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Density and Specific Gravity 
 
 
 
2-1C  
Solution We are to discuss the difference between intensive and extensive properties.  
 
Analysis Intensive properties do not depend on the size (extent) of the system but extensive properties do depend 
on the size (extent) of the system. 
 
Discussion An example of an intensive property is temperature. An example of an extensive property is mass. 

  

 
 
 
 
2-2C  
Solution We are to define specific gravity and discuss its relationship to density.  
 
Analysis The specific gravity, or relative density, is defined as the ratio of the density of a substance to the density 
of some standard substance at a specified temperature (the standard is water at 4°C, for which ρH2O = 1000 kg/m3). That 
is, H2O/ ρρ=SG . When specific gravity is known, density is determined from H2Oρρ ×= SG . 
 
Discussion Specific gravity is dimensionless and unitless [it is just a number without dimensions or units]. 

  

 
 
 
 
2-3C  
Solution We are to discuss the applicability of the ideal gas law.  
 
Analysis A gas can be treated as an ideal gas when it is at a high temperature and/or a low pressure relative to its 
critical temperature and pressure. 
 
Discussion Air and many other gases at room temperature and pressure can be approximated as ideal gases without any 
significant loss of accuracy. 

  

 
 
 
 
2-4C  
Solution We are to discuss the difference between R and Ru.  
 
Analysis Ru is the universal gas constant that is the same for all gases, whereas R is the specific gas constant that is 
different for different gases.  These two are related to each other by uR R / M= , where M is the molar mass (also called 
the molecular weight) of the gas. 
 
Discussion Since molar mass has dimensions of mass per mole, R and Ru do not have the same dimensions or units. 
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2-5  
Solution A balloon is filled with helium gas. The number of moles and the mass of helium are to be determined. 

Assumptions At specified conditions, helium behaves as an ideal gas.   

Properties The universal gas constant is Ru = 8.314 kPa.m3/kmol.K. The molar mass of helium is 4.0 kg/kmol.  

Analysis The volume of the sphere is 

 333 m 113.1m) (3
3
4

3
4

=== ππ rV  

He 
D = 6 m 

20°C 
200 kPa

Assuming ideal gas behavior, the number of moles of He is determined from 

 kmol 9.286=
⋅⋅

==
K) K)(293/kmolmkPa (8.314

)m kPa)(113.1 (200
3

3

TR
PN

u

V  

Then the mass of He is determined from 

 kg  37.1=== kg/kmol) kmol)(4.0 (9.286NMm  
 
Discussion Although the helium mass may seem large (about half the mass of an adult man!), it is much smaller than 
that of the air it displaces, and that is why helium balloons rise in the air. 

  

 
 
 
2-6  
 
 

Solution A balloon is filled with helium gas. The effect of the balloon diameter on the mass of helium is to be 
investigated, and the results are to be tabulated and plotted. 
 

Analysis The EES Equations window is shown below, followed by the Solution window and the parametric table. 
 
"Given Data" 
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D  [m]
Mass of Helium in Balloon as function of Diameter

P = 200 kPa

m  [kg]
P = 100 kPa

 

{D=6"[m]"} 
{P=200"[kPa]"} 
T=20"[C]" 
P=100"[kPa]" 
R_u=8.314"[kJ/kmol*K]" 
 
"Solution" 
P*V=N*R_u*(T+273) 
V=4*pi*(D/2)^3/3"[m^3]" 
m=N*MOLARMASS(Helium)"[kg]" 
 

D [m] m [kg] 
0.5 0.01075 

2.111 0.8095 
3.722 4.437 
5.333 13.05 
6.944 28.81 
8.556 53.88 
10.17 90.41 
11.78 140.6 
13.39 206.5 

15 290.4 
 

Discussion Mass increases with diameter as expected, but not linearly since volume is proportional to D3. 
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2-7  
Solution An automobile tire is inflated with air. The pressure rise of air in the tire when the tire is heated and the 
amount of air that must be bled off to reduce the temperature to the original value are to be determined. 

Assumptions 1 At specified conditions, air behaves as an ideal gas.  2 The volume of the tire remains constant.  

Properties The gas constant of air is R = 0.287 kPa⋅m3/kg⋅K.  

Analysis Initially, the absolute pressure in the tire is 

  P P Pg atm1 = + = + =210 100 310 kPa

Treating air as an ideal gas and assuming the volume of the tire to remain 
constant, the final pressure in the tire is determined from 

 kPa336kPa)(310
K298
K323
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Thus the pressure rise is Tire 
25°C 
210 kPa   2 1 336 310P P PΔ = − = − = 26.0 kPa

The amount of air that needs to be bled off to restore pressure to its original value is 
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Discussion Notice that absolute rather than gage pressure must be used in calculations with the ideal gas law. 

  

 
 

2-8E  
Solution An automobile tire is under-inflated with air. The amount of air that needs to be added to the tire to raise its 
pressure to the recommended value is to be determined. 

Assumptions 1 At specified conditions, air behaves as an ideal gas.  2 The volume of the tire remains constant.  

Properties The gas constant of air is R = 0.3704 psia⋅ft3/lbm⋅R.  
Tire 

0.53 ft3

90°F 
20 psia

Analysis The initial and final absolute pressures in the tire are 

 P1 = Pg1 + Patm = 20 + 14.6 = 34.6 psia 
 

 P2 = Pg2 + Patm = 30 + 14.6 = 44.6 psia 

Treating air as an ideal gas, the initial mass in the tire is 

 lbm 0.0900
R) R)(550/lbmftpsia (0.3704

)ft psia)(0.53 (34.6
3

3

1

1
1 =

⋅⋅
==

RT
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m
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Noting that the temperature and the volume of the tire remain constant, the final mass in the tire becomes 

 lbm 0.1160
R) R)(550/lbmftpsia (0.3704

)ft psia)(0.53 (44.6
3

3

2

2
2 =

⋅⋅
==

RT
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Thus the amount of air that needs to be added is lbm 0.0260=−=−=Δ 0.09000.116012 mmm  
 

Discussion Notice that absolute rather than gage pressure must be used in calculations with the ideal gas law. 
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2-9E  
Solution A rigid tank contains slightly pressurized air. The amount of air that needs to be added to the tank to raise 
its pressure and temperature to the recommended values is to be determined. 

Assumptions 1 At specified conditions, air behaves as an ideal gas.  2 The volume of the tank remains constant.  

Properties The gas constant of air is R = 0.3704 psia⋅ft3/lbm⋅R.  

Analysis Treating air as an ideal gas, the initial volume and the final mass in the tank are determined to be 

 

lbm 33.73
R) R)(550/lbmftpsia (0.3704

)ft 3psia)(196. (35

ft 196.3
 psia20

R) R)(530/lbmftpsia 4lbm)(0.370 (20
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RTm

V
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Air, 20 lbm 
20 psia 
70°F Thus the amount of air added is 

  lbm 13.7=−=−=Δ 20.033.7312 mmm
 
Discussion As the temperature slowly decreases due to heat transfer, the pressure will also decrease. 
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2-10  
 

Solution A relation for the variation of density with elevation is to be obtained, the density at 7 km elevation is to be 
calculated, and the mass of the atmosphere using the correlation is to be estimated. 

Assumptions 1 Atmospheric air behaves as an ideal gas. 2 The earth is perfectly spherical with a radius of 6377 km at sea 
level, and the thickness of the atmosphere is 25 km.  

Properties The density data are given in tabular form as a function of radius and elevation, where r = z + 6377 km: 

r, km z, km ρ, kg/m3

6377 0 1.225 
6378 1 1.112 
6379 2 1.007 
6380 3 0.9093 
6381 4 0.8194 
6382 5 0.7364 
6383 6 0.6601 
6385 8 0.5258 
6387 10 0.4135 
6392 15 0.1948 
6397 20 0.08891 
6402 25 0.04008 

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

z, km  

ρ,
 k

g/
m

3

 

 
Analysis Using EES, (1) Define a trivial function “rho= a+z” in the Equation window, (2) select new parametric table 
from Tables, and type the data in a two-column table, (3) select Plot and plot the data, and (4) select Plot and click on curve 
fit to get curve fit window. Then specify 2nd order polynomial and enter/edit equation. The results are:  
 

 ρ(z) = a + bz + cz2 = 1.20252 – 0.101674z + 0.0022375z2 for the unit of kg/m3, 
 (or, ρ(z) = (1.20252 – 0.101674z + 0.0022375z2)×109 for the unit of kg/km3) 
 

where z is the vertical distance from the earth surface at sea level. At z = 7 km, the equation gives ρ = 0.600 kg/m3.  
 
(b) The mass of atmosphere is evaluated by integration to be 
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where r0 = 6377 km is the radius of the earth, h = 25 km is the thickness of the atmosphere. Also, a = 1.20252, 
b = -0.101674, and c = 0.0022375 are the constants in the density function. Substituting and multiplying by the factor 109 to 
convert the density from units of kg/km3 to kg/m3, the mass of the atmosphere is determined to be approximately 
 

 m = 5.09×1018   kg  
 
EES Solution for final result: 
 

a=1.2025166 
b=-0.10167 
c=0.0022375 
r=6377 
h=25 
m=4*pi*(a*r^2*h+r*(2*a+b*r)*h^2/2+(a+2*b*r+c*r^2)*h^3/3+(b+2*c*r)*h^4/4+c*h^5/5)*1E+9 

 
Discussion At 7 km, the density of the air is approximately half of its value at sea level.   
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Vapor Pressure and Cavitation 
 
2-11C  
Solution We are to define vapor pressure and discuss its relationship to saturation pressure.  
 
Analysis The vapor pressure Pv of a pure substance is defined as the pressure exerted by a vapor in phase 
equilibrium with its liquid at a given temperature. In general, the pressure of a vapor or gas, whether it exists alone or in 
a mixture with other gases, is called the partial pressure. During phase change processes between the liquid and vapor 
phases of a pure substance, the saturation pressure and the vapor pressure are equivalent since the vapor is pure. 
 
Discussion Partial pressure is not necessarily equal to vapor pressure. For example, on a dry day (low relative 
humidity), the partial pressure of water vapor in the air is less than the vapor pressure of water. If, however, the relative 
humidity is 100%, the partial pressure and the vapor pressure are equal. 

  

 
 
 
2-12C  
Solution We are to discuss whether the boiling temperature of water increases as pressure increases.  
 
Analysis Yes. The saturation temperature of a pure substance depends on pressure; in fact, it increases with pressure. 
The higher the pressure, the higher the saturation or boiling temperature. 
 
Discussion This fact is easily seen by looking at the saturated water property tables. Note that boiling temperature and 
saturation pressure at a given pressure are equivalent. 

  

 
 
 
2-13C  
Solution We are to determine if temperature increases or remains constant when the pressure of a boiling substance 
increases.  
 
Analysis If the pressure of a substance increases during a boiling process, the temperature also increases since the 
boiling (or saturation) temperature of a pure substance depends on pressure and increases with it. 
 
Discussion We are assuming that the liquid will continue to boil. If the pressure is increased fast enough, boiling may 
stop until the temperature has time to reach its new (higher) boiling temperature.  A pressure cooker uses this principle. 

  

 
 
 
2-14C  
Solution We are to define and discuss cavitation.  
 
Analysis In the flow of a liquid, cavitation is the vaporization that may occur at locations where the pressure 
drops below the vapor pressure. The vapor bubbles collapse as they are swept away from the low pressure regions, 
generating highly destructive, extremely high-pressure waves. This phenomenon is a common cause for drop in 
performance and even the erosion of impeller blades.  
 
Discussion The word “cavitation” comes from the fact that a vapor bubble or “cavity” appears in the liquid.  Not all 
cavitation is undesirable. It turns out that some underwater vehicles employ “super cavitation” on purpose to reduce drag. 
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2-15  
Solution The minimum pressure in a piping system to avoid cavitation is to be determined. 

Properties The vapor pressure of water at 40°C is 7.38 kPa. 

Analysis To avoid cavitation, the pressure anywhere in the flow should not be allowed to drop below the vapor (or 
saturation) pressure at the given temperature. That is, 

min sat 40 C@P P °= = 7.38  kPa  

Therefore, the pressure should be maintained above 7.38 kPa everywhere in flow.   

Discussion Note that the vapor pressure increases with increasing temperature, and thus the risk of cavitation is greater 
at higher fluid temperatures.   

  

 
 

2-16  
Solution The minimum pressure in a pump is given. It is to be determined if there is a danger of cavitation. 

Properties The vapor pressure of water at 20°C is 2.339 kPa. 

Analysis To avoid cavitation, the pressure everywhere in the flow should remain above the vapor (or saturation) 
pressure at the given temperature, which is 

sat 20 C 2 339 kPav @P P .°= =  

The minimum pressure in the pump is 2 kPa, which is less than the vapor pressure. Therefore, a there is danger of 
cavitation in the pump.   

Discussion Note that the vapor pressure increases with increasing temperature, and thus there is a greater danger of 
cavitation at higher fluid temperatures. 

  

 
 

2-17E  
Solution The minimum pressure in a pump is given. It is to be determined if there is a danger of cavitation. 

Properties The vapor pressure of water at 70°F is 0.3632 psia. 

Analysis To avoid cavitation, the pressure everywhere in the flow should remain above the vapor (or saturation) 
pressure at the given temperature, which is 

sat 70 F 0 3632 psiav @P P .°= =  

The minimum pressure in the pump is 0.1 psia, which is less than the vapor pressure. Therefore, there is danger of 
cavitation in the pump.   

Discussion Note that the vapor pressure increases with increasing temperature, and the danger of cavitation increases at 
higher fluid temperatures. 

  

 
 

2-18  
Solution The minimum pressure in a pump to avoid cavitation is to be determined. 

Properties The vapor pressure of water at 25°C is 3.17 kPa. 

Analysis To avoid cavitation, the pressure anywhere in the system should not be allowed to drop below the vapor (or 
saturation) pressure at the given temperature. That is, 

min sat 25 C@P P °= = 3.17  kPa  

Therefore, the lowest pressure that can exist in the pump is 3.17 kPa.   

Discussion Note that the vapor pressure increases with increasing temperature, and thus the risk of cavitation is greater 
at higher fluid temperatures.   
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Energy and Specific Heats  
 
 
 
 
 

2-19C  
Solution We are to discuss the difference between macroscopic and microscopic forms of energy.  
 
Analysis The macroscopic forms of energy are those a system possesses as a whole with respect to some outside 
reference frame.  The microscopic forms of energy, on the other hand, are those related to the molecular structure of a 
system and the degree of the molecular activity, and are independent of outside reference frames. 
 
Discussion We mostly deal with macroscopic forms of energy in fluid mechanics. 

  

 
 

2-20C  
Solution We are to define total energy and identify its constituents.  
 
Analysis The sum of all forms of the energy a system possesses is called total energy.  In the absence of magnetic, 
electrical, and surface tension effects, the total energy of a system consists of the kinetic, potential, and internal 
energies. 
 
Discussion All three constituents of total energy (kinetic, potential, and internal) need to be considered in an analysis of 
a general fluid flow. 

  

 
 

2-21C 
Solution We are to list the forms of energy that contribute to the internal energy of a system.  
 
Analysis The internal energy of a system is made up of sensible, latent, chemical, and nuclear energies.  The 
sensible internal energy is due to translational, rotational, and vibrational effects. 
 
Discussion We deal with the flow of a single phase fluid in most problems in this textbook; therefore, latent, chemical, 
and nuclear energies do not need to be considered. 

  

 
 

2-22C  
Solution We are to discuss the relationship between heat, internal energy, and thermal energy.  
 
Analysis Thermal energy is the sensible and latent forms of internal energy. It does not include chemical or 
nuclear forms of energy. In common terminology, thermal energy is referred to as heat. However, like work, heat is not a 
property, whereas thermal energy is a property. 
 
Discussion Technically speaking, “heat” is defined only when there is heat transfer, whereas the energy state of a 
substance can always be defined, even if no heat transfer is taking place. 

  

 
 

2-23C  
Solution We are to define and discuss flow energy.  
 
Analysis Flow energy or flow work is the energy needed to push a fluid into or out of a control volume. Fluids at 
rest do not possess any flow energy. 
 
Discussion Flow energy is not a fundamental quantity, like kinetic or potential energy. However, it is a useful concept 
in fluid mechanics since fluids are often forced into and out of control volumes in practice. 
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2-24C  
Solution We are to compare the energies of flowing and non-flowing fluids.  
 
Analysis A flowing fluid possesses flow energy, which is the energy needed to push a fluid into or out of a 
control volume, in addition to the forms of energy possessed by a non-flowing fluid. The total energy of a non-flowing 
fluid consists of internal and potential energies. If the fluid is moving as a rigid body, but not flowing, it may also have 
kinetic energy (e.g., gasoline in a tank truck moving down the highway at constant speed with no sloshing). The total 
energy of a flowing fluid consists of internal, kinetic, potential, and flow energies. 
 
Discussion Flow energy is not to be confused with kinetic energy, even though both are zero when the fluid is at rest. 

  

 
 
2-25C  
Solution We are to explain how changes in internal energy can be determined.  
 
Analysis Using specific heat values at the average temperature, the changes in the specific internal energy of ideal 
gases can be determined from Tcu avgv Δ=Δ , .  For incompressible substances, cp ≅ cv ≅ c and Tcu avgΔ=Δ . 
 
Discussion If the fluid can be treated as neither incompressible nor an ideal gas, property tables must be used. 

  

 
 
2-26C  
Solution We are to explain how changes in enthalpy can be determined.  
 
Analysis Using specific heat values at the average temperature, the changes in specific enthalpy of ideal gases can be 
determined from Tch avgp Δ=Δ , . For incompressible substances, cp ≅ cv ≅ c and PvTcPvuh avg Δ+Δ≅Δ+Δ=Δ . 
 
Discussion If the fluid can be treated as neither incompressible nor an ideal gas, property tables must be used. 

  

 
 
 
Coefficient of Compressibility  
 
 
2-27C  
Solution We are to discuss the coefficient of compressibility and the isothermal compressibility.  
 
Analysis The coefficient of compressibility represents the variation of pressure of a fluid with volume or density 
at constant temperature. Isothermal compressibility is the inverse of the coefficient of compressibility, and it represents 
the fractional change in volume or density corresponding to a change in pressure. 
 
Discussion The coefficient of compressibility of an ideal gas is equal to its absolute pressure. 

  

 
 
2-28C  
Solution We are to define the coefficient of volume expansion.  
 
Analysis The coefficient of volume expansion represents the variation of the density of a fluid with temperature at 
constant pressure. It differs from the coefficient of compressibility in that the latter represents the variation of pressure of 
a fluid with density at constant temperature. 
 
Discussion The coefficient of volume expansion of an ideal gas is equal to the inverse of its absolute temperature. 
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2-29C  
Solution We are to discuss the sign of the coefficient of compressibility and the coefficient of volume expansion.  
 
Analysis The coefficient of compressibility of a fluid cannot be negative, but the coefficient of volume expansion can 
be negative (e.g., liquid water below 4°C). 
 
Discussion This is the reason that ice floats on water. 

  

 
 
2-30  
Solution The percent increase in the density of an ideal gas is given for a moderate pressure. The percent increase in 
density of the gas when compressed at a higher pressure is to be determined. 

Assumptions The gas behaves an ideal gas.  

Analysis For an ideal gas, P = ρRT and ρρ /)/( PRTP T ==∂∂  , and thus P=gas idealκ . Therefore, the coefficient 
of compressibility of an ideal gas is equal to its absolute pressure, and the coefficient of compressibility of the gas increases 
with increasing pressure. 

Substituting κ = P into the definition of the coefficient of compressibility 
ρρ

κ
// Δ

Δ
≅

Δ
Δ

−≅
PP

vv
 and rearranging 

gives   

P
PΔ

=
Δ
ρ
ρ  

Therefore, the percent increase of density of an ideal gas during isothermal compression is equal to the percent 
increase in pressure. 
 

At 10 atm:  %10
10

1011
=

−
=

Δ
=

Δ
P
P

ρ
ρ  

At 100 atm:  %1
100

100101
=

−
=

Δ
=

Δ
P
P

ρ
ρ  

 

Therefore, a pressure change of 1 atm causes a density change of 10% at 10 atm and a density change of 1% at 100 atm.   
 
Discussion If temperature were also allowed to change, the relationship would not be so simple. 

  

 
 
2-31  
Solution Using the definition of the coefficient of volume expansion and the expression T/1gas ideal =β , it is to be 
shown that the percent increase in the specific volume of an ideal gas during isobaric expansion is equal to the percent 
increase in absolute temperature. 

Assumptions The gas behaves an ideal gas.  

Analysis   The coefficient of volume expansion β can be expressed as 
TT P Δ

Δ
≈⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

=
vvv

v
/1β .  

Noting that T/1gas ideal =β  for an ideal gas and rearranging give  

T
TΔ

=
Δ
v
v  

Therefore, the percent increase in the specific volume of an ideal gas during isobaric expansion is equal to the 
percent increase in absolute temperature.  
 
Discussion We must be careful to use absolute temperature (K or R), not relative temperature (oC or oF). 
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2-32  
Solution Water at a given temperature and pressure is compressed to a high pressure isothermally. The increase in 
the density of water is to be determined. 

Assumptions 1 The isothermal compressibility is constant in the given pressure range.  2 An approximate analysis is 
performed by replacing differential changes by finite changes.  
 
Properties The density of water at 20°C and 1 atm pressure is ρ1 = 998 kg/m3. The isothermal compressibility of water 
is given to be α = 4.80 × 10-5 atm-1.   
 
Analysis When differential quantities are replaced by differences and the properties α and β are assumed to be 
constant, the change in density in terms of the changes in pressure and temperature is expressed approximately as  

TP Δ−Δ=Δ βραρρ  

The change in density due to a change of pressure from 1 atm to 800 atm at constant temperature is  
3kg/m  38.3=−×=Δ=Δ − atm)1800)( kg/m998)(atm 1080.4( 3-15Pαρρ  

Discussion Note that the density of water increases from 998 to 1036.3 kg/m3 while being compressed, as expected. 
This problem can be solved more accurately using differential analysis when functional forms of properties are available.   

  

 

 

 

 

2-33  
Solution Water at a given temperature and pressure is heated to a higher temperature at constant pressure. The 
change in the density of water is to be determined. 

Assumptions 1 The coefficient of volume expansion is constant in the given temperature range.  2 An approximate 
analysis is performed by replacing differential changes in quantities by finite changes.  

Properties The density of water at 15°C and 1 atm pressure is ρ1 = 999.1 kg/m3. The coefficient of volume expansion 
at the average temperature of (15+95)/2 = 55°C is β = 0.484 × 10-3 K-1. 

Analysis When differential quantities are replaced by differences and the properties α and β are assumed to be 
constant, the change in density in terms of the changes in pressure and temperature is expressed approximately as  

TP Δ−Δ=Δ βραρρ  

The change in density due to the change of temperature from 15°C to 95°C at constant pressure is  
3kg/m 38.7−=−×−=Δ−=Δ − K)1595)( kg/m1.999)(K 10484.0( 3-13Tβρρ  

Discussion Noting that 12 ρρρ −=Δ , the density of water at 95°C and 1 atm is 

3
12 kg/m4.960)7.38(1.999  =−+=Δ+= ρρρ  

which is very close to the listed value of 961.5 kg/m3 at 95°C in water table in the Appendix. This is mostly due to β 
varying with temperature almost linearly. Note that the density of water decreases while being heated, as expected. This 
problem can be solved more accurately using differential analysis when functional forms of properties are available.   
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2-34  
Solution Saturated refrigerant-134a at a given temperature is cooled at constant pressure. The change in the density 
of the refrigerant is to be determined. 

Assumptions 1 The coefficient of volume expansion is constant in the given temperature range.  2 An approximate 
analysis is performed by replacing differential changes in quantities by finite changes.  

Properties The density of saturated liquid R-134a at 10°C is ρ1 =1261 kg/m3. The coefficient of volume expansion at 
the average temperature of (10+0)/2 = 5°C is β = 0.00269 K-1. 

Analysis When differential quantities are replaced by differences and the properties α and β are assumed to be 
constant, the change in density in terms of the changes in pressure and temperature is expressed approximately as  

TP Δ−Δ=Δ βραρρ  

The change in density due to the change of temperature from 10°C to 0°C at constant pressure is  
3kg/m  33.9=−−=Δ−=Δ K)100)(kg/m 1261)(K 00269.0( 3-1Tβρρ  

Discussion Noting that 12 ρρρ −=Δ , the density of R-134a at 0°C is 

3
12 kg/m9.12949.331261  =+=Δ+= ρρρ  

which is almost identical to the listed value of 1295 kg/m3 at 0°C in R-134a table in the Appendix. This is mostly due to β 
varying with temperature almost linearly. Note that the density increases during cooling, as expected.   

  

 

 

 

 

2-35  
Solution A water tank completely filled with water can withstand tension caused by a volume expansion of 2%. The 
maximum temperature rise allowed in the tank without jeopardizing safety is to be determined. 

Assumptions 1 The coefficient of volume expansion is constant. 2 An approximate analysis is performed by replacing 
differential changes in quantities by finite changes. 3 The effect of pressure is disregarded. 

Properties The average volume expansion coefficient is given to be β = 0.377 × 10-3 K-1. 

Analysis When differential quantities are replaced by differences and the properties α and β are assumed to be 
constant, the change in density in terms of the changes in pressure and temperature is expressed approximately as  

TP Δ−Δ=Δ βραρρ  

A volume increase of 2% corresponds to a density decrease of 2%, which can be expressed as ρρ 02.0−=Δ . Then the 
decrease in density due to a temperature rise of ΔT at constant pressure is  

TΔ−=− βρρ02.0  

Solving for ΔT and substituting, the maximum temperature rise is determined to be  

C53.0K 53.0 °==
×

==Δ − 1-3 K 10377.0
02.002.0

β
T  

Discussion This result is conservative since in reality the increasing pressure will tend to compress the water and 
increase its density.  
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2-36  
Solution A water tank completely filled with water can withstand tension caused by a volume expansion of 1%. The 
maximum temperature rise allowed in the tank without jeopardizing safety is to be determined. 

Assumptions 1 The coefficient of volume expansion is constant. 2 An approximate analysis is performed by replacing 
differential changes in quantities by finite changes. 3 The effect of pressure is disregarded. 

Properties The average volume expansion coefficient is given to be  β = 0.377 × 10-3 K-1. 

Analysis When differential quantities are replaced by differences and the properties α and β are assumed to be 
constant, the change in density in terms of the changes in pressure and temperature is expressed approximately as  

TP Δ−Δ=Δ βραρρ  

A volume increase of 1% corresponds to a density decrease of 1%, which can be expressed as ρρ 01.0−=Δ . Then the 
decrease in density due to a temperature rise of ΔT at constant pressure is  

TΔ−=− βρρ01.0  

Solving for ΔT and substituting, the maximum temperature rise is determined to be  

C26.5K 26.5 °==
×

==Δ − 1-3 K 10377.0
01.001.0

β
T  

Discussion This result is conservative since in reality the increasing pressure will tend to compress the water and 
increase its density.  The change in temperature is exactly half of that of the previous problem, as expected. 
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2-37  
Solution The density of seawater at the free surface and the bulk modulus of elasticity are given. The density and 
pressure at a depth of 2500 m are to be determined.  

Assumptions 1 The temperature and the bulk modulus of elasticity of seawater is constant. 2 The gravitational 
acceleration remains constant.  

Properties The density of seawater at free surface where the pressure is given to be 1030 kg/m3, and the bulk modulus 
of elasticity of seawater is given to be 2.34 × 109 N/m2.  

Analysis The coefficient of compressibility or the bulk modulus of elasticity of fluids is expressed as   

 
T

P
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
ρ

ρκ          or           
ρ

ρκ
d
dP

=         (at constant T ) 

The differential pressure change across a differential fluid height of dz is given as 

2500 m 

z 

z = 0 
 gdzdP ρ=  

Combining the two relations above and rearranging, 

  
ρ

ρ
ρ

ρ
ρκ

d
dzg

d
gdz 2==         →     

κρ
ρ gdzd
=2  

Integrating from z = 0 where  to z = z where 3
0  kg/m1030 == ρρ ρρ =  gives 

 dz
gd z

∫∫ =
02

0 κρ
ρρ

ρ
         →     

κρρ
gz

=−
11

0
 

Solving for ρ gives the variation of density with depth as 

( ) ( )0

1
1 / gz /

ρ
ρ κ

=
−

 

Substituting into the pressure change relation gdzdP ρ=  and integrating from z = 0 where  to z = z where 
P = P gives 

 kPa98  0 == PP

 
( ) ( )0 0

01
P z

P

gdzdP
/ gz /ρ κ

=
−∫ ∫          →     

( )0
0

1ln
1

P P
gz /

κ
ρ κ

⎛ ⎞
= + ⎜ ⎟⎜ ⎟−⎝ ⎠

 

which is the desired relation for the variation of pressure in seawater with depth. At z = 2500 m, the values of density and 
pressure are determined by substitution to be 

3kg/m 1041=
×−

=
)N/m 1034.2/(m) 2500)(m/s 81.9() kg/m1030/(1

1
2923ρ  

MPa 25.50=

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

×−
×+=

Pa 10550.2

)N/m 1034.2/(m) 2500)(m/s 81.9)( kg/m1030(1
1ln)N/m 1034.2(Pa) 000,98(

7

2923
29P

 

since 1 Pa = 1 N/m2 = 1 kg/m⋅s2 and 1 kPa = 1000 Pa.  

Discussion Note that if we assumed ρ = ρo = constant at 1030 kg/m3, the pressure at 2500 m would be gzPP ρ+= 0 = 
0.098 + 25.26 = 25.36 MPa. Then the density at 2500 m is estimated to be 

31 kg/m 11.1MPa) (25.26MPa)  0(1030)(234 ==Δ=Δ −Pραρ  and thus ρ = 1041 kg/m3
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Viscosity 
 
 
2-38C  
Solution We are to define and discuss viscosity.  
 
Analysis Viscosity is a measure of the “stickiness” or “resistance to deformation” of a fluid. It is due to the 
internal frictional force that develops between different layers of fluids as they are forced to move relative to each other. 
Viscosity is caused by the cohesive forces between the molecules in liquids, and by the molecular collisions in gases. In 
general, liquids have higher dynamic viscosities than gases. 
 
Discussion The ratio of viscosity μ to density ρ often appears in the equations of fluid mechanics, and is defined as the 
kinematic viscosity, ν = μ /ρ. 

  

 
 
2-39C  
Solution We are to discuss Newtonian fluids.  
 
Analysis Fluids whose shear stress is linearly proportional to the velocity gradient (shear strain) are called 
Newtonian fluids.  Most common fluids such as water, air, gasoline, and oils are Newtonian fluids. 
 
Discussion In the differential analysis of fluid flow, only Newtonian fluids are considered in this textbook. 

  

 
 
2-40C  
Solution We are to compare the settling speed of balls dropped in water and oil; namely, we are to determine which 
will reach the bottom of the container first.  
 
Analysis When two identical small glass balls are dropped into two identical containers, one filled with water and the 
other with oil, the ball dropped in water will reach the bottom of the container first because of the much lower 
viscosity of water relative to oil. 
 
Discussion Oil is very viscous, with typical values of viscosity approximately 800 times greater than that of water at 
room temperature. 

  

 
 
2-41C  
Solution We are to discuss how dynamic viscosity varies with temperature in liquids and gases.  
 
Analysis (a) The dynamic viscosity of liquids decreases with temperature. (b) The dynamic viscosity of gases 
increases with temperature. 
 
Discussion A good way to remember this is that a car engine is much harder to start in the winter because the oil in the 
engine has a higher viscosity at low temperatures. 

  

 
 
2-42C  
Solution We are to discuss how kinematic viscosity varies with temperature in liquids and gases. 
 
Analysis (a) For liquids, the kinematic viscosity decreases with temperature. (b) For gases, the kinematic 
viscosity increases with temperature. 
 
Discussion You can easily verify this by looking at the appendices. 
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2-43  
Solution A block is moved at constant velocity on an inclined surface. The force that needs to be applied in the 
horizontal direction when the block is dry, and the percent reduction in the required force when an oil film is applied on the 
surface are to be determined. 

Assumptions 1 The inclined surface is plane (perfectly flat, although tilted). 2 The friction coefficient and the oil film 
thickness are uniform. 3 The weight of the oil layer is negligible.  

Properties The absolute viscosity of oil is given to be μ = 0.012 Pa⋅s = 0.012 N⋅s/m2. 

Analysis (a) The velocity of the block is constant, and thus its 
acceleration and the net force acting on it are zero. A free body diagram of the 
block is given. Then the force balance gives   

200

F1 

V= 0.8 m/s

W = 150 N 

Ff 

FN1  
y

x

200

200

 

     :0=∑ xF 020sin20cos 11 =°−°− Nf FFF     (1) 

:0=∑ yF     020sin20cos1 =−°−° WFF fN     (2) 

Friction force:                                        (3)   1Nf fFF =
 

Substituting Eq. (3) into Eq. (2) and solving for FN1  gives  

 N 0.177
20sin27.020cos

N 150
20sin20cos1 =

°−°
=

°−°
=

f
WFN  

Then from Eq. (1): 
         N  105.5=°+°×=°+°= 20sin)N 177(20cos)N 17727.0(20sin20cos 11 Nf FFF  
(b) In this case, the friction force is replaced by the shear force 
applied on the bottom surface of the block due to the oil. Because 
of the no-slip condition, the oil film sticks to the inclined surface 
at the bottom and the lower surface of the block at the top. Then 
the shear force is expressed as   

50 cm 0.4 mm

Fshear = τwAs 

200

F2 

V= 0.8 m/s

W = 150 N 

FN2  

( )( )2 2
-4

        

0 8 m/s        0 012 N s/m 0 5 0 2 m
4 10  m

        2 4 N

shear w s

s

F A
VA
h

.. . .

.

τ

μ

=

=

= ⋅ ×
×

=

 

Replacing the friction force by the shear force in part (a),   

              :0=∑ xF 020sin20cos 22 =°−°− Nshear FFF     (4) 

              :0=∑ yF 020sin20cos2 =−°−° WFF shearN     (5) 

Eq. (5) gives N 60.5120cos/)]N 150(20sin)N 4.2[(20cos/)20sin(2 =°+°=°+°= WFF shearN  
Substituting into Eq. (4), the required horizontal force is determined to be 

         N  57.220sin)N 5.160(20cos)N 4.2(20sin20cos 22 =°+°=°+°= Nshear FFF  
Then, our final result is expressed as 

              Percentage reduction in required force = 1 2

1

105 5 57 2100% 100%
105 5

F F . .
F .
− −

× = × = 45.8%  

Discussion Note that the force required to push the block on the inclined surface reduces significantly by oiling the 
surface.    
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2-44  
Solution The velocity profile of a fluid flowing though a circular pipe is given. The friction drag force exerted on the 
pipe by the fluid in the flow direction per unit length of the pipe is to be determined. 

Assumptions The viscosity of the fluid is constant.   

Analysis The wall shear stress is determined from its definition to be  

 
R
un

R
nru

R
r

dr
du

dr
du

Rr
n

n

Rr
n

n

Rr
w

max
1

maxmax 1
μ

μμμτ =
−

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=−=

=

−

==
 

u(r) = umax(1-rn/Rn)

R  
  r 

 
0   

umax 

Note that the quantity du /dr is negative in pipe flow, and the negative sign 
is added to the τw relation for pipes to make shear stress in the positive 
(flow) direction a positive quantity. (Or, du /dr  = - du /dy since y = R – r). 
Then the friction drag force exerted by the fluid on the inner surface of the 
pipe becomes  

               LunLR
R
un

AF ww max
max 2)2( πμπ

μ
τ ===                   

Therefore, the drag force per unit length of the pipe is  
 

                   max2/ unLF πμ= .                   

Discussion Note that the drag force acting on the pipe in this case is independent of the pipe diameter.    
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2-45  
Solution A thin flat plate is pulled horizontally through an oil layer sandwiched between two plates, one stationary 
and the other moving at a constant velocity. The location in oil where the velocity is zero and the force that needs to be 
applied on the plate are to be determined. 

Assumptions 1 The thickness of the plate is negligible. 2 The velocity profile in each oil layer is linear.  

Properties The absolute viscosity of oil is given to be μ = 0.027 Pa⋅s = 0.027 N⋅s/m2. 

Analysis (a) The velocity profile in each oil layer relative to the fixed wall is as shown in the figure below.  The point 
of zero velocity is indicated by point A, and its distance from the lower plate is determined from geometric considerations 
(the similarity of the two triangles in the lower oil layer) to be 
  

        
3.0

16.2
=

−

A

A

y
y

      →    yA = 0.60 mm 

 

h1=1 mm 

h2=2.6 mm 

Fixed wall 

Moving wall 

Vw= 0.3 m/s 

F V = 1 m/s 

A 
yA y 

 
 
 
 
 
 
 
 
 
 
 
 
 
(b) The magnitudes of shear forces acting on the upper and lower surfaces of the plate are 
 

N 08.1
m 101.0

m/s 1)m 2.02.0)(s/mN 027.0(0
3-

22

1
upper ,upper shear, =

×
×⋅=

−
===

h
VA

dy
duAAF sssw μμτ

N 54.0
m 102.6
m/s )]3.0(1[)m 2.02.0)(s/mN 027.0( 3-

22

2
lower ,lower shear, =

×
−−

×⋅=
−

===
h

VV
A

dy
duAAF w

sssw μμτ  

Noting that both shear forces are in the opposite direction of motion of the plate, the force F is determined from a force 
balance on the plate to be 
 
                      N  1.62=+=+= 54.008.1lower shear,upper shear, FFF  
 

Discussion Note that wall shear is a friction force between a solid and a liquid, and it acts in the opposite direction of 
motion.    
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2-46  
Solution A frustum shaped body is rotating at a constant 
angular speed in an oil container. The power required to 
maintain this motion and the reduction in the required power 
input when the oil temperature rises are to be determined. 

SAE 10W oil of
film thickness h

d = 4 cm 

D = 12 cm 

L = 12 cm

r

z 

Case Assumptions The thickness of the oil layer remains constant.   
Properties  The absolute viscosity of oil is given to be μ = 
0.1 Pa⋅s = 0.1 N⋅s/m2 at 20°C and 0.0078 Pa⋅s at 80°C.  
Analysis The velocity gradient anywhere in the oil of 
film thickness h is V/h where V = ωr is the tangential 
velocity. Then the wall shear stress anywhere on the surface of 
the frustum at a distance r from the axis of rotation is  

         
h
r

h
V

dr
du

w
ωμμμτ ===  

The shear force acting on differential area dA on the surface, 
the torque it generates, and the shaft power associated with it 
are expressed as  

  dA
h
rdAdF w

ωμτ ==  dA
h
rrdFd

2
T ωμ==   

 dAr
h A∫= 2T μω  dAr

h
W

A∫== 2
2

sh T μωω  

Top surface: For the top surface, rdrdA π2= . Substituting and integrating,  

h
Dr

h
drr

h
drrr

h
W

D

r

D

r

D

r 324
22)2(

422/

0

42
32/

0

2
22/

0

2

 topsh,
πμωπμωπμωπμω

====
=

== ∫∫  

Bottom surface: A relation for the bottom surface is obtained by replacing D by d,  
h
dW

32

42

 bottomsh,
πμω

=  

Side surface: The differential area for the side surface can be expressed as rdzdA π2= . From geometric considerations, the 

variation of radius with axial distance is expressed as  z
L

dDdr
22
−

+= .  

Differentiating gives dz
L

dDdr
2
−

=   or  dr
dD

Ldz
−

=
2 .  Therefore, rdr

dD
LdzdA
−

==
ππ 42 .  Substituting and integrating, 

    
)(16

)(
4)(

4
)(

44 2222/

2/

42
32/

2/

2
22/

0

2

 topsh, dDh
dDLr

dDh
Ldrr

dDh
Lrdr

dD
Lr

h
W

D

dr

D

dr

D

r −
−

=
−

=
−

=
−

=
=

== ∫∫
πμωπμωπμωπμω  

Then the total power required becomes  

    ⎥
⎦

⎤
⎢
⎣

⎡

−
−

++=++=
dD
DdLDd

h
DWWWW )])/(1[2)/(1

32

4
4

42

side sh, bottomsh, topsh, totalsh,
πμω , 

where d/D = 4/12 = 1/3.  Substituting,  

    W270=⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

++
⋅

=
Nm/s 1
 W1

m )04.012.0(
)])3/1(1[m) 12.0(2

)3/1(1
m) 0012.0(32

m) 12.0( /s)200)(s/mN 1.0( 4
4

422

 totalsh,
π

W  

Noting that power is proportional to viscosity, the power required at 80°C is 

    W21.1 W)270(
s/mN 1.0

s/mN 0078.0
2

2

C20  total,sh,
20

80
C80  total,sh, =

⋅

⋅
== °

°

°
° WW

C

C

μ
μ

 

Therefore, the reduction in the requires power input at 80°C is , 
which is about 92%. 

sh, total, 20 C sh, total, 80 CReduction 270 21 1W W .° °= − = − = 249 W

 

Discussion Note that the power required to overcome shear forces in a viscous fluid greatly depends on temperature.    
-  
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2-47  
Solution A clutch system is used to transmit torque through an oil film between two identical disks. For specified 
rotational speeds, the transmitted torque is to be determined. 

Assumptions 1 The thickness of the oil film is uniform.  2 The rotational speeds of the disks remain constant. 

Properties  The absolute viscosity of oil is given to be μ = 0.38 N⋅s/m2. 

 

SAE 30W oil

Driving 
shaft 

Driven 
shaft 

3 mm 
30 cm 

 
 
 
 
 
 
 
 
 
 
 
 
 
Analysis The disks are rotting in the same direction at different angular speeds of ω1 and of ω2 . Therefore, we can 
assume one of the disks to be stationary and the other to be rotating at an angular speed of 21 ωω − . The velocity gradient 
anywhere in the oil of film thickness h is V /h where rV )( 21 ωω −= is the tangential velocity. Then the wall shear stress 
anywhere on the surface of the faster disk at a distance r from the axis of rotation can be expressed as  

 
h

r
h
V

dr
du

w
)( 21 ωω

μμμτ
−

===  

Then the shear force acting on a differential area dA on the surface and the 
torque generation associated with it can be expressed as  

h 

ω1r 
ω2r 

  drr
h

r
dAdF w )2(

)( 21 π
ωω

μτ
−

==  

 drr
h

drr
h

r
rdFd 321

2
21 )(2

)2(
)(

T
ωωπμ

π
ωω

μ
−

=
−

==   

Integrating,  

h
Dr

h
drr

h

D

r

D

r 32
)(

4
)(2)(2

T
4

21
2/

0

4
2132/

0

21 ωωπμωωπμωωπμ −
=

−
=

−
=

=
=∫  

Noting that 2 nω π= , the relative angular speed is 

 ( ) ( ) ( )1 2 1 2
1 min2 2  rad/rev 1450 1398  rev/min 5.445 rad/s
60 s

n nω ω π π ⎛ ⎞− = − = − =⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎝ ⎠
, 

Substituting, the torque transmitted is determined to be 

mN 0.55 ⋅=
⋅

=
m) 003.0(32

m) 30.0(/s) 445.5)(s/mN 38.0(T
42π  

Discussion Note that the torque transmitted is proportional to the fourth power of disk diameter, and is inversely 
proportional to the thickness of the oil film.    
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Solution W veste are to in igate the effect of oil film thickness on the transmitted torque. 
 
Analysis The previous problem is reconsidered. Using EES software, the effect of oil film thickness on the 
torque transmitted is investigated. Film thickness varied from 0.1 mm to 10 mm, and the results are tabulated and 

plotted.  The relation used is 
h

D
32

)(
T

4
21 ωωπμ −

= . The EES Equations window is printed below, followed by the 

tabulated and plotted results.  
 

mu=0.38 
n1=1450 "rpm" 
w1=2*pi*n1/60 "rad/s" 
n2=1398 "rpm" 
w2=2*pi*n2/60 "rad/s" 
D=0.3 "m" 
Tq=pi*mu*(w1-w2)*(D^4)/(32*h) 
 
 
 

0 0.002 0.004 0.006 0.008 0.01
0

2

4

6

8

10

12

14

16

18

h  [m]

Tq
  [

N
m

]

 

 
Film thickness 

h, mm 
Torque transmitted 

T, Nm 
0.1 
0.2 
0.4 
0.6 
0.8 
1 
2 
4 
6 
8 

10 

16.46 
8.23 
4.11 
2.74 
2.06 
1.65 
0.82 
0.41 
0.27 
0.21 
0.16 

 
 
 
 
Conclusion Torque transmitted is inversely proportional to oil film thickness, and the film thickness should be as small as 
possible to maximize the transmitted torque. 
 
Discussion To obtain the solution in EES, we set up a parametric table, specify h, and let EES calculate T for each 
value of h. 
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2-49  
Solution A multi-disk Electro-rheological “ER” clutch is considered. The ER fluid has a shear stress that is expressed 
as )( dyduy μττ += .  A relationship for the torque transmitted by the clutch is to be obtained, and the numerical value of 
the torque is to be calculated. 

Assumptions 1 The thickness of the oil layer between the disks is constant. 2 The Bingham plastic model for shear stress 
expressed as )( dyduy μττ +=  is valid. 

Properties  The constants in shear stress relation are given to be μ = 0.1 Pa⋅s and τy = 2.5 kPa. 

  

Output shaft 

Input shaft 

Plates mounted on shell
Plates mounted on input shaft

Shell

Variable magnetic field 

  R2                R1

h = 1.2 mm
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Analysis (a) The velocity gradient anywhere in the oil of film thickness h is V/h where V = ωr is the tangential velocity 
relative to plates mounted on the shell. Then the wall shear stress anywhere on the surface of a plate mounted on the input 
shaft at a distance r from the axis of rotation is expressed as  

         
h
r

h
V

dr
du

yyyw
ωμτμτμττ +=+=+=  

Then the shear force acting on a differential area dA on the surface of a disk and the torque generation associated with it are 
expressed as  

  drr
h
rdAdF yw )2( πωμττ ⎟
⎠
⎞

⎜
⎝
⎛ +==  

dr
h
rrdrr

h
rrrdFd yy ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=⎟

⎠
⎞

⎜
⎝
⎛ +==

3
22)2(T ωμτππωμτ   

Integrating,  

         ⎥
⎦

⎤
⎢
⎣

⎡
−+−=⎥

⎦

⎤
⎢
⎣

⎡
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

=
=∫ )(

4
)(

3
2

43
22T 4

1
4
2

3
1

3
2

433
2

2

1

2

1

RR
h

RR
h
rrdr

h
rr y

R

Rr
yy

R

Rr

μωτ
πμωτπωμτπ  

This is the torque transmitted by one surface of a plate mounted on the input shaft. Then the torque transmitted by both 
surfaces of N plates attached to input shaft in the clutch becomes 

         ⎥
⎦

⎤
⎢
⎣

⎡
−+−= )(

4
)(

3
4T 4

1
4
2

3
1

3
2 RR

h
RRN y μωτ

π  

(b) Noting that  rad/s3.251 rad/min080,15) rev/min2400(22 ==== ππω n  and substituting, 

mN 2060 ⋅=⎥
⎦

⎤
⎢
⎣

⎡
−

⋅
+−= ])m 05.0(m) 20.0[(

m) 0012.0(4
/s) 3.251)(s/mN 1.0(])m 05.0(m) 20.0[(

3
N/m 2500)11)(4(T 44

2
33

2
π  

 

Discussion Can you think of some other potential applications for this kind of fluid? 
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Solution A multi-disk magnetorheological “MR” clutch is considered The MR fluid has a shear stress that is 
expressed as m

y dyduK )(+= ττ . A relationship for the torque transmitted by the clutch is to be obtained, and the 
numerical value of the torque is to be calculated. 

Assumptions 1 The thickness of the oil layer between the disks is constant. 2 The Herschel-Bulkley model for shear stress 
expressed as m

y dyduK )(+= ττ  is valid. 

Properties The constants in shear stress relation are given to be τy = 900 Pa, K = 58 Pa⋅sm , and m = 0.82. 

Output shaft 

Input shaft 

Plates mounted on shell
Plates mounted on input shaft 

Shell

Variable magnetic field

  R2                R1

h = 1.2 mm  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Analysis (a) The velocity gradient anywhere in the oil of film thickness h is V/h where V = ωr is the tangential velocity 
relative to plates mounted on the shell. Then the wall shear stress anywhere on the surface of a plate mounted on the input 
shaft at a distance r from the axis of rotation is expressed as  

         
m

y

m

y

m

yw h
rK

h
VK

dr
duK ⎟

⎠
⎞

⎜
⎝
⎛+=⎟

⎠
⎞

⎜
⎝
⎛+=⎟

⎠
⎞

⎜
⎝
⎛+=

ωττττ  

Then the shear force acting on a differential area dA on the surface of a disk and the torque generation associated with it are 
expressed as  

  drr
h
rKdAdF

m

yw )2( πωττ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+==  and  dr

h
rKrdrr

h
rKrrdFd

m

m

m

y

m

y ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+==

+2
22)2(T ωτππωτ   

Integrating,  

⎥
⎦

⎤
⎢
⎣

⎡
−

+
+−=⎥

⎦

⎤
⎢
⎣

⎡

+
+=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= ++

++
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)3(

)(
3

2
)3(3

22T 3
1

3
2

3
1

3
2
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2

2

1

2

1
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m

m
y

R

R
m
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y

m

m

m

y
R

R
RR

hm
KRR

hm
rKrdr

h
rKr ωτ

πωτπωτπ  

This is the torque transmitted by one surface of a plate mounted on the input shaft. Then the torque transmitted by both 
surfaces of N plates attached to input shaft in the clutch becomes 

         ⎥
⎦

⎤
⎢
⎣

⎡
−

+
+−= ++ )(

)3(
)(

3
4T 3

1
3

2
3
1

3
2

mm
m

m
y RR

hm
KRRN ωτ

π  

(b) Noting that   rad/s3.251 rad/min080,15) rev/min2400(22 ==== ππω n  and substituting, 

( )( ) ( ) ( )
( )( )
( )( )

( ) ( )
0.820.82 22

3 3 3.82 3 82
0.82

58 N s /m 251 3 /s900 N/mT 4 11 0 20 m 0 05 m 0 20 m 0 05 m
3 0 82 3 0 0012 m

       103 4 N

..
. . . .

. .

.

π
⎡ ⎤⋅

⎡ ⎤ ⎡⎢ ⎥= − +⎣ ⎦ ⎣⎢ ⎥+⎣ ⎦
= ≅ ⋅103  kN m

⎤− ⎦  

 

Discussion Can you think of some other potential applications for this kind of fluid? 
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l = 0.12 cm 
fluid 

 

R 

Solution The torque and the rpm of a double cylinder viscometer are given. The viscosity of the fluid is to be 
determined. 

Assumptions 1 The inner cylinder is completely submerged in oil. 2 The 
viscous effects on the two ends of the inner cylinder are negligible. 3 The fluid 
is Newtonian. 

Analysis Substituting the given values, the viscosity of the fluid is 
determined to be 

2s/mN 0.0231T
⋅=

⋅
==

m) 75.0)(s 60/200(m) 075.0(4
m) m)(0.0012N 8.0(

4 1-3232 ππ
μ

LnR
 

Discussion This is the viscosity value at the temperature that existed during 
the experiment. Viscosity is a strong function of temperature, and the values 
can be significantly different at different temperatures. 

  

 
 
 
 
 
 
 
 
 
2-52E  
Solution The torque and the rpm of a double cylinder viscometer are 
given. The viscosity of the fluid is to be determined. 
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Assumptions 1 The inner cylinder is completely submerged in the fluid. 2 
The viscous effects on the two ends of the inner cylinder are negligible. 3 The 
fluid is Newtonian. 

Analysis Substituting the given values, the viscosity of the fluid is determined 
to be 

25 s/ftlbf 109.97 ⋅×=
⋅

== −

ft) 3)(s 60/250(ft) 12/6.5(4
ft) 2ft)(0.05/1lbf 2.1(

4 1-3232 ππ
μ

LnR
T

 

Discussion This is the viscosity value at temperature that existed during 
the experiment. Viscosity is a strong function of temperature, and the values can be significantly different at different 
temperatures. 

l = 0.05 in 
fluid 

 

R
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Solution The velocity profile for laminar one-dimensional flow through a circular pipe is given. A relation for 
friction drag force exerted on the pipe and its numerical value for water are to be determined. 

Assumptions 1 The flow through the circular pipe is one-dimensional. 2 The fluid is Newtonian. 
u(r) = umax(1-r2/R2) 

R  
  r 

 
0   

umax 

Properties The viscosity of water at 20°C is given to be 0.0010 kg/m⋅s. 

Analysis The velocity profile is given by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 2

2

max 1)(
R
ruru  

where R is the radius of the pipe, r is the radial distance from the center of 
the pipe, and umax is the maximum flow velocity, which occurs at the 
center, r = 0. The shear stress at the pipe surface is expressed as 

R
u

R
ru

R
r

dr
du

dr
du

RrRrRr
w

max
2max2

2

max
221
μ

μμμτ =
−

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=−=

===
 

Note that the quantity du/dr is negative in pipe flow, and the negative sign is added to the τw relation for pipes to make 
shear stress in the positive (flow) direction a positive quantity. (Or, du/dr = −du/dy since y = R – r). Then the friction drag 
force exerted by the fluid on the inner surface of the pipe becomes  

max
max 4)2(

2
LuRL

R
u

AF swD πμπ
μ

τ ===  

Substituting we get N 0.565=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
⋅==

2max
m/skg 1
N 1m/s) m)(3 s)(15kg/m 0010.0(44 ππμLuFD  

Discussion In the entrance region and during turbulent flow, the velocity gradient is greater near the wall, and thus the 
drag force in such cases will be greater.  

  

 
 
2-54  
Solution The velocity profile for laminar one-dimensional flow through a circular pipe is given. A relation for 
friction drag force exerted on the pipe and its numerical value for water are to be determined. 

Assumptions 1 The flow through the circular pipe is one-dimensional. 2 The fluid is Newtonian. 
Properties The viscosity of water at 20°C is given to be 0.0010 kg/m⋅s. u(r) = umax(1-r2/R2) 

R  
  r 

 
0   

umax 

Analysis  The velocity profile is given by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 2

2

max 1)(
R
ruru  

where R is the radius of the pipe, r is the radial distance from the center of 
the pipe, and umax is the maximum flow velocity, which occurs at the 
center, r = 0. The shear stress at the pipe surface can be expressed as 

R
u

R
ru

R
r

dr
du

dr
du

RrRrRr
w

max
2max2

2

max
221
μ

μμμτ =
−

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=−=

===
 

Note that the quantity du/dr is negative in pipe flow, and the negative sign is added to the τw relation for pipes to make 
shear stress in the positive (flow) direction a positive quantity. (Or, du/dr = −du/dy since y = R – r). Then the friction drag 
force exerted by the fluid on the inner surface of the pipe becomes  

max
max 4)2(

2
LuRL

R
u

AF swD πμπ
μ

τ ===  

Substituting, we get N 0.942=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
⋅==

2max
m/skg 1
N 1m/s) m)(5 s)(15kg/m 0010.0(44 ππμLuFD  

Discussion In the entrance region and during turbulent flow, the velocity gradient is greater near the wall, and thus the 
drag force in such cases will be larger.  
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Surface Tension and Capillary Effect 
 
 
 
2-55C  
Solution We are to define and discuss surface tension.  
 
Analysis The magnitude of the pulling force at the surface of a liquid per unit length is called surface tension σs.  
It is caused by the attractive forces between the molecules. The surface tension is also surface energy (per unit area) since it 
represents the stretching work that needs to be done to increase the surface area of the liquid by a unit amount. 
 
Discussion Surface tension is the cause of some very interesting phenomena such as capillary rise and insects that can 
walk on water. 

  

 
 
2-56C  
Solution We are to analyze the pressure difference between inside and outside of a soap bubble.  
 
Analysis The pressure inside a soap bubble is greater than the pressure outside, as evidenced by the stretch of 
the soap film. 
 
Discussion You can make an analogy between the soap film and the skin of a balloon. 

  

 
 
2-57C  
Solution We are to define and discuss the capillary effect.  
 
Analysis The capillary effect is the rise or fall of a liquid in a small-diameter tube inserted into the liquid. It is 
caused by the net effect of the cohesive forces (the forces between like molecules, like water) and adhesive forces (the 
forces between unlike molecules, like water and glass).  The capillary effect is proportional to the cosine of the contact 
angle, which is the angle that the tangent to the liquid surface makes with the solid surface at the point of contact. 
 
Discussion The contact angle determines whether the meniscus at the top of the column is concave or convex. 

  

 
 
2-58C  
Solution We are to determine whether the level of liquid in a tube will rise or fall due to the capillary effect.  
 
Analysis The liquid level in the tube will drop since the contact angle is greater than 90°, and cos(110°) < 0. 
 
Discussion This liquid must be a non-wetting liquid when in contact with the tube material. Mercury is an example of a 
non-wetting liquid with a contact angle (with glass) that is greater than 90o. 

  

 
 
2-59C  
Solution We are to compare the capillary rise in small and large diameter tubes.  
 
Analysis The capillary rise is inversely proportional to the diameter of the tube, and thus capillary rise is greater in 
the smaller-diameter tube. 
 
Discussion Note however, that if the tube diameter is large enough, there is no capillary rise (or fall) at all. Rather, the 
upward (or downward) rise of the liquid occurs only near the tube walls; the elevation of the middle portion of the liquid in 
the tube does not change for large diameter tubes. 
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ne in the tube is to be determined. 

in the kerosene, and no contamination on the 
 

°C) is σs = 
52

termined to be 

2-60E  
Solution A slender glass tube is inserted into kerosene. The capillary rise of kerose

Assumptions 1 There are no impurities 
surfaces of the glass tube. 2 The kerosene is open to the atmospheric air. 

Properties The surface tension of kerosene-glass at 68°F (20
0.028×0.068  = 0.00192 lbf/ft. The density of kerosene at 68°F is ρ = 51.2 lbm/ft3. 
The contact angle of kerosene with the glass surface is given to be 26°. 

Analysis Substituting the numerical values, the capillary rise is de

( )( )
( )( )( )

22 0 00192 lbf/ft cos262 c 32 2 lbm ft/s. .° ⎛ ⎞⋅
3 2

os
1 lbf51 2 lbm/ft 32 2 ft/s 0 015 12 ft

0 0539 ft

sh
gR . . . /

.

σ φ
ρ

= = ⎜ ⎟
⎝ ⎠

= = 0.650  in

 

Discussion The capillary rise in this case more than half of an inch, and thus it is clearly noticeable. 
  

 
 

2-61  
ion A glass tube is inserted into a liquid, and the capillary rise is measured. 

 ten

uid, and no contamination on the 
 

he contact angle is 
5°

ubstituting the numerical values, the surface tension is determined from 
ry ris

Solut

hAir 
 
Liquid 

The surface sion of the liquid is to be determined. 

Assumptions 1 There are no impurities in the liq
surfaces of the glass tube. 2 The liquid is open to the atmospheric air. 

Properties The density of the liquid is given to be 960 kg/m3. T
given to be 1 . 

Analysis S
the capilla e relation to be 

N/m 0.0232=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅°
==

2

23kg/m 960(ρgRh
m/skg 1 
N 1

)15cos2(
m) m)(0.005 2/0019.0)(m/s 81.9()

cos2 φ
σ s  

Discussion Since surface tension depends on temperature, the value determined is valid at the liquid’s temperature.  
  

 
 

2-62  
ion The diameter of a soap bubble is given. The gage pressure inside the bubble is to be determined. 

s 

°C is σs = 0.025 N/m. 

 of a 
n

Solut

Assumption The soap bubble is in atmospheric air. 

Soap 
bubble 

P 

P0 Properties The surface tension of soap water at  20

Analysis The pressure difference between the inside and the outside
bubble is give  by 

PP −=Δ
R

P s
i

σ4
0bubble =  

In the open atmosphere P0 = Patm, and thus bubblePΔ  is equivalent to the gage 
pressure. Substituting,   
 

Pa 100N/m 100
m 0.002/2

N/m) 4(0.025 2
bubble, ===Δ= PP gagei  

Pa 4N/m 4
m 0.05/2

N/m) 4(0.025 2
bubble, ===Δ= PP gagei  

Discussion Note that the gage pressure in a soap bubble is inversely proportional to the radius. Therefore, the excess 

 

pressure is larger in smaller bubbles.  
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Solution Nutrients dissolved in water are carried to upper parts of plants. The 
height to which the water solution rises in a tree as a result of the capillary effect is to 
be determined. 

Assumptions 1 The solution can be treated as water with a contact angle of 15°. 2 
The diameter of the tube is constant. 3 The temperature of the water solution is 20°C. 

Properties The surface tension of water at 20°C is σs = 0.073 N/m. The density of 
water solution can be taken to be 1000 kg/m3. The contact angle is given to be 15°.  

Analysis Substituting the numerical values, the capillary rise is determined to be 

m 5.75=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅

×

°
==

− N 1
m/skg 1

m) 105.2)(m/s 81.9)(kg/m 1000(
)15cosN/m)( 073.0(2cos2 2

623gR
h s

ρ
φσ

 

Discussion Other effects such as the chemical potential difference also cause the 
fluid to rise in trees. 

  

 
 
 
 
 
 
 

2-64  
Solution The force acting on the movable wire of a liquid film suspended on a U-shaped wire frame is measured. The 
surface tension of the liquid in the air is to be determined. 

Assumptions 1 There are no impurities in the liquid, and no contamination on the surfaces of the wire frame. 2 The liquid 
is open to the atmospheric air. 

Analysis Substituting the numerical values, the surface tension is determined from the surface tension force relation 
to be 

N/m 0.075===
)m 2(0.08

N 012.0
2b
F

sσ  Liquid 
film b F 

Discussion The surface tension depends on temperature. Therefore, the value 
determined is valid at the temperature of the liquid.  
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2-65  
Solution A steel ball floats on water due to the surface tension effect. The maximum diameter of the ball is to be 
determined, and the calculations are to be repeated for aluminum. 

Assumptions 1 The water is pure, and its 
temperature is constant. 2 The ball is dropped on 
water slowly so that the inertial effects are negligible. 
3 The contact angle is taken to be 0° for maximum 
diameter.  

Properties The surface tension of water at 20°C 
is σs = 0.073 N/m. The contact angle is taken to be 
0°. The densities of steel and aluminum are given to 
be ρsteel = 7800 kg/m3 and ρAl = 2700 kg/m3. 

Analysis The surface tension force and the 
weight of the ball can be expressed as   
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ss DF σπ=     and  6/3DggmgW πρρ === V

σ 

W = mg 

 

When the ball floats, the net force acting on the ball in the vertical direction is zero. Therefore, setting WFs =  and solving 

for diameter D gives 
g

D s

ρ
σ6

= . Substititing the known quantities, the  maximum diameters for the steel and aluminum 

balls become 

mm 2.4=×=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
== − m 104.2

N 1
m/skg 1 

)m/s )(9.81kg/m (7800 
N/m) 073.0(66 3

2

23g
D s

steel ρ
σ

 

mm 4.1=×=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
== − m 101.4

N 1
m/skg 1 

)m/s )(9.81kg/m (2700 
N/m) 073.0(66 3

2

23g
D s

Al ρ
σ

 

Discussion Note that the ball diameter is inversely proportional to the square root of density, and thus for a given 
material, the smaller balls are more likely to float.   

  

 
 
 
 
 

Review Problems 
 
 
 
2-66  
Solution The pressure in an automobile tire increases during a trip while its volume remains constant. The percent 
increase in the absolute temperature of the air in the tire is to be determined. 

Assumptions 1 The volume of the tire remains constant. 2 Air is an ideal gas. 

Analysis Noting that air is an ideal gas and the volume is constant, the ratio of absolute temperatures after and before 
the trip are 

    1.069=
 kPa290
 kPa310=    

1

2

1

2

2

22

1

11

P
P

T
T

T
P

T
P

=→=
VV

 

Therefore, the absolute temperature of air in the tire will increase by 6.9% during this trip. 
 
Discussion This may not seem like a large temperature increase, but if the tire is originally at 20oC (293.15 K), the 
temperature increases to 1.069(293.15 K) = 313.38 K or about 40.2oC. 
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2-67  
Solution A large tank contains nitrogen at a specified temperature and pressure. Now some nitrogen is allowed to 
escape, and the temperature and pressure of nitrogen drop to new values. The amount of nitrogen that has escaped is to be 
determined. 

Assumptions The tank is insulated so that no heat is transferred. 
 
Analysis Treating N2 as an ideal gas, the initial and the final masses in the tank are determined to be 

 

kg138.0
K)K)(293/kgmkPa(0.2968

)mkPa)(20(600

kg180.9
K)K)(298/kgmkPa(0.2968

)mkPa)(20(800

3

3

2

2
2

3

3

1

1
1

=
⋅⋅

==

=
⋅⋅

==

RT
P

m

RT
P

m

V

V

 N2
800 kPa 

25°C 
20 m3

Thus the amount of N2 that escaped is   kg 42.9=−=−=Δ 138.0180.921 mmm  
 

Discussion Gas expansion generally causes the temperature to drop. This principle is used in some types of 
refrigeration. 

  

 
 
 
2-68  
Solution Suspended solid particles in water are considered. A relation is to be developed for the specific gravity of 
the suspension in terms of the mass fraction  and volume fraction  of the particles. , masssC , volsC

Assumptions 1 The solid particles are distributed uniformly in water so that the solution is homogeneous. 2 The effect of 
dissimilar molecules on each other is negligible.  

Analysis Consider solid particles of mass ms and volume Vs dissolved in a fluid of mass mf  and volume Vm. The total 
volume of the suspension (or mixture) is  
  fsm VVV +=

Dividing by Vm  and using the definition msC VV / vols, =  give 

 
m

f
volsC

V
V

+= ,1          →     vols
m

f C ,1−=
V
V

       (1) 

The total mass of the suspension (or mixture) is 
  fsm mmm +=

Dividing by mm and using the definition ms mmC /mass s, =  give 

 
mm

ff
masss

m

f
masss C

m
m

C
V
V

ρ

ρ
+=+= ,,1         →       

f

m
masss

m

f C
V
V

)1( ,−=
ρ

ρ
   (2) 

Combining equations 1 and 2 gives   

vols

masss

m

f

C
C

,

,

1
1
−

−
=

ρ

ρ
 

When the fluid is water, the ratio mf ρρ /  is the inverse of the definition of specific gravity. Therefore, the desired relation 
for the specific gravity of the mixture is     

 
1

SG
1

s ,volm
m

f s ,

C
C

ρ
ρ

−
= =

− mass

 

which is the desired result. 
 

Discussion As a quick check, if there were no particles at all, SGm = 0, as expected. 
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2-69  
Solution The specific gravities of solid particles and carrier fluids of a slurry are given. The relation for the specific 
gravity of the slurry is to be obtained in terms of the mass fraction  and the specific gravity SG, masssC s of solid particles. 

Assumptions 1 The solid particles are distributed uniformly in water so that the solution is homogeneous. 2 The effect of 
dissimilar molecules on each other is negligible.  

Analysis Consider solid particles of mass ms and volume Vs dissolved in a fluid of mass mf and volume Vm. The total 
volume of the suspension (or mixture) is  fsm VVV += . 

Dividing by Vm  gives 

   
m

f

m

s

V
V

V
V

+=1   →     mass
SG

1 1 1 1
SG

f s s s s m m
s ,

m m m m m s

m / m
C

m / m
ρ ρ
ρ ρ

= − = − = − = −
V V
V V s

                        (1) 

since ratio of densities is equal two the ratio of specific gravities, and mass s,/ Cmm ms = .  The total mass of the suspension 
(or mixture) is . Dividing by mfsm mmm += m and using the definition ms mmC /mass s, =  give 

 mass mass1 f
s , s ,

m m

m
C C

m
ρ
ρ

= + = +
V
V

f f

m

        →       
mmasss

f

f

m

C V
V

)1( ,−
=

ρ
ρ

                          (2) 

Taking the fluid to be water so that SGm f/ mρ ρ =  and combining equations 1 and 2 give 

mass

mass

1 SG S
SG

1
Gs , m

m
s ,

C /
C

−
=

−
s     

Solving for SGm and rearranging gives 

            
s, mass

1SG
1 1 SGm

sC (
=

+ −1)
 

which is the desired result.   
 
Discussion As a quick check, if there were no particles at all, SGm = 0, as expected. 

  

 
 

 

 

2-70E  
Solution The minimum pressure on the suction side of a water pump is given. The maximum water temperature to 
avoid the danger of cavitation is to be determined. 

Properties The saturation temperature of water at 0.95 psia is 100°F. 

Analysis To avoid cavitation at a specified pressure, the fluid temperature everywhere in the flow should remain 
below the saturation temperature at the given pressure, which is 

max sat @ 0.95 psiaT T= = 100 F°  

Therefore, T must remain below 100°F to avoid the possibility of cavitation.   

Discussion Note that saturation temperature increases with pressure, and thus cavitation may occur at higher pressure at 
locations with higher fluid temperatures. 
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2-71  
Solution Air in a partially filled closed water tank is evacuated. The absolute pressure in the evacuated space is to be 
determined. 

Properties The saturation pressure of water at 60°C is 19.94 kPa. 

Analysis When air is completely evacuated, the vacated space is filled with water vapor, and the tank contains a 
saturated water-vapor mixture at the given pressure. Since we have a two-phase mixture of a pure substance at a specified 
temperature, the vapor pressure must be the saturation pressure at this temperature.  That is,  

sat @ 60°C 19 94 kPavP P .= = ≅ 19.9  kPa  

Discussion If there is any air left in the container, the vapor pressure will be less. In that case the sum of the component 
pressures of vapor and air would equal 19.94 kPa.   

  

 
 
 
2-72  
 

Solution The variation of the dynamic viscosity of water with absolute temperature is given. Using tabular data, a 
relation is to be obtained for viscosity as a 4th-order polynomial. The result is to be compared to Andrade’s equation in the 
form of . TBeD /⋅=μ

Properties The viscosity data are given in tabular form as 

 T (K) μ (Pa⋅s) 
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273.15 1.787×10-3

278.15 1.519×10-3

283.15 1.307×10-3

293.15 1.002×10-3

303.15 7.975×10-4

313.15 6.529×10-4

333.15 4.665×10-4

353.15 3.547×10-4

373.15 2.828×10-4

 
Analysis Using EES, (1) Define a trivial 
function “a=mu+T” in the equation window, (2) 
select new parametric table from Tables, and 
type the data in a two-column table, (3) select 
Plot and plot the data, and (4) select plot and 
click on “curve fit” to get curve fit window. 
Then specify polynomial and enter/edit equation.  The equations and plot are shown here.  

270 292 314 336 358 380
0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

T  

μ 
 

 

 
μ = 0.489291758 - 0.00568904387T + 0.0000249152104T2 - 4.86155745×10-8T3 + 3.56198079×10-11T4   
μ = 0.000001475*EXP(1926.5/T)  [used initial guess of a0=1.8×10-6 and a1=1800 in mu=a0*exp(a1/T)] 
 
At T = 323.15 K, the polynomial and exponential curve fits give 
         Polynomial:  μ(323.15 K) = 0.0005529 Pa⋅s              (1.1% error, relative to 0.0005468 Pa⋅s) 
         Exponential:  μ(323.15 K) = 0.0005726 Pa⋅s             (4.7% error, relative to 0.0005468 Pa⋅s) 
 
Discussion This problem can also be solved using an Excel worksheet, with the following results: 
Polynomial: A = 0.4893, B = -0.005689, C = 0.00002492, D = -0.000000048612, and E = 0.00000000003562 
Andrade’s equation: 1864 061 807952 6 . T. E * eμ = −  
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2-73  
Solution The velocity profile for laminar one-dimensional flow between two parallel plates is given. A relation for 
friction drag force exerted on the plates per unit area of the plates is to be obtained. 
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Assumptions 1 The flow between the plates is one-dimensional. 2 The 
fluid is Newtonian. 

Analysis The velocity profile is given by ( )[ ]2
max4)( hyhyuyu −=  

where h is the distance between the two plates, y is the vertical distance 
from the bottom plate, and umax is the maximum flow velocity that occurs at 
midplane. The shear stress at the bottom surface can be expressed as 

 
h
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h
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Because of symmetry, the wall shear stress is identical at both bottom and top plates. Then the friction drag force exerted by 
the fluid on the inner surface of the plates becomes  

plate
max8

2 A
h
u

AF platewD
μ

τ ==  

Therefore, the friction drag per unit plate area is 

 
h
u

AFD
max

plate
8

/
μ

=  

Discussion Note that the friction drag force acting on the plates is inversely proportional to the distance between plates.     
  

 
2-74  
Solution The laminar flow of a Bingham plastic fluid in a horizontal pipe 
of radius R is considered. The shear stress at the pipe wall and the friction drag 
force acting on a pipe section of length L are to be determined. 

R  
  r 

 
0   

u(r) 
Assumptions 1 The fluid is a Bingham plastic with )( drduy μττ +=  where 

τy is the yield stress. 2 The flow through the pipe is one-dimensional.  

Analysis The velocity profile is given by )()(
4

)( 22 RrRr
L

Pru y −+−
Δ

=
μ

τ

μ
 where ΔP/L is the pressure drop along 

the pipe per unit length, μ is the dynamic viscosity, r is the radial distance from the centerline. Its gradient at the pipe wall 
(r = R) is  
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Substituing into )( drduy μττ += , the wall shear stress at the pipe surface becomes  

R
L
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L
P
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du
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=
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Then the friction drag force exerted by the fluid on the inner surface of the pipe becomes  

PRRLR
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Discussion Note that the total friction drag is proportional to yield shear stress and the pressure drop.     
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2-75  
Solution A circular disk immersed in oil is used as a damper, as shown in the figure. It is to be shown that the 
damping torque is ωC=dampingT  where ( ) 4115.0 RbaC += πμ . 

R 

a 

b

Disk 

Damping oil 

y 

Assumptions 1 The thickness of the oil layer on each 
side remains constant.  2 The velocity profiles are linear 
on both sides of the disk. 3 The tip effects are negligible. 
4 The effect of the shaft is negligible. 

Analysis The velocity gradient anywhere in the oil 
of film thickness a is V/a where V = ωr is the tangential 
velocity. Then the wall shear stress anywhere on the 
upper surface of the disk at a distance r from the axis of 
rotation can be expressed as  

         w
du V r
dy a a

ωτ μ μ μ= = =  

Then the shear force acting on a differential area dA on 
the surface and the torque it generates can be expressed as 

  dA
a
rdAdF w

ωμτ ==      

dA
a
rrdFd

2
T ωμ==   

Noting that rdrdA π2= and integrating, the torque on the top surface is determined to be 
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The torque on the bottom surface is obtained by replaying a by b, 

b
R

2
T

4

bottom
πμω

=    

The total torque acting on the disk is the sum of the torques acting on the top and bottom surfaces, 

⎟
⎠
⎞

⎜
⎝
⎛ +=+=

ba
R 11

2
TTT

4

topbottom totaldamping,
πμω    

or, 

ωC= totaldamping,T     where  ⎟
⎠
⎞

⎜
⎝
⎛ +=

ba
RC 11
2

4πμ    

This completes the proof.  
 
Discussion Note that the damping torque (and thus damping power) is inversely proportional to the thickness of oil 
films on either side, and it is proportional to the 4th power of the radius of the damper disk.     
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2-76E  
Solution A glass tube is inserted into mercury. The capillary drop of mercury in the tube is to be determined. 

Assumptions 1 There are no impurities in mercury, and no contamination on the surfaces of the glass tube. 2 The mercury 
is open to the atmospheric air. 

Properties The surface tension of mercury-glass in atmospheric air at 68°F (20°C) is σs = 0.440×0.06852 = 0.03015 
lbf/ft. The density of mercury is ρ = 847 lbm/ft3 at 77°F, but we can also use this value at 68°F. The contact angle is given 
to be 140°. 
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Analysis Substituting the numerical values, the capillary drop is determined to be 

( )( )
( )( )( )

2

3 2

2 0 03015 lbf/ft cos1402 cos 32 2 lbm ft/s
1 lbf847 lbm/ft 32 2 ft/s 0 45 12 ft

0 00145 ft

s . .h
gR . . /

.

σ φ
ρ

° ⎛ ⎞⋅
= = ⎜ ⎟

⎝ ⎠

= − = -0.0175  in

 h

Air 
 
Mercury 

Discussion The negative sign indicates capillary drop instead of rise. The drop is 
very small in this case because of the large diameter of the tube. 

  

 
 
 
 
 
2-77  
Solution A relation is to be derived for the capillary rise of a liquid between two large parallel plates a distance t 
apart inserted into a liquid vertically. The contact angle is given to be φ. 

Assumptions There are no impurities in the liquid, and no contamination on the surfaces of the plates.   

Analysis The magnitude of the capillary rise between two large parallel plates can be determined from a force 
balance on the rectangular liquid column of height h and width w between the plates. The bottom of the liquid column is at 
the same level as the free surface of the liquid reservoir, and thus the pressure there must be atmospheric pressure. This will 
balance the atmospheric pressure acting from the top surface, and thus these two effects will cancel each other. The weight 
of the liquid column is 

hAir 
 
Liquid 

t

W

 
)( htwggmgW ××=== ρρ V  

 
Equating the vertical component of the surface tension force to the weight gives 
 

φσρ cos2)(                ssurface whtwgFW =××→=  
 
Canceling w and solving for h gives the capillary rise to be 
 

Capillary rise:          
gt

h s

ρ
φσ cos2

=  

Discussion The relation above is also valid for non-wetting liquids (such as mercury in glass), and gives a capillary 
drop instead of a capillary rise. 
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2-78  
Solution A journal bearing is lubricated with oil whose viscosity is 
known. The torques needed to overcome the bearing friction during start-up 
and steady operation are to be determined. 

Assumptions 1 The gap is uniform, and is completely filled with oil. 2 The 
end effects on the sides of the bearing are negligible. 3 The fluid is 
Newtonian. 

Properties The viscosity of oil is given to be 0.1 kg/m⋅s at 20°C, and 
0.008 kg/m⋅s at 80°C. 

Analysis The radius of the shaft is R = 0.04 m. Substituting the given 
values, the torque is determined to be 

l = 0.08 cm 
fluid 

 

R 

 
At start up at 20°C:  

mN 0.79 ⋅=⋅==
m 0008.0

m) 30.0)(s 60/500(m) 04.0(4)skg/m 1.0(4 -13232 ππμ LnRT  

During steady operation at 80°C:  

mN 0.063 ⋅=⋅==
m 0008.0

m) 30.0)(s 60/500(m) 04.0(4)skg/m 008.0(4 -13232 ππμ LnRT  

Discussion Note that the torque needed to overcome friction reduces considerably due to the decrease in the viscosity 
of oil at higher temperature.  

  

 
 
 
 
 
 
 
Design and Essay Problems 
 
 
 
2-79 to 2-81  
Solution Students’ essays and designs should be unique and will differ from each other. 
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