complexity of the convergence behavior as the discretization parameters approach
O(1). The form of this equation was arrived at by trial and error: no physical
explanation is offered for the individual terms. Moreover, the particular form of
F is expected to be problem-dependent.

When smaller numbers of simulators are used, additional terms are needed in
the correlation. For example, first-order convergence in 1/N,. is typically obtained
over the investigated time-step range only when N, > 30 or with fewer simulators
only when smaller time steps are used. The appearance of a term with the form
AZ/N,. in F indicates® that a first-order convergence rate in A7 is observed in
the limit of vanishing time step if too few simulators are used.

3.3. Comparison to Chapman-Enskog Theory

Chapman—Enskog (CE) theory® provides a method for obtaining the normal solu-
tion of the Boltzmann equation in terms of an expansion in the gradients of hydro-
dynamic flow properties or, equivalently, powers of the heat-flux and shear-stress
Knudsen numbers. One of the most celebrated properties of CE theory is its ability
to predict the transport properties of gases under conditions of near-equilibrium.
In the following sections, we will examine the ability of DSMC to reproduce the
CE solution of the Boltzmann equation in the near-equilibrium limit. This ability
is not only of academic interest: many MEMS devices operate in this regime. The
approach followed in this section is discussed in greater detail by Gallis et al.>**

3.3.1. Theoretical Results

CE theory describes the state of a nonequilibrium gas in the hydrodynamic limit
for a small heat-flux vector and a small shear-stress tensor, i.e., the Navier—
Stokes equations). First-order CE theory generates a closed-form expression for
the distribution function in terms of macroscopic hydrodynamic fields and their
gradients:

f=rO0+e® 4wy (3.6)
1O = nexp[-)/(n*/c},), 3.7

o) = —(8/5)A[d - q, (3.8)
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M = _2B[F(Eo0E: 7). (3.9)

Here, f () is the equilibrium (Maxwellian) distribution, &) and T are the
first-order nonequilibrium perturbations from this distribution, ¢,,, = \/2kgT/m
is the most probable molecular thermal speed for the equilibrium distribution, m is
the molecular mass, n is the number density, 7" is the temperature, kp is the Boltz-
mann constant, ¢ = u — U is the thermal velocity of a molecule, u = (u, v, w)
is the velocity of a molecule, U = (U, V,W) = (u) is the average value of u,
¢ = c/c, is the normalized molecular thermal velocity, € o € = &€ — (¢2/3)L is
a traceless dyadic, @ = q/(mnc?,) and 7 = 7/ (mnc ) are the nondimensional
heat-flux vector and shear-stress tensor, and A and B are expansions in the Sonine
polynomials SJ(-k)

Al =3 (an/a) S5 (@), Bl = 30w /b)S55, V@], 310)
k=1 k=1
k . ;
&) — VRl N
Sl *; (G +i)il(k — i)l G-

The heat-flux vector q, the shear-stress tensor 7, the thermal conductivity K,
and the viscosity p obey the following relations:

2
q=—-KVT, 7 = u{(VU + vUT) - g(v -UI, (3.12)

K = —(5/4)kpc? a1, p = (1/2)mc? by, (3.13)

EEE ), o

Here, Ko /K7 and 1o/ are the CE infinite-to-first-approximation ratios of
the thermal conductivity and the viscosity, respectively. The a; and the by, are the
heat-flux and shear-stress Sonine-polynomial coefficients, respectively. Ratios of
these coefficients can be expressed in terms of moments of the velocity distribu-
tion function, where, for convenience, the nonzero components of the heat-flux
vector and the shear-stress tensor are taken to be g, and 7, respectively:*°

k , 1 ~21
% _ Z ( k'(5/2) ) <C2 Cm> (3.15)

k—i)lil(i+3/2)! ) (¢2¢,)
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b k (=1) 1k —1)1(5/2)! <52(i_1)5w5y>
a _Z((k_i)!(i—l)!(i+3/2)!> <6Iéy> . (3.16)

i=

CE theory provides the means®* to determine the thermal conductivity, the
viscosity, and the Sonine-polynomial coefficients in Egs. (3.13)—(3.16) for a spec-
ified molecular interaction. In the theoretical analysis,39 the IPL interaction model
is used.

In the DSMC simulations, the VSS interaction is used to approximate the IPL
interaction. Both the IPL and VSS molecular interactions yield thermal conduc-
tivities and viscosities with a T temperature dependence. The VSS interaction,
as implemented in the literature,***° uses a molecular diameter that depends on
the relative molecular speed ¢, according to d c%./ 27“’, where the reference
molecular diameter is given below:!!340

(3.17)

o = ( 5(a+ 1)(a + 2)(mkpTer/m)'/2 )1/2

h 4a(5 — 2w)(7 = 2w) pirer (111 / o) .

It is emphasized that the molecular diameter calculated in this way is a func-

tion of the infinite-order-approximation gas viscosity, unlike in the original ap-

proach.!116 Here, « is the angular-scattering parameter. VSS uses this parameter

to simulate an IPL anisotropic interaction. More details about these parameters
can be found in the literature.3%4°

The (local) heat-flux and shear-stress Knudsen numbers are defined to be the

nondimensional heat flux and shear stress, respectively:

Kn, = |¢:| = |q$|/(mnc§n), Kn, = 74| = |Txy|/(mncgn) (3.18)

3.3.2. Fourier and Couette Flow

Fourier flow, shown in Fig. 3.4 is one of the simplest situations for studying gas
behavior under highly nonequilibrium conditions. The gas is motionless and con-
fined between two infinite, parallel walls separated by a distance L. The walls
are motionless but have unequal temperatures (77 # 7»). In steady state, a uni-
form heat flux and a temperature gradient exist in the domain. When the heat-flux
Knudsen number is small, the heat flux is proportional to the temperature gradient
in the bulk gas, i.e., several mean free paths away from the walls) according to
Fourier’s law, where the coefficient of proportionality is the thermal conductivity:

(3.19)
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Fig. 3.4. (a) Schematic of Fourier flow. (b) Schematic of Couette flow.

Couette flow, also shown in Fig. 3.4, is another simple situation for study-
ing gas behavior under highly nonequilibrium conditions. In this situation, the
walls are isothermal (temperatures 77 = T5) but have unequal tangential veloc-
ities (V1 # V3). In steady state, the normal velocity component is zero, and a
uniform shear stress and a tangential-velocity gradient exist in the domain. When
the shear-stress Knudsen number is small, the shear stress is proportional to the
tangential-velocity gradient in the bulk gas according to Newton’s law, where the
coefficient of proportionality is the viscosity:

Tey = _Neﬂ% (320)

When the walls have unequal temperatures and tangential velocities, both

Fourier and Couette flow are obtained. More specifically, at small heat fluxes

and shear stresses, Fourier’s and Newton’s laws are jointly observed in the bulk
gas well away from the walls.

3.3.3. DSMC Results

Following Refs. 39 and 40, we consider a gas that has the molecular mass and the
reference viscosity of argon. VSS w and « values are used to represent Maxwell
and hard-sphere molecular interactions. The Maxwell and hard-sphere models are
two cases of the IPL model that bracket most known molecules. The molecular
parameters used in the simulations are given in Table 3.1. Initially, the gas is mo-
tionless and at the reference pressure and temperature: piniy = Prof = 266.644 Pa
(2 torr) and Ty = Trer = 273.15 K. The most probable molecular thermal speed
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at these conditions is ¢, = 337.3 m/s. The domain has a length L = 1 mm and
is bounded by two parallel solid walls that reflect all molecules diffusely at the
wall temperature (unity accommodation). The system Knudsen number at the ini-
tial conditions is A/L = 0.0237, so the walls are about 42 mean free paths apart.
Since the Knudsen layers produced by the walls are generally about 4-10 mean
free paths thick, the normal solution occupies a large fraction of the domain.

Table 3.1. Chapman-Enskog (CE)
molecular parameters.

Symbol Hard-Sphere =~ Maxwell

w 172 1
a (VSS) 1 2.13986
oo/ 1 1.016034 1
Koo /K1 1.025218 1
Do /Dy 1.018954 1
o T T T T3 607‘ LI L T y T
t DSMC DSMC
300F| - = = - Initial = 40F| === - Initial 1
290 — E ]
280 L E & ]
! ______________________ ~
Farof E £ 4
I i >
260 | E i
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240f E ]
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Fig.3.5. Temperature and velocity profiles for Fourier and Couette flow: (a) Fourier flow; (b) Couette
flow.

Figure 3.5 presents the temperature and velocity profiles for a simulation with
Maxwell molecules for AT = 70K and AV = 100 m/s. In this simulation,
the left wall is colder (77 = 238.15 K) and moving downward (V; = —50 m/s),
whereas the right wall is hotter (7% = 308.15 K) and moving upward (Vo =
50 m/s). The heat-flux and shear-stress Knudsen numbers corresponding to these
conditions are Kn, ~ 0.006 and Kn, =~ 0.003, respectively, so CE theory is
expected to apply in the central region of the domain.
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Fig. 3.6. Thermal-conductivity and viscosity profiles: (a) Fourier flow; (b) Couette flow.

Figure 3.6 shows the normalized effective thermal-conductivity and viscosity
profiles for these conditions. The effective values K¢ and peg are determined
using Eqgs. (3.19) and (3.20) and are normalized using the CE values. A value of
unity indicates that the CE value is obtained, which occurs in the central region
of the domain. The Knudsen layers are restricted to about 10-25% of the domain
adjacent to each wall.
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Fig. 3.7. Maxwell Sonine-polynomial-coefficient profiles at small Knudsen number: (a) ay/a; for
Fourier flow; (b) b, /b1 for Couette flow.
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Fig. 3.8. Hard-sphere Sonine-polynomial-coefficient profiles at small Knudsen number: (a) ay /a1

for Fourier flow; (b) by /b1 for Couette flow.

Figure 3.7 shows the profiles of the Sonine-polynomial-coefficient ratios
ar/ay and by /by for these conditions. The solid curves are the DSMC values
from Egs. (3.15) and (3.16), and the dashed lines are the CE values. As observed
for the thermal conductivity and the viscosity, the ax/a; and the by /b achieve
the CE values in the central region of the domain and depart from the CE values
only in the Knudsen layers.

Figure 3.8 shows the corresponding profiles obtained using hard-sphere
molecules instead of Maxwell molecules but with all other conditions unchanged.
Unlike Maxwell molecules, hard-sphere molecules have nonzero CE values for
ay/a; and the by /b; when k > 2. The CE values are shown with dashed lines, as
in the previous figure. The profiles of temperature, velocity, thermal conductivity,
and viscosity for hard-sphere molecules are almost identical to the corresponding
profiles for Maxwell molecules in Figs. 3.5 and 3.6.

The heat-flux and shear-stress Knudsen numbers at these conditions are
Kn, ~ 0.006 and Kn, ~ 0.003, respectively, so CE theory applies in the cen-
tral region of the domain, and departures are observed only in the Knudsen layers
adjacent to the walls.

3.4. Comparison to Moment-Hierarchy Theory

Under highly nonequilibrium conditions, the Chapman—Enskog (CE) theory dis-
cussed in the previous section is no longer applicable and is superseded by
the Moment-Hierarchy (MH) method. The MH method is useful for Maxwell
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molecules because the collision rate for the Maxwell interaction is independent of
the molecular relative speed. This property allows the Boltzmann equation to be
represented as an infinite hierarchy of moment equations, where each moment de-
pends only on lower-order moments. By solving this system of equations, we can
calculate moments of the Boltzmann equation without actually solving it.”#1=#
Thus, for Maxwell molecules, the MH theory gives expressions for the thermal
conductivity, the viscosity, and the Sonine-polynomial-coefficient ratios in terms
of the heat-flux and shear-stress Knudsen numbers. For hard-sphere and other
IPL molecules, where the collision rate is a function of the relative speed, the MH
method cannot form a closed set of equations. More details about the MH theory

and comparing it to DSMC are given in Refs. 7, 39, and 40.

3.4.1. Theoretical Results

The Boltzmann equation (Eq. (3.1)) in the absence of body forces has the follow-
ing form:

0

o w = Jlelf. g (3.21)
where Jc|f, f] is the collision operator. Moments of the Boltzmann equation
relate moments of f to moments of .J[c|f, f], where their nondimensional forms

are given below and f = (¢, /n) f:

My, ko :/c c 2¢ks fle)de = (e ckzcks> (3.22)

k1 kaks :/C &2 e f, flde (3.23)

For the special situation of Maxwell molecules, the Jj, ,%, can be expressed
as bilinear combinations of the My, 1, x,, where the coefficients in these combina-
tions are linear combinations of the eigenvalues of the linearized collision oper-
ator. This property enables an exact solution to the Boltzmann equation f to be
obtained recursively for Fourier flow and Couette flow with Maxwell molecules
without actually solving the Boltzmann equation.”*!™3 Thus, in the limit of small
shear stress (i.e., Kn, — 0), the Sonine-polynomial-coefficient ratios a/a; and
by /by for k > 2 are even polynomials in Kn,, of degree 2(k — 1):

k—1
= (=1)F1 ZAijngj, (3.24)
j=1

ag
ai
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k—1
bk k—1 27
b= (-1) ;Bijan. (3.25)

Using the approach of Sabbane and Tij,*® the nonzero coefficients in the above
can be calculated for the VSS-Maxwell interaction.

In a similar fashion, Garzé and Santos’ apply the MH method to determine
how the thermal conductivity K.g and the viscosity peg for Maxwell molecules
depend on the small but finite shear-stress Knudsen number Kn (K and p are the
CE values):

Kegt
Kﬂ = Fg[Kn,] =1 — cxKn2 + O[Kn?], (3.26)
Heft _ 2 4
= F,[Kn;] =1—¢,Kn; + O[KnZ]. (3.27)

Values of cx and ¢, for VSS-Maxwell interactions in the literature*® indi-
cate that both coefficients are positive. Thus, Maxwell-molecule gases are shear-
insulating and shear-thinning: the thermal conductivity and the viscosity decrease
as the shear stress increases. DSMC VSS simulations indicate this is true for other

IPL molecular interactions.*

3.4.2. Simulation Results

The flow domain in Fig. 3.4 is considered. The parameters used in the simulations
are identical to the ones used in the previous section except that the tempera-
ture and velocity differences are increased so that noncontinuum effects are no
longer small in the bulk gas. The walls have temperatures T3 = Trof — AT/2
and Ty = Tyef + AT/2 and tangential velocities V; = —AV/2 and V5, = AV/2
with temperature differences up to AT = 400 K and velocity differences up to
AV =800 m/s.

Figure 3.9 shows the profiles of the Sonine-polynomial-coefficient ratios for
Maxwell molecules at the same conditions as in Fig. 3.7 except that AT is in-
creased from 70 K to 200 K. Under these conditions, the heat-flux Knudsen num-
ber Kn, is increased from about 0.006 to about 0.017. The approximate nature
of this statement reflects the fact that Kn, is not constant throughout the domain
but increases from hot to cold at constant pressure (i.e., from right to left). The
solid curves are the DSMC results, and the dashed lines are the CE results. The
DSMC results differ significantly from the CE results in the central region of the
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domain. More specifically, the ax/a; and the by /by differ increasingly from the
corresponding CE values from right to left just as Kn, increases from right to left.
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Fig. 3.9. Maxwell Sonine-polynomial-coefficient profiles at finite Knudsen number: (a) ay /a1 for
Fourier flow; (b) by, /b1 for Couette flow.

Within the central region, the variation of the aj /a1 and the by /by with Kn,
represents the normal solution to the Boltzmann equation. Since Kn,, varies across
the domain, a single DSMC simulation provides the normal solution for the range
of Kn, values in the central region. The same approach is used subsequently to
determine the variation of K /K and peg /@ with Kn,,.

Figure 3.10 shows the ay/a; and the by /b; for Maxwell molecules as func-
tions of Kn, as determined above. The symbols indicate the DSMC values. Each
cluster of points along a curve corresponds to values obtained from the central re-
gion of a single DSMC simulation with temperature differences of AT = 70, 200,
300, and 400 K and a velocity difference of AV = 100 m/s. In all cases, Kn,
is below 0.005, which classifies the flow in the continuum-hydrodynamic regime
as far as shear stress is concerned. The solid and long-dashed curves are the
corresponding MH results for VSS-Maxwell interactions, in the zero-shear-stress
limit (Kn, — 0) from Eqgs. (3.24) and (3.25). The dashed lines indicate the CE
values of 0.

The DSMC values agree closely with the MH VSS-Maxwell values except
for ay/a; and as/a; at AT = 400 K (the largest temperature difference. This
difference is attributed* to discretization errors and to the small but finite Kn..
The DSMC and MH results for the VSS-Maxwell interaction are in good agree-
ment, which provides strong evidence that DSMC produces the correct velocity
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distribution function. It is noted that the ay/a; and the by /by differ from the CE
values when Kn, > 0.01, a value that has been greatly debated in the litera-

ture. 1,2,89,11
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Fig. 3.10. Dependence of Maxwell Sonine-polynomial coefficients on Knudsen number: (a) ay /a1
for Fourier flow; (b) by /b1 for Couette flow.
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Fig. 3.11. Knudsen-number dependence of Maxwell thermal conductivity and viscosity: (a)
Kot /K (b) pegt/ -

Figure 3.11 shows Kog/K and g /1 for Maxwell molecules as functions of
Kn,. The symbols represent DSMC values with tangential velocity differences
of AV = 0-800 m/s in increments of 100 m/s and a temperature difference
of AT = 0K. The effective thermal conductivity is determined based on the
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spatially nonuniform temperature and heat-flux profiles that appear because of vis-
cous dissipation. In each plot, there are three theoretical curves. The dashed lines
are the CE results, which are appropriate only for vanishing shear-stress and heat-
flux Knudsen numbers, the solid curves are the MH results for Maxwell molecules
(Egs. (3.26) and (3.27)), and the long-dashed curves are the MH results offset by a
small arbitrary amount. The offset MH values are in excellent agreement with the
DSMC values. The small negative offsets (—0.002 for both transport coefficients)
probably represent the discretization errors discussed above. Gallis et al.*’ point
out that the decreases in these quantities with increasing Kn, are less than 3%.
Thus, even under highly nonequilibrium conditions, the CE values are accurate
enough for many engineering calculations.

3.5. Simulations of Microscale Flows

The number of references in the literature that report successful applications of
DSMC to solve MEMS problems continues to increase.*’->" The same DSMC
algorithm (and in some cases the same DSMC code) can be applied to both sub-
sonic near-continuum problems and hypersonic rarefied flow problems (although
the former class of problems requires subsonic boundary conditions®!!).

In the following sections, we will demonstrate the way that DSMC can be used
in conjunction with other techniques to study MEMS flows in an efficient manner.
We will demonstrate the use of both continuum and molecular approaches and the
limits of applicability of each method.

3.5.1. Heat Transfer at Arbitrary Knudsen Numbers

So far, we have examined flows in the hydrodynamic regime (small system Knud-
sen number), where nonequilibrium effects are produced by a temperature or ve-
locity gradient. In this section, we will examine the scenario in which rarefaction
produces noncontinuum effects. As the system Knudsen number progressively in-
creases, noncontinuum effects from wall interactions become more pronounced.
As outlined in the introduction, DSMC is usually the method of choice for prob-
lems when mean free path effects become significant.

The Navier—Stokes slip-jump (NSSJ) method uses continuum constitutive re-
lations (Newton’s and Fourier’s laws) in the bulk gas and treats noncontinuum
effects via “velocity slip” and “temperature jump” at the boundary.’'* These
boundary conditions allow for the tangential velocity and the temperature at a
gas-solid interface to be discontinuous. The velocity and temperature jumps
across the interface are proportional to the normal shear stress and the heat flux,
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respectively. More specifically, the temperature-jump condition is given by ¢ =

hAT, where
_ ¢ o pc
"= (”4) (z_a) (%) 528

Here, g is the normal heat flux at the gas-solid interface, AT is the temperature

difference across the interface, h is the heat transfer coefficient, o is the energy
accommodation coefficient (0 < o < 1), ¢ = /8kpT /mm is the mean molecular
speed in an equilibrium gas, and A = 24/ p¢ is the molecular mean free path. The
velocity-slip and temperature-jump boundary conditions have been the focus of
extensive research.!->1-53

Despite their ad hoc treatment of noncontinuum effects, the NSSJ equations
remain a useful tool for describing gases in the near-continuum regime, even if
only in a qualitative sense. In this section, we will examine the same problem
using both the NSSJ equations and the DSMC method.

3.5.2. Heat Transfer in a Microgap

In this section, we follow the work in Ref. 54, where the NSSJ and DSMC meth-
ods are applied to study steady microscale heat transfer in a “microgap” geometry.
The microgap geometry is identical to the Fourier problem of Fig. 3.4 except that
the gas is contained in a 1-um gap. The walls are at fixed temperatures 7'y and
Tz, and the gas-solid interfaces use the heat transfer coefficient in Eq. (3.28) to re-
late the heat flux to the temperature jump. The metric of comparison between the
NSSJ and DSMC results is the heat flux because it is the most important quantity
from an engineering point of view.

Argon and nitrogen are examined (see Table 3.2). Unlike the monatomic ar-
gon “molecule”, which transports only translational energy, the diatomic nitro-
gen molecule transports both translational and internal energy and thus has more
complicated noncontinuum effects.!! Gas pressures of 10'-107 Pa for NSSJ and
102-108 Pa for DSMC (free-molecular to continuum) are considered. Accom-
modation coefficients of 1.0, 0.9, 0.5, and 0.1 are investigated, which span the
values encountered experimentally.”> Boundary temperatures of T4 = 285 K and
Tp = 315 K are examined, yielding a temperature gradient of 30 K/um. Higher
temperature gradients of 300 K /um produce similar results.>

Figure 3.12 shows the NSSJ and DSMC gas-temperature profiles for nitrogen
(argon is nearly identical) over the above pressure range with an accommodation
coefficient of 1.0. At low pressures, the gas is nearly isothermal, as expected
for free-molecular conditions.!! At high pressures, the temperature variation is
almost linear across the gas layer, and the temperature jumps at the gas-solid
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Table 3.2. Material properties for simulations.!!

Quantity Symbol  Argon Nitrogen Unit
Molecular mass m 66.3 x 10727 46.5 x 10727 kg
Temperature, reference Tret 273.15 273.15 K
Pressure, reference Pref 101325 101325 Pa
Mass density, reference Pref 1.781 1.249 kg/m3
Molecular mean speed, reference  Cpof 380.6 454.5 m/s
Mean free path, reference Aref 0.0624 0.0583 pm
Viscosity, reference hrof 2.117 x 10~°  1.656 x 10~°  Pa-s
Thermal conductivity, reference Kot 0.01641 0.02426 W/m-K
Specific heat at constant pressure ~ Cp 520.6 1039.2 J/kg-K
Specific heat ratio o7 5/3 715 pure
Viscosity temperature exponent w 0.81 0.74 pure
Angular scattering exponent « 1.40 1.36 pure
Internal energy mode number ¢ 0 2 pure
Internal energy collision number 72 irrelevant 5 pure

interfaces are small, as expected for continuum conditions.! The NSSJ profiles
agree closely with the DSMC profiles at the highest two pressures but differ no-
ticeably at the lowest three pressures. More specifically, the slopes (proportional
to the heat fluxes in the NSSJ simulations) differ increasingly in a relative sense
as the pressure is decreased.
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Fig. 3.12. Microgap temperature profiles for nitrogen: (a) NSSJ; (b) DSMC.

Figure 3.13 shows the heat flux as a function of gas pressure and accom-
modation coefficient for both gases. The argon and nitrogen results are similar
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except that nitrogen transports more energy due to its internal degrees of free-
dom. The heat flux is independent of pressure at high pressures, as expected
for continuum conditions, and is linear in pressure at low pressures, as expected
for free-molecular conditions. The NSSJ values are in good agreement with the
DSMC values except for order-unity accommodation coefficients and pressures
in the range of 10*-10° Pa, at which the molecular mean free path is comparable
to the 1-um gap height. In this situation, the NSSJ heat-flux values exceed the
corresponding DSMC values by up to 8%.

Gallis et al.>* point out that these observations contrast with the previous
observation that the slopes of the NSSJ and DSMC temperature profiles differ by
progressively greater relative amounts as the pressure is reduced. This contrast is
reconciled®* by the fact that Fourier’s law of heat conduction does not apply to
free-molecular heat transport (i.e., at low pressure).!! This underscores the fact
that the NSSJ method cannot produce temperature profiles and heat fluxes that are
both in agreement with the (more accurate) corresponding DSMC results.
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Fig. 3.13. Microgap heat flux versus pressure: (a) argon; (b) nitrogen.

The generally good agreement between the NSSJ and DSMC heat-flux values
for all combinations of gases, pressures, boundary temperatures, and accommoda-
tion coefficients indicates that the NSSJ approach can be used with the indicated
uncertainty to predict gas-phase heat transfer across microscale gaps between
solids.

As an empirical modification to reduce the differences observed in the micro-
gap geometry, the following expression for the heat transfer coefficient h is
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suggested>* as a replacement for Eq. (3.28):

() 0 (o retir) o

Here, the numerator is from Eq. (3.28), X is the mean free path, G is the gap
height, c; is a constant that represents the effect of molecular collisions within
the Knudsen layer,56 and ¢ is a constant that enables the denominator to behave
correctly in the free-molecular (A > ) and continuum (A < G) limits.

Values for c¢; and cy are empirically determined by adjusting them until the
NSSJ heat fluxes match the corresponding DSMC heat fluxes. Based on the
DSMC values in Fig. 3.13, the following values are found: ¢; = 0.176 and
co = 0.647 for argon, and ¢; = 0.167 and c; = 0.599 for nitrogen. Using
Eq. (3.29) instead of Eq. (3.28) reduces the maximum difference between the
NSSJ and DSMC heat fluxes from 8% to 0.4% (i.e., the maximum error is re-
duced by a factor of 20).

Equation (3.29) is suggested instead of Eq. (3.28) for gas-filled regions
bounded by parallel solid walls with a uniform gap height when the constants
c1 and cs are known. For a single planar wall bounding a gas-filled half-space, the
limit of Eq. (3.28) as G — oo is used.

3.5.3. Thermal Actuation

One way to achieve microscale motion is through thermal actuation, in which
Joule-heating-induced thermal expansion of a microstructure, often a microbeam,
produces motion. The length increase is proportional to the microbeam tempera-
ture rise, and the temperature rise is found by balancing the volumetric heating rate
against the heat loss to the nearby substrate through the surrounding air, along the
length of the microbeam to the anchor points, and via radiation (typically a small
effect).
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Fig. 3.14. Microscale thermal actuator.>
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Figure 3.14 from Ref. 55 shows an example of thermal actuation. Electric
current runs through the beams supporting the shuttle. Joule heating elongates
these beams, which produces motion of the shuttle in the indicated direction. For
this thermal actuator, noncontinuum heat-transfer effects are observed in the gas
even at atmospheric pressure. As we shall see in the following section, ignoring
them can lead to a significant error in the calculation of the heat flux from the
beam to the substrate even at atmospheric conditions. Thus, models of noncontin-
uum gas-phase heat transfer are required to simulate microscale thermal actuation
accurately.
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Fig. 3.15. I-beam geometry and temperature contours at 84 kPa.

3.5.4. Heat Transfer from a Microbeam to the Substrate

In this section, we will follow the analysis of Ref. 54 and examine the steady-state
heat transfer from a heated microbeam surrounded by ambient nitrogen gas to the
substrate 2 ym away.

Figure 3.15 shows the microbeam geometry and the temperature profile at 84
kPa with an accommodation coefficient of unity. The microbeam has an I-beam
cross section with three layers. The top layer is 3.8 ym wide and 2.25 pm thick,
the middle layer is 1.3 pum wide and 2 pm thick, and the bottom layer is 3.8 um
wide and 2.5 pm thick. A 2 pm gap separates the lower surface of the microbeam
from the upper surface of the adjacent substrate. The substrate is 0.1 um thick and
extends across the entire lower surface of the computational domain.

For these simulations, the following boundary conditions are used. Insulating
boundary conditions are applied on the top, side, front, and back of the domain
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and on the symmetry plane in the gas. The lower substrate surface is held at a
temperature of T4 = 298 K, and the symmetry surface of the microbeam cross
section is held at a temperature of Tz = 873 K. This latter boundary condition re-
places the volumetric Joule heating within the microbeam, which would otherwise
be used to produce this temperature. The large thermal conductivity of the solid
compared to the gas renders the solid nearly isothermal, so replacing the volumet-
ric heat source with the above temperature boundary condition hardly affects the
temperature distribution. The gas in these simulations is nitrogen with properties
from Table 3.2. Gas pressures of 10*-107 Pa for NSSJ and 102-10° Pa for DSMC
are examined with accommodation coefficients of 1.0, 0.8, 0.5, and 0.2.

Ignoring noncontinuum effects in the gas causes the microbeam temperature
to be significantly underpredicted for a fixed volumetric heating rate (by about 150
K for an accommodation coefficient of 0.5).> Since the degree of actuation is di-
rectly related to the average temperature rise along the microbeam, it is important
to include noncontinuum effects when computing the gas-phase heat transfer.
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Fig. 3.16. Heat flow per unit length versus pressure for the microbeam.

Figure 3.16 shows the microbeam heat flow per unit length from NSSJ and
DSMC simulations from Ref. 54. The NSSJ method systematically overpredicts
the heat flow relative to the DSMC method. Although the differences are small for
most conditions, the NSSJ method predicts values that are approximately double
the DSMC values for low pressures and order-unity accommodation coefficients.
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This discrepancy is unlike the discrepancy observed for the microgap in that it
occurs at low, rather than intermediate, pressures, and that it is a factor-of-two,
rather than an 8%, effect. While relatively large, these differences are small in an
absolute sense, (e.g., two orders of magnitude smaller than the continuum heat-
flux value).

The good agreement between the NSSJ and DSMC methods at atmospheric
pressure indicates that the NSSJ method can be used to predict gas-phase heat
transfer for microscale devices in ambient air with reasonable accuracy. How-
ever, as noncontinuum effects become important either through flow rarefaction
or through wall interactions, the NSSJ approach gradually becomes less accurate.

In a low-pressure situation, the noncontinuum region surrounding the mi-
crobeam does not consist of thin, planar regions. To the contrary, a near-free-
molecular region bounded by ambient gas and the substrate, both of which are at
the ambient temperature, surrounds the microbeam. When this region’s size (i.e.,
the molecular mean free path) is large compared to the microbeam, the microbeam
appears as a small, finite object interacting in a free-molecular way with a large
gas-filled region. This explains the factor-of-two discrepancy noted above.>*

3.5.5. Gas Damping

In this section, we will focus on a common phenomenon in microfluidic devices
with moving surfaces, squeeze film damping.! This phenomenon takes place when
two surfaces, close to each other, execute an out-of-plane motion, causing gas to
be drawn into and expelled from the region between the two surfaces. The gas
pressure in the gap is increased above ambient during times of squeezing and is
decreased below ambient during times of suction, whereas the gas pressure outside
the gap remains essentially at ambient.

Keeping in mind that most MEMS devices are characterized by large width-to-
height ratios, we can consider gas in a thin gap of large but finite lateral size. The
edges of the gap communicate with an essentially unbounded region of motionless
gas at uniform conditions.

Under these circumstances, the Navier—Stokes equations for the gas in the gap
can be simplified and, in the limit of small Reynolds number, take the form known
as the Reynolds equation (RE):"#

0 B pG3 6A
2 (o0) = v{(m) <1+Xva>}, (3.30)
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Here, the gas has molecular mass m, mass density p, temperature 7', pressure p,
viscosity p, molecular mean speed ¢, and molecular mean free path A, the Boltz-
mann constant is kg, the accommodation coefficient lies in the range 0 < ¢ < 1,
and the gap has height GG, which can vary with position and time. The coefficient
x is discussed below and obtains the value of unity in the continuum (Navier—
Stokes) limit. The RE applies in a two-dimensional domain that is the projec-
tion of the object onto the adjacent planar substrate (i.e., the object’s “footprint™).
More specifically, although the pressure varies with lateral position and time, it is
independent of vertical (out-of-plane) position.

To solve the RE, a boundary condition for the pressure is required on the edge
of the domain. A common assumption is that the pressure at the edge equals the
ambient pressure. This assumption, valid only when the lateral extent of the gap
is much larger than the height of the gap, often breaks down for MEMS devices.
In general, the following boundary condition represents the pressure with good
accuracy:>’

B dp 12puU 6A
Poo — P =G (377> +¢ (G) / (1 + XG) . (3.32)

Here, p is the ambient pressure of the surrounding gas, and 7 is the outward
normal direction. The coefficients 7, (, and x can be empirically calculated by
comparing DSMC and NSSJ simulations.>

The advantages of using the RE to calculate the force on a moving microde-
vice are its simplicity and its computational efficiency. The disadvantage is that
the RE is a simplified form of the NSSJ equations and therefore does not treat
noncontinuum effects rigorously. In many cases, the gaps are small enough (or
become so during operation) that noncontinuum effects are important. These ef-
fects are incorporated by appropriate selection of parameters in the boundary con-
dition (Eq. (3.32)). DSMC and NSSJ calculations can be used to simulate the
quasi-static gas flow around a moving microbeam to determine the coefficients in
the modified RE boundary condition.

The force on the object is found by integrating the difference of the pressure
from ambient over the object’s (gap-bounding) surface and is proportional to the
velocity, where is the gas-damping coefficient:
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F=— / (Pos — p)dS = —U. (3.33)
S

The gas forces on a MEMS device can significantly affect performance and re-
liability. For example, gas forces can protect a device from shock but can damp
its motion. Thus, they must be considered when the dynamic response of these
devices is calculated. However, one must not neglect the fact that, although
gas forces may be significant in some instances, during normal operation these
forces are often small. Thus, although incorporating gas forces into a structural-
mechanics code by coupling a fluids solver to a solids solver is possible, this is
typically computationally expensive and technically excessive.

With this goal and these restrictions in mind, we will incorporate noncontin-
uum effects into the RE equation in a way that can produce an accurate closed-
form description of the gas forces on a moving MEMS device. We shall see one
such application adapted from Ref. 50 in the following section.

3.5.6. Gas Damping of a Cantilevered Microbeam

In this section, we will see how NSSJ and DSMC can be applied to predict the
gas-damping force on a moving cantilevered microbeam and how the RE can be
used to provide a compact model for this force.>

Figure 3.17 shows an array of cantilevered microbeams. Their cross sections
have a 20-pm width, a 2-pm thickness, and a 2-pm gap height. NSSJ and DSMC
simulations are performed for these devices.”® The microbeam moves upward
with a velocity of 1 m/s. The surrounding gas is nitrogen at 295 K and at ei-
ther 13.3 kPa or 101 kPa. The gas-damping force is found by integrating the
vertical stress around the microbeam, and the gas-damping coefficient is found
through Eq. (3.33). Mesh-refinement and domain-size studies®® indicate that the
NSSJ and DSMC simulations discussed below are accurate to within 1% and 5%
respectively.

Figure 3.18 presents a quasi-static DSMC calculation where the microbeam
moves upward, creating a low-pressure region underneath it. The plot shows the
pressure distribution and the streamlines.

Figure 3.19 shows the damping coefficients from the NSSJ and DSMC simu-
lations. In all cases, the NSSJ values lie above the DSMC values, indicating that
the NSSJ method slightly overpredicts the gas-force. Also shown are RE results
using three different boundary conditions: the original boundary condition, the
modified boundary condition with the NSSJ coefficients, and the modified bound-
ary condition with the DSMC coefficients. For large gap heights, the RE with the
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Fig. 3.17. Cantilevered microbeams.>®

Fig. 3.18. Quasi-steady DSMC simulation of a microbeam moving upward: left side, pressure con-
tours; right side, streamlines.

original boundary condition does a poor job in reproducing the NSSJ and DSMC
results. This is caused by the boundary condition, not the RE itself: the modified
boundary condition yields values that are in good agreement with the simulations.
For small gap heights, the NSSJ and DSMC results differ significantly; neverthe-
less, the RE with the corresponding modified boundary condition is in excellent
agreement with the simulations. Thus, the modified boundary condition with the
appropriate coefficients significantly improves the accuracy of the RD for large
gaps (relative to the beam width) and small gaps (relative to the mean free path).

3.5.7. Thermally Driven Flows

Flows caused by temperature gradients along channels have been known since
the time of Boltzmann. However, it is not widely appreciated that a steady but
nonuniform heat flow in a gas-filled geometry bounded by solids at different but
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uniform temperatures establishes a noncontinuum stress field that induces a steady
gas motion. 738

It is emphasized that this type of gas motion is not caused by transient effects,
buoyancy, or thermal creep (gas motion driven by a temperature gradient along
a solid surface®®). This gas motion exists only when the isotherms (temperature
contours) in the gas are nonparallel.’’*® Thus, no gas motion occurs for the mi-
crogap, which has parallel isotherms, but gas motion can occur for the microbeam,
which has nonparallel isotherms.

Although this phenomenon is absent even from formulations of the Navier—
Stokes equations that specifically include the effects of velocity slip and tem-
perature jump (the NSSJ equations), DSMC inherently captures this type of gas
motion. Figure 3.20 shows the flow patterns and the temperature distributions
from DSMC simulations of the microbeam surrounded by nitrogen at three differ-
ent pressures, 84, 8.4, and 0.84 kPa, where the substrate and microbeam tempera-
tures are T4 = 298 K and Tz = 873 K, respectively. The Knudsen numbers for
these flows based on the clearance between the beam and the substrate are 0.03,
0.3, and 3 for the three pressures. The maximum flow speeds are 0.1 m/s at 84
kPa, 2 m/s at 8.4 kPa, and 1 m/s at 0.84 kPa. For the DSMC simulations, the
discretization and statistical errors were kept (see Ref. 54) to approximately 1%.

The “noisiness” of the flow at 84 kPa is explained by the fact that the velocity is
comparable to the DSMC stochastic uncertainty based on the number of sampled
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Fig. 3.20. Examples of thermally driven microscale flows.’* Top to bottom: 84, 8.4, and 0.84 kPa.
Left: temperature contours (isotherms). Right: streamlines.

molecules per cell (~ 107) and typical molecular speeds (~ 500 m/s). Although
noisier, the flow at 84 kPa has the same basic pattern as the flow at 8.4 kPa.
These flows have features in common with the “thermal edge flow” observed
by Sone and Aoki. In all cases, the gas moves toward the uppermost and low-
ermost right corners of the microbeam, where the heat flux is largest, and away
from the notch in the side of the microbeam, where the heat flux is smallest. Also,
the gas in the gap moves inward along the heated microbeam surface toward the
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symmetry plane and outward along the colder substrate surface away from the
symmetry plane. These directions are the same as those observed by Sone in his
simulation of flow in a small gap between two concentric cylinders, where the
inner cylinder is hotter than the outer cylinder.>’

At this point, the question of the importance of this phenomenon is raised.
The molecular energy transport in DSMC makes no distinction between conduc-
tion and convection heat transfer. However, the relative between conduction and
convection heat transfer. However, the relative importance of convection and con-
duction for these flows is assessed in Ref. 54 by evaluating the Peclet number. The
Peclet numbers are 0.01 at 84 kPa, 0.02 at 8.4 kPa, and 0.001 at 0.84 kPa. Based
on these extremely small values, convection is relatively unimportant, and conduc-
tion is the dominant heat-transfer mode for the microbeam. Possible applications
of this phenomenon are discussed by Sone.

3.6. Conclusions

In this chapter, we have given an overview of the Direct Simulation Monte Carlo
(DSMC) method as a tool to study gas-filled MEMS devices. DSMC has been
shown theoretically and computationally to provide simulations that are in agree-
ment with exact solutions of the Boltzmann equation. More specifically, the
Chapman-Enskog (CE) values for the thermal conductivity, the viscosity, and the
Sonine-polynomial-coefficient ratios are obtained to high accuracy, indicating that
DSMC correctly reproduces the CE velocity distribution.

DSMC and Moment-Hierarchy (MH) results for the VSS-Maxwell interac-
tion are in good agreement. This provides strong evidence that DSMC produces
the correct velocity distribution even for large local Knudsen numbers and large
departures from equilibrium.

As a numerical method, DSMC is an explicit time-marching technique that
can simulate transient as well as steady-state flow fields. As discretization errors
become small, DSMC approaches the correct limit, with error terms similar to
predictions of Green—Kubo theory.

DSMC is computationally more demanding than most continuum CFD meth-
ods. This problem is partially alleviated by its superior parallel performance.
Another feature of DSMC, often overlooked, is the lack of numerical instabili-
ties even for the most physically and geometrically complicated problems. This
feature, with its unmatched accuracy, makes DSMC a unique method to study
physical phenomena at the mean-free-path level.

Using DSMC for subsonic-flow MEMS simulations is not without issues. The
difficulty of distinguishing between statistical noise and the flow field has hindered
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its widespread application. However, besides the cases for which DSMC is the
only applicable method, there are other cases where DSMC can provide useful
input. DSMC can be used concurrently with continuum methods and analytical
approaches to develop empirical models that can be implemented in engineering
codes.
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In this chapter, we examine the size effects on liquid and gas micro-flows. For
micro-gas flows, the rarefied effect results in relatively high Knudsen num-
bers. The conventional direct simulation Monte Carlo (DSMC) method has been
widely used to handle this class of micro-flow. However, the problem arises when
the characteristic velocities of the micro-gas flow become very small (< 3ms 1),
and the use of conventional DSMC in such instances often incur in large statis-
tical errors. Unfortunately, the typical micro-gas flow velocities in most MEMS
devices are in the low velocity range. In this chapter, a multiscale coarse-grain
molecular block (or “big molecule”) model is developed to replace the actual
molecular model. These molecular blocks are then used to replace the parti-
cles in the DSMC method, and a molecular block direct simulation Monte Carlo
(MB-DSMC) method is established. As the mass of the molecular block is larger,
the statistical error incurred by the MB-DSMC method is smaller, and this novel
method is used to examine low velocity micro-gas flows. Similarly, liquid flows
in MEMS and BioMEMS devices can be very different from well established and
extensively studied macro-scale liquid flows. For the latter, conventional fluid
dynamics principles such as the Navier—Stokes equations can be used to predict
the flow fields with very good accuracy expected. For the former however, some
factors which are normally neglected in macro-scale liquid flows now have to be
considered if accurate predictions are to be attained. In this chapter, a refined
one-equation turbulent model is introduced to account for the size effects, and
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the phenomenon of early transition (at lower Reynolds number) from laminar to
turbulent flow in micro-scale liquid flows is examined in detail.
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4.1. Introduction

The underlying principles that govern the flow characteristics of fluids (both lig-
uids and gases) in MEMS and BioMEMS devices are complex, and deviate (both
qualitatively and quantitatively) from conventional macro-flow characteristics. In
the context of micro-flow modeling and simulation, it is necessary to identify the
major differences and incorporate them into existing continuum models/theories,
or develop an entirely new solution framework.

For micro-gas flows, a multiscale coarse-grain molecular block (or “big
molecule”) model is developed to replace the actual molecular model. These
molecular blocks are then used to replace the particles in the DSMC method, and
a molecular block direct simulation Monte Carlo (MB-DSMC) method is estab-
lished. Next, a modified one-equation turbulent model is introduced to account
for the size effects, and the phenomenon of early transition (at lower Reynolds
number) from laminar to turbulent flow in micro-scale liquid flows is examined in
detail.

4.1.1. Micro-Fluidic Gas Flows — Introduction and Review

As computational speed and memory become more readily available, the direct
simulation Monte Carlo (DSMC) method has emerged as the primary method
for investigating flows with high Knudsen number K,, (= VL), where )\ is the
molecular mean free path and L the characteristic length of the flow. Fundamental
work on the DSMC method has been described in several well-known books, such
as those by Bird"? and Garcia.®> In his review on DSMC methodologies, Bird*
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discussed the early development of this class of method and compared it with other
methods used in molecular dynamics and solutions of Boltzmann and Navier—
Stokes equations. There were also further excellent reviews by Muntz,’ Cheng,’
Cheng and Emmanuel,” Oran ef al.® and Bird.° Muntz® summarized works in
rarefied gas dynamics with an emphasis on the computational aspects. Cheng’s®
emphasis was on hypersonic viscous flows and high-temperature gas dynamics,
while Cheng and Emmanuel’ discussed the application of the DSMC method as a
predictive tool and compared DSMC computations with experimental and Navier—
Stokes analyses in the low K,, regime. Oran et al.® looked into the use of the
DSMC method in investigating the characteristics of gas flow in micro-devices
so as to optimize the design of related MEMS devices, while Bird® discussed the
recent advances and the current challenges of the DSMC method and examined
its range of applicability and validity.

In the DSMC method, large statistical errors can be a serious problem, espe-
cially when simulating low-speed flows in micro-devices. Nance et al.'® sim-
ulated a micro-channel flow similar to plane Poiseuille flow using the DSMC
method, and they observed from their results that even if the characteristic ve-
locity is around 15 m/s, the statistical errors in the velocity and shear stress fields
are large compared to the corresponding physical signals even when using the
analytical solution of Navier—Stokes equations as the initial conditions in the sim-
ulation. It can easily be extrapolated that if the characteristic velocity is smaller,
the statistical errors will tend to inundate the real physical signals. Theoretically,
the statistical error is inversely proportional to the square root of the sample size,
and in other words, as the sample number increases, the statistical error should
approach zero. Following this line of thought, some researchers believe that the
statistical errors of the DSMC method can be sufficiently small only when the
sample size is sufficiently large. However, in the actual computational analysis,
there are two factors affecting the rate and trend of the decrease of the statistical
error, which have not been taken into account in the derivative process of the the-
oretical results. Firstly, the random process described in the statistical theory is
an absolute ideal process, while that generated by a computer is a quasi-random
process. Secondly, the theoretical result is obtained under the condition that gas is
in an equilibrium state, while the computationally simulated gas flows are usually
in a non-equilibrium state. The numerical analyses of Pan ez al.'! have shown that
the statistical error of the DSMC method does indeed decrease with the increase
of sample size, but there is also limit to this reduction. Hence, it is not just the
high computational cost, but it is also incorrect to assume that the statistical error
in the DSMC method will become satisfactorily small by simply increasing the
sample size.
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Fan and Shen'? presented a DSMC-IP method which achieved very good
results for one-dimensional slow-speed flows. Cai ef al.'> then made some modi-
fications to the DSMC-IP method and extended it to solve two-dimensional slow-
speed flows in micro-channels. The basic ideas of this method cover three aspects.
Firstly, the computational processes of the original DSMC algorithm remain un-
changed. Secondly, the macroscopic physical information in each cell is assumed
to move with the represented molecules used in the DSMC method. Thirdly, the
change of the macroscopic physical information is calculated through the mechan-
ical features of the cell. Obviously, this method would require additional memory
and extended CPU time. Pan et al.!' investigated the features of the statistical
error in the DSMC method. The conclusions were that the magnitude of the statis-
tical error depends on gas type and temperature, where lower temperatures and/or
larger molecular masses results in smaller statistical errors. Based on the rela-
tionship between the statistical error and temperature, they presented a modified
DSMC algorithm for simulating low-speed microflows without temperature gradi-
ent. However, in practical micro-devices, apart from the velocity and stress fields,
the heat transfer is often a very important physical phenomenon. In this chapter,
a molecular block model is first presented. The molecular block direct simula-
tion Monte Carlo (MB-DSMC) method is then constructed using the molecular
blocks to replace the particles in the original DSMC method. The present method
imposes no restriction on the temperature field, and can therefore be used to simu-
late low-speed micro-flows irrespective of whether there is a temperature gradient
in the flow field.

4.1.2. Micro-Fluidic Liquid Flows — Introduction and Review

Liquid flows in fluidic MEMS devices may be very different from the flows in
common macro-scale devices. For the latter, conventional continuum fluid dynam-
ics principles can be adopted to simulate the flow behavior, where Navier—Stokes
equations are usually used to predict these flow fields, and very good accuracy
can be expected. For the former however, due to the micro-scale dimensions of
the flow field, some factors which are normally neglected in the continuum theory
now have to be reconsidered in order to obtain an accurate prediction. It is not
adequate to use Navier—Stokes equations directly without any modification to the
original physical model and boundary conditions. A fundamental understanding
of the flow characteristics, such as the velocity and pressure distributions, is criti-
cal in the design of fluidic micro-devices. From their experimental measurements,
Wu and Little'*'> found that for gas flow and heat transfer in fine channels, the
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friction factors are very different from those predicted by the conventional the-
ory of fluid flow. The friction factors are larger than those obtained from the
traditional Moody chart, and this indicates an early transition from laminar to tur-
bulent flow occurring at a Reynolds number of about 400 to 900 for the various
the configurations tested.

Experiments on liquid flows and heat transfer in micro channels were also
carried out by Tuckerman.'® It was found that the flow rates roughly agreed with
Poiseuille flow predictions. Pfahler et al.'” carried out an experiment on fluid
flow in micro-channels. At first, it was verified that the experimental measure-
ments agreed well with the conventional theory. However, subsequently work
showed that deviations occurred for smaller channels. In Pfahler et al.,'8 experi-
mental measurements of the friction factor or apparent viscosity for an isopropyl
alcohol/silicon oil mixture in larger micro-channels were in good agreement with
the theoretical prediction based on the conventional theory. As the channel size is
decreased, the apparent viscosity began to drift from the theoretical values. Choi
et al.'’® also found that the flows in micro-channels are significantly different
from those predicted by conventional theory. Wang and Peng,?’ from experimen-
tal studies of the forced convection of liquid in micro channels, found that the
transition from laminar to turbulent flow occurs when the Reynolds number (Re)
is less than 800, and a fully developed turbulent flow is initiated in the Re range
of 1000 to 1500. In their later studies?’??> on liquid flow in rectangular micro-
channels, it was found that the transition occurs at a Re range of 200 to 700, and
a fully developed turbulent flow occurs at the Re range of 400 to 1500. The tran-
sitional Re reduces and the transition range becomes smaller as the dimension of
the micro-channel decreases.

Mala and Li?? experimentally investigated liquid flow in circular micro-tubes
of diameter range 50-254 pm. Once again, it was found that the flow character-
istics significantly depart from the predictions of conventional theory for micro-
tubes with relatively smaller diameters. However, for those with larger diameters,
the experimental measurements were found to be in rough agreement with conven-
tional theory. In addition, an increase in Re results in a significant increase in the
pressure gradient compared to that predicted by the Poiseuille flow theory. It was
further observed that an early transition from laminar to turbulent flow occurred
at Re greater than 300 — 900, and the flow becomes fully developed turbulent flow
at Re > 1000 — 1500.

In most circumstances of liquid flow in MEMS devices, the incompress-
ible Navier—Stokes equations are still being adopted to describe the flow be-
havior.?*?> For flow in the laminar flow region described by the Navier-Stokes
equation, one can employ an apparent viscosity, 1., instead of the fluid viscosity,
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1, together with a no-slip wall boundary condition to simulate the flow fields. The
resulting numerical results are in agreement with experimental observations. To
simulate the flow field in the turbulent flow region, a feasible method is to
adopt the concept of turbulent viscosity, p;. This term is introduced into the
averaged Navier—Stokes equations in order to predict the averaged turbulent
flow field, where the turbulent viscosity is calculated from turbulence mod-
els. However, as most of the models are developed for macro-scale flow, there
are only a few turbulence models available for turbulent liquid flows at the
micro-scale.

In this chapter, based on the observations of the above-mentioned references,
we assume that the flow becomes fully developed turbulent flow in micro tubes
when Re is greater than 1000, and that the flow features can be predicted using
turbulent flow theory. A one-equation turbulence model is introduced and modi-
fied with consideration of a micro-dimension flow feature in order to predict the
low turbulent water flow in micro-tubes. Comparison studies between the present
numerical calculations and experimental measurements will also be carried out.
The numerical results obtained will add to our physical understanding of the lig-
uid flow behavior in micro devices.

4.2. Modeling and Simulation of Gaseous Micro-Flow

4.2.1. The Molecular Block Direct Simulation Monte Carlo (MB-DSMC)
Method

In a continuous medium model, the gas consists of the “fluid points” of continuous
distribution. Such a “fluid point” must not only be small enough macroscopi-
cally such that it can be treated as a point without volume, but also sufficiently
large microscopically so that statistical treatment can be performed within it.
The velocity of the “fluid point” is the mean velocity of molecules within it.
This can then be treated a large molecular block. An important advantage
of this model is that it now becomes unnecessary to account for the thermal
motions of molecules when describing and/or simulating the flow field, and the
numerical results obtained through Navier—Stokes equations have no statistical
error. Although there is no direct relationship between the continuous medium
(large molecular block) model and the DSMC model, a conceptual inspiration
can be drawn, and in the following, a small molecular block model will be
presented.



New Approaches for the Simulation of Micro-Fluidics in MEMS 127

4.2.1.1. Basic Model and Assumptions

Based on the theory of molecular gas dynamics, the instantaneous velocity V of
a molecule comprises two parts:

V=Vo+V “.1)

where V| is the stream velocity (or statistical mean velocity) and V'’ the random
thermal velocity with zero mean vector. From the Maxwellian distribution, the
random thermal velocity is proportional to the most probable molecular thermal

velocity
[2kT
V' oy — 4.2)
m

where k is the Boltzmann constant, while 7" and m are respectively the macro-
scopic temperature and the mass of molecule. It is well known that the statistical
error of the stream velocity is a non-zero mean value of the random thermal ve-
locity. Thus the statistical error of the stream velocity, § Vg is also proportional to
the most probable molecular thermal velocity for a given sample size

SV o 1/y. (4.3)
m

Equation (4.3) indicates that if the molecular mass is enlarged by a factor of «
the statistical error of velocity will contract by 1/« for the given temperature and
sample size. Following this line of thought, the following molecular block model
is presented:

(1) It is assumed that o real molecules in a small volumetric region are taken as
one ‘big molecule’ or ‘molecular block’, and its instantaneous velocity also
comprises two parts

V,=Vo+V, (4.4)

From the kinetic theory of a system of particles and Eq. (4.1), the mass of
the ‘big molecule’ as well as the two velocity terms on the right-hand side of
Eq. (4.4) can be written as

my, = am 4.5
1
Vi =— ‘. .
b=-2.V (4.6)
«
(2) It is assumed that the random thermal velocity V possesses a similar prob-

ability distribution function as that of V'’ except that the mass term in the
distribution function is now .
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(3) The reference diameter and the number density of the “big molecule” are
determined based on the two conditions: i) the mean free path of the ‘big
molecules’ is equal to that of the actual gas molecules; and ii) the macroscopic
viscosity of gas remains unchanged.

The first requirement in the third assumption ensures the slip velocity of gas flow
on the solid wall remains unchanged after using the ‘big molecules’, while the
second requirement is meant to keep the macro-dynamic features of flow field
unchanged.

From molecular gas dynamics, the mean free path A and dynamic viscosity
of gas molecules are (from Egs. (4.65) and (3.61) of Bird?)

1 T w—1/2
QM S 47
\/iﬂdfefn (Tref> ( )

_15v/mmk(4km)* /2T
n= ro/2 - CU)O'TJefCQw_l

r,ref

4.8)

where w (1/2 < w < 1), is the viscosity index, n the number density of the
gas molecules, I' the gamma function, T the reference temperature (273 K) of
the gas, and o er, Cife}l and d respectively the total collision cross section,
relative thermal velocity and diameter of the gas molecule at Ti.;. Note that w is
1/2 for the hard sphere model of the molecule, and varies accordingly with the
type of gas for the variable hard sphere (VHS) and the variable soft sphere (VSS)

models. From Egs. (4.60) and (4.61) of Bird,? it can be deduced that

Cwal _ ﬂ—dgef 4kTr3f v
It T T(52 —w) \ m '

4.9)

Substituting Eq. (4.9) into Eq. (4.8), the dynamic viscosity of the gas is obtained
as

60vVmk/1Tyet < T ) . 4.10)

=7 "20)6 — 20) Ve, \Trer

ref

Equations (4.7) and (4.10) indicate that for a given temperature, the mean free
path and the dynamic viscosity of the gas molecules are dependent on the refer-
ence diameter, the number density and the molecular mass.

The third assumption ensures that the mean free path and the dynamic viscos-
ity of the ‘big molecule’ are similar to those of the actual molecules in both the
value and the function relationships, which depend on the mass and reference di-
ameter. From Eqgs. (4.7) and (4.10), the reference diameter and the number density
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of the ‘big molecule’ can be written as

i rot = M A dyet (4.11)
n

=, 4.12

ny, NG (4.12)

Substituting Egs. (4.5), (4.11) and (4.12) into Egs. (4.7) and (4.10), we obtain

1 (T)w 1/2_ 1 (T>w 1/2_)\ @13
\fﬂ'drefn ref N \/iﬂd%mefnb Tref P ’

60v/mky/Tret T\
e A () o

ref

60\/mnky/Tret ( T )w B
(7= 20)(5 — 20) /72, s S

where A\ and p, are respectively the mean free path and the dynamic viscosity of
the ‘big molecules’.

ref

4.2.1.2. A Discussion on the Macro Quantities

Equation (4.12) indicates that the number density of the ‘big molecule’ is equal
to that of the real molecule divided by +/« rather than « even though the mass
of a ‘big molecule’ is « times that of a real molecule. Hence, the present ‘big
molecule’ should be regarded here as a virtual molecule by which the statistical
error in numerical simulation may be decreased. It is different from a single real
large molecule of the same mass. If the number density of the ‘big molecule’, n,
is determined simply through the number density of the real molecules divided by
«, then the mean free path and the dynamic viscosity of the ‘big molecules’ will be
different from those of the real molecules, and the physical features of flow field
described by these ‘big molecules’ will then be different from those described by
the actual real molecules.

After obtaining the mass and number density of the ‘big molecule’, the macro-
scopic density of the gas can be calculated by

nyMmy
= . 4.15
p Ja (4.15)
Similarly, the other physical quantities of the gas flow can also be expressed
through the features of the ‘big molecule’, such as the stream velocity

Vo=V, (4.16)
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where the overbar denotes the statistical mean. From the second assumption, the
thermal velocity of a ‘big molecule’ can be written as

2kT
Vi oy o= 4.17)
mp

'V/
Vi, = —. 4.18
b \/a ( )
According to the definitions of the temperature and the stress tensor in molecular
gas dynamics

and from Eq. (4.2), we have

m my
(V2 =

V=5
P =nmV'V’ = \/Jan,m, V|, V}, (4.20)

T— Vi) (4.19)

As the statistical error of stream velocity is equal to the non-zero mean thermal
velocity of the samples, Eq. (4.18) thus indicates that in the case of the same sam-
ple size, the statistical error §Vg 5 of the molecular block model will be smaller
than that of the real molecular model §V

0V 1 J2kT
0 ——

Va yaV o m

This implies that if 100 real molecules are taken as a molecular block, the corre-

sponding statistical error will reduce by 90%.

§Vop = (4.21)

4.2.1.3. Molecular Block DSMC Algorithm

In the original DSMC method, the particles tracked in the simulation process form
the representation of the gas molecules. Each representation has the same mass
and reference diameter as the real molecule. We have discussed in the previous
section that the real molecules can be replaced by molecular blocks (or virtual ‘big
molecules’) under certain assumed conditions. The various formulae expressed
through the molecular blocks, such as Eq. (4.15) for the density, Eq. (4.16) for
the stream velocity, Eq. (4.19) for the temperature, and Eq. (4.20) for the stress,
remain unchanged in form except that there are now factors of 1/4/a and « in
Eqgs. (4.15) and (4.20), respectively. According to the present model, a molecular
block DSMC (or MB-DSMC) method can thus be easily formulated by using these
molecular blocks to replace the particles in the original DSMC method. In fact,
the steps of the MB-DSMC method are similar to those of the original DSMC
method with the exception of a few modifications.
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In the first modification, the number of real molecules, «, in a molecular block
must be determined before performing the DSMC computation. If we wish to
reduce the statistical error of the original DSMC method by 90%, « can be taken
as 100. After deciding on «, the molecular mass, reference diameter and number
density parameters (m, d and n) in the original DSMC code must be replaced by
mp, dprer and np which have been respectively defined in Egs. (4.5), (4.10) and
(4.12). In the second modification, the original time step should also be modified.
The present time step is determined by the following equation

Ap— BT (4.22)

V2kT,/m
where Ax denotes the cell width and T, is the characteristic temperature of the
flow field. This time step is larger than that used in the original DSMC method.

In the DSMC method, the macroscopic physical quantities in a cell are derived
by taking the various statistical mean values of the samples. These samples are the
instantaneous velocities of simulated particles in the cell obtained at different time
steps. If the time step is too large, the particles and their velocities will change too
fast in one time step, and this will result in large scattering in the distribution of
the samples in velocity space, causing large statistical scatter and computational
errors. If the time step is too small, both the collision pairs inside each cell and the
number of particles entering and leaving the cell will be deduced in one time step
leading to a higher degree of correlation among the samples. Bird? has suggested
that the flow be sampled after every four time steps and that each time step is taken
to be 25% of the cell width divided by the typical particle velocity. As the thermal
velocity of the molecular block is less than the molecular thermal velocity, the
present time step can thus be longer.

The choice of the collision pairs of particles in a cell has a direct effect on the
results as the sample size of the DSMC method in the cell is the sum of particles
in the finite number of time steps. For the present MB-DSMC method, according
to the “no-time-counter” (NTC) scheme proposed by Bird,? the probable collision
pairs in the cell in one time step is

Sp = ngNbFNb(UT,bV},b)max% (423)
where oy, and V;y, are the collision area and relative speed between two molecular
blocks. The volume of the cell is denoted by V. and IV, denotes the number
of simulated molecular blocks in the cell, and each simulated molecular block
represents Fyp molecular blocks. Finally, in the present method, in place of the
original DSMC equations, Egs. (4.15), (4.19) and (4.20) must now be used instead

to calculate the density, temperature and stress of the gas.
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It can be seen from this discussion that the computational source code for
the present MB-DSMC method can be easily obtained by making very simple
modifications to the original DSMC code. As the primary steps are similar, the
CPU time required by the MB-DSMC method is almost the same as that of the
original DSMC method.

4.2.2. MB-DSMC Simulation Results for Gaseous Flows

The preceding discussions indicate that although there is fundamentally no major
difference between the present algorithm and the original one, the statistical error
of the stream velocity with the present algorithm decreases significantly while the
mean free path and the dynamic viscosity remain unchanged. On the other hand,
the present method is also able to simulate the heat transfer characteristics. As the
MB-DSMC method is based on the three assumed conditions mentioned earlier,
it is important to check their correctness.

For these verifications, a micro Couette flow, a micro plane Poiseuille flow
and the heat transfer between two plates (see Fig. 4.1) are simulated using both
the MB-DSMC and original DSMC methods, and the results are then compared.’!
For the one-dimensional micro Couette flow and heat transfer without convection,
the two plates are taken to be 1 pum apart, and the computational flow domain
is divided into 100 cells. For the micro Poiseuille flow between two plates, the
domain size is 1 gum x 20 pm and is divided into 25 x 500 cells. The gases used
here are monatomic, such as argon, krypton and helium.

4.2.2.1. Decrease in Statistical Error

Figures 4.2, 4.3 and 4.4 show respectively the comparisons of the velocity distri-
butions of the Couette flows for three different gases (xenon, argon and helium),
obtained by the analytical solution, the original DSMC method and the MB-
DSMC method using different numbers of molecules in the molecular block.’!
The results are obtained under the condition that the temperature of the two plates
is constant at 295 K. The sample size used is taken to be 2 x 10 for both the MB-
DSMC and the original DSMC methods. As the characteristic velocity is small (2
m/s), which also implies that the Mach number is very low (less than 0.006), the
effects of the change of stream velocity on the temperature field is thus small and
the temperature in the gas flow can therefore be assumed to be constant. In this
case, the exact solutions of velocity distributions can be obtained using Navier—
Stokes equations with consideration for velocity slip boundary conditions. The
slip velocity condition used here is of the form presented by Pan et al.??
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Fig. 4.1. The three cases studied: (a) micro-Couette flow; (b) temperature distribution in micro-
channel; and (c) micro-Poiseuille flow.

It is clearly observed from Figs. 4.2 to 4.4 that the statistical error of the veloc-
ity from the original DSMC method is so large compared to the practical stream
velocity values (from analytical solution) that the numerical signal almost loses all
its physical meaning. For the present method, when « is taken as 25, the decrease
in the statistical error is immediately obvious. With the increase of o to 100, the
velocity distribution curves come very close to those of the exact solutions for all
three the three gases considered. As « is further increased to 1000, the numeri-
cal solutions are almost coincident with the exact solutions on all the grid nodes.
These results verify the error prediction of Eq. (4.21), namely that when a molec-
ular block contains « real molecules, the statistical error of the stream velocity
will be reduced by 1/+/c.
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Fig. 4.2.  Velocity distribution for helium — a comparison.

From the perspective of reducing the statistical error of the velocity, it would
seem good to employ a very large value of o when applying the MB-DSMC
method. However, we find that as « is increased to 1000 and beyond, the pre-
cision of the velocity does not improve further. It is thus not necessary to employ
a very large value of « in the MB-DSMC method, and the present numerical sim-
ulations show that a good choice for « to be set at is around 100.

4.2.2.2. Consistency of the Mean Free Path

Equation (4.13) indicates that the mean free path of a molecular block must be
equal to that of a real molecule. This is very important for ensuring that the nu-
merical analysis is capable of correctly describing the slip feature of the real gas
velocity on the wall. As Eq. (4.13) is based on the principles of molecular gas dy-
namics as well as the three assumptions of the molecular block model, it becomes
necessary to verify the consistency or constancy of the mean free path obtained by
the MB-DSMC method. Based on the theory of molecular gas dynamics, the mean
free path of a molecule is defined as the mean thermal speed of the molecule di-
vided by the mean collision frequency. If this definition is explicitly used to carry
out the verification, the computational effort will be extremely large because of
the need to calculate the statistical mean thermal speed and the average collision
frequency of a molecule under a few scenarios. Fortunately, instead of this form
of direct verification, an indirect way can be used.
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Fig. 4.3.  Velocity distribution for argon — a comparison.

As the slip boundary condition of the velocity is a linear function of the mean
free path of the molecules (Pan et al??), the exact solutions obtained from solving
the Navier—Stokes equations with this condition will correspondingly change with
the mean free path a well. Therefore, if the mean free path of the molecular
block model is not equal to that of real molecule model, the velocity distribution
curves obtained by the MB-DSMC method will deviate from the lines described
by the exact solutions. Figures 4.2 to 4.4 show that when « is large enough (o« >
100), the velocity distributions from the present method, for all the three gases
considered, are very close to the exact solutions. This is a clear indication that the
MB-DSMC method established here does not alter the mean free path of the real
molecules.

For the discrepancy of the velocity distributions from the exact solutions in
the case of low «, this can be mainly attributed to the statistical error originating
from the MB-DSMC method. Close examination of the MB-DSMC method with
the DSMC method will reveal that the latter is a special case of the former, with
a = 1. Hence, as « decreases, the statistical error of the velocity computed by
the MB-DSMC method increases. In fact, it can be observed from Figs. 4.2 to 4.4
that the results from the original DSMC method display quite large discrepancies
relative to the exact solutions. Thus, the discrepancy of the velocity distributions
in the case of low a does not imply that the mean free path of a molecular block
deviates from that of a real molecule.
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Fig. 4.4. Velocity distribution for xenon — a comparison.

4.2.2.3. Consistency of the Dynamic Viscosity

Analytical solutions for the pressure distribution of micro Poiseuille flow along
a micro-channel have been obtained by Arkilic et al.>* using the dimensional
analysis and perturbation calculus methods. This pressure distribution is related to
the inlet and outlet pressures and, by means of the same analysis, one can deduce
the pressure distribution corresponding to a given average inlet velocity and inlet
pressure as

2 —
p )\i )\i 24,uUi x
L= 602 1 A = 424
o 60H+\/< +60H> ol 0 ( )

where p and p; are the respective pressures at x and the inlet, y is the dynamic vis-
cosity, \; and U; the mean free path and the average velocity of the gas molecules
at the inlet, H the height of the channel, and o the coefficient equal to 1.1254 (Pan
et al3?).

To verify the consistency or constancy of the dynamic viscosity of the present
model and method, the micro Poiseuille flow for argon is simulated using both
the MB-DSMC and the original DSMC methods, and the results are plotted in
Fig. 4.5. It can be observed that though the pressure distributions obtained by
the two numerical methods are different, the differences between them are very
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Fig. 4.5. Pressure distribution in micro-Poiseuille flow — a comparison.

small. The pressure losses obtained from the two numerical methods are slightly
higher than that of the analytical solution, and this is probably due to the neglect
of higher-order terms in Eq. (4.24) in the analytical dimensional analysis. The
comparison of these three sets of results indicates that the present molecular block
methodology does not alter the dynamic viscosity of gas.

However, Fig. 4.5 also reveals that the pressure distribution along a micro-
channel is almost linear even though Eq. (4.24) describes the nonlinear relation-
ship of the pressure with x. It indicates that in the case of very low speed, the
constant pressure gradient can still serve as a good approximation for micro-
channel slip flow. Physically, this may be due to the rarefaction of gas which
neutralizes its compressibility. The nonlinear feature of the pressure change of
slip flow through a micro-channel thus presents itself noticeably only in cases of
high stream velocities.

4.2.2.4. Validation of Temperature Field Simulation

In many microdevices, heat transfer is a primary physical phenomenon of con-
cern. Theoretically, the MB-DSMC method can be used to simulate this physical
phenomenon because no requirement has been made for the temperature of the
gas in the process of formulating this method, and the computational steps are in
fact almost the same as those of the original DSMC method. However, as the ‘big
molecule’ model is not the actual molecular model, we have to check whether
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Fig.4.6. A comparison of temperature distribution (for argon) between two plates by the MB-DSMC
method and the original DSMC method, with plate temperature differences of (a) -20°C; and (b)
-50°C.

any discrepancy arises between the temperature fields obtained by both these
methods.

Figure 4.6 shows the temperature distributions of argon between two infinitely
long plates obtained by the MB-DSMC and the original DSMC methods.?' As the
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plates are infinitely long, the convection of the gas is not considered. In Fig. 4.6(a),
the temperatures of the two plates are 275°C and 295°C, while the correspond-
ing temperatures for Fig. 4.6(b) are 275°C and 325°C. It can be clearly observed
that the temperature jumps between the gas and the wall computed by the two
methods are very similar, both qualitatively and quantitatively. The temperature
distributions in both cases obtained by the two methods are both nonlinear, es-
pecially near the plates. Although the temperature distribution curves by the two
methods do not exactly coincide with each other, the discrepancy between them is
very small.

Thus, for the simulation of the temperature field, it can be inferred that the
MB-DSMC method has similar accuracy as the original DSMC method.

4.2.3. Conclusion

Conventional DSMC methods can incur large statistical errors for low-speed gas
flows. In most micro-devices, the gas flows are indeed of low velocity (<3 m/s)
and it was thus necessary that some modifications be made to the conventional
DSMC method for this range of velocities.

In this section, a molecular block, or ‘big molecule’ model, is developed to
replace the actual molecular model. The mass of the ‘big molecule’ is the sum
of the actual mass of molecules contained within this molecular block, while
the reference diameter and the number density of the ‘big molecule’ are deter-
mined through conditions that the mean free path and the dynamic viscosity of
the ‘big molecule’ are similar to those of the actual molecules. The form of
the formulae used for calculating the stress and density of gas flow in this new
model are similar to those in the real molecular model, and differences are only
due to a constant coefficient. For temperature calculations, the formula remains
unchanged.

These molecular blocks were then used to replace the particles in the DSMC
method, and a MB-DSMC method, the computational process of which remains
largely unchanged, was formulated. As the mass of the molecular block is larger,
the statistical error of the MB-DSMC method tends to be significantly smaller. In
fact, present numerical verifications have shown that when the molecular number
in a molecular block is taken to be 100, the obtained velocity and pressure dis-
tributions are in excellent agreement with the exact solutions, while the statistical
errors have reduced by 90%. In addition, simulations of the temperature field re-
vealed that the MB-DSMC method has similar accuracy as the original DSMC
method.
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4.3. Modeling and Simulation of Liquid Micro-Flow

4.3.1. A Modified One-Equation Model for Micro-Scale Liquid Flow

In tensor notation, the incompressible, two-dimensional, steady, time-averaged
Navier—Stokes equations of momentum and continuity of fluid flow are

Ou; 0 0 Ou;  Ouy
Y0z T pom; (p * pk) O { v ( * 3%” (429
U

=0 (4.26)

ox;

where u; is the velocity component, k the turbulent kinetic energy, p the pressure,
p the density; v the kinematic viscosity and 1, the turbulent kinematic viscosity,
which is determined from the turbulence model.

Wolfshtein’s one-equation turbulence model®® is developed from conventional
fluid mechanics and is widely used in macro-flow applications. Considering its
ability to handle internal flow, this one-equation turbulence model is adopted for
the present study on flows in micro-tubes. However, the model has been modified
to cater for micro-flow characteristics.

The turbulent kinetic energy k is obtained from the modeled kinetic energy
transport equation

ok _ ou; [ Ou (9uj 0 v ok
w% = l/taxj (axj + ari) + oz, [(V—F Uk) 5%1} € 4.27)

where ¢ is the dissipation rate of turbulent kinetic energy and

= C.kY?, (4.28)

e = Cpk®?/Ip (4.29)

l, = Cy[1.0 — exp(—A,Ry)] (4.30)
Ip = Ciy[1.0 — exp(—ApRy)] (4.31)
Ry, = kY?y /v (4.32)

where C,, = 0.09, C} = 50,73/4, k= 0.42, Cp = 1.0, Ap = 0.2, y denotes the
vertical distance to the wall.?

In the original Wolfshtein macro-flow model, A,, is a constant value of 0.014.
However, in micro-tubes, it is found that with the decrease of the tube diameter,
A,, departs from its macro-flow value. For micro tubes with diameters less than
100 pm, A,, has a constant value of 0.004; while for those with diameters larger
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than 130 p4m, A, recovers its value of 0.014. For those diameters between 100 and
130 pm, A, can be interpolated, see Fig. 4.7. More experimental measurements
in the transit region between 100 and 130 um are required in order to obtain a
more accurate formula for this region.

Fig. 4.7. Variation of A, with micro tube diameter.

From the variation of A,, with the micro-tube diameter, it may be concluded
that the micro-flow effect should be considered for micro-tubes with diameters
less than 130 pm.

For a two-dimensional steady flow, the momentum equation, Eq. (4.25),
the continuum equation, Eq. (4.26), and the kinetic energy transport equation,
Eq. (4.27) can be written as

B) d B
9z, By, (W) = 5~ (m;) + S, (4.33)

where u; is the velocity component and ¢ is a general dependent variable, which
stands for u, v and k respectively. I, is the diffusive coefficient and S, represents
all source terms which cannot be expressed as either convection or diffusion. Us-
ing the control volume technique, Eq. (4.33) is integrated over a control volume, V

j{V/ [i(u@)—i(rwg(gf)Jr;y( 0) — a% (F“"ay>] 7{/5 qv.

(4.34)
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Applying Gauss’ theorem, the volume integral on the left-hand side is expressed
in terms of a surface integral and Eq. (4.34) can be rewritten as

Fo—Fy+F,—F,=8,-AV (4.35)

where the subscripts e, w, n and s indicate the eastern, western, northern and south-
ern faces of the control volume, respectively. With the approximations for con-
vection, diffusion and the source terms, Eq. (4.35) can now be rearranged as?’?8

Y afer =) afei+ S (4.36)
where the o are coefficients and
af =) af - Sf (4.37)

Equation (4.36) can be easily solved by a ‘line-by-line’ iterative method, and the
present work adopts the SIMPLE (semi-implicit method for pressure-linked equa-
tions) algorithm?® to calculate the pressure field.

The iterative solution is considered to have converged when the sum of the nor-
malized absolute residuals across all nodes is less than a prescribed small value

>

where ¢y, is the value of the variable at the inlet boundary. In the present compu-
tations, € is set at 1.0 x 1076,

n n—1
Pij — Pij
Sain

<e (4.38)

4.3.2. Simulation Results for Liquid Flow in Micro-Tubes

The grid independence of the results were first examined before further calcula-
tions were carried out. Fully developed laminar flows in a circular tube with diam-
eter d and calculation domain of d x 10d were repeatedly calculated with different
grid distributions and grid numbers. The numerical results were compared with
the analytical solution of laminar flow in a circular pipe

~1dp d? 9

It was found that a 30x5 grid provides very good accuracy with velocity errors of
less than 0.01% for laminar liquid flow.

Following the grid independence test of laminar liquid flow, a grid indepen-
dence test for turbulent liquid flow calculations was also carried out. The final
grid chosen for turbulent flow calculations was 50x 5, as depicted in Fig. 4.8. Due



New Approaches for the Simulation of Micro-Fluidics in MEMS 143

[ | ||‘||H|||‘|{ulll
[T H‘

Rt
|

Fig. 4.8. A 50x5 grid system.

to the axisymmetric geometric feature, only half of the domain is meshed and cal-
culated. It should be noted that more grid lines are distributed near the solid wall
of the micro tube in order to capture the expected rapid change or much steeper
gradient of the flow field. It should also be pointed out that the present calcula-
tion is performed for fully developed flow and periodic boundary conditions are
defined on the inlet and outlet boundaries, and it is therefore more than sufficient
to use five nodes along the flow direction. In this study, the Re range considered
is 1000 — 2000. In addition, a non-slip velocity boundary condition is used on the
wall, and a symmetric boundary condition is applied about the axis.
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Fig. 4.9. The cross-sectional velocity profile, d=50 pm.

The cross-sectional velocity profiles, u (normalized by the mean velocity, ., ),
of turbulent flows in micro-tubes of diameters 50, 63.5, 80, 101, 130 and 254 ym
are plotted in Figs. 4.9 to 4.14 for various Re values, together with the analytical
solutions of the laminar liquid flow.>® It is clearly observed that at lower Re
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Fig. 4.11. The cross-sectional velocity profile, d=80 pm.

values, the velocity profiles of turbulent flow are very close to the laminar flow
velocity profile. This is probably because the turbulence intensity is low at low
Re values. However, with the increases of Re, the velocity distributions become
much flatter, approaching those of typical velocity profiles of the high Re turbulent
flows. This phenomenon is similar to the flow characteristics observed in macro-
tube flows. Comparing these six figures, it also noted that, at the same Re value,
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Fig. 4.13. The cross-sectional velocity profile, =130 pm.

a flat velocity distribution is formed much earlier in the micro-tube with a larger
diameter than that with a smaller one.

Figures 4.15 to 4.20 show the cross-sectional profiles of the non-dimensional
turbulent kinetic energy, k/ U,Zn, of the micro-tube at various Re values and diam-
eters.’ The values of the turbulent kinetic energy of a relatively larger micro-tube
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Fig. 4.14. The cross-sectional velocity profile, =254 pm.

(d =130 pm or d = 254 pm) are much higher than those of smaller micro-tubes
at the same Re value. This implies that a smaller micro-tube has a lower tur-
bulence value at the same Re value even though its transition from laminar to
turbulent flow occurs earlier than that of a macro-scale tube. Thus, the smaller
the diameter of the tube, the lower the turbulent kinetic energy, at the same Re
value. Comparing these six figures, it can be observed that there are differences
in the turbulent kinetic energy distribution at the near-wall region. For the smaller
tubes, from the wall to the axis, the turbulent kinetic energy starts from zero but
increases extremely steeply to its first maximum value at a position still very near
the wall. It reaches its second maximum value at /d ~ 0.5. The first maximum
value is significantly higher than the second maximum value. However, for the
relatively larger tubes (d = 130 yum and d = 254 pm), at high Reynolds numbers,
the first maximum value near the wall is significantly lower than the second max-
imum value. Furthermore, the second maximum value is reached at r/d ~ 0.8. In
the cases considered, the turbulent kinetic energy drops to its lowest value at the
centre of the tube. This trend is similar to that observed in macro-tube turbulent
flows.

The pressure gradient along the micro-tube can be calculated in a straightfor-
ward manner from dp/dl = —(pin — Pout ) /!, Where py, is the pressure at the inlet
section, poy the pressure at the outlet section, and / the length of micro-tube. Fig-
ure 4.21 compares the present predictions with the experimental measurements
against Re for various micro-tube diameters. It can be clearly observed that as
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Fig. 4.15. The turbulent kinetic energy profile, d=50 pm.
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Fig. 4.16. The turbulent kinetic energy profile, d=63.5 pm.

Re increases, the pressure gradient steadily increases in an almost linear manner.
It can be seen that the present predictions are in good agreement with the exper-
imental measurements.> From these comparisons of the numerical results, we
may deduce that the present refined one-equation turbulent model, with its modi-
fications, is suitable for turbulent flow calculation in micro-tubes, and can provide
very good predictions.
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Fig. 4.18. The turbulent kinetic energy profile, d=101 pm.

4.3.3. Conclusions

In this section, fully developed turbulent liquid flow in micro-tubes at various
Reynolds numbers and micro tube diameters are numerically simulated using the
control volume method with a modified one-equation turbulence model, and it was
found that this refined model can provide a good prediction for turbulent flows of
water in micro-tubes.
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Fig. 4.20. The turbulent kinetic energy profile, d=254 pm.

At lower Re values, the cross-sectional velocity profile of turbulent liquid flow
is not very different from that of laminar liquid flow. However, with an increase in
Re, the velocities gradually approach typical turbulent liquid flow profiles. Micro-
tubes with larger diameters have much flatter velocity profiles and higher turbulent
values at the same Re value, compared with those tubes with smaller diameters,
even though the transition from laminar to turbulent flow occurs earlier in micro-
tubes (as compared to macro-scale tubes). In other words, micro-tubes with larger
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Fig. 4.21. Pressure gradient at different Re values — a comparison with experimental data.??

diameters will have much stronger turbulence effect than that those with smaller
diameters.

The pressure gradient increases with the Re value. The tubes with smaller
diameters require high pressure gradients to maintain the same average velocity.
For turbulent flow in micro-tubes with diameters larger than ~130 pm, the flow
can be simulated using the conventional one-equation turbulence model; while
for turbulent flow in micro-tubes with diameters smaller than ~100 pm, the flow
has to be calculated using the modified one-equation turbulence model in order
to obtain a good prediction. In other words, micro-flow phenomena should be
considered for micro-tubes with diameters smaller than 130 pm.
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Providing an estimate of gas damping in MEMS is a complex task since MEMS
are fully three dimensional micro-structures which cannot in general be reduced
to simple 1D or 2D models and since the gas cannot be treated as a continuum
medium at the microscale. This issue is here addressed, focusing on high pres-
sure applications, by means of Integral Equations and Fast Solvers implementing
a linear, quasi-static, incompressible Stokes formulation with slip boundary con-
ditions. The tools developed are applied to the analysis of two inertial sensors:
a biaxial accelerometer and an academic Tang resonator. Numerical results are
validated with experimental data. Extensions to high working frequencies and
low pressures are discussed.
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5.1. Introduction

Estimating mechanical dissipation in air-packaged MEMS (micro-electro-
mechanical systems) seems, for several reasons, to be an ideal application for the
now maturing fast integral equation methods.>~"-9-11:1427:4146 Rirt the microme-
chanical structures, typical examples of which are the the biaxial accelerometer
(Fig. 5.2) and the Tang resonator (Fig. 5.8), are innately three-dimensional and
too geometrically complicated to analyze analytically. Therefore, a numerical
approach is needed. Second, the mechanical dissipation is primarily due to pres-
sure and drag forces generated by the air surrounding the mechanical structure.
Hence, even though the exterior domain is effectively infinite in extent, the only
quantities of interest are velocities and forces on the structure surface. Surface-
only integral equations, if they can be formulated, have a dimensional advantage
over volume methods in such a setting. Third, the velocities and displacements
for many MEMS of interest are small enough, and the surrounding air is vis-
cous enough, that the flow can be described by a spatially invariant linearization.
Therefore, surface-only integral equations can be formulated.

For the above reasons, there have been a number of experimentally-verified
successes in evaluating gas damping for air-package MEMS using fast inte-
gral equation solvers, though considerable algorithmic development was re-
quired.'323243645 Much of the past effort was on improving the efficiency and
robustness of quasi-static-Stokes based fast solvers, but now the focus has shifted
to addressing more challenging physics. Newer MEMS use higher operating fre-
quencies and finer dimensions, and therefore the effects of unsteady flow, gas
compression, and rarefaction can no longer be ignored.

In the next two sections of this chapter, we review many of the issues associ-
ated with integral formulation, discretization and fast solution of the incompres-
sible, quasi-static Stokes equations. In Sec. 5.3 the formulation is adapted to slip
boundary conditions and validated with the experiments performed on two iner-
tial resonators. Section 5.4 describes methods for including unsteady effects and
presents numerical results for a classical Tang resonator. Finally, Sec. 5.5 proposes
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a simplified “corrected viscosity” approach for estimating damping at low pres-
sures which proves to be effective for the specific inertial MEMS addressed in this
chapter and anticipates an issue discussed at length in Chapter 2.

5.2. Classical Quasi-Static Stokes Flow

The most mature and best validated of the fast solvers for estimating gas damping
in MEMS are based on solving integral formulations of the 3D incompressible
quasi-static Stokes equations.'3?43%45 For quasi-static Stokes to be a good model
of the gas surrounding a micromachined structure, the gas should be incompress-
ible, sufficiently viscous, moving slowly, and not be too rarified. This list of
assumptions hold, at least loosely, for air-packaged MEMS like arrays of electro-
statically positioned micromirrors,* inertial sensors like the biaxial accelerometer
of Fig. 5.2, and structures like the Tang resonator of Fig. 5.8. In this background
section the quasi-static Stokes model is given, and the standard integral formu-
lation and the common numerical discretizations described. In later sections, the
quasi-static Stokes assumptions will be revisited, and techniques for extending the
model to include the effects of unsteady flow, compression, and rarefaction will
be described.

5.2.1. Governing Equations

For an isotropic Newtonian fluid, if the fluid velocity, u, is divergence-free, then
the relation between u and the stress tensor, o, is given by47

o(x) = —p(x)L + 7 (Vu(x) + V'u(x)) 5.1

where 7 is the fluid viscosity and Vu denotes a matrix of velocity partial deriva-
tives whose elements are given by

ou;
(Vu), ;= oz,
The quasi-static Stokes equations are derived from combining incompressibility,
conservation of mass, and conservation of momentum yielding the well-known
quasi-static Stokes equations

Vp(x) —nAu(x) =0 V-ou(x) =0 in Q (5.2)

where (2 denotes the volume occupied by the fluid.

The standard boundary conditions for the classical quasi-static Stokes equa-
tion are no-slip conditions. In a later section, generalizations of the no-slip bound-
ary condition will be used to model rarefaction effects. For the case of several
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interacting micromachined structures surrounded by fluid, the no-slip condition
implies that for each structure surface point, the fluid velocity must match the
structure’s velocity. More precisely, for the MEMS problem, the domain of
the fluid, €2, is defined as the domain exterior to the micromachined structures.
For each point x on surface S, where S is defined to be the union the structure
surfaces,

u(x) = g(x) (5.3)
where g(x) is the velocity of the micromachined structure at point x. Note also
that typically the velocity distant from the micromachined structures is assumed
to approach zero. Nonzero background velocities can be treated by perturbation.

Given u which satisfies Egs. (5.2) and (5.3), the vector force density the struc-

ture exerts on the fluid can be computed from the product of the stress tensor with
the surface normal pointing out of €). That is, at each structure surface point x,

t(x) = o(x) - n(x)
where n(x) is the surface normal pointing outside the fluid domain. Note that t is
the negative of force per unit area exerted by the fluid on the structure surface. In
a modest abuse of terminology, we refer to the vector t as a traction force density
even though it contains components which act in a direction normal to the surface.

5.2.2. Integral Formulation

Either Greens identities** or Lorentz reciprocity*? can be used to derive an integral
formulation that relates the Stokes flow generated traction forces to the surface
velocities. Specifically, if x is a point on a smooth region of in .9,

5u6 = [ (V) 4y) ~ ) ny)] uw)bds, G
S

where r = x — y, the kernels (also referred to as Greens functions) V and IC are

given by
1 5zk TiTk
Vi =— | —
(r) 8mn ( r + r3 >

31
Kigr(r) = =5 rifqT

and the integrals of the strongly singular kernel, /C, should be interpreted in the
Cauchy principal value sense. The kernels V and IC are often interpreted as gen-
erating the velocities associated with stokeslet and stresslet point sources,** but
these kernels also coincide with the Kelvin kernels used in the displacement equa-
tion for incompressible elasticity.!’
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Combining the no-slip boundary conditions with Eq. (5.4) yields a first kind
integral equation which relates the known structure velocities to the unknown fluid
traction forces

5800 = [ (V) 4y) ~ [K()-n)] g0} AS, 59)

In the common case where the structure velocities correspond to rigid body mo-
tion, the second integral in Eq. (5.5) vanishes, resulting in

%g(x) - /S V(r) - 6(y)dS,. (5.6)

The formulation in Eq. (5.6) is common in the literature on integral equations for
Stokes flow, but there are alternatives that can have superior properties. For exam-
ple, the above formulation is a vector integral equation with matrix kernels that are
non-diagonal. In two dimensions, more efficient alternatives have appeared.® Of
more immediate concern is the fact that Eq. (5.6) does not have a unique solution,
an issue that will be addressed in the next section.

5.2.3. Null Space Problem

The differential form of Stokes equation (5.2) only involves the gradient of the
pressure and is therefore insensitive to spatially constant shifts in pressure. Since
the pressure is a component of t, and t is the unknown in Eq. (5.6), Eq. (5.6)
cannot have a unique solution. The matter is even more problematic when the
surface S corresponds to IV unconnected structures. In that case,

e = [ Vi) tr)as,
has null space NV(V) of dimension N whose basis is given by

{n(x)’ x € 5" 1<a<AN. (5.7)

0 elsewhere ’

Many techniques exist for dealing with the null space of Eq. (5.6).>* Unfortu-
nately, standard BEM approaches are ill-conditioned when applied to complex
structures even if the null space is filtered out exactly.

In order to cure the issue of ill-conditioning, a new boundary element method,
the Mixed Velocity Traction approach (MVT), has been recently proposed>* and
extended to large scale problems?* using fast solvers.

The second tool required for setting up the MVT is the traction integral equa-
tion, an integral identity which can be obtained through careful differentiation of
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Eq. (5.4), for a smooth x € S

5609 = [ (= n6x) - Ko(r)] - ¢y)  [nx) - W) - n(y)] - uly)} S, (58)
S

where W is a fourth order two-point kernel with components:

1 3
quks(r) = %7’73 {255]@51@ + 2 ((Sik’l“q’l“s

TiTETqTs
+ OqriTs + 0isTirq + 5Sqrirk) - 30%

Equation (5.8) also contains an hypersingular integral interpreted here in the finite-
part sense. Again, when the structure velocities correspond to rigid body motion
the integral of [n(x) - W(r) - n(y)] - g(y) over a closed surface vanishes. The

MVT simply consists in enforcing a linear combination of Egs. (5.6) and (5.8):

71 ' Y
g(x) — ﬁt(X) = /S{V(r) ~t(y)+5[n(X) - K(r)] 't(Y)}dSy (5.9

where + is a length scale to be calibrated. The benefits of this formulation have
been pointed out in Ref. [23] where it has been shown that the mixed formulation
is well posed when v > 0 and that not only does it filter out automatically all
the exact null space of the velocity equation, but also considerably improves the
condition number which is crucial for the iterative solvers employed.

5.2.4. Numerical Implementation

The numerical solutions of Eq. (5.6) require, as usual, the discretization of S (in
this case we choose a triangulation 7" with M flat triangles) and the choice of the
space X} to which the interpolation of t belongs. Since t represents tractions
which are typically discontinuous along edges and corners, we choose X}, as the
space of piecewise constant functions. At this stage, different alternative proce-
dures can be employed. In the Galerkin approach Eq. (5.9) is contracted with a
traction test field t(x) € X}, integrated over S and enforced for any choice of
E(X) € Xp.

Let 75 and 7., be generic triangles of the mesh withx € 7g andy € 7., and let
Apg be the area of 7g. If T is the traction on 7, the discretized Galerkin approach
yields the linear system:

/ g(x)dS, — A[,%Tﬁ VB = {1: M} (5.10)
8

zi Vﬁ / (Vo) + %n(x) KC(x))dS,dS,

'T’Y
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However, though accurate, this approach requires the evaluation of lengthy double
surface integrals. This issue has been studied at length, but still represents a con-
siderable obstacle when computing time becomes an issue and hence, typically, in
large scale problems associated to MEMS.

The classical and faster collocation approach consists in enforcing Eq. (5.9) at
the center of each triangle. It is worth stressing that the collocation approach can
be recovered from Eq. (5.10) by employing a single point quadrature rule for the
integration over x, where x 3 represents the center of mass of the 74 triangle.

Recently, however, it has been shown in Ref. [23] that, in the context of this
mixed velocity approach, a different approximate numerical scheme requiring
only single surface integrals can be advantageously applied: qualocation.®> In
this approach, Eq. (5.10) is applied with a one point Gauss—Hammer rule for the
integration over y (the inner integration) while a standard numerical rule or an
analytical approach is applied for the outer integral. Hence qualocation is, in a
sense, the dual of collocation with respect to the Galerkin approach. Numerical
examples?® show that qualocation is less sensitive to the value of the coupling
parameter than collocation. For instance, it can be proved that, as v — oo,
the field t obtained from collocation vanishes, while this is not the case with
qualocation.

5.2.5. Fast Solvers

As is clear from Eq. (5.9), the discretized integral equations generate systems of
equations that are dense. If direct factorization is used to solve memory required
to store the matrix will grow like n? and the matrix solve time will increase like
n?. If instead, a preconditioned Krylov-subspace method like GMRES' is used to
solve the system, then it is possible to reduce the solve time to order n? but the
memory requirement will not decrease.

In order to develop algorithms that use memory and time that grows more
slowly with problem size, it is essential not to form the matrix explicitly. In-
stead, one can exploit the fact that Krylov-subspace methods for solving systems
of equations only require matrix-vector products and not an explicit representation
of the matrix and this can be accomplished in nearly order n operations.>* Sev-
eral researcher simultaneously observed the powerful combination of discretized
integral equations, Krylov-subspace methods, and fast matrix-vector products.>~’
Such methods are now referred to, somewhat pejoratively, as fast solvers. Among
these techniques, two in particular have been applied to the analysis of gas damp-
ing in MEMS: the Fast Multipole Method and the Precorrected FFT. Acceleration
is achieved by computing the far-field interactions in an approximate way, while
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near-field interaction still resorts to classical technique for numerical integration
of nearly-singular or singular integrals.

Fast Multipole Method. Fast Multipole Accelerators represent nowadays a
well established technique applied successfully in different fields of mechanics.
A recent review of BE accelerated formulations can be found in Ref. [32]. A
complete explanation of FMM is however beyond the scope of this paper and
reference is made to Ref. [27] for details.

The fundamental identity for our developments is the expansion for the inverse
radius:

where O is a properly chosen pole such that |y — O| < |x — O], the bar denotes
complex conjugate and S, R are solid harmonics which can be computed
by means of simple and fast algebraic recursive formulae. As a consequence of
Eq. (5.11) it is quite apparent that any expression to integrate can be expressed as
the sum of terms in the form F(O, x)G(O,y). Now, let us suppose to evaluate the
double surface integral of F/(O,x)G(0,y) in the context of a Galerkin approach.
The integration with respect to x and y can be decoupled:

/Tﬁ/TWF(O,x)G(O,y)ngEdSy:</TB Ode)(/ a( ,yds>

27)

(x — O)R™(y — O) (5.11)

If 73 and 7., are “well separated” (according to some suitable error estimates
the integral over 7, is invariant w.r.t. the choice of 73 and vice-versa. This concept
is exploited via the construction of hierarchical octree structures and complex up-
ward and downward swap procedures. Further details concerning the application
of this technique to MEMS can be found in Frangi et al.*

Precorrected FFT. Precorrected-FFT technique is another method to accelerate
the matrix-vector product.*! Unlike the FMM, the key technique employed in the
precorrected FFT method is the Fast Fourier Transformation instead of multipole
expansion.

To compute the far-field interaction, the first step in the precorrected-FFT tech-
nique is to enclose the meshed problem domain with a 3D uniform grid. This grid
serves for two purposes. First, it distinguishes the near- and far-field interactions.
Second, it forms the basis for the FFT. It should be pointed out this grid can be
independent of the surface mesh of the problem domain. The grid spacing is de-
termined based on the balance between accuracy and efficiency.
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Fig. 5.1. A 2D pictorial representation of steps of the precorrected-FFT algorithm: (1) Projection;
(2) FFT; (3) Interpolation; and (4) Nearby Interaction. The shaped region represents the near-field area
for panel P;.

Once the grid is established, the far-field interaction, i.e., the interaction be-
tween panel P; and panel P, is computed by the following three steps as sketched
in Fig. 5.1. First the density function or the source of panel P, is projected onto the
surrounding grid points (Step 1). This can be achieved by a transposed polynomial
interpolation.** Second, the FFT is employed to compute the matrix-vector prod-
ucts on the grid points by convolving the projected grid-point densities with the
corresponding kernels, e.g., Green’s function (Step 2). Finally, the matrix-vector
product on the evaluation panel, Ps, is obtained by proper extrapolation from the
products on its surrounding grid points via polynomial interpolation (Step 3).

Mathematically, the procedure of computing the far-field interaction can be
represented by the following expression:

[ Gty fasty) ~ > W {Z [G(xm,ym / Pn(f>ds<y>} } (5.12)

In Eq. (5.12), G and f represents the kernel and density functions, W and P are
the interpolation and projection operators, and m,n are the index of grid points
that surround the evaluation and source panels respectively.

5.3. Extension to the Slip Flow Regime and Validation

Working pressures of MEMS are spread over a large range (1 bar — 1076 bar).
This issue, associated to the micro-scale at hand, promotes rarefaction effects
which, at low pressures, have to be dealt with using techniques of rarefied gas-
dynamics.?!?® A measure of rarefaction is provided by the Knudsen number
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Kn = \/L, where X is the molecular mean free path and L is a typical dimension
of the flux, e.g., the gap between plates in Poiseuille (squeeze) flow. As a rule of
thumb, when Kn < .01 classical tools of macroscale fluid flow can be applied,
(e.g., Navier—Stokes solvers). In the range .01 < Kn < .1 an accurate prediction
of the flow properties can be obtained by applying a continuum approach with slip
boundary conditions (slip BC). Since the dimensions typical of MEMS are of a
few microns, the flow mainly develops in the slip regime even at ambient pressure.
For larger values of Kn the flows enters the so called transition regime which can
be analysed only by means of kinetic theories, (e.g., Boltzmann equation) and will
be addressed by means of simplified techniques in Sec. 5.5.
Let t° denote the surface components of tractions:

t7(x) = [1 - n(x) @ n(x)] - t(x),

where 1 —n(x)®n(x) is the surface projector tensor. As pointed out recently, >3
first order boundary slip conditions should be expressed in terms of t°:
2—0 A
ux) = gx) — ct(x) =02 (5.13)
g n

where o is the tangential momentum accommodation coefficient.?

It is worth stressing that, for planar structures, Eq. (5.13) reduces to the more
familiar boundary condition:
2 — 0
7 \Dur
o on

u(x) = g(x) — (5.14)

where Ju,/On is the normal derivative of the tangential velocity at the wall.
Since Eq. (5.13) operates linearly on t, the BEM formulation Eq. (5.9) can be
easily adopted, yielding:?*

gmfﬁﬁ@w—%%@rzﬁ{vw~uw+wnxuwnwnw%w

ISR

(In(x) - ()] - 6(y) = et [(x) - W(x) - n(y)] - £ () }dS,.
(5.15)

On the contrary, when using Eq. (5.14), the integral representation of the normal
derivative of velocity*?

L R e
(5.16)

is required to form a close set of integral equations. In the above equation, all
integrals exist in their principal value sense. When the slip boundary condition,
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Eq. (5.14), is substituted into Eq. (5.16) and into the velocity equation (5.6), the
system of these two integral equations can be solved to obtain the unknow trac-
tions and normal derivative of tangential velocity.

5.3.1. Numerical Results and Comparison with Experiments

5.3.1.1. Biaxial Accelerometer

A series of experimental tests have been performed on the silicon biaxial ac-
celerometer of Fig. 5.2 produced by STMicroelectronics.

Fig. 5.2. Biaxial accelerometer.

The accelerometer consists of a central suspended shuttle and four series of
external stators attached to the substrate. Both parts are endowed with a series
of long and thin plates interdigited into capacitors serving both as actuators and
sensors. The length of the longest plates is 277 pm, the in-plane width is 3.9 pm,
the height is 15 um and the air gaps between plates are 2.6 ym. The gap between
the shuttle and the substrate is 4.2 um. The shuttle is attached to the substrate by
means of silicon springs which are stiff in the out-of-plane (z) direction and very
compliant in the xy plane. Hence the shuttle is essentially free to move parallel to
the xy plane and is otherwise constrained.
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During the experimental tests, performed at different pressures employing a
Baratron pressure transducer, the accelerometer is set in oscillation along the y
direction by means of electrostatic actuation in a wide range of frequencies cen-
tered at the undamped resonating frequency f, = 4400 Hz. The actuating forces
are such that the maximum amplitude of oscillation of the plates is much smaller
than the air gaps. A set of plates, i.e., those parallel to the x direction, mainly a
Poiseuille-like flow, while those parallel to the y direction induce a Couette-like

flux.

160 —|

Experimental data
120 — — |dentified phase
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Fig. 5.3. Plot of phase lag versus frequency at a given pressure.

In these working conditions the accelerometer can be effectively represented

by a linearized 1D model

F
Miy+ Cy+ Ky = F coswt or y+2§woy+w8yzﬂcoswt (5.17)

where M denotes the mass of the structure, K the equivalent stiffness due to
springs and C' the damping coefficient. Since the amplitude of the oscillation is
small with respect to the plate gap, C, K, F' can be reasonably taken as indepen-
dent of y.

The typical experimental output employed is represented by the thin irreg-
ular line in Fig. 5.3 where the phase lag ¢ between the input voltage and the



Evaluating Gas Damping in MEMS Using Fast Integral Equation Solvers 165

measured displacement is plotted at a given pressure in a broad frequency range.
Sensing is achieved by means of electrostatic capacitors embedded in the MEMS.
These data are used to identify the “experimental” values of ¢ in the associated 1D
model. Indeed the angle ¢ can be easily related to the £ coefficient by the classical
relation:

28w /wo

O Tl

(5.18)
and, finally, C' = 26wg M.

The thick line in Fig. 5.3 is the plot of ¢ from Eq. (5.18) with the optimal
choice of ¢ (obtained via Matlab optimization procedures). The good quality of
fitting seems to justify the adoption of the 1D model. A similar procedure is
repeated at different pressures.

Fig. 5.4. Single unit employed for the simplified squeeze and Couette analysis: geometry and finest
mesh.

It is worth stressing that the Quality Factor @) is often employed in MEMS
research rather than £. Unfortunately, many alternative definitions of () can be
found in the literature which all coincide in the limit for high (), but may differ
substantially at low (). Since according to one the most common definitions, Q) =
1/(2¢), Q is inversely proportional to &, all the comparisons will be presented in
terms of C' = 26wy M which actually represents the viscous force on the shuttle
(in the 1D model) at unit velocity.

This example has been analysed by means of the FFM MVT formulation (de-
tailed in the previous Sections) in order to provide an estimate of the damping
coefficient C. It is indeed worth recalling that the MVT implemented herein is
based on a linear quasi-static Stokes formulation and that the damping force de-
pends linearly on the input-velocity of the structures which can be hence taken as
unitary. In this case, the force exerted by the fluid on the rotor directly yields the
desired damping coefficient C.
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The highly repetitive layout and the simple movement along the y direc-
tion permit to restrict the analysis to simple “units” and extrapolate the re-
sults to the overall structure. Hence focus is set, initially, on the geometry of
Fig. 5.4, where a rotor plate (darker) and two stator plates (lighter) are considered.
Two different situations are addressed, corresponding to Poiseuille and Couette
flow, by simply imposing a unit velocity orthogonal and parallel to the plates,
respectively.

Several meshes have been analysed with increasing refinement. In Table 5.1
the force on the rotor computed with the finest mesh of 25400 elements (76200
unknown parameters) is presented. As anticipated, the global force on the “rotor”
is obtained by simply scaling the one obtained for the simple unit by the global
length of the rotor plates in squeeze and Couette flow, respectively. An addi-
tional analysis has been performed on a sample of the central bulky mass with
holes to provide an estimate of the contribution to the global force. As expected,
Poiseuille flow provides the most important contribution. The values of the forces
mentioned above (collected in Table 5.1) are computed at ambient pressure both
for no-slip and slip boundary conditions, assuming 0 = .9 and a mean free path
of A = 0.064 pm. While stick BC overestimate the force on the rotor, an excellent
agreement is obtained with slip BC.

Table 5.1. Comparison of experimental results with the numerically computed
damping forces at ambient pressure: contribution from different parts of the rotor
and global results.

Numerical “no slip”  Numerical “slip” Experimental
Poiseuille flow 2.32 x 1074N 2.10 x 1074N -
Couette flow 7.37 x 1076N 7.03 x 1076N -
Mass with holes 2.10 x 106N 1.94 x 107N -
Total force 2.41 x 104N 219 x 1074N 221 x 10~4N

Next, the effect of decreasing pressure is analysed in Fig. 5.5, where F'/Fy
is plotted against p/py (Fy denotes the experimental force evaluated at ambient
pressure pg). Different pressures can be simulated by setting the correct value of
the ¢; slip coefficient in Eq. (5.13).

The agreement between experiments and analysis is excellent for p > .15pg
(Kn =~ .1 at p = .15pg) but accuracy rapidly deteriorates at lower pressures, as
largely expected. Indeed, at these levels of pressure, the methods of rarefied gas
dynamics should be applied either through the adoption of a modified viscosity,
or by direct solution of kinetic models.
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Fig. 5.5. Global force on the rotor at different pressures: comparison of numerical and experimental
results.

A final set of analyses have been performed to test the robustness of the for-
mulation with respect to the complexity of the geometry, as depicted in Fig. 5.6,
where the lighter part is the stator and the darker one the shuttle portion consid-
ered. The bulky mass with holes has been omitted following the indications of the
previous analyses.

Three different meshes have been considered and the results in terms of com-
puted global force are collected in Table 5.2.

Table 5.2. Comparison between meshes of increasing refinement.

Mesh employed mesh 1 mesh 2 mesh 3
Number of unknowns 125058 272364 548388
Global force 1.80 x 104N 2.0l x 107*N 212 x 10~%N

The iterative GMRES solver employed?’ rapidly converges, as can be appre-
ciated in Fig. 5.7. It has been empirically remarked that: i) the rate of convergence
remains virtually unchanged down to relative residuums of 1078 ~ 10~Y; ii) the
error on the global force, with respect to its value at convergence of the itera-
tive procedure, is of the same order as the relative residuum. Hence a very mild
stopping condition can be employed for the GMRES solver.
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Fig. 5.6. More realistic model of one fourth of the MEMS: geometry and mesh.

5.3.1.2. Tang Resonator

As a further validation of the working hypotheses, let us now focus on the aca-
demic Tang resonator of Fig. 5.8.

The main components of the resonator consist of two folded beams (springs),
two comb drives, each with two sets of fingers, one moving and one fixed, and a
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Fig. 5.7. Convergence of the GMRES solver and of the force computed.

shuttle connecting folded beams and moving fingers. When a bias AC voltage is
applied to one comb drive, the electrostatic force moves the moving fingers and
thus the shuttle and the folded beam towards the fixed fingers while the mechan-
ical restoring force of the beams brings them back to their equilibrium position,
resulting in an oscillating motion.

The length of each finger is 20 ym, the in-plane width is 3.2 pm and the air
gaps are 2.6 pm wide; the length of each spring is 405 pm, while its width is
2.2 ym. The out-of-plane dimension of the whole structure is 15 yum. The gap
between the shuttle and the substrate is 1.8 um. Also this structure has a first
resonating frequency of approximately 4400 Hz.

The BEM formulation described in previous sections can be suitably modi-
fied to account for the deformability of the structure which is essential to capture
squeeze film effects between the springs?® which are very close in this unusual
layout. Several meshes have been tested, and the results presented in the sequel
refer to the finest mesh adopted (see Fig. 5.9) containing ~ 342000 elements,
which amount to ~ 1388000 unknowns.

Considering the gaps between the structure and the substrate and between fin-
gers, the transition region starts at approximately p = .1 bar. At higher pressures,



170 A. Frangi, W. Ye and J. White

shuttle stator

Z
W s

iy
3 JEE A

«—1 fixed block rigid beam ——

e R H" nll‘ il

: ke : o X,
u”u“u“ﬂ“ﬂ"ﬂ”u“ ﬂ“ﬂuﬂ “H“H"ﬂ”ﬂ”ﬂ“ﬂ“ﬂ [ ﬂ“ﬂ“ﬂuﬂ“ﬂ”ﬂ”ﬂ"ﬂ”ﬂ“ﬂuﬂ”ﬂ"ﬂ”ﬂuﬂuﬂuﬂ”ﬂuﬂ”ﬂuﬁ“ﬂUﬂ"ﬂ”ﬂ”ﬂuﬂuﬂuﬂ"ﬂ”ﬂ”ﬂuﬂ L’
X4

Fig. 5.8. Comb finger resonator: 3D view and 2D layout.

the code with slip-boundary conditions is thus expected to be accurate. This is
confirmed by the results plotted in Fig. 5.10 where the linear scale on the left
shows the good agreement at high pressures, while the log scale on the right puts
in evidence the divergence at low pressures, which is largely expected since the
working conditions are entering the transition regime which should be addressed
by different techniques (see Sec. 5.5 and Chapters 2 and 3).

5.4. Extension to High Frequency Oscillatory Flow

The results presented in previous sections hold under specific hypotheses. Three
non-dimensional parameters are generally identified as crucial: the Mach number
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Fig. 5.9. Comb finger resonator: detail of the finest mesh adopted.
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Fig. 5.10. BEM results with slip BC: comparison with experiments in liear and log-scale.

M the Reynolds number Re = UL /v and the Stokes number St = fL?/v.33 U
is the flow velocity, v is the kinematic viscosity, L is a typical flow length and f is
the frequency of oscillation. If all these parameters are small compared to unity,
the proposed linear quasi-static approach is deemed acceptable and compares
very well with experiments. When f increases, these conditions may fail. Tak-
ing into account inertia effects, the governing equations for oscillatory flows3®4°
change to

VP(x) — pAu(x) = iwpu Vaux)=0 in Q-0 (5.19)
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and the corresponding integral equation is the same as Eq. (5.5) with the following
kernel functions:

1 Oik TiTk
(r) =—— A(R) 2 4 B
Viele) =g AR + B0
0iiTk + O0piri - _ ;7 (1 — B
Kigr(r) = — W[e "(R+1) - B] - %
’I“ﬂ‘j’l”k

[5B —2¢ (R +1))

47rd
wherer =y —x,r = ||y — x| and

1 1 2 3 3 6
— —-R o -R
A=2e <1+R+R2>}zg, B=—-2e <1+R+R2>+

R=r | K
P

The numerical implementation of this model using integral equations becomes
more involved but, at least in principle, can be addressed with the same techniques
described above.*** In some recent contributions,***° also compressibility has
been addressed, with satisfactory results.

Let us now focus on a Tang micro resonator similar to that of Sec. 5.3.1.2
whose dimensions are shown in Table 5.3. The natural frequency and the qual-
ity factor of this resonator, measured using a computation vision system,*® are
19.2kHZ and 27 respectively.

Table 5.3. Resonator dimensions.
Finger gap 2.88um
Finger length 40.05pm
Finger overlap 19.44pm
Spring length 151pum
Spring width 1.1pum
Center plate 54.9 x 19.26m?>
Side platel x 2 28.26 x 89.6um?2
Side plate2 x 4 11.3 x 40.5um?

Thickness 1.96pm
Substrate gap 2pm
Truss length 78pum

Truss width 13pm
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Both the spring stiffness and the mass can be predicted based on the given
resonator structure. However, the spring stiffness is difficult to be estimated
accurately unless material properties of the structure are known with confidence.
For this study, since the focus is on the modeling of air damping, the spring stift-
ness, 0.816 N/m, is obtained based on the measured frequency and the estimated
mass of 5.61 x 10~ ! kg. Due to small Reynold’s number (2 x 10~3) and small
Knudsen number (0.03), the fluid behavior is expected to be reasonably accurately
described by solutions of the incompressible Stokes equation with no-slip bound-
ary condition.

A home-made 3D solver, “FastStokes”, was employed to compute the drag
forces on the micro resonator. Based on the integral formulation (5.6), FastStokes
combines the iterative method GMRES with the precorrected-FFT technique for
fast matrix-vector productes. The discretized structure is shown in Fig. 5.11. Note
both the resonator and the substrate are discretized, for a total of 20148 panels.
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FAVAVAVLY,'

WV
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Fig. 5.11. Meshed resonator and substrate.

The viscous drag forces on the resonator oscillating at f = 19200 Hz were
computered using progressively finer discretizations, to insure that the discretiza-
tion error was sufficiently small. Results converge to within one percent with as
few as 10000 panels. For these simulations, the kinematic viscosity and the den-
sity of air were assumed to be 0.157 cm?/s and 1.177 kg/m?3, respectively. The
amplitude of the velocity was set to be 6.72 m/s based on the experimental data.
It should be pointed out in FastStokes, the velocity integral formulation (5.6) for
oscillatory flows is employed. The convergence is expected to be improved if the
mixed velocity integral formulation Eq. (5.9) is adopted.
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A detailed analysis of the distribution of the drag force, shown in Table 5.4,
reveals that the contribution to the drag force from the fluid between the resonator
and the substrate is 53.9% and the drag force from the side contributes 30.1%.
This explains why the previous models, i.e., the 1D Couette and 1D Stokes mod-
els, seriously underestimate the drag force as they can not capture correctly the
side contribution due to the infinitely long-plate assumption.

Table 5.4. Distribution and comparison of
drag force on Tang resonator computed by
FastStokes.
Drag (pN)  Bottom  Side Top
Couette 42437  57.37 ?
1D Stokes ~ 437.93  57.37 52.67
FastStokes ~ 510.72 29450  142.8

The quality factor of the resonator can now be calculated based on the com-
puted drag force, the mass and the spring stiffness. Results are shown in Table 5.5
together with the measurement result and those estimated from 1D models. Both
1D models overestimate the value of the quality factor by a factor of two. Result
from the 3D analysis agrees well with the experimental result, with an error of
10%. This indicates that 3D effects are profound in this resonator.

Table 5.5. Quality factor of the resonator:
simulation results and experimental data.

Methods Total Drag (pN) Q
Couette 481.70 58.9
1D Stokes 547.97 51.8
FastStokes 948.02 29.9
Measurement 27

At f = 19200 Hz, it is of interest to examine the importance of the inertial
force. As mentioned previously, the non-dimensional Stokes number is a good
indicator of the importance of the inertial force as compared to the viscous force.
However, the characteristic length L must be chosen carefully to reflect the local
length scale of the flux. For flow between the moving resonator and substrate,
L is simply the gap and thus the Stokes number is around 4.9 x 1073, which
means the inertial force can be neglected. However, for flow on the top of the
resonator, a suitable choice of L is the penetration depth which in this case is 37
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times larger than the gap.’®

around 6.7, indicating the contribution of the inertial force on top drag would be
quite significant.

Drag forces obtained from the steady Stokes solver and the unsteady Stokes
solver are shown in Table 5.6. The difference in total drag is around 6%. As an
examination of Table 5.6 indicates, the most significant contribution of the inertial
force is to the top drag force with a nearly 33% increase in its drag, while the drag
from the fluid between the resonator and the substrate remains almost the same.
This fact is consistent with the above predictions based on the Stokes number.

As a result, the Stokes number for the top flow is

Table 5.6. Distribution of drag force:
Steady versus Unsteady.
Drag force (pN)  Steady  Unsteady

Bottom 508.75  510.72
Side 284.84  294.50
Top 102.31  142.8

Total 895.9 948.02

5.5. Extension to Low Pressures by Means of the Corrected Viscosity
Approach

As clearly demonstrated in Sec. 5.3, continuum hypotheses fail when the Knud-
sen number increases above a certain threshold which is conventionally set as
Kn = .1. This regime is properly addressed in Chapters 1-4 of this book with the
refined tools of rarefied gas dynamics.

However, in same cases simplified approaches apply, as discussed briefly in
the sequel. Since the rarefaction effects and the molecular interactions with the
surfaces of the micromechanical structures change the gas viscosity, one possi-
ble approach to account for the microscopic dynamics is to employ an effective
viscosity 7. instead of the static viscosity coefficient 7.2%-38:3

Indeed the effective viscosity approach applies rigorously in two simple but
typical situations (Poiseuille and Couette flow), as discussed in Chapter 2. If
two plates oscillate in a direction perpendicular to their surfaces (Poiseuille flow),
the pressure distribution in the gas film can be computed from the generalized
Reynolds equation employing the effective viscosity:>*38

n9

F(0) 6 (5.20)

P _
Neff =
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where 0 = /7 /(2Kn) is a rarefaction parameter, Kn being the Knudsen number
and F'(9) the Poiseuille flow-rate coefficient. In the continuum limit: F'(§) —
§/6, so that kg — 1.

On the contrary, if the plate motion is purely in the lateral direction (Cou-

ette flow), the equivalent viscosity can be related to the shear stress T according
.29,38,39
to: 7>

n% =n20T (5.21)

where 7 = |tS ] /(pU), p being the gas density and U the relative velocity of lat-
erally moving micromechanical structures. In the continuum limit: 7 — 1/(20),
so that n<; — 7.

A general computation of both F" and 7 can be found in the cited references as
a function of the Knudsen number and is based on the solution of the linearized
BGK model of the Boltzmann equation with suitable boundary conditions allow-
ing for different accommodation coefficients of the plates.

Even if theoretical explanations are still under investigation, it can be argued
that a similar procedure should also prove effective with the full 3D Stokes model.
For example, let us consider the resonator of Sec. 5.3.1.2. If the modified viscosity
approach applies and since the formulation adopted is linear in 7, the global force
exerted on the shuttle can be expressed as F' = Fynegr/n, where Fj is the force
evaluated at Kn = 0 employing the static viscosity 1 and ¢; = 0 in the Stokes
equations, i.e., with stick boundary conditions. However, in the Tang resonator
both “Poiseuille-like” and “Couette-like” flows provide significant contributions
to the overall damping and the corrected viscosity is different in these two ele-
mentary cases so that a composite approach must be adopted. The idea basic idea
is to employ the BEM code to obtain an estimate of the damping forces FOC and
F{ at Kn = 0 for the portion of the structure where Couette and Poiseuille flows
dominate, respectively. The sum of FOC and ¥ corresponds to the real damp-
ing force exerted on the structure at high pressure (Kn = 0). When pressure
decreases the global force corrected according to the effective viscosity approach
is: ' = F&n%(Kn)/n + Fnk(Kn)/n. The main obstacle is that Kn is not
well defined for the overall 3D structure. However, since the Knudsen number
is inversely proportional to pressure, it is a reasonable choice to assume that the

correction will have the form:
fe; P
n

where « and /3 are constants to be calibrated numerically as detailed in the sequel.
The starting point of the calibration procedure is the remark, confirmed in Sec. 5.3,
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that the BEM code with slip boundary conditions is very accurate in the slip flow
regime. Hence, the Stokes code with static viscosity and slip boundary conditions
can be utilized to run a series of analysis in the slip regime, i.e., with p > .1 bar;
the viscous forces computed are afterwards employed to identify the best values
of & and 3 in Eq. (5.22) by means of standard numerical procedures, e.g., Matlab
optimization routines. It is maybe worth stressing once more that this is only a
numerical procedure and that no experiments are used to identify « and 3.

Once this coefficients are available, Eq. (5.22) can be compared with experi-
mental results to validate all the working hypotheses introduced, as presented in
Fig. 5.12. The continuous curve is the plot of Eq. (5.22), while the squares denote
experimental results. Numerical results compare accurately with experiments well
into the transition region and beyond.
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Fig. 5.12. Comparison of measured and computed forces acting on the shuttle at different pressures.

The other two curves in Fig. 5.12, showing increasing errors at low pres-
sures, represent the numerical results obtained by applying, to the whole damping
structure, the simple Couette correction and the simple Poiseuille correction, re-
spectively. The same procedure has been also applied to the biaxial resonator of
Fig. 5.2 yielding similar conclusions.
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However, these technique can be applied only if the flow generating damping
forces can be classified either as Poiseuille or Couette, at least as a first approx-
imation. This might be considered as a serious limitation, even if a vast class of
MEMS fall into this category.

5.6. Conclusions

We have focused here on a specific but rather diffused class of inertial sensors like
accelerometers, gyroscopes and and other resonators which consist of a fixed sta-
tor and a suspended shuttle which vibrates at a certain frequency. We have shown
that, for a large set of operating conditions in the high-moderate pressure range,
fluid damping can be conveniently addressed by means of a linear, incompress-
ible, quasi-static Stokes approach. Integral equations are hence an ideal and robust
tool since they reduce the dimensionality of the domain to be analysed allowing
for the analysis of full-scale 3D structures and since they are expressed in terms
of traction unknowns yielding directly and accurately the viscous force of inter-
est. It has been shown that this approach, coupled with slip boundary conditions,
compares very well with available experiments on two different MEMS.
However, when working frequencies increase or pressures decreases, underly-
ing hypotheses might be violated. As a consequence, the effect of inertia has been
included for rapidly oscillating flows and a simple “corrected viscosity” approach
for low pressures has been proposed and validated for the MEMS layouts at hand.
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After presenting some general considerations on damping mechanisms, quality
factor analysis methods and ex-situ excitation techniques, we first review a
number of classical and recent optical techniques that are suitable for quality
factor measurements of in-plane, out-of-plane and torsional vibrations of micro-
resonators; then, techniques based on electrical measurement and some possi-
ble architectures for integrated () factor measurements are examined; finally,
approaches suitable for nanoresonators are discussed.
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6.1. Introduction

Micro and nanoresonators have been extensively employed in a number of ap-
plications as sensors of electrostatic’ and magnetic® fields, of gases and liquids,’
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of biological8 and chemical processes;9 as sensors of strain and/or force,!? of

pressure,'>!3 of inertia,'>'*!> and of mass.'®!” They have also been applied to
communication and signal processing,'? as reference oscillators'! and to evaluate
properties of thin film materials.'~

More recently they have also been increasingly applied to the investigation of
fundamental phenomena'®!'¢ including quantum effects'® or to the detection of
individual biological species.?’

Damping of vibrations is a major issue for micro and nanoresonators. Despite
numerous theoretical and experimental works, vibration damping remains difficult
to predict, especially at low pressure where surface and material effects dominate.
Often, a stronger than expected damping is observed. In a more general way,
damping modelling of resonators having an intricate (and imperfect) geometry, or
prone to acoustic or other coupling, is complex and measurements often remains
the only way to accurately evaluate damping. In this chapter we will review the
main experimental techniques available for such a characterization. In Sec. 6.2,
we will first recall very briefly the main vibration energy loss mechanims in micro
and nanoresonators and will present some techniques and analysis procedures that
are common to all measurements techniques. Damping is often evaluated from di-
rect measurement of the resonator motion by optical means. Optical techniques
suitable for the characterization of in-plane, out-of-plane and torsional vibration
damping of microresonators are reviewed in Sec. 6.3. Finally, electrical tech-
niques and some alternative approaches developed recently for nanoresonators
are discussed in Sec. 6.4.

6.2. General Requirements, Analysis Procedures and Techniques

6.2.1. Damping Mechanisms and their Parameters

For most sensing applications of micro and nanoresonators, achieving a high value
of the quality factor @ is a key issue because the thermomechanical noise, which
gives the minimum measurable force, is governed by dissipation processes. Main-
taining a high @) factor reduces as well power requirements and results in an im-
proved stability. A high () value is also needed to achieve electromechanical filters
with a narrow bandwidth or to get accurate resonant frequency measurements. For
other applications, the variation of the quality factor or of the resonant frequen-
cies with the surrounding environment is the quantity of interest. For example
the pressure dependence of the () factor of an integrated resonator is commonly
used to evaluate the vacuum level inside wafer-level packages®! and fluid density
and/or viscosity can be evaluated from dynamic measurements of resonators.’
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Consequently, numerous theoretical and experimental investigations were
performed to understand the vibration energy loss mechanisms of (elec-
tro)mechanical resonators. Energy losses of a mechanical oscillator comprise ex-
ternal losses in which energy flows out of the oscillator and is dissipated in the
ambient medium by viscous friction, by acoustic waves or through supports, and
to internal losses involving various processes within the bulk and at the surfaces
of the oscillator. The total quality factor Q,y depends on the contribution of each
of these mechanisms:

Lyttt
Qtol i Qi Qbulk qurface qupporl Qviscous

+ o 6.1)

where Qpui is related to bulk material losses such as thermoelastic damping,??
phonon mediated dissipation,?® defect related losses,>*?> etc...., Qsurface arises
from surface losses?>2° related to surface stress, surface roughness, adsorbed lay-
ers, natural oxides and other not well identified phenomena, Qsupport is related to
irreversible losses at the anchors?>?728 and Quiscous results from gas damping.

It is clear from Eq. (6.1) that the total ) factor is limited by the major loss
mechanism. To characterize the damping of a mechanical micro or nanoresonator
it is necessary to understand the parameters of the different mechanisms. In
gaseous media, vibration energy loss results from gas-structure interactions and
varies according to the pressure range, the gas viscosity, the vibration direction,
the vibration frequency and the device geometry (see Chapters 1, 2, and 5). At
atmospheric pressure, gas damping is largely the dominant loss mechanism and @)
factor values of micro and nanostructures are typically in the 10 to 1000 range. In
liquid media viscous damping is very large, ) values being typically lower than
10 and damping produces a significant shift of the resonant frequencies. These
quantities depend on the density and viscosity of the surrounding liquid. Finally,
at sufficiently low pressure (below 10~ — 10~* mbar) other mechanisms limit
the quality factor which is usually large (in the order of 10 for single crystal
resonators at room temperature®?). Material thermal and mechanical properties,
their structure, the amount of bulk and surface defects, and the device surface
topography then play a significant role.

Vibration loss mechanisms are temperature dependent?® phenomena, the high-
est () factor being obtained at low pressure and low temperature. They depend as
well in a complex way on the resonator size and geometry. Nevertheless there is a
clear trend towards a reduction of the @) factor when the resonator is reduced from
the submillimeter scale towards the nanoscale.’® In vacuum, this partly due to a
larger contribution of surface effects.
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6.2.2. Measurement System Requirements

Measurements into vacuum are clearly required to investigate damping related to
bulk and surface phenomena. They are also interesting for material fatigue as-
sessment because high quality factors allow large vibration amplitudes and more
accurate measurements of the time-dependence of the quality factor or the reso-
nant frequencies. When external pressure can be varied, the different regimes of
gas damping and their modelling can be investigated. Likewise, measurements of
resonant frequencies, amplitudes and/or quality factor as function of pressure are
required for the calibration of resonant pressure sensors. For resonating sensors
used for vacuum packaging process evaluation, a pressure range in the 10~3 mbar-
1000 mbar covers most of the needs as internal pressure of packages seldom
exceeds this range. Finally, published works show that measurements in an ultra-
high vacuum chamber allowing high temperature annealing or/and measurements
at cryogenic temperatures provide valuable information on bulk material and sur-
face related damping phenomena.

Relatively few measurements of () factors as function of temperature have
been published even if the ability to perform measurements as function of temper-
ature is useful to find the limiting mechanisms or more generally to get data in the
usual temperature range of component specifications.

Ideally, for damping characterization of microresonators, the measurement
technique should have a detection limit lower than the thermomechanical noise
of the resonator, a lateral resolution in the micrometer range or below and the
largest possible frequency bandwidth. In practice, a detection limit of vibration
amplitude around one nanometer, a lateral resolution of a few micrometers and a
bandwidth of a few MHz already cover a large part of the needs. Nevertheless,
a larger frequency bandwidth and a lower detection limit become necessary for
damping investigation of high order vibration modes or to characterize nanores-
onators, acoustic devices and electromechanical RF filters. In these latter cases, it
might be necessary to measure vibration amplitudes down to the picometer range
and resonant frequencies up to 1 GHz.?!

As discussed in the next section, point-wise vibration spectra or transient
response measurements are in principle sufficient for quality factor evaluation.
However identification of the device resonances can sometimes be tedious be-
cause they can be mixed with parasitic resonances of the excitation system or of
the sample holder and because various external coupling and vibration mode in-
termixing may occur. Vibration mapping must then be performed to remove the
resulting ambiguities.
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6.2.3. Methods for Quality Factor Extraction

In order to simplify the discussion, the resonator under test is assumed to be ac-
curately modelled using the mass-spring-damper model shown in Fig. 6.1.

F 'ﬂl zZ

Fig. 6.1. Classical model used to represent a damped oscillator under forced vibrations.

The corresponding equation of motion under forced vibrations is given by:

2
miTj + c% + kz = F, cos(wt) (6.2)
where m is the mass of the resonator, ¢ the (viscous) damper constant, k the spring
constant, F, the magnitude of the applied sinusoidal force and w its pulsation.
A similar equation can be established when the resonator is excited from its
base. In both cases the micro/nanoresonator is thus equivalent to a second order
low pass filter with a natural frequency given by:

k
wp =27 fn =1/ — (6.3)
m
and a quality factor (), representing the filter selectivity around the resonant fre-
quency. ( is related to damping characteristics and is given by the following
equation:

Qz%wzﬁ?E 6.4)

This quality factor is one of the main features of sensors based on vibrating MEMS
since it defines their ultimate resolution in terms of frequency variation. The fol-
lowing subsections will focus on two families of techniques allowing for experi-
mental quality factor extraction: frequency domain analysis and transient response
analysis.
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6.2.3.1. Frequency Domain Analysis

This first class of methods consists in extracting the quality factor () from the
resonator’s transfer function monitored in the frequency domain (Fig. 6.2).
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Fig. 6.2. Relative displacement amplitude (a) and phase (b) as function of the normalized frequency
f/ fo for MEMS/NEMS resonators having different ) values.

A first extraction method is based on phase computations. The phase between
the resonator displacement and actuation force is indeed given by:

o(f) = tan — (6.5)
- (7)
f‘n

Notice that at the natural frequency, the phase is —90°, which is a way to deter-
mine f,. The slope of the phase curve around f,, is proportional to Q:

daf fn

This extraction method is interesting since large variations of the phase are ob-
served. For example, it has been used to determine the quality factor of high
frequency (>1 GHz) piezoelectrically transduced disk resonators.>? This method
is well suited for low to mid () values (215 in the example). For higher values, its
accuracy is limited by the frequency resolution of the spectral analysis and to the
phase noise.

Other methods are based on the monitoring of the displacement or the vibra-
tion amplitude. Around a resonant frequency, the amplification gain varies with
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frequency as follows:

A(f) = 2(f) = o e 6.7)

272 2
()] e
fn Qfn
which is a lorentzian function, Ay, being the static gain.

As shown on Fig. 6.2, the maximum gain frequency or resonant frequency,
fmax» depends on Q:

fmax _ 1_— L (6.8)

fn 2Q?
The lower the quality factor @, the larger will be this shift of the maximum peak
with respect to resonant frequency. For example, the relative frequency shift for
@ = 50 is of only 0.01% while it is 1% for () = 5. Measuring this frequency
shift is adapted for low @ value, typically for resonators working in liquids.® The
highest measurable () value again depends on the frequency resolution. The lower
limit is linked to the resolution of amplitude measurements.

In most cases, the quality factor is sufficiently high to consider that fi.x = fi.
It can then be assumed that the maximum value corresponds to the gain at natural
frequency, which is proportional to Q: A(f,) = A«Q.

If the static gain is known, measuring the maximum displacement for a known
actuation force yields (). In practice the static gain is approximated by the gain
value outside and far from any resonance with the same excitation level. The
corresponding accuracy is not optimal since it depends on the ratio of a large
value over a low and noisy value. To improve the accuracy, a very common tech-
nique®* to get a quick but reliable estimation of the quality factor is to measure,
as shown in Fig. 6.3, the frequencies f; and f_ defined by:

Amax
V2

The quality factor is obtained by computing the ratio between fu,x and the
bandwidth f, — f_:

A(f+) = A(f-) = (6.9)

fmax _ ~
femi [ m VI-1/GQY)
TR Q 1-1/(2Q%)

(6.10)
The accuracy is better since the necessary amplitude measurement is performed
using relative measurements and only requires a single analysis. These extraction



190 A. Bosseboeuf and H. Mathias
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Fig. 6.3. Q computation using -3dB bandwidth.

methods are well suited for quality factors ranging from a few tens to a few thou-
sands. For higher values, depending on the resonant frequency and the frequency
resolution of the spectral analysis, an accurate value for the maximum displace-
ment may be difficult to obtain. In these cases, a fit with a Lorentzian function
with the resonant frequency, the static gain and the quality factors as parameters,

gives better results,?>33-3

AX AX
> »
(O (0] (O (O]
(a) (b)

Fig. 6.4. Non-linear effects for large MEMS displacement: soft spring effect (a) and hard spring
effect (b).

For these frequency domain methods, care must be taken to keep the actua-
tion force sufficiently small to remain in the linear vibration domain. Depending
on the type of actuation and on the resonator structure, different kinds of non-
linear effects may appear for large displacements. Non-linearities arise when the
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(effective) spring stiffness k becomes dependent on the resonator structure dis-
placement z. Depending on the sign of higher order terms of the spring restor-
ing force, there is a resonant frequency shift either downward (soft-spring effect,
Fig. 6.4(a)) or upward (hard spring effect, Fig. 6.4(b)) together with a modification
of the resonant bandwidth and the occurrence of an hysteresis when the frequency
is scanned in the reverse direction.’’3® Hard spring effect is typically related to
a non-linear mechanical behaviour while soft spring effect is usually related to a
non-linear actuation, a typical case being electrostatic actuation. To give an order
of magnitude, hard spring effect begins to occur for vibration amplitudes larger
than a few percents of the vibrating thickness for bridge-like resonators and be-
yond about 10-20% of the vibrating thickness for a cantilever beam. It is clear that
@ factor extraction methods described above are no longer valid when resonance
curves are distorted because of non-linear effects.

6.2.3.2. Transient Response Analysis

Since @ is linked to the damping characteristic of the MEMS resonator, the tran-
sient response to a non periodic signal may be exploited to extract the quality
factor value.*® Figure 6.5 shows the corresponding time domain response, for dif-
ferent values of (), to a pulse force variation. The response is a pseudo-periodic
decaying signal whose envelope is an exponential curve with a time constant
linked to (). For an initial velocity equal to zero, it is given by:

2(t) = x(())e(JTc?ﬁlt)

[cos <27rfnt, /1— 4222> 6.11)
envelope
1 . / 1
+ W Sin (27Tfnt 1-— 4622>:|

@ can then be extracted by measuring the time 7}, needed for the envelope to
reach a given value z,,:

L (6.12)

Q=Tn
In (95(0)>
Tm
This method is suitable for large values of (). In this way very large values (¢ >
10°) may be accurately measured, provided that the measurement duration is large
enough with respect to the pseudo-period of the decaying signal.

There is however a practical problem with this method: MEMS resonators
have several different resonant modes and resonant frequencies. If not correctly
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Fig. 6.5. Transient response of a MEMS resonator to a pulse force variation.

chosen, the applied pulse may put into play other modes in addition to the one de-
sired. For example, in the theoretical case of a dirac pulse with a white spectrum,
all the resonant modes of the structure would be excited in the same way. Then,
specific signal processing methods might be needed to identify and characterize
the different modes composing the transient signal.*®

However, a good choice of the applied pulse could also solve this problem.
Figure 6.6 shows different possible signals and their corresponding spectra. First,
by adjusting the length of a pulse, one can modify the corresponding sinc-function
shaped spectrum so that undesirable modes are not excited. The width of the lobes
in the frequency domain is indeed equal to the inverse of the pulse duration*
(Fig. 6.6(a)). If the considered mode is the first resonant mode, a sinc-shaped pulse
may be used since its rectangular spectrum width is equal to its pseudo-pulsation*’
(Fig. 6.6(b)). Finally, the best choice, allowing to select only the desired mode,
is to use a sinusoidal signal at the desired resonant frequency and to record the
transient response when it is switched off. The corresponding spectrum is indeed
close to a delta-shaped function at the resonant frequency (Fig. 6.6(c)).

6.2.4. Vibration Excitation Techniques

Modal testing*>*} consists in identifying the natural resonant frequencies, the

modal damping and the corresponding modal shapes of the structures. Once
known, they can be used to predict the vibration at any point of the structure under
a given excitation. Modal testing normally needs an excitation with a known force,
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Fig. 6.6. Possible non periodical actuation signals to perform transient analysis and their correspond-
ing spectra: (a) single pulse, (b) single sinc-function pulse, (c) sinusoid at resonant frequency multi-
plied by downward unit step function.

a measurement of the frequency response of the micro/nanostructures and extrac-
tion of the modal parameters from the measured data. Such a modal analysis is
difficult to apply to micro and nanoresonators because the excitation level required
is so low that it cannot be easily controlled. For example vacuum measurements of
very high ) microresonators needs excitation amplitudes in the picometer range
or less to avoid the occurrence of non-linear vibrations at resonance. Luckily
enough, in comparison to macroscopic mechanical systems, MEMS and NEMS
devices have simpler geometry and dynamic behaviour as well as high quality fac-
tors. So a known and pure in-plane, out-of plane or torsion excitation is often not
mandatory in practice.
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When the resonator under test cannot be actuated in situ, an external excita-
tion system must be chosen. Several excitation techniques were implemented by
experimenters. The main common ones are discussed in the following.

Electrothermal actuation*** is based on Joule effect generated by an alternate
current. This method induces a direct but inhomogeneous actuation by thermal
expansion of the resonator material and can be applied only to conducting devices
with two isolated access. Excitation direction is determined by device geometry
and the maximum efficient excitation frequency is limited by the device thermal
constant (typically a few (tens) kHz for a microresonator). In other terms, the
modulated temperature becomes rapidly a small fraction of the mean temperature
rise when the current modulation frequency is increased. A major drawback of
this technique is thus device heating which affects both the elastic and damping
behaviour. An elegant way to overcome this issue is to use magnetomotive ac-
tuation.*>*’ In this technique the device is driven at resonance by a low variable
current in the presence of a high magnetic field (several Tesla). The resulting
Lorentz force has an orientation given by the magnetic field and is suitable for the
actuation of resonators up to very high frequencies and it has been indeed applied
to nanoresonators including carbon nanowires and nanotubes.*647

A very common and easy to implement excitation, is to put or glue the sample
(bare die, die mounted in a package or wafer) on a piezoelectric actuator which
acts as a shaker.*>*® For frequencies up to a few hundreds of kHz, a PZT multi-
stack actuator allows both out-of-plane and in-plane vibration excitation with a
nominal amplitude ranging from a fraction of Angstrém to a micrometer or more.
When a larger frequency range is needed, a metallised single piezoelectric disk
(out-of-plane vibrations) or a shear plate (in-plane vibrations) becomes necessary.
These devices are able to generate vibrations up to a few (tens) MHz but in a single
direction and with a nominal amplitude limited to a few nm. Larger amplitudes
can be obtained with a high voltage ultrasonic shaker. Base excitation with such
systems is normally sufficient for damping measurements even for highly decou-
pled resonators at high pressure?” possibly because some amplifying (levering)
effect by the substrate or the support often occurs and because most common vi-
brometry techniques have a detection limit in the nanometer range or much below.

When a direct, local and non contact excitation of vibrations is needed, optical
actuation with a focused and intensity-modulated light beam is a possible alter-
native.**>> The efficiency of this actuation is not straightforward to predict as
several phenomena may be involved such as direct** t>3 photother-
mal effect, radiation pressure,’®>! light interferences,’? electronic strain,>® and
eventually photoelectric effects or change of material structure.’> Consequently
optical actuation depends on many parameters including light beam characteristics

and indirec
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(intensity, wavelength, focusing, position, modulation frequency), resonator ma-
terial properties (optical, thermal and mechanical) and resonator geometry. This
actuation technique is usually suitable for low level excitation of out-of-plane or
torsion vibrations at moderate frequencies. Actually, in vacuum, a very low exci-
tation is required and self excitation of simple beams can even be achieved with
continuous light in some conditions.>!

For metallic (coated) devices, the photo thermal effect, i.e., the generation
of thermal stress gradient by light absorption, is the dominant mechanism and
the light beam power must be low to limit heating. For semiconductor resonators,
electronic strain generated by the diffusion of photocarriers may produce an equiv-
alent and even larger actuation than the photothermal effect but with an opposite
sign and a faster response time.>> A suitable choice of parameters allows measure-
ments at higher frequency with reduced heating. Finally, for transparent devices,
interference effects can be tuned to increase actuation efficiency and radiation
pressure actuation can be exploited up to several hundreds of MHz even if the
resulting actuation force is very low (typically around 1 pN per mW of incident
light power).

Other less common ex-situ excitation techniques include excitation with an
atomic force microscopy tip,’® non-contact excitation by acoustic pressure waves
generated by a loudspeaker®’ or solid acoustic waves, distant excitation by electro-
statics,’® shock base excitation with an electrical discharge or a pneumatic gun,>
excitation of magnetic film coated devices with an electromagnetic coil and other

ones.®

6.3. Quality Factor Measurements by Optical Techniques

6.3.1. General Features of Optical Measurement Techniques

In this section we will focus on optical measurement techniques suitable for qual-
ity factor measurements from vibration spectra or transient response. Information
on full field optical techniques suitable for mode shape measurements of microres-
onators can be found in a recent book®' and in several papers.®-62:63

Optical characterization techniques of the quality factor of resonators rely on
the use of a sensing light beam focused or collimated on the device and the detec-
tion with a photodetector or a camera of the reflected, transmitted, diffracted or
scattered light (Fig. 6.7).

The major interest of optical techniques is their ability to allow non-contact,
direct, spatially resolved and quantitative measurements of out-of-plane, in-plane
and torsional motions. In addition, contrary to electrical measurements, most of



196 A. Bosseboeuf and H. Mathias

them do not need specific sample preparation, nor electrodes, so that they can be
applied at any stage of the device development provided than an external excita-
tion technique is used. Finally, they have mapping capabilities, a useful feature
for vibration mode analysis.

Sensing
beam

vibrating
structure y

Fig. 6.7. General principle of vibration measurement of microstructures by optical techniques. 6 is
the incidence angle (0 < 6 < 90°) and « is the detection angle (0 < o < 180°).

In a general way, the signal to noise ratio of optical detection techniques is
inversely proportional to the detection bandwidth so lock-in detection or hetero-
dyning techniques are typically used. The detection limit of optical techniques is
also improved by an increase of the detected light power, and thus of the sens-
ing beam power. In practise the sensing beam light power is actually limited
by device heating caused by the photothermal effect. It may become significant
and may even damage the device for a small and absorbing device and a highly
focused beam.®* The temperature rise can be computed by solving the heat dif-
fusion equation with absorbed light power density as a volume heat source or by
using heat flow as a surface boundary condition.**-3* Experimentally, excessive
heating can be detected by a variation of the resonant frequencies when the light
power is changed.

Another common issue of optical vibrometry techniques is the measurement
of (semi-)transparent devices. In this case, a thin metallic layer is often added on
the device surface to increase the reflectivity and to avoid light interference effects
within the device or between the bottom surface and the substrate. If the additional
layer is sufficiently thin, resonant frequencies variation may be negligible but for
intrinsic losses characterization, this must be clearly avoided because it can largely
affect the vacuum quality factor. As discussed in Sec. 6.3.3.2, in some cases light
interference effects between the device and the substrate can be exploited to obtain
very high sensitivity measurements of out-of-plane vibrations.
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In a general way, optical techniques can be applied to quality factor measure-
ments as a function of working pressure by performing measurements through
the window port of a vacuum chamber. Nevertheless this becomes difficult when
a highly focused sensing beam is required because of the lack of commercially
available long distance and compensated lenses with high numerical aperture. For-
tunately, some techniques still work when the light beam spot size is larger than
the device lateral dimensions despite the resulting degradation of signal to noise
ratio. Another solution is to use a thin (micromachined) transparent membrane as
a window. For measurements as function of temperature, a vacuum environment
or a Ny blowing is recommended to avoid microscope lenses heating or water
vapour condensation/freezing on the sample.

Unless otherwise stated, we will henceforth assume that the top surface of the
vibrating structure is horizontal (in the  — y plane) and that the sensing beam is
vertical (0 = 0) or tilted with respect to the vertical z-axis (see Fig. 6.7). Con-
sequently out-of-plane vibrations are along the z axis and in-plane vibrations are
along a direction in the x — y plane.

6.3.2. Damping Measurement of In-Plane Vibrations

Because lateral actuation is easier to integrate, many resonating sensors are de-
signed for in-plane vibrations. Most micromachined resonators have optically
smooth top surfaces, i.e., surfaces with a roughness much lower that the optical
wavelength, at least in the visible range. Consequently for low in-plane displace-
ments, the surfaces are locally invariant by translation and the only way to detect
in-plane motion is to exploit the presence of sharp edges at the periphery of the
microstructure and around the openings made in the moving microstructure. We
will examine below three kind of techniques based respectively on image process-
ing, on partial obscuration (knife-edge techniques) and on diffraction. Then we
will briefly mention techniques suitable for sufficiently rough surfaces.

6.3.2.1. Image Processing Techniques

The most common techniques for in-plane vibration measurements of microres-
onators are based on optical microscopy associated with image processing. For all
these techniques, the detection limit depends on the ratio of the pixel size to the
lens magnification and on the contrast between the moving part image area and
the background image area.

The simplest technique, initially proposed by Burns and Helbig,®” is to analyse
by image processing the vibration-induced blur at the edges of the device. For
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vibrations larger than a few pixels, motion direction can readily be determined by
comparing images in the static and dynamic cases. This is illustrated in Fig. 6.8
for images of a laterally driven comb drive resonator (Tang resonator) taken from
our institute.

Fig. 6.8. Images of a Tang resonator fabricated in MUMPS polysilicon technology. a) Image at rest
(no motion). b) Time-averaged blurred image recorded at resonance (f = 8.2 kHz). Vibration is
along the horizontal axis.

The blurred image is the convolution of the image taken at rest and the optical
point spread function related to blur. If the vibration period is much lower than
the image integration time, the blur profile depends on the vibration amplitude and
its direction but not on its frequency. By minimizing the difference between syn-
thetic blurred images generated from the image at rest and the real blurred image,
vibration amplitudes down to a fraction of a pixel can be measured. By apply-
ing this method on an image line, Burns et al.® demonstrated motion amplitude
measurements with a reproducibility of +/-0.2 pixel (50 nm at the sample level)
and quality factor values in agreement with values measured by stroboscopic mi-
croscopy. Work in progress shows that full field bi-directional measurements with
a detection limit lower than 0.1 pixel can be achieved.

This method has a limited resolution and is not able to measure the vibration
phase but it can be applied at any the vibration frequency higher than the video
rate. Time-resolved measurements with a lower detection limit can be achieved
by processing optical microscopy images recorded in the stroboscopic mode. This
technique, first investigated at MIT,*07 is now the most widely used one for
in-plane vibration measurements of MEMS. Various implementations with var-
ious names were developed by several laboratories?*>®1:9268-71 and manufacturers
of optical profilometer-vibrometers. In this technique, the sample is illuminated
with light pulses. If the light pulses are synchronized to the vibration and if their
duration is much lower than the vibration period, the resulting “frozen” image
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corresponds to a position of the moving microstructure during its sinusoidal vi-
bration cycle. This illustrated in Fig. 6.9 for the case of two positions around the
extrema at resonance of the Tang resonator of Fig. 6.8.

Fig. 6.9. Stroboscopic images of a Tang Resonator at resonance. a) Shuttle mass close to the maxi-
mum left position b) Shuttle mass close to the maximum right position.

The resonator motion can be quantified by image processing techniques based
on intensity gradient analysis®®~"? or on correlation.’”” Finally, by varying the de-
lay of the light pulse with respect to the vibration period, the whole sinusoidal
motion can be extracted. By repeating this process for different frequencies, mo-
tion versus frequency can be measured around a resonance and the quality factor
can be computed as indicated in Sec. 6.2.3.1. This technique can also be applied
to repetitive transients to get the quality factor from the decreasing oscillations. In
that case, the light pulse delay is changed for each transient.
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Fig. 6.10. Spatially-averaged motion around the fundamental resonance of a Si beam measured by
optical stroboscopic microscopy at a pressure of 5 X 10~% mbar,
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A convenient way to modulate the phase is to adjust the light pulse repetition
rate at a frequency fo slightly larger or lower than the vibration frequency f;.
Then the apparent motion is a slowed down version of the real motion at the
frequency Af = |fo — f1]. If Af is slower than the video rate and an optimized
in-flight image processing algorithm is used, the full field bi-directional motion
can be measured as function of frequency in real time.?>> An example of vacuum
measurement on a Si cantilever beam by this method is shown in Fig. 6.10.
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Fig. 6.11. Resonant peak of a Si cantilever beam measured by optical stroboscopic microscopy with
image processing.
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Fig. 6.12. Quality factor pressure dependence for the Tang resonator of Fig. 6.9. Measurement by
stroboscopic optical microscopy with image processing.

Then the vibration amplitude and phase can be extracted by Fast Fourier
Transform (FFT) demodulation which, at the same time, drastically reduces the
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noise and effects of parasitic vibrations.??> Figure 6.11 gives the result of such an
amplitude demodulation for the signal of Fig. 6.10 in a larger frequency range.
Finally the quality factor can be extracted from a Lorentzian fit of the resulting
curves as discussed in Sec. 6.2.3.1.

Vibration amplitudes as low as 1 nm (corresponding to 5 x 10~3 pixel) can be
measured at video rate by this method even in a vacuum chamber with the pump-
ing system on.?? Figure 6.12 shows the pressure dependence of the quality factor
of the Tang resonator of Fig. 6.9 measured by this method and clearly indicate
that, in this case, air damping limits the quality factor for pressures down to about
8 x 1073 mbar.

As mentioned just above, stroboscopic microscopy measurements allow both
quantitative amplitude and phase measurements of in-plane vibrations. However,
since phase measurements are more sensitive to drift and need a noise-sensitive
unwrapping step, published measurements of the quality factor exploiting this
technique are generally based on amplitude measurements.

Most stroboscopic image processing algorithms used for motion estimation
suffer from the following drawbacks: first, they usually assume image brightness
conservation that is not totally true when some out-of-plane or torsion motion oc-
curs. Secondly they assume rigid body motion (which is only locally true) and
they tend to produce a systematic motion bias and to favour motion vectors per-
pendicular to edges. Finally they are sensitive to drifts. These drawbacks can be
reduced by making use of spatial and temporal filtering techniques® but at the
expense of lower spatial resolution and measurement rate. Likewise, if measure-
ment duration is not an issue, a very low detection limit can be obtained by image
averaging and the dynamic range can be increased by using a pyramidal approach
where image processing is applied to images with increasing lateral resolution.

The frequency bandwidth limitation of this technique arises from the need
of high power short light pulses with a high repetition rate. Most systems use
a single Light Emitting Diodes (LED) or an array of them as the light source.
Their response time being typically a few tens ns, the frequency range is typically
limited to a few MHz although measurements at higher frequency can be made if
the vibration amplitude is low or by applying a suitable correction.

Time-averaged and stroboscopic optical microscopy techniques described
above can be applied on isolated micron-size resonators and even on device
smaller than the optical resolution of the microscope lenses. However this possi-
bility is limited by the need to average the results in an area of a few (tens) pixels
wide.
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6.3.2.2. Knife-Edge Techniques

In-plane vibrations of an opaque microstructure can be detected from the modu-
lation of the reflected or transmitted intensity of a light beam focused on an edge
of the moving part’>~7> (Fig. 6.13).

In the reflection mode (Fig. 6.13(a)), the amount of modulation of the detected
beam depends on the vibration amplitude and on the ratio of the light power re-
flectivities of the moving structure and the substrate.”> Even for similar reflectiv-
ities, a resolution in the nanometer range can still be achieved by using a highly
focused beam because the beam modulation is also dependent on the beam de-
focus between the vibrating microstructure and the substrate.”> The counterpart
is a slight sensitivity to out-of-plane vibrations. When the moving structure is
(semi)-transparent, light interferences occur in the structure and in the gap (see
Sec. 6.3.3.2) and the signal is sensitive to both in-plane and out-of-plane vibra-
tions in a complex way.

Light beam Light beam

2

Vibrating
part

Vibrating
part

Substrate

Fig. 6.13. Principle of the knife-edge techniques for in-plane vibration measurements. a) reflection
mode b) transmission mode.

The best sensitivity is achieved in the transmission mode for an opaque struc-
ture but this can be used only in some specific cases.

This technique provides only a point-wise and unidirectional measurement
but is able to measure both the amplitude and the phase of in-plane vibrations”
as well as non repetitive transient responses by using a lock-in detection scheme,
a spectral analyser or an oscilloscope. In addition, its frequency range is only
limited by the bandwidth of the photodetector and the detection electronics so
that high frequency vibration measurements can be performed by using high speed
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components.”? Finally, in-plane vibration modes can be imaged by scanning the
sample and recording the signal at the edges of each etch release hole.”?

The sensitivity is optimum for a small spot size centred on the edge but a small
spot size limits the linear detection range which is about 10% of the spot diameter
for a Gaussian sensing light beam.”> For opaque vibrating structures without a
substrate below, both a large dynamic range and a high sensitivity can be obtained
in the reflection mode with a large spot size, by using a laser Doppler vibrometer
as a measurement tool.”* In this later case a noise floor of 10~*! m/v/Hz could be
reached.

The knife-edge technique was tested only by few authors but it has a good
complementarity with the methods based on image processing described above.
Actually, both techniques are implemented on the same optical microscope at IEF-
UPS. Integrated versions of this technique in the transmission mode were imple-
mented by different authors by using optical fibers or waveguides. In this case,
the optical sensing and detected beams are in the substrate plane and partial ob-
scuration or the change of light coupling efficiency is detected.

6.3.2.3. Grating Interferometry

An interesting technique based on grating interferometry was proposed recently.”®
This technique needs the fabrication of a reflective diffraction grating on the mov-
ing micro structure (Fig. 6.14). When a coherent laser beam is focused on a grat-
ing at normal incidence, light is diffracted in several directions 6,,, (Fig. 6.14)
given by:

0., = arcsin(m/a) (6.13)

Moving structure

Fig. 6.14. Diffraction of light by a grating made in the resonator.
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where m is the diffraction order, A the wavelength of the illuminating beam and a

the grating pitch.
In the experimental set-up proposed by Zhou and Chau’® (Fig. 6.15) the
diffracted beams of order m = —1 and m = +1 are collected with a beam splitter,

collimated by lenses and combined with a mirror and beam splitters to obtain an
interference pattern (Fig. 6.15). The intensity of one of these beams and of the
interference pattern are monitored by photodiodes and amplified.

Laser beam Diffraction
orders
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motion

Fig. 6.15. Scheme of a grating interferometry set-up. L = lenses, BS = Beam splitters, PD = Photo-
diodes, A = Amplifiers.

The signal V; corresponding to the amplified intensity of the diffracted beam

of order £1 varies with the out-of-plane displacement z as follows:”®

2 [m(20 + 2)
A
where f; is the fraction of detected light in the diffracted beam after transmission
and amplification, I;,, is the intensity of the illuminating laser beam, z is the
initial offset and A is the illuminating beam wavelength.
In addition, the ratio of the signals V5 /V;, where V5 is the interference signal,

Vi = fili sin (1+6_4) (6.14)

(Fig. 6.15) varies with the displacement in the z direction as follows:’®
Vx 4
2 —a+bcos <m + A¢> (6.15)
V1 a

where ¢ and d are constants related to the losses of the optical beam paths, the
photodiodes efficiency and gains of the transimpedance amplifiers. A¢ is a phase
offset and a is the grating pitch.



Experimental Techniques for Damping Characterization of Micro and Nanostructures 205

These equations show that out-of-plane and unidirectional in-plane motion
of the moving structure can be measured simultaneously by this technique. By
using a 50 m HeNe laser spot size, a detection limit equal to 0.23 nm/v/Hz
for in-plane vibrations and to 0.03 nm/+/Hz for out-of-plane vibrations has been
demonstrated for a resonator having a 2 um thick polysilicon grating with a 4 um
pitch and a 2 um gap above the substrate.”® This technique is thus suitable for
damping measurements of relatively large structures incorporating a grating. Full
3D measurements should be possible by using a 2D grating and by duplicating the
optical set-up.

6.3.2.4. Other Optical Techniques for In-Plane Vibration Measurements

For a moving structure having a rough or highly structured top surface, various
other techniques based on the detection of the scattered light or on the formation
of speckles can be applied, such as two-beam laser Doppler interferometry,””-’8
holographic techniques,®!%3
techniques.®!%!
the amount of scattered light and favours the formation of speckle. So, by using
a Deep UV light source, Aswendt demonstrated that Electronic Speckle Pattern
Interferometry could be applied to vibration testing of MEMS having a moderate
surface roughness.®!

Finally, when the sidewall of the moving structures can be accessed or when a
45° mirror can be integrated near it, some of the out-of-plane vibration measure-
ment methods described below can be employed.

optical laser feedback interferometry’® and speckle
A short wavelength and highly coherent illumination increases

6.3.3. Damping Measurements of Out-of-Plane and Torsional Vibrations

A large number of techniques are available for out-of-plane displacement mea-
surements of microstructures with (sub)nanometer resolution.'~%* The great ma-
jority of them can be adapted for damping measurements. Generally speaking,
point-wise techniques based on a single photodetector are the best methods for
damping measurements. By scanning the sensing beam or the sample, vibration
mode shapes can also be extracted but this is generally time-consuming. Con-
versely, camera based full-field techniques such as stroboscopic®!:62:67:68.70.82-84
or time-averaged® 283 interference microscopy, holographic®-° or speckle®*8!
techniques are very performing for vibration mode mapping but slow and less
sensitive for vibration spectra measurements. There is an obvious interest to build
set-ups combining both types of techniques.*® In the following, we will essentially
consider the first category of techniques.
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All techniques described below can equally be applied to torsional vibrations
damping measurements, the most straightforward technique being optical beam
deflection described just below.

6.3.3.1. Optical Beam Deflection Techniques

The optical beam deflection technique was historically the first vibrometry tech-
nique applied to the dynamic characterization of microstructures.! In this tech-
nique, the sensing beam is collimated or focused on the moving microstructure
under oblique incidence and the angle of the deflected beam is detected by a po-
sition sensitive detector (PSD) which can be a partially obscured photodiode or a
segmented photodiode (Fig. 6.16(a)).>787-%
The beam deflections Az and Ay on the photodiode are given by:®’
0z(x,y)

Ay =2D (> +28z(x0,y0)sinf + ¢ (6.16)
ay Z0,Yo

Az = 2D (@Z@Jy)>
al’ Zo,Yo

where D is the distance from the sample and the PSD, dz(xg, yo) the local vertical
displacement at position xg, yo With respect to the base plane and 6 the angle of
incidence of the sensing beam.

The first terms of these two equations give the beam deflections related to
slopes variation while the second term in the first equation is the beam deflection

Source

Laser beam z ;’,“/@
4

o

X Sample ()

(b)

Fig. 6.16. Optical beam deflection technique. a) Principle illustrated on a circular membrane with
a 4 quadrants photodiode as a Position Sensitive Detector b) Configuration for a beam focused on a
cantilever beam.
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related to the vertical displacement. ¢ represents smaller high order terms related
to the shift of the beam spot on the device with respect to =g, yo position.

These equations show that this technique is actually mainly sensitive to local
slope variations except where there are very close to zero. Eventually they can be
separated by using 2 detectors at different distances. Putman et al.¥’ computed
the sensitivity of various configurations in the case of shot noise and diffraction
limited measurements on a cantilever beam with a Gaussian laser beam and a
single detector. For the common case where the beam is focused close to the end
of a cantilever beam and the detector is far from the beam waist region, the signal
to noise ratio is given by:

Anly )1/24 (ﬁ)s/z sz 6.1

S/N =15 <2hcAf 2) I

where A and [ are the sensing beam wavelength and power respectively, 7 the
quantum efficiency of the detector, i the Planck constant, ¢ the speed of light
and Af the detection bandwidth. [ is the cantilever beam length and d the spot
diameter on it.

This equation shows that in this case the S/N ratio is no longer dependent
on the distance D. Indeed, although the spot displacement is proportional to D,
this also holds for the spot diameter on the detector. For d/l = 1/3, h = 0.8,
A = 780nm and Iy = 1 mW, the theoretical S/N ratio is 7.9 x 10~ m/(Hz)"/2.
In practice, a S/N ratio about one to two order of magnitude higher can be
achieved so the sensitivity of this technique is more than sufficient for dynamic
measurements of microstructures up to high frequencies. Experimental set-ups
used for MEMS investigations often have much lower sensitivities in order to al-
low large vibration amplitude measurements.””

This technique is mainly suitable for sufficiently large devices because the
spot size on the sample is limited by the low working distance and by the large
divergence of the reflected beam when a high numerical aperture focusing lens is
used. Some set-ups include a laser or sample scanning system to allow vibration
mode analysis.%

Recent examples of application of the optical beam deflection technique to
intrinsic and/or viscous damping investigations of micromechanical devices can
be found in the literature.>38-0

6.3.3.2. Interferometry Techniques

Interferometry techniques are based on the detection and processing of optical
interferences between a light beam reflected on the sample surface and a light
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beam reflected on a reference mirror/surface. We will successively examine the
cases of homodyne interferometry, where the optical frequencies of the two beams
are equal, the case of laser Doppler heterodyne interferometry, where they are
different, and finally the case of Fabry—Pérot interferometry where multiple beams
are interfering.

a) Two-beam homodyne interferometry. Figure 6.17 shows an optical config-
uration based on a monochromatic light Michelson interferometer and often used
for MEMS vibration testing. Various other types of two-beam homodyne inter-
ferometers can actually be used. For example a simple, compact and convenient
solution is to use Michelson, Mirau or Linnik interferometric objectives.®? Small
and eventually multipoint interferometric vibrometers can also be build by using

optical fiber technology.®>"3
Light
beam
Reference Beam i
Mirra splitter enIgetector
27;
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Lens t Focus control

Sample
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Fig. 6.17. Michelson interferometer with beam focusing on the sample.

Whatever the homodyne interferometer used, the instantaneous light intensity
reaching the detector can ideally be described by the following equation:®!

I4(t) = Ip + Is + 2v/Ipls cos(4mz(t) /A + ¢o) = A+ Bceos(d)  (6.18)

where Ir, Ig are the light intensities reflected on the reference mirror and on
the sample surface respectively, z(¢) the time-dependent part of the out-of-plane
displacement to be measured, A the effective light source wavelength and ¢ the
phase offset.

All information on sample motion is contained in the phase ¢. Various detec-
tion schemes can be implemented to demodulate this phase.
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With 2(t) = asin(27 ft + ¢1) and by developing the cosine term, Eq. (6.18)
becomes:

I4(t) = Ir + Is + 2+/IrIs | cos (¢pg) cos (47)7\a sin(27 ft + (Z)l)) (6.19)

— sin (¢p) sin (47;01 sin(2w ft + ¢1))

For low sinusoidal vibration amplitudes much lower than \/47 the detected in-
tensity becomes:

Ii(t) = Ip+ Is+2+/IRrls [cos (¢0) — sin (¢o) MTG sin(27 ft + (;51)] (6.20)

The detected intensity is thus sinusoidal and the vibration amplitude can be mea-
sured with a lock-in amplifier or a spectral analyser. This equation shows that, to
get a constant and maximum sensitivity, a stabilisation circuit or technique must
be used to adjust and maintain the mean position at ¢g = +7/2. With such sta-
bilized interferometers, a detection limit in the 10~* to 10~'2 m/(Hz)'/2? can
be reached?!"’393%* allowing measurements up to the GHz range with picometer
resolution.’!
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Fig. 6.18. Quadrature interferometry set-up with balanced detectors. PBS: Polarising Beam Splitter.
PD: Photodiode.

Although vibration amplitude measurements versus frequency are sufficient to
compute the quality factor, the vibration phase is useful in modal analysis. Phase
measurements require the generation of a vibration signal in quadrature. This can
be achieved electronically by using a double channel lock-in detection amplifier.
Another way is to take benefit of light polarisation to generate an optical signal in
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quadrature. In the set-up of Fig. 6.18 this is obtained by splitting the reference
and sample beams with a polarising beam splitter and rotating their polarisation by
90° with quarter-wave plates. The two signals in quadrature are separated by a non
polarising beam splitter with a quarterwave plate in one of the branches. Finally
the quadrature signals are sent to polarising beam splitters to get in-phase and
out-of-phase signals that are detected with photodiodes. This balanced detector
configuration allows, by substracting the signals of the photodiodes, to increase
the detected power by a factor two and to remove the DC components.”’

Signals in quadrature can be obtained by various other interferometric
schemes.>>’” The vibration phase can then be computed by an arctangent opera-
tion on the signal ratio. The main issue of quadrature interferometry is a mutual
cross-talk between the quadrature signals due to imperfection of the polarizing
beam splitter, to unequal gains of the detectors, to an unbalance of the two beams,

to an othogonality error between the two signals, . . . . This can be corrected after-
ward by ellipse fitting of the sine signal versus cosine signal curve (Lissajou
curve).”

For large but linear vibrations, the average signal becomes vibration-amplitude
dependent and the detected intensity contains an increasing number of harmonics
with amplitudes given by Bessel functions of integer order of the vibration ampli-
tude.®3 Then a harmonic analysis,’® a fit of the time dependence of the signal or a
fringe counting procedure’ is required to extract the vibration amplitude.

b) Laser Doppler vibrometry. Laser Doppler vibrometry (LDV) is the most
popular technique for damping measurements of out-of-plane vibrations of
MEMS. This well documented®-”’ technique is based on the variation of optical
frequency of a laser beam reflected or scattered by a vibrating surface (Doppler
effect). For normal incidence of the sensing and detection beams (backscattering
geometry) the relative frequency shift is equal to 2v/c where v is the out-of-plane
velocity of the vibrating surface and c is the speed of light. In order to detect this
very low frequency shift, a two-beam heterodyne interferometer is used.®’-”7 A
typical set-up based on a Mach Zehnder interferometer is shown in Fig. 6.19.6!

In laser Doppler vibrometers, the optical frequency fgr of the reference beam,
(or of the sample beam, or both) is shifted by an amount fp with respect to the
optical frequency fg of the sample optical beam by using a Bragg cell modulated
at frequency fp. In Fig. 6.19, polarising beam splitters are used to separate or-
thogonal polarisation components of optical beams, and the reference and sample
beams are recombined with a non polarising beam splitter to obtain interfero-
metric signals in and out-of-phase on two photodiodes. It can be readily shown
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Fig. 6.19. Heterodyne Mach-Zehnder Laser vibrometer. PBS: Polarizing beam splitter, BS: Non-
polarizing Beam splitter, PD: Photodiode.

that the optical signal received by each photodiode contains a term at frequency
fr+ fs = 2fs+ fp thatis too fast to be detected and a beating signal at a carrier
frequency fr — fs = fp given by:°!

Ii(t) = K[Igr + Is + 2/ IrIg cos(2m fpt — o(t) + ¢o)] (6.21)

where K is a conversion factor, fr and fg the reference and object beam powers,
©(t) the varying phase and ¢q a phase offset.

A frequency or phase demodulation circuitry respectively provides the instan-
taneous velocity or displacement. A spectrum analyser then allows the measure-
ment of a vibration spectrum in real time with an excellent sensitivity and a very
large dynamic range. Vibration measurements of micro/nanostructures up to 100
MHz have been demonstrated. In addition differential set-ups where the reference
beam is reflected on another part of the sample surface are available that allows
accurate measurement even in the presence of (thermal) drifts and of external dis-
turbances as found in clean rooms facilities and vacuum chambers. Finally, it is
one of the best methods for transient response measurements.

c) Fabry-Pérot interferometry. An increasingly used technique is Fabry—Pérot
(FP) interferometry. This technique takes benefits of multiple beam interferences
between two reflecting parallel surfaces forming a cavity of length d (Fig. 6.20).
The amplitude reflection and transmission coefficient R and T of the Fabry—
Pérot cavity can classically be computed, in the case of an arbitrary number
of interfaces and for an incident plane wave, by summing the contributions of
the internal reflected beams for transverse electric and transverse magnetic light
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Fig. 6.20. Multiple interferences between two reflecting surfaces. rij and tij are the Fresnel reflec-
tion and transmission coefficient of interface /7.

polarisations.”’ Then the total power reflection or transmission coefficients R
and T can be computed according to the polarisation state of the sensing beam
and its wavelength spectrum. For the case of an ideal (non absorbing) Fabry—Pérot
interferometer at normal incidence (§ = 0), Rz = 1 — Trr and is given by:”!

R + 19 — 2(r11r9) /2 cos(4mdny /X + )
T Ty — 2(ryr9)1/2 cos(dmdny /N + ¢')

(6.22)

where 71 = |rg1|?, ro = |r12|?, are the power reflection coefficients of the two
surfaces, n; and d are the refractive index and thickness of the Fabry—Pérot cavity
and ¢, ¢ are related to the reflection phase shifts at the interfaces.

Variation of R = 1 — T with the normalized cavity thickness dnq /) is plot-
ted in Fig. 6.21 for an ideal Fabry—Pérot interferometer with two loss-less mirrors
of equal reflectivity » = r; = ry. For low values of 7, high order reflections are
negligible and a Fabry—Pérot interferometer behaves like a two-beam interferome-
ter. However for large reflection coefficients a resonance occurs for d = m\/2n4,
where m is an integer and A is the wavelength. The half-width at half maximum
of the peaks is related to the reflection coefficient r by:

2(1—=r) 2«
iz T F
where F, called the finesse, is the ratio of fringe separation to their half-width.

In a real Fabry—Pérot interferometer, the finesse is reduced by unwanted bow,
surface roughness and departure from parallelism of the mirrors,”” by the differ-
ence of reflection coefficients of the two mirrors and by the non planar profile and
limited lateral extent of the incident beam.

W = (6.23)
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When the distance d is close to a resonance, a large variation of reflected or
transmitted intensity is produced for small variations of d. Hence, if one of the
reflecting surfaces is the vibrating part of the device, vibration measurements with
a very high sensitivity (but a low dynamic range) can be achieved. A noise floor
of 2 x 10~'% m/v/Hz has been experimentally demonstrated.’®
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Fig. 6.21. Reflection coefficient of an ideal Fabry—Pérot cavity versus its normalized thickness for
various values of the mirrors reflection coefficient. For Air/Silicon interface » = 0.3-0.35 in the
visible-NIR range.

This measurement technique can be applied to vibration measurement of mi-
cro or nanoresonators by various ways (Fig. 6.22). The reference mirror can be
the cleaved end of an optical fiber®” (Fig. 6.22(a)), the substrate below the vibrat-
ing surface®’-100-101 (transparent devices) (Figs. 6.22(b), 6.22(d) and 6.22(e)) or an
external mirror”® (Fig. 6.22(c)). For silicon resonators thicker than ~ 0.5 — 2 um,
a near-infrared light source is preferable for configurations 6.22(b), 6.22(d) and
6.22(e) because silicon is (slightly) absorbing in the visible range but fully trans-
parent above A ~ 1 um. For vacuum measurements, the preferred implementation
is that of Fig. 6.22(c).

To avoid internal reflections within the device or other reflections which
degrade the performances of Fabry—Pérot cavities and introduce technology-
dependent intensity variations, it might be necessary to deposit anti-reflecting
coatings on surfaces not acting as cavity mirrors.”’ Vibration measurements can
be as well performed with a fully external Fabry—Pérot interferometer.”” In this
case, mainly used for the characterization of high frequency acoustic solid waves,
curved mirrors in a confocal configuration is the typical implementation.
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Fig. 6.22. Some configurations for the application of Fabry—Pérot interferometry to the dynamic
characterization of microstructures.

In all cases, vibration-induced intensity variations can be detected with an
external detector, or an integrated photodiode®” (Fig. 6.22(e)) and analyzed as in
two-beam interferometry. As a Fabry—Pérot cavity with highly reflective mirrors
acts as a very narrow band filter, an alternative in this case is to use a broadband
source and to measure the change of transmitted or reflected wavelength with an
optical spectrum analyser (Fig. 6.22(d)).

A clear advantage of Fabry—Pérot interferometry, beside its high sensitivity, is
its simple optical configuration that needs only few components. For this reason,
it is increasingly used when very low vibration amplitudes and/or high vibration
frequencies have to be measured. For example, Fabry—Pérot interferometry mea-
surements up to a frequency of 640 MHz were demonstrated.!%?

6.3.3.3. Other Techniques for Out-of-Plane Vibration Measurements

Similarly to optical microscopy (see Sec. 6.3.2.1), interference microscopy®! 62!

can be applied to damping measurements by in-flight processing of interferograms
recorded in the time-averaged or stroboscopic mode. These techniques are slower
and have a higher detection limit (0.2-5 nm) than the techniques described above,
but allow parallel testing and are specially useful for vibration coupling investiga-
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tions, for anchor loss investigations and for large vibration measurements. Like-
wise various digital holography and speckle techniques can be applied in the time-
average or stroboscopic mode on MEMS with rough or mixed-type surfaces.®!

6.3.4. Conclusion

As shown above, optical techniques are particularly well suited for damping mea-
surements. They allow non-contact quality factor measurements of in-plane and
out-of-plane vibrations at atmospheric pressure or in vacuum with a high sensitiv-
ity, a large frequency bandwidth and a high lateral resolution. Nevertheless some
margin of progress still exists for in-plane vibration measurements. A main chal-
lenge is to increase significantly the measurement rate and to develop techniques
for 3D measurements. Some of the techniques described for in-plane and out-
of-plane vibrations measurement can actually be combined to perform both mea-
surements on a single system but not simultaneously. For example, Laser Doppler
Vibrometry and the knife-edge technique were used by Holmgren et al.”® to per-
form both out-of-plane and in-plane measurements on RF microresonatores up to
a few tens MHz with a high sensitivity and a high lateral resolution. This combina-
tion is probably, at present, the best one for damping measurements. Nevertheless,
only very few techniques allow simultaneous and independent in-plane and out-
of-plane measurements. Such a possibility was mentioned above for grating inter-
ferometry. Stroboscopic interference microscopy is also a technique allowing 3D
measurements with (sub)nanometer resolution by using fringe contrast maps for
in-plane measurement and phase maps for out-of-plane measurements.®”-’ For
rough surfaces, Laser Doppler vibrometry with two sensing or detecting beams
and speckle techniques with several light sources have also simultaneous 3D ca-
pability.5’

6.4. Electrical Techniques and Alternative Techniques for Quality
Factor Measurement

6.4.1. Electrical Techniques

All the optical techniques described in the previous sections permit to charac-
terize the purely mechanical behaviour of MEMS/NEMS resonators. However,
whenever the resonator is integrated in a microsystem, it is generally coupled to
electro-mechanical actuation and detection transducers to be able to electrically
drive the resonator and electrically read out its response. This coupling adds some
extra dissipation (1/Qelec) and thus alters the mechanical quality factor Qmech-
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The global effective quality factor Q. can be defined as

Qmech Qelec ( 1 1 1 )
or

= e Ere -
Qeff Qmech + Qelec

Qeff B Qmech Qelec (624)
The mechanical properties of the resonator in terms of damping may thus be de-
teriorated by the coupling at the transducers. This property has been used to tune
the driving and sensing modes of a gyroscope in order to improve its global char-
acteristics.'%

In this part, we will first investigate the quality factor of the electronic parts
and we will then present existing techniques to perform electrical measurements
of quality factors.

6.4.1.1. Damping by Electronics

To estimate the electronic quality factor, we will consider the classical capacitive
device that is driven and sensed using comb-finger designs, as in Fig. 6.23. This
device is similar to the one studied in Ref. [104] but is a little more general since it
allows investigating different biasing configurations. The offset voltage will also
be taken into account concerning the operational amplifier.

Cp and Cg capacitors in Fig. 6.23 representing comb-finger capacitors, both
the drive and sensing electrodes may create an electrostatic force on the moving
mass. This force is proportional to the capacitance variation dC/dzx due to the
movement of the proof mass in the x-direction and also depends on the square of
the voltage difference. By construction, the capacitance variations of C'p and C's
are opposite.

V43
Moving Mass
—
i \ ’ Is
Ny |

Vm((’))T . &
v VM VS + Vom((’))
D T VBT

Fig. 6.23. MEMS Device and read-out circuitry.
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For comb-finger designs, dC'/dz depends on the geometry, is independent of
the x displacement up to first order. The global force balance is given by
&z dz (Vp + Vin (w) — Var)® dC (Vs — Vay)? dC

T Y = &L Usm ) & 605
Mgz T Cq T 2 dr 2 a

By considering an operational amplifier with a finite gain Ay, and an offset voltage

Vosr, the signal Vg is expressed by the following formula:

Ay (VB + Virr) Zrls
Vg = + . 6.26
o Ay +1 Ay +1 ( )

If Ay is chosen sufficiently large so that Vs may be considered constant (A, >

ZrIs/(Vp + Vi), the sensing current can be expressed as

Av (VB + Vorr) | dC dz
Ay +1 dz dt’

Using Egs. (6.25) and (6.26) within Eq. (6.24) and considering that Ay > 1, we
obtain the following expression for the electronic quality factor:

Ig ~ <V]\1 — (6.27)

mAvwnZF
(Vi + Vet — Var)* (dC/(dz))*

|Qetec| = (6.28)

A compromise has thus to be found between sensing current magnitude and elec-
tronic quality factor. The gain bandwidth product of the operational amplifier has
to be chosen large enough to have a sufficient read-out gain and a high quality
factor at the same time.

6.4.1.2. Standard Electrical Techniques for Quality Factor Measurements

When an electrical signal is available, () measurement may be directly performed
using standard electronic equipment. For frequency domain analysis, three differ-
ent kinds of equipment may be used: a digital oscilloscope with FFT computation,
a spectrum analyzer and a network analyzer.

Performing an FFT on a digital oscilloscope is one of the quickest ways to
conduct the analysis. It only requires a few milliseconds. A fixed number N of
samples are acquired from a temporal signal over a given acquisition time 7". This
temporal signal may be the resonator response either to a sinusoid with continu-
ously swept frequency during the acquisition time, or to a white noise. The latter
technique may be useful in the case of high ()-values not to miss the resonant
frequency.'® The chosen sample rate 1/(NT) defines the obtained frequency
resolution after the Fast Fourier transform is performed. The original spectrum
is indeed also sampled N times. Increasing the acquisition time (decreasing the
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sample rate) also increases the frequency resolution but reduces the obtained spec-
trum span. A compromise has to be found, depending on the quality factor to be
measured and the characterization method used. Care must be taken that the pe-
riod of the fastest signal present contains at least 2 samples (Shannon theorem) to
avoid aliasing problems. The type of temporal window used to model the discrete
time signal processed has also an impact on the frequency resolution. Hanning
window is generally a good practical compromise between resolution and spectral
leakage.!%

In the case of a spectrum analyser, the same kind of excitation signal as with
the oscilloscope has to be applied to the resonator. The principle is here to scan the
input spectrum through a narrow bandpass filter, at a fixed intermediate frequency,
by mixing the input signal with a varying frequency sinusoidal signal coming from
a local variable oscillator. The user controls the filter resolution bandwidth and the
frequency range of the local oscillator. The corresponding frequency sweep time
must be large enough so that the narrow filter can settle for each frequency. The
relationship between the sweep time (ST), the resolution bandwidth (RBW) and
the span of the analysis is given by:

k (span)

ST = 2
(RBW)

(6.29)

where k is the constant of proportionality between resolution bandwidth and rise
time of the filter. It typically ranges from 2 to 3 depending on the kind of filter
employed!?” implying that a change in resolution has an important impact on the
sweep time for a given span. The sweep time is generally automatically tuned to
the resolution and span settings. The main advantages of the spectrum analyzer
over the digital oscilloscope with FFT are a better sensitivity, a larger frequency
range and also a larger dynamic range.

The vector network analyzer has several advantages over the two precedent
devices: no external excitation signal is required and both phase and amplitude
information is provided together with amplitude over the frequency range swept.
The principle is to send a well known, internally generated variable frequency or
power signal into the device under test and analyze the corresponding reflected
and transmitted response. From these responses, a wealth of information may
be obtained, e.g., gain, phase, impedance or S-parameters.'”®® The latter may be
exploited to characterize resonators in terms of resonant frequency and quality
factors. Seven methods using these S-parameters have been tested and compared
for different characterization situations (variable Signal to Noise Ratios*®). The
optimal choice of the method depends on the SNR: non-linear least squares fit to a
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Lorentzian curve is the best solution for low SNR situations while non-linear least
squares fit to the phase versus frequency is preferable for higher SNR.36
Concerning transient analysis, the only instrument, among the ones presented,
able to capture one shot events is the oscilloscope. Its memory depth and data
conversion resolution are key points for time domain analysis, especially for high
@ values. A data acquisition board coupled to a personal computer may even
be necessary for () values above 100000. Specific electronic circuitry may also
be developed to process the transient response. Different solutions have been
proposed in the past and may be adapted to the case of MEMS resonators.”~!1°

6.4.1.3. Specific Electrical Techniques for Capacitive MEMS Devices

Capacitive sensors represent an important and diffused example of integrated
MEMS devices. For characterization purpose, they have the advantage of having
built-in actuation and detection electrodes but, due to the presence of parasitic el-
ements, feature crosstalk between actuation and detection signals. This crosstalk
significantly complicates device characterization, especially with external read-
out circuitry and even with precision equipment like a lock-in amplifier. Specific
characterization schemes have been proposed to solve this problem.

For a device using electrostatic comb electrodes and read-out circuitry like
the one shown Fig. 6.23, but where an additional parasitic capacitance Cp,, exists
between driving and sensing electrodes, it is interesting to use the 2"¢ harmonic
to characterize the resonator.!!! In this case, Zp is a resistance Ry and Vj; = 0.
The corresponding experimental setup together with obtained results for /f and
2f characterization is shown Fig. 6.24. The measured voltage at the output of
the lock-in amplifier, depending on the displacement amplitudes and phases at
If and 2f (respectively X, ., Xow and o) and the lock-in amplifier signal
characteristics (V;., w, and ¢,.), is given by:

dac . .
Vou = wRrV,. VB EXW {sin [(nwr4w) t+or—@u] + sin [(nwr—w) t+or+@u]

Fundamental

dC
+ 2wRrV, Vg EXQW {cos [(nwr—2w) t+or+pau] — cos [(nwr+2w) t+or—pau]
2nd Harmonic
+ wRFM-‘/in%Cpar {sin [(nw, + w) t + @] + sin [(nw, —w) t + -]} (6.30)

Parasitic

Figure 6.24(b) clearly shows that the preponderant term when nw, = w is the
parasitic term. The X, variation with V;,, is completely lost. On the contrary, as
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can be expected from Eq. (6.30), when nw, = 2w, the output only depends on
X5, and the resonant response can be observed and processed (Fig. 6.4(c)).
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Fig. 6.24. Swept sine 2™¢ harmonic characterization: experimental setup (a), If results (b) and 2f

results (c) for various AC voltage Vin.

This method has also been used to perform direct electrical quality factor mea-
surement using a discrete electronics read-out circuitry associated to a lock-in

amplifier.!?

For a cantilever resonator constituting a single variable capacitor with only
one electrode for actuation and detection, a similar method was proposed to char-
acterize the resonator despite the feedthrough of the actuation voltage through the
capacitance.!'® Here, the harmonic allowing characterization is the third one (3f).
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The experimental setup is very similar to the one of Fig. 6.24(a), adapted to a sin-
gle variable capacitor. The results have been compared with optical measurement
and the resonant curves are very similar.''?

6.4.1.4. Architectures for Integrated Quality Factor Measurement

The quality factor being one of the key parameters of an important class of MEMS
devices, namely integrated sensors based on resonant frequency shift monitoring,
some quality factor measurement architectures, suitable for integration, have been
developed in order to reduce testing costs and to allow embedded on-line quality

factor extraction for self-calibration.!!*!13
Ts Zero Order Periodic Pattern
l Hold iy
o St
Digital Comparator
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H(s)=? Oscillations
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Under Test

Fig. 6.25. Proposed parameter identification configuration.

A first approach aims at performing parameter identification (resonant fre-
quency and quality factor) for the sensing resonator, whose transfer function is
treated as unknown. The device has to be put in a mixed signal closed loop like
the one shown in Fig. 6.25. In such a configuration, if the digital filter is well
chosen, a periodic pattern composed of several successive pulses is observed. The
switching instants of these pulses are characteristic of the digital filter chosen and
the parameters of the unknown transfer function. By successively monitoring the
complex oscillation response for different digital filters, an accurate estimation
of the resonator’s parameters may be obtained. This approach is particularly well
suited to delta sigma integrated sensors since the testing configuration is very close
to their normal working structure. The analog part of the processing is reduced,
but this testing method requires intensive digital processing, which can be per-
formed by a Digital Signal Processor (DSP). Switched-Capacitors filters, allowing
a modification of the implemented coefficients, could be used as an alternative to
the DSP.!!4
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posed architecture, (c) accuracy estimation with worst case non-idealities values.

More specifically, for the integrated measurement of the quality factor, sev-
eral different architectures, based on the methods presented in previous sections,
and suitable for integration, have been compared using accuracy, speed and cost
as criteria.!’> Two have been found to be potentially interesting for online test-
ing applications. The first one, where a Phase Lock Loop (PLL) is associated
to the MEMS device to constitute an oscillator, uses the amplitude at resonance
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measurement method. Since the static gain of the resonator transfer function is
not known with a sufficient accuracy, this solution is not satisfactory. However,
it is very interesting for online monitoring of the quality factor variations without
disturbing the normal operation of the sensor. The second proposed architecture
is based on transient response measurement.'®!1% The principle is to count the
number of pseudo-periods necessary for the decaying signal to go from a starting
level V down to a final value determined by dividing V;, by a fixed factor k. A
peak detector allows checking at each pseudo-period if the envelope is still supe-
rior to the final threshold. As long as it is true, the pseudo-periods are counted.
The counting clock is generated from the decaying signal and thus no a priori
knowledge of the device’s resonant frequency is necessary. Figure 6.26 shows the
measurement principle (a), the proposed architecture (b) and finally an estimation
of the final accuracy (c), taking into account the most critical non-idealities in the
circuit. The latter curves show that an optimal value of %k exists between 4 and
8. Setting £ = 4.81 would thus be an interesting choice since the post process-
ing would only consist in multiplying by a factor of 2 the counter output to get
the quality factor value. The integrated quality factor measurement architecture
would thus be very cheap with accuracy in the order of a few percent.

6.4.2. Measurement Techniques for Nanoresonators

Mechanical resonators having at least one lateral dimension below 1um and a
thickness in the range of a few tens to a few hundreds of nanometers are usually
called nanoresonators. However this term is also often used for resonators with
lateral dimensions in the low micrometer range. The ultimate case of nanores-
onators is that of carbon nanotubes or nanowires which can have a width down to
a few (tens) nanometers. Nanoresonators are mainly intended for RF applications
and ultra-sensitive sensors.

The low stiffness and vibration amplitudes of nanoresonators make them par-
ticularly sensitive to the interaction with the measurement system. Indeed, what-
ever the measurement technique used, some energy is exchanged between the
device and the detection system which can alter the quality factor of the resonator.
Actually this is used in parametric resonators to artificially increase the quality
factor through a modulation of the resonator stiffness.'!'® Some work was also
done to use light interaction to decrease the quantum noise limit of interferomet-
ric techniques.'!” In all cases, care must be taken to minimise and check the effect
of the measurement on the damping behaviour of the device.

Other obvious issues of optical techniques are the (semi)transparency of the
non metallic nanoresonators and the large spot size with respect to the lowest
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lateral dimension when visible light is used. Decreasing the sensing beam wave-
length down to the Deep Ultra-Violet (DUV) range is a possible way to overcome
these limitations. For electrical measurements, some issues are the low signal level
and the large crosstalk between actuation and detection circuits. Other issues are
the high resonant frequencies (up a few GHz) and the low vibration amplitudes to
be measured.

Some of the optical and electrical techniques described in Sec. 6.3 could be
applied to some nanoresonators. Concerning optical techniques this was demon-
strated for laser Doppler vibrometry!'® and for Fabry—Pérot interferometry,'?
which is presently one of the most common techniques for damping measurements
of out-of-plane vibrations of nanoresonators. In the following, we will describe
alternative techniques that are or should be suitable for damping measurements of
nanoresonators.

6.4.2.1. Electron Microscopy Techniques

Modern scanning electron microscopes (SEM) have a lateral resolution down to a
few nanometers. Some optical techniques developed for microresonators can be
extended to electron microscopy such as in-plane vibration measurements based
on blur analysis of time-averaged images, stroboscopic microscopy with image
processing and the knife edge technique. Up to now, these techniques were
only demonstrated on microresonators but they should be applicable on nanores-
onators. An example of resonance curve measured by the knife-edge electron
microscopy technique is shown in Fig. 6.27.
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Fig. 6.27. Resonant curve of a Tang resonator measured in vacuum by the knife-edge technique in a
scanning electron microscope.
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These measurements were performed by Gilles et al. at IEF-UPS on the Tang
resonator of Fig. 6.8 by focusing the electron beam on the edge of a finger of one
of the comb-drives and by measuring the vibration-induced modulation of the sec-
ondary electron intensity by lock-in detection. Concerning electron stroboscopic
microscopy, some vibration measurements were also demonstrated on microres-
onators at low frequency.'!'® As stroboscopic SEM were developed in the past for
contrast potential measurements on integrated circuits or other fast components
with response times in the picosecond range,'?° this technique should be suitable
for nanoresonators characterization.

Because a vacuum environment is needed for SEM operation, these techniques
can be applied only for intrinsic damping measurements.

6.4.2.2. Near-Field Microscopy Techniques

Near-field microscopes have a high lateral resolution. By using the tip of
an Atomic Force Microscope (AFM) as a probe, out-of-plane vibrations mea-
surements with a high lateral resolution and high vertical resolution could be
achieved.'?!"'?> Such measurements have been demonstrated on high frequency
micro or nanoresonators up to a frequency of ~50 MHz!?
bon nanotubes.'?> For damping measurements, it must be insured that interaction
with the tip has no effect on the quality factor of the resonator. This is critical
for nanoresonators as tip-surface interaction might change the dynamic behaviour
of an AFM cantilever beam. Indeed, this phenomenon is exploited in acoustic
force microscopy, ultrasonic force microscopy and mechanical spectroscopy for
mechanical measurements at nanoscale.'?®!?’ In addition the positioning of the
tip on the nanoresonator is not an easy task. Atomic Force Microscopy is thus
a viable technique for damping measurements of nanoresonators at atmospheric
pressure or in vacuum if a low throughput is not a major concern.

as well as on car-

6.4.2.3. Electromotive Measurements

As explained in Sec. 6.2.4, a nanoresonator can be set in vibration by magneto-
motive actuation, i.e., by passing an alternate current in the device under a high
magnetic field. In the same way, motion of the resonator in the magnetic field
generates an electromotive force Vgyr along the leads on the resonator (Fig. 6.28).
For a beam-like resonator Vepr is given by Veme(t) = LB dw/dt where € is a
constant close to one and related to the mode shape, L the beam length, B the
magnetic field and w the displacement.
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Fig. 6.28. Vibration detection by electromotive force measurement.

Measurement of Vg by an external circuit provides the nanoresonator veloc-
ity. As for capacitive measurements, the measured quality factor might be affected
by the measurement circuit.*® This measurement technique could be applied to
high frequency (100MHz) and low temperature (4K) damping measurements of

nanowires.*’
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The multi-physical nature of microelectromechanical systems (MEMS) makes
the development of CAD tools for MEMS a challenging task. Besides, the non-
linear coupling between the different physical domains in MEMS can give rise
to interesting non-linear dynamic properties which can be exploited for various
applications like chaotic micro-fluidic mixers, secure communications, MEMS
filters with shiftable resonant frequencies, etc. In this chapter, an efficient phys-
ical level simulation tool, namely, the full-Lagrangian Newton method is pre-
sented for the dynamic analysis of electrostatic MEMS. This new scheme has
several advantages of conventional MEMS simulation tools in terms of speed
and convergence rates. The simulation tool is used to explore new non-linear
dynamic properties of electrostatic MEMS. Complex non-linear oscillations and
the period doubling route to chaos are observed under superharmonic excitations
and the presence of U-sequence in MEMS is reported. Under superharmonic ex-
citation, the sequence is found to be a modified form of the U-sequence termed
as “UM-sequence”. The effect of these complex oscillations on thermoelastic
damping (an inherent dissipation mechanism that limits the quality factor of these
devices) in electrostatic MEMS is also studied.
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7.1. Introduction

Microelectromechanical systems (MEMS) have several wide spread industrial ap-
plications like accelerometers,! inertial sensors,> chemical/biological sensors,>
RF switches/filters,* efc. Advanced simulation and modeling tools are needed for
the efficient design and analysis of MEMS devices. However, the multi-energy
domains (for example, electrical, fluidic, thermal, mechanical, efc.) present in
MEMS devices and the non-linear coupling that exists between them make the
development of such computational tools very challenging.’ Physical level sim-
ulation tools for the design and analysis of MEMS devices have been developed
over the years.>” These conventional simulation tools perform the mechanical
analysis on the undeformed geometry of the device using a Lagrangian approach
and the analyses of the other physical domains present are performed on the de-
formed geometry — such an approach is defined as a semi-Lagrangian-scheme in
this work. A relaxation method is used for self-consistency between the physical
domains. Consequently, there is a need to update the geometry of the structure
during each relaxation iteration in each time step. This in turn requires re-meshing
of the surface (when the deformation is large) and re-computation of the interpo-
lation functions used in the numerical method during each relaxation iteration in
each time step. This significantly increases the computational effort making the
self-consistent analysis of MEMS an extremely complex and challenging task.
Besides, the non-linear coupling between the different domains can significantly
lower the convergence rate of the relaxation scheme (for example, near pull-in
conditions in the electro-mechanical coupling case!®!3) thereby indicating the
need for Newton based methods for such tightly coupled cases. The accurate com-
putation of the inter-domain coupling terms in the Jacobian matrix of the Newton
method is difficult in the conventional semi-Lagrangian approaches where the me-
chanical analysis is performed on the undeformed geometries and the other anal-
yses are performed on the deformed geometries.
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In this chapter, a full-Lagrangian-scheme is presented for the dynamic analysis
of electrostatic MEMS. Surface re-meshing and re-computation of interpolation
functions is eliminated due to the Lagrangian formulation of all the physical do-
mains thereby making the method very efficient and fast. The different physical
domains have been coupled together using Newton method. A Lagrangian de-
scription of all the physical domains makes it possible to compute the inter-domain
coupling terms in the Jacobian matrix of the Newton method exactly. Dynamic
analysis of several types of MEMS devices (beams, comb-drives, micromirrors)
is then performed using the newly developed scheme. The physical level simu-
lation tool is next used to explore new non-linear dynamic properties of electro-
static MEMS. The inherent source of non-linearity in electrostatic MEMS is the
non-linear coupling between the electrostatic force and the displacement of the
microstructure. The effect of these nonlinearities on the dynamic properties of
electrostatic MEMS is studied here. Complex non-linear oscillations in the form
of M oscillations per period or M -cycles and the period doubling route to chaos'*
resulting in the formation of 2™ M -cycles in the system, where n corresponds to
the n'* period doubling bifurcation in the sequence and M corresponds to the
M superharmonic frequency of excitation are observed. Beyond the period
doubling route to chaos, U(Universal)-sequence'* is observed for electrostatic
MEMS. A modified form of the U-sequence is found to exist in the chaotic region
of the MEMS devices under superharmonic excitations. The appearance of a
periodic window with K-cycles in the normal U-sequence is replaced by the
appearance of a periodic window with K M-cycles in the modified sequence
termed as the “U M-sequence”, at the M*" superharmonic frequency of excita-
tion. The effect of these complex non-linear oscillations on thermoelastic
damping, and hence the quality factor of the microstructures, is also studied. The
classical theory of thermoelastic damping developed by Zener'>1¢
proved by Lifshitz and Roukes'” is modified for application to microstructures
under arbitrary electrostatic actuation. The simulation results from the physical
level analysis are compared with the predictions of the classical theory and the
modified theory.

The rest of the chapter is outlined as follows: Sec. 7.2 presents the theory of
electrostatic MEMS, where the physical models for the different energy domains
in MEMS and the coupling between the different domains is discussed and
Sec. 7.3 presents the full-Lagrangian Newton scheme and numerical simulation
results for the dynamic analysis MEMS in the absence of fluid and thermal damp-
ing based on electro-mechanical coupling. The full-Lagrangian Newton scheme
and numerical simulations in the case of electro-mechanical-fluidic coupling, i.e.,
dynamic analysis of MEMS in the presence of fluid damping is presented in

and later im-
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Sec. 7.4. The new non-linear dynamic properties of electrostatic MEMS ob-
served using numerical simulations are also presented in Sec. 7.4. Section 7.5
presents the full-Lagrangian Newton scheme and numerical simulations in the
case of electro-thermo-mechanical-fluidic coupling for electrostatic MEMS. The
effect of the complex non-linear oscillations on thermoelastic damping in electro-
static MEMS are also studied in Sec. 7.5 and conclusions are presented in Sec. 7.6.

7.2. Theory of MEMS Dynamics

The coupling between the different energy domains is explained by considering a
generic electrostatic MEMS device shown in Fig. 7.1. Figure 7.1 shows a typical
electrostatic MEM device — a deformable fixed-fixed beam over a fixed ground
plane/electrode. We will explain the coupling among the energy domains by con-
sidering the example shown in Fig. 7.1, but the discussion is in general applicable
to other MEM devices as well. Considering Fig. 7.1, a potential difference V'

(Compression)

Hot
Inertial, stiffness U
and thermoelastic Cold
(Tension)

MEMS beam  damping forces

Direction
of motion

Fluid damping force

X Ground plane

Fig. 7.1. Tllustration of thermo-electro-fluidic-mechanical coupling in electrostatic MEMS through
an example — a fixed-fixed MEMS beam over a ground plane: the deformed structure with the various
forces acting on it when it is moving downward.

applied between the two conductors (the beam and the ground electrode) induces
electrostatic charges on the surface of the conductors. The distribution of elec-
trostatic charges on the surface of the conductors depends on the relative position
of the two conductors. These electrostatic charges give rise to electrostatic force
acting on the beam, as shown in Fig. 7.1. When the beam deforms due to the elec-
trostatic force, the charge redistributes on the surface of the conductors and conse-
quently, the electrostatic force also changes. At the same time, the displacement
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of the surrounding fluid/air due to the deformation of the beam gives rise to a
fluid damping force. Besides, the deformation of the beam causes stress inho-
mogeneities within the beam which gives rise to temperature fluctuations'® (the
side in compression gets warmer and the side in tension gets cooler as shown in
Fig. 7.1) and hence a thermoelastic damping force. The electrostatic force and the
fluid damping pressure acting on the beam together cause the beam to deform to
a state where they are balanced by the internal stiffness, inertial and thermoelastic
damping forces at that time instant (see Fig. 7.1). The stiffness force depends on
the displacement of the beam at the given time instant and on the material proper-
ties of the beam. The inertial force depends on the acceleration of the beam at
that time instant and on the density of the beam. The fluid damping force de-
pends on the velocity and position of the beam at the time instant. In summary, a
self-consistent final state is reached for a given time step where the sum of all the
forces (the inertial force, the mechanical stiffness force, the fluid and the thermo-
elastic damping forces and the electrostatic force) is zero. The physical models
for the different energy domains in electrostatic MEMS are presented next.

7.2.1. Mechanical Analysis

The mechanical deformation of the microstructure due to the various forces act-
ing on it is obtained by performing 2D geometrically non-linear analysis of the
microstructure. The transient governing equations for an elastic body using a La-
grangian description are given by'®

pi =V . (FS)+Fyy in 7.1
u=G on T (7.2)
P.N=H, on T (7.3)
ul—o = Go mn Q (7.4)
Uli—p = Vo in (7.5)

where p is the material density in the undeformed (initial) configuration. F is the
deformation gradient, u, 11 and ii are the displacement, velocity and acceleration
vectors, respectively and Fyr is the body force. IN is the unit outward normal
vector in the initial configuration, S is the second Piola-Kirchhoff stress, G is the
prescribed displacement, Gg and Vg are the initial displacement and velocity,
respectively, H,; is the surface traction acting on the surface of the structures
and P is the first Piola-Kirchhoff stress tensor. A Newmark scheme? with an
implicit trapezoidal rule is used to solve the non-linear dynamical system posed
in Egs. (7.1)-(7.5).
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7.2.2. Thermal Analysis

The temperature profile 7" in the micro-structure is obtained by solving a La-
grangian form of the heat equation®!->?

E .
v-hzfilTe+m%T in 0 (7.6)
—V

where p is the material density in the undeformed (initial) configuration, h =
JF~'q is the referential heat flux vector?? and q is the heat flux in the deformed
configuration which can be computed as q = kF~7 VT, where k is the thermal
conductivity of the material. e is the sum of the diagonal components of E, .J =
det(F) and the dots in Eq. (7.6) indicate derivative with respect to time. The
second Piola-Kirchhoff stress S in the case of thermoelastic damping is given
by21

FEa
—v

S=CE- —fl=8"+8" (1.7)
where SM and ST are the mechanical and thermal components of S, C is the
material tensor and E = (FTF — I)/2 is the Green-Lagrangian strain and v is
the Poisson’s ratio (I is the identity matrix). § = T — Ty is the change in the
temperature from the ambient temperature 7.

7.2.3. Fluidic Analysis

Figure 7.2 shows a MEMS fixed-fixed beam (microstructure) moving with a peak
velocity V,, towards a ground plane due to some electrostatic force (not shown
in Fig. 7.2). The length of the MEMS beam is denoted by [ and its height from
the ground plane in the undeformed state is denoted by h in Fig. 7.2. The re-
gion exterior to the microstructure is divided into two regions, namely Regions A
and B, in our discussion. Region A is located between the microstructure and the
ground plane. The remaining portion exterior to the microstructure is denoted by
Region B, as shown in Fig. 7.2. If (a) the length of the microstructure [ is suffi-
ciently larger than the height A, (b) the microstructure is moving perpendicular to
the ground plane (as in this case) and (c) the Reynold’s number is small, the fluid
pressure/velocity variation in region B is minimal and can be neglected.?*** In
that case, the fluid damping force can be computed by solving the compressible
Reynold’s squeeze film equation for region A. For all other cases, where [ and
h are comparable or when the motion of the microstructure is complicated, the
compressible Navier—Stokes equations have to be solved in both regions A and B
to compute the fluid damping force.
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=C
Y | ! Y

: 1 ' RegionB ! : Region B

,ﬁ\

Reiion A

— Fluid Damping Force

(a) Front View (b Side View (at section CC)
Fig. 7.2. Tllustration of coupling between the mechanical and fluidic domains in electrostatic MEMS
through an example - a MEMS fixed-fixed beam moving with a peak velocity V,, towards a ground

plane giving rise to a fluid flow and the air/fluid damping force acting on it; (a) front view (in the X-Y
plane) and (b) side view (in the Y—Z plane at section CC).

7.2.3.1. Compressible Reynold’s Squeeze Film Equation (CRSFE)

The isothermal Reynold’s squeeze film equation for a compressible slip flow is

given by%?

o . OP 0 4 OP d(Psh)
A +6K)RP =L + = |1+ 6K) 3P —L | =129 L (7.
g | (1165 f@x}jL@z{(jLG) 92 T 78

where h is the gap between the movable structure and the ground electrode of the
MEM device (same as the fluid film thickness), Py is the fluid pressure under the
structure (region A in Fig. 7.2) and 7 is the viscosity of the surrounding fluid. K =
A/h is the Knudsen number, where X is the mean free path of the surrounding
fluid. The rarefaction/slip flow effects present in the system due to the small device
dimensions and/or low ambient pressures are taken into account by the term 1 +
6K in Eq. (7.8). This correction term for the isothermal Reynold’s squeeze film
equation was derived by Schrag and Wachutka®* by assuming first order slip flow
boundary conditions and is valid up to K = 1. The variation of the fluid pressure,
Py, in the height direction (Y -direction in Figs. 7.2 and 7.3) is assumed to be
negligible in CRSFE.?® As a result, the fluid domain, where the Reynold’s squeeze
film equation is solved (for region A in Fig. 7.2) is the projection of the MEM
structure on the X — Z plane (ground plane)® as shown in Fig. 7.3. As the moving
structure deforms due to the application of an external electric field, the projected
fluid domain also changes. Equation (7.8) is written in the deformed configuration
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Movable Structure (beam, mirror, etc.)

Y Predominant Direction
of
\ Movement
! h
Z
X

Fluid Domain (Projection of structure on X—Z plane/ground plane)

Fig. 7.3.  Structural and fluidic domains for Reynold’s squeeze film damping analysis.

(projected fluid domain) which varies with time (z and z are the coordinates in the
deformed configuration). A Lagrangian form of Eq. (7.8) is given by?®

d 5. OP; ou\"" ou\ "
ax <1+6K>hpfax<”ax) (”ax) *
0 5 OPy O(Prh
=7 {(1+6K) B3 fazf} =129 (ai ) 19

where X, Z are the coordinates of the fluid domain corresponding to the unde-
formed state of the movable structure and u is the deformation of the movable
structure in the X-direction. As the 2D mechanical equations are solved in the
X — Y domain, mechanical deformation and its variation in the Z-direction are
assumed to be zero. The fluid pressure, Py, obtained from Eq. (7.9) is integrated
along the Z-direction to compute an effective fluid pressure, Py, which is applied
as a boundary condition in the 2D mechanical analysis in the X — Y domain.®

The mean free path, A (used for computing K in Eq. (7.9)), is related to the
ambient temperature and pressure by the relation?’

N kT
V2mpd?

where kj, is the Boltzmann constant, T is the absolute temperature, p is the am-
bient pressure and d is the collision diameter of the fluid molecules (d = 3.66
A for air?”). The effective fluid pressure, Py, from the fluidic analysis and the
electrostatic pressure, P., obtained from the electrostatic analysis (discussed in
Sec. 7.2.4) are used to compute H,  in Eq. (7.3) in the case of electrostatic MEMS
using

(7.10)

H,; = J(P. — P;o)F N (7.11)
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where J = det(F). A self-consistent solution of the coupled electro-mechanical-
fluidic analysis at each time step is obtained using a Newton method which is
described in Sec. 7.4.

7.2.3.2. Compressible Navier—Stokes Equations (CNSE)

A more general method to determine the fluid damping forces is to use the
compressible Navier—Stokes equations. A Lagrangian form of the compressible
Navier—Stokes equations (assuming a Newtonian viscous fluid) can be written as?®

9 g:f -0 (7.12)
3pfathUf — V(ST T) =0 (7.13)

where py is the fluid density, u is the fluid velocity vector, F¢ = I 4 Vx¢ is the
deformation gradient of the fluid (x¢ is the displacement vector of the fluid) and
Jy = det(F¢). T¢ is the fluidic stress tensor in the deformed configuration given
by

Ty = —P;I+ {U“’ Ty ] (7.14)

Tyx Oyy

where I is the 2 x 2 identity matrix. 0.z, Tzy, Tyz and oy, are the viscous
stress terms in the deformed configuration of the fluid. The ideal gas equation,
P; = pyRT, is used to relate the density of the fluid with the pressure (for air)
and isothermal conditions are assumed. R is the gas constant and T is the ab-
solute temperature. 0gz, Tzy, Tye and oy, (viscous stress terms in the deformed
configuration) can be expressed in the Lagrangian frame as

2MOuy 2B 0uy L Ovy A Dy 7.15
T, 0X T oY L 0X T ov (7.15)

2n [QM Ouy 2BOuy L Ovy A avf}
Ozx =
3

L 8’U,f A 8uf Ma’Uf B 6Uf
L Adup W = 1
Toy =1 [ T, 0X T ov I 0X U oY (7.16)

2
_2 429U L Ovp  2A0VF (7.17)

MBUf B aqu 2L 8’Uf 2A avf
o L — —
W3l JpoX  Jp0Y  Jp0X Jp oY

where 1) is the viscosity of the fluid, P is the fluid pressure and 1y and vy are the
fluid velocities in the X - and Y-directions, respectively. The geometrical terms
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A, B, L, and M (the components of the deformation gradient F¢) are obtained
using the relations

04 Ous o OB 0v_ OL Oup o OM Ovy
ot 9x ot ox ot oy )
(7.18)

There are several advantages of using a Lagrangian formulation over a con-
ventional Eulerian formulation for the compressible Navier—Stokes equations
(CNSE). In the Lagrangian formulation, the fluid and the solid points/meshes at
the solid-fluid interface remain fixed at all time instants, as a result of which, the
transfer of boundary conditions from mechanics to fluidics and vice versa can be
done accurately and easily.?’ This also allows the exact computation of the me-
chanical to fluidic and fluidic to mechanical coupling terms of the Jacobian matrix
in the Newton method. Besides, once the equations are mapped back to the orig-
inal undeformed fluid domain/co-ordinate system (Eqgs. (7.12) and (7.13)), redis-
cretization of the deformed fluid domain and recomputation of the interpolation
functions for the deformed fluid domain are eliminated.

The coupling between the solid (microstructure) and the fluid is real-
ized through standard boundary conditions at the fluid-microstructure interface,
namely, the kinematic conditions,?® expressing the continuity of velocity and the
continuity of stress. However, some of the MEMS devices simulated in this work
are in the slip flow regime (i.e., 0.01 > K > 0.1) where the rarefaction effects
are modeled through the first order slip flow boundary condition at the fluid-
microstructure interface (same approximation as that used in Eq. (7.8)),

Dus F;'N
Uy =ty = Ko = K [ Fy TV, - —f— (7.19)
on F N

where ug is the tangential velocity of the fluid at the fluid-microstructure inter-
face and w,, is the tangential microstructure velocity at that point and K is
the Knudsen number. n and N denote the outward unit normal vector at the
wall/fluid-microstructure interface in the deformed and the undeformed config-
urations, respectively. The fluidic stress, T, obtained from the fluidic analysis
and the electrostatic pressure obtained from the electrostatic analysis are used to
compute Hy ;s in Eq. (7.3) in the case of electrostatic MEMS using the relation

H,; = J[PI+T¢]F'N. (7.20)

A self-consistent solution of the coupled electro-mechanical-fluidic analysis at
each time step is obtained using a Newton method as described in Sec. 7.4.
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7.2.4. Electrostatic Analysis

The 2D governing equation for electrostatic analysis can be written in a boundary
integral form as°

1
o(p) = ] EG(p,q)O(Q)dqurC (7.21)

/ o(q)dvy, = Cr (7.22)
dw

where ¢ is the dielectric constant of the medium, p is the source point, q is the field
point which moves along the boundary of the conductors and G is the Green’s
function. In two dimensions, G(p, q¢) = —In|p — q|/27, where |p — q| is the dis-
tance between the source point p and the field point q. C'r is the total charge of the
system and C'is an unknown variable which can be used to compute the potential
at infinity. Equations (7.21) and (7.22) are defined in the deformed configura-
tion of the conductors, i.e., the surface charge density is computed by solving the
boundary integral equations on the deformed geometry of the conductors. The
boundary integral equations can be written in the Lagrangian frame (see Ref. 31
for details)

00(P) = [ LGHPLAQ)(QI@Tg +C (12
/d . o(¢(@)I(Q)dTq = Cp (7.24)
J(Q) = [T(Q) - C(Q)T(Q)]"? (7.25)

where e is the dielectric constant of the medium, ¢ is the electrostatic potential,
and o is the electrostatic surface charge density. P and @ are the source and
field points in the initial configuration corresponding to the source and field points
p and ¢ in the deformed configuration, and G is the Green’s function. In two
dimensions, G(p(P),q(Q)) = —In|p(P) — q(Q)|/27, where |p(P) — q(Q)] is
the distance between the source point p(P) and the field point ¢(Q). Cr is the
total charge of the system and C' is an unknown variable which can be used to
compute the potential at infinity. T(Q) is the tangential unit vector at field point ¢
and C(Q) is the Green deformation tensor. Equations (7.23)-(7.25) are solved to
obtain the distribution of surface charge density o on the conductors. The surface
traction due to the electrostatic pressure can be computed from the surface charge
density by the relation

H,; = P.JF N (7.26)
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where P, is the electrostatic pressure normal to the surface given by P, = 02 /2¢
and J = det(F). Equation (7.26) is the non-linear connectivity between the me-
chanical and the electrical domains. A Newton scheme can be applied to incorpo-
rate this coupling and obtain self-consistent solutions as described in Sec. 7.3.

7.3. Dynamic Analysis in the Absence of Damping

The main step in the Newton method is the computation of the Jacobian matrix,
J(u, o, C), which for the coupled domain MEM problem is

ORMm ORm ORm
ou oo oC

J(u,0,C) = | 2Bex ORes ORp (7.27)

ORg2 ORg2 ORE2
Ou do aC

and the residual (right-hand-side), r(u, o, C), is given by
RM (ua g, C)
r(u,0,C) = —< Rgi(u,0,C) (7.28)
RE2 (11, a, C)

From Egs. (7.1)—(7.5), the non-linear mechanical residual equation Ry can be
written as

Ry =V - (FS) +Fyp — pit — ct in Q (7.29)
Ru=G-u on Ty (7.30)
RM ZHsf —P-N on F}L (731)

and the electrical residual equations for the full-Lagrangian-scheme are given by

Rei= [~ GO(P),a(Q)o(a(@)F(@)lq — 6(p(P) + C (7.32)

Rz = O — /d oa(@)3(Q)re. (7.33)

From Egs. (7.29)—(7.33), it can be seen that computing ORpg/0u, ORg1 /00
and OR gz /00 is straight-forward. The terms ORp/0C = 0, O0Rg1/0C = 1
and ORg2/0C = 0. The electrical to mechanical coupling term ORpg/do is
non-zero only for Eq. (7.31) (electrostatic pressure acting at prescribed boundary
points of the domain) and can be computed directly

ORMm  OHgp  OP,

e p-Tng = 2 Fp-T
o = =5 JETN=—JF TN, (7.34)
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The terms ORg1/0u and ORg2/0u are difficult to compute directly in the case
of semi-Lagrangian methods as the domain of integration (Egs. (7.21) and (7.22))
is in the deformed configuration which is itself a function of u. A matrix free
approach!! has been employed in the past to compute these terms. The matrix free
approach can be sensitive to perturbation parameters affecting the convergence
rate (see Refs. 11 and 32 for details). However, in the full-Lagrangian formulation,
since the domain of integration is constant (not a function of the displacement u as
in the semi-Lagrangian-scheme), the integration operator can be taken out of the
differentiation operator and the derivatives can be computed directly (see Ref. 33
for more details).

ORE1 1 0
o2t = [ LolalQ)glCP)LaQI@IT, (139
ORE2 0
2= [ o@)zml@ldrg (1.36)

G(p(P),q(Q)) and J(Q) are simple functions of u and their derivatives can be
computed in a straight-forward manner. The potential ¢(p(P)) is a constant and
hence vanishes in Eq. (7.35) while C and o(¢(Q)) are independent variables.
The complete algorithm for the dynamic analysis using this Newton scheme
is given in Algorithm 7.1. Algorithm 7.1 will be explained in this section using
Fig. 7.4 which shows a two conductor electrostatic MEMS device. {2; and €2, de-
note the original geometry of conductor 1 and conductor 2, respectively, df2; and
dS)y denote the surface or boundary of conductor 1 and conductor 2, respectively,
w1 denotes the deformed shape of conductor 1, wy denotes the deformed shape

d .‘21
Ql‘
Q-
d S-Z:

(a) (b)

Fig. 7.4. A two conductor electrostatic system.

of conductor 2, dw; and dws denote the deformed surfaces of conductor 1 and
conductor 2, respectively. A potential difference V' is applied between conductors
1 and 2. The applied potential does not change as the conductors undergo defor-
mation or shape changes. In Algorithm 7.1, the index n stands for time instant



248 S. K. De and N. R. Aluru

Algorithm 7.1. Newton algorithm for self-consistent dynamic analysis of MEM devices using the
full-Lagrangian-scheme.

1: Define Ql, dQl, QQ, dQQ

2: Discretize €)1, 25 for mechanical analysis

3: Discretize df)1, df), for electrical analysis

4 Setn=0,t"=t"=0

5: Initialize u(¢t™) = a(t") = o(t") = C(t") =0

6: Compute ii(t,,) from Eq. (7.1)

7: forn =0to N do

8 Set7 = 0and u(t;”“l) =u(t"), (t"“) o(t"), C(t?“) =C(t")
9

repeat
10: Compute T, C and J from u(¢7+)
11: Compute J(u(t! 1), o (¢7), O(t11))
12: Compute r(u(t! ™), o(t} ), O(t!*1))
13: Solve: J(t"tH)[Au(t?th) Ac(tP ) ACEHT = r(7h)
14: Update u(t/') = u(t!*h) + Au(t! ), o(t1) = o) +
Ac(t7T) and C(¢1H) = O™ + AC(Er )
15: Update i =7+ 1

16:  until a self-consistent final stage is reached (i.e., |Au(t]"}')| < tol
and |Ac(t!h)| < tol and |AC(t11]1)| < tol)

17:  Update u(t"*t!) = u(t’™), o(t" 1) = o(t7), C(t"+1) = C(t71)

18:  Compute 1(t"*1) and ii(t" 1) from u(t"*+!)

19: end for

whereas the index i denotes the i*" relaxation iteration within the time step n. tol
is some specified tolerance for checking convergence of the relaxation scheme. In
each Newton iteration step, the Jacobian matrix and the residuals are computed
and solved to get the increments Au, Ao and AC and the process is repeated
until convergence.

7.3.1. Numerical Simulations in the Absence of Damping

Comb drives belong to an important class of MEMS structures which have nu-
merous applications from micro-accelerometers, position controllers to hard disk
drive actuators.>** Consequently, static and dynamic characterization of these
devices is very important for efficient design and development. In this section, we
simulate two different comb drives (a transverse and a lateral comb drive) and look
at their dynamic responses. The first comb microactuator,® shown in Fig. 7.5, is
a transverse comb drive. The system consists of a movable center stage, 24 pairs
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Fig. 7.5. Transverse Comb Drive: Displacement changes dominant electrostatic gap.

of interdigitated teeth and 4 spring beams. The center stage is supported by four
folded spring beams anchored at the ends. Electrostatic forces are generated when
a voltage is applied between the fixed and movable structures. The movable cen-
ter stage is 100 pm long, 200 pum wide and 3.7 um thick. The small and the
large gaps between the electrodes are g1 = 2 pm and go = 5 pm. The overlap
length [; = 50 pm and finger width ¢; = 4 ym. The beam width is b = 3 pm,
the lengths of the short and long parts of the folded beam are /; = 80 pm and
lo = 120 pm, respectively. The Young’s modulus (£) of the comb structure
(nickel) is 200 GPa, the Poisson’s ratio is 0.31 and the density 8908 kg/m?. No
material damping has been considered (¢ = 0). Due to symmetry, it is sufficient to
consider just the lower right quadrant of the device for coupled electromechanical
simulation. Figure 7.6 shows the variation of the resonant frequency of the comb
drive with the applied DC bias. The resonant frequency was obtained from the
time-displacement curve of the device for various applied voltages. The device
exhibits spring-softening phenomena due to the electrical forces and it also indi-
cates that mechanical non-linearity which gives rise to spring-hardening is absent.
The experimentally measured resonant frequency of the structure was found to be
34 KHz while simulations indicate 33.4 KHz. It was observed experimentally that
at about half of the stroke length (x = 0.3 ;zm) which occurs at 40 V, the resonant
frequency decreased to 28.2 KHz. Our simulations indicate a resonant frequency
of 27.5 KHz at that point, which is very close to the experimental observation.
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Figure 7.7 shows the frequency response curve of the device for a 2.0 V DC bias
and a5 V p-p AC bias at various frequencies. Interestingly, two resonant peaks are
observed instead of the conventional single peak at the resonant frequency. The
second peak, observed at half of the natural frequency is due to the V2 nature of
the electrostatic force. Experimentally, only a single peak was observed. This is
due to the fact that the second peak can be totally suppressed at low AC voltage
(5 V p-p in this case) in the presence of damping (the simulations have no damp-
ing terms). The second resonant peak or the second super harmonic resonance is
an interesting phenomena and has been observed experimentally in Ref. 36.

A lateral comb drive’* actuator is also simulated with the Newton method.
As shown in Fig. 7.8 the comb drive has 9 interdigited fingers on either side of a
center plate. Two fixed electrodes are present — one of them is the drive port, where
a voltage is applied to move the comb structure, and the other is the sense port,
where the change in capacitance of the device can be sensed. However, another
mode of operation applies voltages at both electrodes to drive the comb which
has been simulated here. The electrostatic gap between the finger sides and the
electrodes is g = 3 pm. The entire structure is 2 pm thick (¢5). The overlap length
is [y = 20 pm and the finger length and width are [y = 40 ym and w; = 4 pym,
respectively. There are 2 pairs of folded beams each of width b = 2 um, the length
of the folded beams is [, = 80 pm. The Young’s modulus of the comb structure
is 140 GPa, the Poisson’s ratio is 0.30 and the density is 2231 kg/m®. No material
damping has been considered (¢ = 0). Due to symmetry, it is sufficient to consider
just the left half of the device for coupled electromechanical simulation. Figure 7.9
shows that the resonant frequency of the comb drive remains constant with the
applied DC bias. The constant resonant frequency obtained from simulation is
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74 KHz which is very close to the experimentally measured value of 75 KHz.3*
The constant resonant frequency (independent of applied voltage) is due to the
fact that the electrostatic force is not a function of the displacement x and hence
there is no spring-softening effect. Besides, as the structure is linear, there is no
spring hardening as well due to the deformation. Constant resonant frequency
is desirable for applications like micro-resonators and micro-filters. Figure 7.10
shows the frequency response curve of the device for a 200 V DC bias and a 200 V
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p-p AC bias at various frequencies. Two resonant peaks are observed again, one at
the resonant frequency of 74 KHz and the other at 34 KHz, which is approximately
half of the first resonant frequency.

7.4. Dynamic Analysis in the Presence of Fluid Damping

The two hierarchical models for fluid damping are coupled with the electro-
mechanical solver using a full-Lagrangian formulation and a Newton scheme, as
discussed in this section. The basic step in the Newton method for the coupled
electro-mechanical-fluidic analysis involves solving the equation

Ryv Rve Rvr Axm R
Rem Ree Rer Axg 7 =—< Rg (7.37)
Rrm Rre RFrr Axp Ry

in each time step of the dynamic analysis. J is the Jacobian matrix and the sub-
scripts M, E, F denote mechanical, electrical and fluidic domains, respectively. In
Eq. (7.37), RmE denotes the electrical (E) to mechanical (M) coupling term in
the Jacobian matrix. The other terms in J are defined similarly. x is the vector of
unknown variables where x), Xg and Xg are the mechanical, electrical and flu-
idic variables, respectively. For the 2D mechanical and electrical analyses imple-
mented in this work, xp = {u, U}T, where v and v are the displacements of the
microstructure in the X- and Y -directions, respectively, and xg = {o, C}T. The
fluidic variables xg = { Py} for the 2D CRSFE and for the 2D CNSE, x¢ = {py,
uf, vf, A B, L, M }T. The mechanical, electrical and the fluidic residual equa-
tions are denoted by Raz, R and R, respectively, in Eq. (7.37).

The full-Lagrangian Newton scheme (for both the fluid damping cases) is pre-
sented in detail in Algorithm 7.2. Algorithm 7.2 is discussed with reference to
the two conductor system shown in Fig. 7.11. In Fig. 7.11, £2; and Q5 denote the
original/undeformed geometries and d€2; and df) denote the original/undeformed
surfaces/boundaries of conductor 1 and conductor 2, respectively, where the
mechanical analysis is done. 2y denotes the original/undeformed geometry and
dQ s denotes the original/undeformed boundaries of the fluid domain (for fluidic
analysis). The electrostatic analysis is done on the original/undeformed sur-
faces/boundaries of conductor 1 and conductor 2, namely, d©2; and df)s, respec-
tively. A potential difference V is applied between conductors 1 and 2 which
deforms the conductors. w; denotes the deformed shape of conductor 1, wo
denotes the deformed shape of conductor 2, and wy denotes the deformed shape
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Fig. 7.11. (a) Undeformed and (b) deformed configurations of the mechanical (two cantilever
beams), electrical (cantilever beam surfaces) and fluidic (surrounding air) domains in a two-conductor
MEM system.

of the fluid domain. dw;, dw;, and dw; denote the deformed surfaces/boundaries
of conductor 1, conductor 2 and the fluid domain, respectively. The applied poten-
tial does not change as the conductors undergo deformation or shape changes. In
Algorithm 7.2, the index n stands for the time instant whereas the index ¢ denotes
the 7" Newton iteration within the time step n. tol is some specified tolerance for
checking convergence of the Newton scheme. Once the domains are discretized,
the mechanical, electrical and the fluidic unknowns are initialized (set to zero for
our case). In each time step, a Newton scheme is implemented to obtain a self-
consistent solution for that time step. The initial guesses for the Newton method
are generally taken to be the final solutions of the previous time step. The com-
putation of the terms Ryvi, Rve, Rem and Rgg, the mechanical and elec-
trical variables (xn1, Xg) and residual equations (Ryg, Rg) in Eq. (7.37) have
already been described in Sec. 7.3 (also see Ref. 33 for details). Further, note that
Rer = Rrg = 0, i.e., there exists no coupling between the electrical and fluidic
domains. The computation of the terms Ryr, Rpv and Ryy, the fluidic resid-
ual equation Ry and the fluidic variables xg becomes straightforward due to the
Lagrangian description of the equations and are given in Ref. 26 in detail.

7.4.1. Numerical Simulations in the Presence of Fluid Damping

The first device considered is a MEMS torsion mirror®’ shown in Fig. 7.12. The
mirror plate is 1500 pm long, 1400 pm wide, and 3 pm thick. Four 150 ym long
electrodes (of negligible thickness) are attached to the mirror plate and the ground
plane. The distance from the center of the electrodes on the mirror to the center
of the mirror is 505 pm. The gap between the mirror and the ground plane is
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Algorithm 7.2. Full-Lagrangian Newton scheme for the self-consistent electro-mechanical-fluidic
analysis of MEMS dynamics.

1: Define €1, d€, QQ, dQQ, Qf, de

2: Discretize €2y, (09, Q¢ for mechanical and fluidic analysis
3: Discretize df2, df), for electrostatic analysis

4 Setn=0,t"=t"=0

5: Initialize xp ("), xg ("), xF (")

6: forn =0to N do

7

8

9

Seti =10
Setxm (7 ) = xm(t"), xg (7 ) = xu ("), xp (7 71) = xp(t")
repeat

10: Compute J(¢1) = J(xpa (¢ 1), xg (171), xp (1711))

11: Compute r(t!™) = r(xp (1), xg (t71), xp (t711))

12: Solve: J(t" 1) [Axp (¢ Axg (t] 1) Axp (£7T1)] = —r(171h)

(Eq. (7.37))
13: Update xp (7)) = xm(t]71) + Axp (87T, xg (1717 =

xg(t] ) + Axg(t] ), xp (t757) = xp (67 7) + Axp(t]7)
14: Update i =741
15:  until |[Axp (67| < tol and |Axg(t]1])| < tol and
|Axp(t11)] < tol
16:  Update: xpp(t" 1) = xpp (1711, xg (") = xg(t7'), and
xp(t"H) = xp (1771
17: end for

42 ym. Iy = 5.51 x 10715 kgm? is the moment of inertia of the mirror and Ky =
4.49x10~7 Nm/rad is the torsional stiffness of the mirror. Squeeze film damping
between the mirror and the ground electrode is the dominant dissipative mecha-
nism for this device and has been solved using the coupled electro-mechanical-
fluidic solver based on 2D CRSFE in the X — Z plane for the fluidic analysis.
An external torque T, = 4.84x109sin(27 ft) Nm where f is the frequency in
Hz is applied in the absence of any electrode voltages to the torsion mirror at 1
atm (1.013x10° Pa). The viscosity is 7 = 1.82x 1075 kg/ms and the mean free
path A for air is computed from Eq. (7.10) at 1 atm and 293 K. The frequency
response curve of the torsion mirror under the external torque 7, is shown in
Fig. 7.13. The transient response of the mirror under a constant external torque 7,
= 4.84x107? Nm is shown in Fig. 7.14. The simulated resonant frequency and
the damping ratio ¢ = 1/2Q (Q is the quality factor) of the mirror are 1.41 kHz
and 0.20, respectively. The corresponding experimental values are 1.59 kHz and
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0.19. The simulated and experimental damping ratio (which primarily depends
on the geometry and the ambient pressure) match well. However, there is some
difference between the simulated and experimental resonant frequency. This can
be attributed to the fact that the mirror surface is assumed to be rigid in the simu-
lations thereby neglecting any elastic deformation effect of the surface.’’ Besides,
experimental measurements can also have errors.

Figure 7.15 shows a MEMS piggyback actuator for hard-disk drive applica-
tions.*® The actuator consists of a movable mass suspended by two restoring
springs. The restoring springs are 500 um long and 18 pum wide. The movable
mass has 11 electrodes (movable electrodes) on it. Each movable electrode has
two fixed electrodes — one on either side. One of the fixed electrode is grounded
and a potential is applied on the other electrode as shown in Fig. 7.15. The mov-
able electrodes are 500 pm long and 50 pm wide and the overlap length between
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Fig. 7.15. A MEMS piggyback actuator.® The actuator moves in the X - direction.

the fixed and the movable electrodes is 498 um. The gap between the movable
and the fixed electrodes on either side is 3 ym. The length of the movable mass
is 2078 pum. The height (normal to the plane of the paper) of the structure is
50 pm. The whole structure is made from silicon and has a Young’s modulus
E = 140 GPa, density p = 2330 kg/m® and Poisson’s ratio v = 0.3.3% Squeeze
film damping in the narrow air gaps between the movable electrodes and the
fixed electrodes is the dominant dissipative mechanism for this device. The de-
vice is simulated using the coupled electro-mechanical-fluidic solver based on 2D
CRSEFE for the fluidic analysis. The viscosity of air is taken to be 7 = 1.82x107°
kg/ms and the mean free path A for air is computed from Eq. (7.10) at 1 atm and
293 K. The 2D CRSFE simulation is done for the narrow air gaps between the
movable electrodes and the fixed electrodes in the Y — Z plane (498 pm in the Y-
direction and 50 pym in the Z-direction). Figure 7.16(a) shows the pressure profile
in the air gap between the electrodes at a given time instant (¢ = 20 us) obtained
using the 2D CRSFE solver. As the overlap length of the fingers along the Y-
direction (498 pm) is much larger than the width of the fingers in the Z-direction
(50 pm) the pressure variation along the Y -direction is negligible compared to
the pressure variation along the Z-direction. As a result, the 2D CNSE based
solver simulated in the X — Z plane is expected to give similar results as the 2D
CRSFE solver in the Y — Z plane. While the 2D CNSE solver in the X — Z
plane is equivalent to the 3D CNSE in this case due to negligible variations in
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Fig. 7.16. Pressure profile in the air gaps be-
tween the electrodes of the piggyback actuator at
a given time instant (¢ = 20 ps) obtained us-
ing (a) the 2D CRSFE solver in the Y — Z do-
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Fig. 7.17. Pressure variation in the Z- direction
in the air gaps between the electrodes of the pig-
gyback actuator at the given time instant (f =
20 ps) using the 2D CRSFE solver (plotted at
the center line Y = 249 pm) and the 2D CNSE
solver (plotted at the center line X = 1.5 um).

the Y -direction, the 2D CRSFE in the Y — Z plane is also equivalent to the 3D
CNSE in this case due to the narrow air gap between the electrodes. The pressure
profile in the air gap between the electrodes at the given time instant (¢ = 20 us)
obtained using the 2D CNSE solver in the X — Z plane is shown in Fig. 7.16(b).
Figure 7.16(b) shows that the pressure variation in the X -direction (in the height
direction of the electrodes) is negligible. This is an important assumption in the
derivation of the 2D CRSFE from 3D CNSE and is found to be true. Figure 7.17
compares the pressure profile in the Z-direction in the air gaps between the elec-
trodes of the piggyback actuator at the given time instant (¢ = 20 us) obtained
using the 2D CRSFE solver (plotted at the center line Y = 249 ym) and the 2D
CNSE solver (plotted at the center line X = 1.5 ym). The pressure profiles given
by the two solvers are in good agreement. Figure 7.18 shows the damped transient
response of the rigid movable mass of the MEMS piggyback actuator under a 25
V DC bias. Both the solvers (the 2D CRSFE and the 2D CNSE) are found to give
very similar results (as expected from the discussion above). The frequency re-
sponse of the piggyback actuator at 20 V DC and 5 V AC (AC voltage of the form
Vacsin(27 ft)) is simulated using the coupled electro-mechanical-fluidic solver
based on 2D CRSFE for the fluidic analysis and is shown in Fig. 7.19. The res-
onant frequency and the quality factor of the piggyback actuator are found to be
16.8 kHz and 7.52, respectively, from the frequency response plot. The corre-
sponding experimental values are 16 kHz for the resonant frequency and 7.73 for
the quality factor. The experimental data are close to the simulated results.
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Fig. 7.18. Damped transient response of the  Fig. 7.19. Frequency response of the MEMS
rigid movable mass of the MEMS piggyback  piggyback actuator at 20 V DC and 5 V AC using
actuator at 25 V DC. 2D CRSEFE for fluid damping.

Figure 7.20 shows a laterally driven comb drive in air.* The system con-
sists of a movable center stage, four pairs of interdigitated teeth (combs) and two
spring beams. The center stage is supported by the two folded spring beams an-
chored at the ends. The four combs consist of a driving comb, a sensing comb and
two secondary combs. Electrostatic forces are generated when a voltage is ap-
plied between the fixed and movable electrodes/fingers of the drive comb and the
displacement of the movable stage is obtained by measuring the change in capac-
itance between the fixed and movable electrodes/fingers of the sensing comb. The
fluid damping due to the fingers in the secondary combs is simulated and com-
pared with experimental results. The spring beams are 200 ym long and 2 pm
wide and the center stage is 230 pm long and 30 pm wide. All the four combs are
identical with 20 pairs of movable and fixed fingers/electrodes in each. The fin-
gers are 40 ym long and 2 pm wide and the overlap length between the fixed and
the movable fingers is 14 um. The comb gap (gap between fixed and movable fin-
gers) is 2 pum on either side. The central truss on which the secondary combs are
mounted is 220 um long and 10 pm wide. The thickness of the whole structure is
2.1 pm. The movable structure is made from silicon and has an Young’s modulus
E = 140 GPa, density p = 2330 kg/m® and Poisson’s ratio v = 0.3.% Figure 7.21
shows the damped transient response of the rigid center stage of the comb-drive
for a 25 V DC driving voltage. The damping from the secondary comb fingers
(inter-comb damping due to the presence of the fixed and movable fingers) is only
considered and the coupled electro-mechanical-fluidic solver based on 2D CNSE
is used. The 2D CNSE simulation is done in the X — Y plane for the fluidic anal-
ysis. The ambient conditions and the viscosity of air are taken to be the same as in
the case of the micro-mirror and the piggyback actuator. The frequency response
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curve of the lateral comb drive is plotted in Fig. 7.22. The simulations are done for
a20 V DC bias and a 10 V AC signal whose frequency is varied from 6 kHz to 13
kHz. From both Figs. 7.21 and 7.22, the resonant frequency and the quality factor
(due to inter-comb damping) are found to be 9.45 kHz and 235, respectively. The
experimentally measured resonant frequency is 9.6 kHz and the quality factor due
to inter-comb damping is found to be 246,% indicating that the simulation results
are close to the experimental data.
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7.4.2. Nonlinear Dynamic Properties in the Presence of Fluid Damping

In this section, new non-linear dynamic properties of electrostatic MEMS under
superharmonic excitations are presented using numerical simulations. On increas-
ing the DC voltage, a characteristic change in the phase plot of the system, termed
as “DC-symmetry breaking” is presented. Beyond “DC-symmetry breaking”,
applying an AC voltage with an amplitude slightly greater than the “AC-symmetry
breaking” (another characteristic change in the phase plot) voltage and at the M *"
superharmonic frequency of excitation results in the formation of M oscillations
per period or M-cycles. On further increasing the AC voltage, a period dou-
bling sequence takes place resulting in the formation of 2" M -cycles in the system,
where n corresponds to the nt" period doubling bifurcation in the sequence. The
system goes to chaos on further increasing the AC voltage and ultimately dynamic
pull-in takes place. On gradually increasing the AC voltage in the chaotic region
at resonant excitation, the U (Universal)-sequence'* is observed. A modified form
of the U-sequence termed as the “U M -sequence” is found to exist in the chaotic
region of the MEM system under superharmonic excitations. The appearance of
the periodic windows (i.e., the transition from chaos to the periodic states) in the
U- and U M-sequences is found to take place through intermittent chaos.'* The
disappearance of the periodic windows (i.e., the transition from the periodic states
to chaos) on the other hand take place through a sequence of period doubling bi-
furcations. These observations are made in two different MEM devices in this
chapter, namely, a MEMS fixed-fixed beam and a MEMS torsion micro-mirror,
using numerical simulations. The fixed-fixed beam is made of silicon and has di-
mensions: [ = 80 ym, w = 10 pm, and ¢ = 1 pm, 1 pm over a ground plane. An
Young’s modulus of E = 169 GPa, density p = 2330 kg/m> and Poisson’s ratio
v = 0.3 are used for simulating the beam. The second example is the MEMS
torsion mirror presented earlier.

7.4.2.1. DC and AC Symmetry Breakings

DC and AC symmetry breakings*’ are geometrical changes that take place in the
phase-plots of the device with the variation in the DC and the AC voltages, respec-
tively. When a DC bias is applied between a MEM structure (e.g., a beam or a
mirror) and the ground electrode, in the absence of any AC signal, the structure
oscillates and finally comes to a steady deformed state due to the presence of fluid
damping. As a result, symmetry breaking in this case takes place if the phase
plot does not spiral inward in a symmetric fashion with respect to the two
axes. Figures 7.23 and 7.24 show the displacement-velocity (z — &) and the
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displacement-acceleration (x — &) phase plots for the fixed-fixed beam for a small
DC bias of 30 V (dynamic pull-in occurs at 73 V DC) and a large DC bias of 71
V (close to dynamic pull-in), respectively. 30 V DC does not exhibit any symme-
try breaking (spirals inward in a symmetric fashion) in the x — 2 plot or bending
(spirals inward following a straight line) in the z — & plot indicating it to be a
linear state. For a large DC bias (71 V), symmetry breaking in the z — & plot and
bending in the x — & plot are observed. This symmetry breaking is termed as the
“DC symmetry breaking” in this work. The nonlinearity in the system in the de-
formed state due to the DC bias can be determined by examining if DC symmetry
breaking has taken place or not. The fixed-fixed beam MEM device exhibits DC
symmetry breaking from around 69 V to dynamic pull-in at 73 V. The system is
in a non-linear state once the DC symmetry breaking occurs. Spring softening (a
decrease in the natural frequency of the structure) also indicates this nonlinear-
ity. Similar observations are made for the MEMS torsion mirror. DC symmetry
breaking in the mirror is observed between 133 V to dynamic pull-in at 142 V DC.

Once the microstructure reaches a stable non-linear state exhibiting DC sym-
metry breaking, it is excited with an AC voltage V¢ sin(27 ft) with frequency
f = fo/M, where fj is the resonant frequency of the microstructure at the applied
DC bias and M is a natural number. The phase plots for steady-state periodic re-
sponse of the structure under the AC signal and the DC bias are studied. As V¢
is increased, a second symmetry breaking in the x — @ plot and a corresponding
bending in the x — & plot are observed. This symmetry breaking is termed as the
“AC-symmetry breaking” in this work. Figures 7.25 and 7.26 show the x — & and
the x — & phase plots of the steady period response of the fixed-fixed beam for
two different AC voltages under the large (71 V) DC bias at M = 1. The resonant
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frequency is fo =885 KHz at 71 V DC. No AC symmetry breaking and bending is
observed for a small AC signal of 1 V in Fig. 7.25, whereas AC symmetry break-
ing and bending is observed for an AC signal of 3 V in Fig. 7.26. The geometrical
symmetry of the orbit is broken along the y-axis in Fig. 7.26. The AC pull-in volt-
age at the 71 V DC bias is 4.27 V. Figures 7.27 and 7.28 show the similar phase
plots of the mirror for two different AC voltages under a large (141 V) DC bias at
M = 1. The resonant frequency is fy = 425 Hz at 141 V DC for the mirror. 0.5
V AC does not exhibit any AC symmetry breaking, whereas a large 3 V AC (AC
pull-in takes place at 3.85 V AC) exhibits AC symmetry breaking.
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7.4.2.2. Complex Oscillations: M -cycles

On further increasing the AC voltage beyond the AC symmetry breaking point,
M oscillations per period or M-cycles are observed for an excitation frequency
of fo/M. Numerical simulations for the fixed-fixed beam are done for different
values of M. A 71 V DC bias is first applied to bring the device to a non-linear
steady-state exhibiting DC symmetry breaking (Fig. 7.24). An AC voltage at an
excitation frequency of fo/M is next applied for different values of M. Figures
7.29-7.32 show the M -cycles formed for M =1, 2, 3 and 4 in the fixed-fixed
beam as the AC voltage is gradually increased from the AC symmetry breaking
value in each case. Up to 8-cycle oscillations are observed in the fixed-fixed beam
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period T = 2" Mt = 4t = 4.52 pus. Time period T = 2" Mt = 8t = 9.04 us.

MEM device. M-cycle oscillations are also observed in the MEMS torsion mirror
for a DC voltage in the DC symmetry breaking region and for an AC voltage in
the AC symmetry breaking region when the frequency of excitation is 1/M'" of
the resonant frequency. The electrostatic force is primarily responsible for the
formation of the M-cycles (see Refs. 40 and 41 for more details).

7.4.2.3. Period Doubling and Chaos: 2" M-cycles

On further increasing the AC voltage at which M -cycles are formed in the MEM
device, a period doubling sequence is observed ultimately leading to chaos. The
period doubling bifurcations result in the formation of 2™ M-cycle oscillations
for an original M-cycle oscillation. n corresponds to the n'” period doubling
bifurcation in the sequence. The phase plots for the period doubling sequence
for the 2-cycle oscillation formed at M = 2 (see Fig. 7.30 for n = 0) for the
fixed-fixed beam are shown in Figs. 7.33-7.35 for n = 1, 2, 3 and co at 6.2 V,
6.32'V, 6.34 V and 6.35 V AC, respectively. The existence of chaos at 6.35 V
AC is validated by the computation of the largest Lyapunov exponent A of the
system using the software package TISEAN.*? A positive value of A = 0.017 is
obtained at 6.35 V AC. The time series data from the numerical simulation at
6.35 V AC is used in TISEAN for the computation of A. The sequence of period
doubling bifurcations leading to chaos through the formation of 2" M -cycles is
also observed for other values of M in the fixed-fixed beam MEM device. The
M-cycle formed at the M*" superharmonic frequency of excitation is responsible
for the formation of the 2™ M -cycles (through period doubling bifurcations) and is
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the fixed-fixed beam MEM device at M = 2.

explained here considering the 2-cycle oscillation shown in Fig. 7.30. The 2-cycle
oscillation consists of 2 peaks (separated by time ¢) in the time-displacement plot
for a single voltage cycle of time period T = 2¢ as shown in Fig. 7.30. ¢ is the time-
period corresponding to resonant excitation (M = 1) of both the displacement and
the voltage as shown in Fig. 7.29. When the first period doubling bifurcation
takes place (n = 1), the displacement repeats itself after every 2 voltage cycles
thereby giving rise to period doubling. However, each voltage cycle still consists
of a 2-cycle oscillation as shown in Fig. 7.33. As a result, the total number of
cycles/peaks per period in the time-displacement plot is 2 x M after the first period
doubling bifurcation. Consequently it can be seen that at the n-th period doubling
bifurcation, the total number of cycles/peaks per period is 2™ M.

The period doubling route to chaos at M = 1 for the MEMS torsion mirror
is shown in Figs. 7.36 and 7.37 at 141 V DC bias (in the DC symmetry breaking
region). AC symmetry breaking at 141 V DC for the mirror takes place at around
3 V AC (see Fig. 7.28). The period doubling bifurcations corresponding to n =3
and oo take place at 3.7973 V and 3.7999 V AC, respectively. From the results
presented in this section, we can observe that when DC and AC symmetry break-
ings are present chaos sets in through the period doubling route in electrostatic
MEMS (see Refs. 40 and 41 for more details).
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7.4.2.4. U(Universal)-Sequence: K-cycles

The region beyond the period doubling route to chaos is next investigated in this
work by gradually increasing the AC voltage from the chaotic state at 3.7999 V AC
for the MEMS torsion mirror. U-sequence (a sequence of periodic windows that
appear beyond the period doubling route to chaos'*) is observed in this region for
the MEM device. As the AC voltage is increased from 3.7999 V, stable periodic
windows are observed for certain values/regions of the AC voltage. For all other
values of the AC voltage, the MEM device is found to exhibit chaos. The order
in which the periodic windows appear in the U-sequence of a dynamical system
can be obtained using symbolic dynamics*? and is given as (considering up to
6-cycles):

6—45—43—-5—-6—24—>6—-25—606 (7.38)

Table 7.1 shows the U-sequence and the corresponding AC voltages at which
the periodic states/cycles are observed for the mirror at 141 V DC and M = 1.
Figure 7.38 shows the phase plot and the Poincaré¢ map for the K = 6-cycle os-
cillation (the first periodic window) formed at 3.8005 V AC in the MEMS torsion
mirror. The phase plot and the Poincare¢ map for the subsequent K = 5-cycle os-
cillation (the second periodic window) at 3.8036 V AC are shown in Fig. 7.39.
Figure 7.40 shows the phase plot and the Poincaré map and Fig. 7.41 shows the
time-series plot for the K = 3-cycle oscillation at 3.8085 V AC. From Figs. 7.40
and 7.41, it can be seen that the 3-cycle is characterized by 3 loops per period in
the phase plot or 3 peaks per period in the time-series plot, i.e., the 3-cycle has
3 oscillations per period (which is the definition of a 3-cycle'*). The time period
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Table 7.1. U-sequence in the MEMS torsion mirror at 141 V DC and

M =1.
Ac Voltage  Periodic Cycles (K)  Ac Voltage  Periodic Cycles (K)
\% \
3.80050 6 3.82590 4
3.80360 5 3.83170 6
3.80850 3 3.83171 5
3.81620 5 3.83173 6
3.82000 6
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Fig. 7.38. Phase plot and Poincar¢ map of the Fig. 7.39. Phase plot and Poincar¢ map of the
K = 6-cycle oscillation at 141 V DC, 3.8005 V K = 5-cycle oscillation at 141 V DC, 3.8036 V
ACand M = 1. ACand M = 1.

T of the 3-cycle is 37, where 7 is the time period of the applied voltage (also
shown in Fig. 7.41). In short, a K-cycle in the U-Sequence has K oscillations per
period and has a time period of K7 (indicated by K points in the Poincaré map).
Figures 7.42 and 7.43 show the phase plots and the Poincareé maps for the K = 6
and K = 4-cycle oscillations following the K = 3-cycle window at 3.8085 V AC,
as shown in Table 7.1. For AC voltages beyond the final K = 6-cycle window at
3.83173 V AC the MEMS mirror exhibits chaos and finally dynamic pull-in takes
place at 3.85 V AC. Similar observation of U-sequence at resonant excitation is
also made in the MEM fixed-fixed beam device.

7.4.2.5. UM-Sequence: K M-cycles

A modified form of the U-sequence is found to exist in electrostatic MEMS under
superharmonic excitations and is presented here. The appearance of a periodic
window with K-cycles in the normal U-sequence is replaced by the appearance of
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a periodic window with K M -cycles in the modified sequence termed as the “U M -
sequence”, for an exciting frequency of fo/M (M'" superharmonic frequency).
Hence, in the U M-sequence, the order given in Eq. (7.38) is replaced by the
following order at the M *" superharmonic frequency as the exciting frequency:

6M — 5M — 3M — 5M — 6M — 4AM — 6M — 5M — 6 M (7.39)

An M-cycle formed at the M*" superharmonic frequency of excitation (before
the 2™ M -cycle period doubling sequence) is by definition characterized by M
loops per period in the phase plot or M peaks per period in the time-series plot, as
shown in Figs. 7.44 and 7.45 for M = 1 and M = 3, respectively. However, the
essential difference between a K -cycle in the U-sequence and an M -cycle at the
M*" superharmonic excitation is that the time periods of these cycles are K7 and
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Fig. 7.46. Phase plot and Poincar¢ map of the  Fig. 7.47. Time series and phase plot of the 15-
chaotic state at 6.01 VAC,71 VDCand M =3  cycle window (K =5, M =3) at 6.0137 V AC,
in the MEMS fixed-fixed beam. 71 V DC in the MEMS fixed-fixed beam. The

time period of the applied voltage is 7 = 3.39 us.

T respectively, where 7 is the time period of the applied voltage in each case. As
a result, the Poincare map of a K-cycle in the U-sequence has K points whereas
the Poincaré map of an M-cycle at the M*" superharmonic excitation has just one
point, as the reference frequency used in the Poincaré map is the frequency of the
applied voltage.

For the fixed-fixed beam an AC voltage around 5.9 V gives rise to 3-cycle
oscillations in the MEMS fixed-fixed beam for M = 3 and 71 V DC bias. On
further increasing the AC voltage, a sequence of period doubling bifurcations take
place giving rise to 2" M-cycles and ultimately chaos at 6.01 V AC as shown
in Fig. 7.46. The AC voltage is gradually increased beyond 6.01 V, and the
U M-sequence (the U3-sequence in this case) is observed. Table 7.2 shows
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Table 7.2. U 3-sequence in the MEMS fixed-fixed beam at 71 V DC and M = 3.
Ac Voltage  Periodic Cycles (K X M)  Ac Voltage  Periodic Cycles (K x M)
v A%

6.0112 6x3=18 6.0329 4x3=12
6.0137 5x3=15 6.0418 6x3=18
6.0192 3x3=9 6.0427 5x3=15
6.0287 5x3=15 6.0431 6x3=18
6.0311 6x3=18

the U3-sequence and the corresponding AC voltages at which the periodic
states/cycles are observed at 71 V DC and M = 3 for the fixed-fixed beam. The
time series and phase plot for the 15-cycle window (K =5, M =3) at 6.0137 V
AC and 71 V DC are shown in Fig. 7.47. The vertical arrows above the time series
are separated by one time period 7" of the response and 7 is the time period of the
applied voltage in Fig. 7.47. Within each time period 7 of the applied voltage, a
M = 3-cycle oscillation is observed while the response repeats itself after K =5
voltage time periods, giving 7' = 57 and a 5x3 = 15-cycle response. Figures 7.48
and 7.49 show the time series and the phase plots for the 9-cycle window (K = 3,
M =3) at 6.0192 V AC and the 12-cycle window (K =4, M = 3) at 6.0329 V
AC, respectively, for the fixed-fixed beam at 71 V DC (refer to Table 7.2).
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Fig. 7.49. Time series and phase plot of the 12-
cycle window (K =4, M =3) at 6.0329 V AC,
71 V DC in the MEMS fixed-fixed beam.

Fig. 7.48. Time series and phase plot of the 9-
cycle window (K =3, M =3) at 6.0192 V AC,
71 V DC in the MEMS fixed-fixed beam.

In general, when a K-cycle in the U-sequence given by Eq. (7.38) is formed,
the displacement repeats itself after every K voltage cycles (time period is K
times the time period of the applied voltage). However, each voltage cycle consists
of M loops/peaks/oscillations at the M*" superharmonic frequency of excitation.
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beam. beam.

As a result, the total number of oscillations per period of the response becomes
K x M as given in Eq. (7.39) for an exciting frequency of fy/M (as described
through Fig. 7.47). However, the time period of the K M-cycle remains K,
where 7 is the time period of the applied voltage. The characteristic M = 3 loops
per period of the base orbit is found to be preserved in Figs. 7.47-7.49. The U M-
sequence is also observed for other values of M. Figures 7.50 and 7.51 show the
first (K = 6) x (M = 2) = 12-cycle state for an AC voltage of 6.3606 V and the
first (K = 5) x (M = 2) = 10-cycle state for an AC voltage of 6.414 V in the
MEMS fixed-fixed beam at 71 V DC for M = 2. See Ref. 44 for more details on
U- and U M -sequences in electrostatic MEMS.

7.5. Dynamic Analysis in the Presence of Fluid and Thermal Damping

The heat/thermal equation is next coupled with the electro-mechanical-fluidic
analysis using a full-Lagrangian formulation and a Newton scheme, as discussed
in this section, for the coupled electro-thermo-mechanical-fluidic analysis of
MEMS. The basic step in the Newton method for the coupled analysis in this
case involves solving the equation

J(x)Ax = —r(x), i.e.,

Ryv Rvt Rvme Rvr Axm Rwm
Rrm Rrr RTE RrF Axr | _ ) Rr (7.40)
Rem Rer Ree Rer Axg Rg ’

Rrm Rrr Rre Rrr Axp Rr
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Algorithm 7.3. Full-Lagrangian Newton scheme for the self-consistent electro-thermo-mechanical-
fluidic analysis of MEMS dynamics.

1: Define Ql,thQQ,dQQ,QJC,de

2: Discretize 1y, Q, Q¢ for mechanical/thermal and fluidic analysis

3: Discretize df2, df), for electrostatic analysis

4 Setn=0,t"=1"=0

5: Initialize xp ("), xT ("), XE(t"), xXp (t™)

6: forn =0to N do

7: Setz =0

8 Setxpm (') = xp(t), xp (17T = xp(t7), xg (1) = xg(t7),
xp (1) = xp(t")

9:  repeat

10: Compute J(¢1) = F(xepp (¢11), xp (7)), xg (¢7T1), xp (¢171))

11: Compute r(t!™) = r(xp (¢87), xp (), xg (811), xp (1))

12: Solve: J(t7 1) [Axp (¢7T1) Axp (17T Axg (171! Axp (t] )] =

—r(t!1) (Eq. (7.40))
13: Update xn (1) = xpm(t]71) + Axp (87, xp (817 =

xr(t; ) + Axr (), xe (615) = xe (6] T) + Axp(t]T),
xp(ti) = xp(t]1) + Axp(;T)
14: Update s =7+ 1
15:  until [Axp (£771)] < tol and |Axp (87| < tol and |Axg(t11]1)] <
tol and |Axg (71| < tol
16: Update: XM(tn+1) = XM(t?+1), XT(tn+1) = XT(t?Jrl), XE(tn+1) =
XE(tZT-hLl), and XF(tn—H) = XF(t?+1)
17: end for

in each time step of the dynamic analysis. J is the Jacobian matrix and the sub-
scripts M, T, E, F denote mechanical, thermal, electrical and fluidic domains,
respectively. In Eq. (7.40), Ry denotes the thermal (T) to mechanical (M)
coupling term in the Jacobian matrix. The other terms in J are defined similarly.
x is the vector of unknown variables where xng, X, Xg and Xg are the mechani-
cal, thermal, electrical and fluidic variables, respectively. The thermal variable xT
in our case is the absolute temperature 7" and the other variables X, Xg and xg
have already been defined earlier. R is used to denote the thermal residual equa-
tion and the mechanical, electrical and the fluidic residual equations are denoted
by Rm, R and R, respectively, in Eq. (7.40).

The full-Lagrangian Newton scheme for the coupled electro-thermo-
mechanical-fluidic analysis is presented in detail in Algorithm 7.3. Algorithm 7.3
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is discussed with reference to the two conductor system shown in Fig. 7.11. In
Fig. 7.11, the thermal analysis is performed in the same domain where the me-
chanical analysis is performed, i.e., in the domains €2; and €25. In Algorithm 7.2,
the index n stands for the time instant whereas the index 4 denotes the i*" New-
ton iteration within the time step n. tol is some specified tolerance for check-
ing convergence of the Newton scheme. Once the domains are discretized, the
mechanical, thermal, electrical and the fluidic unknowns are initialized (set to
zero for our case). In each time step, a Newton scheme is implemented to obtain
a self-consistent solution for that time step. The initial guesses for the Newton
method are generally taken to be the final solutions of the previous time step.
Note that Rgr = Rreg = Rpr = Ror = 0, i.e., there exists no coupling be-
tween the thermal and the electrical and fluidic domains and the other terms can
be computed in a straightforward manner in the full-Lagrangian formulation.

The quality factor due to thermoelastic damping, Qtgp, of the MEMS beam
can then be computed as'®

1 AErep

-1
- 7.41
@rep = 37 PEpqz (7.41)
where PE,,,, is the maximum elastic potential energy stored in the MEMS beam
during one complete time period of vibration. In the physical level analysis, the

potential energy stored in the system is given by’

2
1
PE:w/A Z isg‘feij dA (7.42)

i.j=1
M
ij
ST compared to the mechanical stress S™ is neglected in the computation of
the potential energy. e;; are the components of E, w is the width of the micro-
structure and A is the area of microstructure (2D domain where the mechanical
analysis is done). The energy dissipated by thermoelastic damping A Frgp is
given by®

where s are the components of S . The relatively insignificant thermal stress

2
AETED = w/ % Z sg;deij dA (743)
A

ij=1

where ¢ signifies integration over a complete time period of vibration and 8;4;
are the components of the thermal stress ST. Equations (7.41), (7.42) and (7.43)
are used to compute the quality factor due to thermoelastic damping from the
numerical simulations.
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7.5.1. Classical Theory of Thermoelastic Damping

The classical theory of thermoelastic damping (developed by Zener'>'¢ and later

improved by Lifshitz and Roukes'”) has been used extensively to predict the qual-
ity factor due to thermoelastic damping, Qtgp, of MEMS beams and is found to
give good agreement with experimental results for simple harmonic oscillations
in the flexural mode.*®#7 Zener’s theory is valid for thin rectangular beams under-
going simple harmonic vibrations in the flexural mode. According to this theory,

the quality factor Qrgp due to thermoelastic damping is given by!>1
Ea?T, W, W Ea?T,
—1 0 z z 0
= =A i Ap = 7.44
@rep pCp 1+ (wr,)? P14+ (wrs)?’ BT, (744

where p is the density, F is the Young’s modulus, « is the coefficient of thermal
expansion and C), is the specific heat under constant pressure of the beam material.
Ty is the ambient temperature (beam is unstrained and unstressed at this temper-
ature) and w is the angular frequency of excitation. 7, is the relaxation time (the
time necessary for a temperature gradient to relax) of the first mode of vibration
of the beam and is given by 7, = b?/(7?k), where & is the thermal diffusivity of
the beam material and b is the beam thickness. Zener’s theory works quite well
for simple beams and is not suitable for microstructures with complex geometries.
Besides, it is also based on the assumption that the motion of the microstructure
is simple harmonic. The Zener’s theory was improved in Ref. 17 by using the
beam theory.*® The equation of motion for a beam under thermoelastic damping
is given by!”

92U 82 92U
PAST + 5 (EIW + EaIT) =0 (7.45)

where p is the density of the beam, A and I are the cross-sectional area and the
mechanical contribution to the moment of inertia of the beam, respectively, and
U is the displacement of the beam in the y-direction. The z-axis is defined along
the length of the beam and y- and z-axes are along the thickness and the width
direction of the beam, respectively. The term I is the thermal contribution to the
beam’s moment of inertia (measure of the thermal stress in the beam) and is given
by It = [ 4 Y0dydz where 6 = T — Ty is the change in the temperature from the
ambient temperature 7Ty. The linearized heat equation (assuming § < Ty) along
the y-direction (temperature gradients along the other directions are assumed to
be negligible) is given by!’

o0 020 Ag 0 [82U}

o "o Vo ot | oa2 (7:46)
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The coupled thermoelastic equations (7.45) and (7.46) are solved assuming simple
harmonic vibrations in Ref. 17 by setting

U(l‘, t) = Ul ((E)ej’Wt; 9(1’, Y, t) = 91 (CC, y)eiwt (747)

The temperature profile along the beam’s cross-section is calculated by using the
heat equation (7.46) and the computed temperature is substituted into the equation
of motion (7.45) to obtain a frequency dependent elastic modulus E,,.!7 The
real part and the imaginary part of the frequency dependent elastic modulus £,
were used in Ref. 17 to compute the quality factor due to thermoelastic damping

QTED a8

-1

@rep = B (52 B ?’coshg + cosé
where ¢ = by/w/(2k). In deriving the expression for the quality factor Qrpp, in
the Zener’s theory (Eq. (7.44)) the temperature profile in the beam was expressed
in terms of the transverse thermal eigen modes (see Refs. 15 and 16 for details).
On the other hand, in the Lifshitz and Roukes’s theory (Eq. (7.48)) the temperature
profile in the beam was computed explicitly (without expanding it in terms of the
thermal eigen modes). As a result, the Lifshitz and Roukes’s theory is found to be
more accurate than the Zener’s theory for predicting the quality factor due to ther-
moelastic damping in rectangular beams undergoing simple harmonic vibrations
in the flexural mode.'’

6 6 sinh& + siné ) (7.48)

7.5.2. Modified Theory of Thermoelastic Damping

The theory of thermoelastic damping presented in Sec. 7.5.1 is modified to predict
the value of Qrgp in electrostatic MEMS under complex non-linear oscillations.
Under electrostatic actuation, in the presence of fluid and thermoelastic damping,
the equation of motion for a MEMS beam is given by

02U ou  9? 02U ewV?
2 +c§ + 922 (EI&E2 +EaIT> =F, = 72(9_0_)2
where c is the fluid damping coefficient, € is the dielectric constant of the sur-
rounding medium, V is the applied voltage, ¢ is the gap in the undeformed state
between the beam and the ground electrode, F. is the electrostatic force per unit
length and w is the width of the beam. A voltage of the form V = Vpc +Vcel?
is considered, where the real and the imaginary parts of ¢“* correspond to a co-
sine and sinusoidal AC excitation, respectively. In the modified theory, we first
solve the coupled thermoelastic equations (Eqs. (7.49) and (7.46)) by assuming

pA (7.49)

NT NT
U(zx,t) = Z Un(x)et™Nt  0(x,y,t) = Z On (z,y)e Nt (7.50)
N=0 N=0
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where NT' is the number of harmonics considered. Substituting Eq. (7.50) into
Eq. (7.46) and equating the coefficients of ¢!N“* for N = 0,1,2, ..., NT to zero
gives

(o) = S PU) [, o)

for N >0; 6 -0
a s Ncos(b(N/2)} or N >0; 6Oo(z,y) =0;

(7.51)

where ( is given by {(y = iy/iNw/k. The thermal contribution to the beam’s
moment of inertia, I, can be computed from Eq. (7.51) (noting 0y (z,y) = 0) as

Apl O?Un(2) inw
IT:/Ayedydz_ Z 5 [1+ f(Nw)] == giNet (7.52)

0x?
N=1

where I = wb?/12 is the mechanical moment of inertia of the beam (of width w
and thickness b) and f(Nw) is given by

f(Nw) = bfé [bCN—t (bCQN)] (7.53)

Substituting the expression for the displacement U (x, t) from Eq. (7.50) and the
expression for I (Eq. (7.52)) into Eq. (7.49) gives

NT NT 9'U
—pAw2 Z NQUN(m)eint T icw Z NUy(z)e iNwt L pr Z N(m) gINwt
N=0 N=0 N=0
Ry *UN(T) inwt ew(Vpe + Vace™?)?
N=1 z 9 [g _ Z%Zo Un (m)eint]

(7.54)

From Egs. (7.49) and (7.54) the bending moment*® of the MEMS beam, M is
given by

82 8UN( ) int
M = E182+EO¢IT—EIN§:OT

NT
+EIAp Y {1+ f(Nw)}

N=1

2
a UN(I') eZNth MI\/[ + MT (755)
Ox?
where M™ and M7 are the mechanical and the thermal contributions to the bend-
ing moment, respectively. The third term and the fourth terms on the left hand
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side of Eq. (7.54) corresponds to 9> M™ /9x? and 9> M T /02, respectively. The

stress o in the MEMS beam is given by*3
My _ MMy My g

I 1 I
where 0™ and o7 are the mechanical and the thermal stresses, respectively, with
T significantly smaller than ¢ .'> The strain ¢ in the MEMS beam is given by*®
’U oM
Vo2 T E
Using the expressions for the stress and strain in the MEMS beam, the elastic
potential energy stored in the system, PE, is given by*

€ £
PE:/ dV/ adez/ dV/ oMde (7.58)
14 0 Vv 0

as o7 is negligibly small compared to o™ and V is the volume of beam. The
energy dissipated by thermoelastic damping per period of the vibration, A Ergp,
is given by!64

(7.56)

(7.57)

AErgp = / dv f{ olde (7.59)
\%

where ¢ signifies integration over a complete time period of vibration. The qual-
ity factor due to thermoelastic damping, Qtgp, of the MEMS beam can then be
computed using Eq. (7.41). Expressing Uy (z) as®

NT
Un(z) = Bno(z); de, Ulzt)=g(@) Yy Bne™ (7.60)
f

where ¢(x) is the most dominant mode of vibration of the beam at the given
frequency of excitation and Oy denotes the vibration amplitude, a closed form
expression for the quality factor Qrgp for the MEMS beam can be obtained as
(see Ref. 50 for details)

Qrep = [Z Ap (g - Mm) ﬁN] (Fae] 76D
N

£N cosh &y + cosén

where [y is the magnitude of By (3 is in general complex and can be written
in terms of its magnitude BN and phase ¢y as Oy = BNE™N). Biaw is the
maximum value of the expression Y N AveN“! evaluated over a time period
27 /w and £n = by/Nw/(2k). When only one harmonic (NT = 1) is considered
in Eq. (7.61), i.e., for simple harmonic motions of the beam, 3,,., = (1 and
the expression for Qgp given by the modified theory (Eq. (7.61)) reduces to the
expression for Qrgp given by the Lifshitz and Roukes’s theory (Eq. (7.48)).
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7.5.3. Numerical Simulations in the Presence of Fluid and Thermal
Damping

Figure 7.52 shows the comparison between the measured and computed (both
the numerical simulations and the modified theory) quality factor Qtgp for a set
of silicon fixed-fixed’! beams in vacuum at Ty = 300 K. The length of the fixed-
fixed beam was changed to obtain different resonant frequencies and the thickness
was kept constant at 5 um. The five experimental data points in Fig. 7.52 were
obtained from 5 pm thick fixed-fixed beams of lengths 700 pum (at its first and
third resonant frequency, 80.3 kHz and 490 kHz, respectively), 500 pm (at its
third resonant frequency, 720 kHz) and 200 pm (at its first and third resonant
frequency, 911 kHz and 5.05 MHz, respectively). The beams have the following
materials properties:>' o = 2.6x107 K™, E = 130 GPa, v = .28, p = 2330 kg
m3,C, =712 kg ' K71, k = kpC), = 148 Wm~! K~!. A DC bias of 0.1
V along with an AC bias of 0.01 V is used in the numerical simulations and the
modified theory to generate an electrostatic actuation force in the linear regime.
The numerically simulated values of Qgp and those obtained from the modified
theory are close to the experimental data for both the cantilever beams and the
fixed-fixed beams as shown in Fig. 7.52.

10° — - s
o Experimental Data
—o— Numerical Simulation
- - - Modified Theory
B
o 10
S
S
i
2
£
5]
10%

3

Frequency (kHz)

Fig. 7.52. Comparisons between the measured and the computed (numerical simulations and modi-

fied theory) quality factor Qrgp for a set of silicon fixed-fixed beams>! in vacuum.

Two different sources of nonlinearity in the electrostatic force per unit length
F, can be identified from the beam equation for electrostatic MEMS (Eq. (7.49))

and they are (i) F, o V2 and (ii) F., o 1/(g — U)?. These nonlinearities in
F, can give rise to complex non-linear vibrations in the MEMS beam (discussed
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earlier). The effect of these non-linear vibrations on Qtgp is studied in this section
using the modified theory and the physical level analysis, for a MEMS fixed-fixed
beam. The results obtained from the classical theory of thermoelastic damping
are also discussed. When the applied voltage V' is small (compared to the pull-in
voltage of the MEMS beam), the displacement U < g and the nonlinearity due
to F, oc 1/(g — U)? is negligible (see Eq. (7.49)). However, the nonlinearity due
to F, o< V2 can still be present at such small voltages and give rise to different
values of Qrep than that predicted by the classical theory of thermoelastic damp-
ing.!>!7 Considering an applied voltage of the form V' = Vpc + Vac sin(wt),
where Vpc is the applied DC bias and V¢ sin(wt) is the sinusoidal AC voltage,
the electrostatic force per unit length F,, will have both the first and the second
harmonic of the exciting angular frequency w due to the V2 nature, i.e.,
2 2

F, ~ % Vi + % + 2VpeVac sin(wt) — % cos(2wt)|  (7.62)
Defining r = Vac/(Vpe + Vac), ¥ = 1 (when Vpe = 0) implies AC opera-
tion (when the second harmonic of the exciting angular frequency w is dominant)
and » — 0 (when Vo < Vpe) implies DC operation (when the first harmonic
is dominant). For intermediate values of r between 0 and 1 (mixed-mode oper-
ation) both the first and the second harmonic components of the applied voltage
are dominant. The effect of the different modes of operation (AC, DC and mixed-
mode) on thermoelastic damping in MEMS is studied for a fixed-fixed MEMS
beam (denoted as beam A) at Ty = 300 K. The fixed-fixed MEMS beam (beam
A) considered is made from silicon and has dimensions: 200 pm x 5 gm x 10 ym
(length x thickness x width), placed 1 ym over a ground plane. The material
properties used are same as those used for the fixed-fixed beams as presented in
the previous paragraph, and the beam’s resonant frequency is fo = 1.08 MHz. The
relaxation time of the beam is 7, = 0.0284 us, giving a characteristic damping
frequency fq = 1/(277,) (the frequency where TED is maximum, i.e., QTgp is
minimum) of 5.6 MHz. The beam is simulated in air at 1 atms (y = 1.82x107°
kg/ms and the mean free path A = 0.064 pm). Figure 7.53 shows the variation
in Qrep with the excitation frequency f = w/(2x) for the fixed-fixed beam A,
under DC operations (Vpc = 1 V and V4o = 0.0001 V, r — 0) obtained using
the Zener’s theory, the modified theory and the numerical simulations. The fluid
damping coefficient (needed in the modified theory), ¢ = 0.0205 Ns/m?, is ob-
tained from the linearized Reynold’s squeeze film theory for beam A. The value
of Qrep obtained from the Zener’s theory, the modified theory and the numerical
simulation are very close as shown in Fig. 7.53 (the numerical simulation results
are typically more accurate due to its 2D analysis as compared to the theories
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Fig. 7.53. Variation of Qrgp with the excita- Fig. 7.54. Variation of Qrgp with the excita-
tion frequency f for the MEMS fixed-fixed beam tion frequency f for the MEMS fixed-fixed beam
A (resonant frequency is fo = 1.08 MHz) under A under AC operations (r = 1) obtained from
DC operations (r — 0) obtained from the dif- the different theories and numerical simulation.
ferent theories and numerical simulation. Char- Characteristic damping frequency is, fg = 2.8
acteristic damping frequency is, fg = 5.6 MHz, MHz, where Qrgp is minimum.

where Qrgp is minimum.

which are based on 1D analysis of the system’'). Under DC operations at small
voltages where the nonlinearity due to F,, o« 1/(g — U)? is negligible, the motion
of the beam is simple harmonic at the excitation frequency f. In this case, the
Zener’s theory and the Lifshitz and Roukes’s theory (compared with the Zener’s
theory in the inset of Fig. 7.53) match with the modified theory and are very close
to the numerical simulations. The pull-in voltage of the fixed-fixed beam is found
to be 120 V, thereby indicating that the applied voltages are very small. The in-
set of Fig. 7.53 shows some minor variations between the Zener’s theory and the
Lifshitz and Roukes’s theory at higher frequencies which is consistent with the
observations made in Ref. 17. Note that the modified theory is identical to the
Lifshitz and Roukes’s theory when only one harmonic (NI" = 1) is considered in
Eq. (7.61), i.e., for simple harmonic motions of the beam.

For AC operations (Vpc = 0V and Vo = 1V, r = 1), the value of Qrgp
obtained from the Zener’s theory and the Lifshitz and Roukes’s theory evaluated
at w = 27 f does not match with the predictions of the modified theory or the
numerical simulations as shown in Fig. 7.54. However, the classical theories eval-
vated at 2w = 27(2f) agree well with the modified theory (and the results are
close to the numerical simulations) as the oscillations are still simple harmonic
but at twice the excitation frequency due to the V2 nature of F, under AC opera-
tions from Eq. (7.62). In this case, the characteristic damping frequency is found
to be half of that in the DC operation, i.e., f; = 2.8 MHz as shown in Fig. 7.54.
While minor variations can be observed between the Zener’s model evaluated at
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Fig. 7.55. Variation in Qrgp with the excita- Fig. 7.56. Amplitude variation of the first and
tion frequency f for the MEMS fixed-fixed beam the second harmonics, 1 and (32, respectively,
(resonant frequency is fo = 1.08 MHz) under with the excitation frequency f for the MEMS
mixed-mode operation at r = .5 (Vpc = 0.5 fixed-fixed beam at »r = .5 (Vpo = 0.5,
V, Vac = 0.5 V), obtained from the different Vac =0.5V).

theories and numerical simulation.

2w = 27r(2f) and the modified theory at higher frequencies in Fig. 7.54, the value
of Qrgp given by Lifshitz and Roukes’s theory evaluated at 2w = 27(2f) is found
to be exactly same as the modified theory at all the frequencies. For mixed-mode
operations (intermediate values of r between 0 and 1), the electrostatic force per
unit length F, contains both the first and the second harmonic components of the
exciting frequency (see Eq. (7.62)). As a result, the oscillations also have both
these two frequency components in them giving rise to non simple harmonic os-
cillations. The value of the quality factor due to thermoelastic damping, Qtgp,
for such cases cannot be predicted correctly by the classical theories as shown in
Fig. 7.55. Figure 7.55 shows the variation in Qrgp with the excitation frequency
f for a mixed-mode operation at Vpc = 0.5 Vand Vyec = 0.5V, r = .5in
the fixed-fixed beam A. While the modified theory and the numerical simulations
indicate the formation of a spike in the downward direction in Qrgp around fo/2
(fo = 1.08 MHz is the resonant frequency of the beam), no such predictions are
made by the Zener’s or the Lifshitz and Roukes’s theories. The formation of the
spike in QTep around fy/2 can be explained from the variation in the magnitude
of the first and the second harmonics, 31 and (3;, respectively, with the excitation
frequency f for the fixed-fixed beam at Vpo = 0.5 Vand Vyo = 0.5V (r = .5).
While the magnitude of the first harmonic (3; peaks at the resonant frequency of
the system as expected, the second harmonic 32 becomes dominant (larger than
B1) at fo/2 as shown in Fig. 7.56. Since the quality factor Qrgp depends on
the relative strengths of the different harmonics present (Eq. (7.61)), maximum
deviation between the classical theories (based on the first harmonic) and the
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V AC. The resonant frequency at 100 V DC is
fo =893 KHz.

modified theory and numerical simulations are observed at f/2 where the sec-
ond harmonic is most dominant.

When the applied voltages are large, the displacement U is comparable with
the gap ¢ and the nonlinearity due to F, o< 1/(g — U)? in Eq. (7.49) becomes im-
portant. Figure 7.57 shows the variation in Qtgp with the normalized frequency
f/ fo for the fixed-fixed beam at 100 V DC (close to the pull-in voltage) and 5
V AC. The resonant frequency of the beam at 100 V DC is fo = 893 KHz. The
quality factor Qrgp (computed by the modified theory and also by the numerical
simulations) has several spikes in its variation with respect to the normalized fre-
quency f/ fo as shown in Fig. 7.57. The spikes occur at the superharmonics of the
resonant frequency fo, i.e., at f = fo/N for N = 1,2, 3, ..., and are not predicted
by the Zener’s theory or the Lifshitz and Roukes’s theory (not shown here as it
gives very similar result as the Zener’s theory).

The formation of the spikes in Fig. 7.57 can be explained by the presence
of higher-order harmonics in the oscillations introduced by the F, « 1/(g — U)?
nonlinearity at higher voltages (close to pull-in). Harmonic balance analysis of the
beam equation (Eq. (7.49)) shows the presence of several higher order harmonics
in the oscillations of beam at 100 V DC and 5 V AC as shown in Fig. 7.58. The
magnitude of the M*" harmonic, 3/, is found to peak/spike at the first M super-
harmonic frequencies of fy, i.e., at f = fo/N for N = 1,2,3, ..., M. This in turn
affects the quality factor Qgp at a given frequency as shown in Fig. 7.57 as the
quality factor Q1gp at a given frequency depends on the relative strengths of the
different harmonics 3y present (from Eq. (7.61)).
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7.6. Conclusions

Full-Lagrangian Newton schemes have been presented for the dynamic analysis
of electrostatic MEMS. The full-Lagrangian-scheme greatly improves the perfor-
mance of the dynamic analysis by eliminating time consuming steps like recom-
puting the interpolation functions and re-discretization of the surfaces. For tightly
coupled cases, relaxation gives very slow convergence and often fails to converge.
Newton method becomes important for such cases. The Lagrangian description
of all the physical domains enables the efficient and accurate computation of the
Jacobian matrix and thereby gives excellent convergence rates. Both these fea-
tures makes this method far more efficient than existing coupled solvers for the
dynamic analysis of MEMS. Two hierarchical fluid models, namely, the com-
pressible Reynold’s squeeze film equation and the compressible Navier—Stokes
equations are coupled with electrostatic, thermal and mechanical models using
a full-Lagrangian formulation and a Newton method. The coupling of the two
hierarchical fluid models (the 2D CRSFE and the 2D CNSE) with the coupled
electro-mechanical solver makes it possible to simulate the dynamics of a large
class of MEMS devices. While the faster 2D CRSFE based solver can be used
to accurately simulate certain classes of MEMS devices (having large aspect ra-
tios and small gaps like the micromirror and the piggyback actuator), the more
accurate and comparatively slower 2D CNSE based solver can be used for MEMS
devices where 2D CRSFE is not valid, for example, the cantilever beam in air.
New non-linear dynamic properties of electrostatic MEMS have also been pre-
sented in this work through the numerical simulation of detailed physical level
models for the coupled electrical, mechanical and the fluidic energy domains. The
formation of M-cycle oscillations at the M*" superharmonic frequency of exci-
tation and its period doubling leading to the formation of 2™ M -cycles is shown
through numerical simulations in different MEM devices. The presence of U-
sequence in electrostatic MEMS and a modified form of the U-sequence, termed
as the U M -sequence is shown to be present in electrostatic MEMS under super-
harmonic excitation. The electrostatic force is found to be primarily responsible
for the non-linear dynamic properties presented in this work. The non-linear na-
ture of the electrostatic actuation force is also found to change the nature of ther-
moelastic damping in electrostatic MEMS significantly from that predicted by the
classical theory of thermoelastic damping developed by Zener and later improved
by Lifshitz and Roukes. The nonlinearity due to the V2 nature of the electrostatic
force is found to affect the thermoelastic quality factor Qtgp even at small volt-
ages (far off from pull-in). At larger voltages (closer to pull-in), the nonlinearity
due to the 1/(g — U)? nature of the electrostatic force is found to affect Qrgp.
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A modified theory is proposed for predicting thermoelastic damping in MEMS
under arbitrary electrostatic actuation. The modified theory takes into account
the higher-order harmonics present in the oscillations, which arise due to non-
linear electrostatic force, to compute the overall thermoelastic damping coefficient
and the quality factor. Although the quality factor Qgp predicted by the modi-
fied theory is close to the numerical simulation predictions, typically the physical
level or numerical simulations based on the coupled 2D non-linear electro-thermo-
mechanical-fluidic analysis are more accurate as they involve fewer assumptions
compared to the modified theory.
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The field of Micro-Electro-Mechanical Systems (MEMS) is a very broad one that
includes fixed or moving microstructures. MEMS devices and systems that con-
sist of arrays of beams and plates are of concern here. MEMS often use beam or
plate shaped conductors that can be very thin — with h/L ~ O(1072—~107%) (in
terms of the thickness h and length L of the side of a square pate). Such MEMS
devices find applications in microsensors, microactuators, microjets, micro-
speakers and other systems where the conducting plates or beams oscillate at
very high frequencies. Conventional Boundary Element Method (BEM) analysis
of the electric field in a region exterior to such thin conductors can become dif-
ficult to carry out accurately and efficiently — especially since MEMS analysis
requires computation of charge densities (and then surface tractions) separately
on the top and bottom surfaces of such plates. A new Boundary Integral Equa-
tion (BIE) is proposed to handle the computation of charge densities for such
high aspect ratio geometries. In the current work, this has been coupled with Fi-
nite Element Method (FEM) to obtain the response behavior of devices made of
such high aspect ratio structural members. This coupling of the electrical and me-
chanical problems is carried out using a Newton scheme based on a Lagrangian
description of both the mechanical and electrical domains. Numerical results are
presented in this chapter for quasi static deformation of coupled MEMS. The
effect of gap between a plate and the ground, on mechanical response of a plate
subjected to increasing electric potential, and effect of geometry and boundary
conditions on pull in voltage, are studied here.

*Formerly graduate student, Sibley School of Mechanical and Aerospace Engineering, Cornell Uni-
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8.1. Introduction

The field of Micro-Electro-Mechanical Systems (MEMS) is a very broad one
that includes fixed or moving microstructures; encompassing micro-electro-
mechanical, microfluidic, micro-electro-fluidic-mechanical, micro-opto-electro-
mechanical and micro-thermal-mechanical devices and systems. MEMS usually
consists of released microstructures that are suspended and anchored, or captured
by a hub-cap structure and set into motion by mechanical, electrical, thermal,
acoustical or photonic energy source(s).

Typical MEMS structures consist of arrays of thin beams with cross-sections
in the order of microns (um) and lengths in the order of tens to hundreds of mi-
crons (see Fig. 8.1). Sometimes, MEMS structural elements are plates. An exam-
ple is a small rectangular silicon plate with sides in the order of mm and thickness
of the order of microns, that deforms when subjected to electric fields. Owing to
its small size, significant forces and/or deformations can be obtained with the ap-
plication of low voltages (= 10 volts). Examples of devices that utilize vibrations
of such plates are comb drives (see Fig. 8.1), synthetic microjets>* for chemical
mixing, cooling of electronic components, micropropulsion, turbulence control
and other macro flow properties), microspeakers,* optical systems for portable
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Fig. 8.1. Parallel plate resonator: Geometry and detail of the parallel plate fingers (from Ref. 1).

electronics like display devices and MEMS cameras efc. Schematic of such a mi-
crojet, based on micro-electro-fluidic-mechanical systems, is shown in Fig. 8.2.

Numerical simulation of electrically actuated MEMS devices have been car-
ried out for around a decade or so by using the Boundary Element Method
(BEM — see, e.g., Refs. 5-9) to model the exterior electric field and the Finite
Element Method (FEM — see, e.g., Refs. 10-12) to model deformation of the
structure. The commercial software package MEMCAD,'? for example, uses the
commercial FEM software package ABAQUS for mechanical analysis, together
with a BEM code FastCap'* for the electric field analysis. Other examples of
such work are illustrated in Refs. 15-17; as well as Refs. 13 and 18 for dynamic
analysis of MEMS.

The focus of this chapter is the study of quasi static response behavior of
MEMS devices made up of very thin conducting plates. This requires BEM anal-
ysis of the electric field exterior to these thin conducting plates. A convenient way
to model such a problem is to assume plates with vanishing thickness and solve for
sum of the charges on the upper and lower surfaces of each plate.!” The standard
Boundary Integral Equation (BIE) with a weakly singular kernel is used here and
this approach works well for determining, for example, the capacitance of a paral-
lel plate capacitor. For MEMS calculations, however, one must obtain the charge
densities separately on the upper and lower surfaces of a plate since the traction
at a surface point on a plate depends on the square of the charge density at that
point. The gradient BIE is employed in Ref. 20 to obtain these charge densities
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Fig. 8.2. (a) Schematic of a synthetic microjet. (b) Simulation model of a synthetic microjet (from
Ref. 28).

separately. The formulation given in Ref. 20 is a BEM scheme that is particularly
well-suited for MEMS analysis of very thin plates — for 4/ L < .001 — in terms
of the length L (of a side of a square plate) and its thickness h. A similar approach
can also be developed for MEMS and Nano-Electro-Mechanical Systems (NEMS)
with very thin beams.?! Similar work has also been reported recently by Chen et
al?> in the context of determining fringing fields and levitating forces for 2D
beam shaped conductors in MEMS combdrives.

The coupled BEM/FEM methods employed in the references cited above
perform a mechanical analysis on the undeformed configuration of a structure
(Lagrangian approach) and an electrical analysis on the deformed configuration
(Eulerian approach). A relaxation method is then used for self-consistency be-
tween the two domains. Therefore, the geometry of the structure must be up-
dated before an electrical analysis is performed during each relaxation iteration.
This procedure increases computational effort and introduces additional numerical
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errors since the deformed geometry must be computed at every stage. Li and
Aluru?? first proposed a Lagrangian approach for the electrical analysis as well,
thus obviating the need to carry out calculations based on the deformed shapes
of a structure. Two- and three-dimensional (2D and 3D) quasi-static Lagrangian
exterior BEM analysis was addressed in Refs. 23 and 24; while a fully coupled
2D quasi-static MEMS analysis has been carried out in Ref. 25. A fully-coupled
2D dynamic Lagrangian MEMS analysis has been recently carried out by De and
Aluru.?® Additional advantages of the fully Lagrangian approach, for dynamic
analysis of MEMS, are described in Ref. 26, in which a Newton method has been
developed and compared with the relaxation scheme. A fully coupled Lagrangian
(quasi-static) BEM/FEM analysis, but with the standard (not thin plate) BEM,
is presented in Ref. 27. A similar coupled analysis with the thin plate BEM is
presented in Ref. 28 and is the primary focus of the present chapter.

The topics addressed in this chapter are as follows. First, a coupled BEM-
FEM analysis is presented in which the MEMS plate elements are thin and packed
relatively close together. The exterior BEM analysis is three-dimensional while
the FEM analysis allows for moderately large non-linear deformation of the elastic
plates. A fully Lagrangian formulation is presented for both the mechanical and
electrical analyses. This includes a Lagrangian formulation (new) for the gradient
Boundary Integral Equation (BIE) that is needed to obtain the separate charges on
the top and bottom faces of a thin conducting plate. Finally, a Newton scheme,
analogous to that in Ref. 26, is developed for the present problem. Results from
the Newton scheme are compared with those from an iterative relaxation scheme.

This chapter is organized as follows. The usual and gradient BIEs for poten-
tial theory, in an infinite region exterior to a structure composed of thin conducting
plates, are first presented and regularized. This is then formulated in a total La-
grangian scheme. Next, a finite element scheme for deformation analysis of a
plate is presented. This is followed by a description of a relaxation and a Newton
scheme for coupling the electrical and mechanical problems. Finally, numerical
results are presented and discussed for the model problem of a parallel plate ca-
pacitor (to simulate a microjet response behavior). These results include the effect
of initial gap on plate deformation, and the effects of plate geometry and bound-
ary conditions on pull-in voltage. A discussion section completes the chapter.
Finally, it is important to realize that the actual problem of simulating a microjet
involves dynamics, as well as coupling the electro-mechanical problem with mi-
crofluidics. The present chapter, however, is only a step in that direction and the
effect of fluid forces is ignored in this work. A start has been made in modeling
of damping forces in MEMS with thin plates (Ref. 29). Future research calls for
fully coupling fluids forces in BEM/FEM MEMS modeling and analysis.
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Fig. 8.3. A deformable clamped plate over a fixed ground plane (from Ref. 28).

8.2. Electrical Problem in the Exterior Domain

Figure 8.3 shows (as an example of a MEMS device) a deformable, clamped plate
over a fixed ground plane. The undeformed configuration is B with boundary 0B.
The plate deforms when a potential V' is applied between the two conductors, and
the deformed configuration is called b with boundary 0b. The charge redistributes
on the surface of the deformed plate, thereby changing the electrical force on it
and this causes the plate to deform further. A self-consistent final state is reached,
and this state is computed in the present work by both the relaxation and Newton
schemes.

8.2.1. Electric Field BIEs in a Simply-Connected Body

First consider the solution of Laplace’s equation in a three-dimensional (3D) sim-
ply connected body.

8.2.1.1. Usual BIE — Indirect Formulation

Referring to Fig. 8.4, for a source point £ € B (with bounding surface 0B), one
has the usual indirect BIE:

_ v(y) .
o€) = | o Tdsy) 8.1

where y is a field point, ¢ is the potential, r(€,y) =y — &, r = |r|, € is the
dielectric constant of the medium, ds is the area of an infinitesimal surface element
on 0B and v is the (unknown) surface density function on 0B.
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8.2.1.2. Gradient BIE — Indirect Formulation
Taking the gradient of ¢ at the source point £ results in:

Veol) = [ DV ( sty = [ HEEEY 4y

oB dme éay B 47TT3(£7y)6

Alternatively, one can write Eq. (8.2) as:

%(E) — / V(y)(yk — gk)ds(y)

23" op Amr3(€,y)e

n(y)
y(Q)

Fig. 8.4. Notation used in boundary integral equations (from Ref. 28).

293

(8.2)

(8.3)

Note that, in general, the function v(y) is not the charge density. It becomes
equal to the charge density when B is the infinite region exterior to the conductors.

This is discussed in Sec. 8.2.2.

8.2.2. BIEs in Infinite Region Containing Two Thin Conducting Plates

Now consider the situation shown in Fig. 8.5. Of interest is the solution of the

following Dirichlet problem for Laplace’s equation:

V2p(x) =0, x€ B, ¢(x) prescribed for x € OB

(8.4)

where B is now the region exterior to the two plates. The unit normal n to 0B is

defined to point away from B (i.e., into a plate).
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Fig. 8.5. Parallel plate capacitor with two plates (from Ref. 28).

8.2.2.1. Regular BIE — Source Point Approaching a Plate Surface sf

As¢ — xt € 517 € sT (see Fig. 8.5), one has:

¢(X+) - /s+§1+ 4777"?)51), y)eds(y) + /§1+ 471'7“(5)&{)’ y)edS(Y) +

Bly)
/S2+ mds(y). (8.5)

Here 3(y) = o(y ™)+ o(y ™), where o is now the charge density at a point on
a plate surface. The second integral above is weakly singular, while the rest are
usually regular. It should be noted, however, that the last integral above becomes
nearly weakly singular when both h and g are small.

A similar equation can be written for x* € s3. For the case shown in Fig. 8.5,
however, this is not necessary since 3(y) is equal and opposite on the two plates.
Therefore, for this case, Eq. (8.5) is sufficient to solve for 3 on both the plates!

8.2.2.2. Gradient BIE — Source Point Approaching a Plate Surface sf

It is first noted that for x* € s Us,, k=1,2:

o(x) = €22 (x) = en(x) - [Ved(E)lems. (8.6)
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Consider the limit £ — x € s; € s]. It is important to realize that this
limit is meaningless for a point x on the edge of a plate, since the charge density
is singular on its edges. One has:

O’(X+) _ /+_ B ﬁ(Y)r(X+7Y) ) n(X+)d8(y)

drr3(xt,y)

N /+ r(xt,y) - [B(y)n(x") —ﬁ(x+)n(3f)}ds(y)

4mr3(x*, )

+ ds(y). (8.7)

ﬂ(x+) B)r(x",y) -n(x")
= AT, xT) /

4777“3 xt,y)

Fig. 8.6. Line integral for evaluation of solid angle (from Ref. 28).

In the above, the solid angle subtended by the surface element 57 ' at the point
x7T is (see Ref. 30 and Fig. 8.6):

r(xt -n 2
Qs t,xt) = 7[+ st(y): /O [1 - cos(¥(0))]d0  (8.8)

where the symbol F denotes the Finite Part (FP) of the integral in the sense of
Mukherjee Refs. 31 and 32.
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Equations (8.7) and (8.8) give the final equation:

1 L Bly)r(x*,y) -n(x*)
ot ot = [ B

ds(y) (8.9)

[ ) B B nG

4rr3(xt,y)

xt) [ r(xt,y) n(xt
R O S P

47 mr3(xt,y)

Here (see Fig. 8.6), a local coordinate system (z, y, z) is set up with the origin
at x such that the positive z axis intersects the surface s, . Now, 1) is the angle
between the positive z axis and r(xt,y) with y € L, and 6 the angle between
the positive z axis and the projection of r(x™, y) in the xy plane.

In the above, the second integral on the right hand side is weakly singular,
while the rest are usually regular. The last integral above, however, becomes
nearly strongly singular if both the thickness h and the gap g are small. Once 3 is
known on both plates, Eq. (8.9) can be used, as a post-processing step, to obtain
o™ and o~ on both plates.

8.2.3. Boundary Integral Equations in the Lagrangian Formulation

The Boundary Integral Equations (8.5) and (8.9), in a Lagrangian framework, are
presented next.

From Nanson’s,?

3 one has:
nds = JN -F~14ds. (8.10)

where n and N are unit normal vectors to b and 0B, at generic points x and X,
respectively, F = 0x/0X is the deformation gradient, J = det(F) and dS is an
area element on 0B. Here, X and x denote coordinates in the undeformed and
deformed configurations, respectively.

From Eq. (8.10):

ds = JN-F~!|dS (8.11)

Next, define X, the charge density per unit undeformed surface area. Since
¥dS = ods, one has:

Y =Jo|N-F (8.12)
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Also, define:

B=xT4+3%" (8.13)

8.2.3.1. Lagrangian Version of the Regular BIE
Using the above, the Lagrangian version of Eq. (8.5) becomes:

B B(Y)dS(Y) B(Y)dS(Y)
o XN = [ eyt e ke e

B(Y)dS(Y)
+ /S (8.14)

+ ATR(XH, Y)e
r(x(X),y(Y) =R(X,Y) =y(Y)—x(X) = Y+u(Y) - X—u(X) (8.15)

r(x(X),y(Y)) = R(X,Y) = |R(X,Y)| (8.16)

with u denoting the displacement at a point in B.

Also:
2
h(y) = —~ &), (8.17)
2¢
HdS:/ hds (8.18)
oB b

where h and H are the tractions per unit deformed and undeformed surface areas,
respectively. Using Eqgs. (8.17), (8.18), (8.10) and (8.12), one gets:

Jo®N.-F~! 52 N.F!
L\ = (8.19)

H-= - .
2¢ 2Je N -F~1]2

8.2.3.2. Lagrangian Version of the Gradient BIE

The Lagrangian version of Eq. (8.9) is derived next.
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The first, second and third terms on the right hand side of Eq. (8.9) are written
as:

B(Y)R(XT,Y) e J(XH)(N-F~1)(X*)

First term = sr_s,  AmR(XF Y)J(XHN  FI(X5) ds(Y)
(8.20)
° N
Second term = R(X™T,Y) ¢ [B(Y)J(XT)(N-F~1)(XT)] dS(Y)

gt ATRI(XH,Y)J(XH)IN - FH[(XH)

R(X*,Y) o [BX)J(Y)(N - F-1)(Y)
‘/Sl X, Y) XN Ffxe) oY)

(8.21)

) B B(X+) 27
Third term = “ (XN () /0 cos(1(0))db. (8.22)

The fourth term is treated in the same way as the first.

One can now multiply the entire equation by J(X)|N - F~1|(XT), use the
mid-plane values for (membrane assumption) F(X*) = F(X ™), and use the fact
that N(X*) = —N(X ™). The resulting equation has the form:

%[E(Xﬂ (X)) =

B(Y)R(X*,Y) e J(X*)(N - F~)(X*)
/S+ . R Y dS(Y)
/ ¢ [B(Y)J(XH)(N-F~1)(X1)]

AT R3(XT,Y)

R(XF,Y) o [B(XH)J(Y)(N-F')(Y)]
/ SO Y) ds(Y)
_ BXT)

g /0 cos(1(0))do
. -1 +
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Please note that the second and third terms above must be evaluated together
in a numerical implementation.

The integral I = fozﬂ cos(1(0))df can be evaluated from a Lagrangian ap-
proach as follows. Referring to Fig. 8.7, and Eq. (8.15), one has:

& =rsin(¢)cos(d), n=rsin(¢y)sin(f), ¢ =rcos(y) (8.24)

R(XM,Y)=r(xty)=¢i+nj+ck (8.25)

Now, for any point y on the boundary of sA1+ (and, therefore, Y on the bound-
ary of §1+) one has:

R(X",Y)=Y +u(Y) - X+ - u(X") (8.26)

x* >

Fig. 8.7. Spherical polar coordinates for evaluation of the solid angle (from Ref. 28).

The algorithm for evaluating the integral I is described below.

(1) Given X", X;F, X5,0,Ys = f(Y1), find Y7, Ya, Y3 from the equations:

Yo = f(Y1), Yo=(Y1—Xtan(®) + XS, Ys=X] (827

Here Y2 = f(Y7) is the equation of the boundary of §1+ and the angle O at
X+ corresponds to 6 at x™.
(2) Find R(X™,Y) from Eq. (8.26).
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(3) Now obtain the corresponding values of the angles ) and 6 from:

LRk R Ry
cos(y)) = R cos(f) = Rsin(v)’ sin(6) Rsin(¢)
(4) Finally:
2m do
. /0 cos(1(©)) 55540

The quantity df/d© is determined as follows.

(8.28)

(8.29)

(5) First, the quantities 0Y}, /00, k = 1,2, 3, are obtained from the differentiated

versions of Eq. (8.27) with respect to O; i.e., from the equations:

(8.30)

(8.31)

(8.32)

(8.33)

8Y2 B Yy, 9, vy
=2 =M >8® 30 %ta n(0) + (Y1 — X;") sec?(0),
Y3
)
00
Next, it is noted that 0y; /0O and Jz;/00 are:
0yi oY,  Ox; 00X,
= Fu(Y) 52, T2 = Fp(X) 2 =0,
g6 ~ 15 5o = X5 =0
Finally, differentiate the equation:
ot
tan(9) = 22
Y1 — T
to get:
0 (- i) G8 — (v2 —23) 58
e sec?(6)(y1 — z1)?

8.2.3.3. Two Plates Close Together

For cases in which the gap 2g between the plates in Fig. 8.5 is also small, the
last integral on the right hand side of Eq. (8.5) must be treated as nearly weakly

singular. In this case, this integral should be written as:

Bly) — ) s
/s; Tt y)e ) /s;-s~2+ ey )

4re r(xt,y)

o+ Amr(xt,y)e

(8.34)
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where X € . The first and second integrals on the right hand side of Eq. (8.34)
are regular. (The second integral is O(7/r) where 7 = |y — xT|. As7 — 0,
r — 2g + h, so that this integrand — 0.) The last integral is nearly singular.
A procedure for accurate evaluation of nearly singular integrals is presented in
Ref. 20 and also in Sec. 8.5 of the present chapter.

Also, the last integral on the right hand side of Eq. (8.9) now becomes nearly
strongly singular. This integral, called J, can be evaluated as follows. One can
write:

_ B(y)r(xt,y) n(x")
7= /;—sAer 4773 (X+’ y) dS(y)

r(xt,y)- n(xt) — (%" )n
+/§2+ x*",y) [6L(S'Ti3gx+,)y>ﬂ( ) (y)}ds(y)
n ﬁ(iﬂﬂ(s}*,xﬂ (8.35)

47

where (see Fig. 8.6):

Q(SA2+,X+)=/¢+IW).H(y)dS(y):/O W[l—cos(z/J(G))]dG (8.36)

r3(xt,y)

It is noted that, in this case, the point x* is slightly above s, and that the
second term in Eq. (8.36) denotes a “nearly FP” integral.

The idea of regularizing Eq. (8.35) with 3(x™) has been inspired by earlier
work on evaluation of nearly singular integrals Ref. 34.

n(x)

Fig. 8.8. Symmetric deformation of two plates (from Ref. 28).
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Let the integrals on the right hand side of Eq. (8.35) be called .J;, Jz, J3. Each
of the three integrals is regular. The fact that the second integral J» is regular can
be proved as follows.

It is assumed that the two plates always remain symmetric with respect to the
ground plane, even after deformation (see Fig. 8.8). Their equations, therefore,
are of the form x3 = & f(x1, x2). One now has:

n(x")oc—k+if1+jf2,  nEY) o -k—if1—jfe (8.37)

Asy — xT,

[By)n(x")=B(x")n(y)] o k[B(xT)—B(y)]+[ia+3b][B(xT) +B(y)] (8.38)

where i, j, k are Cartesian unit vectors and a and b are some numbers.
Asy — xt, r(xT,y) o« —k, so that the integrand of Jo is O(7/r?) where
7 = |y —x7"|. In this limit, 7 — 0, r — 2g + h, so that the integrand of J5 — 0.
The Lagrangian version of the above equations are not repeated here in the
interest of brevity. They are straightforward and very similar to those given in
Secs. 2.3.1 and 2.3.2.

8.3. Mechanical Problem in the Elastic Plate

Non-linear deformation of plates, without initial in-plane forces, are discussed in
this section. The plates are square (side = L), linearly elastic, and are of uniform
rectangular cross-section (thickness h). The boundary condition considered here
is a plate with all edges clamped. Also, the edges are immovable, i.e., u =v =0
on all edges of the plate. Here u(x, y) and v(x, y) are the in-plane and w(z, y) the
transverse displacement of the mid-plane of the plate. The force distribution (per
unit area) H(z, y) is applied to the plate.

8.3.1. The Model

The kinematic equations adopted here are those for a von Karman plate (Refs. 35
and 36):

U + 3 (we)?

€xz Rea _w,a."m

ey | = | vyt L(wy,)? gy | = | —w (8.39)
vy g T 2\Wy ’ vy Yy :

Yy Uy +Vp+Waw,y, Ray —2W ay
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where [€] = [€44, €4y Vay]” are the in-plane strains (measured at the mid-plane),
and [K] = [Kyz, Kyy, Kzy] | are the curvatures and the twist.
The constitutive equations are:

(N1 =HDI[C]le],  [M]=H[C][x] (8.40)
where [N] = [Ny, Nyy, Noyl? = hloss, 04y, 02y]7 are the in-plane forces per
unit length, o;; are the components of stress and [M] = [M, M, My,|T

the bending and twisting moments. Also:

1lv 0
Eh Eh3
C=|vl 0 , HD = —— HO=_— - (841)
002L(1-0) 1-v 12(1 — v?)
2

with v the Poisson’s ratio of the plate material.
The membrane strain energy £(0), the bending strain energy £(©), and the
work done W are (From Ref. 37):

1
g =1 /A [Nu€oz + Nyeyy + Noyyayldzdy (8.42)
€0 = X [ Mokoo + Myryy + My |dudy (8.43)
2 A T yvyy zyvry :
W = / [Hyu + Hyv + H w|dzdy (8.44)
A

where A is the area of the plate surface.

Using Eqs. (8.39)—(8.41), the energy expressions Egs. (8.42)—(8.43) can be
written in terms of the plate parameters F, v, h and the displacement derivatives.
These expressions are available in Ref. 37 on pages 313 and 95, respectively.

8.3.2. FEM Model for Plates with Immovable Edges

FEM discretization. Each plate element has four corner nodes with 6 degrees
of freedom at each node. These are u, v, w,w 5, w ,, W 4y. For each element, one
has:

u

ND o qD
v :[ 0 N(O)] [q(o)} (8.45)
w
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with:
Ny 0 N; O N3 0 Ny O

N _ 1 2 3 4

NP @I =0 Ny 0 Ny 0 Ny 0 Ny

IN©)(z,y)] = [P1, P, ..., Prg] (8.46)

[q(I)] = [ulavh "'7u4av4]T;
[q(O)] = [wr, (w,m)p (w,y)p (w,wy)lv -y Wy, (w,w)zp (w,y)4a (w,wy)ﬂT

(8.47)

Here N and Py, are bilinear interpolation functions (Ref. 10) and [q(l )} and
[q(o)} contain the appropriate nodal degrees of freedom.

Define:
W,z 0 N(O)
[D] = 0 wy|, [G] = 7(360)] (8.48)
Ny
Wy Wy
Nige 0 Nop 0 N3, O Ngp O
BP)=1] 0 Ny 0 Noy 0 Nzy 0 Ny,
Nl,y Nl,w N2,y NZ,:L’ NS,y NS,a: N4,y N4,z
N
[B(O)]:f Ny(yoy) (8.49)
@)
aN')

Substituting the interpolations Eq. (8.45) into the expressions Eqs. (8.42)-
(8.44), and minimizing the potential energy, results in the element level equations:

KO o q@D 0 KO [ ¢
[ 0 K(O)] [q(o)} + {QK(IO)T K(NI)} {q(o)] = [P] (8.50)

The various submatrices and vector in Eq. (8.50) are:

KO =10 [ (BOTC)BD)dady,
Ale

K©) = H©) /A _BONT(CI[B O dzdy (8.51)

HD

- / (BYIT(C](D)(Gdudy,
Ale)

(K]
2

(I)
(KO0 = 5= [ ADIG)T (YD) Gldady 552
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NO o 1"
1= [, " o)

where A(¢) is the area of a finite element. In Eq. (8.53), [H] is the resultant
traction on the mid-surface of the plate.

The global version of Eq. (8.50) is now obtained in the usual way.

Note that the in-plane and out-of-plane (bending) matrices [K ()] and [K ()]
are oc h and h?, respectively, the matrix [K'/9)] oc Ah represents coupling be-
tween the in-plane and out-of-plane displacements, and the matrix [K(N7)]
A2?h arises purely from the non-linear in-plane strains.

It is well known that for the linear theory [K (9] << [K(D)] as h — 0. Ttis
very interesting, however, to note that if A/h remains O(1), the bending matrix
[K(©)], which arises from the linear theory, and the matrix [K (V1] from the
non-linear theory, remain of the same order as h — 0. This fact has important
consequences for the modeling of very thin plates (Ref. 3).

8

dxdy (8.53)

= =

X

8.4. Schemes for Solving the Coupled Problem

A relaxation scheme and a Newton scheme to solve the coupled problem are next
presented in a total Lagrangian framework.

8.4.1. Lagrangian Relaxation Scheme for the Coupled Problem

Consider, for simplicity, a thin conducting plate with a ground plane with V' = 0.
Figure 8.9 shows a schematic of the applied voltage history on this plate. The
deformation history u(x,t) of this plate is obtained by a combined BEM/FEM
approach as described below.

The voltage history V' (¢) is first decomposed into a series of steps — V1, Vo =
i+ AV, .., Vy1 =V, + AV,,. Consider the first step with applied voltage

V1. The BEM problem is first solved in the region exterior to the plate, and the

charge density 2(10) and resultant traction ﬁﬁo) are obtained on the plate surface.

The FEM problem with applied traction ﬁﬁ” is next solved for the plate, resulting
in the calculation of the displacement field u§0> in the plate. The BEM problem
is next solved in the region exterior to the deformed plate by the Lagrangian ap-
proach (i.e., using the undeformed plate surface). This calculation yields the next

iterate of the charge density and traction, 251) and Hﬁ” , respectively, on the plate

surface. The next iterate of the displacement field in the plate, ugl), is obtained
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() (b)

Fig. 8.9. (a) Deformation of body. (b) Voltage history (from Ref. 28).

next by solving the FEM problem in the plate with applied traction ﬁ(ll). This
iterative process is repeated until convergence. The converged values of the trac-
tion on the plate, and displacement field in the plate, at time ¢;, are called H; and
uy, respectively.

The next task is to proceed from time ¢; to t5. To this end, the voltage in-
crement AV] is first applied to the deformed configuration of the plate at time
t1. Solution of the corresponding BEM problem (using, again, the Lagrangian
approach), yields the incremental charge density AEEO) and incremental traction

AH(lo). The displacement field uéo) is obtained next by solving the FEM prob-
lem in the (undeformed) plate with the traction ﬁéo) =H, + Aﬁgo). The BEM
problem is next solved with Vo = V; + AVj. The result is the charge density
Egl) and the traction ﬁ;l); followed by the FEM solution for ugl). Again, this
iterative process is continued until the converged values u, and H are obtained at
time 5.

The time step to — t3 is considered next, and so on, until the final time ¢,,4; is
reached.

The algorithm employed for solving the coupled problem is outlined below.

(1) Apply Vi to B.
Solve BEM problem on 0B
Get charge density Zgo) and traction ﬁio)
(2) Solve FEM problem in B with traction ﬁf
Get displacement ugo) on 0B
(3) Setk =0
Repeat

)
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(4) Update 0B, 9b\*) = 0B + u{®)
Solve BEM problem on 0B for 8bgk) with V3

3 (k1) (k+1)
1

Get charge density and traction H;

(5) Solve FEM problem in B with traction ﬁgkﬂ)
Get displacement u(lkH) on 0B
(6) Update k =k + 1

. D ) S 5y
Until convergence i.e., W x 100 < tol and ~— B L x100 <
tol
Now t = ;. Get converged values u;, 9b; = 0B +u;, H;
(7) Apply AV to by
Solve BEM problem on 0B for 0b;
Get charge density AEEO), traction Aﬁ(lo)
(8) Solve FEM problem in B with traction ﬁéo) =H, + Aﬁgo)
Get displacement ugo) on 0B
9) Setk=0
Repeat
(10) Update 8B, b8 = 0B + ul¥)
Solve BEM problem on 9B for 8bék) with V5, = V1 + AWy
Get charge density ngﬂ) and traction ﬁékﬂ)
(11) Solve FEM problem in B with traction ﬁé’““)
Get displacement uékH) on 0B
(12) Update k =k + 1
. R () =D 5
Until convergence i.e., —2 mal 2 %100 < tol and =2 =0, 21 x100 <

tol

(13) Now t = t5. Get converged values uy, dby = 9B + uy, Hy
(14) Proceed until ,,41

8.4.2. Newton Scheme for Solving the Coupled Problem

The idea in this scheme is to solve the entire system of non-linear governing equa-
tions by using the Newton Method. The equations to be solved by the Newton
method are the electrical domain BIE (8.14) and the mechanical domain FEM
Eq. (8.50), with Eq. (8.23) as an auxiliary equation. The coupling equation (8.19)
must also be used.
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8.4.2.1. Residuals and Their Gradients

The appropriate residuals, as functions of u and B, as well as their gradients with
respect to these variables, are given below.

The electrical residual Rz and its derivatives. The electrical residual Rg,
and its derivatives with respect to B and u are:

Rp(u, B) = $(X*) - /91+§1+ WRXT,Y)e  Jor InR(XT, Y)e
B(Y)dS(Y)
- /s; RXT,Y)e (8.54)

OR B dS(Y)
aBxn) B = /S»1+ ATR(XT,Y)e (8-55)

An alternative to Eq. (8.55) is to start from the discretized version of Eq. (8.54)
and differentiate this equation with respect to the nodal value of B at the point X .
Next, using:

0 1 R 0 1 R
u(X) <R) “ % oY) (R) = Tw (8:56)

one has:

ORp B B(Y)R(Xt,Y)dS(Y)
au(x+)(“’B) T /S+ 4, 4T R3(X+,Y e

B(Y)R(X1,Y)dS(Y)
7[ 47TR3 X+, Y)e

B(Y)R(X*,Y)dS(Y)
B /S+ 4T R3(X+,Y)e

R(X*,Y)dS(Y)
+ B(X) 7é1+47rR3(X+,Y)e . (8.57)

The first three terms on the right hand side of Eq. (8.57) are obtained by apply-
ing Eq. (8.56); to Eq. (8.54), while the last one is obtained by applying Eq. (8.56)2
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and using ORg/0u(Y)|y—x+. The second and fourth terms on the right hand
side of Eq. (8.57) can be combined to a single term:

(8.58)

(B(X") — B(Y))R(X*,Y)dS(Y)
/§1+ 4rR3(X+,Y)e

which is only weakly singular!

The mechanical residual Ry, and its derivatives. The mechanical residual
RM is:

KO 0 1[qD 0 KUOT[ gD
Ry (u,B) = { 0 K(O):l |:q(0):| + [2K(IO)T K(NI):| {q(O)] - [P]
(8.59)

The load vector [P] in Eq. (8.59) involves the resultant traction H (see
Eq. (8.53)). Using Eq. (8.19), as well as the relations:

H-H"tH, N=Nt=_ N, F=F' =F" (8.60)
onegets:
. AB N.F!
H=_— - 8.61
2Je [N -F1|2 (8.61)

where A = %7 — %7,

It is very easy to evaluate OR /0B = —9J[P|/0B.

The gradient R j; /0u has two parts. The first part comes from the first two
terms on the right hand side of Eq. (8.59). (Note from Eq. (8.47) that [q(l ) and
[q(o)] involve the displacement components uj, as well as the slopes w ;, wy
and twist w ,; and the stiffness matrices KU0) and K(ND) (see Egs. (8.52) and
(8.48)) involve slopes). For the Newton scheme employed in this work, the dis-
placement components [ug] = [u, v, w] of u are independent. One therefore needs
to evaluate derivatives such as dw 5, /Ow, m = 1,2 as well as similar derivatives
for the twist w .. These derivatives, as well as those required for the components
of the deformation gradient F (see Eq. (8.74)), are discussed below.

The second part comes from 9H/Ou and this requires evaluation of OF /0u
and 9J/0u, together with application of the chain rule. For these calculations, it
is useful, in general, to use the formulae:
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OF; _OF; .y 0] _ SO0F; OF " _ .
A

8uk B 6Xm mk 6uk 6uk ou ou

-F~! (8.62)

Please note that derivatives of the components of F in this work (see
Eq. (8.74)) are discussed below.
Finally, the auxiliary equation (8.23) (the gradient BIE) is viewed as:

(1/2)A = f(u, B) (8.63)
and is used within each Newton iteration.
Derivatives of displacement gradients. First consider , for example, dw ,, /Ow.
One first writes w .. (, y). This can be interpreted in two ways:8

(1) wy(x,y(w,z)); where w 5, y are dependent variables and w, x are inde-
pendent variables. Now:

ow

ow

ow , Oy W 2y
= —=_—" =2 8.64
Oy Ow  wy (8.64)

x

(2) wy(x(w,y),y); where w 4, = are dependent variables and w, y are indepen-
dent variables. This time:

dw ow, 0r w
2| = =2 — =2 8.65
ow Or Ow  wy (8.65)
The average value is chosen in this work. Thus:
ow _ 1 W, zy + W,z 7 6w,y _ 1 W,yy + Wy ) (8.66)
ow 2\ wy  wy ow 2\ w, Wy

The derivative of the twist w ., with respect to w is evaluated in similar fash-
ion.

The derivatives of the components of F in Eq. (8.74) are derived somewhat
differently. First consider the derivatives of u ; and u , with respect to u. Start
with u ,(z,y) = wu(x(u,v),y(u,v)); and similarly for u ,. Using the chain
rule:

0 0

7(“,%) = U gzl 0+ UzyYu, 7(“,3/) = UgyT oy + UyylYu (8.67)

ou ou
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Similar equations are obtained for the derivatives of v , and v, with respect
to v by replacing v with v in Eq. (8.67). Finally:

-1

[xﬂtxw} {ua:uy} (8.68)

Yu Yo Vz Uy

Any singularities, (e.g., w ; = 0 in Eq. (8.66)), must be handled carefully. An
average value of such a quantity, from neighboring nodes, is used in this work.

8.4.2.2. The Newton Algorithm

First, define:

_ RE(U, B)
R(u,B) = [RM(U,B):| . (8.69)
One has the Newton iterative scheme:
OR OR Au
v v =-R,, 8.70
% o), as), a1
Upt+1 =4, +Au,, Byt =B,+AB,. (8.71)

Starting with n = 0, Eq. (8.70) is iterated until convergence. At convergence,
R, =R(u,,B,) — 0.

The voltage is applied in steps. The algorithm for a typical step V' for the
coupled scheme is described below.

(1) Solve BEM on 0B for applied voltage V.

(2) Solve for B, substitute B(?) in Eq. (8.63) and solve for A Use BO
and A in Eq. (8.61) to evaluate 7.
(3) Solve FEM problem in B with traction ﬁ(o), find displacement u(®) on 9B.

) Setk = 0.

(5) Do

(6) Use Egs. (8.55) and (8.57) to solve for 0Rg /0B and ORg/du, where
B = B®).

(7 Next find OR s /0B and OR s /0u.

®) Use the above computed values to evaluate Ry in Eq. (8.69).

9) Use Ry, in Eq. (8.70) to solve for Au®) and AB®*).
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(10) Update u*+t1) = u®) + Au),
(11) Update B++1) = B() 1 AB(),
(12) Update k =k + 1

(13) Compute displacement residual =
(14)  While (displacement residual is high)
(15) u = ulk+b)

(16) ¥ = xk+1)

[+ k|

[wk]

x 100.

8.5. Numerical Implementation

8.5.1. Boundary Integral Equations for Two Plates Very Close Together

As mentioned before, the last integral on the right hand side of Eq. (8.34) is nearly
weakly singular. Similar integrals arise when a 3D region outside a thin plate is
analyzed by the conventional BEM. A procedure for accurate evaluation of such
integrals is outlined below.

Proposed method for the accurate evaluation of nearly weakly singular inte-
grals. Consider a source point x on the top face of a plate and its image point X
on the bottom face in Fig. 8.10. Two kinds of singular (O(1/r)) integrals arise —
a weakly singular integral on the boundary element A on the top face of the plate
that contains x, and, since h is small, a nearly weakly singular integral on the
boundary element A (the image of A) on the bottom face of the plate that con-
tains %.2° The weakly singular integral is evaluated by employing the mapping
method outlined in Refs. 39 and 40. This method transforms such integrals over
rectangular (curved or flat) domains into regular two-dimensional triangles (4 tri-
angles). Integrals over curved quadratic or flat linear triangles are further reduced
to regular line integrals that can be easily evaluated to desired accuracy by stan-
dard Gaussian quadrature.

A simple method?’ is presented below for the accurate and efficient evaluation
of nearly weakly singular integrals. This approach transforms a nearly weakly
singular integral into a weakly singular one; which is then evaluated by the method
described in Refs. 39 and 40. A nearly weakly singular integral of interest here

has the form:
ds(y)
I = 8.72
0= [, ey (872
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Fig. 8.10. Singular integrals (from Ref. 28).
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The integrand above is multiplied by #/7 with the result:

[ [@/r))ds(y)
I(x) = /A TRy (8.73)

Since #/r is O(1) and — 0 asy — X (i.e., as 7 — 0), the integrand in
Eq. (8.73) is weakly singular, of O(1/#) as # — 0. Therefore, the integral (8.73)
can be evaluated by employing the methods described in Refs. 39 and 40.

Performance of new method. The performance of the new method is compared
with that of standard Gauss integration.

Figure 8.11(a) shows the source point x(0, 0, ) and region of integration A
(a square of side L). Numerical results appear in Fig. 8.11(b). It is seen that for
h/L < 1/100, standard Gauss integration, even with 36 Gauss points, cannot
reduce the error below around 10%. By increasing the number of gauss points to
64, the errors dramatically increases to 42%. This is due to numerical instabilities.
The new method is seen to take care of these nearly weakly singular integrals very
well, even for very small values of h/L.

8.5.2. Non-Linear Finite Element Analysis

It is important to point out that Eq. (8.50) is non-linear due to the fact that the ma-
trices [ /9] and [K (N1)] contain the gradient of w (see Egs. (8.48) and (8.52)).
Newton iterations are used to solve Eq. (8.50) once the transverse displacement w
becomes significant.



314 S. Mukherjee and S. Telukunta
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Fig. 8.11. (a) Numerical integration over a square element. (b) Errors in numerical integration over
a square (from Ref. 28).

8.5.3. BEM/FEM Coupling

Both the relaxation scheme and Newton schemes are used for the coupling of
BEM and FEM solutions. In the relaxation scheme, the BEM problem is solved
for charge densities. Tractions are obtained and the resultant tractions are trans-
ferred to the FEM domain to obtain the deformed configuration. The FEM solves
for the displacements and displacement gradients on a thin plate mid-surface and
returns them back to the BEM. The BEM problem is solved again for the deformed
configuration, and new charge densities are obtained. This process is implemented
iteratively until convergence. The deformation gradient is obtained with a mem-
brane assumption as shown below:

1+uy, Uy 0
F = Vg 1+wv, O0f. (8.74)
W,z Wy 1

Here, u, v and w represent the nodal displacements. For the Newton scheme, the
non-linear equations are solved together using Newton iterations. This procedure
has been described before in Sec. 4.2.
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8.5.4. Discretization

The BEM models only the top surface (sz, see Fig. 8.5) and the FEM the mid-
surface of each plate. No distinction need to be made between the top and mid
surfaces since the plates are very thin. The mesh used here is as follows. The
BEM and FEM domains each use 64 Q4 elements. Of course, the BEM has one
degree of freedom per node and the FEM has 6 degrees of freedom at each node.

8.6. Numerical Results

8.6.1. Code Verification

The computer code with the thin BEM Lagrangian formulation has been carefully
verified at several stages. Details are given below.

8.6.1.1. BEM for Region Exterior to a Thin Flat Plate

Total charge. Results from the thin BEM formulation have been compared to
those from Harrington’s'® model (Fig. 8.12). For this verification, the gap ratio
(2¢/L) has been varied from 0.1 to 0.6 in steps of 0.1, and the resulting capac-
itance of the MEMS plates has been compared to the values predicted by Har-
rington’s model. The thickness ratio h/L for this problem is chosen to be 103,
L=2mm, A= L?and C = Q/2V, where Q is the total charge on the top plate
and V and —V are the potentials on the upper and lower plates, respectively. As is
evident, results form the two models agree very well. It is noted here that the two
models are very similar except that Harrington used constant boundary elements.

An empirical formula for the capacitance, based on Fig. 8.12, can be written
as:

L2
C=""tel (8.75)
Y
where v = 2g is the total gap between the plates and « is he slope of the curve in
Fig. 8.12. The dimensionless factor o ~ 2.

Charge separation. For the two-plate capacitor shown in Fig. 8.5, the charge
on the upper plate, neglecting the effects of the fringing fields, can be written as:

. (8.76)
v
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Fig. 8.12. Capacitance check of BEM model (from Ref. 28).

where A is the potential difference between the plates. With A = 2 volts and
v = 0.2L, Eq. (8.76) gives 0 &~ 10¢/L. Table 3 of Ref. 20 (a thin plate BEM
formulation), with L = 1, € = 1, has 0~ = 9.907 (at the center of the the top
plate with the finest mesh). (The same numerical result is obtained with the code
developed for the present chapter).

Force for small voltage. From Senturia:*

A? 1
F= _91¢ = —fa—CAQ (8.77)
oy | 2 2 0y
where F' is the force between the plates in a two-plate capacitor.
From Egs. (8.75) and (8.77), one gets the traction magnitude H as:
F A2e
H=—=— 8.78
2 2y (8.78)
For the case in Table 3 of Ref. 20 (with A = 2, v = 0.2L), one has H =

50¢/L2.

It is noted that the traction, for small voltages, is linear in A2, For larger
voltages, one must use v(x) = 7o — w(x),* with 7 the initial constant gap
between the plates) and H becomes a function of w.

Now Eq. (8.17) is used to determine the traction. Using the values of 0~ =
9.907 and o™ = 1.47 from the Table 3 of Ref. 20, one gets:
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H=H — H" =47.99/L? (8.79)

with H acting downwards on the top plate. The difference between the two results
is 4%

8.6.1.2. Lagrangian BEM for Region Exterior to a Curved Plate

“Fat” plate. The proposed Lagrangian BEM algorithm has been verified before.
Section 5.3 of Ref. 24, for example, considers a (3D) bent cantilever beam with
dimensions 20 x 1 x 1. The standard (not thin plate) BEM is used here. The dif-
ferences between the numerical results from an Eulerian and a Lagrangian BEM
formulation are shown to be of the order of 0.1% at various points on the surface
of the bent beam. The maximum difference is only 0.09% when each conductor
is discretized with 738 constant boundary elements.

Thin plate/beam. A new example is presented below.

32

30 | |
| Solid line : 2D BEM |
Br * 1 3DthinBEM |-
26 | |
h=10 30 > w\ “‘w
v=1 g 2} | ‘
o \ |
L = 1000 2 s | - |
g=60 g0 - s
5| |
7777777777
ground V =0 @ N
3%.5 0403 02-01 0 0L 02 03 04 05
Curvilinear coordinate along lower surface of beam (mm)
(a) (b)

Fig. 8.13. (a) Schematic of curved beam with lengths in um. (b) Charge distribution o~ along the
lower surface of the curved beam (from Ref. 28).

The geometry of the problem, a curved beam, is shown in Fig. 8.13(a). The
length of the curved beam (top or bottom surface) is 1000 pm, its thickness is
10 pm, the deflection of the center of the bottom surface is 30 ym and the gap
between the center of its bottom surface and the ground plane is 60 pm.

The charge distribution 0~ on the bottom surface of the beam, with V' =
1, € = 1, is shown in Fig. 8.13(b). The solid line is the result from a standard
2D BEM code. The * symbols depict the results from the (Lagrangian) 3D thin
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plate BEM code for a plate with dimensions 4000 x 1000 x 10 pgm. For this
case, o~ is shown along a line through the center of the lower surface of the plate,
parallel to its shorter edge. The results are seen to agree quite well. Of course,
perfect agreement between the two models is not expected (see Tables 1 and 2 in
Ref. 20).

It should be stated here that the computer programs used to generate the results
shown in Fig. 8.13(b) use a length scale of mm (i.e., L = 1 mm, g = .06 mm efc.)
with € = 1 F/mm. Therefore, the output o~ is in C'/(mm)?.

Finally, it is noted that for a straight beam (in Fig. 8.13(a)) with ¢ = .06 mm,
Eq. (8.76) in the form o = €A /g yields a uniform o = 1/.06 = 16.67 C//(mm)?.
Clearly, this result is not satisfactory and a detailed calculation is needed to obtain
the correct variation of charge density on a curved beam, as shown in Fig. 8.13(b).

8.6.1.3. FEM for Deformation of a Thin von Karman Plate

The FEM formulation for deformation of von Karman plates, presented in Sec. 8.3
of this chapter, has been carefully verified earlier in Ref. 3. The usual checks (e.g.,
bending deformation of a clamped square plate under uniform applied pressure)
have been successfully carried out for the current rendition of the FEM code.

8.6.1.4. Coupling of BEM and FEM

This coupling has been carried out with two different approaches: the relaxation
scheme and the Newton scheme. As seen in Sec. 8.6.2, results from these two
formulations show excellent agreement. In addition, results shown in Fig. 8.15(b)
have been compared with those from earlier work (Ref. 27). This matter is dis-
cussed in Sec. 8.6.2.

8.6.2. MEMS Plates

Material properties. Material properties used for silicon conductors in free
space are:*42

E =169 GPa, v=10.22, ¢ =8.85x 107% F/m (8.80)
It is assumed that the anisotropy is negligible and the plate is made up of poly-

silicon material for this system.

The problem. Deformation of a silicon MEMS plate (the silicon is doped so
that it is a conductor), subjected to a progressively increasing electrostatic field, is
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simulated here by the coupled BEM/FEM. Each plate is clamped around its edges
and two plates are used in order to have a zero voltage ground plane (the plane of
symmetry) midway between them (Fig. 8.14).

V/2 silicon
r'd
Y=29 ™~ insulator
AN
—V/2 silicon

Fig. 8.14. Model Problem for microjet (from Ref. 28).

Two problems of interest have been studied in this analysis. For the first prob-
lem, each plate is square of side L = 2 mm, thickness h = 6 pm, and the gap
g (distance between ground and the nearest plate surface) is 36 ym. Both plates
are allowed to deform. The next problem studies the effect of gap on the defor-
mation response of the MEMS plates. For this problem, the plates have a side of
L = 2 mm and thickness h = 2 um.

Results. Figure 8.15(a) shows the normalized central deflection of the top plate
as a function of the square of the applied voltage, for relatively small values of the
applied voltage. This curve is linear as expected (see Eq. (8.78)) since [ linear in
V2 gives wy linear in V2,

A comparison of relaxation scheme and Newton scheme is done next. The
normalized plate center deflection with applied voltage is shown in Fig. 8.15(b).
For the relaxation scheme, the voltage is applied in a series of 0.2 volt steps (max
2.4 volts). This time, the initial part is linear, but the response becomes non-
linear for larger values of V (see Fig. 8 in Ref. 16). There are two reasons for
this non-linear response. The first is that the electrical force is non-linear since
g(x) = go — w(x) in Eq. (8.78); and the impact of w becomes more and more
pronounced as its value becomes larger and larger. The second is that the elastic
response of the plate becomes non-linear as w becomes larger (see Sec. 8.3). This
effect is often referred to as membrane stiffening. As can be seen, for an applied
voltage of 1.5 volts the deflection of the plate center is of the order of its thickness.

It is noted that the results from the relaxation scheme agree with those from
the Newton scheme (within plotting accuracy) in Fig. 8.15.
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Table 8.1. Comparison of results from the present
code with those from Ref. 27. L = 3 mm,
h = 0.03 mm, v = 1 mm.

V2 x 109  (present) w (Ref. 27)
2 1.46 1.44
4 1.948 1.92
6 2246 235
8 2.451 2.44

A similar problem has been solved before?’ in which the Lagrangian formula-
tion was applied but the standard (not thin plate) BEM was used. Hence, the gradi-
ent BIE (8.9) and its Lagrangian counterpart Eq. (8.23) are absent in Ref. 27. Also,
the relaxation scheme was used in that paper to couple the BEM with the FEM.
Figure 8 in Ref. 27 presents the nondimensional central deflection @ = wq/h as
a function of nondimensionalized voltage:

o €eLPV?

Ve = 293E] (8.81)
where the moment of inertia of the plate cross-section I = Lh3/12. The two-
plate configuration shown in Fig. 8.14 was also used in Ref. 27 with the following
values of geometrical parameters: L = 3 mm, h/L = 0.01 and v = 1 mm;
the physical parameters being those given in Eq. (8.80). A comparison of results
from Fig. 8 in Ref. 27 and those from the computer code developed in the present
chapter, appear in Table 8.1. The results are seen to agree quite well. An Ly norm
of the difference between the two results is defined as:

(=2 @0 —a®y) "
e= x 100 (8.82)

VN |bha
where N is the number of points, (1) denotes the present results and (2 those
from Ref. 27. From the results in Table 8.1, one gets e = 2.246%.

The effect of the initial gap between the MEMS plates is shown in Fig. 8.16.
These results are obtained from the Newton scheme. It can be seen that when
the plates are moderately densely packed, even a few volts of applied voltage
induces large deformations in the conducting plate. It is also observed that the
deformations are highly non-linear when the voltage is high. The results for the
smallest initial gap (5h) are considered to be reliable up to about 60 mV. Beyond
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that, the gap (between the center of the plate and the ground plane) is O(h) and
the numerical results start becoming unreliable — each iteration takes a long time
to converge. It is conjectured that the plate, at this stage, is experiencing the onset
of pull-in, but this requires further investigation. The issue of very densely packed
plates is discussed in Sec. 8.8.

0.4

Dashed Line : Relaxation Scheme
* : Newton Scheme

0.3} . 1

0.35-

0.25¢ e 1

Wy/h

0.15- - 1

0.05- . 1

0 001 0.02 003 0.04 005 0.06 007 0.08 0.09
V2 (Volt?)

(a)

14

Solid Line : Relaxation Scheme
*= . Newton Scheme

0.8} 1

/h

W,

0.6} 1

0.4+ 1

0.2} 1

0 05 1 15 ;
Voltage V (Volts)

25

(b)

Fig. 8.15. Response behavior of microjet device (a) for low voltages and (b) for higher voltages.
L =2mm, h =6 um, g = 36 um (from Ref. 28).
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Fig. 8.16. Effect of initial gap on MEMS response behavior. L = 2 mm, A = 2 pm (from Ref. 28).

It is interesting to comment on the competing non-linearities in Figs. 8.15 and
8.16. As stated earlier in this section, the electrical non-linearity arises from the
reducing gap g(x) = go — w(x) due to plate deformation. This causes progressive
increase of the electrostatic force between the plates, leading to larger deformation
at a given voltage (compared to the case g = gg) — a softening effect. The
mechanical non-linearity, on the other hand, has a stiffening effect.

The gap g at the plate center only reduces from 36 pm to around 29 pm at
around 2 V in Fig. 8.15(b). The non-linearity exhibited in this figure, therefore,
is primarily mechanical in origin. The same is largely true for the cases gy =
8h = 16 ym and g9 = 6h = 12 um in Fig. 8.16. Here the gap at the plate
center reduces to, approximately, 14.5 pm and 8.5 pm, respectively, at 80 mV (a
reduction of ~10% and 30%), so that the non-linearity is still largely mechanical
(although the electrical effect is starting to kick-in for gg = 6h).

The situation, however, is quite different for the case go = 5h in Fig. 8.16. In
this case, the gap at the plate center reduces from 10 pm to around 4 gm at 56 mV
(a 60% reduction), so that the softening due to the electrical non-linearity plays
an important role. It is seen in Fig. 8.16, however, that the membrane effect does
dominate the electrical effect, so that the resulting curve has decreasing slope. In
fact, the plate is close to pull-in at around 80 mV. A short discussion of pull-in is
presented in Sec. 8.7.
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8.7. Pull-In Analysis

An important practical matter in MEMS is the pull-in voltage. Stable equilib-
rium of a deformed plate demands that the applied electrical force on it must be
in stable equilibrium with the restoring elastic (spring) force. A well-known cal-
culation considers the simpler problem of a rigid spring loaded plate subjected
to increasing voltage V that is attracted towards a fixed parallel plate (ground)
at zero voltage, with gy the initial gap between the plate and the ground.** The
moving plate always moves down parallel to its original position. It is proved in
Ref. 43 that stable equilibrium is lost and pull-in occurs when the current gap, that
decreases with increasing V, reaches:

grr = (2/3)g0 (8.83)

The problem considered in this chapter is that of a deformable plate that is
clamped on all its edges. It is seen in Fig. 8.16 that, with go = 5h, the gap
at the center of the plate =~ 2h at V' =~ 56 mV, i.e., &= (2/5)go. This does not
contradict Eq. (8.83) since the plate in the present work is deformable and the
gap between its clamped edges and the ground, for example, always remains gg;
while g between the moving rigid plate in Ref. 43 and the ground progressively
decreases but always remains uniform. Also, the stiffness & in the rigid plate
problem remains constant while it increases in the deformable plate problem due
to membrane stiffening. An electrostatic deformation analysis of a (deformable)
clamped-clamped beam** obtained the deflection at pull-in to be ~ .57gq which
compares favorably with the present result of the plate approaching pull-in at a
central deflection of around 0.6¢o.

The results for the pull-in instability, for various geometric shapes of the actu-
ating conductor can be seen in Fig. 8.17.

The details of the various conductor dimensions and their geometries are given
below. The initial gap (go) in these problems is 10 pm.

Square Plate. A square shaped conducing plate is very common in MEMS due
to the ease of arraying. The dimensions of the plate chosen for the analysis here
are 2000 x 2000 x 2 pm. For this problem several different boundary conditions
are chosen and analyzed as illustrated later.

Circular Plate. Sometimes MEMS use circular shaped conductors. The dimen-
sions chosen for this plate are such that the area of circular plate is the same as that
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Fig. 8.17. Pull-in instability for conducting plates of different shapes.

of square plate analyzed earlier. The radius of the plate is chosen to be 1128 um,
with a thickness of 2 um.

Square Plate with a hole. Some applications in MOEMS such as display tech-
nologies require MEMS plates to have fast switching ability. For such problems,
having a tiny orifice will help reduce the damping forces or mechanical stiffness
and decrease the response time (In addition to etch release time in some cases).
Here, we consider a geometry which is fully clamped. The dimensions of the
square plate are 2000 x 2000 x 2 pm, and the central orifice has a radius of
50 pm.

Boundary Conditions. The effect of boundary conditions on the pull-in insta-
bility has been studied with a square plate of dimensions 2000 x 2000 x 2 pm.
3 different boundary conditions (BCs) have been considered. These are a fully
clamped BC, 2 opposite sides clamped and 4 corners clamped. The effect of
boundary conditions on the pull-in is seen in Fig. 8.18.

8.8. Discussion

An accurate design analysis is essential for the successful implementation of
many new MEMS-based applications. Electrostatic actuation is one of the most
favoured means of actuation due to its ability to generate very high forces with
small voltages at micro scale invloving high aspect ratio structures. This work
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Fig. 8.18. Pull-in instability for different BC’s of a square conductor.

presents a first attempt at a fully Lagrangian approach for the analysis of coupled
3D MEMS systems made up of thin structural elements that are relatively closely
packed. The Lagrangian approach uses only the undeformed configuration (usu-
ally simple) of a plate for both the electrical and mechanical analyses — thus
obviating the need to discretize any deformed configuration.

The hybrid BEM/FEM approach is able to handle thin plates (with h/L =
1/1000) efficiently. Convergence is achieved for relatively large voltage steps
with only a few iterations. The proposed simple new approach for accurate evalu-
ation of nearly weakly singular integrals works well. (It is noted that although the
idea is illustrated in Sec. 8.5.1 for flat plates, it is also successfully employed when
the plates become curved due to deformation). It is seen from Figs. 8.15(b)-8.18
that the non-linear effects can be very significant. Therefore, the non-linear FEM
model, employed in this work, is of crucial importance. Eventually dynamical
analysis and the motion of fluid between the plates must be modeled in the prob-
lem discussed in Ref. 2. This motion would cause the voltages to be increased
substantially, especially at higher frequencies, due to the damping and compress-
ibility effects of the fluid between the plates. A preliminary BEM analysis of
Stoke’s flow around slowly moving rigid thin plates appears in Ref. 29.

Successful modeling of MEM structures with plates that are packed very
densely together (e.g., with gaps that are of the order of a plate thickness) is still
an open problem. One possible idea for solving this problem is to extrapolate
BEM solutions for traction distributions as a function of gap size for g > 10h,
down to gaps ~ O(h). For electrostatic problems of interest in this work here,
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this extrapolation should be guided by Eq. (8.78), noting that the impact of w on
H quickly becomes significant when deformation of a plate starts with small 7.
This problem is a topic of continuing research.
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We investigate pull-in instabilities in microelectromechanical (MEM) mem-
branes due to the Coulomb and the Casimir forces. This non-linear multiphysics
problem is analyzed by the meshless local Petrov—Galerkin (MLPG) method.
The moving least squares (MLS) approximation is used to generate basis func-
tions for the trial solution, and the basis for test functions is taken to be the
weight functions used in the MLS approximation. Essential boundary conditions
are enforced by the method of Lagrange multipliers. The pull-in voltage and
the corresponding deflection are extracted by combining the MLPG method with
the pseudo-arc-length continuation algorithm, which allows for the analysis of
the post-instability unstable equilibrium states of the system. For every prob-
lem studied, computed results are found to compare well with those obtained
either with other numerical methods, or with those available in the literature. It
is shown that beyond a critical size, the geometric effect modeled by the Casimir
force becomes dominant over the Coulomb force, and the device collapses with
zero applied voltage. One degree-of-freedom models to find the pull-in parame-
ters are also proposed.
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9.1. Introduction

Recent technological developments have opened promising research opportuni-
ties and engineering priorities in micromechanics. It is now possible to manufac-
ture mechanical parts such as resonators, sensors, gears, and levers on a micron
length scale, and to produce tiny needles to inject fluid into a living organism
without stimulating nerve cells. The use of existing integrated circuit technology
in the design and production of microelectromechanical systems (MEMS) allows
these devices to be batch-manufactured thereby reducing the production cost. The
thorough understanding, prediction, and control of MEMS behavior at the mi-
cro scale are critical issues. Multiphysics modeling is required, since coupling
among different fields such as solid and fluid mechanics, thermomechanics, and
electromagnetism is involved. MEMS devices find wide applications as sensors
and actuators. The analysis of methods of actuation and sensing has been a topic
of interest over the past several years. Different actuation and sensing properties
such as piezoresistive, piezoelectric, electrostatic, thermal, electromagnetic, and
optical have been used (see, e.g., Ref. 1 for details). Comparisons among the
aforementioned techniques in relation to the fabrication methods can be found in
Refs. 1 and 2. There is no one optimal sensing and actuating method, and the
choice mainly depends on the particular application. FElectrostatics is often the
preferred sensing and actuating technique.! An electrostatically actuated MEMS
is generally an elastic perfect conductor suspended above a stationary rigid per-
fect conductor (see, e.g., Ref. 3). A dielectric medium, usually air, fills the gap
between them. The overall system behaves as a variable gap capacitor. An applied
DC voltage is used to induce displacements of the deformable body, and a con-
sequent change in the system capacitance. Typical applications are transistors,
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switches, micro-mirrors, pressure sensors, micro-pumps, moving valves and
micro-grippers, see, e.g., Refs. 4-10. When an AC component is superimposed
on the steady voltage to excite harmonic motions of the system, resonant devices
are obtained. These devices are used in signal filtering, and chemical and mass
sensing, see, e.g., Refs. 11-18. The applied electrostatic voltage has an upper
limit, beyond which electrostatic force is not balanced by the elastic restoring
force in the deformable conductor that eventually snaps and touches the lower
rigid plate, and the MEMS collapses. This phenomenon, called pull-in instability,
has been observed experimentally.'>?° The critical displacement, and the critical
voltage associated with this instability are called pull-in displacement and pull-in
voltage respectively. Their accurate evaluation is crucial in the design of electro-
statically actuated MEMS. In particular, in micro-mirrors’ and micro-resonators?!
the designer avoids this instability in order to achieve stable motions; however, in
switching applications® the designer exploits this effect to optimize the perfor-
mance of the device. A simple lumped spring-mass system for estimating pull-in
parameters is proposed in Ref. 20 (see Fig. 9.1). The elasticity of the deformable
body is lumped into the spring stiffness x, Fg is the spring restoring force, V' is
the applied voltage, Fy is the electrostatic force, m is the mass of the movable
electrode, gy is the initial gap between the two conductors, # is the displacement
of the movable electrode, and g = g + « is the actual gap. The pull-in instability
occurs when Fy just exceeds Fs. The pull-in voltage so obtained usually exceeds
that observed experimentally for many applications.”> Moreover, the aforestated
description does not incorporate inherent non-linearities of the electrostatic and
the restoring forces.!%%3

Several researchers have focused on accurately predicting the pull-in parame-
ters. In Ref. 24 the non-linear coupling between electrical and mechanical effects

Fig. 9.1.  Sketch of the lumped spring-mass system.
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has been modeled by using a three-dimensional (3D) non-linear field theory.
The governing equations for the deformable body and the dielectric medium
are written in Lagrangian description of motion, and are solved numerically.?*?
Numerous computer algorithms based on 3D finite element (FE) formulation of
the problem have been developed (see, e.g., Refs. 26-29) and used to simulate
MEMS (see, e.g., Refs. 22 and 30). Different computational techniques have been
exploited to optimize the 3D algorithms, see, e.g., Ref. 31. In order to alleviate the
computational expense associated with the 3D analyses, considerable efforts have
been devoted to the development of reliable reduced-order models for MEMS.
Theories of rods and strings (non-linear), and plates, shells and membranes (2D)
can be derived intrinsically (see, e.g., Refs. 32 and 33), or can be deduced from
the 3D theory (see, e.g., Refs. 32 and 34). For a wide class of electrostatic MEMS,
the deformable electrode is initially a flat body whose thickness i is much smaller
than the characteristic length L.3> Such electrodes can be regarded as 2D plate-like
bodies. Since h < L, an approximate distributed model can be employed, where
the kinematics is described only through the transverse displacement field u of
points on its mid-surface (see, e.g., Ref. 36). The actual gap g is therefore given by
go +u. Microplates have been studied in Refs. 37-39. When the bending stiffness
of the deformable electrode is negligible as compared to its in-plane stretching,
and go < L, it is possible to approximate the electrode as a linear elastic mem-
brane. The membrane approximation is valid for L/h > 400, see, e.g., Ref. 40.
As discussed in Ref. 41, the membrane approximation is accurate and reliable
for many MEMS devices such as micro-pumps made of thin glassy polymers,
and grating light valves comprised of stretched thin ribbons. For another class of
electrostatic MEMS, the deformable electrode is a slender body with the length
much larger than the others two dimensions.! These MEMS can be modeled by a
beam theory. When the deformable electrode is very slender, the transverse dis-
placement u of a point of its mid-surface is sufficient to describe the kinematics
within a good approximation; see, e.g., Ref. 36. This non-linear distributed model
may also be adopted for thin rectangular electrodes that undergo cylindrical bend-
ing. In Ref. 14 deformations of a wide clamped-clamped microbeam have been
studied with the Euler—Bernoulli beam theory, which is justified for small deflec-
tions. In Ref. 42 an effective Young’s modulus has been employed to account
for the plane strain deformations appropriate for wide beams or plates undergo-
ing cylindrical bending deformations. In Ref. 11 large deflections are studied by
accounting for the mid-plane stretching, allowing for the analysis of systems with
initial gaps comparable to the thickness of the beam. In the large deflection theory
the governing equations are non-linear, and the problem of numerically extracting
the pull-in parameters is more challenging. The shooting method used in Ref. 11
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produces stiff differential equations whose solutions are sensitive to initial esti-
mates of unknown parameters and may eventually diverge. In Ref. 43 two vari-
ants of the Galerkin method are employed by using the beam mode shapes as
basis functions, and in Ref. 17 the differential quadrature method is used. From
an electrical point of view, the variable gap capacitor equivalent to the 2D and the
non-linear structures described above is modeled by assuming that the actual gap
g is differentially uniform, that is, the two conductors are locally parallel to each
other. This assumption is consistent with the approximation introduced above in
the mechanical models, see, e.g., Ref. 3. This implies that the capacitance of
the system (and therefore the applied electrostatic force) does not depend on the
spatial derivatives of g. Recently, considerable research in computational me-
chanics has been devoted to the development of meshless methods, that provide
smooth and accurate approximate solutions with a few number of nodes. Meshless
methods for seeking approximate solutions of initial-boundary-value problems
governed by partial differential equations include the element-free Galerkin,**
hp-clouds,® the reproducing kernel particle,*® the diffuse element,*’ the parti-
tion of unity finite element,*® the natural element,* meshless Galerkin using ra-
dial basis functions (RBFs),>® the meshless local Petrov—Galerkin (MLPG),>!-5?
the smoothed particles hydrodynamics,”® the modified smoothed particle hydro-
dynamics,’* the meshless local boundary integral equation,® and the collocation
method using RBFs.%¢ All of these methods (except for the last five) use either
shadow elements or a background mesh for evaluating integrals appearing in the
governing weak formulation of a problem. The MLPG method has been success-
fully applied to several problems in mechanics: static linear plane elasticity;>!
57 static analysis of beams;>® static and dy-
namic analysis of functionally graded materials;>° transient heat conduction in

vibrations of elastic planar bodies;

a bimaterial body;* wave propagation in bars with material interfaces®' and in
cracked beams;®? and static analysis of non-linear electromechanical problems.?
The MLPG method is based on a local weak formulation of the governing equa-
tions. Basis for the trial functions are usually constructed with the Moving Least
Squares (MLS) approximation.** In the Petrov—Galerkin formulation, the test
functions may be chosen from a different space than the space of trial functions.
Thus several variations of the method may be obtained (see, e.g., Ref. 51 for dis-
cussion). The key ingredients of the MLPG method are: local weak formulation,
MLS interpolation, Petrov—Galerkin projection, numerical evaluation of domain
integrals, solution of a system of equations, and computation of desired quantities
at critical points. The rest of the Chapter is organized as follows. In Sec. 9.2
we formulate the initial-boundary-value problem for an electromechanical system
where the deformable electrode is modeled as 3D perfect conductor undergoing
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finite elastic deformations. The coupling phenomenon in a two-conductor system
is illustrated. Expressions for the electrostatic potential in the form of boundary
integrals are given both in the Eulerian and the Lagrangian descriptions of mo-
tion. In Sec. 9.3 we briefly explain the Casimir effect for semi-infinite parallel
conductors. In Sec. 9.4 the MLPG method and a reduced order one degree-of-
freedom model are used to investigate the behavior of electrostatically actuated
MEMS modeled as elastic membranes. In order to find the MEMS deformations
beyond the pull-in instability the pseudo-arc-length continuation method (see, e.g.,
Refs. 65 and 66) is employed for solving the system of non-linear equations re-
sulting from the MLPG formulation. The method is applied to four distinct ge-
ometries: a rectangle, a circular disk, an annular disk, and an elliptic disk. For the
rectangular geometry the effect of partial electrodes is studied. For the annular
disk, symmetry breaking after pull-in instability is investigated. For the rectan-
gular, circular, and annular nanomembranes the effect of the Casimir force on the
pull-in parameters is analyzed in Sec. 9.4.8. It is shown that beyond a certain
size, the pull-in instability occurs at zero voltage. Symmetry breaking in annu-
lar nanomembranes due to the combined effects of the Coulomb and the Casimir
forces is also analyzed. Conclusions are summarized in Sec. 9.5.

9.2. Formulation of the Three-Dimensional Problem

9.2.1. Coupling in Electromechanical Systems

The following illustrative example to explain the coupling phenomenon in elec-
tromechanical systems is taken from Ref. 24. Consider the electrostatically ac-
tuated cantilever microbeam exhibited in Fig. 9.2. When potential difference V'
is applied between the top deformable electrode and the bottom ground plane,
electrostatic charges are induced on surfaces of the two conductors (Fig. 9.2(a)).
These charges generate an electrostatic force acting along the normal to the bound-
ing surface in the present configuration. Consequently the elastic body deforms,
the charges redistribute on surfaces of the conductors, and the electrostatic force
changes (Fig. 9.2(b)). The process continues until a new equilibrium configura-
tion is reached in which the electrostatic force is balanced by the internal forces
in the deformed system.

9.2.2. Mechanical Deformations

An electrostatically actuated MEMS can undergo large deformations depending
on its geometry and the applied voltage. Here we briefly outline governing equa-
tions for large deformations of an electromechanical system where the deformable
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Fig. 9.2. Simple example to illustrate electromechanical coupling in electrostatic MEMS.

electrode is modeled as a 3D continuum (see Refs. 24 and 25). Let €2 be the 3D
region occupied by the deformable electrode in the reference configuration, and
X, X* position vectors of a material point in the reference configuration and in
the present configuration 2*, respectively. Equilibrium equations in Lagrangian
description of motion are®’

00(i1 — b) = DivFS, (9.1a)
S =S8T. (9.1b)

Equations (9.1a) and (9.1b) are the balance of linear momentum, and the balance
of moment of momentum respectively. S is the second Piola-Kirchhoff stress
tensor, u = x* — x the displacement field, and F = 1 + Gradu the deforma-
tion gradient. 1 is the second-order identity tensor, gy the mass density in the
reference configuration, and b the external body force per unit mass. A superim-
posed dot means material time derivative, and Div and Grad are, respectively, the
divergence and the gradient operators with respect to coordinates in the reference
configuration.

Assuming that the body is made of an elastic material, the constitutive equa-
tion for S is®’

S=S(F) 92)

where S represents the response of the material. The set of Egs. (9.1) and (9.2) is
completed with the following boundary conditions

u=1 only, Pn=t on Iy, 9.3)
and initial conditions
u(x,0) = up(x), u(x,0) = vo(x), 9.4

where n is the outward unit normal to I'y, in the reference configuration, P = FS
is the first Piola-Kirchhoff stress tensor, t the surface traction per unit undeformed
area, and I'y, and I'y, are parts of the boundary of 2 where displacements and
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tractions are prescribed respectively. Furthermore, uy and v give, respectively,
the initial displacement and the initial velocity fields.

The total force on the boundary I'}, equals the total force on the part I, of
the present boundary into which I'y, is deformed®’

/ tdr = / £rdrr, (9.5)
Tn T

where n* is the outward unit normal to present boundary I'y«, and fZr is the
electrostatic force acting along the normal to I'y,«. Equation (9.5) embodies the
constraint that the electrostatic pressure acts along the normal to the boundary, a
consequence of the assumptions that the bodies are perfect conductors. Therefore,
the traction t is given by

t = fo(det F)F~ Tn. (9.6)

Here, f.(x) = fX(x*(x)), where the same symbol has been used to denote the
function x* and its value x*(x).

In order to solve the initial-boundary-value problem defined by Egs. (9.1)-
(9.4), we need an explicit form of the function Sin Eq. (9.2) and of f, in Eq. (9.6).
In the remainder of this Chapter we will not consider the effect of body forces, and
thus set b = 0 in Eq. (9.1a). Furthermore, we will model deformable bodies as
linear elastic membranes. Surface tractions t on the top and the bottom surfaces
of membranes usually appear as body forces in equations governing their defor-
mations. We discuss below the evaluation of the electrostatic force f exerted on
the boundary of a two-conductor system.

9.2.3. Electrostatic Force

Consider the two-conductor system depicted in Fig. 9.3, where €27 and ()5 are the
3D regions of space occupied by the two conductors in their reference configura-
tions, and 27 and €25 in their corresponding present configurations. The region
exterior to 2} U Q% is denoted by 2. Boundaries of Q% and Q3 are denoted by I'}
and I'; respectively, and I'; and I'y are the corresponding ones in the reference
configurations.

The boundary-value problem for the electrostatic potential ¢ formulated in the
present configuration is (see, e.g., Ref. 35)

Ab =0 inQ, (9.72)
¢ =¢1 onTy, (9.7b)
¢ = ¢ onTj, (9.7¢)

¢ — 0 as |x| — oo. (9.7d)
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Fig. 9.3. Two-conductor system.

Here we have neglected inertia effects associated with the electric field because
the speed of electric waves is considerably more than that of the mechanical
waves. Thus ¢ is a harmonic function, and the boundary-value problem defined
by Eq. (9.7) is studied in the potential theory. It is likely that its solution will
depend upon the decay rate of ¢ in Eq. (9.7d).

The solution of the boundary-value problem (9.7) can be written as a boundary
integral:®8

o(a*) = / G*(q", r*)o* (£*)dI* + cr, ©.8)

where I'* = I'7 U I’} is the overall surface of the conductors, g* and r* are the
observation and the source points on I'*, o* is the surface charge density and G*
is the Green function. The constant ct is determined from the potential at infinity.
Equation (9.8) gives the electrostatic potential in the present configuration of the
system.

The area element d[™ is expressed in terms of the corresponding area element
dI” by (see Ref. 67)

dl'*? = (det F)?(n - (FTF) " 'n)dr?. 9.9)
Therefore, Eq. (9.8) can be written in the Lagrangian description of motion as
d(q) = / G(q,r)o(r)(det F)y/n - (FTF)~Indl + cr (9.10)
r

where o(r) = 0*(r*(r)), and G(q,r) = G*(q*(q),r*(r)).
The electrostatic potential energy stored in € for the two-conductor system is
given by

m:%/gwwgmwﬂ 9.11)
Q
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where grad is the gradient operator with respect to coordinates in the present
configuration, and e is the dielectric constant of the medium comprising 2. The
electrostatic traction at the observation point q* in the present configuration is
given by

€

fo(a") = =5 [gradé - gradé] (). (9.12)
Using the relation
Grad® = FTgrado, (9.13)

imposing the condition (9.5), and substituting in it from Egs. (9.12) and (9.9)
we obtain the electrostatic traction t at the observation point q in the reference
configuration:

€

fa) = —3 {(detF) (Gradq»(FTF)’lGrad@) F_Tn} (@.  9.14)

Thus the solution of the 3D problem for MEMS requires solving the initial-
boundary-value problem defined by Egs. (9.1)-(9.4), (9.7) with the surface traction
per unit undeformed area given by Eq. (9.14). If the surface charge distribution
o in the reference configuration is considered as the unknown instead of the elec-
trostatic potential ¢, the solution of the boundary-value problem in terms of o is
given by Eq. (9.10). In this case o will appear in the expression (9.14) for t.

Note that the initial-boundary-value problem (9.1)-(9.4) is defined on the
known region Q; but the boundary-value problem (9.7) is defined in Q which
is exterior to 27 U Q5. Assuming that the body 2 is rigid as is often the case in
MEMS, then 25 = Q5. The electrical and the mechanical problems are strongly
coupled since €27 is unknown a priori, and the boundary-value problem (9.7) re-
quires that 27 be known. A possibility is to use an iterative technique to solve the
coupled electromechanical problem.

We also emphasize that mechanical deformations of the material occupying
the region ) have been neglected. However, when ) is occupied by a fluid then
deformations of this fluid should also be considered. This requires reformulation
of the above problem.

9.3. The Casimir Effect

With the decrease in device dimensions from the micro to the nanoscale an ad-
ditional force on nanoelectromechanical systems (NEMS), such as the Casimir
force® (also see, e.g., Refs. 70 and 71), should be considered.
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The Casimir force represents the attraction between two uncharged material
bodies due to modification of the zero-point energy associated with the electro-
magnetic modes in the space between them. An important feature of the Casimir
effect is that even though its nature is quantistic, it predicts a force between macro-
scopic bodies.

van der Waals forces are related to electrostatic interaction among dipoles
at the atomic scale.”> Whereas the Casimir force between semi-infinite parallel
plates depends only on the geometry, van der Waals forces depend on material
properties of the media. The Casimir force is effective at longer distance than van
der Waals forces;’? the latter occur at the atomic scale, as for example in carbon
nanotubes,’? and are not considered here.

The analysis presented here is valid for semi-infinite parallel plate-like con-
ductors. The expression for the Casimir force derived below is applicable to
MEMS undergoing small deformations and of geometry consistent with the one
considered here.

Consider a hollow box with perfectly conducting uncharged walls and a sys-
tem of rectangular Cartesian coordinates {x!, 22, 23} aligned with the box’s sides.
Maxwell’s equations for vanishing sources lead to the following wave equation for
the electric field E inside the box:

2
AE(x,t) = aaT;E(X’ t). (9.15)
Note that components of the electric field parallel to the walls vanish at the walls.
That is

E—(E-n)n=0 onthe walls. (9.16)

The eigenvalue problem defined by Eqs. (9.15) and (9.16) can be solved with-
out using initial conditions, and by separating the variables as

E(x,t) = B(x)7(t). 9.17)

The spatial part of the solution is given by
=ZH(x) = cos (klzl) sin (k2x2) sin (kgzv?’) , (9.18a)
=?(x) = sin (k12') cos (ka2?) sin (k3z?) (9.18b)

Z3(x) = sin (klxl) sin (k2x2) cos (k3x3) , (9.18¢)
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where k = (kq, ko, k3) is the wave vector. Imposing boundary conditions (9.16)
at the walls leads to the following relation
TV,

ki = , (9.19)
9

with v; being an integer.
Equations (9.17) and (9.18) imply that the time dependent part of the solution
satisfies the harmonic oscillator equation
foats
k=0, (9.20)
where wy, = c|k| is the angular frequency of a normal mode, and c is the speed of
light.
In quantum mechanics, each mode is treated as a quantum harmonic oscillator
with associated energies (see, e.g., Ref. 71)

1
EX = huwy (2 + n) , 9.21)
where the integer n represents the number of photons in the mode and # is the
Plank constant. The energy corresponding to n = 0 (vacuum) is the zero point
energy

1
Ek = 5 k. (9.22)

The sum over all modes gives the zero point energy inside the box as

Eo=2 Y &= Y hey/(K2+kE+k3), (9.23)

k1,k2,k3 k1,k2,k3

where the factor 2 is due to the two possible polarizations for k (see Ref. 70).
Since there are an infinite number of normal modes with increasingly high fre-
quencies, the energy & is infinite.

Consider the capacitor with perfectly conducting plates of area L? at a dis-
tance ¢ in vacuum (Fig. 9.4). If L > g, the sum over k; and k, in Eq. (9.23) is
replaced by an integral, -, — (L/7) [~ dki, i = 1,2 (see Ref. 70). If g is
made arbitrarily large, then the sum over k3 can be replaced by the corresponding
integral.

The Casimir force is determined by the change in the zero point energy be-
tween the state corresponding to the two plates at a finite distance g, and the state
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Fig. 9.4. Coordinate system for calculating the Casimir force.

corresponding to g — oo. This determines the potential energy

L? [ [ g 4o VT2
U(g) = E(g) — £o(00) = he—; DM R+ =
0 0 Vs

- 3/ 1/k%+k§+k§dk3> dkidks.  (9.24)
™ Jo

The resulting Casimir pressure is given by

m2he

felg) = —%VU(Q) = _W

(9.25)
The detailed calculation is done in Ref. 70 employing the Euler-Maclaurin sum-
mation formula.”* In order to truncate the infinite summation and integration at a
certain wave vector k., a cutoff function is introduced.

The existence of the Casimir force poses a severe constraint on the miniatur-
ization of electrostatically actuated devices. At the nanoscale, the Casimir force
may overcome elastic restoring actions in the device and lead to the plates’ stick-
ing together during the fabrication process.

An important characteristic of the Casimir force is its strong dependence on
the shape, and switching from attractive to repulsive depending on the geometry.
In Ref. 75, the zero point energy of a conducting spherical shell has been com-
puted. While parallel plates are attracted to each other because of the zero point
energy, a conducting sphere tends to expand.

Typical experimental measurements of Casimir forces involve gold-coated
surfaces that are modeled by a Drude-type dielectric function.”®8
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9.4. Electrostatically Actuated Micromembranes

In this section we study pull-instability in micromembranes due to the electro-
static or the Coulomb force. Recall that the membrane approximation is valid for
L/h > 400 (see, e.g., Ref. 40), where L is a typical in-plane dimension and h
is the membrane thickness. We also analyze the effect of the Casimir force on
the pull-in parameters. We show that beyond a certain size, the pull-in instability
occurs at zero voltage. This means that the system collapses during the manufac-
turing process. We also analyze symmetry breaking in annular membranes due
to the combined effects of the Coulomb and the Casimir forces. In Ref. 79 the
effect of the Casimir force is considered for non-linear membranes but that of the
Coulomb force is discarded. In Ref. 80 a one degree-of-freedom model for ana-
lyzing the effect of both the Casimir and the Coulomb forces on beam-like bodies
is presented, while in Ref. 81 the pull-in instability under the action of the Casimir
force using a one degree-of-freedom model is studied.

membrane

-———

~

Fig.9.5. Geometry of the microelectromechanical system.

9.4.1. Mathematical Model of a Micromembrane

A schematic sketch of the problem studied is shown in Fig. 9.5. We assume that
(1) both bodies are perfect conductors, and are separated by a dielectric layer of
permittivity e, (ii) the bottom body is rigid, and the top one is deformable, and
can be modeled as an elastic membrane, (iii) the membrane is either clamped
or free on the boundary, (iv) the membrane undergoes static infinitesimal defor-
mations, (v) a potential difference V' exists between the two bodies, (vi) electric
fringing fields are negligible (see, e.g., Ref. 3), (vii) the uniform initial gap, go,
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between the two bodies is much smaller than a typical linear dimension of the
membrane, (viii) electric flux lines between the conductors are uniformly dis-
tributed over the surface of the membrane, and (ix) the effect of the change in
the direction of the Casimir and the Coulomb forces as the membrane deforms is
negligible. Under these assumptions the governing equation for the deflection u

of the membrane is:>

oohAu (x) + fo(u(x),x) + fo(u(x)) =0, x€ Q. (9.26)

Here, (2 is the membrane domain, x a generic point, /A the Laplacian operator, o
the tensile stress in the membrane, h the thickness, f, the electrostatic pressure on
the bottom surface of the membrane, and f. the Casimir pressure.

We nondimensionalize the vertical coordinate 23 with respect to the initial gap
go, and the in-plane coordinates ' and x? with respect to the characteristic length
L (see Fig. 9.5). Equation (9.7a) for the potential ¢ becomes

9 [ 9°¢ ¢ o
2 2 T a2 £3)2

(oz1) (022) (0z3)
where a superimposed hat refers to nondimensional coordinates. The assumption
(vii) reduces Eq. (9.27) to

=0, (9.27)

0%¢
(02°)?
Imposing the boundary conditions ¢(0) = 0, and ¢(go + u) = V§(x) on the
bottom and the top bodies respectively, the solution is
1
4 (x) 23

=0. (9.28)

- 9.29
¢ go (1+w/go) ©-29)
where
. 1, x € Qg
0(x) = {07 x¢ O’ (9.30)

and Qg is the part of the membrane that is electroded and where the electric po-
tential is effective. Substitution of Eq. (9.29) into Eq. (9.12) gives the following
expression for the electrostatic pressure

eV? 5(x)

295 (1 + u(x)/90)*’
where terms depending on the spatial derivatives of u have been discarded consis-
tent with assumption (ix).

We use the proximity force approximation (PFA) for the Casimir force f.
consistent with assumptions made in the mechanical and the electrostatic models,

fe(u(x),x) = (9.31)
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and adopt the expression given in Eq. (9.25). In the PFA curved surfaces are
viewed as superposition of infinitesimal parallel plates; see, e.g., Refs. 82 and 83
and references therein. Gies and Klingmiiller®® have shown that for a sphere of
radius R separated from a flat plate by a distance g, the PFA gives results within
1% accuracy for g/R < 0.1

The reduction of the right-hand side of Eq. (9.1a) to the left-hand side of
Eq. (9.26) for small deflections u of an elastic membrane is given in Ref. 32.

We nondimensionalize the deflection by the initial gap gg, and obtain

d(x) 7

Au (x) = A 5 1
I+u(x)”  (I+u(x)

(9.32)

where we have used u to indicate the nondimensional deflection. Parameters A
and p are defined by

eoV2L? m2hel?

= oV - e 9.33
200hgd” M7 24000hg? ©-33)

As the voltage V increases, the parameter A increases while y stays constant.
Scaling down the device dimensions (h, go and L) by a factor F'

h—h/F, go— go/F, L— L/F (9.34)
increases \ by a factor of /2 and 1 by a factor of F'4, that is
\N— F2\, pu— Fiu. (9.35)

Thus, for F' > 1, u increases much faster than A with a decrease in the device
dimensions.
The boundary of the domain 2 is partitioned into two disjoint parts:

oN=T,Ul,, T.Nlh=2, (9.36)

where I',, is comprised of the interior points of I';,. On I',, essential homogeneous
boundary conditions are prescribed, that is

u(x) =0, x ey, (9.37)
while on I'}, natural homogeneous boundary conditions are imposed, that is

Vu (x) -n(x) =0, x €Ty (9.38)
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9.4.2. Local Weak Formulation of the Problem

We rewrite the non-linear Poisson Eq. (9.32) as

Au(x) =G (A, p,y u, X) (9.39)

where
0
GO\ 1, x) = A () S+ (9.40)
(14w (I4+u)

We partition the boundary I",, into ny, connected parts, say FS}), e ,Fg"L).

In order to enforce the essential boundary conditions we introduce ny, Lagrange

multipliers v(1), ..., 4("L) each of them being defined on the corresponding part
of I',.

We introduce a local symmetric augmented weak formulation (LSAWF) of the
boundary-value problem defined by Eqgs. (9.39), (9.37) and (9.38) on a subdomain
Qg of the domain €2:

7/ Vu~Vﬂde/ G\, p,u, x) . dQ2
QS QS

/ w<a>dr+/ m@)dF) =0. (9.41)
() G

Su

As illustrated in Fig. 9.6, F(S(;) is the intersection of 90g with T'\™), Lg is the part
of 0€)g enclosed in the domain €2, & and 7y(°“) are smooth test functions defined, re-
spectively, in Q25 and I‘éi . The homogeneous natural boundary conditions (9.38)
have been embedded in the weak formulation of the problem. Also, we have se-

lected test functions « that vanish on the inner boundary Lg.

9.4.3. Discrete Non-Linear Formulation

In order to seek an approximate solution of the non-linear problem, we use 2D
MLS basis functions® (see, e.g., Ref. 52). We use N nodes scattered on the do-
main and construct the set of basis functions 1, ..., pyN. The trial solution is
consequently expressed in terms of nodal unknowns, 1, ..., uy. Note that the
MLS basis functions do not have the Kronecker delta property. Therefore nodal

2The boundary 92 of the 2D domain €2 is approximated by piecewise straight lines connecting adja-
cent nodes on it.



346 R. C. Batra, M. Porfiri and D. Spinello

[ r®
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T — 505 N i1

Fig. 9.6. Subdomain of the global domain.

unknowns, 1, . .., Uy, do not equal values of the trial solution at the nodes. The
Lagrange multiplier field v(®) is approximated by non-linear MLS basis functions
constructed from nodes lying only on the curve 1“5;1). Therefore

e

()" = 32560, (9.42)

where (%) is the number of nodes belonging to FSLO‘), ng) ’s are non-linear MLS

( )’ A(Ol)’
B

basis functions, and 4 Y~ s are fictitious nodal values. We collect ;s into ny,

distinct vectors 'y( ), e ,7(”L), and denote the total number of Lagrange multi-
plier nodes by Ny, := S_nt | p(@),

In order to derive N + N, equations for nodal unknowns @ and
’3/(1), e ,ﬁ/("L), we consider in Eq. (9.41) N subdomains (g1, ..., sy, and
N + Nj, independent test functions:

n,ean, A3, a=1,. e (9.43)

The discrete non-linear equations obtained from Eq. (9.41) are

Kua+G(\ )+ Z R(®4/( (9.44)

v g =0, a=1,....nL, (9.45)
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where

K], =— [ Ve;-Vi,dQ, i,j=1,...,N;  (9.46a)
Qi

G (\ p,0)]; = —/_ G (A, pyu™) @ A€, i=1,...,N; (9.46b)
5

[R] :/ Wadr,  i=1,...,N,
B Jril

u

B=1.. v (9.46¢)
(Dt):| — (@) _ (@)
{V Bj /Fgm%vﬁ dar, pg=1,...,0\%,
J=he N (9.46d)

For subdomains having the shape of a sector of a circle, integrals in Eq. (9.46) are
computed by the Gauss quadrature rule.

In the MLPG1 method the test function #; for the i-th node is chosen to be the
weight function W; used in the MLS approximation, but with a scaled support.
Test functions for a Lagrange multiplier are chosen to be the test functions u;’s
restricted to the boundary I‘(Si) of the domain.

Let rows of the (N — Ny,) x N matrix Y be comprised of (N — Ny,) linearly
independent null vectors of the N1, x N matrix V obtained by appending rows of
matrices V(®)’s, and set

a=Y"u (9.47)
Substituting for t from Eq. (9.47) into Eq. (9.45) gives
V@ yTu =0, a=1,...,ny, (9.48)

which are identically satisfied for every (N — Np,)-vector u. Similarly, let rows
of the (N — Np,) x N matrix X equal (N — Ny,) linearly independent null vectors
of the Ny, x N matrix RT obtained by appending columns of matrices R(®)’s,
and transposing the entire matrix. Then

XR® =0, a=1,..,n.. (9.49)

Premultiplying both sides of Eq. (9.44) by X and substituting for & from
Eq. (9.47) we obtain the following reduced system of (N — Np,) non-linear equa-
tions for u:

Ku+ G () p,u) =0, (9.50)
where
K=XKY", G\ pu)=XG (A, Y ). (9.51)
Having found u from Eq. (9.50), G is computed from Eq. (9.47).
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9.4.4. Pseudo-Arc-Length Continuation Method

The system of non-linear Eq. (9.50) may not admit a unique solution u for an
arbitrary value of the parameter A and a given value of 4. We use the pseudo-
arc-length continuation method (see, e.g., Refs. 65 and 66) to solve Eq. (9.50).
It enables us to find the complete bifurcation path and the symmetry breaking
bifurcation. The method is explained for the case of variable A and fixed . When
studying the behavior of the system under the effect of the Casimir force only, i.e.,
for A = 0 with varying pu, exactly the same procedure applies except that the roles
of A\ and p are exchanged.

A new parameter s is added so that A and u are considered functions of s. If
the solution (ug_1, Ag—1) of Eq. (9.50) is known at s = sj_1, the solution

(uk, >\k:) = (uk,1 + Auk, Ae—1 + A)\k) (952)
at the abscissa s, = sp_1 + Asy is found by solving the system of equations:

K uy + G (Aky 4y uk) =0, (9.53a)
(uk — uk_l)T Uug_q1+ (>\k — )\k—l) /.\k—l — Asy, = 0, (9.53b)

where U is a symmetric positive definite matrix, and a superimposed dot indicates
derivative with respect to s. In many cases (see, e.g., Ref. 65), U is chosen to be
the identity matrix, but for the present problem, numerical experiments showed
that more stable solutions are obtained by choosing U = ®T &, with [®], ;=
¢, (x;). This implies that the arc length is computed by using the actual nodal
values, rather than the fictitious ones.

Geometrically interpreted, within this method we find a solution (ug, Ax) to
the system (9.50) in an hyperplane that is at a distance Asy from (ug, A;) and that
is perpendicular to the direction vector ({_1, }\k_l).65

The solution of the set (9.53) of non-linear equations, for the unknowns Auy
and A\, is found by using Newton’s iterations. Hence the generic v-th iteration
is

TE:) (Az(:)auz(:)> I:I](cu) (Az(cy)7“§:)> Auz(cy)

ul_ U M1 AN
Kul” +G (A, uf”)

(u;”) — Uk-,—1>T Ui, + (/\ECV) - >\k>—1) M1 — Asy,

- (9.54)
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where (Auff), AA") indicates the v-th solution increment; (ug), )\,(:)) is the

updated solution at the (v — 1)-th iteration, i.e.

v—1
u =we + > Aul, A =N Z AP (9.55)
h=1 h=1

T}C ¥) ()\,(:)7 u,(C )> is the tangent stiffness at the (v — 1)-th iteration, i.e.

T (Aw) (v )) :KJFX{ (v) (Agf, >)} (9.56)
with
[D,(:) ()\5:)’“;:))}” _ _/i guci ()\(V),,u, TYTulg )) ip;dQ,  (9.57)
S
and

[ (4 w)] = [ 3 O e o o5

Iterations are performed till
max {sup [(p (x)T YTAu,(CV)} ,A)\,(:)} <er, (9.59)
x€N
where e is a prescribed tolerance.
Once the solution (uy, Ax) has been found, the direction vector (llk., )\k) , for
the next iteration is determined by solving

T](fk) (>\k7 llk) H(Vk) ()\k, llk) l'lk o 0
. T . : = , (9.60)
(ap—1) U Ak—1 Ak 1

where 7y is the number of iterations required for the solution to converge. The
direction vector is then rescaled according to

WU, + A7 =1. (9.61)

The length Ay 1 for the next step is determined from the knowledge of the length
Asy, and the iteration number 7 using the following simple adaptive scheme

A8k+1 AS}M / k (962)

where 7 represents the desired number of iterations for the convergence of New-
ton’s method. The parameter 7 is chosen so that if Newton’s method converges
rapidly the step size is increased, while if Newton’s method converges slowly the
step size is decreased.®

t\‘\]



350 R. C. Batra, M. Porfiri and D. Spinello

The pseudo-arc-length algorithm is started by assuming that for so = 0 the
solution is the pair (ug, Ag) = (0,0), and computing the solution u; for a given
small A; with the standard Euler method resulting from linearizing Eq. (9.50)
about (ug, \g). Once the solution corresponding to this small electrostatic force is

computed, the direction vector (1’11, }\1> is estimated by the linear approximation

1 : 1
= E (U1 — 110) y Al = — (Al — )\0) ; (963)

ug
ASl

where the initial arc length is

As; = \/u?Uul + 2% (9.64)

When the tangent stiffness matrix, T} in Eq. (9.54), becomes singular the
entire matrix on the left-hand side of Eq. (9.54) is generally nonsingular unless a
bifurcation occurs.%> This means that the pull-in instability may be detected, and
the MEMS behavior analyzed after reaching the instability.

When a bifurcation occurs the entire matrix on the left-hand side of Eq. (9.54)
becomes singular, and crossing the bifurcation point implies a change in the sign
of the determinant of this matrix. In this case, the bifurcation point is determined
by using the secant method, and the bifurcation path is followed by using the
normal vector to the original path as an initial estimate of the direction vector.®

9.4.5. One Degree-of-Freedom Model

A closed-form solution of the boundary-value problem defined by Eq. (9.32) and
boundary conditions in Eqgs. (9.37) and (9.38) cannot be found. Here we give
an approximate solution based on a one degree-of-freedom (d.o.f.) model of the
MEMS. The approximate solution is constructed by expressing the deflection field
u(x) as the product of an unknown non-dimensional deflection parameter @, and
a trial function ((x) satisfying the kinematic boundary conditions in Eq. (9.37):

u(x) = a¢(x). (9.65)

The governing equation for % is derived by multiplying both sides of Eq. (9.32)
with {(x), integrating the resulting equation over the domain, and substituting
into it the approximate solution given by Eq. (9.65). After using the divergence
theorem and recalling that ((x) satisfies the kinematic boundary conditions in
Eq. (9.37), the governing equation for @ becomes

ki = AFe(u) + pFe(a), (9.66)
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where
k= — /Q V{(x) - V{(x)ds2, (9.67a)
o ((x)
F.(a) = /Q a +ﬂ§(x))2dQ’ (9.67b)
) .
F.(u) = /Q a +a§(x))4 dQ. (9.67¢)

The left-hand side of Eq. (9.66) represents the virtual work done by the spring
force on the virtual displacement ¢, and the sum of the two terms on the right-
hand side represent the virtual work done by the external forces.

We define

F (4, \) = kit — AF, (0) — pF. (1), (9.68)

and note that the equilibrium configuration of the system is stable for 7 > 0 and
unstable for 7 < 0. At the onset of instability the system’s stiffness given by
OF /04 vanishes. That is

dF; dF;
dua du
The pull-in deflection parameter #pj is obtained by eliminating A from Egs. (9.66)

K=\

(@pr) + p——(Tpr). (9.69)

and (9.69), and by numerically solving the following resulting non-linear alge-
braic equation in upr:

dF, , _ dF. ,_ _
(ktpr — pFe(upr)) %(UPI) = (H — Ndﬂ(UPI)) Fo(apr). (9.70)

By substituting the so deduced value @p; into either Eq. (9.66) or Eq. (9.69), the
pull-in voltage Apg is determined. Note that when p = 0, up; is independent of .
This one d.o.f. model has been proposed in Ref. 63 to study pull-in instability in
narrow microbeams with von Karman non-linearity and fringing fields incorpo-
rated in the electromechanical system, with ((x) equal to the microbeam’s static
deflection under a uniformly distributed load.

The present one d.o.f. model differs from the classical spring-mass system of
Ref. 20 (see Fig. 9.1), since the essential features of the distributed mechanical
system are retained through the function {(x). It also differs from that of Ref. 43
since the complete non-linear behavior of the electrostatic force is retained, and it
differs from that of Ref. 22 since the pull-in voltage and the pull-in deflection are
simultaneously treated as unknowns, i.e., the pull-in deflection is not empirically
chosen as was done in Ref. 22.
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9.4.6. Pull-In Instability

We first study the pull-in instability due to the Coulomb force only by solving
the nondimensional non-linear Poisson Eq. (9.39) with ;© = 0. The pseudo-arc-
length algorithm explained in Sec. 9.4.4, and the one d.o.f. model explained in
Sec. 9.4.5 are employed. The combined effects of the Coulomb and the Casimir
forces on the pull-in instability are studied in Sec. 9.4.8. Some results presented
in this subsection are from Ref. 84.

We compare results for a rectangular, and a circular MEMS from the MLPG
and the one d.o.f. methods with those obtained by using the shooting method.
Parameters compared are Apr and |lupi||_ that equal, respectively, the value of
the parameter A for which the pull-in instability occurs, and the corresponding
infinity norm of the deflection field. For a specific MEMS, the dimensional value
of the pull-in voltage is obtained by substituting for Apy into Eq. (9.33), while the
dimensional value of the membrane maximum deflection at the pull-in instability
is obtained by multiplying ||upr||,, with the initial gap go.

The MLS approximation uses linear monomial basis and Gaussian weight
functions with circular support.>? The radius r; of the support of a weight function
varies with the problem, and other constants defining weight functions are k = 1,
¢; = ri/4 (see Ref. 52). The integration is performed by using 9 quadrature points
for each line integral, and 9 x 9 quadrature points for each 2D subdomain. The
pseudo-arc-length continuation is started with \; = 0.1, 7 = 3, and the tolerance
e is set equal to 1076, If the convergence is not achieved in 10 Newton’s itera-
tions the incremental arc length As is reduced by a factor of 2, and the algorithm
is restarted from that point. In the neighborhood of the pull-in instability, more
steps are needed to accurately estimate the pull-in parameters.

9.4.6.1. Rectangular MEMS

We consider a rectangular MEMS of unit length, width equal to 1/8, clamped on
edges #! = 0,1, and free on edges z2 = 0, 1/8. We assume that the electrostatic
pressure is uniformly exerted only for #! € (g,1 — ¢) (see Fig. 9.7). That is, the
central portion of length 2¢ is electroded.

Reduction of the boundary-value problem to an initial-value problem Be-
cause of the boundary conditions and the load distribution, we assume that
the solution is a function of x' only, and is symmetric with respect to the
line ! = 1/2,*! yielding the following non-linear non-linear boundary-value
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1/8

£ I1-2¢ e

Fig.9.7. Geometry of the rectangular MEMS with the uniform grid of 33 x 5 nodes used to solve the
2D boundary-value problem with the MLPG method. The electrostatic force is effective in the shaded
region.

problem:
uy (z') = ' € (0,¢), 9.71)
1\ _ /\ xl
uy (z') = Trm @) € (s,1/2), (9.72)
up (0) =0,  wuh(1/2) =0, (9.73)
u(e) =uz(e),  ui(e) =us(e), (9.74)

where a superimposed prime indicates derivative with respect to x!, and u; and
ug equal w in (0, ) and (e, 1/2) respectively.
The solution of the homogeneous Eq. (9.71) for z! € (0,¢) is

Uy (xl) = c1z! + co, c1,c € R. (9.75)
By imposing the first boundary condition in Eq. (9.73), we obtain
c2 =0. (9.76)
The interface conditions (9.74) give
ug (€) = c1e, uh(e) = 1. 9.77)

Hence the constant ¢; may be eliminated. The deflection field for z! € (g,1/2)
is determined by solving the boundary-value problem

ug(gjl):muj(xl))w us (2) =y (£) e, wh(1/2)=0.  (9.78)

The constant c; is subsequently determined by either one of two conditions in
Eq. (9.77).
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By generalizing the approach of Ref. 41 to partially electroded plates we
change variables as follows:

n=>= <(; — 5) — :1:1) , (9.79a)

u? (z') = aw(n) — 1, (9.79b)
1
a = , (9.79¢)
w(b(3—¢)) +ebu’ (b(5 —¢))
2
A= b . (9.794d)

(w(b (5 —2) +ebw (b(5—¢)))’

We thus transform the boundary-value problem (9.78) to the following initial-
value problem

d?w 1 dw

:77 —_— 0 :0’ 0 :1. 9.80

R T A w(0) 950
We numerically solve the initial-value problem (9.80) with Mathematica using the
built-in function NDSolve, obtain w (7)), and for every pair (w, b) we determine
the corresponding pair (u2 (:L'l) ,)\) , and the constant ¢;. Once the deflection
field is known on the entire strip we compute its infinity norm, which equals the
mid-span deflection.

Numerical results and comparisons For the solution of the 2D boundary-value
problem defined by Egs. (9.32), (9.37) and (9.38) with 4 = 0 by the MLPG
method, we do not assume any symmetry in the deflection u, and use a uniform
grid of 33 x 5 nodes on the MEMS domain as shown in Fig. 9.7. The radius r;
of the support of each weight function equals 1/8. The subdomains of integration
are determined by supports of test functions, and their radii are chosen equal to
1/32.

For the solution with the one d.o.f. method, we use two different test functions
¢ in Eq. (9.65), namely

4zt 1
7257—’—1’ X € (0,5) X (0, 8>
4((=")? -2t +¢?) 1
(x) =1 - 2} sl
G x) e xe (-9 x (05) o8l
4(xt - 1) 1
ﬁ, XE(l—E,l) X <O78)

(m(x) = —sin(z'). (9.81b)
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(s is the static deflection under a uniformly distributed load in the electroded re-
gion (g,1 — &) x (0,1/8) chosen in such a way that (s(1/2,2?) = —1, and
(m 1s the first eigenfunction of a pinned-pinned linear bar with the normalization
Cm(1/2,2%) = —1.
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Fig. 9.8. For different values of ¢, comparison of the bifurcation diagrams obtained by solving the
initial-value problem (solid line) and the MLPG method (polygons) for the rectangular MEMS.

Figure 9.8 exhibits the bifurcation diagram showing the infinity norm of the
deflection versus the load parameter A\. We note that plots of |||, versus A
are qualitatively similar for all four values of €, and the pull-in voltage decreases
rapidly with a decrease of € from 0.4 to 0. This is reasonable because the surface
area on which the Coulomb force acts increases with a decrease in €. For each
value of € the maximum deflection of the MEMS increases with an increase in A
and hence an increase in the applied voltage. This branch of the curve prior to the
fold at P corresponds to stable equilibrium states, while the upper branch to un-
stable equilibrium states. If a given rectangular MEMS is pushed by forces other
than the Coulomb force into a configuration corresponding to a point on the upper
branch of a curve, equilibrium Eq. (9.32) and boundary conditions in Eqgs. (9.37)
and (9.38) are satisfied. The MEMS can theoretically stay in the unstable equilib-
rium configuration indefinitely if the external force is removed, the system is not
perturbed, and the appropriate voltage is applied to the MEMS.”®

For different values of the parameter €, we compare in Table 9.1 the MLPG
and the one d.o.f. solutions with that obtained by solving the initial-value problem
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Table 9.1.  For the rectangular MEMS, comparison of the MLPG and the one d.o.f. results with
those obtained with the shooting method.

Shooting Method MLPG One d.o.f.
Gs(x) Cm (%)
€ Apt lupillee | Apr lweillee | Apr lwpillee  Apr [lupill
0 1.400 0.3927 1.400 0.3885 1.422 0.3877 1.397 0.3916
0.2 1.584 0.3671 1.584 0.3671 1.590 0.3714 1.600 0.3716
0.3 1.996 0.3662 1.997 0.3615 1.998 0.3582 2.075 0.3532
0.4 | 3.412 0.3470 3.421 0.3475 3.412 0.3452 3.777 0.3387

Fig. 9.9. Grid of 86 nodes on the quarter of disk.

(9.80); the latter is often referred to as the shooting method.*! It is clear that values
of A\pr predicted by the MLPG and the one d.o.f. methods are very close to those
obtained from the shooting method. Whereas the shooting method exploits the
symmetry of the problem about ' = 1/2 and assumes the deflection to be a
function of 2! only, the MLPG method is more general and is applicable to 2D
membranes with cut-out regions and irregular shaped electroded portions of the
rectangular MEMS. For such problems one will need to use non-uniform distribu-
tion of nodes.

We thus note that the use of (s and (;, in Eq. (9.65) gives nearly the same
values of ||up1||oo and Apr.
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9.4.6.2. Circular Disk

We consider a disk of unit radius clamped along its periphery.

Reduction of the boundary-value problem to an initial-value problem Fol-
lowing Ref. 85 we assume that the solution is a function of the radial coordinate
r only, and deformations of the disk are axisymmetric. Thus the problem de-
fined by Eq. (9.32) reduces to the following non-linear non-linear boundary-value
problem:

" lu/ r) — A
W)+l () =

where a superimposed prime indicates derivative with respect to r.
We reduce the boundary-value problem (9.82) to the initial-value problem

d?w  1dw 1 dw

uw(1)=0, o' (0)=0, (9.82)

G trd m @ ©=0 wO=1 (9.83)
by applying the following change of variables:
n=>br, u(r)=aw(n)—1, a:L, )\:i. (9.84)
w (b) w (b)”

As for the rectangular MEMS, we numerically solve the initial-value problem
(9.83) with Mathematica using the built-in function NDSolve, and for every pair
(w, b) determine the corresponding pair (u (r), ). Once the deflection field is
known on the entire disk we compute its infinity norm, which equals the deflection
of the disk center.

Numerical results and comparisons Instead of considering the entire disk we
analyze deformations of a quarter of the disk with the MLPG method by using
the grid of 86 nodes shown in Fig. 9.9 but do not assume that the deflection is
independent of the angular position 6. On straight boundaries we impose homo-
geneous natural boundary conditions arising from the symmetry of the problem.
The size r; of the support of each weight function is taken to be 2/3. Subdomains
of integration are determined by supports of test functions, and their radii are set
equal to the distance between the chosen node and the one closest to it.

For the analysis with the one d.o.f. model we use the following functions for
¢(x) in Eq. (9.65):

G(ry=r*—=1,  Gu(r) = =Jo(wor), (9.85)
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Fig. 9.10. Comparison of the bifurcation diagrams obtained with the shooting method (solid line)
and the MLPG method (polygons) for the circular MEMS.

where and Jj is the Bessel function of first kind corresponding to the fundamental
frequency wy = 2.405rad/s, or the smallest root of the characteristic equation
Jo(w) = 0 (see Ref. 86). Both functions in Eq. (9.85) have been normalized to
equal —1 at » = 0. The static solution (g is for axisymmetric deformations of a
clamped circular membrane under a uniformly distributed load.

Figure 9.10 shows the infinity norm of the deflection, which corresponds to the
deflection of the disk center, versus the load parameter A. Results from the MLPG
and the one d.o.f. methods and those from the shooting method are compared in
Table 9.2. For the one d.o.f. problem, the function (s gives better approximations
of the pull-in parameters than the first eigenfunction (,,. However, both sets of
results are close to those obtained by the MLPG and the shooting methods.

Table 9.2. For the circular MEMS, comparison of the MLPG and
the one d.o.f. results with those from the shooting method.

Shooting method | MLPG One d.o.f.
G(r)  Gm(r)
API 0.7890 0.7915 | 0.8274 0.7834
luptl o 0.4365 0.4433 | 0.4404 0.4562
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Fig. 9.11. Locations of (a) 86, (b) 87, (c) 85, and (d) 94 nodes on the quarter of an elliptic disk with
(@) b/a=0.25,(b)b/a =0.5,(c) b/a = 0.75, and (d) b/a = 0.95.

9.4.6.3. Elliptic Disk

We consider an ellipse of semi-major axis a = 1, semi-minor axis b, and clamped
along its periphery. We analyze deformation of a quarter of the ellipse, impose
homogeneous natural boundary conditions on the straight edges, and investigate
the effect of the aspect ratio b/a on the pull-in instability of the system.

We study four aspect ratios, namely 0.25, 0.5, 0.75, and 0.95, and adopt, re-
spectively, grids of 86, 87, 85, and 94 nodes shown in Figs. 9.11(a)-9.11(d) when
solving the boundary-value problem with the MLPG method. For a uniformly
loaded elliptic membrane clamped on its edges, these nodal placements give an
error of less than 0.7% in the maximum deflection with respect to the analytical
solution

1\ 2 2\ 2 9 9 -1
G (x) = ks (Z) +<Ib) -1, k5=<a2+b2> . (9.86)

Here, rectangular Cartesian coordinate axes x! and 22 are aligned with the major
and the minor axes of the ellipse. Values of weight function parameters in the
MLPG method are the same as those for the circular disk problem.
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For the solution with the one d.o.f. method we adopt the expression in
Eq. (9.86) with ks = 1 for the static solution {s(x), and

Cn(€1,€%) = kmCeo (€', q0) ceo (€2, q0), (9.87)

where (€1, £2) are confocal elliptic coordinates.®” In confocal elliptic coordinates,
the ellipse is mapped into the strip [0, arctanh(b/a)] x [0, 27). In Eq. (9.87), ceg
and Ceq are the zero-th order Mathieu cosines of the first and the second kind,
respectively, corresponding to the fundamental frequency wy = 2,/qo/c obtained
as the lowest positive root of the characteristic equation Ceg(arctanh(b/a), q) =
0,88 where ¢ = a® — b%. We set ky, = —1/ maxe2¢ (0,7) Cm (0, £2).

llleo

Fig.9.12. Bifurcation diagram for four elliptic MEMS with b/a = 0.25 (curve 1), b/a = 0.5 (curve
2), b/a = 0.75 (curve 3), and b/a = 0.95 (curve 4). Solid lines: MLPG solutions with ~ 90 nodes;
empty polygons: finite difference solutions with 3500 points.

Figure 9.12 shows pull-in bifurcation diagrams for the four elliptic MEMS ob-
tained with the MLPG method. Due to an increase in the stiffness of the system
with a decrease in the aspect ratio, the nondimensional pull-in voltage increases
significantly with a decrease in b/a. Results are compared with finite difference
solutions obtained by mapping the elliptic domain into a strip via the change into
confocal elliptic coordinates, homogeneous essential boundary conditions are im-
posed on the edge ¢! = arctanh (b/a), and homogeneous natural boundary con-
ditions are imposed on the remaining edges. A grid of 50 x 70 points located,
respectively, along the ¢! and the &2 directions is used. With only ~ 90 nodes,
the MLPG method reproduces the finite difference results within 2% error for the
nondimensional pull-in voltage, and less that 4% error for the nondimensional
pull-in displacement.
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Table 9.3. For the elliptic MEMS, comparison of the MLPG and the one d.o.f. results with those
obtained by the finite difference method.
Finite Difference MLPG One d.o.f.
Cs(x) Cm(€17£2)
b/a | Apt upille | Apt flupillee | Apr lupillee  Apr lupille
0.25 | 6.257 0.4287 6.376 0.4367 7.033 0.4404 6.581 0.5049
0.50 1.912 0.4302 1.940 0.4102 2.069 0.4404 1.936 0.4665
0.75 | 1.073 0.4475 1.097 0.4525 1.149 0.4404 1.085 0.4575
0.95 | 0.8254 0.4368 0.8347 0.4627 0.8721 0.4404 0.8256 0.4562
*
6\
\.
] \
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T - — 440
7 O e
0.25 0.50 0.75 0.951.0

Fig.9.13. Variation of pull-in parameters, Apt and ||upr|| o, with the aspect ratio b/a for the elliptic
MEMS.

For different values of the aspect ratio b/a, we compare in Table 9.3 the pull-in
parameters from the MLPG and the one d.o.f. solutions with those obtained with
the finite difference method. The one d.o.f. results approximate well the finite
difference solutions obtained with 3500 grid points.

Figure 9.13 depicts the variation of the pull-in parameters, Apr and ||upt]| .,
from the MLPG solutions with the aspect ratio b/a. The nondimensional pull-in
voltage data are fitted with a quadratic polynomial in a/b (dashed line), and the
corresponding nondimensional pull-in maximum deflection data with a straight
line (solid line). Expressions for the aforementioned polynomials are

Apr = 0.377 (1 + (2)2)

||’u,131||OO = 0.440.

(9.882)
(9.88b)

Note that ||upr||, for all four elliptic membranes is the same as that for the cir-
cular membrane studied above, cf. Table 9.2. As the aspect ratio approaches 1,
Apr for the elliptical geometry approaches that for the circular MEMS. For a = b,
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Eq. (9.88a) gives Ap; = 0.754 as opposed to 0.79 in Table 9.2. It shows that Ap;
found from Eq. (9.88a) may be 5% off.

9.4.7. Pull-In Instability and Symmetry Breaking in an Annular Circular
Disk

We consider an annular circular disk of inner radius 0.1, and outer radius 1
clamped along its inner and outer boundaries. Parameters compared are Apr and
lupt|| ., and, when a symmetry breaking bifurcation occurs, Agg and |Jusg|| ..
Asp and ||uggl|, represent, respectively, the highest A for which both symmet-
ric and asymmetric deformed shapes of the annular disk can exist simultaneously,
and the corresponding infinity norm of the deflection field.

Following Ref. 89 we study only one-half of the annular domain. The sym-
metry in the deformed membrane breaks after the pull-in instability. We impose
homogeneous natural boundary conditions on the straight edges. This condition
is restrictive since there may be nonaxially symmetric solutions that do not satisfy
it.% We compare our results with those obtained in Ref. 89 by the finite-difference
method with 1600 points.
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Fig. 9.14. Grid of 165 nodes on one-half of an annular disk.

In the MLPG implementation, we use the grid of 165 nodes shown in Fig. 9.14.
Values of weight function parameters are the same as those for the circular disk
problem studied in Sec. 9.4.6.2.

For the one d.o.f. solution we use the following expressions for the function

((x):

r?In(Ry/R;) + R2In(R;/r) + R? In(r/R,)

Golr) =k 1in(Ry /%) !

(9.89a)
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Yo(woR;)

Cm(r) = km (YO(WOT) - JO(WORi)

Jo(wor)) , (9.89b)
where R; and R, are the inner and the outer radii of the annular domain. J,
and Y are the zero-th order Bessel functions of the first and the second kind,
corresponding to the fundamental frequency wy = 3.314rad/s obtained as the
lowest positive root of the characteristic equation Yo (wR;)/Jo(wR;) —Yo(wRo)/
Jo(wR,) = 0. The normalization constants kg and k,, are determined by requiring
that min,.¢ (g, r,) ¢s(r) = —1, and the same for (y,,(r). The static solution (,(7)
has been derived by assuming that the deflection of the annular membrane under
a uniformly distributed load is axisymmetric.

Table 9.4. Comparison of the MLPG and the one d.o.f. results
with the finite-difference solution for the annular MEMS with
inner radius equal to one-tenth of the outer radius.

Finite-difference | MLPG One d.o.f.
Cs (7’) Cm (7’)
API 1.544 1.548 1.587 1.546
lupt] oo 0.393 0.399 0.392  0.397
ASB 1.486 1.485 - -

Figure 9.15 exhibits the infinity norm of the deflection versus the load param-
eter \ from the MLPG and the finite difference solutions.®® Numerical solutions
from the MLPG, the one d.o.f. and the finite-difference methods are compared in
Table 9.4. The one d.o.f. model does not allow for the symmetry breaking. Pull-in
parameters from the one d.o.f. model are in good agreement with those obtained

0.8
.
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0.5 \‘\&\ s
8
= 04 vad

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6
A

Fig. 9.15. Bifurcation diagram for the annular disk MEMS: the finite difference-solution (empty
circles) and the MLPG solution (solid line).
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with the MLPG and the finite difference methods. Since the symmetry break-
ing point, indicated by .S in Fig. 9.15, is on the upper portion of the curve, i.e.,
llusBllo > ||upi| . the axisymmetric and the non-axisymmetric configurations
are unstable.

letprlloo

]
T
] Symmetric
0.5 i | m—— Asymmetric
0 i
0 0.2 0.4 0.6 0.8

(]l

Fig. 9.16. 'The negative of the total potential energy U of the annular disk MEMS versus the infinity
norm, ||u||so, of the deflection.

Figure 9.16 exhibits the plot of the negative of the total potential energy

U= 1/ (Vu~Vu— 2 )dQ7 (9.90)
Q

2 14+u

versus the infinity norm of the deflection of the annular disk. As mentioned before,
after pull-in instability both the symmetric, and the asymmetric paths are unstable.
However, the energy corresponding to the asymmetric states is lower than that
corresponding to the symmetric ones.

Figures 9.17(a) and 9.17(b) depict the symmetric, and the asymmetric de-
formed shapes of the annular disk after the pull-in, for A = 1.34, and A = 1.18
respectively.

9.4.8. From Micro to Nano: Effect of the Scale on Pull-In and Symmetry
Breaking Parameters of Micromembranes

9.4.8.1. Effect on Pull-In Parameters

We consider the fully electroded rectangular strip, the circular disk, and the annu-
lar disk. For each of these geometries, we adopt the same distribution of nodes as
considered in Sec. 9.4.6.
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Fig. 9.17. (a) Symmetric, and (b) asymmetric solutions for the annular disk MEMS with A = 1.34
and A = 1.18, respectively.
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Fig. 9.18. Pull-in parameter Apy versus Casimir force parameter .

The non-linear Poisson Eq. (9.39) is solved by using the MLPG method
in conjunction with the pseudo-arc-length continuation algorithm described in
Sec. 9.4.4. The problem is first solved for A = 0 in order to determine the critical
value, (i, of the Casimir force parameter. When u = p, the system collapses
spontaneously with zero applied voltage. For different values of i in the range
[0, t1er], the effect of the scale on pull-in parameters Apr and ||uprl||co is investi-
gated by solving Eq. (9.39) with variable A. Results in this subsection are taken
from Ref. 90.

Figure 9.18 exhibits the pull-in parameter Apy versus p for the three geome-
tries. As p increases the pull-in parameter Ap; decreases monotonically from its
maximum value ABf* corresponding to p1 = 0. (4 = [, represents intersection of
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Fig. 9.19. Pull-in parameter ||upi||oo versus Casimir force parameter .

Table 9.5. Characteristic parameters describing the influence of
the Casimir force on pull-in instability.

Geometry AR upl B per  [lupr[|B®
Strip 1.40 0.387 0.778 0.234
Disk 0.791 0.444 0.442 0.271
Annular disk 1.55 0.392 0.860 0.238

the curves with the horizontal axis. The curves may be reasonably approximated
by straight lines. Using this approximation, the knowledge of the pull-in param-
eter Apf* and of the critical Casimir parameter p., are sufficient to completely
characterize the Casimir effect on the pull-in parameter Ap;. The slopes of the
three fitting straight lines are strikingly similar and approximately equal —1.8.

Figure 9.19 shows the nondimensional pull-in deflection versus p. We no-
tice that as p increases, the pull-in deflection decreases from its maximum value
|lupr||22*. This means that reduced deflection ranges are allowable for large val-
ues of 2. The minimum pull-in deflection [|upy || is attained when p = pu., and
refers to the spontaneous collapse of the system without applied voltage. When
L, h and g are scaled down simultaneously by a factor F', then Eq. (9.35) implies
that pte; — F*jic,. Thus g, drops rapidly with a reduction in the device size.

Numerical values of AB2, |lupy || 22, fic,, and |Jupr||™" are summarized in
Table 9.5. These reveal that the disk experiences the largest nondimensional pull-
in maximum displacement as the device size changes. However, the maximum
pull-in voltage is for the annular disk.

)

9.4.8.2. Effect on Symmetry Breaking

The post-instability behavior of the annular disk under effects of the Coulomb
and the Casimir forces has been analyzed by solving the non-linear Eq. (9.39) for
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Fig. 9.20. Bifurcation diagrams of the annular membrane for four different values of p.

different values of y in the range [0, fic]. We numerically study deformations of
one-half of the annular membrane with inner radius equal to 0.1, and imposed
symmetry conditions on sides contiguous to the removed domain.

Figure 9.20 shows the maximum deflection |||/ versus the voltage parame-
ter A for four different values of ;. As the Casimir parameter p varies, the symme-
try breaking point (Asp, ||uss||c) moves. Values of Agp and ||ugp||oo are listed
in Table 9.6. As p increases the ratio Asg /\py decreases, meaning that the differ-
ence in the nondimensional voltage corresponding to symmetry breaking and the
pull-in instability points increases; the relationship between f1/ 1., and Asp /Apr is
non-linear and most likely varies with the ratio (inner radius)/(outer radius) even
though that has not been investigated. In addition, as p increases the travel range
of the device from the pull-in instability to the symmetry breaking point decreases
eventually approaching a constant value.

Table 9.6. Characteristic parameters describing
symmetry breaking of the annular disk after pull-in

instability.
p/per  As/Ap1 |lusBlloo/llupilloo — 1
0 0.960 0.282
0.101 0.956 0.270
0.332 0.935 0.254

0.718 0.831 0.255
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9.4.8.3. Remarks

We comment below on the importance of the Casimir force in the miniaturization
of electrostatically actuated micromembranes, and on the validity of the present
analysis.

As the device size is reduced, the effect of the Casimir force becomes more
important. In the miniaturization process there is a minimum size for the device
below which the system spontaneously collapses with zero applied voltage. For
example, consider a circular membrane with parameters L = 100 pm, go = 1 pm,
h = 0.1 yum, o9 = 10 MPa. Substituting these values into Eq. (9.33) gives y =
8.17 x 1075 and the effect of the Casimir force is negligible, see Fig. 9.18. Scaling
down the device size by a factor F' = 10, we have y = 0.817, which is larger than
the critical Casimir parameter (i, in Table 9.5. This means that the miniaturized
device spontaneously collapses under zero applied voltage. The validity of the
present work is limited to MEMS for which electrostatic fringing fields, surface
roughness and surface curvature,’*? temperature and finite conductivity®® on the
Casimir force, bending stiffness and non-linear stretching are negligible, and the
two bodies are perfect conductors. Also when a nanodevice collapses, the distance
between the two conductors may become small enough for the van der Waals
forces to play a noticeable role.

9.5. Summary

The pseudo-arc-length continuation method coupled with the MLPG formulation
of electrostatically actuated micromembranes can be used to analyze the pull-in
instability and the symmetry breaking deformations of MEMS. A local symmetric
augmented weak formulation of the problem is given wherein essential boundary
conditions are enforced by the method of Lagrange multipliers. The MLS ap-
proximation is used to generate basis functions for the trial solution, and the test
functions are taken to be the weight functions of the MLS approximation. The
resulting set of non-linear equations is solved by the Newton iteration method.
The accuracy and the reliability of the proposed technique have been established
through comparisons of computed results with those obtained from other numeri-
cal methods.

160 nodes and nearly 100 steps in the pseudo-arc-length continuation method
are sufficient to estimate the pull-in parameters and the symmetry-breaking bifur-
cations with an error of at most 1.53%. The convergence rate of the pseudo-arc-
length continuation method does not vanish when the pull-in state is approached.
With the applied voltage treated as an unknown, the number of iterations remains
bounded.
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The effect of the length scale on micromembranes has been studied by includ-

ing the Casimir force in the mathematical model. The effect of the Casimir force
on pull-in and symmetry breaking parameters has been investigated. It has been

shown that there is a minimum size for the device below which it spontaneously

collapses at zero applied voltage, and thus can not be fabricated.
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Dielectrophoresis (DEP) as an effective tool for particle separation and manip-
ulation is increasingly used in various BioMEMS applications. Numerical sim-
ulation plays an important role in DEP analyses and design. One of the most
commonly used numerical techniques is the Finite Element Method (FEM) that
provides weak solutions of field variables, which can have problems in obtaining
the second derivatives, that are essential for computing the DEP forces. A novel
meshfree method named the linearly conforming point interpolation method (LC-
PIM) that provides an effective way to compute the second derivatives of the field
variables, is first introduced in this chapter. The LC-PIM is then used to simu-
late the electric field and DEP forces for an interdigitated electrode array with
either a two-phase or a four-phase signal. Solutions are compared with analyt-
ical results with excellent agreement. The method is thus validated for solving
the problems with high accuracy of high order derivatives even in the high gra-
dient regions which are common in BioMEMS. Several discussions are made to
provide useful information for the design of DEP devices.
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10.1. Introduction

The term alternating current (AC) electrokinetics refers to the particle movement
arising from the interaction of non-uniform AC electric field with polarizable par-
ticles. The techniques based on AC electricnetics are increasingly used for the
analysis and separation of biological particles, such as cells, bacteria, viruses and
DNA.!=3 One of these techniques is the dielectrophoresis (DEP), which arises
from the interaction of AC electric field and the induced dipole in a particle.*

One of the DEP techniques is the field flow fractionation (FFF) method, in
which DEP force levitates different particles to different vertical heights above the
surface, and hydrodynamic force drives the particles traveling at different speed
according to their heights to the surface to achieve the separation.’~ Another well
known DEP technique is the traveling wave dielectrophoresis (twDEP), in which
the particle motion is induced by traveling electric field.*'° Traveling wave DEP
systems have received a great deal of attention from researchers due to the fact
that there is no need for a pumping system since the forces can be exerted in
the horizontal direction. Furthermore, the cell-cell interference is minimized in
twDEP since the cells repel from each other rather than forming the pearl chains.
Both of these techniques use an interdigitated parallel electrode array. An ana-
lytical approximation of the potential and forces for this array has been derived
using both Green’s function'! and Fourier series.'? In order to obtain the analyt-
ical expression for the forces, the potential between the electrodes is assumed to
be a linear function, thus the analytical expression does not represent the exact
solution. Numerical methods have also been used to determine the electric field
and DEP forces from this electrode array, including point charge, charge density,
finite element method, finite difference and integral equation methods.'3-1®

In this chapter, we present a novel meshless method, the linearly conform-
ing point interpolation method (LC-PIM), for computing the numerical solution
of the electric potential, electric field and DEP forces from both the DEP arrays
used in FFF and twDEP arrays. LC-PIM is originally proposed by Liu and has
been successfully used for solving various engineering problems with highly ac-
curate solution for derivatives of field variables.!”'® The LC-PIM ensures the
conformability by using the gradient smoothing technique that was first used to
stabilize the nodal integration in a Galerkin meshfree method.?*?! LC-PIM is an
effective technique for DEP simulation since it can capture the high gradient field
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feature which is very commonly required in BioMEMS devices with DEP. Com-
pared with conventional FEM technique, LC-PIM can successfully calculate the
second derivatives of primary field variable with good accuracy, which is crucial
for accurate computation of the DEP forces.

The outline of this chapter is as follows. The theoretical background of
BioMEMS with dielectrophoresis is first reviewed in Sec. 10.2. The formulation
procedure of LC-PIM is presented in Sec. 10.3. In Sec. 10.4, numerical results
of DEP and twDEP arrays are presented and discussed. Finally conclusions are
drawn in Sec. 10.5.

10.2. The Theoretical Background of BioMEMS with DEP

Dielectrophoresis (DEP) is defined as the lateral motion imparted on uncharged
particles as a result of polarization induced by non-uniform electric fields. When
a dielectric particle is placed in a spatially non-uniform electric field, a dipole is
induced in the particle. Due to the inhomogeneous nature of the electric field, the
two halves of the induced dipole experience a different force magnitude and thus
a net force is produced.

Figure 10.1 shows a dielectric particle suspended in a point-plane electrode
system. The induced dipole experiences a net force in the non-uniform field and
the particle is driven towards the point electrode. If the particle is more polarizable
than the surrounding medium, the induced net force is aligned with the increas-
ing direction of the electric field intensity and the particle is attracted to electric
field intensity maxima, such as that in Fig. 10.1. This effect is called positive di-
electrophoresis. If the particle is less polarizable than the surrounding medium,
the induced net force is aligned with the decreasing direction of the electric field
intensity and then the particle is attracted to electric field intensity minima. This
effect is called negative dielectrophoresis.

The expression of time-averaged DEP forces in an AC electric field of angu-
lar frequency w has been derived using both effective moment method* and the
Maxwell stress tensor method.??

For a homogeneous medium, the electric field can be determined by the
Laplace equation of the electric potential, which is derived from the quasi-
electrostatic form of Maxwell’s equations, '

V3 =0 (10.1)

where ¢~> is the electric potential phasor and can be written as

¢ =9¢r+igr. (10.2)
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" _NET FORCE

Fig. 10.1. TIllustration of dielectrophoresis in a point-plane electrode system. If particle is more
polarizable than surrounding medium, it moves towards highest electric field region due to positive
dielectrophoresis; If particle is less polarizable than surrounding medium, it is repelled from highest
electric field region due to negative dielectrophoresis.

The dipole moment for a linear isotropic dielectric spherical particle under an
applied potential of a single frequency is

p(w)=va(w)E (10.3)

where v is the volume of the particle, « is the effective polarisability of the particle
and E is the electric field phasor. The electric field is given by

E(x,t) = Re[E(x)e™!] (10.4)

where Re[-] denotes the real part. The DEP force arises from the interaction be-
tween the induced dipole moment and the non-uniform electric field. It is rea-
sonably assumed that the particle diameter is much smaller than the characteristic
length of the non-uniformity. All higher order moments can thus be ignored. The
time-averaged DEP force can then be written as*

(F) = JRel(p- V)B] (10.5)

where * refers to complex conjugate. By substituting the phasor expressions,
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Eq. (10.5) can be finally simplified to

(F) = iRe[aV(E EY)] - %vRe[aV x (E x E*)]

= ivRe[a]V(\Re[EHQ + |Tm[E]|?)

- %vlm[a](v x (Re[E] x Im[E])] (10.6)
where Re[E] = —~V¢g, Im[E] = —V¢;.

The first term on the right hand side of Eq. (10.6) results from the spatial
variation in the magnitude of the applied electric field, and the second term from
the spatial variation in phase of the applied electric field. In the case of the DEP
field flow fractionation, Im[f}] = 0. In the case of twDEP, both terms are non-
zero. The DEP forces are obtained first by solving the real part of the electric
potential phasor ¢ and then the imaginary part of the electric potential phasor ¢

using the Laplace equation (10.1).

10.3. Linearly Conforming Point Interpolation Method (LC-PIM)

10.3.1. Interpolation Formulations

Formulation of the point interpolation method (PIM) is based on the Galerkin
week form, and the shape functions are created using polynomial basis functions
through the interpolation within local support domain.>* The constructing pro-
cedure for PIM shape functions is presented here briefly. Consider a continuous
function u(x) at the point of interest x is approximated in the form,

u(x) =Y pi(x)a; = P (x)a (10.7)
i=1
where p;(x) is a given monomial in the space coordinates x = [x,y] , m is the

number of monomial terms, and a; is the coefficient for p;(x) which is yet to be
determined. The p;(x) is usually built utilizing the Pascal’s triangles and a com-
plete basis is usually preferred. Polynomial basis functions for two-dimentional
(2D) space are given by
pl(x)=[1 z y Basis of complete first order (10.8)
plx)=[1 = y 22 2y 37 Basis of complete 2nd order  (10.9)

In order to determine the coefficients a;, a support domain is formed for the
point of interest at x, with a total of n field nodes included in the support domain.
In conventional PIM, the number of nodes in local support domain is always equal
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to the number of basis, i.e., n = m. The coefficients a; in Eq. (10.7) are deter-
mined by enforcing Eq. (10.7) to pass through all n nodes in the local support
domain. This leads to n linear equations

up = a1 + axy +agyr + - -+ amPm (X1)
ug = a1 + ag®a + agys + - - + amPm (X2)

(10.10)
Up = a1 + 2Ty + A3Yn + - + AP (Xn)
which can be written in matrix form as
U,=P,.a (10.11)

where Ug is the vector that contains all the field nodal variables in the support
domain, and is in the form of

Us={u; ug---uy}*t (10.12)
the polynomial matrix is
i1 i1 FAREI |
BT 33T 535t T
PT = |0 Y2 3 Un (10.13)

pm(xl) pm(x2)§ i 'pm(xn)
the vector of coefficients is

al' ={a1 ay as - an}. (10.14)

Since n = m, P,, is a square matrix with the dimension of (n X m or m x m).
Assuming P! exists, a unique solution for a can be obtained as

a=P,'U, (10.15)

Substituting Eq. (10.15) back into Eq. (10.7) yields
u(x) =pT(x)P,'U, = > N;(x)u; =N(x)U, (10.16)
i=1

where IN(x) are the shape functions, and can be expressed as

N(x) = pT(x)P;,! = {Ni(x) Nao(x) - Np(x)}. (10.17)
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The derivatives of the shape functions can be easily obtained because the PIM
shape function is of polynomial form, but they are not required in LC-PIM formu-
lation due to the use of gradient smoothing technique described below.

Note that we assume matrix P,,, is invertible in the formulation above. How-
ever, this is not always the case. It depends on the location of the point of interest
in the local support domain, and the terms of the monomials used in the basis
functions.?> Methods for creating a non-singular P,,, can be found in Ref. 18.
The node selection technique introduced in the following can easily prevent the
singularity problem.

10.3.2. Gradient Smoothing

The strain smoothing technique has been used for overcoming the instability in
nodal integration.”*?! A similar smoothing operation is performed here on the
gradient of shape functions, namely

Vho(x;) :/ Vo(x)W(x — x;)dS (10.18)
Q;

where V@(x) = [0¢/0x1,0¢/0x2] in two-dimensional space, W is a smoothing
function, €2; is the representative domain of the it" field node, which can be ob-
tained by making use of the background triangles. The representative domain is
formed by sequentially connecting the centroids with the mid-edge-points of the
surrounding triangles of a field node as illustrated in Fig. 10.2.

Using integration by parts, Eq. (10.18) can be rewritten as

ho(x;) = X X —X;) — X X —X; .
V" () jén_qs( YW (x — x;) /Qﬁb( WW(x—x)d2  (10.19)

where T'; is the boundary of representative domain of the i*" field node.
Using a piecewise constant function as the smooth function, we have

i x €N
Wx—x;)={ A L (10.20)

0, X%QL

in which A; = fﬂ. dS) is the area of the representative domain of i*" field node.
Substituting Eq. (10.20) into Eq. (10.19), we get
1

vho;(xi):X #(x)ndl’ (10.21)
1 JIy
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O Fieldnode A Centroid of triangle

¢ Mid-edge-point
Fig. 10.2. Illustration of background triangular cells and formation of nodal representative domain.

By introducing PIM shape function into Eq. (10.21), we obtain

=Y Bi(xi)er (10.22)
IeG;
where
5 Bn(&‘)}
B;(x;)= |~ 10.23
I(X ) |:bI2(Xi) ( )
and
bIJ X;) = /NI x)nj(x (10.24)

G, is a group of nodes that are related to ¢ while forming the shape functions along
the boundary of the representative domain of i*" node. Nj(z) is the PIM shape
function for node I. The numerical integration of Eq. (10.24) can be performed
using Trapezoidal rule or Gauss quadrature on the boundaries of representative
nodal domain. In either case, we always use the vertices of the background trian-
gle as the local support nodes such that the singularity problem in Eq. (10.15) can
be always avoided. Detailed discussion of support nodes selection can be found
in Ref. 18.
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./ Field node

Fig. 10.3. Example of a representative domain in 2D space. Integration is performed along the
boundary of the representative domain.

10.3.3. Variational Form

Considering a two-dimensional boundary value problem governed by a Laplace
equation

V26 =0 (10.25)

with the following boundary conditions
¢=2(x,y) onS (10.26)
%nm + g—zny +g(x,y) =0 on Sy (10.27)

where g is known a priori and 7, n,, are the direction cosines of the outward nor-
mal to the surface, the union of S; and S5 forms the complete boundary T, it can
be shown that the function ¢(x, y) satisfies Egs. (10.25)-(10.27) also minimizes
the functional®*

1 90\?  (06\?
I(9)= 5/9 [(833) + (5@) dQ+ /S2 gpdSs (10.28)
The variational principle gives the equation
oI () =0 (10.29)

or

B 964 D¢ 085G O B
o1 (¢) —/Q {axaaﬁayay} dQ+[52 godSs =0 (10.30)
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The primary variable and its first derivatives can be approximated by

NP
o = ZNI¢I =N® (10.31)
I=1
NP _ _
V¢ => Bi¢r =B (10.32)
I=1

Substituting Eqs. (31) and (32) into Eq. (30) and performing nodal integration,
we can obtain the discretized equation

K®=f (10.33)
where K and f is obtained respectively by assembly of the following submatrices
NP _

KI_] = Z BIT(Xi)BJ (Xi)Ai (1034)
i=1
and
NPb
fi = > Ni(xi)g(xi)s; (10.35)
i=1

where N Pb is the number of points on the natural boundaries, s; are the weights
corresponding to the boundary points.

The primary variables can be obtained by Eq. (33). The first order deriva-
tives can be obtained by substituting the results from Eq. (10.33) into Eq. (10.32).
Similarly, the second derivatives can be obtained by replacing ¢ in Eq. (32) by
O¢/Oxy, where k = 1, 2.

10.4. Results and Discussion

In this section, the simulation for both the dielectrophoretic array and the traveling
wave dielectrophoretic array are presented. Figure 10.4 shows the geometry of the
interdigitated electrode array. For the DEP array, 180 degree voltage phase differ-
ence is applied on the adjacent electrodes. For the twDEP array, 90 degree phase
difference is applied on the adjacent electrodes. The width of the electrode is d;
and the spacing is ds. It is assumed that the length of the electrode is much longer
than the width. As a result, the problem can be simplified to two dimensions.
For mathematical simplicity and computational efficiency, non-dimensional for-
mulation is introduced. Electric potential ¢ is scaled by the applied voltage Vj
resulting a non-dimensional potential ¢’ = ¢/Vj. The coordinates are also scaled
by d, which is half of the unit cell width d; + ds, resulting new non-dimensional
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coordinates as ' = x/d, and y = y/d. For the results presented in this chapter,
Vo=1V,d=10pymand d; = dy = d.

Electrolyte

DEP (= 180° 0° 180°

twDEP 0° 90° 1800 2700 Ol substrate

Fig. 10.4. Interdigitated electrode array used for dielectrophoretic separation and traveling wave
dielectrophoresis.

10.4.1. Simulation of the DEP Array

The electrode array is assumed to be infinite long so that the problem can be re-
duced into a unit cell. The boundary condition for one unit cell of the DEP array
is demonstrated in Fig. 10.5. The potential on the top boundary goes to zero as
y goes to infinity. Using the symmetry nature of the electrode array, the potential
on the vertical boundary is zero. The potential on the electrodes is the applied
voltage Vp (rms). In real devices, the electrode is much thinner than its width
so that the thickness is ignored and the potential is applied at y = 0. The exact
boundary condition in the gap, which arise from the requirement that the total
current across the interface is continuous, is that the normal gradient of the poten-
tial equal to zero. This leads to the difficulty of obtaining analytical expression
for the dielectrophoretic forces, as a result, the analytical solution is derived with
the assumption that potential between the electrodes vary linearly.'? In order to
verify the reasonableness of this assumption, both of the two types of boundary
conditions are used in this chapter, and the corresponding results were compared.
For the case of dielectrophoretic array, the DEP force in Eq. (10.6) can be further
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simplified as

2
(Forp) = (oRe[a]VIV6nf” = [uRela] B VVorl?  (10.36)
Py =0
«— 4=0 f=0 —>»
o=,
dy/2 dy \ dy/2

Fig. 10.5. Boundary conditions of a unit cell in dielectrophoresis array.

10.4.1.1. Case 1: Linear Potential Change in the Gap

The results for the case that assumes linear change of electric potential in the elec-
trode gap are first computed. The electric potential is shown in Fig. 10.6(a), and
the magnitude of electric field is shown in Fig. 10.6(b). Both the direction and the
magnitude of the vector V'|V’¢r|? are demonstrated in Figs. 10.6(c) and 10.6(d).
Observations of these figures are consistent with the previously reported results.'?
Away from the electrode, electric potential decrease rapidly as y increases. The
magnitude of the electric field maximizes at the edge of the electrodes at 2’ = 0.5
and =’ = 1.5, which are the high gradient regions. Above 3’ = 1, the vectors
V|V’ ¢ r|? point downwards to the electrodes straightly. While below 3’ = 1, the
vectors point towards the edges of the electrodes. Figure 10.6(d) shows that above
the height 4’ = 1, the magnitude of vectors V'|V’¢g|? is constant in x direction,
which agrees with the experiment results that different particles levitate at differ-
ent heights, where the gravity forces balance the DEP forces. This phenomenon is
used for separation and manipulation of bio-particles in the bio-medical research
area.
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Fig. 10.6.  Solution of the problem near the electrode. (a) The electric potential ¢’. (b) The magni-
tude of electric field |V/¢g|. (c) The magnitude of vector V/|V/¢r|?. (d) The direction of vector

V'|\V'¢r|2.
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Fig. 10.7. Comparison of numerical and analytical solution on middle vertical line ' = 1 (a) com-
parison of electric field magnitude |V g|; (b) comparison of magnitude of vector V|V r|2.
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Fig. 10.8. Comparison of numerical and analytical solution on horizontal line y’ = 0.1 (a) compar-
ison of electric field magnitude V¢ g|; (b) comparison of magnitude of vector V|V¢r|2.
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In order to validate the LC-PIM method used in this work, the numerical re-
sults are compared with the analytical solution derived from Fourier series anal-
ysis.!> The magnitude of electric field and DEP force decreases exponentially
along vertical direction above the height ¢y’ = 1. By comparing the magnitudes of
vectors Vo and vectors V|V¢g|? along the vertical line = 1, which is the sym-
metry line of the unit cell, Figs. 10.7(a) and 10.7(b) show very good agreement
between the LC-PIM solution and the Fourier series solution. We also compared
the results on a horizontal line near the electrodes, where the gradient of electric
potential is very high. The magnitudes of vectors Vér and vectors V|V¢r|? are
shown in Figs. 10.8(a) and 10.8(b).

While obtaining the magnitude of V|V @r|?, the second derivatives of electric
potential have to be determined first. This can not be done by the conventional
Finite Element Method. LC-PIM is able to calculate the second derivatives with
reasonable accuracy, and this is one of the advantages that make it a good method
for simulation of DEP devices.

10.4.1.2. Case 2: Exact Boundary Condition in the Gap

The exact boundary condition in the gap is that the normal gradient of the electric
potential equals to zero, i.e., d¢/Jy = 0. In order to investigate the error aris-
ing from the approximate linear boundary condition, the solution with the exact
boundary condition is computed. Figure 10.9 shows the difference in magnitude
of vector V|V¢r|? on a horizontal line near the electrode 3’ = 0.2.

It is very obvious that the difference is considerably big, especially in the area
above the gap on which the different boundary conditions are applied.

This implies that the analytical solution obtained using Fourier series can be
used only to roughly predict the DEP force field. The results obtained from apply-
ing the exact boundary condition are closer to the true values of the DEP forces.
It is more reliable than the analytical solutions.

10.4.2. Simulation of the Traveling Wave DEP Array
10.4.2.1. Case 3: Study of the Traveling Wave DEP Array

Case 3 studies the traveling wave DEP array. In this case, both the two terms of
the DEP forces in Eq. (10.6) are non-zero, and they are usually referred as DEP
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and twDEP components respectively.
1
(Fppp) = ZURe[a]VﬂV(zﬁR\Q +|Veérl?) (10.37)
1
(FtwpEpP) = —§Ulm[a](v x (Vor x Vor)) (10.38)

Equations (10.37) and (10.38) show both force components are related to the
real and imaginary part of the potential phasor, which and be computed separately
by applying approperiate boundary conditions. The problem domain is simplified
to a unit cell covering the center of two adjacent electrodes and the gap. The
boundary conditions for both real and imaginary parts of the potential phasor are
shown in Fig. 10.10. It is obvious that the boundary condition of ¢; is the mirror
image of ¢ r about the center line of the gap, therefore only ¢ r needs to be solved.
The solution of ¢; is obtained by mirroring the solution of ¢ about the vertical
line through the center of the gap. The contour plots of the real and imaginary
parts of the potential phasor are shown in Figs. 10.11(a) and 10.11(b).

The vectors V/(|V'¢,|> + |V'¢%|?) in the DEP force component and vectors
V' x (V' ¢’ x V'¢}) in twDEP force component are obtained. The results shown
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Fig. 10.10. Boundary conditions for a unit cell of traveling wave array.

are all dimensionless, to obtain the exact values, all one has to do is to multiply
appropriate constant factors composed of V;; and d. The magnitudes and directions
of vectors V' (|V'¢/z|? + |V'¢}|?) are shown in Figs. 10.12(a) and 10.12(b). The
results are consistent with the previous observation'? that above ¢/ = 1 the vectors
point straight downwards, and the magnitude of the vectors are constant with z’
across the electrode array. It is also observed that below ¢’ = 1, the vectors point
towards the electrode edges and the maximum magnitude of the vectors occurs
at the electrode edges. All these observations are similar to those of the DEP
array. The magnitudes and directions of vectors V' x (V'¢/, x V'¢/) are shown
in Figs. 10.13(a) and 10.13(b). Above 3’ = 1, the magnitudes of the vectors are
also constant with x’ across the electrode array, but the vectors are pointing in
the horizontal negative x direction. Below y’ = 1, the magnitudes reach to a
maximum value at the electrode edges, and the vectors move in a circular matter
near the electrode edges.

In practical applications, the DEP force component is responsible for levitating
the particles at certain heights, and twDEP force component for producing the
horizontal movements of the particles.

It should be noted again that, while solving the DEP and twDEP force com-
ponents, the second derivatives of electric potential have to be obtained. This is
not achievable using the conventional finite element method, but it is successfully
solved using the LC-PIM.
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Fig. 10.11. Solution of electric potential for traveling wave array. (a) Real part of potential phasor
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10.5. Conclusion

A novel meshfree method, LC-PIM is used for simulation of the dielectrophoretic
array as well as the traveling wave dielectrphoretic array. The results have been
compared with the analytical solution obtained using Fourier Series analysis, good
accuracy has been demonstrated. Error that arises from the approximate boundary
conditions has been analyzed. LC-PIM shows superior advantage over the con-
ventional finite element method in solving DEP problems, due to its capability
of computing the second derivatives with good accuracy. Therefore LC-PIM can
be potentially used in various DEP design and modeling as a robust numerical
tool.
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The multidisciplinary nature of micro and nano systems makes it difficult to use
intuition in conceiving new designs. Topology optimization techniques, which
can systematically generate novel designs, alleviate this problem to a large ex-
tent. Topology optimization entails optimal distribution of material(s) within a
given design domain. It often appears as a discrete problem wherein we need to
decide whether to place material(s) or not at each point in the domain. Several
techniques have been developed to convert this discrete design parameterization
into a continuous form so that computationally efficient gradient-based optimiza-
tion methods could be used. The continuous parameterization often requires an
interpretation for a mixture of materials or material and void, and a notion of
continuous modeling in the physics of the problem. In this chapter, such con-
tinuous modeling techniques are reviewed for different problems encountered in
the design of micro and some nano scale systems. The focus here is on elas-
tic structures actuated with mechanical, electrostatic, thermal, piezoelectric, and
other forces. A continuous modeling approach to protein design is also discussed.
Furthermore, incorporating manufacturing constraints in the framework of topol-
ogy optimization is included because the notion of continuous modeling of litho-
graphic mask layouts used in microfabrication is relevant in that problem. The
importance of the physics of the problem in continuous modeling is emphasized
in all cases.
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11.1. Introduction

Materials play an important role in the design of micro and nano scale systems
just as they do in the case of macro systems. However, the limited capabilities,
the requirement of batch production, and some unique features of micro and nano
fabrication techniques make the appropriate use of materials at the small scales
more challenging than it is at the macro scale. Devices and systems of small
sizes usually consist of heterogeneous material distribution. Microsystems (or
micro-electro-mechanical systems (MEMS), as they are popularly known) are es-
sentially layered structures made of different materials. Each material layer most
often has anisotropic properties. The relevant properties are not simply mechani-
cal or electrical but encompass multiple energy domains. For example, in a typical
microsystems device, mechanical, electrical and thermal properties are relevant to
a significant extent in almost all cases. When embedded or integrated actuation is
used, many other properties are important. Biological entities of interest at micro
(e.g., cells) and nano (bio-molecules such as proteins) are also inherently hetero-
geneous. The distribution of different materials is also often inhomogeneous in
biological systems. These features of micro and nano scale regimes are distinctly
different from the engineered systems at the macro scale. Thus, the design of
small scale systems is also significantly different from that practiced in conven-
tional engineering design of systems of large size. Therefore, conventional design
intuition one uses is not always useful in micro and nano system design due to the
aforementioned reasons as well as the need to work with multiple energy domains
and the scaling effects. This points to a need to develop systematic or even au-
tomated design methodologies that are tailored to the emerging and fast-growing
technologies of nano and micro systems. Many efforts are underway to achieve
this goal using a technique called topology optimization.'=

In topology optimization, the structural topology is optimized such that an
objective function is minimized while satisfying one or more constraints. The
term topology here refers to either the notion of connectivity among different parts
of the structure and/or the number of holes in the available design region. Within
this design region, which is generally referred to as the design domain, we seek
to find the optimal distribution of a given amount of material. Thus, topology
optimization is equivalent to the problem of material distribution. To understand
this, consider the simplest problem of structural topology optimization: obtain the
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stiffest structure for a given amount of material whose volume is less than that
of the design domain. The design specifications for such a problem are shown in
Fig. 11.1. The figure shows the design region, 2, a fixed portion of the boundary
T’y of €2, and boundary forces t. When the volume of the available material V'* is
less than the volume of €2, we need to decide where to place V* amount of material
within Q so that we get the stiffest structure. From the viewpoint of connectivity,
here we need to decide how the portions of the boundary where it is fixed and
where the forces are applied are connected to each other. This is one interpretation
of topology. The other is that how many holes need to be introduced into 2. This
decision is left to the optimization problem. This feature distinguishes topology
optimization from shape or parametric optimization wherein the topology needs
to be assumed a priori.

Fig. 11.1. Schematic illustration of the specifications for the structural topology optimization prob-
lem. How does one distribute V' * amount of material within €2 to make the structure the stiffest under
loads t while it is anchored at I'g?

Choosing a suitable topology for the structural form is hard but is crucial for
true optimality of the structure. We rely upon prior experience and/or design
intuition in conceiving the suitable topology. As stated above, these two — prior
experience and design intuition — are hard to come by in multi-disciplinary fields
of micro and nano systems. Consequently, we need to identity suitable design
variables to create a topology design space that can be searched to obtain the
optimal topology. This is referred to as the design parameterization for topology
optimization.

The simplest design parameterization for a structural problem shown in
Fig. 11.1 is that of considering a binary variable p(x) which can either be 1 or
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0; a value of 1 implies that material is present at point x while O implies that
material is absent and thus that point contributes to a hole. When we discretize
Q, and therefore p(x) too, to numerically solve the topology optimization, the
1-0 parameterization leads to a discrete combinatorial problem. Combinatorial
explosion is inevitable in such problems. There are techniques to solve such a
problem but they are not computationally efficient and do not favorably scale with
the size of the problem. Furthermore, the 1-0 problem is ill-posed in the sense
that finer topological features continue to appear in the solutions as finer mesh is
used. Therefore, topology optimization researchers have sought an alternative to
relax this problem by making {2 continuous between 1 and 0. It leads to a simple
parametric continuous optimization problem that effectively solves for the opti-
mal topology. This raises the questions: what does it mean to have a material
in an intermediate state between 1 and 0?7 Should there be a physical meaning to
this? Can a solution with intermediate material state be manufactured? If not, how
does one prevent intermediate material state and get a pure 1-0 design as the op-
timal solution? More importantly, how does one use this continuous interpolation
of material in the equations that govern the behavior of the system? We answer
these questions in this chapter in a few different settings that one encounters in
microsystem design.

The remainder of the chapter is organized as per the applications considered.
We begin with stiff and compliant continua under mechanical loads in Sec. 11.2.
The cases of single and multiple materials are discussed. The physical meaning of
the interpolation of the material state between 1 and 0 is explained. In Sec. 11.3,
we consider a multi-energy domain problem of electro-thermal microactuators.
Here, not only mechanical properties but also electrical and thermal properties are
of relevance. Modeling of convection within the context of topology optimization
is discussed. This is followed by another multi-energy domain problem of electro-
static microactuators in Sec. 11.4. Unlike other problems, physical interpretation
of intermediate material state is crucial in this problem. A number of other prob-
lems where continuous material interpolation is useful for topology optimization,
including piezoelectric, band-gap materials, fluid mechanics, efc., are presented
in Sec. 11.5. Some emerging design parameterization schemes for topology op-
timization are also noted in Sec. 11.5. In Sec. 11.6, inclusion of manufacturing
constraints in topology optimization is considered by continuous interpolation of
lithographic mask layouts in surface micromachining processes. To illustrate the
generality of the state interpolation, the problem of amino acid sequence design
problem in proteins is considered in Sec. 11.7. The chapter ends with concluding
remarks in Sec. 11.8.
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11.2. Continuous Interpolation of Material Under Mechanical Loads

The stiffness optimization problem for the specifications shown in Fig. 11.1 can
be written as follows:

Minimize / (b-u) dQ2 + / (t-u)dl
P Q r
Subject to

V.-o+b=0
/de—V* <0
Q

(11.1)

where o is the stress tensor, t the traction, and b the body force, if any, per
unit volume. The displacement u is related to the stress through the strain ten-
sor E and the constitutive linear elasticity tensor as follows: o = E : ¢ = E :
(Vu + VTu) /2. The easiest way to bring in the design variable p into the prob-
lem statement of Eq. (11.1) as per the design parameterization discussed above
istohave o = E : e = E: (Vu+ V7u) /2 where E,, refers to the elasticity
tensor of the material that needs to be distributed within the domain and Eg to
that of the void regions. When we consider the binary nature of p, it is easy to see
that p = 1 implies the presence of the material and p = 0 implies the absence.
This makes sense even when we interpret p as a continuous variable, which takes
on the extreme values in the interval [0, 1]. This is a mathematically convenient
way to deal with the topology optimization problem transformed to a parametric
optimization problem in a single variable p that varies across the domain. Because
there is no guarantee that the optimized p* will have only 1 or 0 values throughout
the domain, one would want to know the physical significance when p* has an
intermediate value between 1 and 0. In fact, historically, this idea was developed
with a rigorous argument based on the homogenization theory.*

Homogenization here refers to the method of estimating the effective or aver-
age properties at the macro scale for a composite material with a microstructure.
This is relevant here because the design domain parameterized with continuous
p can be interpreted as a composite material with a microstructure formed by
the material and the void. Bendse and Kikuchi* proposed and implemented this
idea and called it the homogenization-based topology optimization method. In-
stead of using p, they used three variables that characterize the microstructure at
every point in the design domain for the case of plane elasticity problems. The
three variables define a volume fraction for an orthotropic material and help align
the holes in the microstructure along the principal stress/strain directions. In this
interpretation, at every point in the design a microstructure is imagined and op-
timization is expected to decide the optimal microstructure. A numerical update
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formula for the design variables was proposed to ensure that the intermediate val-
ues are under check in the final solution. In subsequent works, some modifications
to this basic technique were proposed by others. Currently, an interpolation tech-
nique called Simple Isotropic Material with Penalty (SIMP)>S is widely used. It
is given as

E = p"E, (11.2)

where a penalty parameter 7 is introduced. Numerical experiments have indicated
that 7 > 3 helps push p to either of its limits. This can be intuitively understood
from the fact that in the problem statement of Eq. (11.1), the volume constraint
does not involve the penalty parameter. Therefore, a point that is occupied by
a fraction (say, p = 0.5) of material takes up half of the material resource that
it can take but contributes only a much smaller fraction (i.e., p”:3 = 0.125)
towards the objective function because of the penalty parameter. Another — a
more rigorous — argument was put forth by Bendse and Sigmund’ who used
the bounds on the effective properties of microstructured materials. According to
Hashin-Shtrikman bounds, a 2D isotropic material with a microstructure with a
volume fraction p of material has its Young’s modulus bounded as follows.

0<EL

3-2, (11.3)
By using the argument that the interpolated Young’s modulus must obey the above
bounds, Bendse and Sigmund’ showed that p should be greater than or equal to
three. That is, they tried to justify the physical meaningfulness of the artificial ma-
terial interpolation implied by Eq. (11.2). Therefore, the mechanics of the material
in the intermediate state is correct, and a suitable microstructure with that volume
fraction of the material and the corresponding effective modulus exist. In fact, if
one wants, by solving inverse homogenization problem, such a microstructure can
also be found using another topology optimization problem.® If there is material
in the intermediate state in the optimized solution, attention should be paid to its
economical manufacturability. In the microscale, fortunately, it is indeed possible
to have a desired microstructure. This is because lithography techniques do not
limit the complexity of the in-plane geometry as long as it is within its minimum
feature size limits.

As noted earlier, microfrabrication processes result in heterogeneous layered
structures. Therefore, it is sometimes necessary to work with two materials in
addition to void “material” counting as the third material. Then, the interpolation
law in Eq. (11.2) can be extended as shown below by introducing two variables,
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p1 and po, at each point in the design domain.

E= Pl {P2E1+(1_P2)E2} (11.4)

where E; and E- are the elasticity tensors for the two materials that need to be
optimally distributed within the design domain. This follows a mixture law for
two materials and its physical meaningfulness can also be interpreted when an
intermediate state between two materials exists.” Several other material interpo-
lation schemes are used in the literature. Some of these are physically based (e.g.,
Ref. 9) and others are not. A multi-material interpolation that uses a single vari-
able was proposed.!®!! It is given by a linear combination of normalized Gaussian
distribution functions as shown below for M/ materials.

E= ZE exp( p2 ’;Z) ) (11.5)

where p; can be chosen arbitrarily for each material and o needs to be chosen
sufficiently small towards the end of the iterative optimization procedure. When
o is not very small, the effective E' is a mixture of different materials if p is dif-
ferent from any of the p. Another favorable feature of this interpolation technique
is that p is not bounded between 0 and 1 unlike other methods. It also has a dis-
advantage of the derivative of the interpolated material property with respect to p
being zero at the transition points between different materials. Furthermore, the
use of the Gaussian (normal) distribution function also implies that it indicates
the probability of a particular material being present at a point in the deign do-
main. This interpretation becomes useful in protein sequence design, as discussed
in Sec. 11.7, where the number of states is 20.

The interpolations noted above apply to not only the stiff structure prob-
lems but also to compliant mechanism problems that involve linear'>!'3 or non-
linear displacements.'*!> When material non-linearity is considered, the physical
interpretation of material interpolation becomes hard. However, continuous
interpolation in boundary condition non-linearity is possible and has a physical
explanation. In the context of contact-aided compliant mechanisms (CCMs),'¢-18
topology optimization problem is solved by including contact mechanics. They
are used in microsystems such as mechanical signal modifiers (e.g., frequency
doubler'*!®) and micromanipulation tools. In the design of CCMs, we do not
know a priori know which part of the design domain would contact a rigid surface
because the topology continues to change during optimization. Continuous mod-
eling helps in the smoothening (or regularizing) of the contact by imagining that
there is a “variable contact spring” whose stiffness depends on the gap between
two potential contacting surfaces. Both small and large displacement models are
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considered in this problem.'®!7 In a similar way, support optimization (i.e., deter-
mining where the structure should be supported) can be combined with topology
optimization.'® Here, springs of parameterized stiffness are added at all finite
element nodes in portions of the design domain identified as potential support re-
gions. The physical validity of this is justifiable because springs are assumed to be
connected to the structure. A similar method was also used in multi-component
topology optimization?® and optimal embedding of an object of known stiffness
into a design region with optimized connections.?! We next consider the interpo-
lation schemes used in multi-physics problems.

11.3. Electro-Thermal Microactuation

In mechanical problems described above, we needed to continuously interpolate
the elasticity tensor between that of a real material and a void. When vibration and
transient problems are considered, mass density and loss coefficient (for damping)
also need to be included. But all these mechanical properties remain in the same
governing equation. The situation changes in many microsystems devices, which
invariably act in multiple energy domains. The first problem that we will consider
in this regard is concerned with electro-thermal microactuators. In electro-thermal
actuation, an electrically conducting material is used to make the mechanical
structure. The same material conducts electricity and heat and can support the
loads. The actuation is achieved by applying an electrical potential difference
between two points on the structure. See Fig. 11.2, which shows a simple electro-
thermal microactuator.’>?3 The electrical potential causes current to flow. The
current density inside the structure will be non-uniform because of the geometry.
Consequently, the Joule heating term is also non-uniform. The ensuing steady-
state temperature distribution will also be non-uniform. This causes the elastic
structure to deform under the thermal loads. This is indicated in Fig. 11.2. Many
variations of this exist and a general continuum can be considered for optimizing
it for different objectives of micromechanisms with embedded actuation.?*-2°

In the context of topology optimization, we ought to consider which properties
need to be interpolated. For this, we begin with the equations that govern the
distribution of electric current.

V- (k.VV)=0 in Q

11.6
V= ‘/;pcciﬁcd on I, ( )

where k. is the electrical conductivity, V' is the electric potential (i.e., voltage)
and T, is the part of the boundary of the design domain, (2, on which voltage is
specified. The Joule heat generated within {2 is then given by k. (VV - VV). This
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Fig. 11.2. A simple example of an electro-thermal microactuator. When the electric potential is
applied between two points, the current flows non-uniformly and leads to non-uniform temperature
distribution. This leads to a deformation to achieve elastic equilibrium under the thermal loads. The
temperature is shown in the deformed configuration.

enters the thermal equilibrium equations as follows.

V- (kVT)+ ke (VV-VV)=0 in Q
T = Tispecified on I'yp (11.7)
n- (kVT)=fic onl

where k. is the thermal conductivity, 7' the temperature, n the unit normal to the
boundary of €, f;c the temperature-dependent boundary term that accounts for
convection and radiation, and Iy and Iy are portions on which temperature and
heat flux are specified respectively. The Joule heating term appears as the source
term in the thermal problem. The temperature computed by solving Eq. (11.7)
needs to be used in the elastic equilibrium equation shown below.

V-o=0in Q
o :E{e_a(T_Tambient) I}
e=(Vu+VTu) /2

U = Ugpecified ON1 | I

(11.8)

where o and ¢ are the stress and strain tensors, E the elasticity tensor, u the dis-
placement vector, I',,, the part of the boundary on which displacement is specified,
and « the thermal coefficient of expansion. We note that this problem involves se-
quential solution of three governing equation involving four material properties:
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ke, ki, B, and .. Just as we have a physical interpretation for the intermediate state
of E, as discussed in the previous section, the other three can also be interpreted
using microstructure-based composite material. So, topology optimization can be
carried out by taking a design variable p and using it to interpolate all these prop-
erties continuously as shown below (say, for two materials and void-representing
silicon and silicon dioxide and the empty space).

ke ke ke
ky (p_Mm)2 ky ky

_ _ 1.
@ , « m « void

where the method used in Eq. (11.4) is adopted for material interpolation. Al-
though this is quite straightforward, a complication arises in this problem when
convection and radiation are considered. In micromechanical structures convec-
tion plays an important role and needs to be properly accounted for.?” At high
temperatures, radiation is also important. Modeling convention is tricky in topol-
ogy optimization because we do not know where new boundaries would appear.
If we consider 2D problems (which is not unreasonable for micromachined struc-
tures that have very low aspect ratios), we can include convection through top and
bottom surfaces easily. For this, we will need to continuously interpolate the heat
transfer coefficient h as follows.

2
h=Y" exp o), (11.10)
g
m=1,2

Then, convection can be included for top and bottom surfaces at all points in the
design domain, {2. As can be seen in Eq. (11.10), full convention would occur
at a point only if that point is fully occupied by material, i.e., when p = pu; or
2. When the point has an intermediate state of material, then convection will oc-
cur only partially. This can be physically interpreted based on the microstructure
of a composite material. If the microstructure has several small holes, the effec-
tive area available is less than that for a full structure. So, reduced heat transfer
coefficient is justifiable. This may not exactly correspond to it but it will model
it approximately for design purposes. Besides, having a correct estimate for the
convection heat transfer coefficients for micromechanical structures is quite dif-
ficult. Design calculations use conventional empirical formulae from the macro
regime.”>"?’ A second difficulty arises when the side-wall convection is consid-
ered. When a new hole is generated during topology optimization, additional ver-
tical side-walls will be generated. To model convection for these, we should look
at the neighboring points and see if they are absent when the material is present at
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the point. This also can be modeled and physically interpreted as above. To show
this mathematically, we will consider the weak variational form of the governing
equation of the thermal problem (Eq. (11.7)) because we can then show all the
boundary conditions as part of the governing equation. It is given below.

[k (VT -VT) 6T tdQ — [ ke (VV - VV) 8T tdQ
Q Q

(11.11)

+[20TOT dQ+ Y {
Q

Nn 1
E 5 fh(l - pj)piT(ST tdlk} =0
i=1---N lj

j=1
InEq. (11.11), §7 is the variation of T". The first two terms are essentially the vari-
ational form of the first two terms of the differential equation in Eq. (11.7). The
third term corresponds to the convection through top and bottom surfaces of the
predominantly flat structure, as discussed above. A factor of two appears in this
term based on the assumption that the convection heat transfer coefficient is the
same for top and bottom surfaces. The fourth term models the convection though
vertical side-walls. It has a strange mixed dicrete-continuous form because we
used a discretized finite element interpretation for it. Here, the terms inside the
integral sign show the contribution of the side-wall convection of each finite ele-
ment. Let us say that each finite element has N,, neighbors and an equal number
of common boundaries, s, with its neighboring elements. When there is material
present for the i" element and its j**
the corresponding common boundary contributes to side-wall convection. This
is captured by incorporating the interpolated states of both the elements and its
neighbors. A factor of half is included because each boundary will be counted
twice. Although the above continuous modeling may look complicated, its imple-

neighboring element is not present, then

mentation in each iteration of the topology optimization is not any more difficult
than solving the three governing equations sequentially.'! Physical interpretation
based on microstructured material is simple here but it is not so in the problem we
consider next.

11.4. Electrostatic Microactuation

Even though electrostatic actuation is the most popular actuation technique in mi-
crosystems, topology optimization for this problem has not received much atten-
tion until very recently?®? even though its shape optimization is well studied.?3!
While one can speculate on some reasons for this, an important reason may be
the lack of a technique to continuously interpolate the type of material between
conductors, dielectrics and voids. To appreciate the need for such a continuous
material interpolation, consider the fact that the electrostatic and elastic fields are
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strongly coupled to each other in problems concerning electrostatically actuated
micromechanical structures. For the system shown in Fig. 11.3, which shows a
fully mechanically grounded conductor and another partially supported conduc-
tor, two types of analyses are needed to determine the deformed geometry of the
latter conductor due to the electrostatic force between them.

Void

Conductor 2

Conductor 1

Fig. 11.3. A simple two-conductor electrostatically actuated micromachined structure problem. Con-
ductor 1 is fully anchored while conductor 2 is partially anchored and hence it can elastically deform
under the electrostatic force between them when an electric potential difference is applied. The void
region in between the two conductors is indicated as the bounding box minus the areas occupied by
the two conductors.

The first analysis solves for the electric potential in the void space between the
two conductors given the potential on each conductor. This is done by solving the
Laplace equation in the void region.

V206 =01in Quoid (11.12)

where ¢ is the potential at any point in the void region, €2,,;4. After obtaining ¢,
we can determine the charge density, 1), that exists only the boundaries of the two
conductors. This is used, in turn, to compute the electrostatic force between the
two conductors as follows.

v=n-V¢ onl (11.13)
f.s = (¥*/2e0) n (11.14)

where n is the normal to the boundary I' of the two conductors; & the permittivity
of the void region, and f, the electrostatic force. It can be seen that the electro-
static force is a boundary force. This force goes as a boundary condition (called
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traction in mechanics) for the elastostatic field equations shown below.

V-o=0o0n

o-n=f,onl (11.15)

a:E:%(Vu—&—VuT)

where o is the stress tensor, u the displacement vector, and E the elasticity ten-
sor. The coupling between the governing equations of electrostatic and elastic
equations (i.e., Egs. (11.12) and (11.15)) is two-way because when the deformed
geometry of the conductors changes (and hence the geometry of the void region)
due to the electrostatic force, the electrostatic equation needs to be solved again
followed by elastic equation; and this cycle continues until a self-consistent so-
lution between the two is achieved. In the context of topology optimization, an
additional problem arises. This is because the conductor-void demarcation is not
assumed a apriori. That is, we do not know which portion of the design domain
becomes a conductor and which portion becomes void. Therefore, the interfaces
between them are not known. This implies that we do not know where to apply
the electrostatic forces, which act only on the boundaries. Recently, by tracking
the interfaces, a topology optimization technique for the electrostatically actuated
microstructures is proposed.?® Instead, we can tackle this problem directly as dis-
cussed below. This has an additional advantage of being able to include dielectric
materials anywhere in the design domain as part of the optimization. In microma-
chined structures, four types of materials can exist from the viewpoint of electro-
static equations. These are pure conductors (e.g., metals used in interconnections),
conductors with a dielectric constant that is significantly larger than unity (e.g.,
polysilicon), dielectrics (e.g., silicon dioxide or silicon nitride) and voids. Their
properties are summarized in Table 11.1. The table shows the electrical conduc-
tivity o, permittivity €, and the elasticity tensor E. Additionally, it also shows two
binary variables p; and p,. When they take a value of 0 or 1, four combinations
arise each of which gives the four different types of materials required for the
topology optimization problem of electrostatically actuated micromachined struc-
tures. Notice that in the governing equations of Eq. (11.12), there is no mention of
electrical conductivity. So, before discussing how we can continuously interpolate
among the four types of materials, we should discuss the need for o.

Consider that the design domain is occupied by inhomogeneous distribution
of a mixture of the above four types of materials. Then, considering the continuity
of the free electric charge in conjunction with the microscope form of the Ohm’s
law, for the steady-state conditions, we get

V- (cE.) =0 (11.16)
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Table 11.1.  Materials and their properties relevant to electrostatic-elastic analyses.

Conductor with Insulatin
Property or Conductor: ¢ permittivity: . o & Air or void
) dielectric: d
variable cd
e 1 1 0 0
£ 0 1 1 0
g o, C.y oy ~0 o, =0
& ~&y €ed Z €

where E. is the electric field. In this condition, the design region stores some
electrostatic energy in addition to partially conducting some current. This, in
lumped modeling, is known as a leaky capacitor model with a resistor in parallel
with a capacitor.32 Therefore, we need to consider the continuous distribution of
permittivity too. A question now arises as to how to compute the electrostatic
force for this. An answer is provided by what is known as Maxwell’s electrostatic
stress tensor. This, with a slight modification,?® gives the electrostatic force as a
body force, F,.

B 1 5 1 5 Oc
Foy = (V-eBo)Be — JE2Ve + 3V (E apmpm) (11.17)

where E. is the magnitude of E. and p,, is the mass density. In practical situa-
tions, the last term in the expression in Eq. (11.17) can be neglected because we
are interested in the forces rather than the effects of forces on re-distribution of
permittivity.

The main point about Eq. (11.17) is that we are able to cast the electrostatic
force as body force that acts everywhere in the design domain rather than only
at the interfaces. So, we do not need to track the interfaces between conductors,
dielectrics and voids as they appear and disappear in topology optimization. A
simplified form of Eq. (11.17) without the negligible last term can be written as
follows.

F., = {(VE—VU) ~(5Ee)}Ee—;EfV5. (11.18)

9 g

This leads to a slight modification of the elastostatic equations given by
Eq. (11.15) as indicated below.

V-oc+F.,,=0o0n)
(11.19)

oc=E: (Vu+VuT).

N
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It is worth noticing that the electrostatic force, even in its body-force disguise, still
gives the force only at the regions where there is a change in either permittivity or
conductivity or both. This is because all terms in Eq. (11.19) depend on the spatial
gradients of the two properties-permittivity and conductivity. Nevertheless, it is a
body force. When the design approaches strict demarcation between four different
types of materials, we approach the purely electrostatic situation.

Using the two variables p; and ps in Table 11.1, we can now continuously
interpolate all the relevant properties in the coupled electrostatic-elastostatic prob-
lem as indicated below.**

o=00(1—=p1)+pi{ocipz +0c(1—p2)}
e =eo(1—p2) +p2{ecapr +ea (1—p1)}

E=Eo(1—p1)(1—p2) +Eq(1—p1)p2+Ecpi (1 —p2) +Ecapip2
(11.20)

where the continuous version of the binary nature of p; and p- is clearly visible
in the interpolated elasticity tensor. The continuous modeling of the electrostatic
situation for the general case of four different materials with two design variables
p1 and p2 makes it convenient to pose and solve topology optimization problems
without having to track the ensuing boundaries.?> We will consider some other
multi-physics problems where continuous modeling has been achieved.

11.5. Miscellaneous Microsystems Problems and Emerging Techniques

Continuous interpolation schemes such as the ones described in the last three
sections have been used in many other domains for which topology optimiza-
tion techniques have been applied.' One of the notable ones is piezoelectric
actuation. Homogenization theory for micro-structure based piezoelectric mate-
rials exists and hence it can be readily used for continuous parameterization of
the design domain. Then, one needs to interpolate between normal material and
piezoelectric material, in addition to void, in designing the so-called flextensional
micro or meso scale actuators.>3 It presents no additional difficulties. A second
problem concerning the piezoelectric materials is the design of piezo-composites.
Here, the microstructure of a piezoelectric material itself can be determined us-
ing topology optimization so that desired homogenized properties can be real-
ized.3® This technique for pioneered by Sigmund,® who first did it for desired
mechanical properties by solving the inverse homogenization problem. Using this
method, material microstructure for extreme properties such as negative Poisson’s
ratio, negative thermal expansion coefficient, etc., can be realized.*’® For all
these problems, material(s) and void need to smoothly interpolated. Here, phys-
ical significance is imperative because the resulting periodic micro structures or
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mechanisms? ought to be physically possible equivalent materials. Phononic and
photonic bandgap materials and planar waveguides®>*? have also been designed
using this technique. An interesting recent development is the application of the
continuous material or state interpolation technique to the fluids problems. In a
pioneering work on topology optimization involving fluids, Borrvall and Peters-
son*! used Stokes equation to model low Reynolds number flows and Darcy equa-
tion for the porous flows. The porosity was varied between two extreme limits
so that the limiting cases correspond to a pure solid and pure flow region. Ex-
tensions to Navier—Stokes’ equation is also reported.*>*} In another recent work,
by circumventing the interpolation between solid and fluid in the above manner,
lattice Boltzmann method was used to directly tackle the changing topology of the
solid-fluid mixture within the design domain.** Fluid-structure interaction prob-
lems found in acoustics problems also permit continuous interpolation of material
and switching between Helmholtz and elasticity equations as the material distri-
bution changes.*> Application of similar techniques for problems involving the
distribution of a phase-change material and a normal material using a continuous
interpolation has also been recently reported.*® Physical interpretation for all of
these interpolation schemes can be found in the cited works.

11.5.1. Emerging Techniques

Continuous modeling of the discrete combinatorial problem of material distribu-
tion over a fixed finite element reference mesh is not the only method available
for design parameterization for topology optimization problems. In fact, chang-
ing topologies occur in many analysis problems too. A technique that is quite
useful in handling variable topologies is known as the level set method. Here, the
domain’s topology is represented by the zero-level set curve of a function, ®(x)
defined at different spatial locations, x. When ®, the point x belongs to {2 and
® < 0, it does not. The curve corresponding to & = 0 gives the boundary of (2.
The optimization problem now uses the function ® to vary the topology. Clearly,
this function is continuous. Furthermore, many options exist to define this func-
tion for any given topology. When this approach is used in topology optimization,
the iterative process is seen as the time-axis and the function is taken as ®(x, t).
As ® evolves with time (i.e., as iterations continue), the boundary will continue to
change. The equation for the evolution of @ is obtained by differentiating ® with
respect to time. This gives:*"#3

o dx 09
StV = Ve =0 (11.21)
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where v = dx/dt is the velocity of the material point at the boundary. In fact,
only the component of v that is normal to the boundary is of interest because of the
dot product in Eq. (11.21). This normal velocity of the boundary is chosen appro-
priately to iteratively minimize an objective function subject to some constraints.
Because the boundary is well defined in this method throughout the optimization
procedure, an interpretation of the physical meaning of the design variable is a
moot point. It is also interesting to note that color level sets can be used deal
with more than two material states.* It is argued that level-set based topology op-
timization methods cannot nucleate new holes in 2D implementation®® although
it can coalesce two holes into one. The concept of topological gradient is used
to remedy this situation. The topological gradient quantifies the change in the
objective function when an infinitesimally small hole is introduced at a point in
the design domain. One more emerging approach to circumvent the microstruc-
ture based physical interpretation of material interpolation is to use extended finite
element method (X-FEM) wherein discontinuous shape functions are appended,
as necessary, to include changes within a finite element.! Current literature in
topology optimization indicates that the use of genetic algorithms is increasing.
Although the computational cost is prohibitive, possible to tackle the 0-1 design
parameterization rather directly in genetic algorithm based approaches.’?> Other
emerging approaches are focusing on making topology solutions readily manufac-
turable. The methods described in the next section approach this problem from the
viewpoint of design parameterization rather than imposing additional constraints
as done in some of the recent works.33-34

11.6. Continuous Modeling of a Microfabrication Process

Continuous modeling of a single or multiple materials in a variety of problems
together with topology optimization generates good designs that are usually be-
yond the intuition and prior experience of the designers. However, the optimal
topology solutions are not always manufacturable in their original form. This is
due to two reasons. First, the manufacturing cost may be prohibitively high. For
example, if a design has complicated internal structure (not microstructure) with
many holes, conventional material-removal machining techniques such as milling,
drilling, casting, efc., result in increased computational time and hence high cost.
Material-addition techniques such as stereolithography, although capable of giv-
ing just about any topology or shape, are still expensive. They do not yet give a
structure that has the same structural integrity as the removal techniques. Second,
topology solutions may have some features that will cause problems (e.g., very
high local stresses) if they are manufactured in the exact form. This is seen as
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point-flexures in compliant mechanisms,’> extremely narrow connections, unac-
ceptably high curvatures, efc. So, it is almost imperative to include manufacturing
constraints into topology optimization. Some efforts are under development in
this regard for macro-manufacturing processes. They include explicit constraint
formulation to prevent non-manufacturable features.>>>* While the difficulties
with macro-manufacturing processes can be dealt with additional constraints or
post-processing of the solutions, in the case of micro-manufacturing processes,
such remedies may not be sufficient. Consider, for example, an arch-like design
that stands upright on a silicon substrate and is made of polysilicon. Such struc-
tures are usually made with surface-micromachining. It uses photolithography
masks to pattern alternative layers of structural (e.g., polysilicon) and sacrificial
(e.g., silicon dioxide) materials. In a chosen surface-micromachining process, the
thicknesses of the layers are fixed. So, any shape in the direction perpendicular
to the substrate is not possible. This difficulty cannot be resolved using simple
constraints or post-processing because even a simple deviation from the stepped
(with a slight roundedness) layered construction is not tolerated. For this problem,
a convenient way is to tackle the topology optimization problem by continuous
modeling of the lithography masks. After all, it is a lithography mask that deter-
mines the structural form in the actual manufacturing process. So, we can use a
continuous variable to indicate the mask-opacity. If this variable takes a value of
1 at a point, the mask is blocked at that point; if it is 0, the mask is open; and if it
is between 0 and 1, the mask is porous. Based on this idea, one can simulate the
intermediate structures that have physical significance. By pushing the variable to
either of its limits through penalty formulation as in SIMP, truly opaque and clear
masks can be obtained. An example is shown in Fig. 11.4. Figure 11.4(a) shows
the problem specifications, and Fig. 11.4(b) shows the solution obtained along
with the mask openings in Fig. 11.4(c) when surface-micromachining constraints
are enforced through continuous modeling of the mask layouts. In this example,
the chosen process was Multi-User-MEMS Processes (MUMPs).*¢ Figure 11.4(c)
shows different layers of polysilicon and silicon dioxide for a vertical slice of a
3D structure. The details of this can be found in recent works.>’->8

An alternative method that does not use continuous mask-opacity value has
also been developed.” In this, different possible combinations of resulting layered
patterns are smoothly interpolated. Consider the situation shown in Fig. 11.5 for a
simple three-layer process with two structural layers with a sacrificial layer sand-
wiched between them. At every point in the 2D design domain that is parallel
to the silicon substrate, we can have three binary variables corresponding to each
layer, 3; (i = 1,2, 3) , that decide the closing (; = 1) and opening (3; = 0) of
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Polysilicon layer 2 ——8 ———

Silicon dioxide sacrificial layer 2 —>|l

Polysilicon layer 1

Silicon dioxide sacrificial layer 1

Polysilicon layer 0 —>-

Fig. 11.4. An example of a MUMPs surface-micromachined structure designed by obeying the man-
ufacturing constraints by maximizing the stiffness for a given volume. (a) Specifications, (b) optimal
topology, (c) masks opacities corresponding to the optimal solution, (d) layered structure showing
structural and sacrificial layers. The conformal effect can be observed in this figure. Notice that first
silicon dioxide layer is completely absent because its mask is fully transparent everywhere.

the mask at that point. As shown in Fig. 11.5, there will be eight possible out-
comes for different combinations of (31, 32, 33: (0,0,0), (0,0,1), (0,1,0), (0,1,1),
(1,0,0), (1,0,1), (1,1,0) and (1,1,1) and their associated physical structures. When
the binary variables are made continuous between [0, 1], we need to appropriately
interpolate the material distribution of the eight combinations.

By denoting the material state in the vertical column at a point in the i*” com-
bination by ~; (¢ = 1,2,3), we can write the continuous interpolated state of
material in the vertical column at that point as follows.

8
p= Vigky * Ciky (B)
{ijk)=1
cqigry = [ (Bi) x f(B5) x f(Br) (11.22)

B if the It" layer is present
1 — f3; if the I*" layer is absent

f(ﬁl):{
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(b) W . V) o

000 001 010 OT1 100 101 110 111

Fig. 11.5. Eight binary combinations (binary numbers “abc”) corresponding to a three layer micro-
machining process with oxide sandwiched between polysilicon layers (a) before sacrificial layer etch
(b) after etching. Polysilicon layers are shaded differently only for clarity.

This method, along with the penalty formulation to push the final result towards
one of the eight combinations, gives manufacturable designs for a surface-
micromachining process. The method extends to N layers wherein 2V combi-
nations exist but the number of variables remains equal to N for each vertical
column at every point in the design domain.

11.7. Continuous Modeling of Protein Sequences

We will now consider an entirely different problem of designing the sequence of
the amino acid monomers in the hetero-polymer linear chain of proteins. The
design of a protein entails the determination of its sequence of amino acids for
all its residue sites from among the possible 20 types. A folded protein chain is
not a continuum but it too presents the problem of deciding which amino acid
ought to be placed at its every residue site. It is thus a problem similar to topology
optimization that is converted into a parametric multi-state distribution problem.

In order to see the connection between topology optimization and protein se-
quence design, consider a folded protein chain shown in Fig. 11.6. For simplicity,
first consider only two types of amino acids-hydrophobic (H) and polar (P)-instead
of the 20 types that exist. Such models are called HP models.® They give use-
ful insights into the problem without making it computationally expensive. When
each residue in the chain shown in Fig. 11.6 can be H or P, it leads to a combina-
torial problem. As in Secs. 11.1 and 11.2, instead of solving this binary problem,
here too we can define a continuous variable that decides the state of the residue
sites in the protein chain.”®*¢!
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Fig. 11.6. A sample protein chain using the HP modeling. The design of this sequence entails the
determination of the type of residue at each residue site. This is similar to the problem of deciding
whether to place the material at a point or not, in the design.

Two methods of interpolating the state of the amino acids are proposed in the
recent literature. In one case, the Gaussian distribution function-based interpola-
tion can be used (see Eq. (11.4)). This has an added advantage that it implies the
probability of a certain amino acid being present at a residue site and thus mim-
icking the modeling used in some Monte Carlo methods for protein design.®? In
this case, there will be as many design variables as the number of residue sites in
the protein chain. In the second, 20 (or less if one in interested in reduced amino
acid alphabet) variables will be defined for each site. Then, constraints need to be
imposed to ensure the probability of all the amino acid occupying a site does not
exceed 1. In either case, energy can be written out explicitly for the intermediate
amino acid states. The state interpolation in the first case is non-linear while it is
linear in the second. Mathematical form of both the schemes are discussed below.
For the first case, the interpolated state of the i*” residue state S; is given by

M ( o ‘)2
Si=>_Vjexp % (11.23)
j=1

where there are M types of amino acids. The values of V; are the numerical
indicators associated with each amino acid type, j. The p; and o need to be
chosen to evenly space the peaks of each Gaussian distribution function along the
pi-axis so that S; will assume a value of V; when p; = ;. It works best when
M = 2 and needs a slight modification and introduction of a second variable for
M > 2. For the case of M = 2, which applies to the HP models, we can take
V1 = 1and V5 = 0 to indicate H and P types respectively.

The above interpolation does not restrict p; with any bounds but the second
one (shown below) does. Here, a separate variable is used to indicate the state
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of each of the M amino acid types at each of the N residues. Thus, there will be
N M variables each of which must lie within [0, 1]. A linear constraint is needed to
ensure that only one amino acid type exists at each residue site or their combined
presence does not exceed a value of 1. This gives the following equations for
interpolation, which works for any number of amino acid types.

S = wargiony e (11.24)
M
> w—nrer =1 (11.25)
k=1

Energy, usually free energy, plays an important role in computational protein
studies. Accurate calculation of energy for a given protein chain of a known
sequence is very time-consuming. Hence, reduced and normalized energy be-
tween inter-residue pairs is needed. Such methods exist; one such method known
as Miyazawa-Jernigan (MJ)®* potentials are widely used. Using this, the total
energy can be written by taking all possible inter-residue pairings and their corre-
sponding energy levels multiplied by a number that quantifies the extent to which
that pairing occurs. For the first interpolation scheme, for M = 2, the energy U
can be written as follows.

N N
U= lennSiS; +enr {S;(1 = S;) + (1= 8;)S;} + epr(1 — S;)(1 = S;)]
i=1 j=1
(11.26)
where eyy, egp and epp are known energy values between H and P type amino
acid residues.®> The same energy can be computed in terms of N M variables

using the second scheme as follows.

N N
U= Z Z |:6HH-T2(1‘71)+1$2(3'71)+1 + eHP{$2(ifl)+1x2j + (11.27)

i=1j=1
x2i$2(j71)+1} + €PP$21‘+1$2j}

where the odd entries in the x vector interpolate the H state and the even en-
tries the P state. The second formulation works with any number of amino acid
types. By noting that the energy expression given in Eq. (11.27) is quadratic while
the constraints (see Eq. (11.25)) are linear, we see that the energy minimization
problem becomes a problem of quadratic programming. This can be solved for a
global minimum and its solution provides a lower bound on the energy of a con-
formation.®> This method has shown promising results for HP models as well as
real protein models involving all 20 amino acid monomers. Biologically useful
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insights are yet to come from this approach but its computational efficiency is
adequately demonstrated.

11.8. Conclusions

In this chapter, various methods of interpolating material for the purpose of con-
venient design parameterization for topology optimization are described. Keeping
the reference domain fixed while varying the state of the material(s) and void is the
hallmark of topology optimization. In microsystems, several energy domains are
coupled to each other in a single problem. Hence, several different material prop-
erties need to be simultaneously interpolated. To illustrate this, electro-thermal
and electrostatic microactuators were considered. Physical interpretation of the
interpolated properties is often useful to ensure that the physics of the problem is
not seriously violated. After all, iterative optimization progresses with the help of
gradients and they, in turn, depend on the physical governing equations. Hence,
physical interpretation of the intermediate materials is useful although most topol-
ogy optimization methods use techniques to get pure material(s)-void designs in
the optimized solution. Several new topology optimization problems are emerg-
ing, fluids problems in particular with relevance to micro-fluidics. Some of these
are briefly noted in this chapter. Two other problems, one related to manufacturing
constraints in surface-micromachined structures and another in protein sequence
design are discussed. These problems also use interpolated states (not materials)
to solve the topology optimization problems. A few topology optimization tech-
niques, which do not warrant material interpolation, are also noted. These include
level set methods and genetic algorithms. Designing microstructures of materi-
als, often with extreme properties, is another unique capability of the topology
optimization method. This versatile technique will continue to play a signifi-
cant role in the micro and nano technologies as well as the conventional macro
technology.
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Chapter 12

Mechanical Characterization of Polysilicon at the Micro-Scale
Through On-Chip Tests
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The issue of mechanical characterization of polysilicon used in Micro Electro
Mechanical Systems (MEMS) is discussed in this chapter. An innovative ap-
proach based on a fully on-chip testing procedure is described; three ad hoc
designed electrostatically actuated microsystems are here used in order to de-
termine experimentally the Young’s modulus and the rupture strength of thin and
thick polysilicon. The first device is based on a rotational test structure actuated
by a system of comb finger capacitors which load up to rupture a couple of ta-
pered beams under bending in the plane parallel to the substrate. The second mi-
crosystem is based on a large plate with holes. It constitutes, with the substrate, a
parallel plate capacitor moving in the direction orthogonal to the substrate itself.
A couple of tapered beams placed at the center of the plate is loaded up to rup-
ture in bending in the plane orthogonal to the substrate. The third device is again
based on a system of comb finger capacitors which load up to rupture a notched
specimen of a thick polysilicon layer. Experimental data are obtained which al-
low for the determination of Young’s modulus and rupture strength on the basis
of an accurate data-reduction procedure relying on electromechanical numeri-
cal simulations. The rupture values are interpreted by means of the Weibull ap-
proach; statistical size effects and stress gradient effects are taken into account
thus allowing for a direct comparison of the data obtained from the test structures.
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12.1. Introduction

In recent years, there has been a very fast growth in the field of micro electro-
mechanical systems (MEMS) and devices. Novel design concepts and new
processing techniques are being introduced at a rapid rate, accompanied by the
identification of new market opportunities.'™

However, as in other technologies, the ability to exploit materials is limited by
our knowledge of their properties. In particular, the successful fabrication and the
reliable use of structures with feature sizes in the range 1 ym to 1 mm is strongly
contingent on a sufficiently rigorous understanding of their length scale-dependent
and process-dependent mechanical properties. In turn, such understanding re-
quires the ability to measure the mechanical properties of microscale structures.
The importance of accurate mechanical property measurement was realized early
on in the development of microsystems technologies. As a result, there exist to-
day many different microscale mechanical test techniques, as described in several
recent papers.*—23

In order to measure material properties one should be able to construct a spec-
imen according to a given design, apply an external input in terms of forces or
displacements and measure the specimen response by using direct procedures, in
the sense that the variable of interest should be (almost) directly measured. All
these steps are fully standardised at the macro-scale and are currently applied for
testing construction materials like steel and concrete.

Unfortunately, these practices cannot be easily applied at the scale of MEMS.
In particular, one has to resort to fully or partially indirect approaches. For ex-
ample, in order to measure the Young’s modulus, cantilever beams in bending are
often used; deflection is measured and the material parameter of interest is com-
puted on the basis of an analytical or numerical model of the beam. Even during
on-chip tension tests some sort of inverse analysis has to be performed since, in
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general, only capacitance variations are measured directly while deformations are
obtained on the basis of a numerical model.

Limiting the attention to silicon MEMS, a first general classification of
test procedures can be made between off-chip®!%12:15:17:20-23 and on-chip de-
Vices 6:10:11,14,18,19.24

In both cases the micro-device is generally produced by deposition and etch-
ing procedures. An off-chip tensile test generally resorts to some sort of external
gripping mechanism actuating the force and an external sensor measures the re-
sponse of the specimen. However, in general, picking a specimen only a few
micron thick, place it into a test machine and perform the test is still a challenging
task.

On the contrary, on-chip test devices are real MEMS in which actuation and
sensing is performed with the same working principles of MEMS. On-chip testing
is especially advocated since the thin-film microstructure and the state of residual
stress depend strongly on micro fabrication process steps. Nevertheless, it requires
accurate modeling and numerical/analytical investigations of the whole device.

In principle, material parameters for MEMS, and in primis the Young’s mod-
ulus F, can be determined exploiting several test devices. Among others there are
tension tests, bending of cantilever beams, resonant devices, bulge tests, buckling
tests. Clearly, the most direct approach is the tension test, but unfortunately this
is not always applicable since it requires the deployment of considerable forces
at the micro-scale in order to produce a significant deformation in the specimen.
Hence a wealth of alternative solutions have been proposed in the literature.

The purpose of the present chapter is to discuss some recent results related to
a completely on-chip approach for the mechanical characterization of polysilicon.

Three different MEMS for on-chip testing have been designed which load up
to rupture under bending and tension silicon specimens. The first one is based on
a rotational electrostatic actuator which contains a series of interdigitated comb-
fingers and loads a couple of specimens in bending in the plane parallel to the
substrate. The second one loads the specimens in the plane orthogonal to the sub-
strate thanks to a parallel plate actuator which moves in the direction orthogonal
to the substrate. The third device consists of system of comb finger capacitors
which load up to rupture a notched specimen of a thick polysilicon layer due to
in-plane displacements.

By means of a data reduction procedure based on the measurement of the
capacitance variation, it is possible to obtain the value of the Young’s modulus of
the specimen and that of the maximum stress at rupture.

An outline of the chapter is as follows. Section 12.2 contains a brief descrip-
tion of the fabrication process and of the data reduction procedure adopted in the
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experimental tests. Section 12.3 is devoted to the description of Weibull
approach for the determination of the failure probability of polysilicon MEMS.
Sections 12.4 and 12.5 are, respectively, dedicated to the description of the elec-
trostatic actuators and experimental results. Finally Sec. 12.6 contains some clos-
ing remarks.

12.2. On-Chip Testing with Electrostatic Actuation

12.2.1. Fabrication Process

The on-chip test devices discussed in the present chapter were produced follow-
ing the surface micro-machining process TNELMA™ (Thick Epipoly Layer for
Microactuators and Accelerometers) which has been developed by STMicroelec-
tronics to realize in-silicon inertial sensors and actuators (see also Refs. 4 and 27
for further details). The ThELMA process permits the realization of suspended
structures anchored to the substrate through very compliant parts (springs) and
thus capable of moving on a plane parallel to the underlying silicon substrate.
The process consists of the phases described concisely hereafter and illustrated
schematically in Fig. 12.1.

(1) Substrate thermal oxidation. The silicon substrate is covered by a 2.5 ym
thick layer of permanent oxide obtained with a thermal treatment at 1100°C.

(2) Deposition and patterning of horizontal interconnections. The first polysil-
icon layer is deposited above the thermal oxide; this layer (polyl) is used
to define the buried runners which are used to bring potential and capaci-
tance signals outside the device and it can be used as structural layer in thin
polysilicon devices.

(3) Deposition and patterning of a sacrificial layer. A 1.6 um thick oxide layer
is deposited by means of a Plasma Enhanced Chemical Vapour Deposition
(PECVD) process. This layer, together with the thermal oxide layer, forms
a 4.1 pum thick layer which separates the moving part from the substrate and
which can be considered analogous with the sacrificial layer in a Surface
Micromachining process.

(4) Epitaxial growth of the structural layer (thick polysilicon). The polysilicon
is made grow in the reactors, thus reaching a thickness of 15 ym.

(5) Structural layer patterning by trench etch. The parts of the mobile structure
are obtained by deep trench etch which reaches the oxide layer.

(6) Sacrificial oxide removal and contact metallization deposition The sacrificial
oxide layer is removed with a chemical reaction; in order to avoid stiction
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Fig. 12.1.  Schematic illustration of Thelma surface micro-machining process. 1) Substrate thermal
oxidation. 2) Deposition and patterning of horizontal interconnections. 3) Deposition and patterning
of a sacrificial layer. 4) Epitaxial growth of the structural layer (thick polysilicon). 5) Structural layer
patterning by trench etch. 6) Sacrificial oxide removal and contact metallization deposition.

due to attractive capillary reactions, this is done in rigorously dry conditions.
The contact metallization is deposited; it will be used to make the wire-
bonding between the device and the metallic frame.

The focus here is on the mechanical characterization of both the thin polysil-
icon film named polyl and of the thick structural layer (thick polysilicon) in the
previous brief description of ThELMA process (see phases 2 and 4). The devices
for on-chip testing ad hoc designed and produced therefore contain 0.7 pm polyl
and 15 pm thick polysilicon specimens, which are suspended on the substrate
due to the etching phase which destroy part of the initial oxide layers (phases 3,
5 and 6).

Figure 12.2 presents a cross-section of the layered structure obtained through
the ThELMA process. Since the columnar layout strongly depends on the z
coordinate orthogonal to the substrate, the polyl and thick polysilicon specimen
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Fig. 12.2.  SEM image of thick polysilicon.

addressed herein are expected to display different homogenized material
properties.

12.2.2. Test Structures and Data Reduction Procedure

In the test devices described in Secs. 12.4 and 12.5, the specimens are co-
fabricated with the actuator in order to obtain precise alignment and gripping of
the specimens and also to reduce the set up size. The devices have an integrated
system of electrostatic actuation: inter-digitated comb-finger actuators in the cases
of the bending tests of Sec. 12.4 and of the tension tests of Sec. 12.5; parallel plate
actuator in the case of the out of plane bending test of Sec. 12.4.

During the tests an input voltage V' is applied to the actuator and a capaci-
tance variation C' is measured. The capacitance variation can be related to some
significant displacement (or rotation) of the specimen through simplified analyt-
ical formulae or through electrostatic finite element simulations of the complete
device. The corresponding electrostatic force can then be determined as a function
of the displacement by the derivative of the electrostatic energy, which, in turn, is
proportional to the derivative of the capacitance. This general scheme for data
reduction will be detailed in Secs. 12.4—12.6 for each on-chip test structure. In
Fig. 12.3 the meaningful experimental plots used in the data reduction procedure
are shown for the case of the rotational device of Sec. 12.4, while Fig. 12.4 shows
the final torque versus rotation plots.

Tests were carried out at room temperature and at atmospheric humidity, with
a probe station mounted on an optical microscope. A slowly increasing voltage
was applied in order to induce quasi-static loading conditions in the specimen.
Details on the experimental setup can be found in, e.g., Corigliano et al.”’
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Fig. 12.3. Data reduction procedure applied to the rotational electrostatic actuator. (a) Experimental
capacitance versus voltage plots; (b) rotation versus measured capacitance plot; (c) torque versus
applied voltage plot.

12.3. Weibull Approach

The Weibull approach,3*-3°

is widely applied for the study of brittle materials,
like, for example, ceramics. This is the reason why it has been recently applied
also to the study of rupture phenomena in polysilicon MEMS 6222327 Weibull
theory essentially gives a way to estimate the failure probability of a mechanical
system, starting from the computation of the probability of failure of its weak-
est part, the theory is therefore also known as the weakest link approach. The
Weibull cumulative distribution function is found, applying the theorem of joint
probability, by first computing the probability of survival of a system composed
by a large number of elementary parts. This basic idea is extended to a general
case, after introduction of limiting hypotheses. The choice of the function giving
the survival probability of a single part was not originally based on a precise me-
chanical interpretation of the rupture process. A recent and interesting discussion
on the applicability of Weibull approach can be found in Ref. 36. By means of
the Weibull approach it is possible to take into account the experimental scatter of
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Fig. 12.4. Rotational electrostatic actuator. Experimental torque versus rotation plots.

strength values typical of brittle materials, the statistical size effect and the depen-
dence of the probability of failure on the stress distribution. In this chapter only a
brief introduction on Weibull theory applied to MEMS is given.

The application of Weibull approach to a uniformly stressed uniaxial bar gives
the following equation for the probability of failure F;:

Q /fo—o,\"
_m< = >+] (12.1)

where: (2 is the volume of the bar, €, is a statistically uniform representative

Pr=1—exp

volume, o, 09 and m are material parameters, < e >_ denotes the positive part
of e:

<e> =, if >0; <e>,=0 if ¢<O0.

It is important to recall that Eq. (12.1) is based on the assumption of statistically
uniformity of every element (2,.

From Eq. (12.1) parameter o can be interpreted as the increase of the stress
level w.r.t. value o, to which corresponds a probability of failure of 63.2% in a
tensile specimen, uniformly stressed, with a volume (2,..

In the case of a multi-axial, non uniform stress state it is usually assumed that
cracks form in the planes normal to the principal stresses 01 (x), 02(x), 03(x); the
probability of failure is given by:

3 m
1 0i(X) — oy
Pr=1- - — ) dQ 12.2
i exp |~ /Q ;Zl < p > (12.2)

+
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Equation (12.2) is obtained from Eq. (12.1) iterating the hypothesis of statistical
uniformity of every volume and computing the joint probability of survival for
every infinitesimal volume.

The above equation is of general applicability and has been obtained by iterat-
ing the hypothesis of statistical equivalence of all elementary parts which consti-
tute the volume €. It is also important to notice that the fracture criterion based on
principal stresses in a 3D situation is another strong assumption which could be
substituted by another one, giving rise to a different stress function in the integral
of Eq. (12.2).

The general expression (12.2) is here applied under the assumption that
o, = 0, which means that all level of stresses have an influence on the probability
of failure. Equation (12.2) is then re-written in a more compact way as:

FPr=1—exp [—Ql/ (iﬁ?) dQ} (12.3)
r JQ

once the equivalent stress 5 (x) is defined by:

3 1/m
F(x) = <Z (0 (x)>if> (12.4)

i=1
The above relations can be used in order to estimate the probability of failure FP;
of a given structure or solid once the Weibull parameters m and o are known
and the elastic distribution of stresses has been computed via analytical formula
or numerical solutions, e.g., the FE method.

Parameters m and o are usually experimentally determined starting from a
series of uniaxially tensile tests on cylindrical specimens of volume €2 and surface
area A; in this simple case Eq. (12.3) reduces to:

Pr=1—exp [—g (:0) ] (12.5)

Weibull parameters can be identified also from a specimen or structure loaded
in a multiaxial situation with a non-uniform stress distribution. Let us re-write
Eq. (12.3) in a form similar to Eq. (12.5):

1 ~ m Q nom m
Pr=1—exp [_Q/ <UU(:)) dQ] =1-—exp [_Q <Uao ) ﬁm}
rJQ T

(12.6)

where (3 is defined by

3
g = 19/92@ (x))’}:dﬁzé/ﬂ(h(x))mdQ (12.7)
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and opom represents a nominal stress in the non uniformly stressed specimen or
structure, which acts as a scaling parameter for the elastic response. Notice that
function h(x) defined by Eq. (12.7b) depends only on the normalized stress distri-
bution in the linear elastic response and is therefore independent of the load level.

In order to compare the behaviour of different structures, it is possible to define
a critical stress level as the nominal stress level o,,mo evaluated in the structure
when the probability of failure is equal to 63.2%, in full equivalence to the in-
terpretation of o for a uniaxially, uniformly loaded specimen. From Eq. (12.6b)

thus follows
1/m
oo
Onom0 = FO (ﬁ) (12.8)

Given two structures (1) and (2), it is therefore possible to write

. )y = @<&>1/m (o - @<&>1/m (Gnomo)1 _ @(&)l/m
om0t g\ romoJ2 5\, (Gnomo)2  B1 \SU ’

(12.9)

Relations (12.9) allow for a direct comparison of the behaviour of structures with
different volumes and stress distributions. The variation of parameter opomo With
the volume clarifies the kind of size effect related to the statistical uniform distri-
bution of defects described by a Weibull approach. oy, is inversely proportional
to the volume and this dependence increases with decreasing m; at the limit, by
letting m to infinite, the statistical size effect disappears. Noteworthy is also the
dependence of o,omo on the parameter 3, which in turn depends on the stress
non-uniformity.

(=

EHT= 500K/ Mag= 244X WD= 15mm PhotoNo.=6806

(a) (b)

Fig. 12.5. Rotational electrostatic actuator for on-chip bending tests. (a) General view; (b) detail of
the bending specimen.
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12.4. Characterization of Thin Poly-Layers

12.4.1. On-Chip Bending Test Through a Comb Finger Rotational
Electrostatic Actuator

12.4.1.1. General Description

The first on-chip device discussed is shown in Fig. 12.5 (see also Refs. 29, 30, and
32). It is made of a central ring connected to the substrate by means of two tapered
0.7 pm thick specimens (Fig. 12.5(b)) which also act as suspension springs of the
whole device. Rigidly connected to the central ring are 12 arms with a total of 384
comb fingers capacitors which move, due to the electrostatic attraction, towards
the stators connected rigidly to the substrate. When a voltage is applied to the
device, the comb fingers develop a force distributed along the 12 arms, equivalent
to a torque applied to the central ring. This, in turn, loads the two specimens in
bending in the plane parallel to the substrate. The force developed by the system
of comb fingers is sufficient to load the specimens up to rupture.

The specimens are a pair of doubly clamped slender beams, with a length
of 34 um and a trapezoidal cross-section. Their width decreases linearly from
5.3 pm to 1.8 pum. This shape was ad hoc designed to localize the fracture of the
specimen in a specified area through stress concentration.

12.4.1.2. Data Reduction Procedure

The rotational on-chip device was tested in order to determine experimentally the
Young’s modulus and the rupture strength of 0.7 pm thick, thin polysilicon. The
general data reduction procedure of Sec. 12.2 was applied; in the present case
simplified analytical formulae were used in order to transform the applied voltage
in the torque applied by the electrostatic actuator on the rotational device and the
measured capacitance variation (with respect to a reference level) in the angle of
rotation of the central ring of the rotational device.

The electrostatic attraction of the 32 comb fingers placed along each arm was
supposed to be uniformly distributed along the arm, with a resultant Fy.y,; the total
torque was therefore evaluated as:

larm larm tv?
M=n (zo + “2) Fym = 14 (zo + a2 ) ncfeOT (12.10)

where n, is the number of arms, [ the distance between the external part of the
central ring and the centre of the whole device, I, the length of each arm, ns
the number of comb fingers for each arm, ¢, the empty space dielectric constant,
t the thickness of the arms in the direction orthogonal to the substrate, g the gap
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between the rotor and the stator in each comb finger, V the applied voltage. Equa-
tion (12.10) allows us to compute the value of the global torque M for a given

voltage V.
Let us consider the 32 comb fingers distributed along each arm defined by in-
dex?=10,1,...,31, being ¢ = 0 the finger nearest to the centre. The contribution

to the total capacitance of the :-th comb finger is given by
t t
C; = Co; +2% Ax; = 2%9 (Ro +iAR) (12.11)

where CY; is the capacitance corresponding to the initial configuration, Ax; the
value of the displacement in the direction orthogonal to the arm due to electrostatic
attraction, 6 is the angle of rotation of the device, R the distance between the rotor
finger ¢ = 0 and the centre, AR the distance between two stator fingers. The total
capacitance of the rotational device can be computed by summing the contribution
of each finger and of each arm:

31 31 31
¢
C=n.Y Ci=n.> Coi+2n,"20 (Ro +iAR) (12.12)
i=0 i=0 i=0

Co+ [27%% (32R0 + 496AR):| 0

By means of the equation above, it is possible to compute the rotation of the
device from the measured total capacitance C'; since only capacitance variations
are relevant, the value of Cj is assumed to be zero.

—
“123.686 331,298 786.282 1241
103806 558.79 1014 1469

() (b)

Fig. 12.6. Rotational electrostatic actuator. (a) Detail of the FE mesh; (b) maximum principal stress.

The total torque and the total capacitance were computed starting from experi-
mental values of Voltage and Capacitance variation by introducing in Eqgs. (12.10)
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and (12.12) the following data:
ng =12 ng =32 Iy =100 um lyy = 307.65 um ¢ =15 pum

F
Ry=108ym AR=95um ey=8.854x 10~° E—m (12.13)

The resulting values are
M =5.18V? uN um; C=Cy+10.416 pF. (12.14)

An example of the experimental capacitance versus applied voltage plots and the
corresponding torque versus rotation plots obtained after application of relations
(12.4) is shown in Figs. 12.3 and 12.4, already discussed.

Starting from the torque versus rotation plot, it was possible to obtain the
Young’s modulus and the rupture strength of the material (see Sec. 12.6) with the
aid of a linear elastic Finite Element (FE) analysis performed on the 3D mesh of
Fig. 12.6. This result was achieved after introduction of the following hypotheses:
the deformation of the device of Fig. 12.5 is only due to the beam specimens at the
centre, i.e., the external part built with a 15 ym thick polysilicon is assumed to be
rigid; the specimen is linear elastic and homogeneous up to rupture; displacements
and strains are small; the global behaviour is linear and the global stiffness is
proportional to the Young’s modulus of the specimen.

It is important to remark that, besides the above mentioned hypotheses, the
geometry of the specimen must be carefully reproduced in the FE model. The
final FE mesh was therefore obtained after SEM images in order to reproduce the
real geometry.

12.4.2. On-Chip Bending Test Through a Parallel Plate Electrostatic
Actuator

12.4.2.1. General Description

The second on-chip device discussed is shown in Fig. 12.7 (see also Cacchione et
al3%32). Figure 12.7(a) shows the whole device, while Fig. 12.7(b) is a zoom of
the central part where the 0.7 pm thick beam specimens are placed. An holed plate
of 15 pm thick polysilicon is suspended on the substrate by means of four elastic
springs placed at the four corners. The holed plate is also connected to the thin
polysilicon film specimens placed at the centre, as shown in Fig. 12.7. The two
symmetric specimens are in turn connected on one side to the holed plate, while on
the other are rigidly connected to the substrate. The two specimens are therefore
equivalent to a couple of doubly clamped beams. The holes in the plate are due
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Fig. 12.7. Parallel plate actuator for out of plane bending tests: (a) general view; (b) detail of one of
the specimens.

to the etching process for the elimination of the sacrificial layer, thus allowing for
movement of the holed plate with respect to the substrate.

The movement in the direction orthogonal to the substrate is obtained by elec-
trostatic attraction of the holed plate towards the substrate. The whole plate and
the substrate thus act as a parallel plate electrostatic actuator. When the plate
moves towards the substrate, the couple of specimens bend.

It is important to remark that only the squared part of the holed plate acts as
an actuator (see Fig. 12.7(a)), while the holed rectangular parts added to each side
of the plate act as sensors; these in turn allow for the experimental determination
of capacitance variation and vertical movement, as discussed in Sec. 12.2.

The length of each specimen is 7 pm; in order to force the rupture in a section,
their cross-section chosen a priori changes with a linearly varying width which
decreases from 3 ym to 1 pum (see Fig. 12.7(b)).

12.4.2.2. Data Reduction Procedure

As done with the device described in Sec. 12.4, the parallel plate actuator was
used to determine experimentally the Young’s modulus and the rupture strength of
0.7 pm thick thin polysilicon. The general data reduction procedure of Sec. 12.2
was again applied; the experimentally determined capacitance versus voltage plots
are transformed in force versus displacement plots by making use of the relation-
ships between capacitance and displacement and between voltage and electro-
static force, respectively. These relations were obtained by means of accurate
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electrostatic BE and FE simulations. In particular, a series of electrostatic BE
simulations on one of the lateral sensors allowed for the determination of a capa-
citance variation versus vertical gap plot, which was directly used in order to
transform experimental capacitance variation data in vertical displacements. Fig-
ure 12.8(a) shows the BE discretization of one of the sensors.

VA"'"
AR
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AT

(a) (b)

Fig. 12.8. Parallel plate actuator for out of plane bending tests: (a) BE discretization for one of the
sensors; (b) FE discretization of the air sorrounding a part of the actuator.

FE electrostatic simulations were used in order to obtain the vertical force of
attraction on the square holed plate acting as a rotor. The 3D model used to this
purpose is shown in Fig. 12.8(b): a quarter of a representative volume containing
100 holes was modeled, sorrounded by a large volume of air. The electrostatic
field was then evaluated in the air sorrounding the polysilicon plate, applying an
imposed voltage as boundary conditions. From the results of FE electrostatic
simulations it was deduced that the attractive vertical force can be computed by
making use, with negligible error, of the analytical relation for a parallel plate
actuator with the same surface and with the correction due to edge effects. Starting
from the force-displacement plot, the force acting on the specimens was obtained
by subtracting the part equilibrated by the elastic suspension springs in the four
corners of the holed plate (see Fig. 12.7(a)). An elastic 3D FE solution of the
specimen under bending in the vertical plane (Fig. 12.9) was then used to relate the
global stiffness of the specimen to the Young’s modulus and the force at rupture
to the maximum tensile stress in the specimen. Experimental values of Young’s
modulus and rupture stress were therefore finally obtained.

A key point in the data reduction procedure, which deserves further study and
careful examination, is the sensitivity of the results to the value of the vertical gap
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(a) b)

Fig. 12.9. Parallel plate actuator for out of plane bending tests: (a) detail of the Finite Element Mesh;
(b) deformed mesh and maximum principal stress.

between the holed plate and the substrate. The vertical gap cannot be easily mea-
sured on the real device and it can strongly depend on the quality of the etching
process. In the results here presented a mean value of 1.65 ;m was used.
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Fig. 12.10. Experimental distribution of Young’s modulus. (a) Rotational actuator for in plane bend-
ing tests; (b) Parallel plate actuator for out of plane bending tests.

12.4.3. Experimental Results
12.4.3.1. Young’s Modulus

Figure 12.10 shows the experimental distributions of Young’s modulus obtained
by means of the two devices described in Secs. 12.4 and 12.5. It can be observed
that the two mean values (178 GPa and 174 GPa) differ less than the standard
deviation of the two distributions; it can therefore be concluded that the two sets
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of experimental results give in practice the same value for Young’s modulus. The
conclusion above implies that the possible non uniformity of the thin polysilicon
film along its thickness does not influence sensibly the value of average Young’s
modulus obtained after the data reduction procedure applied to specimens loaded
in different bending planes (in plane and out of plane bending).

Fig. 12.11. Rotational actuator for in plane bending tests: example of rupture.

12.4.3.2. Rupture Strength

An image of a specimen loaded up to rupture in the plane parallel to the substrate
by means of the rotational actuator of Sec. 12.4 is shown in Fig. 12.11. The
Weibull approach briefly described in Sec. 12.3 was applied to 50 experimental
results, computing the volume integral in Eq. (12.7) starting from a linear elastic
FE analysis. Volume integrals were computed by means of a numerical Gaussian
integration on each FE.

Weibull parameters oy = 1840 MPa; m = 6.18 were obtained; the nominal
stress value of Eq. (12.8) was opomo = 2894 MPa; these results are shown in
Fig. 12.12.

Figures 12.13 and 12.14 have the same meaning of Figs. 12.11 and 12.12
in the case of the parallel plate actuator. The obtained Weibull parameters are
oo = 2237MPa; m = 5.13, while the the nominal stress value of Eq. (12.8) is
Onomo = 3026 MPa.

The remarkable difference between o and 0,0y Obtained with both test struc-
tures put in evidence the importance of the stress distribution effect: in a highly
non uniformly stressed structure like the ones here tested, the apparent value of
rupture is higher than in a uniformly stressed specimen. The difference in Weibull
parameters obtained with the two sets of experimental results may be explained in
various ways.
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Fig. 12.12. Rotational actuator for in plane bending tests: Weibull cumulative probability densities.
(a) Equivalent Weibull plot for a uniaxial, unit volume specimen; (b) experimental data obtained from
50 tests on the rotational structure, onomo = (00/8)(Qr/Q)Y/™ = 2894 MPa.
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Fig. 12.13. Parallel plate actuator for out of plane bending tests: example of rupture.

A first explanation could be the influence of different loading conditions (in
plane and out of plane) which could locally initiate different rupture mechanisms,
linked to the anisotropy and non uniformity of distribution of the polysilicon film
along its thickness. This conclusion is in partial contrast with the one derived in
the previous section with reference to the elastic behaviour.

A second explanation could be linked to the assumption of ¢, = 0 introduced
in Sec. 12.3 in order to simplify the Weibull approach. It is in fact known that a non
zero o, value influences the final value of identified Weibull parameters o, m. An
additional reason for possible discrepances in the results obtained by means of the
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Fig. 12.14. Parallel plate actuator for out of plane bending tests: Weibull cumulative probability
densities. (a) Equivalent Weibull plot for a uniaxial, unit volume specimen; (b) experimental data
obtained from 21 tests on the parallel plate structure, opomo = (00/8)(Q2r/ Q)l/ ™ = 3026 MPa.

two on-chip tests can be found in the influence of geometrical parameters like the
gap between stator and holed plate in the device of Sec. 12.4.2.

12.4.3.3. Prediction of Failure

As discussed in Sec. 12.3, the probability of failure can in principle be computed
starting from the knowledge of Weibull parameters. Figure 12.15 shows the cumu-
lative failure probability of the parallel plate device of Sec. 12.5 predicted starting
from the Weibull parameters identified with rupture data of the rotational device of
Sec. 12.4. Vice-versa, Fig. 12.16 shows the cumulative failure probability of the
rotational device of Sec. 12.4 predicted starting from the Weibull parameters iden-
tified with rupture data of the parallel plate device of Sec. 12.5. As expected from
the difference in identified Weibull parameters, in Fig. 12.15 an underestimation
of the structural resistance is shown, while the contrary occurs in Fig. 12.16.

12.5. Characterization of Thick Polysilicon Layers

12.5.1. General Description

The third device designed and then experimentally tested is shown in Fig. 12.17.
It has been designed to test the mechanical properties of the epitaxial polysilicon,
the thick layer deposited with ThELMA™ process (see Sec. 12.2). This film is
almost twenty times thicker than poly! one and therefore a larger force is required
to bring the specimen to rupture. This explains the relatively large dimensions of
the structure, taking up a 1600 by 2250 p? rectangular area.
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Fig. 12.15. Prediction of failure of the out of plane bending specimen from Weibull parameters iden-
tified starting from the rotational structure oo = 1840 MPa; m = 6.2.
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Fig. 12.16. Prediction of failure of the rotational structure from Weibull parameters identified starting
from the out of plane bending specimen og = 2237 MPa; m = 5.1 .

The electrostatic actuation is realized by over four-thousand comb-finger ca-
pacitors. The comb fingers are grouped on specific structures called arms each
containing 31 comb finger actuators. Its capacitance variation, as a function of the
seismic mass displacement x, can be estimated from the simple analytic formula:

%ot
Com = 3152 (12.15)
g

where t is the thickness of the layer and g the gap between different fingers.
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Fig. 12.17. Test structure for thick polysilicon layer.

The total number of arms being n, = 130, the force developed by the actuator
can be expressed as:

1 0Cym
K arr
where V represents the applied voltage.

A stiff frame supports the arms of the movable part and is suspended on the
substrate by means of six compliant suspension springs. The upper part of the
frame is clamped to the notched specimen (Figs. 12.17(b) and 12.17(c)), that is
thus loaded with the force developed by the actuator that is not absorbed by the
spring system.

The sensing system is located in the upper part of the frame and again consists
of a series of 480 comb finger capacitors. The total sensing capacitance variation,
as a function of the displacement of the specimen is:

€0t

Foi = V?= 403071/2 (12.16)

t
Crons = 480%1: (12.17)

With the aid of FE electrostatic analysis a simulation of the sensing system was
performed showing that the analytical formula is accurate up to a displacement of
10 pm, which largely overestimates the maximum displacement attainable during
the experimental campaign.
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The specimen of the structure was designed in order to carry both quasi-static
and fatigue testing. It consists in a lever system that causes a stress concentration
in a very localized region (Fig. 12.17(c)). The specimen can be divided into four
parts (Fig. 12.17(b)): i) a beam that is the physical link between the frame and
the specimen; ii) the lever, that transforms the axial action coming from the beam
into a bending moment acting in the notched zone; iii) a notch, which is the most
stressed part, where the crack starts forming; iv) a part fixed to the substrate.

It is worth stressing that a pure tension test on a thick polysilicon layer has
been performed as described by the authors in Ref. 27 employing a different
MEMS, where a series of parallel plate capacitors were used to set a thin and
long silicon rod in tension (see Fig. 12.18).

(b)

Fig. 12.18. Specimen in tension: (a) overall view of the specimen; (b) zoom on a cross section.

The present layout has been preferred since breaking a specimen in pure ten-
sion still remains a formidable task for on-chip tests at the microscale. However,
as far as the elastic properties (Young’s modulus) are concerned, the two tests
provide comparable and reliable results.
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12.5.2. Data Reduction Procedure

The experimental setup and the instrumentation used is the same as that employed
for the thin polyl structures. Only the electrical scheme slightly differs since the
actuator is used only to load the specimen, while the displacement is measured
with the sensing system. This configuration was chosen in order to avoid any
interference from the deformation of the frame during the test and to measure the
displacement as close as possible to the area of the specimen.

Exploiting Eq. (12.17) the measured capacitance variation is related to the
displacement imposed on the extremity of the load beam that causes the rotation
of the lever arm; the force produced by the actuator for every imposed voltage
is obtained from Eq. (12.16); finally the force versus displacement curves can be
plotted (Fig. 12.19). Following the same procedure described in previous sections,
a combined use of experimental tests and numerical simulations leads to the iden-
tification of the Young’s modulus and of the value of the maximum tensile stress
at rupture.

1200

1000 =

800 =

Force [uN]

400} R

\ \ \ \ \
] 1 2 3 4 5 6 7
Displacement [um]

Fig. 12.19. Force versus displacement plots.

12.5.3. Experimental Results

A number of 31 structures, deposited on the same wafer, were tested. As it can be
appreciated in Fig. 12.20, the measurements were highly repetitive.

The mean value measured for the Young’s modulus is of 143 GPa, with a
standard deviation of +3 GPa. Even in this case, the data concerning rupture
of the specimens were interpreted in the framework of Weibull approach, as
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Fig. 12.20. Capacitance variation versus applied voltage plot.

discussed in Sec. 12.2 yielding Weibull modulus m = 25.76 and Weibull stress
o9 = 3622 MPa.

It is worth recalling that the large differences with analogous data collected on
thin polyl layers are expected due to the structural differences between the thin
and thick layers.

After testing, the specimens were analysed using an optical microscope. Fig-
ure 12.21 shows that the fracture starts from the notch as predicted from the FE
simulations carried out during the design phase. It is nevertheless to be noticed
that: the crack path is often irregular and can be quite different from one struc-
ture to another. This can be due to the crystalline structure and grains orientation
in the notched area. The grain morphology and orientation is different from one
structure to another and has a very important impact on the propagation direction.
Moreover the crack starting point is not always the same. This is due to the non-
uniform flaw distribution on the notch surface, caused by the fabrication process.
Flaws distribution is supposed to be responsible for the scatter of the experimental
fracture results.

12.6. Conclusions

The results presented here concern an on-going research activity based on the use
of on-chip tests for the mechanical characterization of thin and thick polysilicon
films. Three on-chip electrostatic devices were designed and used in order to load
0.7 pm and 15 pm thick beam specimens up to rupture. The obtained values of
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Fig. 12.21. Optical microscope images of broken specimens.

Young’s modulus showed a very low dispersion and an apparent independence
on the assumed different loading conditions. The large difference in the Young’s
modulus obtained for the two films was largely expected due to process reasons.
The rupture strength was interpreted by means of Weibull theory, thus clarify-
ing the influence of a non uniform stress distribution and of volume size on the
probability of failure. A discrepancy in the Weibull parameters obtained with the
two devices for poly! films was observed and a discussion on possible reasons of
this differences was proposed. The results appear to be promising for a full me-
chanical characterization of polysilicon based on a complete on-chip mechanical
characterization.
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The need to characterize nanometer-scale materials and structures has grown
tremendously in the past decade. These structures may behave very differently
from their larger counterparts and must be carefully characterized before their
full potential is realized. The challenging task of mechanical characterization
requires an entirely new set of techniques to achieve the force and displacement
resolution needed to accurately characterize these structures. This chapter begins
with a brief review of some of the methods used in mechanical characterization
of nano-scale specimens, followed by a detailed description of a MEMS-based
material testing system. This MEMS-based system allows for continuous ob-
servation of specimen deformation and failure with sub-nanometer resolution by
scanning or transmission electron microscope while simultaneously measuring
the applied load electronically with nano-Newton resolution. Special empha-
sis is placed on modeling and analysis of a thermal actuator used to apply a
displacement-controlled load to the tensile specimen as well as the electrostatic
load sensor. Finally, experimental results demonstrating the advantages of the
MEMS-based system are presented.
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13.1. Introduction

The emergence of numerous nano-scale materials and structures within the past
decade has prompted a need for methods to characterize their unique mechanical
properties. For example, nanotubes and nanowires are seen as ideal structures
for use in a variety of applications ranging from nanocomposites to nano-electro-
mechanical systems. However, their scale presents a new set of challenges to the
mechanics community. Identification of their properties and deformation mecha-
nisms requires techniques of loading, measuring, and imaging with finer resolu-
tions than previously achieved. As a result, these structures demand quantitative
in situ mechanical testing by scanning or transmission electron microscope, or
scanning probe microscope.

13.2. Mechanical Characterization Techniques

The precision required in nano-scale material testing is prohibitive to many tech-
niques used previously on larger scales. This is due to strict requirements in: han-
dling, manipulating, and positioning specimens; applying and measuring forces in
the nano-Newton range, and measuring local deformation. Existing material test-
ing techniques intended to overcome these limitations can be roughly categorized
into three types: (1) dynamic vibration, (2) bending, and (3) tensile tests.

13.2.1. Dynamic Vibration

The Young’s modulus of nanostructures can be estimated by observing their vibra-
tions. Treacy et al.! determined the Young’s modulus of multi-walled carbon
nanotubes (MWNTSs) by measuring the amplitude of their thermal vibrations
within a transmission electron microscope (TEM). One end of the MWNT was
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attached to the edge of a nickel ring while the other end remained free. The ring
and MWNT were then imaged in the TEM. The frequency of the thermal vibration
of the MWNT was significantly faster than the integration time required for imag-
ing, causing the free end to appear blurred. The authors used the blurred region
to determine an envelope of vibration. This envelope increased significantly with
temperature, indicating it was indeed a thermal vibration. The Young’s modulus
of the MWNT was estimated based on the size of the envelope.

Poncharal et al.> measured the Young’s modulus of MWNTs by inducing
resonance within a TEM. Here the MWNTs were attached to a gold wire and
an electrode was introduced using a piezo-driven translation stage on the TEM
holder. An AC voltage was then applied across the wire and electrode, causing os-
cillatory deflection of the MWNTSs toward the electrode. By increasing the driving
frequency to the point of resonance, the authors were able to estimate the Young’s
modulus based on the measured geometry of the MWNTs and their resonance
frequency.

13.2.2. Bending

Bending techniques, including force spectroscopy atomic force microscopy
(AFM),? nanoindentation,* and on-chip testing,>® involve application of a known
bending force while measuring the resulting displacement. These techniques typi-
cally lack the ability to image the specimen during loading. Wong et al.” measured
the Young’s modulus, strength, and toughness of MWNTs and SiC nanorods using
an atomic force microscope (AFM). The nanostructures were randomly dispersed
on a flat substrate and pinned in place by microfabricated patches. The AFM was
then used to bend the cantilevered structures transversely. By measuring the lat-
eral force applied to the AFM probe by the nanostructure, the authors were able
to obtain force versus deflection data at various locations along the length of the
structure.

In the above method, adhesion and friction between the nanostructure and
substrate could not be avoided. To avoid these issues, Walters ef al.® suspended
MWNTs over a microfabricated trench before bending them laterally with an
AFM. Salvetat et al.’ dispersed MWNTs over an alumina ultrafiltration mem-
brane with 200 nm pores. This created similarly suspended nanostructures. The
natural adhesion between the MWNTSs and membrane was found to be sufficiently
strong to fix the MWNTs during testing. The authors then deflected the suspended
MWNTs vertically using an AFM probe in contact mode to obtain similar force-
displacement measurements.
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13.2.3. Tensile Tests

The tensile test is perhaps the most direct method of determining the Young’s
modulus of a material. Some tensile techniques allow for simultaneous load mea-
surement and local imaging by AFM, ' optical interferometry,'! or scanning elec-
tron microscopy (SEM).'>!3 On a larger scale, Pan ef al.'* used a stress-strain
rig to load a long (approximately 2 mm) MWNT rope in tension. This rope con-
tained tens of thousands of parallel nanotubes. Sharpe et al.!! loaded thin films in
tension while simultaneously measuring displacement using either a capacitance-
based displacement probe or laser interferometry, depending on the size of the
sample. To use laser interferometry, two closely-spaced reflective gauge markers
were patterned on the specimen. When shining a laser on these markers, interfer-
ence fringes form which move as the spacing between the markers changes. These
techniques tend to be better suited to the micrometer scale and not to the study of
nanostructures such as nanotubes or nanowires due to their limited resolution.

On a smaller scale, Yu et al.'?> and Ding et al.'® used a micro- or nanoma-
nipulator to conduct in situ SEM tensile testing of MWNTs. The authors fixed
a single nanotube between two AFM probes by localized electron beam-induced
deposition (EBID) of carbonaceous material within the SEM chamber. One of
the AFM probes was of low stiffness (less than 0.1 N/m) and used as a load
sensor. The other probe was rigid and used to apply tensile load. When the
rigid probe was actuated, the soft probe deflected in response to the applied load.
The force applied to the nanotube was estimated based on the deflection of the
soft cantilever and its known stiffness. The deformation of the nanotube was
recorded by the SEM. The Young’s modulus and failure strength of the nanotubes
were then calculated based on the applied forces and corresponding measured
displacements.

Marszalek et al.® attached a gold nanowire to an AFM probe of known stiff-
ness. By lifting the probe a prescribed amount using the piezoelectric actuators of
the AFM and observing the corresponding deflection of the probe, they were able
to deduce the force applied to the nanowire and corresponding displacement.

Other techniques combine microfabricated and larger-scale devices. These
allow alternating SEM or TEM imaging and load or deformation measurement
modes through switching of the imaging electron beam between the specimen
and mircofabricated beams used as load sensors.'>!® During this switching, im-
portant local deformation events may go unobserved. Finally, some techniques
have been developed to provide real time images of the specimen during load-
ing. However, quantitative measurement of load and deformation are not provided
simultaneously.!7-18
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The methods described above represent some of the significant progress made
recently in the mechanical testing of nanostructures. However, lack of control in
experimental conditions or limited accuracy of force and displacement measure-
ments can limit their applicability. Recent advances in micro-electro-mechanical
systems (MEMS) create the potential for material testing systems that overcome
some of the described limitations.

13.3. A MEMS-Based Material Testing Stage

MEMS lend themselves naturally to material testing at the nanometer scale. These
systems consist of combinations of micromachined elements, including strain sen-
sors and actuators, integrated on a single chip. Due to their intermediate size,
MEMS serve as an excellent interface between the macro and nano world. Their
extremely fine force and displacement resolution allows accurate measurement
and transduction of forces and displacements relevant at the nanometer scale. At
the same time, the larger feature sizes and signal levels of MEMS allow han-
dling and addressing by macro-scale tools. Furthermore, many of the sensing and
actuation schemes employed in MEMS scale favorably. For example, the time
response, sensitivity, and power consumption of electrostatic displacement sen-
sors improves as their dimensions shrink. Electrostatic comb-drive actuators are
often used in MEMS-based testing systems to apply time-dependent forces. van
Arsdell and Brown'® repeatedly stressed a micrometer-scale specimen in bending
using a comb-drive actuator fixed to one end of the specimen. This comb-drive
actuator swept in an arc-like motion while the opposite end of the specimen was
fixed, causing bending stresses in the specimen. The comb-drive was also used
to measure displacement, allowing for fracture and fatigue data to be collected
when testing to the point of failure. Kahn et al.?*?! determined fracture tough-
ness by controlling crack propagation in a notched specimen using a comb-drive.
One end of the specimen was fixed while the other was attached to a perpendicu-
larly oriented comb-drive. Electrothermal actuation schemes have also been used
to apply loading.?>?} In these actuators, Joule heating induces localized thermal
expansion of regions of the actuators and an overall displacement. The resulting
strains are often measured using an integrated capacitive sensor and may be veri-
fied through digital image correlation. This section presents a detailed description
of the design and modeling of a MEMS-based material testing system?* for in-situ
electron microscopy mechanical testing of nanostructures. This device allows for
continuous observation of specimen deformation and failure with sub-nanometer
resolution by SEM or TEM while simultaneously measuring the applied load
electronically with nano-Newton resolution. To begin, an analytical model of the
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thermal actuator used to apply tensile loading includes an electrothermal analysis
to determine the temperature distribution in the actuator, followed by a thermo-
mechanical analysis to determine the resulting displacement. A coupled-field
finite element analysis complements the analytical model. Next, the differential
capacitive sensor is analyzed to determine the applied load from the measured
electric signals. Finally, a set of design criteria are established based on the anal-
yses as guidelines for design of similar devices.

thermal
actuator

comb drive
actuator

specimen 200_um

specimen \folded beaMns 200 pm

Fig. 13.1.  Two variations of the MEMS-based material testing stage. (a) “Displacement controlled”
device using a thermal actuator and differential capacitive load sensor. (b) “Force controlled” device
using an electrostatic comb-drive actuator and differential capacitive load sensor.

13.3.1. Device Description

The MEMS-based tensile loading stage?*2° consists of a linear actuator and a load
sensor with a specimen fixed between them. The actuator is used to apply a tensile
load to a specimen attached between the actuator and load sensor, while the load
sensor detects the corresponding load. Figure 13.1(a) shows the entire device.
The electrothermal actuator acts as a “displacement control” in the sense that it
applies a prescribed displacement to the specimen regardless of the force required
to achieve this displacement (within the functional range of the device). The load
sensor is suspended on a set of folded beams of known stiffness and measures
the corresponding tensile force applied to the specimen. Figure 13.1(b) shows
an alternative loading stage using an electrostatic rather than a thermal actuator.
The electrostatic actuators works as a “force control”, applying a prescribed force
regardless of the resulting displacement (again within a functional range).

While both the thermal and electrostatic actuators lend themselves nicely to
standard microfabrication techniques, the remainder of this chapter focuses on
the device using the thermal actuator as a case study in the design and modeling
involved in building such a device. Electrostatic actuators have been thoroughly
described elsewhere, for example.>?728
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13.3.2. Electrothermal Actuator

Electrothermal actuation compliments electrostatic schemes as a compact, stable,
high-force actuation technique.? It involves coupling of electric, thermal, and
structural fields. Typically a resistive heating element is used as a heat input.
This invokes thermal expansion of the device, resulting in a displacement. As
mentioned above, these actuators are considered a “displacement control” as they
displace a specific amount for a given heat input (within the limits of buckling and
material stiffness).

Various forms of thermal actuators have been employed in systems rang-

ing from linear and rotary microengines,®® to two-dimensional nano-scale
31 2

positioners,”" optical benches,’? and instrumentation for material characteriza-
tion.’> By incorporating compliant mechanisms, larger displacements can be
achieved.’!

Modeling of thermal actuators generally takes one of two approaches:

(1) A sequential electro-thermal and thermo-structural analysis,”‘36 or;

(2) A complete coupled three-dimensional finite element analysis (FEA).%7

Additional analyses include characterization of the temperature-dependent
electro-thermal properties?®>’ of these devices.

Sections 13.3.3 and 13.3.4 present an analysis of the thermal actuator em-
ployed by Zhu et al.?** in the MEMS-based material testing system. The de-
scription begins with derivation of a set of analytical expressions for the response
of the thermal actuator using a structural mechanics approach. This analysis is
followed by a three-dimensional finite element multiphysics simulation to assess
the temperature distribution within the actuator.

13.3.3. Analytical Modeling of the Thermal Actuator

A schematic of the thermal actuator to be analyzed is shown in Fig. 13.2. The
thermal actuator consists of a series of inclined polysilicon beams supporting a
free-standing shuttle. One end of each of the inclined beams is anchored to the
substrate while the opposite end connects to the shuttle. Thermal expansion of
the inclined beams, induced by Joule heating, causes the shuttle to move forward.
This heating is the result of current flowing through the beams driven by a voltage
applied across the two anchor points.®® Modeling of these actuators requires a
two-step analysis; first an electrothermal analysis to determine the temperature
distribution in the device, followed by a thermostructural analysis to determine
the resulting displacement field.
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Fig. 13.2. (a) Schematic of the thermal actuator. (b) Cross section of a single beam suspended over
the substrate.

13.3.3.1. Electrothermal Model

An electrothermal model of the device is developed to determine the temperature
distribution as a function of the applied voltage. This is highly dependent upon the
operating environment. When operating in air, the dominant heat transfer mech-
anism is heat conduction between the actuator and substrate through the air-filled
gap between them.?>3638 In contrast, heat dissipation by conduction through the
anchors to the substrate dominates in vacuum.*-# Assuming each beam is ther-
mally independent, an electrothermal model based on a single beam is presented.®
Heat transfer within the beam is treated as a one-dimensional problem since the
length dimension is significantly larger than either of the cross-sectional dimen-
sions.

First examine the case in air, where heat conduction through the air-filled gap
between the actuator and substrate is the dominant mechanism of heat transfer.
Here the governing equation is,

i d*T 72 ST T

P dz? ~h Rr’
where k,, and p are the thermal conductivity and resistivity respectively of the
polysilicon beams; J is the current density; S = g (% + 1) + 1 is a shape fac-
tor accounting for the effect of element shape on heat conduction to the substrate;
Ry = “” + 7 Ay 4 kb is the thermal resistance between the polysilicon beam and
substrate h and w are the thickness and width of a single beam respectively; hg;,
is the gap between the beam and silicon nitride layer on the substrate; h,, is the
thickness of the silicon nitride; h is the representative thickness of the substrate;
kairs kn, ks are the thermal conductivities of air, silicon nitride, and the substrate
respectively; and T is the temperature of the substrate.

(13.1)
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The thermal conductivities k,, and k,;, are both temperature dependent. How-
ever, the assumption of a constant k, yields results similar to those using a
temperature-dependent value of k,.>> Assuming a constant k, and temperature
dependent k,;,., the finite difference method is implemented to solve Eq. (13.1)
by writing the second-order differential equation in the form % =b(z,T), and
approximating it as,

d>T 1
O N (T — 2T +To_y).
dz?  (Az)? (Tirs +Ti1)

1400
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Fig. 13.3. Steady state temperature profile (with respect to the substrate) along a pair of inclined
beams and the shuttle operated in air with an input current of 10 mA for both constant and temperature-
dependent values of kg4-. Locations 0-300 pm and 360-660 pm correspond to the beams while
locations 300-360 pm correspond to the shuttle between the beams. The beams are anchored to the
substrate at locations 0 and 660 pm.

Figure 13.3 shows the steady-state temperature profile obtained for a two-leg
(one pair of inclined beams) thermal actuator operating in air. The temperature
of the shuttle is significantly lower than that of the majority of each beam. This
is due to the relatively low current density in the shuttle, resulting in a lower rate
of heat generation as compared to that of the beams. Furthermore, the relatively
large area of the shuttle results in greater heat dissipation through the air to the
substrate.
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The thermal conductivity of the air has a significant effect on the actuator
behavior.?® This strong dependence is clearly seen in Fig. 13.3, where the only
difference between the two curves is the temperature dependence of the thermal
conductivity of air. k,;, increases with temperature, increasing the heat flow be-
tween the beams and shuttle and the substrate. Consequently, the temperature of
the beams and shuttle is lower for a given current flow. Clearly, decreasing heat
conduction through the air increases the temperature of the beams. Ultimately,
operation in vacuum maximizes the beam temperature for a given current flow,
making the device more efficient.
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Fig. 13.4. Steady state temperature profile along a pair of inclined beams and the shuttle operated in
vacuum with an input current of 3 mA. The thermal conductivity of polysilicon is assumed temperature
dependent. Locations 0-300 pm and 360-660 pm correspond to the beams while locations 300-360
pm correspond to the shuttle between the beams. The beams are anchored to the substrate at locations
0 and 660 pm.

To analyze the case where the thermal actuator operates in vacuum, remove
the term for heat conduction through the air from Eq. (13.1),
d*T
ky—s + J?p=0.
P dx2 P
Figure 13.4 shows that the highest temperature now occurs in the shuttle rather
than in the beams. Here the temperature depends most upon the distance from the
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anchor points which are now assumed to be the only source of heat dissipation.
Since the shuttle is furthest from the anchors, it reaches the highest temperature.

13.3.3.2. Thermomechanical Model

With the temperature distribution now known from the electrothermal analysis, the
thermomechanical behavior of the actuator is modeled to determine the resulting
displacement. The following assumptions are made in the analytical derivation of
the thermomechanical behavior:

the average temperature increase in the inclined beams is known;
deformation of the central shuttle is negligible compared to that of the inclined
beams;

all strains and displacements are small, and;

there is negligible shear deformation of the beams.

As in the electrothermal analysis, a single pair of inclined beams is first considered
as shown in Fig. 13.5(a). Later the entire device, including the thermal actuator,
specimen, and load sensor is analyzed.

! :
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Fig. 13.5. Schematic of a pair of inclined beams subjected to an average increase in temperature AT".
(a) Two beams joined at the central shuttle; (b) Equivalent mechanical representation of a single beam.

The pair of inclined beams, forming a single V-shaped clamped beam, is sub-
jected to a uniform increase in temperature along its length. While the thermo-
mechanical response of a similar structure was previously approximated,® the
following analysis follows a rigorous structural mechanics approach.

Exploiting the symmetry of the system, the mechanical response is equiva-
lently computed considering half of the structure as shown in Fig. 13.5(b). To
determine the axial force in the beam and the displacement of Node A (Fig. 13.5)
in the y-direction, the elastic stiffness matrix of the beam is assembled relative to
the displacements in Node A. Before obtaining the stiffness matrix in the global
frame, it is first computed in a local reference frame as shown in Fig. 13.6. The
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Fig. 13.6. Schematic of an inclined beam in a local reference frame.

governing structural equations for the beam subjected to an average temperature
increase AT are,?

EA -,

I i {aATEA} R 132)
Al 0 Al :

o 12| I ]

where F, A, and [ are the Young’s modulus, cross-sectional area, and length of
the beam respectively; [ is the moment of inertia of the beam with respect to the
out-of-plane axis ( in the local reference frame; Ug‘ and U;‘ are the displacements
of Node A in the directions & and 7 respectively; « is the coefficient of thermal
expansion of the beam material; and Rf and R;;‘ are the reaction forces at Node
A in directions & and 7 respectively. The boundary conditions are known in terms
of the global z-y reference frame in Fig. 13.5. Thus Eq. (13.2) is transformed
to the global system by a rotation matrix relating the local and global degrees of
freedom,

UgA B |:COS€ sinH} Uz
Al |—si A
U; sin 0 cos 6 U;
Applying this relation, Eq. (13.2) becomes,
s EA n G 12E1 EA 12E1
c"— +s cs| — — ——
! & ! & U [aATEAc} Ry
A Al
s EA 12E1 2 EA L 12E7T U; aATEAs R}
l 3 l 3
(13.3)

where ¢ = cos 6 and s = sin §. The boundary conditions reflecting the constraint
at Node A are Ut = 0, R # 0, U # 0, and R = 0. Applying these to
Eq. (13.3) yields the reaction force on Node A in the x-direction and the displace-
ment of Node A in the y-direction for an average increase in temperature AT
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along the beam, namely;

AT _ pA _ c _ ¢
BT =R = —alT BA s = aATEA82@+CQ (13.4)
UAT = U = aAT 1" = OATI = S (13.5)
SR T E2

Here the dimensionless parameter U = A2 /121 represents the ratio of the axial
and bending stresses. Using the reaction force Rm, it is possible to obtain the
compressive axial force IV in the beam by projection along the axial direction,
N = RAc. A similar analysis yields the response of a pair of inclined beams
subjected to an external force F' applied to the central shuttle acting in the y-
direction. In this case, the axial internal force and displacement of Node A are
determined using the same system of governing equations (13.3) by replacing the
vector on the right hand side that depends on the temperature increase with the
external applied force vector [0 F'/ 2]T. The axial force and displacement now
become,
P A EA 12ET\ __,  cs(V—1)
B = & _CS(Z E )U P sy

1 R
2P+ OB PA3(R )

F _77A _
vr=u;=F

Using the displacement U for a given force F, the stiffness of the V-shaped
clamped thermal beam shown in Fig. 13.5 is,

_F , 2\ FA
Ktb:W—2<S +\Il>l

A more realistic situation is one where the V-shaped beam experiences both a
temperature increase AT applied to actuate the device as well as an external force
Fin reaction to the displacement. This displacement is,

20ATEAs + F
K '
In the MEMS-based tensile loading device, a number of heat sink beams run-
ning between the shuttle and substrate are placed near the specimen to reduce the
influence of the thermal actuator on the temperature of the specimen (see for ex-

ample Fig. 13.8). Each pair of heat sink beams has a stiffness in the direction of
f25

UAT-‘FF UAT + UF

the shuttle motion o
12EIy,  2EbL3h

Ky =2 = y
I, 12
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where I, lsp, and by, are the moment of inertia, length, and width of the heat
sink beams respectively. Finally, combining all these factors to make a thermal
actuator with m pairs of thermal beams and n pairs of heat sink beams, the total
stiffness and shuttle displacement are:

Kra=mKy +nKg (13.6)
UAT K F 2 ATEA F
Upg = = mBw 1 _ 2ma s+l (13.7)
Kra Kra

where UAT, given by Eq. (13.5), is the displacement of the actuator in the absence
of heat sink beams. Here the relation for the displacement is obtained by impos-
ing compatibility in the kinematics of the systems of the thermal and heat sink
beams.

UZH UI.S
~—0 ~—

S LS

K,

thermal actuator sample load sensor

Fig. 13.7. Lumped model of the entire tensile loading device with internal forces and displacements
shown in free body form.

13.3.3.3. Thermomechanical Response of Entire Loading Device

With the mechanical response of the thermal actuator known for a given current
input, it is now possible to formulate a set of equations governing the behav-
ior of the entire device. A lumped model of the entire device is constructed as
shown in Fig. 13.7. Here Ky is the stiffness of the tensile specimen, K g is
the stiffness of the load sensor corresponding to the folding beams by which it is
suspended, K1 4 is the stiffness of the thermal actuator computed in Eq. (13.6),
and Upg is the displacement of the load sensor. The central shuttle is assumed to
be rigid. The governing equations for the lumped system shown in Fig. 13.7 are
given by:?
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AUs = Urs —Urs
2maATFEAs — Fra

U =
TA Ko

Fra=Fs=Frs (13.8)
Fs = KsAUg

Frs = KrsUpsg,

where s = sinf and AUg is the elongation of the specimen. Solving the sys-
tem (13.8), the displacement of the thermal actuator Ur 4, the tensile force on
the specimen Fg, the elongation of the specimen AUg, and the corresponding
displacement of the load sensor U, g are obtained:

U x — 2maATEAs n 2maATEAs

T Kra + KraKrs/Ks+ Krs  Kra+ Ks+ KraKs/Krs

2maATEAs
Fo = 13.9)
S Kra/Ks +1+ Kra/Krg (
AUs = 2maATEAs
Kra+ Ks+ KraKs/Kprs
2maATEAs

Urs =

Kra+ KraKrs/Ks+ Krs'

These represent the critical parameters in obtaining force-displacement data
using the MEMS-based tensile loading device.

13.3.4. Multiphysics FEA of the Thermal Actuator

While the displacement of the actuator in vacuum is easily characterized exper-
imentally,” the temperature distribution is more difficult to obtain. Therefore
a coupled-field simulation is particularly necessary. This analysis also helps to
assess the temperature at the actuator-specimen interface and to examine the ef-
fectiveness of the thin heat sink beams in controlling the temperature increase of
the specimen during actuation. The MEMS-based tensile stage is intended to op-
erate within the SEM or TEM. Thus the following finite element electrothermal
analysis is carried out for the case where the device operates in vacuum. The actu-
ation voltage applied across the anchor points serves as the input while the output
includes both the actuator temperature and displacement fields. Displacements
at the anchor points are held fixed in the mechanical boundary conditions. The
thermal boundary conditions are zero temperature change at the anchors.
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Fig. 13.8. (a) Temperature increase (°C) and (b) displacement field (nm) in the thermal actuator.
The displacement component plotted is in the shuttle axial direction. (c) Temperature (°C) and (d)
displacement field (nm) in the thermal actuator with three pairs of heat sink beams at the specimen
end. In this analysis, the heat sink beams are 40 pm in length and 4 pm wide with 16 pm spacing
between them. ANSYS Multiphysics, version 6.1 was used in this analysis.

Figures 13.8(a) and 13.8(b) depict the temperature and displacement in the
thermal actuator for an actuation voltage of 1 V. As previously described, heat
dissipation through the anchors is the dominant dissipation mechanism. Since the
shuttle is furthest from the anchors, the highest temperature occurs in the shut-
tle. Due to the non-uniformity of the temperature distribution, the displacement
is also nonuniform. Heating of the specimen during actuation is unavoidable as a
result of the increased temperature of the shuttle to which the sample is attached.
However, this effect is minimized with the addition of a series of heat sink beams
running between the shuttle and substrate near the shuttle-specimen interface as
shown in Figs. 13.8(c) and 13.8(d). To avoid out-of-plane bending, another three
pairs of heat sink beams are placed at the opposite end of the shuttle. Compar-
ing this to the case without the heat sink beams (Figs. 13.8(a) and 13.8(b)), this
configuration allows for more than twice the displacement at the specimen end
of the shuttle for the same allowable temperature increase at the shuttle-specimen
interface. The problem of specimen heating can be further mitigated with the
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addition of a thermal isolation layer between the actuator and specimen following
the custom microfabrication process® for highly temperature-sensitive samples.

13.3.5. Buckling Analysis

For large tensile loads, buckling of the inclined beams in the thermal actuator is a
concern. This occurs in the plane of minimum moment of inertia when the internal
force exceeds the critical buckling load. Depending on the beam dimensions, this
plane can be either parallel or orthogonal to the surface of the substrate. In this
analysis, each beam is assumed to be fixed at the end where it is anchored to the
substrate, while it is able to translate along the shuttle’s axial direction with no
rotation at the other end. The critical axial force at which buckling occurs is:

2z
For an unloaded thermal actuator (disconnected from the sample and any heat
sink beams), the axial internal force is R2T¢c = aATEAﬁ where R2T
is given by Eq. (13.4). For an actuator connected to a tensile sample, heat sink
beams, and load sensor, the maximum possible axial force achieved is cATF A,
i.e., when the actuator is attached to an elastic system of infinite stiffness and
cannot translate. The true axial force experienced by the beams during operation
falls somewhere between the two extremes.

Pcr:ﬂ—z

(13.10)

13.3.6. Evaluating the Analytic and Finite Element Models

The thermal actuator is calibrated experimentally to verify the analytical and
FEA models described above. Figure 13.9% shows a comparison the analyti-
cal and FEA predictions of actuator displacement for a given current input with
experimentally-measured results. The displacement of the actuator was measured
in the SEM,?° giving spatial resolution of better than 5 nm. Using the analytical
model, the displacement is computed based on experimentally-measured temper-
atures in the actuator.”> As mentioned in Sec. 13.3.4, the input to the multiphysics
model is the voltage applied across the anchor points of the thermal actuator. In
order to obtain the resulting current, the resistance of the actuator is computed
using the output temperature and a value of resistivity corresponding to the aver-
age temperature of the device.?> The models agree well with the experimentally-
measured actuator displacements as shown in Fig. 13.9. This suggests the models
are useful in predicting the behavior of thermal actuators of other geometry. At
large currents (above approximately 12 mA), both the analytical and FEA models
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Fig. 13.9. Comparison of displacement at the actuator-specimen interface as predicted by the analyt-
ical and FEA models and measured experimentally. Displacement is plotted as a function of the input
current. Each experimental point is the average of three experimental measurements obtained from
different but geometrically identical thermal actuators.

deviate slightly from the experimental results. This can be explained largely by
inaccuracies in material parameters such as resistivity and thermal conductivity at
high temperature.?>* Furthermore, the microstructure of polysilicon begins to be
modified at these high current levels and elevated temperatures.?

13.3.7. Load Sensor

The load sensor consists of a differential capacitive displacement sensor sus-
pended on a set of elastic members of known stiffness. By calibrating the stiffness
of the sensor,?%*" the load is computed based on the measured displacement. The
differential capacitive displacement sensor*'? is chosen for its sensitivity and
linear behavior over a range of displacements appropriate for tensile testing of
nanostructures.

The differential capacitive sensor is comprised of a movable rigid shuttle with
electrodes (or “fingers”) pointing outward as shown schematically in Fig. 13.10.2
These fingers are interdigitated between pairs of stationary fingers (Fig. 13.10(b))
fixed to the substrate. Under no load, each movable finger sits centered between
the two stationary fingers. Each set of fingers (one movable and a stationary
on either side) forms two capacitors, one between the movable finger and each
stationary finger. The entire capacitance sensor is equivalent to two combined
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Fig. 13.10. (a) A simple model of the differential capacitor. (b) Double chip architecture used for
measuring capacitance change. The capacitance change is proportional to the output voltage change.

capacitances, C'; and C5, as shown in Fig. 13.10(a), namely,
A
Cq :szc'o:éNdf(l‘Ff)a
0

where e is the electric permitivity, IV is the number of movable fingers, A and d
are the area of overlap and initial gap respectively between the movable finger and
each stationary finger, and f = 0.65dy/h is the fringing field correction factor
with h being the beam height.** The movable fingers are attached to the folded
beams via the rigid movable shuttle so their displacements are equivalent. This
displacement yields a change in capacitance given by,

1 1 __ 2NeA
do—Ad d0+Ad) PP

where Ad is the displacement of the load sensor. Note the fringing effect factor
cancels. For displacements Ad within 50% of the initial gap dg, the capacitance
changes approximately linearly with the sensor displacement. This relatively large
range of linear sensing is a major advantage of differential capacitance sensing
over direct capacitance sensing which uses a single fixed beam for each mov-
able beam. A variety of circuit configurations may be used in measuring capac-
itance.*!"*> Figure 13.10 shows schematically the charge sensing method used in

AC:C1—CQZN€A< Ad7
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the device described in this chapter. This method mitigates the effects of parasitic
capacitances that generally occur in electrostatic MEMS devices. Here the change
in output voltage AVye, s is proportional to the capacitance change,

Vo

A‘/sense = =
Cy

AC,

where V) is the amplitude of an AC voltage signal applied to the stationary fin-
gers and C' is the feedback capacitor shown in Fig. 13.10. Minimizing stray
capacitance and electromagnetic interference is critical in high resolution capac-
itance measurements. In this case, integrating the MEMS differential capacitor
and sensing electronics on a single chip would minimize these effects, allowing
detection of changes in capacitance at the atto-Farad level.*> However, this would
greatly increase fabrication complexity. The double chip architecture depicted in
Fig. 13.10 is an alternative to the single chip scheme. Here the MEMS-based sys-
tem is fabricated on one chip while a commercial integrated circuit chip (for ex-
ample, Universal Capacitive Readout MS3110, Microsensors, Costa Mesa, CA) is
used to measure changes in capacitance. Both chips are housed on a single printed
circuit board.

An equivalent circuit for the entire device, including the electrothermal actua-
tor, is shown in Fig. 13.11. The load sensor shuttle is connected electrically to the
substrate through the anchor points. The capacitances are given by,

Ay Ao Aq
=Ne| ——+ — 65— 13.11
c e<d0+Ad+g+065h>, (13.11)
B A Ay A,
C3 = Ne AL st 7 (13.13)
ds h

where N is the total unit number of differential capacitors, A; is the overlapping
area of the stationary finger with the movable finger, A5 is the overlapping area
of the stationary finger with the substrate, dj is the gap between the stationary
finger and the movable finger, Ad is the displacement of the movable finger, d3 is
the gap between the two stationary fingers, g is the gap between the fixed finger
and substrate, and h is the finger thickness. In Eqgs. (13.11) and (13.12), the first
term represents the capacitance between each fixed finger and the corresponding
movable finger. The second term is the capacitance between the fixed finger and
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Fig. 13.11. (a) The device with an electrothermal actuator and corresponding resistances and capac-
itances. The inset shows details of the movable and stationary fingers. R2 denotes the resistance of
thermal beams, R12 the resistance of specimen, R; and R3 the resistances of electric traces, C'; and
C5 the capacitances between the movable beams and the two stationary beams, respectively, and C'3
the capacitance between two nearby stationary beams. (b) Equivalent electric circuit for the device in
(a). (c) Equivalent circuit to that in (b) after a A — Y transformation.

the shield beneath the load sensor which is held at the same potential as the mov-
able finger. The third term considers the fringe effect. Note that when Ad = 0,
C1 = Cy = Cy. The capacitance term from the fringe effect C's cannot be ne-
glected as d3 is typically comparable to dy. Figure 13.11(b) shows the circuit used
for the device in Fig. 13.11(a) while Fig. 13.11(c) shows the equivalent circuit due
toa A — Y transformation.*> Here the equivalent capacitances are given by,
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C1C5 + CyC3 + C3C4

Ciz =

Ca
Cys = C1Cs 4 CoC3 + C3C, (13.14)
Cy
C1C03 + C2C3 + C3C)
012 = 03 .

Combining Eqgs. (13.11)—-(13.13) and (13.14) gives the difference in capaci-
tance,

C1+C 1 1
C1s = Cas = Neoh (1 + 101022> (do TAd do— Ad)
~ 2N60A1$C2‘3/00Ad, (13.15)
0
2
Cho = Cy + Co + @0 200 + S0 _ constant. (13.16)
Cs Cs

These capacitance values agree well with those obtained in FEA simulation.*¢
The quantity Cy3 — Cas in Eq. (13.15) is the capacitance that is measured exper-
imentally while using the MEMS tensile loading device. This is approximately
five times greater than the quantity C; — Cs, which is advantageous in measuring
sub-femtoFarad capacitances. In practice, the displacement-capacitance relation
is calibrated experimentally?® for improved accuracy.

13.4. Design Criteria

Taking into consideration the above analyses, the following design criteria are set
to achieve an effective and reliable material testing system:

(1) Large load sensor displacements to maximize load resolution;

(2) Low temperature at the actuator-specimen interface to avoid artificial heating
of the specimen;

(3) The testing system operates as a displacement control, i.e., the stiffness of
the thermal actuator is significantly higher than that of the specimen and load
sensor, and;

(4) The actuator does not buckle within the operational temperature range.

The specimen stiffness, failure load, and elongation at failure (AUg) dictate
the choice of actuator geometry and the number and dimensions of the beams.
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Consequently, optimization of the device design requires some preliminary knowl-
edge of the specimen behavior as is customary in experimental mechanics. In
choosing the stiffness of the load sensor (K15), a compromise between the max-
imum force applied to the specimen and sensor displacement must be reached.
The force applied to the specimen is Fs = Frs = K;sUpg. For a differential
capacitance load sensor, the displacement resolution remains approximately con-
stant.2® Thus the smaller the stiffness, the greater the load resolution. However,
in order to achieve the required elongation of the sample AUy for failure, the dis-
placement of the thermal actuator Uz 4 must increase. This in turn requires higher
temperatures resulting in greater heating of the specimen. The displacement of
the thermal actuator (unconstrained by heat sink beams or a specimen) depends
on the beam length [, beam angle 6, temperature increase, and stiffness ratio ¥
given in Eq. (13.5). The longer the beams, the greater the displacement. However,
longer beams are more likely to stick to the substrate during microfabrication and
are more prone to buckling. Thus there is a practical limit placed on the length of
the inclined beams.

25 03
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Fig. 13.12. Important parameters in the device design as functions of the thermal beam angle: (a)
displacement; (b) stiffness of the thermal actuator; and (c) internal stress. The parameters in (a) and
(b) are plotted as dimensionless quantities. Beam dimensions of length [ = 300 um, width b = 8 pm
and height h = 3.5 um were chosen.

Figure 13.12(a)*> shows the displacement of the thermal actuator as given by
Eq. (13.5) as a function of the beam angle. Here the displacement is plotted as a
dimensionless quantity (U7 /aAT1) for a fixed stiffness ratio of ¥ = 1406. The
displacement increases with a decrease in the beam angle in the range 6 > 2°.
Thus to obtain a given displacement, an actuator with a smaller beam angle
(6 > 2°) requires a smaller temperature increase and equivalently a smaller ac-
tuation voltage. Regarding the third design criterion, it is desirable to have the
thermal actuator operate in displacement control mode. The ability to prescribe
the displacement of the tensile specimen is critical in mechanical testing. This al-
lows important mechanical phenomena such as stress softening and fracture to be
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captured. In order to achieve true displacement control, the actuator would ideally
have infinite stiffness, allowing it to reach the desired displacement regardless of
the required force (in theory, it could apply infinite force if given infinite stiffness).
In practice, the actuator stiffness must be significantly larger than that of the spec-
imen and load sensor. Figure 13.12(b) plots the stiffness of the thermal actuator
as a function of beam angle for the same fixed stiffness ratio (V' = 1406). Again
the quantities are plotted in dimensionless form with the dimensionless stiffness
being Kyl /2E A. Contrary to the inverse relationship between actuator displace-
ment and beam angle, the actuator stiffness increases with beam angle. Thus there
is a trade off between maximizing the displacement and stiffness of the actuator.
The final design criterion considers the possibility of buckling. As the temper-
ature of the beams rises, the internal forces build, increasing the possibility of
buckling. Figure 13.12(c) plots the internal axial force as a function of the beam
angle as well as the critical minimum buckling force for a temperature increase of
AT = 800 K. Since the recrystallization temperature of polysilicon (the material
of the beams) is approximately 800 K,*’ the beams are not expected to buckle
within the functional temperature range. The plot shows that the actuator buckles
when the beam angle is less than approximately 5° at 800 K.

——

Fig. 13.13.  Two types of thermal actuators for testing various types of nanostructures. (a) 10 pairs of
thermal beams with beam angle of 10°; (b) 5 pairs of thermal beams with a beam angle of 30°.

To summarize, an actuator with a small beam angle requires the lowest tem-
perature increase for a given displacement. However, the structural stability of the
actuator decreases with beam angle. For specimens requiring large actuator dis-
placements, a beam angle of 10° may be selected (Fig. 13.13(a)). For specimens
requiring only moderate displacements and greater forces, a beam angle of 30°
is more appropriate (Fig. 13.13(b)). In each case, the number of thermal beams
is chosen to achieve the desired actuator stiffness-to-load sensor stiffness and ac-
tuator stiffness-to-specimen stiffness ratios. Likewise, the load sensor stiffness
is chosen according to Eqs. (13.8) and (13.9) once an estimate of the specimen
stiffness and elongation at failure is made.
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13.5. Material Testing

The MEMS-based tensile stage can be used to test nanometer-scale materials and
structures ranging from nanowires and nanotubes to ultra-thin films. As the struc-
tures shrink below the sub-micron and into the nanometer scale, new mechanisms
dominate their mechanical behavior. For instance, in larger structures, generation
and motion of dislocations dictates material behavior. As grain sizes or struc-
tural dimensions fall below 50 to 100 nm, surface and intermolecular mechanisms
gain influence over material behavior. Nanowires and nanotubes posses a rela-
tively large surface area-to-volume ratio, and small volume compared to that re-
quired for the typical dislocation. Consequently, interfaces, interfacial energy, and
surface topography play an increasingly important role in their deformation and
failure processes. Therefore understanding the mechanics of these new materials
and structures is essential. As an example, the following briefly demonstrates the
use of the MEMS-based tensile stage for in-situ SEM and TEM of testing nano-
scale polysilicon films, palladium nanowires, and multi-walled carbon nanotubes
(MWNTS5).

(@)

Fig. 13.14. Sample preparation. (a) A polysilicon thin film tensile specimen cofabricated with the
MEMS device and further thinned by FIB machining. (b) A palladium nanowire being manipulated
into place on the MEMS device using a tungsten probe and nanomanipulator.

13.5.1. Sample Preparation

The size and fragile nature of nano-scale materials and structures demands spe-
cialized techniques for preparation and mounting on the MEMS device. Thin films
may be cofabricated with the MEMS device. This eliminates any handling. For
example, freestanding polysilicon films were co-fabricated with the MEMS de-
vice between the actuator and the load sensor (Fig. 13.14(a)).?* Due to limitations
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in the resolution of the photolithography used to make the devices, the initial
film thickness could not be made thinner than approximately 2 um. To reduce
the thickness dimension, the polysilicon specimen is further machined by focused
ion beam (FIB) down to 350-450 nm. Individual nanowires and nanotubes may
either be grown across the gap between the actuator and load sensor or placed
by nanomanipulator’* as shown in Fig. 13.14(b). This procedure involves use
of a nanomanipulator operated within an SEM to pick up and place an individ-
ual nanostructure across the gap, followed by electron beam-induced deposition
(EBID) of platinum to weld the ends of the structure in place.

1500 Polysilicon Thin Film 1600 Palladium Nanowire

1200
§ = 1200
= 900 S
p & 800
g 600 3
5 -

300 ® 400

0 0
0 02 04 06 038 1 0 0.4 0.8 1.2 1.6
Strain (%) Strain (%)

(a) (b)

Fig. 13.15. Stress-strain data for (a) a polysilicon thin film specimen?® and (b) a palladium

nanowire.24

13.5.2. Tensile Tests
13.5.2.1. Tensile Tests of Polysilicon Thin Films

Thin film specimens cofabricated with the MEMS device were tested in the SEM.
The results of a tensile test of a polysilicon specimen prepared as described in
Sec. 13.5.1 are shown in Fig. 13.15(a). Here the stress-strain curve shows strong
linearity with a Young’s modulus of 156 & 17 GPa.>> This result is consistent

other reported values for polysilicon films. 14648

13.5.2.2. Tensile Tests of Nanowires

The tensile test of a palladium nanowire, shown in Fig. 13.15(b),?* reveals an in-
teresting point. The nanowire was stressed to 1.5 GPa, significantly higher than
the yield stress of bulk nanocrystalline Pd,* and remained elastic without frac-
ture. This phenomenon, which is attributed to the high stress threshold for the
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nucleation of defects,%!

its scale decreases. Ultimately, the strength should tend to approach the theoretical
strength of the material (approximately 1/10 of its Young’s modulus).*

confirms that the strength of the material increases as

13.5.2.3. Tensile Tests of Carbon Nanotubes and the Effects of
Irradiation

In-situ SEM and TEM tensile tests of multi-walled carbon nanotubes using the
MEMS device allow insight into their failure mechanisms. Figure 13.16 shows
sequential SEM images of the in-situ SEM tensile testing of a MWNT. In this
case, fracture occurs in a typical “sword-in-sheath” fashion.!? It is possible that
the outermost shell breaks and subsequently the inner concentric shells telescope
out. However, the instrument resolution does not permit identification of single or
multiple shell failure. As described in Sec. 13.5.1, the two ends of the outermost
shell are clamped to the testing device using EBID of platinum.?* Consequently, it
is reasonable to assume that the outermost shell carries the load and breaks under
tensile loading as only van der Waals interactions between the concentric inner
shells are expected. Based on the assumption that there is minimal load transfer
between the outermost shell and subsequent inner shells, stress and strain are of-
ten calculated using the measured outer diameter of the MWNT and an assumed
shell thickness of 0.34 nm (equal to the interlayer distance of 0.34 nm),'3>? as op-
posed to using the combined thickness of multiple concentric shells. In contrast
to tests of unmodified MWNTs, in-situ TEM tensile tests of MWNTs exposed
to high-energy electron or ion beam irradiation reveal that multiple shells or the
entire cross section break simultaneously, resulting in greater stiffness.*’ This
observation suggests that the irradiation introduces crosslinks between shells, re-
sulting in load transfer. A series of tests demonstrating this effect were performed
using the MEMS device on MWNTs exposed to varying degrees of ion or elec-
tron beam radiation, as well as on unexposed MWNTs as a control.*® These tests
are summarized in Fig. 13.17 and Table 13.1. Here it is important to note that
the irradiation energy of the electron beam used for SEM imaging during mount-
ing of the MWNTs on the MEMS device is well below the threshold for atomic
structure modification and thus is assumed to have negligible effect relative to the
high-energy electron and ion beam exposure.

MWNTs exposed to ion irradiation demonstrated significantly greater stiff-
ness than those that were not.* In Test 1 (see Table 13.1), the MWNT was
irradiated with Ga* ions at a flux of 10'® e cm™2s~! for 10 seconds using a
30 kV accelerating voltage. An in-situ TEM tensile test was then performed using
the MEMS device. The corresponding inset of Fig. 13.17 shows clearly that the
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Fig. 13.16. Sequential SEM images and corresponding stress-strain data of a tensile test of a multi-
walled carbon nanotube. The nanotube is 2 pm in length and 42 nm in diameter.
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Table 13.1. Irradiation conditions and measured mechanical properties of six MWNTs. 0
Shown are the case number, gauge length, outer diameter, applied force at fracture, elongation,
tensile strength? and Young’s modulus?®. Test 6 corresponds to the images shown in Fig. 13.16.

Ton Electron
Gauge  Outer  Radiation  Radiation  Breaking

Test Length  Dia. Dose Dose Force AL ol E*®
# [um]  [nm] [eem™2]  [ecm™?] [uN] [nm]  [GPa]  [GPa]
1 6.69 191 1014 — 31.1 195.6 1525 5,200
2 3.02 142 0.5x10'4 — 20.4 101.2 1345 4,000
3 2.85 169 — 45x1014 9.9 1438 548 1,100
4 3.30 108 — 1.5x10 43 97.5 373 1,300
5 3.82 96 — — 1.9 2219 185 300
6 2.06 42 — — 2.1 156.8 485 1,000

aStress and strain are computed under the assumption that only the outermost shell of the
MWNT bears the load (i.e., the cross-sectional area is taken to be that of the outermost shell
alone).

entire cross section broke as opposed to the typical telescoping, “sword-in-sheath”
mechanism. Thus stress and modulus values reported in Table 13.1, which were
computed assuming only the outermost shell to be load bearing, appear mean-
ingless in this case. In fact, ion irradiated specimens exhibit values of Young’s
modulus of 5,200 and 4,000 GPa which are significantly higher than those re-
ported elsewhere in the literature based on quantum mechanics calculations.’3-
Note also that Ding et al.'® reported moduli ranging from 620 to 1,200 GPa based
on the assumption that only the outermost shell is load bearing. However, they do
not provide evidence that only the outer shell failed. MWNTs exposed to elec-
tron beam irradiation also showed greater stiffness than the unexposed sample,
although to a lesser degree. In Test 4 (see Table 13.1), the MWNT was exposed
to electron beam radiation with a flux of 1.5 x 10'? e cm~2s~! for 100 seconds
within the TEM at an acceleration voltage of 200 kV. In this case, the failure was
telescopic in nature as shown in the corresponding inset of Fig. 13.17. However,
high-resolution TEM images show that more than one shell broke simultaneously
rather than only the outermost shell. Thus again, the computed values of stress
and strain based on the outermost shell assumption, do not accurately represent
the true material behavior.

In summary, tensile tests of MWNTSs exposed to high-energy electron or ion
beam irradiation reveal changes in the mode of failure, suggesting that the irra-
diation introduces crosslinks between shells. Others have reported corroborating
evidence based on experiments (for single-walled carbon nanotube bundles) and
first principle calculations.’®>® Above a certain energy threshold, electron and
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Fig. 13.17. Force-displacement data measured for multi-walled carbon nanotubes exposed to varying
degrees and types of radiation. Corresponding irradiation conditions and test parameters are summa-
rized in Table 13.1.

ion beams can produce vacancies in the nanotube shells and corresponding in-
terstitials in the inter-shell spacing.’® Moreover, molecular dynamics simulations
revealed that these interstitial atoms can form stable and covalent bonds between
shells.”” These simulations further demonstrated that the development of cova-
lent bonds under moderate beam irradiation can increase the failure strength of
MWNTs while excessive irradiation degrades the mechanical properties due to
structural damage (cluster of vacancies) and/or amorphization.”’>® The exper-
imental observations reported here agree strongly with the predictions of these
simulations. These findings show that both electron and ion irradiation could be
used to enhance the mechanical properties of MWNTs. However, in light of the
observed changes in failure mechanisms, conclusions based on existing stress and
strain data computed under the assumption that only the outermost shell bears
the load should be drawn with caution. The observations reported here suggest
there is some degree of load sharing between shells. For this reason, conclusions
inferred from the data reported here focus on the stiffness of the nanostructures,
which were measured directly. With advances in TEM image acquisition, the
MEMS-based testing technique reported here should allow direct imaging of the
the evolution of the failure and the number of shells failing simultaneously.
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13.6. Summary

Mechanical characterization of nanometer-scale materials and structures presents
a unique set of challenges. The excellent force and displacement resolution of
MEMS make them ideal components for material characterization. This chapter
presented the modeling and analysis involved in the design of a MEMS-based
material testing system allowing simultaneous load-displacement measurement
combined with real-time SEM or TEM imaging of the specimen. This system
uses a thermal actuator to apply a tensile load and a differential capacitance dis-
placement sensor of known stiffness to determine the applied load. An analytical
model of the thermal actuator involved an electrothermal analysis to determine the
temperature distribution in the actuator, followed by a thermomechanical analysis
to determine the resulting displacement. A coupled-field finite element analysis
confirms the analytical model. The differential capacitive load sensor was ana-
lyzed to determine the output voltage for a given displacement. A set of design
criteria were established based on the analyses as guidelines for design of simi-
lar devices. Finally, examples of application of the MEMS-based material testing
system to polysilicon thin films, palladium nanowires, and multi-walled carbon
nanotubes were presented. Tensile tests of palladium nanowires demonstrated a
major strength increase as compared to bulk palladium. Tensile tests of multi-
walled carbon nanotubes exposed to varying degrees of electron and ion beam
irradiation showed differences in failure mechanisms and an increase in stiffness
with the level of irradiation. This is attributed to the formation of crosslinks be-
tween shells.
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