

Microsoft® Outlook 2007
Programming:

Jumpstart for Administrators
and Power Users

This page intentionally left blank

Microsoft® Outlook 2007
Programming:

Jumpstart for Administrators
and Power Users

Sue Mosher

Amsterdam • Boston • Heidelberg • London • New York • Oxford
Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo

Digital Press is an imprint of Elsevier

Digital Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2007, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
E-mail: permissions@elsevier.com. You may also complete your request online
via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact”
then “Copyright and Permission” and then “Obtaining Permissions.”

Recognizing the importance of preserving what has been written, Elsevier prints its books on acid-
free paper whenever possible.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-1-55558-346-0

For information on all Digital Press publications
visit our Web site at www.books.elsevier.com

Printed in the United States of America

07 08 09 10 10 9 8 7 6 5 4 3 2 1

v

Contents

Introduction xi

Acknowledgments xiii

1 What You Can Do with Outlook 2007 1

1.1 Why program with Outlook? 2
1.2 Outlook programming tools 2
1.3 How to start 9
1.4 Key Outlook programming components 11
1.5 Showing developer commands 11
1.6 Summary 13

Part I Basic Outlook VBA Design

2 The VBA Design Environment 15

2.1 VBA: The basics 15
2.2 VBA windows 18
2.3 Getting help in VBA 24
2.4 Working with VBA projects 26
2.5 Summary 29

3 Building Your First VBA Form 31

3.1 Understanding Outlook birthdays and anniversaries 31
3.2 Step 1: What controls do you need? 32
3.3 Step 2: Create the form 33
3.4 Step 3: Add user input controls 36
3.5 Step 4: Add command buttons 38

vi Contents

3.6 Step 5: Plan the next development stage 45
3.7 More on VBA form controls 45
3.8 Summary 55

Part II Basic Outlook Form Design

4 Introducing Outlook Forms 57

4.1 Understanding the two types of custom forms 57
4.2 Starting the forms designer 59
4.3 The six standard Outlook forms 60
4.4 When to use which form 74
4.5 Working in the forms designer 76
4.6 Saving forms and ending a design session 78
4.7 Creating your first custom contact form 81
4.8 Summary 94

5 Introducing Form Regions 95

5.1 Understanding form regions 95
5.2 Controls for form regions 97
5.3 Creating your first form region 100
5.4 Registering and deploying form regions 103
5.5 Limitations of form regions 110
5.6 Other ideas for form regions 110
5.7 Summary 111

6 Extending Form Design with Fields and Controls 113

6.1 Understanding fields versus controls 113
6.2 Creating user-defined fields 114
6.3 Adding and removing fields on Outlook forms 122
6.4 Using form controls 128
6.5 Laying out compose and read pages 137
6.6 Summary 139

Part III Writing VBA and VBScript Code

7 Outlook Code Basics 141

7.1 Understanding when VBA code runs 141
7.2 Writing VBA code 152

Contents vii

7.3 Writing VBScript code for Outlook forms 159
7.4 Referring to Outlook item properties 168
7.5 Writing other Outlook automation code 171
7.6 Summary 175

8 Code Grammar 101 177

8.1 Option Explicit 177
8.2 Declaring variables and constants 179
8.3 Writing procedures 188
8.4 Working with expressions and functions 198
8.5 Working with strings 200
8.6 Working with dates and times 206
8.7 Using arrays, dictionaries, and the Split() and Join() functions 216
8.8 Controlling program flow 222
8.9 Providing feedback 234
8.10 Getting user input 240
8.11 Working with files and other objects 249
8.12 Summary 258

9 Handling Errors, Testing, and Debugging 261

9.1 Understanding errors 261
9.2 Testing and debugging in VBA 269
9.3 Debugging Outlook form VBScript code 277
9.4 Summary 287

Part IV Fundamental Outlook Coding Techniques

10 Outlook Programming Basics 289

10.1 Introducing the Outlook object model 289
10.2 Outlook object and collection code techniques 295
10.3 Understanding Outlook security 302
10.4 Summary 312

11 Responding to Outlook Events in VBA 313

11.1 Application object events 314
11.2 Writing handlers for other object events 329
11.3 Explorers and Explorer events 333

viii Contents

11.4 Inspectors and Inspector events 338
11.5 Folders, Folder, and Items events 343
11.6 Processing incoming mail 347
11.7 Using the Application.Reminder and Reminders events 356
11.8 Summary 369

12 Coding Key Custom Form Scenarios 371

12.1 Working with Outlook item events 371
12.2 Responding to user input on forms 377
12.3 Handling form and control state issues 391
12.4 Summary 400

13 Working with Stores, Explorers, and Folders 401

13.1 Information store concepts 401
13.2 Information store techniques 403
13.3 Working with Explorers 410
13.4 Accessing folders 412
13.5 Working with folders 434
13.6 Summary 442

14 Using PropertyAccessor and StorageItem 445

14.1 Using the PropertyAccessor object 446
14.2 Using the StorageItem object 458
14.3 Summary 462

15 Working with Inspectors and Items 463

15.1 Working with Inspectors 464
15.2 Creating items 467
15.3 Accessing items 474
15.4 Using the Table object 484
15.5 Using Item methods 492
15.6 Summary 500

16 Searching for Outlook Items 501

16.1 Introduction to Outlook search methods 501
16.2 Building search strings 503

Contents ix

16.3 Using Items.Find and Items.Restrict 521
16.4 Using Table search techniques 525
16.5 Using Explorer.Search 527
16.6 Using Application.AdvancedSearch 530
16.7 Summary 541

17 Working with Item Bodies 543

17.1 Basic item body techniques 543
17.2 Parsing text from a message body 545
17.3 Adding text to an item 547
17.4 Creating a formatted message 551
17.5 Using WordEditor 554
17.6 Working with Outlook signatures 563
17.7 Summary 568

18 Working with Recipients and Address Lists 569

18.1 Key recipient and address list objects 570
18.2 Understanding address lists 571
18.3 Working with item recipients 577
18.4 Reading Recipient and AddressEntry information 584
18.5 Reading free/busy information 588
18.6 Showing the Select Names dialog 594
18.7 Summary 601

19 Working with Attachments 603

19.1 Understanding Outlook attachments 603
19.2 Adding attachments to Outlook items 606
19.3 Working with attachments on existing items 608
19.4 Summary 618

20 Common Item Techniques 619

20.1 Using custom message forms 620
20.2 Working with voting buttons and other custom actions 626
20.3 Sending a message with a specific account 637
20.4 Creating a meeting request 639
20.5 Assigning a task 641

x Contents

20.6 Linking Outlook items 642
20.7 Creating an annual event from a custom date field 649
20.8 Summary 658

Part V Finishing Touches

21 Deploying and Managing Outlook Forms 659

21.1 Understanding Outlook forms architecture 660
21.2 Managing Outlook forms 668
21.3 Managing custom fields 679
21.4 Deploying Outlook forms 683
21.5 Troubleshooting Outlook forms 690
21.6 Summary 693

22 Rules, Views, and Administrator Scripting Tasks 695

22.1 Why Outlook scripting is a challenge 696
22.2 Internal scripting with custom message forms 697
22.3 Working with Outlook rules 706
22.4 Managing folder views 714
22.5 Internal scripting with folder home pages 728
22.6 Summary 735

23 Menus, Toolbars, and the Navigation Pane 737

23.1 Programming Outlook menus and toolbars 737
23.2 Working with context menus 750
23.3 Working with the navigation pane and other Explorer panes 763
23.4 Summary 770

24 Generating Reports on Outlook Data 771

24.1 Built-in report techniques 771
24.2 Coding reports with the Outlook object model 777
24.3 Sending output to Microsoft Excel 778
24.4 Sending output to Microsoft Word 788
24.5 Using Word to build an invoice report 792
24.6 Summary 808

Index 809

xi

Introduction

Microsoft Office Outlook 2007, the sixth version of Microsoft’s premier
email and collaboration application, has arrived at a fork in the road. On one
side are the professional developers who use Visual Studio .NET to produce
add-ins that integrate tightly with Outlook. On the other side are the smart
end-users and rushed administrators who want to bend Outlook to their will
and work (or play) more productively. As the Office 2007 beta was getting
under way, K. D. Hallman, Microsoft’s General Manager for Visual Studio
Tools for Office, estimated that there were 3–4 million professional Office
developers and 16 million non-professional Office developers.

I wrote this book for the latter group—mainly for people who don’t pro-
gram Outlook as a full-time job. You are the people who confess in the
newsgroups that you’ve done little programming, but you’re willing to try.
You are the people who make me smile when you come back a week later
and proclaim, “I did it! Hooray!” You will find here all the information you
need to get started programming with Outlook VBA and custom forms, or
to build upon the skills you already have so that you can take advantage of
the many new programming features in Outlook 2007.

Yet, I didn’t forget the professional developers. Pro-level books on Out-
look development need to explain add-in architectural issues and highlight
the essential new programming features in Outlook 2007, such as form
regions and the PropertyAccessor object. Amid all of this great material,
there probably won’t be room to review basics such as how to return a par-
ticular item or folder, or how to use the WordEditor object to manipulate
the text and formatting in the body of an Outlook item. Those essential
building blocks of Outlook programming form the core of this book, and I
invite pro-developers to skip the VBA basics chapters (be kind to the new-
bies!) and jump straight into Part IV, “Fundamental Outlook Coding Tech-
niques.” You will also find in this book the essentials of creating and
managing legacy custom Outlook forms if your organization isn’t yet ready
to migrate its forms applications to form regions.

xii Introduction

I have learned a lot from my readers in the four years since Microsoft
Outlook Programming: Jumpstart for Administrators, Power Users, and Devel-
opers was published, and I am very grateful for your input. You’ve told me
what code worked and what you wanted to know more about. You’ve sug-
gested ways to organize the book better. I hope that I’ve listened well and
that you’ll find this update useful. (If you are still using Outlook 2003, the
earlier book will be more relevant to you than this book, in which much of
the content applies only to Outlook 2007.)

I think it’s important to say what this book is not: It is not a complete
reference to the Outlook object model, nor is it a guide to building add-ins
for installation in the enterprise or for distribution to commercial custom-
ers. (Excellent resources area available on both those topics; check my web
site at http://www.outlookcode.com for links and downloads of all the code
samples in this book.) This book is also not a guide to writing .NET code.
All the samples are in VBA or VBScript, which are the languages used by
power-users and administrators. Since many professional Outlook develop-
ers use VBA for light prototyping, I think that’s still the right language for
showing Outlook basics to the maximum number of people.

Conventions used in this book

This book uses different typefaces to differentiate between code and regular
text and to help you identify important concepts:

Code statements and the names of programming elements appear in
monospace font:

Item.BodyFormat = olFormatRichText

Placeholders for various expressions appear in monospace italic font.
You should replace the placeholder with the specific value that your specific
application of the code requires.

Text that you type is presented within quotation marks. New terms
appear in italics.

The Notes, Tips, and Cautions scattered throughout the book try to call
attention to information that will help you become a better Outlook pro-
grammer. A Note presents interesting information related to the surround-
ing discussion. A Tip offers advice or teaches an easier way to do something.
A Caution advises you of potential problems and helps you to steer clear of
disaster.

xiii

Acknowledgments

I’ve already thanked the readers of my previous books for their input. Also
crucial to the shaping of this book were the questions and comments from
the thousands of other people with whom I’ve exchanged code ideas in the
discussion forums at http://www.outlookcode.com and in Microsoft’s
newsgroups.

I owe a special debt to all the Outlook MVPs (“Most Valuable Profes-
sionals” recognized by Microsoft for great practical knowledge and grace
under fire when helping other users). Eric Legault played a pivotal role as
tech editor and contributor of code sample and illustration ideas (but if you
find any code that won’t run, it’s my fault). I also need to single out Ken
Slovak, Dmitry Streblechenko (developer of Outlook Spy and Redemp-
tion), and Michael Bauer. Word MVP Cindy Meister ably updated an ear-
lier Word printing sample to use the new content controls in Word 2007.

At Microsoft, I can’t thank Outlook extensibility program manager (and
former MVP) Randy Byrne enough for the many questions he fielded and
details he provided about Outlook 2007’s new capabilities. Randy and his
colleagues Peter Allenspach and Ryan Gregg, who taught me all I know
about form regions, are largely responsible for making Outlook 2007 the
most programmable version ever. I’m also grateful for input from Bill Jacob
and especially Angela Wong for the effort she put into Outlook’s developer
documentation. Among people at other organizations who inspired and
instructed were Simon Breeze and Helmut Obertanner.

I must thank Theron Shreve for letting me take my Outlook book ideas
and run with them. All the gang at Digital Press contributed their fast-track
expertise so that this book could include late-breaking material that didn’t
come to light until after the official launch of Office 2007. Final produc-
tion was again in the capable hands of Alan Rose and Lauralee Reinke.

As always, I couldn’t have finished this book without the encouragement
of my family, Robert and Annie, who endured my frustrations at running

xiv Acknowledgments

beta software and smiled at my little coding triumphs. Annie helped get
much of the material from my previous Outlook programming book ready
for revision, making it possible to finish this book just a couple of months
after Outlook 2007 was released. She also gets an extra nod for the proof-
reading and formatting assistance that she provided for my earlier Outlook
2003 book for Digital Press.

Finally, I thank God for the opportunity to share this knowledge and
help people connect with each other.

1

1
What You Can Do with Outlook 2007

Whether you’ve been using Microsoft Outlook for just a few days or for sev-
eral years, you’ve certainly figured out that it does more than email—much,
much more. It’s not unusual to find people who have organized their entire
lives with Outlook. Companies that develop add-ins for Outlook view the
application as a great platform because so many people “live in Outlook.”

But if you asked each Outlook user how he or she puts the program to
work, you would receive a different answer every time, because people have
their own ideas on how to organize the critical information in their lives.
Wouldn’t it be great if Microsoft could make Outlook so customizable that
everyone could use it in his or her own way? It might not be 100 percent
possible, but the programming environment included with Outlook 2007
is rich enough to let you make great strides toward bending Outlook to
your will, or that of the organization you work for.

This book shows you how to use the programming tools that come with
the Outlook application to make it your own. It’s OK if you have never
programmed before. This book shows you the basics! Progamming Outlook
is much easier than you think. For experienced programmers, we cover how
to work with Outlook data, how to put its special features to work, and
how to work around some of its quirks. Even professional developers can
find useful information here on the basic building blocks of Outlook pro-
gramming. Our focus in this book, though, is on what you can build “out
of the box” without Visual Studio or any additional programming tools.

The highlights of this chapter include discussions of the following:

What kinds of programming projects are possible in Outlook 2007

What tools you will use

How to decide which tool to use for a particular project

How to make an initial sketch of your plans for Outlook program-
ming projects

2 1.2 Outlook programming tools

1.1 Why program with Outlook?
Maybe you’re an information technology professional managing a network
of users and need a way to report on the data visible in Outlook. Or per-
haps you’re one of those network users and can imagine ways to make your
work more productive if only Outlook would do (you fill in the
blank). Maybe you even use Outlook at home, as well as at the office, and
wish you knew how to extend its capabilities as a personal information
manager to organize more of your activities. The good news in this book is
that Outlook 2007 makes it easier than ever to customize the application to
streamline repetitive tasks, add new capabilities, and integrate with other
Office applications.

To help you get excited about the chapters ahead, take a look at this list
of things you can do when you learn how to program with Outlook:

Create your own custom rules to handle incoming messages

Search and replace data, such as telephone area codes

Create custom reports by integrating Outlook data into HTML-
format messages, Word documents, and Excel worksheets

Schedule a follow-up call for a meeting

Create Outlook forms that duplicate the paper phone message, vaca-
tion request, and other business forms that you use

1.2 Outlook programming tools
Let’s start by previewing the primary tools that you will be using:

Visual Basic for Applications (VBA)

Outlook forms

Visual Basic Scripting Edition (VBScript)

Programming models for other Office applications

1.2.1 Visual Basic for Applications

Outlook includes a rich development environment for creating macros, event
handlers, and other procedures—Visual Basic for Applications, or VBA for
short. Other Office programs also have VBA, but so do AutoCAD and other
applications that have licensed VBA as their programming environment.

Note: Microsoft has a new application-centric development environment
called Visual Studio Tools for Applications (VSTA), built on the .NET
Framework, but in Office 2007, only InfoPath supports VSTA. Other
Office 2007 applications, including Outlook, still use VBA as their inte-
grated programming environment.

1.2 Outlook programming tools 3

Figure 1.1 shows the VBA programming environment. (Most of the
screen shots in this book were taken using Windows Vista. If you use Win-
dows XP or Windows 2003, your screen will look slightly different, but
Outlook code should function the same regardless of the operating system
version.) The VBA programming environment includes many tools to help
you learn how to write VBA code:

Visual forms designer (to create Windows dialogs in VBA, not cus-
tom Outlook forms)

Intelligent editor with color coding and dropdown lists to avoid code
errors

Detailed index to Outlook programming techniques

Properties windows and other tools

Figure 1.1 VBA includes a rich form and code environment (compare with Figure 1.4).

4 1.2 Outlook programming tools

VBA code can enhance many of the operations that take place when you
work with your Outlook information, such as creating new items or switch-
ing from one folder to another. As you’ll see, most of those operations have
corresponding events in the Outlook programming library that let you
respond to such operations automatically.

VBA also gives you the ability to design pop-up dialog boxes to get
information from and windows that stay on the screen to provide informa-
tion to the user. For example, you might build a VBA form to display how
many vacation days you have used so far this year or the time that you last
received messages in your Inbox.

Furthermore, you can use VBA to create macros that you can add to the
Outlook toolbar to launch a telephone message form, search for and replace
text, run rules on demand, and expand Outlook’s capabilities in many other
ways. You can even create VBA procedures that the Outlook Rules Wizard
can execute as “run a script” rule actions.

You might have created macros in Word or Excel by turning on a macro
recorder that watches your actions and then builds the appropriate code.
Outlook does not include a comparable macro recorder, but the examples
in this book should give you all the basic building blocks you will need to
construct truly useful Outlook macros.

Note that the VBA techniques discussed in this book also apply if you
want to move up from Outlook’s integrated development environment to
building more sophisticated Outlook tools with Microsoft’s Visual Studio
or other development tools. They also apply to VBA code written in Word,
Excel, Access, or other Office applications that need to automate Outlook.

1.2.2 Custom Outlook forms

The second stop on the road to Outlook programming proficiency is learn-
ing how to customize the basic Outlook forms.

Every item that you open in Outlook—whether it’s an email message, a
contact, or an appointment—uses a particular form to display its data. (If
you have programmed in Microsoft Access, you may already be familiar
with using forms as templates to display different data records.) You can
customize these forms to show or hide fields or whole pages, respond to
user input and actions, and launch other Outlook operations. If you work
within an organization that uses Microsoft Exchange as its mail server, you
may be able to collaborate with other people by using custom Outlook
forms. With a little more effort, it is also possible (although much less com-
mon) to use custom forms for collaboration with other Outlook users
across the Internet.

In many programming environments, you must start from scratch every
time you want to create a new window for the user to interact with. Out-

1.2 Outlook programming tools 5

look is different in that it presents you with a group of built-in forms. To
build a custom form, you start with one of the built-in forms and then add
your own special touches.

For example, people often ask how to show a contact’s age, not just
record the birthday. Figure 1.2 shows the default Contact form as it nor-
mally looks. The Birthday field is on the Details page, and so is not visible.
In Figure 1.3, you see the same form, only this time it has been customized
with a form region to provide a control for entering the birthday from the
main page and a box to calculate the age. Form regions are a new feature in
Outlook 2007 that allows you add to or replace pages on custom Outlook
forms. We’ll learn more about them in Chapter 5, “Introducing Form
Regions.”

Figure 1.2
This Contact form

has not been
customized.

Figure 1.3
This Contact form

has been
customized with a

form region to show
the birthday and

age of the contact.

6 1.2 Outlook programming tools

Was any programming code required to do this? Not really. All it took
was a formula, not that different from those formulas you might have writ-
ten for Microsoft Excel worksheets.

Custom form regions are just the newest way to customize Outlook
forms. You can also create custom forms by adding controls and custom
fields to five or six pages on any of the basic six standard forms that come
with Outlook.

Given that no code is required just to add controls and fields, is this
truly Outlook programming? Sure it is! Many of the changes you want to
make to Outlook might involve nothing more than adding new fields and
pages to existing forms to hold that extra data. Without writing any code at
all, you can perform simple validation to make sure that the data meets
your criteria for correctness and develop formulas such as the one for calcu-
lating a person’s age.

1.2.3 Visual Basic Scripting Edition

A time will come, however, when you want your custom Outlook forms to
do more. Maybe you will want to generate a task for a follow-up telephone
call from an appointment and have Outlook automatically fill in the con-
tact name for you. Perhaps you want to be able to enter the birth date for a
contact’s spouse or partner and have Outlook automatically create a new
recurring event in your Calendar folder. When you are ready to go beyond
entering data and manipulating it in simple ways, you can move up to
VBScript, the shorthand name for Visual Basic Scripting Edition, the pro-
gramming language behind Outlook forms.

Figure 1.4
The Outlook form
script editor is just

a text editor
(compare with

Figure 1.1).

1.2 Outlook programming tools 7

You might have heard of VBScript in the context of Web pages.
VBScript is one of several languages that can control what you see when
you interact with a Web page. It also works with the Windows Script Host
(WSH) scripting environment that Microsoft has included with Windows
since Windows 98. With WSH, you can write routines that are stored as
simple text files and can be run at a command line.

Scripts don’t run as fast as other kinds of programs, but they enjoy the
advantage of small size and portability. Having a script associated with an
Outlook form hardly increases the size of the form at all.

VBScript is a little scary, though. It’s like walking a tightrope without a
net, because the built-in editor for building VBScript programs is, well, a
text editor. Figure 1.4 shows a sample script for a form to distribute a list of
company holidays within an organization. The form script editor has none
of the color-coding or automatic syntax checking that you get with VBA.

One sneaky technique that you will learn in this book is to write and test
your Outlook form code in the superior VBA code environment, make a
few minor adjustments to adapt it to VBScript, and then copy and paste it
into the script window of an Outlook form. This method cuts down on
programming time immensely.

1.2.4 Folder home pages

When you start Outlook for the first time, you see Outlook Today, a sum-
mary of your Inbox, Calendar, and Tasks folders. Outlook Today is actually
a Web page included with Outlook, a specific example of a folder home page.
Every folder in Outlook can be set up on its Properties dialog to display a
Web page instead of the contents of the folder. The Web page can even
include the list of items in the folder, through a special ActiveX control
called the Outlook View Control, but it can also show something unrelated
to Outlook, such as a SharePoint site or an Intranet help desk page. Folder
home pages can also help document for users what kinds of activities they
can perform in an Exchange public folder.

Two things make folder home pages interesting to network administra-
tors who want to explore Outlook’s configuration scripting support:

With Group Policy Objects or the Office Customization Tool, you
can control which default folders in Outlook show home pages and
what pages they show.

Folder home pages can run VBScript code to access Outlook automa-
tion objects and configure such things as rules.

Figure 1.5 shows an example of a folder home page used to deploy Out-
look settings. We’ll explore such techniques in Chapter 22, “Rules, Views,
and Administrator Scripting Tasks.”

8 1.2 Outlook programming tools

Figure 1.5 Folder home pages can display data from any Outlook folder and run script code like
any other Web page.

What happened to CDO?

Previous versions of Outlook relied on a programming interface called
Collaboration Data Objects (CDO) for many programming tasks that
were not possible through the Outlook object model, such as display-
ing the Address Book dialog or getting the mobile phone number from
a user in the Exchange Global Address List. Outlook 2007’s object
model has approximately doubled compared with Outlook 2003, and
it can now handle virtually all the programming tasks that once
required CDO—and do it without triggering security prompts. There-
fore, Microsoft is no longer shipping CDO 1.21 with Outlook 2007. It
is, however, available as a Web download for use with legacy applica-
tions that require it. This book does not cover programming with
CDO 1.21.

1.3 How to start 9

1.2.5 Office integration and other object models

Outlook can create Word or Excel documents, and Microsoft Office pro-
grams such as Excel and Word can create messages, appointments, and
other Outlook items. This integration is possible thanks to something
called the Outlook object model, a programming library that opens Outlook
to automation not just through Outlook VBA but from other applications’
code environments as well. Furthermore, all the Office programs and many
other Windows components also have object models that reveal what those
programs can do, the types of items (or objects) they can work with, and
the characteristics of those items. Word objects, for example, are crucial to
creating Outlook messages with complex formatting.

1.3 How to start
At this point, you might feel that the hardest task in Outlook programming
is knowing where to start. Do you use VBScript or VBA? Do you work with
a form first and then write the programming code or vice versa?

I would recommend that you start by choosing one or more compelling
projects—ideas that will save you time in the long run, make repetitive
tasks less burdensome, or perhaps just display information that is hard to
extract from the standard Outlook interface. Try to be as specific as possi-
ble. Don’t decide to build a project to make Outlook work just like Gold-
Mine (a popular sales contact management program). Instead, pick a
particular GoldMine feature that you want Outlook to duplicate.

When you choose a project, don’t start writing code or moving fields
around on a form right away! Instead, take some time to outline what you
want the project to accomplish, using what programmers call pseudo code.

But wait! You say you don’t know how to writing programming code.
(“That’s why I bought this book! ,” you protest.) No, I’m not asking you to
write a program (not yet), only to lay the groundwork. When you write
pseudo code, you’re walking through the logic of what you want to happen,
without worrying about the exact language required to make it work.

For example, let’s say that you want to enhance Outlook’s appointment
form with a button that would create a new task for a follow-up telephone
call to the person you met with. The pseudo code might look something
like this:

User clicks button
 Show task form
 Copy details of meeting to task body
 Copy contact from meeting to task
 Set task due date for one week from the meeting date
 If task due date falls on a weekend or holiday
 Then adjust the due date to the next business day
 Save the task

10 1.3 How to start

Nothing in this list looks like programming, but it describes in detail
what you want Outlook to do when the user clicks the follow-up call but-
ton that you’ll add to the form. It won’t take much to move from this
pseudo code to the programming code that implements those steps.

Once you decide what project to tackle and have an idea of what the fin-
ished project should do, how do you decide which tool is appropriate?
Table 1.1 provides some recommendations for tools appropriate to particu-
lar situations. Don’t take these recommendations as hard and fast rules. In
many cases, you can approach a project in several ways. As you work
through the examples in the chapters that follow, you will develop a better
feel for which Outlook tool works best and which approach you feel more
comfortable implementing.

Note that Table 1.1 does not include such approaches as add-ins, task
panes, custom toolbars, and smart tags. While professional developers
include such elements in their Outlook-integrated applications, creating

Table 1.1 Choosing Outlook Tools

If you want to . . . Try this approach . . .

Show additional information in an individ-
ual item window

Modify an Outlook form or design a custom
form region

Show additional information about an item
in the reading pane

Design a custom form region

Take some action in response to something
that the user does with an Outlook item

Modify an Outlook form with VBScript
code

Click a button on the Outlook toolbar to
make something happen to the current item
or items

Write a macro in VBA

Make something happen when the user
starts Outlook, switches to a different folder,
or performs other actions that don’t involve
a particular Outlook item

Write an event handler in VBA

Process an incoming message or meeting
request

Write a procedure in VBA that can be
invoked from an Outlook rule using a “run
a script” action or write a VBA event han-
dler

Display status information as the user per-
forms various Outlook tasks

Create a user form in VBA with a routine
that keeps the status information up-to-date

Show data from multiple Outlook folders in
a single view

Use a folder home page with multiple
instances of the Outlook View Control

1.5 Showing developer commands 11

them requires additional development tools such as Microsoft Visual Stu-
dio. In this book, we’re going to stick to the programming you can do just
with Outlook and the other Office programs.

1.4 Key Outlook programming components
If you use the default settings to install Office or Outlook, you should have
almost all the built-in development tools you need. Table 1.2 lists those
components and where you’ll find them in the feature installation state lists
when you run Setup.exe to install or update Outlook or Office 2007. Note
that the Web Debugging component, which is used to debug Outlook cus-
tom form VBScript code, is not supported on computers using Windows
Vista as the operating system unless you also have Visual Studio 2005 (not
Visual Studio 2005 Express) installed. Also, the .NET support components
are needed only if you are using Visual Studio. VBA and VBScript code do
not need them.

As noted in the “What Happened to CDO?” sidebar, Collaboration
Data Objects is no longer a part of an Outlook installation, but is available
as a separate download for backward compatibility.

1.5 Showing developer commands
Some of the developer features in Outlook don’t appear by default. To see
developer commands on individual items, follow these steps:

1. From the main Outlook menu, choose Tools | Options.

2. Switch to the Mail Format tab.

3. Click Editor Options.

Table 1.2 Key Outlook Development Components

Component Features

Microsoft Outlook .NET Programmability Support

Visual Basic Scripting Support

Office Shared Features Digital Signature for VBA Projects

Visual Basic for Applications

Office Tools Microsoft Forms 2.0 .NET Programmability Support

Microsoft Script Editor (HTML Source Editing)/Web Script-
ing/Web Debugging (supported on Windows Vista only with
Visual Studio 2005)

Smart Tag .NET Programmability Support

12 1.5 Showing developer commands

Figure 1.6
Some Outlook

developer
commands won’t be

visible until you
turn on the

Developer tab.

Where’s the .NET code?

You may have noticed that Table 1.2 lists several components that provide .NET program-
mability support to Outlook but that none of the approaches in Table 1.1 mentioned .NET.
We are not going to cover .NET programming in this book or show any code samples in
VB.NET or C#. I know that may sound odd, given that Visual Studio and its .NET lan-
guages comprise Microsoft’s latest and greatest programming environment. Microsoft even
has a special edition of Visual Studio (Visual Studio Tools for Office) for creating add-ins
for Outlook. However, the programming tools in the versions of Outlook and Office that
you buy at the store or that come preinstalled on a new computer use not .NET, but the
older VBA and VBScript programming languages. Future versions of Office may replace
VBA with a new .NET programming environment called Visual Studio Tools for Applica-
tions that makes its debut in InfoPath 2007, but in Outlook 2007, the customization lan-
guages appropriate for administrators and power users (the main audience for this book) are
still VBA and VBScript.

That said, the Outlook object model works the same, regardless of what language you
use, and so I hope that professional developers working in .NET languages will find some of
the material in this book useful to their understanding of how to accomplish the basic pro-
gramming tasks in Outlook.

1.6 Summary 13

4. In the Editor Options dialog (see Figure 1.6), check the box for
“Show Developer tab in the Ribbon.”

The “Ribbon” is Office 2007’s new command interface, replacing tool-
bars and menus on Word documents, Excel worksheets, PowerPoint presen-
tations, and individual Outlook items.

1.6 Summary
At first, Microsoft Outlook programming can seem complex because there
is more than one tool and no clear indicator of where to start. This book is
divided into sections that introduce Outlook skills one at a time, with
examples that you can easily try on your own computer. After an introduc-
tion in Part I to VBA design, in Part II you will learn about Outlook form
design. If you are completely new to writing code, Part III will give you the
basics that you’ll need to write both VBA and VBScript code. If you already
have coding experience, feel free to skip ahead to Part IV, which dives into
the specifics of writing code for the Outlook object model, both in VBA
and in VBScript behind custom forms. Finally, in Part V, you’ll find out
how to integrate Outlook with Word and Excel to print reports, work with
rules and views, manage forms and some key user settings, and modify the
toolbar on Outlook’s main menu.

Code samples in this book are available from http://www.outlook-
code.com, along with book suggestions for professional developers, more
code samples, discussion forums, and other Outlook programming
resources.

This page intentionally left blank

15

2
The VBA Design Environment

Visual Basic for Applications, or VBA as I’ll call it from now on, is the pro-
gramming environment for writing and testing macros that you can run on
demand and procedures that respond to various events that occur when you
use Outlook. Because Outlook has no macro recorder (as is found in Word
and Excel), you will have to write your Outlook VBA code from scratch.

The highlights of this chapter include discussions of the following:

How to get started using VBA

Where to enter program code

How to use the basic windows in the VBA programming environ-
ment

How to add a new VBA user form

How to avoid a security message when you start VBA

How to locate where Outlook saves your VBA code project

2.1 VBA: The basics
Here are the absolute basics you need to get started with Outlook VBA.

First, you must change the security level, because Outlook VBA is dis-
abled by default. Follow these steps:

1. Choose Tools | Macro | Security.

2. In the Trust Center dialog, under Macro Security, select “Warn-
ings for all macros,” and then click OK.

3. Restart Outlook.

The next step is to start the VBA environment. After Outlook restarts,
press Alt+F11 or choose Tools | Macro | Visual Basic Editor. If you see a
prompt like that in Figure 2.1, you should choose Enable Macros. (The
prompt will not appear if you have not written any VBA code yet.)

16 2.1 VBA: The basics

After the VBA editor opens, in the Project Explorer at upper left, click
the + sign to expand the Project1 (VbaProject.OTM) hierarchy, then click
the + sign to expand the Microsoft Office Outlook Objects hierarchy.
Finally, you should see ThisOutlookSession, which is a built-in code
module. Double-click the ThisOutlookSession module to open it.

Tip: Notice that the title of the window changes to “Microsoft Visual Basic
- Project1- [ThisOutlookSession (Code)].” The name of the currently dis-
played module is part of the VBA editor’s caption.

You’re now ready to write your first VBA procedure! Type the code in
Listing 2.1 into the ThisOutlookSession module.

To run this code, leave the cursor anywhere inside the text that you
typed and do any of the following:

Press F5.

From the VBA editor’s menu, choose Run | Run Sub/UserForm.

Click the Run Sub/UserForm button on the VBA editor’s toolbar.

You can also run the procedure by closing the VBA editor, and pressing
Alt+F8 while you’re in the main Outlook window. Regardless of how you
run the procedure, what you should see is a new Outlook message with a
subject of “Hello World!” and this text in the message body: “How do you
like your first message?” (You may need to minimize or close the VBA edi-
tor in order to see the message.)

Figure 2.1
This message

appears when you
start VBA if your

macro security is set
to “Warnings for

all macros.”

Listing 2.1 Create your first Outlook Message with VBA code

Sub HelloWorldMessage()
 Dim msg As Outlook.MailItem
 Set msg = Application.CreateItem(olMailItem)
 msg.Subject = "Hello World!"
 msg.Body = "How do you like your first message?"
 msg.Display
 Set msg = Nothing
End Sub

2.1 VBA: The basics 17

To save your work, close Outlook and respond Yes when you see the
prompt, “Do you want to save the VBA Project ‘ThisOutlookSession’?”

Congratulations! You have created your first VBA procedure. The next
few sections will review what you accomplished and give you more details
on these basic VBA practices.

2.1.1 VBA security

The default VBA security setting does not allow you to run any VBA code.
Therefore, before starting VBA for the first time, you should check the
security settings by choosing Tools | Macro | Security. Figure 2.2 shows the
different options.

With security set to “Warnings for all macros,” Outlook will prompt
you each time it starts (see Figure 2.1) to confirm that you want to allow
your VBA code to run. At the end of this chapter, we’ll learn how to sign
your project digitally to avoid that prompt and still keep VBA secure.

Tip: I usually keep my macro security setting on “Warnings for all macros.”
Getting the prompt when Outlook starts lets me know for sure that the
VBA component has loaded correctly.

Caution: If you choose “No warnings and disable all macros” in the dialog
shown in Figure 2.2, you can still work on your VBA project, but you will
not be able to run any VBA code until you lower the security setting, then
exit and restart Outlook.

2.1.2 Starting VBA

To start a VBA session, press Alt+F11, or choose Tools | Macro | Visual
Basic Editor. The Outlook VBA editor may look terribly complex if you

Figure 2.2
Adjust macro

security to
“Warnings for all

macros” before you
first run Outlook

VBA.

18 2.2 VBA windows

have not previously worked with Visual Basic or with VBA in other Office
programs. Don’t worry! This chapter explains two windows on the left and
shows you how to fill out the blank space on the right with a form and a
code module, your first two VBA programming components.

Tip: Working in VBA does not mean that you can’t get your email mes-
sages. Outlook remains open. To go back to the main Outlook window, just
click the View Microsoft Office Outlook button on the far left end of the
VBA toolbar or press Alt+F11.

2.1.3 Saving your work and ending a VBA session

You should save your work in VBA periodically, perhaps after you finish
positioning controls on a form or after you finish coding a module. You can
do this by clicking the Save button, pressing Ctrl+S, or choosing File | Save
in the VBA editor. All the modules and forms are stored in a single project
file named VbaProject.OTM.

To end a VBA session, click the close (x) button in the upper-right cor-
ner of the VBA editor, or choose File | Close and Return to Microsoft
Office Outlook. Exiting VBA does not save your VBA programming work.
However, when you exit Outlook, if any modules or forms are unsaved,
Outlook prompts you to save the VBA project.

2.2 VBA windows
When you run VBA, the first two windows that appear are the Project
Explorer and Properties windows on the left side of the development envi-
ronment. You can close either of them with the close (x) button in the
upper-right corner of the window. You will probably want to keep them
open though, unless you have limited space on your screen.

Tip: If the Properties or Project Explorer window is not visible, you can
restore either window with the appropriate command on the View menu or
the corresponding toolbar button.

Besides these two, you will also use module and form windows (the win-
dows that you use to extend Outlook with code and VBA forms) and the
Object Browser, which helps you discover what you can do with Outlook
and other object models.

2.2 VBA windows 19

2.2.1 Project Explorer

The Project Explorer window lists the currently loaded VBA elements that
make up your programming application. For example, compare Figure 2.3
with Figure 2.4. Figure 2.4 shows the Project Explorer after I added a form
and a module (more on those shortly). You will also see the ThisOutlook-
Session module, because Outlook creates it automatically. The ThisOut-
lookSession module is very useful for building code routines that handle
Outlook events.

Figure 2.3
The VBA

environment
contains no

program code or
forms when you

first start it.

Figure 2.4
Use the Project

Explorer as a map
or index to the

components you are
currently working

on. The design tools
for VBA forms

include a toolbox.

20 2.2 VBA windows

The three buttons at the top of the Project Explorer are (left to right)
View Code, View Object, and Toggle Folders. When working with a form,
use the View buttons to switch between its code and its layout. The Toggle
Folders button flattens the list of elements in the project, hiding the folders
and listing all components in alphabetical order.

2.2.2 Properties window

The Properties window, which appears below the Project Explorer window,
lists all the attributes of any project elements.

In Figure 2.5, you see the properties for a code module (more on such
modules shortly) created by choosing Insert | Module and a form created by
choosing Insert | UserForm. The only property for the module is its name,
Module1 by default. To change the Name property, click next to (Name) in
the Properties window and replace Module1 with a different name.

When you start designing VBA forms, you will see that VBA forms and
the controls on them have many, many properties. Some properties you
change by typing a new value in the Properties window. Others you pick
from a list. Most can also be changed with program code. An example
would be turning the text in a control red when the value of the control
meets certain criteria.

Tip: If you drag the Properties window by its title, you can float it over
another part of the VBA environment. Both the Properties window and the
Project Explorer (and most other VBA windows) are dockable; you can
either park them against one side of the main window or float them any-
where inside the VBA editor. Experiment to discover which arrangement
suits you best.

Figure 2.5
Every

programming
component in VBA

has properties.

2.2 VBA windows 21

2.2.3 VBA user forms

To add your first user form to the VBA environment, choose Insert | User-
Form. You should see something like the form in Figure 2.4.

VBA forms use controls to display information to the user and gather
data. No data resides in the form itself, except during the short time that
the form is in use. Most of the VBA forms you will build in Outlook are
called dialog boxes, because they force the user to carry on a conversation
with the program. When a dialog box is displayed, the user can’t return to
the Outlook application until the conversation ends with the user clicking
OK, Cancel, or some other button that closes the dialog box.

2.2.4 Modules

To add a new code module, choose Insert | Module. A module is a collection
of programming procedures. You should see something like Figure 2.6, only
the module you add will contain no text yet. Notice that a module has only
one property in the Properties window (Name).

Note: You can also insert another kind of module called a class module. The
built-in ThisOutlookSession module is an example of a class module. As
we’ll see in Chapter 11, “Responding to Outlook Events in VBA,” class
modules allow you to react to the events that occur as users work with Out-
look. The code module for a VBA user form is another example of a class
module.

VBA code windows use a rather smart text editor with a feature
Microsoft calls “intellisense.” It checks your code against the VBA program-
ming language, reminds you of the parameters of each function, and colors
your text to distinguish different code elements. For example, the text
shown at the top of Figure 2.6 appears in VBA in green, because it is a com-
ment, text in a program module that is not executed as code. To create a
comment statement, start a line of text with an apostrophe ('). You can also
insert a comment at the end of a code statement by preceding the comment
text with an apostrophe.

To end a code statement and go to the next line, press Enter. If the state-
ment has an obvious syntax error, VBA will color it red until you fix the
problem.

In Figure 2.6, notice the pop-up about the MsgBox function explaining
what parameters it supports and in what order to use them. (MsgBox is a
handy function that pops up a message box on the user’s screen.) This infor-
mation appears as you type the name of a function that VBA recognizes. It

22 2.2 VBA windows

then disappears automatically after you finish typing the current function
and its parameters. If you find this distracting, you can turn it off by choos-
ing Tools | Options and clearing the box for Auto Quick Info.

Tip: Choose Tools | Options if you want to experiment with the other set-
tings for the code editor.

Did you realize that you already have another place to write program-
ming code for your project? Open UserForm1 from the Project Explorer,
and then double-click anywhere on the blank form. A code window like the
one in Figure 2.7 appears, ready for you to type in the first procedure that
applies directly to the form. (Don’t be concerned just yet about what to
type; that’s coming in the next few chapters.)

Tip: You can switch among the forms and modules either with the Project
Explorer or by using the Windows menu. Each form or module window
has minimize, maximize/restore, and close buttons, just like document win-
dows in programs like Word.

2.2.5 Object Browser

To complete this initial tour of the VBA editor, you need to look at one
more window, the Object Browser. Choose View | Object Browser, click the
Object Browser toolbar button, or just press F2. You will probably want to

Figure 2.6
Modules contain

programming
procedures.

2.2 VBA windows 23

maximize that window so that it fills whatever space is not occupied by the
Project Explorer and Properties windows, as shown in Figure 2.8. In the
dropdown list at the top of the Object Browser, switch from <All Libraries>
to Outlook.

Note: From now on, most figures illustrating work in VBA will show only
the particular form or code window, not the entire VBA editor.

Figure 2.7
Forms also include
programming code,
shown in a separate

window.

Figure 2.8
The Object

Browser describes
the various objects

you can program
with and their

properties,
methods, and

events.

24 2.3 Getting help in VBA

The Object Browser is your road map and index to the world of Out-
look items, folders, and other components for which you can write code.
Under Classes, you see each Outlook object. Click on ContactItem, for
example, and under Members of ‘ContactItem’ on the right, you see the
characteristics of contacts—what they can do, what you can do to them,
and their properties. After you select a class or member, click the question-
mark button, press F1, or right-click the member or class and choose Help
to read the Help topic about that item. For many topics, you will find a
code example you can copy and paste into your application.

Tip: The fields you see in the (All Fields) page on an Outlook custom form
generally match the object properties for different items, but not always
exactly. For example, the Company field on a contact form is actually the
CompanyName property of a ContactItem object. In a formula on a form,
you would use [Company], but in VBA or VBScript code, you would use
CompanyName.

2.3 Getting help in VBA
In addition to the Object Browser described in the previous section, you
can also get help in Outlook VBA by pressing F1 or choosing Help |
Microsoft Visual Basic Help. Help topics include:

Outlook objects, properties, methods, and events

Key Outlook developer concepts, including many useful how-to
articles

What’s new in Outlook 2007 for developers

By default, Help looks first for the content online at Microsoft. This
ensures that you access the most recently updated information on any given
topic. If you are not connected to the Internet, Outlook will use the Help
content stored locally.

Browsing the Concepts section, a new documentation effort by
Microsoft, is a particularly good way to acquaint yourself with Outlook’s
capabilities. Figure 2.9 shows the topics available in under Items, Folders,
and Stores.

To locate information about particular Outlook and VBA functions,
you can use the Search box at the top of the Help window. Figure 2.10
shows part of the topic for the MsgBox() function that you saw in Figure
2.6. The topic includes detailed information on the different parameters for
the function, plus code examples.

2.3 Getting help in VBA 25

Tip: You can also get help on VBA functions and Outlook objects, proper-
ties, and methods by highlighting a word in your code, then pressing F1.

Figure 2.9
Help topics can

guide you through
basic Outlook
programming

concepts.

Figure 2.10
Reference topics

explain different
functions,
properties,

methods, and
Outlook objects.

26 2.4 Working with VBA projects

2.4 Working with VBA projects
Outlook always stores its VBA project in a file named VbaProject.OTM.
You can’t change the name of the VBA project file or store it in another
location. Table 2.1 shows the file’s location on the different versions of
Windows.

Note: Regardless of the operating system, you can display the folder where
Outlook keeps the VBA project file by using the path %appdata%\
Microsoft\Outlook in Windows Explorer. %appdata% is an environment
variable that acts as a shortcut to the folder containing the user’s own appli-
cation data.

If you have a problem with VBA or want to start with a fresh Vba-
Project.OTM file for some other reason, shut down Outlook, rename the
VbaProject.OTM file, and then restart Outlook. The next time you run
VBA, Outlook will create a new, empty VBA project. To return to the orig-
inal project, repeat the process, renaming the original file back to Vba-
Project.OTM.

Note: Unlike other Office applications, such as Excel and Word, Outlook
allows you to work on only one VBA project at a time.

2.4.1 Backing up your work

Unlike other Office programs (such as Word and Excel) that allow you to
have a VBA project for each document and template, Outlook allows only
one VBA project. Because the VbaProject.OTM file contains all your Out-
look VBA code, it is a good idea to include it in your regular system
backup. Refer back to Table 2.1 for the file’s location.

You can also make copies of individual modules and forms, either for
backup or for reuse on a different computer. In the Project Explorer, select
any form or module, and then choose File | Export File. Outlook exports

Table 2.1 Storage Locations for the VbaProject.OTM File

Windows Version VbaProject.OTM Location

Windows Vista C:\Users\<user name>\AppData\Roaming\Microsoft\Outlook

Windows 2003

Windows XP

C:\Documents and Settings\<user name>\Application Data\Microsoft\Outlook

2.4 Working with VBA projects 27

modules as .bas files, forms as .frm and .frx files, and the ThisOutlook-
Session module as a .cls file.

Use the Import File command on the File menu to bring in a module or
form that you previously saved. Use the Remove command to remove a
module or form that you are no longer using actively; you’ll get a prompt
asking if you want to export it first. Exporting is a good idea, just in case
you want to recover the routines or form later.

2.4.2 Signing your project

It is possible to avoid the Enable Macros/Disable Macros prompt (Figure
2.1) when you start VBA and still have a secure VBA environment. The
solution is to sign your Outlook VBA project digitally. Office includes a
tool called Selfcert.exe that you can use to create a signing certificate. You
will find this tool on the Programs menu under Microsoft Office |
Microsoft Office Tools | Digital Certificate for VBA Projects. It creates a
digital certificate, similar to that which you can get from providers like Veri-
sign, only it’s free and doesn’t derive from a trusted hierarchy of other certif-
icates. After you run the tool, restart Outlook and switch into the VBA
editor. Then choose Tools | Digital Signature, click Choose, select the cer-
tificate, and click OK until you return to the VBA editor.

After you sign the project with the certificate, you can adjust your Out-
look macro security setting. Switch back to the main Outlook window,
choose Tools | Macro | Security, and set security to “Warnings for signed
macros; all unsigned macros are disabled.” The next time you try to run any
VBA code, you will see the slightly ominous prompt in Figure 2.11 in
which Outlook asks whether it can trust the “publisher” (that is, you) of the
VBA module. You should click on the Show Signature Details link to verify
that the certificate name is that of the certificate you created with Self-
cert.exe. Once you verify the certificate, you can confidently click “Trust all
documents from this publisher” and never see that prompt again for your
VBA sessions.

Figure 2.11
Secure your

Outlook VBA
configuration by
digitally signing

your VBA project,
then trusting the

certificate that you
used to sign the

project.

28 2.4 Working with VBA projects

2.4.3 Distributing VBA code to others

Outlook VBA code is designed for personal use. Microsoft never intended
it for distribution to large numbers of users. In document-centric programs
like Word and Excel, macros travel with templates and documents. But in
Outlook, there is, in fact, no supported way to distribute Outlook macros.
If you have prototyped a good solution in VBA, the best approach to dis-
tributing that solution throughout your organization is to use your VBA
code as a starting point for building an add-in. Creating an add-in requires
additional tools and programming skills beyond what this book covers.

Realistically, though, not every organization that wants to make Out-
look more functional has the resources to create add-ins. You may also run
into situations where just a couple of Outlook VBA macros can cut down
on the amount of time that the corporate help desk has to spend with a par-
ticular user or make your vice president’s assistant work more effectively. In
those situations, you can adapt the backup techniques covered earlier—
either export and import code or replace the entire VbaProject.OTM file.

Export and import is the least intrusive technique. Give the exported
files to other users, and tell them how to reverse the process with File |
Import. If you export a form, be sure to distribute both the .frm file and the
.frx file.

The advantage of sharing VBA code through export and import is that it
preserves any VBA code that the user may have already written. Disadvan-
tages include:

It’s tedious if you have a lot of modules.

If you export the built-in ThisOutlookSession module and then
try to import it, the user will get a ThisOutlookSession1 class
module, but code in it won’t run automatically as it does in This-
OutlookSession. The user will need to cut and paste the procedures
from the imported class module into the built-in ThisOutlookSes-
sion module.

The user will have to resolve any duplicate procedure names that
might raise conflicts between existing modules and those imported.

The brute force approach is to copy the VbaProject.OTM to the user’s
machine, replacing any existing VbaProject.OTM file. You can do this with
whatever technique you normally use in your organization to copy files to
users, including walking it around on a disk to each workstation or using a
login script.

This method has the advantage of being a relatively simple process of
copying a single file. Disadvantages include:

Any Outlook VBA code the user already has will be lost.

2.5 Summary 29

The user will need to use Alt+F8 or Alt+F11 manually at least once
before any Application-level event code will fire.

Note that Microsoft does not provide any support for these VBA code
distribution techniques. Also, VBA code has been known simply to disap-
pear without warning because the VbaProject.OTM file has become cor-
rupt. Good backups and patience are essential. Your mileage may vary.

2.5 Summary
In the VBA environment, you can create dialog boxes and other user input
and display forms. You can also write macros, event handlers, and other
procedures in program code modules. In Chapter 7, “Outlook Code
Basics,” we will start writing VBA macros and learn how to invoke them
from toolbar buttons.

In Chapter 3, “Building Your First VBA Form,” we will learn how to
create forms with VBA. Some of the techniques you’ll learn about controls
on forms will be transferable to the Outlook custom forms design environ-
ment.

This page intentionally left blank

31

3
Building Your First VBA Form

Now that you know your way around the VBA editor, your first project is
to build a form to add a new feature to Outlook: setting reminders for the
birthday and anniversary events that Outlook creates automatically from
corresponding dates in contact items. In the process, you will learn the
basics of designing VBA user forms.

The highlights of this chapter include discussions of the following:

How to add controls to a form using the VBA control toolbox

Which controls can be useful for data entry

How to add code to a VBA form

What makes a good dialog box

When to use option buttons and check box controls

How to work with list box and combo box controls

How to manage the way that users move around in a form

3.1 Understanding Outlook birthdays and
anniversaries

To modify or add to Outlook’s functionality, you first should understand
what functionality is already built in. Whenever you add a birthday or anni-
versary on the Details tab of the standard contact form, Outlook automati-
cally creates a matching recurring event in your Calendar folder and adds a
shortcut to that event in the contact item. However, these automatically
created birthday and anniversary events don’t have reminders. Therefore,
unless you check the Calendar well in advance, those birthdays could sneak
up on you.

32 3.2 Step 1: What controls do you need?

Note: If you customize the contact form with your own date/time field,
Outlook does not create a matching calendar entry when the user enters a
date in that field. If you want Outlook to add a matching calendar item for
a custom date/time field, just wait until Chapter 20, “Common Item Tech-
niques,” which explains how to create a new event in the Calendar when
the user enters a date in a custom property.

You can use VBA to build a tool to globally update all existing birthdays
and anniversaries to make sure they have reminders.

3.2 Step 1: What controls do you need?
The birthday/anniversary reminder tool that you will build in this chapter
consists of an Outlook VBA form with code behind it. A key first step in
designing any form is to decide what the form will do and what informa-
tion it needs to complete that task.

We already know the purpose of this form—to add a reminder to all
birthdays and anniversaries. To accomplish this, the form requires informa-
tion from the user on when to set the reminder—a specific number of days,
weeks, or months in advance of the event.

Note: Another key decision you will make in designing forms is what kind
of feedback to provide the user as the form goes about its work. Chapter 8,
“Code Grammar 101,” covers this issue.

How many ways could you set the reminder interval? You might con-
sider the following:

A box where the user types the number of days

A box where the user types “3 days,” “2 wks,” or “1m,” and so on, as
in Outlook’s built-in date/time and duration fields

A spin button control that the user clicks to advance the number of
days to the desired interval

A spin button control to show the number, plus buttons where the
user can select days, weeks, or months

Buttons or a list where the user can select from the most frequently
used reminder intervals (as you want to define them)

Which approach is best? There is no right or wrong answer. This is the
kind of decision that you must make in every programming project. Few
programming projects have one single best solution. “Best” in any scenario

3.3 Step 2: Create the form 33

is whatever approach allows you to gain the most productivity with the
available resources (time, money, and programming skills). It may not be
worthwhile to build a beautiful user interface for a program you use only
once a year. But for a tool you use every day, you may want to invest extra
time to make the user interface easy to use.

In the list above, the first and third approaches are somewhat limited,
because they can easily handle only days, not weeks or months. The second
approach would take considerable work, because you would need to write
code to convert what the user types into the corresponding number of days.
(Controls bound to duration and date/time data fields on custom Outlook
forms perform this conversion automatically, but VBA controls do not.)
The fourth and fifth approaches are a little too complicated for a novice’s
first project.

Tip: If you are designing a form for your personal use, don’t feel that you
must cover every possible option or exception. You would do that, of
course, in a program for wider distribution, but for a personal application,
you don’t need a form with unlimited options for setting reminders.

Since this is our first VBA form, we’ll keep it simple and use the first
approach—a text box where the user enters the number of days before the
event, which Outlook will use to calculate when to display the reminder.
The form, therefore, will need these controls:

A text box for the number of days

At least one label control to give the user some instructions

A button the user can click to perform the reminder updates on the
birthday and anniversary items

A button the user can click to close the form

3.3 Step 2: Create the form
After you have a general plan, the next step is to create the form and set its
particular properties. Start the VBA editor by pressing Alt+F11, as dis-
cussed in the previous chapter.

To add a form, choose Insert | UserForm. A blank form appears, along
with the Toolbox. The Properties window shows the properties for the
form. Table 3.1 lists key properties you should set right away.

The value for the (Name) property must follow the naming convention
for objects, which allows internal capitalization, but not spaces. You can
(and should) include spaces in the Caption property, however.

34 3.3 Step 2: Create the form

Tip: If you plan to work with the same form for a while, you may want to
close the Project Explorer so that you have more room on the screen for
other windows. To hide it, choose View | Project Explorer or click the
Project Explorer’s close (x) button. The Properties window will grow taller,
making it easier to use. To see the values for properties more easily, make
the Properties window wider by dragging its right border toward the right.

Caution: Make sure that you set the (Name) property before you start writ-
ing program code. If you change the (Name) after you write code for the
form, you must use search and replace in your code to update the form
name to the new value wherever it appears.

3.3.1 Exploring form properties

Click on the Categorized tab of the Properties window to see the properties
organized into different groups: Appearance, Behavior, Font, Misc, Picture,
Position, and Scrolling. Because the properties in a group are often related,
viewing them by category helps to remind you to change those allied prop-
erties. For example, if you change the BackColor property, you might also
want to change the BorderColor.

Tip: If you are not familiar with a particular property, select it, and then
click F1 to bring up a Help topic that explains it.

As you explore the form properties, notice that different properties use
different methods to enter new values. For some properties, such as
Enabled, you click on a dropdown list and select a value. For others, you
type in the value; Caption is a good example. In other cases, such as Font
and Picture, you click a button with an ellipsis (…) to get a dialog from
which you can select the new value.

Table 3.1 VBA Form Properties to Set Immediately

Property Description Suggested Value

(Name) The form name as shown in the Project
Explorer and as used in program code

ReminderUpdate

Caption The name shown in the title bar of the
form

Birthday and Anniversary
Reminder Update

3.3 Step 2: Create the form 35

What about those cryptic values for some of the Appearance properties?
What does &H8000000F&, the default value for BackColor mean? The
value for each color property is a long integer, a number whose value can
range from -2,147,483,648 to 2,147,483,647, but the Properties window
shows those values in hexadecimal format, in which numbers are expressed
in base 16 notation. (For example, 20 in the decimal notation we normally
use is equivalent to 14 in hex, whereas 32 in decimal would be 20 in hex.)

You don’t need to know the values for all the colors, nor do you need the
ability to convert a decimal number to hexadecimal. The VBA editor makes
it easy to select colors with a couple of mouse clicks. For example, click on
the BackColor property to select it, and then click the arrow button at the
right side of the property’s value box. A list of colors appears, as shown in
Figure 3.1.

Now, look at the SpecialEffect property shown in Figure 3.2. First,
notice that it supports only a few values: 0, 1, 2, 3, and 6. Also, see how
each numeric value has a word associated with it. For example, the value 1
also has the word fmSpecialEffectRaised. This is an example of an
intrinsic constant, a value built into VBA that doesn’t change and has a spe-
cial word associated with it.

Figure 3.1
Select colors for the

form and its
controls from

among the System
colors for the

current Windows
color scheme or by
using the Palette.

Figure 3.2
Many properties

allow only certain
values, which have

equivalent intrinsic
constants.

36 3.4 Step 3: Add user input controls

You will use intrinsic constants in VBA code to work with the property
values for forms, controls, and other objects. Hundreds of intrinsic con-
stants are associated with VBA itself and with various Outlook compo-
nents. As you might imagine, they make it much easier to read and write
program code. For example, for a form named ReminderUpdate, this line
of code changes the format of the form background from flat to raised:

ReminderUpdate.SpecialEffect = 1

This line does the same thing, but is much easier to understand, because
it contains an intrinsic constant instead of a number:

ReminderUpdate.SpecialEffect = fmSpecialEffectRaised

You can change many form and control properties with program code
while the form is running—or at runtime. The Help topic on each property
tells you whether or not that is possible.

Note: You can use only a limited set of intrinsic constants in VBScript code
on Outlook custom forms—only those that VBScript supports, not con-
stants defined in the Outlook object model.

3.3.2 Should you use a modal or modeless form?

Another important form property is ShowModal, which can have the value
True (the default) or False. While a modal form is on the screen, the user
cannot return to the main application window. This is the typical behavior
of a dialog box: The dialog opens, the user makes a change, and then the
user closes the dialog to return to the application. From a programming
standpoint, modal forms are important to controlling program flow. No
other code executes until the modal form is either hidden or unloaded.

If a form is modeless, the user can work both with the main application
windows and with the form. An example would be a form that provides
information to the user, either on demand or according to a schedule.

Because the ReminderUpdate form is designed to perform a quick,
occasional update, there is no need to make it a modeless form. Because the
default for ShowModal is True, you don’t need to make a property change
for this form to make it modal.

3.4 Step 3: Add user input controls
Ready for the next step? Now that you have a blank form and understand
some of its properties, you can add controls to it. The form needs a text box
where the user can type the number of days. There are two ways to add a
text box to the form:

3.4 Step 3: Add user input controls 37

To get a standard size text box, drag the TextBox tool from the con-
trol toolbox to the form.

To set a custom size, select the TextBox tool in the Toolbox. Position
the mouse pointer over the form where you want one corner of the
text box to go. Hold down the left mouse button, and drag the mouse
to trace a rectangle with the dimensions you want.

Note: The control toolbox should appear automatically when you create a
new user form. If you don’t see it, choose View | Toolbox on the VBA editor
menu or click the View Toolbox button on the toolbar.

Now, use the Label tool (to the left of the TextBox tool in the Toolbox)
to add two label controls, one to the left and one to the right of the text
box. The form should look like that shown in Figure 3.3. You can always
reposition any of the controls, if you need to, by dragging them to a new
position on the form.

You should make it a habit to edit the name of each control that holds
data, such as the text box you just added. Even though VBA automatically
assigns a name to each control, these default names are generic and have no
specific meaning in the context of your application. For the text box that
will display the number of days, change the name in the Properties window
to txtDays. (Isn’t that more informative than TextBox1?) You might also
want to add a phrase or sentence to the ControlTipText property to pop
up information when the user pauses the mouse pointer over the control.

To add your own text to the Label1 control, click the Select Objects
tool in the Toolbox (the arrow at upper-left); the mouse pointer will turn
into an arrow. Click the Label1 control once to select it; then click a sec-
ond time. When you see the blinking vertical insertion point inside the
control, you can delete the Label1 text and replace it with your own text,
relevant to the form, as shown in Figure 3.4.

Figure 3.3
Combine a data

entry control with
one or more

explanatory label
controls.

38 3.5 Step 4: Add command buttons

Tip: That’s click once to select the Label1 control, pause briefly, and then
click again to edit its caption. The timing is important. If the clicks are too
close together, VBA interprets them as a double-click and opens the form’s
program code window.

You can also enter text for a label control by typing the text as the value
for the Caption property.

Notice in Figure 3.4 that the controls have been slightly rearranged and
resized to make the form look better. To move a control, drag it across the
form. To resize a control, drag one of the little white squares, called drag
handles, which appear when you select a control. You might also want to
change the TextAlign property of the label on the left from 1 - fmText-
AlignLeft to 3 – fmTextAlignRight. That will right-align the caption
so that it appears closer to the text box. Look in the Format menu for com-
mands to help you size and position VBA form controls.

3.5 Step 4: Add command buttons
The form in Figure 3.5 now has a text box and two label controls to give the
user an idea of what kind of information to enter. What’s missing? There is
no way to actually start the process of updating the items in the Calendar
folder to add a reminder. The form needs a command button control to run
the code you will add to the form. Command buttons are those ubiquitous
form controls that make things happen.

You can add two command button controls, one to run the update and
the other to close the form. Use the Command Button tool on the Toolbox
to drag two standard-size buttons to your form. Set the properties shown in
Table 3.2.

Figure 3.4
Change the text for

a label control by
typing it into the

control or updating
the Caption

property.

3.5 Step 4: Add command buttons 39

Tip: The form has a close (x) button in the upper-right corner, but putting
a command button on the form as well makes it just a little more obvious to
the user that the form should be closed when the update finishes. As you
will see, you could also include code in the form to close it automatically
after the update completes.

The most important of these properties are (Name) and Caption. To see
the effect of the other properties in Table 3.2, you must run the form to see
what the ReminderUpdate form looks like to a user. Select the form and then
click the Run Sub/UserForm button on the toolbar. You can also press F5, or
choose Run | Run Sub/UserForm. The form should look like Figure 3.5.

Tip: You can select the form or any control on it by picking from the drop-
down list at the top of the Properties window.

Until now, you have been working in design mode, where you design the
appearance of a user form. Figure 3.5 shows the form in run mode. The
form is running or, in other words, active. If the buttons had program code

Table 3.2 Properties for ReminderUpdate Command Buttons

Property CommandButton1 CommandButton2

(Name) cmdUpdate cmdClose

Accelerator U

Cancel False True

Caption Update Close

Default True False

Figure 3.5
The

ReminderUpdate
form is starting to

look like a real
form, buttons and

all.

40 3.5 Step 4: Add command buttons

associated with them, that code would run when you clicked them. How-
ever, if you click the buttons at this stage, nothing happens, because you
have not added code to the form yet.

3.5.1 Basic command button properties

Take a closer look at the Update and Close buttons in Figure 3.5 and the
properties you set. First, setting the Accelerator property for the cmdUp-
date button to u causes the letter U in the control’s caption to be under-
lined when the form is in run mode. This means the user can press Alt+U as
an alternative to clicking the button. Keyboard accelerators such as this
make forms more accessible and friendlier to those who prefer the keyboard
to the mouse.

See how the cmdUpdate button has a dark border, but the cmdClose
button doesn’t. This is a visual clue that the cmdUpdate button is the
default button for the form; you set its Default property to True. Pressing
the Enter key on a form is the same thing as clicking the default button.
This means that to use your form, the user just needs to type in the number
of days, and then press Enter.

Similarly, pressing the Esc key is equivalent to clicking on the cmdClose
button, because you set the Cancel property of that button to True. This
made cmdClose the cancel button.

A form can have only one default button and one cancel button. Neither
is required. Setting a command button’s Default or Cancel property to
True makes it the new default or cancel button.

Caution: In this example, you made cmdUpdate the default button so that
you could see what a default button looks like. In reality, though, the
default button should never be a button that runs code that can make irre-
versible changes to many Outlook items. You may even want to consider
adding a confirmation message that the user must acknowledge to allow the
operation to continue. Chapter 8 shows how to do this with the MsgBox()
function.

Because the cmdClose button does not do anything yet when you click
it, you cannot use it to close the form. Instead, click the close (x) button in
the upper-right corner of the ReminderUpdate form so that you return to
the VBA design environment. Alternatively, switch back to the design envi-
ronment, and click the Design Mode button.

3.5 Step 4: Add command buttons 41

3.5.2 Adding code

To make the command buttons do something, we need to add code. You
can start with an easy routine to close the form when the user clicks the
cmdClose button.

To add code to any command button, double-click the button on the
form. A code window appears, such as that in Figure 3.6, where you should
see the first and last lines of the subroutine that runs when you click the
cmdClose button. VBA automatically creates this subroutine stub when
you double-click a command button on a form. The name of the subrou-
tine is cmdClose_Click—the name of the control plus the name of the
event that fires, Click, when the user clicks the button. The keyword Pri-
vate means that this routine runs only in the context of the current form;
no other components in your VBA project can use it.

Notice the two dropdown lists at the top of the code window. The one
on the left includes the name of every control on the form, as well as User-
Form to represent the form itself and a (General) section in which you
declare variables and constants (more on that in Chapter 8).

The list on the right includes Click as well as all the other events that
can take place on the form or relative to a control. We will learn more about
events in Chapter 7. For now, you will work just with the Click event for
your two command buttons.

In the space between Private Sub cmdClose_Click() and End Sub,
type

Unload Me

Unload is the command to remove a form from memory and from the
computer display. You can use Me instead of the full name of the form,
ReminderUpdate, because this code is running behind one of the controls
on the form you want to unload. If it were running in another module, you
would need to refer to the form by name.

Figure 3.6
A form’s code

window gives you
quick access to all

the controls and the
events they support.

42 3.5 Step 4: Add command buttons

To add code for the other command button, you do not need to switch
back to the form. Instead, at the top of the code window, choose cmdUp-
date from the dropdown list of controls. This will add the stub for the
cmdUpdate_Click procedure. Inside of that procedure, type:

MsgBox "This is the update button."

This code pop ups a simple message to the user. The code window
should now look like that shown in Figure 3.7.

Tip: The indenting shown in Figure 3.7 helps make the code more read-
able, but doesn’t affect how it runs. To indent a code line, press the Tab key.

Congratulations! You have written your first program code! Click the
Run button on the toolbar, press F5, or choose Run | Run Sub/UserForm
to see the form in action. First, click the Update button. Your code should
generate a message box such as the one in Figure 3.8.

Note: Message boxes are useful not only for displaying information to the
user, but also for forcing the user to make a choice. We will look at message
boxes in more detail in Chapter 8.

After you click OK to dismiss the message box, click the Close button
on the form or press Esc. The cmdClose_Click procedure runs, unloading
the form.

Figure 3.7
The two command
buttons now have
code that will run

when the user clicks
each button.

Figure 3.8
It’s easy to pop up a
simple message box.

3.5 Step 4: Add command buttons 43

3.5.3 Anatomy of a procedure

No doubt you’re eager to design applications that do more than just open
message boxes. To give you some additional practice adding code to a com-
mand button, replace the cmdUpdate_Click procedure with the procedure
shown in Listing 3.1.

The cmdUpdate_Click procedure contains three sections, separated by
blank lines. The first statement in the first section

On Error Resume Next

allows the procedure to handle errors without prompting the user. The two
most likely errors for this procedure are encountering an item in the Calen-
dar folder that isn’t really an appointment and having a value in the form’s
text box that is not a number greater than zero. In Chapter 9, “Handling
Errors, Testing, and Debugging,” you will learn about the different kinds of
errors and how to anticipate and deal with them.

The other lines in the first section begin with Dim and define the vari-
ables that the procedure uses. A variable gets its name from the fact that it is
a placeholder in memory for a value that can vary each time the code runs.
The next section, in which each line begins with Set, is a series of assign-

Listing 3.1 Code for the cmdUpdate_Click procedure

Private Sub cmdUpdate_Click()
 On Error Resume Next
 Dim objNS As NameSpace
 Dim objCalendar As Folder
 Dim objItem As AppointmentItem
 Dim strSubject As String
 Dim lngMinutes As Long

 Set objNS = Application.Session
 Set objCalendar = _
 objNS.GetDefaultFolder(olFolderCalendar)

 lngMinutes = 24 * 60 * txtDays.Value
 For Each objItem In objCalendar.Items
 strSubject = objItem.Subject
 If InStr(strSubject, "Birthday") > 0 Or _
 InStr(strSubject, "Anniversary") > 0 Then
 objItem.ReminderSet = True
 objItem.ReminderMinutesBeforeStart = lngMinutes
 objItem.Save
 End If
 Next
 Beep
End Sub

44 3.5 Step 4: Add command buttons

ment statements setting up the Outlook object variables. You will learn how
to declare variables and work with objects in Chapter 8.

The real work is done by the lngMinutes = ... statement and the For
Each ... Next loop. The statement

lngMinutes = 24 * 60 * txtDays.Value

calculates the number of minutes (24 hours in a day times 60 minutes in an
hour, times the number of days in the text box on the form) and places the
result in a variable named lngMinutes. The code later uses this value to set
the reminder. Note that this is the only statement that gets information
directly from the form.

The For Each ... Next loop examines each item in the Calendar folder
and tests whether the word “Birthday” or “Anniversary” appears in the item’s
Subject property, using the very useful Instr() function, which you’ll learn
more about in Chapter 8. This function returns a number greater than zero if
one text string contains another. For each birthday or anniversary, the code
sets several properties that tell Outlook to display a reminder a certain num-
ber of minutes before the appointment’s start time. How many minutes? The
number calculated and stored in the lngMinutes variable.

Note: For Each ... Next loops, which we cover in Chapter 8, get a real
workout in Outlook. You use them extensively to cycle through every sub-
folder in a parent folder, every recipient in a message, every attachment to a
message, and so on.

Tip: Did you recognize olFolderCalendar as an intrinsic constant from
the Outlook object model?

Try running the form again, as you did earlier, but with the new code for
the cmdUpdate button. (Be sure to back up your Calendar folder first, as
noted in the next Caution.) Does it operate as you expected, creating
reminders in birthday and appointment events?

Caution: Although Outlook has an Undo command for single actions, you
cannot undo bulk changes made by procedures like the one in Listing 3.1.
Before you run any procedure that changes all items in a folder, you should
back up the contents of that folder. The simplest way is to copy the entire
folder, perhaps to a new blank Personal Folders .pst file.

3.7 More on VBA form controls 45

3.6 Step 5: Plan the next development stage
No development project is ever really finished. You can always think of
ways to improve it. Here are some possible ways to enhance the Remind-
erUpdate form:

Allow the user to update just birthdays, just anniversaries, or both.

Before running the update routine, validate the entry in the txtDays
control to make sure that it contains a number greater than zero.

Don’t update any appointment that already has a reminder.

Speed execution of the update by examining only all-day events,
instead of every item in the Calendar folder.

Add feedback to tell the user how many items were updated.

Ask the user to confirm each change to a birthday or anniversary.

As you consider possible enhancements, think about not just the func-
tionality, but also the look of the form. Does the layout of the controls
make sense to the user? A dialog box should be logical, unambiguous, and
consistent. The user should have no doubt about what kind of data to enter
in each control. Validation code behind the form should protect the user
from “wrong” entries. Controls should be grouped in a clear sequence.
They might follow a cycle that mimics the boxes on a paper form, or they
might just be grouped in an orderly fashion, either from left to right or top
to bottom. (Later in this chapter, we’ll look at the TabStop and TabIndex
control properties that control what order the cursor uses to move around
the controls as the user presses the Tab key.) The user can scan controls
more easily if they are aligned and if controls that do similar things are the
same size. If your application uses several dialog boxes, they should have the
same color scheme, unless you vary the colors for a particular reason.

3.7 More on VBA form controls
The ReminderUpdate form is certainly functional, but it is not terribly ele-
gant. To implement some of the enhancements suggested in the previous
section, you can add more controls to the form.

3.7.1 Check box controls

One enhancement is to allow the user to choose whether to update just
birthdays, just anniversaries, or both. This takes a couple of check box con-
trols and a little more code.

To add a check box control to a form, select the CheckBox tool in the
Toolbox and then click on the form. Check boxes do not need separate
label controls to identify them, because they include their own Caption
property.

46 3.7 More on VBA form controls

Figure 3.9 shows the ReminderUpdate form with two check boxes
added, one for birthdays and one for anniversaries.

The properties for the first check box should be as follows:

For the second check box, the properties should be as follows:

Note: The Accelerator property is case-sensitive if both cases are present
in the caption. If you enter a, instead of A, for the accelerator letter for the
chkAnniversaries box, the second a in the word will be underlined,
instead of the initial capital A.

Why set the Value for the check boxes to True? Most people probably
want reminders for both birthdays and anniversaries. If you set the Value
for the check boxes to True, most people won’t need to interact at all with
the check boxes. They can go straight to the text box and type in the
reminder period.

An initial value such as this is called the default for the control. Try to set
the right defaults so that users need to enter as little information as possible.

You’re probably wondering how to change the code from the original
reminder update form to use the information in these check boxes. Most
check boxes can contain only one of two values, either True or False. If
the chkBirthdays box is checked—in other words, if its Value property

Figure 3.9
Check box controls

give users more
choices.

(Name) chkBirthdays

Accelerator B

Caption Birthdays

Value True

(Name) chkAnniversaries

Accelerator A

Caption Anniversaries

Value True

3.7 More on VBA form controls 47

contains True—and the user’s Calendar folder includes a birthday event,
you want to add a reminder. The same goes for anniversaries.

Note: The check box control includes a property named TripleState that
changes a check box to allow the user to set the value to Null. In this situa-
tion, Null means neither True nor False.

Writing out what you want to happen should provide clues to how to
code it. Try diagramming each piece of information or action from the
description above:

If the chkBirthdays box is checked and
[if] the user’s Calendar folder includes a birthday event

. . . add a reminder

When you want to perform an action if a value is True and possibly a
different action if the value is False, your code needs an If ... Then
structure. You have already seen an If ... Then structure in the code for
the ReminderUpdate form, where you tested whether an item is a birthday
or an anniversary.

To integrate the new check boxes into the procedure, replace the original
code for the Click event for the cmdUpdate button with the new code in
Listing 3.2. This code adds If ... Then structures to test the values of the
check boxes and process the items accordingly.

As we saw earlier in the chapter, you use the Value property of a control
to get the data the user has entered. For a check box control, the Value
indicates whether the user has checked the box (chkBox.Value = True) or
unchecked it (chkBox.Value = False).

Note: You probably noticed that the steps inside the two If ... End If
code structures are exactly the same. Normally, you wouldn’t have such rep-
etition in a routine. In Chapter 8, we will look at ways to streamline such
code.

3.7.2 Option buttons

Check box controls are ideal for obtaining information from the user when
the desired answer is Yes or No, True or False, On or Off. If more than two
mutually exclusive answers are possible, option button controls work better.

Option button controls are sometimes called radio buttons in reference
to older radios that had buttons you pushed in to change stations. When
you pushed a new button, the last pushed button popped out. The button

48 3.7 More on VBA form controls

pressed remained pushed in until you pressed another button for another
station. Only one button at a time could be pushed in. Its pushed-in state
gave a clear visual indicator as to which station was active.

Option buttons also are useful when you want to force the user to make
a choice. If the form opens with one button already selected, the user must
either select another button or accept that default option.

Option buttons on forms work the same way: The user can select no
more than one option button at a time. In other words, whether it’s a
choice of five radio stations or four flavors of ice cream or three classes of
work orders, you can choose only one. The most common use for option
buttons is for such multiple-choice scenarios, but you may also see them
when only two choices exist, but those choices don’t reduce easily to a True/
False description.

Listing 3.2 Use If . . . Then structures to test conditions

Sub cmdUpdate_Click()
 On Error Resume Next
 Dim objNS As NameSpace
 Dim objCalendar As Folder
 Dim objItem As AppointmentItem
 Dim strSubject As String
 Dim lngMinutes As Long
 Set objNS = Application.Session
 Set objCalendar = _
 objNS.GetDefaultFolder(olFolderCalendar)
 lngMinutes = 24 * 60 * txtDays.Value
 If chkBirthdays.Value = True Or _
 chkAnniversaries.Value = True Then
 For Each objItem In objCalendar.Items
 strSubject = objItem.Subject
 If InStr(strSubject, "Birthday") > 0 And _
 chkBirthdays.Value = True Then
 objItem.ReminderSet = True
 objItem.ReminderMinutesBeforeStart = _
 lngMinutes
 objItem.Save
 End If
 If InStr(strSubject, "Anniversary") > 0 And _
 chkAnniversaries.Value = True Then
 objItem.ReminderSet = True
 objItem.ReminderMinutesBeforeStart = _
 lngMinutes
 objItem.Save
 End If
 Next
 Beep
 End If
End Sub

3.7 More on VBA form controls 49

To see how option buttons work, try using them instead of check boxes
on the ReminderUpdate form. Here are the three choices:

Update birthdays only

Update anniversaries only

Update both birthdays and anniversaries.

To replace the check boxes with option buttons, select and delete the
check boxes. Next, before you put the buttons on the form, add a frame
control to hold them. Select the Frame tool in the Toolbox, and then drag a
rectangular shape in the blank area at the top of the form. Set these proper-
ties for the frame:

The Properties window will show you that the frame has no Value
property. The frame itself holds no data. Instead, it lassos the controls you
put inside it, organizing them visually and, in the case of option buttons,
coordinating their operation.

Tip: If you have only one set of option buttons on a form, putting a frame
around them is optional because the form itself acts as a frame. If you have
two sets of option buttons, however, at least one set requires a frame to indi-
cate which buttons work together. Using frames for both sets makes your
form more consistent.

Add option buttons to the frame by selecting the Option Button tool in
the Toolbox and then clicking inside the frame. You might need to rear-
range controls to make more room or enlarge the frame by dragging the
white size handle boxes that appear at each side and corner of the frame.
Give your option buttons these properties:

Option button 1:

Option button 2:

(Name) fraOptions

Caption Add reminders to:

(Name) optBirthdays

Caption Birthdays

Value False

(Name) optAnniversaries

Caption Anniversaries

Value False

50 3.7 More on VBA form controls

Option button 3:

Note: From now on, the suggested property settings shown for new con-
trols won’t include the Accelerator property. You already know how to set
it and that it makes forms easier for keyboard users to navigate.

Setting the Value property on the optBoth button to True makes it the
default choice. Run your form. It should look like that shown in Figure
3.10. Try clicking on each of the three option buttons. Can you select more
than one at a time?

To make the chkUpdate button use the information from the option
buttons, replace the existing cmdUpdate_Click procedure code with that
in Listing 3.3.

Compare the first If statements in Listing 3.3 with the same statement
in Listing 3.2. Both check the subject of a Calendar folder item for the text
“Birthday” and the value of one or more controls on the ReminderUpdate
form. Listing 3.2 checks for the value of the chkBirthday control with this
expression:

chkBirthdays.Value = True

where Listing 3.3 uses this expression:

(optBirthdays.Value Or optBoth.Value)

Like check boxes, option buttons on VBA forms can have a value of
True or False. The syntax optBirthdays.Value is shorthand for opt-
Birthdays.Value = True. The Or in the above expression means that the
expression returns True if the value of either optBirthdays or optBoth is
True, that is, if either button is selected.

(Name) optBoth

Caption Both

Value True

Figure 3.10
Option buttons
make it easy to

select among three
or more choices.

3.7 More on VBA form controls 51

3.7.3 List box and combo box controls

Check boxes and option buttons make it easy for users to choose among
several preferences. However, these can take up a lot of space on a form.
Sometimes, you have so many choices that no room would be left for other
controls if you used an option button to show each choice.

This is where list box and combo box controls come in handy. These
controls, which are very similar to each other, let users select from a poten-
tially large number of choices. List boxes restrict users to the range of
choices you provide. Combo boxes can allow users to pick from a list or,
optionally, type in a new value. The familiar dropdown boxes that you see
in many Windows programs (e.g., the Priority list on any Outlook item) are
combo boxes that have been designed not to allow the user to type in a new
value. Figure 3.11 shows a variety of list and combo boxes on a VBA user
form. The style and behavior of list and combo boxes are controlled by the
properties listed in Table 3.3.

Listing 3.3 Use option button values to get the user’s choice

Private Sub cmdUpdate_Click()
 On Error Resume Next
 Dim objNS As NameSpace
 Dim objCalendar As MAPIFolder
 Dim objItem As AppointmentItem
 Dim strSubject As String
 Dim lngMinutes As Integer

 Set objNS = Application.Session
 Set objCalendar = _
 objNS.GetDefaultFolder(olFolderCalendar)
 lngMinutes = 24 * 60 * txtDays.Value

 For Each objItem In objCalendar.Items
 strSubject = objItem.Subject
 If InStr(strSubject, "Birthday") > 0 And _
 (optBirthdays.Value Or optBoth.Value) Then
 objItem.ReminderSet = True
 objItem.ReminderMinutesBeforeStart = lngMinutes
 objItem.Save
 End If
 If InStr(strSubject, "Anniversary") > 0 And _
 (optAnniversaries.Value Or optBoth.Value) Then
 objItem.ReminderSet = True
 objItem.ReminderMinutesBeforeStart = lngMinutes
 objItem.Save
 End If
 Next
End Sub

52 3.7 More on VBA form controls

Note: If you set the Multiselect property to anything other than 0 -

Single, you cannot use the Value property to find out what the user
has chosen. Instead, you must check the Selected property for each
row to learn whether it has been marked. The expression
ListBox1.Selected(index) returns True if the index number row is
selected. Chapter 8 includes an example of how to check the Selected
property with a For ... Next loop.

Figure 3.11
List and combo

boxes come in
many varieties to

suit many purposes.

Table 3.3 Key List and Combo Box Properties

Property List Box Combo Box Description

BoundColumn X X In a multicolumn list or combo box, specifies which
column is bound to a data field (default = 1)

ColumnCount X X Number of columns (default = 1)

DropButtonStyle X Sets the symbol on a combo box’s button
(default = 1 – Arrow)

ListRows X Number of rows to display in a combo box’s drop-
down list

ListStyle X X Shows the list with or without a check box or option
button for each item. Use 0 - Plain for no check
boxes. Use 1 - Option for option buttons on sin-
gle-selection lists and combo boxes. Also use 1 -
Option to display a check box on each row in a
multiselect list box.

3.7 More on VBA form controls 53

You can use the AddItem method to fill a list box, one row at a time.
Here is the code used to fill the lstColors list box for Favorite Colors,
shown in Figure 3.11.

lstColor.AddItem "Red"
lstColor.AddItem "Orange"
lstColor.AddItem "Yellow"
lstColor.AddItem "Green"
lstColor.AddItem "Blue"
lstColor.AddItem "Purple"
lstColor.AddItem "Black"
lstColor.AddItem "Brown"

The code to initialize a list box like this usually runs in the UserForm_
Initialize event handler of a VBA form.

MatchEntry X X Controls how the list or combo box tries to match
what the user types. Use 0 - First Letter to
display the next entry on the list that matches the last
character the user typed. Use 1 - Complete to
search for an entry matching all user-typed charac-
ters and 2 - None to perform no matching.

MatchRequired X Determines whether the user’s text must match an
item on the list (default = False)

MultiSelect X Determines whether the user can select more than
one item from a list box. Use 0 - Single to
restrict the user to one selection, 1 - Multi to
allow multiple selection with additional mouse
clicks, and 2 - Extended to allow the user to click
and then Shift+click to select a range of adjacent
entries from within the list.

ShowDropButtonWhen X Determines when the user sees a combo box’s but-
ton. Use 0 - Never to always hide the button,
1 - Focus to show it only when the user is in the
control, and 2 - Always to always show it.

Style X Determines whether a user can type a new value into
a combo box. Use 0 - DropDownCombo to allow
both new values and values in the list and 2 -
DropDownList to force the user to pick from the
list.

TextColumn X X In a multicolumn list or combo box, determines
which column to use for the Value property of the
control.

Table 3.3 Key List and Combo Box Properties (continued)

Property List Box Combo Box Description

54 3.7 More on VBA form controls

Tip: For multiple column list and combo boxes, such as the “Favorite cou-
ple” list in Figure 3.11, you would use a different technique to fill the list
box—the List method, which fills it from a two-dimensional array of val-
ues. Chapter 8 provides an example.

3.7.4 Accelerators and tab order

Earlier in this chapter, we saw that the Accelerator property of VBA form
controls can help keyboard-preferring users get around your form easily.
Users who move from control to control by pressing the Tab key appreciate
a logical tab order. The tab order determines which control gets the focus as
the user presses the Tab key to move around the form.

Tip: You can direct the focus to a particular control programmatically by call-
ing the SetFocus method for the control, for example, txtDays.SetFocus.

To see how to set the tab order, return to the ReminderUpdate form.
Right-click on any empty area of the form, and then choose Tab Order to
display the Tab Order dialog. Figure 3.12 shows the tab order after the form
has been modified to include the option buttons described earlier. (see Fig-
ure 3.12). You can also choose View | Tab Order. Now you see why it’s so
important to give distinctive names to your controls! If we had left the com-
mand buttons as CommandButton1 and CommandButton2 instead of
renaming them to cmdUpdate and cmdClose, it would have been much
harder to figure out how to adjust the tab order.

Tip: Did you notice that the Tab Order dialog itself consists of a label, a list
box, and four command buttons?

Use the Move Up and Move Down buttons to rearrange the Tab Order
list to match the order in which controls appear on the form itself. The final
order should be:

fraOptions
txtDays
cmdUpdate
cmdClose

Don’t worry about the label controls, since the user does not actually
interact with them.

What happened to the option buttons? They are actually inside the
fraOptions frame, which has its own tab order. To set the tab order inside

3.8 Summary 55

a frame, right-click the frame, then choose Tab Order and make the neces-
sary adjustments.

Tip: To exclude a control from the tab order, set its TabStop property to
False. The control will still appear in the Tab Order window but will be
bypassed when the user presses Tab to move through the form’s controls.
You can also use the TabOrder property to change the tab order without
going through the Tab Order dialog.

After you change the tab order, run the form and press Tab to move
through the controls. Does the order seem logical to you?

Note: If you choose a right-to-left tab order for one form, don’t use a top-
to-bottom tab order for another form in the same application. Be consis-
tent, both within a form and within a group of forms that work together.

3.8 Summary
If you’ve followed this walkthrough in the Outlook VBA environment on
your own machine, you should be proud of your accomplishment—build-
ing your first working application in VBA, one that adds a useful function
to Outlook. Among the techniques covered are how to add many types of
controls to a VBA form, how to work with a VBA form and control proper-
ties, and how to add code to a command button.

The code demonstrated a key Outlook technique that you will use time
and time again—looping through a folder to examine each item in the
folder. Don’t worry if you don’t know how to write such code from scratch
or don’t quite understand how it works yet. Feel free to skip ahead to Chap-
ter 7 if you want to dig deeper into writing code right now.

The next chapter introduces the other kind of forms that Outlook sup-
ports: custom forms to display the data from individual items.

Figure 3.12
Compare the order

of controls listed
here with the

form shown in
Figure 3.11.

This page intentionally left blank

57

4
Introducing Outlook Forms

Every Outlook item has an associated form that determines how that item
looks when the user opens it. A contact form has special controls for dis-
playing a picture and an electronic business card. A message form includes
controls for entering and choosing recipients. In a task or appointment
form, you can set a start date and a reminder. Six of the forms—message,
contact, appointment, task, journal, and post—are commonly customized
to provide additional functionality to Outlook. (The distribution list form
is rarely customized. The one type of Outlook item that has no customiz-
able form is the note item, found in the Notes folder.) A custom Outlook
form not only can provide a different visual layout, but also can run code to
respond to the user’s interaction with the form and the item that it displays.

To get you started with Outlook custom forms, this chapter gives a
guided tour of the six main standard forms. This should give you an idea of
which form might be best for a particular project.

The highlights of this chapter include discussions of the following:

How Outlook custom forms differ from VBA user forms

The two types of custom Outlook forms

How to start and end an Outlook forms design session

What information each form can store

Where to save finished forms

How to get help with Outlook forms design

4.1 Understanding the two types of custom forms
Outlook custom forms are very different from the VBA user forms that we
learned about in the previous two chapters. While both allow you to posi-
tion controls to display data and provide opportunities for user interaction,
an Outlook custom form, unlike a VBA user form, automatically displays

58 4.1 Understanding the two types of custom forms

an actual Outlook data item. How does Outlook know which form to use
to display an item? Each Outlook item contains a MessageClass property,
whose value tells Outlook which form to use. For example, almost every
e-mail message in your Inbox has a MessageClass value of IPM.Note,
which tells Outlook to display each message using the standard message
form. If you received a message with a message class of IPM.Note.MyForm,
Outlook would attempt to locate the custom form for that message class. If
no such form exists on your system, Outlook would display the message
with the standard IPM.Note form.

Note: We’ll take a more detailed look at the Outlook forms architecture in
Chapter 21, “Deploying and Managing Outlook Forms.”

Microsoft provides two different techniques for customizing Outlook
forms. The older technique, which we’ll refer to as “legacy custom forms,”
has been available since Outlook 97. The newer technique, form regions, is
completely new in Outlook 2007.

Legacy custom forms were intended for use in organizations using
Microsoft Exchange as their mail and collaboration server, where custom
Outlook forms could be integral to data gathering, workflow, and public
folder-based applications. In non-Exchange environments, the older type of
custom form was useful mainly for personal productivity applications, such
as a custom task form to help coordinate time spent on tasks with time
spent in meetings.

Starting with Outlook 2007, Outlook custom forms become an integral
part of any application that wants to store and present data within the Out-
look interface. What makes this possible is a new way of customizing the
standard forms, called form regions. With form regions, developers can build
a user interface for Outlook items with a set of Windows-themed, Outlook-
aware controls, rich enough to almost completely duplicate any built-in
form page.

A key difference between form regions and legacy custom forms is that
the latter support VBScript code embedded in the form, while with form
regions, the layout and the code are totally separate. If a form region needs
business logic, an associated Outlook add-in must provide it. Building add-
ins is a topic beyond the scope of this book, but form regions have some
potential applications that don’t involve add-ins. Advantages of form
regions over legacy custom forms include:

Support for a new set of Outlook-specific controls, including an Out-
look-aware date/time picker and an info bar control, all supporting
Windows themes so that the forms conform to the user’s Windows
color choices

4.2 Starting the forms designer 59

Ability to show controls in the reading pane

Local storage of form regions, avoiding the forms cache problems
that can plague traditional custom forms, which must be published
to an Outlook forms library

When used with add-ins, support for control-related events

Ability to replace or add to the existing tabs on a form

Support for different icons for read, unread, replied to, and for-
warded messages

Localization features to support the use of a single form region in
multiple language environments

Both legacy custom forms and the newer form regions use the same
forms designer. In this chapter, we’ll see how to use the designer to create
traditional custom forms, and then in Chapter 5, we’ll move on to form
regions.

4.2 Starting the forms designer
Every Outlook custom form starts from another Outlook form, rather than
from a blank page. This is one of the big differences between Outlook cus-
tom forms and VBA user forms. To start designing an Outlook form,
choose Tools | Forms | Design a Form from the main Outlook menu. The
Design a Form dialog shown in Figure 4.1 appears, listing the forms in the
Standard Forms library. This library holds the six basic forms that we’ll tour
in this chapter, along with other forms that you won’t usually customize.

You can’t modify the forms in the Standard Forms library. Instead, use
them as templates for new custom forms. After you select the form you
want to start from, click Open to display the form in the Outlook forms
designer. For example, if you select the appointment form, the Outlook

Figure 4.1
Select a form as a
template for your

form design project.

60 4.3 The six standard Outlook forms

forms designer displays a new custom appointment form, not a new version
of the appointment form in the Standard Forms library.

Note: The Look In list in Figure 4.1 can display other places where Out-
look forms may be stored—in the Personal Forms library, in Outlook fold-
ers, in the Organizational Forms library on an Exchange server, or in the file
system. You can use these forms as templates for creating new forms, in
addition to the forms in the Standard Forms library. Later in this chapter
we will learn more about where Outlook stores its custom forms.

You can also design a form based on an existing item—for example, a
mail message that already contains text that you want the custom form to
display. Click on the Developer tab, and then click Design This Form.

Note: If you don’t see the Developer tab on the ribbon, choose Tools |
Options, and then switch to the Mail Format tab and click Editor Options.
In the Editor Options dialog, check the box for “Show Developer tab in the
Ribbon,” and then click OK. The next time you open an Outlook item,
you should see a new tab, Developer, on the ribbon. The Developer tab will
remain available to all subsequent Outlook sessions, until you turn it off
again in the Editor Options dialog.

4.3 The six standard Outlook forms
Another big difference between Outlook custom forms and VBA user
forms is that custom forms already have a lot of functionality built into
them. VBA user forms, on the other hand, have no built-in functionality. If
you want a VBA form to perform some task, you must write all the code
required to make that happen. Outlook forms already know how to send
messages, calculate dates, and perform other operations.

A third difference is that VBA forms have no built-in connection to any
kind of data records, while Outlook custom forms are user interface/code
templates for working with Outlook’s data records. Throughout this book, we
try to make a clear distinction between the data record—that is, the item—
and the form—that is, the user interface that displays an item. When you
click the Save button on an Outlook form, you are saving an appointment or
contact or some other type of item. While it is possible to design an Outlook
form that doesn’t actually save an item, that’s a fairly rare application.

The next few sections introduce all six basic forms to help you under-
stand which form might be best suited for a particular task.

4.3 The six standard Outlook forms 61

4.3.1 The contact form

Let’s start with the contact form, opening it with the Tools | Forms | Design
a Form command. Figure 4.2 shows a custom contact form open to its
main page. Each tab that you see in design mode, starting with General and
ending with (Actions), represents a page that you can either show to the
user or hide. The user sees these pages not as separate tabs, but as separate
commands in the Show group on the ribbon, which you see enlarged in
Figure 4.3.

Tip: To toggle a page’s visibility to users, in design mode, click on the page’s
tab, and then click Page | Display This Page.

Figure 4.2 The grid of dots indicates that you can customize the General page of a contact form.

Figure 4.3 Users switch between pages on Outlook forms using the commands in the Show group.

62 4.3 The six standard Outlook forms

What you may find surprising is that the customizable main page of the
contact form bears little resemblance to the uncustomized page, which is
shown in Figure 4.4. If you make any change at all to the General page, it
takes on the layout shown in Figure 4.2. Because the unmodified layout
uses several special controls, which are available only to form regions, it is
not possible to duplicate the unmodified layout in a legacy custom form. If
you want to preserve the look of the built-in page, but just add a few extra
fields, then consider using a form region, described in the next chapter,
rather than a legacy form. Alternatively, you can put all your customizations
on one of the blank pages, such as the P.2 page shown in Figure 4.5. Any
page that you customize automatically will appear in the Show group on
the ribbon.

Each legacy custom form supports five blank, customizable pages. You
cannot add more pages to a legacy form. You can, however, add a multipage
control that simulates the appearance of multiple pages by putting a tabbed
interface on the form.

The Details page of the contact form, shown in Figure 4.6, is not cus-
tomizable, because it contains date/time fields. You cannot customize any
page that contains a dropdown calendar control, except through custom
form regions or by installing an ActiveX date/time control on your system.

Figure 4.4 The uncustomized General page of a contact form looks quite different from the page
you can customize (Figure 4.2).

4.3 The six standard Outlook forms 63

Figure 4.5 Each form contains five blank pages you can customize.

Figure 4.6 The Details page holds additional information about each contact, but is not a custom-
izable page.

64 4.3 The six standard Outlook forms

You can, however, hide the built-in pages and use the same fields on your
custom pages, only using text boxes instead of date pickers.

One of the distinctive features of the contact form is that it allows you to
see other items that are linked to the current contact, either through a direct
link or through one of the contact’s email addresses. The Activities page of
the contact form (see Figure 4.7) searches other Outlook folders to find
items related to the current contact. The Show list normally defaults to All
Items. If you change it—for example, to Upcoming Tasks/Appointments—
Outlook does not save that change with the custom form. The default
activities list is a property of the contacts folder, not the contact form. On
the contacts folder’s Properties dialog, you can change the default activity
list and create new activity groups that show data from different folders.

Note: An activities group can show multiple folders only in a single Per-
sonal Folders .pst file or in an Exchange Server mailbox. It cannot display
multiple Exchange public folders or combine items from two different .pst
or mailbox stores.

Only contacts have this built-in ability to show related items. That’s why
you sometimes see a custom contact form used to hold data about items
that aren’t exactly contacts, but do have related items, such as a project and

Figure 4.7 The Activities page of the contact form tracks related items in other Outlook folders.

4.3 The six standard Outlook forms 65

its related tasks, meetings, and contacts. Chapter 20 discusses the Activities
page as a key element of linking Outlook items.

The Certificates page shown in Figure 4.8 is unique to the contact form
and not customizable. The (All Fields), (Properties), and (Actions) pages are
common to all Outlook forms. We will look at them later in the chapter.

The contact form has some limitations. As noted above, if you custom-
ize the first page of a contact form, you lose certain features that appear
only on the built-in General page:

The customized General page will have a gray background, rather
than the Office theme color that the uncustomized page shows, and
won’t have themed buttons and other controls.

The Add Contact Picture control is not available for customized
pages.

The Business Card section won’t be visible.

Also you cannot do the following with a custom contact form:

Add address fields beyond the three that Outlook supports (Business,
Home, and Other) or change the display names on the dropdown list
for the built-in address fields.

Add telephone fields to the dropdown list of built-in phone fields or
change the display names for the built-in fields.

Figure 4.8 The Certificates page of the contact form displays digital security certificate information.

66 4.3 The six standard Outlook forms

Add more email address fields beyond the three that the form sup-
ports or change the display names for the three built-in email address
fields. In other words, you can’t change “E-mail” to “Work” and
“E-mail 2” to “Home.”

Finally, contacts created with a custom form will not trigger Outlook’s
feature that checks for duplicates among existing contacts before saving the
current item.

4.3.2 The appointment form

Outlook supports three forms that can store date/time information: the
appointment, journal, and task forms. What’s the difference between them?
Each appointment must have a start date and an end date, even for all-day
events. On a task, both the start date and the due date are optional. A jour-
nal entry has only a start date and measures the time that has passed since
that date with a duration field. Both appointments and tasks can display
reminders, but journal entries can’t. Appointments and tasks also support
the concept of recurrence—appointments and tasks that repeat themselves
automatically. Because the built-in pages of these forms contain date/time
fields, none of those pages are customizable. Instead, use the P.2–P.5 pages
or form regions.

Figures 4.9 and 4.10 show the Appointment and Scheduling pages of
the appointment form.

Figure 4.9
The appointment

form holds
information about

meetings and
events.

4.3 The six standard Outlook forms 67

A key built-in feature of appointment forms is the ability to see the
meeting availability of other people and to invite other people to meetings.
The controls on the Scheduling page depend on what version of Exchange
you’re connecting to.

4.3.3 The task form

The second form that can handle date/time information is the task form. Its
two built-in pages, Tasks and Details, neither one customizable, appear in
Figures 4.11 and 4.12. Users typically create task items to build a to-do list
for themselves or for people they work with.

4.3.4 The journal entry form

The journal entry form, shown in Figure 4.13, has just one built-in page,
the General page, which you cannot customize. The unique feature of jour-
nal entry items is that they display commands to start and stop a timer that
keeps track of how much time you spend on a particular activity.

4.3.5 The message form

The message form, shown in Figure 4.14, is probably the most familiar of
all Outlook forms, because it appears each time you create a new email mes-
sage. Because the built-in Message page of this form can be customized, you
may be tempted to use it for all kinds of Outlook projects, especially those

Figure 4.10
The Scheduling

page of the
appointment form

shows the times
when people are

free for meetings.
This view shows

the scheduling
features available

with Exchange
2000 or 2003.

Users connecting to
Exchange 2007

will see more
advanced

scheduling options.

68 4.3 The six standard Outlook forms

that involve routing information from one person to another. But as we’ll
see in Chapter 20, custom message forms work well only in a few limited
scenarios.

One feature that the message form has in common with the post form is
that, by default, it shows different layouts to the sender and the recipient of
the message. Click the Edit Read Page layout button to view the default lay-

Figure 4.11
The first page of the
task form holds the

most important
information about

each task.

Figure 4.12
The Details page of
the task form holds
tracking and other

details.

4.3 The six standard Outlook forms 69

out that a recipient would see, as shown in Figure 4.15. Click the Edit
Compose Button to return to the original layout. The presence of two dis-
tinct layouts explains why a message you compose looks different from a
message you receive. If you add a control or field to the compose layout,
Outlook does not automatically add it to the read layout for you.

All forms support separate compose and read layouts, as we will see in
Chapter 6, “Extending Form Design with Fields and Controls.” However,
only the message and post forms show separate compose and read layouts
by default.

Figure 4.13
The journal entry

form tracks the
time you spend on
different activities.

Figure 4.14
You can use the
message form to

create forms that
exchange

information with
other Outlook

users.

70 4.3 The six standard Outlook forms

Tip: Before opening a message form in design mode, turn off your auto-
matic signature in Tools | Forms | Mail Format. Otherwise, your personal
signature will become part of the message on your custom form.

As with the contact form, customizing the message form has its costs. If
you customize the first page, you lose the infobar that displays information
about the item, such as the last reply or forward. A more serious conse-
quence is that if you create a message using a custom form and include
attachments, non-Outlook recipients will not even see those attachments,
much less be able to open them. Therefore, message forms have only a lim-
ited scope of usefulness, mainly inside organizations where everyone is
using Outlook as their email program.

4.3.6 The post form

The post form, shown in Figure 4.16, is even simpler than the message
form. It is used for posting information directly to a particular folder and,
therefore, does not require the To or Cc buttons and boxes associated with
the message form.

4.3.7 Additional forms

In addition to the six basic forms, the Design Form dialog box (refer to Fig-
ure 4.1) also lists Meeting Request <Hidden> and Task Request <Hidden>.
These are actually variations on the appointment and task forms that add a

Figure 4.15
Message forms

normally use
distinct layouts for

unsent and sent
layouts. This is the
layout users see by
default when they

read messages.

4.3 The six standard Outlook forms 71

To button and a box for addressing items to meeting attendees or task
recipients. When you customize one of these forms, you are actually cus-
tomizing the appointment or task form. One important quirk to be aware
of is that, if you put VBScript code in the Meeting Request form, the code
does not run when the user opens the meeting request item or when
Exchange 2007 accepts the meeting request automatically. Such code runs
only when the user accepts the meeting request manually.

It is also possible, oddly enough, to customize the distribution list form
by creating a new list and then using the Design This Form command to
open it in design mode. In Chapter 7, we’ll see an example of a custom dis-
tribution list form that uses VBScript code to keep a running count of the
number of recipients in the list.

Note: The one type of Outlook item that doesn’t support custom forms at
all is the “sticky” note in the Notes folder.

4.3.8 Common form pages

Every form also includes three other pages: (All Fields), (Properties), and
(Actions). The names appear in parentheses because these pages are nor-
mally hidden, except on the contact form, which shows the All Fields page
by default.

Figure 4.16
You can customize

the post form for
use in any kind of

Outlook folder.

72 4.3 The six standard Outlook forms

The All Fields page lists the fields available for use in the form, along
with their current values. A field is a single piece of information related to
an Outlook item and stored in that item. Each type of Outlook form uses a
distinct set of fields. For example, the contact form has three fields for hold-
ing fax numbers, but these do not appear on the task form. A synonym for
field is property. (Outlook uses “field” in its user interface, but “property” in
developer documentation.)

From the Select From list at the top of the All Fields page, you can
choose which set of fields to work with. For example, to see all the fields
available in a contact form, choose All Contact Fields. You then see the list
shown in Figure 4.17. You can also choose Frequently Used Fields or Name
Fields, and so on, to see a smaller subset of the many fields available in a
Contact item.

Note: Not all the data stored in an item is exposed through fields visible on
the form. Items also contain properties that are hidden from the user inter-
face. As we will learn in Chapter 14, “Using PropertyAccessor and Storage-
Item,” you can return the value of these properties with Outlook 2007’s
new PropertyAccessor object.

Figure 4.17 The All Fields page shows every field visible in the user interface, but not hidden proper-
ties.

4.3 The six standard Outlook forms 73

You might also notice the choices for User-Defined Fields in This Item
and User-Defined Fields in This Folder, as well as a New button at the bot-
tom of the page. You can create your own fields in Outlook, as described in
Chapter 7.

The (Properties) page, shown in Figure 4.18, controls various settings
for the form, including the following:

The icon it displays

The version number

An optional category and subcategory to help you track forms if you
have many of them

A contact for the form

A description

Many of these properties, such as Contact and Description, are espe-
cially important if you create forms that other people will use. The version
number can assist with troubleshooting. Outlook has no built-in scheme
for form versioning. So, devise your own! At the very least, start with 1 and
increment the version number each time you change the form. Alterna-
tively, use integers for major versions and a decimal place for minor
changes.

Figure 4.18 The (Properties) page handles information that identifies the form.

74 4.4 When to use which form

Note: Previous versions of Outlook allowed you to set a form password on
the (Properties) page, but it was never secure. Outlook 2007 eliminates
form passwords completely.

The last page is the (Actions) page, shown in Figure 4.19. It controls
what happens when the user performs standard actions, such as Reply,
Reply to All, Forward, and Reply to Folder. You can also add custom
actions that add new commands to the Actions menu and toolbar, as you
will see in Chapter 20.

4.4 When to use which form
How do you know which form to use? One approach is to make a pencil-
and-paper sketch of the form you have in mind for your project and then
find the closest match among the six Outlook forms. You can also look at
the (All Fields) page to get a sense of which forms include which fields. You
should use the built-in fields as much as possible. It is rarely possible to use
a built-in field from one type of item on another type of item. For example,
just because the All Contact Fields includes a Business Phone field doesn’t
mean you can add it to a custom task form and have Outlook automatically
insert the phone number for a contact linked to a task.

Figure 4.19 The (Actions) page controls commands that appear on the Actions menu.

4.4 When to use which form 75

Fields are just one factor to consider, though. Since you can always cus-
tomize a form with new fields, most of the time your choice should depend
on the functionality you need. For example, if your project involves sending
messages back and forth in a kind of workflow, you will probably customize
the message form. If the information is gathered in one specific folder, the
post form might be appropriate, or—if reminders are needed—either the
appointment form or task form.

Don’t feel that you must use a particular form only for its original pur-
pose. For example, if you want to keep track of how much time you spend
on a project, you can use any of the three forms that include fields to mea-
sure time: the appointment, journal entry, and task forms. Since the contact
form is the only form with an Activities page, you could use it as the basis
for a project form, with all the related components—people, meetings,
tasks, and so on—containing a link back to an item using your project
form. The parent project would then show on its Activities page all the
linked items.

Note: The field where users create such links does not display by default. To
show it, a user can choose Tools | Options | Contact Options and check the
box for “Show Contact Activity information on all forms.” Administrators
can manage this setting with Group Policy Objects.

As we saw at the beginning of this chapter, the Design Form dialog box
(refer to Figure 4.1) has a Look In list from which you can select various
locations where forms are stored. Any form you previously modified should
appear in one list or another. You can select that modified form and base a
new form on it. For example, if you create a new contact form that includes
more fields and want to use those same fields in a new project, start with
your modified form, rather than going back to the original contact form.

You can also open any Outlook item, make changes to it, and click the
Design This Form command on the Developer tab to use that particular
item as the starting point for a custom form. Use this approach when you
want to include specific default text in the body of an item or if the form
you want to customize does not appear on the Standard Forms list. We have
already discussed a custom distribution list form as one example of this
technique. Another good example is a form with voting buttons. Although
you can set the voting options on the (Actions) tab, it’s more convenient to
set them by creating a new message, switching to the Options tab, then
clicking the Use Voting Buttons command. You can then publish the form,
as described later in this chapter, to make it easy to reuse. Figure 4.20 shows
a custom document transmittal form with voting buttons, as the user would
see it. Notice that the main tab on the ribbon is named “Document Trans-

76 4.5 Working in the forms designer

mittal,” which is the display name for the published form. That name also
appears on the window caption.

A final word about message forms: Security concerns have reduced the
number of scenarios where a custom message form is effective. In order for
a message form to run code or show custom fields for both the sender and
the recipient, both users need access to the published form definition. This
requirement means that the form must be published to either the Organiza-
tional Forms library on Exchange or to each individual user’s Personal
Forms library. In many scenarios, neither is possible. While there are still a
few good uses for custom message forms, particularly in generating a struc-
tured message from user inputs, you cannot count on being able to use a
message form for surveys, workflow, or other collaborative tasks unless you
can meet these form publishing requirements. Check on the publishing
environment first, before you invest time in a message form design.

4.5 Working in the forms designer
Completing this tour of the Outlook forms design environment are three
tools you will use often: Field Chooser, Control Toolbox, and Help. Later
in the chapter, when we walk through the creation of a custom contact
form, we will see two other tools: Property Sheet and Advanced Properties.

4.5.1 Controls and the Control Toolbox

The buttons, check boxes, dropdown lists, and boxes for entering text on
the form are all examples of controls that make up a custom form’s user

Figure 4.20
Voting buttons
provide an easy
way to create a

custom transmittal
form.

4.5 Working in the forms designer 77

interface, just as we saw in the previous chapter that controls are the build-
ing blocks for a VBA user form’s interface. Controls determine how users
will enter data, view information, and otherwise interact with the form.

A control can be linked or bound, to an Outlook field; if the user
changes the data shown in a bound control, the data in the Outlook field
also changes, and vice versa. A form also can display unbound controls. The
data shown in these controls is not tied to Outlook fields. The contents of
unbound controls are temporary. When you close the form window, Out-
look discards any values from those controls. Thus, in most cases where you
want the user to enter data to be saved with an Outlook item, you should
use a bound control.

To see the types of controls you can use, click the Control Toolbox but-
ton on the ribbon. This will display the Toolbox, shown in Figure 4.21.
The easiest way to learn the names of the controls is to place your mouse
pointer over a control without clicking. After a moment, the name of the
control appears in a screen tip.

Tip: Later in this chapter, we’ll add screen tip pop-up text to a control on a
custom contact form to make it easier for users to understand what the con-
trol does.

4.5.2 The Field Chooser

When you first open a form in design mode and view a customizable page,
the Field Chooser appears. As shown in Figure 4.5, it lists the fields you can
add to the page. It defaults to Frequently Used Fields, but like the All Fields
page, you can click the dropdown arrow at the top of the Field Chooser to
see either all available fields or a particular subset.

To turn off the Field Chooser, click the close (x) button in its upper-
right corner, or click the Field Chooser command in the ribbon to toggle it
off.

Dragging a field from the Field Chooser to a page on your form adds a
bound control to display the data in that field. In most cases, it also adds a

Figure 4.21
Pause the mouse
pointer over any

control in the
Toolbox to see the

name of the
control.

78 4.6 Saving forms and ending a design session

matching label control. Remember that with a bound control, if the user
changes the data shown in the control, the data in the Outlook field also
changes, and vice versa.

4.5.3 Getting forms design help

To get access to Outlook’s Help library on form design topics, press F1
while working in form design mode. The main page for Outlook Developer
Help will appear. To locate general custom forms topics, click on Concepts,
then Forms, then Custom Form Basics. To learn how to write code to work
with individual controls on Outlook custom forms, on the main page for
Outlook Developer Help, click on Outlook Forms Script Reference.

4.6 Saving forms and ending a design session
When you have done enough work on a form for one design session, save
the form using one of these two methods:

Save the form as an Outlook form template .oft file anywhere on
your computer.

Publish the form to a folder or to one of Outlook’s special custom
forms libraries.

Caution: You cannot save the form design for reuse by simply closing the
form design window and choose Yes to the “Do you want to save changes?”
prompt. Instead, you should publish the form in most cases and, to main-
tain a backup, save it as an .oft form template file.

In general, you should do both. Save interim versions as .oft files
throughout the design process, so that you always can revert to an earlier
version without the latest changes, and make a backup .oft file of the final
version. To put a form into actual use, you almost always will need to pub-
lish it. You may also want to publish interim versions during the design pro-
cess as part of your testing.

4.6.1 Understanding published forms

Publishing a form means saving it to a form library using the Publish Form
and Publish Form As commands. Published forms offer several advantages
over forms saved as .oft files:

VBScript code runs only published forms.

Custom fields that you define in a form are visible only on items cre-
ated from published forms.

4.6 Saving forms and ending a design session 79

By default, only published forms can run ActiveX controls that don’t
ship with Outlook.

For items created with published forms, the form definition is not
normally stored with the item. This means that if you have 5kb
worth of data and 200kb worth of form design, items created with
your published form are 5kb in size, while items created with the
comparable .oft file would be 205kb in size.

To publish a newly customized form based on one of the built-in forms,
click the Publish | Publish Form command. When you publish a form, you
must tell Outlook what forms library to store it in. Table 4.1 lists the three
types of form libraries where you can publish forms. If you don’t use
Microsoft Exchange as your mail server, you won’t see Organizational
Forms. Also, some organizations may have Exchange, but not implement
an Organizational Forms library, or you may not have permission to pub-
lish forms there. Furthermore, you cannot publish new forms to the Stan-
dard Forms library; it is reserved for Outlook’s built-in forms.

If you publish a form to a folder, the folder’s Actions menu will list that
form with a “New <name of form>” command. (You will not see this com-
mand for any form whose “Use form only for responses” box is checked on
the (Properties) dialog.)

If you created your custom form from an existing published form, do
not use the Publish | Publish Form command, as that will overwrite the
existing published form. Instead, use the Publish | Publish Form As com-
mand to publish the form to a different location or with a different name.
In the Publish Form As dialog box (see Figure 4.22), use the Look In drop-
down list or the Browse button to select a location. Then, give the form a

Table 4.1 Outlook Forms Libraries

Library Description

Personal forms The library of forms maintained in your default infor-
mation store (Exchange Server mailbox or Personal
Folders .pst file).

Organizational forms A library of forms stored on the Exchange Server for
group use; you need permission from the Exchange
administrator to publish to this library.

Libraries for individual Outlook
folders

Each folder can contain its own library of forms associ-
ated with that folder. You must have owner permission
to publish to a folder outside your own mailbox and
.pst files.

80 4.6 Saving forms and ending a design session

display name and form name, and click Publish. As Figure 4.22 shows, the
display name and form name do not need to be identical.

Note: Chapter 21 explains how to remove old forms and convert existing
items to use a new form.

4.6.2 Understanding .oft form template files

Saving a form as an .oft template file is a good way to make a backup file. It
is also a good procedure to use if you create a message form with predefined
recipients or text. To save a form as a template file, follow these steps:

1. Click the Office logo at the upper-left of the form design window,
and then choose Save As.

2. In the Save As dialog, under “Save as type,” choose Outlook
Template (.oft). The path under “Save in” list will change to the
default location for .oft files, which is the %appdata%\
Microsoft\Templates folder for your Windows login profile. You
can save .oft files in any other folder on your computer, but if
you use the Templates folder, you’ll be able to find them more
easily when you use the Tools | Forms | Choose Form or Design
a Form command.

3. Give the file a name and click Save.

If the .oft file contains no custom field definitions, you can run it simply
by double-clicking the saved file to open it. If it does contain custom field
definitions, you will need to use the Tools | Forms | Choose Form com-
mand to run the form and the Tools | Forms | Design a Form command to
open it in the forms designer.

Figure 4.22
Publishing a

custom contact
form to the

Contacts folder.

4.7 Creating your first custom contact form 81

Note that a saved .oft file runs no VBScript code. Only published forms
can run code.

4.7 Creating your first custom contact form
Now that you are acquainted with the Outlook forms design environment,
it’s time to go to work and create your first custom form—a contact form.
In the process, you’ll see how to add and modify form pages and the con-
trols that the user interacts with.

Creating a custom form requires a series of steps that should occur in the
same order every time:

1. Pick a standard form to start with.

2. Add and modify controls on the pages that can be customized.

3. Test the form.

4. Repeat steps 2 and 3 as necessary to complete the form layout.

5. Set the basic properties of the form.

6. Save a backup copy of the form as an .oft file.

7. Publish the form.

As an example, we’re going to build a new page on a custom contact
form to learn about some of the frequently used fields that don’t appear on
the standard General and Details tabs.

4.7.1 Adding fields

To begin, use the Tools | Forms | Design a Form command to open a blank
contact form in design mode, and then click on the (P.2) page. The Field
Chooser should appear with the list of frequently used fields displayed. If it
doesn’t, click the Field Chooser command in the Design group.

To place a field on the form, drag it from the Field Chooser to the form
page. Start with the Business Home Page field. Outlook automatically
places the field at the top left of the blank page. Next, drag the Personal
Home Page field to the form. See how Outlook automatically places it
directly beneath the first field. Now drag two more fields from the Field
Chooser: Journal and Customer ID. Both are available on the All Con-
tact Fields list in the Field Chooser. Check your form against Figure 4.23.

Also, notice that the name of the page, P.2, is no longer in parentheses.
Outlook assumes that if you add fields to a custom page, you want users to
see them, so it automatically sets the page to be visible to the user. Both the
Home Page fields display their data in a control called a text box (because
the user can normally type text into it). Text boxes are probably the most
commonly used form control in Outlook.

82 4.7 Creating your first custom contact form

The text that tells you the name of the field, such as Business Home
Page for the first field, is called a label. Label controls are a key element in
making forms easy to understand. Not only do they describe different
fields, but you can also use them to provide detailed instructions on the
form page.

Tip: Outlook saves you time by adding a label control for most fields that
you drag from the Field Chooser. Some controls, such as check box con-
trols, do not need label controls nearby because they include their own
Caption property.

The Journal field uses a check box control to allow the user to turn
automatic journaling for a contact on and off. This type of control has only
two values: on/off, true/false, or yes/no, which are all equivalent.

4.7.2 Rearranging controls

When you drag text fields from the Field Chooser, Outlook lines up any
accompanying label controls on the left side of the form, then puts the text
box controls adjacent to the label controls. Since the label controls have
different widths, this can leave the right side looking sloppy. The check
box control automatically puts the caption on the right side, so neither

Figure 4.23 This custom page shows four fields dragged from the Field Chooser.

4.7 Creating your first custom contact form 83

the box nor the caption lines up well with any other control. Your next task,
therefore, is to make the text box fields and check box align neatly along
their left edges.

You could move each control individually. For example, click the Jour-
nal field’s check box to select it. The box now appears with a gray line
around it and eight white boxes called drag handles at the corners and sides;
you can use these to resize the control. If you move the mouse pointer over
one of the sides (but not over a drag handle), the pointer turns into a four-
sided arrow. When you see the four-sided arrow, hold down the left mouse
button and drag the field to a new location on the form.

There is an easier way to line up those controls, though. You can select a
group of controls and then use a layout command to align them.

First, you need to know how to select multiple controls. Earlier, you
clicked on one control to select it. To add another control to the selection,
hold down the Ctrl key as you click a different control. Continue using
Ctrl+click to include the three text boxes and check box in your selection. If
you select one of the labels by mistake, use Ctrl+click to deselect it. You can
also click anywhere on the background of the form to clear all selections
and start over completely.

Did you notice that the drag handles for the last control you clicked are
white, whereas those for the controls are black? The control with white drag
handles acts as the model for alignment and resizing operations. In this
case, you want to line up everything along the left edge of the Business
Home Page field’s text box, so make sure that you select it last. If one of the
other fields was the last selected, use Ctrl+click twice on the Business
Home Page text box to make it the last selected. Figure 4.24 shows how the
selected controls should look.

Tip: You can also select a group of adjacent controls very quickly by hold-
ing down the left mouse button and dragging it diagonally across the con-
trols.

With the desired controls selected, click the Align command in the
Arrange group, then choose Left. You can also right-click the selected con-
trols and choose Align | Align Left. Repeat the alignment process with the
label controls, but choose Align | Align Right for them. After aligning the
controls, they should look like Figure 4.25.

Tip: If you change the layout of your form and don’t like the way it looks,
press Ctrl+Z to reverse the last change you made.

84 4.7 Creating your first custom contact form

Figure 4.24 When multiple controls are selected, the one with the white drag handles controls any
group sizing and alignment operations.

Figure 4.25 Controls that are the same size and aligned along one edge are easier on the user’s eye.

4.7 Creating your first custom contact form 85

The Arrange group contains other commands, such as Bring to Front
and Send to Back, that can help you adjust the layout of your controls. The
Tab Order command helps you set the tab order, which controls what field
gets the focus of the cursor when the user presses Tab or Shift+Tab to move
out of a control. We’ll come back to the tab order below.

4.7.3 Showing, hiding, and renaming pages

Now that your controls are looking neat, you can give that custom page a
more descriptive name. To rename a page, in the Design group, choose Page
| Rename Page, and type in the new name, for example “Home Pages / Cus-
tomer ID.”

Tip: Do not use the ampersand (&) character in page names. That charac-
ter will disappear when you run the form.

To hide or show a page, choose Page | Display This Page. A check mark
next to the Display This Page command indicates whether the user will see
the current page. You can also look at the page name. In design mode, the
names of hidden pages are in parentheses.

4.7.4 Setting control properties

To finish working with the controls on this, your first custom Outlook
form, you need to make some adjustments to their properties. Custom
form controls have properties similar to those on the VBA user form con-
trols that we saw in Chapter 3. Outlook divides custom form control prop-
erties into two groups: the basic ones you are most likely to want to use and
advanced user interface and behavior properties that are less commonly
changed.

To work with the basic properties, select a control and then click the
Property Sheet command in the Design group (see Figure 4.21) or right-
click the control and choose Properties. Figure 4.26 shows the basic proper-
ties on the Display tab.

Note: You will learn about the properties on the Value and Validation tabs
in Chapter 6.

Every control needs a name to distinguish it from other controls in the
tab order and in any programming code you write. Outlook assigns a name
automatically. For example, the Journal field’s check box control, depicted
in Figure 4.26, has the default name CheckBox1. You should change the
name, at least for controls where the user enters data. (Changing the name

86 4.7 Creating your first custom contact form

of label controls is a less urgent task.) Names should be descriptive, not
cryptic; no spaces are allowed. A good descriptive name will help you
remember the purpose for the control and make it easier to rearrange the
tab order and to write code to work with the controls on the form.

It’s important when writing code to know what kind of control you’re
working with, since different controls have different properties. I recom-
mend using the prefixes in Table 4.2 to help distinguish the different types
of controls.

For example, instead of CheckBox1 as the name for the control displaying
the Journal field, you could use chkJournal. Similarly, you might change
the name of the text box for the Customer ID field to txtCustomerID.

Figure 4.27 shows what the Tab Order dialog looks like after those two
controls’ names have been changed. It is easy to tell where the chkJournal
and txtCustomerID controls appear in the tab order, but you have no way
of knowing which fields are associated with the _RecipientControl1 and
_RecipientControl2 controls, which still have the names that Outlook
automatically assigned to them. (These are the controls for the two Home
Page fields. They’re not standard text boxes, because they support live

Figure 4.26
The basic control

Display properties
include name, font,

and color.

Figure 4.27
Compare the order

of controls listed
here with the

form shown in
Figure 4.25.

4.7 Creating your first custom contact form 87

hyperlinks.) Use the Move Up and Move Down commands in the Tab
Order dialog to change the order.

Tip: Controls on a VBA user form also have a tab order that you can adjust
in a similar fashion.

Table 4.3 lists Name and the other control properties from the Display
tab in the Properties dialog.

Next, click on the Layout tab, shown in Figure 4.28. Here you’ll find
settings for the control’s size and position, as listed in Table 4.4.

The Top, Left, Height, and Width properties also appear on a different
Properties dialog box that appears when you right-click any control and
then choose Advanced Properties from the pop-up menu. (You can also dis-
play it with the Advanced Properties command in the Design group.) You
can leave this advanced Properties dialog open as you select controls, even
multiple controls.

Table 4.2 Recommended Outlook Form Control Name Prefixes

Control Prefix

Label lbl

Text Box txt

Combo Box cbo

List Box lst

Check Box chk

Option Button opt

Toggle Button tgl

Frame fra

Command Button cmd

Tab String tab

Multipage mlt

Scroll Bar hsb (horizontal) or
vsb (vertical)

Spin Button spn

Image img

88 4.7 Creating your first custom contact form

Note: The two Properties dialog boxes work differently with respect to mul-
tiple controls. If you select multiple controls and click Property Sheet, the
dialog box controls the properties only for the last control you selected. But
if you click Advanced Properties, the dialog box controls the properties for
all selected controls. You can use that feature to quickly set the font or
width of several controls with one action.

Table 4.3 Outlook Form Control Display Properties

Property Description

Name Unique descriptive name

Caption Text on label, check box, option button, toggle button, frame,
or command button

Font Font name, size, style, and color

Foreground color Text color, using the Windows color scheme

Background color Background color, using the Windows color scheme

Visible Can the user see the control? (Yes/No)

Enabled Can the user click on or enter information in the control?
(Yes/No)

Read only Can the user change the control’s data (Yes/No)

Sunken Add a 3-D look? (Yes/No)

Multi-line Wrap text in a text box, and create a new line when the user
presses Enter? (Yes/No)

Figure 4.28
Set control size and

position on the
Layout tab.

4.7 Creating your first custom contact form 89

Text box controls show a total of 42 properties; other controls have more
or fewer, as needed. To change any property, select it in the Properties list
and then look at the top of the dialog for either a dropdown list of choices
or a text box where you can type in a value. Click the Apply button after
you make your choice or type in the new property value.

For example, Figure 4.29 shows the Properties dialog for the Journal
check box. Outlook provides this field so you can specify whether you want
Outlook to automatically create an entry in the Journal folder whenever
you create a new Outlook item related to a particular contact. In case the
user is not familiar with this feature, you can change the ControlTipText
property to add text that pops up when the user pauses the mouse over the
check box control. Figure 4.30 shows how a user will see the control tip on
the finished form.

4.7.5 Testing the form

At any time, you can see how your form will look to a user by choosing
Run This Form in the Form group. A new instance of the form appears, as
in Figure 4.30, with all the changes you have made to the form so far.

Table 4.4 Outlook Form Control Display Properties

Property Description

Top Position relative to the top edge of the form design surface, in
pixels

Left Position relative to the left edge of the form design surface, in
pixels

Height Control height, in pixels

Width Control width, in pixels

Resize with form Shrink and enlarge the control when the overall form changes
size? (Yes/No)

Figure 4.29
Set advanced

properties for an
Outlook custom

form control with
this window.

90 4.7 Creating your first custom contact form

Notice that the page you customized is now listed in the Show group on
the ribbon.

You can close the test form with the close (x) button at the upper-right
corner of the form and return to your working copy of the form, which
remains open in design mode. If you get a prompt to save changes, choose
No. (This is a prompt to save the item created with the form, not to save
the form design.)

4.7.6 Setting form properties

When you are satisfied with the form’s layout and have tested it, it’s time to
set the operational properties for the form, before you save or publish it.
Click on the (Properties) tab to switch to that page, shown in Figure 4.31.
This page is normally hidden from users running the form.

Tip: If the form is too wide for your display monitor and you can’t see the
(Properties) tab or other tabs on the right side of the form, press Ctrl+Page
Down to move through the different form pages one by one.

You will almost always want to set the Version, Contact, and Descrip-
tion and also the two icons. Other settings may be optional, depending on
the purpose of the form and the environment where you will use it.

Figure 4.30 The user sees the control tip from the ControlTipText property by pointing the mouse at
the control.

4.7 Creating your first custom contact form 91

The version should be a number, increased every time you update the
form and publish a new edition. You can use a numbering sequence like
1.0, 1.1, 1.2 and so on, or a sequence as simple as 1, 2, 3, 4, 5. Users can see
the version number when they select a form from the Tools | Forms |
Choose Form dialog (Figure 4.32).

By default, custom forms always use the same icon as the post form, a
yellow slip of paper with a pushpin through it. To change either the large
or small icon, click the appropriate button. Then choose an icon from the

Figure 4.31 Set the form’s operational properties on the (Properties) page.

Figure 4.32
Information you

enter on the
(Properties) page of
a form’s design can
help users select the

right form.

92 4.7 Creating your first custom contact form

*.ico files on your system. If Outlook is installed in the default location,
you will see many icons in the C:\Program Files\Microsoft Office\
Office12\Forms\1033\ folder. If Outlook is installed somewhere other
than C:\Program Files\, look in that other location for the Office12\
Forms\1033\ folder. The folder name 1033 denotes the folder for U.S.
English components. Other locales’ components will be in other folders.
If you want to use the same icon as the standard contact form, choose
Contactl.ico for the large icon and Contacts.ico for the small icon. The l
and s at the end of the icon file name stand for the large and small ver-
sions of the same icon.

Tip: Use the Search command in Windows to locate more *.ico files on
your computer. You can use any icon with Outlook that is exactly 32 × 32
pixels in size. The small Outlook icon is 32 × 32, just like the large icon,
but only the 16 × 16 pixels at upper left contain the icon image.

The Contact and Description fields should contain information about
how the form should be used and whom to contact in case of questions or
problems. This information appears when the user chooses Tools | Forms |
Choose Form and selects your custom form.

Take a quick look at the less frequently used form properties. Set a Cate-
gory and optional Subcategory if you use a hierarchy of categories to orga-
nize forms, either in your own folders or in the Organizational Forms
library. (These categories are not related to the categories you can set on
individual Outlook items.) You can add a Form number, in addition to the
Version number, to identify your form as part of your organization’s classifi-
cation scheme.

If you are creating forms that users of older versions of Outlook will use,
you can require a custom message or post form to use Word as the email
editor along with a particular Word template .dot file. This option is avail-
able only if your default message format is set to Microsoft Outlook Rich
Text in the Tools | Options | Mail Format dialog, and it has no effect on
forms used in Outlook 2007.

Note: Earlier versions of Outlook supported a form password, but this fea-
ture provided very little security. Outlook 2007 no longer supports form
passwords at all. If you have code behind a form that you want to protect,
then you probably should be using a form region and an Outlook add-in,
not a traditional custom form.

4.7 Creating your first custom contact form 93

Caution: Do not check the “Send form definition with item” box. It is an
obsolete setting held over from versions of Outlook that did not have as
many security features as Outlook 2007. If you check that box, code on the
form will not run, even if you publish the form. Items saved or sent with
that form will also be much larger, because they will contain both the item
data and the form definition (a state known as a one-off form).

If you want to prevent the user from launching a form directly, check
the “Use form only for responses” box. That way, the form works only
when launched with a code statement or in conjunction with another form
that includes the current form among its custom actions. Custom form
actions are covered in Chapter 20.

4.7.7 Saving and publishing the form

You have finished your first customized contact form! Make a backup copy
by clicking the Office icon at the upper-left and then choosing the Save As
command, as described earlier in Section 4.6.2, “Understanding .oft form
template files.” You should also click the Publish command in the Form
group to publish the form either to your Contacts folder or to your Personal
Forms library. Remember that when you publish it, you must give it both a
display name that will appear on the title bar of new instances of the form
and a unique form name that will become part of the form’s message class.
Often these are the same, but they don’t have to be.

4.7.8 Using the form

If you like this form so much that you want to use it for every new con-
tact, publish it to your Contacts folder. Then, bring up the Contacts
folder’s Properties dialog and under “When posting to this folder, use,”
select the name of your published form, and then click OK or Apply. All
new contacts in that folder will use that form. In Chapter 21, we’ll see a
VBA code procedure to convert all existing items to use a published cus-
tom form.

If you published the form to your Contacts folder but did not make it
the default form for the folder, switch to the Contacts folder, and then look
at the bottom of the Actions menu. You should see a new command there
for New <Name of Your Form>. Click that command to create a new con-
tact item using your custom form.

If you published to the Personal Forms library, choose Tools | Forms |
Choose Form or File | New | Choose Form. In the Look In list, choose

94 4.8 Summary

Personal Forms, then select the form and click Advanced. As Figure 4.32
shows, the properties you entered in the (Properties) dialog provide helpful
information to the user about the form.

4.8 Summary
This chapter has introduced you to the six standard Outlook forms you can
customize and the techniques to start and end a design session and use the
Field Chooser and Control Toolbox. You also learned about the different
custom form libraries and should have a better idea of when to use which
standard form as the basis for a custom form. You also learned that creating
a custom form involves adding controls, adjusting their properties and
those of the form itself, and publishing the form so you can reuse it easily.
How you lay out the form and the properties you set can make the form
more pleasing to the eye and easier to use. In Chapter 6, we’ll learn how to
add custom fields, set validation formulas, and build separate compose and
read layouts. But first, we’re going to look at another way of customizing
Outlook forms that’s totally new to Outlook 2007: form regions.

95

5
Introducing Form Regions

Form regions arrive in Outlook 2007 as a new way to change the appear-
ance of Outlook items and give them additional features. Most of the time,
professional developers will combine form regions with Outlook add-ins to
integrate their applications with the Outlook platform. However, form
regions can also add functionality even when an add-in is not involved.

The highlights of this chapter include discussions of the following:

The difference between adjoining and separate regions

What new controls Outlook provides for custom form regions

How to tell Outlook when to use a custom form region

How to design a custom form region to display a contact’s birth date
and age in the reading pane

5.1 Understanding form regions
A form region can add a collapsible pane to an Outlook item’s layout (hence
the name form “region”), add a new page to a form, or replace all the pages
on a form. You design custom form regions in the same Outlook forms
designer that you saw in Chapter 4.

Form regions come in two flavors: adjoining and separate. Either can
appear when composing a new item, reading an existing item, previewing
an existing item, or all of the above, depending on the settings for the
region.

An adjoining region appears at the bottom of the item’s window or at
the bottom of the reading pane. Multiple adjoining regions for the same
type of item stack on top of each other. Each one is collapsible. Figure 5.1
shows an example of an adjoining form region to display a contact’s age and
the date you first made contact with this person. We will see how to build
this region later in the chapter.

96 5.1 Understanding form regions

A separate form region displays as a stand-alone page when the user
opens the item. A separate form region can add a new page, replace the first
page of a standard form, or replace all the built-in pages. However, a form
region can replace existing pages only for Outlook items whose Message-
Class property is not one of the default classes—IPM.Note, IPM.Contact,
and so on. In other words, you can implement a replacement form region
for a custom message class named IPM.Note.MyForm, but for the default
message class for mail messages, IPM.Note, Outlook will display only sepa-
rate form regions that add new pages.

Note: Remember that an item’s MessageClass property determines what
form that item will display. Look back at Figure 4.22, which shows the mes-
sage class of a newly published form at the bottom of the Publish Form As
dialog.

Microsoft Exchange 2007 Server, for example, uses replacement
form regions to implement its “unified messaging” features that allow
Outlook 2007 to listen to voice mail messages and view faxes in Out-
look. To support those features, Outlook 2007 registers a form region
for IPM.Note.Exchange.Voice and several other IPM.Note.* message
classes.

Figure 5.1
An adjoining form
region displays as a
collapsible pane at

the bottom of an
open or previewed

item.

5.2 Controls for form regions 97

Implementing a custom form region requires three steps:

1. Design the region in the Outlook forms designer (yes, the same
one we saw in Chapter 4). The design process is the same regard-
less of whether it’s a separate region or an adjoining region.

2. Create an .xml file (i.e., a text file using XML syntax) to tell Out-
look where to find the form region and when to display it. This
file is known as the manifest for the form region.

3. Add an entry to the Windows registry telling Outlook which
message class to apply the region to and where to find the mani-
fest file with the other instructions.

After a review of the new controls that Outlook 2007 provides for form
regions, we will walk through the creation of a form region and then see
how to save and register it.

5.2 Controls for form regions
Outlook 2007 gives form regions a new set of controls that support Win-
dows themes so that they have the same color scheme and other settings as
most Windows dialogs. These controls make it possible to almost com-
pletely duplicate the look of Outlook’s built-in form pages that are not cus-
tomizable, such as the main page of the appointment form. Also available
are Outlook-aware controls such as the “info bar” that displays information
about the last time the user replied to or forwarded a message.

Before you can use these controls, you must add them to the Control
Toolbox in the form designer. Right-click the Toolbox, and choose Cus-
tom Controls. In the Custom Controls dialog (see Figure 5.2), the cus-
tom form region controls all have names that begin with “Microsoft
Office Outlook.” Table 5.1 lists the controls designed specifically for cus-
tom form regions and whether they can be bound to an Outlook field.

Figure 5.2
You must select

form region
controls in the

Control Toolbox
before you can add

them to a region.

98 5.2 Controls for form regions

Bound controls display and set the data stored in the bound field. In other
words, when you want to enter data into a control and have that data
saved with the Outlook item that the form is displaying, you need to use
a bound control. The table also lists the name that each control shows
when you hover the mouse over the Control Toolbox to display the con-
trol’s screen tip. This is also the control’s object class name in the Outlook
object model. The _DocSiteControl and _RecipientControl objects
are hidden; you can see them, though, if you right-click in the VBA
Object Browser and choose Show Hidden Members.

Even with this rich set of controls, perfectly duplicating the look and
functionality of a page from a standard form may not be possible, but you
should be able to come very close.

Table 5.1 Microsoft Office Outlook Controls for Custom Form Regions

Control Screen Tip and Object Name Description Can Be Bound?

Microsoft Office Outlook
Body Control

_DocSiteControl Display the message or
notes (Body property)

No; already bound to
the Body property

Microsoft Office Outlook
Business Card Control

OlkBusinessCardControl Display the electronic
business card for a con-
tact item

No; already bound to
the BusinessCard-
LayoutXml property

Microsoft Office Outlook
Category Control

OlkCategory Displays the names of
the categories that the
user selects by clicking
the Categorize button

No; already bound to
the Categories prop-
erty

Microsoft Office Outlook
Check Box Control

OlkCheckBox Displays a check box
and caption

Yes, to any yes/no
(Boolean) property

Microsoft Office Outlook
Combo Box Control

OlkComboBox Displays a dropdown
list of items for the user
to choose from

Yes

Microsoft Office Outlook
Command Button Control

OlkCommandButton Displays a clickable
button

Yes

Microsoft Office Outlook
Contact Photo Control

OlkContactPhoto Displays the photo for a
contact item

No; used only for the
contact photo

Microsoft Office Outlook
Date Control

OlkDateControl Displays a dropdown
calendar where the user
can select a date

Yes, to any date/time
property

Microsoft Office Outlook
Frame Header Control

OlkFrameHeader Displays the top line
and caption of a frame

Yes

5.2 Controls for form regions 99

Microsoft Office Outlook
Info Bar Control

OlkInfoBar Displays information
about the current item
in a yellow “info bar”

No

Microsoft Office Outlook
Label Control

OlkLabel Displays non-editable
text

Yes

Microsoft Office Outlook
List Box Control

OlkListBox Displays a list of items
for the user to choose
from

Yes

Microsoft Office Outlook
Option Button Control

OlkOptionButton Used in a set of two or
more option buttons to
allow the user to make
one choice

Yes

Microsoft Office Outlook
Page Control

OlkPageControl Displays scheduling
controls in appointment
forms or, in message
forms, a tracking grid

No

Microsoft Office Outlook
Recipient Control

_RecipientControl Displays a list of recipi-
ents or linked contacts

Only to fields related to
email addresses:
Assigned To, Bcc, Cc,
Contacts, From, Have
Replies Sent To,
Optional Attendees,
Required Attendees,
Resources, and To fields,
plus the three email
fields on a contact

Microsoft Office Outlook
Sender Photo Control

OlkSenderPhoto Displays the sender
photo in a mail message

No; used only for the
sender’s photo on mes-
sages

Microsoft Office Outlook
Text Box Control

OlkTextBox Displays editable or
non-editable text

Yes

Microsoft Office Outlook
Time Control

OlkTimeControl Displays a dropdown
list for choosing a time

Yes, to any date/time
property

Microsoft Office Outlook
Time Zone Control

OlkTimeZoneControl Displays a dropdown
list for choosing a time
zone

No

Table 5.1 Microsoft Office Outlook Controls for Custom Form Regions (continued)

Control Screen Tip and Object Name Description Can Be Bound?

100 5.3 Creating your first form region

Caution: Do not attempt to use any of the new Olk* controls in a legacy
custom form. If you do, the form may become corrupted and lose all the
VBScript code behind it.

5.3 Creating your first form region
To create a custom form region, you use the same form designer as we saw
in Chapter 4. Let’s look at a practical example. On the Outlook contact
form, users must go to the Details page to enter a person’s date of birth. In
this example, you’ll see how to add the Birthday field to the first page of
the Contact form and to even add a field to calculate and display the per-
son’s current age on that page. Then, you’ll add a second date/time field—
this one with a dropdown calendar—to track the date of your first contact
with each person.

Start by using the Tools | Forms | Design a Form command to open a
contact form in design mode. Then choose Form Region | New Form
Region. You should see a new tab with the name (Form Region) and a
plain, blank gray page.

This form region will use the new-style label, text box, and date con-
trols. If you haven’t already added these, display the Control Toolbox, right-
click it, choose Custom Controls, and add those controls.

Next, we’ll put the controls on the region, starting with a text box for
entering the birth date.

Tip: You don’t really need a date picker control for the birth date, since you
wouldn’t normally want to scroll back through a few decades to find the
original birth date in the dropdown calendar.

Since Birthday is an existing Outlook contact property, you can drag it
from the Field Chooser to the form page. This adds an old-style text box and
label control, not the new controls, but that’s OK. When the form region dis-
plays at runtime, Outlook will automatically show the newer controls.

Outlook contains no property that automatically calculates a person’s
age, but you can add one by creating a new field that computes the value of
a formula. In the Field Chooser, click New. Give the new field the name
“Age,” set the Type to Formula, and type in this formula:

IIf([Birthday]<>"None",
DateDiff("yyyy",[Birthday],Date())-IIf(DateDiff("d",
CDate(Month([Birthday]) & "/" & Day([Birthday]) & "/" &
Year(Date())),Date())<0,1,0),"")

5.3 Creating your first form region 101

Click OK to save the new field definition. Drag the Age field from the
Field Chooser to place it to the right of the controls for the birthday.

Note: You’ll learn more about formula fields and other kinds of Outlook
custom properties in Chapter 6.

Tip: When designing an adjoining form region, arrange your controls so
that they take up as little vertical space as possible, since an adjoining region
stacks at the bottom of the reading pane or item window.

The next step is to create a new date field to hold the date of your first
contact with an individual, along with a date picker control for that field.
First, add a label control and a date control in line with the controls for the
Birthday and Age fields. Change the caption for the label control to “First
contact:” using the control’s Properties dialog. Use the Align and Size com-
mands to change the height and arrangement of the controls so that the
form region looks like Figure 5.3.

The dropdown date picker in Figure 5.3 looks odd doesn’t it? It shows a
date of 12/30/1899. This is because it has not yet been bound to an Out-
look field. We need to create a new field to hold that date and then tell the
date picker to display the data from that field. This process is called binding
the control.

To create the date field, return to the Field Chooser, click New again,
and this time create a field with name “First Contact” and the type Date/

Figure 5.3 Form region controls added to the Toolbox (bottom row) have a different look from the
older form controls.

102 5.3 Creating your first form region

Time. From the Format dropdown list, choose any format that displays just
the date, such as “Wed 7/5/06.” Click OK.

Right-click the date picker, choose Properties, and switch to the Value
tab. Click the Choose Field button, and from the “User-defined fields in
folder” list, select First Contact, as shown in Figure 5.4. Also, under Ini-
tial Value, check the box for “Set the initial value of this field to” and type
Date() into the blank box. Leave selected the default option for “Calculate
this formula when I compose a new form.” Those Initial Value settings
mean that whenever you create a new contact, Outlook will automatically
set today’s date as the default value for the First Contact field. You will
need to change it only if you met the person on some day other than today.
Click OK to save the changes to this control. You should see the date dis-
played in the date picker change from 12/30/1899 to None.

Tip: The Properties dialog for each form region control includes a Layout
tab where you can set the control’s automatic alignment and resizing prop-
erties.

You’ve finished the form region design! Save your new form region by
choosing Form Region | Save Form Region. Make a note of the location
that you choose to save the region. Outlook saves form regions with an .ofs
file extension. After you save the form region, click the close (x) button at
upper-left to end the form design session, and choose No when you’re asked
to save changes.

Figure 5.4
Use a bound

control to display
data from an

Outlook property.

5.4 Registering and deploying form regions 103

Tip: To help organize your form region files, you may want to create a
Regions folder on your hard drive and use a different subfolder to store the
files for each region.

As described earlier, creating the region is just the first of three steps in
implementing a custom form region. Before Outlook can use the form
region, you must create a special text file to tell Outlook where to find the
.ofs file and how to use it, and you must add some information to the Win-
dows registry.

5.4 Registering and deploying form regions
After you have designed and saved an .ofs form region file, you next need to
create an .xml manifest file with information about your form and also add
information to the Windows registry to tell Outlook where to find the .xml
file. You can create the file in any text editor, such as Notepad, and save it as
a file with an .xml extension. Specialized XML editor tools also exist, but
Notepad should be sufficient for the simple .xml files used by form regions.
XML is case-sensitive, so if you are not using an XML editor, you need to
take special care to use the correct case for any element names.

Note: XML stands for Extensible Markup Language. XML turns up in
many places in Office 2007, from the storage of electronic business card
details in Outlook to the hidden structure of Word, Excel, and PowerPoint
documents. Superficially, it looks a little like the HTML source code for a
Web page in that it contains tags enclosed in angle brackets like <this>.
However, where HTML code is often concerned with formatting, XML
concentrates on structure. It provides an organized way to describe complex
structures using plain-text syntax. Because the syntax is in plain text, rather
than some proprietary binary format, it is portable and readable both by
human eyeballs and by applications like Outlook. Because the syntax is
quite strict, it is possible to validate an XML document against a standard
specification, called a schema, to determine whether that document contains
“good” XML, as defined for that schema.

Let’s start with a simple example. Listing 5.1 shows a manifest to dis-
play your new form region in the individual windows for new and exist-
ing contacts.

104 5.4 Registering and deploying form regions

Note: Individual item windows in Outlook are Inspector windows. The
windows that display folders are Explorer windows.

The first line of the manifest (<?xml ... ?>) is a declaration that indi-
cates this is an XML document and that it supports 8-bit Unicode character
encoding. The rest of the document consists of elements that begin with an
open tag consisting of the element name in angle brackets (e.g., <FormRe-
gion ...>) and end with a matching close tag e.g., (</FormRegion>).
XML documents typically include nested elements; in this example, you see
the elements to describe an adjoining form region nested inside the <Form-
Region> element. What looks like a Web page URL inside the <FormRe-
gion ...> open tag is a reference to the XML schema (available as a
reference from Microsoft) that defines form regions. When Outlook tries to
load the form region, it validates the information in the manifest against
this schema to determine whether all required elements are present, all val-
ues are appropriate, and so on. Only if the manifest is valid will Outlook
load the form.

The first region element, <name>, is required. Outlook add-ins use this
name for various standard coding tasks, but if you’re loading a form region
directly from an .ofs file rather than building an add-in, it doesn’t serve any
particular purpose.

The <title> element determines the title displayed for an adjoining
region and the tab caption for a separate region.

Tip: Do not use an ampersand (&) character for the <title> element of
separate form regions. Separate regions appear as separate pages, and Out-
look ignores any ampersand in a form page name.

Listing 5.1 XML manifest to display an adjoining form region

<?xml version="1.0" encoding="utf-8"?>
<FormRegion xmlns="http://schemas.microsoft.com/office/
outlook/12/formregion.xsd">
 <name>FirstContactRegion</name>
 <title>Key Dates</title>
 <formRegionType>adjoining</formRegionType>
 <layoutFile>firstcontact.ofs</layoutFile>
 <showCompose>true</showCompose>
 <showRead>true</showRead>
 <showPreview>false</showPreview>
 <version>1.0</version>
</FormRegion>

5.4 Registering and deploying form regions 105

Use the <formRegionType> element to specify whether the region
should load as an adjoining region, a separate page, or a replacement page.
This element is required. Table 5.2 lists the supported values.

The <layoutFile> element tells Outlook where to find the saved .ofs
form region file. It can take three kinds of string values:

A path relative to the location of the manifest file. If the .ofs file is
stored in the same folder as the manifest, specify just the name of the
file, as in Listing 5.1.

A complete file path, such as C:\Data\Form Regions\firstcontact.ofs

A file path with environment variables, such as %ProgramFiles%\
Microsoft Office\Office12\Addins\firstcontact.ofs

Note: An Outlook add-in that provides the storage for a form region would
use the <addin> element to supply the ProgID value for the add-in, instead
of using the <layoutFile> element to point to a file storage location.
Either one or the other of these two elements must be present in the mani-
fest, but not both.

The <showCompose>, <showRead>, and <showPreview> elements
determine whether the form region is visible in the window for a new item,
the window displaying an existing item, or in the Outlook reading pane,
respectively. Each can take the Boolean value true or 1 to show the region
and false or 0 to not show it. All three elements are optional and have a
default value of true. In other words, if you do not include these elements,
the form will appear in all three locations. I find it helpful to include all

Table 5.2 Values for the <formRegionType> Element

Value Description

adjoining An adjoining form region appears as a stacked, collapsible pane at the
bottom of the reading pane or at the bottom of the main page of an
item viewed in an Inspector window.

separate A separate form region appears as a new form tab. (See below for
information on the <displayAfter> element that determines the
tab order.)

replace A replacement form region replaces the first tab on a form. (Does not
apply to standard message classes such as IPM.Note.)

replaceAll A replace-all form region replaces the first tab on a form and hides all
other standard tabs. (Does not apply to standard message classes such
as IPM.Note.)

106 5.4 Registering and deploying form regions

three even if each value is true, to make it absolutely clear in the manifest
how Outlook will display the region.

The <version> element is an optional element that allows you to pro-
vide a string value to indicate the form version. For replacement and
replace-all form regions, this version number will appear on the Tools |
Forms | Choose Form dialog.

How does Outlook know when to use a form region and which one to
use? The third step in deploying a form region is to modify the Windows reg-
istry to tell Outlook that the form region is available and where to find its set-
tings. Run the Regedit.exe application and navigate to this registry key:

HKEY_CURRENT_USER\Software\Microsoft\Office\Outlook\
FormRegions

To deploy the First Contact form region created earlier in this chapter so
that it is visible on all Outlook contacts, create a new key named IPM.Con-
tact (the message class for the standard contact form). Under the IPM.Con-
tact key, add a string value that refers to this particular region (e.g., “First
Contact”) and set its value to the full path to the manifest (e.g., C:\Form
Regions\First Contact\firstcontact.xml). Figure 5.5 shows you what the reg-
istry should look like.

Note: The IPM.Note.* regions shown in Figure 5.5 are installed automati-
cally with Outlook to provide support for Exchange 2007 Unified Messag-
ing features.

Figure 5.5 A registry value points Outlook to the form region manifest, which in turn contains all
the information Outlook needs to load the form.

5.4 Registering and deploying form regions 107

Restart Outlook, then open an existing or new contact to see the form
region in action. Since the manifest specifies it as an adjoining region, it
appears at the bottom, as shown in Figure 5.1.

Tip: To collapse the ribbon and leave more screen room for the contact
information, as shown in Figure 5.6, double-click any of the tabs on the
ribbon.

Once you register a form region in the registry, if you need to make sub-
sequent changes to the region, you do not need to restart Outlook or make
any changes to the manifest file. Just save the changes as a new .ofs file with
the same file name, the name referred to in the manifest’s <layoutFile>
element.

5.4.1 Other form region manifest settings

In the previous section, you saw some of the settings for the <FormRegion>
elements that define how Outlook uses a form region. Only four are
required: <name>, <title>, <formRegionType>, and either <layout-
File> or <addin>. Listing 5.2 shows another example of a manifest for a
form region, this time for a separate form region to replace the first page on
a custom task form, but only for Inspector windows, not in the reading
pane.

Figure 5.6
Adjoining form

regions stack and
can be collapsed.

108 5.4 Registering and deploying form regions

An optional element related to form region display is <hidden>, which
applies only to replacement and replace-all form regions. It controls
whether such regions will appear on the Actions menu for the appropriate
folders and on the Choose Form dialog for creating a new item. It also takes
Boolean values. If you do not include this element, the default value of
false will apply, which means that the custom form will appear on the
Actions menu for all folders of the appropriate item type (e.g., all contact
folders) and in the Tools | Forms | Choose Form dialog. Use true instead if
you do not want the form to appear on the Actions menu or Choose Form
dialog.

The optional <contact> element provides contact information for the
form region.

The optional <displayAfter> element contains the internal name of
the form region that the current region should follow. Remember that the
<name> element sets that internal name. This element is relevant for sepa-
rate and replace-all regions.

The optional <icons> element can contain elements for defining the
icons associated with various states of the form. As with the <layoutFile>
element, the paths can be relative or exact and support environment vari-
ables. Table 5.3 lists the available icon elements.

Microsoft’s official documentation for form region manifests can be
found in Help, starting with Help topic HV10204449, “Using the Form
Region XML Manifest to Define a Form Region.” This topic includes infor-
mation on other optional elements such as <customActions> to add cus-
tom actions and <stringOverride> to localize the display names of

Listing 5.2 XML manifest to display a separate form region

<?xml version="1.0" encoding="utf-8"?>
<FormRegion xmlns="http://schemas.microsoft.com/office/
outlook/12/formregion.xsd">
 <name>TaskWorkRegion</name>
 <title>Task</title>
 <formRegionType>replace</formRegionType>
 <layoutFile>taskwork.ofs</layoutFile>
 <showCompose>true</showCompose>
 <showRead>true</showRead>
 <showPreview>false</showPreview>
 <contact>Sue Mosher (sue@turtleflock.com)</contact>
 <icons>
 <default>taskwork_default.ico</default>
 <window>taskwork_window.ico</window>
 </icons>
 <version>1.0</version>
</FormRegion>

5.4 Registering and deploying form regions 109

controls and other strings. The <formRegionName> element is used by sepa-
rate, replacement, and replace-all regions to set the name of the page shown
in the Show group on the ribbon; if not present, the <title> element is
used. The <loadLegacyForm> element applies only to replacement and
replace-all regions and has a default value of false, which tells Outlook not to
look for a legacy custom form of the same message class as the region. If
<loadLegacyForm> is set to true, Outlook will both load the region and try
to locate a legacy form, which could slow down performance.

5.4.2 Other considerations for deploying form regions

As you’ve seen in this section, the components related to a form region con-
sist of .ofs and .xml files and a registry key and values. This simple architec-
ture means that you can create a form region on one machine and deploy it
to one or many other machines, using the same tools that you would use to
deploy other files and registry changes, such as login scripts or the Office
Customization Tool included in the Office 2007 Resource Kit.

The example earlier in this chapter showed deployment of the necessary
registry key to the HKEY_CURRENT_USER hive of the registry. Alterna-
tively, you could use the same key, only in the HKEY_LOCAL_
MACHINE hive, to deploy a form region to a machine and make it avail-
able to all users of that computer.

Table 5.3 Form Region Manifest Elements That Control Icons

Element Name Description

<default> Default icon

<window> Icon used for the window displaying the form region

<page> Icon displayed for the region in the ribbon

<unread> Icon used when the form’s item is unread

<read> Icon used when the form’s item is read

<replied> Icon used when the form’s item has been replied to

<forwarded> Icon used when the form’s item has been forwarded

<unsent> Icon used when the form’s item is unsent

<signed> Icon used when the form’s item has been digitally signed

<encrypted> Icon used when the form’s item has been digitally encrypted

<submitted> Icon used when the form’s item has been submitted but not sent

<recurring> Icon used to identify that the item is recurring

110 5.6 Other ideas for form regions

The keys in the FormRegions key work in an additive fashion, each level
inheriting the regions from the lower levels. A form region for the
IPM.Contact.Sales.Manager message class would display form regions reg-
istered for IPM.Contact and also for IPM.Contact.Sales as well as any
regions for IPM.Contact.Sales.Manager.

5.5 Limitations of form regions
Custom form regions have two limitations when compared with traditional
custom forms:

They do not support VBScript code behind them. Instead, all busi-
ness logic is handled with code in an Outlook add-in.

A form region must be registered on every machine that needs to use
it. There is no concept of a centralized registry of form regions analo-
gous to the Organizational Forms library for legacy custom forms.

Creating an Outlook add-in requires an additional developer tool, such as
Microsoft Visual Studio Tools for Office, and is not covered in this book.

Caution: All controls for form regions that display in the reading pane should
be set for read-only access. If you leave a control editable, and the user presses
the Delete key with the focus in a form region control in the reading pane,
Outlook will delete the entire item, instead of deleting text in the control.
This means that you may need two versions of a particular region—one with
read-only controls deployed with a manifest containing the element <show-
Preview>true</showPreview> and a second version with editable controls
and the element <showPreview>false</showPreview>.

One final limitation; Microsoft does not support designing Outlook
form regions in any screen resolution other than 96 dots per inch (dpi).
Outlook automatically scales the appearance of text on the screen at run-
time if the machine is using a different resolution. But for the scaling to
work properly, the form region must be designed at 96 dpi.

5.6 Other ideas for form regions
Even with the above limitations, form regions open up some opportunities
for building Outlook enhancements. One particularly interesting possibil-
ity is consolidating information in the preview pane that formerly required
the user to open an item to see it. For example, you could show the tracking
tab for messages using the Microsoft Office Outlook Page Control in an
adjoining form region. Use the Advanced Properties dialog to change the
value of the Page property for this control from the default value, 0-Plan-
ner, to the other possible value, 1-Tracker.

5.7 Summary 111

Another kind of enhancement is adding simple data entry. Do you pre-
fer to type in the names of categories, rather than use the Categorize but-
ton? If so, you can create an adjoining form region with a text box control
bound to the Categories field. Compare Figure 5.6, which shows the Key
Dates region collapsed above a second region, Categories, with Figure 5.1.

5.7 Summary
The new form regions feature in Outlook 2007 overcomes many past cus-
tom form limitations, such as forms cache corruption and no reading pane
layout, and provides a rich control environment. The new controls that
can help you duplicate the look of almost any standard form page include
date and time pickers, an info bar, a control to display tracking informa-
tion, and controls to show contact pictures and electronic business cards.
Although adding business logic to form regions requires building an Out-
look add-in, there are still many codeless form region applications that can
help you display data in the reading pane and provide the user with new
data entry controls.

This page intentionally left blank

113

6
Extending Form Design with Fields
and Controls

Once you know how to create and save simple customized forms and form
regions, you can move on to enhancing forms with more custom fields of
different types and more controls. You also can make Outlook forms dis-
play different information depending on whether you are composing a new
item or viewing an existing item.

The highlights of this chapter include discussions of the following:

How controls are linked to fields

How to create custom fields and add them to forms

Why it’s a good idea to use Outlook’s built-in fields whenever possi-
ble

How to use formulas to combine information from various fields and
prevent users from making data-entry mistakes

What gives sent messages a different layout from newly composed
messages

We’ll also review the basic controls available for Outlook forms and offer
some tips for using them.

The information in this chapter about creating fields and setting control
properties applies not only to custom Outlook forms but also to the new
form regions in Outlook 2007. Remember, though, that the new Olk* con-
trols for form regions should not be used on legacy custom forms.

6.1 Understanding fields versus controls
The previous two chapters showed how to add built-in fields to an Outlook
form or to a form region to make it easier to store and retrieve the informa-
tion from those fields. This is the key idea behind a field; it stores informa-
tion permanently as part of an Outlook item’s data record. Another word
for field is property.

114 6.2 Creating user-defined fields

Each control where the user enters data on a form can be bound to a par-
ticular field. A bound control shows the data in the related field. If you
change the data in the control, Outlook updates the information in the
field. When you save the Outlook item, the information in the field is
stored permanently as part of the item. Outlook displays the saved field
value in the bound control the next time you open the item.

Outlook also uses bound controls to display combination fields that
combine information from several fields and formula fields that calculate a
value using a formula.

Unbound controls are also useful. These controls don’t have a permanent
link to a particular field. Unbound controls store information only tempo-
rarily, while an Outlook item is open. The data they hold disappears when
the user closes the current item, unless the programmer adds code to the
form to save the data in an Outlook property.

Outlook includes a long list of standard, built-in fields for each type of
item, plus you can create your own custom fields. Use standard fields as
much as possible. One limitation of custom fields is that you cannot import
or export them with Outlook’s Import and Export Wizard. (You can, of
course, write programming code to perform those tasks, as we’ll see in
Chapter 21.)

Tip: The Billing Information and Mileage fields are text fields available on
any Outlook form. The Contact form includes four extra generic text fields,
listed in the Field Chooser as User Field 1, User Field 2, User Field 3, and
User Field 4. You can use any of these six fields for storing any kind of
information.

6.2 Creating user-defined fields
To get started with user-defined fields, let’s work with the Task form, creat-
ing a field and then adding a control to display it on a custom page. Use the
Tools | Forms | Design a Form command to open the standard Task form in
design mode.

To add a new field, switch to the P.2 page and then click the New button
on the Field Chooser. In the New Field dialog box, give the field a name,
choose the type, and specify the format. Name the field “Project,” and use
the Text type and Text format, as shown in Figure 6.1, then click OK.

This process creates a new field in the parent folder for the item dis-
played in the form. Since you started from a new unmodified task form, the
Project field is added to the Tasks folder and will appear in the User-
defined Fields in Folder list for that folder. To add it to your form, drag the

6.2 Creating user-defined fields 115

Project field from the Field Chooser to any customizable page. On a task
form, that would be the P.2–P.5 pages. This adds the field to the form. Any
items you create with this custom form will contain the Project field. To
confirm that the field is now defined in both the Tasks folder and your task
form, switch to the All Fields tab. It should show the Project field under
both User-Defined Fields in Folder and User-Defined Fields in This Item.

To design a form for use with a particular folder that is not one of the
default folders (such as Contacts or Tasks), use a slightly different procedure
to start your form design session. Create a new item in the target folder,
then open that item and, on the Developer tab, choose Design This Form.
Any fields that you subsequently create in the form’s Field Chooser will also
be defined in the folder where you created the item, rather than in the usual
default folder for that type of item.

Note: If a field exists only in a form and not in the folder, you will not be
able to display the field in a folder view, search on it in the user interface, or
perform searches in code. If you create a form and later want to use it in a
different folder, chances are that the folder will not have the necessary field
definitions.

6.2.1 Field types

Outlook supports several different types of fields. Table 6.1 lists those avail-
able in the New Field dialog. Experienced programmers might notice that
the field types available in Outlook are a little different from the data types
in VBA or other programming environments.

For example, Outlook lists a text type, instead of a string data type. To
programmers, string data contains zero or more characters, and those
characters can be numbers, letters, or punctuation—any characters at all.
Two Outlook field types can contain string data: the text type and the key-
words type, which consists of several strings delimited by commas (or
another separator, depending on the user’s locale setting). The keywords
field is difficult to use because the value of a keywords field is not directly
accessible by programming code. You can access it only through the value of
a bound text box control; the next chapter shows how to do that.

Figure 6.1
Specify the name,
type, and format

for a user-defined
field.

116 6.2 Creating user-defined fields

Notice the several types for holding numeric data: number, percent, cur-
rency, and integer. The yes/no type is actually a special number type that
can hold either of just two values, -1 and 0, which stand for Yes, True, or
On and No, False, or Off, respectively.

Caution: Outlook does not allow you to change the name or data type of a
user-defined field after you create it. If you change your mind about the
data type, you will have to delete the field from both the form and the par-
ent folder and create it again. Make sure you have the type correct before
you create any items with the form.

Fields using the date/time and duration types allow you to enter data
using natural language. For example, if you type “today” into a date/time
field, Outlook converts that to the current date. You can type in “next
Tues,” and it will calculate the date automatically. Try typing “2 wks from
Fri,” and you will get an idea of just how smart and useful this feature can
be. (If you really want a thrill, type in “New Year’s Eve.”)

Duration fields store time measured in minutes, but allow you to enter a
value in days or hours as well. Use the letters “d” for days and “h” for hours.
Try typing “2d” into any duration field, and watch it turn into “2 days.”

Table 6.1 Custom Property Types (* = new in Outlook 2007)

Field Type Can Contain

Text Any string

Number Any number

Percent Any number, displayed as a percentage

Currency Any number involving money; displayed in the currency format for your locale, as set in
the Windows Control Panel under Regional and Language Options

Yes/No Yes (-1)/No (0), True/False, or On/Off

Date/Time Date or time data; stored as a complete date/time value, even if displayed only as date or
only as time. A date displayed as “None” is stored as the date 1/1/4501.

Duration Number of minutes

Keywords Multiple strings, separated by commas (or other separator, as set in the Windows Control
Panel under Regional and Language Options)

Combination A combination of values from other fields

Formula A calculation based on Outlook fields, literal strings and numbers, and built-in functions

*Integer Any nondecimal number

6.2 Creating user-defined fields 117

Tip: To discover the data type for any built-in Outlook field, select the field
on the All Fields page on the form, then click the Properties button. For
example, the Categories field uses the keywords type. For some fields, you
will see Internal Data Type listed as the type. The values and behaviors of
these fields are controlled by Outlook itself, not by the user directly, and
they don’t fit into any of the types in Table 6.1.

6.2.2 Combination fields

As their name implies, combination fields let you combine the values of one
or more fields. You can even add text. For example, you can use a combina-
tion field to show the first non-empty phone number on a contact. Another
combination might show a sentence that uses data from more than one
field to describe the status of a task.

To create your first combination field, continue using a task form
opened in design mode. On the P.2 page, click New in the Field Chooser,
and create a new field named “Long Status” with a type of combination.
The New Field dialog will display an Edit button. Click it to display the
Combination Formula Field dialog box, and then type in the text shown in
Figure 6.2. The [Due Date] and [% Complete] elements shown in brack-
ets are Outlook fields, which the formula combines with the other text to
form a complete sentence. You can type in the field names, but you may
find it easier—and more accurate—to pick them from a list. To see the list
of fields, click the Field button on the dialog. After you complete the for-
mula, click OK twice to save the field definition, then drag it from the Field

Figure 6.2
To create the

formula for a
combination field,
use several fields or

combine fields
and text.

118 6.2 Creating user-defined fields

Chooser to the P.2 page. Make the text box for the field wider so that it
shows the entire contents of the field.

Note: Notice in Figure 6.2 that there is a second option for creating a com-
bination field: “Showing only the first non-empty field, ignoring subse-
quent ones.”

To test the form, click Run This Form to create a new task, enter a due
date, and set some value for the completion percentage. Then, in the Show
group on the ribbon, click P.2 to switch to your customized page, which
should look something like Figure 6.3. Because the Long Status field is a
combination field, its text box appears with a gray background to indicate
that it is a read-only field.

6.2.3 Formula fields

A combination field is a special case of a formula field that supports only
field values and text. Formula fields can invoke simple intrinsic functions
and perform calculations to obtain more complex results than a combina-
tion field can. Also, in a combination field, you can string text and field
names together as you might in a sentence. In a formula field, you need to
use the concatenation operator (&) to join text and field values into a single
string.

As an example, let’s create a formula field that tells you whether a task is
overdue. As always, create the field by clicking the New button on the Field
Chooser. Name the field “Is Overdue,” choose Formula for the type, and
then click Edit.

In the Formula Field dialog, you will see not only the Field button that
you saw when creating a combination field, but also a Function button.

Figure 6.3
The gray

background on the
Long Status field’s
text box indicates

that this
combination field

is not editable,
because it is

controlled by a
formula.

6.2 Creating user-defined fields 119

Functions help you build formulas by performing common calculations. If
you have used Microsoft Excel to build formulas, you should recognize
many of the functions available to Outlook formula fields. The Outlook
formula editor includes conversion, date/time, financial, general, math, and
text functions.

To create a formula field, combine field values, functions, literal values,
and operators, such as + for addition and / for division. (We will learn more
about operators in Chapter 7.) The Is Overdue field uses the built-in Due
Date field to determine whether an item is overdue. Type in this formula:

([Due Date] <> "None") And ([Due Date] < Date())

You can type in the name of the field or choose it from the Field list. You
also can type in the Date() function (which returns today’s date) or choose
it from the Function list. This formula returns True if the task has a due
date and that date is earlier than today’s date.

Tip: Most of the time, when the user sees “None” on the screen for a date
field, Outlook actually is storing the date January 1, 4501. However, in a
formula, you need to test for the literal text "None" not for the literal date
#1/1/4501#.

Formula fields are not limited to returning True and False values, of
course. To return text instead of True if a task is overdue, create another
formula field with the name “Is Overdue 2,” and enter this formula, which
uses the IIf() function:

IIf(([Due Date] <> "None") And ([Due Date] < Date()),
"OVERDUE!!!", "Not due yet")

The IIf() function is very useful for Outlook formula fields. To see its
basic syntax, add it to the Formula Field dialog by selecting it from the
Function | General list of functions. It consists of three parts: expr,
truepart, and falsepart:

IIf(expr , truepart , falsepart)

For the first part, expr, the formula needs an expression that evaluates
to True or False. In the Is Overdue 2 field, that expression is ([Due
Date] <> "None") And ([Due Date] < Date()), the same expression
used in the Is Overdue field. If expr is True, it returns to the formula
field the value found in truepart. In this example, that would be the text
"OVERDUE!!!". If expr is False—that is, if there is no due date or if the
task is due today or in the future—the formula returns the value of
falsepart or "Not due yet".

120 6.2 Creating user-defined fields

6.2.4 Working with formula and combination fields

If you make a mistake in a formula or combination field and want to
change it later, after already adding it to a custom form, you must remove
the field completely from the form, edit the original formula definition for
the field (the definition stored in the folder), and then add the field back to
the form.

To update a formula field that you’re already using on a form, delete the
control that displays the field. Then, switch to the All Fields page and dis-
play the “User-defined fields in this item” list. Select the field and delete it.
Still on the All Fields page, switch to the “User-defined fields in folder” list,
select the field, and then click Edit.

Caution: Do not try to edit the formula using the Value tab of the control
that displays the formula field on the form. If you do that, you will wind up
with two different formulas for the same field—one defined at the form/
item level and one at the folder level.

After you update the formula, you can drag the field from the Field
Chooser onto your custom form page to create a new control to display the
updated formula field.

Formula fields have several limitations. Outlook does not allow sorting
or grouping on formula fields in a folder view. If you need to be able to sort
or group on a field that has a value calculated from other field values, use a
regular custom property of the appropriate type (text, number, etc.) instead
of a formula field. You can then either set a formula on the control (not the
field), as described later in this chapter, or use VBScript code behind the
form to perform the calculation.

Also, any formatting must be built into the formula, since a formula
field shows the Formula box instead of the Format box. (Compare the New
Field dialogs in Figures 6.1 and 6.2.) For example, let’s say that you want a
formula field to show the date one week from today, but in the format “day
month year.” Create a new formula field and name it “One Week from
Today.” In your formula, use the Format() function to control the way the
date looks to the user:

Format(Date() + 7, "dd mmm yyyy")

This formula tells Outlook to take today’s date—the value returned by
the Date() function—add seven days, and then apply the "dd mmm yyyy"
format to the result. Format() is a very useful function available in Out-
look formulas and VBA, but not in VBScript, that converts an expression
into text in a specific format. For details on possible formats it can handle,
look it up in Outlook VBA Help.

6.2 Creating user-defined fields 121

Finally, a formula field is always read-only. Since the value of the field is
determined by the formula, the user can alter the value only by changing
the value of one of the fields used in the formula. If you want to use a for-
mula to suggest a value but allow the user to override it, don’t use a formula
field. Instead, use a regular custom property of the appropriate type and set
an initial value on the control that displays the field, as described later in
this chapter.

Formula fields do have one advantage over VBScript code that’s worth
noting: VBScript code runs only on published forms, while Outlook will
calculate a formula on any form, including on an .oft form template file.

6.2.5 Example: Calculate a contact’s age

Let’s look at one more example of a custom formula field. Do you remem-
ber the form region from Chapter 5 that shows a contact’s age? It contains
another example of a formula field. See if you can pick out the one field and
seven different functions that its formula uses:

IIf([Birthday]<>"None",
DateDiff("yyyy",[Birthday],Date())-IIf(DateDiff("d",
DateSerial(Year(Date()), Month([Birthday]),
Day([Birthday])),Date())<0,1,0),"")

The one field is [Birthday]. The seven functions are IIf() and
Date(), which you already know, plus DateDiff(), DateSerial(),
Month(), Day(), and Year().

DateDiff() compares two dates and returns the number of intervals
between them, but this function has a quirk: If you’re measuring the inter-
val in years (the "yyyy" argument in the formula), DateDiff() compares
only the year parts of the two dates, which means that if the person’s birth-
day has not taken place yet this year, DateDiff() returns an age that’s one
year too great. That’s why the formula uses the following process to calcu-
late the age.

1. Construct the date of this year’s birthday as a text string, using the
Month(), Day(), and Year() functions, along with the DateSe-
rial() function, which returns a date, taking as its parameters
the integer values for the year, month, and day

2. Use a DateDiff() function to determine whether this year’s
birthday happens after today’s date

3. From an IIf() function, return 1 if this year’s birthday happens
after today and 0 if it happens today or already happened this year

4. Calculate the difference in years between the date of birth and
today’s date with another DateDiff() function, and subtract the
adjustment calculated in Step 3

122 6.3 Adding and removing fields on Outlook forms

You’ll see these date-related functions again in Chapter 8.

This may be more complex a formula than you’ll ever want to write,
because it would be very difficult to debug. The only way to debug a for-
mula field is trial-and-error: run the form and eyeball the results. Perform-
ing complex calculations is much easier to do in VBScript code, but as
noted in the previous section, only published forms run script.

6.3 Adding and removing fields on Outlook forms
After you create custom fields in the Field Chooser, you can add them to
any custom form page. If you have not already done so, drag the Project,
Long Status, Is Overdue, and Is Overdue 2 fields to P.2 on your cus-
tom task form, so that it looks like Figure 6.4. Dragging a field to the form
adds it to the “User-defined fields in this item” list on the All Fields tab.
Any item created with this form will include that field.

Where did the Is Overdue field’s value of 0 come from? The formula
for Is Overdue can return only True or False, that is, -1 or 0. Normally,
you should use a check box control to display the value in a yes/no field
because few users know that True equals -1 and False equals 0. If you
drag a standard yes/no field, such as Completed, to a custom form page,
Outlook automatically displays the field with a check box control. How-
ever, that doesn’t happen with Is Overdue, because it is a formula field,
not a yes/no field. The next section explains how to add a check box to the
form and set it to display the Is Overdue field’s value.

Figure 6.4
Drag user-defined

fields from the
Field Chooser to

the form.

6.3 Adding and removing fields on Outlook forms 123

Figure 6.4 demonstrates an alternative to using a check box. The text
box displaying the value of the Is Overdue 2 formula field provides a clear
textual explanation of whether the item is due.

To completely remove a field from a form and from the parent folder,
delete the control that displays the field. Then, switch to the All Fields page
and display the “User-defined fields in this item” list. Select the field and
delete it. Then, display the “User-defined fields in folder” list and delete it
there, too.

Caution: Be very careful when removing fields from a form that has been in
use for a while. If you remove a field from the form definition, but items
using that form have data values in that field, the data remains intact in the
individual items, but the form definition may become embedded in the
item. This creates a “one-off” form, which, as you’ll see in Chapter 21, is
something you’ll want to avoid.

Also, if you are removing a control, but leaving the field definition on the
form, be sure to check the Validation tab of the control’s Properties dialog
before you remove it. Validation is a property of the field, not the control, so
even if the control is no longer present, Outlook will still try to validate the
field. More information on validation is coming up later in this chapter.

Deleting a field from a form and from a folder does not remove the field
from any existing items that already contain that field.

6.3.1 Binding a control to a field

If you want to use a check box control to display the Is Overdue field, you
can’t just drag the field from the Field Chooser. Instead, place a check box
control on the form, and then bind it to the field. Use this technique any
time you want Outlook to display a field in a particular type of control,
rather than the default control for that data type. Here’s the step-by-step
procedure:

1. Display the Control Toolbox, and drag a check box control to the
form.

2. Right-click the check box and choose Properties to open the basic
Properties dialog for the control.

3. On the Value tab, click the Choose Field button, and select the
Is Overdue field from the “User-defined fields in folder” list.
Outlook fills in the details for the field automatically, as shown in
Figure 6.5.

124 6.3 Adding and removing fields on Outlook forms

4. Switch to the Display tab, and change the Name of the control to
chkIsOverdue. You can leave the Caption as “Is Overdue,”
which Outlook filled in for you, or change it to something more
descriptive such as “Task Is Overdue.”

5. Click OK to save the changes to the control’s properties.

The Value page in Figure 6.5 deserves a bit more explanation. All the
controls on the Value and Validation pages are disabled unless the control is
bound to an Outlook field. Did you notice the New button? Like the New
button on the Field Chooser, this button creates a new user-defined field. If
you use the New button on the Value tab to create a new field, Outlook
automatically creates it in the parent folder and in the form, all at the same
time.

For field types other than formula and combination, you can change the
format setting for the field. Each data type has its own format choices. For
example, there are 16 formats for date/time fields. The exact formats avail-
able depend on your locale, that is, your regional options settings in Con-
trol Panel.

6.3.2 Initial value

On the Value tab of a bound control’s Properties dialog, under Initial Value,
you can set the initial value of the field to a formula. To create a formula
that sets the default value for a field, select “Calculate this formula when I
compose a new form.” To create a mandatory formula, one that prevents
the user from overriding the default value, select “Calculate this formula
automatically.”

For example, create a new field named One Week From Today 2 as a
date/time field. Drag it to a custom page to add a text box bound to the
field. On the text box’s Properties dialog, on the Value tab, set the Initial

Figure 6.5
After you use the

control toolbox to
add a control to a

form, you can bind
an Outlook field to

the control in the
control’s Properties

dialog.

6.3 Adding and removing fields on Outlook forms 125

Value formula to Date() + 7, select “Calculate this formula when I com-
pose a new form,” and choose the date format that best suits your needs.
Run the form and compare the behavior of the new field with the One
Week From Today field discussed earlier in Section 6.2.4 as a formula field.

Consider what happens if you have an initial value formula on a message
form field and the user forwards the message. Because the forwarded mes-
sage is a new item, the field will contain the value calculated from the initial
value, not the value from the field on the original message. If you want the
forward message field to contain the original message field’s value, you can-
not use an initial value formula. Instead, use VBScript code to set the value.
We’ll return to this scenario in Chapter 20.

6.3.3 Simple validation

For fields other than combination and formula fields, you may want to
specify that a field must not be left blank or that it can accept only certain
values. This technique, called validation, is an important method for pre-
venting users (including yourself!) from making mistakes during data
entry.

To configure validation, display the Properties dialog for any Outlook
form control, and then switch to the Validation page. The simplest option
is to check the top box, labeled “A value is required for this field.” However,
I don’t recommend using that approach. If the user leaves the field blank, a
message pops up that a value is required for a field, but Outlook doesn’t tell
you which field!

Instead, I recommend that you set a validation formula by checking the
box for “Validate this field before closing the form.” Enter a formula that
returns True or False in the “Validation formula” box, and enter text or a
formula in the “Display this message if the validation fails” box. Figure 6.6

Figure 6.6
Validation

formulas help users
enter data correctly.

126 6.3 Adding and removing fields on Outlook forms

shows a validation rule for the Project field created earlier to make sure
the task isn’t saved with a blank Project field.

Outlook checks the validation formula only when you save or send an
item. To validate data entry as you type requires VBScript code, covered in
Chapter 12, “Coding Key Form Event Scenarios.”

Caution: Check the Validation tab before removing a control from the
form. If you don’t plan to remove the validation formula, be sure to include
a validation message that specifies which field needs a correct value.

6.3.4 Validation formulas

The Edit buttons on the Validation tab work just like those to edit the for-
mula for a formula field. Use them when you want to pick fields and func-
tions to build your validation rule or validation message.

A validation formula must return True if the data is “good” or False if
it is incorrect. It should compare the field you’re validating with one or
more “good” values or compare the field with the value of another field.
Table 6.2 shows examples of validation formulas. Notice that the
[Project] <> "" formula is equivalent to checking the “A value is
required for this field” box.

As you can see, validation formulas can use fields and operators just like
value formulas. They can also use functions. What you may find surprising
is that validation message formulas can, too!

One thing these examples have in common is that the validation for-
mula includes the field you want to validate. It wouldn’t make any sense,
would it, to have a validation formula that ignored the very value you
wanted to test?

The other thing they have in common is that every validation formula
evaluates to True or False. Contrast this with formula fields, where the
result of the formula can be any value—True or False, a number, some
text, or a date.

Note: Did you notice that none of the examples includes an IIf() func-
tion? That function is redundant in a validation formula, because the first
parameter for IIf() itself must be an expression that returns True or
False. Thus, a validation formula using IIf() would look like IIf(<some
True/False expression>, True, False) and could be simplified to
just <some True/False expression>.

6.3 Adding and removing fields on Outlook forms 127

The third and fourth examples in Table 6.2 illustrate a very common
type of validation formula, where the acceptable value for one field depends
on the value in another field. When the formula contains one or more
expressions joined by OR, Outlook evaluates each expression and returns
True if any expression is true. Therefore, the third validation formula eval-
uates to True if either there is no due date or if the user has entered some
start date. Otherwise, the formula evaluates to False, for example, if the
user enters a due date but no start date. Similarly, in the fourth example, the
user might select the value for the Product field from a combo box list that
includes "Other" as one option. If the user selects "Other" the Other
Product field cannot be left blank.

Tip: To enter a validation formula for a standard field that appears on a
form page that you can’t edit, drag the field from the Field Chooser to any
blank page on your custom form. You can then set up validation through
the properties of the field’s control on the custom page. You will want to
choose Page | Display This Page to hide the page from users, since it dupli-
cates fields they will see on other pages of the form.

Table 6.2 Sample Validation Formulas and Validation Messages

Validation Formula Result
Suggested Validation
Failure Message Formula

[Project] <> "" Requires that the
Project field not be left
blank.

"Please enter a
name for the
project."

Len([Project Code]) = 10 Requires that the
Project Code field
have exactly 10 characters.

"The project code
must be exactly 10
characters long."

([Due Date] = "None") OR
([Start Date] <> "None")

If the user has set a due
date, the user must also set
a start date.

"Since you have
set a due date for
this task, you
must also set a
start date on or
before " & [Due
Date] & "."

([Product] <> "Other") OR
([Other Product] <> "")

If the user has entered
"Other" as the value for
the Product field, the
Other Product field
also must have a value.

"Please enter a
value for the
Other Project
field."

128 6.4 Using form controls

Note that field names for built-in fields are language-specific (although
the underlying property names in the Outlook object model, i.e., the names
you use in VBScript or VBA code, are not). A validation formula that you
create in Outlook set up for U.S. English users might fail for users working
with Outlook in French.

6.3.5 Validation formula messages

If you use a validation formula, you should also add an expression in the
box labeled “Display this message if the validation rule fails.” Otherwise,
the user gets a cryptic, generic message that the field didn’t pass the valida-
tion rule. In your validation failure message, don’t just tell the user that
something is wrong; explain how to fix it. Table 6.2 includes examples of
validation failure messages that match the validation rule. Compare the dif-
ferent validation messages in Figure 6.7, all for the same Product field.

The validation message in Figure 6.7a results from the “A value is
required for the field” option. In Figure 6.7b, you see the message that
appears when you provide a validation formula, but no validation message.
Figure 6.7c shows the message generated by the settings in Figure 6.6.
Which one will do the most to help users fill in the form correctly?

6.4 Using form controls
If you have walked through the form design examples in this and the previ-
ous chapter, you already have a fair amount of experience working with
Outlook form controls. In this section, we’ll review the main controls and
provide tips to help you use them better, noting which controls can fire a
Click event when the control is not bound to an Outlook property. That is
important information to help prepare you to write code behind a custom
form in the next chapter and in Chapter 12.

6.4.1 Text boxes

A text box can display just one line of information (the default) or multiple
lines. To set a text box for multi-line display, on the Properties dialog, check
the Multi-line box.

(a) (b) (c)

Figure 6.7 Depending on the options you choose, validation messages can range from the cryptic (a)
to the specific (c).

6.4 Using form controls 129

A multi-line text box does not show a scroll bar to indicate that there is
more visible text in the control until the user clicks in the text box. If you
want the user to be able to use carriage returns in a multi-line text box, use
the Advanced Properties dialog to set the control’s EnterKeyBehavior
property to True.

An unbound text box does not trigger a Click event.

6.4.2 Command buttons

Command buttons on custom forms make it possible for users to perform
certain tasks on demand (i.e., at the click of a button). As we will discuss in
Chapter 12, to make something happen when the user clicks the button,
write code for the Click event.

6.4.3 Check boxes

Dragging any Yes/No Outlook property, such as the Complete property for
a task, from the Field Chooser to a custom form page will result in a check
box control being placed on the form. Use check boxes whenever you want
the user to have an easy way to toggle between the values of True and
False for a property.

You may also find unbound check boxes useful for toggling the appear-
ance of other controls on a form because, like command buttons, unbound
check boxes support a Click event.

6.4.4 Option buttons

As we saw in the VBA birthday and anniversary update form in Chapter 3,
option buttons are a good choice of control if the user needs to pick from a
small number of mutually exclusive choices. The Caption property con-
trols the text that the option button displays.

Tip: For a Yes/No type of choice, one check box is usually preferable to two
options buttons. For a long list of choices, you’re better off with a list box or
combo box.

To use option buttons to set the value of an Outlook property, make two
changes to the properties on the Value tab of each button’s Properties dia-
log: At the top of the Value tab, click Choose Field, and bind the button to
an Outlook property. Each button in an option button set must be bound
to the same Outlook property.

The second property to change is the Value property. The value can be
text, a number, or even True or False, but each button must have a differ-
ent value and the value must be appropriate for the type of property to

130 6.4 Using form controls

which the control is bound. Figure 6.8 shows an option button being set up
to handle a custom Estimated Work Time property, which was created as
a duration property, for a task form.

Figure 6.9 shows three such buttons, along with a text box, all bound
to the same Estimated Work Time property. The buttons have these
properties:

Option button 1:
Caption One day

Value 1d

Option button 2:
Caption Three days

Value 3d

Option button 3:
Caption One week

Value 1w

Normally, you would not also display a text box bound to the same
property. The text box in Figure 6.9 is read-only and is present to illustrate
how selecting an option button sets the corresponding value for the bound
property.

If you have more than one set of option buttons on a form, enclose each
set in a frame control. (You can leave one set without a frame; that set will
use the form page as a whole as the equivalent of a frame.)

Tip: Place the frame control for a set of option buttons on the form, then
create the buttons inside the frame. Don’t try to move a set of already cre-
ated option buttons into a new frame control.

Figure 6.8
For a set of option
buttons bound to
the same Outlook
property, assign a
different value to

each button’s Value
property.

6.4 Using form controls 131

If you bind two option buttons to a Yes/No property, on the Value tab
for each control, you should set the format to True/False. Set the Value
property of one button to True and the other to False.

If you are using a set of unbound option buttons, the value for each
will be either True or False. You cannot set other values, as you can with
buttons bound to Outlook properties. Your form code can either evaluate
the values of each button in the set until it finds the one that’s True, or it
can use the Click event for each button. A good technique is to use the
Caption or Tag property of the button to store a value that you can then
use in the code behind the form to set some value for another control or
property on the form. To set the Tag property, use the Advanced Proper-
ties dialog.

6.4.5 Frames

Frame controls have two major uses on Outlook forms:

to provide grouping for option buttons

to make it easy to show/hide or enable/disable a group of controls

A good strategy when you want to toggle the display of some controls is
to put them all in one frame and use code to set the Visible property of
the frame, rather than modify the individual controls.

You can also use a frame control to add boxes that logically group differ-
ent sets of controls, such as one group related to email and another related
to calendars. Such groupings can help the user locate the right control more
quickly.

Figure 6.9
Use option buttons
to restrict users to a

small number of
choices.

132 6.4 Using form controls

To set the tab order for the controls inside a frame, select the frame first,
then choose Layout | Tab Order.

Like a label control, a frame fires no events.

6.4.6 List box and combo box controls

We learned about list box and combo box controls in the context of VBA
user forms in Chapter 3. These controls work much the same way on Out-
look custom forms.

One key difference on an Outlook form is that to populate a list or
combo box, you can enter a Possible Values list on the Values page of the
control, as shown in Figure 6.10. List and combo boxes also support the
AddItem method that we saw in Chapter 3 in the context of VBA forms.
Chapter 8 contains an example of using a different approach to fill the
rows, one especially appropriate for multi-column list or combo boxes: set-
ting the List property to an array.

In a combo box, to require the user to use one of the listed choices, dis-
play the Advanced Properties dialog for the control and set the MatchEntry
property to -1 – True. If the user does not choose one of the listed
choices, Outlook will pop up the message Invalid Property Value. Several
properties that work in VBA forms are not supported in Outlook forms,
including ColumnHeads, ControlSource, and RowSource.

To make a list box capable of capturing more than one user selection, on
the Advanced Properties of the control, set the MultiSelect property to 1
– Multi. A multi-select list should be either unbound or bound to a key-
words property. If you bind a multi-select list box to a normal text property,
when the user moves the focus to another control, Outlook will no longer
display the user’s selections in the list box, even though it stores the selec-
tions in the text property as a delimited list.

If you decide to use a multi-select list box with a property other than a
keywords property, use an unbound list box. You will need to provide code
in the Item_Open event handler for the form to set the Selected property
for each row in the list that you want to appear selected. The Item_Write
event handler for the form will need code to build a delimited list of the
user’s selections and store it in a specific property of your choosing.

An unbound single-select list box or combo box fires a Click event. A
multi-select list box does not.

6.4.7 Spin button

A spin button control provides up and down arrows that increment the
value of the control as the user clicks them. It’s a good choice where you
want to provide a limited range of integer values to choose from.

6.4 Using form controls 133

On the Advanced Properties for the spin button, set the Max, Min, and
SmallChange properties to control the maximum and minimum values
and the amount that the value increments with each click. If you bind the
spin button to an Outlook property, you may want to also provide a text
box bound to the same property, so the user can see the current value of the
property.

An unbound spin button does not support a Click event on Outlook
forms.

6.4.8 Multi-page control

The multi-page control consists of two or more tabbed pages, each of which
can have its own set of controls. The value of the control’s Value property
controls which page is currently shown. This is a zero-based property,
meaning that 0 is the value for the leftmost page. The SelectedItem prop-
erty of the multi-page control returns a Page object corresponding to the
currently displayed page.

No events are fired when the user clicks a tab to switch to a different
page. A workaround is to have the user switch pages with command but-
tons instead.

An individual Page object fires a Click event when the user clicks on
the empty body of the page, but that’s not terribly useful.

6.4.9 Image control

The image control can display many types of picture files. If you don’t set
its Picture property, you also can use it to enhance a form with simple
lines and boxes in different colors.

Figure 6.10
You can use the
Possible Values
property of the

control to set up the
list of values for a
list box or combo

box.

134 6.4 Using form controls

6.4.10 Outlook View Control

Outlook includes the Outlook View Control (OVC) to display the data
from a folder in an Outlook form, a Web page, or any other programming
project that can host an ActiveX control. The OVC can display any named
Outlook folder view and can filter the folder to show only items meeting
particular conditions. This makes it ideal to use on a custom form to show
items that are related to the current item or the current user.

The items displayed in an OVC are fully functional. Users can double-
click or right-click them, just as they can in the main Outlook window.

The main limitation of the OVC is that it can show only one folder at a
time. It cannot present a consolidated view of several folders, as the Activi-
ties page on a contact form can. Also, if you use it outside Outlook—say,
on a Web page—its security restrictions prevent the use of the View prop-
erty to change the display to a different named view.

To add the OVC to the Control Toolbox, right-click the Toolbox,
choose Custom Controls, check the box for the Microsoft Office Outlook
View Control, and then click OK. To add an instance of the OVC to an
Outlook form, select the control in the Toolbox, and then use the mouse to
drag out a rectangle the size that you want the control to display. Usually,
you’ll make it fairly large, so that the user can see as much detail from the
folder as possible. By default, the OVC displays the user’s Inbox folder. If
you want it to display a different folder, you must set the control’s Folder
property, either through the Advanced Properties dialog or through code
behind the form.

To demonstrate the OVC, consider a message form used to request
approval of vacation time. To add a custom page to the form that shows all
the items in the user’s Calendar folder that have “Vacation” as their subject,
follow these steps:

1. Open a message form in design mode.

2. Display the P.2 page, and use the Page | Rename Page command
to rename it to Vacations.

3. From the Control Toolbox, add an Outlook View Control and
resize it to fill the entire page.

4. Use the Page | Display This Page command to toggle the display
off.

At this point the OVC should be showing the user’s Inbox and the name
of the page should be (Vacations), to show that it’s a hidden page. To get
the OVC to display the user’s Calendar folder, filtered for vacations, we
need to add just a little VBScript code to the form. Click the View Code
button and type the code in Listing 6.1 to the form’s script window.

6.4 Using form controls 135

Publish the form to your Personal Forms library, and then run it with
the Tools | Forms | Choose Form command.

The code in Listing 6.1 checks to see if the item is a new message
(Size = 0), sets some properties of the OVC, and then displays the Vaca-
tions page to the user (see Figure 6.11).

Note: The syntax for working with a control on an Outlook custom form is
more complex than that for a VBA form, because it involves the name of
the page as well as the name of the control. In the next chapter, we’ll review
this syntax in detail.

We’ll come back to the Outlook View Control in Chapter 22 to see how
it can act as a central component in a folder home page, a Web page associ-
ated with an Outlook folder.

6.4.11 Some control and field limitations

Outlook users can become spoiled by some elements of the application’s
user interface, particularly things like the dropdown calendar for picking
dates and the list of phone numbers for contacts. The bad news is that you
can’t duplicate the dropdown calendar on your custom forms (although, as
we saw in Chapter 5, you can use the new date and time picker controls on
form regions). Nor can you create new phone number fields and have Out-
look include them in the dropdown list of phone numbers and format them
into international style automatically. Chapter 4 discussed these limitations
and others pertaining to specific forms.

The good news is that some fields, such as the Full Name field and the
various address fields, do work the same on custom pages as on built-in

Listing 6.1 Show the current user’s vacations in an Outlook View Control

Function Item_Open()
 If Item.Size = 0 Then
 Set objInsp = Item.GetInspector
 Set objPage = objInsp.ModifiedFormPages("Vacations")
 Set ViewCtl1 = objPage.Controls("ViewCtl1")
 With ViewCtl1
 .Folder = "Calendar"
 .View = "All Appointments"
 .Restriction = "[Subject] = 'Vacation'"
 End With
 objInsp.ShowFormPage "Vacations"
 objInsp.SetCurrentFormPage "Vacations"
 End If
End Function

136 6.4 Using form controls

pages. For example, if you type “Alex Smith” into the Full Name field on a
custom contact form page, Outlook stores “Alex” in the First Name field
and “Smith” in the Last Name field. Also, any user-defined date/time or
duration fields support Outlook’s shortcuts for entering dates and duration.

To give users the ability to add attachments to an item, you must have a
page on your form that displays the Message or Notes field. The name in
the Field Chooser varies, depending on the type of item. On message, post,
appointment, and task forms, the Field Chooser lists a Message field. For
contacts and journal entry, Outlook calls it the Notes field.

You can use Message/Notes field only once on a form; users will get a
warning if you violate that limitation.

Note: When you work with the Message or Notes field in code, it has yet
another name, the Body property. At least in that context, the property
name is the same for every type of Outlook item.

Some Outlook fields do not appear in the fields list for the type of item
you’re working with. For example, in a shared contacts folder, you might
want to know who created each contact item. The All Contacts Fields list
contains a Created field, but no Creator field. It is worth experimenting
to see what fields you can use from other types of items. For example, to
display a contact’s creator, add a text box control to the form and bind it to
the From field from the All Mail Fields list. Don’t be surprised, though, if

Figure 6.11
Display a filtered

view of a folder on
a form page using
the Outlook View

Control.

6.5 Laying out compose and read pages 137

Outlook tells you that you cannot use a field from another type of item on
your form.

Also, sometimes you’ll drag a field from another type of item to your
custom form page and get no warning, but it still won’t display any data.
For example, you can drag the Business Phone field from the All Contact
Fields list in the Field Chooser to a custom task form page, but Outlook is
not going to automatically copy a contact’s phone number to the task. If
you want the task to contain that phone number, you’ll need to write some
code. We’ll cover that scenario and some other limitations and techniques
related to specific Outlook item types in Chapter 20.

Finally, there is a limit to the number of fields you can add to an Out-
look form, but it’s not a hard and fast limit. Each item can contain up to
32kb of data, excluding attachments and the data in the Message/Notes
field. If you exceed that limit, the form may not display all the data the user
has entered or may not calculate formula fields correctly. I start getting a lit-
tle anxious when a custom form has 150 or so fields and really start worry-
ing when the number of fields passes 200. Be sure to keep good backups of
the form as .oft files if you’re adding a lot of fields to a form.

6.5 Laying out compose and read pages
A common problem that novice Outlook form designers encounter is a
received message that doesn’t show your custom fields. It happens like this:
You create and publish a good-looking mail form, generate a new message
from it, send the message to yourself, and then tear out your hair wonder-
ing why it looks like the standard message form and not your custom
form. Outlook allows you to design two versions of any custom form page,
one used when you compose the item, the other when a user reads the
saved or sent item. This applies not just to message forms, but to all Out-
look forms, but the issue comes up mostly with message forms. Some form
designers don’t notice that the main Message page uses dual layouts by
default or forget to click the Edit Read Page button to create a custom read
layout to match the compose layout.

Note: Form regions work differently; each region supports a single layout.
You can create separate form regions for read, compose, and preview use.
The usage for each region is controlled by its manifest.

Open the standard message form in design mode to see how this works.
Figure 6.12 shows the compose page for a new message, with the To, Cc,
and Subject fields enabled for the user to fill in. Click the Edit Read Page
command in the Design Group to see the read page (shown in Figure 6.13)
for the same form. This time you see the From and Sent fields, which are

138 6.5 Laying out compose and read pages

not on the read layout, and all the message header fields are displayed in
gray to indicate they are disabled.

To convert a page with a single layout to have separate compose and
read layouts, check Separate Read Layout in the Design group. Outlook
copies all the fields from the original page (making it the compose page) to
a new read page. To copy controls manually, select them, and use the right-
click Copy and Paste commands. Switch between the two layouts with the
Edit Compose Page and Edit Read Page commands. At runtime, the page
will show the same name in the Show group on the ribbon, regardless of
which layout is active.

To convert a page with dual layouts to a single layout, you must choose
which layout to preserve. To keep the compose layout, click Edit Compose
Page and then uncheck Separate Read Layout. To keep the read layout,

Figure 6.12
The default

Message form
layout includes

separate compose
and read pages.

Figure 6.13
Use the Edit

Compose Page and
Edit Read Page

commands to
switch between

layouts.

6.6 Summary 139

click Edit Read Page and then uncheck Separate Read Layout. In both
cases, answer Yes to the prompt that warns you that Outlook is about to
discard all changes made to the other layout.

Caution: Be extremely careful if you decide to uncheck Separate Read Lay-
out and revert to a single page instead of dual layouts. Outlook discards the
page that is not currently visible. This change cannot be undone.

No single property of an Outlook item can tell you whether it is open to
the compose or read layout. In Chapter 12, we’ll discuss a ShowsCompose-
Layout() function that provides this information.

6.6 Summary
In this chapter, you learned how to create your own custom fields and add
them to Outlook forms. You also worked with validation rules and fields
based on formulas to. For additional flexibility, Outlook allows you to
maintain separate compose and read layouts for each customized form page.
On each page, you can place controls to display and set Outlook field val-
ues, display information to the user, and gather information from the user.
The biggest difference between an Outlook custom form and a VBA user
form is that the controls on an Outlook form connect directly with the
fields that store data in Outlook items.

Ensuring that related forms, items, and folders have matching fields can
be tricky. Chapter 21 explains how forms and individual items interact and
provides code to add field definitions to folders, based on the custom prop-
erties present in a custom form.

This page intentionally left blank

141

7
Outlook Code Basics

Get ready to dig into coding. This chapter and the others that follow in this
part of the book will cover the basics of writing VBA and VBScript pro-
gramming code in Outlook 2007. The highlights of this chapter include
discussions of the following:

What triggers program code to execute

When to use a function instead of a subroutine

How to run an VBA subroutine from a toolbar button

How to run an VBA subroutine from a rule

What user interaction can cause code to run on an Outlook custom
form

What syntax to use to refer to Outlook properties and form controls

How to invoke Outlook objects from other environments, such as
VBA in Word

7.1 Understanding when VBA code runs
Outlook VBA supports five types of procedures:

Macros that you can run on demand from the Tools | Macro | Macros
dialog or from a toolbar button, such as the HelloWorldMessage
subroutine that you saw in Listing 2.1

Subroutines that can be executed on an incoming message or meeting
request by a rule

Procedures that handle events raised on Outlook objects

Procedures that handle events raised on VBA user forms

Non-event subroutines and functions that support all the other pro-
cedures by performing calculations and automating routine tasks

142 7.1 Understanding when VBA code runs

Of these different types of procedures, event handlers are probably the
most difficult to understand. Think about the Windows applications you
use every day. A money-management program makes a good example.
When you start the program, it probably pops up reminders that you have
bills to pay or investments to check on. You click a button or maybe a menu
command to enter a new transaction. Perhaps when you type “May 15,” the
program automatically converts your entry to “May 15, 2007” (or whatever
the current year might be). Although virtually all of the program runs out
of sight, it depends on you, the user, for the key interactions that tell it what
to do.

Each time you interact with the program—choosing a menu item, click-
ing a button, saving an item, and even pressing Tab to move from one con-
trol to another—you cause one or more events to fire. Each event can have a
programming routine associated with it. For example, the cmdUpdate_
Click procedure in Listing 3.1 is an event handler for the Click event that
fires every time the user clicks the cmdUpdate button on the birthday/anni-
versary reminder form.

Each type of object (VBA forms, command buttons, text boxes, Out-
look folders and items, and so on) has its own set of possible events. Even
Outlook itself as an application has events. If you write code for using these
events, Outlook can perform certain tasks every time you start Outlook or
when a reminder fires. VBScript code behind Outlook forms also uses event
handlers associated with the item itself and the controls you add to a cus-
tom form.

Not every event will have code related to it. As you build Outlook appli-
cations, you must decide which events are important to your application.

7.1.1 VBA form events

To build on the example of a VBA form application from Chapter 3, let’s
take a closer look at the events that VBA user forms support. Add a new
form to your VBA project with the Insert | UserForm command. An easy
way to see what events are available is to use the View | Code command to
display the code window for the form (see Figure 7.1). From the left drop-
down list at the top of the form, choose UserForm. (This will place the Sub
... End Sub stub for a subroutine named UserForm_Click in the code
window; you can delete or ignore it.) Use the right dropdown list to see all
the events for the UserForm object, in other words for the current form.

It’s important to distinguish between form-level events and control
events. For example, the Click event for a form fires only when you click
on the form background, away from the controls. If you click on a con-
trol, the Click event for that control fires, not the Click event for the
form. The form events listed in Table 7.1 are the most useful as you start

7.1 Understanding when VBA code runs 143

programming VBA forms. Note that the Initialize event fires before the
Activate event.

Tip: For most of the forms you create in Outlook VBA, you will be more
interested in control events than form events.

Controls on forms have their own events. In Chapter 3, we saw an
example of code attached to the Click event for a command button. Table
7.2 lists Click along with other important events for VBA user form con-
trols.

Here are some notes on VBA user form control events:

The BeforeUpdate event is often used to validate the data entered in
a control, because it can be cancelled to roll back the control to its
previous value.

Command buttons support only the Click event.

Text boxes do not support the Click event.

Figure 7.1
The dropdown lists

at the top of the
VBA code window

help you
understand what

events are available
for your form and

its controls.

Table 7.1 Key VBA Form Events

Event Occurs

Initialize After the VBA form is loaded, but before it becomes visible

Activate When a VBA form becomes the active, visible window in Out-
look

Terminate After the VBA form has been unloaded, but before it is removed
completely from memory

144 7.1 Understanding when VBA code runs

For check boxes, the Click event occurs not only when the user
clicks in the box, but also when the user changes the value by pressing
the spacebar or the accelerator key for the control.

The Exit event can be cancelled if you want the focus to remain in
the control.

Note: Controls on Outlook custom forms do not support the Enter, Exit,
BeforeUpdate, and AfterUpdate events, only the Click event. Further-
more, on an Outlook custom form, the Click event fires on a data entry
control only if the control is not bound to an Outlook property. Some
unbound controls on an Outlook custom form, such as text boxes and mul-
tiselect list boxes, do not fire a Click event at all.

A good way to become acquainted with the order in which some of
these events fire is to create a simple form with one check box, one text box,
and one command button. Don’t worry about changing the default names
of the controls; this is just a test form. To enter code for each event for each
control and for the form itself, in the code window, follow these steps:

1. Select the control or form from the left dropdown list.

2. Select the event from the right dropdown list. Do not change the
procedure declaration that Outlook VBA creates.

3. Between the Private Sub and End Sub statements of the proce-
dure declaration, enter one statement to pop up a message box
with the name of the event. You can use the code in Listing 7.1 as
a model.

After you enter the code, run the form by clicking the Run Sub/User-
Form button (or pressing F5), and use the mouse and keyboard to move

Table 7.2 Key VBA Control Events

Event Occurs

Enter Just before the focus enters a control

Click When the user clicks on a control

BeforeUpdate Before the user’s change to a data entry control takes effect

AfterUpdate After the user’s change to a data entry control takes effect

Change When the value in a control changes

Exit When the focus leaves a control

7.1 Understanding when VBA code runs 145

Listing 7.1 Message boxes show the sequence in which control and form events fire

Private Sub CheckBox1_AfterUpdate()
 MsgBox "CheckBox After Update"
End Sub

Private Sub CheckBox1_BeforeUpdate(ByVal Cancel As MSForms.ReturnBoolean)
 MsgBox "CheckBox Before Update"
End Sub

Private Sub CheckBox1_Change()
 MsgBox "CheckBox Change"
End Sub

Private Sub CheckBox1_Click()
 MsgBox "CheckBox Click"
End Sub

Private Sub CheckBox1_Enter()
 MsgBox "CheckBox Enter"
End Sub

Private Sub CheckBox1_Exit(ByVal Cancel As MSForms.ReturnBoolean)
 MsgBox "CheckBox Exit"
End Sub

Private Sub CommandButton1_Click()
 MsgBox "Command Button Click"
End Sub

Private Sub TextBox1_AfterUpdate()
 MsgBox "Text Box After Update"
End Sub

Private Sub TextBox1_BeforeUpdate(ByVal Cancel As MSForms.ReturnBoolean)
 MsgBox "Text Box Before Update"
End Sub

Private Sub TextBox1_Change()
 MsgBox "Text Box Change"
End Sub

Private Sub TextBox1_Enter()
 MsgBox "Text Box Enter"
End Sub

Private Sub TextBox1_Exit(ByVal Cancel As MSForms.ReturnBoolean)
 MsgBox "Text Box Exit"
End Sub

Private Sub UserForm_Activate()
 MsgBox "Form Activate"
End Sub

146 7.1 Understanding when VBA code runs

through the various controls, enter data, delete data, and so forth. Each
event will pop up a message box to tell you which event is occurring.

7.1.2 What is a Sub anyway?

After entering the code in the preceding section, you’re probably wondering
about the Private Sub and End Sub statements. These mark the begin-
ning and end of a code procedure called a subroutine. The Private key-
word means that each of these procedures runs only in the context of the
particular VBA form. That’s appropriate for forms because the event has no
meaning without the control or form that it is related to. However, in other
code modules you may choose to make a subroutine public so that it can be
used elsewhere.

To start a new subroutine, just type “Sub” on a new line in the VBA
code editor, followed by the name you want to use for the procedure. Proce-
dure names cannot contain spaces. When you press Enter at the end of the
Sub statement, VBA completes the Sub statement and adds an End Sub
statement automatically.

Did you notice that each subroutine name is followed by a pair of paren-
theses? Inside the parentheses, the procedure declaration defines its parame-
ters, that is, the variable names by which inputs are passed to the
subroutine. The actual value passed as an input is called an argument and
can be a constant, a variable, or an expression. Some parameters are
optional. In most VBA procedures, the data type of a parameter (for exam-
ple, Boolean or string) is defined in the procedure declaration.

In most cases, form and control event handlers have no parameters.
BeforeUpdate and Exit are exceptions. They both have Cancel as a
parameter. To cancel such an event and thus negate the user’s action, set the
value of the Cancel parameter to True. If you cancel BeforeUpdate, the
control returns to the value it had before the user updated it. If you cancel
Exit, the focus stays on the control and does not move to the next control.

Here is some code you can add to the ReminderUpdate form from
Chapter 3. It uses the BeforeUpdate event for the txtDays control to

Private Sub UserForm_Initialize()
 MsgBox "Form Initialize"
End Sub

Private Sub UserForm_Terminate()
 MsgBox "Form Terminate"
End Sub

Listing 7.1 Message boxes show the sequence in which control and form events fire (continued)

7.1 Understanding when VBA code runs 147

make sure that the user has entered a number that can be used to set the
reminder interval.

Private Sub txtDays_BeforeUpdate(ByVal Cancel _
 As MSForms.ReturnBoolean)
 If IsNumeric(txtDays.Value) = False Then
 Cancel = True
 MsgBox "Please enter a number."
 txtDays.SelStart = 0
 txtDays.SelLength = Len(txtDays.Value)
 End If
End Sub

IsNumeric() is a built-in function that returns True if its argument is a
number and False if not. SelStart and SelLength are text box proper-
ties that set the start character and length of a text selection in the control.

Also note that this validation procedure runs only when the user actually
enters data in the txtDays control. You may also want to add similar vali-
dation, using IsNumeric(), in the cmdUpdate_Click event handler to
take care of the case where the user clicks the cmdUpdate button without
having entered any value in the txtDays text box.

Performing validation with cancelable events can make a form friendlier
to the user, because message boxes and other clues can tell the user precisely
what to do to correct the problem with their data entry.

7.1.3 Outlook VBA application-level events

Application-level events in Outlook VBA can run code to perform actions
against outgoing messages, automatically process incoming messages,
respond to reminders, modify new or changed items in a folder, and handle
many other interesting events related to Outlook folders and items. For
example, the ItemAdd event fires when a new item is added to a folder. A
practical use for that event would be to update a newly added task with the
phone number of a linked contact you want to call. Chapter 20 has an
example of such an ItemAdd event handler.

To write code for application-level events, use the dropdown lists at
the top of the built-in ThisOutlookSession module to select the event
and insert the procedure stub into the module. Listing 7.2 shows a very
simple example of an event handler—for the ItemSend event of the
Application object—to prevent the user from sending messages with
blank subject lines.

Like the BeforeUpdate and Exit events for user form controls, the
ItemSend event has a Cancel parameter. If you set Cancel = True,
Outlook does not send the item. The item remains visible for the user to
work with. The first parameter, Item, is the actual item being sent.

148 7.1 Understanding when VBA code runs

Aside from simple events like ItemSend, programming responses to
application-level events is more complicated than programming VBA forms
and simple macros. Therefore, a detailed discussion of this topic is deferred
until Chapter 11.

7.1.4 Macros to run programs on demand

Outlook users frequently want to know whether they can create toolbar
buttons to perform particular tasks, such as launching a custom form or
switching to a particular view. With VBA, the answer is yes, you can run
macro subroutines from toolbar buttons.

Macros are subroutines that are stored in VBA code modules (but not in
VBA user form code modules), are public, and have no arguments. If a
macro requires some information from the user, you cannot pass that infor-
mation as an argument to the macro. Instead, the macro must either display
a VBA form to get the information from the user or use one of the other
input methods discussed in the next chapter.

To run a macro without a toolbar button, press Alt+F8 to open the
Macros dialog, or choose Tools | Macro | Macros (see Figure 7.2). The Mac-
ros dialog will show all pubic argumentless subroutines (in other words,

Listing 7.2 ItemSend event handler to avoid sending messages with blank subjects

Private Sub Application_ItemSend(ByVal Item As Object, Cancel As Boolean)
 If Item.Subject = "" Then
 Cancel = True
 MsgBox "You forgot to enter a subject.", _
 vbExclamation + vbSystemModal, "Missing Subject"
 Item.Display
 End If
End Sub

Figure 7.2
Run any Outlook

macro from the
Macros dialog.

7.1 Understanding when VBA code runs 149

those that do not use the Private keyword). You don’t have to do anything
special to get your subroutines on that list.

Don’t look for a macro recorder, such as the ones in Microsoft Word and
Excel. As with most Office programs, you must write all Outlook macros
from scratch.

To add an Outlook macro to one of the toolbars in the main Outlook
window, follow these steps:

1. In the main Outlook window, choose View | Toolbars | Custom-
ize.

2. Switch to the Commands tab in the Customize dialog box (see
Figure 7.3), and under Categories, select Macros.

3. Drag the desired macro from the Commands list to the location
on the toolbar where you want the macro to appear. This will cre-
ate a button for that macro on the toolbar.

4. With the Customize dialog still open, right-click the new button
to pop up a menu of commands for customizing it (see Figure
7.4). You almost certainly will want to change the name to
remove the Project1 prefix. You might also want to choose
Change Button Image to pick an different icon for your button.

5. When you finish customizing the button, close the Customize
dialog box.

You must use a different procedure to add a macro to the Quick Access
Toolbar (QAT) that displays at upper-left on an individual item window.
Follow these steps:

1. In any open item window, click the dropdown arrow on the right
side of the QAT and choose Customize Quick Access Toolbar.

Figure 7.3
Add any macro to
the toolbars in the

main Outlook
window.

150 7.1 Understanding when VBA code runs

2. From the “Choose commands from” list, select Macros (see Fig-
ure 7.5).

3. Select the macro you want to place on the QAT, then click Add.

4. Select the macro command, and use the up and down arrow but-
tons to position the macro command among the other QAT
commands.

5. Click Modify to display the Modify Button dialog (see Figure
7.6), where you can assign a different symbol and change the

Figure 7.4
Customize the
macro toolbar

button by changing
its name and icon.

Figure 7.5
The only

customizable
toolbar on an

individual item
window is the
Quick Access

Toolbar.

7.1 Understanding when VBA code runs 151

name of the button that appears when you hover the mouse
pointer over it. Click OK after you finish making your changes.

6. Click OK after you finish adding macros to the QAT.

7.1.5 “Run a script” rule procedures

The Tools | Rules and Alerts feature in Outlook (also known as the “Rules
Wizard”) includes a “run a script” rule action along with more familiar rule
actions like “move to folder.” This action invokes not an external script but
a VBA subroutine that contains a single parameter, either a MailItem or
MeetingItem. The item that is passed by that parameter is the item that
triggered the rule. The code in the “script” can thus act on that item. List-
ing 7.3 shows an example of such a rule action procedure that converts an
incoming message from HTML or rich-text format to plain text format.

To create a rule that uses the ConvertToPlain procedure, follow these
steps:

1. Switch to the Mail navigation pane.

2. Choose Tools | Rules and Alerts.

3. Click New Rule.

4. Under “Start from a blank rule,” choose “Check messages when
they arrive.” Click Next to continue.

Figure 7.6
Outlook supports

many different
symbols for buttons
on the Quick Access

Toolbar.

Listing 7.3 A “run a script” rule action to convert incoming messages to plain text format

Sub ConvertToPlain(newMsg As MailItem)
 If newMsg.BodyFormat = olFormatHTML Or _
 newMsg.BodyFormat = olFormatRichText Then
 newMsg.BodyFormat = olFormatPlain
 newMsg.Save
 End If
End Sub

152 7.2 Writing VBA code

5. Choose one or more conditions to define what messages you
want to convert to plain text. For example, you might choose
“with specific words in the sender’s address” and enter a domain
name whose messages you’d rather see in plain text than HTML
or rich-text format. Click Next to continue.

6. Check the “run a script” action.

7. Click the underlined “a script” to display the Select Script dialog,
where you can select the VBA procedure to run (see Figure 7.7),
and then click OK.

8. Click Next and enter any exceptions you want to apply to the
rule.

9. Click Next and give the rule a name, then click Finish.

Note that such rules are subject to a limitation that applies to all incom-
ing message rules: if Outlook gets more than 16 new items at once, it may
not apply the rule.

7.2 Writing VBA code
Now that you understand when VBA code runs, it’s time to write some
actual code that you can use every day! The next example is a macro to
create a new task item with certain fields already filled in—specifically, the
due date already assigned to one week from today. This macro can run from
a toolbar to create a task that you are due to finish in the next week.

If you don’t already have an empty module in the Project Explorer,
choose Insert | Module to add one. Then, type “Sub CreateOneWeekTask”

Figure 7.7
The “run a script”

rule action runs not
an external script

but a specially
constructed

Outlook VBA
subroutine.

7.2 Writing VBA code 153

into the code window, and press Enter. Sub indicates that this is a subrou-
tine procedure, not a function. “CreateOneWeekTask” is the name of the
procedure. Procedure names cannot contain spaces and must be unique
within a module. When you press Enter, VBA automatically adds the End
Sub statement marking the end of a subroutine and adds parentheses after
the procedure name. Because this is going to be a macro run from a toolbar
button, no arguments will go inside the parentheses.

Note: Starting a procedure in a code module with just Sub is equivalent to a
procedure that starts with Public Sub. Public procedures need names that
are unique not only within the current module, but also within the entire
Outlook VBA code project. Don’t worry too much about this. VBA will
warn you if you create a public procedure with a duplicate name.

The next step is to initialize an object variable to represent the top-level
object in the Outlook programming hierarchy—the Outlook.Application
object. Add this statement inside the CreateOneWeekTask procedure:

Set objOL = Application

The Application object is intrinsic to—in other words, built into—
Outlook VBA and represents the Outlook.Application object that is
always available to programmers while Outlook is running.

Next, add the statement below to create the task:

Set objTask = objOL.CreateItem(olTaskItem)

Technically, you could simplify this code by combining the above two
statements into one:

Set objTask = Application.CreateItem(olTaskItem)

However, that statement would not work if you were trying to create a
task in, say, Microsoft Word’s VBA environment. Word VBA has its own
intrinsic Application object that represents the running instance of Word.
If you want to write Outlook automation code that runs in some environ-
ment other than Outlook VBA, Outlook custom form VBScript code, or
an Outlook add-in, you must instantiate an Outlook.Application object.
Therefore, to make the code in this book as portable as possible to other
environments, we’ll use a separate object variable for the Outlook.Appli-
cation object in VBA code.

How do you know that objOL.CreateItem(olTaskItem) creates a
task? The key is in the olTaskItem argument. olTaskItem is an example
of the intrinsic constants built into Outlook VBA. They are great coding
shortcuts because they usually have very descriptive names. For example, it’s
not difficult to remember that olTaskItem is a constant that you can use
with the CreateItem method to create a new task.

154 7.2 Writing VBA code

Outlook constants are available only in VBA, though. In VBScript code
behind an Outlook form, you must either declare the constant or use its lit-
eral value.

7.2.1 Variables

Both objOL and objTask are variables. Variables hold values and pointers
to the data used in your procedures. Instead of referring to the value or
object directly, code procedures refer to the variable name, allowing much
more flexibility when you don’t know what the value might be in a given
scenario. Many statements in programming code manipulate variables and
then return new values based on those operations. The next chapter looks
in more detail at variables.

Both the statements you’ve written so far require a Set keyword, because
they create object variables that represent complex programming con-
structs, rather than assign the values of variables that hold simple numeric
or text data. This is simply a rule of VBA grammar, similar to the rules you
have to learn to be proficient in English, Russian, or any other language.

Using obj as a prefix for all object variables can help you remember to
initialize them with a Set statement and release them later with a statement
that sets the object to Nothing (e.g., Set objOL = Nothing). You should
always set an object variable to Nothing when your code has finished using
it, as we’ve done with the procedure shown in Figure 7.8.

7.2.2 Outlook properties and methods

Next, add these two lines to the CreateOneWeekTask procedure:

objTask.StartDate = Date
objTask.DueDate = Date + 7

Both these statements are assignment statements. They assign values to
the StartDate and DueDate properties of the task. Date is an intrinsic
function, available in VBA and VBScript, returning the current day’s date.

Figure 7.8 This procedure to create a new task uses two objects, sets two properties, and runs a
method to display a task due one week from today.

7.2 Writing VBA code 155

The standard syntax for referring to the property of an Outlook item or any
other object, such as an Outlook folder, is:

object.propertyname

For custom properties that you create for Outlook items (see Chapter
6), the syntax is slightly different:

item.UserProperties("propertyname")

You can also use this syntax for either built-in or custom properties on
Outlook items:

item.ItemProperties("propertyname")

Note: Outlook 2007 adds yet another way to access property values: the
PropertyAccessor object, which we will learn about in Chapter 14. Gen-
erally, you will use it to access “hidden” properties that would have required
Collaboration Data Objects (CDO) 1.21 in earlier versions of Outlook.

Once you have created the new task, the next step is to show it. To make
the new item appear takes just one statement:

objTask.Display

The Display keyword is an example of a method. By applying a method
to an object, you make the program do something—display an item, send a
message, and so on. Earlier you used the CreateItem method to create a
new task. Notice that a method uses syntax similar to a property:
object.method.

Tip: You may find it helpful to think of objects as the “nouns” in the language
of VBA, while properties are the “adjectives” and methods are the “verbs.”

This useful macro, shown in its entirety in Figure 7.8, demonstrates how
objects, variables, assignment statements, methods, and intrinsic constants
comprise key code building blocks. You can now test the macro. From the
VBA window, put the cursor inside the macro, and then press F5. Or,
return to the main Outlook window, press Alt+F8, select your macro, and
run it. Watch your new task appear! If you find this procedure useful, add it
to the toolbar, using the technique described in Section 7.1.4, so you can
click a button any time to get a new task due one week from today.

7.2.3 Subroutines versus functions

Not every procedure you write is a subroutine. You also write functions.
These are procedures that return data to the program, usually by perform-
ing some operations on the inputs that you provide to the function.

156 7.2 Writing VBA code

Tip: Think of a function as a magic box with an opening at the top, an
opening at the bottom, and a crank on the side. Pour something into the
top, turn the crank, and something completely different comes out at the
bottom. Your job as a programmer is to supply the magic that makes the
box perform its trick. Like any good magic trick, there’s a logical technique
behind every function.

Listing 7.4 is an example of a very simple, but very useful function.
This Quote() function can take anything as its argument (data_in) and
returns that data as a string (i.e., text) surrounded by quotation marks.
Chr() is a built-in function that returns a string consisting of a single char-
acter corresponding to a given number. In this case, the number 34 corre-
sponds to a quotation mark. CStr() is another built-in function; it
converts the data passed into a string. The ampersand (&) is an operator
used to concatenate (or join) two bits of text. You’ll learn more about oper-
ators in the next section.

A function always includes one or more statements that assign the value
of the function to some expression. Here, that assignment statement (the
Quote = statement) is the only statement in the whole function. Table 7.3
shows the results the Quote() function delivers for various sample argu-
ments. Note that it can even take an object, such as the intrinsic Outlook
VBA Application object, as its argument. Most objects have a default
property, such as Name, that allows a function, such as Quote(), to return a
meaningful result.

Typing the expression Quote("Microsoft Outlook") is easier than
typing the equivalent expression Chr(34) & "Microsoft Outlook" &
Chr(34). If you haven’t already, you should add the Quote() function to

Listing 7.4 Quote() function to return a string surrounded by quotation marks

Public Function Quote(data_in) As String
 Quote = Chr(34) & CStr(data_in) & Chr(34)
End Function

Table 7.3 Sample Results for the Quote() Function

Argument Result

Quote("Microsoft Outlook") "Microsoft Outlook"

Quote(2) "2"

Quote(Application) "Outlook"

7.2 Writing VBA code 157

the code module that you’re building in Outlook VBA. You will definitely
use it later in building message boxes and in searching and filtering for par-
ticular Outlook items.

7.2.4 Operators

Operators are symbols that perform various mathematical and data opera-
tions, such as addition, division, joining strings, or comparing two numbers
to find out which is greater. Table 7.4 lists those you are most likely to use
in Outlook code. Many of them should be familiar from your earliest arith-
metic books.

Tip: For the complete list of operators or to learn more about any particular
operator, open the Outlook VBA window, choose Help | Microsoft Visual
Basic Help, and search for “Operator Summary.”

7.2.5 Referring to VBA forms and controls

We have one more basic VBA coding issue to address: how to refer to VBA
forms and controls. It’s really simple. Use the value of the Name property of
the form or control.

Table 7.4 Commonly Used Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

& String concatenation

= Equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

<> Not equal to

And True if both expressions are true; otherwise, False

Or True if either expression is true; otherwise, False

Not True if the expression is false; False if the expression is true

158 7.2 Writing VBA code

Look back to Section 3.5.3, to the cmdUpdate_Click procedure on the
ReminderUpdate form, to see an example. In the following statement:

lngMinutes = 24 * 60 * txtDays.Value

the expression txtDays.Value returns the data stored in the Value property
of the txtDays text box on the form. Because the code is running inside the
form, attached to the Click event for one of the form’s command buttons,
Outlook knows that the txtDays object refers to a control on the form.

If the code is in a separate module or behind a different form, refer to
the form and the control on that form with the syntax formname.

controlname. For example, here is a subroutine that loads the form, dis-
ables the cmdUpdate button, and then displays the form to the user:

Sub RunReminderUpdate()
 Load ReminderUpdate
 ReminderUpdate.cmdUpdate.Enabled = False
 ReminderUpdate.Show
End Sub

Tip: Did you notice that RunReminderUpdate is a macro that you can run
from a toolbar button or by pressing Alt+F8?

Why would you want to disable a control, such as the cmdUpdate but-
ton? Now that you know how to work with VBA form events, you can
write code that watches what the user enters into the txtDays box and
enables the cmdUpdate button only if a valid number is present. To
enhance the validation procedure discussed earlier in Section 7.1.2, replace
the earlier txtDays_BeforeUpdate procedure with this code:

Private Sub txtDays_BeforeUpdate(ByVal Cancel _
 As MSForms.ReturnBoolean)
 If IsNumeric(txtDays.Value) = False Then
 Cancel = True
 MsgBox "Please enter a number."
 txtDays.SelStart = 0
 txtDays.SelLength = Len(txtDays.Value)
 cmdUpdate.Enabled = False
 Else
 cmdUpdate.Enabled = True
 End If
End Sub

Notice that because the txtDays.BeforeUpdate procedure is an event
handler on the ReminderUpdate form, you do not need to specify the
name of the form in the cmdUpdate.Enabled expression.

Note: You will learn about If ... Then ... Else ... End If code
blocks in Chapter 8.

7.3 Writing VBScript code for Outlook forms 159

7.3 Writing VBScript code for Outlook forms
Outlook custom forms, which we looked at earlier in Chapters 4 and 6, can
also run event-driven code. A procedure runs either from an event related to
the item, such as Open or Write, or from the Click event on a control. You
can add other subroutines and functions, but they must be called from one
of the event procedures.

To add code to an Outlook form, open the form in design mode, and
then click View Code. You should see right away that the development
environment for Outlook form code is very primitive, so basic in fact that
Outlook developers jokingly refer to it as “Visual Notepad” (see Figure 7.9).
To add code for an item event, in the code window, choose Script | Event
Handler, and select from the list in the Insert Event Handler dialog (see Fig-
ure 7.10). Outlook adds a Function ... End Function or Sub ... End
Sub stub to the code window, depending on the event. Figure 7.9 shows the
stubs for the Open and PropertyChange events.

Caution: The Insert Event Handler dialog does not check to see whether a
particular event is already present in your form’s script. It’s possible to add
duplicate handlers. If you have more than one procedure with the same
name, Outlook will not give you any error message. Instead, it will simply
skip any duplicates and run only the last of the duplicate procedures.

Like Outlook VBA, custom forms support an intrinsic Application
object representing the currently running Outlook application. They also
support an intrinsic Item object that represents the item whose form is run-
ning the code. That’s why, in Figure 7.9, the event handlers have the name
Item_Open and Item_PropertyChange. The Open event fires when the
item opens in its own window for viewing or editing. The Property-
Change event fires when any built-in property of the item changes value.

Figure 7.9
Outlook item event
handlers in custom

form VBScript code
have their own

specific syntax, just
like VBA

application or user
form event

handlers.

160 7.3 Writing VBScript code for Outlook forms

The Name parameter of the PropertyChange event tells you which prop-
erty changed. As with VBA event handlers, you should not change the pro-
cedure declaration that the Event Handler command creates.

7.3.1 Declaring constants and variables

Remember this statement earlier in this chapter that creates a new Outlook
task:

Set objTask = objOL.CreateItem(olTaskItem)

VBScript doesn’t know that olTaskItem is a constant, much less what
value olTaskItem has. You must either declare it as a constant or use its lit-
eral value. In either case, you’ll need to look up that value. While the form
code window does have a mini object browser, accessible through the Script
| Object Browser command, it’s not very useful. You’re better off looking up
constant values in the object browser in VBA. Here’s how to get the con-
stant you need in order to create a task:

1. In the Outlook VBA environment, press F2 to display the object
browser.

2. Change the library selection from <All Libraries> to Outlook.

3. In the search box, type “CreateItem,” and then click the Search
button (the one with the binoculars icon).

4. When the search results return, CreateItem will be highlighted, as
shown in the left window in Figure 7.11, and in the bottom pane
you’ll see that this method takes a particular value from the
OlItemType enumeration of constants.

5. Click OlItemType to browse to that enumeration, as shown in
the right window in Figure 7.11, and then select olTaskItem.

6. The bottom pane shows the constant declaration for olTask-
Item, which you can copy and paste to your form code window.

Where you declare variables depends on where you plan to use them. If
you plan to use a variable in only one code procedure, put its Dim statement
in that procedure.

Figure 7.10
Add Outlook form-
level events through

this dialog.

7.3 Writing VBScript code for Outlook forms 161

To declare constants so that any procedure can use them, place those
Const statements before the first procedure. This top area of the code mod-
ule is called the declarations section. I recommend that you also include an
Option Explicit statement, covered in the next chapter, as the very first
statement of the code module. This will help you avoid careless mistakes,
because it requires you to include a Dim statement for each variable in the
module.

Figure 7.12 shows the VBScript code for two form buttons,
CommandButton1 and CommandButton2, both of which create tasks when
clicked. Compare the VBScript version of the CreatOneWeekTask proce-
dure with the VBA version in Figure 7.8.

Don’t forget to set object variables to Nothing in your VBScript form
code after you finish using them, as discussed earlier in Section 7.2.1. If you
don’t do that, changes that you make to the items might not be immedi-
ately visible when you or another user opens the item again.

7.3.2 Custom form events

Outlook forms support their own set of events, but they’re quite different
from the VBA user form events and from the Outlook application-level
events you have encountered so far. Table 7.5 lists the 16 item-level events
that Outlook forms support and tells you which can be canceled. These
events fire not only when the user interacts with the form but also when
programming code simulates any of these user actions.

Figure 7.11 Use the object browser in VBA to look up Outlook constants so you can copy and paste
their declarations into your custom form VBScript code.

162 7.3 Writing VBScript code for Outlook forms

Note: The syntax for canceling an event in VBScript form code is different
from that in VBA. You will see an example in the next section.

Figure 7.12
If your VBScript

code uses an
Outlook constant,

you muct declare it
with a Const

statement.

Table 7.5 Item Events for Custom Outlook forms (* = new in Outlook 2007)

Event Occurs Can Be Canceled

AttachmentAdd When an attachment is added to an item

AttachmentRead When the user opens an attachment

*AttachmentRemove When an attachment is removed from an item

*BeforeAttachmentAdd Before an attachment is added to an item X

*BeforeAttachmentPreview Before an attachment is previewed, either from
the reading pane or an open Inspector window

X

*BeforeAttachmentRead Before an attachment is read from an attached
file or, in the case of a file link, from the file sys-
tem

X

BeforeAttachmentSave Just before an attachment is saved into the Out-
look item; also occurs when an attachment is
updated with changes, just before the parent
item is saved

X

7.3 Writing VBScript code for Outlook forms 163

Tip: Listing 22.1 in Chapter 22 shows the BeforeAttachmentAdd event
being used to allow a form to accept attachments only of a certain file type.

*BeforeAttachmentWriteToTempFile Before an attached file is written to a temporary
file in the file system

X

*BeforeAutoSave Before Outlook automatically saves the item X

BeforeCheckNames Before Outlook starts to resolve names in the
To, Cc, and Bcc fields on a message (or equiva-
lent fields in other items) against the address
book after the user explicitly uses the Check
Names command

X

BeforeDelete Before Outlook deletes a displayed item X

Close When a displayed Outlook item closes X

CustomAction When a custom action associated with a
received message or other saved item occurs; see
Chapter 20.

X

CustomPropertyChange When the value of a user-defined property
changes

Forward When the item is forwarded X

Open Just before Outlook displays an item in its own
window

X

PropertyChange When the value of a built-in property changes

Read When the user displays an item for editing,
either in its own window or using in-cell edit-
ing in a folder view

Reply When an item is replied to using Reply X

ReplyAll When an item is replied to using Reply to All X

Send When an item is sent X

*Unload After the Close event, as the item is being
unloaded from memory; item properties and
methods are not available

Write When an item is saved X

Table 7.5 Item Events for Custom Outlook forms (* = new in Outlook 2007) (continued)

Event Occurs Can Be Canceled

164 7.3 Writing VBScript code for Outlook forms

Outlook form controls support just one event, Click, which fires only
on most (but not all) unbound controls. A control bound to a particular
Outlook field never fires a Click event. To detect changes in the data
stored in bound controls (so that you can perform validation and other
code tasks), use the CustomPropertyChange and PropertyChange events,
as explained in Chapter 12. Outlook forms do not support any equivalent
for the BeforeUpdate event that you find on VBA form controls.

7.3.3 Adding VBScript code to an Outlook form

As a practical example of code for an Outlook form, let’s look at a common
programming task with many uses. Often, you will need to know whether
the item displayed in your form is a completely new item that the user just
created or an existing item. You may want to initialize certain property val-
ues on a new item or change the appearance of certain controls on an exist-
ing item.

The first step in writing code is to open a form in design mode. For this
example, let’s do something a bit out of the ordinary and design a custom
distribution list form. The distribution list form does not appear in the list
of standard forms when you choose Tools | Forms | Design a Form. Never-
theless, it can be customized. This example will customize it to tell the user
how many member addresses the distribution list holds—an important
piece of information that you won’t find in the Outlook user interface.

Open a distribution list in design mode by choosing File | New | Distri-
bution List, then on the Developer tab, click Design This Form. (If you
don’t see the Developer tab, click the Office logo at upper-left, then choose
Editor Options, and check the box for “Show Developer tab in the Rib-
bon.”) When the distribution list opens in design mode, you’ll see that it
has custom pages P.2–P.6 and design commands just like other forms.

Click the View Code command to open the code window. The event
that fires when the user creates a new item or displays an existing item is the
Open event. Therefore, choose Script | Event Handler, select Open, then

Listing 7.5 Code to display the number of addresses in a distribution list

Function Item_Open()
 If Item.Size <> 0 Then
 strMsg = "This list has " & _
 Item.MemberCount & " members."
 MsgBox strMsg, vbInformation, Item.Subject
 End If
End Function

7.3 Writing VBScript code for Outlook forms 165

click Add. This adds the procedure stub for the Item_Open event handler
function to the code window.

There is no point in showing the user the number of addresses in the
distribution list if it’s a new item. That number is meaningful only for exist-
ing items. Therefore, we need a way to tell whether the item is new or exist-
ing. The easiest way to do that is to check the value of the Size property.
For a new item that has never been saved, Size always equals 0.

Tip: Another property that distinguishes new items is EntryID. It is always
blank if the item has never been saved.

Another thing you need to know is what Outlook property can tell you
the number of addresses in the distribution list. A quick glance at the object
browser’s information about the DistListItem object should lead you to
the MemberCount property.

The last element needed for this form is a way to get the information to
the user. Back in Listing 7.1, you saw the MsgBox method for displaying a
pop-up message to the user. It works in VBScript as well as VBA. Put those
three elements together—the Open event, the Size property, the Member-
Count property, and the MsgBox method—and you get Listing 7.5.

Since this code does nothing on new items (that is, items where
Item.Size = 0), to test the form, you can’t just use the Run This Form
command. Instead, you’ll need to publish the form. Click the Publish but-
ton and publish it to your Contacts folder with the name “Member Count
DL.” Leave the form open in design mode so you can make more changes
to it later.

To test the form, view your Contacts folder, choose Actions | New
Member Count DL, give the distribution list a name, add some members,
and then save and close it. Open it again, and you should see a message like
that in Figure 7.13. Notice how the message box takes its title from the last
parameter in the MsgBox statement, Item.Subject, and gets an icon from

Figure 7.13
The MsgBox

method displays a
message to the user,
with optional title

and icon.

166 7.3 Writing VBScript code for Outlook forms

the second parameter, vbInformation, a constant supported in VBScript
as well as VBA. The next chapter covers MsgBox statements and their
parameters.

7.3.4 Canceling events

Referring back to Table 7.5, you’ll see that Open is one of several events that
can be canceled programmatically. Why would you want to cancel an
event? If the user clicks Save but hasn’t filled in some property values cor-
rectly, you can cancel the Write event to prevent the item from saving.

To cancel an Outlook form event, set the return value of the event han-
dler function to False. For example, you may want to group all your distri-
bution lists at the top of the Contacts folder (and thus at the top in the
Address Book display) by prefixing them with an underscore character. If
you want to prevent the user from saving a distribution list that does not
start with an underscore, you could add the code in Listing 7.6.

Left() is a function with two parameters: a text string and the number
of leftmost characters from that string that you want to return, in this case,
one character. What Listing 7.6 does is validate the data in the item before
allowing the user to save it. You can do much more complex validation in
VBScript code than you can with the options in the form controls covered
in Chapter 6.

7.3.5 Referring to Outlook form controls

Sometimes your code will need to work directly with a control, rather than
with an Outlook property bound to that control. For example, you might
want to show or hide a control or change the color of the text in a text box
to red. The syntax to get a control object on a custom form is slightly more
complicated than that for VBA user form controls. You always need to
know not just the name of the control, but also the name of the page on the
Outlook form where it appears. In general, the syntax looks like this:

Set objInsp = Item.GetInspector
Set objPage = objInsp.ModifiedFormPages("pagename")
Set objControl = objPage.Controls("controlname")
objControl.property = newvalue

Listing 7.6 Canceling an event in VBScript form code

Function Item_Write()
 If Left(Item.Subject, 1) <> "_" Then
 Item_Write = False
 strMsg = "Start the DL name with an underscore."
 MsgBox strMsg, vbExclamation, "Save Canceled"
 End If
End Function

7.3 Writing VBScript code for Outlook forms 167

where pagename is the name of the page, controlname is the name of the
control, property is the control property that you want to change, and
newvalue is the new value for that property.

To work with the properties of a control inside a frame, you need to go
through the frame’s own Controls property. Here’s a code snippet that
shows the text inside a text box that is inside a frame. It runs when a com-
mand button is clicked:

Sub CommandButton1_Click()
 Set insp = Item.GetInspector
 Set Frame1 = _
 insp.ModifiedFormPages("P.2").Controls("Frame1")
 Set TextBox1 = Frame1.Controls("TextBox1")
 MsgBox TextBox1.Text
End Sub

In the above example, if you wanted to hide Frame1 and all the controls
contained in Frame1, you’d use:

Frame1.Enabled = False

Tip: Use the Advanced Properties dialog for a control to see what properties
a control supports. For example, most controls support a Locked property.
Assigning a value of True to that property makes the control read-only.

As is so often the case with Outlook, though, there is an exception: The
large box that shows the body of an item can be set read-only, even though
the Advanced Properties dialog shows no Locked property. Instead of
Locked, the property to use for the item body control is ReadOnly.

An important control property is Value, especially if you are working
with unbound controls. The Value property returns or sets the data value
that the user sees in the control. If the control is bound to an Outlook
property, you should work with the property value, not the control value,
using the Item.property (or Item.UserProperties("property") syn-
tax covered earlier in this chapter and in the next section. But for unbound
controls, only the Value property of the control is available. This code
snippet calculates a value from two unbound controls to set a value in a
third control and then changes the color of the text in that control to red if
the value is less than zero:

Set objInsp = Item.GetInspector
Set objPage = objInsp.ModifiedFormPages("Budget")
Set objIncome = objPage.Controls("Income")
Set objExpenses = objPage.Controls("Expenses")
Set objNet = objPage.Controls("Net")
objNet.Value = objIncome.Value - objExpenses.Value
If objNet.Value < 0 Then
 objNet.Forecolor = vbRed
End If

168 7.4 Referring to Outlook item properties

The above snippets use separate expressions to return the Inspector,
form page, and form controls to enhance readability and ease of debugging,
but you can also combine those expressions. This expression, for example,
returns the value of the Net control on the Budget page (and is too long to
fit all on one line on this page):

Item.GetInspector.ModifiedFormPages("Budget").Controls("
Net").Value

On a multi-page control, the Value property gets or sets the index for
the page that is currently displayed. This is a zero-based property, meaning
that 0 is the value for the leftmost page. The SelectedItem property of the
multi-page control returns a Page object corresponding to the currently
displayed page. Use that Page object as you would a page returned from
Inspector.ModifiedFormPages collection to access the controls on that
page of the multi-page control.

In a nutshell, here is what you need to know about Outlook form con-
trols:

When you want to change the appearance of a control, write code for
the control’s object and its properties.

When you want to work with the value displayed in an unbound
control, write code for the control’s Value property.

When you want to work with the values displayed in bound controls,
write code for Item.property, Item.ItemProperties, or
Item.UserProperties, as discussed in the next section.

The syntax for referring to an Outlook form control requires you to
know both the page and the control names.

Any change your code makes to the appearance of a custom form
control is not persisted with the data item. The next time the user
opens the item, the control will look just the way it did when you
originally published the form. If you want it to look different, put
code in the Item_Open event handler to change the appearance of the
control when the user displays the item.

We will return to the last issue—persistence of control appearance—in
Chapter 12, when we discuss the concept of the user interface state of an
Outlook item.

7.4 Referring to Outlook item properties
As emphasized in the preceding section, when you want to know the value
of an Outlook property, get it directly from the item, not from the control
displaying the property. Listings 7.5 and 7.6 showed several examples of
reading the value of standard Outlook properties—Item.Size, Item.Sub-
ject, Item.MemberCount—from custom form VBScript code. Listing 7.3

7.4 Referring to Outlook item properties 169

showed how to read the BodyFormat property of a message in VBA code.
All these examples used the same syntax:

objItem.property

where objItem is an Outlook item object and property is the name of the
property whose value you want to know.

To assign a new value to a property, use the same syntax that you saw in
the VBA example in Listing 7.3:

objItem.property = NewValue

For a custom form VBScript example, instead of asking the user to
change the distribution list, as Listing 7.6 does, the code could automati-
cally prefix the subject with an underscore character. The appropriate event
for that task would still be the Write event. Listing 7.7 uses the same vali-
dation expression as Listing 7.6, but instead of canceling the Write event, it
changes the subject to add the underscore prefix. Since this is VBScript
code, we don’t need to instantiate an objItem object variable to represent
the item whose property is to be changed. Instead, the Item_Write()
event handler uses the intrinsic Item object representing the item where the
code is running.

Notice that Item.Subject appears on both sides of the third statement
in Listing 7.7—on the right side to read the property value and on the left
side to set the value.

So far in this chapter, we have been working with built-in Outlook
properties, such as Subject. As we learned in Chapter 6, you can create
your own properties, too. Accessing these properties requires a different
syntax in your form code and VBA code.

Where you can refer to a built-in property on the current item in
VBScript simply with objItem.property, the syntax for referring to a cus-
tom property involves the UserProperties collection of all custom prop-
erties:

 objItem.UserProperties("property")

Both these snippets of custom form VBScript code display a message
box with the value of the Project field that you added to a task form in the
previous chapter:

Listing 7.7 Automatically prefix a distribution list name with an underscore character

Function Item_Write()
 If Left(Item.Subject, 1) <> "_" Then
 Item.Subject = "_" & Item.Subject
 End If
End Function

170 7.4 Referring to Outlook item properties

MsgBox Item.UserProperties("Project")

Set objProp = Item.UserProperties("Project")
MsgBox objProp.Value

Alternatively, you can access both standard and custom properties
through the ItemProperties collection:

MsgBox Item.ItemProperties("Subject")

Set objProp = Item.ItemProperties("Project")
MsgBox objProp.Value

Each ItemProperty object in the ItemProperties collection includes
an IsUserProperty property that tells you whether it is a built-in or cus-
tom property.

7.4.1 Working with custom keywords properties

There is one significant exception to the usage of UserProper-

ties("property") to get or set a custom property, and that’s with a key-
words field. A keywords field is a special type of text property that can hold
multiple values. To get or set the value of such a property, you must use a
custom form and a text box control bound to that property. With that form
design, you can access the property through the value of the control.

For example, create a custom form, add a keywords property named
Expertise, and rename one of the customizable pages to Info. On that
page, add a text box control named txtExpertise and bind it to the
Expertise property. Also add a command button named cmdDemoExper-
tise. Add this VBScript code to the form to get the current value of the
Expertise property and append a new value to it:

Sub cmdDemoExpertise_Click()
 Set Info = _
 Item.GetInspector.ModifiedFormPages("Info")
 Set txtExpertise = Info.Controls("txtExpertise")
 strExpertise = txtExpertise.Value
 txtExpertise.Value = strExpertise & ", design"
End Sub

The chief reason for using a custom keywords property is to be able to
group by the property and have each item appear in as many groups as it
has keywords, just as the standard By Category view does. If that kind of
view is not a necessary component of your Outlook application, a custom
text property holding a delimited string may work just as well as a custom
keywords property and avoid this cumbersome access problem.

7.4.2 Creating custom properties programmatically

Like most other Outlook collections, the UserProperties collection sup-
ports an Add method, used to add a new custom property to an item. If an

7.5 Writing other Outlook automation code 171

item is using a custom form, you should never invoke UserProper-
ties.Add to add a property to the item. Doing so will cause the form to
one-off, that is, to become embedded in the item so that the form never
runs code for that item again. Instead, add custom properties to custom
forms using the Field Chooser.

There are cases, though, where you may want to add a custom property
to an existing item that does not use a custom form. The basic syntax for
the UserProperties.Add method looks like this:

Set objProp = objItem.UserProperties.Add(_
 Name, Type, DisplayFormat, Formula)

where Name is the name of the property and Type is the type of property,
using one of the values from the OlUserPropertyType enumeration
shown in Table 7.6. Both these arguments are required.

Note: While Outlook will not raise an error if you try to create a User-
Property with a Type argument of olCombination or olFormula, assign-
ing a formula to the UserProperty.Formula property does not actually
set the formula for the property. Therefore, you still need to create combi-
nation and formula properties manually, as discussed in the previous chap-
ter. You also cannot create a UserProperty with a Type value using any of
these constants from the OlUserPropertyType enumeration: olEnumera-
tion, olOutlookInternal, olSmartFrom.

The optional AddToFolderFields parameter controls whether the
property is defined in the folder for the item, as well as in the item; the
default value is True. In order for a property to be visible in a folder view or
usable in an Items.Find or Items.Restrict search, it needs to be
defined in the folder. You can also define a property in a folder directly,
using this syntax:

Folder.UserDefinedProperties.Add(Name, Type, _
DisplayFormat, Formula)

The optional DisplayFormat argument tells Outlook how to display
the value of the property in folder views and on the All Fields page. The
Outlook 2007 object model contains several new enumerations that define
the formats available for each type of custom property. Table 7.6 lists these,
as well as the default DisplayFormat value for each UserProperty.Type.

7.5 Writing other Outlook automation code
Outlook features can be automated not just from Outlook VBA and custom
form VBScript code but also from just about any other programming envi-
ronment that can run client-side code. If Outlook is not already running,

172 7.5 Writing other Outlook automation code

your code can start Outlook and thus gain access to all the objects, proper-
ties, and methods that you’d have available in Outlook VBA.

For example, a common annoyance in Word is that the Send | E-mail
command does not generate an email message using your default Outlook
mail signature. A good solution is to write a Word 2007 macro to create a
new Outlook message and attach the current document, saving the docu-
ment first if needed. To run the code in Listing 7.8 as a Word macro, follow
these steps:

1. Start Word.

2. Press Alt+F11 to start the Word VBA environment.

3. Choose Tools | References and add a reference to the Microsoft
Outlook 12.0 Object Library.

4. In the Project Explorer, select Normal (which points to your Nor-
mal.dotm default template for Word documents), and choose
Insert | Module.

5. Type the code in Listing 7.8 into the new module.

You can run the macro from any document by using Alt+F8 to display
the list of available macros, or you can add it to the Quick Access Toolbar in
Word using the same technique that you saw in Section 7.1.4. When you
shut down Word and get a prompt to save changes in the Normal template,
respond Yes so this macro will be saved in the template.

One big change in Outlook 2007 is that external applications can auto-
mate Outlook without encountering security prompts from the Outlook

Table 7.6 Custom Property Type and DisplayFormat Values

Type Value DisplayFormat Enumeration Default DisplayFormat Value

olCurrency 14 OlFormatCurrency olFormatCurrencyDecimal

olDateTime 5 OlFormatDateTime olFormatDateTimeShortDayDateTime

olDuration 7 OlFormatDuration olFormatDurationShort

olInteger 20 OlFormatInteger olFormatIntegerPlain

olKeywords 11 OlFormatKeywords olFormatKeywordsText

olNumber 3 OlFormatNumber olFormatNumberAllDigits

olPercent 12 OlFormatPercent olFormatPercent2Decimal

olText 1 OlFormatText olFormatTextText

olYesNo 6 OlFormatYesNo olFormatYesNoYesNo

7.5 Writing other Outlook automation code 173

Listing 7.8 Word VBA code to attach the current document to an Outlook message

Sub SendMeAsMail()
 ' requires reference to Microsoft Outlook 12.0 library
 Dim objOL As Outlook.Application
 Dim objMail As Outlook.MailItem
 Dim strMsg as String
 Dim ans as Integer
 Dim dlg As Word.Dialog
 On Error Resume Next

 If Not ActiveDocument.Saved Then
 strMsg = "You must save this document " & _
 "before sending it. OK?"
 ans = MsgBox(strMsg, vbYesNo, "Save Document?")
 If ans = vbYes Then
 If ActiveDocument.Path = "" Then
 Set dlg = Application.Dialogs(wdDialogFileSaveAs)
 dlg.Show
 End If
 End If
 End If
 If ActiveDocument.Saved Then
 Set objOL = StartOutlook()
 If Not objOL Is Nothing Then
 Set objMail = objOL.CreateItem(olMailItem)
 objMail.Attachments.Add ActiveDocument.FullName
 objMail.Display
 End If
 End If

 Set objMail = Nothing
 Set objOL = Nothing
End Sub

Function StartOutlook() As Outlook.Application
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 On Error Resume Next

 Set objOL = GetObject(, "Outlook.Application")
 If objOL Is Nothing Then
 Set objOL = CreateObject("Outlook.Application")
 Set objNS = objOL.GetNamespace("MAPI")
 objNS.Logon
 End If
 Set StartOutlook = objOL

 Set objOL = Nothing
 Set objNS = Nothing
End Function

174 7.5 Writing other Outlook automation code

object model. The prerequisite to avoid prompts is that the computer must
have an up-to-date anti-virus application running. Chapter 10 contains
more information on Outlook security.

7.5.1 Starting an Outlook session

Starting an Outlook session is such a key element of automating Outlook
from another program that you probably will want to have a generic func-
tion to perform that function for you. The StartOutlook() function in
Listing 7.9 uses the GetObject() method to see if a copy of Outlook is
already running. If Outlook isn’t running, the code uses the CreateOb-
ject() method to start Outlook and then performs a logon. Depending on
the user’s mail profile settings, the Logon statement may prompt the user to
select a mail profile or may start Outlook with the user’s default mail pro-
file. You can also force Outlook to start with a particular mail profile:

objNS.Logon "name of mail profile"

or to prompt the user to choose a profile:

objNS.Logon "", "", True, True

Listing 7.9 Sending a file with a VBScript script

Const olMailItem = 0
On Error Resume Next

Set objOL = StartOutlook()
If Not objOL Is Nothing Then
 Set objMail = objOL.CreateItem(olMailItem)
 objMail.Attachments.Add "C:\Data\MyFile.txt"
 objMail.Display
End If

Set objMail = Nothing
Set objOL = Nothing

Function StartOutlook()
 Dim objOL
 Dim objNS
 On Error Resume Next

 Set objOL = GetObject(, "Outlook.Application")
 If objOL Is Nothing Then
 Set objOL = CreateObject("Outlook.Application")
 Set objNS = objOL.GetNamespace("MAPI")
 objNS.Logon
 End If
 Set StartOutlook = objOL

 Set objOL = Nothing
 Set objNS = Nothing
End Function

7.6 Summary 175

You can use the StartOutlook() function not just in Word, but in
Access or Excel or any VBA code environment where you need to start Out-
look; just remember to add a reference to the Microsoft Outlook 12.0
Object Library.

The VBScript equivalent of the StartOutlook() function is shown in
Listing 7.9 as part of a script to create and display a message with a specific
file attached. You can create such a script in Notepad, save it as a .vbs file,
then double-click the file to run it.

The only real difference between the two versions of the StartOut-
look() function is that the VBScript version has no data type declarations
for the two object variables, objOL and objNS.

7.5.2 Limitations on Outlook automation

Just because you can automate Outlook with an external VBA procedure or
a stand-alone VBScript script, as demonstrated in Listings 7.8 and 7.9, that
doesn’t mean you can write Outlook automation code to run in any envi-
ronment. Any Outlook automation code that is expected to run without
user interaction generally won’t work. These scenarios in particular are not
supported:

Code that runs from a Windows scheduler event

Server-side code, including database triggers, Web services, and other
Web applications

You can write client-side Jscript or VBScript in a Web application to auto-
mate Outlook, but even that may run into problems, because Outlook is not
a “safe for scripting” component. A call to the Outlook.Application object
from a Web page script may trigger an ActiveX security prompt, depending
on the browser’s security settings and the location of the Web page.

Also, some client anti-virus applications block Outlook automation by
raising an error on any call to the Outlook.Application object. If you
want to turn off such a script-blocking feature, you may need to contact
technical support for your anti-virus program to find out how to do that.

7.6 Summary
This chapter has demonstrated the basics of automating Outlook from
VBA, from custom form VBScript code, and from external applications.
Code modules can include both subroutines and functions, and such proce-
dures can react to events and use object methods to make something hap-
pen. For example, by returning an instance of the Outlook Application
object and using its CreateItem method, you can create a new task or a
new message. Pay close attention to the difference between the syntax for

176 7.6 Summary

accessing Outlook item properties and that for accessing custom form con-
trol properties.

In Chapter 8, we will continue learning code basics as we explore VBA
and VBScript code syntax in more detail, preparing the way in later chap-
ters to learn about the specifics of the Outlook object model.

177

8
Code Grammar 101

So far, your excursion into Outlook programming code has been a lot like
beginning language lessons. Most of the initial work in learning a language
is oral and repetitive: You work with a teacher or tape, memorizing phrases
and repeating them. Sooner or later, though, you must learn more about
the structure of a language; you must study grammar. Welcome to “Code
Grammar 101,” the chapter that reviews the basic syntax of VBA and
VBScript, including the most important functions built into VBA and
VBScript and many custom functions that are ready to add to your own
Outlook project.

Highlights of this chapter include discussions of the following:

How to write reusable subroutines and functions for both VBScript
and VBA

What built-in functions are available for manipulating text and dates

How to control the flow of your program and handle repetitive oper-
ations

How to give users feedback and solicit input from them

How to work with files and other objects from outside the Outlook
object model

8.1 Option Explicit
I’m going to let you in on a little secret: To create the CreateOneWeekTask
macro shown in Figure 7.8 and in Listing 8.1 below, you did more typing
than you needed to. Outlook can do more of the work for you and at the
same time avoid common errors. The key is to set up VBA so that it forces
you to declare all your variables.

First, it helps to see what happens when you have a mistake in your
code. In the CreateOneWeekTask macro, change the objTask.Display
statement to objMyTask.Display, and then run the routine again. You

178 8.1 Option Explicit

should receive an “object required” error message, shown in Figure 8.1.
Click the Debug button, and VBA takes you directly to the statement with
a problem—the one you changed. It’s wrong because objMyTask isn’t the
right name for the object variable for the new item; it should be objTask
instead, because you instantiated the variable with the statement that begins
Set objTask =.

I want you to notice this error, because it’s such a common one—you
might change a variable name in the middle of a procedure or just make a
typo. A couple of simple changes to the macro code, though, will help you
prevent such coding errors.

To stop code execution and get back into design mode to make those
changes, click the Reset button on the Toolbar, or choose Run | Reset.

Press Ctrl+Home to move to the top of the module containing the Cre-
ateOneWeekTask procedure. The dropdown lists at the top of the code
window should show (General) and (Declarations). You are now in the dec-
larations section of the module, before the first procedure. This is where you
place statements that affect the entire module and declare variables and
constants that you want to use in more than one procedure.

Make this statement the first line in the declaration section:

Option Explicit
The Option Explicit statement tells VBA that, within this particular

module, all variables must be declared before you use them. This means

Listing 8.1 Simple VBA macro to create a task due one week from today

Sub CreateOneWeekTask()
 Set objOL = Application
 Set objTask = objOL.CreateItem(olTaskItem)
 objTask.StartDate = Date
 objTask.DueDate = Date + 7
 objTask.Display
 Set objTask = Nothing
 Set objOL = Nothing
End Sub

Figure 8.1
Using the wrong

variable name can
cause an error.

8.2 Declaring variables and constants 179

that you can’t just throw in a new variable any time you need it. If you do,
you’ll get a “variable not defined” error when you try to run the code, but
that’s a good sort of error, one that points out a flaw in the code. To prevent
that error, declare each variable, either in the declarations section or inside a
procedure. We’ll look at variable “scope” a little later in the chapter to help
you decide which location is best. Using Option Explicit forces VBA to
check all variable names when it compiles the code, before running any
procedure. Detecting an error early, at the design or compile stage, is better
than finding the error only when you run the procedure.

To add Option Explicit automatically to the declarations for any
new module, choose Tools | Options from the VBA menu. In the Options
dialog, shown in Figure 8.2, check Require Variable Declaration. This
change affects only new forms and modules. If you want to use Option
Explicit in an existing VBA module, type it into the module’s declara-
tions section.

Tip: While you’re in the Options dialog shown in Figure 8.2, be sure to
check out the other options available to customize the appearance and oper-
ation of the VBA environment.

VBScript also supports Option Explicit, and I recommend that you
use it in every custom form’s code module. Type it as the first line in the
module; Outlook can’t add it automatically.

8.2 Declaring variables and constants
After adding Option Explicit to your VBA module, if you now try to
run the CreateOneWeekTask macro you will receive a “variable not
defined” compile error because you didn’t declare any variables. That’s not a
problem! It’s a reminder to clean up your code. Use a Dim statement to

Figure 8.2
Options for the

VBA code editor
include requiring
all variables to be

explicitly declared.

180 8.2 Declaring variables and constants

declare each variable at the beginning of the procedure, right after the Sub
or Function statement that marks the beginning of the procedure. To
declare the variables used in the CreateOneWeekTask macro, add these
statements to your code:

Dim objOL As Outlook.Application
Dim objTask as Outlook.TaskItem

Tip: If you write code only inside the Outlook VBA environment, you
can omit the Outlook prefix on data type declarations and just use Dim
objOL as Application. However, it’s a good idea to get into the habit
of using a fully qualified declaration in case you later expand your pro-
gramming efforts to VBA in other Office programs or to other program-
ming environments.

One of the major differences between VBA and VBScript is that the lat-
ter does not allow data-typing in variable or procedure declarations. There-
fore, a VBScript equivalent to the first declaration above would be simply

Dim objOL

but even better would be to include the data type as a comment by prefix-
ing it with an apostrophe:

Dim objOL ' As Outlook.Application

If you forget and include an As data type in a Dim statement in VBScript
code behind an Outlook form, you will get an “expected end of statement”
error when you try to run the form.

When you type a space after As in a Dim statement, VBA pops up a list
of possible ways to complete the statement. This feature, called Auto List
Members, is one of the “intellisense” features in VBA that can save you
hours of typing and avoid many errors. This is the feature I was referring to
earlier in the chapter, when I said that declaring your variables would actu-
ally help cut down on the amount of typing you need to do. Intellisense
helps you complete a statement or expression by offering a set of appropri-
ate choices. Select an item from the list, and then press Enter to add that
text to the current statement. If you press Enter, VBA completes the state-
ment and puts the cursor on the next line. Try pressing Tab or the spacebar
instead of Enter. If you press Tab, VBA completes the statement, but leaves
the cursor on the same line, immediately after the added text. If you press
the spacebar, VBA completes the statement, leaves the cursor on the same
line, and adds a space at the end.

When working with object variables, pressing the period (.) key is also
useful. For example, if you type “Dim objOL as ou,” as shown in Figure
8.3, VBA displays Outlook as the highlighted object. Type a period, and

8.2 Declaring variables and constants 181

VBA displays a list of Outlook objects. Type “ap,” and you’ll see Applica-
tion highlighted. At that point, press Enter, Tab, or the spacebar, and VBA
will finish the declaration by completing the word “Application.”

Tip: Another intellisense feature is that it automatically applies the correct
capitalization to object, method, operator, and property names. I usually
type in all lowercase and let VBA capitalize for me. That way, if parts of the
code statement remain lowercase, I know I probably have a typo.

8.2.1 Variable data types

When you declare a variable in VBA, you normally specify a data type. If
you don’t, the variable uses the variant data type, which is a data type in
which the variable can represent any type of data, from an integer to an
object. Because variant-type variables support all kinds of operations, VBA
cannot optimize the code when it compiles it, as it can if you use explicit
data types. Therefore, using explicit data types can make your VBA code
run more efficiently. It can also help you avoid certain types of coding
errors. For example, if you declare two string variables and then try to mul-
tiply them, when VBA compiles the project, you’ll see a “type mismatch”
error message like that shown in Figure 8.4.

Table 8.1 lists the data types that VBA supports. You should use the
variant data type in VBA for variables that hold data from a user form

Figure 8.3
The “intellisense”

feature in VBA
helps you avoid

errors by suggesting
ways to complete
code statements.

Figure 8.4
A type mismatch

error occurs when
you try to use an

operator, function,
or method on the

wrong type of
variable or object.

182 8.2 Declaring variables and constants

control (where users can type numbers or letters or leave the control
blank) and other situations where the exact data type is not known at
design time. In VBScript, which does not support data-typing on variable
declarations, all variables—including object variables—are considered
variant-type variables.

Note: In Table 5.1, “E+38” means that you multiply by a factor of “10 to
the power of 38,” and “E-45” means “10 to the power of -45.” This scien-
tific notation, as it’s called, is used to simplify the writing of very large and
very small numbers.

Table 8.1 VBA Data Types

Data Type
Suggested
Variable Prefix Can Contain

Boolean bln True (-1) or False (0)

Byte byt Any nondecimal number between 0 and 255

Integer int Any nondecimal number between –32,768 and 32,767

Long lng Any nondecimal number between –2,147,483,648 and 2,147,483,647

Single sng Negative numbers from –3.402823E+38 to –1.40298E-45 and positive num-
bers from 1.401298E-45 to 3.402823E+38 (single-precision floating point)

Double dbl Negative numbers from –1.79769313486231E+308 to –4.94065645841247E-
324 and positive numbers from 4.94065645841247E-324 to
1.79769313486232E+308 (double-precision floating point)

Currency cur Numbers between –922,337,203,685,477.5808 to 922,337,203,685,477.5807
(limit of four decimal places)

Decimal dec Any integer up to +/–79,228,162,514,264,337,593,543,950,335;
any decimal number up to +/–7.9228162514264337593543950335 with
28 places to the right of the decimal; smallest nonzero number is
+/–0.0000000000000000000000000001

Date dte Date and time values from January 1, 1000, to December 31, 9999; time values
are resolved to the second

Object obj Reference to any object

String str For variable-length strings, from 0 to approximately 2 billion characters; for
fixed-length strings, from 1 to 65,400 characters

Variant var Any kind of data, including strings, numbers, and objects

8.2 Declaring variables and constants 183

Caution: Date/time fields in Outlook do not support the full range of dates
that a VBA date variable can hold. Dates on Outlook forms must fall between
April 1, 1601, and August 31, 4500, inclusive. Dates that appear in Outlook
form fields and folder views as “None” are usually stored as January 1, 4501,
although there are some cases where no date is stored in the field.

Even though VBA includes an object data type, usually you should
declare an object variable as a specific type of object, as you saw in the Dim
statements earlier in this section, such as:

Dim objOL As Outlook.Application

Use the object data type when you don’t know what type of object you
might be dealing with. For example, when accessing items in an Outlook
contacts folder, you cannot know in advance whether any given item is an
Outlook.ContactItem or Outlook.DistListItem (distribution list)
object. In that case, you’d declare a variable As Object:

Dim objItem as Object

The same is true of the Inbox, which can contain other types of items
besides messages—task requests, meeting requests, and nondelivery
reports. If you’re looping through all the items in the Inbox, use an object
variable declared As Object for the individual item retrieved in each pass
of the loop. (We’ll revisit this issue in Chapter 15, “Working with Inspec-
tors and Items.”)

8.2.2 Variable naming conventions

VBA and VBScript variable names must follow certain rules. They must
begin with a letter, not a number, and cannot contain a period. Many pro-
grammers use a naming convention—a specific pattern for variable
names—for a variety of reasons:

To distinguish variables from constants and intrinsic objects

To provide a visible reminder of the type of data a variable contains

To make the code easier to read, especially if someone else might be
maintaining it in the future

One simple convention is to think of a name that describes the variable’s
contents or purpose and then add a prefix (e.g., those in the second column
of Table 8.1) that gives the data type. This particular variable naming con-
vention is sometimes known as “Hungarian.” For example, if you need a
variable to hold the value of the MessageClass property of an Outlook
item, that property contains text, so a good variable name might be
strMessageClass.

184 8.2 Declaring variables and constants

8.2.3 Understanding scope

The code examples so far deal with variables only as they occur inside a par-
ticular procedure. Sometimes, though, a single variable needs to be available
to multiple procedures. For example, in one procedure, you might want to
instantiate (or create a new instance of) an object variable to represent the
current Outlook folder, and then perform some operation on that folder in
several other procedures, maybe even procedures in completely different
VBA modules. In that case, you would declare and instantiate a global vari-
able in a regular VBA code module (not ThisOutlookSession), using
code like this:

Public g_objMyFolder As Outlook.Folder

Sub SetMyFolder()
 Dim objOL As Outlook.Application
 Dim objExplorer As Outlook.Explorer
 Set objOL = Application
 Set objExplorer = objOL.ActiveExplorer
 Set g_objMyFolder = objExplorer.CurrentFolder
 Set objExplorer = Nothing
 Set objApp = Nothing
End Sub

The ActiveExplorer object property represents the folder window
that the user is currently viewing, while its CurrentFolder property
returns the actual folder. Therefore, the code above sets a global Folder
object to the folder currently being displayed in Outlook. Any procedure in
that module or any other module would be able to access the properties,
such as the number of items in the Folder object like this:

MsgBox g_objMyFolder.Name & " - " & _
 g_objMyFolder.Items.Count & " items"

In VBA, variables have three possible scopes, summarized in Table 8.2.
In VBScript code behind an Outlook form, only one module is present, so
module-level scope is effectively a global scope.

In the SetMyFolder subroutine above, the code sets the objOL and
objExplorer procedure variables to Nothing at the end of the procedure.
The global g_objMyFolder variable is not set to Nothing because it will be
used in other procedures. Outlook VBA will release global- and module-
scope variables when Outlook shuts down.

Tip: You can use either Dim or Private to declare module-level variables,
but Private makes your intent perfectly clear.

Scope also affects your choice of variable names. In the SetMyFolder
subroutine, the “g_” prefix for g_objMyFolder provides a reminder that it’s
a global variable. (You can use an “m_” prefix for module-scope variables.)

8.2 Declaring variables and constants 185

You should not have a module-level variable strMsg and also use a proce-
dure variable with the same name. (VBA will use the local procedure vari-
able, not the module-level variable, but the overlapping names have the
potential to cause confusion, if not outright errors.) Repeated variable
names are OK, as long as they are local to the procedures in which they are
used. For example, you can use variable names such as intAns and strAns
(Ans being short for “Answer”) across many procedures to hold the results
from MsgBox() and InputBox() functions in multiple procedures. This
won’t be a problem if you declare the variable as a local variable inside each
procedure.

Why care about scope at all? For two main reasons: to make code run
more efficiently and to keep two procedures from inadvertently changing
the same variable value.

The efficiency issue involves memory. The broader the scope, the longer
the variable remains in memory. A variable is removed from memory when
it goes out of scope—in other words, when all the code in the procedure or
module has run and the variable is no longer needed or, in the case of an
object variable, when it is specifically released with a Set objVar = Noth-
ing statement. In general, you should use the tightest scope possible.
Because you can use arguments to pass variable values or references from
one procedure to another (as you will see shortly), global and module vari-
ables should be the exception, not the rule.

We’ll return to the issue of scope a little later in the chapter, when we
look at it in the context of procedure declarations.

8.2.4 Declaring constants

Everything you’ve just learned about variable declarations also applies to
constants. You can make constants available only to a single procedure’s

Table 8.2 Variable and Constant Scope Definitions

Scope Description

Procedure The variable or constant is available only within the current procedure.
Declare with a Dim statement at the beginning of the procedure.

Module The variable or constant is available only to procedures within the cur-
rent module. Declare with a Dim or Private statement in the declara-
tions section of the module.

Global The variable or constant to any procedure in any module. Declare with a
Public statement in the declarations section of any regular module (not
a class module, such as ThisOutlookSession or a userform’s code
module).

186 8.2 Declaring variables and constants

code, have other constants that work anywhere in the current module,
and—in VBA—declare still others that are global in scope. The Const,
Private, and Public statements used to declare a constant and assign its
value are analogous to the Dim, Private, and Public statements used to
declare variables. One key difference is that the value of the constant is set
in its declaration to some literal data value (not an expression) and never
changes after that.

Names for constants follow the same constraints and patterns as variable
names. Some programmers use all caps for constants, to easily distinguish
them from variables.

For procedure-level constants, place the Const statement at the begin-
ning of a procedure, along with any Dim statements to declare variables. For
module-level constants, place the Const statement in the declarations sec-
tion of the module; optionally, add the Private keyword to define the
scope. For global constants in VBA, place a constant assignment statement
that begins with the Public keyword in the declarations section of the
module. These are examples of constant declaration statements for VBA:

Const ATTEMPTS = 5 As Integer

Private Const M_COMPANYNAME = "Turtleflock, LLC" _
 As String

Public Const G_VACATIONDAYS = 10 As Integer

To declare the same constants in VBScript behind an Outlook form,
omit the As expressions. You can also omit the Public or Private key-
word for constant declarations at the module level, since VBScript has only
one module:

Const ATTEMPTS = 5

Const M_COMPANYNAME = "Turtleflock, LLC"

Const G_VACATIONDAYS = 10

Const olFolderTasks = 13

Notice that constants can hold any kind of data; they’re not limited to
numbers. The last constant is an example of a technique you should use
often in VBScript code—providing a constant declaration for an intrinsic
Outlook constant. You don’t need to declare such constants in VBA, but
you do in VBScript. You can use the VBA object browser to look up Out-
look constants, as shown in Figure 8.5, select the constant declaration at the
bottom of the object browser, and then right-click and choose Copy to get
text that you can paste into your VBScript code, for example:

Const olMailItem = 0

8.2 Declaring variables and constants 187

Both VBA and VBScript support many intrinsic constants whose names
begin with vb. You do not need to declare these constants in either VBA or
VBScript. Table 8.3 lists many that you are likely to use. We will see others
later in the chapter, in the section on message boxes.

Figure 8.5
Look up Outlook

constant
declarations in the

VBA object
browser.

Table 8.3 Key Intrinsic Constants for VBA and VBScript

Constant Value Description

Color Constants

vbBlack &h00 Black

vbRed &hFF Red

vbGreen &hFF00 Green

vbYellow &hFFFF Yellow

vbBlue &hFF0000 Blue

vbMagenta &hFF00FF Magenta

vbCyan &hFFFF00 Cyan

vbWhite &hFFFFFF White

Date Constants

vbSunday 1 Sunday

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

188 8.3 Writing procedures

Note: Color constant values listed in Table 8.3 with &h prefixes are long
integers written in hexadecimal format. The Chr() function returns a char-
acter with a particular ASCII value. For example, 9 is the ASCII value for
the character placed in a message when you press the Tab key, so Chr(9)
returns the tab character.

8.3 Writing procedures
Now that you’ve learned how to declare variables and constants, let’s look at
the techniques involved in writing the main building blocks of your Out-
look applications: subroutines and functions. You have already written sev-
eral procedures—a VBA macro and some VBA and Outlook form event
handlers. Recall that each procedure begins with a Sub or Function decla-
ration and ends with an End Sub or End Function statement.

At the beginning of the chapter, I promised that you could cut down
on the amount of typing you do in the VBA code window if you declare
all your variables. As you use any declared object variable, the intellisense

Date Format Constants

vbGeneralDate 0 Displays a date and/or time format-
ted according to your system settings

vbLongDate 1 Displays a date using your com-
puter’s long date format

vbShortDate 2 Displays a date using your com-
puter’s short date format

vbLongTime 3 Displays a time using your com-
puter’s long time format

vbShortTime 4 Displays a time using your com-
puter’s short time format

String Constants

vbCr Chr(13) Carriage return

vbCrLf Chr(13) & Chr(10) Carriage return + linefeed

vbLf Chr(10) Linefeed

vbTab Chr(9) Horizontal tab

Table 8.3 Key Intrinsic Constants for VBA and VBScript (continued)

Constant Value Description

8.3 Writing procedures 189

feature in VBA displays a list of members of that object class. Members
include the events, methods, and properties—in other words, everything
you might be able to do with or find out about an object.

You saw a small demonstration of this feature when you added Dim
statements earlier; VBA helped you pick the right data or object type. It gets
even better when you start using those object variables. To see how this fea-
ture works, create a new VBA procedure named TestAutoListMembers,
and add the following code:

Dim objOL as Outlook.Application
Dim objAppt as Outlook.AppointmentItem
Set objOL = Application

On a new line, type “set objappt = objol.” (with a period at the end) and
then pause briefly. After you type the period, you will see a list of all the
methods and properties for the Outlook.Application object (see Figure
8.6).

Type “cr” and watch the members’ list jump to CreateItem, which is the
method you want for this example. Press Tab to paste “CreateItem” into the
text of the statement. Then type an open parenthesis. As soon as you type
that character, VBA again pops up a list—this time one of appropriate
intrinsic constants—as well as information on the CreateItem method
and its parameters (see Figure 8.7).

Tip: To see the syntax for any method on demand, highlight it in the VBA
code editor, then press Ctrl+I.

To finish the statement, press the down arrow key to select olAppoint-
mentItem, press Tab to add it to the code window, and type a closing
parenthesis. The code statement you entered looks like this:

Set objAppt = objOL.CreateItem(olAppointmentItem)

Figure 8.6
The Auto List

Members feature
helps automatically
complete your VBA

code statements.

190 8.3 Writing procedures

but what you actually typed was

Set objAppt = objOL.cr([Tab] [Down])

That’s 27 keystrokes using the intellisense Auto List Members feature (as
it’s called) versus 50 keystrokes to type the entire statement by hand. See, it
really will save you lots of typing and prevent many mistakes! Now, try it
again, to see how few keystrokes it takes to add an objAppt.Display state-
ment to show the new appointment to the user.

But what about VBScript? An Outlook form’s code window has no
intellisense features. Don’t let that stop you! Many Outlook programmers
prototype their form code in the VBA environment, then convert it to
VBScript code by adding Outlook constant declarations and commenting
out data type As statements. Here’s what the code you typed above would
look like in VBScript behind an Outlook form:

Sub TestAutoListMembers()
 Dim objOL ' as Outlook.Application
 Dim objAppt ' as Outlook.AppointmentItem
 Const olAppointmentItem = 1
 Set objOL = Application
 Set objAppt = objOL.CreateItem(olAppointmentItem)
 objAppt.Display
End Sub

See if you can spot these key changes:

An Outlook constant declaration

Two data type As expressions that have been commented out

We’ll look at the process of converting VBA code to VBScript in more
detail in the next chapter.

8.3.1 Calling procedures

Some computer applications boast of thousands or millions of lines of code.
All that code is not contained in just one subroutine. Applications typically

Figure 8.7
The Auto Quick

Info feature
provides the syntax

for functions,
methods, and their
parameters as you

type in the code
window.

8.3 Writing procedures 191

break down into many chunks, each of which performs a certain role in the
larger application. The event handlers that we saw in the previous chapter
are one kind of procedure, but they in turn are likely to transfer control to
other procedures to perform specific processing tasks or return values to
variables in the event handler. To transfer control from one procedure to
another, a procedure calls another procedure. Most functions and many
subroutines have one or more parameters that pass a value—a constant, a lit-
eral value, a variable, or an expression—from one procedure to another.

To call a function, assign a variable to the value returned by the func-
tion; pass any parameters as arguments in parentheses after the function
name. For example, this statement

strToday = FormatDateTime(Date, vbLongDate)

assigns a string variable named strToday by using the built-in FormatDa-
teTime() function to return today’s date. The date is formatted to show
the computer’s long date format (which normally includes the day of the
week).

Subroutines can be called with the subroutine name, followed by argu-
ments separated by commas, or with the Call keyword and the arguments
in parentheses. Both these statements call the same subroutine:

MyProc arg1, arg2, arg3

Call MyProc(arg1, arg2, arg3)

Using the Call type of statement is less ambiguous and makes it easier
to spot the points in your code where you branch to a different subroutine.

When you call a subroutine, the code in the called procedure executes.
When it finishes, program control returns to the next line of the calling
procedure. For example, consider these two VBA procedures:

Sub ProcOne()
 Dim intA As Integer
 intA = 10
 Call ProcTwo()
 intA = 10 * 10
End Sub

Sub ProcTwo()
 Dim intB as Integer
 intB = 20
 intB = 20 * 20
End Sub

First, the value of intA is set to 10. Then ProcTwo executes and sets the
value of intB. Finally, execution returns to ProcOne to change the value of
intA once more.

192 8.3 Writing procedures

8.3.2 Passing arguments

For procedures with arguments, the default in both VBA and VBScript is to
pass the variable by reference, which means that the value of the original
variable changes as a result of the statements inside the called procedure.
The alternative is to pass variables by value, which means the original vari-
able remains unaltered, no matter what happens in the procedure to which
it is passed.

Most of the time, you don’t need to worry about whether a variable is
passed by value or by reference, but since passing a variable the wrong way
can cause your code to behave in an unexpected fashion, it’s worth looking
at an example. This is definitely a concept that’s easier to see in action than
to read about. Listing 8.2 contains a demonstration you can add to a VBA
module and run to see what happens.

The code sets the value of two variables, R and V, each to 10, and then
calls the ByRefSub procedure, passing R by reference (the default) to the X
argument and V by value to the Y argument. Because V is passed to the Y
variable by value, the statement Y = Y + 20 has no effect on the value of V
in the first procedure. However, the statement X = X + 20 not only
changes X in the ByRefSub procedure, but also changes the value of R in the
calling procedure to 30 because R was passed to the X variable by reference.
V, however, does not change from its original value of 10, because it was
passed by value.

Tip: Did you notice how Listing 8.2 declared two variables in one state-
ment in the ByValDemo procedure?

Tip: Debug.Print is a convenient method for seeing the result of VBA
code. It shows the data in columns in the Immediate window, which you
can view by pressing Ctrl+G or choosing View | Immediate Window. Make
sure, though, that you take any Debug.Print statements out of your final
code, because they can slow down the program.

To test the same concept in an Outlook custom form, create a new
form, drag a command button from the Control Toolbox to any custom
page, add the code in Listing 8.3, then run the form and click the button.
The message box should show the same results for R and V—30 and 10,
respectively—as in the VBA example.

You could use a ByRef keyword with the argument for X in the Sub
ByRefSub declaration to make it perfectly clear that you’re passing R by

8.3 Writing procedures 193

reference. However, because passing variables by reference is the default,
that keyword is optional.

Using ByVal in the procedure declaration, as in the two examples above,
is one way to pass an argument by value. Another approach is to put paren-
theses around the argument. For example, if you declare and call a proce-
dure like this

Sub ByRefSub(X, Y)
Call ByRefSub(R, (V))

the second variable, Y, is passed by value because it is enclosed in parenthe-
ses:

That approach is less transparent—in other words, results in less read-
able code—than explicitly using ByVal in the procedure declaration,

Listing 8.2 ByVal makes a difference in how code runs in VBA

Sub ByValDemo()
 Dim R As Integer, V As Integer
 R = 10
 V = 10
 Call ByRefSub(R, V)
 Debug.Print R, V
End Sub

Sub ByRefSub(X, ByVal Y)
 X = X + 20
 Y = Y + 20
End Sub

Listing 8.3 ByVal also makes a difference in VBScript

Sub CommandButton1_Click()
 Call ByValDemo()
End Sub

Sub ByValDemo()
 Dim R, V
 R = 10
 V = 10
 Call ByRefSub(R, V)
 MsgBox R & vbTab & V
End Sub

Sub ByRefSub(X, ByVal Y)
 X = X + 20
 Y = Y + 20
End Sub

194 8.3 Writing procedures

though. We won’t be using it in any examples in this book, but now you’ll
know it when you see it in someone else’s code.

8.3.3 Adding data types to parameters and functions

In VBA, you can improve the efficiency and consistency of your code by
declaring the data type not just for variables in procedures, but also for the
functions you create and for the parameters for both subroutines and func-
tions. Use the same As data type syntax as you learned for Dim statements.
For example, it’s obvious from the data type declarations in this Mail-
Addr() function that you need to supply an Outlook contact and an inte-
ger as arguments and that it will return a text string:

Function MailAddr _
 (objContact As Outlook.ContactItem, _
 intX As Integer) As String
 Dim strAddress As String
 Dim strPropName As String
 If intX >= 1 And intX <= 3 Then
 strPropName = _
 "Email" & CStr(intX) & "Address"
 strAddress = _
 objContact.ItemProperties(strPropName)
 Else
 strAddress = ""
 End If
 MailAddr = strAddress
End Function

The MailAddr() function always returns a string value corresponding
to the first, second, or third email address in the contact (if there is one) or
a blank string if you use a number other than 1, 2, or 3 for the intX param-
eter.

8.3.4 Making code reusable

Typos are one of the biggest sources of code errors. Therefore, one way to
avoid errors is to avoid typing. In this chapter, we’ve already seen how the
intellisense features in Outlook VBA allow you to pick from a list of prop-
erties or allowable arguments to avoid making mistakes when working with
Outlook objects. Another approach is to design your code so that it’s reus-
able. If half of a project can be built with code you already have, that means
you only have to type half as much code to finish the job.

A key technique in making code reusable is using variables or procedure
parameters instead of literal (in other words, “hard coded”) values. We can
examine this concept in a context that has great practical applications for
Outlook.

Outlook provides a Selection object that represents the items that the
user has selected in an Outlook folder window. (For more information

8.3 Writing procedures 195

about the Selection object, see Chapter 15.) Let’s say, though, that you
don’t want to process a selection of more than fifty items. Listing 8.4 is a
VBA subroutine for working with a maximum number of selected items.
The number of items is specified by the assignment statement for the int-
MaxItems variable. This example copies the subject of each selected item to
the VBA Immediate window; you could put your own processing code in
the section marked with the comment “process the items here.”

Select Case ... End Select is a structure that allows code to con-
sider multiple possible values of a given variable or expression, in this case
the number of items selected. In the second Case statement, you could
specify the literal value for the maximum number of items you want to pro-
cess, rather than using the intMaxItems variable. However, if you wanted
to copy that code and adapt it to another scenario, you would have to dig
down to that Case statement to change the maximum number of items.
Assigning the number to intMaxItems near the beginning of the proce-

Listing 8.4 Procedure to process up to fifty selected items

Sub ReusableSelectionExample()
 Dim objOL As Outlook.Application
 Dim objItem As Object
 Dim objSel As Outlook.Selection
 Dim intMaxItems As Integer
 Dim blnDoProcess As Boolean
 ' *** Use next line to set maximum number ***
 ' *** of items this routine is allowed to ***
 ' *** process. ***
 intMaxItems = 50
 blnDoProcess = False
 Set objOL = Application
 Set objSel = objOL.ActiveExplorer.Selection
 Select Case objSel.count
 Case 0
 MsgBox "No items were selected"
 Case Is > intMaxItems
 MsgBox "Too many items were selected"
 Case Else
 blnDoProcess = True
 End Select
 If blnDoProcess = True Then
 ' process the items here
 For Each objItem In objSel
 Debug.Print objItem.Subject
 Next
 End If
 Set objItem = Nothing
 Set objSel = Nothing
 Set objOL = Nothing
End Sub

196 8.3 Writing procedures

dure makes it much easier to reuse this code in other modules that need to
process Selection, especially since it has a prominent comment calling
your attention to the intMaxItems = statement.

Another alternative approach is to pass the maximum number of items
as a parameter. Omitting the Dim and Set obj = Nothing statements, the
revised VBA procedure would look like this:

Sub ReusableSelectionExample(intMaxItems As Integer)
 blnDoProcess = False
 Set objOL = Application
 Set objSel = objOL.ActiveExplorer.Selection
 Select Case objSel.count
 Case 0
 MsgBox "No items were selected"
 Case Is > intMaxItems
 MsgBox "Too many items were selected"
 Case Else
 blnDoProcess = True
 End Select
 If blnDoProcess = True Then
 ' process the items here
 For Each objItem In objSel
 Debug.Print objItem.Subject
 Next
 End If
End Sub

The VBScript version would be identical, except that you’d omit the As
Integer parameter data type, along with the As type portion of the Dim
statements.

8.3.5 Documenting your procedures

To document your application, add comments to your program code. A
comment is any text preceded by an apostrophe ('). VBScript and VBA
both support comments, but only VBA shows comment text in green.

Tip: You can add commands to the VBA toolbar to make it easy to com-
ment and uncomment large blocks of text. Choose View | Toolbars | Cus-
tomize. On the Commands tab, under Categories, select Edit. From the
Edit commands list, drag the Comment Block and Uncomment Block
commands to the toolbar.

Comments can introduce a section of your code and explain what each
section does and also provide remarks on variables as you declare them, as
shown in Listing 8.4 in the previous section. In complex modules, you may
want to provide the author, purpose, history, arguments, and other infor-
mation about each procedure. The following VBA code provides an exam-
ple of each of these types of comments:

8.3 Writing procedures 197

'
**
' Name: CommentTextExample
' Author: Sue Mosher
' History: Version 1.1, 27 Jul 2006
' Purpose: Demonstrate placement of different
' types of comments
' Args: None
' Returns: Nothing
'
**
Sub CommentTextExample()
 Dim strStart As String ' start date from form
 Dim strEnd As String ' end date from form
 'get dates from modal form
 frmReminderUpdate.Show
 strStart = frmReminderUpdate.txtStartDate
 strEnd = frmReminderUpdate.txtEndDate
 Unload frmReminderUpdate
End Sub

You don’t need to comment everything in every procedure, but try to
provide enough information so that you (or another developer) will be able
to follow the code logic at any time in the future.

8.3.6 More code style tips

Most programmers follow two style conventions that tend to make code
easier to read:

Keeping statements together in blocks indented the same amount of
space.

Using an underscore (_) character as a continuation character at the
end of a line when the statement would otherwise run off the screen,
as shown in the code sample in section 8.3.3.

In VBA, press Tab every time you want to indent the default four char-
acters. To change the indentation of a group of statements at one time,
select the statements, then press Tab to increase the indent, or Shift+Tab to
decrease the indent. You can change the indent size in Tools | Options in
the VBA editor.

In the VBScript code window for a custom form, the indent that results
from pressing Tab is six characters and cannot be changed.

The order in which procedures occur in a module doesn’t really matter
to VBA or VBScript, but it does matter to someone (you!) who is trying to
understand the code. The dropdown list on the upper-right corner of the
code window in VBA keeps track of procedures in alphabetical order.
(VBScript has no equivalent.) Within a code module, you might want to
keep procedures in order of importance: main procedure first and then sub-
sidiary subroutines and functions.

198 8.4 Working with expressions and functions

Here’s one more concept that will make your code more readable when
you work with object variables in either VBA or VBScript. You can use a
With ... End With code block to set properties and invoke methods on a
single object, without specifying the object variable in each statement. For
example, if you have a ContactItem object variable named objContact
(in other words, an Outlook contact item), you can set the name and other
properties and then save the item with a block of statements like this:

With objContact
 .FullName = "Sue Mosher"
 .Company = "Turfleflock, LLC"
 .BusinessAddressStreet = _
 "1234 Something Place"
 .BusinessAddressCity = "Arlington"
 .Save
End With

The above code snippet sets four properties and then invokes the Save
method. Did you notice the indentation that sets off the statements inside
the With ... End With block and the underscore character that allows the
.BusinessAddressStreet = statement to span two lines?

8.4 Working with expressions and functions
Much of the work of programming involves performing calculations and
updating variables with new values. The key code components for this work
are expressions and built-in functions, and functions you create yourself.
You’ve seen examples of all of these as we’ve looked at other code compo-
nents. In this section, you’ll encounter most of the basic VBA and VBScript
functions that help you manipulate dates, parse text, and do math. Many of
those functions also work in value and validation formulas. We can’t cover
all of Outlook’s functions in one chapter, of course, only those most com-
monly used.

8.4.1 Elements of an expression

Many code statements include a variable on the left side of an equals sign
and terms on the right side that assign a value to the variable. Those terms
comprise an expression. The expression may be a combination of string val-
ues or numbers or dates, but the key concept is that it can be reduced to
some finite value. A statement like

strPhone = "+1 (" & strAreaCode & ") " & strNumber

means “set the value of the strPhone variable equal to the result of the
expression on the right side of the equals sign.” The expression itself con-
sists of four terms—two literals, two variables—joined by the ampersand
(&) operator for string concatenation:

8.4 Working with expressions and functions 199

Tip: A phone number is a string, not a numeric value, because it contains
spaces and punctuation as well as numbers

Note: Not all code statements set a variable equal to an expression, of
course. Some statements control program flow, instantiate object variables,
or execute object methods.

A literal value is a specific value that doesn’t change, but is expressed in
code statements as the value itself, not as a constant. You must enclose
string literals in quotation marks and date literals (including time values) in
number or hash signs (#). Here are more examples of literals that code
might use:

"tomorrow"
#March 2, 2007#
#3/2/2007#
#10:00 a.m.#
3298

The last item is a literal, too—a numeric literal. You do not need to
enclose numbers with special characters when you use their literal values.

Tip: The #3/2/2007# literal always means March 2, 2007, even if your sys-
tem is set to use a day/month/year short date format. We look at this issue
later in Section 8.6.4, “Time zones and international dates.”

If you use the naming conventions described earlier in this chapter, you
should have no problem distinguishing literals from variables, constants,
and functions. Variable names should follow the naming rules with prefixes
that indicate their scope and content. Constants should either be in all caps
or, for Outlook constants in VBScript code, use the same ol-prefix names
as the intrinsic constants in VBA. String and date literals have their sur-
rounding quotation marks and number or hash signs, and number literals
are, well, just numbers. You can combine functions, literals, variables, and
constants into expressions.

"+1 (" string literal

strAreaCode string variable

") " string literal

strNumber string variable

200 8.5 Working with strings

8.4.2 Using mathematical expressions

We encountered the principle mathematical operators earlier, in Chapter 7.
You actually do less math in Outlook programming than in some other
applications. More often, you are manipulating Outlook items and working
with text and dates.

When working with mathematical expressions, remember that they are
evaluated from left to right. Also, if an expression contains more than one
operator, the terms involving operators are evaluated in a particular
sequence, according to the operator precedence order, which you can look
up in Help. Rather than worry about operator precedence, though, you
should control the order yourself by using parentheses to group related
terms.

Text boxes on VBA forms and the variant-type variables in VBScript
code can hold different kinds of data. You can’t always be sure what type of
data you’re working with. Even if you give a variable a name that indicates it
should contain numeric data, there could be something wrong with your
code or the variable could contain a value of Null—in other words, it
might contain no data. To avoid an error with code that assumes a numeric
value, you can perform a test first, using the built-in IsNumeric() func-
tion, which works in both VBA and VBScript. It returns True or False,
depending on whether the argument can be evaluated to a number. You’ve
already seen this function in the VBA birthday/reminder form that we
enhanced in Chapter 7:

If IsNumeric(txtDays.Value) = False Then
 Cancel = True
 MsgBox "Please enter a number."
End If

Note: The expression IsNumeric(txtDays.Value) = False can also be
expressed as Not IsNumeric(txtDays.Value). Similarly, if expr is an
expression that evaluates to True or False (that is, a Boolean expression),
then the expressions expr and expr = True are equivalent.

The presence of Null in any mathematical expression causes the entire
expression to resolve to Null. For example, Null + 2 is not the same as 0 +
2. The expression Null + 2 resolves to Null, not 2.

8.5 Working with strings
A great deal of Outlook programming code is devoted to manipulating
text—or more precisely, manipulating string variables and text property val-
ues—by breaking them into parts and putting them back together again

8.5 Working with strings 201

using techniques to parse text. For example, if you have a variable named
strPhone that contains a number using the standard pattern +xx (yyy)
zzz-zzzz or (yyy) zzz-zzzz, this code extracts the area or city code from
within the parentheses and assigns it to a new variable, strAreaCode:

intLeftPar = InStr(strPhone, "(")
intRightPar = InStr(intLeftPar, strPhone, ")")
strAreaCode = Mid(strPhone, intLeftPar + 1, _
 intRightPar - intLeftPar -1)

The code finds the positions of the two parentheses, and then extracts
the text between them. Did you notice the string literals for the parenthesis
characters?

The next few sections will teach you about the Instr() and Mid()
string parsing functions and others that work in both VBA and VBScript.

8.5.1 Extracting string parts

The code in the preceding section uses two important string functions:
Instr() and Mid(). The Instr() function finds the position of a string
within another string, while Mid() returns text from inside a string, starting
at a particular position and (optionally) continuing for a specific number of
characters. Table 8.4 lists Mid() and two other essential string-parsing func-
tions, Left() and Right(). The examples assume that strPhone = "+1
(203) 555-7890".

Notice that you can use Mid() with or without a length parameter. If
you omit the length parameter, Mid() returns all the text from the starting
point to the end of the string.

8.5.2 Comparing strings

Often you will want to know whether one string is the same as another or
contains specific text as a substring. Table 8.5 lists three essential functions
for comparing strings.

Table 8.4 Functions to Extract String Parts

Function
Example Where
strPhone = "+1 (203) 555-7890" Evaluates to

Left(String, Length) Left(strPhone, 3) "+1"

Right(String, Length) Right(strPhone, 8) "555-7890"

Mid(String, Start, Length) Mid(strPhone, 5, 3) "203"

Mid(String, Start) Mid(strPhone, 4) "(203) 555-7980"

202 8.5 Working with strings

The Start parameter in the InStr() and InStrRev() functions is
optional, unless you are also using the Compare parameter; the default value
is 1.

The Compare parameter in all three functions is optional. String com-
parisons are case-sensitive by default. To make string comparisons ignore
upper and lower case, set the optional Compare parameter to the intrinsic
constant vbTextCompare, as shown in the example for the StrComp()
function in Table 8.5.

Tip: You can use the intrinsic constants vbTextCompare (= 1) and vb-
BinaryCompare (= 0) in any functions that take a Compare argument.

In VBA, you can set an entire module to use case-insensitive string com-
parison by adding an Option Compare Text statement to the declarations
section of the module. If no Option Compare statement is present, binary
(case-sensitive) comparison is used. VBScript does not support Option
Compare.

Note: Using text comparison, rather than binary comparison, may flatten
the difference between letters in the standard English alphabet and letters
from other languages that use diacritical (accent) marks. However, the
result will depend on your Windows language settings, so you may need to
experiment.

The InStrRev() function works like the InStr() function, which you
saw a little earlier, only it starts the comparison from the end of String1,
not the beginning. Its arguments are in a slightly different order, too. A
common practical use of InStrRev() is to determine the extension of a
file:

strFile = "filename.doc"
intRes = InStrRev(strFile, ".")

Table 8.5 Functions for Comparing Strings

Function Example Evaluates to

InStr(Start, String1,
String2, Compare)

InStr(3, "repeated", "e") 4

InStrRev(String1, String2,
Start, Compare)

InStrRev("repeated", "e") 7

StrComp(String1, String2,
Compare)

StrComp("ABCDE", "abcde",
vbTextCompare)

0

8.5 Working with strings 203

strExt = Mid(strFile, intRes + 1)
If LCase(strExt) = "doc" Then
 MsgBox "It's a Word document!"
End If

Where the InStr() and InStrRev() functions tell you exactly where
in a string a substring occurs, the StrComp() function performs a more
general comparison. It returns one of the values shown in Table 8.6.

8.5.3 Replacing parts of a string

There are two basic ways to replace one part of a string with another that
work in both VBA and VBScript:

Break the string into substrings, change one or more substrings, and
then join the substrings back together using the ampersand (&) con-
catenation operator.

Use the Replace() function to create a new string that replaces part
of the original string with another.

Let’s go back to telephone numbers for some examples. Consider a sce-
nario in which your local area code, say 717, is being split into 717 and
570. The fact that telephone numbers use a standard format with area/city
and country code—for example, +1 (717) 555-1234—makes it easy to
parse the different parts of the number and replace 717 with 570. For a
variable named strPhone, the three statements below return the updated
number to a variable named strNewPhone by breaking out two characters
on the left (the country code) and the eight characters on the right (the
local number, including the dash), and then concatenating them with the
new area code in the middle:

strCountryCode = Left(strPhone, 2)
strNumber = Right(strPhone, 8)
strNewPhone = strCountryCode & " (507) " & strNumber

The same operation performed with the Replace() function takes just
one code statement:

strNewPhone = Replace(strPhone, "(717)", "(570)")

Table 8.6 Possible Return Values for StrComp()

Comparison Return Value

String1 is less than String2 -1

String1 is equal to String2 0

String1 is greater than String2 1

String1 or String2 is Null Null

204 8.5 Working with strings

Replace() also supports optional Start, Count, and Compare parame-
ters to return only the portion of the string beginning at Start, make a spe-
cific Count of replacements, and, as with the InStr() function, set the
comparison type. Here is the full syntax for Replace():

strText = Replace(Expression, Find, Replace, _
 Start, Count, Compare)

Another practical application of Replace() is adding text to an
HTML-format mail message. The property of a MailItem object that
contains the HTML content is HTMLBody, but you can’t just append text
to that property, because any appended text would be placed after the </
body> tag that signifies the end of the HTML content of the message.
Thus, you need to insert the text just before the </body> tag. This code
snippet inserts a new paragraph of text at the end of the message repre-
sented by objMail:

strText = "<p>This is a new paragraph.</p></body>"
strHTML = Replace(objMail.HTMLBody, "</body>", _
 strText, , , vbTextCompare)

The commas with spaces between them are placeholders for the optional
Start and Count parameters. You must write the Replace() statement
that way for VBScript, although it’s not much fun to count commas in
order to figure out how many to insert before the last parameter, Compare.
Many functions in VBA, however, support the concept of named parame-
ters. See how much more understandable the Replace() statement
becomes if you use named parameters:

strHTML = Replace(Expression:=objMail.HTMLBody, _
 Find:="</body>", _
 Replace:=strText, _
 Compare:=vbTextCompare)

When using named parameters, use := to assign a value to the parame-
ter. To see the names of all the parameters, highlight the function name in
the VBA code window and press Ctrl+I.

8.5.4 Other useful string functions

There is more to manipulating strings than extracting, comparing, or com-
bining text. Table 8.7 lists functions to fill a string with a particular character,
return the length of a string, remove leading or trailing spaces, and change a
string to upper or lower case.

8.5.5 Example: Parsing text from a structured
text block

A common Outlook VBA programming task involves extracting data from
the body of a message, such as the results mailed from data that a visitor to

8.5 Working with strings 205

your Web site entered on a form there. Such a message might have multiple
lines each with a different Label: Data pair. Listing 8.5 is a very practical
example of using basic string functions—InStr(), Len(), Mid(), and
Trim()—to return specific text from a larger text string.

Table 8.7 Other Useful String Functions

Function Example Evaluates to

String(Number, Character) String(4, "+") "++++"

Space(Number) Space(10) " "

Len(String) Len("Microsoft Outlook") 17

Trim(String) Trim(" sloppy text ") "sloppy text"

LTrim(String) LTrim(" sloppy text ") "sloppy text "

RTrim(String) RTrim(" sloppy text ") " sloppy text"

UCase(String) UCase("Microsoft Outlook") "MICROSOFT OUTLOOK"

LCase(String) LCase("Microsoft Outlook") "microsoft outlook"

Listing 8.5 VBA function to parse text from a structured text block

Function ParseTextLinePair(strSource As String, _
 strLabel As String)
 Dim intLocLabel As Integer
 Dim intLocCRLF As Integer
 Dim intLenLabel As Integer
 Dim strText As String

 ' locate the label in the source text
 intLocLabel = InStr(strSource, strLabel)
 intLenLabel = Len(strLabel)
 If intLocLabel > 0 Then
 intLocCRLF = InStr(intLocLabel, strSource, vbCrLf)
 If intLocCRLF > 0 Then
 intLocLabel = intLocLabel + intLenLabel
 strText = Mid(strSource, _
 intLocLabel, _
 intLocCRLF - intLocLabel)
 Else
 strText = Mid(strSource, _
 intLocLabel + intLenLabel)
 End If
 End If
 ParseTextLinePair = Trim(strText)
End Function

206 8.6 Working with dates and times

The ParseTextLinePair() function takes two parameters—the text
to be parsed and the “label” that marks what text you’re looking for. Let’s
consider, for example, that you get a message that contains text like this:

Date Needed: 4-17-07
Type of Request: site visit
Requestor Name: Jane Doe
Requestor Phone #: 123 456 1234
Requestor Email: Jane_Doe@domainname.com

Each of the lines above can be parsed into a “label” that ends in a colon
(:) and data that follows the label. To return the data for a specific label, the
code follows this sequence of operations:

1. Locate the label in the text.

2. Locate the first carriage return/linefeed that follows the label.

3. Return the text between the end of the label and the carriage
return/linefeed.

4. Trim off any extraneous spaces.

One application would be to forward such an incoming message to
someone who could handle the request, copying in the original requestor.
This snippet processes the item currently selected in the folder view:

Set objItem = Application.ActiveExplorer.Selection(1)
strAddress = ParseTextLinePair(objItem.Body, _
 "Requestor Email:")
strName = ParseTextLinePair(objItem.Body, _
 "Requestor Name:")
strRequest = ParseTextLinePair(objItem.Body, _
 "Type of Request:")
If strRequest <> "" Then
 Set objForward = objItem.Forward
 With objForward
 .To = "fixer@domainame.com"
 .CC = strAddress
 .Subject = UCase(strRequest) & _
 " request from " & strName
 End With
 objForward.Send
End If

As you can see, the ParseTextLinePair() function is a practical dem-
onstration of the power of simple text parsing functions. You can extend its
technique—the basic sequence of operations described above—to virtually
any situation where you know the start point and end point of a piece of
text that you’re interested in.

8.6 Working with dates and times
Date manipulation skills are critical to Outlook programming because vir-
tually every Outlook item has one or more important dates associated with

8.6 Working with dates and times 207

it—the date an email message was received, the due date for a task, a
friend’s birthday, the time of your appointment tomorrow, and so on. In
this section, you learn how to extract components from dates and perform
date arithmetic. We also briefly visit issues related to time zones and inter-
national dates.

Tip: You may find yourself building your own date-related functions to
supplement those built into VBA and VBScript. For example, Listing 16.1
in Chapter 16, “Searching for Outlook Items,” is a GetMonthStart()
function that returns the first day of a month, given two parameters—a
starting date and the number of months offset from that date.

Remember that standard and custom Outlook date fields may contain
date values only between April 1, 1601, and August 31, 4500, inclusive.
Dates that appear in Outlook form fields and folder views as “None” usu-
ally are stored as January 1, 4501.

8.6.1 Basic date-related functions

What is a date? In the context of Outlook, a date is any built-in or custom
property designed to handle dates or times. In addition to working with
such properties, Outlook code often needs to get dates from users through
controls on a VBA user form or an Outlook custom form. Value and valida-
tion formulas on custom forms and form regions may also use dates.

How can you tell whether the user has entered a valid date in a text box
control on a custom form that isn’t bound to a date/time field? Both VBA
and VBScript support the IsDate() function to test for a valid date.
IsDate() takes any expression as its argument and returns True if the
expression represents a valid date between January 1, 1000, and December
31, 9999. IsDate() is smart about detecting dates from a variety of for-
mats. Any of the following expression returns True:

IsDate("3/31/07")
IsDate("31/3/2007")
IsDate("10:00")
IsDate("31 Mar 2007")

You might wonder why IsDate("10:00") returns True. Remember
that a time always has a date component (and a date always has a time com-
ponent) even if Outlook displays only the date.

The examples above use the slash (/) as a date separator character;
IsDate() allows that separator in dates regardless of the regional settings
for Windows. If the local date separator is some other character, a date
string using that localized separator will also be valid. For example,

208 8.6 Working with dates and times

IsDate("3.31.2007") returns True in countries that use a period as a
date separator character.

CDate() is one of several available functions to convert values from one
data type to another, in this case to a date value. Normally, you would use it
with IsDate() because you will get an error if you try to convert a non-
date value to a date. As an example, this MakeDate() function for VBA
returns today’s date if the somedate parameter does not contain a valid
date:

Function MakeDate(somedate) As Date
 If IsDate(somedate) Then
 MakeDate = CDate(somedate)
 Else
 MakeDate = Date
 End If

The Date function above is one of three functions that return the cur-
rent date/time values. The other two are Time and Now.

Finally, the FormatDateTime() function returns any date or time as
text, using the user’s Windows preferences for formatting dates. Its basic
syntax is:

FormatDateTime(Date, NamedFormat)

The NamedFormat parameter is optional; if it is not present, vbGener-
alDate is the default format.

You can use FormatDateTime() in both VBA and VBScript. Table 8.8
shows the constants allowed in VBA and VBScript for available options for
the NamedFormat parameter and gives examples using the default Windows
settings for U.S. users.

Tip: Experimenting with FormatDateTime() and different date expres-
sions can help you gain a deeper understanding of how Outlook handles
dates. For example, it might surprise you to find out that while the strings
"3/31/2007" and "31/3/2007" are both interpreted as March 31, 2007,
the string "31/3/07" is interpreted as March 7, 1931.

The Format() function offers even more flexibility than FormatDate-
Time() in arranging date elements in a string, but VBScript does not sup-
port Format(). You can read about the date (and other) formats that
Format() supports in Help.

8.6.2 Date extraction functions

Being able to extract components from dates means that you can find out
whether Valentine’s Day falls on a weekend or what journal entries you
made on Monday. Table 8.9 lists functions you can use to get just the date

8.6 Working with dates and times 209

or just the time portion of a date or extract any particular date component.
Parameters shown in brackets are optional.

Let’s look at a few examples. This expression returns the day of the week
that the next New Year’s Day will fall on:

WeekdayName(Weekday("1/1/" & CStr(Year(Date) + 1)))

CStr() is a function that converts any value to a string. Can you iden-
tify the four date-related functions that the expression uses?

Table 8.8 NamedFormat Arguments for FormatDateTime()

Constant Value Example

vbGeneralDate (default) 0 12/31/2007 6:30:00 PM

vbLongDate 1 Tuesday, December 31, 2007

vbShortDate 2 12/31/2007

vbLongTime 3 6:30:00 PM

vbShortTime 4 18:30

Table 8.9 Functions to Extract Date Parts

Function Returns

Date Current system date

DatePart(Interval, Date [, Firstday [,
Firstweek]])

Part specified by the interval string:

"yyyy" Year

"q" Quarter

"m" Month

"y" Day of the year

"d" Day

"w" Day of the week

"ww" Week of the year

"h" Hour

"n" Minute

"s" Second

DateValue(Date) Date component without any time value

Day(Date) Day of the month, from 1 to 31

FormatDateTime(Date [, NamedFormat]) Date/time formatted as text with optional Named-
Format (see Table 8.8)

Hour(Time) Hour of the day, from 0 to 23

210 8.6 Working with dates and times

In Listing 8.6, the Weekday() function plays a role in building an
IsWeekend() function to check whether a particular date falls on a Satur-
day or Sunday.

Remember vbMonday is a VBA and VBScript constant that you saw in
Table 8.3.

If your weekend falls on Friday and Saturday instead of Saturday and
Sunday, and you want an IsWeekend() function that works in VBScript,
you can use the version that appears in Listing 8.7.

Both versions of the IsWeekend() function use the optional firstday
parameter of the Weekday() function to designate the first day of the
week—Monday in Listing 8.6 and Sunday in Listing 8.7—so that the
weekend days (Saturday and Sunday in Listing 8.6 and Friday and Saturday
in Listing 8.7) fall on the sixth and seventh days of the week. That makes it

Minute(Time) Minute of the hour, from 0 to 59

Month(Date) Month of the year, from 1 to 12

MonthName(Month [, Abbreviate) Name of the month, given the month number

Now Current system date and time

Second(Time) Second of the minute, from 0 to 59

Time Current system time

Timer Number of seconds since midnight

TimeValue(Time) Time component without any date value

Weekday(Date [, Firstdayofweek]) Number from 1 to 7 representing the day of the week,
counting from Firstdayofweek

WeekdayName(Weekday [, Abbreviate [,
Firstday]])

Name of the day, given its number

Year(Date) Number representing the year

Listing 8.6 VBA function to indicate whether a date falls on a Saturday or Sunday

Function IsWeekend(dteDate As Date) As Boolean
 Dim intWeekday As Integer
 intWeekday = Weekday(dteDate, vbMonday)
 IsWeekend = (intWeekday >= 6)
End Function

Table 8.9 Functions to Extract Date Parts (continued)

Function Returns

8.6 Working with dates and times 211

easy to test for Saturday or Sunday with the (intWeekday >= 6) expres-
sion, which evaluates to True or False. To adjust either IsWeekday()
function to handle a different pair of consecutive weekend days, just adjust
the firstday argument.

8.6.3 Performing date arithmetic

Date arithmetic involves calculating the time elapsed between two dates (or
times) or adding or subtracting time to or from a particular date to get a
new date. It can also involve merging the date part from one date/time
value with the time part from another value. Possible uses include:

Figuring the number of weeks since your last vacation day

Calculating how long since you had any interaction with a contact

Projecting the next day you should call a contact

Combining the data entered in separate date and time controls

Outlook stores dates in the same format as double-type numbers—the
integer portion representing the date and the decimal portion representing
the time. This means that for the simplest sort of date arithmetic, you can
simply add or subtract a number of days. For example, Date() + 3 returns
the date three days from today.

For more complicated calculations—such as the number of weeks
between two dates or a date 13 months in the future—use the DateAdd()
and DateDiff() functions:

DateAdd(Interval, Number, Date)
DateDiff(Interval, Date1, Date2, Firstday, Firstweek)

The Firstday and Firstweek parameters in DateDiff() are optional.

The Interval parameter takes the same values as in the DatePart()
function in Table 8.9.

In the DateAdd() function, the Number parameter is the number of
interval periods you want to add. To get a date in the future, add a positive
number. To get a date in the past, add a negative number.

The NextBusinessDay() function in Listing 8.8 calculates the next
business day that occurs intAhead days from dteDate, adding one or two

Listing 8.7 VBScript function to indicate whether a date falls on a Friday or Saturday

Function IsWeekend(dteDate)
 Dim intWeekday ' As Integer
 intWeekday = Weekday(dteDate, vbSunday)
 IsWeekend = (intWeekday >= 6)
End Function

212 8.6 Working with dates and times

days if the date falls on a Saturday or Sunday. It makes use of the Week-
day() and DateAdd() functions.

The VBScript version of NextBusinessDay() in Listing 8.9 takes a dif-
ferent approach. Instead of using DateAdd(), it simply adds the number of
days directly. Note that it also ensures that intAhead is an integer value by
first checking whether it is a number and, if it is, converting it to an integer
with the CInt() function. You don’t need to perform those operations in
the VBA version, because the procedure declaration guarantees that the
intAhead argument will be an integer.

Note: As with the IsWeekend() functions in Listings 8.5 and 8.6, you
could adjust the NextBusinessDay() functions to handle weekends other
than Saturday or Sunday by changing the second argument of the Week-
day() function to the appropriate first day of the work week.

DateDiff() returns a negative number if date1 is later than date2. For
example, if objTask is an object variable representing an Outlook task,
then DateDiff("d", Date, objTask.DueDate) returns either a positive
number representing the number of days until the task is due or a negative
number representing how many days it is overdue.

In Chapter 5, a complex application of DateDiff() was used to calcu-
late a person’s age in a formula. Remember that DateDiff() can’t per-
form that calculation by itself because it rounds up to the nearest year if
you compare two dates where the day and month of the earlier date fall
after the day and month of the later date. To avoid the rounding and get
an accurate count, you can use the YearsDiff() function in Listing 8.10
(which is written without data-typing so you can use it in either VBScript
or VBA).

As our final date arithmetic example, consider the case of a custom form
with separate controls for entering the date and time—data that you want

Listing 8.8 VBA function to calculate the next business day

Function NextBusinessDay(dteDate As Date, _
 intAhead As Integer) As Date
 Dim dteNextDate As Date
 Dim intWeekDay As Integer
 dteNextDate = DateAdd("d", intAhead, dteDate)
 intWeekDay = Weekday(dteNextDate, vbMonday)
 If intWeekDay >= 6 Then
 dteNextDate = DateAdd("d", 8 - intWeekDay, dteNextDate)
 End If
 NextBusinessDay = dteNextDate
End Function

8.6 Working with dates and times 213

to combine into a single Outlook field. You can’t just bind both controls to
the same field, because changing the time in one also changes the date to
today’s date, while selecting a new date changes the time to 12:00 AM. The
solution is a formula that uses the DateValue() and TimeValue() func-
tions to get values from each control that can be combined.

To demonstrate this, create a new custom form—the item type doesn’t
matter—and, in the Field Chooser, create four new date/time fields—
Date1, Date2, Date2d, and Date2t. Display the P.2 page, and drag the
Date1 field from the Field Chooser to the left side of the form three times,
to create three text box controls bound to Date1. Bring up the Properties
dialog for each control in turn, and on the Value tab, under Format, set one
control to display only the date, one to display only the time, and one to
display both date and time. Run the form and watch what happens when
you enter a date (or type “tomorrow”) in the control that displays only the
date. Try typing a time in the control that displays only a time. The control
formatted to show the full date and time never displays the date from the
date-only control combined with the time from the time-only control. It
always adds today’s date value to the time you enter and a default time value
to whatever date you enter. After you see how this works, close the item and
return to the form designer.

Now, on the right side of the page, place the other three controls. For-
mat the control for Date2d to show only a date, Date2t to show only a
time, and Date2 to show both. For the Date2 control, enter this formula:

IIf([Date2d] <> "None", DateValue([Date2d]) + IIf (
[Date2t] <> "None", TimeValue([Date2t]) , Null) , Null)

and set that control to “Calculate this formula automatically.” Run the
form again, and this time, enter dates in the Date2d control and times in
the Date2t control. The Date2 control should always show the correct date
+ time, combining values from the two controls. The secret is the formula,

Listing 8.9 VBScript function to calculate the next business day

Function NextBusinessDay(dteDate, intAhead)
 Dim dteNextDate ' As Date
 Dim intWeekDay ' As Integer
 If IsNumeric(intAhead) Then
 intAhead = CInt(intAhead)
 dteNextDate = dteDate + intAhead
 intWeekDay = Weekday(dteNextDate, vbMonday)
 If intWeekDay >= 6 Then
 dteNextDate = dteNextDate + (8 - intWeekDay)
 End If
 End If
 NextBusinessDay = dteNextDate
End Function

214 8.6 Working with dates and times

which extracts the date from Date2d and the time from Date2t and com-
bines them to update the value for Date2.

One of the exciting aspects of the new form region feature in Outlook
2007 is that its date and time controls do not require you to use a compli-
cated formula like this. If you bind a date and a time control to the same
field, each control updates only its part of the underlying field.

8.6.4 Time zones and international dates

If you need to deal with people in multiple time zones or in different coun-
tries, Outlook presents some challenges. For one thing, Outlook has no

Listing 8.10 Calculating the number of years between two dates

Function YearsDiff(dteDate1, dteDate2)
 Dim dteEarly
 Dim dteLate
 Dim dteEarlyMonDayLateYear
 Dim blnReverse ' flag for dates in reverse order
 Dim intYears
 On Error Resume Next

 ' get dates into chronological order
 If dteDate1 > dteDate2 Then
 dteLate = dteDate1
 dteEarly = dteDate2
 blnReverse = True
 Else
 dteLate = dteDate2
 dteEarly = dteDate1
 End If

 ' combine month and day from earlier date
 ' with year from later date
 dteEarlyMonDayLateYear = _
 CDate(Month(dteEarly) & "/" & _
 Day(dteEarly) & "/" & _
 Year(dteLate))

 ' calculate the years
 If dteEarlyMonDayLateYear <= dteLate Then
 intYears = DateDiff("yyyy", dteEarly, dteLate)
 Else
 intYears = DateDiff("yyyy", dteEarly, dteLate) - 1
 End If
 If blnReverse Then
 intYears = intYears * (-1)
 End If

 YearsDiff = intYears
End Function

8.6 Working with dates and times 215

concept of an all-day event that is time-zone independent. For example, if
you work in New York and create an all-day event for New Year’s Day in an
Exchange Server public folder that holds company holidays, your office in
London will see it not as an all-day event, but as an appointment running
from 5 AM January 1 to 5 AM January 2.

There are no easy solutions to this issue within the scope of this book.
Outlook 2007 appointments do have a new Time Zones command to dis-
play an extra set of controls where the user can enter the Start and End
dates using a non-local time zone. These correspond to new Appointment-
Item properties—StartTimeZone and EndTimeZone, and StartIn-

StartTimeZone and EndInEndTimeZone properties.

The Application object exposes information about time zones in a
new TimeZones collection. You can, for example, return the name of the
current time zone with this expression:

Application.TimeZones.CurrentTimeZone.Name

Time zone conversions are also possible with a new ConvertTime
method:

Application.TimeZones.ConvertTime _
 (SourceDateTime, SourceTimeZone, DestinationTimeZone)

Note: We will return to the issue of time zones in Chapter 14, when we dis-
cuss the use of the new PropertyAccessor object to set and return prop-
erty values. Any dates that PropertyAccessor returns are in UTC
(Universal Coordinated Time) not local time, so you’ll usually need to per-
form a conversion.

While American users are accustomed to entering dates in month/day/
year format, many people in other countries instead use day/month/year (or
even day.month.year). In general, Outlook VBA and VBScript code will
correctly interpret whatever the user types into a date/time field as the cor-
rect date that the user intended, according to the user’s Windows regional
settings. However, for dates that your application displays as strings, you
may want to use an unambiguous format. For example, you might want to
display the fourth day of March as “04 Mar 2007” instead of “3/4/2007,”
which could mean March 4 or April 3, depending on the country. The
FormatDateTime() function listed in Table 6.5 is available in both VBA
and VBScript for use on Outlook forms. It can turn any date or time into
text formatted with the user’s own Windows regional preferences. The for-
mat settings on the Properties dialog for form controls are related to the
user’s local settings, but should display an appropriate format even if some-
one from another country runs the custom form.

216 8.7 Using arrays, dictionaries, and the Split() and Join() functions

8.7 Using arrays, dictionaries, and the Split() and
Join() functions

I’d like to finish up this review of key VBA and VBScript functions with
two more string functions, Split() and Join(), to help introduce the
topic of arrays and dictionaries, which are a special application of arrays.
These two functions can help you parse text, fill the rows of a combo box or
list box, or manage the contents of the built-in Categories and Compa-
nies fields.

The Split() and Join() functions are designed to make it easy to han-
dle a delimited list and its component substrings. The full syntax for the
Split() function is

Split(Expression, Delimiter, Limit, Compare)

where the parameters—all optional except Expression—represent the fol-
lowing:

Both Categories and Companies fields are keyword fields, consisting
of multiple string values. When you view either property in a text box on an
Outlook form, you’ll see the individual categories separated by a delimiter
character. On most computers in the U.S., a comma functions as the delim-
iter, but depending on the user’s Windows regional settings, the delimiter
also could be a semicolon or some other character.

If a comma is the delimiter, the statement such as

arr = Split(objItem.Categories, ", ")

returns to the arr variable an array of the categories for an Outlook item
represented by the object variable objItem. An array holds one or more val-
ues as separate elements. Refer to the elements of an array by subscript,
starting with 0 for the first element (e.g., arr(0)). The lowest subscript is
called the lower bound of the array. The largest subscript is the upper bound.

Note: VBA allows you to create arrays that use 1 as the lowest subscript, but
VBScript doesn’t support that type of array, so we’ll stay away from it.

Expression a delimited string expression

Delimiter one or more characters operating as a delimiter;
the default is the space character

Limit number of substrings to be returned; the default
value is -1, which means return all

Compare comparison option, same as for Instr(); useful
if Delimiter contains alphabetic characters and
not just spaces, punctuation, or numbers

8.7 Using arrays, dictionaries, and the Split() and Join() functions 217

Join() is the opposite of Split() and uses this syntax

Join(Array, Delimiter)

to return a string consisting of the items in an array, separated by the
Delimiter character(s). The code below processes the currently open Out-
look item. Split() parses the value of the Categories field into an array,
then Join() reassembles the array elements into a single text string with
each pair of individual categories separated by a carriage return/linefeed:

Sub CategoryMsg()
 Dim objItem As Object
 Dim arr() As String
 On Error Resume Next
 Set objItem = Application.ActiveInspector.CurrentItem
 arr = Split(objItem.Categories, ", ")
 MsgBox Join(arr, vbCrLf)
 Set objItem = Nothing
End Sub

Note: Did you recognize that Replace() can accomplish the same thing
as Split() followed by Join()? For example, using the same objItem
object as in the CategoryMsg procedure, you could use MsgBox

Replace(objItem.Categories, ", ", vbCrLf).

If the Option Explicit statement is present in your code module, you
must declare any arrays, just as you would need to declare any variables. If
you are creating an array with Split(), use the simple Dim arr() As

String syntax in VBA or Dim arr() in VBScript. The parentheses indi-
cate that arr is an array.

Use this syntax in VBA to declare an array named arr with a fixed num-
ber of elements, all of a specific data type:

Dim arr(upper_bound) As data_type

Here are some VBA examples:

Dim integerArray(3) As Integer
Dim stringArray(4) As String

In VBScript, you would omit the As Integer and As String expres-
sions. Note that the number is the upper bound—that is, the highest sub-
script in the array—not the number of elements. Since the array’s lower
bound is 0, the upper bound is the number of elements minus one. For
example, if an array has 4 elements, its lower bound is 0, and its upper
bound is 3. To assign values to the array elements individually, use this
syntax:

arr(subscript) = value

218 8.7 Using arrays, dictionaries, and the Split() and Join() functions

For example, you can assign values to the integerArray array declared
above with this code snippet:

integerArray(0) = 1
integerArray(1) = 2
integerArray(2) = 3

If you later need to change the size of the array, use Redim arr(upper_
bound). Include the Preserve keyword if you want to keep the existing data
in the array, for example:

Redim Preserve arr(12)

If you omit the Preserve keyword, changing the size of an array with a
Redim statement causes the array to be reinitialized and all existing data
lost.

As you can imagine, writing code to populate an array with many ele-
ments could get to be quite tedious. Fortunately, there are a number of dif-
ferent ways to streamline the process. You’ve already seen how to use the
Split() function to populate an array from a delimited string. You also
can use the Array() function to create an array from a series of values. For
example, here is an alternative way to declare and fill an integer array:

Dim integerArray()
integerArray = Array(1, 2, 3, 4)

Note that, if you are using Array() to fill an array, your Dim statement
should not specify a data type.

8.7.1 Working with multidimensional arrays

So far, we have been working with one-dimensional arrays, which are analo-
gous to a single list of words or a single column of numbers. Split(),
Join(), and Array() are handy functions for working with this type of
array. However, arrays with more dimensions have a place in Outlook, too,
particularly for filling the rows of list and combo boxes that have more than
one column. For example, here is the code used to initialize the cboCou-
ples combo box (“Favorite couple”) that you saw in Figure 3.11.

Dim arrCouples(4, 1) As String
arrCouples(0, 0) = "Romeo"
arrCouples(0, 1) = "Juliet"
arrCouples(1, 0) = "Edward"
arrCouples(1, 1) = "Wallis"
arrCouples(2, 0) = "Dick"
arrCouples(2, 1) = "Linda"
arrCouples(3, 0) = "Robert"
arrCouples(3, 1) = "Sue"
cboCouples.ColumnCount = 2
cboCouples.List = arrCouples

This technique takes advantage of a combo or list box’s List property,
which can be assigned to an array. The second parameter in the Dim state-

8.7 Using arrays, dictionaries, and the Split() and Join() functions 219

ment corresponds to the number of columns in the combo or list box.
(Remember that arrays are zero-based.) The first statement puts the text
“Romeo” in the first element of the first dimension of the array, which cor-
responds to the first row, first column of the combo box. Because the Dim
statement defines the array as having five elements in its first dimension,
but the code fills only the first four, the last element is blank, so the combo
box gains a blank line at the bottom of the row list, making it easy for the
user to clear the contents of the control.

8.7.2 Building and using dictionaries

A dictionary is an object that gives your code the ability to look up a piece of
information based on a key. It is often called a “super array.” Instead of
entries being indexed by position, the Dictionary object indexes them
according to key values. You can then use those values to perform lookups
and return an item associated with a particular key. This object is a feature
of VBScript, but you can also use it in VBA. To be able to declare a Dic-
tionary object in VBA, you will need to choose Tools | References and add
a reference to the Microsoft Scripting Runtime library.

Using a Dictionary object can help you streamline code that might
otherwise require a complicated set of If statements or a Select Case

block (both of which we’ll learn more about later in this chapter). For
example, let’s say that you’re using a custom Outlook contact form and
need the user to fill in a custom County property, but you expect most of
the entries to come from the same few postal codes. You could make data
entry easier and more accurate by automatically filling in the county based
on the postal code, pulling the data from a Dictionary object created
when the form opens. Listing 8.11 shows the code for an Outlook custom
contact form that performs such a lookup.

The code in Listing 8.11 assumes that you’ve modified a contact form to
add a property named County. Some notes on the code:

CreateObject() is a method you can use to instantiate an object
from the many different programming libraries available to VBA and
VBScript. We saw an example earlier in the StartOutlook() func-
tion in Listing 7.7, which instantiated an Outlook.Application
object for use in Word VBA code.

The PropertyChange event fires when a built-in property value
changes on an Outlook item. It passes the name of the property that
changed as its parameter. (You’ll learn more about PropertyChange
and the corresponding event for user-defined properties, Custom-
PropertyChange, in Chapter 12.)

The Dictionary.Add method takes two arguments—a key and a
value.

220 8.7 Using arrays, dictionaries, and the Split() and Join() functions

The Dictionary.Exists method returns True if the key passed as
the argument for Exists is present in the dictionary.

The Dictionary.Item method returns the item corresponding to a
key.

Other useful Dictionary properties and events include Count to return
the number of entries, Remove to remove a single entry, RemoveAll to
remove all entries, Keys to return an array of all the keys, and Items to
return an array of all the items entered into the dictionary.

Note: The examples in this chapter demonstrate Dictionary objects where
both the key and the item were strings. However, the keys can be any kind
of individual values (not an array), and the items can also be any kind of
data, including objects.

More examples of the Dictionary object appear toward the end of the
book. The GetFolderCatArray() function in Listing 22.5 returns an
array of all the unique categories applied to items in a given folder—in just
a few seconds. In Listing 24.11, we build an invoice report from data in an
Outlook contact and its related journal entries, and the Dictionary pro-
vides a look-up feature for the Word 2007 content controls that comprise
the data entry areas for the report.

Listing 8.11 Using a dictionary for Zip code lookups

Dim objDict

Function Item_Open()
 Set objDict = CreateObject("Scripting.Dictionary")
 objDict.Add "22041", "Fairfax"
 objDict.Add "22042", "Fairfax"
 objDict.Add "22043", "Fairfax"
 objDict.Add "22044", "Fairfax"
 objDict.Add "22047", "Fairfax"
 objDict.Add "22040", "Falls Church City"
 objDict.Add "22046", "Falls Church City"
End Function

Sub Item_PropertyChange(ByVal Name)
 Dim strZip
 If Name = "MailingAddressPostalCode" Then
 strZip = Left(Item.MailingAddressPostalCode, 5)
 If objDict.Exists(strZip) Then
 Item.UserProperties("County") = _
 objDict.Item(strZip)
 End If
 End If
End Sub

8.7 Using arrays, dictionaries, and the Split() and Join() functions 221

8.7.3 Example: Parsing structured text with an array
and a dictionary

Let’s consider the issue of parsing structured text again. The ParseText-
LinePair() function in Listing 8.5 operates by searching the text for a key
value and then parsing the rest of the line where that key text appears.
Another approach, shown in Listing 8.12, would be to parse the entire body
of text into a Dictionary object and then look up the text corresponding to

Listing 8.12 VBA function to create a dictionary from a structured text block

Function TextDict(strSource)
 Dim objDict As Scripting.Dictionary
 Dim arrLines() As String
 Dim strLine As String
 Dim arrEntry() As String
 Dim i As Integer

 Set objDict = CreateObject("Scripting.Dictionary")
 arrLines = Split(strSource, vbCrLf)
 For i = 0 To UBound(arrLines)
 strLine = arrLines(i)
 arrEntry = Split(strLine, ":", 2)
 If UBound(arrEntry) > 0 Then
 objDict.Add Trim(arrEntry(0)), Trim(arrEntry(1))
 End If
 Next
 Set TextDict = objDict
End Function

Sub ForwardRequestWithDict()
 Dim objItem As Object
 Dim objDict As Scripting.Dictionary
 Dim strAddress As String
 Dim strName As String
 Dim strRequest As String
 Dim objForward As Outlook.MailItem
 Set objItem = Application.ActiveExplorer.Selection(1)
 Set objDict = TextDict(objItem.Body)
 strAddress = objDict.Item("Requestor Email")
 strName = objDict.Item("Requestor Name")
 strRequest = objDict.Item("Type of Request")
 If strRequest <> "" Then
 Set objForward = objItem.Forward
 With objForward
 .To = "fixer@domainame.com"
 .CC = strAddress
 .Subject = UCase(strRequest) & _
 " request from " & strName
 End With
 objForward.Send
 End If
 Set objForward = Nothing
 Set objItem = Nothing
 Set objDict = Nothing
End Sub

222 8.8 Controlling program flow

any key value. Remember the sample text used this structure with a colon as
the character that signifies the end of the label and the beginning of the data:

Date Needed: 4-17-07
Type of Request: site visit
Requestor Name: Jane Doe
Requestor Phone #: 123 456 1234
Requestor Email: Jane_Doe@domainname.com

The code uses Split() once to parse the text into lines, then a second
time to break out the text on each line into two parts. The part before the
colon becomes the dictionary key, while the part after the colon becomes
the dictionary item. After building the dictionary with the TextDict()
function, you can perform a lookup for any key value with no further text
parsing. The ForwardRequestWithDict() subroutine functions like the
code snippet in Section 8.5.5, parsing the text of the currently selected item
in order to forward it with the correct Subject and Cc values.

The third parameter in the expression Split(strLine, ":", 2)

directs the Split() function to return a maximum of two elements to the
array, even if more than one colon appears in strLine.

8.8 Controlling program flow
It’s hard to write code without running into issues of program flow. How do
you get the code to perform a certain action in one situation and a different
action under other conditions? How do you process all the items in an Out-
look folder, examining each in turn? You’ve already seen how to pass param-
eters from one subroutine to another—that’s one way to control the flow of
a program. You will learn several more techniques in the sections that fol-
low, including If ... Then ... ElseIf ... End If blocks to create
program branches, For ... Next loops to process multiple items, Select
Case blocks instrumental in handling some specific Outlook events, and
GoTo statements that can open the door to useful error handling.

8.8.1 If . . . Then statements

We have already seen several examples of If ... Then statements in earlier
chapters. The basic syntax is simple:

If expression Then
 code to perform actions
End If

The expression in the first part of the If ... Then statement must
evaluate to True or False. These are examples of such expressions that you
might find in Outlook code:

IsNumeric(txtDays.Value)
Instr(strSubject, "Birthday") > 0
strAddress <> ""
intDoIt = vbYes

8.8 Controlling program flow 223

Tip: The intrinsic constant vbYes is used with the MsgBox function for get-
ting user feedback with a message box, which we’ll see later in this chapter.

Typically, the If ... Then expression will be either a function that
returns True or False or an expression using one of the comparison opera-
tors we encountered in Chapter 7. You can also use a more complex expres-
sion involving more than one condition linked with the comparison
operators And, Or, or Not, such as this one from the ReminderUpdate form
in Chapter 3:

If InStr(strSubject, "Birthday") > 0 And _
 chkBirthdays.Value = True Then

The expression to be evaluated could also have been written as

InStr(strSubject, "Birthday") > 0 And chkBirthdays.Value

Why? Because chkBirthdays is a check box control and thus has one of
two values, True or False. Thus, the expression chkBirthdays.Value is
equivalent to chkBirthdays.Value = True. Similarly, an equivalent
expression for chkBirthdays.Value = False would be Not chkBirth-
days.Value, because the Not operator returns a value of False if the
expression is True and vice versa.

After the If ... Then statement, you must supply the statements that
you want the program to run if the expression is True. If you have only one
statement to run, you can include it with the If ... Then statement on a
single line, for example:

If D > 10 Then D = D * 1.20

Notice that you leave out the End If statement when you write an If
... Then statement on a single line.

The single-line format works for only the simplest of If ... Then

statements. Most of the time, you will have more than one code statement
to execute and, therefore, must place each statement on a separate line after
the If ... Then statement and before the End If statement. This exam-
ple of an If ... End If block tests whether a given Outlook item is a
contact and, if it is, tests whether the contact has a business phone number,
and if so, displays that number in a message box:

If objItem.Class = olContact Then
 strNum = objItem.BusinessTelephoneNumber
 If strNum <> "" Then
 MsgBox strNum, , "Business Phone"
 End If
End If

224 8.8 Controlling program flow

Tip: Since Outlook folders can contain more than one type of item, you
usually should test whether an item is of the expected type before you try to
use any properties or methods specific to that type of item. If you wanted to
use the above code in VBScript, you’d declare olContact as a constant
(Const olContact = 40) or substitute its literal value, 40.

As you saw above, you can nest If ... Then statements inside each
other. Here’s another example, to manage the foreground and background
colors for a text box control named txtOldCategory:

If txtOldCategory.ForeColor = vbRed Then
 If txtOldCategory.BackColor = vbRed Then
 txtOldCategory.BackColor = vbBlack
 End If
End If

Tip: Remember that you saw in Table 8.3 that VBA and VBScript provide
constants for eight commonly used colors.

Too many levels of nesting can make If ... End If blocks very diffi-
cult to read and debug, especially when you start nesting them with other
kinds of program control statements. All it takes is one extra or one missing
End If to make your procedure stop dead in its tracks. When you use
nested If ... End If blocks, take extra care to indent all the statements
within each block consistently. This will also make it easier to see that each
block has the correct starting and ending statement.

A common variation on If ... End If blocks adds an Else block. In
this structure, the code performs one set of actions if the test expression is
True and a second set if the expression is False. Expanding on the earlier
code to manage the foreground and background colors in a txtOldCate-
gory text box control, you might have:

If txtOldCategory.ForeColor = vbRed Then
 If txtOldCategory.BackColor = vbRed Then
 txtOldCategory.BackColor = vbBlack
 End If
Else
 txtOldCategory.BackColor = vbYellow
End If

A less common variation uses ElseIf to test for another condition. In
fact, you can add several ElseIf statements, as this example shows.

If txtOldCategory.ForeColor = vbRed Then
 If txtOldCategory.BackColor = vbRed Then
 txtOldCategory.BackColor = vbBlack
 End If

8.8 Controlling program flow 225

ElseIf txtOldCategory.ForeColor = vbWhite Then
 txtOldCategory.BackColor = vbBlack
ElseIf txtOldCategory.ForeColor = vbBlue Then
 txtOldCategory.BackColor = vbWhite
End If

The logic in If ... Then ... ElseIf statements can be difficult to
follow. A more readable way to accomplish the same result is to use a
Select Case block, which is covered in the next section.

A look at the structure of multiple If ... End If blocks can some-
times offer clues as to where your code can be simplified. Take, for example,
this code from Listing 3.2:

If InStr(strSubject, "Birthday") > 0 And _
 chkBirthdays.Value = True Then
 objItem.ReminderSet = True
 objItem.ReminderMinutesBeforeStart = lngMinutes
 objItem.Save
End If
If InStr(strSubject, "Anniversary") > 0 And _
 chkAnniversaries.Value = True Then
 objItem.ReminderSet = True
 objItem.ReminderMinutesBeforeStart = lngMinutes
 objItem.Save
End If

Each If ... End If block contains the same three objItem state-
ments. You can simplify the code by using the original If ... End If
blocks to assign a value to a Boolean variable, blnUpdate, that indicates
whether to proceed with the update and add a third If ... End If block
to perform the actual update only if blnUpdate is True:

If InStr(strSubject, "Birthday") > 0 And _
 chkBirthdays.Value = True Then
 blnUpdate = True
End If
If InStr(strSubject, "Anniversary") > 0 And _
 chkAnniversaries.Value = True Then
 blnUpdate = True
End If
If blnUpdate Then
 With objItem
 .ReminderSet = True
 .ReminderMinutesBeforeStart = lngMinutes
 .Save
 End With
End If

This version is about the same length as the preceding code, but much
easier to maintain. If you later decide to change how the reminder is set,
you will need to make changes in only one location, in the If blnUpdate
Then block.

226 8.8 Controlling program flow

Tip: Did you notice that we also streamlined the new version by adding a
With ... End With block?

8.8.2 Select Case statements

The next program flow control tool is the Select Case block. Use this
construct when you want to test a particular variable or property that could
have several values, not just True or False. The syntax of Select Case
looks like this:

Select Case expression
 Case value1
 code to perform actions
 Case value2
 code to perform actions
 Case value3, value 4
 code to perform actions
 Case Else
 code to perform actions
End Select

Note: On Outlook forms, the Select Case statement is essential to han-
dling the PropertyChange and CustomPropertyChange events. Chapter
12 covers these events.

The expression in a Select Case statement can be a variable, an
object property, or a more complex expression. Each Case statement han-
dles one or more values that the expression can take on. You can even
include more than one value in the same statement, as shown in the Case
value3, value4 statement above. Because you can’t always anticipate
every possible value, the optional Case Else statement provides a way to
handle exceptions to the known values. If you don’t include Case Else and
the expression does not match any of the given Case values, the program
control moves directly to the statement following End Select.

The previous section showed an example of a code snippet with a couple
of ElseIf statements. It wasn’t very easy to read, was it? See if this version
using a Select Case block is easier to follow:

Select Case txtOldCategory.ForeColor
 Case vbRed
 If txtOldCategory.BackColor = vbRed Then
 txtOldCategory.BackColor = vbBlack
 End If
 Case vbWhite
 txtOldCategory.BackColor = vbBlack

8.8 Controlling program flow 227

 Case vbBlue
 txtOldCategory.BackColor = vbWhite
End Select

Notice that you can nest If ... End If blocks inside Case blocks.
The reverse is also true: you can nest a Select Case block inside an If
... End If block. Be careful, though, to get the ending statements in the
correct order. The following code snippet would trigger a compile error
because the End Select statement appears before the End If statement of
the nested If ... End If block:

Select Case expression1
 Case value1
 your code goes here
 Case value2
 If expression2 Then
 your code goes here
End Select
End If

Note: VBA supports a couple of refinements to Case statements, such as
Case expression1 to expression2 to specify a range of values and the
Case Is comparisonoperator value1 expression to allow the use of
comparison operators in Case statements. These are not available in
VBScript.

8.8.3 Do loops

The next program flow tool is the venerable Do loop. The basic principle of
a Do loop is that it continues to run a series of statements until a certain
condition is satisfied. Here are several variations:

Do Until expression1
 code block 1
Loop

Do While expression2
 code block 2
Loop

Do
 code block 3
Loop While expression3

Do
 code block 4
Loop Until expression4

The first example repeats the statements in code block 1 until
expression1 turns True. The second example repeats the statements in
code block 2 as long as expression2 remains True. The third example

228 8.8 Controlling program flow

always runs at least once, but repeats only if expression3 is still True.
Similarly, the fourth example runs at least once and keeps looping until
expression4 returns True.

Use a Do loop when you don’t know how many times a block of state-
ments should run. If you want the loop to run at least once, consider using
the syntax in the third and fourth examples above. If you can’t be sure
whether the loop will need to run at least once, the first or second version
might be more appropriate. Somewhere inside the loop, you’ll need one or
more statements to change the value of the test expression. Otherwise, there
may be no way for the code to exit the loop. In the example below, code
inside the loop changes the value of both x and y:

x = 12
y = 1
Do Until y > x
 x = x - 2
 y = y + 1
 lngReps = lngReps + 1
Loop

Execution of the loop stops after four repetitions, when x reaches a value
of 4 and y is 5. The lngReps = lngReps + 1 statement counts the num-
ber of repetitions (a bit of functionality common to many Do loops).

Caution: Think through the logic of your Do loops carefully, and make sure
that they include a way for the procedure to exit the loop. Otherwise, the
routine might find itself in an infinite loop. If you run VBA code that you
suspect is trapped in an infinite loop, press Ctrl+Break to break out of the
routine.

In addition to the Until or While keywords that control when looping
stops, you might want to provide an additional test that causes the routine
to exit the loop if it takes too much time. You can use the Timer() func-
tion, which returns a value representing the number of seconds elapsed
since midnight. (In VBA, Timer() returns a numeric value using the single
data type.) This code stops a Do loop after 60 seconds pass:

sngStart = Timer()
x = 12
y = 1
Do Until y > x
 x = x - 1
 y = y - 1
 lngReps = lngReps + 1
 If Timer – sngStart > 60 Then
 Exit Do
 End If
Loop

8.8 Controlling program flow 229

Caution: Because the Timer() function’s value resets to 0 each day at mid-
night, if a procedure using Timer() runs just before midnight and then
again right after midnight, the results may not be what you expect. Listing
11.27 in Chapter 11 includes a TimeToQuit() function to work around
this midnight timing problem.

8.8.4 For . . . Next loops

Another type of loop is the For ... Next loop. These loops cycle through
either a known quantity of items or all the items in a collection of objects,
such as all the items in an Outlook folder.

One type of For ... Next loop continues until a particular number of
iterations has occurred. Its syntax looks like this:

For i = intStart to intEnd
 your code runs here
Next

This type of For statement requires three elements:

A numeric variable to hold the current value of the iteration; i is a
customary choice.

A numeric expression, intStart, that evaluates to an integer and
represents the starting value for i

A numeric expression, intEnd, that evaluates to an integer and repre-
sents the ending value for i

Both intStart and intEnd can be literal integers, or you can substitute
any variable or expression that evaluates to an integer. For example, if you
want to fill a message box (which we’ll learn more about later in this chap-
ter) with the contents of an array, you can use the lower and upper bounds
of the array as the start and end points for the loop, as in this example:

arr = Array("red", "blue", "green")
For i = 0 To UBound(arr)
 strList = strList & vbCrLf & arr(i)
Next
MsgBox Mid(strList, 3)

Instead of counting up—for example, from 0 to UBound(arr) as in the
above example—you can count down by specifying a Step parameter with
a negative value. For example, Listing 8.13 illustrates how to use this tech-
nique with a Step parameter value of -1 to delete all the attachments in any
Outlook item.

To use the code in Listing 8.13 in VBScript behind an Outlook form, all
you need to do is remove the As Object, As Outlook.Attachment, and
As Integer data type descriptions.

230 8.8 Controlling program flow

Note: If the code in Listing 8.13 counted up instead of down, it would
remove only half the attachments from the item, because each time an
attachment was deleted, Outlook would recalculate the Index property used
to return the next attachment with objItem.Attachments.Item(Index).
If you delete the attachment with an Index property value of 1, the attach-
ment whose Index was originally 2 now has an Index of 1, and the attach-
ment whose Index was 3 now has an Index of 2. With a loop that counts
up, when the Next statement increments the value of i from 1 to 2, the
original second attachment is skipped, and the code deletes the original
third attachment, the one whose Index is now 2.

Code to move Outlook items to another folder would run into similar
problems, because moving items involves deleting them. Thus, you would
want to also use a countdown loop for bulk moves.

Another important technique is the Exit For statement, which you can
use to end the iteration of a For ... Next loop when you don’t want to
process any additional items. When processing the items in array, for exam-
ple, you might want to stop processing once you find that a particular value
is present, for example:

arr = Array("red", "blue", "green")
For i = 0 To UBound(arr)
 If arr(i) = "blue" Then
 MsgBox "We found blue!"
 Exit For
 End If
Next

Listing 8.13 Delete all attachments in an Outlook item using a For . . . Next loop

Sub DeleteAttachments(objItem As Object)
 On Error Resume Next
 Dim objAtt As Outlook.Attachment
 Dim intCount As Integer
 Dim i As Integer
 intCount = objItem.Attachments.Count
 If intCount > 0 Then
 For i = intCount To 1 Step -1
 Set objAtt = objItem.Attachments.Item(i)
 objAtt.Delete
 Next
 objItem.Save
 End If
 Set objAtt = Nothing
End Sub

8.8 Controlling program flow 231

8.8.5 Example: Handling multiselect list boxes

The code inside a For ... Next loop typically does something with the
counter value. In Listing 8.11, the expression objItem.Attach-

ments.Item(i) returns the ith attachment in the Outlook item.

Another practical example occurs if you have a multi-select list box
either on a VBA user form or on an Outlook custom form. (Refer back to
Section 7.3.4 if you need a refresher on the syntax for working with Out-
look form controls.) On list boxes where only one selection is allowed, you
can use the Value or ListIndex property of the control to determine
which row the user has selected. With a list box that allows multiple selec-
tions, that approach doesn’t work. Instead, you must check the Selected
property of each item in the list to learn whether the user has chosen it. To
return each item in the list, use the list box’s List property, passing the row
index as the argument. This code builds a list of the items selected in a list
box and then displays that list in a message box:

For i = 0 To (lstBox.ListCount - 1)
 If lstBox.Selected(i) = True Then
 txtItems = txtItems & vbCrLf & lstBox.List(i)
 End If
Next
MsgBox "You selected:" & vbCrLf & txtItems

The For loop starts with 0 because that’s the row index of the first item
in the list. The number of items in the list is ListCount. Since the row
index for the first item in the list is 0, the index for the last item is List-
Count – 1. The syntax for getting a particular item from a single-column
list box is lstBox.List(index).

Tip: List returns or sets an array of variant values. If your list box has more
than one column, you need to specify which column’s value you want, by
including value for the column index. For example, lstBox.List(i, 0)
would return the ith value from the first column, while lstBox.List(i, 2)
would return the ith value from the third column.

8.8.6 For Each . . . Next loops for collections

The other type of For ... Next loop works with collections. A collection is
an object that comprises a set of other objects of a particular type. For
example, each Outlook Folder object (formerly MAPIFolder in earlier ver-
sions) has an Items collection that includes all the items in the folder and a
Folders collection that includes all the subfolders of the folder. Listing
8.13 illustrates another collection—the Attachments collection on an
individual Outlook item.

232 8.8 Controlling program flow

Collections typically have a Count property, just as list boxes do, so you
could work with them using the same type of For ... Next loop that you
saw in the previous two sections. However, you also can work with them by
using this type of For ... Next loop:

For Each object in collection
 your code to work with object runs here
Next

If, for example, you want to change one or more properties for all items
in a folder, you can use a For Each ... Next loop to get each item in
turn, alter the property, and then save the item. Listing 8.14 is a generic
VBA routine for working with the standard properties of items in the cur-
rently displayed Outlook folder. You could use it, for example, to update
the MessageClass property of items to point to a new published custom
form’s message class.

The WorkWithCurrentFolderItems procedure performs this sequence
of operations:

1. Get the currently displayed folder (ActiveExplorer.Current-
Folder).

2. Get the first item in the folder.

3. Change some built-in properties of the item.

4. Save the item.

5. Repeat with the next item in the folder until all items have been
processed.

Listing 8.14 Use this generic code to work with items in the current Outlook folder

Sub WorkWithCurrentFolderItems()
 Dim objApp As Outlook.Application
 Dim objFolder As Outlook.Folder
 Dim objItem As Object
 On Error Resume Next
 Set objApp = Application
 Set objFolder = objApp.ActiveExplorer.CurrentFolder
 For Each objItem In objFolder.Items
 With objItem
 .property1 = newvalue1
 .property2 = newvalue2
 ' more property changes
 .Save
 End With
 Next
 Set objItem = Nothing
 Set objFolder = Nothing
 Set objApp = Nothing
End Sub

8.8 Controlling program flow 233

Tip: Don’t forget to save any item whose properties you change or whose
attachments you remove. Not including a Save statement is a common
Outlook coding error.

At the end of a For Each ... Next loop, you might want to report
back to the user on the operations performed on the items in the collection.
One way is to increment a variable each time an operation occurs, as you
saw earlier in the section on Do loops.

Note: Bulk processing of items in a Microsoft Exchange Server folder,
either in a mailbox or in the Public Folders hierarchy, can present a prob-
lem, because only 255 open remote procedure (RPC) calls to the server are
allowed, unless the administrator changes a setting on the server. Generally,
this is not a problem in VBA and VBScript environments, which release
objects quickly, but if you later convert the application to a .NET add-in,
you can run into out-of-memory and other errors. One workaround would
be to process large numbers of items in batches, say only 200 or so items at
a time.

8.8.7 GoTo statements

The last program flow technique discussed in this chapter is the GoTo state-
ment, which applies only to VBA not VBScript, and is used primarily for
error handing. A GoTo statement works in conjunction with labels that set
off subsections in your procedures. Here’s an example:

Sub GoToDemo()
 Dim intAns As Integer
 On Error GoTo Err_Handler
 intAns = MsgBox("Do you want to simulate an error?", _
 vbYesNo)
 If intAns = vbYes Then Err.Raise 1
 MsgBox "No error occurred."
 Exit Sub
Err_Handler:
 MsgBox "Error Number " & Err.Number & " occurred."
End Sub

The statement On Error GoTo Err_Handler tells the procedure to
branch to the section labeled Err_Handler: whenever it encounters an
error. Program flow continues with the statements in the Err_Handler:
section until the end of the procedure. An Exit Sub statement is placed
before the Err_Handler: label so that if no error has occurred, the code
exits the procedure before running the statements in the Err_Handler:
section.

234 8.9 Providing feedback

Note: You can use the Err.Raise method to simulate an error so that you
can find out what your program will do when an error occurs. You can also
use it to raise an error specific to certain conditions in your application.
Error handling and debugging are covered in the next chapter.

You could also use GoTo statements by themselves to branch from one
portion of a procedure to another section. However, the other program flow
techniques that we’ve studied in this chapter produce much clearer code. The
GoTo statement, therefore, is largely relegated just to error handling in VBA.

8.9 Providing feedback
VBA provides two main methods for providing feedback to the user: mes-
sage boxes triggered by MsgBox statements and VBA user forms. MsgBox
statements also work in VBScript.

Tip: A third and very simple VBA technique is to use a Beep statement to
get a user’s attention with an audible alert when a long operation finishes or
an error occurs.

8.9.1 Feedback with message boxes

In several procedures, you have seen MsgBox statements displaying pop-up
messages to the user. The basic syntax for this type of statement is:

MsgBox Prompt, Buttons, Title

The arguments for the MsgBox() function include

Prompt—String expression for the text that you want the user to see
in the message box; can contain special characters like carriage
returns, linefeeds, and tabs, but no text formatting

Buttons—Optional numeric expression that determines the number
of command buttons, the default button, and other characteristics of
the message box; see Table 8.10

Title—Optional string expression for the title of the message box

If you omit the Title parameter, the title for the message box defaults
to “Microsoft Outlook” in VBA and “VBScript” in VBScript code behind
Outlook forms.

You can use the Buttons parameter to call attention to a message with a
warning icon. The easiest way to get the value for the Buttons parameter
for a feedback message box is to pick an icon constant and a modality con-
stant from Table 8.10 and add them together:

8.9 Providing feedback 235

icon + modality

All the MsgBox constants work in both VBA and VBScript.

If you omit the Buttons parameter, but still want to include a title,
leave the comma delimiter for the buttons parameter in place. All these are
valid MsgBox() expressions in both VBA and VBScript:

MsgBox "Have a great day!"
MsgBox "Have a great day!", , "Take a Day Off"
MsgBox "Have a great day!", 36, "Take a Day Off"
MsgBox "Have a great day!", _
 vbExclamation + vbYesNo, "Take a Day Off")

Table 8.10 MsgBox Constants

Constant Value Description

Button Type Constants

vbOKOnly 0 Display OK button only (default)

vbOKCancel 1 Display OK and Cancel buttons

vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons

vbyesNoCancel 3 Display Yes, No, and Cancel buttons

vbYesNo 4 Display Yes and No buttons

vbRetryCancel 5 Display Retry and Cancel buttons

Icon Constants

vbCritical 16 Display Critical Message icon (refer to Figure 8.8)

vbQuestion 32 Display Warning Query icon

vbExclamation 48 Display Warning Message icon

vbInformation 64 Display Information Message icon

Default Button Constants

vbDefaultButton1 0 First button is default (default)

vbDefaultButton2 256 Second button is default

vbDefaultButton3 512 Third button is default

Modality Constants

vbApplicationModal 0 Application modal—the user can’t use Outlook without first
responding to the message box (default).

vbSystemModal 4096 System modal—the user can’t use any other application without
first responding to the message box.

236 8.9 Providing feedback

However, this statement

MsgBox "Have a great day!", "Take a Day Off")

would not be valid, because it omits the comma that occurs after the
optional buttons parameter. In VBA (but not in VBScript), you could omit
the buttons parameter and its comma by using named arguments, like this:

MsgBox Prompt:="Have a great day!", _
 Title:="Take a Day Off"

Message boxes have several disadvantages as a feedback mechanism:

Execution of your code halts while the message box is on the screen.
It restarts only when the user clicks OK.

You cannot control the look of the message box, only change the text.
There is no way, for example, to show the text in red to call attention
to a problem.

A message box can show only one piece of information at a time. If
you want to provide feedback on two different operations, you would
need to combine that information into one string and use that string
to set the MsgBox prompt parameter.

Still, message boxes are extremely simple to code. You’ll probably find
yourself using them often. They are particularly handy for troubleshooting
VBScript code, displaying variable and object property values and other
messages as an alternative to stepping through code in the script debugger.

8.9.2 Feedback with VBA forms

Providing feedback with a VBA form avoids the limitation of message
boxes. Of course, it has the disadvantage that you can use a VBA form for
feedback only when you are running VBA code, not VBScript code behind
an Outlook form.

In a VBA form, you can use multiple controls to provide information on
different operations. Controls can change color or font size to call attention
to critical feedback. You can even use graphics on the form to provide a dif-
ferent kind of visual feedback. In the next section, you’ll see how to add
feedback to the birthday/anniversary reminder form we built in Chapter 3.

One basic technique is to update the text in a text box as a procedure
runs. As shown in Chapter 3, the syntax for getting or setting the data in
almost any control is control.Value, where control is the name of the

Figure 8.8 From left to right, the Critical Message, Warning Query, Warning Message, and Infor-
mation Message icons.

8.9 Providing feedback 237

control. If you want to change the text in a text box named txtProgress
to show when an update procedure started running, you could put the fol-
lowing statement in the procedure. This syntax assumes that the procedure
updating the form is running from code behind the form:

txtProgress.Value = "Update started at " & _
 FormatDateTime(Now, vbShortTime)

An advantage of a VBA feedback form is that it can be a non-modal
form. A procedure running from another module can display the form and
update it as long as the user leaves the form on the screen. In that case, the
code would use a slightly different syntax, specifying the name of the form.
If the form were named MyForm, the code would set MyForm.txt-
Progress.Value instead of txtProgress.Value.

One variation is to use a text box where the Multiline property is set to
True and add a line to that control every time something happens in your
procedure that you want to notify the user about. Use the vbCrLf constant
to put each new addition on its own line at the top of the text box, so the
user sees the most recent progress report at the top:

MyForm.txtProgress.Value = "Update started at " & _
 FormatDateTime(Now, vbShortTime)
DoEvents
MyForm.Repaint
' some code here to perform a lengthy operation
MyForm.txtProgress.Value = "Finished at " & _
 FormatDateTime(Now, vbShortTime) & _
 vbCrLf & vbCrLf & MyForm.txtProgress.Value
DoEvents
MyForm.Repaint

After you update the control value, you need to give Windows an
opportunity to update the screen display with these statements:

DoEvents
formname.Repaint

where formname is the name of the form. The Repaint method redisplays
the form on the screen. DoEvents is a method that yields processing time to
the operating system. If you don’t include these statements, users will never
see the feedback until the main procedure finishes.

Obviously, updating the form control adds extra processing time, but in
many cases it’s worth it. If you don’t provide feedback, especially for lengthy
operations, you run the risk of the user deciding that Outlook is hung. The
user might then shut down Outlook or even the entire computer.

8.9.3 Example: Adding feedback to the birthday/
anniversary reminder form

Let’s see how you might add feedback to a familiar form—the birthday/
anniversary reminder form created and customized in Chapter 3.

238 8.9 Providing feedback

Figure 8.9 shows the form modified to add a new text box at the bottom
and to rearrange the command buttons. The new text box should have
these properties:

The Locked and BackColor properties ensure that the text box is both
read-only and has a gray background so that the user doesn’t automatically
assume that it’s a text box for data entry.

We need to make a few changes in the code for the cmdUpdate_Click
event hander from Listing 3.3 and add a new procedure, UpdateProgress.
Listing 8.15 shows the entire updated code for the form.

The UpdateProgress subroutine adds a timestamp to the text for the
update, posts it to the text box, and then updates the screen. Using a sepa-
rate procedure to perform the details of the feedback update simplifies the
main code procedure immensely. In the cmdUpdate_Click event handler,
all you need is a single call for each update to the UpdateProgress proce-
dure.

You can see the results in Figure 8.9—a line corresponding to each time
UpdateProgress was called. Notice that the lines for number of items
increment in tens. This code snippet shows why:

If intCount Mod 10 = 0 Then
 Call UpdateProgress _
 (intCount & " items processed")
End If

(Name) txtProgress

BackColor Button Face (&H800000F&)

Locked True

Multiline True

Figure 8.9
Even though this

update finished in
less than a minute,
the feedback about

its progress is
reassuring to the

user.

8.9 Providing feedback 239

Listing 8.15 The birthday/anniversary reminder form, updated to include feedback

Private Sub cmdUpdate_Click()
 On Error Resume Next
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objCalendar As Outlook.Folder
 Dim objItem As Outlook.AppointmentItem
 Dim strSubject As String
 Dim lngMinutes As Long
 Dim intCount As Integer
 Dim intCountBA As Integer
 Set objOL = Application
 Set objNS = objOL.Session
 Set objCalendar = objNS.GetDefaultFolder _
 (olFolderCalendar)
 If IsNumeric(txtDays.Value) Then
 Call UpdateProgress("Update started")
 Call UpdateProgress("Processing " & _
 objCalendar.Items.Count & " items")
 lngMinutes = 24 * 60 * txtDays.Value
 intCount = 0
 intCountBA = 0
 For Each objItem In objCalendar.Items
 strSubject = objItem.Subject
 If InStr(strSubject, "Birthday") > 0 And _
 (optBirthdays.Value Or optBoth.Value) Then
 objItem.ReminderSet = True
 objItem.ReminderMinutesBeforeStart = _
 lngMinutes
 objItem.Save
 intCountBA = intCountBA + 1
 End If
 If InStr(strSubject, "Anniversary") > 0 And _
 (optAnniversaries.Value Or optBoth.Value) Then
 objItem.ReminderSet = True
 objItem.ReminderMinutesBeforeStart = lngMinutes
 objItem.Save
 intCountBA = intCountBA + 1
 End If
 intCount = intCount + 1
 If intCount Mod 10 = 0 Then
 Call UpdateProgress _
 (intCount & " items processed")
 End If
 Next
 Call UpdateProgress _
 ("Finished: " & intCountBA & _
 " items updated out of " & _
 intCount & " items processed")
 Else
 Call UpdateProgress("Value for days is not numeric.")
 End If
 Beep

240 8.10 Getting user input

Mod is a special operator that returns just the remainder from a division
operation, so it will equal 0 only when intCount is an even multiple of 10.
Change the number from 10 to 100, and you’ll see a progress update for
only every 100 items processed. You can use this technique to provide peri-
odic updates when processing large numbers of items without overburden-
ing the user with information.

8.10 Getting user input
Earlier you learned how to use a MsgBox statement to pop up a simple mes-
sage to the user. You can also use a message box to get a response back from
the user that your code can use to decide what it should do next. Other
methods for getting user input include input boxes and integrating a VBA
user form into a calling procedure.

8.10.1 Using message boxes

Getting feedback from a MsgBox requires a slight variation from the syntax
you saw earlier in the chapter, because you need to return a value to a variable:

intAns = MsgBox(Prompt, Buttons, Title)

Note: The MsgBox() function also supports two other optional arguments
that supply the name of a Windows Help file and the context number for
the help topic you want to display. The creation of Help files is not covered
in this book, however, so we’ll ignore those arguments.

 Set objItem = Nothing
 Set objCalendar = Nothing
 Set objNS = Nothing
 Set objOL = Nothing
End Sub

Private Sub UpdateProgress(strUpdate As String)
 txtProgress.Value = _
 FormatDateTime(Now, vbShortTime) & vbTab & _
 strUpdate & vbCrLf & txtProgress.Value
 Me.Repaint
 DoEvents
End Sub

Private Sub cmdClose_Click()
 Unload Me
End Sub

Listing 8.15 The birthday/anniversary reminder form, updated to include feedback (continued)

8.10 Getting user input 241

A typical series of statements requesting a simple Yes or No answer with
a MsgBox() function looks like this:

intAns = MsgBox(prompt, vbYesNo, title)
If intAns = vbYes Then
 your code runs here
Else
 alternative code runs here
End If

As with MsgBox statements used to provide feedback, you can set the
value for the Buttons parameter by constants from the groups listed in
Table 8.10, up to four different constants.

buttontype + icon + defaultbutton + modality

Use only one constant from each of the four groups to create your But-
tons argument. This message box asks users to give a Yes or No answer to a
question about whether they really want to proceed:

intAns = MsgBox("Do you really want to do this?", _
 vbYesNo + vbQuestion + vbDefaultButton2, _
 "Dangerous operation")

It sets the default button to the second button, No, so that the user must
actively decide to proceed by clicking the Yes button.

If the prompt for the message is lengthy or is itself an expression, use a
separate string variable to build it. (This will make it easier to debug if the
message box text doesn’t look right.) In Listing 8.4, you encountered the
Selection object that represents the items that a user has highlighted in
an Outlook folder view. Instead of just telling users that they have selected
too many items for processing, you could give them more specific informa-
tion and ask if they want to proceed. This code snippet assumes that you
have already set an objSelection variable representing Active-

Explorer.Selection. It builds a strMsg string from two bits of text and
the number of items selected (objSelection.Count):

strMsg = "This selection includes " & _
 objSelection.Count & " items. " & _
 "Do you want to continue?"
intAns = MsgBox(strMsg, _
 vbYesNo + vbQuestion + vbDefaultButton2, _
 "Process Selection")

Figure 8.10 shows what the user sees—the actual number of items
selected and an option to proceed.

The intAns variable in all the message box examples is the key to get-
ting the user’s response. The MsgBox() function returns one of the integers
in Table 8.11, all of which have Visual Basic intrinsic constant equivalents
(so you don’t need to memorize the numbers).

242 8.10 Getting user input

Always ask for confirmation for risky operations, especially those with
the potential for data loss. Removing attachments from items is an example.
Listing 8.16 provides an updated version of the DeleteAttachments sub-
routine that you saw earlier in Listing 8.13. It asks for input in three places:

If the item contains only one attachment, the first MsgBox() func-
tion asks whether the user really wants to delete it.

For items with multiple attachments, the second MsgBox() function
asks whether the user wants to be prompted to remove each attach-
ment. The prompt includes the number of attachments.

If the user does choose to be prompted, the code uses the name of the
file to build the prompt message for the third MsgBox() function.

8.10.2 Using input boxes

The MsgBox() function provides a limited number of possible responses—
basically, Yes, No, Cancel, and variations on those themes. If you want
some other kind of input from the user, you must use another method. The

Figure 8.10 When you ask users to make a choice, provide enough information for them to make an
informed decision; in this case, give the size of the selection.

Table 8.11 Return Values for the MsgBox() Function

When the User Presses MsgBox() Returns Constant

OK 1 vbOK

Cancel 2 vbCancel

Abort 3 vbAbort

Retry 4 vbRetry

Ignore 5 vbIgnore

Yes 6 vbYes

No 7 vbNo

8.10 Getting user input 243

Listing 8.16 Adding user input to the DeleteAttachments() subroutine

Sub DeleteAttachments2(objItem As Object)
 Dim objAtt As Outlook.Attachment
 Dim intCount As Integer
 Dim i As Integer
 Dim strMsg As String
 Dim intResAsk As Integer
 Dim intResDel As Integer
 On Error Resume Next
 intCount = objItem.Attachments.count
 If intCount = 1 Then
 strMsg = "Do you really want to remove " & _
 "the attachment from this item?"
 intResDel = MsgBox(strMsg, _
 vbQuestion + vbYesNo + vbDefaultButton2, _
 "Remove Attachment")
 If intResDel = vbYes Then
 objItem.Attachments(1).Delete
 End If
 ElseIf intCount > 1 Then
 strMsg = "This item has " & intCount & _
 " attachments. Do you want to be " & _
 "prompted to remove each one?"
 intResAsk = MsgBox(strMsg, _
 vbQuestion + vbYesNo + vbDefaultButton2, _
 "Remove Attachments")
 For i = intCount To 1 Step -1
 Set objAtt = objItem.Attachments(i)
 If intResAsk = vbYes Then
 strMsg = "Do you really want to " & _
 "delete this file:" & _
 vbCrLf & vbCrLf & objAtt.FileName
 intResDel = MsgBox(strMsg, _
 vbQuestion + vbYesNo + vbDefaultButton2, _
 "Remove Attachment")
 Else
 intResDel = vbYes
 End If
 If intResDel = vbYes Then
 objItem.Attachments(i).Delete
 End If
 Next
 End If
 If objItem.Attachments.count < intCount Then
 objItem.Save
 End If
 Set objAtt = Nothing
End Sub

244 8.10 Getting user input

InputBox() function provides an easy way to get a single number, string,
or date from the user, as shown in Figure 8.11.

Note: Try not to beleaguer the user with a series of input and message
boxes. If you need more input or confirmation than one or two Input-
Box() or MsgBox() functions can provide, use a VBA form instead, as
described in the next section.

The basic InputBox() syntax looks like this:

InputBox(Prompt, Title, Default, Xpos, Ypos)

All parameters except Prompt are optional. The Prompt and Title
parameters work just like they do in the MsgBox() function. The Default
parameter is an optional string expression for the text you want to display in
the input box as the default response in case the user types nothing in.

The Xpos and Ypos parameters are optional numeric expressions that
set the screen location of the input box. They use the distance from the left
and top of the screen, respectively, measured in twips; there are 1,440 twips
to an inch. If you omit these arguments, Outlook centers the input box
horizontally, about one-third of the way down the screen.

Note: Like the MsgBox() function, the InputBox() function also supports
additional optional parameters to call a Windows Help file.

An input box returns a string consisting of whatever the user types into
the box. Here is the VBA code snippet that created the input box in Figure
8.11:

Dim strAns as String
strAns = InputBox("Flag message(s) for:", _
 "Flag Selected Message(s)", _
 "Follow up")

In VBScript, the InputBox() statement would be exactly the same. The
only difference is that you’d use Dim strAns without the data type declara-
tion.

Figure 8.11
An input box asks

the user for one
piece of

information.

8.10 Getting user input 245

Tip: A statement using InputBox() is often followed by one or more state-
ments that test the value returned by the function to make sure that it’s
more than an empty string or that it’s a valid number or date. Remember
the IsNumeric() and IsDate() functions encountered earlier in this
chapter?

The code in Listing 8.17 uses an InputBox() to prompt the user, then
sets a flag on all the messages the user has selected so that the item appears
in the To Do Bar and also has a reminder.

Here are a few notes on the code in Listing 8.17:

The If Trim(strFlag) <> "" ... End If block ensures that the
code updates the items only if the user doesn’t leave the follow-up
input box blank.

Checking the Class property ensures that the code only acts on mes-
sages.

Listing 8.17 Using an InputBox() to prompt the user

Sub FlagSelectedItems()
 Dim objApp As Outlook.Application
 Dim objSelItem As Object
 Dim objSelection As Outlook.Selection
 Dim strFlag As String
 On Error Resume Next
 Set objApp = Application
 Set objSelection = objApp.ActiveExplorer.Selection
 strFlag = InputBox("Flag message(s) for:", _
 "Flag Selected Message(s)", "Follow up")
 If Trim(strFlag) <> "" Then
 For Each objSelItem In objSelection
 With objSelItem
 If .Class = olMail Then
 .MarkAsTask olMarkThisWeek
 .TaskDueDate = Date + 7
 .TaskSubject = strFlag & " - " & _
 objSelItem.ConversationTopic
 .FlagRequest = strFlag
 .ReminderSet = True
 .ReminderTime = Date + 7
 .Save
 End If
 End With
 Next
 End If
 Set objSelItem = Nothing
 Set objSelection = Nothing
 Set objApp = Nothing
End Sub

246 8.10 Getting user input

MarkAsTask is a new MailItem method in Outlook 2007 that cre-
ates a task in the To Do Bar task list. Invoking MarkAsTask sets
default values for the TaskDueDate and TaskSubject properties,
but you can modify these values, as Listing 8.17 does.

ReminderSet and ReminderTime set a reminder alarm for the mes-
sage.

8.10.3 Using VBA forms

What if you wanted the user to provide both a message flag and a due date
in the FlagSelectedItems routine in Listing 8.17? Can you do that with
an InputBox() function? No, each input box returns only one piece of
information, and popping up one input box after another is not considered
good application design. The solution is to display a VBA form to gather
multiple pieces of information from a single dialog.

We’ve already seen one VBA form: the birthday/anniversary reminder
form from Chapter 3. That form contained its own code to process Out-
look items. You can also have VBA forms whose purpose is solely to gather
input for use in another VBA procedure, not to run any Outlook-specific
code.

A VBA form for such user input should be modal and contain controls
where the user enters data or makes selections, as well as an OK button to
signal that the user’s entries are ready to be processed. The code behind a
form should set a global variable that the calling subroutine uses to deter-
mine whether the user clicked OK or canceled the form dialog. To make
use of the form’s data, the calling subroutine should follow these steps:

1. Use the Show method to display the form.

2. After the user interacts with the form, check the global variable to
see whether the user clicked OK.

3. If the user did click OK, get data from the (now hidden) form’s
controls.

4. After obtaining all the necessary data from the form, unload the
form.

In many cases, you can largely duplicate the look of Outlook’s own dia-
log boxes with VBA forms of your own. In this example, you will create a
macro to set a message flag on selected items, after prompting the user for
the flag text and due date. Here’s what you need to do:

1. Create a new VBA user form named Ch08FlagOptions with the
caption “Flag for Follow Up.”

2. Add a text box named txtFlagTo and a matching label with the
caption “Flag to:”.

8.10 Getting user input 247

3. Add a text box named txtStartDate and a matching label with
the caption “Start on:”.

4. Add a text box named txtDueBy and a matching label with the
caption “Due by:”.

5. Add a command button named cmdOK with the caption “OK,”
and set its Default property to True.

6. Add a command button named cmdCancel with the caption
“Cancel,” and set its Cancel property to True.

Listing 8.18 Code for a VBA form for user input with validation

Dim blnUserChose As Boolean

Private Sub cmdCancel_Click()
 g_blnCancel = True
 blnUserChose = True
 Unload Me
End Sub

Private Sub cmdOK_Click
 If IsDate(txtDueDate.Value) And _
 IsDate(txtStartDate.Value) Then
 If CDate(txtDueDate.Value) >= _
 CDate(txtStartDate.Value) Then
 g_blnCancel = False
 blnUserChose = True
 Me.Hide
 Else
 MsgBox "Due date can't occur before start date."
 End If
 ElseIf Trim(txtDueDate.Value) = "" And _
 Trim(txtStartDate.Value) = "" Then
 g_blnCancel = False
 blnUserChose = True
 Me.Hide
 Else
 MsgBox "Please enter both dates or leave blank."
 End If
End Sub

Private Sub UserForm_Initialize()
 txtFlagTo.SelStart = 0
 txtFlagTo.SelLength = Len(txtFlagTo.Text)
 txtStartDate.Value = FormatDateTime(Date, vbShortDate)
 txtDueDate.Value = FormatDateTime(Date + 7, vbShortDate)
End Sub

Private Sub UserForm_Terminate()
 If blnUserChose = False Then
 g_blnCancel = True
 End If
End Sub

248 8.10 Getting user input

Listing 8.19 Processing user input from a modal VBA form

Public g_blnCancel As Boolean

Sub FlagSelectedItems2()
 Dim objApp As Outlook.Application
 Dim objSelItem As Object
 Dim objSelection As Outlook.Selection
 Dim strFlag As String
 Dim dteDue As Date
 Dim dteStart As Date
 Dim blnBlankDates As Boolean
 On Error Resume Next
 Set objApp = Application
 Set objSelection = objApp.ActiveExplorer.Selection
 Ch08FlagOptions.Show
 If Not g_blnCancel Then
 strFlag = Ch08FlagOptions.txtFlagTo.Value
 If Trim(strFlag) <> "" Then
 If Trim(Ch08FlagOptions.txtDueDate.Value) <> "" Then
 dteDue = CDate(Ch08FlagOptions.txtDueDate.Value)
 dteStart = _
 CDate(Ch08FlagOptions.txtStartDate.Value)
 Else
 blnBlankDates = True
 End If
 For Each objSelItem In objSelection
 With objSelItem
 If .Class = olMail Then
 .MarkAsTask olMarkNoDate
 .TaskSubject = strFlag & " - " & _
 objSelItem.ConversationTopic
 .FlagRequest = strFlag
 If Not blnBlankDates Then
 .TaskStartDate = dteStart
 .TaskDueDate = dteDue
 .ReminderSet = True
 .ReminderTime = Date + 7
 End If
 .Save
 End If
 End With
 Next
 End If
 End If
 Unload Ch08FlagOptions
 Set objSelItem = Nothing
 Set objSelection = Nothing
 Set objApp = Nothing
End Sub

8.11 Working with files and other objects 249

7. In the form’s code window, add the code in Listing 8.18. When
clicked, the command buttons set the value of a global variable
(g_blnCancel) and then hide or unload the form. The
UserForm_Initialize event handler sets default values for the
user input controls. The UserForm_Terminate event handler
subroutine is necessary to make sure that the global variable is set,
even if the user clicks the form’s close (x) button. Validation takes
place in the cmdOK_Click event handler to ensure that the user
has entered valid or blank date values.

8. Add the code in Listing 8.19 to a regular VBA module. It con-
tains the FlagSelectedItems2 macro that displays the form and
updates the selected items with the data the user enters.

Here’s how it works: The Ch08FlagOptions.Show statement in Listing
8.19 displays the Flag for Follow Up form shown in Figure 8.12. Because
the form’s ShowModal property is set to True (the default), execution of the
FlagSelectedItems2 procedure halts until the user interacts with the
form by pressing one of the buttons or closing the form.

If the user clicks the OK button, the g_blnCancel variable is set to
False. If the user clicks the Cancel button or clicks the close (x) button
(which triggers the UserForm_Terminate procedure), g_blnCancel is set
to True. After the user completes the form and clicks one of those three
buttons, control returns to the FlagSelectedItems2 procedure. If g_bln-
Cancel = False (in other words, if the user clicked the OK button and
the data entered was valid), the procedure gets the values from the text
boxes on the form (which was only hidden, not unloaded), and uses those
values to flag each selected item. (Compare that section of Listing 8.19 with
the code in Listing 8.17.) Finally, the Unload Ch08FlagOptions state-
ment terminates the user form and releases its memory.

8.11 Working with files and other objects
The previous chapter covered the syntax for Outlook object properties and
methods. A similar syntax applies to objects exposed by other Office appli-
cations such as Word and Excel and even by Windows itself. Once you

Figure 8.12
A VBA dialog can
gather user input

just like one of
Outlook’s built-in

dialog boxes.

250 8.11 Working with files and other objects

know what objects are available and how to instantiate variables for them,
you can work with their properties and methods the same way you do with
Outlook objects. In VBA, the first step often is to add a reference to a new
programming library; this step is not necessary (or even supported) in
VBScript. Later, Chapter 24, “Generating Reports on Outlook Data,” will
demonstrate a number of examples that use the Word and Excel program-
ming libraries. In this chapter, we highlight two libraries that provide access
to many basic Windows operations, such as checking for the existence of a
file or folder—Scripting Runtime and Windows Script Host.

Tip: Another useful programming library is that from Internet Explorer. In
Chapter 12 shows an example of launching a Web page from the Click
event of a control on a custom Outlook form.

8.11.1 Adding programming library references in VBA

The object browser window in the VBA programming environment, dis-
cussed in Chapter 2, displays information about not only Outlook objects,
but also other objects you can use in VBA. It even lists any modules or
forms you have created in VBA under the Project1 library.

Outlook VBA loads at least four standard programming libraries by
default, including the core library for Office. To see the libraries currently
installed and add more, choose Tools | References. In the References dialog
box, shown in Figure 8.13, the items at the top, marked with check marks,
are already installed and part of your VBA environment. (The Microsoft
Forms library will be present only if you have created one or more VBA user
forms.) Feel free to explore these libraries’ capabilities using the object
browser. For example, you can use this syntax from the VBA library to
delete a file on your hard drive, given its path:

Kill "C:\my test file.txt"

To add another reference, scroll down the alphabetical list of unchecked
items until you find the library you want to use. Then, click the desired
library’s check box. You can also install new references by clicking the
Browse button and finding the appropriate reference file on your system.
Reference files can include the following:

Outlook VBA files (.otm)

Object type libraries (.olb, .tlb, .dll)

Executable files (.exe)

ActiveX controls (.ocx)

After you add a reference, its object, properties, methods, and events will
become visible in the object browser.

8.11 Working with files and other objects 251

Tip: To more easily locate a library in the object browser, add references one
at a time, checking the object browser after each addition. Not all library
names in Tools | References match their object browser names.

To remove a reference if you’re no longer using its objects in your
project, clear its check box in the Tools | References dialog.

Two libraries may contain objects with the same name. To avoid con-
flicts, use a fully qualified declaration for each object. For example, Selec-
tion could be a Word, Excel, or Outlook object. In VBA code, you should
declare it as Outlook.Selection, Word.Selection, or Excel.Selec-
tion. If you do not use a fully qualified declaration, VBA will use the
library nearest the top of the reference list that has a matching member.

8.11.2 Using the Scripting Runtime library

While the VBA library has a FileSystem object for working with files and
folders, you will probably find it more convenient to use the Scripting
Runtime library for file and folder operations because it is a bit easier to use
and is also available to custom form VBScript code. The Scripting Runtime
library’s FileSystemObject is the starting point for such drive, file, and
folder tasks as:

Checking whether a particular file exists

Getting the user’s Temp or other special folder

Reading data from a text file

Transferring attachments from one Outlook item to another

To use the FileSystemObject in your VBA code, use the Tools | Refer-
ences command to add a reference to the Microsoft Scripting Runtime
library (scrrun.dll). The library list in the object browser will then show

Figure 8.13
These libraries are

installed in
Outlook VBA by

default.

252 8.11 Working with files and other objects

Scripting as an available library. To instantiate a FileSystemObject in
VBA, use this code:

Dim fso as Scripting.FileSystemObject
Set fso = CreateObject("Scripting.FileSystemObject")

In VBScript, the declaration would be simply Dim fso, without the As
clause.

Note: Some anti-virus applications may block programmatic access to the
Scripting Runtime library.

The FileSystemObject offers a variety of methods for working with
drives, files, and folders, including those that return a particular Folder or
File object from a path. A special object is the TextStream, which repre-
sents a text file that has been opened for reading, writing new data, or
appending to existing data. Tables 8.12 through 8.14 list the FileSystem-
Object methods you are most likely to use in Outlook programming.

Table 8.12 Key FileSystemObject Methods

Method Returns Outlook Usage and Notes

BuildPath(Path, Name) String with full path and file
name combined

Build a full path from a folder path,
especially a special system folder, and
a file name.

CreateFolder(Path) Scripting.Folder Create a new folder for storing attach-
ments, logs, saved messages, etc.

CreateTextFile(FileName,
Overwrite, Unicode)

Scripting.TextStream Create a new file for storing logs, etc.
and open it for reading and writing.
The Overwrite and Unicode
parameters are optional.

DeleteFile(FileSpec, Force) n/a Delete a file. Set the optional Force
parameter to True to delete a read-
only file.

FileExists(FileSpec) True or False Check whether a file with the same
name already exists before saving a
message or attachment as a file.

GetExtensionName(FileSpec) String with name of the file
extension

Use GetBaseName and
GetExtensionName together to
break a file name into its name and
extension parts.

GetFile(FilePath) Scripting.File Return a File object you can examine
for version number, created or modi-
fied date, or other file properties.

8.11 Working with files and other objects 253

GetBaseName(FileSpec) String with the name of last
component in a FileSpec,
without any file extension

Use GetBaseName and
GetExtensionName together to
break a file name into its name and
extension parts

GetSpecialFolder(SpecialFolder) Scripting.Folder Get the user’s temporary folder for
saving files for short-term use. See
Table 8.14 for possible values for
SpecialFolder.

GetTempName() String with name of the file Get an automatically generated name
for a temporary file.

OpenTextFile(FileName, IOMode,
Create, Format)

Scripting.TextStream Open a text file for reading or writ-
ing. See Table 8.13 for possible val-
ues for the optional IOMode,
Create, and Format parameters.

Table 8.13 Parameter Values for OpenTextFile

Parameter Description Constant Literal Value

IOMode Add text at the end of the file ForAppending 8

Read the file ForReading 1

Write data to the file ForWriting 2

Create Create a new file if it doesn’t already exist True

Don’t create a new file False (default)

Format Open the file as Unicode TristateTrue -1

Open the file as ASCII TristateFalse (default) 0

Open the file using the system default TristateUseDefault -2

Table 8.14 Values for the SpecialFolder Parameter for GetSpecialFolder

Folder Constant Literal Value

Temporary folder TemporaryFolder 2

System folder (e.g., C:\Windows\System) SystemFolder 1

Windows folder WindowsFolder 0

Table 8.12 Key FileSystemObject Methods (continued)

Method Returns Outlook Usage and Notes

254 8.11 Working with files and other objects

To demonstrate how you might use some of the methods in Table 8.12,
Listings 8.20 for VBA and 8.21 for VBScript show how to create a new
ASCII text file and open it for writing data to it. Both routines allow for the
possibility that a file with the desired name might already exist; they try to
create a file by appending a number up to 99 to the filename. A typical
usage of the OpenNewFileToWrite() function would look like this:

 Set objStream = OpenNewFileToWrite("C:\", "mydata.txt")
 If Not objStream Is Nothing Then
 objStream.Write "some data " & Now
 objStream.Close
 End If

Listing 8.20 Create and open a new text file for writing (VBA)

Function OpenNewFileToWrite _
 (folderPath As String, fileName As String) As TextStream
 Dim objFSO As Scripting.FileSystemObject
 Dim objStream As Scripting.TextStream
 Dim strFilePath As String
 Dim strFileName As String
 Dim strFileExt As String
 Dim i As Integer
 Set objFSO = CreateObject("Scripting.FileSystemObject")
 strFilePath = objFSO.BuildPath(folderPath, fileName)
 If Not objFSO.FileExists(strFilePath) Then
 Set OpenNewFileToWrite = _
 objFSO.OpenTextFile (strFilePath, ForWriting, True)
 Else
 i = 0
 strFileName = objFSO.GetBaseName(strFilePath)
 strFileExt = objFSO.GetExtensionName(strFilePath)
 Do While objFSO.FileExists(strFilePath)
 If i < 99 Then
 i = i + 1
 Else
 Exit Do
 End If
 strFilePath = _
 objFSO.BuildPath(folderPath, _
 strFileName & CStr(i) & "." & strFileExt)
 Loop
 If Not objFSO.FileExists(strFilePath) Then
 Set OpenNewFileToWrite = _
 objFSO.OpenTextFile(strFilePath, ForWriting, True)
 Else
 Set OpenNewFileToWrite = Nothing
 End If
 End If
 Set objFSO = Nothing
End Function

8.11 Working with files and other objects 255

Table 8.15 shows Write and other key methods for the TextStream
object.

Another common use for TextStream is to import data from a comma-
or tab-delimited file. Listing 8.22 assumes that you have a text file with
names and addresses in a tab-delimited format (as they would be if you
saved an existing distribution list as a text file and edited it to remove the
header information at the top); it creates and displays a new distribution list
based on the file data.

Listing 8.21 Create and open a new text file for writing (VBScript)

Function OpenNewFileToWrite(folderPath, fileName)
 Dim objFSO
 Dim objStream
 Dim strFilePath
 Dim strFileName
 Dim strFileExt
 Dim i As Integer
 Const ForWriting = 2
 Set objFSO = CreateObject("Scripting.FileSystemObject")
 strFilePath = objFSO.BuildPath(folderPath, fileName)
 If Not objFSO.FileExists(strFilePath) Then
 Set OpenNewFileToWrite = _
 objFSO.OpenTextFile(strFilePath, ForWriting, True)
 Else
 i = 0
 strFileName = objFSO.GetBaseName(strFilePath)
 strFileExt = objFSO.GetExtensionName(strFilePath)
 Do While objFSO.FileExists(strFilePath)
 If i < 99 Then
 i = i + 1
 Else
 Exit Do
 End If
 strFilePath = _
 objFSO.BuildPath(folderPath, _
 strFileName & CStr(i) & "." & strFileExt)
 Loop
 If Not objFSO.FileExists(strFilePath) Then
 Set OpenNewFileToWrite = _
 objFSO.OpenTextFile(strFilePath, ForWriting, True)
 Else
 Set OpenNewFileToWrite = Nothing
 End If
 End If
 Set objFSO = Nothing
End Function

256 8.11 Working with files and other objects

Note: The File | Import and Export wizard in Outlook is not programma-
ble in any way. To perform import and export operations, you’ll need to
write your own code using the Outlook object model and the programming
library appropriate for the source or destination file.

The ImportTextToDL procedure in Listing 8.22 checks to see whether a
file exists and, if it does, opens it for reading. Each line is read and split into
an array, using the tab character (vbTab) as the delimiter. A dummy mes-
sage item is used to build a list of recipients from the addresses in the sec-
ond column of the array. (The names in the first column are ignored.) The
AtEndOfStream property of the TextStream object enables the Do loop to
know when all lines from the text file have been processed.

8.11.3 Using Windows Script Host techniques

The Windows Script Host library provides methods for launching pro-
grams, reading the Windows registry, and performing other Windows-
related tasks. Since this library is used extensively for applications other
than Outlook, you will find a wealth of material on the Internet to help you
explore it further.

To launch any application or run any file in its native application, you
can use code like this:

Set objWSH = CreateObject("WScript.Shell")
objWSH.Run """C:\my document.doc"""

The Run method can take as its argument any program file, document
file, or URL that you can successfully launch with the Start | Run command

Table 8.15 Key Methods for the TextStream Object

Method Description

Close Close the TextStream, saving any new data written to it

Read(Chars) Read a specified number of characters from the text file

ReadAll Read all data from the text file

ReadLine Read one line from the stream. Repeat ReadLine to read each line in succes-
sion.

Write(Text) Write a string of text to the stream

WriteBlankLinks(Lines) Write a number of blank lines to the stream

WriteLine(Text) Write a string of text, plus an end of line character, to the stream

8.11 Working with files and other objects 257

in Windows. In most cases, you will need to specify a full file path, not just
the file name.

You can declare objWSH as Object in VBA or add a reference to the
WSH Object Model (wshom.ocx) to your Outlook VBA project and
declare objWSH as IWshRuntimeLibrary.IWshShell.

The Windows registry contains a huge amount of information about
user and computer settings that can come in handy. You can read the regis-
try with the WSH RegRead method. The WSHListSep() function in List-
ing 8.23 is a practical application—reading the character that Windows
uses to separate items in a list, such as entries in the Categories property

Listing 8.22 Import a distribution list from a text file

Sub ImportTextToDL(fileSpec As String)
 Dim objOL As Outlook.Application
 Dim objDL As Outlook.DistListItem
 Dim objMsg As Outlook.MailItem
 Dim objRecip As Outlook.Recipient
 Dim objFSO As Scripting.FileSystemObject
 Dim objStream As Scripting.TextStream
 Dim strLine As String
 Dim arr() As String
 Set objFSO = CreateObject("Scripting.FileSystemObject")
 If objFSO.FileExists(fileSpec) Then
 Set objStream = objFSO.OpenTextFile(fileSpec, ForReading)
 Set objOL = Application
 Set objNS = objOL.Session
 Set objDL = objOL.CreateItem(olDistributionListItem)
 With objDL
 .Subject = objFSO.GetBaseName(fileSpec)
 Set objMsg = objOL.CreateItem(olMailItem)
 Do While Not objStream.AtEndOfStream
 strLine = objStream.ReadLine
 If strLine <> "" Then
 arr = Split(strLine, vbTab)
 Set objRecip = objMsg.Recipients.Add(arr(1))
 End If
 Loop
 .AddMembers objMsg.Recipients
 .Display
 End With
 objStream.Close
 End If
 Set objOL = Nothing
 Set objDL = Nothing
 Set objMsg = Nothing
 Set objFSO = Nothing
 Set objStream = Nothing
End Sub

258 8.12 Summary

of an Outlook item. If you are writing code for use by people in different
countries, you’ll need to know the separator character.

Note: The IWshShell object also includes RegWrite and RegDelete
methods for modifying the Windows registry. However, those techniques
(and the even more powerful registry scripting techniques available from
Windows Management Instrumentation library) are beyond the scope of
this book. Changing the registry should always be approached with caution.
Furthermore, while many Outlook options are maintained as registry set-
tings, changing the registry value does not affect the currently running Out-
look session, because the registry values are not read by Outlook until the
next time it starts.

8.12 Summary
This long chapter has provided a good grounding in the basic techniques of
writing VBA and VBScript code. You should refer back to it often as you
apply those techniques to your Outlook programming projects. In addition
to using basic techniques, you have also seen how to combine them to per-
form tasks that can be very useful in Outlook, such as parsing text from a
structured text block (Listings 8.5 and 8.12), determining whether a date
falls on a weekend (Listings 8.6 and 8.7), calculating the next business day
(Listing 8.9), and calculating the number of years between two dates (List-
ing 8.10).

Also in this chapter were code samples for a number of key Outlook
operations:

Create a task due one week from today (Listing 8.1)

Process items in a selection (Listing 8.4) or all the items in folder
(Listing 8.14)

Delete attachments (Listings 8.13 and 8.16)

Flag selected messages to add them to the To Do Bar (Listing 8.17)

Listing 8.23 Use Windows Script Host to get the user’s list separator

Function WSHListSep() ' As String
 Dim objWSHShell ' As Object
 Dim strReg ' As String
 strReg = "HKCU\Control Panel\International\sList"
 Set objWSHShell = CreateObject("WScript.Shell")
 WSHListSep = objWSHShell.RegRead(strReg)
 Set objWSHShell = Nothing
End Function

8.12 Summary 259

We enhanced the birthday/anniversary reminder VBA form from Chap-
ter 3 with a control to provide feedback to the user (Listing 8.15).

Through the use of the Scripting Runtime (FileSystemObject) and
Windows Script Host libraries, you have learned how to work with files and
folders, read text from a file, write text to a file, run any application or file,
and perform simple registry read operations.

Finally, you have seen some of the most common errors you’re likely to
encounter when writing Outlook code—including the “object required”
error (Figure 8.1) and the “type mismatch” error (Figure 8.4). In the next
chapter, we’ll learn more about detecting and handling errors and debug-
ging your code.

This page intentionally left blank

261

9
Handling Errors, Testing, and Debugging

This chapter gives you a break from writing code procedures as it explores
what might go wrong with your Outlook VBA or VBScript code and how
to fix it. Outlook includes many tools to assist you in tracking down such
problems, especially in VBA.

For VBScript, your options are more limited. There is no script debug-
ging support for Outlook 2007 running on Windows Vista, unless Visual
Studio is also installed on the machine. Therefore, we will look at some
alternatives, including testing custom form code in Outlook VBA.

Highlights of this chapter include discussions of the following:

What types of errors you are likely to encounter
What debugging techniques Outlook VBA supports
How to handle errors you can’t avoid
How to use the script debugger on systems where it is available
How to convert VBA code to VBScript for use in custom forms

9.1 Understanding errors
Many types of errors can occur in the course of designing and running a
code procedure. We have already seen many examples of typical Outlook
coding errors, especially in the previous chapter. An error is not necessarily
bad! Some errors can give you essential information on the status of your
application.

We will consider these five varieties of errors:

Simple syntax errors
Compile errors
Runtime errors
Logic errors
Outlook application bugs

262 9.1 Understanding errors

Outlook’s VBScript code editor for writing procedures for custom forms
has no features for finding errors during the code writing process. The only
time you’ll find out about VBScript errors is when the code behind the
form runs. VBA, on the other hand, has several features to help you find
code errors before you run a procedure.

9.1.1 Simple syntax errors

The first kind of error that the VBA programming environment can detect
is simple syntax errors, those that occur as you type code statements in
VBA. For example, you might type this statement:

Set objOL + Application

when what you meant to type was:

Set objOL = Application

When you press the Enter key at the end of the statement, VBA pops up
a message such as that in Figure 9.1, colors the problem statement in red,
and highlights the portion of the statement that appears to be in error.

This kind of error checking is analogous to the spelling and grammar
checker in Microsoft Word. Like Word’s spell check, you can turn off VBA’s
syntax checker if you find it intrusive. With the VBA environment open,
choose Tools | Options, and then clear the box for Auto Syntax Check. I
recommend keeping it active, though, since it can help you prevent many
mistakes.

If you make the same simple syntax mistake in the VBScript code behind
an Outlook form—not using a equals sign (=) with a Set statement—you
won’t see any error until you run the form. At that time, Outlook will display
an error like that in Figure 9.2 and give you the exact line number of the
problem statement. In the form’s script editor, use the Edit | Go To command
or press Ctrl+G to go to that line and make your correction.

Figure 9.1
VBA tries to help
you correct simple

syntax errors as you
type.

9.1 Understanding errors 263

9.1.2 Compile errors

The Auto Syntax Check feature in VBA can detect errors only in single
statements. It doesn’t alert you to missing End If statements or undeclared
variables in modules that contain an Option Explicit declaration. You
won’t be prompted about those types of errors until you compile your VBA
code, a process that converts the typed code statements into lower-level pro-
gramming instructions. A VBA procedure must be compiled before it can
run. VBA automatically compiles procedures when you run them, but you
can also manually compile the entire Outlook VBA project, including all
modules, by choosing Debug | Compile.

Some compile errors are easy to fix. Others are not. One easy-to-fix
example is the “variable not defined” error that occurs when the code mod-
ule contains an Option Explicit declaration but not all variables are
declared with Dim, Public, or Private statements. Such errors are easy to
correct by adding the necessary variable declarations.

For an example of a tougher compile error, take a look at Figure 9.3.
The error message indicates that something is wrong with the If ... End
If block. However, you can see clearly that you do have both an If state-
ment and an End If statement. So what’s the problem? In a case like this,
examine the statements immediately above the highlighted statement.
That’s where the error is likely to be. In the code in Figure 9.3, the problem
is a missing End Select statement for the Select Case block nested
inside the If ... End If block.

Tip: Imagine how much harder it would have been to discover the error in
Figure 9.3 if the nested If ... End If block and Select Case ... End
Select blocks were not so consistently indented!

When you compile, VBA highlights only one error at a time. After you
correct the first error, compile again to see whether additional errors are
present. Keep compiling until you receive no further compile error messages.

Figure 9.2
For simple

VBScript code
syntax errors,

Outlook gives you
the line number to

fix.

264 9.1 Understanding errors

VBScript code behind Outlook forms can also have compile errors, but
the error messages won’t appear until you run the form, and they may be
somewhat cryptic. If you copy the code in Figure 9.3 as-is into a custom
form’s code editor, then run the form, you’ll get the error message shown in
Figure 9.4. The problem is with the very first statement:

Function CompileError(A As Long, B As Long) As Long

The error message about the expected closing parenthesis doesn’t tell you
that the real problem is that this statement contains data type declarations
(As Long) for the parameters and procedure declaration, and such data
type declaration are not supported in VBScript. To fix the problem, you’d
need to change the function declaration to:

Function CompileError(A, B)

9.1.3 Runtime errors

The third type of error, a runtime error, comes to light only when a proce-
dure runs and a statement with an error executes—making this type of error
potentially difficult to find. Both VBA and VBScript code are subject to

Figure 9.3
Some errors, such
as a missing End
Select statement,
are detected only

when you compile
the code.

Figure 9.4
While VBScript

will tell you where
a compile error

occurred, it won’t
necessarily give you
a clue as to how to

fix it.

9.1 Understanding errors 265

runtime errors. The following VBA procedure contains one of the most
common runtime errors you are likely to see in Outlook programming.
Can you find it?

Sub NoObjectError()
 Dim objApp As Outlook.Application
 Dim objFolder As Outlook.Folder
 Dim objMsg As Outlook.MailItem
 Set objApp = Application
 Set objFolder = _
 objApp.Session.GetDefaultFolder(olFolderDrafts)
 objMsg = objFolder.Items.Add("IPM.Note.Sales")
 objMsg.Display
 Set objApp = Nothing
 Set objFolder = Nothing
 Set objMsg = Nothing
End Sub

The error is in the statement

objMsg = objFolder.Items.Add("IPM.Note.Sales")

Because objMsg is an object variable, you cannot assign it with a simple
= statement, as you would with a string or numeric variable. Instead, you
need to use the Set keyword, as in the statements for the objApp and obj-
Folder variables.

If you run the NoObjectError subroutine, when the program gets to
that problem statement, it cannot continue and pops up the error message
shown in Figure 9.5. The runtime error dialog box gives you several
choices. The Continue button is usually disabled because most runtime
errors are so bad that the program cannot continue to run until you correct
the problem.

If you choose End, program execution halts. After you correct the prob-
lem, you can run the procedure again.

If you choose Debug, VBA pauses program execution, switching to
what’s called break mode. (Notice the word “[break]” in the title bar in Fig-
ure 9.6.) The next statement to be executed is highlighted in yellow and
marked with an arrow to the left. This is the statement you must fix before

Figure 9.5
Runtime errors halt

execution of your
procedure.

266 9.1 Understanding errors

Figure 9.6
In break mode,

VBA highlights the
next statement to

be executed.

Figure 9.7
Click Help on a

runtime error
message dialog in
VBA to see more

information on the
problem.

9.1 Understanding errors 267

the program can continue. After you correct it, click the Continue button
on the toolbar, or choose Run | Continue to pick up execution with the
highlighted statement.

Certain edits will cause program execution to halt completely. VBA will
warn you if you’re about to make such an edit. After making that kind of
correction, you’ll need to restart the procedure from the beginning, not
from the problem statement.

If you are unsure about the meaning of a runtime error, click the Help
button on the message box about the error (refer to Figure 9.5). In most
cases, a Help topic (see Figure 9.7) appears, explaining why the error may
have occurred and how you might correct it. In this example, you can cor-
rect the error by prefixing the statement with the Set keyword:

Set objMsg = objFolder.Items.Add("IPM.Note.Sales")

When a similar runtime error occurs in VBScript code behind an Out-
look form, you get a different error message. Here is the comparable code
for a published custom form that contains a command button control
named CommandButton1:

Sub CommandButton1_Click()
 Call NoObjectError()
End Sub

Sub NoObjectError()
 Dim objApp 'As Outlook.Application
 Dim objFolder 'As Outlook.Folder
 Dim objMsg 'As Outlook.MailItem
 Const olFolderDrafts = 16
 Set objApp = Application
 Set objFolder = _
 objApp.Session.GetDefaultFolder(olFolderDrafts)
 objMsg = objFolder.Items.Add("IPM.Note.Sales")
 objMsg.Display
 Set objApp = Nothing
 Set objFolder = Nothing
 Set objMsg = Nothing
End Sub

Figure 9.8 A runtime error for VBScript code behind a custom form code may tell you which vari-
able is causing the problem.

268 9.1 Understanding errors

Click the button and you’ll see the error message shown in Figure 9.8.
VBScript tells you exactly which object variable is causing the problem. If
you are running Outlook 2007 on Windows Vista and don’t have Visual
Studio installed, that’s all the information you’ll get. If you are using Win-
dows XP and have installed the script debugger, as described in Chapter 1,
you will be able to invoke the script debugger using a Break command sim-
ilar to that in VBA. Once you’re in the debugger, the problem statement
will be highlighted. You cannot, however, edit the script for your form in
the script debugger. You can only read the script. We’ll look more in depth
at the VBScript debugger a little later in this chapter.

Note: Some runtime errors are unavoidable and need to be anticipated by
your code. One example of error handing appeared in Section 8.8.7 on
GoTo statements, and you’ll see other examples later in this chapter.

9.1.4 Logic errors

The next type of error is the logic error, or as many programmers call it, the
idiotic mistake. You can’t blame the program for this kind of problem,
because it is caused by flaws in your own logic.

For example, let’s say you have a VBA user form with two text box con-
trols, txtStart and txtEnd, where the user enters start and end dates.
Before processing Outlook items in that date range, your code uses a func-
tion named DatesOK() to make sure that both entries are dates and that
the end date is later than the start date. At least that’s what you think your
code does. However, when you run the form and enter what seem to be
valid dates, DatesOK() often returns a value of False even when the dates
seem correct to the eye. Take a look at the code for DatesOK() and see
whether you can pick out the logic error:

Function DatesOK() As Boolean
 If IsDate(txtStart.Value) And IsDate(txtEnd.Value) Then
 If txtEnd.Value >= txtStart.Value Then
 DatesOK = True
 Else
 DatesOK = False
 End If
 End If
End Function

Did you find it? The problem is with the expression txtEnd.Value >=
txtStart.Value. The Value property for each text box control is not
date/time data; it’s a variant, like the values returned by all form controls.
This means that when you apply a comparison operator such as >=, the two
terms are compared as if they are string values, a fatal flaw when you’re try-

9.2 Testing and debugging in VBA 269

ing to compare dates! For example, 4/10/07 may be a later date than 4/4/
07, but the expression "4/10/07" >= "4/3/07" returns a value of False.

To fix this logic error, you must make sure that you are actually compar-
ing date values. The CDate() date conversion function, which we saw in
the previous chapter, does the trick. Change the problem expression to:

CDate(txtEnd.Value) >= CDate(txtStart.Value)

As you can see, logic errors can be tough to track down. These defensive
strategies can help you prevent them:

Sketch out your procedures well with pseudo code before writing real
code statements.

Use properly declared and typed variables in VBA. In VBScript, use
conversion functions to make sure you have dates when you need
dates and numbers when you need numbers.

Test with lots of different data.

9.1.5 Outlook bugs

The final type of error can be the most frustrating—bugs built into the
Outlook application itself. No matter how much testing takes place before
the product is released, some problems known to Microsoft always remain.
Others may come to light only after thousands of developers begin putting
all the new features to use. When you encounter a suspected program bug,
you don’t have to suffer alone in silence. The resources at http://www.out-
lookcode.com can help you confirm whether you’ve run up against a pro-
gram limitation and whether a patch or workaround is available.

9.2 Testing and debugging in VBA
All code needs to be tested and run against real-world data. Often, your
tests will turn up errors. Debugging is the process of tracking down errors—
mainly logic and runtime errors—by following the sequence in which code
statements execute and monitoring the resulting changes in the values of
your variables. VBA includes several tools that allow you to set the location
where you want to start debugging and follow the variable values. These
include:

Breakpoints

The Immediate window

The Watch window and Quick Watch feature

The Locals window

The Call Stack

These tools are found on the Debug and View menus in VBA.

270 9.2 Testing and debugging in VBA

9.2.1 Using breakpoints

The idea of a breakpoint is to pause program execution so that you can take
a look at the code and the variable values and make any necessary changes
before continuing with the next statements. You can set manual break-
points or have VBA switch to break mode automatically under conditions
that you set.

Note: As you saw in the earlier section on runtime errors, you can switch to
break mode by clicking Debug if a runtime error message appears. You can
also get into break mode by pressing Ctrl+Break while the program is exe-
cuting. However, pressing Ctrl+Break provides no control over which pro-
cedure will be interrupted.

To set a breakpoint, click in the gray left margin of the module window
next to the line of code where you want to stop code execution. After the
break occurs, this statement will not run until you continue code execution.
You can also click in the code line and then press F9 to set the breakpoint,
or choose Debug | Toggle Breakpoint. Follow the same steps to remove a
breakpoint. To remove all breakpoints in the project, choose Debug | Clear
All Breakpoints.

To have VBA switch to break mode automatically under a certain condi-
tion, you can set a watch for a particular variable or expression. The easiest
way is to select the variable or expression you want to use in your VBA code
window, then right-click and choose Add Watch. The Add Watch dialog
(see Figure 9.9) appears. Check to make sure that you picked the right vari-
able (or expression) and the right context, and then set the Watch Type at
the bottom. You can have VBA go into break mode either when the value in
the Expression box returns True or whenever the value changes.

Watches are shown in the Watches window (see Figure 9.10). You can
toggle this window on and off with the View | Watch Window command.

Figure 9.9
Watch expressions

can switch VBA to
break mode

automatically
while your code is

executing.

9.2 Testing and debugging in VBA 271

To change or remove a watch, right-click it in the Watches window; then
choose Edit Watch or Delete Watch. When VBA is in break mode, you can
use the Watches window to examine the values of the watch expressions.
For object variables, you will see a + sign to the left of the expression. Click
it to expand the information about the object to show all its properties and
their values.

Tip: If you just want to add a watch without setting it to break, select a
variable or expression, and then choose Debug | Quick Watch.

9.2.2 Working in break mode

What can you do when you’re in break mode in VBA? Here are some of the
techniques that programmers use in break mode to work out the problems
in their code:

Check the sequence of procedures that have already run

Edit code to correct problems

Examine and change the values of variables

Restart the procedure from the breakpoint or from another statement

Step through the code, statement by statement or procedure by pro-
cedure

To check what procedures ran before the break occurred, choose View |
Call Stack. The Call Stack window shows the sequence of procedures, with
the most recent at the top of the list.

While in break mode, you can edit your program code. Some changes
may cause a message to appear that the project will reset. This means that
program execution will halt and VBA will return to design mode, where
you can restart your procedure from the beginning.

Figure 9.10
The Watches

window shows each
expression for

which you have set
a watch, along

with its current
value if VBA is in

break mode.

272 9.2 Testing and debugging in VBA

As you saw in Figure 9.10, the Watches window shows the current values
of any variables or expressions for which you set a watch. Another way to see
the value of any variable or object variable property is to pause the mouse
pointer over the variable where it appears in your code. After a second or
two, a screen tip will appear, giving the current value (see Figure 9.11).

To see more variable and object property values, choose View | Locals.
The Locals window (see Figure 9.12) works much like the Watches window,
except that it shows all variables, not just those for which watches were set.

9.2.3 Using the Immediate window

Another VBA tool for examining variables is the Immediate window, which
you can display by choosing View | Immediate Window. In the Immediate
window, not only can you check the value of any variable, but you can also
change values and even evaluate functions or run code statements.

Figure 9.11
Screen tips pop up

with the current
variable or object

property values.

Figure 9.12
The Locals window
displays all variable
and object property

values.

9.2 Testing and debugging in VBA 273

To check the value of any variable or expression, in the Immediate win-
dow, type ? or Print, followed by the variable or expression, and then press
Enter. The value appears on the next line in the Immediate window.

Note: One advantage of the Immediate window over the Watches or Locals
window is that it’s easier to see the value of string variables containing long
blocks of text—even multiple lines of text.

You can also add a Debug.Print statement to your VBA program code
and have it “print” information to the Immediate window as the code exe-
cutes. In Listing 9.1, also shown in Figure 9.13, we’ve taken the Delete-
Attachments subroutine from Listing 8.13, added code to run it for every

Figure 9.13 Use a Debug.Print statement to show results from your VBA code in the Immediate
window.

274 9.2 Testing and debugging in VBA

item in the currently displayed folder, and added a Debug.Print statement
inside the Attachments loop, so that the procedure can report on its
actions.

While in break mode, you can change the value of any variable or set an
object property value by typing the appropriate variable assignment state-
ment in the Immediate window and pressing Enter. When you continue
with code execution, the code runs with the new value of the variable or
property.

9.2.4 Continuing program execution

After you make changes to your code in break mode, check variable values,
and execute statements in the Immediate window, you may want to con-
tinue running the procedure. To continue from the breakpoint, click the
Continue button or choose Run | Continue.

Listing 9.1 Delete all attachments from items in the current folder

Sub DelAttsInCurrentFolder()
 Dim objOL As Outlook.Application
 Dim objFld As Outlook.Folder
 Dim itm As Object
 Set objOL = Application
 Set objFld = objOL.ActiveExplorer.CurrentFolder
 For Each itm In objFld.Items
 Call DeleteAttachments(itm)
 Next
 Set itm = Nothing
 Set objFld = Nothing
 Set objOL = Nothing
End Sub

Sub DeleteAttachments(objItem As Object)
 On Error Resume Next
 Dim objAtt As Outlook.Attachment
 Dim intCount As Integer
 Dim i As Integer
 intCount = objItem.Attachments.Count
 If intCount > 0 Then
 Debug.Print intCount & " attachments in " & _
 objItem.Subject
 For i = intCount To 1 Step -1
 Set objAtt = objItem.Attachments.Item(i)
 Debug.Print vbTab & " deleted " & objAtt.FileName
 objAtt.Delete
 Next
 objItem.Save
 End If
 Set objAtt = Nothing
End Sub

9.2 Testing and debugging in VBA 275

To continue from a statement other than the breakpoint, select the state-
ment you want to start from. Choose Debug | Set Next Statement, and
then click the Continue button or choose Run | Continue. You can also
right-click the desired statement and choose Set Next Statement.

To restart from the beginning, click the Reset button or choose Run |
Reset. You can then restart the current procedure or any other procedure
with the Run button.

These methods continue program execution until the end of the current
procedure (or its calling procedure) or the next breakpoint. You can also
step through the code, statement by statement, to get a feeling for exactly
what happens when each statement executes. To continue program execu-
tion in this fashion, press F8 or choose Debug | Step Into.

Tip: If you want to step through a procedure without setting a breakpoint
or watch first, choose Debug | Step Into instead of Run to begin execution
of the procedure in step mode. The Debug menu includes several other
commands to help you step through your code in various ways: Step Over,
Step Out, and Run to Cursor.

9.2.5 Adding VBA error handlers

The runtime error that you saw in Figure 9.5 doesn’t tell an end user what
went wrong or how to fix it. To provide a friendlier message with some
detail about the error, you can add general error handling to any VBA pro-
cedure. The following procedure is a slightly more involved version of the
type of error handler that we saw in Section 8.8.7 in the previous chapter:

Sub ErrorHandlerDemo()
 Dim strMsg As String
 On Error GoTo ErrorHandlerDemo_Err
 your program code goes here
 GoTo ErrorHandlerDemo_Exit

ErrorHandlerDemo_Err:
 strMsg = "Error number " & Err.Number & _
 vbCrLf & vbCrLf & Err.Description
 MsgBox strMsg, vbExclamation, "Error in
ErrorHandlerDemo"

ErrorHandlerDemo_Exit:
 ' release any object variables and
 ' perform other cleanup
End Sub

The On Error GoTo linelabel statement specifies that, if an error
occurs, program execution continues with the section named linelabel.
In general, labels for sections appear at the end of a procedure, with a

276 9.2 Testing and debugging in VBA

labeled section to release any object variables and perform other cleanup
last. If no such cleanup is needed, you could replace the GoTo

ErrorHandlerDemo_Exit statement with an Exit Sub statement. Either
one will prevent the code in the ErrorHandlerDemo_Err section from exe-
cuting unless an error has occurred.

The MsgBox statement, which we learned about in the previous chapter,
uses two properties of the intrinsic Err object representing the error that has
occurred: Number and Description. Compare Figure 9.14 with Figure 9.5.

Note: Err.Number and Err by itself can be used interchangeably because
Number is the default property of the Err object. If you have an error, the
value for Err.Number will be non-zero. If Err = 0, you know that no error
has occurred.

You are not limited just to displaying message boxes in response to
errors, of course. If you want to trap particular known errors, you can
expand the error-handling block with a Select ... End Select block
such as this one. You would replace err1 and err2 with the specific error
numbers that you want to address:

 Select Case Err.Number
 Case err1
 error-handling code goes here
 Case err2
 error-handling code goes here
 additional Case statements
 Case Else
 catchall error-handling code goes here
 End Select

In such an error-handling block, a useful statement is Resume Next.
This causes program execution to continue with the statement immediately
following the one in which the error occurred. Using Resume by itself will
continue program execution with the statement that raised the error; use it
if your error-handling code corrects the problem that caused the error.

Figure 9.14
Your application

can display its own
message boxes in

response to errors.

9.3 Debugging Outlook form VBScript code 277

Tip: To test how your code responds to a particular error, add an
Err.Raise errnum statement to your code, in which errnum is the spe-
cific number for the error, for example, 91 in the case of the error shown in
Figure 9.14. The statement Err.Clear clears the current Err object so that
Err.Number once again returns 0.

9.3 Debugging Outlook form VBScript code
Compared with VBA’s debugging features, the tools available to debug
VBScript code range from primitive to almost non-existent, depending on
what operating system you’re using. On Windows Vista, no Outlook form
script debugging is possible unless you also have Microsoft Visual Studio, a
separate programming application for professional developers, installed.

Even without a script debugger, though, you should build some basic
error handling into the VBScript code behind your Outlook forms. Other-
wise, if the script encounters a runtime error, it will not be able to recover
and complete the code in the procedure that encountered an error.

Tip: If you don’t want a form’s code to run when you open the form, hold
down the Shift key until the form opens completely.

9.3.1 Error handling in VBScript

The Err object is intrinsic to VBScript, and its properties work the same as
in VBA. However, VBScript code does not support On Error GoTo state-
ments or labeled sections within a procedure. Therefore, basic standard
error handling in form script code consists of:

An On Error Resume Next statement to prevent the procedure
from halting when an error occurs; this also prevents users from see-
ing error messages that they might not understand.

Occasional checks to see if an error has occurred; get the value of
Err.Number whenever it is important to your application to know
whether there was an error.

While usually you will want to avoid errors, there are cases where letting
an error occur and handling it gracefully can actually simplify your code!
For example, if you want to create an item in another user’s Exchange mail-
box folder, you could first check to see whether you have permission to cre-
ate an item in that folder (as we’ll see in Chapter 13, “Working with Stores,

278 9.3 Debugging Outlook form VBScript code

Explorers, and Folders”). Or you could take a more direct approach: Try
to create the item and handle the error that will occur if you don’t have
permission to do so. Listing 9.2 is code intended to run when the user
clicks a button named CommandButton1. It attempts to create a new task
in the mailbox for a user in the same Exchange organization with the alias
“donnal.”

Notice that Listing 9.2 checks the value of Err.Number not once but
twice: first, after the attempt to access the other user’s folder with the Get-
SharedDefaultFolder() method, and then again after the attempt to cre-
ate the task. This reflects the fact that the current user might have
permission to view the other person’s Tasks folder, but might not be able to
create a task there. But, if the user can’t access the folder at all, there’s no
point in trying to create an item in it.

Listing 9.2 VBScript code to add a task to another user’s Exchange mailbox

Sub CommandButton1_Click()
 Dim objFld ' As Outlook.Folder
 Dim objTask ' As Outlook.TaskItem
 Dim objRecip ' As Outlook.Recipient
 Dim strMsg ' As String
 Const olFolderTasks = 13
 On Error Resume Next
 Set objRecip = Application.Session.CreateRecipient("donnal")
 Set objFld = Application.Session.GetSharedDefaultFolder _
 (objRecip, olFolderTasks)
 If Err.Number = 0 Then
 Set objTask = objFld.Items.Add
 With objTask
 .Subject = "Test of folder permission " & Now
 .Save
 If Err.Number <> 0 Then
 strMsg = "Could not create item in " & _
 "other user's Tasks folder"
 MsgBox strMsg, vbCritical, "Error"
 Else
 .Display
 End If
 End With
 Else
 strMsg = "Could not access other user's Tasks folder"
 MsgBox strMsg, vbCritical, "Error"
 End If
 Set objTask = Nothing
 Set objRecip = Nothing
 Set objFld = Nothing
End Sub

9.3 Debugging Outlook form VBScript code 279

9.3.2 Using the script debugger

As noted earlier, script debugging is available if:

You are running Outlook 2007 on Windows XP and you installed
the Web Debugging component for Office 2007, as described in
Chapter 1; or

You are running Outlook 2007 on Windows Vista, and you have
installed Microsoft Visual Studio.

The script debugger is available only when you are running an Outlook
form and does not allow you to edit the actual form script code.

Here is a simple test to determine whether the script debugger is avail-
able. Create a new custom form of any type and add this code to it:

Function Item_Open()
 MsgBox "Item is opening"
 Stop
 MsgBox "Item is still open"
End Function

Publish the form, and then create a new item using that form. The
Item_Open event handler code will run when the item opens, and when it
reaches the Stop statement, Outlook will try to call the debugger. If the
debugger is not available, Outlook will ignore the Stop statement and show
you both message boxes. If the debugger is present, you will see a dialog
similar to that in Figure 9.15. Choose New Instance of Microsoft Script
Editor and then click Yes. The debugger should then open (see Figure 9.16)
with the Stop statement highlighted. Click the Step Into button or press
F11 to step through the code.

Figure 9.15
Your computer may
have more than one

script debugger
available.

280 9.3 Debugging Outlook form VBScript code

Tip: As Figure 9.15 suggests, your computer may have more than one script
debugger available. Feel free to test multiple debuggers to see which works
best for you.

This method invokes the debugger when the item opens. You will also
have situations where you want the debugger to start after the form is
already open. To do that, run the form from design mode (or create an item
or open an existing item using the published form) and on the Developer
tab, in the Code group, choose Script Debugger. You’ll see the dialog in Fig-
ure 9.15 again, but when the debugger opens, no statement will be high-
lighted. Set a breakpoint in any procedure using the F9 key, and the
debugger will stop code execution at that statement, whenever that event
happens to fire.

Compared with the debugging environment in VBA, the chief limita-
tion of the script debugger is that there is no way to go from the error mes-
sage directly into the script to make a correction. You must figure out the
problem by stepping through the code in the debugger, then switch to the
Outlook form’s code window to make the necessary changes.

Here are some strategies that can help you locate problems in your form
code using the script debugger:

Use the Locals window to track the value of key parameters. Figure
9.17 shows the debugger running with a breakpoint in the
PropertyChange event handler, with the Locals window showing
the value of Name, the parameter for that event that indicates which
property changed.

Figure 9.16
The Microsoft
Script Editor

includes most of the
same debugging

commands as the
Outlook VBA

editor.

9.3 Debugging Outlook form VBScript code 281

Right-click an expression in your code, and then choose Add Watch
to add a watch for that expression.

If you determine that a particular section of your code is causing a
problem, you can bypass it. Right-click a later statement, and then
choose Set Next Code Statement.

Tip: On machines where the script debugger is not available, a good tac-
tic for troubleshooting problems in a form’s VBScript code is to use Msg-
Box statements to display the values of different variables at key points in
the code. Such statements can tell you a lot about the sequence in which
your code statements execute and the state of key variables and object
properties.

9.3.3 Using VBA to prototype VBScript code

So far in this book, the VBScript code you’ve seen has been quite simple.
Some Outlook forms, however, have complex code modules running into
hundreds of lines. Writing that much code in the form code window, with-
out the features you’re accustomed to in VBA, makes it likely that you will
make a lot of simple mistakes—and probably some gigantic ones, too.
Therefore I (and many other Outlook developers) recommend that you
write as much of your form code as possible in VBA and perform initial
testing in VBA. You can then make a few changes to make it compatible

Figure 9.17
Use breakpoints in
the script debugger

to watch what
happens when your
form code executes.

282 9.3 Debugging Outlook form VBScript code

with VBScript syntax and copy it into the form code window for final test-
ing on the actual form.

The idea, in other words, is to use VBA as a code prototyping tool for
VBScript.

Before you get started with that technique, let’s review the key differ-
ences between VBScript and VBA code, which you should remember from
earlier in the book:

VBScript does not support the Outlook intrinsic constants (the ones
that start with ol), only the Visual Basic constants. In VBScript code,
you must either declare those constants that your form code needs or
use their literal values. Listing 9.2, for example, includes a declaration
for the olFolderTasks constant. You can get both the constant dec-
larations and the literal values from the object browser. (See Section
8.2.4.)

The Item object intrinsic to VBScript form code, representing the
current item where the code is running, is not supported in VBA.
You must instantiate an object variable to represent the Outlook item
whose methods and properties you want to invoke. (See Section 7.3.)

VBScript variables support only the variant data type, which can rep-
resent any type of data. You do not use typed variable declarations,
such as Dim strMsg As String in VBScript, only Dim strMsg.

A few VBA functions, such as Format(), have no VBScript equiva-
lent.

Figure 9.18 shows the CommandButton_Click procedure in Listing 9.2
being prototyped in VBA before being converted to VBScript after success-
ful VBA testing. If you compare the two, you’ll see that the only changes
necessary to make it compatible with VBScript were to comment out the
data types for the variable declarations and to uncomment the constant dec-
laration.

Note: Even though the CommandButton1_Click() procedure in Figure
9.18 is designed to be an event handler for an Outlook form command but-
ton, you can run it on demand in VBA just as you would any other macro.

Listing 9.2 and Figure 9.18 constitute simple examples of this kind of
prototyping, because they don’t make any reference to Item, the item where
the code would be running if it were VBScript code. If you want to proto-
type form code that refers to the form’s item, things get a bit more compli-
cated. We need to look at two types of procedures—those that refer to Item
properties and methods and those that provide handlers for Item events.

9.3 Debugging Outlook form VBScript code 283

As an example of a procedure that refers to Item properties and meth-
ods, let’s modify the code shown in Figure 9.18 so that instead of creating a
new task, it copies the current item (assume this is a task form) to the other
user’s folder. Listing 9.3 shows the VBA prototype.

To test the code, open a task, and then run the macro in Listing 9.3.
The key changes that make this VBA code work with the currently open
item are the addition of these three statements to declare, instantiate, and
release an object representing the currently open item:

Dim Item As Outlook.TaskItem

Set Item = Application.ActiveInspector.CurrentItem

Set Item = Nothing

The expression Application.ActiveInspector.CurrentItem returns
the item that is currently open in its own window. Thus, Listing 9.3 now has
an Item object to work with!

Converting the code in Listing 9.3 to work behind an Outlook form
involves taking out those three added statements and making the same two
changes that were used to create Listing 9.2: comment out variable data
types and declare the necessary Outlook constant. You see the result in List-
ing 9.4.

Figure 9.18 Much of your VBScript code for custom forms can be prototyped in VBA first to save
time and avoid errors.

284 9.3 Debugging Outlook form VBScript code

It takes just a few code statements to copy an item to another folder.
(Note that you make a copy first, and then move the copy.) More often
your form code will need to perform an extended operation on an item. In
that case, you may prefer to put the bulk of the code in a separate VBA pro-
cedure and call it from the VBA macro, passing the currently open item as
an argument. If you’re working on a task form, that structure would look
like this:

Sub CommandButton3_Click()
 Dim Item as Outlook.TaskItem
 Set Item = Application.ActiveInspector.CurrentItem
 Call MyProc(Item)
 Set Item = Nothing
End Sub

Listing 9.3 VBA prototype to copy the current task to another user’s mailbox

Sub CommandButton2_Click()
 Dim objFld As Outlook.Folder
 Dim Item As Outlook.TaskItem
 Dim objTask As Outlook.TaskItem
 Dim objRecip As Outlook.Recipient
 Dim strMsg As String
 ' Const olFolderTasks = 13
 On Error Resume Next
 Set objRecip = Application.Session.CreateRecipient("donnal")
 Set objFld = Application.Session.GetSharedDefaultFolder _
 (objRecip, olFolderTasks)
 If Err.Number = 0 Then
 Set Item = Application.ActiveInspector.CurrentItem
 Set objTask = Item.Copy
 objTask.Subject = "Copy of " & objTask.Subject & _
 " from " & Time
 objTask.Move objFld
 If Err.Number <> 0 Then
 strMsg = "Could not create item in " & _
 "other user's Tasks folder"
 MsgBox strMsg, vbCritical, "Error"
 Else
 strMsg = "Copied current item to " & _
 "other user's Tasks folder"
 MsgBox strMsg, vbOKOnly, "No Error"
 End If
 Else
 strMsg = "Could not access other user's Tasks folder"
 MsgBox strMsg, vbCritical, "Error"
 End If
 Set Item = Nothing
 Set objTask = Nothing
 Set objRecip = Nothing
 Set objFld = Nothing
End Sub

9.3 Debugging Outlook form VBScript code 285

Sub MyProc(ByVal objItem as Outlook.TaskItem)
 ' code to process objItem goes here
End Sub

Converted to VBScript, that code would look like this:

Sub CommandButton3_Click()
 Call MyProc(Item)
End Sub

Sub MyProc(ByVal objItem)
 ' code to process objItem goes here
End Sub

The last type of prototyping involves testing Outlook item-level event
handlers in VBA. As examples, we’ll use the Write and Open events that you
first saw in Section 7.3.2. Add the code in Listing 9.5 to the built-in This-
OutlookSession module in VBA, and then run the StartItemTests sub-
routine. Now, you can test the Open and Write event handlers by opening

Listing 9.4 VBScript code to copy the current task to another user’s mailbox

Sub CommandButton2_Click()
 Dim objFld ' As Outlook.Folder
 Dim objTask ' As Outlook.TaskItem
 Dim objRecip ' As Outlook.Recipient
 Dim strMsg ' As String
 Const olFolderTasks = 13
 On Error Resume Next
 Set objRecip = Application.Session.CreateRecipient("donnal")
 Set objFld = Application.Session.GetSharedDefaultFolder _
 (objRecip, olFolderTasks)
 If Err.Number = 0 Then
 Set objTask = Item.Copy
 objTask.Subject = "Copy of " & objTask.Subject & _
 " from " & Time
 objTask.Move objFld
 If Err.Number <> 0 Then
 strMsg = "Could not create item in " & _
 "other user's Tasks folder"
 MsgBox strMsg, vbCritical, "Error"
 Else
 strMsg = "Copied current item to " & _
 "other user's Tasks folder"
 MsgBox strMsg, vbOKOnly, "No Error"
 End If
 Else
 strMsg = "Could not access other user's Tasks folder"
 MsgBox strMsg, vbCritical, "Error"
 End If
 Set objTask = Nothing
 Set objRecip = Nothing
 Set objFld = Nothing
End Sub

286 9.3 Debugging Outlook form VBScript code

any single task, making changes, and saving the item. You should see a mes-
sage box when the item opens and another message box when it saves.

Here’s how Listing 9.5 works: Running the StartItemTests procedure
instantiates an Inspectors variable declared WithEvents, which sets up
Outlook to handle the events for Inspectors. The one event we’re inter-
ested in is NewInspector, which fires whenever the user opens an item in
its own window. The sole parameter for NewInspector is Inspector, rep-
resenting that window, and Inspector has a property, CurrentItem, that
returns the item that was opened. We use Inspector.CurrentItem to
instantiate an Item object that was declared WithEvents, thus setting up
Outlook to handle the events for Item, including Open and Write.

We’ll look at VBA event handlers in more detail in Chapter 11 and
form-level events in Chapter 12. However, I hope this brief excursion into
testing item-level events gets you excited about the possibility of rapidly
prototyping event handlers for your forms in VBA.

9.3.4 A recipe for VBA to VBScript code conversion

Here is a general list of steps to follow if you have a subroutine or function
that works in VBA and you want to use it in an Outlook item’s VBScript
code:

1. Copy the VBA procedure code and paste it into an Outlook
form’s script window.

Listing 9.5 Event handlers to test item-level events in VBA

Dim WithEvents Item As Outlook.TaskItem
Dim WithEvents allInsp As Outlook.Inspectors

Private Sub Item_Open(Cancel As Boolean)
 MsgBox "The Open event fired on " & Item.Subject
End Sub

Private Sub Item_Write(Cancel As Boolean)
 MsgBox "The Write event fired on " & Item.Subject
End Sub

' run this to get things started
Sub StartItemTests()
 Set allInsp = Application.Inspectors
End Sub

Private Sub allInsp_NewInspector _
 (ByVal Inspector As Inspector)
 Set Item = Inspector.CurrentItem
End Sub

9.4 Summary 287

2. Comment the As data_type portion of any Dim or Const decla-
ration, and remove the data type from any procedure arguments.

3. For each Outlook constant, add a Const statement at the begin-
ning of the script.

Tip: Here’s another way to get the constant values: In the VBA code editor,
right-click the constant and then choose Quick Info from the pop-up
menu.

4. If the VBA procedure is a macro (in other words, an argumentless
subroutine), when you transfer it to the VBScript environment, it
will need to be called from some event handler in VBScript, such
as the Click event for a command button.

5. If the VBA procedure is an item-level event handler, in the form’s
code editor use the Script | Event Handler command to insert the
corresponding event handler for VBScript. Copy only the body of
the VBA procedure to the VBScript editor, not the procedure
declaration. For cancelable events, replace any Cancel = True
statement with an event_handler = False statement, where
event_handler is the name of the event-handling function, for
example, Item_Write = False.

The reason for that last point is that the declarations for item-level
events are slightly different between VBA and VBScript form code. The
easiest way to get the correct version for the form is to use the Script | Event
Handler command.

9.4 Summary
Producing reliable applications means testing your code and fixing prob-
lems as you go along. Outlook provides many debugging tools in the VBA
environment. Error handling helps make your code more professional and
more likely to deliver the results you want. While the Outlook form code
scripting environment is nowhere near as rich as the VBA environment, it
too supports a certain level of error-handling. If you write your form code
in the VBA environment and then transfer it to the form’s script, you prob-
ably will make fewer coding mistakes that require troubleshooting.

With the set of good coding practices that we’ve developed in the past
few chapters, we’re now ready to dive into the specifics of Outlook pro-
gramming, starting with the next chapter on the object model, Outlook
security, and basic object and collection techniques.

This page intentionally left blank

289

10
Outlook Programming Basics

We have been sneaking up for several chapters on “real” Outlook program-
ming. Many of the examples that illustrated basic VBA and VBScript cod-
ing concepts were actually also useful examples of key Outlook
programming concepts. In the course of learning about those examples,
you’ve probably seen the word object several times without the need to really
understand what it means. In this chapter, we’ll learn about objects in gen-
eral and the Outlook object model—that is, the Outlook programming
model—in particular. We also examine an issue that will apply to almost all
the coding you do in Outlook: security.

Highlights of this chapter include discussions of the following:

How to use the object browser to discover what you can accomplish
with Outlook

Why a collection is a special kind of object

How to programmatically create a message with voting buttons

What security features in Outlook protect it from becoming a con-
duit for virus distribution

How Outlook’s security affects your code and other Outlook extensi-
bility features

How to create and send a message from VBA in another Office appli-
cation

10.1 Introducing the Outlook object model
Most of the code you have seen so far has worked with three basic kinds of
data:

Static data, either literal values or constants

Simple text, numeric, Boolean, and date/time variables

290 10.1 Introducing the Outlook object model

Object variables, such as a variable to represent an Outlook item or
folder

An object variable differs from a simple text or numeric variable because
it contains not just one but many pieces of information. An object variable
representing an Outlook contact, for example, has properties that return
the name, addresses, and phone numbers for that contact. You can also
assign new values to those properties.

Not only do objects often contain more than one piece of information
in the form of multiple properties, they also support specific events and
methods that determine how that data behaves and what you can do with it
programmatically. Those properties, events, and methods together define
the object class. The methods, events, and properties are called members of
the class. Together, all the objects in a particular programming library are
called an object model. In this book, we are chiefly concerned with the Out-
look object model, although in later chapters, you will also see how other
object models, such as those for Word and Excel, can be useful to your Out-
look programming projects.

When you use a Set statement to assign an object variable to a particu-
lar object, you instantiate the variable or create a new instance of the class.
For example, this Outlook VBA or custom form VBScript statement creates
a new MailItem (Outlook message) and points an object variable to that
new item:

Set objMail = Application.CreateItem(0)

Not all Set statements create a new object, though. Some statements
create a new object while others point the object variable to an existing
object. This example sets an object variable to an existing object, the cur-
rently viewed folder:

Set objFolder = Application.ActiveExplorer.CurrentFolder

Objects of different classes may act much the same. For example, Out-
look has a different type of object for each type of item—ContactItem,
MailItem, TaskItem, and so on—but all those item objects share certain
properties, events, and methods.

Objects often exist in parent-child relationships. An Outlook Jour-
nalItem object, for example, has a parent Folder object that represents the
folder that stores that journal entry.

Trying to understand the concept of objects, properties, methods, and
events might seem like a lot of trouble when what you really want to do is
write Outlook applications, but the effort pays off in the end. Grasping the
core of the Outlook object model helps you know what you can do in Out-
look, and which objects, properties, methods, and events you can use to
accomplish your goals.

10.1 Introducing the Outlook object model 291

10.1.1 Launching the VBA Object Browser

The Outlook 2007 object model includes sixty-seven new classes, roughly
doubling the size of the object model. We don’t have room to cover all those
classes in this book, only those that you’re most likely to use. Therefore, you
need to know how to research the other classes on your own.

The main tool for exploring the Outlook object model and other object
models is the object browser window in VBA. Chapter 2 provided a brief
introduction to the object browser, but it’s time to take a more detailed look
at it.

To display the object browser, press Alt+F11 to enter the VBA program-
ming environment, and then press F2 or choose View | Object Browser.
When the Object Browser window appears, you may want to maximize it
to be able to see more information on the screen.

When you launch the object browser, the default display lists all the
objects in all the programming libraries available to you. To focus on Out-
look objects, select Outlook from the dropdown list at the top of the object
browser (the list that defaults to <All Libraries>). To view the members of
any object class, click on that object. Figure 10.1 shows the JournalItem
class.

Figure 10.1 Use the object browser to explore Outlook’s objects and their properties, methods, and
events.

292 10.1 Introducing the Outlook object model

Note: You can add more programming libraries to VBA by using the Tools
| References dialog. Chapters 8 and 24 cover other libraries you may find
useful in Outlook programming projects.

Pay close attention to the icons that help distinguish the different types
of object classes and their members. For example, the JournalItem object
includes both a Close event and a Close method. It’s easy to tell them
apart by the icon. The event icon is a lightning bolt, while the method icon
is a green box in motion.

Tip: If you prefer to see all the properties together, followed by methods
and then events, right-click the list of members and choose Group Mem-
bers.

10.1.2 Searching for objects and getting help

You can search the object browser for classes and members related to partic-
ular topics. Type a word in the second dropdown list box, the one marked
Search Text in Figure 10.1, and then press Enter or click the Search button.
Figure 10.2 shows the results of a search of the Outlook library for the word
“folder.” It turns up a long list of objects, methods, events, properties, and
constants whose names contain “folder.”

To close the search results pane, click the Hide Search Results button
next to the Search Text button. You can view the search results again by
clicking the same button (now with the screen tip Show Search Results).

If you have been browsing through objects for a while and want to
retrace your steps, use the right and left arrow buttons at the top of the
Object Browser window, above the search controls.

The object browser functions as an index to the Help topics on the Out-
look object model. Select any class or member, then click the Help button
or press F1 to get help on that topic, including related properties, methods,
and events, often with sample code.

Note: Not all libraries shown in the object browser have help files associated
with them. Sometimes, you may need to refer to a separate help file or other
documentation.

Figure 10.3 shows the help topic for the Folder.GetCalendar-
Exporter method, a new method added to Outlook 2007 to facilitate

10.1 Introducing the Outlook object model 293

Figure 10.2
Search in the object

browser for classes
and members

containing
particular text.

Figure 10.3
Help topics tell you
how to use Outlook
objects, properties,

methods, and
events.

294 10.1 Introducing the Outlook object model

calendar sharing using the iCalendar specification for calendar data
exchange across the Internet. Notice the links at the top for the parent
Folder object and the CalendarSharing object that GetCalendarEx-
porter returns. The How To article link provides a detailed code sample
and other tips on using this method.

The links at the very top of the help window in Figure 10.3 can help you
locate related information, such as other methods for the Folder object.
Click the link for Outlook Object Model Reference to see a list of all Out-
look object classes (see Figure 10.4).

The bottom right of the help window in Figure 10.3 shows the connec-
tion status as Connected to Office Online. By default, help uses content
from the Office Web site. This allows Microsoft to provide programmers
with the very latest help topics without the need to update the installation
on the local machine. When you are not connected to the Internet, the con-
nection status will display as Offline. To see what the offline help looks like,
click on the connection status in the status bar and choose “Show content
only from this computer.”

Another advantage of working with the online help content is that you
can provide feedback. Each online topic has buttons under “Was this infor-
mation helpful?” where you can click “Yes,” “No,” or “I don’t know” and

Figure 10.4
Click any Outlook
object in this help

topic to learn more
about it.

10.2 Outlook object and collection code techniques 295

provide a short description of how to make the help topic better. Microsoft
uses this feedback to improve developer help.

Caution: Always closely examine and test any code that you copy from a
help topic. Some code samples may not be quite right for the Outlook VBA
or VBScript code environments. For example, some topics use the expres-
sion New Outlook.Application to instantiate an Outlook.Application
object. However, that is never the correct usage in Outlook VBA or form
code VBScript, both of which support an intrinsic Application object.

10.2 Outlook object and collection code techniques
Programming with objects requires some special code techniques. We’ve
already covered four object techniques for VBA and VBScript:

Use a Set obj = expression statement to instantiate an object
variable

Use a Set obj = Nothing statement to dereference and release an
object variable

Use a With ... End block to work with the properties and methods
of a particular object

Use the syntax obj.property to return or set the value of text,
numeric, and other simple object properties.

In addition to simple properties, many Outlook objects have properties
that are themselves objects. For example, the expression Applica-

tion.ActiveExplorer returns an Explorer object representing the cur-
rent folder window, and Application.ActiveExplorer.CurrentFolder
returns a Folder object representing the folder that Explorer displays. Use
the Set keyword to instantiate an object variable to point to such object
properties:

Set objExpl = Application.ActiveExplorer
Set objFolder = objExpl.CurrentFolder
MsgBox objFolder.Name

In addition to objects like JournalItem, Explorer, and Folder, the
Outlook object model also contains many collection objects. Each collection
itself is an object, but it also is a set of objects, usually of the same class, that
can be accessed through the properties and methods of the collection.
Examples from earlier chapters include the Items collection representing all
the items in a folder and the Attachments collection of all attachments on
an Outlook item. (See Listing 9.1.)

How can you use the object browser to determine if an object is a col-
lection? One telltale sign is that most if not all collections have a Count

296 10.2 Outlook object and collection code techniques

property that returns the number of items in the collection. This property is
read-only, because the only way to change the count is to remove an item
from the collection or add an item to the collection.

Tip: Another way to explore collections is to search the Outlook Object
Model Reference in help for “collection.”

Every object, including every collection, has four standard properties,
listed in Table 10.1. All these properties are also read-only.

Note: An enumeration is a list of constants defined in the object model and
visible in the object browser.

Some newcomers to Outlook programming are bewildered to see that
every collection is listed in the object browser as read-only. What this means
is that you cannot directly access the information held in the collection as
you would a property of, say, the MailItem object. Instead, you must use
specific collection methods to change the contents of the collection or to
retrieve any particular item in the collection. Most Outlook collections
include these three methods:

Add to add a new object to the collection

Item to refer to a specific object in the collection

Remove to delete an object from the collection

Some collections, such as AddressLists, do not support the Add or
Remove method, only the Item method.

10.2.1 Item method

To use the Item method to return a specific object from a collection, you
must know either the index for the object or the value of its default prop-

Table 10.1 Standard Object and Collection Properties

Property Returns

Application Parent Outlook.Application object

Class Constant for the object class, from the OlObjectClass
enumeration

Parent Parent object of the object or collection

Session Namespace object for the current Outlook session

10.2 Outlook object and collection code techniques 297

erty. The index is the position of the object in the collection, starting with 1
and going up to a number equal to the value of the collection’s Count prop-
erty. For example, the following VBA code uses the syntax obj-

Folder.Items.Item(1) to open and display the first item in the Inbox:

Set objFolder = _
 Application.Session.GetDefaultFolder(olFolderInbox)
Set objItem = objFolder.Items.Item(1)
objItem.Display

Note: A folder has both an Items collection and a Folders collection. The
collection of all items in a folder is folder.Items, not folder, so the Item
method syntax is folder.Items.Item(index), even though that might
look redundant.

A potential problem with using Item with an index is that you cannot
know exactly what object you may get. The “first” item in the Items collec-
tion for the Inbox folder is not necessarily the one you see at the top of the
Inbox display in the user interface. More than likely, it will be the oldest
item in the Inbox.

Note: Chapter 15 covers how to sort a folder’s Items collection to return
items in a specific order.

The other way to use the Item method is look up an item using the
value of the item’s default property. This property varies from object to
object. For Outlook messages, contacts, and other data items, the default
property is the Subject property. For a Folder object, it is the Name prop-
erty. Here is another VBA code snippet, this time to display a particular
contact by first prompting the user for the contact’s name:

strName = InputBox("Name of contact to open", _
 "Open First Matching Contact")
If strName <> "" Then
 Set objNS = Application.Session
 Set objFolder = _
 objNS.GetDefaultFolder(olFolderContacts)
 Set objItem = objFolder.Items.Item(strName)
 If Not objItem Is Nothing Then
 objItem.Display
 End If
End If

See how it uses strName as the argument for the Item method instead
of an index number.

This version of the Item syntax has its limitations, too. It requires an
exact match for the text used as an argument for Item, and if there is more

298 10.2 Outlook object and collection code techniques

than one matching object, only the first match is returned. Chapter 14
explains many additional techniques for finding a particular item.

Item is the default member for a collection, which means that, strictly
speaking, you do not need to use the Item method in VBA and VBScript
code. These two expressions, for example, are equivalent:

objFolder.Folders.Item("My First Subfolder")
objFolder.Folders("My First Subfolder")

Note that folder Name values are always unique within a given Folders
collection, while an Items collection may have multiple items with the
same value for the Subject property.

10.2.2 Add method

The Add method creates a new object in a collection and returns that new
object to an object variable. The syntax looks like this:

Set obj = collection.Add(param1, param2, param3)

with the number of parameters varying with the collection. Not all collec-
tions use parameters with the Add method. As you will see in Section
10.2.4, in some cases, the code must create the object with the Add method
first and then set properties on that object separately.

One key Outlook collection is the Explorers collection of open Out-
look folder windows. Listing 10.1 illustrates the Add method by adding a
new Explorer object to open a new Outlook window with the default

Listing 10.1 Display a folder in a new window

Sub ShowCalendar()
 Dim objApp As Outlook.Application
 Dim colExplorers As Outlook.Explorers
 Dim objFolder As Outlook.Folder
 Dim objExpl As Outlook.Explorer

 Set objApp = Application
 Set colExplorers = objApp.Explorers
 Set objFolder = _
 objApp.Session.GetDefaultFolder(olFolderCalendar)
 Set objExpl = colExplorers.Add(objFolder, _
 olFolderDisplayNoNavigation)
 objExpl.Activate
 objExpl.WindowState = olMaximized

 Set objExpl = Nothing
 Set objFolder = Nothing
 Set colExplorers = Nothing
 Set objApp = Nothing
End Sub

10.2 Outlook object and collection code techniques 299

Calendar folder displayed. The Explorers.Add method requires one argu-
ment—the Folder object representing the folder to be displayed. You can
also include an optional Displaymode argument that specifies whether the
view should include the navigation pane.

If you want to see another example of the Add method, jump ahead to
Section 10.2.4.

10.2.3 Remove method

The Remove method, as you might expect, is the opposite of Add. It deletes
an object from the collection, using this syntax:

collection.Remove index

Normally, however, you don’t know the position of any particular item
in the collection, so you don’t know the index value that the Remove
method requires. To remove a particular object from the collection, it’s usu-
ally easier to return the object with some other method and then use the
Delete method on the object to remove it from the collection.

Where Remove comes in handy is for bulk deletion operations, such as
removing all attachments from a message. In Listing 9.2, you saw how to
remove attachments with the Delete method. Listing 10.2 is a VBA proce-
dure that replaces the For ... Next loop from the earlier listing with a Do
... Loop block that on each pass deletes the attachment with an index
value of 1. This works because the index is reset after each deletion, so a dif-
ferent attachment has an index value of 1 on each pass, until no attach-
ments remain.

Listing 10.2 Remove all attachments from an item

Sub RemoveAttachments(objItem As Object)
 On Error Resume Next
 Dim objAtt As Outlook.Attachment
 Dim colAtts As Outlook.Attachments
 Dim intCount As Integer
 Set colAtts = objItem.Attachments
 intCount = colAtts.count
 If intCount > 0 Then
 Debug.Print intCount & " attachments in " & _
 objItem.Subject
 Do While colAtts.count > 0
 colAtts.Remove 1
 Loop
 objItem.Save
 End If
 Set objAtt = Nothing
End Sub

300 10.2 Outlook object and collection code techniques

Tip: You may find it useful to prefix your collection object variables with
col, as we’ve done with the Explorers and Attachments collections in
Listings 10.1 and 10.2, to make them stand out from objects and other
variables.

10.2.4 Example: Creating a voting button message

Outlook includes a useful feature for creating voting button messages that
allow users to ask recipients to vote on a finite list of choices such as Accept
and Reject. A MailItem object (in other words, a message) maintains that
list of choices in its Actions collection. If you have a favorite set of voting
button responses other than one of the defaults on the Options tab, you can
use the Add method in a little bit of VBA code to create several new Action
items in the Actions collection.

In most cases, the Add method requires one or more arguments, as you
saw in the code for adding and displaying an Explorer object. In a few
cases, such as creating an Action, you use the Add method with no argu-
ment and then work with the returned object’s properties. The Outlook
VBA sample in Listing 10.3 illustrates the use of the Actions collection to
create a message and add voting buttons. The names for the buttons come
from text that the user types into an input box.

Tip: To see the voting buttons on an unsent message, click on the Options
tab, and then click Use Voting Buttons.

Notice this syntax for the Add method:

Set objAction = objMsg.Actions.Add

This is equivalent to these two statements:

Set colActions = objMsg.Actions
Set objAction = colActions.Add

In other words, you do not always need to declare an explicit object vari-
able to represent a collection in VBA or VBScript. Instead, you can use its
parent object with the syntax parent.collection.Add.

The statements in the With ... End With block assign property values
that correspond to the default values that Outlook uses for voting buttons
when you create them manually in the user interface. Also notice that the
procedure performs some validation to make sure that the user enters at
least two voting button names. If the user enters only one, the procedure
offers the user a choice with a MsgBox() function and calls itself if the user
wants to try again.

10.2 Outlook object and collection code techniques 301

Listing 10.3 Add action objects to create a voting button message

Sub CreateVoteMessage()
 Dim objOL As Outlook.Application
 Dim strMsg As String
 Dim strActions As String
 Dim arrActions() As String
 Dim i As Integer
 Dim objMsg As Outlook.MailItem
 Dim objAction As Outlook.Action
 Dim intRes As Integer
 Dim strActionName As String
 strMsg = "Enter voting button titles, " _
 & "separated by commas."
 strActions = Trim(InputBox(strMsg, "Create Voting Button Message"))
 If strActions <> "" Then
 If Right(strActions, 1) = "," Then
 strActions = Left(strActions, Len(strActions) - 1)
 End If
 arrActions = Split(strActions, ",")
 If UBound(arrActions) > 0 Then
 Set objOL = Application
 Set objMsg = objOL.CreateItem(olMailItem)
 For i = 0 To UBound(arrActions)
 strActionName = Trim(arrActions(i))
 If strActionName <> "" Then
 Set objAction = objMsg.Actions.Add
 With objAction
 .CopyLike = olRespond
 .Enabled = True
 .Name = Trim(arrActions(i))
 .Prefix = ""
 .ReplyStyle = olOmitOriginalText
 .ResponseStyle = olPrompt
 .ShowOn = olMenuAndToolbar
 End With
 End If
 Next
 objMsg.Display
 Else
 strMsg = "You entered only one voting button " & _
 "name. A voting button message " & _
 "needs at least two choices. Do you " & _
 "want to try again?"
 intRes = MsgBox(strMsg, vbYesNo, "Create Voting Button Message")
 If intRes = vbYes Then
 Call CreateVoteMessage
 End If
 End If
 End If
 Set objAction = Nothing
 Set objMsg = Nothing
 Set objOL = Nothing
End Sub

302 10.3 Understanding Outlook security

Tip: Chapter 20 provides more information about working with voting
buttons and the Actions collection.

10.2.5 Releasing objects

If you pay attention to scope when writing your procedures and declare
variables with the narrowest scope possible, you shouldn’t have any problem
with procedure-level object and collection variables staying in memory and
using system resources after you need them. However, it still is a good prac-
tice to release them explicitly as part of the end of each procedure, using a
Set object = Nothing statement. Nothing is a special keyword that dis-
associates the variable from the object to which it refers.

Tip: Use the statement If Not object Is Nothing Then to test
whether a previous Set object assignment statement was successful before
you try to use any of the properties or methods of object. Otherwise, as
described in the previous chapter, you may get an “object required” runtime
error.

Always use a Set object = Nothing statement to release any module
or global object variables when your code no longer needs them. The one
exception is objects declared WithEvents in ThisOutlookSession or
another class module. Objects declared WithEvents are those that support
event handlers. If you release them, the event handlers will no longer run.
Outlook VBA will automatically release those variables when Outlook shuts
down.

Caution: If you advance from VBA to writing add-ins for Outlook, your
add-ins will need to release all Outlook object variables, including those
involved in event handlers. Otherwise, Outlook may not shut down com-
pletely.

10.3 Understanding Outlook security
Outlook’s VBA and form VBScript environments represent a balance
between security and useful functionality. Early versions of Outlook
allowed external programs to freely automate Outlook, with disastrous
results. Viruses propagated inside email messages were able to harvest more
email addresses from Outlook data on infected machines and then send out

10.3 Understanding Outlook security 303

more messages to infect more Outlook users. Subsequent versions elimi-
nated that vulnerability, but at what many users found to be a high cost:
interruption by security prompts when external programs—and even some
Outlook VBA or VBScript code—tried to automate Outlook.

Outlook 2007 is secure enough to block virus propagation by email
messages, but (when running on Windows XP or Vista) flexible enough not
to get in the way of legitimate programs that do need to automate Outlook.
(This flexibility does not apply to Windows Server 2003 installations.)

Security features in Outlook 2007 that affect programmability include:

An “object model guard” that displays user confirmation dialogs for
code operations that could be used to harvest addresses or send mes-
sages, unless the machine is adequately protected against viruses

Disabling of scripts and some other functionality on unpublished
Outlook forms and items using custom forms in shared mailbox fold-
ers

Blocking of potentially dangerous attachments that could be used to
propagate viruses

HTML message rendering that blocks scripts and other elements
with potential security implications

A new restriction on folder home pages that blocks their implementa-
tion for non-default information stores

The sections that follow examine each of these security features in detail
and their implications for your Outlook programming projects.

10.3.1 Automation security

Outlook’s object model guard feature can block access to properties and
methods that malicious programming code could use to harvest addresses
or send messages. Blocked properties include the contents of the bodies of
messages and other items. Restricted methods include SaveAs, which saves
a copy of an Outlook item as a file (which could be read by an external pro-
gram).

By default, all Outlook VBA code and custom form VBScript code
“trusts” the intrinsic Application object with regard to the object model
guard. As a result, VBA and VBScript code that derives all its Outlook
objects from the intrinsic Application object will not trigger security
prompts. What that means is that, if your Outlook VBA code uses Appli-
cation.CreateItem(olMailItem) to create a new message, when the
code executes the Send method on that message, Outlook won’t display a
security prompt to the user. The same is true for VBScript code running
behind an Outlook form.

304 10.3 Understanding Outlook security

Note: This is the same default VBA and custom form VBScript automation
security model that Outlook 2003 uses. If code on your machine acts differ-
ently and you’re working on a networked computer, you can ask your net-
work administrator if settings are being applied to your machine to override
Outlook’s default behavior.

What’s radically new in Outlook 2007 is that, on stand-alone machines
with adequate anti-virus protection, the object model guard also allows any
external program, including other Microsoft Office programs like Word or
Excel, to automate Outlook. In that scenario, the key question becomes,
what is “adequate” anti-virus protection? In order for Outlook to turn off
the object model guard prompts, these requirements must be met:

The operating system must be Windows XP or Vista. (Windows
Server 2003 doesn’t count, because it does not have a built-in Win-
dows Security Center that monitors the anti-virus protection state.)

The anti-virus application’s state—whether it is enabled and whether
its virus signatures are up to date—must be detectable by the Security
Center. You can check your anti-virus protection state in the Security
Center applet in Control Panel.

Many anti-virus tools for Windows XP and Vista can meet those
requirements, but you should make sure they are set to download updates
automatically. Otherwise, the anti-virus tool might not be up to date, and
external applications automating Outlook could start triggering security
prompts.

Note: Even if your system has adequate anti-virus protection, external auto-
mation of Outlook may be blocked by that anti-virus application. Some
anti-virus programs have “script blocker” features that suppress any attempt
to start an Outlook automation session with statements like New Out-

look.Application, CreateObject("Outlook.Application"), or
GetObject(,"Outlook.Application"). Consult your anti-virus pro-
gram’s documentation for details.

If your computer meets the Windows requirements for valid anti-virus
protection, you should see that confirmed in the Tools | Trust Center | Pro-
grammatic Access dialog in Outlook and see the options that Figure 10.5
shows for configuring programmatic access.

Notice that the default setting for programmatic access is “Warn me
about suspicious activity when my anti-virus software is inactive or out of
date,” which means that you won’t see prompts if the anti-virus software is
running and up to date.

10.3 Understanding Outlook security 305

Note: For Outlook running on Windows Vista, the user must run Outlook
as an administrator in order to gain access to change the option on the Pro-
grammatic Access dialog from the default setting.

The situation may be different on machines running on a network,
because the network administrator can control the programmatic access for
external programs with centralized settings. For more information, see the
article “Customize programmatic settings in Outlook 2007” in the 2007
Office Resource Kit at http://www.microsoft.com.

How does Outlook automation security affect your Outlook code? In
other words, when should you build into your code the ability to handle
cases where the security prompts occur? To review, in the default configura-
tion:

Outlook VBA code deriving Outlook objects from the intrinsic
Application object will not raise security prompts.

Custom form VBScript code deriving Outlook objects from the
intrinsic Application object will not raise security prompts.

If an anti-virus application is installed, active, and up to date, external
programs that automate Outlook will not raise security prompts.

Any Outlook code that you write for your own personal use—in Out-
look VBA, a custom form, an external script, or another application like
Word—should not trigger security prompts if your anti-virus status is
valid.

Therefore, you probably will be concerned about security prompts only
when you are writing code that someone else will run. This could include
VBA code in a Microsoft Access database that someone else uses or code on
a custom Outlook form published in a Microsoft Exchange environment.

Figure 10.5
Machines with up-

to-date anti-virus
programs by default

will not display
security prompts for

programmatic
access to Outlook,

even by external
programs.

306 10.3 Understanding Outlook security

Whenever someone else may be running your code, you should handle
the case where the user gets a security prompt and does not confirm the
operation. Figures 10.6 and 10.7 show the two security prompts users may
see: one for programmatic access to address information, the other for code
that tries to send an item.

As an example, Listing 10.4 is a VBA macro written for Word (or Excel
or Access) VBA that creates and sends an Outlook message. Its one special
feature is that it attempts to insert text into the body of the message while
retaining the user’s default signature. To test this code in Word VBA, use
the Tools | References command to add a reference to the Microsoft Out-
look 12.0 Library.

Creating a message that includes the user’s default signature requires you
to display the message and then prefix your own text to the text already
present in the message after it has been displayed. This statement may raise
a security prompt:

strBody = .Body

The Body property is considered a blocked property because message
bodies often contain email addresses in the message signatures. Note that
these two statements do not trigger security prompts:

.To = "sue@turtleflock.com"

.Body = "This message created on " & Now()

Assigning a value to an address-related property never triggers a security
prompt. Only reading a value from such a property can trigger a prompt.

Figure 10.6
Attempts to access

address-related
properties and

methods may raise
this prompt.

Figure 10.7
Users seeing this

prompt for sending
a message must

wait five seconds
before they can
click Approve.

10.3 Understanding Outlook security 307

Listing 10.4 Create and send an Outlook message from VBA in another Office
application

Sub SendOutlookMessage()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objMail As Outlook.MailItem
 Dim blnWeOpenedOutlook As Boolean
 Dim strBody As String
 Dim strMsg As String
 Dim intRes As Integer

 On Error Resume Next
 ' start an Outlook session
 Set objOL = GetObject(, "Outlook.Application")
 If objOL Is Nothing Then
 Set objOL = CreateObject("Outlook.Application")
 Set objNS = objOL.GetNamespace("MAPI")
 objNS.Logon
 blnWeOpenedOutlook = True
 End If

 ' create and send the message
 Set objMail = objOL.CreateItem(olMailItem)
 With objMail
 .BodyFormat = olFormatPlain
 ' display message in order to use signature
 .Display
 .GetInspector.WindowState = olMinimized
 .Subject = "Test at " & Time()
 .To = "someone@nowhere.com"
 ' handle possible error from reading Body
 strBody = .Body
 If Err.Number = 0 Then
 .Body = "This message created on " & Now() & _
 vbCrLf & strBody
 Else
 .Body = "This message created on " & Now()
 Err.Clear
 End If
 ' handle possible error from calling Send
 .Send
 If Err.Number <> 0 Then
 strMsg = "Outlook cannot send the message " & _
 "unless you click Allow on the " & _
 "security prompt. Do you want to " & _
 "try again?"
 intRes = MsgBox(strMsg, vbQuestion + vbYesNo, _
 "SendOutlookMessage")
 If intRes = vbYes Then
 Err.Clear
 .Send
 End If
 End If
 End With

308 10.3 Understanding Outlook security

If the user sees the security prompt in Figure 10.6 and clicks Deny or
closes the dialog, an error occurs. Therefore, the code uses the expression
Err.Number = 0 to check for an error and assigns a different value to Body
depending on whether there was an error, in other words, whether the orig-
inal Body could be read. It then uses Err.Clear to reset the error handler
for the next possible error.

A different technique is used for the error that can occur if the user sees
the prompt in Figure 10.7 and chooses Deny or closes the dialog. In that
case, the code uses a MsgBox statement to offer another opportunity to
attempt to send.

If sending the message occurs without error, the code then uses the
SendAndReceive method—which is new to Outlook 2007—to perform
the same operation as clicking the Send/Receive All command.

Note: Besides the code for creating and sending a message, Listing 10.4
demonstrates another useful general Outlook technique: starting an Out-
look session with the GetObject() or CreateObject() method and then
returning Outlook to its original state.

10.3.2 Form security

As with the restrictions on Outlook automation, several security controls in
Outlook prevent custom forms from being used as a vehicle for malicious
code. Security features that affect custom form code include:

Code runs only on published forms.

Code does not run, by default, for items stored in a shared Exchange
mailbox folder.

 ' if no send error, perform a Send/Receive
 If Err.Number = 0 Then
 objNS.SendAndReceive False
 End If
 ' leave Outlook the way we found it
 If blnWeOpenedOutlook Then
 objOL.Quit
 End If

 Set objMail = Nothing
 Set objNS = Nothing
 Set objOL = Nothing
End Sub

Listing 10.4 Create and send an Outlook message from VBA in another Office
application (continued)

10.3 Understanding Outlook security 309

Unpublished forms that include custom properties will not display
their custom layouts if launched from a file or, in the case of a mes-
sage, if viewed by a recipient.

On unpublished forms, ActiveX controls other than those included
with Outlook are blocked by default.

Chapter 4 explained the importance of published forms. Unpublished
forms include both forms stored as .oft file templates and items where the
form definition has become embedded in the item, a (fortunately) rare con-
dition called a one-off form. In general, if you follow the recommendations
on creating and publishing forms in this book, your VBScript form code
should always run on items in your own Exchange mailbox, Exchange pub-
lic folders, and Personal Folders .pst files.

Code will not run by default, though, on items stored in another
Exchange user’s mailbox. The default behavior can be changed either by the
application of a group policy setting by the network administrator or, in the
absence of a policy setting, with the Tools | Trust Center | E-mail Security
dialog shown in Figure 10.8. Note that there is also an option related to
form code script in Public Folders; form code in Public Folders is allowed
by default.

The other two form security issues affect only unpublished forms. (By
now, you should be getting the message loud and clear that unpublished
forms are something to avoid.)

The presence of custom properties on an unpublished form raises secu-
rity issues. If those properties are not already defined in the default folder
for that type of item, Outlook will suppress the display of the custom form
layout when the user opens either an .oft file directly or an existing item

Figure 10.8
Custom form code
for items in other

Exchange users’
mailboxes does not

run by default.

310 10.3 Understanding Outlook security

with an embedded one-off form. In the case of an .oft file, the workaround
for the user is to launch the form with the Tools | Forms | Choose Form
command.

The practical impact of this issue is that it is all but impossible to use an
Outlook custom message form to gather responses—such as those from a
survey—over the Internet. The only scenario in which a survey form can
work is inside an Exchange organization, where the custom form can be
published either to the Organizational Forms library or to each user’s Per-
sonal Forms library.

Note: The tool in Office 2007 best suited to creating survey forms is
Microsoft InfoPath 2007. Microsoft Access 2007 also has a useful feature
for gathering external data through email messages processed through an
Outlook add-in that Office installs automatically.

The final unpublished form issue is that such forms display an error
message if they contain any ActiveX control other than those distributed
with Outlook. Administrators can change this behavior by deploying a pol-
icy setting.

10.3.3 Attachment security

By default, users with Outlook 2007 cannot open or save certain file attach-
ments that Microsoft considers dangerous, such as .exe files, because they
could potentially be used to transmit viruses. This block extends to pro-
grammatic access to the Attachments collection; a blocked attachment will
not be accessible in code.

Note: If you need to write code to access blocked attachments, a good
option is to use the Redemption library from http://www.dimastr.com/
redemption/.

Users will see a warning if they try to send a message that contains a
blocked file attachment. However, many users misinterpret the warning
message. Outlook does not actually strip the outgoing attachment. It just
warns that recipients may not be able to access it.

On the other hand, if the user (or your code) tries to forward a message
containing a blocked file, Outlook strips the attachment from the for-
warded copy.

Stand-alone users can add a registry value to reduce the security on cer-
tain file types so that they can be opened from email messages:

10.3 Understanding Outlook security 311

Key: HKEY_CURRENT_USER\Software\Microsoft\Office\12.0\
Outlook\Security

Value name: Level1Remove
Value type: REG_SZ (string)
Value data: semicolon-delimited list of extensions to unblock (e.g.,
url;lnk)

After changing the value of Level1Remove, the user should restart Out-
look.

Network administrators have additional options for managing attach-
ment block settings with a Group Policy Object; see the article “Customize
attachment settings in Outlook 2007” in the 2007 Office Resource Kit at
http://www.microsoft.com.

10.3.4 HTML message security

Outlook has no editor for modifying the source code for HTML-format
messages directly. However, you can create HTML-format messages pro-
grammatically by setting the value of the MailItem.HTMLBody property to
the fully tagged HTML content that you want to appear in the message; for
example:

strHTML = "<html><body><p>This text is " & _
 "bold.</p></body></html>"
Set objMsg = Application.CreateItem(olMailItem)
objMsg.HTMLBody = strHTML
objMsg.Display

However, certain HTML elements common on Web pages are not sup-
ported in Outlook messages for security reasons—chief among them
<script>, <iframe>, and <form>. A complete guide to what is and is not
supported is available on Microsoft’s Web site, along with an HTML code
validation tool. For more information, see the Microsoft Developer Net-
work article “Word 2007 HTML and CSS Rendering Capabilities in Out-
look 2007” at http://msdn.microsoft.com.

10.3.5 Folder home page security

As explained in Chapter 1, a folder home page is a Web page that Outlook
displays instead of the contents of the folder. Outlook 2007 makes a signif-
icant security change to allow folder home pages to display only for folders
in the user’s default information store and, for Exchange users, in Public
Folders. Users cannot assign folder home pages for other folders, and
attempts to do so programmatically with the Folder.WebViewURL and
.WebViewOn properties will fail. Also, if an earlier version of Outlook sets a
home page for a folder in a non-default store, Outlook 2007 will ignore
that setting and will not display the folder.

312 10.4 Summary

If a folder home page in some other location is essential to an organiza-
tion, an administrator can change this behavior by deploying a policy set-
ting.

10.4 Summary
Outlook has a rich object model that you can explore on your own through
the object browser and by writing your own code in VBA to see the results
of different properties and methods. Collections are an important part of
the Outlook object model, storing information about folders, items, attach-
ments, recipients, and other key Outlook data. Access to collection data is
somewhat indirect, through Item and other collection methods.

Compared with earlier versions, Outlook 2007 strikes the best balance
yet between security and programmability. Security changes in Outlook
2007 mean fewer security prompts, but reduced access to folder home
pages and certain HTML message features.

313

11
Responding to Outlook Events in VBA

One of the features that makes Outlook 2007 a rich programming environ-
ment is the many events in the object model that respond to the user’s inter-
action with Outlook. In addition, events are available to process what
happens behind the scenes when, for example, a reminder fires or a new
item is saved in a folder. Here are just a few of the events for which you can
write code:

Starting Outlook

Sending a message

Receiving new mail

Creating or modifying items or folders

Switching to a different folder or to a different view

Right-clicking on an item or folder

Although not every possible event is included in the Outlook object
model, the range of available events is enough to keep any programmer
busy for a long, long time. Highlights of this chapter include discussions of
the following:

What event code to place in the ThisOutlookSession module in
VBA

How to set up folders to watch for new and changed items

How to automatically add reminders for birthdays and anniversaries

Five events that can help you process new messages

How to run code according to a schedule

How to set a better reminder for new all-day events

How to avoid sending messages with blank subjects and missing
attachments

314 11.1 Application object events

If you jumped ahead to this chapter, you might want to make sure you
understand the material in Part III, “Writing VBA and VBScript Code,”
because this chapter requires a good understanding of basic coding tech-
niques.

11.1 Application object events
The Application object stands at the top of the Outlook object model
hierarchy and offers a number of events useful to VBA programmers, plus
one (OptionPagesAdd) of interest mainly to developers building Outlook
add-ins (a subject that is beyond the scope of this book).

In addition to the events in Table 11.1, the Application object also
supports six events that fire when the user right-clicks on different parts of
the Outlook user interface. We’ll cover these context menu events in Chap-
ter 23, “Menus, Toolbars, and the Navigation Pane.” It also supports two
events—AdvancedSearchComplete and AdvancedSearchStopped—that
are used with the AdvancedSearch method, which we’ll examine in Chap-
ter 15. There also is an Application.Quit event, but it has little utility in
VBA, since all Outlook objects are already released (and thus unavailable)
when Quit fires.

Tip: In the object browser (F2 in VBA), you can see the events for the vari-
ous Outlook objects more easily if you right-click in the Members pane on
the right and choose Group Members.

You can build VBA code for any Application event in the ThisOut-
lookSession module found in the Project Explorer under Project1 and
then Microsoft Outlook Objects, as shown in Figure 11.1. Double-click
ThisOutlookSession to open it in a module window. This is a special
kind of module, called a class module, that can respond to events.

Since Outlook created the ThisOutlookSession module automati-
cally, it does not include an Option Explicit statement to force you to
declare variables. You should add that statement to the module’s declaration
section, as shown in Figure 11.1.

To add an Application event handler, select Application from the list
at the top left of the module window. Then, from the list on the right, select
the event for which you want to write code. VBA places a stub for the event
handler procedure in the module window with the correct syntax. Figure
11.1 shows the procedure stubs for the ItemSend and Startup events.

11.1 Application object events 315

Table 11.1 Key Application Object Events (* = new in Outlook 2007)

Application Event Description Argument

StartUp Occurs when Outlook starts, after all add-ins
have loaded.

None

MAPILogonComplete Occurs after the Startup event fires, when Out-
look has logged on to all services and accounts.

None

*ItemLoad Occurs when Outlook begins to load an item
into memory, either to display it in an Inspec-
tor window or to display it in the reading pane.

The item being loaded, but
exposing only the item’s Class
and MessageClass properties

ItemSend Occurs when you send an item. Can be canceled. The item being sent

NewMail Occurs when new mail arrives, even if a Rules
Wizard rule moves the item out of the Inbox.
Fires at intervals, not necessarily for every new
message.

None

NewMailEx Occurs when new mail arrives, even if a Rules
Wizard rule moves the item out of the Inbox.
Fires at intervals, not necessarily for every new
message.

An array of EntryID values for
the incoming messages

Reminder Occurs when a reminder is triggered by an
appointment or task item or a flagged message or
contact. If the option to display reminders is
turned on, the Reminder event occurs just
before the reminder is displayed.

The item that triggered the
reminder

Figure 11.1
Get started with
Application-level

events in the
ThisOutlookSession

module.

316 11.1 Application object events

11.1.1 Using the Startup, MAPILogonComplete, and
Quit events

A common use for the Startup event is to instantiate global variables,
including object variables and classes that you want to handle other events.
For example, if you want to keep track of the time that Outlook started and
use that date/time value in other code procedures, use the Insert | Module
command to add a regular code module (not a class module) and add this
variable declaration:

Public g_dteStartup as Date

Then put this code in the ThisOutlookSession module (not the regu-
lar code module you just created) to initialize that variable:

Private Sub Application_Startup()
 g_dteStartup = Now
End Sub

When Outlook starts, it will set the value of the g_dteStartup variable,
which will be available to any other VBA procedure since it is a public vari-
able. This ShowOutlookWorkTime procedure, which you can place in the
regular code module you created, uses the value of that variable:

Sub ShowOutlookWorkTime()
 Dim intMinutes As Integer
 intMinutes = DateDiff("n", g_dteStartup, Now)
 MsgBox "Outlook has been running for " & _
 Round(intMinutes / 60, 2) & " hours.", _
 vbInformation, "Show Outlook Work Time"
End Sub

Perhaps the most important use of the Startup procedure is to instanti-
ate other Outlook objects for which you plan to write event handlers, as we
will see later in the chapter. You can also do that in the MAPILogon-
Complete event handler.

The MAPILogonComplete event handler is the ideal place to place code
that processes Outlook items or folders at the beginning of an Outlook ses-
sion. For example, let’s say that you are an assistant with two bosses’ sched-
ules to manage, and you like to keep each schedule open in its own window
in Outlook. You can use the code in Listing 11.1 to open each person’s Cal-
endar folder in its own minimized window. Put both procedures in the
ThisOutlookSession module.

Did you notice that the LaunchSharedFolder() procedure is declared as
a Public subroutine? That means you could also call it from a subroutine in
another code module besides ThisOutlookSession. The syntax to call the
procedure from a regular code module would like this:

Call ThisOutlookSession.LaunchSharedFolder("Donna Liss")

11.1 Application object events 317

The Quit event is not very useful in VBA, because all Outlook windows
have already closed by the time the Quit event fires as you exit Outlook,
and you no longer have access to Outlook items and folders. Also, by the
time Quit fires, Outlook has already released any global variables. This
means that you cannot use the Quit event to ask the user if she really wants
to quit Outlook (and no other means is available in Outlook VBA to add
such functionality).

11.1.2 Using NewMail and NewMailEx to handle
incoming mail

Outlook offers several built-in options for notifying the user that new mail
has arrived, but perhaps you want something more customized. Or perhaps
you frequently need to step out of your office and want to know whether
you received any new messages while you were gone. The NewMail event
can help provide a solution, because it fires whenever Outlook receives one

Listing 11.1 Load other user’s Calendar folders when Outlook starts

Private Sub Application_MAPILogonComplete()
 Dim objExpl As Outlook.Explorer
 Set objExpl = Application.ActiveExplorer
 Call LaunchSharedFolder("Henry Mudd")
 Call LaunchSharedFolder("Donna Liss")
 objExpl.Activate
 Set objExpl = Nothing
End Sub

Public Sub LaunchSharedFolder(strUser As String)
 Dim objNS As Outlook.NameSpace
 Dim objRecip As Outlook.Recipient
 Dim objFolder As Outlook.Folder
 Dim objExpl As Outlook.Explorer
 On Error Resume Next
 Set objNS = Application.Session
 Set objRecip = objNS.CreateRecipient(strUser)
 If objRecip.Resolve Then
 Set objFolder = _
 objNS.GetSharedDefaultFolder _
 (objRecip, olFolderCalendar)
 objFolder.Display
 Set objExpl = objFolder.GetExplorer
 objExpl.WindowState = olMinimized
 End If
 Set objNS = Nothing
 Set objRecip = Nothing
 Set objFolder = Nothing
 Set objExpl = Nothing
End Sub

318 11.1 Application object events

or more new messages. It only fires once for each batch of new messages,
though, so it’s not suitable for processing individual incoming messages.
(We’ll look at the NewMailEx event and some other approaches for that.)

Take a look at Figure 11.2, which shows a small VBA user form in
action. This form has with two label controls and a command button.
Name the command button cmdHide and set its Cancel property to True.
Name the label, which will show the date and time information, lblRe-
ceived. Name the form Ch11NewMail, and set the form’s Caption prop-
erty to “You Have New Mail.” Set the form’s ShowModal property to
False. Add this code to the command button’s event handler:

Private Sub cmdHide_Click()
 Me.Hide
End Sub

To make the form display the most recent mail delivery time, add the
following code to the Application_NewMail event handler in the This-
OutlookSession module:

Private Sub Application_NewMail()
 Ch11NewMail.Show
 With Ch11NewMail
 .lblReceived.Caption = Now
 .Repaint
 End With
End Sub

Because you set the ShowModal property to False, the form can stay on
the screen while you do other work. Click the Hide button to make the
form disappear until the next batch of new mail arrives.

The NewMailEx event differs from NewMail in that it supplies an argu-
ment that consists of a comma-delimited string of EntryID values for one
or more new messages that have arrived since the last time that NewMailEx
fired. (EntryID is a property common to all Outlook items; it consists of an
ID string that is unique, at least within the information store that holds
that item.) Depending on the type of email accounts in the current mail
profile and how fast messages arrive, NewMailEx may fire once for each
message, once for a number of messages, or not at all. As a general rule of
thumb, if a mail account pops up notification messages from the system
tray, it will also fire NewMailEx when new items arrive.

Figure 11.2
This VBA form

displays whenever
the NewMail event

fires.

11.1 Application object events 319

NewMailEx fires before any Outlook rules operate on the incoming mes-
sage(s). Even if a rule moves the item, the EntryID property value should
remain the same, as long as no rule moves the item to a different informa-
tion store. The code in Listing 11.2 assumes that the incoming items
remain in the user’s default information store (i.e., the one where the
default Inbox is located). It processes all the items and pops up a message
box with a list of their subjects. Add this code to the ThisOutlookSession
module.

The Namespace.GetItemFromID method in Listing 11.2 returns an
item from the default information store, using an EntryID value passed as
an argument. As we’ll see in Chapter 14, it can also return items from other
stores, if you know the other store’s StoreID property value.

Later in this chapter, when we cover new mail processing, you’ll see a
more complex example of using NewMailEx to process mail not just in the
default information store but also for accounts that don’t deliver to the
default Inbox, such as IMAP accounts.

11.1.3 Using the ItemSend event

When the user clicks Send to transmit a message, Outlook fires the Appli-
cation.ItemSend event. At that point, Outlook has not yet sent the item,
so it is not too late to change it. Typical applications include checking the
item to make sure that it meets certain conditions or forcing the item to be
sent with a different mail account. You can cancel the sending of the mes-
sage by setting the Cancel parameter of the event handler to True. For
example, Listing 11.3 aborts the send process and prompts the user if the

Listing 11.2 Use NewMailEx to work with the EntryID values of incoming items

Private Sub Application_NewMailEx _
 (ByVal EntryIDCollection As String)
 Dim objItem As Object
 Dim objNS As NameSpace
 Dim arr() As String
 Dim i As Integer
 Dim strList As String
 On Error Resume Next
 Set objNS = Application.Session
 arr = Split(EntryIDCollection, ",")
 For i = 0 To UBound(arr)
 Set objItem = objNS.GetItemFromID(arr(i))
 strList = objItem.Subject & vbCrLf & strList
 Next
 MsgBox strList, , "NewMailEx event"
 Set objNS = Nothing
 Set objItem = Nothing
End Sub

320 11.1 Application object events

subject is blank or if the message contains the word “attached” but no
attachments. Put all the code in the ThisOutlookSession module.

Notice that the CancelBlankOrNoAttachments procedure—the sub-
routine that actually checks the text in the Subject and Body properties of
the message—is a separate procedure returning a Boolean value. Breaking it
out as a separate procedure makes make it easy to add more such “rules” to
the ItemSend event handler to deal with other scenarios where you might
not want to send a message or might want to alter it before it goes out.

For example, in Listing 11.4, we’ve enhanced the Application_Item-
Send procedure from Listing 11.3 to call another procedure that checks the
sending account. This scenario assumes that the user has an Exchange
account plus a POP3 or IMAP4 account and wants all messages sent to

Listing 11.3 Check the contents of outgoing messages with ItemSend

Private Sub Application_ItemSend _
 (ByVal Item As Object, Cancel As Boolean)
 Dim objMail As Outlook.MailItem
 If Item.Class = olMail Then
 Set objMail = Item
 If CancelBlankOrNoAttachments(objMail) = True Then
 Cancel = True
 End If
 End If
 Set objMail = Nothing
End Sub

Function CancelBlankOrNoAttachments _
 (myMail As Outlook.MailItem) As Boolean
 Dim strMsg As String
 Dim intPos As Integer
 Dim intRes As Integer
 If Trim(myMail.Subject) = "" Then
 CancelBlankOrNoAttachments = True
 strMsg = "Please enter a subject before sending."
 MsgBox strMsg, vbExclamation, "ItemSend Event"
 ElseIf myMail.Attachments.Count = 0 Then
 intPos = InStr(1, myMail.Body, _
 "attached", vbTextCompare)
 If intPos > 0 Then
 strMsg = "Did you mean to add an attachment?"
 intRes = MsgBox(strMsg, _
 vbYesNo + vbDefaultButton1 + vbQuestion, _
 "ItemSend Event")
 If intRes = vbYes Then
 CancelBlankOrNoAttachments = True
 End If
 End If
 End If
End Function

11.1 Application object events 321

people marked with the category “Family” to be transmitted with the Inter-
net mail account, not the Exchange account. Again, place all the code in the
ThisOutlookSession module. Replace the earlier ItemSend event han-
dler with this new version.

Listing 11.4 makes use of several new features in the Outlook 2007
object model:

A SendUsingAccount property to read or set the account used to
send a message or other item

A Namespace.Accounts collection of all the user’s mail accounts

An Account object whose AccountType property tells you what type
of mail account it is (Exchange, IMAP, and so on)

An AddressEntryUserType property for the AddressEntry object
that tells you what type of address it is, even distinguishing among
users, public folders, and distribution lists when working with
Exchange addresses

An AddressEntry.GetContact method to return the Outlook
ContactItem associated with a given recipient (AddressEntry also
has new GetExchangeUser and GetExchangeDistributionList
methods)

Listing 11.4 Add an account test to outgoing messages

Private Sub Application_ItemSend(ByVal Item As Object, _
 Cancel As Boolean)
 Dim objMail As Outlook.MailItem
 If Item.Class = olMail Then
 Set objMail = Item
 ' CancelBlankOrNoAttachments from Listing 11.3
 If CancelBlankOrNoAttachments(objMail) = True Then
 Cancel = True
 ElseIf CheckSendAccount(objMail) = True Then
 Cancel = True
 End If
 End If
 Set objMail = Nothing
End Sub

Function CheckSendAccount(myMail As Outlook.MailItem) As Boolean
 Dim objRecip As Outlook.Recipient
 Dim objAE As Outlook.AddressEntry
 Dim objContact As Outlook.ContactItem
 Dim strCats As String
 Dim arrCats() As String
 Dim blnToFamily As Boolean
 Dim i As Integer
 Dim strMsg As String
 Dim objNS As Outlook.NameSpace

322 11.1 Application object events

 Dim objExAcct As Outlook.Account
 Dim objInetAcct As Outlook.Account
 Dim intRes As Integer
 On Error Resume Next
 For Each objRecip In myMail.Recipients
 If blnToFamily = False Then
 Set objAE = objRecip.AddressEntry
 If objAE.AddressEntryUserType = _
 olOutlookContactAddressEntry Or _
 objAE.AddressEntryUserType = _
 olSmtpAddressEntry Then
 Set objContact = objRecip.AddressEntry.GetContact
 If Not objContact Is Nothing Then
 strCats = objContact.Categories
 If IsInCategories("Family", strCats) Then
 blnToFamily = True
 End If
 End If
 End If
 End If
 Next
 If blnToFamily = True Then
 Set objExAcct = GetExchangeAccount()
 If Not objExAcct Is Nothing Then
 If myMail.SendUsingAccount = objExAcct Then
 strMsg = "You have at least one Family " & _
 "category recipient in this " & _
 "message. Do you still want " & _
 "to use your Exchange account " & _
 "to send the message?" & vbCrLf & _
 vbCrLf & "Click Yes to send " & _
 "the message, No to send " & _
 "with your other account, " & _
 "or Cancel to see the message " & _
 "again."
 intRes = MsgBox(strMsg, _
 vbQuestion + vbYesNoCancel, _
 "CheckSendAccount")
 Select Case intRes
 Case vbNo
 Set objInetAcct = _
 GetFirstNonExchangeAccount()
 If Not objInetAcct Is Nothing Then
 myMail.SendUsingAccount = _
 objInetAcct
 CheckSendAccount = False
 Else
 CheckSendAccount = True
 End If
 Case vbCancel
 CheckSendAccount = True

Listing 11.4 Add an account test to outgoing messages (continued)

11.1 Application object events 323

 Case Else
 CheckSendAccount = False
 End Select
 End If
 End If
 End If
 Set objNS = Nothing
 Set objExAcct = Nothing
 Set objInetAcct = Nothing
End Function

Function IsInCategories(strCatName, strCatList)
 Dim arrCats() As String
 Dim i As Integer
 If strCatList <> "" Then
 arrCats = Split(strCatList, ",")
 For i = 0 To UBound(arrCats)
 If UCase(arrCats(i)) = UCase(strCatName) Then
 IsInCategories = True
 Exit For
 End If
 Next
 End If
End Function

Function GetExchangeAccount() As Outlook.Account
 Dim objAccount As Outlook.Account
 Dim objNS As Outlook.NameSpace
 Set objNS = Application.Session
 For Each objAccount In objNS.Accounts
 If objAccount.AccountType = olExchange Then
 Set GetExchangeAccount = objAccount
 Exit For
 End If
 Next
 Set objNS = Nothing
End Function

Function GetFirstNonExchangeAccount() As Outlook.Account
 Dim objNS As Outlook.NameSpace
 Dim objAccount As Outlook.Account
 Set objNS = Application.Session
 For Each objAccount In objNS.Accounts
 If objAccount.AccountType <> olExchange Then
 Set GetFirstNonExchangeAccount = objAccount
 Exit For
 End If
 Next
 Set objNS = Nothing
End Function

Listing 11.4 Add an account test to outgoing messages (continued)

324 11.1 Application object events

Let’s walk through some of the key concepts in Listing 11.4, starting
with the Application_ItemSend event handler itself. First, notice the dif-
ference between Listing 11.3, which had this code to check the outgoing
item:

If CancelBlankOrNoAttachments(objMail) = True Then
 Cancel = True
End If

and Listing 11.4 which uses this code:

If CancelBlankOrNoAttachments(objMail) = True Then
 Cancel = True
ElseIf CheckSendAccount(objMail) = True Then
 Cancel = True
End If

If you wanted to perform a third check on the outgoing item, and cancel
the send process if the item doesn’t meet certain conditions, you would create
another function that returns True if the send should be canceled and
False if the send should proceed and then call that function using another
ElseIf statement:

If CancelBlankOrNoAttachments(objMail) = True Then
 Cancel = True
ElseIf CheckSendAccount(objMail) = True Then
 Cancel = True
ElseIf AnotherFunction(objMail) = True Then
 Cancel = True
End If

Tip: Jump ahead to Listing 18.3 if you want to see a third “rule” added to
the ItemSend event handler—one that asks the user to confirm Cc and Bcc
recipients.

When you program each set of conditions as a separate function, it
becomes easy to call those functions in sequence inside the ItemSend event
handler.

The CheckSendAccount() function loops through the outgoing mes-
sage’s Recipients collection with a For Each ... Next loop, checking
each Recipient.AddressEntry object to locate items where the
AddressEntryUserType indicates that the recipient is either an Outlook
contact or a raw SMTP address. For such addresses, it uses the new
AddressEntry.GetContact method to try to return a ContactItem
related to the recipient. If that operation succeeds, it uses the IsInCatego-
ries() helper function to see if “Family” is one of the categories for the
related contact.

Notice that the IsInCategories() function cannot simply use
Instr() to check whether “Family” appears in the text of the Contact-

11.1 Application object events 325

Item.Categories property, because the contact could also have a category
named “Family & Friends” or even “Not Family.” If you want to check the
Categories property for an exact match of a category name, you must
process the Categories string as an array of values, which is what IsIn-
Categories() does.

Two other helper functions, GetExchangeAccount() and GetFirst-
NonExchangeAccount(), return the user’s Exchange account and the first
non-Exchange account found in the Namespace.Accounts collection.
(Remember that, for the scenario handled by Listing 11.4, we assumed that
the user had only two mail accounts: one Exchange and one non-
Exchange.)

Why doesn’t ItemSend always work?

The ItemSend event does not fire when the user creates and sends a message using the
right-click Send To | Mail Recipient command in Windows Explorer or the File | Send
commands in Internet Explorer, Word, Excel, or other Office applications. The reason is
that those commands do not use Outlook to create and send the message. Instead, they use
a more basic interface called Simple MAPI that bypasses Outlook’s functionality.

It is possible in Windows XP, though, to get Windows Explorer and the Office applica-
tions to fire Outlook’s ItemSend event, by adding new commands. In Windows Explorer,
navigate to the %userprofile%\SendTo folder.

Note: %userprofile% is an environment variable that Windows evaluates to take you
to the current user’s folders holding Windows profile data and settings. Depending
on your Windows configuration, you may not have permission to add new shortcuts
to the SendTo folder.

Once you are in the SendTo folder, create a new shortcut there with this path:

"C:\Program Files\Microsoft Office\Office12\OUTLOOK.EXE" /a

(Note that this path is the default for Office 2007; earlier versions will use a different
path, as will users who do not install Office in the default location.) The /a switch tells
Outlook to create a new message with an attachment. Name the shortcut “Outlook.” When
you want to create a message with a file attachment, right-click the file, and choose Send To
| Outlook to invoke your new shortcut.

For Office applications, you can create a macro that saves the current document and
sends it as a mail message. In the Word VBA environment, for example, choose Tools | Ref-
erences and add a reference to the Microsoft Outlook 12.0 Object Library. If the Normal
project doesn’t have an existing code module, add one using the Insert | Module command.
Then, add the code in Listing 11.5.

326 11.1 Application object events

If the code determines that the message is going to a contact within the
“Family” category, it uses the expression myMail.SendUsingAccount =

objExAcct to determine whether the message is being sent with the
Exchange account. If so, then the user gets a choice. The message can be

Be sure to save changes to the Normal.dotm template when you close Word 2007, so
that the macro will be saved, too. To add the SendToOutlook macro to the Quick Access
Toolbar (QAT) in Word, follow these steps:

1. Click the Customize Quick Access Toolbar command arrow (to the right of the QAT)
and choose More Commands.

2. Under “Choose commands from,” select Macros.

3. Select the SendToOutlook macro, and then click Add.

4. Select the SendToOutlook macro, and then click Modify.

5. In the Modify Button dialog, shorten the display name (which will appear in the but-
ton’s screen tip) to just “SendToOutlook” and, if you like, change the symbol.

6. Click OK twice to save your changes.

The code for sending an Excel workbook as an attachment would be almost identical,
except that it would use ActiveWorkbook instead of ActiveDocument.

Listing 11.5 Attach the current Word document to an Outlook message

Sub SendToOutlook()
 Dim strMsg As String
 Dim objOL As New Outlook.Application
 Dim objMail As Outlook.MailItem
 On Error Resume Next
 If ActiveDocument.Saved = False Then
 ActiveDocument.Save
 End If
 If ActiveDocument.Saved = True Then
 Set objMail = objOL.CreateItem(olMailItem)
 objMail.Attachments.Add _
 ActiveDocument.Path & "\" & ActiveDocument.Name, _
 olByValue
 objMail.Subject = ActiveDocument.Name
 objMail.Display
 Else
 strMsg = "This document must be saved before " & _
 "you can send it as an Outlook attachment."
 MsgBox strMsg, vbExclamation, "SendToOutlook"
 End If
 Set objMail = Nothing
 Set objOL = Nothing
End Sub

11.1 Application object events 327

allowed to go as-is, or the code can change the account to the Internet
account using this statement:

myMail.SendUsingAccount = objInetAcct

Or, the code can cancel the send operation completely, by returning
True as the value of CheckSendAccount() function.

No doubt you can imagine many other useful scenarios that involve
checking the content of an outgoing message and canceling the send opera-
tion or forcing the item to send with a different mail account. Chapter 20
demonstrates how to determine the user’s default mail account and set each
outgoing item to use it.

11.1.4 Using the ItemLoad event

A key new event is Outlook 2007 is the Application.ItemLoad event,
which fires when the user opens an item or selects an item for viewing in
the reading pane. While the ItemSend event provides what is known as a
strong reference to the item being sent, with all its properties, the ItemLoad
event provides only a weak reference to the item being loaded, exposing only
two properties, Class and (in most cases, but not all) MessageClass.
These properties allow you to know what type of item it is, which is all you
need to know to be able to instantiate another object of the correct class—a
MailItem for a message, for example—whose events, properties, and meth-
ods are fully exposed. Listing 11.6 demonstrates how this works.

After entering the code in Listing 11.6 in the ThisOutlookSession
module, test it by spending some time opening items and previewing them
in the reading pane. Then, display the Immediate window in VBA. You
should see a line for each item opened and each item read, that line pro-
duced by the appropriate Debug.Print statement for that item type.
Notice that the Unload event, which fires after the Close event, gives you
an opportunity to release the object.

Note: The ItemLoad event, new to Outlook 2007, makes it somewhat eas-
ier for professional developers to build add-ins that handle individual item
events such as Open and Read for multiple open items. However, that tech-
nique involves a complex class module solution that puts it beyond the
scope of this book. We will deal with events for individual Outlook items
mainly in the context of the NewInspector event, covered a little later in
this chapter, and within VBScript code behind Outlook forms, starting
with the next chapter, Chapter 12.

The next section goes into more detail on the technique of writing event
handlers like this for objects other than Application.

328 11.1 Application object events

Listing 11.6 Use ItemLoad to instantiate other event-enabled objects

Dim WithEvents m_objAppt As Outlook.AppointmentItem
Dim WithEvents m_objCont As Outlook.ContactItem
Dim WithEvents m_objJour As Outlook.JournalItem
Dim WithEvents m_objMail As Outlook.MailItem
Dim WithEvents m_objTask As Outlook.TaskItem

Private Sub Application_ItemLoad(ByVal Item As Object)
 On Error Resume Next
 Dim strClass As String
 Select Case Item.Class
 Case olMail
 Set m_objMail = Item
 Case olTask
 Set m_objTask = Item
 Case olAppointment
 Set m_objAppt = Item
 Case olContact
 Set m_objCont = Item
 Case olJournal
 Set m_objJour = Item
 Case Else
 strClass = CStr(Item.Class)
 strClass = strClass & " - " & Item.MessageClass
 Debug.Print strClass, Time()
 End Select
End Sub

Private Sub m_objAppt_Open(Cancel As Boolean)
 Debug.Print "open", m_objAppt.Subject
End Sub

Private Sub m_objAppt_Read()
 Debug.Print "read", m_objAppt.Subject
End Sub

Private Sub m_objAppt_Unload()
 Set m_objAppt = Nothing
End Sub

Private Sub m_objCont_Open(Cancel As Boolean)
 Debug.Print "open", m_objCont.Subject
End Sub

Private Sub m_objCont_Read()
 Debug.Print "read", m_objCont.Subject
End Sub

Private Sub m_objCont_Unload()
 Set m_objCont = Nothing
End Sub

11.2 Writing handlers for other object events 329

11.2 Writing handlers for other object events
As you saw in the previous section with its item-level Open and Read events,
VBA handling of Outlook events is not limited to events associated with
the Application object. You can write event handlers for other objects,
too. Setting up such an event handler requires two extra steps that you
didn’t need to take for Application events:

In a class module, declare an object variable with a Dim WithEvents
or Private WithEvents statement

Instantiate that object variable

Private Sub m_objJour_Open(Cancel As Boolean)
 Debug.Print "open", m_objJour.Subject
End Sub

Private Sub m_objJour_Read()
 Debug.Print "read", m_objJour.Subject
End Sub

Private Sub m_objJour_Unload()
 Set m_objJour = Nothing
End Sub

Private Sub m_objMail_Open(Cancel As Boolean)
 Debug.Print "open", m_objMail.Subject
End Sub

Private Sub m_objMail_Read()
 Debug.Print "read", m_objMail.Subject
End Sub

Private Sub m_objMail_Unload()
 Set m_objMail = Nothing
End Sub

Private Sub m_objTask_Open(Cancel As Boolean)
 Debug.Print "open", m_objTask.Subject
End Sub

Private Sub m_objTask_Read()
 Debug.Print "read", m_objTask.Subject
End Sub

Private Sub m_objTask_Unload()
 Set m_objTask = Nothing
End Sub

Listing 11.6 Use ItemLoad to instantiate other event-enabled objects (continued)

330 11.2 Writing handlers for other object events

WithEvents declarations work only in class modules—special code mod-
ules that establish and work with object classes and their methods, events,
and properties. The built-in ThisOutlookSession module itself is a class
module. You can create your own class modules to help you better organize
your event-handling code.

Once you have an object variable declared WithEvents in a class mod-
ule, you can choose that object from the dropdown list at the top of the
module and then select one of its events to have VBA insert the correct
event handler procedure definition.

Tip: The code behind a VBA user form is also a type of class module. That’s
why it can fire events for command buttons and other controls on the form.

11.2.1 Handling events in ThisOutlookSession

Take a look back at Listing 11.6. It illustrates the basic concepts involved in
setting up event handlers in the built-in ThisOutlookSession module.
For example, this statement makes it possible to write procedures to handle
the events fired by the m_objAppt object:

Dim WithEvents m_objAppt As Outlook.AppointmentItem

The m_objAppt object is instantiated by this statement in the
Application_ItemLoad procedure:

Set m_objAppt = Item

Listing 11.6 contains three event handlers for the m_objAppt object:

Private Sub m_objAppt_Read()
 Debug.Print "read", m_objAppt.Subject
End Sub

Private Sub m_objAppt_Open(Cancel As Boolean)
 Debug.Print "open", m_objCont.Subject
End Sub

Private Sub m_objAppt_Unload()
 Set m_objAppt = Nothing
End Sub

Look through Listing 11.6 to match up each of the objects declared
WithEvents with the statement that instantiates it and with its event han-
dlers.

When you set up event handlers in the ThisOutlookSession module,
the event-enabled objects (that is, those declared WithEvents) should be
instantiated by code in one of the Application events or in the event han-
dler for some other object that itself was instantiated by code in an Appli-
cation event. Often, Application_Startup is the event handler used to

11.2 Writing handlers for other object events 331

instantiate other event-enabled objects, but you can also use Application_
MAPILogonComplete.

11.2.2 Handling events in class modules

As an alternative to putting all your event handlers in the ThisOutlook-
Session module, you can also write separate class modules to hold your
event handlers, especially handlers for objects other than Application.
One advantage of using a separate class module for each type of object is
that you can export and import such a class module using the File | Import
File and Export File commands in VBA, making it easier to backup and
share them with others. Coding separate class modules for different objects’
events also helps you organize your code better. You may find it easier to
locate, say, all the events related to Explorers and Explorer objects if you
keep them in a single class module that handles only Explorers and
Explorer events.

For an event handler in a class module, you follow the same two steps
discussed in the previous section—declare an object WithEvents and
instantiate that object. The difference is that those steps take place in the
class module’s code, not in the ThisOutlookSession module. Plus, you
must add a third step: creating an instance of the class itself.

As an example to show you how all those steps fit together, let’s assume
that you want each new Explorer window (remember that Explorer win-
dows show the items in Outlook folders) to display the Folder List naviga-
tion pane. The Application object has an Explorers collection and that
collection supports a NewExplorer event. To display the Folder List navi-
gation pane in each new Explorer window that the user opens, you could
put the code in Listing 11.7 all in the ThisOutlookSession module.

The Application_Startup event handler in Listing 11.7 instantiates
an Explorers object, which has been declared WithEvents. The NewEx-
plorer event fires when the user displays a new Explorer window and
runs code to display the Folder List in the navigation pane. The
Explorer.NavigationPane object and GetNavigationModule methods
are new to Outlook 2007.

Now, let’s look at the alternative approach—a separate class module to
handle the NewExplorer event—and see how it differs from the ThisOut-
lookSession version in Listing 11.7. Use the Insert | Class Module com-
mand in Outlook VBA to create the new module. In the Properties pane of
the VBA environment, name the new module Ch11ExplorerEvents.
Then put the code in Listing 11.8 in the new class module.

Notice that the module-level declaration and the m_colExplorers_
NewExplorer event handler in Listing 11.8 are identical to the same code
elements in Listing 11.7. What’s different in Listing 11.8 is the Class_

332 11.2 Writing handlers for other object events

Initialize procedure, which runs when an instance of the class is created.
In Listing 11.7, the Application_Startup procedure instantiates the
m_colExplorers object. In Listing 11.8, that job falls to the Class_Ini-
tialize procedure.

So, you should be wondering, where is the code that makes the Class_
Initialize procedure run? What we need is a code statement to create a

Listing 11.7 ThisOutlookSession code to display the Folder List navigation pane in each new
Explorer window (compare with Listing 11.8)

Dim WithEvents m_colExplorers As Outlook.Explorers

Private Sub m_colExplorers_NewExplorer _
 (ByVal Explorer As Explorer)
 Dim objModule As Outlook.NavigationModule
 Set objModule = _
 Explorer.NavigationPane.Modules.GetNavigationModule _
 (olModuleFolderList)
 If Not objModule Is Nothing Then
 Set Explorer.NavigationPane.CurrentModule = _
 objModule
 End If
 Set objModule = Nothing
End Sub

Private Sub Application_Startup()
 Set m_colExplorers = Outlook.Explorers
End Sub

Listing 11.8 Class module code to display the Folder List navigation pane in each new Explorer win-
dow (compare with Listing 11.7)

Dim WithEvents m_colExplorers As Outlook.Explorers

Private Sub m_colExplorers_NewExplorer _
 (ByVal Explorer As Explorer)
 Dim objModule As Outlook.NavigationModule
 Set objModule = _
 Explorer.NavigationPane.Modules.GetNavigationModule _
 (olModuleFolderList)
 If Not objModule Is Nothing Then
 Set Explorer.NavigationPane.CurrentModule =
objModule
 End If
 Set objModule = Nothing
End Sub

Private Sub Class_Initialize()
 Set m_colExplorers = Application.Explorers
End Sub

11.3 Explorers and Explorer events 333

new instance of this class. That code needs to go into the ThisOutlook-
Session module and run from the Startup or MAPILogonComplete event
handler:

Dim m_objExEvents As Ch11ExplorerEvents

Private Sub Application_MAPILogonComplete()
 Set m_objExEvents = New Ch11ExplorerEvents
End Sub

Recall that Ch11ExplorerEvents is the new class module that you cre-
ated. Figure 11.3 illustrates how the code execution transfers from the
ThisOutlookSession module to the Ch11ExplorerEvents module. The
Dim m_objExEvents statement is necessary to make sure that the class
instance stays active (“in scope”) while Outlook is running, so that it can
continue to fire events as long as Outlook is running.

Listing 11.8 introduces a new declaration technique: the New keyword.
When you use the New keyword in a declaration, you are creating a new
instance of a class, in this case the class module named Ch11-

ExplorerEvents. Once you have an instance of the class, your code can
call any of the class’ public methods, that is, its subroutines and functions.

We’ll continue looking at the Explorer object in the next section.

11.3 Explorers and Explorer events
Each window that displays an Outlook folder is represented by an
Explorer object in the Explorers collection. As you saw in the previous
section, the Explorers collection has a single event, NewExplorer, which
fires when the user displays a new folder window.

Figure 11.3 Code in the Application_MAPILogonComplete event handler can instantiate a new
class, which has its own event handlers.

334 11.3 Explorers and Explorer events

Events related to the Explorer object fire when the user changes views;
selects, copies, cuts, or pastes items; resizes the window; or switches to a
new folder or view. Table 11.2 summarizes the Explorer events. Note that
all the events whose name begins with Before can be canceled.

To detect when a user has opened a new window (for example, so that
you can then change the appearance of that window), SelectionChange is
the best event to use. By the time it fires, the full user interface is available.
SelectionChange also fires when the user opens a second calendar side-
by-side with another calendar folder.

Table 11.2 Explorers and Explorer Events

Explorers Event Description

NewExplorer Occurs when the user or an application displays a new
folder window; includes the new Explorer as an argument

Explorer Events Description

Activate Occurs when the user switches to the Explorer

BeforeFolderSwitch Occurs before the Explorer displays a new folder; includes
the new folder as an argument; cancelable

BeforeItemCopy Occurs when the user copies an item; cancelable

BeforeItemCut Occurs when the user cuts an item; cancelable

BeforeItemPaste Occurs when the user pastes an item; cancelable

BeforeMaximize Occurs when the user maximizes the window; cancelable

BeforeMinimize Occurs when the user minimizes the window; cancelable

BeforeMove Occurs when the user repositions the window; cancelable

BeforeSize Occurs when the user resizes the window; cancelable

BeforeViewSwitch Occurs before the Explorer displays a new view; includes
the new view as an argument; cancelable

Close Occurs when the Explorer closes (in VBA, when the last
Explorer closes, Outlook begins to shut down, and no
further work can be done with Outlook objects)

Deactivate Occurs before the focus switches from the Explorer to
another window

FolderSwitch Occurs after the Explorer displays a new folder

SelectionChange Occurs when the user selects different items or a different
date/time range on a day/week/month view

ViewSwitch Occurs after the Explorer displays a new view

11.3 Explorers and Explorer events 335

The BeforeFolderSwitch, BeforeViewSwitch, FolderSwitch, and
ViewSwitch events can be triggered either by the user changing the folder,
by the user switching to a different view, or by code that assigns a new value
to the CurrentFolder or CurrentView property of the Explorer.

To make use of Explorer events, you must declare appropriate object
variables in the ThisOutlookSession module or another class module and
initialize those variables with code in the Application_Startup event
handler in ThisOutlookSession.

Note: The techniques discussed in this book show how to gain access to the
Explorer events for the current Explorer window. Handling all events for
multiple open Explorer windows requires a “wrapper” class module,
which is beyond the scope of this book, but is covered in more advanced
Outlook programming books.

Here are some ideas for practical applications for Explorer events:

Controlling the state, size, and position of new folder windows

Controlling the view shown for a folder

Turning on a custom toolbar or button when you switch to a particu-
lar folder and turning it off again when you switch to a different
folder

The next two sections provide sample code for the first two ideas. We’ll
discuss toolbar programming in Chapter 23.

11.3.1 Example: Controlling the state of new
folder windows

One peculiarity of Outlook is that it always displays new folder windows in
a normal window, even if the main Outlook window is maximized. If you
prefer for all Outlook windows to open maximized, you can place the code
in Listing 11.9 in the built-in ThisOutlookSession module.

Listing 11.9 Show all new Explorer windows in a maximized state

Dim WithEvents colExpl As Outlook.Explorers

Private Sub Application_Startup()
 Set colExpl = Application.Explorers
End Sub

Private Sub colExpl_NewExplorer(ByVal Explorer As Explorer)
 Explorer.WindowState = olMaximized
End Sub

336 11.3 Explorers and Explorer events

Either restart Outlook or run the Application_Startup procedure so
that the colExpl collection is instantiated and can fire the NewExplorer
event.

The Explorer object supports size and position properties, so if you
wanted to show the window in its normal state but control its size and posi-
tion on the screen, you could use this alternative code for the NewExplorer
event handler:

Private Sub colExpl_NewExplorer_
 (ByVal Explorer As Explorer)
 Explorer.Height = 700
 Explorer.Width = 900
 Explorer.Top = 30
 Explorer.Left = 100
End Sub

11.3.2 Example: Setting a default folder view

If you’re like me and have several thousand items in your Sent Items folder,
viewing just the last few days’ worth makes the folder seem to display faster.
Outlook includes a Last Seven Days view that filters out all but the last
week’s worth of items.

Tip: Instead of using the Last Seven Days view, you may want to create a
custom view (name it “Sent in Last Seven Days”) to show different fields.
Use the View | Current View | Define Views command to create the new
view, remove the Received and From fields, and add instead the Sent and
To fields. Replace “Last Seven Days” in Listing 11.10 with “Sent in Last
Seven Days” or whatever you call your new custom view.

To make Outlook automatically turn on the Last Seven Days view, you
must create an event handler for the FolderSwitch event. Since the previ-
ous example was designed to run in ThisOutlookSession, let’s build this
one in a class module.

First, in the ThisOutlookSession module, add this code:

Dim m_objExEvents As Ch11ExplorerEvents2

Private Sub Application_MAPILogonComplete()
 Set m_objExEvents = New Ch11ExplorerEvents2
End Sub

We’re using the MAPILogonComplete event instead of the Startup
event, just in case the user has Sent Items set as the initial folder for Out-
look to display. We want to make sure the code to change the view runs
only after Outlook’s folders are fully initialized.

11.3 Explorers and Explorer events 337

Since the Dim statement refers to a Ch11ExplorerEvents2 class, that’s
the next task. Use the Insert | Class Module command to add a new class
module and change its name to Ch11ExplorerEvents2.

Now, put the code in Listing 11.10 in the Ch11ExplorerEvents2 class
module.

Listing 11.10 Class module code to display the Last Seven Days view on the Sent Items folder

Dim WithEvents m_objExpl As Outlook.Explorer
Dim blnStartup As Boolean
Dim m_objOL as Outlook.Application

Private Sub Class_Initialize()
 Set m_objOL = Application
 If m_objOL.Explorers.Count > 0 Then
 Set m_objExpl = m_objOL.ActiveExplorer
 End If
 blnStartup = True
End Sub

Private Sub m_objExpl_SelectionChange()
 If blnStartup Then
 Call ShowLastSevenDays
 blnStartup = False
 End If
End Sub

Private Sub m_objExpl_FolderSwitch()
 Call ShowLastSevenDays
End Sub

Private Sub m_objExpl_Close()
 If m_objOL.Explorers.Count > 0 Then
 Set m_objExpl = m_objOL.ActiveExplorer
 End If
End Sub

Private Sub ShowLastSevenDays()
 Dim objNS As Outlook.NameSpace
 Dim objSentItems As Outlook.Folder
 Set objNS = m_objOL.Session
 Set objSentItems = _
 objNS.GetDefaultFolder(olFolderSentMail)
 If m_objExpl.CurrentFolder = objSentItems Then
 m_objExpl.CurrentView = "Last Seven Days"
 End If
 Set objNS = Nothing
 Set objSentItems = Nothing
End Sub

338 11.4 Inspectors and Inspector events

In Listing 11.10, the ShowLastSevenDays procedure does most of the
work—checking to see whether the Explorer.CurrentFolder object
points to the default Sent Items folder and, if so, changing the view to Last
Seven Days. What’s interesting is that ShowLastSevenDays is called by two
different event handlers—FolderSwitch and SelectionChange. The
purpose of the FolderSwitch event should be obvious because of its name:
It fires when the user changes the display in the Explorer window from
one folder to another.

The use of SelectionChange is less obvious. It’s needed to handle the
case, albeit unlikely, that the user has set the Sent Items folder as the startup
folder for Outlook. In that scenario, no Explorer.FolderSwitch event
occurs when Outlook starts, so you need to use some other event. As it
turns out, Explorer.SelectionChange is the right event, because when-
ever a new Explorer displays, it fires the SelectionChange event as the
last event after the folder display has been completely initialized. Since we
need to use SelectionChange only if Outlook displays the Sent Items
folder on startup, a module-level Boolean variable, blnStartup, tracks
Outlook’s state so that the code doesn’t call ShowLastSevenDays every
time the user changes the selection in the folder display.

To test this code, restart Outlook or manually run the Application_
MAPILogonComplete procedure to activate the new event handlers. Then
switch to the Sent Items folder. Check the view by looking at the View |
Current View menu to see which view is currently selected.

11.4 Inspectors and Inspector events
Just as Outlook has an Explorers collection with each Explorer object
representing a folder window, it also has an Inspectors collection, where
each Inspector object represents an individual Outlook item window.
The Inspectors collection has one event, NewInspector, which fires
whenever a new Inspector window opens. You first saw the NewInspec-
tor event back in Listing 9.5, which demonstrated how to prototype with
individual item event handlers in VBA. The NewInspector event also fires
if a user is viewing an item window and then clicks the Next or Previous
button on the Quick Access Toolbar.

Unfortunately, the NewInspector event does not fire in all cases when
the user sees a new message. As with the Application.ItemSend event
discussed earlier in the sidebar “Why doesn’t ItemSend always work?” you
will get no NewInspector event when you invoke a Send or Send To com-
mand from Windows Explorer, Internet Explorer, or other Office applica-
tions. (The new window will, however, be present in the
Application.ActiveInspectors collection, along with any other item
windows.)

11.4 Inspectors and Inspector events 339

Just as NewExplorer provides access to the most recently opened
Explorer window, the NewInspector event provides access to the most
recently opened Inspector. That makes it useful for handling initialization
tasks when the user displays an item.

Note: To handle other events for all open Outlook Inspector windows
would require a wrapper class module, which is beyond the scope of this
book, but covered in more advanced Outlook programming books.

An individual Inspector object has the events shown in Table 11.3.
You can see that many are very similar to those for the Explorer object in
Table 11.2.

One peculiarity of NewInspector is that the Inspector object that it
passes as an argument may not be fully initialized when NewInspector
fires. To get the caption of the window, for example, you need to use the
Inspector.Activate event. Listing 11.11 shows the basic syntax for set-
ting up a NewInspector event handler in ThisOutlookSession and using
it to instantiate an Inspector object whose Activate event you can write

Table 11.3 Inspectors and Inspector Events (* = new in Outlook 2007)

Inspectors Event Description

NewInspector Occurs when the user or an application displays an item in its own window or if a user is
viewing an item window and then clicks the Next or Previous button on the Quick Access
Toolbar; includes the NewInspector as an argument

Inspector Events Description

Activate Occurs when the user switches to the Inspector window or when the Next or Previous
button is used to view another item in the current Inspector

BeforeMaximize Occurs when the user maximizes the window; cancelable

BeforeMinimize Occurs when the user minimizes the window; cancelable

BeforeMove Occurs when the user moves the window; cancelable

BeforeSize Occurs when the user resizes the window; cancelable

Close Occurs when the Inspector closes

Deactivate Occurs just before the focus switches from the Inspector to another window or when
the Next or Previous button is used to view another item

*PageChange Occurs when the active form page changes, either because the user switched pages or
because code changed the page; includes the active form page as an argument

340 11.4 Inspectors and Inspector events

code for (in this case, a Debug.Print statement to show the caption of the
window).

Remember that you cannot have two procedures with the same name in
the same module. If you already have an Application_Startup event
handler that looks like this:

Private Sub Application_Startup()
 Set colExpl = Application.Explorers
End Sub

add support for Inspectors by inserting a Set colInsp statement so that
the procedure looks like this:

Private Sub Application_Startup()
 Set colExpl = Application.Explorers
 Set colInsp = Application.Inspectors
End Sub

Perhaps the most practical use of the NewInspector event is to perform
initialization tasks—changing the window’s size or position or making a
change to the item displayed in the Inspector window. In the next two
sections, we look at two practical examples:

Automatically starting the journal timer

Setting a new default reminder on all-day events

11.4.1 Example: Start the journal timer automatically

Consider a user who makes heavy use of Outlook’s Journal feature to track
the work done during the day. In Outlook 2003, this user learned to use
Ctrl+Shift+J as a keyboard shortcut to create a new journal entry and
Alt+M to start and pause the timer. However, in Outlook 2007, Alt+M
doesn’t function as a shortcut to start the timer.

Listing 11.11 Basic structure for Inspectors.NewInspector and Inspector.Activate events

Dim WithEvents colInsp As Outlook.Inspectors
Dim WithEvents objInsp As Outlook.Inspector

Private Sub Application_Startup()
 Set colInsp = Application.Inspectors
End Sub

Private Sub colInsp_NewInspector(_
 ByVal Inspector As Inspector)
 Set objInsp = Inspector
End Sub

Private Sub objInsp_Activate()
 Debug.Print objInsp.Caption
End Sub

11.4 Inspectors and Inspector events 341

Tip: The new keyboard shortcut to start the timer in Outlook 2007 is
Alt+H, T; and to pause, Alt+H, P.

You can help this user out with a small VBA routine using NewInspec-
tor to detect when a new window opens, then check to see whether it’s a
new journal entry and, if so, start its timer with the JournalItem.Start-
Timer method. Add the code in Listing 11.11 to your ThisOutlookSes-
sion module, replacing the objInsp_Activate event handler with the
version in Listing 11.12.

Several interesting things are going on in the Activate event handler
that you should take note of, since you’ll see them in other Outlook code
samples:

Inspector.CurrentItem returns a reference to the item that the
Inspector is displaying.

The item’s Class property tells you what type of Outlook item it is.

If the Size of the item is 0, then you know it’s a new, unsaved item.

11.4.2 Example: Set a reminder on new all-day events

A common complaint about Outlook is that there is no option to set a
default reminder interval for all-day events. Even though you can set a
default reminder interval for regular appointments in Tools | Options | Cal-
endar Options, the reminder interval for all-day events is fixed at 18 hours,
which many people don’t find useful. In this next example, we’ll use
Inspectors.NewInspector and Inspector.Activate to determine
whether an item is an AppointmentItem (using the Class property,
remember?) and specifically, whether it’s a new all-day appointment. If so,
we’ll set the reminder interval to three days.

Let’s build on the example in the previous section, so you can see how to
handle different types of items that the user will be opening in Inspector

Listing 11.12 Start the timer automatically on a new journal entry

Private Sub objInsp_Activate()
 Dim objJournal As Outlook.JournalItem
 If objInsp.CurrentItem.Class = olJournal Then
 Set objJournal = objInsp.CurrentItem
 If objJournal.Size = 0 Then
 objJournal.StartTimer
 End If
 End If
 Set objJournal = Nothing
End Sub

342 11.4 Inspectors and Inspector events

windows. If you haven’t already done so, add the code in Listing 11.11 to
the ThisOutlookSession module, but replace the objInsp_Activate
event handler with the code in Listing 11.13. Notice that it includes the
journal timer routine from Listing 11.12.

To test this code, restart Outlook or run the Application_Startup
procedure. Display your Calendar folder in the week or day view, and dou-
ble-click in the shaded area at the top of any day to create a new all-day
event. When the new event opens, the code in Listing 11.13 will change the
reminder from the default 18 hours to three days.

Did you notice that the code in Listing 11.13 uses a Select Case block
statement to check the Class property of objInsp.CurrentItem, instead
of an If ... Then block? This makes it easy to add processing for other
kinds of Outlook items; just add a new Case statement for the different
Class values from the Outlook.OlObjectType enumeration (which you
can look up in the object browser if you’re curious).

Again, Size = 0 tells us whether it is a new appointment. If it is, the
code checks the value of the AppointmentItem.ReminderSet property
to find out if the user has reminders turned on by default. If there is an
existing reminder, the code does the math to set the value of the Remind-
erMinutesBeforeStart property to three days—or 3 days times 24
hours in a day times 60 minutes in an hour (3 * 24 * 60). You can, of

Listing 11.13 Set an all-day event reminder (and start the journal timer)

Private Sub objInsp_Activate()
 Dim objJournal As Outlook.JournalItem
 Dim objAppt As Outlook.AppointmentItem
 Select Case objInsp.CurrentItem.Class
 Case olAppointment
 Set objAppt = objInsp.CurrentItem
 If objAppt.Size = 0 Then
 If objAppt.AllDayEvent Then
 If objAppt.ReminderSet Then
 objAppt.ReminderMinutesBeforeStart = _
 3 * 24 * 60
 End If
 End If
 End If
 Case olJournal
 Set objJournal = objInsp.CurrentItem
 If objJournal.Size = 0 Then
 objJournal.StartTimer
 End If
 End Select
 Set objJournal = Nothing
 Set objAppt = Nothing
End Sub

11.5 Folders, Folder, and Items events 343

course, change that expression to apply a reminder interval of any number
of minutes.

11.5 Folders, Folder, and Items events
Another major category of events is those that affect the Folders and
Items collections and the Folder object—in other words, Outlook folders,
subfolders, and the items they contain. With these events, Outlook reacts to
the creation of a new folder or item, a change to an existing folder or item,
or the deletion of a folder or item. Table 11.4 summarizes these events.

Two new events added in Outlook 2007—Folder.BeforeFolderMove

and Folder.BeforeItemMove—give Outlook developers something
they’ve wanted for years—the ability to know what item or folder is being
moved or deleted and to cancel that move or deletion. Many applications
need the ability to do some processing on items before they’re deleted or to
prevent certain items from being deleted, but the Folders.FolderRemove
and Items.ItemRemove events provide no information on which folder or
item was removed. Thus, these new events are a welcome addition.

As an example of how to use BeforeFolderMove, let’s say that you have
a top-level folder (that is, at the same level as your Inbox) named Critical

Table 11.4 Folders and Items Events (* = new in Outlook 2007)

Folders Events Description

FolderAdd Occurs when a new subfolder is created; includes the new Folder as an argument

FolderChange Occurs when the properties of a folder are modified or when an item is added to or
removed from a folder; includes the modified Folder as an argument

FolderRemove Occurs after a subfolder has been deleted

Folder Events Description

*BeforeFolderMove Occurs when a subfolder is about to be moved or permanently deleted; includes the
destination Folder (or, in the case of a permanent deletion, Nothing) as an argu-
ment; can be canceled

*BeforeItemMove Occurs when an item is about to be moved or permanently deleted; includes the des-
tination Folder (or, in the case of a permanent deletion, Nothing) and the moved
item as arguments; can be canceled

Items Events Description

ItemAdd Occurs when a new item is saved either by the user or programmatically; includes the
new item as an argument

ItemChange Occurs when an item is modified; includes the modified item as an argument

ItemRemove Occurs after an item has been deleted

344 11.5 Folders, Folder, and Items events

and you need to make sure this folder is never deleted. Listing 11.14 shows
code for the ThisOutlookSession module to prevent the user from delet-
ing or moving that folder.

Listing 11.14 shows how to return a specific folder in the default infor-
mation store by name. We’ll review this and other techniques for getting
folders in Chapter 13.

For an example of the Folders.FolderAdd method, let’s add some func-
tionality to Outlook’s Search Folders feature. Users often create search folders
to locate certain Outlook items faster (such as a folder for today’s unread
items) but don’t always remember to put them in the Favorite Folders list at
the top of the Mail navigation pane so that they are easily accessible. The code
in Listing 11.15, written for the ThisOutlookSession module, watches for
the creation of new search folders in the default information store and asks
the user about adding them to the Favorite Folders list.

The ability to add, remove, and enumerate entries in the different navi-
gation pane modules using the NavigationPane object is another new pro-
gramming capability in Outlook 2007. We’ll look at it in more detail in
Chapter 23.

11.5.1 Limitations of Items events

The FolderAdd, FolderChange, and FolderRemove events are fairly
straightforward, because the user can create, change, or delete only one
folder at a time. When it comes to items, though, that is not the case. The
user can induce a bulk property change on multiple items with a drag-and-
drop operation within a folder, and can delete hundreds of individual items

Listing 11.14 Prevent the user from deleting a folder

Dim WithEvents objCritFolder As Outlook.Folder

Private Sub Application_Startup()
 Dim objRootFolder As Outlook.Folder
 Set objRootFolder = _
 Application.Session.DefaultStore.GetRootFolder
 Set objCritFolder = objRootFolder.Folders("Critical")
 Set objInbox = Nothing
 Set objRootFolder = Nothing
End Sub

Private Sub objCritFolder_BeforeFolderMove _
 (ByVal MoveTo As MAPIFolder, Cancel As Boolean)
 Dim strMsg As String
 Cancel = True
 strMsg = "You can't delete the Critical folder."
 MsgBox strMsg, vbCritical, "Folder Move Not Allowed"
End Sub

11.5 Folders, Folder, and Items events 345

at a time. Furthermore, the user can drag multiple items between folders,
and a send/receive session can deliver many items to an Inbox at one time.

It’s important to know, therefore, that when it comes to the ItemAdd,
ItemChange, and ItemRemove events, Outlook has limits: It may not fire
those events if more than sixteen items are being added, changed, or
removed at one time.

Listing 11.15 Add new search folders to the Favorite Folders list

Dim WithEvents colSearchFolders As Outlook.Folders

Private Sub Application_Startup()
 Dim objStore As Outlook.Store
 Set objStore = Application.Session.DefaultStore
 Set colSearchFolders = objStore.GetSearchFolders
 Set objStore = Nothing
End Sub

Private Sub colSearchFolders_FolderAdd _
 (ByVal folder As MAPIFolder)
 Dim strMsg As String
 Dim intRes As Integer
 strMsg = "Do you want to add your new " & Chr(34) & _
 folder.Name & Chr(34) & " search folder " & _
 "to the Favorite Folders list?"
 intRes = MsgBox(strMsg, vbYesNo + vbQuestion, _
 "New Search Folder")
 If intRes = vbYes Then
 Call AddToMailFavs(folder)
 End If
End Sub

Public Sub AddToMailFavs(ByVal mailFolder As Outlook.Folder)
 Dim objExpl As Outlook.Explorer
 Dim objNavPane As Outlook.NavigationPane
 Dim objNavMod As Outlook.MailModule
 Dim objNavGroup As Outlook.NavigationGroup
 On Error Resume Next
 Set objExpl = Application.ActiveExplorer
 Se objNavPane = objExpl.NavigationPane
 Set objNavMod = _
 objNavPane.Modules.GetNavigationModule(olModuleMail)
 Set objNavGroup = _
 objNavMod.NavigationGroups.GetDefaultNavigationGroup _
 (olFavoriteFoldersGroup)
 objNavGroup.NavigationFolders.Add mailFolder
 Set objExpl = Nothing
 Set objNavPane = Nothing
 Set objNavMod = Nothing
 Set objNavGroup = Nothing
End Sub

346 11.5 Folders, Folder, and Items events

What does that mean for your Outlook code? If you have scenarios that
need to be able to do bulk processing, you may need to use more than
ItemAdd and ItemChange to know which items to process. Later in this
chapter, we’ll see how to schedule a periodic pass through a folder to handle
items that have not yet been processed.

11.5.2 Example: Adding birthday and
anniversary reminders

Your first VBA project in this book was a user form to update existing
birthday and anniversary entries in the Calendar folder to add a reminder.
Wouldn’t it be nice if you could automatically have a reminder added when-
ever Outlook creates a new birthday or anniversary event? That’s a good
task for the Items.ItemAdd event. Add the code in Listing 11.16 to the
ThisOutlookSession module, and then either restart Outlook or run the

Listing 11.16 Add reminders automatically to birthday and anniversary events

Dim WithEvents colCalItems As Outlook.Items

Private Sub Application_Startup()
 Dim objCalFolder As Outlook.folder
 Set objCalFolder = _
 Application.Session.GetDefaultFolder_
 (olFolderCalendar)
 Set colCalItems = objCalFolder.Items
 Set objCalFolder = Nothing
End Sub

Private Sub colCalItems_ItemAdd(ByVal Item As Object)
 Dim objAppt As Outlook.AppointmentItem
 If Item.Class = olAppointment Then
 Set objAppt = Item
 If InStr(objAppt.Subject, "'s Birthday") > 0 Then
 Call B_and_A_Update(objAppt)
 ElseIf _
 InStr(objAppt.Subject, "'s Anniversary") > 0 Then
 Call B_and_A_Update(objAppt)
 End If
 End If
 Set objAppt = Nothing
End Sub

Public Sub B_and_A_Update(myAppt As Outlook.AppointmentItem)
 With myAppt
 .ReminderSet = True
 .ReminderMinutesBeforeStart = 7 * 24 * 60
 .Save
 End With
End Sub

11.6 Processing incoming mail 347

Application_Startup procedure. Edit a contact to add a new birthday or
anniversary, then look at that new event in your Calendar folder to confirm
that it is showing a one-week reminder.

You can, of course, change the reminder interval by changing the 7 in
the expression 7 * 24 * 60 to, for example, 14 to get reminders two weeks
in advance.

If you’re one of those people who doesn’t like Outlook’s built-in behav-
ior of creating birthday and anniversary events, you can use a similar tech-
nique to get rid of them. The B_and_A_Update subroutine is a separate
procedure for two reasons—one, so that we don’t have a lot duplicate code
in the ItemAdd event handler to process both birthdays and anniversaries,
but also so that it’s easy to change how those events are processed. Substi-
tute the version below for the one in Listing 11.16, and VBA will automat-
ically delete the birthday and anniversary events that Outlook creates when
you add a birthday or anniversary date to a contact:

Public Sub B_and_A_Update _
 (myAppt As Outlook.AppointmentItem)
 myAppt.Delete
End Sub

Note: Listing 11.16 assumes that you’re using an English-language version
of Outlook. If you’re using Outlook in another language, you’ll need to
adjust the Instr() expression to look for the equivalent text that Outlook
uses for the subject of birthdays and anniversaries in that language.

11.6 Processing incoming mail
Just as you might use the ItemAdd event for the Calendar folder’s Items
collection to watch for new birthdays or anniversaries, you can also monitor
the Inbox (or multiple folders) for new incoming mail messages and thus
build your own alternative to the Outlook rules wizard. ItemAdd is just one
approach, though. We’ll look at it and others so that you can have a com-
plete picture of what Outlook VBA can do to help you handle incoming
mail.

One thing that all these methods have in common is that they act only
on items that are passed by Outlook’s junk mail filter. Junk mail processing
occurs before any other processing, either Outlook rules or VBA code.

It is not possible to know whether a rule or a VBA event handler will act
on a given message first. Therefore, you generally should not use both rules
and VBA event handlers to try to process the same message. If you want to
combine rules and VBA code, use the “run a script” action in a rule to run
the VBA code.

348 11.6 Processing incoming mail

Table 11.5 lists the available methods for processing new mail, roughly
ranked from easiest to most difficult to implement.

The next three sections look at the “run a script” rule action, Applica-
tion.NewMailEx, and Items.ItemAdd methods in detail. We already cov-
ered NewMail earlier in the chapter.

While there are a number of different ways to build a procedure based
on a timer (including using the timer available from Windows itself), the
technique most appropriate for Outlook VBA is to use a task that has a
reminder set for it. We’ll cover reminder-related events in the last section of
this chapter and show how to apply them to two different new mail pro-
cessing scenarios.

Table 11.5 Techniques for Processing Incoming Mail

Technique Advantage Disadvantages

Invoke a VBA procedure in a “run a
script” rule action

Easy to write; the procedure passes
a reference to the item that trig-
gered the rule.

Rules may not fire if too many items
are received at one time.

Use the Application.NewMailEx
event

Easy if you have only one mail
account. Provides an array of
EntryID values you can use to
return all items that arrived.

Code becomes complex if you need
to handle multiple IMAP accounts,
since NewMailEx doesn’t tell you
where the incoming message is
stored. Also, NewMailEx may not
fire if too many items are received at
one time.

Use the Items.ItemAdd event Easy to write; the event handler
definition passes a reference to the
new item.

If you need to monitor multiple
Inbox folders (as in multiple IMAP
accounts), you must set up an event
handler for each one. Also, ItemAdd
may not fire if too many items are
added at the same time.

Use the Application.NewMail
event

Most useful if you are interested
primarily in knowing when new
mail arrives, not in processing the
actual items.

Tells you only that mail has arrived,
not which items or where those mes-
sages might be found.

Schedule processing at regular inter-
vals using a reminder

Can be very useful to clean up
items skipped when a rule, Item-
Add, or NewMailEx procedure
didn’t fire because too many items
arrived at once. Also can be used as
the sole way to process items in a
folder.

Adds complexity to the application.

11.6 Processing incoming mail 349

11.6.1 Using a “run a script” rule

Outlook’s Rules Wizard can run VBA code as part of a rule, specifically a
rule that has a “run a script” action. That action is misnamed because it
runs not an external script but a public VBA procedure that has a Mail-
Item or MeetingItem as its sole parameter.

The one tricky aspect of writing such a procedure is that you need to
make sure that the message or meeting request that your code acts on is
derived from the intrinsic Application object. If you don’t do that, your
code may trigger Outlook security prompts. Listing 11.17 shows the basic
syntax for both kinds of “run a script” rule procedures. Such procedures
should be created either in the built-in ThisOutlookSession module or in
a code module that you add with the Insert | Module command.

The Debug.Print statements in Listing 11.17 are there to demonstrate
that the code won’t trigger security prompts. Your own rules would, of
course, replace those statements with code to process the message or meet-
ing item. Let’s look next at a practical example.

Listing 11.17 Basic syntax for “run a script” rule action procedures

Sub ProcessMessage(myMail As Outlook.MailItem)
 Dim strID As String
 Dim objNS As Outlook.NameSpace
 Dim objMsg As Outlook.MailItem

 strID = myMail.EntryID
 Set objNS = Application.GetNamespace("MAPI")
 Set objMsg = objNS.GetItemFromID(strID)
 Debug.Print objMsg.SenderName

 Set objMsg = Nothing
 Set objNS = Nothing
End Sub

Sub ProcessMeeting(myMtg As Outlook.MeetingItem)
 Dim strID As String
 Dim objNS As Outlook.NameSpace
 Dim objMtg As Outlook.MeetingItem

 strID = myMtg.EntryID
 Set objNS = Application.GetNamespace("MAPI")
 Set objMtg = objNS.GetItemFromID(strID)
 Debug.Print objMtg.SenderName

 Set objMtg = Nothing
 Set objNS = Nothing

End Sub

350 11.6 Processing incoming mail

A feature that Outlook users have long requested is the ability to mark
an incoming message with the same categories that the sender’s record has
in the user’s Contacts folder. In other words, if you have a contact marked
with the category “Key Contact,” you’d want any messages from that person
also to be marked with the category “Key Contact.”

Listing 11.18 provides a “run a script” rule to accomplish that, using the
new AddressEntry.GetContact method in Outlook 2007 to look up the
matching contact. You should recognize it and the IsInCategories proce-
dure; you saw them earlier in Listing 11.4. Put the MarkWithContactCat-
egories and IsInCategories procedures in a regular code module
created with the Insert | Module command.

Listing 11.18 “Run a script” rule procedure to mark a message with the sender’s categories

Sub MarkWithContactCategories(myMail As Outlook.MailItem)
 Dim strID As String
 Dim objNS As Outlook.NameSpace
 Dim objMsg As Outlook.MailItem
 Dim objRecip As Outlook.Recipient
 Dim objAE As Outlook.AddressEntry
 Dim objContact As Outlook.ContactItem
 Dim strCats As String
 Dim strMsgCats As String
 Dim arrCats() As String
 Dim i As Integer
 On Error Resume Next
 strID = myMail.EntryID
 Set objNS = Application.Session
 Set objMsg = objNS.GetItemFromID(strID)
 Set objRecip = _
 objNS.CreateRecipient(objMsg.SenderEmailAddress)
 If objRecip.Resolve Then
 Set objAE = objRecip.AddressEntry
 Set objContact = objAE.GetContact
 If Not objContact Is Nothing Then
 strCats = objContact.Categories
 strMsgCats = objMsg.Categories
 If strCats <> "" Then
 arrCats = Split(strCats, ",")
 For i = 0 To UBound(arrCats)
 If Not IsInCategories _
 (arrCats(i), strMsgCats) Then
 objMsg.Categories = _
 objMsg.Categories & _
 "," & arrCats(i)
 End If
 Next
 objMsg.Save
 End If
 End If
 End If

11.6 Processing incoming mail 351

Once you’ve added the MarkWithContactCategories procedure, fol-
low these steps to create a rule to run it:

1. Choose Tools | Rules and Alerts.

2. In the Rules and Alerts dialog, click New Rule.

3. In the first screen of the Rules Wizard, under “Start from a blank
rule,” select “Check messages as they arrive,” and then click Next.

4. Because categories are available only for people you’ve saved as
Outlook contacts, select the “Sender is in specified Address Book”
condition, and then click on the underlined text and select your
Contacts folder.

5. Select any other conditions you want to apply, and set their
parameters. Selecting conditions means that you want the rule to
apply only to messages that meet all the conditions. (Alterna-
tively, you can select no conditions if you want the rule to apply
to all messages.) Click Next to continue.

6. Select the “run a script” action, which appears near the bottom of
the list of actions.

7. Click the underlined text, and select the Project1.MarkWith-
ContactCategories procedure.

8. Select any other actions you want to apply. Include the “stop pro-
cessing more rules” action if this is the only rule you want to
apply to items matching your conditions. Click Next to continue.

 Set objMsg = Nothing
 Set objNS = Nothing
 Set objAE = Nothing
 Set objRecip = Nothing
 Set objContact = Nothing
End Sub

Function IsInCategories(strCatName, strCatList)
 Dim arrCats() As String
 Dim i As Integer
 If strCatList <> "" Then
 arrCats = Split(strCatList, ",")
 For i = 0 To UBound(arrCats)
 If UCase(arrCats(i)) = UCase(strCatName) Then
 IsInCategories = True
 Exit For
 End If
 Next
 End If
End Function

Listing 11.18 “Run a script” rule procedure to mark a message with the sender’s categories (continued)

352 11.6 Processing incoming mail

9. Select any exceptions you want to apply. Exceptions ensure that
the rule does not run on items matching the exception conditions
that you choose. Click Next to continue.

10. Give the rule a descriptive name, such as “Mark with Contact
Category.” You can also select options to apply the rule to all mail
accounts and to run it immediately. The rule settings should look
like Figure 11.4.

11. Click Finish and the rule will automatically become active and
ready to process new messages.

11.6.2 Using Application.NewMailEx

Earlier in this chapter, we discussed that the Application.NewMailEx
event is similar to the NewMail event in that it fires each time new mail is
received, but different in that it passes information that can be used to
determine which new items arrived. Specifically, NewMailEx passes a
comma-delimited list of EntryID values, each corresponding to a different
incoming item.

The chief challenge of using NewMailEx is that the EntryID may not be
enough to retrieve the item. If you have IMAP accounts, for example, to
retrieve a message, you need to know both the EntryID and the StoreID
value for the item’s parent folder—in other words, the ID for the information
store that holds the item. Listing 11.19 shows how to accomplish this by
maintaining an array of information store IDs for use with GetItemFromID.
Note that it uses the same technique as the previous section to process the

Figure 11.4
A “run a script”

rule to mark new
messages with

categories from the
sender’s contact

record.

11.6 Processing incoming mail 353

Listing 11.19 Using NewMailEx to process incoming items from multiple accounts

Private m_arrStoreIDs() As String

Private Sub Application_Startup()
 m_arrStoreIDs = GetStoreIDArray()
End Sub

Private Sub Application_NewMailEx _
 (ByVal EntryIDCollection As String)
 Dim objItem As Object
 Dim objMsg As Outlook.MailItem
 Dim arr() As String
 Dim i As Integer
 On Error Resume Next
 Debug.Print "new mail at " & Time
 arr = Split(EntryIDCollection, ",")
 For i = 0 To UBound(arr)
 Set objItem = GetItemNoStoreID(EntryIDCollection)
 If Not objItem Is Nothing Then
 If objItem.Class = olMail Then
 Set objMsg = objItem
 If objMsg.DownloadState = olFullItem Then
 ' MarkWithSenderCategories from Listing 11.18
 Call MarkWithSenderCategories(objMsg)
 End If
 End If
 End If
 Next
 Set objItem = Nothing
 Set objMsg = Nothing
End Sub

Private Function GetItemNoStoreID(itemID As String) As Object
 Dim objNS As Outlook.NameSpace
 Dim i As Integer
 Dim objItem As Object
 On Error Resume Next
 Set objNS = Application.Session
 Set objItem = objNS.GetItemFromID(itemID)
 If objItem Is Nothing Then
 For i = 0 To UBound(m_arrStoreIDs)
 Set objItem = _
 objNS.GetItemFromID(itemID, m_arrStoreIDs(i))
 If Not objItem Is Nothing Then
 Exit For
 End If
 Next
 End If
 Set GetItemNoStoreID = objItem
 Set objNS = Nothing
 Set objItem = Nothing
End Function

354 11.6 Processing incoming mail

message and add the sender’s categories, calling the separate subroutine
from Listing 11.18, MarkWithSenderCategories, which you should
already have in a regular code module (not in ThisOutlookSession) if
you walked through the previous example.

Processing messages this way with NewMailEx involves several specific
activities:

Returning the item based on its EntryID, here handled by the Get-
ItemNoStoreID() function

Getting an array of information store IDs for the GetItemNoStore-
ID() function to use; in this sample, the Application_Startup
event hander calls the GetStoreIDArray() to set a module-level ar-
ray variable that GetItemNoStoreID() can use at any time, without
having to iterate all the stores every time new mail arrives.

Performing the actual item processing; the Application_New-
MailEx procedure in Listing 11.19 hands off the processing to Mark-
WithSenderCategories, after it confirms that the new item is really

Private Function GetStoreIDArray()
 Dim strStoreIDs As String
 Dim strDefaultStoreID As String
 Dim objNS As Outlook.NameSpace
 Dim objStore As Outlook.Store
 Dim objRoot As Outlook.Folder
 Dim objInbox As Outlook.Folder
 Dim arr() As String
 On Error Resume Next
 Set objNS = Application.Session
 strDefaultStoreID = objNS.DefaultStore.StoreID
 For Each objStore In objNS.Stores
 Set objRoot = objStore.GetRootFolder
 Set objInbox = objRoot.Folders("Inbox")
 If Not objInbox Is Nothing Then
 If objStore.StoreID <> strDefaultStoreID Then
 strStoreIDs = _
 strStoreIDs & "," & objStore.StoreID
 End If
 End If
 Next
 strStoreIDs = Mid(strStoreIDs, 2)
 arr = Split(strStoreIDs, ",")
 GetStoreIDArray = arr()
 Set objNS = Nothing
 Set objStore = Nothing
 Set objRoot = Nothing
End Function

Listing 11.19 Using NewMailEx to process incoming items from multiple accounts (continued)

11.6 Processing incoming mail 355

a fully downloaded mail message. (Most properties are not available if
the item has not been completely downloaded.)

Tip: Since the store IDs are gathered only when Outlook starts, if you add a
new account during the current Outlook session, you’ll want to restart Out-
look or run Application_Startup to refresh the ID array.

If you wanted to perform other processing on the message, you could
write and call other procedures besides MarkWithSenderCategories from
within the NewMailEx event handler.

11.6.3 Using Items.ItemAdd

Another message processing technique is the Folder.Items.ItemAdd
event. You encountered it earlier in Listing 11.16, which was the example
about adding reminders to new birthday and anniversary events.
Items.ItemAdd is different from NewMailEx in that it fires on only one
folder, not all incoming mail accounts. Like NewMailEx, it provides infor-
mation about the new item, but only for one item at a time.

As you’ll recall, to use the ItemAdd event, you must declare an Items
object WithEvents, instantiate that object, and write an event handler. The
code in Listing 11.20, which was written for the ThisOutlookSession

Listing 11.20 Set categories on new Inbox items with Items.ItemAdd

Dim WithEvents m_colInbox As Outlook.Items

Private Sub Application_Startup()
 Dim objNS As Outlook.NameSpace
 Dim objInbox As Outlook.Folder
 Set objNS = Application.Session
 Set objInbox = objNS.GetDefaultFolder(olFolderInbox)
 Set m_colInbox = objInbox.Items
 Set objNS = Nothing
 Set objInbox = Nothing
End Sub

Private Sub m_colInbox_ItemAdd(ByVal Item As Object)
 Dim objMsg As Outlook.MailItem
 On Error Resume Next
 If Item.Class = olMail Then
 Set objMsg = Item
 ' Uses the MarkWithSenderCategories
 ' subroutine from Listing 11.18
 Call MarkWithSenderCategories(objMsg)
 End If
 Set objMsg = Nothing
End Sub

356 11.7 Using the Application.Reminder and Reminders events

module, does all that. Note that it calls the same MarkWithSenderCatego-
ries procedure from Listing 11.18; make sure you have added that subrou-
tine to a regular code module.

If you wanted to handle new items not just in your default Inbox, but in
other folders, you’d need to follow the same process for each folder—
declare another Items object WithEvents, instantiate that object, and pro-
vide an event handler for it. In Chapter 13, we will see several techniques
besides Namespace.GetDefaultFolder that will allow you to return a
Folder object for any folder you might want to monitor for new items.

As with the earlier NewMailEx sample, you could call other procedures
besides MarkWithSenderCategories to perform other processing on the
newly received items.

As a final example of processing incoming mail, we’ll build an applica-
tion that depends on an Outlook task that has a reminder set. But first, we
need to look at reminders and reminder events in general.

11.7 Using the Application.Reminder and
Reminders events

Any Outlook message, appointment, contact, or task can trigger a
reminder. One significant change in Outlook 2007 is that reminders will
fire from items in any folder in the user’s default information store, not just
from the Calendar, Contacts, Inbox, and Tasks folders.

As discussed earlier in the chapter, the Application object itself has a
Reminder event, which fires whenever any Outlook item triggers a
reminder. The Application object also has a Reminders collection, which
adds more events to provide greater flexibility in handling reminders. Table
11.6 summarizes these events.

You probably noticed that three different events—Application.Re-

minder, Reminder.BeforeReminderShow, and Reminder.Reminder-

Fire—all fire when an item triggers a reminder. They occur in this order:

Reminder

ReminderFire

BeforeReminderShow

Generally, you will want to use the Reminders events, rather than the
Application.Reminder event, because they provide more flexibility. To
work with Reminders events, you must declare a Reminders object With-
Events and instantiate it, just as you did with the Explorers, Folders,
and Items collections earlier in the chapter.

Let’s look at some examples of Reminders events in a class module. Use
the Insert | Class Module command to create a new class module and

11.7 Using the Application.Reminder and Reminders events 357

change its Name property to Ch11ReminderEvents. Add this code to the
ThisOutlookSession module to instantiate the class:

Dim m_ReminderEvents As Ch11ReminderEvents

Private Sub Application_MAPILogonComplete()
 Set m_ReminderEvents = New Ch11ReminderEvents
End Sub

Then add the code in Listing 11.21 to the Ch11ReminderEvents class.
To test the code, either restart Outlook or run the Application_MAPI-
LogonComplete procedure.

The code in Listing 11.21 initializes the class by instantiating a Remind-
ers object and a module-level integer variable to keep track of whether the
user is busy. When the class initializes, Outlook asks the user whether this is
a busy day. If it is, the BeforeReminderShow event handler sets Cancel =
True so that the reminder window does not show.

Let’s suppose as an alternative that you want the Reminders window to
display, but only for important reminders, which we can define as remind-
ers for items that you have marked as highly important. Since the Before-
ReminderShow event provides no information about which items will
appear in the Reminders window, we need to use a different event—

Table 11.6 Events Related to Reminders

Application Event Description

Reminder Occurs when a reminder is triggered by an appointment or task or by a flagged mes-
sage or contact; includes the item that triggered the reminder as an argument

Reminders Event Description

BeforeReminderShow Occurs before Outlook displays the Reminders window; cancelable

ReminderAdd Occurs after a new reminder has been created; includes the item that has the
reminder as an argument

ReminderChange Occurs after a reminder has been changed; includes the item that fired the reminder
as an argument

ReminderFire Occurs just before a reminder fires; includes the item that triggered the reminder as
an argument

ReminderRemove Occurs when a user dismisses a reminder, deletes an item that contains a reminder, or
turns off the reminder for an item; also occurs when a reminder is dismissed pro-
grammatically with the Reminder.Dismiss method or removed from the
Reminders collection

Snooze Occurs when the user clicks the Snooze button on the Reminders dialog or when
a reminder is snoozed programmatically with the Reminder.Snooze method;
includes the item that triggered the reminder as an argument

358 11.7 Using the Application.Reminder and Reminders events

ReminderFire. Listing 11.22 provides a ReminderFire event handler that
you can add to the Ch11ReminderEvents class module to show the user
only reminders for important items. (Be sure to comment out the Before-
ReminderShow event handler in Listing 11.21 if you added it to the mod-
ule, since it blocks the display of the Reminders window if the user is busy.)

This statement

ReminderObject.Snooze 60

tells Outlook to snooze the reminder and not try to show it again for
another hour. You can change the number to any other integer to apply a
different number of minutes for the snooze interval.

Listing 11.21 Class module to handle Reminder events

Dim WithEvents m_colReminders As Outlook.Reminders
Dim m_intBusyStatus As Integer

Private Sub Class_Initialize()
 Dim strMsg As String
 Set m_colReminders = Application.Reminders
 strMsg = "Are you really busy today?"
 m_intBusyStatus = MsgBox(strMsg, _
 vbYesNo + vbDefaultButton2 + vbQuestion, _
 "Busy Day?")
End Sub

Private Sub m_colReminders_BeforeReminderShow _
 (Cancel As Boolean)
 Dim strMsg As String
 Const ME_BUSY = vbYes
 If m_intBusyStatus = ME_BUSY Then
 Cancel = True
 End If
End Sub

Listing 11.22 Use the ReminderFire event to show only important reminders

Private Sub m_colReminders_ReminderFire _
 (ByVal ReminderObject As Reminder)
 Const ME_BUSY = vbYes
 On Error Resume Next
 Dim objItem As Object
 If m_intBusyStatus = ME_BUSY Then
 Set objItem = ReminderObject.Item
 If objItem.Importance <> olImportanceHigh Then
 ReminderObject.Snooze 60
 End If
 End If
 Set objItem = Nothing
End Sub

11.7 Using the Application.Reminder and Reminders events 359

Tip: If you call Snooze during the ReminderFire event handler, Outlook
will not display the reminder in the Reminders window. This is the big
advantage of using Reminders.ReminderFire over Application.

Reminder.

Let’s look at another example that involves reminder snoozing before we
get back to the issue of processing incoming messages.

11.7.1 Example: Don’t snooze important reminders

Let’s say you want to see all your reminders, but you don’t want it to be too
easy to snooze the ones for important items. In that scenario, you would
replace the BeforeReminderFire and ReminderFire event handlers with
a Snooze event handler. If you already have a Ch11ReminderEvents class
module, rename it and create a new Ch11ReminderEvents class module,
then add the code in Listing 11.23 to it.

As in the earlier examples, you’ll need code in the ThisOutlookSes-
sion module to instantiate the class:

Dim m_ReminderEvents As Ch11ReminderEvents

Private Sub Application_MAPILogonComplete()
 Set m_ReminderEvents = New Ch11ReminderEvents
End Sub

To test the code, either restart Outlook or run the Application_MAPI-
LogonComplete procedure. Then, create some items with reminders and
varying degrees of importance and see what happens when you try to
snooze those reminders.

11.7.2 Example: Processing messages and running other
code on a schedule

The final two examples in this chapter return to the issue of how to get
VBA code to run at specific intervals or on a schedule. We’ll look specifi-
cally at scenarios involving the processing of new messages, but the tech-
niques are applicable to many other situations.

First, let’s review some key facts you already know about reminders:

In Outlook 2007, reminders fire for items in any folder in the default
information store.

If you snooze a reminder in the ReminderFire event, the user won’t
see it in the reminder window.

When you snooze a reminder, you have the option of setting the
number of minutes before the reminder fires again. (The default, if
you don’t set a snooze interval, is five minutes.)

360 11.7 Using the Application.Reminder and Reminders events

The goal for these examples is to invoke the same MarkWithSender-
Categories subroutine from Listing 11.18 that you saw the ItemAdd and
NewMailEx events call, but do it at scheduled intervals, rather than directly
in response to new mail arriving. First, we’ll consider a scheduling routine
running on its own, with no other new mail processing under way. Then,
we’ll combine a NewMailEx event handler with a scheduled cleanup routine
to process the messages that NewMailEx might have skipped because too
much mail arrived at once.

First, if you already have a class module named Ch11ReminderEvents,
rename it. Then create a new class module, name it Ch11ReminderEvents,
and add this code to the ThisOutlookSession module to instantiate it.

Listing 11.23 Make it hard to snooze important reminders

Dim WithEvents m_colReminders As Outlook.Reminders

Private Sub Class_Initialize()
 Set m_colReminders = Application.Reminders
End Sub

Private Sub m_colReminders_Snooze _
 (ByVal ReminderObject As Reminder)
 Dim objItem As Object
 Dim strMsg As String
 Dim dteNextReminder As Date
 Dim intRes As Integer
 On Error Resume Next
 Set objItem = ReminderObject.Item
 If objItem.Importance = olImportanceHigh Then
 dteNextReminder = ReminderObject.NextReminderDate
 strMsg = Replace(TypeName(objItem), "Item", "")
 strMsg = "You just snoozed the reminder for " & _
 vbCrLf & vbCrLf & _
 vbTab & strMsg & ": " & objItem.Subject & _
 vbCrLf & vbCrLf & _
 "It was originally due " & _
 FormatDateTime(dteNextReminder) & "." & _
 vbCrLf & vbCrLf & _
 "Did you really want to do that? " & _
 "If not, click No to edit the item " & _
 "and change the reminder."
 intRes = MsgBox(strMsg, _
 vbYesNo + vbDefaultButton2 + vbExclamation, _
 "You Snoozed an Important Reminder !!!")
 If intRes = vbNo Then
 objItem.Display
 End If
 End If
 Set objItem = Nothing
End Sub

11.7 Using the Application.Reminder and Reminders events 361

Dim m_ReminderEvents As Ch11ReminderEvents

Private Sub Application_MAPILogonComplete()
 Set m_ReminderEvents = New Ch11ReminderEvents
End Sub

Next, place the code in Listing 11.24 in the new Ch11ReminderEvents
class module.

Listing 11.24 Processing new messages at regular intervals

Private WithEvents m_colReminders As Outlook.Reminders
Private m_dteLastInboxProcessTime As Date
Private m_objNS As Outlook.NameSpace
Private m_objSystemTasksFolder As Outlook.Folder

Private Sub Class_Initialize()
 Set m_colReminders = Application.Reminders
 m_dteLastInboxProcessTime = Now
 Set m_objNS = Application.Session
 Call InitializeInboxTask
End Sub

Private Sub m_colReminders_ReminderFire _
 (ByVal ReminderObject As Reminder)
 Dim objTask As Outlook.TaskItem
 On Error Resume Next
 If ReminderObject.Item.Class = olTask Then
 Set objTask = ReminderObject.Item
 End If
 If Not objTask Is Nothing Then
 If objTask.Parent = m_objSystemTasksFolder Then
 Select Case objTask.Subject
 Case "Process Inbox"
 ReminderObject.Snooze 2
 Call ProcessInbox
 End Select
 End If
 End If
 Set objTask = Nothing
End Sub

Private Sub InitializeInboxTask()
 Dim objTask As Outlook.TaskItem
 Dim strFind As String
 On Error Resume Next
 Set m_objSystemTasksFolder = GetSystemTasksFolder()
 If Not m_objSystemTasksFolder Is Nothing Then
 strFind = "[Subject] = " & Quote("Process Inbox")
 Set objTask = _
 m_objSystemTasksFolder.Items.Find(strFind)
 If objTask Is Nothing Then
 Set objTask = m_objSystemTasksFolder.Items.Add
 objTask.Subject = "Process Inbox"
 End If

362 11.7 Using the Application.Reminder and Reminders events

 If Not objTask Is Nothing Then
 With objTask
 .ReminderSet = True
 .ReminderTime = DateAdd("n", 1, Now)
 .ReminderPlaySound = False
 .Save
 End With
 End If
 End If
 Set objTask = Nothing
End Sub

Private Function GetSystemTasksFolder() As Outlook.Folder
 Dim objFolderTasks As Outlook.Folder
 Dim objFolderSysTasks As Outlook.Folder
 On Error Resume Next
 Set objFolderTasks = _
 m_objNS.GetDefaultFolder(olFolderTasks)
 Set objFolderSysTasks = _
 objFolderTasks.Folders("Outlook System Tasks")
 If objFolderSysTasks Is Nothing Then
 Set objFolderSysTasks = _
 objFolderTasks.Folders.Add("Outlook System Tasks")
 End If
 Set GetSystemTasksFolder = objFolderSysTasks
 Set objFolderTasks = Nothing
 Set objFolderSysTasks = Nothing
End Function

Private Sub ProcessInbox()
 Dim objInbox As Outlook.Folder
 Dim objitem As Object
 Dim objMail As Outlook.MailItem
 Dim strFind As String
 Dim colItems As Outlook.Items
 On Error Resume Next
 strFind = Format(m_dteLastInboxProcessTime, _
 "dd mmm yyyy hh:mm")
 strFind = "[CreationTime] >= " & Quote(strFind)
 Set objInbox = m_objNS.GetDefaultFolder(olFolderInbox)
 Set colItems = objInbox.Items.Restrict(strFind)
 For Each objitem In colItems
 If objitem.Class = olMail Then
 Set objMail = objitem
 ' MarkWithSenderCategories from Listing 11.18
 Call MarkWithSenderCategories(objMail)
 End If
 Next
 m_dteLastInboxProcessTime = Now
 Set objInbox = Nothing
End Sub

Private Function Quote(myInput) As String
 Quote = Chr(34) & CStr(myInput) & Chr(34)
End Function

Listing 11.24 Processing new messages at regular intervals (continued)

11.7 Using the Application.Reminder and Reminders events 363

This is the most complex example yet in the book, so let’s take some time
to understand it. Roughly half the code helps set up the application, while
the other half does the actual message processing. Figure 11.5 diagrams the
flow of the setup operations that instantiate the class and different objects
in these five steps:

1. The Application_MAPILogonComplete procedure creates a
new instance of the Ch11ReminderEvents class.

2. The Class_Initialize procedure instantiates three module-
level variables: a Reminders object to fire events, a date variable
to track the last time the Inbox was processed, and an Out-
look.Namespace object that several events in other procedures
will use.

3. The Class_Initialize procedure then calls another procedure,
InitializeInboxTask, that does the bulk of the setup work.

4. InitializeInboxTask calls a procedure, GetSystemTasks-
Folder (not shown in the diagram), that returns a subfolder of

Figure 11.5
Class initialization

code creates a
special folder and

task, if needed, and
instantiates

module-level
variables.

364 11.7 Using the Application.Reminder and Reminders events

the default Tasks folder. That subfolder is named “Outlook Sys-
tem Tasks,” and the code creates it if it does not already exist.

5. InitializeInboxTask also checks the Outlook System Tasks
folder for a task named “Process Inbox” and creates that task if it
does not already exist, setting a reminder for the task to fire one
minute from the moment the setup code runs.

What drives the actual Inbox processing is the reminder for that Process
Inbox task:

1. When the time for the task’s reminder arrives, the ReminderFire
event fires.

2. The m_colReminders_ReminderFire event handler checks to
see if the item that fired the reminder is a task named Process
Inbox from the Outlook System Tasks folder and, if it is, calls the
ProcessInbox procedure. It also snoozes the task’s reminder for
two minutes.

3. The ProcessInbox procedure searches the Inbox for items cre-
ated since the last processing time (stored as m_dteLastInbox-
ProcessTime) and sends any recent messages that it finds to the
MarkWithSenderCategories procedure for processing.

4. You already know the MarkWithSenderCategories from Listing
11.18 and saw it used with a “run a script” rule and also in the New-
MailEx example in Listing 11.19. Yes, ProcessInbox and
Application_NewMailEx can both call the same public procedure.

5. After all the items have been processed, ProcessInbox updates
the m_dteLastInboxProcessTime date, for use during the next
processing session.

Note: The initialization and the Inbox processing routines in Listing 11.24
and Listing 11.25 use various techniques to return folders and search for
items. We’ll study these in detail in subsequent chapters.

What Listing 11.24 creates is the framework for a potentially much
larger scheme of “system” tasks that don’t trigger visible reminders but
instead fire off background processing tasks. Take a closer look at this sec-
tion of the m_colReminders_ReminderFire event handler:

If objTask.Parent = m_objSystemTasksFolder Then
 Select Case objTask.Subject
 Case "Process Inbox"
 ReminderObject.Snooze 2
 Call ProcessInbox
 End Select
End If

11.7 Using the Application.Reminder and Reminders events 365

This code essentially says, “If the task that fired the reminder is from the
Outlook System Tasks folder, check its subject, and run the procedure asso-
ciated with that task. And, while you’re at it, snooze the reminder so the
whole process can start again in a couple of minutes.” The use of a Select
Case block makes it very easy to plug in other procedures for other tasks
that you might create in the Outlook System Tasks folder. All you would
need to do is add another Case block, something like this:

If objTask.Parent = m_objSystemTasksFolder Then
 Select Case objTask.Subject
 Case "Process Inbox"
 ReminderObject.Snooze 2
 Call ProcessInbox
 Case "Another System Task"
 ReminderObject.Snooze 60
 Call AnotherSystemTaskProcedure
 End Select
End If

where AnotherSystemTaskProcedure is the subroutine associated with
the task named “Another System Task,” perhaps a task that needs to run
only every hour (= 60 minutes).

As mentioned before, Listing 11.24 processes all the items in the Inbox,
starting a new processing routine every couple of minutes. You can also
combine that kind of interval-based processing with NewMailEx to get a
thorough and efficient mail processing system. The idea is to let NewMailEx
do the bulk of the work, then sweep up any unprocessed messages with the
reminder-based code. On an adequately powerful machine, NewMailEx
should be able to handle all the messages coming in, even if the volume is as
high as a message every second. If it gets overwhelmed, though, you won’t
get any warning or runtime errors. NewMailEx simply will ignore a few
messages as it catches up. You can ensure those messages eventually do get
processed by running both NewMailEx and a reminder-based processing
arrangement like the one you saw in Listing 11.24. The key to making that
system work efficiently is for NewMailEx to mark each message it processes,
so that the ProcessInbox routine can come along later and process only
those skipped by NewMailEx.

This means that we need to make two major changes in the code you’ve
seen so far. The NewMailEx event handler needs to mark the messages, and
the code called by the ReminderFire event handler needs to search for
unmarked messages, rather than for recent messages. Listing 11.25 has the
new version of Application_NewMailEx. It adds these two statements to
mark the processed messages:

objMsg.BillingInformation = "Processed"
objMsg.Save

The BillingInformation property is common to all Outlook items
and is a good place to store “state” information like this.

366 11.7 Using the Application.Reminder and Reminders events

You’ll need to make quite a few more changes in the reminder-based
routines. I suggest that you create a new class module and name it
Ch11ReminderEvents2. Use this code in ThisOutlookSession to instan-
tiate it:

Dim m_ReminderEvents As Ch11ReminderEvents2

Private Sub Application_MAPILogonComplete()
 Set m_ReminderEvents = New Ch11ReminderEvents2
End Sub

In the Ch11ReminderEvents2 module, place the code in Listing 11.26,
plus the InitializeInboxTask, GetSystemTasksFolder, and Quote pro-
cedures from Listing 11.24, which require no changes. (Maybe now you’re
starting to see why breaking your code into procedures that perform discrete
functions is a good idea: it lets you try out new techniques more easily.)

One thing you should notice is that Listing 11.26 has an integer variable
(m_intReminderSnoozeMinutes) representing the number of snooze min-
utes, rather than a date variable representing the last time items were pro-
cessed. You may need to experiment to find the perfect snooze interval for
the Process Inbox task’s reminder, based on the volume of mail you receive

Listing 11.25 Mark incoming messages as processed, so you can clean up stragglers later with a
reminder-based approach

Private Sub Application_NewMailEx _
 (ByVal EntryIDCollection As String)
 Dim objitem As Object
 Dim objMsg As Outlook.MailItem
 Dim arr() As String
 Dim i As Integer
 On Error Resume Next
 Debug.Print "new mail at " & Time
 arr = Split(EntryIDCollection, ",")
 For i = 0 To UBound(arr)
 Set objitem = GetItemNoStoreID(EntryIDCollection)
 If Not objitem Is Nothing Then
 If objitem.Class = olMail Then
 Set objMsg = objitem
 If objMsg.DownloadState = olFullItem Then
 Call MarkWithSenderCategories(objMsg)
 objMsg.BillingInformation = "Processed"
 objMsg.Save
 End If
 End If
 End If
 Next
 Set objitem = Nothing
 Set objMsg = Nothing
End Sub

11.7 Using the Application.Reminder and Reminders events 367

and the frequency of send/receive sessions. Assigning the value to a variable
in the Class_Initialize procedure puts the information at the top of the
module, where it’s easy to change, without the need to hunt through the
depths of your code.

The rest of the code that you need to add to the Ch11ReminderEvents2
module is in Listing 11.27.

The only change in the m_colReminders_ReminderFire event handler
is that the Snooze statement now uses the module-level variable that holds
the number of minutes to snooze the reminder until the next processing
session:

ReminderObject.Snooze m_intReminderSnoozeMinutes

In the ProcessInbox procedure, you should notice quite a few changes:

Instead of searching for items created since the last processing session,
it searches for items with no value in the BillingInformation
property. The method used is Application.AdvancedSearch.
We’ll defer a detailed discussion of it until Chapter 16. For now, the
main thing you need to know is that it doesn’t return results immedi-
ately. That’s the reason for the Do loop that waits until either there are
some results from the search or a minute passes. (You don’t want to
get stuck inside a Do loop with no way to get out of it.)

The TimeToQuit() helper function returns True if more than a
minute has elapsed. It takes into account the fact that the built-in
Timer function in VBA returns the number of seconds since midnight.

The DoEvents statement allows other actions to take place in Out-
look while the loops are processing items.

Listing 11.26 Use this code to initialize the reminder-based scheme for processing messages that New-
MailEx overlooks

Dim WithEvents m_colReminders As Outlook.Reminders
Dim m_objOL As Outlook.Application
Dim m_objNS As Outlook.NameSpace
Dim m_objSystemTasksFolder As Outlook.Folder
Dim m_intReminderSnoozeMinutes As Integer

Private Sub Class_Initialize()
 Set m_objOL = Application
 Set m_objNS = m_objOL.Session
 ' Use the InitializeInboxTask and GetSystemTasksFolder
 ' procedures from Listing 11.24
 Call IntializeInboxTask
 m_intReminderSnoozeMinutes = 2
 Set m_colReminders = m_objOL.Reminders
End Sub

368 11.7 Using the Application.Reminder and Reminders events

Listing 11.27 Use this code to process the messages that NewMailEx leaves untouched

Private Sub m_colReminders_ReminderFire _
 (ByVal ReminderObject As Reminder)
 Dim objTask As Outlook.TaskItem
 On Error Resume Next
 If ReminderObject.Item.Class = olTask Then
 Set objTask = ReminderObject.Item
 End If
 If Not objTask Is Nothing Then
 If objTask.Parent = m_objSystemTasksFolder Then
 Select Case objTask.Subject
 Case "Process Inbox"
 ReminderObject.Snooze _
 m_intReminderSnoozeMinutes
 Call ProcessInbox
 End Select
 End If
 End If

 Set objTask = Nothing
End Sub

Sub ProcessInbox()
 Dim strFind As String
 Dim objSearch As Outlook.Search
 Dim objitem As Object
 Dim objMail As Outlook.MailItem
 Dim sngTimeStart As Single
 On Error Resume Next
 strFind = _
 Quote("urn:schemas:contacts:billinginformation") & _
 " IS NULL"
 Set objSearch = _
 m_objOL.AdvancedSearch("Inbox", strFind)
 sngTimeStart = Timer
 Do While objSearch.Results Is Nothing
 If TimeToQuit(sngTimeStart, 60) Then Exit Do
 DoEvents
 Loop
 sngTimeStart = Timer
 For Each objitem In objSearch.Results
 If objitem.Class = olMail Then
 Set objMail = objitem
 Call MarkWithSenderCategories(objMail)
 objMail.BillingInformation = "Reminder processed"
 objMail.Save
 End If
 If TimeToQuit(sngTimeStart, 60) Then Exit For
 DoEvents
 Next
 Set objSearch = Nothing
 Set objitem = Nothing
 Set objMail = Nothing
End Sub

11.8 Summary 369

The For Each ... Next loop that actually processes items also is
limited to only a minute of operation, to avoid bogging down the sys-
tem.

Items processed by ProcessInbox get stamped with a value in Bill-
ingInformation, so they won’t be processed again.

To test this code, restart Outlook, or run the Application_MAPI-
LogonComplete() procedure.

11.8 Summary
This chapter has provided a thorough grounding in the essential events for
much of your Outlook VBA code that will go beyond simple macros. You
now know how to create event handlers both in ThisOutlookSession and
in separate class modules and have quite a few practical event samples that can
help you start dealing with some of Outlook’s little annoyances on your own.
We will defer discussion of events related to context menus and searches
until later chapters. In the next chapter, we will take up the subject of item-
related events in the context of custom form VBScript code.

In addition, this chapter has provided a comprehensive look at the dif-
ferent techniques available to process incoming messages, from a simple
“run a script” rule action to a combination of the Application.New-
MailEx and Reminders.ReminderFire events. You can start with a simple
approach for new message processing and, as your confidence in your Out-
look programming skills increases, expand the techniques in this chapter to
add more processing tasks. Our consistent example has involved marking
incoming items with the categories related to the sender’s contact record,
but I’m sure you can think of many other actions you might want to take
on incoming messages.

Function TimeToQuit _
 (startMark As Single, maxSeconds As Integer) _
 As Boolean
 If Timer > startMark Then
 If Timer - startMark > maxSeconds Then
 TimeToQuit = True
 End If
 ElseIf (Timer + (CLng(24 * 60) * 60)) > maxSeconds Then
 TimeToQuit = True
 Else
 TimeToQuit = False
 End If
End Function

Listing 11.27 Use this code to process the messages that NewMailEx leaves untouched (continued)

This page intentionally left blank

371

12
Coding Key Custom Form Scenarios

VBScript code behind Outlook custom forms is event-driven. Code behind
a form runs when the user’s interaction with a form causes item and control
events to fire. Writing code to respond to such user interaction is a large
part of the job of an Outlook form designer. Just as important is being able
to use form event code to validate the data that the user enters into the
form. Another basic custom form coding task is to determine whether the
form is displaying a new item or an existing item, or whether the form is
displaying the read layout or the compose layout, or whether a new message
is completely new or is a reply or forward.

The highlights of this chapter include discussions of the following:

What events fire in which order when the user creates, edits, and
saves items

How to respond to a user’s interaction with a form

How to perform validation when the user enters data or saves or
sends an item

How to recognize a new item or an item displaying the read layout

How to prevent the user from making changes to custom form items
from a table view

What custom properties can help you create workflow items with a
custom form

12.1 Working with Outlook item events
To add code to an Outlook form, as explained in Chapter 7, open the
form in design mode and then click View Code. To add code for an item
event, choose Script | Event Handler, and select from the list in the Insert
Event Handler dialog. Outlook adds a Function ... End Function or
Sub ... End Sub wrapper to the code window, depending on the event.

372 12.1 Working with Outlook item events

Table 7.5 lists the 16 item-level events that custom forms support. In
addition, some form controls support a Click event.

12.1.1 Understanding item event order

By investigating the order in which related events fire, you can gain better
control over the behavior of Outlook forms. For example, you can prevent
users from making changes to items in table views that have in-cell editing
turned on. To understand what events fire when a user creates an event in a
table view, create a new tasks folder and open a task form in design mode.
Add the code in Listing 12.1 to the task form, and then publish that form
to the new tasks folder. On the Properties dialog for the folder, make the
new form the default for the folder.

After you publish the form, launch it from the Actions menu for the
folder where you published it, and create a new item with it. Also experi-
ment with creating new items using the new item row, opening existing
items, and editing items in the table view with in-cell editing turned on.
You should see a message box pop up each time one of the five events in
Listing 12.1 fires. Make sure that you try different methods of saving and
closing the item. See if you can duplicate the results in Table 12.1.

Tip: To access the setting for in-cell editing and the new item row, choose
View | Current View | Customize Current View | Other Settings.

Listing 12.1 Investigate the order in which key form events fire

Function Item_Open()
 MsgBox "Open fired"
End Function

Function Item_Read()
 MsgBox "Read fired"
End Function

Function Item_Write()
 MsgBox "Write fired"
End Function

Function Item_Close()
 MsgBox "Close fired"
End Function

Function Item_Send()
 MsgBox "Send fired"
End Function

12.1 Working with Outlook item events 373

Did you notice that the Write and Close events can occur in different
orders, depending on how the user closes the item? If the user clicks Save
and Close, Write fires first, then Close. However, if the user presses the
Esc key or clicks the close (x) button in the upper-right corner of the form’s
window, Close fires first. The Write event fires later—if at all!—only after
the user answers Yes to the “Do You Want to Save Changes?” prompt.

Caution: You cannot close, move, or delete an item within its own Close
event handler. Code that attempts to do so will raise an error. Furthermore,
calling Item.Close from other events may cause the initial release of Out-
look 2007 to crash. Hopefully, Microsoft will fix the crash problem with an
update.

When a user clicks Send on a message form, the Send event fires first, fol-
lowed by Write, then Close. Any operations that you want to perform on
an outgoing message should be coded into the Item_Send event handler.

Table 12.1 Event Firing Order for Opening and Closing Items

User Action Event Order

Display a new item with the Actions or Choose Form command Open

Open an existing item Read

Open

If the custom form is the default for the folder, create a new item in the new item
row of a table view with in-cell editing turned on

Write

Make changes in an existing item using in-cell editing Read

Write

Make changes in an open item, then close it with the close (x) button in the upper-
right corner or the Esc key

Close

Write (if the user answers
Yes to the Do You Want to
Save Changes? prompt

Make changes in an open item, then close it with the Save and Close command Write

Close

Make changes in an open item, then save it with the Save command Write

Send a message Send

Write

Close

374 12.1 Working with Outlook item events

Note: Sending a message places it in the Outbox. Only when the item has
actually been delivered by the appropriate mail account to that account’s
outgoing server does it move to the Sent Items folder and acquire a time
stamp indicating when it was sent.

12.1.2 Preventing the user from making changes in a
folder view

Many Outlook folder views allow users to make changes to an item without
opening it first. For example, you might drag an appointment to a new
date. Or, you might drag an item between groups in a By Category view to
add a new category to the item. Some table views, such as the default Tasks
folder view, have in-cell editing turned on, so you can edit properties or
even create new items by typing in the folder view. Also, a user can click in

Listing 12.2 Force the user to make changes only if the item is displayed in a form

Dim mblnIsOpen
Dim mblnIsClosing

Function Item_Open()
 mblnIsOpen = True
 mblnIsClosing = False
End Function

Function Item_Write()
 Dim strMsg
 If Not mblnIsOpen Then
 Item_Write = False
 strMsg = "You cannot save an item without " & _
 "opening it first." & vbCrLf & vbCrLf & _
 "If you were editing this item using " & _
 "in-cell editing, press Esc to cancel " & _
 "the edits."
 MsgBox strMsg, , "Can't Save Unopened Item"
 End If
 If mblnIsClosing Then
 mblnIsClosing = False
 End If
End Function

Function Item_Close()
 mblnIsClosing = True
 If Item.Saved Then
 mblnIsOpen = False
 End If
End Function

12.1 Working with Outlook item events 375

the Calendar folder’s Day/Week/Month view and just start typing to create
a new appointment.

All these folder-based item creation and editing methods bypass the lay-
out of any custom form. If you provide a lot of feedback to users with your
custom form, you’ll want the user always to enter data using only the con-
trols in that form. The code in Listing 12.2 uses the events discussed in the
previous section to prevent the user from saving changes to an item that has
not been opened in its own window.

When the Close event fires before Write, the value of Item.Saved, as
in the Item_Close event handler in Listing 12.2, tells you whether the user
will be prompted to save the item.

12.1.3 Locking an item for changes

In an Exchange environment, you may be using custom forms for items in a
public folder or in a shared mailbox folder and want a way to avoid having
two people change the item at the same time. One approach to that situa-
tion is to check a property value when each user opens an item. A certain
value for that property could indicate that it is OK to edit the item.
Another value could indicate the item is not OK to edit because another
user already has it open.

Note: Outlook normally blocks code from running behind forms used for
items in another user’s Exchange mailbox, but that option can be changed.
Chapter 10 explains this form security setting in more detail.

To try this technique, open an appointment form in design mode and
add a label control to the P.2 page. Set the label’s caption to “Item is
locked.” Rename that page to Locked. Hide all the Appointment and
Scheduling pages. Finally, add the code in Listing 12.3 to the form. To test
the form, create a new calendar folder in the Public Folders hierarchy and
publish the form to that folder. On the Properties dialog for the folder,
make the new published form the default and grant permission to a col-
league to create and edit items in the folder. Now, get that colleague to help
you create and edit items, each of you working from your own machine.

Listing 12.3 uses the standard BillingInformation property to hold
the “lock state” information. (You could also use a UserProperty or a hid-
den property created with the PropertyAccessor object that we’ll see in
the next chapter.) If the item is safe to edit, the Item_Open code shows the
Scheduling and Appointment pages and hides the Locked page. It invokes
the ShowFormPage and HideFormPage methods of the Inspector object
for the current item, which is returned by Item.GetInspector. If another

376 12.1 Working with Outlook item events

Listing 12.3 Lock an item against changes by another user

Dim mblnIsOpen
Dim mblnIsClosing
Dim mblnIsUnlocking

Function Item_Open()
 Dim objInsp
 Dim strMsg
 If Item.BillingInformation <> "Locked" Then
 Set objInsp = Item.GetInspector
 objInsp.ShowFormPage "Appointment"
 objInsp.ShowFormPage "Scheduling"
 objInsp.HideFormPage "Locked"
 mblnIsOpen = True
 Item.BillingInformation = "Locked"
 Item.Save
 End If
 mblnIsClosing = False
 mblnIsUnlocking = False
End Function

Function Item_Write()
 Dim strMsg
 If Not mblnIsOpen Then
 Item_Write = False
 strMsg = "You cannot save changes to this item."
 MsgBox strMsg, , "Item Is Locked"
 End If
 If mblnIsClosing Then
 If Not mblnIsUnlocking Then
 mblnIsUnlocking = True
 Item.BillingInformation = ""
 Item.Save
 mblnIsUnLocking = False
 End If
 mblnIsOpen = False
 mblnIsClosing = False
 End If
End Function

Function Item_Close()
 mblnIsClosing = True
 If mblnIsOpen and Item.Saved Then
 mblnIsUnLocking = True
 Item.BillingInformation = ""
 Item.Save
 mblnIsOpen = False
 End If
End Function

12.2 Responding to user input on forms 377

user has the item open, the second user trying to open the item sees only
the Locked page. The Item_Close and Item_Write procedures handle the
unlocking of the item.

Listing 12.3 should look similar to Listing 12.2 in structure. It builds on
the same technique as the earlier listing and blocks drag-and-drop and in-
cell editing.

If you want the second user to be able to view but not edit data in the
item, you have two choices, both of which would be implemented in the
Item_Open event handler:

Populate the Locked page (or other custom pages) with read-only
controls for the fields you want the second user to be able to see. In
the Item_Open event handler, hide those pages when a user opens the
item and it is safe for editing.

For customizable pages, such as the main page of the contact and post
forms and any P.# pages, iterate all the controls on the page and set
the Locked property of each control to True to make the control
read-only. Refer back to Chapter 7 if you need a refresher on custom
form control syntax.

Finally, note that this technique performs locking only for users working
online against the Exchange server. Users configured for Cached Exchange
mode can work offline with shared folders by default and, depending on the
configuration, possibly also with certain public folders. They will probably
see conflicts occasionally and should be shown how to resolve them by
choosing which item to keep.

12.2 Responding to user input on forms
Chapter 8 discussed how to gather responses from users with the Msg-
Box() and InputBox() functions. Each of these functions can gather
only one response at a time. While they’re quite direct and easy for the
programmer to use, a series of prompts would discourage the user. In
most cases, it’s better to allow the user to interact with a form and provide
information in whatever sequence the user prefers, with code behind the
form responding to the user’s interaction. In earlier chapters, we saw that
VBA forms have no shortage of control events that fire when the user
changes the value in a control or interacts in other ways with the form.
Outlook custom forms are far more limited in the control events they
support: You must build all your user-interaction code into three
events—the PropertyChange and CustomPropertyChange events that
fire when the value of a standard or custom property changes, and the
Click event that fires for changes to some (but not all!) controls that are
not bound to Outlook properties.

378 12.2 Responding to user input on forms

Whether a control is bound to an Outlook property determines what
event will fire when the user interacts with that control. Table 12.2 lists the
event handlers for the three available scenarios.

As we’ll see a little later in this chapter, not all unbound controls fire a
Click event. Three that definitely do not fire a Click event are an
unbound text box, an unbound combo box with the style set to Drop-
DownCombo (0), and an unbound multi-select list box.

Another reason that it’s important to be aware of whether a control is
bound or unbound is that Outlook saves the value displayed in a control
only for bound controls. The fact that the control is bound to an Outlook
property tells Outlook where to save that data, in other words, what prop-
erty to store it in.

Outlook does not automatically save data entered into unbound con-
trols, nor does it save any information about changes that you might have
made in the appearance of any controls. Any unbound control values or
user interface changes are discarded when the form closes. It is possible,
however, to write code in a form’s Item_Write event handler to read such
information from the control’s properties and store it in Outlook custom
properties, to be restored when the Item_Open event handler runs. We’ll
see how to do that in the last portion of this chapter.

The next few sections provide examples of user interaction code using
the events in Table 12.1. What you won’t see is any code to determine
which control currently has the user’s focus or what form page the user is
currently viewing. Outlook provides no Item-level events for those scenar-
ios, although Outlook 2007 does introduce a PageChange event for the
Inspector object that you can use in VBA code.

Tip: Another way that the user interacts with an item is by adding attach-
ments. In Listing 22.1, the BeforeAttachmentAdd event is used to permit
a form to accept attachments only of a certain file type.

Table 12.2 Events That Fire for User Interaction with Custom Forms

Bound/Unbound State of Control Resulting Event Handler

Bound to a standard Outlook property Item_PropertyChange

Bound to a custom property Item_CustomPropertyChange

Not bound to any property control_Click

12.2 Responding to user input on forms 379

12.2.1 Using the PropertyChange and
CustomPropertyChange events

When the value of an Outlook property changes, the PropertyChange or
CustomPropertyChange event fires. It doesn’t matter whether the user or
programming code changed the property value.

Both the PropertyChange and CustomPropertyChange events pass
the name of the changed property as their sole parameter. The script for any
given form should contain only one PropertyChange event handler and
only one CustomPropertyChange event handler. These two event handler
procedures together handle all the changes to all property values. A useful
way to get acquainted with them is to add this code to your form:

Sub Item_PropertyChange(ByVal Name)
 MsgBox Name, , "PropertyChange"
End Sub

Sub Item_CustomPropertyChange(ByVal Name)
 MsgBox Name, , "CustomPropertyChange"
End Sub

Try adding that code to a task form. Also add a few custom properties
using the Field Chooser and drag them to a custom page. Click the Run
This Form command to run the form, and enter data for both the built-in
and custom properties. You should see a message box not only for the prop-
erties you change directly, but also for related properties. For example, if
you use the dropdown Status list to change the value from Not Started to
Completed, these properties will all change. Each change will fire a Prop-
ertyChange event:

ReminderSet
DateCompleted
PercentComplete
Complete
Status

Let’s expand the code snippet above to show the values of the properties
as they change:

Sub Item_PropertyChange(ByVal Name)
 On Error Resume Next
 val = CStr(Item.ItemProperties(Name))
 If Err <> 0 Then
 val = "Error: Could not get property value"
 Err.Clear
 End If
 MsgBox Name & ": " & val, , "PropertyChange"
End Sub

Sub Item_CustomPropertyChange(ByVal Name)
 val = CStr(Item.UserProperties(Name))

380 12.2 Responding to user input on forms

 If Err <> 0 Then
 val = "Error: Could not get property value"
 Err.Clear
 End If
 MsgBox Name & ": " & val, , "CustomPropertyChange"
End Sub

Replace the earlier code with the above enhanced version, and run the
form again to create a new task and see what else you can discover about
these two events. Several interesting things should become apparent:

A PropertyChange event fires when a new item opens, because Out-
look sets the value of the ConversationIndex property even before
the user has a chance to interact with the item.

A PropertyChange or CustomPropertyChange event fires only
after the user moves out of the control displaying that property. The
property value is not stored until the user moves the control focus or
saves the item.

The value that Outlook stores in one of its standard properties may not
be the same as what the user sees on the screen. If you change the value
in the Status dropdown to Completed, the code above shows that the
value Outlook actually stores is 2. This corresponds to a value in the
OlTaskStatus enumeration. Use the object browser in Outlook VBA
to look up that enumeration and see the constants (and their literal val-
ues) that Outlook uses to store task status information.

Some standard properties can’t be accessed through the Item.Item-
Properties collection, for example, any property involving recipients,
such as the StatusUpdateRecipients and StatusOnCompletion-
Recipients collections that are related to assigned tasks.

Not all standard properties support the PropertyChange event.
When you type in the large notes/message body on an Outlook form,
you are changing the Body property. However, the code above won’t
pop up a message box after you make changes to the task body.

Note: You might be tempted to work around the Body property issue by
creating a formula field to display the contents of the body property (listed
as [Notes] or [Message] in the formula editor’s field list, depending on
what type of form it is). Sure you can do that, but it’s not very useful,
because a single change in the Body property may result in CustomProper-
tyChange firing up to nine times!

An Outlook item can have dozens of properties, but for any given form
project, probably only a few are significant and useful to watch with an
event handler. As we learned in Chapter 8, there are two primary code con-
structions for testing the possible values of expressions—If ... Then ...

12.2 Responding to user input on forms 381

Else blocks and Select ... End Select blocks. To monitor changes in
just one property, you can use an If ... Then ... Else block. This code
nags the user for trying to plan a task more than three weeks in advance:

Sub Item_PropertyChange(ByVal Name)
 If Name = "DueDate" Then
 If DateDiff("w", Date, Item.DueDate) > 3 Then
 MsgBox "You shouldn't plan more than " & _
 "3 weeks ahead", , "Long Range Task"
 End If
 End If
End Sub

Compare the procedure declarations for the PropertyChange event
handlers that you’ve seen so far. All of them use the same declaration:

Sub Item_PropertyChange(ByVal Name)

Don’t be tempted to change Name to DueDate because you’re watching
for changes in the DueDate property. The parameter passed by Property-
Change and CustomPropertyChange is always the name of the property
that changed. It’s up to your code inside the procedure to look at the value
of the Name parameter and determine whether it’s a property that you’re
interested in. In other words, code for the PropertyChange and Custom-
PropertyChange events generally requires three operations, in sequence:

1. Find out what property changed by checking the value of the
Name parameter passed by the procedure.

2. Determine the value of the property that changed. (Refer back to
Chapter 7 if you need a refresher on how to return the value of a
standard or custom property.)

3. Execute code based on the value you learned from Step 2.

To watch for value changes in more than one property, a Select Case
... End Select block is the best way to structure that code. This Prop-
ertyChange event handler watches for changes in two standard task prop-
erties:

Sub Item_PropertyChange(ByVal Name)
 Select Case Name
 Case "DueDate"
 If DateDiff("w", Date, Item.DueDate) > 3 Then
 MsgBox "You shouldn't plan more than " & _
 "3 weeks ahead", , "Long Range Task"
 End If
 Case "Complete"
 If Item.Complete = True Then
 MsgBox "Congratulations! " & _
 "you finished this task!", , _
 Item.Subject & ": Done!"
 End If
 End Select
End Sub

382 12.2 Responding to user input on forms

To handle three properties instead of two, you would simply add
another Case "property name" block.

Note: As you compared the procedures in this section, did you notice that
you can get the property value either with the Item.property_name syn-
tax or with Item.ItemProperties("property name"). Item.property_
name is more efficient, and many people find it more readable.

An event handler for the CustomPropertyChange event can use the same
Select Case structure. Use the Item.UserProperties("property_
name") syntax to return the value of any custom property:

Sub Item_CustomPropertyChange(ByVal Name)
 Select Case Name
 Case "Prop1"
 If Item.UserProperties("Prop1") = value1 Then
 ' perform some action regarding Prop1
 Else
 ' perform some other action
 End If
 Case "Prop2"
 If Item.UserProperties("Prop2") = value2 Then
 ' perform some action regarding Prop2
 Else
 ' perform some other action
 End If
 Case "Prop3"
 If Item.UserProperties("Prop3") = value3 Then
 ' perform some action regarding Prop3
 Else
 ' perform some other action
 End If
 End Select
End Sub

This structure should help you see the relationship between the Name
value in each Case statement and the code inside the Case block to process
the change in that property’s value. Obviously, you will have scenarios
where you have more or fewer than three properties to process, and you
won’t always need an If ... Else ... End If block to check property
values.

You may want to ignore any PropertyChange or CustomProperty-
Change events that occur while your form is loading, since Outlook itself
may set some properties at that time or your own code may be setting prop-
erty values. The solution is to set the value of a module-level Boolean vari-
able (mblnIsLoaded) in the Item_Open event handler and check that
variable’s value in the property event handler(s). In this example, you won’t
see a message box when the code in the Item_Open event sets the Billing-
Information property value:

12.2 Responding to user input on forms 383

Dim mblnIsLoading

Function Item_Open()
 mblnIsLoading = True
 ' your code to initialize form controls
 ' and item properties goes here
 Item.BillingInformation = _
 "Item last opened at " & Now
 Item.Save
 mblnIsLoading = False
End Function

Sub Item_PropertyChange(ByVal Name)
 If Not mblnIsLoading Then
 MsgBox Name, , "PropertyChange"
 End If
End Sub

Sub Item_CustomPropertyChange(ByVal Name)
 If Not mblnIsLoading Then
 MsgBox Name, , "CustomPropertyChange"
 End If
End Sub

We’ll return to these events a little later in this chapter to examine an
important practical application: performing validation on the user’s data
entry.

12.2.2 Handling Click events from unbound controls

As discussed in Chapter 7, Outlook uses a more complicated syntax to
return a control and its value and other properties than VBA does. Specifi-
cally, you can access only controls on customized pages, and you need to
know which page of the form the control resides on. Another peculiarity of
Outlook forms, compared with VBA user forms, is that the only event sup-
ported by controls on an Outlook custom form is the Click event. For
example, you can use Click to track when a user selects a new value from
an unbound combo box (cboCompanies) set up as a dropdown list:

Sub cboCompanies_Click()
 Set objPage = _
 Item.GetInspector.ModifiedFormPages("My Page")
 Set cboCompanies = objPage.Controls("cboCompanies")
 MsgBox "The value in the " & cboCompanies.Name & _
 " control has changed to " & cboCompanies.Value & "."
End Sub

However, not all unbound controls support the Click event. The
Click event fires on a dropdown list combo box (the default for a combo
box), but not if the user types a value into a combo box with the Style
property set to DropDownCombo (0). It fires for unbound label, check box,
option button, and command button controls, but not for text box or spin
button controls. For list boxes, an unbound list must be single-select, not

384 12.2 Responding to user input on forms

multi-select, and the user must click on a list item, not in a blank area in the
list box, in order for the Click event to fire.

A common application of the Click event is to use a combo box, list
box, check box, or option buttons to change the appearance of another con-
trol. For example, you might want to change the items displayed in a list
box or combo box or display a group of controls that were previously hid-
den. In Listing 12.4, for example, chkNeedCheck is an unbound check box
and fraCheckData is a frame control on the General page containing
bound controls where the user can enter additional information.

Clicking on the chkNeedCheck check box toggles the value of the Vis-
ible property of the frame, so that the frame and its controls are visible
when the check box is checked and hidden when it is unchecked. Using a
frame control is the most efficient way to show and hide a group of con-
trols.

Besides the Click event, you can use the Item-level Write, Close or
Send events to process information in unbound controls, returning the
Value property from each control of interest. Note, however, that if the
user changes only the data in an unbound control—and never changes any
data in a bound control—the Write event will not fire, even if the user
clicks Save. Also remember that Outlook saves no data from unbound con-
trols, nor does it keep a record of changes to any control properties, such as
the value of the Visible property for a frame. Any such control changes
are considered user interface (UI) changes and are discarded when the item
closes. Later in this chapter, we’ll see how to store that UI information so
that you can restore a form’s UI to the state that it was in when the user
closed the item.

12.2.3 Example: Using option buttons to change a
caption color

Consider a form with a custom page named Color and three option but-
tons inside a frame named fraColor. These buttons will demonstrate how
to change the color of the caption for the frame based on the user’s selec-
tion. The Caption and Tag properties of each button reflect the color. One

Listing 12.4 Click event for a check box to show or hide a frame control

Sub chkNeedCheck_Click()
 Set objPage = _
 Item.GetInspector.ModifiedFormPages("General")
 objPage.Controls("fraCheckData").Visible = _
 objPage.Controls("chkNeedCheck").Value
End Sub

12.2 Responding to user input on forms 385

holds the name of the color, while the other holds the literal value of the
vbRed, vbBlack, or vbBlue constant:

Option button 1:
Name optColor1

Caption Red

Tag 255

Option button 2:
Name optColor2

Caption Black

Tag 0

Option button 3:
Name optColor3

Caption Blue

Tag 16711680

To set the Tag property for each control, use the Advanced Properties
dialog.

Listing 12.5 Use option buttons to change the appearance of another control

Dim m_objControls

Function Item_Open()
 Dim objPage
 Set objPage = _
 Item.GetInspector.ModifiedFormPages("Color")
 Set m_objControls = objPage.Controls
 Set objPage = Nothing
End Function

Function Item_Close()
 Set m_objControls = Nothing
End Function

Sub optColor1_Click()
 m_objControls("fraColor").ForeColor = _
 m_objControls("optColor1").Tag
End Sub

Sub optColor2_Click()
 m_objControls("fraColor").ForeColor = _
 m_objControls("optColor2").Tag
End Sub

Sub optColor3_Click()
 m_objControls("fraColor").ForeColor = _
 m_objControls("optColor3").Tag
End Sub

386 12.2 Responding to user input on forms

In Listing 12.5, each option button has its own Click event handler to
change the color of the frame caption to the value in the Tag property of
the clicked button. The Open and Close event handlers set and dereference
a module-level variable, m_objControls, to make it easy to work with the
Color page’s Controls collection in the Click event handlers.

When the user selects one of the option buttons, the frame’s caption
changes to the matching color.

12.2.4 Example: Creating a hyperlink on an
Outlook form

A very practical use for the Click event is to create a control that launches a
Web page in a browser. While the ContactItem object has several proper-
ties with built-in hyperlink capability (BusinessHomePage, FTPSite, Per-
sonalHomePage, WebPage), other Outlook items do not have properties
with hyperlink functionality. A good workaround is to put the text for a
hyperlink in the Caption property of a label control and use code like that
in Listing 12.6 to launch the link in Internet Explorer when the user clicks
the label named lblWebPage.

You may want to format the label control to show the link as blue and
underlined, using the Font and Forecolor properties on the Advanced
Properties dialog

Since Outlook has Web browser capability, you can also use the code in
Listing 12.7 to display a Web page using Outlook’s built-in browser capa-
bility.

We will see more examples of using CommandBars techniques to execute
toolbar and menu commands in Chapter 23.

12.2.5 Performing validation in Outlook form code

Validation is an important concept in form design. As much as possible,
you should provide feedback when the user enters inappropriate data val-
ues. Chapter 6 covered how to associate validation formulas with fields dis-
played in bound controls. When your validation needs grow beyond a

Listing 12.6 Click event for a label control to launch a Web page in Internet Explorer

Sub lblWebPage_Click()
 Set objPage = _
 Item.GetInspector.ModifiedFormPages("General")
 Set objWeb = _
 CreateObject("InternetExplorer.Application")
 objWeb.Navigate objPage.Controls("lblWebPage").Caption
 objWeb.Visible = True
End Sub

12.2 Responding to user input on forms 387

simple formula, it’s time to consider performing validation in the VBScript
code behind the form.

An event handler for PropertyChange or CustomPropertyChange
provides one way to validate data entry on an Outlook form, because those
events fire immediately after the user makes a change to a property. Another
validation method is to include code in the Item_Write or Item_Send
event handler to check property values and use the statement Item_Write
= False or Item_Send = False to cancel the write or send operation and
allow the user to correct the data entry error.

Which event is best depends on two factors—whether you want the user
to get immediate feedback and whether valid property values are interde-
pendent. If you can’t know if the value for PropertyA is valid until the user
fills in the value for PropertyB, then you should put validation code in the
Item_Send event handler for messages and in Item_Write for other forms.
If all property values are independent, Item_CustomPropertyChange and
Item_PropertyChange should work well to provide immediate feedback,
but you will still need code in Item_Write or Item_Send. Remember that
the PropertyChange and CustomPropertyChange events fire only after
the user presses Tab or Enter or otherwise moves the focus to another con-
trol. If the user changes the value of a property and then immediately saves
the item without moving the focus, the PropertyChange or CustomProp-
ertyChange event does not fire. Therefore, if you are using those events to
perform validation, you should also run that same validation code from the
Item_Write or Item_Send event handler.

If the property whose value doesn’t pass validation appears on a custom-
ized form page, you can use the SetFocus method to direct the user’s atten-
tion to the control that needs action. Changing the control’s text or the
background color (or both) is also a good attention-getter. Listing 12.8
reminds the user to fill in the Job Title field on a customized General
page for a contact form.

You can use SetFocus to set the focus only to a control on the custom-
ized form page that is currently displayed. Use the Inspector.SetCur-
rentFormPage method to show the desired page.

Listing 12.7 Click Event for a label control to launch a Web page in Outlook

Sub lblWebPage_Click()
 Set objPage = _
 Item.GetInspector.ModifiedFormPages("General")
 Set objCB = Application.ActiveExplorer.CommandBars
 set objWebButton = objCB.FindControl(26, 1740)
 objWebButton.Text = _
 objPage.Controls("lblWebPage").Caption
End Sub

388 12.2 Responding to user input on forms

12.2.6 Example: A custom contact form with
required categories

Outlook allows users to build a personal list of frequently used categories,
which Outlook 2007 stores as a hidden item in the user’s Calendar folder.
(Earlier Outlook versions store the user’s master category list in the Win-
dows registry.) In a public folder on an Exchange server, a common form
requirement is to make the user categorize each item from a limited set of
category choices. One solution is to write validation code for the form to
block the item from being saved until the user chooses one of the required
categories.

This example uses a contact form with one custom page, named Cate-
gories, shown in Figure 12.1. It contains an unbound label control (lbl-
Categories) and a list box (lstCategories) bound to the Categories
property. The third control comes from the Field Chooser. From the All
Contact Fields list, drag the field named Categories ... to the Catego-
ries page. Outlook will create a button that launches the Categories dia-
log. We’ve edited the caption of the button so that it reads “More
Categories . . .”.

The code behind this form, shown in Listing 12.9, wraps up many of
the concepts in this chapter: It uses the Open event to initialize the appear-
ance of two controls and applies validation using the Write event.

The HasRequiredCategory() function provides a good example of
comparing the contents of two arrays: the user’s category choice(s) and the
list of required categories from the mstrRequiredCats variable. (Change

Listing 12.8 Write an event handler to remind the user to fill in a property value

Function Item_Write()
 If Item.CompanyName <> "" Then
 If Item.JobTitle = "" Then
 Item_Write = False
 strMsg = "If you fill in the Company, " & _
 "you need to fill in Job Title, too."
 MsgBox strMsg, vbExclamation, "Missing Job Title"
 Set objPage = _
 Item.GetInspector.ModifiedFormPages("General")
 Set objJobTitle = objPage.Controls("JobTitle")
 Item.GetInspector.SetCurrentFormPage "General"
 With objJobTitle
 .SetFocus
 .BackColor = vbYellow
 End With
 End If
 End If
End Function

12.2 Responding to user input on forms 389

the value of this variable under ### USER OPTIONS ### to adapt it to your
own scenario.) The code also uses the WSHListSep() function to return the
list separator character for the current user’s locale, a function we first saw
in Chapter 8.

Figure 12.1 Using validation code, you can force users to select from a limited list of categories before
saving an item.

Listing 12.9 Force the user to select from a list of categories

Option Explicit
Dim mstrRequiredCats
Dim lstCategories
Dim lblCategories

Function Item_Open()
 Dim objPage
 Dim arrRCats
 Dim strLabel
 Dim i
 ' ### USER OPTION ###
 ' list of categories in the order you want them to appear
 mstrRequiredCats = "Client;Former Client;Prospect"
 Set objPage = _
 Item.GetInspector.ModifiedFormPages("Categories")
 Set lstCategories = objPage.Controls("lstCategories")
 Set lblCategories = objPage.Controls("lblCategories")

390 12.2 Responding to user input on forms

 strLabel = "Before you can save this item, you " & _
 "must choose one or more of these " & _
 "required categories:" & vbCrLf
 arrRCats = Split(mstrRequiredCats, ";")
 lstCategories.List = arrRCats
 For i = 0 To UBound(arrRCats)
 strLabel = strLabel & _
 vbCrLf & Space(10) & Trim(arrRCats(i))
 Next
 lblCategories.Caption = strLabel
 mstrRequiredCats = UCase(mstrRequiredCats)
 Set objPage = Nothing
End Function

Function Item_Write()
 Dim blnGotCat
 blnGotCat = HasRequiredCategory()
 If Not blnGotCat Then
 Item_Write = False
 Item.GetInspector.SetCurrentFormPage "Categories"
 lstCategories.SetFocus
 lblCategories.ForeColor = vbRed
 End If
End Function

Function HasRequiredCategory()
 Dim arrCats
 Dim arrRCats
 Dim strListSep
 Dim blnMatch
 Dim i, j
 blnMatch = False
 strListSep = WSHListSep()
 If mstrRequiredCats <> "" Then
 arrCats = Split(UCase(Item.Categories), strListSep)
 arrRCats = Split(mstrRequiredCats, ";")
 For i = 0 To UBound(arrCats)
 For j = 0 To UBound(arrRCats)
 If Trim(arrCats(i)) = _
 Trim(arrRCats(j)) Then
 blnMatch = True
 Exit For
 End If
 Next
 If blnMatch = True Then
 Exit For
 End If
 Next
 Else
 blnMatch = True
 End If
 HasRequiredCategory = blnMatch
End Function

Listing 12.9 Force the user to select from a list of categories (continued)

12.3 Handling form and control state issues 391

12.3 Handling form and control state issues
Two examples from the first part of this chapter introduced a key program-
ming concept with some specific applications to Outlook form program-
ming—the concept of state. In Listing 12.2, you saw how information on
the “open” state of an item could be held in the blnIsOpen variable. Listing
12.3 also used an blnIsOpen variable to track not only whether an item
was open, but also its “locked” state. In addition, it used the Billing-
Information property to store information about an item’s “locked” state
that other users could read.

The concept of state has many different applications in Outlook custom
form coding. These are common examples:

Whether an item is a new message, a reply, or a forward

Where the item is in the stages of a workflow

Whether an item shows the compose or read layout of a custom form

Whether the user has completed data entry for an item

The last example is one we’ve already seen in this chapter—validation,
the process of making sure data entry is complete and accurate. This section
covers other key issues related to item state in form programming, includ-
ing what state information is available from standard properties and how to
store custom state information in an item.

12.3.1 Checking item state in the Open event

A lot of information about the state of an item is available from standard
Outlook properties. You can determine whether an item is displaying the
compose or read layout of a custom form (assuming the form has dual lay-
outs) and whether a message is a new item, a reply, a forward, or a received
message.

A new unsaved item has a blank EntryID property and a Size property
value of 0. Thus, you can use code like this to perform actions on new items
that you don’t need to perform on existing items:

Function WSHListSep()
 Dim objWSHShell
 Dim strReg
 strReg = "HKCU\Control Panel\International\sList"
 Set objWSHShell = CreateObject("WScript.Shell")
 WSHListSep = objWSHShell.RegRead(strReg)
 Set objWSHShell = Nothing
End Function

Listing 12.9 Force the user to select from a list of categories (continued)

392 12.3 Handling form and control state issues

Function Item_Open
 If Item.Size = 0 Then
 ' run code for a new item
 End If
End Function

Some of your forms may have separate compose and read layouts, but
not all saved items will show the read layout. Specifically, an unsent message
will continue to show the read layout. Thus, Size = 0 is not sufficient to
determine whether the compose or read layout is showing. In the case of
messages, you also need to check the Sent property, which is a Boolean
value. Listing 12.10 implements this technique with a reusable ShowsCom-
poseLayout() function and shows how to call it from the Item_Open
event handler.

It takes a bit more effort to determine whether a message is a new mes-
sage, reply, forward, or received message. Size matters, again, as does Sent.
A reply or forward has a non-blank ConversationIndex, but a reply
always has at least one recipient. Received messages can be distinguished
from sent messages by the ReceivedByName property representing the
name of the recipient. Using all these properties, the GetMessageState()
function in Listing 12.11 returns a string to the calling procedure to indi-
cate what state the message is in.

For example, this code gives the user a reminder about this being a draft:

Function Item_Open()
 If GetMessageState(Item) = "DRAFT" Then
 MsgBox "Don’t forget to send this draft!"
 End If
End Function

You should call GetMessageState() only from the Item_Open event
handler, because some of the properties that the function checks might
change while the user is working on the item.

For maximum reuse, the GetMessageState() is written with a single
parameter representing the message whose state you want to check. You can
use this procedure in VBA as well as in VBScript. In VBA, comment out
the Const statement.

12.3.2 Storing and restoring control state

One of the most troublesome concepts for new Outlook form developers is
that, if your code changes the look of an Outlook form based on the user’s
interaction with it, those user interface (UI) changes don’t save with the
item. Outlook saves only the values entered into its standard and custom
properties. Put those two ideas together: If Outlook saves only property val-
ues, the solution to saving the UI changes is to store information about
them in some property value.

12.3 Handling form and control state issues 393

Listing 12.10 Determine whether a form shows the compose or read layout

Function Item_Open
 If ShowsComposeLayout() Then
 ' run code to update the look of the
 ' compose layout
 Else
 ' run code to update the look of the
 ' read layout
 End If
End Function

Function ShowsComposeLayout()
 Const olMail = 43
 If Item.Class = olMail Then
 If Not Item.Sent Then
 ShowsComposeLayout = True
 End If
 ElseIf Item.Size = 0 Then
 ShowsComposeLayout = True
 Else
 ShowsComposeLayout = False
 End If
End Function

Listing 12.11 Return the state of a message—new, reply, forward, or received

Function GetMessageState(msg) ' As String
 Const olMail = 43 ' remove for use in VBA
 On Error Resume Next
 If msg.Class = olMail Then
 If msg.Size = 0 Then
 If msg.ConversationIndex = "" Then
 GetMessageState = "NEW"
 ElseIf msg.Recipients.Count > 0 Then
 GetMessageState = "REPLY"
 Else
 GetMessageState = "FORWARD"
 End If
 ElseIf msg.Sent = False Then
 GetMessageState = "DRAFT"
 Else
 If msg.ReceivedByName = "" Then
 GetMessageState = "SENT"
 Else
 GetMessageState = "RECEIVED"
 End If
 End If
 Else
 GetMessageState = "NOT MAIL"
 End If
 Set objPA = Nothing
End Function

394 12.3 Handling form and control state issues

As an example, look back at Listing 12.4, which toggled the Visible
property of a frame control based on data in a check box. What if you want
the frame to be visible or hidden depending on the state it had when the
item was saved or sent? In that case, you must save sufficient information to
restore that state when the user opens the item again. Specifically, you can
save the value of the frame’s Visible property in a custom property and
then read that value when the user opens the item to reset the frame’s
appearance.

One approach would be to bind the check box to a new custom yes/no
property. That way, the state of both the check box and the frame are
automatically stored. That approach would require a change to the form’s
code. Instead of toggling the frame’s Visible property in the check box
control’s Click event handler, you would need to toggle Visible in the
Item_CustomPropertyChange event handler and also in the Item_Open
event handler.

If you want to keep the check box unbound so you can keep its Click
event handler, then you need to add a new property to the form to store the
check box and frame state. Use the form’s Field Chooser to add a yes/no
property named CheckDataState, and drag that property from the Field
Chooser to the General page where the check box resides. (That ensures
that the property is defined in the form, not just in the folder.) You can
then delete the control for CheckDataState property from the General
page. Listing 12.12 shows the code to set the value of CheckDataState. It
also includes an Item_Open event handler to read the property value and
reset the check box and frame states.

Listing 12.12 Saving and restoring the state of an unbound control

Sub chkNeedCheck_Click()
 On Error Resume Next
 Set objPage = _
 Item.GetInspector.ModifiedFormPages("General")
 objPage.Controls("fraCheckData").Visible = _
 objPage.Controls("chkNeedCheck").Value
 Set objProp = Item.UserProperties("CheckDataState")
 objProp.Value = objPage.Controls("chkNeedCheck").Value
End Sub

Function Item_Open()
 On Error Resume Next
 If Item.Size > 0 Then
 Set objPage = _
 Item.GetInspector.ModifiedFormPages("General")
 objPage.Controls("chkNeedCheck").Value = _
 Item.UserProperties("CheckDataState")
 End If
End Function

12.3 Handling form and control state issues 395

Notice that the Item_Open event handler doesn’t need to set the frame’s
Visible property directly. All it has to do is set the check box’s Value. The
Click event for the check box fires when you set its value in code, not just
when the user clicks in the check box.

In the case of a form that uses a separate read layout where the frame is
visible but not the check box, you would not set the check box’s value, but
instead would need to read the saved value and set the frame’s Visible
property:

objPage.Controls("fraCheckData").Value = _
 Item.UserProperties("CheckDataState")

12.3.3 Handling state in a folder-based workflow

The last concept of state that we need to cover is related to workflow, the
process of performing multiple operations in sequence. In some workflows,
such as the steps needed to take a real estate listing to closing, one person
might perform and track all the steps. In other cases, different people might
be involved. For example, a vacation request might need approval by the
employee’s immediate manager and also by a department head before it can
be entered on a master calendar of all the department’s vacation weeks.
Such a request might have five different states:

1. In the process of composition

2. Pending manager approval

3. Pending department head approval

4. Pending entry on master calendar

5. Processing complete

Of course, if the manager or department head denies the vacation
request, the item will never reach the later states.

To manage a workflow, a custom Outlook form requires three key com-
ponents:

A property to store the current state of the workflow item

Code to change the state property (and thus move the item to the
next phase of the workflow) when the user takes an action

Code to alter the appearance of the item so that the user can easily see
the current state of the workflow item and the appropriate action(s)

To illustrate these components, let’s look at a generic workflow tech-
nique. A workflow form with its basic set of controls is shown in Figure
12.2. This particular form is a post form, but you could use the same tech-
nique on an appointment, contact, or task form. In the Design group, clear
the check box for Separate Read Layout. Also, use the Page | Rename Page
command to change the name of the page from Message to Workflow.

396 12.3 Handling form and control state issues

The form needs the controls described in Table 12.3, five of which are
bound to user-defined properties that you need to create in the form’s Field
Chooser.

As Figure 12.2 shows, the form also contains the standard controls for
the Subject and Categories properties. You can add other controls and
properties to meet the requirements of your application.

The controls and properties in Table 12.2 are those essential to manag-
ing the workflow, but three of the properties in Table 12.2 are not displayed
on the form. Create the FlowState, WorkflowActions and WorkFlow-
Steps using the Field Chooser, and then drag them to a separate custom
page. That will ensure that these fields are defined in the form. You can
then hide that page.

After you create the form, publish it to the folder that will hold the
workflow items and on the folder’s Properties dialog, make it the default
form for that folder.

The values for WorkflowActions and WorkflowSteps control how
many steps the workflow contains and the names of the steps and actions
that the user will see in the controls on the form. The number of actions
must equal the number of steps. You can set the value of these properties in
several different ways:

By typing them into the All Fields page before publishing the form

By adding code to the form’s Item_Open event handler

Figure 12.2
Basic controls for
managing folder-
based workflow.

12.3 Handling form and control state issues 397

By creating a new workflow item programmatically and then setting
the property values

As an example of the latter method, this code snippet assumes that you
have already returned an objFolder object representing the workflow
items folder and that the MessageClass for the published form is
IPM.Post.MyWorkflow form:

Set objItem = objFolder.Items.Add("IPM.Post.MyWorkflow")
objItem.Subject = "Workflow to start a new day"
objItem.UserProperties("WorkflowSteps") = _
 "Settling in,Checking to-do list,Reading email"
objItem.UserProperties("WorkflowActions") = _
 "Start Outlook,Confirm to-do list checked," & _
 "Confirm email read"
objItem.Display

Table 12.3 Controls and Properties to Manage Workflow

Control Name
Bound to Property
(* = custom) Property Data Type Description

txtCreator Creator (*) Text Name of the person who created the work-
flow item

txtCreated Created Date/time Date/time that the workflow was created

FlowState (*) Integer Stage of the workflow, starting with 0 for a
newly created workflow item

txtSummary Summary (*) Text Running summary of action steps com-
pleted in the workflow, with comments;
turn on the multi-line option for the control

WorkflowActions (*) Text Comma-delimited text of actions to be
taken; used to set the caption on the cmdN-
extAction command button

WorkflowSteps (*) Text Comma-delimited list of workflow steps;
used to set the text in the txtFlowStep
control

txtFlowStep Unbound Name of the current step in the workflow,
derived from the FlowState and Work-
flowSteps properties

txtComment Unbound Comment related to the current workflow
step

cmdNextAction n/a Command button to execute the action
appropriate to the current workflow step;
Caption property value derived from the
FlowState and WorkflowActions
properties

398 12.3 Handling form and control state issues

Note: We’ll see many different techniques for returning an object variable
for a folder in the next chapter.

As you can see in Figure 12.2, only the cmdNextAction button and the
controls for entering the Subject, Action Comment, and Categories are
enabled. To keep workflow item information in the folder where the items
are posted, on the (Actions) page of the form, you should bring up the
Properties for each of the three standard actions and disable each one.

The code for the form is shown in Listing 12.13. When the user creates
a new workflow item or opens an existing item, the code in the Item_Open
event handler reads the information from the WorkflowSteps and Work-
flowAction properties into arrays using the Split() function and then
uses the value of the FlowState property to look up the current step and
next action from those arrays, putting the text for the current step in the
controls. When the user clicks the cmdNextAction button, the code
updates the Summary property with information about the completed
action, including any comment in the txtComment box, and saves the item.
Finally, the code disables the controls that were previously enabled. The
user will need to close and open the item again to complete another step in
the workflow. (Another way to handle the workflow would be to leave the
controls enabled and call InitControls again to update the display values
to reflect the new workflow state.)

Tip: Did you notice that the Item_Open and cmdNextAction_Click pro-
cedures both use Application.Session.CurrentUser to return the
name of the current Outlook user?

You probably noticed that this example doesn’t actually do much besides
track the current state of the workflow item and record when the user com-
pletes the action associated with that state. To provide additional function-
ality, such as sending notification messages or creating other new Outlook
items, create a procedure for each action related to each state and call those
procedures from a Select Case block inside the cmdNextAction_Click
event handler. Such a block might look like this:

Select Case intState
 Case 0
 Call ProcedureForState0
 Case 1
 Call ProcedureForState1
 Case 2
 Call ProcedureForState2
End Select

12.3 Handling form and control state issues 399

Listing 12.13 Code for generic folder-based workflow manager

Dim intState
Dim arrSteps
Dim arrActions
Dim objPage
Dim cmdNextAction
Dim txtFlowStep
Dim txtComment

Function Item_Open()
 If Item.Size = 0 Then
 Item.UserProperties("FlowState") = 0
 Item.UserProperties("Creator") = _
 Application.Session.CurrentUser
 End If
 Call InitControls
End Function

Function Item_Close()
 Set objPage = Nothing
 Set cmdNextAction = Nothing
 Set txtFlowStep = Nothing
 Set txtComment = Nothing
End Function

Sub InitControls()
 Dim objInsp
 Dim arrActions
 intState = Item.UserProperties("FlowState")
 arrSteps = Split(Item.UserProperties("WorkflowSteps"), ",")
 arrActions = _
 Split(Item.UserProperties("WorkflowActions"), ",")
 Set objInsp = Item.GetInspector
 Set objPage = objInsp.ModifiedFormPages("Workflow")
 Set cmdNextAction = objPage.Controls("cmdNextAction")
 Set txtFlowStep = objPage.Controls("txtFlowStep")
 Set txtComment = objPage.Controls("txtComment")
 If UBound(arrSteps) > 0 Then
 If intState <= UBound(arrSteps) Then
 cmdNextAction.Caption = arrActions(intState)
 txtFlowStep.Value = arrSteps(intState)
 If intState > 0 Then
 Set txtSubject = objPage.Controls("txtSubject")
 txtSubject.Enabled = False
 End If
 Else
 cmdNextAction.Caption = "Workflow Already Complete"
 cmdNextAction.Enabled = False
 txtComment.Enabled = False
 txtFlowStep.Text = "WORKFLOW COMPLETE"
 End If

400 12.4 Summary

This Select Case block handles three distinct workflow states. If you
needed to handle more, you would simply add another Case block and one
or more additional procedures to be called from that Case block.

12.4 Summary
This chapter has demonstrated many techniques for dealing with common
Outlook custom form scenarios—initializing controls, preventing users
from editing items in a folder view, responding to user interaction, validat-
ing user input, persisting unbound control values, and managing state in a
workflow. Whenever you design a new custom form, you may want to look
back in this chapter to see which of these basic procedures might be appro-
priate to your form.

In the next few chapters, we will learn the most essential techniques for
working with Outlook folders, items, address lists, and attachments—tech-
niques that you will certainly use to write code behind Outlook forms.

 Else
 cmdNextAction.Caption = "No Workflow Steps Defined"
 cmdNextAction.Enabled = False
 txtComment.Enabled = False
 txtFlowStep.Text = "None"
 End If
 Set objInsp = Nothing
End Sub

Sub cmdNextAction_Click()
 Dim strAction
 strAction = cmdNextAction.Caption & " - Completed " & _
 Now & " by " & _
 Application.Session.CurrentUser & vbCrLf & _
 txtComment.Value & vbCrLf & vbCrLf
 Item.UserProperties("Summary") = strAction & _
 Item.UserProperties("Summary")
 Item.UserProperties("FlowState") = intState + 1
 If intState = 0 Then
 Set txtSubject = objPage.Controls("txtSubject")
 txtSubject.Enabled = False
 ElseIf intState >= UBound(arrSteps) Then
 Item.UserProperties("Summary") = _
 "*** WORKFLOW COMPLETE ***" & vbCrLf & vbCrLf & _
 Item.UserProperties("Summary")
 End If
 Item.Save
 cmdNextAction.Enabled = False
 txtComment.Enabled = False
 txtFlowStep.Value = txtFlowStep.Value & " - DONE !"
End Sub

Listing 12.13 Code for generic folder-based workflow manager (continued)

401

13
Working with Stores, Explorers, and Folders

Beginning in this chapter, you’ll have the opportunity to learn about the
Outlook objects that programmers use most often and see the most impor-
tant basic how-to techniques. This chapter is devoted to techniques for
working with Outlook information stores and folders—creating them,
exploring their properties, and accessing folders, regardless of where they
appear in the folder hierarchy. It also looks at the Explorer object that rep-
resents a window which displays a folder.

Highlights of this chapter include discussions of the following:

Where Outlook stores information and which information stores
users are likely to see

How to access the default information store

When you might want to use a new Explorer object to display a dif-
ferent folder

How to access a folder, regardless of where it is located in the folder
hierarchy

How to create, copy, move, and delete folders

How to share an Exchange mailbox folder

How to subscribe to an RSS feed, WebCal calendar, or SharePoint list

13.1 Information store concepts
Outlook stores messages and other items in folders. Each folder resides in
what is known as an information store. Every Outlook session has at least
one information store. Not all users see the same types of stores, however.
Some may work only with an Exchange Server mailbox and public folders,
while others use a mixture of Personal Folders files, IMAP folders, and fold-
ers for HTTP mail services like Office Live.

402 13.1 Information store concepts

Note: The only HTTP accounts that are compatible with Outlook 2007
are paid MSN and Office Live accounts. Free Hotmail and Office Live
accounts cannot be added to an Outlook 2007 mail profile.

If the user has multiple information stores, one will be designated as the
default. Within the default store, you can always find the default Outlook
folders, such as Inbox and Calendar. The Outlook object model provides
the Namespace.GetDefaultFolder method to access these folders; we’ve
already seen it at work in several code samples in earlier chapters.

For a user connected to Microsoft Exchange Server, the basic store is the
Exchange mailbox. For other users, the basic store is a Personal Folders .pst
file. (PST stands for personal store.) An Exchange user may also have one or
more .pst files. For users with IMAP accounts or SharePoint lists, Outlook
synchronizes the server data with local .pst files, but those .pst files cannot
act as the user’s primary information store. Users with HTTP accounts may
have a synchronized .pst file, as with an IMAP account, or can use the
Microsoft Office Outlook Connector to create an information store (using
an .ost file) that can hold appointments, contacts, and tasks, as well as
e-mail messages. An Outlook Connector .ost file can act as a default infor-
mation store. In addition, third-party providers offer information store
components that can display database tables as Outlook folders or help
Outlook connect to other mail servers.

Users with Exchange accounts may also have access to public folders, a
hierarchy of folders for shared access. Exchange users may also be able to
access other users’ mailbox folders. For example, an executive assistant may
have access to the boss’ folders.

Caution: When writing code for Exchange folders other than those in the
user’s own mailbox, you must allow for the possibility that the user will not
have full access to a folder. A user might be able to see a folder in the hierar-
chy, but might not be able to work with the items within the folder because
of permission restrictions.

Regardless of whether the default store is an Exchange mailbox, a Per-
sonal Folders .pst file, or a Microsoft Office Outlook Connector store, any
user may have several .pst files open in Outlook. For instance, I have a .pst
file holding materials related to this book, as well as several .pst files filled
with archived items.

13.2 Information store techniques 403

13.2 Information store techniques
In the Outlook object model, all work involving stores—including adding
and removing a .pst file from the current Outlook session—takes place
through the Namespace object, which has a DefaultStore object and a
Stores collection containing individual Store objects. The code in Listing
13.1 enumerates all the available stores in the current Outlook session and lists
them in the VBA Immediate window. It uses five important new properties—
Store.ExchangeStoreType, Store.IsDataFileStore, Store.FilePath,
Namespace.DefaultStore, and Folder.IsSharePointFolder—to distin-
guish among the different types of stores and to return the file path for
most (but not all) .pst files. Where Store.FilePath does not return a
string, the EnumStores procedure attempts to extract the file path from the
Store.StoreID property, along with the name of the provider .dll that
Outlook uses for that store. To do this, Listing 13.1 contains the helper
functions Hex4ToString() and Hex2ToString(), which convert the
hexadecimal values from the StoreID into readable text.

Listing 13.1 Enumerate all stores in the current Outlook session

Sub EnumStores()
 Dim objOL as Outlook.Application
 Dim objStore As Outlook.Store
 Dim strInfo As String
 Dim strPath As String
 Set objOL = Application
 For Each objStore In objOL.Session.Stores
 Select Case objStore.ExchangeStoreType
 Case olPrimaryExchangeMailbox
 strInfo = vbTab & "Primary Exchange mailbox"
 Case olExchangeMailbox
 strInfo = vbTab & "Secondary Exchange mailbox"
 Case olExchangePublicFolder
 strInfo = vbTab & "Exchange Public Folders"
 Case olNotExchange
 If objStore.IsDataFileStore Then
 If objStore.DisplayName = _
 "SharePoint Folders" Then
 If IsSPStore(objStore) Then
 strInfo = vbTab & _
 "SharePoint cache" & vbCrLf & _
 vbTab & objStore.FilePath
 Else
 strInfo = vbTab & "PST File" & _
 vbCrLf & vbTab & objStore.FilePath
 End If

404 13.2 Information store techniques

 Else
 strInfo = vbTab & "PST File" & _
 vbCrLf & vbTab & objStore.FilePath
 End If
 Else
 strInfo = _
 GetStoreProvider(objStore.StoreID)
 Select Case strInfo
 Case "pstprx.dll"
 strPath = GetStorePath(_
 objStore.StoreID, "pstprx.dll")
 strInfo = vbTab & _
 "HTTP or IMAP account cache" & _
 vbCrLf & vbTab & strPath
 Case "msncon.dll"
 strPath = GetStorePath(_
 objStore.StoreID, "msncon.dll")
 strInfo = vbTab & _
 "Outlook Connector cache" & _
 vbCrLf & vbTab & strPath
 Case Else
 strInfo = vbTab & strInfo & _
 " - Unknown provider type"
 End Select
 End If
 End Select
 If objStore = objOL.Session.DefaultStore Then
 Debug.Print objStore.DisplayName & " - *** DEFAULT STORE ***"
 Else
 Debug.Print objStore.DisplayName
 End If
 Debug.Print strInfo
 Next
 Set objOL = Nothing
 Set objStore = Nothing
End Sub

Function GetStoreProvider(strStoreID As String)
 Dim intStart As Integer
 Dim intEnd As Integer
 Dim strProviderRaw As String
 intStart = InStr(9, strStoreID, "0000") + 4
 intEnd = InStr(intStart, strStoreID, "00")
 strProviderRaw = _
 Mid(strStoreID, intStart, intEnd - intStart)
 GetStoreProvider = Hex2ToString(strProviderRaw)
End Function

Function GetStorePath(strStoreID As String, strProvider)
 Dim intStart As Integer
 Dim intEnd As Integer
 Dim strPathRaw As String

Listing 13.1 Enumerate all stores in the current Outlook session (continued)

13.2 Information store techniques 405

 Select Case strProvider
 Case "pstprx.dll"
 intStart = InStrRev(strStoreID, "00000000") + 8
 strPathRaw = Mid(strStoreID, intStart)
 GetStorePath = Trim(Hex4ToString(strPathRaw))
 Case "msncon.dll"
 intStart = InStrRev(strStoreID, _
 "00", Len(strStoreID) - 2) + 2
 strPathRaw = Mid(strStoreID, intStart)
 GetStorePath = Trim(Hex2ToString(strPathRaw))
 Case Else
 GetStorePath = "Unknown store path"
 End Select
End Function

Public Function IsSPStore(st As Outlook.Store) As Boolean
 Dim objFolder As Outlook.Folder
 Dim blnIsSharePoint As Boolean
 For Each objFolder In st.GetRootFolder.Folders
 If objFolder.Name <> "Deleted Items" Then
 If objFolder.IsSharePointFolder = True Then
 blnIsSharePoint = True
 Exit For
 End If
 End If
 Next
 IsSPStore = blnIsSharePoint
End Function

Public Function Hex4ToString(Data As String) As String
 Dim strTemp As String
 Dim strAll As String
 Dim i As Integer
 For i = 1 To Len(Data) Step 4
 strTemp = Mid(Data, i, 4)
 strTemp = "&H" & Right(strTemp, 2) & Left(strTemp, 2)
 strAll = strAll & ChrW(CDec(strTemp))
 Next
 Hex4ToString = strAll
End Function

Public Function Hex2ToString(Data As String) As String
 Dim strTemp As String
 Dim strAll As String
 Dim i As Integer
 For i = 1 To Len(Data) Step 2
 strTemp = "&H" & Mid(Data, i, 2)
 strAll = strAll & ChrW(CDec(strTemp))
 Next
 Hex2ToString = strAll
End Function

Listing 13.1 Enumerate all stores in the current Outlook session (continued)

406 13.2 Information store techniques

To access the folders in a store, you can use the Store.GetRootFolder
method to return the store’s root Folder object. Each Folder in turn has a
Folders collection containing all its subfolders, an Items collection contain-
ing all its items, and a Store object pointing to its parent information store.

Sometimes it is important to know whether a particular folder is located
in the default store. To determine that, you can compare the StoreID for
the folder with the StoreID for the default store:

If objfolder.Store.StoreID = _
 objfolder.Session.DefaultStore.StoreID Then
 MsgBox objfolder.Name & " is in the default store"
End If

Every Outlook folder and item in a particular information store has the
same value for its StoreID property. Once an item has been saved, the
StoreID can be obtained from the item’s parent Folder object, that is,
from item.Parent.StoreID. Thus, to discover whether a particular Out-
look item is in the default store, compare the value of the StoreID property
of the item’s Parent folder with the StoreID for the default store.

Here’s another use for the StoreID property: You can use the
Namespace.GetStoreFromID method to return any information store,
given the value of its StoreID.

13.2.1 Adding a Personal Folders .pst file store

The only type of store that you can add to Outlook programmatically using
the Outlook object model is a Personal Folders .pst file. To create a new .pst
file or open an existing .pst file in the current Outlook session, use the
Namespace.AddStore method, which is compatible with older versions of
Outlook, or the AddStoreEx method, which is new to Outlook 2007. Both
require a file path string as an argument, but the AddStoreEx requires a
second parameter designating the type of PST file as one of the constants
from the OlStoreType enumeration:

The basic syntax for both methods in Outlook VBA is similar:

Set objOL = Application
Set objNS = objNS.Session
objNS.AddStore "C:\Outlook Data\mynewfile.pst"
objNS.AddStoreEx "C:\Outlook Data\mynewfile2.pst", _
 olStoreDefault

If the specified .pst file name already exists, Outlook opens the existing
file, adds it to the Namespace.Stores collection, and displays it in the
folder list. If it doesn’t exist, Outlook creates it.

olStoreANSI 3

olStoreDefault 1

olStoreUnicode 2

13.2 Information store techniques 407

Caution: If you provide only a file name to AddStore or AddStoreEx and
not a full path, Outlook will create the new .pst file in the Program Files\
Microsoft Office\Office12 folder. Surprisingly, it ignores Outlook’s normal
default location for new .pst files.

The key difference between the two methods is that AddStoreEx requires
you to specify what format the new.pst file will use—the legacy ANSI format
that is compatible with Outlook 97–2002 or the Unicode format introduced
in Outlook 2003, which is more stable and supports much larger .pst files.
For example, if you want to create an ANSI .pst file to ensure compatibility
with earlier versions, you can use this statement in VBA:

objNS.AddStoreEx _
 "C:\Outlook Data\mynewfile.pst", olStoreANSI

Note: What about adding stores other than .pst files? Microsoft provides at
least three techniques to work with them, but none of those methods are
accessible through Outlook VBA. The Office Customization Tool can gen-
erate text files with a .prf extension and a highly structured format to pro-
vide information that enables Outlook to create or modify a mail profile
and to add or change accounts and the stores associated with them. A very
low-level programming interface is Extended MAPI, while the Account
Management API provides access to account information. Neither of those
interfaces can be used with VBA or VBScript.

13.2.2 Removing a .pst store

Just as you can add only a .pst store, you can remove only a .pst store. Other
stores are tightly bound to accounts, RSS feeds, SharePoint lists, and so on.
The Namespace.RemoveStore method takes a Folder object, not a Store
object as its parameter. This keeps it backward compatible with the
RemoveStore method from earlier Outlook versions. It’s easy to get a store’s
root folder with the Store.GetRootFolder method, as in this VBA code
snippet to remove a store (myStore):

Set objOL = Application
Set objNS = Application.Session
objNS.RemoveStore myStore.GetRootFolder

You’ll see another example of RemoveStore in the next section.

Note that you should always be prepared to handle the error that will
occur if the store you’re removing is not a .pst file or if there is some prob-
lem with the profile configuration that prevents the store from being
removed.

408 13.2 Information store techniques

13.2.3 Renaming a .pst store

One limitation of the AddStore and AddStoreEx methods is that neither
allows you to give a new .pst store a display name at the time that Outlook
creates it. The name for a new .pst store is always Personal Folders (or the
localized equivalent). The Store object does have a DisplayName property,
but it is read-only. The key to renaming a .pst store is to rename its root
Folder object, but the real challenge is to determine which store is the one
that was just added. The procedure in Listing 13.2 adds a new Unicode .pst
file store, performs a before-and-after comparison of the StoreID values of
active stores to determine which is the new store, and then changes that
new store’s display name. It also returns the new store as a Store object, so
that other code can start working with it immediately. This is an example of
the syntax used to call AddNewPST:

Set objStore = _
 AddNewPST("C:\Outlook Data\My PST.pst", "New PST")

The AddNewPST() function loops through objNS.Stores and calls
StoreIsInArray() twice. That’s because to make the store’s new display
name visible in the user interface, it is necessary to remove the store and add
it again.

Listing 13.2 Add a new .pst store with a specific display name

Function AddNewPST _
 (strFileName As String, strDisplayName As String) _
 As Outlook.Store
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objStore As Outlook.Store
 Dim objNewStore As Outlook.Store
 Dim arr() As String
 Dim i As Integer
 Dim blnStoreIsNew As Boolean
 Dim objFolder As Outlook.Folder
 On Error Resume Next
 Set objOL = Application
 Set objNS = objOL.Session
 ReDim arr(objNS.Stores.Count - 1)
 i = 0
 For Each objStore In objNS.Stores
 If objStore.IsDataFileStore Then
 arr(i) = objStore.StoreID
 i = i + 1
 End If
 Next
 Set objStore = Nothing
 objNS.AddStoreEx strFileName, olStoreUnicode
 For i = objNS.Stores.Count To 1 Step -1
 If objNS.Stores(i).IsDataFileStore Then

13.2 Information store techniques 409

 Set objNewStore = objNS.Stores(i)
 If Not StoreIsInArray(objNewStore, arr()) Then
 blnStoreIsNew = True
 Exit For
 End If
 End If
 Next
 If blnStoreIsNew Then
 Set objFolder = objNewStore.GetRootFolder
 objFolder.Name = strDisplayName
 ' remove the store to refresh the folder name
 objNS.RemoveStore objFolder
 Set objFolder = Nothing
 Set objNewStore = Nothing
 ' then add the store again
 objNS.AddStore strFileName
 blnStoreIsNew = False
 For i = objNS.Stores.Count To 1 Step -1
 If objNS.Stores(i).IsDataFileStore Then
 Set objNewStore = objNS.Stores(i)
 If Not StoreIsInArray(_
 objNewStore, arr()) Then
 blnStoreIsNew = True
 Exit For
 End If
 End If
 Next
 End If
 If blnStoreIsNew Then
 Set AddNewPST = objNewStore
 Else
 Set AddNewPST = Nothing
 End If
 Set objOL = Nothing
 Set objNS = Nothing
 Set objNewStore = Nothing
 Set objStore = Nothing
 Set objFolder = Nothing
End Function

Function StoreIsInArray _
 (st As Outlook.Store, arr() As String) As Boolean
 On Error Resume Next
 Dim blnInArray As Boolean
 Dim i As Integer
 blnInArray = False
 For i = 0 To UBound(arr)
 If st.StoreID = arr(i) Then
 blnInArray = True
 Exit For
 End If
 Next
 StoreIsInArray = blnInArray
End Function

Listing 13.2 Add a new .pst store with a specific display name (continued)

410 13.3 Working with Explorers

13.3 Working with Explorers
The Explorers collection is an object property of the Application object
and represents all the windows currently displaying folders in Outlook. The
Application.ActiveExplorer object is the folder window that the user
is currently looking at or most recently looked at.

Table 13.1 lists the most useful methods and properties for the
Explorer object. Note that an Explorer object has both Activate and
Close methods and Activate and Close events, listed in Table 11.2.

The ShowCalendar procedure in Listing 10.1 demonstrated how to dis-
play a folder in a new Explorer window. If you want to see another exam-
ple, jump ahead to Listing 13.8.

Table 13.1 Useful Explorer Methods and Properties (* = new in Outlook 2007)

Method Description

Activate Bring the window to the foreground and give it the focus

*ClearSearch If the window is showing the results of an instant search, clear the search
results

Close Close the window

Display Display the window

IsPaneVisible(Pane) Return True or False depending on whether the Pane pane is visible
in the window; Pane values can be:

olFolderList 2

olNavigationPane 4

olOutlookBar 1

olPreview 3

olToDoBar 5

If IsPaneVisible(olFolderList) or IsPaneVisible(olOut-
lookBar) returns True, then IsPaneVisible(olNavigation-
Pane) will also return True, because the Folder List and the Shortcuts
pane (current incarnation of the Outlook Bar) are part of the navigation
pane.

*Search Query, SearchScope Perform a search using the specified Query and one of these two
olSearchScope values:

olSearchScopeAllFolders 1

olSearchScopeCurrentFolder 0

ShowPane Pane, Visible Show or hide the Pane, using the same Pane values as IsPaneVisible.
Visible can be True or False.

13.3 Working with Explorers 411

To close a folder window, use the Explorer.Close method. However,
if you close all Explorer objects, the user may no longer have any Outlook
windows open and Outlook may thus begin shutting down.

We’ll look at the Explorer.Search method—new in Outlook 2007—
in Chapter 15, as one of several ways to gain access to a selected set of Out-
look items.

In Chapter 23, we’ll look at techniques for working with components of
the Explorer window. The new NavigationPane object provides some
useful capabilities, although Outlook 2007 does not allow developers to
add their own modules to the navigation pane.

13.3.1 Basic view techniques for Explorer windows

To change the view of the folder to a different view that already exists, use
the Explorer.CurrentView property:

Application.ActiveExplorer.CurrentView = "Day/Week/Month"

Property Description

Caption Title displayed on the window (read-only)

CommandBars Collection of toolbars and menus for the current window

CurrentFolder Folder object representing the folder displayed in the window

CurrentView View object for the view applied to the window

Height Height of the window, in pixels

HTMLDocument If CurrentFolder.WebViewOn = True, returns an MSHTML.HTML-
Document for the currently displayed Web page

Left Left position of the window, in pixels

NavigationPane Returns a read-only NavigationPane object

Panes Returns a Panes collection

Selection Returns a Selection collection containing the items the user has
selected in the folder

Top Top position of the window, in pixels

Width Width of the window, in pixels

WindowState Display state of the window, one of these constants:

olMaximized 0

olMinimized 1

olNormalWindow 2

Table 13.1 Useful Explorer Methods and Properties (* = new in Outlook 2007) (continued)

412 13.4 Accessing folders

If the current view is a calendar view, the View.GoToDate method dis-
plays the calendar for the desired date:

Application.ActiveExplorer.CurrentView.GoToDate #8/21/2007#

Note: The CalendarView object, which is new to Outlook 2007, includes
a DisplayedDates property, intended to return a list of what dates a calen-
dar view is showing. However, it does not work in the initial released ver-
sion of Outlook 2007. The CalendarViewMode and DayWeekTimeScale
properties apparently are also broken.

Techniques for creating and modifying views are covered in Chapter
24. In the next chapter, though, you’ll see how to remove one-off copies
of views that Outlook saves whenever the user modifies the view in a
folder.

13.3.2 Setting the currently displayed folder

Each Explorer has a CurrentFolder property that returns a Folder
object representing the displayed folder. To display a particular folder in an
existing window, set the Explorer.CurrentFolder property to a Folder
object representing the desired folder. This statement for Outlook VBA
updates the currently displayed folder window to show the user’s Sent Items
folder:

Set Application.ActiveExplorer.CurrentFolder = _
 Application.Session.GetDefaultFolder(olFolderSentMail)

Caution: If you omit the Set keyword in a VBA or VBScript statement
that attempts to assign a new value to ActiveExplorer.CurrentFolder,
the currently displayed folder may be renamed.

13.4 Accessing folders
The Folder object is one of the basic building blocks of almost any Out-
look application. Each information store has a root folder, returned by the
Store.GetRootFolder method. Those root folders also comprise the
Namespace.Folders collection. Each store root folder itself has a Folders
collection of the top-level folders from that store. Each of those folders also
has a Folders collection containing all its subfolders, and so on all the way
down the folder hierarchy. Similarly, every folder has a Parent object
which, except for a store root folder, points to a parent Folder object. The
Parent of a store root folder is the Namespace object.

13.4 Accessing folders 413

Tip: For the best view of the complete folder hierarchy, display the Folder
List navigation pane.

Note: The basic folder object in Outlook 2007 is Folder, but in previous
versions, it was MAPIFolder. Any legacy code you have that uses MAPI-
Folder will also work fine in Outlook 2007.

Previous chapters have presented several different techniques for access-
ing folders, including the Namespace.GetDefaultFolder method to
return one of Outlook’s default folders. Outlook 2007 includes many new

Table 13.2 Key Methods That Return a Folder Object (* = new in Outlook 2007)

Method Returns

*AddressList.GetContactsFolder Contacts folder associated with an address list in the
address book

Application.ActiveExplorer.CurrentFolder Folder that the user most recently viewed

*CalendarSharing.Folder Folder associated with a CalendarSharing item
created with the Folder.GetCalendarExporter
method

Explorer.CurrentFolder Folder displayed in an Explorer window

Folders.Item(index) Subfolder of a Folder

Namespace.GetDefaultFolder(FolderType) Any of the default Outlook folders

Namespace.GetFolderFromID(EntryIDFolder,
EntryIDStore)

Any folder from any information store

Namespace.GetSharedDefaultFolder(Recipient,
FolderType)

Default folder from another user’s Exchange mailbox

*Namespace.OpenSharedFolder(Path, Name,

DownloadAttachments, UseTTL)

Folder storing data from an RSS feed, SharePoint list,
Web calendar, or multi-item iCalendar .ics file

Namespace.PickFolder Folder chosen by the user from the folder hierarchy

*NavigationFolder.Folder Folder associated with an entry in the navigation pane

*Store.GetSearchFolders.Item("FolderName") Search folder, given its name

*Store.GetRootFolder Root folder of an information store

*Store.GetSpecialFolder(FolderType) All Tasks or Reminders search folder for a store

414 13.4 Accessing folders

methods to return a folder as part of its expanded support for collaboration
and new information sources, such as RSS feeds and Web calendars. Table
13.2 summarizes the most important Outlook 2007 methods that return a
Folder object.

Notice that no method is available to return a folder given only its
name, except in the case of search folders. Even though a folder name is
unique within a given Folders collection (in other words, within a group
of subfolders of a single folder), a folder name can be reused many, many
times within different Folders collections and different information stores.
Therefore, to return a specific folder that is not one of your own default
folders, you need one of the following combinations of information:

For a default folder in another user’s mailbox, the user’s alias or email
address to create a Recipient object as a parameter for the
Namespace.GetSharedDefaultFolder method

The EntryID for the folder and, if it’s outside the default store, the
StoreID for the information store that contains the folder, for use
with Namespace.GetFolderFromID

The complete path to the folder through the folder hierarchy (analo-
gous to the path to a folder on your hard drive), starting with the
name of the information store

In the next few sections, you’ll see examples of the most common tech-
niques for accessing Outlook folders.

13.4.1 Getting a default folder

The following twelve default folders are always present in Outlook’s default
information store:

Calendar

Contacts

Deleted Items

Drafts

Inbox

Journal

Junk E-mail

Notes

Outbox

RSS Feeds

Sent Items

Tasks

13.4 Accessing folders 415

Exchange users may have other default folders. The folder list will also
show a Search Folders folder, but this is not an actual folder where you can
store items. Instead it is a visual container for search folders, covered in
Section13.4.6.

To return any default folder, use the Namespace.GetDefaultFolder
method. The single argument for GetDefaultFolder is an intrinsic Out-
look constant; possible values appear in Table 13.3. Here’s how to set a vari-
able named objCal to the user’s default Calendar folder in VBA:

Set objOL = Application
Set objNS = objOL.Session ' or objOL.GetNamespace("MAPI")
Set objCal = objNS.GetDefaultFolder(olFolderCalendar)

Table 13.3 OlDefaultFolders Enumeration Constants for GetDefaultFolder
(* = also for GetSharedDefaultFolder)

Folder Constant Value

*Calendar olFolderCalendar 9

*Contacts olFolderContacts 10

Deleted Items olFolderDeletedItems 3

*Drafts olFolderDrafts 16

*Inbox olFolderInbox 6

*Journal olFolderJournal 11

Organizational Folders (Exchange 2007 only) olFolderManagedEmail 29

*Notes olFolderNotes 12

Outbox olFolderOutbox 4

Public Folders\All Public Folders (Exchange only) olPublicFoldersAllPublicFolders 18

RSS Feeds olFolderRssFeeds 25

Sent Items olFolderSentMail 5

Sync Issues\Conflicts (Exchange only) olFolderConflicts 19

Sync Issues (Exchange only) olFolderLocalFailures 20

Sync Issues\Local Failures (Exchange only) olFolderLocalFailures 21

Sync Issues\Server Failures (Exchange only) olFolderServerFailures 22

*Tasks olFolderTasks 13

To-Do List olFolderToDo 28

416 13.4 Accessing folders

In VBScript, you either declare a constant for olFolderCalendar:

Const olFolderCalendar = 9
Set objCal = _
 Application.Session.GetDefaultFolder(olFolderCalendar)

or use the constant’s literal value:

Set objCal = Application.Session.GetDefaultFolder(9)

Refer back to Listing 10.1 to see another example of GetDefault-
Folder.

Tip: The Namespace object itself represents the current Outlook session,
but you don’t have to worry about exactly what it means. Just learn to use
its properties and methods. In Outlook VBA and custom form VBScript
code, you can return the Namespace with Application.Session. As we
saw in Chapter 7, if you are programming Outlook from an external appli-
cation, you should use Application.GetNamespace("MAPI") to return a
Namespace object and then call the Namespace.Logon method.

13.4.2 Getting the current folder

As discussed earlier in the chapter, the Application object includes an
ActiveExplorer object that represents the folder window that the user is
currently viewing or the last folder window that the user viewed. To return
the folder which that window displays, use ActiveExplorer.Current-
Folder, using this syntax in VBA or VBScript:

Set objFolder = Application.ActiveExplorer.CurrentFolder

Caution: Don’t assume that ActiveExplorer will always return an actual
window displaying a folder. There are scenarios in which the user might
have only an individual item window open, and no folder windows.

Remember that the user can switch folders at any time unless a modal
dialog box is active. This means that you should use ActiveExplorer in a
timely manner. For example, if, in the code behind an Outlook form, you
want to know what folder the user was viewing when the item was opened,
invoke the ActiveExplorer.CurrentFolder object in the form’s Item_
Open event handler. Don’t wait and try to get it in a later procedure; the
user might have switched folders by then.

13.4.3 Letting the user choose a folder

We’ve seen how to get any Outlook default folder or the currently displayed
folder. You can also allow the user to choose from any folder in the Outlook

13.4 Accessing folders 417

hierarchy by using the Namespace.PickFolder method. A typical applica-
tion looks like this in both VBA and VBScript:

On Error Resume Next
Set objOL = Application
Set objNS = objOL.Session
Set objFolder = objNS.PickFolder
If Not objFolder Is Nothing Then
 MsgBox objFolder.FolderPath
Else
 MsgBox "You did not pick a folder."
End If

When this code runs, Outlook pops up the Select Folder dialog, shown
in Figure 13.1, in which the user can create a new folder or select an exist-
ing folder. Select Folder is a modal dialog, which means that execution of
your code stops until the user clicks OK or Cancel.

Because the user can click Cancel in the Select Folder dialog, code using
the PickFolder method must handle the possibility that the user may
choose no folder at all. The expression Not objFolder Is Nothing

returns True if a folder was selected or False if the user clicked Cancel.

Note: It is not possible to programmatically set the folder that appears
selected when the Select Folder dialog first displays.

13.4.4 Example: Setting the save folder for a message

Users migrating from Lotus Notes or Domino often ask if Outlook can
prompt them for the location to save each outgoing message. In Listing
13.3, code for the Application.ItemSend event prompts the user to
select a folder and, if the chosen folder is appropriate, sets the SaveSent-
MessageFolder property for the message to the selected folder. If the
selected folder is not a mail folder or if it is in another user’s Exchange mail-

Figure 13.1 Use the Namespace.PickFolder method to pop up this dialog.

418 13.4 Accessing folders

box or in the Public Folders hierarchy, the code presents the user with the
choice of saving to the default Sent Items folder, not saving the message at
all, or canceling the current send operation so that the user can send again
and get a new opportunity to select a folder. Place the code for Listing 13.3
in the built-in ThisOutlookSession module in Outlook VBA.

Listing 13.3 Setting the save folder for an outgoing message

Private Sub Application_ItemSend(ByVal Item As Object, _
 Cancel As Boolean)
 Dim objNS As Outlook.NameSpace
 Dim objFolder As Outlook.Folder
 Dim strMsg As String
 Dim intRes As Integer
 Dim blnIsGoodFolder As Boolean
 On Error Resume Next
 If Item.Class = olMail Then
 Set objNS = Application.Session
 Set objFolder = objNS.PickFolder
 If Not objFolder Is Nothing Then
 Select Case objFolder.Store.ExchangeStoreType
 Case olNotExchange, olPrimaryExchangeMailbox
 If objFolder.DefaultItemType = _
 olmailitem Then
 blnIsGoodFolder = True
 Else
 blnIsGoodFolder = False
 End If
 Case olExchangePublicFolder, _
 olExchangeMailbox
 blnIsGoodFolder = False
 End Select
 If blnIsGoodFolder = True Then
 Set Item.SaveSentMessageFolder = objFolder
 Else
 strMsg = "The selected folder -- " & _
 objFolder.FolderPath & _
 " -- cannot be used to save this" & _
 " outgoing item. Do you want to" & _
 " save it to your default Sent" & _
 " Items folder instead? " & vbCrLf & _
 vbCrLf & "Click Yes to save to " & _
 "Sent Items." & vbCrLf & "Click " & _
 "No not to save the message." & _
 vbCrLf & "Click Cancel to return " & _
 "to the message without sending it."
 intRes = MsgBox(strMsg, _
 vbQuestion + vbYesNoCancel, _
 "Save Outgoing Message")
 Select Case intRes
 Case vbYes
 Set Item.SaveSentMessageFolder = _
 objNS.GetDefaultFolder _
 (olFolderSentMail)

13.4 Accessing folders 419

Notice that Listing 13.3 uses three of the techniques we’ve seen in this
chapter:

Allowing the user to pick a folder with Namespace.PickFolder

Checking the type of store

Returning one of the user’s default folders with Namespace.GetDe-
faultFolder

Another concept worth noting is that SaveSentMessageFolder takes a
Folder object as its value. This means that it is an object property. Thus,
code to assign a value to SaveSentMessageFolder requires the Set key-
word, just as a statement to instantiate an object variable would. The
Explorer.CurrentFolder property discussed in Section 13.3.2 is another
example of an object property that requires a Set keyword to assign a new
folder to the property.

13.4.5 Getting a default folder from another
Exchange mailbox

To get a default Outlook folder from another Exchange mailbox, the
Namespace.GetSharedDefaultFolder method requires a folder constant
from Table 13.3 and a Recipient object representing the other user. We’ll
look at recipients in detail later in Chapter 18, “Working with Recipients
and Address Lists.” For now, what you need to know is that the easiest way
to make this technique work is to use the other user’s SMTP address, which
you can see in the Address Book. That address is always guaranteed to be
unique, which means it will always resolve to a valid Recipient object and
thus be usable to open the other user’s folder. Listing 13.4 shows a practical
VBA application of this technique to return another user’s Contacts folder,
given only the user’s email address. Listing 13.5 is the VBScript version.

It’s important to understand that there is every possibility that you won’t
get a valid recipient or that you won’t be able to return or work with the

 Case vbNo
 Item.DeleteAfterSubmit = True
 Case vbCancel
 Cancel = True
 Item.GetInspector.Activate
 End Select
 End If
 End If
 End If
 Set objFolder = Nothing
 Set objNS = Nothing
End Sub

Listing 13.3 Setting the save folder for an outgoing message (continued)

420 13.4 Accessing folders

Listing 13.4 Getting another Exchange user’s Contacts folder (VBA version)

Function GetOtherUserContacts(strUserSMTP As String) As Folder
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objFolder As Outlook.Folder
 Dim objRecip As Outlook.Recipient
 On Error Resume Next
 Set objOL = Application
 Set objNS = objOL.Session
 Set objRecip = objNS.CreateRecipient(strUserSMTP)
 Set objFolder = _
 objNS.GetSharedDefaultFolder(objRecip, olFolderContacts)
 If objFolder Is Nothing Then
 MsgBox "Could not find Contacts for """ & _
 strUserSMTP & """", vbExclamation, _
 "User not found"
 End If
 Set GetOtherUserContacts = objFolder
 Set objFolder = Nothing
 Set objRecip = Nothing
 Set objNS = Nothing
 Set objOL = Nothing
End Function

Listing 13.5 Getting another Exchange user’s Contacts folder (VBScript version)

Function GetOtherUserContacts(strUserSMTP)
 Dim objOL
 Dim objNS
 Dim objFolder
 Dim objRecip
 Const olFolderContacts = 10
 On Error Resume Next
 Set objOL = Application
 Set objNS = objOL.Session
 Set objRecip = objNS.CreateRecipient(strUserSMTP)
 Set objFolder = _
 objNS.GetSharedDefaultFolder(objRecip, olFolderContacts)
 If objFolder Is Nothing Then
 MsgBox "Could not find Contacts for """ & _
 strUserSMTP & """", vbExclamation, _
 "User not found"
 End If
 Set GetOtherUserContacts = objFolder
 Set objFolder = Nothing
 Set objRecip = Nothing
 Set objNS = Nothing
 Set objOL = Nothing
End Function

13.4 Accessing folders 421

folder, perhaps because of connectivity or permissions issues. Therefore, as
with the PickFolder method, your code to call GetOtherUserContacts
needs to handle possible errors and test for the actual availability of the
folder—and its contents—before proceeding. This would be typical VBA
or VBScript code to call GetOtherUserContacts:

On Error Resume Next
Set objContacts = _
 GetOtherUserContacts("flaviusj@turtleflock.com")
If Not objContacts Is Nothing Then
 Err.Clear
 strCount = CStr(objContacts.Items.Count)
 If Err = 0 Then
 MsgBox "Number of items in folder = " & strCount
 Else
 MsgBox "Problem getting items from folder"
 End
 Err.Clear
End If

Note: In many cases, you can use the other user’s mailbox alias, which is
also shown in the Address Book entry, with CreateRecipient, but the
alias is not guaranteed to be unique. You could have one alias “smitha” and
another “smithab.” The SMTP address, however, will always be unique.

You can return only seven default folders from other users’ mailboxes,
not the entire list from Table 13.3. If you need to return a folder other than
one of those defaults, the mailbox must be visible in the Folder List, and as
with other folders in the Folder List, you can walk down the folder hierar-
chy to reach the desired folder, as explained later in the chapter. Alterna-
tively, if a shared folder is listed in the navigation pane, you can return that
folder from the new NavigationFolder object that Outlook 2007 intro-
duces. Both these techniques are discussed later in the chapter.

13.4.6 Getting a search folder

Search folders, introduced in Outlook 2003, are “virtual” folders. They
themselves do not contain any items or subfolders, but when displayed by
the user, they show all the items that meet particular search criteria. When
accessed programmatically, a search folder returns a Folder object with an
Items collection of items found by the search. It does not, however, sup-
port a Folders collection.

A search folder cannot search across information stores. Therefore, each
store may have its own set of search folders for searching the items in that
store. Search folder names are unique. That makes it possible to return any
search folder by name, using the Store.GetSearchFolders method to
return a collection of all active search folders for a given store, ignoring any

422 13.4 Accessing folders

search folders the user has never used or has not used recently. This VBA or
VBScript code snippet returns the user’s Unread Mail search folder from the
default store as a Folder object named objUnread:

 Set objOL = Application
 Set objNS = objOL.Session
 Set objDefStore = objNS.DefaultStore
 Set objUnread = _
 objDefStore.GetSearchFolders.Item("Unread Mail")

Tip: We will see how to create a search folder programmatically in Chap-
ter 16.

13.4.7 Walking the folder tree to get any folder

What if you need to return a folder that isn’t the currently displayed folder,
isn’t in the navigation pane, and isn’t a search folder? If you know the
EntryID and StoreID values for the folder, you can use the
Namespace.GetFolderFromID method, listed in Table 13.2. However, more
likely than knowing the ID values is that you will know where the folder
stands in relationship to the overall folder hierarchy. In that scenario, your
code can start with a known folder and navigate up or down the folder hierar-
chy until you locate the desired folder. To go up the hierarchy, use the Parent
property of any Outlook item or folder. To go down the hierarchy, use the
Folders property of a Folder object, which returns a collection of that
folder’s subfolders. What known folders can you start from? You already know
how to return any default folder and the root folder of any information store,
so those are available starting points. You can also use the Namespace.Fold-
ers collection, which contains all the store root folders. Figure 13.2 shows a
portion of the folder hierarchy in an Exchange mailbox and illustrates how
the Parent and Folders properties can help you move up or down the hier-
archy, along with other key methods for returning folders.

Let’s start with a couple of simple examples, first a folder named Sub-
scriptions that is a subfolder of the Inbox. Return the Inbox using the
Namespace.GetDefaultFolder method, and then use the Inbox’s Fold-
ers collection. This code snippet would work in VBScript behind an Out-
look form:

Const olFolderInbox = 6
Set objOL = Application
Set objNS = objOL.Session
Set objInbox = objNS.GetDefaultFolder(olFolderInbox)
Set objSubsFolder = _
 objInbox.Folders.Item("Subscriptions")

To make the same code work in VBA, simply omit the constant declara-
tion.

13.4 Accessing folders 423

Note: Although a folder has an Items collection as well as a Folders col-
lection, Item in the previous code snippet does not refer to an individual
Outlook item. Instead, it refers to the Item method used with collections to
return a specific item from the collection.

For a second example, consider a folder named Important Stuff that is at
the same level as the Inbox. The easiest way to return it is as a subfolder of
the default store’s root folder:

Set objOL = Application
Set objNS = objOL.Session
Set objRoot = objNS.DefaultStore.GetRootFolder
Set objImportant = _
 objRoot.Folders.Item("Important Stuff")

Here’s a more complicated example. Consider a top-level folder named
Sales Department in the Public Folders hierarchy on an Exchange server
that has a subfolder named Sales Contacts. You could return that folder
with code like this:

Figure 13.2 The Outlook object model has many methods to help you return any available folder as
a Folder object.

424 13.4 Accessing folders

Set objOL = Outlook.Application
Set objNS = objOL.Session
Set objFolder = objNS.Folders.Item("Public Folders"). _
 Folders.Item("All Public Folders"). _
 Folders.Item("Sales Department"). _
 Folders.Item("Sales Contacts")

The Set objFolder statement takes up four whole lines! Not only is it
hard to type, but it also would be very difficult to debug if there was a typo
on one of the folder names or the user didn’t have permission to view the
Sales Department folder. And what if the folder you wanted was a subfolder
of the Sales Contacts folder? The Set objFolder statement would be even
more complex.

Tip: For easier debugging, never return more than one new object in any
code statement. Instead, break up a complex statement into multiple state-
ments that each returns just one object.

Rather than type out a long Set objFolder statement or multiple
statements to walk each level of the folder hierarchy, I recommend that you
use a generic function that can return any folder once you know the path
through the folder hierarchy to that folder. How can you get the folder
path? One way is to eyeball it by writing down the name of each folder that
leads to the desired folder, starting with the root folder of the information
store.

But there are easier ways! For example, select the folder in the Folder List
navigation pane, type this expression into the Immediate window in VBA,
and then press Enter:

? Application.ActiveExplorer.CurrentFolder.FolderPath

On the next line in the immediate window, VBA will display the value
of the FolderPath property of the currently displayed folder. In the case of
our example, that would be “\\Public Folders\All Public Folders\Sales
Department\Sales Contacts.” Another method is to use the View | Toolbars
| Web command to display the Web toolbar, which shows the URL for the
currently displayed Outlook folder or Web page. An Outlook folder’s URL
is its path, preceded by Outlook:. With either of these methods, you can
quickly copy and paste the folder path for any folder into your code.

Once you have the path, you can use it as the argument for the Get-
Folder() function shown in VBA and custom form VBScript versions in
Listings 13.6 and 13.7 respectively. Don’t forget that the path needs to
include the display name of the information store that contains the folder.

Do you recognize the Split(strFPath, "\") expression from Chap-
ter 8? That expression breaks the path into an array of strings, each string

13.4 Accessing folders 425

being the name of a folder. With each iteration of the For ... Next loop,
the code works its way down the path, attempting to get the corresponding
folder by name from the colFolders collection of subfolders of the last
folder reached. If there is no matching folder at any level, the function exits
the loop and returns Nothing.

The path string parsing in the GetFolder() function is designed to be
flexible enough to work with several different formats, so you don’t have to
remember which way the slashes slant. All these path string formats would
return the same folder:

\\Personal Folders\Important Stuff\My Stuff
Personal Folders\Important Stuff\My Stuff
Personal Folders/Important Stuff/My Stuff

If a desired folder is in another user’s Exchange mailbox, you can use the
GetFolder() function to return that folder only if the folder is visible in

Listing 13.6 Walk the folder hierarchy by parsing the folder path (VBA version)

Function GetFolder(strFPath As String)
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim colFolders As Outlook.Folders
 Dim objFolder As Outlook.Folder
 Dim arrFolders() As String
 Dim i As Long
 On Error Resume Next
 ' parse path string into array
 strFPath = Replace(strFPath, "/", "\")
 If Left(strFPath, 2) = "\\" Then
 strFPath = Mid(strFPath, 3)
 End If
 arrFolders = Split(strFPath, "\")
 ' walk folder tree
 Set objOL = Application
 Set objNS = objOL.Session
 Set colFolders = objNS.Folders
 For i = 0 To UBound(arrFolders)
 Set objFolder = Nothing
 Set objFolder = colFolders.Item(arrFolders(i))
 If objFolder Is Nothing Then
 Exit For
 Else
 Set colFolders = objFolder.Folders
 End If
 Next
 Set GetFolder = objFolder
 Set objOL = Nothing
 Set objNS = Nothing
 Set colFolders = Nothing
 Set objFolder = Nothing
End Function

426 13.4 Accessing folders

the Folder List navigation pane. The folder path would start with the dis-
play name for the other user’s mailbox root, for example:

strPth = "\\Mailbox - Mosher, Sue\Contacts\Team Contacts"
Set objFolder = GetFolder(strPth)

As with other uses of GetFolder(), using it with folders in other users’
mailboxes requires you to obtain the exact path to the folder. Later in the
chapter, we’ll see how to use the navigation pane to return a previously
viewed folder shared from another user’s mailbox. That technique works
even if the other user’s mailbox is not visible in the Folder List navigation
pane.

13.4.8 Returning an Exchange public folder

Getting a folder from the Public Folders hierarchy on Exchange presents
two challenges that GetFolder() can’t quite handle. One is that the \\Pub-
lic Folders\All Public Folders or \\Public Folders\Favorites part of the folder
path might be localized in a language other than English. Another is that

Listing 13.7 Walk the folder hierarchy by parsing the folder path (VBScript version)

Function GetFolder(strFPath)
 Dim objNS
 Dim colFolders
 Dim objFolder
 Dim arrFolders
 Dim i
 On Error Resume Next
 strFPath = Replace(strFPath, "/", "\")
 If Left(strFPath, 2) = "\\" Then
 strFPath = Mid(strFPath, 3)
 End If
 arrFolders = Split(strFPath, "\")
 Set objNS = Application.Session
 Set colFolders = objNS.Folders
 For i = 0 To UBound(arrFolders)
 Set objFolder = Nothing
 Set objFolder = colFolders.Item(arrFolders(i))
 If objFolder Is Nothing Then
 Exit For
 Else
 Set colFolders = objFolder.Folders
 End If
 Next
 Set GetFolder = objFolder
 Set objOL = Nothing
 Set objNS = Nothing
 Set colFolders = Nothing
 Set objFolder = Nothing
End Function

13.4 Accessing folders 427

the user might be working offline. In that case, the All Public Folders hier-
archy would not be accessible, but the user still might have the folder in the
\\Public Folders\Favorites.

To address these issues, you can use the GetPublicFolder() function
shown in Listing 13.8 as a VBScript version that will also work in VBA if
you comment out the Const statements. (For VBA, you can also uncom-
ment the As datatype portion of the Dim statements.) This function
requires a shortened version of the folder path, omitting “\\Public Folders\
All Public Folders” or “\\Public Folders\Favorites.” Thus building on the
earlier example, you could call GetPublicFolder() with this statement:

Set objSalesCont = GetPublicFolder _
 ("Sales Department\Sales Contacts\NE Contacts")

Several factors make Listing 13.8 rather complex. To keep the tech-
nique suitable in both English and non-English environments, it uses a

Listing 13.8 Return a folder from the Exchange Public Folders hierarchy

Function GetPublicFolder(strPFPath)
 ' example: "Sales Department\Sales Contacts\NE Contacts"
 Dim objOL ' As Outlook.Application
 Dim objNS ' As Outlook.NameSpace
 Dim colFolders ' As Outlook.Folders
 Dim objFolder ' As Outlook.Folder
 Dim objFavRoot ' As Outlook.Folder
 Dim arrFolders ' As String - VBA should use arrFolders()
 Dim i ' As Integer
 Dim j ' As Integer
 Const olPublicFoldersAllPublicFolders = 18
 On Error Resume Next
 strPFPath = Replace(strPFPath, "/", "\")
 arrFolders = Split(strPFPath, "\")
 ' check Exchange online/offline status
 Set objOL = Application
 Set objNS = objOL.Session
 If Not objNS.Offline Then
 ' look in Public Folders\All Public Folders
 Set objFolder = objNS.GetDefaultFolder _
 (olPublicFoldersAllPublicFolders)
 Set colFolders = objFolder.Folders
 For i = 0 To UBound(arrFolders)
 Set objFolder = Nothing
 Set objFolder = colFolders.Item(arrFolders(i))
 If Not objFolder Is Nothing Then
 Set colFolders = objFolder.Folders
 Else
 Exit For
 End If
 Next
 Else
 ' look in Public Folders\Favorites

428 13.4 Accessing folders

 Set objFavRoot = GetPFFavs()
 Set colFolders = objFavRoot.Folders
 ' look for folder using full path
 For i = 0 To UBound(arrFolders)
 Set objFolder = Nothing
 Set objFolder = colFolders.Item(arrFolders(i))
 If Not objFolder Is Nothing Then
 Set colFolders = objFolder.Folders
 Else
 Exit For
 End If
 Next
 ' look for folder using partial path
 If objFolder Is Nothing Then
 For i = UBound(arrFolders) To 0 Step -1
 Set colFolders = objFavRoot.Folders
 Set objFolder = Nothing
 Set objFolder = colFolders.Item(arrFolders(i))
 If Not objFolder Is Nothing Then
 If i = UBound(arrFolders) Then
 Exit For
 Else
 j = i
 Do While j <= UBound(arrFolders)
 j = j + 1
 Set colFolders = objFolder.Folders
 Set objFolder = Nothing
 Set objFolder = _
 colFolders.Item(arrFolders(j))
 If Not objFolder Is Nothing Then
 If j = UBound(arrFolders) Then
 Exit Do
 End If
 Else
 Exit Do
 End If
 Loop
 If Not objFolder Is Nothing Then
 Exit For
 End If
 End If
 End If
 Next
 End If
 End If
 Set GetPublicFolder = objFolder
 Set objOL = Nothing
 Set objNS = Nothing
 Set colFolders = Nothing
 Set objFolder = Nothing
End Function

Listing 13.8 Return a folder from the Exchange Public Folders hierarchy (continued)

13.4 Accessing folders 429

Function GetPFFavs()
 ' returns localized Public Folders\Favorites
 Dim objOL ' As Outlook.Application
 Dim objNS ' As Outlook.NameSpace
 Dim colFolders ' As Outlook.Folders
 Dim objFolder ' As Outlook.Folder
 Dim objAllPF ' As Outlook.Folder
 Dim objStore ' As Outlook.Store
 Dim blnPFFound ' As Boolean
 Const olExchangePublicFolder = 2
 Const olPublicFoldersAllPublicFolders = 18
 On Error Resume Next
 Set objOL = Application
 Set objNS = objOL.Session
 For Each objStore In objNS.Stores
 If objStore.ExchangeStoreType = _
 olExchangePublicFolder Then
 blnPFFound = True
 Exit For
 End If
 Next
 If blnPFFound Then
 Set objFolder = objStore.GetRootFolder
 If objFolder.Folders.Count = 1 Then
 Set GetPFFavs = objFolder.Folders.Item(1)
 Else
 Set objAllPF = objNS.GetDefaultFolder _
 (olPublicFoldersAllPublicFolders)
 If objAllPF Is Nothing Then
 Set objFolder = objFolder.Folders.Item(1)
 If objFolder Is Nothing Then
 Set objFolder = objFolder.Folders.Item(1)
 End If
 Set GetPFFavs = objFolder
 Else
 If objFolder.Folders.Item(1).EntryID = _
 objAllPF.EntryID Then
 Set GetPFFavs = objFolder.Folders.Item(2)
 Else
 Set GetPFFavs = objFolder.Folders.Item(1)
 End If
 End If
 End If
 End If
 Set objOL = Nothing
 Set objNS = Nothing
 Set colFolders = Nothing
 Set objFolder = Nothing
 Set objAllPF = Nothing
 Set objStore = Nothing
End Function

Listing 13.8 Return a folder from the Exchange Public Folders hierarchy (continued)

430 13.4 Accessing folders

GetPFFavs() function to return the Public Folders\Favorites folder with-
out referring to the literal names of either of those folders.

Also, where a folder appears in the Public Folders\Favorites hierarchy
depends on how the user added the folder to Favorites. Our example folder
resides on the Exchange server as Public Folders\All Public Folders\Sales
Department\Sales Contacts\NE Contacts. However, the replica in Public
Folders\Favorites could use any of these three paths:

Sales Department\Sales Contacts\NE Contacts

Sales Contacts\NE Contacts

NE Contacts

The GetPublicFolder() function initially tries to return the folder
with the full path, that is, the first path listed above. If that returns Noth-
ing, it then tries to locate the folder by its name alone, as in the last path
shown above. Finally, if that also returns Nothing, it parses the path string
working up the hierarchy (rather than down, as in GetFolder()) to take
care of partial paths like the second one listed above.

13.4.9 Returning shared folders using the
navigation pane

When you open a calendar from another user, either from a sharing invita-
tion sent by that user or with the File | Open | Other User’s Folder com-
mand, Outlook places a link to that folder in a group in the navigation
named People’s Calendars, People’s Contacts, and so on. While most people
will probably want to work with those calendars side-by-side, an assistant
who manages other people’s calendars might want to have each calendar
from the People’s Calendars group open in its own window. The code in
Listing 13.9 opens each of the folders listed under People’s Calendars in its
own window, using the same Explorers.Add method you saw in Listing
10.1, this time called from the Application_Startup event handler in the
built-in ThisOutlookSession module in Outlook VBA.

What makes the technique in Listing 13.9 possible are the new objects
in Outlook 2007 related to the navigation pane. We’ll look at them more
closely in Chapter 23. For now, what is most relevant to this chapter is the
fact that each NavigationFolder object—in other words, each link dis-
played in a navigation pane group—has a Folder object property that you
can use to return the folder related to that link.

If you have turned on the Hide When Minimized option for the Out-
look icon in the Windows system tray, you should comment out this state-
ment in Listing 13.8:

objExpl.WindowState = olMinimized

13.4 Accessing folders 431

You can also show the windows non-maximized by setting Window-
State to olNormalWindow instead of olMaximized.

13.4.10 Recursing folders

Another common Outlook programming technique is to process not just a
single folder but also that folder’s subfolders (and each subfolder’s subfold-
ers) all the way down the folder hierarchy. As you’ll recall, a Folder object

Listing 13.9 Display all folders from the People’s Calendars group

Private Sub Application_Startup()
 Call ShowOtherUserCalFolders
End Sub

Sub ShowOtherUserCalFolders()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objExpCal As Outlook.Explorer
 Dim objNavMod As Outlook.CalendarModule
 Dim objNavGroup As Outlook.NavigationGroup
 Dim objNavFolder As Outlook.NavigationFolder
 Dim objFolder As Outlook.Folder
 Dim colExpl As Outlook.Explorers
 Dim objExpl As Outlook.Explorer
 Set objOL = Application
 Set objNS = objOL.Session
 Set colExpl = objOL.Explorers
 Set objExpCal = _
 objNS.GetDefaultFolder(olFolderCalendar).GetExplorer
 Set objNavMod = objExpCal.NavigationPane.Modules. _
 GetNavigationModule(olModuleCalendar)
 Set objNavGroup = objNavMod.NavigationGroups. _
 GetDefaultNavigationGroup(olPeopleFoldersGroup)
 For Each objNavFolder In objNavGroup.NavigationFolders
 Set objFolder = objNavFolder.Folder
 Set objExpl = _
 colExpl.Add(objFolder, olFolderDisplayNormal)
 objExpl.Activate
 objExpl.WindowState = olMaximized
 objExpl.WindowState = olMinimized
 Next
 Set objOL = Nothing
 Set objNS = Nothing
 Set objNavMod = Nothing
 Set objNavGroup = Nothing
 Set objNavFolder = Nothing
 Set objFolder = Nothing
 Set colExpl = Nothing
 Set objExpl = Nothing
End Sub

432 13.4 Accessing folders

has both a Folders collection containing all its subfolders and an Items
collection of all the items (messages, contacts, and so on) in the folder. The
procedure in Listing 13.10 provides a basic folder and item iteration frame-
work for VBScript behind an Outlook form.

If you wanted to process items as well as folders with ProcessFolder,
your script would also need to include a ProcessItem subroutine with a
single parameter—the item to be processed. ProcessItem could do what-
ever you want with the item—remove attachments, mark it unread, and so
on.

This is an example of how to start the processing by passing a specific
starting folder to ProcessFolder:

Set objFolder = Application.ActiveExplorer.CurrentFolder
Call ProcessFolder(objFolder)

Listing 13.11 uses the same folder recursion technique, only this time as
a VBA macro, to loop through all the folders in the current Outlook ses-
sion. It builds and displays a new email message that lists the folder path
and number of items in each folder. It also totals running sums of the num-
ber of folders and items.

Note the use of three module-level variables to allow both ListAll-
Folders and ProcessFolder to write to and/or read from the two run-
ning sums and the list of folders.

The ProcessFolder subroutines in Listings 13.10 and 13.11 are
known as recursive procedures, because the ProcessFolder procedure calls
itself. Recursion is a key programming technique where an object contains a
collection of objects of the same class as the original object, as here a
Folder contains a Folders collection of other Folder objects.

Listing 13.10 Basic folder recursion with item iteration (VBScript)

Sub ProcessFolder(StartFolder)
 Dim objFolder
 Dim objItem
 ' process all the subfolders of this folder
 For Each objFolder In StartFolder.Folders
 Call ProcessFolder(objFolder)
 Next
 ' process all the items in this folder
 For Each objItem In StartFolder.Items
 Call ProcessItem(objItem)
 Next
 Set objFolder = Nothing
End Sub

13.4 Accessing folders 433

Tip: If you want to peek ahead at another example of folder recursion, List-
ing 14.6 in the next chapter shows how to process all folders to remove
cached copies of the Messages view so that the settings in the master copy of
the Messages view will apply to all folders.

Listing 13.11 List the folders and number of items in the current Outlook session (VBA)

Dim mlngItemCount As Long
Dim mlngFolderCount As Long
Dim mstrList As String

Sub ListAllFolders()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objFolder As Outlook.Folder
 Dim objMsg As Outlook.MailItem
 mlngItemCount = 0
 mlngFolderCount = 0
 mstrList = ""
 Set objOL = Application
 Set objNS = objOL.Session
 For Each objFolder In objNS.Folders
 Call ProcessFolder(objFolder)
 mstrList = mstrList & vbCrLf
 Next
 Set objMsg = objOL.CreateItem(olMailItem)
 mstrList = mstrList & vbCrLf & _
 "Total folders in Outlook = " & _
 Format(mlngFolderCount, "###,###") & _
 vbCrLf & "Total items in Outlook = " & _
 Format(mlngItemCount, "###,###")
 objMsg.Body = mstrList
 objMsg.Display
 Set objOL = Nothing
 Set objNS = Nothing
 Set objFolder = Nothing
End Sub

Sub ProcessFolder(startFolder As Outlook.Folder)
 Dim objFolder As Outlook.Folder
 On Error Resume Next
 mstrList = mstrList & vbCrLf & startFolder.FolderPath & _
 vbTab & startFolder.Items.Count
 mlngItemCount = mlngItemCount + startFolder.Items.Count
 mlngFolderCount = mlngFolderCount + 1
 For Each objFolder In startFolder.Folders
 Call ProcessFolder(objFolder)
 Next
 Set objFolder = Nothing
End Sub

434 13.5 Working with folders

13.5 Working with folders
Many useful techniques for working with Outlook folders are based on the
collection methods discussed in Chapter 8. Each Folder object (except for
a Store root folder) is a member of the Folders collection of its Parent
object. Therefore, you can use the Add or Remove method on that Folders
collection to create or delete a folder.

As you saw in Listings 13.6 and 13.7, you can use the Item method to
retrieve a folder by name. You can also use an index number with Item.
The Folders collection also includes GetFirst, GetLast, GetNext, and
GetPrevious methods for moving through the collection, each one return-
ing either the appropriate folder or Nothing if there are no more folders to
be returned.

For an individual Outlook folder, which is represented by the Folder
object, Table 13.4 lists available methods.

Table 13.4 Folder Object Methods (* = new in Outlook 2007)

Method Description Returns

AddToPFFavorites Adds the folder to the Public
Folders\Favorites folder so that it
can be cached locally and used
offline; applies only to folders in
the Public Folders hierarchy on
an Exchange server

n/a

CopyTo(DestinationFolder) Copies the entire folder and its
contents, including any hidden
items

A Folder object representing
the new copy of the folder

Delete Deletes the folder n/a

Display Shows the folder in a new
Explorer window

n/a

*GetCalendarExporter Allows the user to export the
contents of a calendar folder
using an iCalendar .ics file

A CalendarSharing object
that can be used to send the con-
tents of the folder to another user
as an iCalendar .ics file

GetExplorer(DisplayMode) Instantiates an Explorer object
for the folder

The Explorer object for the
folder; use the Activate
method to show it

*GetStorage(StorageIdentifier,

StorageIdentifierType)

Obtains a hidden item contain-
ing information about the folder,
creating it if it does not already
exist

A StorageItem object contain-
ing private data either for built-in
Outlook functionality or for
your custom solution

13.5 Working with folders 435

The Folder.GetStorage method is covered in the next chapter, while
the Folder.GetTable method is covered in Chapter 15.

13.5.1 Working with folder properties

An Outlook folder has three different kinds of settings:

Standard Folder object properties listed in the Outlook object
model, such as Name and CurrentView, accessed with the
Folder.property_name syntax

Other properties not listed in the Outlook object model, often
known as MAPI property tags

Hidden items that store information about the folder

Chapter 14 explains how to access the last two types of settings using
two key new objects in Outlook 2007. Table 13.5 lists the most commonly
used Outlook object model properties of the Folder object. In general,
only an owner of a folder can make changes to the folder’s properties. A user
has sufficient rights to change properties on any of their own Exchange
mailbox folders and on all folders in any open Personal Folders .pst file.

*GetTable(Filter, TableContents) Allows the program to work with
a read-only table of either hidden
or visible items in the folder

A Table object containing all or
a filtered set of items from the
folder

MoveTo(DestinationFolder) Moves the entire folder A Folder object representing
the moved folder in its new loca-
tion

Table 13.5 Useful Folder properties (* = read-only property)

Property Description

AddressBookName Display name used if ShowAddressBook = True

CurrentView View object representing the currently displayed view of the folder

CustomViewsOnly Show only views created for the folder, not standard views; default is False

*DefaultItemType Identifies the type of folder; can be one of these six values:

olAppointmentItem 1 olMailItem 0

olContactItem 2 olNoteItem 5

olJournalItem 4 olTaskItem 3

Table 13.4 Folder Object Methods (* = new in Outlook 2007) (continued)

Method Description Returns

436 13.5 Working with folders

*DefaultMessageClass Another way to identify the type of folder, from the message class for the
default type of item (e.g., IPM.Contact for a folder with DefaultItemType
= olContactItem)

Description Text describing the folder, as shown on the General tab of the folder’s Proper-
ties dialog

*EntryID Folder ID unique within the information store

*FolderPath Complete path string to the folder from its parent store’s root folder

Folders Collection of the folder’s subfolders

IsSharePointFolder* Returns True if the folder is in a local replica of a SharePoint folder; default is
False

Items Collection of the items the folder contains; use Items.Count to return the
total number of items in the folder

Name Name of the folder; must be unique among folders in the same parent folder

Parent For store root folders, returns the Namespace object; for other folders, returns
the parent Folder

*PropertyAccessor Object used to access hidden properties (new in Outlook 2007)

ShowAsOutlookAB For contacts folders, if True, Outlook displays the folder in the Outlook
Address Book with the display name set in AddressBookName; default is
False; always False for non-contact folders

ShowItemCount Determines what type of item count the folder displays in the navigation pane;
can be one of these values from the OlShowItemCount enumeration:

olNoItemCount 0

olShowTotalItemCount 2

olShowUnreadItemCount 1

Store Store object representing the information store containing the folder

StoreID Unique ID related to Store

UnReadItemCount Number of unread items in the folder

UserDefinedProperties Collection of UserDefinedProperty custom properties defined for use by
items stored in the folder (new in Outlook 2007)

Views Collection of View objects representing the views that can be applied to the
folder

WebViewOn If True, display the Web page whose URL is listed in WebViewURL instead of
the items in the folder; default is False

Table 13.5 Useful Folder properties (* = read-only property) (continued)

Property Description

13.5 Working with folders 437

We’ll look at views and folder home pages, which are Web pages that
Outlook displays instead of the items in a folder, in Chapter 22.

13.5.2 Creating and deleting folders

To create a folder, use the Add method on the parent folder where you want
to create the new folder. The Add method takes two parameters: the name
of the new folder and an optional Type constant that defines what kind of
items the folder can hold. Table 13.6 lists the possible values for Type.

If you omit the second argument, the folder Type, the new folder inher-
its its Type setting from the parent folder. If the parent folder is the root
folder of an information store and you omit the Type, the new folder will
contain message items.

To see an example of creating a folder, look back at Listing 11.24, which
created a folder named Outlook System Tasks as a subfolder of the Tasks
folder. In this VBA code snippet, m_objNS is a Namespace object:

Set objFolderTasks = _
 m_objNS.GetDefaultFolder(olFolderTasks)
Set objFolderSysTasks = _
 objFolderTasks.Folders("Outlook System Tasks")
If objFolderSysTasks Is Nothing Then
 Set objFolderSysTasks = _
 objFolderTasks.Folders.Add("Outlook System Tasks")
End If

You will get a runtime error if you try to add a new folder with the same
name as an existing folder in the same Folders collection. Since a folder
name must be unique in the Folders collection, you should always check for
the existence of a folder before trying to create a new folder with that name.

Besides Folders.Add, the other method available to create a new folder
is Search.Save, which creates a new search folder from the filter criteria
that create a Search object. We’ll look at that technique in Chapter 16.

To remove a folder, use the Delete method, for example, objFolder-
SysTasks.Delete. You can also use the Remove method on its parent
Folders collection.

WebViewURL URL for Web page that will be displayed instead of the items in the folder if
WebViewURL = True; default is blank, except for the root of the default
information store, which uses the URL for the Outlook Today page that comes
with Outlook

Table 13.5 Useful Folder properties (* = read-only property) (continued)

Property Description

438 13.5 Working with folders

13.5.3 Moving and copying folders

You can copy or move entire folders, with all their items, to a new location
in the folder hierarchy. Folders often contain more than visible items. They
may also contain hidden items including custom Outlook forms published
to the folder and custom views on the folder. Copying or moving the entire
folder ensures that those hidden items are also copied or moved, along with
the visible items.

To copy or move a folder, you need two Folder object variables, one for
the folder being moved or copied and a second for the destination parent
folder. The syntax for these two methods is similar. Each returns the copied
or moved folder as a new Folder object:

Set objCopiedFolder = objFolder.CopyTo(objDestFolder)
Set objMovedFolder = objFolder.MoveTo(objDestFolder)

Moving a folder to the Deleted Items folder is equivalent to executing
the Folder.Delete method.

13.5.4 Sharing a folder

Outlook 2007 includes two ways in which a user can share the data in a
folder programmatically, both new to the Outlook object model—one for
Exchange, and one for all Outlook configurations but only for calendar
folders. The calendar sharing method is particularly good for distributing
company events, such as holidays and conferences, to users.

In an Exchange environment only, use the Namespace.CreateShar-
ingItem method to make the folder available to another user in the same
Exchange organization. This VBA code snippet sends a sharing invitation
for the current user’s Calendar folder:

Set objOL = Application
Set objNS = objOL.Session

Table 13.6 Add Folder Types (from OlDefaultFolders enumeration)

Folder Contains Type Constant Value

Appointment items olFolderCalendar 9

Contact items olFolderContacts 10

Journal items olFolderJournal 11

Message items olFolderInbox or olFolderDrafts 6, 16

Note items olFolderNotes 12

Task items olFolderTasks 13

13.5 Working with folders 439

Set objCal = objNS.GetDefaultFolder(olFolderCalendar)
Set objShItem = _
 objNS.CreateSharingItem(objCal, olProviderExchange)
With objShItem
 .To = "flaviusj@turtleflock.net"
 .Type = olSharingMsgTypeInvite
 .Send
End With

The first parameter for the CreateSharingItem is the folder you want
to share. If the folder is not in the user’s Exchange mailbox, a runtime error
will occur. For a default folder, such as Calendar or Contacts, the Type
property can have one of these three values from the OlSharingMsgType
enumeration:

For a non-default folder, the only valid Type is olSharingMsgType-
Invite.

Sharing a default folder causes Outlook to grant Reviewer access to the
other person. If you share a non-default folder, you can set the value of the
SharingItem.AllowWriteAccess property to True and thus grant the
other person Editor access.

Tip: The CreateSharingItem method can also generate sharing messages
for other types of information besides Outlook folders, such as RSS feeds,
SharePoint lists, and Web calendars. In those scenarios, the first parameter
is a string—the URL for the information—and the second parameter uses
the appropriate provider value from the OlSharingProvider enumera-
tion, which you can look up in the object browser.

You can process sharing invitations that you receive with these three
SharingItem methods:

olSharingMsgTypeInvite 2 Invite the other person to
share the current user’s
folder

olSharingMsgTypeInviteAndRequest 3 Invite the other person to
share the current user’s
folder and request a recip-
rocal share

olSharingMsgTypeRequest 1 Request access to the other
user’s folder

Allow Grant the sender’s request for Reviewer access to a
default folder

440 13.5 Working with folders

The permissions on the folder determine whether the recipient of the
sharing invitation can only view items or can also create new items. Listing
14.1 in the next chapter provides code to determine whether a user has
write permission on a given folder.

For calendar folders only (both Exchange and non-Exchange), use the
Folder.GetCalendarExporter method to create a message that attaches
the appointments as a multi-item iCalendar .ics file. (The recipient of the
message needs Outlook 2007 or another application that can handle such
files.) This is a one-way sharing method. The recipient of the .ics file cannot
make any changes to the original user’s calendar folder. Listing 13.12
exports a Tech Conferences subfolder of the Calendar folder, both saving it
as a local .ics file and sending it to another user in a mail message. The With
objCalExp ... End With block demonstrates the many different options
available for this type of export.

If you set IncludeWholeCalendar to True, Outlook ignores any values
for StartDate and EndDate and sends the entire contents of the folder.

The ForwardAsICal method returns a mail message with the .ics file
as an attachment and a highly formatted message body with information
about the calendar appointments. This method’s required parameter has
two possible values: olCalendarMailFormatEventList to format the
message as a list of events, and olCalendarMailFormatDailySchedule
to format the message with each day’s free/busy information. If you
wanted to generate just an email message with your availability during
working hours, you could use ForwardAsICal and delete the .ics attach-
ment. This variation on the code in Listing 13.12 transmits a day-by-day
listing of the current user’s availability as an email message only, with no
attachment:

Set objCal = objNS.GetDefaultFolder(olFolderCalendar)
Set objCalExp = objCal.GetCalendarExporter
With objCalExp
 .IncludeWholeCalendar = False
 .StartDate = Date
 .EndDate = DateAdd("m", 1, Date)
 .CalendarDetail = olFreeBusyOnly
 .IncludePrivateDetails = False
 .RestrictToWorkingHours = True
 Set objMail = _
 .ForwardAsICal(olCalendarMailFormatDailySchedule)
 With objMail
 .To = "flaviusj@turtleflock.net"

Deny Deny the sender’s request for access to a default
folder

OpenSharedFolder Display the shared folder and add it to the appro-
priate navigation pane

13.5 Working with folders 441

 .Attachments.Remove 1
 .Send
 End With
End With

Note that the Folder.GetCalendarExporter method will raise a
runtime error if you attempt to use it on a non-calendar folder.

For more examples of the CreateSharingItem and GetCalendarEx-
porter methods, check out these articles in Outlook developer Help:

How to: Export a Calendar Using Payload Sharing (HV10045353)

How to: Send a Sharing Invitation for a Calendar (HV10045361)

How to: Send a Sharing Invitation for an RSS Feed (HV10045374)

Listing 13.12 Using iCalendar to send a Calendar folder to another user

Sub ExportTechCal()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objCal As Outlook.Folder
 Dim objCalExp As Outlook.CalendarSharing
 Dim objMail As Outlook.MailItem
 On Error Resume Next
 Set objOL = Application
 Set objNS = objOL.Session
 Set objCal = objNS.GetDefaultFolder(olFolderCalendar)
 Set objCal = objCal.Folders("Tech Conferences")
 If Not objCal Is Nothing Then
 Set objCalExp = objCal.GetCalendarExporter
 With objCalExp
 .IncludeWholeCalendar = False
 .StartDate = Date
 .EndDate = DateAdd("yyyy", 1, Date)
 .CalendarDetail = olFullDetails
 .IncludeAttachments = True
 .IncludePrivateDetails = False
 .RestrictToWorkingHours = False
 .SaveAsICal "C:\TechConferences.ics"
 Set objMail = _
 .ForwardAsICal(olCalendarMailFormatEventList)
 With objMail
 .To = "flaviusj@turtleflock.net"
 .Send
 End With
 End With
 End If
 Set objOL = Nothing
 Set objNS = Nothing
 Set objCal = Nothing
 Set objCalExp = Nothing
 Set objMail = Nothing
End Sub

442 13.6 Summary

The numbers in parentheses are topic IDs you can search for in Help to
find the articles faster.

13.5.5 Adding an RSS feed, Web calendar, or
SharePoint list

OpenSharedFolder is a method not just of the SharingItem object cov-
ered in the previous section, but also of the Namespace object. The syntax
to subscribe to a blog or other Web site that has an RSS (really simple syn-
dication feed), to a WebCal calendar, or to a SharePoint list looks like this:

Set objNS = Application.Session
Set objFolder = objNS.OpenSharedFolder(_
 Path, Name, DownloadAttachments, UseTTL)

where Path is the URL for the RSS feed, calendar, or SharePoint list. Path

is the only required parameter. If you omit Name, Outlook will use the feed,
calendar, or list name.

Use True for the DownloadAttachments parameter if you want the
subscription to download enclosures for an RSS feed or attachments for a
calendar. The default is False.

Use False for the UseTTL parameter if you do not want the feed or cal-
endar to use the publisher’s recommendation for the update frequency
(contained in the site’s time-to-live setting). The default is True.

For example, to subscribe to a popular feed of Outlook tips and display
the latest tips, use this code snippet:

Set objOL = Application
Set objNS = objOL.Session
strFeed = "feed://outlook-tips.net/cs/" & _
 "blogs/outlooktips/rss.aspx"
Set objFolder = objNS.OpenSharedFolder(strFeed)
objFolder.Display

Note the use of the prefix feed:// for an RSS feed. For a WebCal cal-
endar, the URL prefix would be webcal:// and for a SharePoint list,
stssync://. Users manage all three types of subscriptions in the Tools |
Account Settings dialog.

13.6 Summary
After working through the examples in this chapter, you should have a good
understanding of the various information stores you might encounter and
the relationship between Explorer objects and the Folder objects they
display. You have begun to build a toolkit of useful Outlook techniques,
including accessing, creating, deleting, moving, and sharing folders. The
useful code techniques in this chapter have included routines to set the
default form for a folder, loop through all the folders in the current Out-

13.6 Summary 443

look session, and return any folder for which you know its path in the Out-
look folder hierarchy.

This is not the end of our excursion into stores, Explorer windows,
and folders. Chapter 16 will demonstrate how to create a new search folder,
and we’ll look at more folder views in Chapter 22.

Folders continue to be in the spotlight in the next chapter, where we’ll
learn about the important new PropertyAccessor and StorageItem
objects that provide access to data and settings that the Outlook object
model does not expose in any of its standard properties or objects.

This page intentionally left blank

445

14
Using PropertyAccessor and StorageItem

One of Microsoft’s design goals for Outlook 2007 was to eliminate the need
for lower-level programming interfaces such as Collaboration Data Objects,
Outlook Redemption, or Extended MAPI to retrieve and set property val-
ues that are not exposed in the Outlook object model, the so-called hidden
or MAPI properties. To address this need, Microsoft added two key new
objects to the Outlook object model. The PropertyAccessor object pro-
vides access to hidden properties of items, folders, attachments, address
entries, and certain other objects. The StorageItem object provides access
to hidden items that contain settings such as folder archive options. Much
of your work with StorageItem objects will involve using Property-
Accessor to access a hidden item’s properties.

Developers can also create their own properties and, in certain folders,
their own storage items to hold information specific to their applications.
Because such information stays with the items and folders, it is ideal for
applications designed for Exchange environments, where, for example, a
shared folder might need to expose information about the application to all
users who connect to that folder.

Highlights of this chapter include discussions of the following:

What resources can help you find your way through the maze of
schema property names

Where to look for information on what properties are already avail-
able and what storage items are already present

When to use the PropertyAccessor object instead of the User-
Properties or ItemProperties collection

What limitations prevent PropertyAccessor and StorageItem
from completely replacing older techniques like the CDO Fields
and HiddenMessages collections

446 14.1 Using the PropertyAccessor object

We’ll walk through a number of practical applications of Property-
Accessor and StorageItem to generate a spam report with message head-
ers and the complete original message, to set the default form for a folder,
and to remove cached copies of views so that the master view’s settings can
be applied to a folder.

14.1 Using the PropertyAccessor object
Let’s look first at the new PropertyAccessor object. You can use Proper-
tyAccessor to access many (but not all) properties of folders, stores, indi-
vidual items, address entries, recipients, address lists, Exchange users and
distribution lists, and attachments:

Most standard properties from the Outlook object model

For individual items, any custom property from the UserProper-
ties collection

Most hidden properties, also known as MAPI property tags, that the
object model does not expose

The PropertyAccessor object has some significant limitations. You can-
not use it to access object properties, such as the Recipients collection of a
message or the contents of an individual attachment, nor can it access the
item body or binary properties containing more than 4kb of data. You also
cannot use it to delete MAPI properties. These limitations and techniques for
trapping related errors are discussed in more detail later in the chapter.

Using PropertyAccessor is more complicated than the methods we
learned in Chapter 7 for referring to standard and user-defined item prop-
erties. The basic technique is to get a PropertyAccessor object, then use
the appropriate method to read, write, or delete the desired property or
properties. Table 14.1 lists the key PropertyAccessor methods. Note that
the PropertyAccessor.SetProperty and SetProperties methods sim-
plify the operation of setting property values by creating any properties that
do not already exist. You do not need to create the property and then set its
value in two separate code statements.

Tip: Not only is the PropertyAccessor technique more complex, but it’s
also more costly in terms of runtime code efficiency. Therefore, you should
continue to use the object.property_name syntax for standard properties
and item.UserProperties("property_name") for user-defined proper-
ties wherever possible. Of course, item.ItemProperties("property_

name") is also an option as well.

The code in Listing 14.1 shows how to use PropertyAccessor to
return the value of a folder property that contains information about the

14.1 Using the PropertyAccessor object 447

Table 14.1 PropertyAccessor Methods for Deleting, Reading, Creating, and
Modifying Property Values

Method Description Returns

DeleteProperties(SchemaNames) Deletes the properties in the
SchemaNames array

Nothing or an array of Err
objects, one for each property

DeleteProperty(SchemaName) Deletes the SchemaName prop-
erty

n/a

GetProperties(SchemaNames) Gets the values of the properties
in the SchemaNames array

Variant array of property or
Err values

GetProperty(SchemaName) Gets the value of the Schema-

Name property
Property value

SetProperties(SchemaNames, Values) Sets the value of the properties
in the SchemaNames array, cre-
ating any properties that do not
already exist

Nothing or an array of Err
objects, one for each property

SetProperty(SchemaName, Value) Sets the value of the Schema-

Name property, creating it if it
does not already exist

n/a

Listing 14.1 Find out if a user can create items in a folder

Function HasWriteAccess(fld) ' As Boolean
 Dim objPA ' As Outlook.PropertyAccessor
 Dim intAccessRights ' As Integer
 Dim intRightsTest ' As Integer
 On Error Resume Next
 Const PR_ACCESS = _
 "http://schemas.microsoft.com/mapi/proptag/0x0FF40003"
 Const MAPI_ACCESS_CREATE_CONTENTS = 16
 Set objPA = fld.PropertyAccessor
 intAccessRights = objPA.GetProperty(PR_ACCESS)
 If Err = 0 Then
 intRightsTest = _
 intAccessRights And MAPI_ACCESS_CREATE_CONTENTS
 If intRightsTest = MAPI_ACCESS_CREATE_CONTENTS Then
 HasWriteAccess = True
 Else
 HasWriteAccess = False
 End If
 Else
 HasWriteAccess = False
 End If
 Set objPA = Nothing
End Function

448 14.1 Using the PropertyAccessor object

access rights the current user has on the folder. These statements return the
property value using the two-stage process outlined above:

Const PR_ACCESS = _
 "http://schemas.microsoft.com/mapi/proptag/0x0FF40003"
Set objPA = fld.PropertyAccessor
intAccessRights = objPA.GetProperty(PR_ACCESS)

The HasWriteAccess() function is written for VBScript, but would
also work in VBA, and meets a common need in custom form design. The
user may be able to display a new item using a custom form published to
the folder, but may not have permission to actually save that item in a
folder. By using the HasWriteAccess() function, you can warn the user or
show or hide certain pages of the form. For example, you might call it from
the Item_Open event handler for a form published to an Exchange public
folder:

Function Item_Open()
 If Item.Size = 0 Then
 If Not HasWriteAccess _
 (Application.ActiveExplorer.CurrentFolder) Then
 MsgBox "You don't have permission " & _
 "to save an item in this folder."
 End If
 End If
End Function

The HasWriteAccess() function uses PropertyAccessor.GetProp-
erty to read the value of a property. Later, you will see an example of set-
ting folder properties with PropertyAccessor.SetProperties.

Note: The property value retrieved by the HasWriteAccess() function
potentially contains more information about the user’s access rights on the
folder than we actually used. Each bit in the binary representation of the
value is a “flag” for a different folder access right. Such values are called bit-
masks, and you can use bitwise operator And to test for the presence of any
given flag. In this example, the expression intAccessRights And MAPI_
ACCESS_CREATE_CONTENTS returns MAPI_ACCESS_CREATE_CONTENTS if
the flag for write access is turned on.

14.1.1 Example: Send a spam report

Some mail providers encourage their users to submit examples of junk mail
messages so that the provider can fine-tune its spam filter. The RFC 822
headers for a mail message are accessible as a hidden property on a message
received from the Internet. Therefore, you can use PropertyAccessor to
obtain those headers and include them in a mail message. The code in List-
ing 14.2 gets the headers from the item currently selected in a folder

14.1 Using the PropertyAccessor object 449

(ActiveExplorer.Selection(1)) and then creates a new mail message
containing the headers and an attachment of the original item.

Just as in Listing 14.1, the work done by the PropertyAccessor object
in Listing 14.2 takes place in three statements, one to set a constant, a sec-
ond to get a PropertyAccessor object, and the third to get the property
value:

Const PR_TRANSPORT_MESSAGE_HEADERS = _
 "http://schemas.microsoft.com/mapi/proptag/0x007D001E"
Set objPA = objItem.PropertyAccessor
strHeader = objPA.GetProperty(PR_TRANSPORT_MESSAGE_HEADERS)

Listing 14.2 Get Internet headers and send a spam report

Sub SendSpamReport()
 Dim objOL As Outlook.Application
 Dim objItem As Object
 Dim objPA As Outlook.PropertyAccessor
 Dim objMsg As Outlook.MailItem
 Dim strHeader As String
 Const PR_TRANSPORT_MESSAGE_HEADERS = _
 "http://schemas.microsoft.com/mapi/proptag/0x007D001E"
 Set objOL = Application
 Set objItem = objOL.ActiveExplorer.Selection(1)
 If Not objItem Is Nothing Then
 If objItem.Class = olMail Then
 Set objPA = objItem.PropertyAccessor
 strHeader = _
 objPA.GetProperty(PR_TRANSPORT_MESSAGE_HEADERS)
 If strHeader <> "" Then
 Set objMsg = objOL.CreateItem(olMailItem)
 With objMsg
 .BodyFormat = olFormatPlain
 .Subject = "Spam Report"
 .To = "spam@yourisp.com"
 .Body = "Below are the headers from " & _
 "the attached message:" & _
 vbCrLf & vbCrLf & "----------" & _
 vbCrLf & vbCrLf & strHeader
 .Attachments.Add objItem, olEmbeddeditem
 .Display
 End With
 End If
 End If
 End If
 Set objOL = Nothing
 Set objItem = Nothing
 Set objPA = Nothing
 Set objMsg = Nothing
End Sub

450 14.1 Using the PropertyAccessor object

If you want to use the SendSpamReport procedure to generate spam
reports to your own mail provider, don’t forget to replace the spam@your-
isp.com address with the correct address for your mail host.

14.1.2 Where to find property schema names

All the PropertyAccessor methods in Table 14.1 take a SchemaName or
SchemaNames parameter. Now that you have seen a couple of examples of
GetProperty, you are probably wondering about those unusual values for
the SchemaName parameter. They are like nothing you’ve yet seen in Out-
look:

http://schemas.microsoft.com/mapi/proptag/0x0FF40003

http://schemas.microsoft.com/mapi/proptag/0x007D001E

Such property names are the most complicated aspect of using the
PropertyAccessor method. The Outlook developer Help topic “Refer-
encing Properties by Namespace” explains in detail what different formats
you can expect for property names. The ones in Listings 14.1 and 14.2
come from the MAPI namespace (which is why you’ll see them called
MAPI properties).

Note: The Outlook documentation on properties often talks about refer-
ring to properties through a “namespace.” This bears no relation to the
Namespace object in the Outlook object model, but to the broader concept
of a namespace as an abstraction containing items all of which have names
that are unique within that namespace. Schema is a synonym for namespace
in this context, as evidenced in the SchemaName parameter in the Property-
Accessor methods.

Even though it starts with “http://,” the property name http://sche-
mas.microsoft.com/mapi/proptag/0x0FF40003 has nothing to do
with the Internet! For MAPI properties, the http://sche-

mas.microsoft.com/mapi/proptag/ portion of the property name refers
to the MAPI proptag namespace, while the individual property is repre-
sented by a hexadecimal number such as 0x0FF40003 or 0x007D001E.

I recommend that you try two tools if you’re going to do any amount of
work with PropertyAccessor. The Outlook Spy utility from http://
www.dimastr.com//outspy/ helps developers browse folders, items, and
other objects and see not just the property values but also the schema names
that you need for PropertyAccessor and several other Outlook methods
and properties. Figure 14.1 shows Outlook Spy’s window on the Tasks
folder with a custom default form that was added with the SetFolder-
DefaultClass procedure you’ll see in Listing 14.3.

14.1 Using the PropertyAccessor object 451

Figure 14.1
Outlook Spy makes

it easy to examine
Outlook objects’

properties and
hidden folder

items.

Listing 14.3 Set the default message class on a folder

Sub SetFolderDefaultForm(fld As Outlook.Folder, _
 msgClass As String)
 Dim objPA As Outlook.PropertyAccessor
 Dim strBaseType As String
 Dim strMsg As String
 Dim intLoc As Integer
 Dim blnBadForm As Boolean
 Dim arrSchema()
 Dim arrValues()
 Dim arrErrors()
 Dim i As Integer
 Const PR_DEF_POST_MSGCLASS = _
 "http://schemas.microsoft.com/mapi/proptag/0x36E5001E"
 Const PR_DEF_POST_DISPLAYNAME = _
 "http://schemas.microsoft.com/mapi/proptag/0x36E6001E"
 On Error Resume Next
 Select Case Left(UCase(msgClass), 8)
 Case "IPM.NOTE" ' cannot be default for any folder
 blnBadForm = True
 Case "IPM.POST" ' default only for mail/post folders
 If StrComp(fld.DefaultMessageClass, _
 "IPM.NOTE", vbTextCompare) <> 0 Then
 blnBadForm = True
 End If
 Case Else
 If InStr(1, msgClass, fld.DefaultMessageClass, _
 vbTextCompare) <> 1 Then
 blnBadForm = True
 End If
 End Select

452 14.1 Using the PropertyAccessor object

Outlook Spy also displays the hidden items that you can access with the
StorageItem object, so you can see what properties they contain, most of
which you’ll use PropertyAccessor to access.

Microsoft provides a free tool named MFCMAPI.exe with property and
hidden item viewing capability similar to that in Outlook Spy, but the latter
is much easier to use. Also, the version of MFCMAPI available when Out-
look 2007 was released did not provide any listing of namespace schema
names for properties, although plans were in the works to add that feature.

Other Outlook operations that require schema names are the search
techniques that you’ll learn about in Chapter 16 and the view techniques
covered in Chapter 22. To locate the schema names for standard and user-
defined properties to use in a search or in a view filter, you don’t need a spe-
cial tool. Instead, you can use a view’s Filter dialog. For example, let’s say

 If Not blnBadForm Then
 intLoc = InStrRev(msgClass, ".")
 arrSchema = Array _
 (PR_DEF_POST_MSGCLASS, PR_DEF_POST_DISPLAYNAME)
 arrValues = _
 Array(msgClass, CStr(Mid(msgClass, intLoc + 1)))
 Err.Clear
 Set objPA = fld.PropertyAccessor
 arrErrors = objPA.SetProperties(arrSchema, arrValues)
 If Err <> 0 Then
 strMsg = "Error " & Err.Number & ": " & _
 Err.Description
 End If
 If Not (IsEmpty(arrErrors)) Then
 For i = 0 To UBound(arrErrors)
 If IsError(arrErrors(i)) Then
 strMsg = strMsg & vbCrLf & _
 arrSchema(i) & vbCrLf & _
 CStr(arrErrors(i)) & " - " & _
 Error(Mid(CStr(arrErrors(i)), 7))
 End If
 Next
 End If
 Else
 strMsg = msgClass & " cannot be used as the " & _
 "default form for the """ & fld.Name & _
 """ folder."
 End If
 If strMsg <> "" Then
 MsgBox strMsg, vbExclamation, _
 "Problem Processing Form Class"
 End If
 Set objPA = Nothing
End Sub

Listing 14.3 Set the default message class on a folder (continued)

14.1 Using the PropertyAccessor object 453

you need the schema name for the TaskItem.Importance property. Fol-
low these steps:

1. Display the Tasks folder.

2. Choose View | Current View | Customize Current View | Filter

3. On the Advanced tab, click Field and from the “Frequently-used
fields” list, select Priority. Set the Condition to “equals” and select
any of the three values offered. Then click Add to List.

4. Switch to the SQL tab, and check the “Edit these criteria directly”
box so you can read the SQL statement more clearly. If you chose
Low for the Priority value, you should see this SQL statement:

"urn:schemas:httpmail:importance" = 0

5. Once you get the information you need from the Filter dialog,
you can click Cancel to close it.

This process tells you that urn:schemas:httpmail:importance is the
schema name for the field that appears in the Task folder user interface as
Priority, which is actually the TaskItem.Importance property. The
namespace for this property is urn:schemas:httpmail—a major
namespace for properties common to email messages, including some like
Importance that also apply to other types of Outlook items.

Tip: To try to eliminate some of the confusion over Outlook object model
property names that use different field names in the user interface, the Out-
look developer Help contains an article called “Outlook Fields and Equiva-
lent Properties.” This is where you’ll find out that the Priority field for a
task is really the Importance property in the object model and that the
Company field in the user interface can either be the Companies property or
the CompanyName property, depending on the type of item you’re working
with.

The Importance property can also be represented by the http://
schemas.microsoft.com/mapi/proptag/0x00170003 property from
the MAPI proptag namespace. Microsoft recommends using the MAPI
proptag namespace schema name for standard Outlook properties.

14.1.3 Example: Set the default message class on
a folder

Now, let’s look at an example of setting property values with Property-
Accessor. In the Outlook object model, the Folder.DefaultMessage-
Class property returns the message class for the default type of item that
the folder contains and is read-only. It does not tell you if the folder has a

454 14.1 Using the PropertyAccessor object

custom form as its default form for the folder, and you cannot use it to set a
published form as the default form for the folder.

You can set the default form, though, by using the PropertyAccessor
object. The SetFolderDefaultForm procedure in Listing 14.3, for Out-
look VBA, uses PropertyAccessor to set not one but two specific proper-
ties related to the folder’s default form.

Here is an example of how to call SetFolderDefaultClass in VBA
with a Folder object and a string for the message class of a custom form
(legacy form or form region):

Set objFolder = _
 Application.Session.GetDefaultFolder(olFolderTasks)
 Call SetFolderDefaultClass(objFolder, "IPM.Task.NewForm")

The SetFolderDefaultClass procedure first checks to make sure that
the form message class is appropriate for the folder by comparing the pub-
lished form’s message class with the folder’s base class from the value of
Folder.DefaultMessageClass. If the form class is appropriate, the code
uses a PropertyAccessor object to set the form class and form display
name properties on the folder. As you saw in Table 14.1, this object has
both SetProperty and SetProperties methods. We used SetProper-
ties, passing it an array of property names and an array of values. Proper-
tyAccessor.SetProperties returns either Nothing or an array of errors
corresponding to each entry in the property name array. We’ll look at error
handling a little later in the chapter.

14.1.4 Understanding PropertyAccessor versus
UserProperties

As noted earlier in the chapter, when working with Outlook items, the
PropertyAccessor technique is more costly in terms of runtime code effi-
ciency than the object.property_name syntax for standard properties
and item.UserProperties("property_name") for user-defined proper-
ties. But what about Outlook item properties that your code creates to store
information for your application? Should those be created with UserProp-
erties.Add or with PropertyAccessor.SetProperty? Understanding
two distinct differences should help you decide:

A custom property created with the UserProperties.Add method is
visible to Outlook users. A property created with PropertyAcces-
sor.SetProperty is hidden from users.

If you use UserProperties.Add to add a property to a mail message,
when the user sends or forwards that message, the presence of a UserProp-
erty will force the message to be sent with a TNEF (transport neutral
encapsulation format) wrapped in a Winmail.dat attachment. Any files
attached to the message will be stored in Winmail.dat and thus inaccessible

14.1 Using the PropertyAccessor object 455

to any non-Outlook recipient. A property added with PropertyAcces-
sor.SetProperty does not cause a Winmail.dat file to be sent with the
message. However, such a property does not transmit with the message.

Therefore, if you want to create a hidden property or don’t want to risk
sending Winmail.dat, the best method to use is PropertyAccessor.Set-
Property. If you want to create a visible property or need to send a custom
property in a message to other Outlook recipients, use UserProper-
ties.Add.

One final issue related to creating properties with PropertyAcces-
sor.SetProperty is what namespace to use. Microsoft recommends using
the MAPI string namespace, which uses this syntax for the property name:

http://schemas.microsoft.com/mapi/string/{HHHHHHHH-HHHH-
HHHH-HHHH-HHHHHHHHHHHH}/name

where {HHHHHHHH-HHHH-HHHH-HHHH-HHHHHHHHHHHH} is a GUID (glo-
bally unique ID) and name is the property name itself. Developers of Out-
look add-ins should use the GUID for their application as the GUID for
the property. Users writing code in VBA or VBScript for a custom form can
use the same GUID that Outlook uses for properties in the UserProper-
ties collection, {00020329-0000-0000-C000-000000000046}. The
code in Listing 14.4 creates a new task and adds a hidden ProjectID prop-
erty to it.

Did you notice that when you create a property in the MAPI string
namespace, you don’t specify the data type? The data type for the property
can change, depending on what type of data you store in it with the Set-
Property method. This gives hidden properties a slight flexibility edge
over properties in the UserProperties collection.

14.1.5 PropertyAccessor limitations and errors

Be prepared for errors with PropertyAccessor, which has a number of
limitations:

It doesn’t support object-type properties like a message’s recipients.

For binary properties, only those whose values are under 4,088 bytes
in size can be set or retrieved. Attempts to use larger values will raise
an out-of-memory error.

For string properties, the size limit depends on the information store.
For Personal Folders .pst files and Exchange offline folders .ost files,
the limit is 4,088 bytes. For direct online access to Exchange mailbox
or Public Folders hierarchy, the limit is 16,372 bytes.

The body of an Outlook message, contact, or other item is not acces-
sible at all through PropertyAccessor. Nor is the content of an
attachment.

456 14.1 Using the PropertyAccessor object

Date/time values are always handled as Coordinated Universal Time
(UTC). The PropertyAccessor.LocalTimeToUTC and .UTCTo-
LocalTime methods can assist in converting such date/time values
from or to the user’s local time zone.

The time converter methods for both PropertyAccessor and Row
round the result to the nearest minute, ignoring any seconds part of
the date/time value.

Tip: Besides LocalTimeToUTC, and UTCToLocalTime, the PropertyAc-
cessor object also supports two other helper methods—BinaryToString

and StringToBinary—to assist with data conversions. You can use these
four methods with any data, not just with property values obtained with
PropertyAccessor.

Given the many limitations, error handling can play an important role
in code that uses PropertyAccessor. An error can occur for many reasons,
other than the limitations above, including the following:

For SetProperties, the arrays for properties and values might not
have the same number of elements.

Listing 14.4 Create a task with a hidden property

Sub CreateTaskWithHiddenProperty()
 Dim objOL As Outlook.Application
 Dim objTask As Outlook.TaskItem
 Dim objPA As Outlook.PropertyAccessor
 Dim strProp As String
 On Error Resume Next
 Set objOL = Application
 Set objTask = objOL.CreateItem(olTaskItem)
 objTask.Subject = "A New Task"
 Set objPA = objTask.PropertyAccessor
 strProp = "http://schemas.microsoft.com/mapi/string/" & _
 "{00020329-0000-0000-C000-000000000046}/" & _
 "ProjectID"
 Err.Clear
 objPA.SetProperty strProp, "ID001"
 If Err = 0 Then
 objTask.Save
 Else
 MsgBox "Error " & Err.Number & " - " & Err.Description
 End If
 Set objOL = Nothing
 Set objTask = Nothing
 Set objPA = Nothing
End Sub

14.1 Using the PropertyAccessor object 457

For SetProperty and SetProperties, you might not have permis-
sion to create a new property if the property doesn’t already exist or
there might be a mismatch between the property and the type of
value it can accept.

For DeleteProperty and DeleteProperties, you might be trying
to delete a read-only property.

For GetProperty and GetProperties, the property might not be
present on the item.

If you want to handle PropertyAccessor errors, rather than ignore
them, use a two-pronged approach: Check both the value of Err after
invoking a PropertyAccessor method and the value that the method
returns. This code snippet checks the result returned by Property-
Accessor.GetProperty and, if it is Empty, checks whether an error
occurred:

On Error Resume Next
Err.Clear
res = objPA.GetProperty(strProp)
If IsEmpty(res) Then
 If Err <> 0 Then
 MsgBox "Error " & Err.Number & " - " & _
 Err.Description
 End If
Else
 MsgBox res
End If

When using the three PropertyAccessor methods that use arrays,
check Err before checking the method’s result:

On Error Resume Next
Err.Clear
res = objPA.SetProperties(arrProps, arrValues)
' or try one of these statements
' res = objPA.GetProperties(arrProps)
' res = objPA.DeleteProperties(arrProps)
If Err = 0 Then
 For i = 0 To UBound(res)
 If IsError(res(i)) Then
 strMsg = strMsg & vbCrLf & _
 CStr(res(i)) & " - " & _
 Error(Mid(CStr(res(i)), 7))
 Else
 strMsg = strMsg & vbCrLf & CStr(res(i))
 End If
 Next
Else
 strMsg = "Error " & Err.Number & " - " & _
 Err.Description
End If
MsgBox strMsg, , "PropertyAccessor Results"

458 14.2 Using the StorageItem object

Of course, your application may want to present any error information
more elegantly than with a MsgBox statement.

14.2 Using the StorageItem object
We saw in the last chapter how to work with standard folder properties.
Then earlier in this chapter, you saw an example of hidden folder properties
that you can manage with PropertyAccessor, specifically those related to
the default form for a folder. A third type of folder settings involves a con-
cept new to the Outlook 2007 object model: solution storage. When Out-
look needs to maintain folder- or store-specific information that is larger or
more complex than a simple folder property, it keeps that information in an
item that the user can’t see. Views, custom form definitions, archive set-
tings, and many other configuration options are maintained in such hidden
items. Not only can StorageItem code retrieve and modify hidden items
that Outlook itself creates, but you can also create new hidden items to
maintain data for your own solutions in mail/post folders.

To return an existing or new StorageItem, use the Folder.GetStor-
age method which takes two parameters:

Set objStI = objFolder.GetStorage _
 (StorageIdentifier, StorageIdentifierType)

The StorageIdentifer parameter is a string containing one of the fol-
lowing pieces of information:

The EntryID for the exact StorageItem you want to retrieve

A MessageClass value if you want to return a StorageItem with
that class if one exists and create one if it doesn’t

A Subject value if you want to return a StorageItem with that sub-
ject if one exists and create one if it doesn’t

The StorageIdentifierType parameter uses one of the values from the
OlStorageIdentifierType enumeration, shown in Table 14.2, specifically
the value appropriate for the type of information contained in Storage-

Identifier.

If you use GetStorage to retrieve a StorageItem by MessageClass or
Subject and no such item exists in the folder, Outlook creates a new
StorageItem, assuming the user has owner rights on the folder. (However,
as noted in the next section, this technique works only in mail/post folders
in the initial release of Outlook 2007.) If more than one matching item
exists, Outlook returns the one most recently modified.

Once you return a StorageItem object, you can work with its limited
number of standard properties and use PropertyAccessor to read, write,
create, and delete its other properties. The StorageItem object itself has
very few properties, compared with normal Outlook items. It does support

14.2 Using the StorageItem object 459

Body, Subject, and UserProperties, along with a Creator property that
can hold information specific to the application that created the Storage-
Item. For most other properties, you need to use PropertyAccessor.

Section 14.2.2 demonstrates a practical use of StorageItem—to clean
up one-off copies of standard views. For another example of StorageItem
in action, read the Help article “How to: Save Auto-Archive Properties of a
Folder in Solution Storage” (HV10045893), which shows how to create a
new set of archive options or change the existing archive options for a
folder.

14.2.1 StorageItem limitations

Three issues limit the usefulness of the StorageItem object, at least in the
initial release of Outlook, two related to new items, and one related to exist-
ing items.

A severe constraint affects the creation of new StorageItem objects. If
in a non-mail folder, you use the GetStorage method to try to create a new
StorageItem object, Outlook does not create a StorageItem in that
folder. Instead, it creates a visible item in the user’s Inbox. Therefore, cus-
tom storage using StorageItem is possible only in mail/post folders. Let’s
hope that Microsoft releases an update for Outlook 2007 that fixes this
problem.

It is also not possible to create new storage items in folders in the
Exchange Public Folders hierarchy. This means that you cannot, for exam-
ple, use a storage item to store lists that might be used to populate controls
on a custom form used in a public contacts folder.

Regarding existing storage items, the GetStorage method raises an
error if you try to return a hidden item from an Exchange public folder or
from an Exchange system folder, such as the Organizational Forms library.
This means that you cannot use GetStorage to help with such mainte-
nance chores as deleting obsolete custom forms published to a public folder
or to Organizational Forms.

Since StorageItem objects expose a small number of properties to the
Outlook object model, most code needs to use the PropertyAccessor

Table 14.2 OlStorageIdentifierType Values for Use with Folder.GetStorage

OlStorageIdentifierType Value

olIdentifyByEntryID 1

olIdentifyByMessageClass 2

olIdentifyBySubject 0

460 14.2 Using the StorageItem object

object to access StorageItem properties. Therefore, all the Property-
Accessor limitations discussed in Section 14.1.5 also are relevant to work
with StorageItem.

14.2.2 Example: Clean up one-off folder views

Consider a common issue related to folder views. Outlook comes with a set
of standard views, such as the Messages view that applies to all mail folders
and the Day/Week/Month view for calendar folders. Whenever a user
changes the settings for one of those standard views while viewing a folder,
Outlook caches a folder-specific copy of the view as a StorageItem in that
folder. While that behavior allows a user to return to a previously used
folder and see the same view as the folder had the last time the user looked
at it, it can also give rise to a potential problem. If, for example, the user
modifies the view settings while using the Messages view, any subsequent
changes to the master copy of the Messages view won’t be reflected in any
folder that has a cached copy of the Messages view. Also, more rarely, a
cached view will become corrupted and give the user error messages. Out of
the box, Outlook has only a brute force solution for both these situations—
start Outlook with the /cleanviews command-line switch, which will
clear not only all folder-specific cached copies of views, but also all of the
user’s saved custom views. That’s not a great solution if all you want to do is
clean up one cached view on one folder.

As an alternative, you can write your own solution that targets one spe-
cific view in one specific folder. The CleanView procedure in Listing 14.5
removes the StorageItem for a specific named view from a folder. That
view might be either a cached copy of a standard view or a custom view that
the user (or programming code) has created. (It is not possible to remove

Listing 14.5 Remove a cached or custom view from a folder

Sub CleanView(fld As Outlook.Folder, strView As String)
 Dim objStI As Outlook.StorageItem
 Dim objPA As Outlook.PropertyAccessor
 Dim strClass As String
 Const PR_MESSAGE_CLASS = _
 "http://schemas.microsoft.com/mapi/proptag/0x001A001E"
 On Error Resume Next
 Set objStI = fld.GetStorage(strView, olIdentifyBySubject)
 Set objPA = objStI.PropertyAccessor
 strClass = objPA.GetProperty(PR_MESSAGE_CLASS)
 If strClass = "IPM.Microsoft.FolderDesign.NamedView" Then
 objStI.Delete
 End If
 Set objStI = Nothing
 Set objPA = Nothing
End Sub

14.2 Using the StorageItem object 461

the master copy of a standard view, nor is it possible to modify the master
view programmatically.) Call CleanView with a statement like this, where
objFolder is the folder whose view you want to remove:

Call CleanView(objFolder, "Messages")

The CleanView example uses the Subject property value to locate the
StorageItem. We have no way of knowing its EntryID value, and there
could be other cached views in the folder, all with the same MessageClass.
Therefore, the Subject property is the best way to identify a specific
cached view.

Notice, though, that CleanView does use PropertyAccessor to con-
firm that the returned StorageItem has a particular MessageClass value.
In this example, the value "IPM.Microsoft.FolderDesign.NamedView"
confirms that objStI is a StorageItem for a view.

If you want to clear all cached copies of a standard view, you can use the
basic folder recursion technique that you saw in Listing 13.9 to call Clean-
View for each folder in the hierarchy. In Listing 14.6, the CleanMessages-
ViewAllFolders procedure iterates the information store root folders and
calls ProcessFolder for each one. The ProcessFolder procedure in turn

Listing 14.6 Remove cached copies of the messages view from all folders

Sub CleanMessagesViewAllFolders()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objFolder As Outlook.Folder
 Set objOL = Application
 Set objNS = objOL.Session
 For Each objFolder In objNS.Folders
 Call ProcessFolder(objFolder)
 Next
 Set objOL = Nothing
 Set objNS = Nothing
 Set objFolder = Nothing
End Sub

Sub ProcessFolder(startFolder As Outlook.Folder)
 Dim objFolder As Outlook.Folder
 On Error Resume Next
 For Each objFolder In startFolder.Folders
 If objFolder.DefaultItemType = olMailItem Then
 ' CleanView procedure from Listing 14.5
 Call CleanView(objFolder, "Messages")
 End If
 Call ProcessFolder(objFolder)
 Next
 Set objFolder = Nothing
End Sub

462 14.3 Summary

calls the CleanView procedure from Listing 14.5 for each mail folder and
performs recursion by calling itself.

After you remove all cached copies of the Messages view, any settings in
the master copy of the Messages view will apply when the user displays the
Messages view for a folder.

14.3 Summary
The new PropertyAccessor and StorageItem objects are very powerful
tools that give Outlook 2007 the ability to work with hidden properties and
settings. You can use these in almost any scenario that previously required
the Fields and HiddenMessages collections from the Collaboration Data
Objects object model, although there are some limitations. Accessing prop-
erties with PropertyAccessor requires an understanding of schema names
for properties, but online resources and other tools and techniques are avail-
able to help you find the property names you need.

This chapter is full of practical examples, including sending a spam
report, setting the default form for a folder, and cleaning up cached copies
of views.

The PropertyAccessor object is also very useful for getting and setting
the values of hidden properties on individual items, and it is to those items
that we turn in the next four chapters.

463

15
Working with Inspectors and Items

In Chapter 13, we discussed Outlook folders and the Explorer windows
that display them. This chapter explores individual Outlook items and their
Inspector windows, including how to create a new item, return existing
items, and work with those items’ methods. Chapters 7 and 14 covered how
to access items’ properties.

One significant change in Outlook 2007 is that it uses only one editor
for all items, except “sticky note” items, and that editor is Word 2007—or
more precisely, a component derived from Word. Another big change is the
addition of a Table object for rapid, read-only access to Outlook items.

Highlights of this chapter include discussions of the following:

How to work with the Inspector windows that display Outlook
items

How to create new Outlook items from scratch and from vCard .vcf
and iCalendar .ics files

How to process all the items in a folder or all the items the user has
selected in a folder view

What methods of the Items collection can help you sort and iterate
items

How to use the new Table object to return data quickly from a large
number of items

How to create, move, copy, delete, and perform other common item
operations

This is actually the first of four chapters on working with items. Chapter
16 explores the many different ways to search for items; Chapter 17 exam-
ines techniques for working with the bodies of messages and other items;
and Chapter 20 reviews item-specific issues and techniques, such as sending
a message with a particular account, and suggests ways to build links
between items.

464 15.1 Working with Inspectors

15.1 Working with Inspectors
The Inspectors collection is a member of the Application object and
represents all the windows that are currently open to display individual
Outlook items. You have seen the ActiveInspector object in several pre-
vious chapters where it was used to create macros that operate on the cur-
rently displayed item. This VBA code snippet sets an objItem variable to
the current item:

Dim objItem as Object
On Error Resume Next
Set objInsp = Application.ActiveInspector
If Not objInsp Is Nothing Then
 Set objItem = objInsp.CurrentItem
End If

It is important to test whether ActiveInspector returns Nothing, to
handle the case where the user has no item windows open.

You never need to use Application.ActiveInspector.CurrentItem
in an Outlook form’s VBScript code, because the current item is always
Item, the intrinsic object representing the item where the code is running.
From that Item object, you can return an Inspector object with the Get-
Inspector method. As we saw in Chapters 7 and 12, Item.GetInspec-
tor is an essential statement in any code that works with the customized
pages and controls on a custom form.

If an Inspector showing the desired item already is available, you can
use the Activate method to switch the focus of the Outlook application to
that Inspector:

objInsp.Activate

Use the Close method to close any Inspector, using this syntax:

objInsp.Close SaveMode

Unlike the Close method for the Explorer object, for the Inspec-
tor.Close method, you must supply a value for the SaveMode parameter.
Table 15.1 lists the possible values from the OlInspectorClose enumeration.

Table 15.1 OlInspectorClose Values for the SaveMode Parameter of the Inspector.Close Method

Option SaveMode Value

Close without saving changes olDiscard 1

If the item was changed, prompt the user to save changes (no prompt occurs
if no changes were made)

olPromptForSave 2

Save changes without prompting (no save occurs if no changes were made) olSave 0

15.1 Working with Inspectors 465

To close the windows for all items except the one currently being viewed,
you can close all Inspector windows, and then redisplay the last item that
the user viewed. The code in Listing 15.1 gets a reference to the current item
(ActiveInspector.CurrentItem), closes all Inspector windows, uses the
GetInspector method on the item most recently viewed, and finally applies
the Activate method to display that Inspector.

Note: Notice the use of a Do loop to close all the Inspector windows in
Listing 15.1. An alternative would have been a For ... Next countdown
loop. A For Each ... Next loop would not have been suitable because
you’re removing items from the Inspectors collection as they’re closed.

You do not actually need to invoke an Inspector to show a particular
item, because all Outlook items support a Display method. In the code in
Listing 15.1, you could replace these two statements:

Set objInsp = objItemKeep.GetInspector
objInsp.Activate

with this single statement:

objItemKeep.Display

Table 15.2 lists useful the most useful methods and properties for the
Inspector object. Chapter 17, “Working with Item Bodies,” dives deeply

Listing 15.1 Close all but the current Inspector window

Sub CloseAllButCurrentInspector()
 Dim objOL As Outlook.Application
 Dim colInsp As Outlook.Inspectors
 Dim objInsp As Outlook.Inspector
 Dim objItemKeep As Object
 Set objOL = Application
 Set colInsp = objOL.Inspectors
 If colInsp.Count > 0 Then
 Set objItemKeep = objOL.ActiveInspector.CurrentItem
 Do Until colInsp.Count = 0
 colInsp.Item(1).Close olPromptForSave
 Loop
 Set objInsp = objItemKeep.GetInspector
 objInsp.Activate
 End If
 Set objOL = Nothing
 Set colInsp = Nothing
 Set objInsp = Nothing
 Set objItemKeep = Nothing
End Sub

466 15.1 Working with Inspectors

into the message and item body techniques available with the WordEditor
object.

In Outlook VBA, the Inspector.CommandBars collection remains use-
ful for executing item-related commands, such as displaying the Insert File
dialog, but it cannot be used to customize the user interface. The Inspec-
tor window uses the new ribbon interface, which cannot be customized
with Outlook VBA code.

Table 15.2 Useful Inspector Methods and Properties

Method Description

Activate Bring the window to the foreground and give it the focus

Close SaveMode Close the window

HideFormPage PageName Hide the PageName page of the form displayed in the
window

SetCurrentFormPage
PageName

Switch to the PageName page of the form displayed in
the window; raises an error if the page is not visible

ShowFormPage PageName Unhide the PageName page of the form displayed in the
window

Property Description

Caption Title displayed on the window (read-only)

CommandBars Collection of toolbar and menu commands that can be
executed for the current window

CurrentItem Returns the item displayed in the window

Height Height of the window, in pixels

Left Left position of the window, in pixels

ModifiedFormPages Returns a collection of customized pages

Top Top position of the window, in pixels

Width Width of the window, in pixels

WindowState Display state of the window, using one of these constants
from the OlWindowState enumeration:

olMaximized 0

olMinimized 1

olNormalWindow 2

WordEditor For appointment, contact, journal entry, message, post,
and task items, returns a Word.Document object for the
body of the item displayed in the window

15.2 Creating items 467

15.2 Creating items
Outlook 2007 has four main methods for creating new items (one more
than previous versions), plus an additional technique that you can use from
Word or Excel to create an email message. Which one should you use? It
depends on what type of item you want to create:

A new standard item

A new item based on a published custom form

A new item based on a form saved as an .oft file template

A new item imported from a vCard (.vcf), iCalendar (.ics), vCalendar
(.vcs), or Outlook message format (.msg) file (new in Outlook 2007)

A new email message based on the content of a Word document or an
Excel worksheet

The next few sections cover each of these scenarios. We’ll see other
methods that return a new item—those related to copying, moving, reply-
ing to, and forwarding items—a little later in the chapter. Plus, as we will
see in Chapter 20, voting buttons and other custom actions on Outlook
forms can also create new items.

Two general notes regarding newly created Outlook items:

Outlook does not store a new item permanently until it is saved or
sent, either by the user or by your code. After creating a new item,
you may want to use code to set certain properties before you display
the item to the user or save it.

If you create an Outlook item using code on a VBA form, make sure
that either the VBA form is modeless or that you unload or hide it
before you display the new Outlook item. Otherwise, the user will see
a Dialog Box Is Open error.

15.2.1 Creating a new standard item

To create a new standard item in one of the user’s default folders, use the
Application.CreateItem method to return an object reference for the
new item. You can then set the item’s properties, and display, save, or send
it. The CreateItem method requires one of the constants listed in Table
15.3 from the OlItemType enumeration.

A common application of CreateItem in code behind a custom form is
to create a notification message or a new Outlook item as part of a work-
flow. This VBScript code snippet for a custom form creates and displays an
email message for the user to address:

Const olMailItem = 0
Set objMsg = Application.CreateItem(olMailItem)
With objMsg
 .Subject = "Update on " & Item.Subject

468 15.2 Creating items

 .Body = "Here is the latest information:"
 .Display
End With

Notice that the code sets the new message’s Subject property using text
from the original item’s Subject.

For items other than email messages, the CreateItem method always
creates items in the default Outlook folders such as Calendar and Tasks.
Newly created unsent messages always save in the Drafts folder.

To create a non-message item in a non-default folder, use the Add
method on the target folder’s Items collection. You should recall that every
Folder object has both a Folders collection representing its subfolders
and an Items collection representing the items in the folder. Chapter 13
gave you many techniques for returning a specific folder. Once you have an
object representing the folder where you want to create the new standard
item, use this syntax to return the new item. This example assumes that
objFolder is a task folder:

Set objTask = objFolder.Items.Add

When invoked with no parameters, the Items.Add method creates a
new item of the default type for the target folder, for example a new Task-
Item in a folder that holds tasks. If the folder holds contacts and you want
to create a new distribution list in it, you will need to specify the type of
item using either the constant from Table 15.3 or the correct message class
string:

Set objDL = objFolder.Items.Add(olDistributionListItem)
Set objDL = objFolder.Items.Add("IPM.DistList")

Table 15.3 OlItemType Constants for Use with the CreateItem Method

Outlook Item ItemType Constant Value

Message olMailItem 0

Appointment olAppointmentItem 1

Contact olContactItem 2

Task olTaskItem 3

Journal entry olJournalItem 4

Note olNoteItem 5

Post olPostItem 6

Distribution list olDistributionList 7

15.2 Creating items 469

For another example of Folder.Items.Add, look back at Listing 9.2,
which creates a new item in the Tasks folder in another Exchange user’s
mailbox.

You cannot use the Folder.Items.Add method to create a new message
in a specific folder. As noted earlier, a new, unsent message saves in the
Drafts folder regardless of whether you create it with Items.Add or Cre-
ateItem. If you want to store the unsent message in a different folder, you
will need to save it and then move it with the Move method discussed later
in the chapter.

15.2.2 Creating a new item from a custom form

Guess what? You already know how to create a new item from a published
custom form, because it’s the same technique as in the last code statement
in the previous section: Use the Add method on the target folder’s Items
collection, passing the message class string as the sole parameter:

Set objContact = _
 objFolder.Items.Add("IPM.Contact.Custom")

The message class can be that of a published custom form or a form
region whose formRegionType is replace or replaceAll.

15.2.3 Creating a new item from an .oft template

Although you can create an Outlook template .oft file from any Outlook
item—from an empty standard task to a highly customized contact form
with default property values—such files actually are useful only in two very
specific cases:

Standard items containing preset values for standard properties, such
as an appointment with a specific category

Messages containing boilerplate text and specific formatting

Users can simply double-click these types of .oft files to create new items
based on those templates.

Why are other types of .oft files less useful? A template can’t run
VBScript code like a published custom form can. Also, a template designed
with custom properties will not display its custom layout if the user opens it
by double-clicking the .oft file. Instead, it will display the standard layout
for that type of item. To see the custom layout, the user would need to
launch the template with the Tools | Forms | Choose Form command or
with the CreateItemFromTemplate method.

Tip: Despite their limitations, .oft files are still quite useful as backups for
published custom forms.

470 15.2 Creating items

Therefore, in this book, we will assume that if you’re working with an
.oft template file, it is within one of the two scenarios described above.

To create a new item based on an .oft file, use the Application.Cre-
ateItemFromTemplate method, passing the path to the file as a parameter.
This statement creates a new message from a saved file:

Set objMsg = Application.CreateItemFromTemplate _
 ("C:\Data\My Message Template.oft")

In Chapter 17, we will look again at CreateItemFromTemplate in the
context of modifying the body of a template-generated message to fill in
some recipient-specific information.

15.2.4 Creating a new item from a vCard, iCalendar, or
.msg file

One of the more versatile new programming features in Outlook 2007 is
the ability to import from common file types used to exchange contact and
appointment information over the Internet—.vcf vCard files and .ics iCal-
endar appointment files. The NameSpace.OpenSharedItem method takes
the path to the file as its sole parameter and returns a ContactItem or
AppointmentItem as appropriate. To store the imported item in the
default folder for that type of item, use the Save method. You can also use
the Move method, covered later in this chapter, to move it to another folder.

This example opens a vCard file and saves it to the Contacts folder:

Set objNS = Application.Session
On Error Resume Next
strPath = "C:\Donna Liss.vcf"
Set objContact = objNS.OpenSharedItem(strPath)
If Not objContact Is Nothing Then
 objContact.Save
End If

The On Error Resume Next statement is crucial to handling the sce-
nario where the file named in the argument does not exist.

Note: Use Namespace.OpenSharedItem to open an .ics file that contains a
single appointment. To process an .ics file that contains multiple appoint-
ments, use the Namespace.OpenSharedFolder method, which we saw in
Chapter 13.

The OpenSharedItem method can also open any Outlook item that has
been saved as an .msg file. In that case, you cannot know in advance what
type of object the method will return; it depends on the type of item. For
example, if you use OpenSharedItem to open a task that was saved as an
.msg file, it will return a TaskItem. For a code sample that saves embedded

15.2 Creating items 471

Outlook items plus .vcf, .vcs, or .ics files attached to an Outlook message or
other item, skip ahead to Listing 19.2.

Note: In previous versions of Outlook, you could use the CreateItem-
FromTemplate method to make a copy of a saved .msg file, but in the case
of a message, it would create a new, unsent message. That technique still
works in Outlook 2007, but to import a message intact, with its original
sender and recipient information, you should use OpenSharedItem.

15.2.5 Creating a new item from a Word or
Excel document

The last method of creating a new item applies only to messages but can be
a very powerful shortcut to producing complex HTML messages based on
Excel data or Word documents. It is, in essence, the programmatic equiva-
lent of the Send To | Mail Recipient command found on the File menu in
previous versions of Word and Excel and available in Office 2007 versions
from the Customize Quick Access Toolbar dialog.

Note: In Chapter 19, we’ll see how to post an entire Word or Excel docu-
ment (or any other type of file) to an Outlook folder.

What makes this technique feasible is that the Word.Document and
Excel.Worksheet objects support a MailEnvelope property that returns
an Office.MsoEnvelope object. This object’s Item property returns a
MailItem whose HTMLBody property will contain an HTML representation

Figure 15.1
Create a mail

message from a
document or

worksheet using the
MailEnvelope

property.

472 15.2 Creating items

of the document or worksheet. It also supports an Introduction property
that you can use to prefix the document or worksheet content with your
own introductory text. Figure 15.1 shows how the MailEnvelope property
can connect a document or worksheet and a mail message.

You can use MailEnvelope from both Outlook code and Word or Excel
VBA code. Listing 15.2 is a VBScript version, for use behind an Outlook
form; it opens an existing Word document named First_Notice.docx, gen-
erates a mail message from that document, then addresses and sends the
message. Listing 15.3 is a VBA version that sends the current Excel work-
sheet as an Outlook message.

Listing 15.2 Send a Word document as an email message (VBScript)

Sub SendDocAsMsg()
 Dim objWord ' As Word.Application
 Dim objDoc ' As Word.Document
 Dim objItem ' As Object
 Dim strID ' As String
 Dim blnWeOpenedWord ' As Boolean
 Const wdDoNotSaveChanges = 0
 On Error Resume Next
 Set objWord = GetObject(, "Word.Application")
 If objWord Is Nothing Then
 Set objWord = CreateObject("Word.Application")
 blnWeOpenedWord = True
 End If
 Set objDoc = objWord.Documents.Open _
 ("C:\First_Notice.docx", , True)
 objDoc.MailEnvelope.Introduction = _
 "Please reply with your thoughts on this matter."
 Set objItem = objDoc.MailEnvelope.Item
 With objItem
 .To = "flaviusl@turtleflock.net"
 .Subject = objDoc.BuiltinDocumentProperties("Title")
 .Save
 strID = .EntryID
 End With
 Set objItem = Nothing
 Set objItem = Application.Session.GetItemFromID(strID)
 objItem.Send
 objDoc.Close wdDoNotSaveChanges
 If blnWeOpenedWord Then
 objWord.Quit
 End If
 Set objDoc = Nothing
 Set objItem = Nothing
 Set objWord = Nothing
End Sub

15.2 Creating items 473

Note: The SendDocAsMsg procedure in Listing 15.2 is “well behaved” with
regard to Word; it uses the GetObject method to check whether an
instance of Word is already running. If a new instance has to be created, the
procedure shuts down Word when it finishes its work. The Boolean bln-
WeOpenedWord variable tracks whether the procedure started Word or
Word was already running.

Both listings try to build the subject for the message from the Title
property in the document or workbook’s BuiltInDocumentProperties
collection.

To write code for the MailEnvelope object in Outlook VBA, use the
Tools | References command to add references to the Microsoft Word 12.0

Listing 15.3 Send an Excel worksheet as an email message (Excel VBA)

Sub SendSheetAsMsg()
 Dim objExcel As Excel.Application
 Dim objSheet As Excel.Worksheet
 Dim objWB As Excel.Workbook
 Dim objDocProp As Office.DocumentProperty
 Dim objItem As Object
 Dim strID As String
 Dim strMsg As String
 On Error Resume Next
 Set objExcel = Application
 Set objSheet = objExcel.ActiveSheet
 Set objWB = objExcel.ActiveWorkbook
 objSheet.MailEnvelope.Introduction = _
 "Please reply with your thoughts on this matter."
 Set objItem = objSheet.MailEnvelope.Item
 With objItem
 .To = "flaviusl@turtleflock.net"
 If objWB.BuiltinDocumentProperties("Title") <> "" Then
 .Subject = objWB.BuiltinDocumentProperties("Title")
 Else
 .Subject = objSheet.Name
 End If
 .Send
 End With
 If Err <> 0 Then
 objItem.Display
 End If
 Set objExcel = Nothing
 Set objSheet = Nothing
 Set objItem = Nothing
End Sub

474 15.3 Accessing items

Object Library and the Microsoft Excel 12.0 Object Library. Once you do
that, you can declare Word or Excel object variables and get the same “intel-
lisense” as you do for Outlook objects.

15.3 Accessing items
The code samples in previous chapters have shown several methods to
access a particular existing item—including an item selected in a folder and
a currently displayed item. Outlook also supports code techniques to:

Return a particular item that you’ve worked with previously

Work with all the items in a folder

Work with items the user has selected in a folder view

Search for items based on specific criteria

The sections that follow explain many of the different ways available to
access Outlook items. Search techniques are covered in the next chapter.

15.3.1 Working with selected items

Listing 8.4 introduced the Selection object, which represents the items
selected by the user in a folder window. A common application of Selec-
tion within VBA macros is to perform batch operations that you can’t do
with Outlook’s built-in menu and toolbar commands. This VBA code
statement sets an objSel variable to the items selected in the current folder
(the ActiveExplorer window’s folder):

Set objSel = Application.ActiveExplorer.Selection

If you want to work with just one selected item, add this statement:

Set objItem = objSel.Item(1)

Note: The Selection object supports the Item and Count properties like
most other Outlook collections, but not the Add and Remove methods. You
cannot programmatically expand or contract the user’s selection to include
more or fewer items. The only way to programmatically affect the selection
is to execute the Select All menu command using the CommandBars meth-
ods that we’ll see in Chapter 23. It is also impossible to convert a Selec-
tion object into an Items object.

The usual procedure with Selection is to work with either one selected
item, as above, or with the entire Selection collection, using a For Each
... Next loop. If you plan to delete or move items, a For ... Next
countdown loop, would be appropriate, instead of a For Each ... Next
loop. Depending on the operation you plan to perform on the selection,
you might want to check the number of items first with the Selec-

15.3 Accessing items 475

tion.Count property. Listing 15.4 provides a general VBA code frame-
work you can use to determine the number of items selected and proceed
accordingly. Change the value in this statement

intMaxItems = 30

to reflect the maximum number of selected items that you want the Pro-
cessItem() procedure to handle.

The ProcessItem subroutine included in the listing is just a simple
example to show how each object in the Selection can be passed to a sep-
arate procedure that does the actual processing. This results in more modu-
lar, reusable code. If you set the value for intMaxItems to whatever
number you feel is appropriate for your application, the ProcessSelec-
tion procedure will warn the user if more than that number of items is
selected.

You will see more examples of Selection in the next section. Section
15.3.4 deals with issues related to processing multiple items.

Listing 15.4 Process selected items in a folder

Sub ProcessSelection()
 Dim objOL As Outlook.Application
 Dim objSel As Outlook.Selection
 Dim objItem As Object
 Dim intMaxItems As Integer
 On Error Resume Next
 ' ### USER OPTION ###
 intMaxItems = 30
 Set objOL = Application
 Set objSel = objOL.ActiveExplorer.Selection
 Select Case objSel.Count
 Case 0
 MsgBox "No items were selected!"
 Case 1 To intMaxItems
 For Each objItem In objSel
 Call ProcessItem(objItem)
 Next
 Case Is > intMaxItems
 MsgBox objSel.Count & " items is too big " & _
 "a selection for this operation."
 End Select
 Set objOL = Nothing
 Set objSel = Nothing
 Set objItem = Nothing
End Sub

Sub ProcessItem(itm As Object)
 Debug.Print itm.Subject
End Sub

476 15.3 Accessing items

15.3.2 Getting the current item

As discussed earlier in the chapter, where Explorer objects represent Out-
look folder windows, Inspector objects correspond to Outlook item win-
dows. Because you can have more than one Outlook item open, more than
one Inspector may be available.

To access the item window that the user is currently looking at or most
recently viewed, use the ActiveInspector method of the Application
object. To get the actual item that the user sees in that window, use the
CurrentItem property of the Inspector, as in the following example:

Dim objItem As Object
Set objItem = Application.ActiveInspector.CurrentItem

The current item could be any type of Outlook item—a message, a con-
tact, even a note. Because you can’t predict the type of item, you should use
a generic Dim objItem as Object statement to declare the object variable
when you are writing VBA code. In most cases, your code will need to
check what kind of item the object represents before working with its prop-
erties and methods. If you use a property or method that belongs to the
wrong object, your code will raise a runtime error.

To check the type of item, use the Class property. Table 15.4 lists the
Outlook constants for the Class property values for different types of Out-
look items, along with their literal values, from the OlObjectClass enu-
meration.

Tip: Table 15.4 lists just some of the Class values that Outlook supports.
To learn about other intrinsic constants for the Class property, look up the
OlObjectClass enumeration in the object browser.

If you try to access the Class property for an object variable that has not
been set to an object, Outlook generates an error. Therefore, depending on
how you returned that object variable, you may need to use the expression
object Is Nothing to test whether you have a valid object, before you
check the value of the Class property, proceeding from the above snippet:

If Not objItem Is Nothing Then
 If objItem.Class = olTask ' 48
 MsgBox Item.Subject & " is a task!"
 End If
End If

In Listing 8.19, you saw how to use the ActiveExplorer.Selection
collection to process the items the user has selected in a folder view. In some
cases, you will want the flexibility to have a VBA macro operate on either
the currently open item or on one or more items selected in a folder win-
dow, whichever is the active window. Don’t write two complete versions,

15.3 Accessing items 477

one for ActiveExplorer.Selection and one for ActiveInspec-

tor.CurrentItem. You’ll have nightmares trying to keep the code consis-
tent in the two procedures. Instead, use code to determine what type of
window is current, and then get the current item or selected items from that
window. For example, in Listing 15.5, the SetFlag procedure adds one or
more messages to the To Do List to remind you to make a decision one
week from today. It can operate either on the currently open item or on the
items selected in a folder, depending on which window is active.

The TypeName() function is the key to the FlagMessages subroutine.
It returns a string containing the type of variable passed as a parameter to
TypeName(). Thus, you can use it to determine whether the user is cur-
rently looking at an Explorer or Inspector.

Tip: You can also use TypeName() as an alternative to the Class property
to check what type of Outlook item your code is working with. For exam-
ple, if you had an expression TypeName(mail) in the SetFlag procedure
in Listing 15.5, that expression would return the string “MailItem” because
mail is a MailItem object.

Listing 15.5 can handle multiple items in a Selection, but often you’ll
want to handle just a single item. For such scenarios, the VBA GetCur-
rentItem() function in Listing 15.6 uses the same TypeName() technique

Table 15.4 Values of the Class Property for Outlook Items from the OlObjectClass Enumeration

Object Class Constant Class Value

Message olMail 43

Appointment olAppointment 26

Meeting request olMeetingRequest 53

Contact olContact 40

Distribution list olDistributionList 69

Journal entry olJournal 42

Note olNote 44

Post olPost 45

Task olTask 48

Task request olTaskRequest 49

Document olDocument 41

478 15.3 Accessing items

as in Listing 15.5 to return a single item from the current Outlook window,
either an Inspector or an Explorer.

Note: You never need a VBScript version of GetCurrentItem() for use in
an Outlook custom form, because the current item in the context of custom
form VBScript code is always the intrinsic Item object.

If you wanted to use the GetCurrentItem() function from Listing
15.6 to return a single item and then use the SetFlag procedure from List-
ing 15.5 to set its flag, you would want to check the Class property of the
item first:

Listing 15.5 Running a procedure against an open item or a folder selection

Sub FlagMessages()
 Dim objOL As Outlook.Application
 Dim objItem As Object
 Dim objMsg As MailItem
 Dim strWindowType As String
 On Error Resume Next
 Set objOL = Application
 strWindowType = TypeName(objOL.ActiveWindow)
 Select Case strWindowType
 Case "Explorer"
 For Each objItem In objOL.ActiveExplorer.Selection
 If objItem.Class = olMail Then
 Set objMsg = objItem
 Call SetFlag(objMsg)
 End If
 Next
 Case "Inspector"
 Set objItem = objOL.ActiveInspector.CurrentItem
 If objItem.Class = olMail Then
 Set objMsg = objItem
 Call SetFlag(objMsg)
 End If
 End Select
 Set objOL = Nothing
 Set objItem = Nothing
 Set objMsg = Nothing
End Sub

Sub SetFlag(mail As MailItem)
 If Not mail.IsMarkedAsTask Then
 mail.MarkAsTask olMarkNextWeek
 mail.TaskDueDate = Date + 7
 mail.TaskSubject = "DECIDE: " & mail.Subject
 mail.Save
 End If
End Sub

15.3 Accessing items 479

Set objItem = GetCurrentItem()
If objItem.Class = olMail Then
 Call SetFlag(objItem)
End If

Pay attention to the other examples in the book that use the Class
property. You will see it often.

15.3.3 Getting a particular item

As discussed in the previous chapter, if you know the EntryID and Store-
ID values for a folder, you can use the Namespace.GetFolderFromID
method to return that folder. Similarly, if you know the EntryID for an
Outlook item and the StoreID for its parent folder, you can use the
Namespace.GetItemFromID method to return the item. If the item is in
the user’s default information store, you don’t even need the StoreID; the
EntryID will be sufficient. Here is an example of the syntax for both Out-
look VBA and VBScript:

On Error Resume Next
Set objNS = Application.Session
Set objItem = objNS.GetFolderFromID(EntryID, StoreID)
If Not objItem Is Nothing Then
 MsgBox objItem.Subject
End If

The EntryID property of an item, just like that for a folder, is a long
string that uniquely identifies the item within a store. EntryID has some
important characteristics:

An item’s EntryID property is blank until the item has been saved.

Listing 15.6 Return the currently selected or open Outlook item (VBA)

Function GetCurrentItem() As Object
 Dim objOL As Outlook.Application
 Dim strWindowType As String
 On Error Resume Next
 Set objOL = Application
 strWindowType = TypeName(objOL.ActiveWindow)
 Select Case strWindowType
 Case "Explorer"
 Set GetCurrentItem = _
 objOL.ActiveExplorer.Selection(1)
 Case "Inspector"
 Set GetCurrentItem = _
 objOL.ActiveInspector.CurrentItem
 End Select
 Set objOL = Nothing
End Function

480 15.3 Accessing items

The EntryID value is not permanent. It may change if you move the
item to a different folder, especially to a folder in a different informa-
tion store.

When a user receives an update to a meeting request, Outlook deletes
the appointment generated from the original request and creates a
new appointment from the meeting update. That means that the
GetItemFromID method is not a reliable way to retrieve a meeting. A
better approach is to use the Find method, which we will see in the
next chapter, to return an item based on a value for the GlobalAp-
pointmentID property.

If you want to see an example of Namespace.GetItemFromID, peek
ahead to Listing 15.9, which shows how to use it to open an Outlook item
from a list box on a form, where the EntryID for the item is contained in
the list box in a hidden column.

15.3.4 Working with all the items in a folder

The previous chapter demonstrated many techniques that return a specific
folder as a Folder object. Once you have a Folder object, three basic tech-
niques are available to work with all the items the folder contains:

Use a For Each ... Next loop to process each item in the folder’s
Items collection, as you saw in Listing 8.14.

If you plan to delete or move items, use a countdown loop instead of
a For Each loop.

Use the new Table object in Outlook 2007 to get faster, read-only
access to the items.

We’ll concentrate on the Items techniques in this section and then look
at the Table object in the next section. We saw a countdown loop in Chap-
ter 8, in the context of deleting attachments from a message. Listing 15.7
shows how to use such a loop to empty all the items in a folder, in this case
the Junk E-mail folder.

Tip: Did you notice how easily you could adapt the techniques in Listing
15.7 to purge the Deleted Items folder? You would only need to replace
olFolderJunk with olFolderDeletedItems.

Whenever you loop through items in a folder and use any properties or
methods specific to a particular type of Outlook item, be sure to check the
value of each item’s Class property first. For example, when working in a
contacts folder, contact and distribution list items may both be present and
have very different properties. Only a contact has a FullName property, as
shown in this VBA code snippet:

15.3 Accessing items 481

Set objNS = Application.Session
Set objFolder = objNS.GetDefaultFolder(olFolderContacts)
For Each objItem in objFolder.Items
 If objItem.Class = olContact Then
 Debug.Print objItem.FullName
 End If
Next

If you want to use that snippet to get a sorted list of names, you can use
the Items.Sort method. Use Sort like this:

objItems.Sort property, descending

The property parameter is a string with the name of the property you
want to sort by. A user-defined property’s name must be enclosed in brack-
ets; brackets are optional for standard properties but make the code more
readable. The descending parameter is optional. The default is False. Set
it to True if you want to sort in descending order—for example, with the
most recent dates first.

To get a sorted list of FullName property values from the contacts
folder, you’d modify the earlier snippet as follows:

Set objFolder = objNS.GetDefaultFolder(olFolderContacts)
Set colItems = objFolder.Items
colItems.Sort "[FullName]"
For Each objItem in colItems
' etc.

Listing 15.7 Delete all items in the Junk E-mail folder

Sub EmptyJunk()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objFolder As Outlook.Folder
 Set objOL = Application
 Set objNS = objOL.Session
 Set objFolder = objNS.GetDefaultFolder(olFolderJunk)
 Call DeleteFolderItems(objFolder)
 Set objOL = Nothing
 Set objNS = Nothing
 Set objFolder = Nothing
End Sub

Sub DeleteFolderItems(fld As Outlook.Folder)
 Dim colItems As Outlook.Items
 Dim lngCount As Long
 Dim i As Long
 Set colItems = fld.Items
 For i = lngCount To 1 Step -1
 colItems(i).Delete
 Next
 Set colItems = Nothing
End Sub

482 15.3 Accessing items

This snippet differs in a key way from the previous snippet to return all
items unsorted. It instantiates an explicit object to represent the Items col-
lection, the colItems object. This is a required step if you plan to use
Sort. You also need to instantiate an explicit Items object before using the
the GetNext and GetPrevious methods and the IncludeRecurrences
property, which works with Sort to return appointments from a specified
date range (which the next chapter covers). Therefore, I recommend that
you make it a habit to always instantiate an Items variable rather than
access an Items collection through its parent Folder object.

Two other important notes on the Sort method:

You cannot use Sort on keywords fields, such as Categories, on
custom formula or combination fields, and on a small number of
standard properties that are listed in the Help topic for Sort.

The Sort method can sort by a user-defined property only if that
property is defined at the folder level and not just in individual items.
To find out whether a property is defined at the folder level, you can
look in the folder’s Field Chooser, under User-Defined Fields in
Folder, or use the Folder.UserDefinedProperties collection,
which is new to Outlook 2007 and will be discussed in Chapter 21.

If your code needs to access only a subset of properties, you may be able
to speed up your code by using the SetColumns method to cache certain
standard properties. (You cannot use it with user-defined properties.) Use
SetColumns like this, specifying the properties you need in a single string,
separated by commas:

colItems.SetColumns "FullName, CompanyName"
For Each objItem in objItems
 Debug.Print objItem.FullName, objItem.CompanyName
Next

When you use SetColumns, Outlook checks only the property values
you specify, rather than opening the entire item. As with Sort, some prop-
erties cannot be cached by SetColumns. To discard the cache and return to
accessing all properties, use ResetColumns:

colItems.ResetColumns

An alternative to Items for potentially much faster access to a limited
set of properties is the new Table object, discussed in Section 15.3.6, after
we look at a practical example of Items.Sort.

15.3.5 Example: Generate the next number in
a sequence

A common Outlook programming task is to apply a sequential ID to new
Outlook items. In an application that uses such an ID, you may want each
new item in a folder to be marked with the next number in the sequence.

15.3 Accessing items 483

To find the last number used, the GetLastNumber() function in Listing
15.8 returns the largest value for a user-defined field in a particular folder
(or -1 if there is a problem getting that property’s value). It takes two
parameters—the name of the numeric field and the folder where the items
using that field are stored. You would call it like this:

lngLastNumber = GetLastNumber(strFieldName, objFolder)
objProp.Value = lngLastNumber + 1

Once you had lngLastNumber, you would add 1 to it to set the value
for the Counter property in a new item being created in that folder.

Call the GetLastNumber() function in Listing 15.8 as part of the pro-
cess of creating a new item in the same folder. The VBScript code would
look like this:

Const olInteger = 20
strFieldName = "ProjID"
Set objNewItem = objFolder.Items.Add
Set objProp = objNewItem.UserProperties(strFieldName)
If objProp Is Nothing Then
 Set objProp = objNewItem.UserProperties.Add _
 (strFieldName, olInteger)
End If
objProp.Value = GetLastNumber(strFieldName, objFolder)
objNewItem.Display

Listing 15.8 uses the Items.GetFirst method to return the first item
in the sorted Items collection. Items also supports GetNext, GetPrevi-
ous, and GetLast methods.

Listing 15.8 Return the largest number value for a custom field

Function GetLastNumber(fieldName, theFolder) ' As Long
 Dim colItems ' As Outlook.Items
 Dim objItem ' As Object
 Dim objProp ' As Outlook.UserProperty
 On Error Resume Next
 Set colItems = theFolder.Items
 colItems.Sort fieldName, True
 Set objItem = colItems.GetFirst
 Set objProp = objItem.UserProperties(fieldName)
 If Not objProp Is Nothing Then
 GetLastNumber = CLng(objProp.Value)
 Else
 GetLastNumber = -1
 End If
 Set colItems = Nothing
 Set objItem = Nothing
 Set objProp = Nothing
End Function

484 15.4 Using the Table object

15.4 Using the Table object
New to Outlook 2007 is a Table object designed to help you enumerate
large numbers of items much faster than with an Items collection. It
returns a dynamic, forward-only, read-only rowset (that is, a structure of
rows and columns, as in a database or spreadsheet). Think of each row as an
item and the columns as a small subset of the item’s properties. Dynamic
means that the rowset is updated as changes are made to the underlying
data. Read-only means that a Table itself provides no way to modify and
save Outlook items. Forward-only means that, unlike the Items collection,
the Table object does not support a GetPrevious method. Methods like
GetNextRow and FindNextRow move only forward through the table.

Two objects have a GetTable method that returns a Table object –
Folder, covered in Chapter 13, and Search, which is discussed in the next
chapter. Each type of folder returns a different set of columns (that is, prop-
erty values) by default, but you can also add or remove columns from the
table programmatically. Each Table object’s default columns include five
base fields, plus other columns depending on the type of folder. Table 15.5
lists the default columns for Table objects returned from different types of
folders.

The Table object supports several techniques for working with the data
in the table, listed in Table 15.6.

The Table object provides three ways to return data from its rows:

As a multidimensional array with GetArray

As a Row object with GetNextRow, then using GetValues to return
the data from the row

To search within a table, with FindRow and FindNextRow, which also
return a Row object, then using GetValues to return the data from
the row

Table 15.5 Default Columns for Table Object

Mail/Post Folders
Journal Folders
Notes Folders Calendar Folders Contacts Folders Tasks Folders

Five base columns:

EntryID

Subject

CreationTime

LastModificationTime

MessageClass

Base columns, plus:

Start

End
IsRecurring

Base columns, plus:

FirstName

LastName
CompanyName

Base columns, plus:

DueDate

PercentComplete
IsRecurring

15.4 Using the Table object 485

The Restrict method provides another way to search, by returning a
filtered Table object. We will come back to Table.FindRow and
.Restrict in the next chapter, which has a complete discussion of ways to
search for and filter Outlook items.

Besides speed, Table methods have two additional advantages over
other methods of accessing items. Because Table methods return only a
select set of property values and do not load the entire item, they do not
cause the code behind custom forms to run. Therefore, you can use Table
methods whenever you want to obtain data from custom form items with-
out raising the Open event from a custom form. Also, a folder may contain a
mix of items, some of which contain a particular MAPI property and some
of which don’t. If you tried to access that property using PropertyAcces-
sor on each item, you’d get an error on items where the property didn’t
exist. However, no errors occur if you return MAPI property tag values
from such a mixed collection of items with a Table, as you’ll see in the
example in the next section.

In the next two sections, you’ll see examples of the two basic techniques
for working with a Table—returning all the data with GetArray and
returning it a row at a time with GetNextRow.

Table 15.6 Basic Techniques for Working with Table and Row Objects

Table Method Description

MoveToStart Reposition the row enumerator to just before the first row

Sort SortProperty, Descending Sort the table by the SortProperty standard or custom property
name; similar to Items.Sort

GetRowCount Return the number of rows in the table

GetNextRow Position the row enumerator on the next row and return that Row object

GetArray(MaxRows) Returns a multi-dimensional array containing all the columns in the
Table.Columns collection and MaxRows number of rows

FindRow(Filter) Returns the first row matching a filter string

FindNextRow Returns the next row matching the filter string specified in an earlier
FindRow statement.

Restrict Returns a filtered Table object

Row Method Description

GetValues Returns an array of all the values for the row (item); the upper bound of
the array is one less than Table.Columns.Count

Item(Index) Returns the value for the property in the column corresponding to the
Index number (1-based) or string (name of the property)

486 15.4 Using the Table object

15.4.1 Example: Fill a list box from a Table

The Table.GetArray method is particularly useful for filling a list or
combo box on a VBA form or custom Outlook form by setting the control’s
List property. It takes very little code and works very fast. The VBScript
code in Listing 15.9 provides an example, based on a custom form that has
a custom page named Contacts that contains a list box named lstCon-
tacts and a command button named cmdOpenContact.

When an item using this custom form opens, the code in the Item_
Open event handler returns a Table object from the user’s default Contacts
folder. It then deletes the second through fifth default columns (Subject,
CreationTime, LastModificationTime, and MessageClass) by deleting
column number 2 four times:

For i = 1 To 4
 objTable.Columns.Remove 2
Next

Note: Like other collections in Outlook, the Columns collection is 1-based.
In other words, the first item in the collection has an index value of 1.

It then adds a new column for the FileAs property and sorts by that
column:

objTable.Columns.Add "FileAs"
objTable.Sort "FileAs"

The list box on the form is modified to contain five columns; the first
(EntryID) and last (FileAs) are hidden by setting their column widths to
0. Finally, the list box’s List property is set to the array returned by GetAr-
ray with all the items with the table:

With lstContacts
 .ColumnCount = 5
 .ColumnWidths = "0;75;75;75;0"
 .List = objTable.GetArray(lngCount)
End With

The result is a very fast routine to fill the list box with the first, last, and
company names of all contacts in the default folder, sorted by the FileAs
property.

The code for the command button’s Click event handler uses the
Namespace.GetItemFromID method discussed earlier in the chapter along
with the EntryID value that is in the 0th column of the list box, one of the
two hidden columns.

15.4 Using the Table object 487

Listing 15.9 Use a table to fill a form list box with contacts

Function Item_Open()
 Dim objContacts
 Dim objTable
 Dim lngCount
 Dim objPage
 Dim lstContacts
 Const olFolderContacts = 10
 On Error Resume Next
 Set objOL = Application
 Set objNS = Application.Session
 Set objContacts = _
 objNS.GetDefaultFolder(olFolderContacts)
 Set objTable = objContacts.GetTable
 For i = 1 To 4
 objTable.Columns.Remove 2
 Next
 objTable.Columns.Add "FileAs"
 objTable.Sort "FileAs"
 lngCount = objTable.GetRowCount
 Set objPage = _
 Item.GetInspector.ModifiedFormPages("Contacts")
 Set lstContacts = objPage.Controls("lstContacts")
 With lstContacts
 .ColumnCount = 5
 .ColumnWidths = "0;75;75;75;0”
 .List = objTable.GetArray(lngCount)
 End With
 Set objNS = Nothing
 Set objContacts = Nothing
 Set objPage = Nothing
 Set lstContacts = Nothing
End Function

Sub cmdOpenContact_Click()
 Dim objNS
 Dim objPage
 Dim lstContacts
 Dim lngSelRow
 Dim strEntryID
 Dim objContact
 Set objNS = Application.Session
 Set objPage = _
 Item.GetInspector.ModifiedFormPages("Contacts")
 Set lstContacts = objPage.Controls("lstContacts")
 lngSelRow = lstContacts.ListIndex
 strEntryID = lstContacts.Column(0, lngSelRow)
 Set objContact = objNS.GetItemFromID(strEntryID)
 objContact.Display
 Set objNS = Nothing
 Set objPage = Nothing
 Set lstContacts = Nothing
 Set objContact = Nothing
End Sub

488 15.4 Using the Table object

A couple of other points regarding the Table.Columns.Add method:

Adding a Column to a Table repositions the row enumerator to just
before the first row—the equivalent of calling MoveToStart. (Invok-
ing the Sort method also repositions the row enumerator.)

There is more than one way to add columns for standard properties.
You can use their property names from the Outlook object model or
use the namespace syntax for schema names, that is, the same prop-
erty names that you first encountered with the PropertyAccessor
object in the previous chapter. This statement, for example, adds a
Column to a Table for the property that holds the Internet headers
for a message:
objTable.Columns.Add _
 "http://schemas.microsoft.com/mapi/proptag/0x007D001E"

Such properties are subject to the same limitations when retrieved
through a Table as through a PropertyAccessor, mainly that large
binary or string properties may raise an out-of-memory error.

15.4.2 Example: Report on message response times

Many organizations want to analyze various aspects of email use, such as
how much mail arrives per day or how quickly their employees respond to
email from customers. The Outlook object model exposes several date/time
fields with information useful to such a reckoning, such as SentOn,
ReceivedTime, and CreationTime, but cannot tell you when or if a reply
was sent.

Yet, after a user replies to or forwards a message, that item displays infor-
mation about when the item was sent or forwarded. Outlook shows that
information in the “info bar” at the top of the item in the reading pane or
an Inspector window. So where does it come from? If you look in the
Outlook object model, you won’t find any MailItem properties for this
data. The data is in two hidden MAPI properties, one to hold the date, and
the other to hold a number corresponding to the type of response:

Once you know what properties hold this hidden information, with the
help of the Table object, you can produce a report on which messages in a
folder have received responses and when. Listing 15.10 creates such a report
as a new Excel document. Note that this code sample for Outlook VBA
requires that you use Tools | References to add a reference to the Microsoft
Office Excel library. You can call the ReportResponses subroutine with

Reply 102

Reply to all 103

Forward 104

15.4 Using the Table object 489

Listing 15.10 Create a report in Excel on message response times

Sub ReportResponses(fld As Outlook.Folder)
 Dim objTable As Outlook.Table
 Dim objRow As Outlook.Row
 ' requires a reference to the
 ' Microsoft Office Excel library
 Dim objEX As Excel.Application
 Dim objWB As Excel.Workbook
 Dim objWS As Excel.Worksheet
 Dim intR As Integer
 Dim val()
 Const PR_LAST_VERB_EXECUTION_TIME = _
 "http://schemas.microsoft.com/mapi/proptag/0x10820040"
 Const PR_LAST_VERB_EXECUTED = _
 "http://schemas.microsoft.com/mapi/proptag/0x10810003"
 On Error Resume Next
 Set objTable = fld.GetTable
 With objTable
 .Columns.Add "SenderName"
 .Columns.Add "SenderEmailAddress"
 .Columns.Add "SentOn"
 .Columns.Add PR_LAST_VERB_EXECUTION_TIME
 .Columns.Add PR_LAST_VERB_EXECUTED
 End With
 If objTable.GetRowCount > 0 Then
 Set objEX = CreateObject("Excel.Application")
 Set objWB = objEX.Workbooks.Add
 Set objWS = objWB.Worksheets(1)
 intR = 4
 Do Until objTable.EndOfTable
 Set objRow = objTable.GetNextRow
 val = objRow.GetValues
 With objWS
 .Cells(intR, 1).Value = val(7) ' SentOn
 .Cells(intR, 2).Value = val(2) ' CreationTime
 ' PR_LAST_VERB_EXECUTION_TIME
 If IsDate(val(8)) Then
 .Cells(intR, 3).Value = _
 objRow.UTCToLocalTime(9)
 End If
 ' PR_LAST_VERB_EXECUTED
 .Cells(intR, 4).Value = _
 LastVerbText(CInt(val(9)))
 .Cells(intR, 5).Value = val(5) ' SenderName
 ' SenderEmailAddress
 .Cells(intR, 6).Value = val(6)
 .Cells(intR, 7).Value = val(1) ' Subject
 End With
 intR = intR + 1
 Loop
 With objWS
 .Columns("A:G").EntireColumn.AutoFit

490 15.4 Using the Table object

any Folder object. For example, display the folder you want to report on,
and then execute this statement in the Immediate window:

ReportResponses Application.ActiveExplorer.CurrentFolder

After a few seconds, an Excel document will appear containing the data.
With AutoFilter turned on, you can immediately start to analyze the data.

These two statements establish constants for the MAPI properties that
hold information about when a reply or forward took place and which
action was taken:

Const PR_LAST_VERB_EXECUTION_TIME = _
 "http://schemas.microsoft.com/mapi/proptag/0x10820040"
Const PR_LAST_VERB_EXECUTED = _
 "http://schemas.microsoft.com/mapi/proptag/0x10810003"

 .Cells(1, 1).Value = _
 "Report on messages in folder: " & _
 fld.FolderPath
 .Cells(3, 1).Value = "Sent"
 .Cells(3, 2).Value = "Received"
 .Cells(3, 3).Value = "Response Date"
 .Cells(3, 4).Value = "Response"
 .Cells(3, 5).Value = "Sender Name"
 .Cells(3, 6).Value = "Sender Address"
 .Cells(3, 7).Value = "Subject"
 .Range("A1:G3").Font.Bold = True
 .Columns("D").EntireColumn.AutoFit
 .Range("A4").AutoFilter
 End With
 objEX.Visible = True
 objWB.Activate
 End If
 Set objTable = Nothing
 Set objRow = Nothing
 Set objEX = Nothing
 Set objWS = Nothing
End Sub

Function LastVerbText(verb As Integer)
 Select Case verb
 Case 102
 LastVerbText = "Reply"
 Case 103
 LastVerbText = "Reply to All"
 Case 104
 LastVerbText = "Forward"
 Case Else
 LastVerbText = ""
 End Select
End Function

Listing 15.10 Create a report in Excel on message response times (continued)

15.4 Using the Table object 491

By now, you should be able to recognize these as properties from the
MAPI proptag namespace, which was discussed in the previous chapter
about the PropertyAccessor object.

After returning the table and adding the desired columns, the code cre-
ates an Excel workbook and sets the value of a variable, intR, that repre-
sents the row in the worksheet where the code will write data. A Do loop
does the bulk of the work:

Do Until objTable.EndOfTable
 Set objRow = objTable.GetNextRow
 Val = objRow.GetValues
 ' code to process the val array of values
 intR = intR + 1
Loop

When processing table rows, you need to know when you have reached
the last row. The EndOfTable property returns True if there are no more
rows to return. Once you return a Row object with the Table.GetNextRow
method, you can use the Row.GetValues method to return an array of the
property values from the table’s Columns collection.

The basic technique for putting data into an Excel worksheet is to use
this syntax:

objWS.Cells(r, c).Value = some_value

where r and c represent the row and column indexes for a given cell.

Note: You might be wondering why the code uses CreationTime, rather
than ReceivedTime to fill the second column in the worksheet. Cre-
ationTime more accurately reflects when the item was first available to
the user in Outlook. The ReceivedTime property stores the date/time
when the user’s mail server received the item, which could be somewhat
earlier.

To help you work with the data returned by Row.GetValues, the Row
object supports the same conversion methods that we saw for the Proper-
tyAccessor object in Chapter 13. You can use the Row.BinaryToString
method to convert binary properties to their string representations, but
remember that only small binary property values (those under 4kb) will be
returned.

To handle row date values properly, you need to be aware of the type of
column. For default columns and standard properties added to the
Table.Columns collection with their Outlook object model property
names, the date/time values returned by GetValues will be in local time.
However, for properties added using namespace references, such as the
property in Listing 15.10 that exposes the time of the last action on the

492 15.5 Using Item methods

item, the property values will be in UTC time, and therefore, you will need
to use Row.UTCToLocalTime to convert them to local time. Take a close
look at the way that Listing 15.10 performs the conversion:

If IsDate(val(8)) Then
 .Cells(intR, 3).Value = _
 objRow.UTCToLocalTime(9)
End If

As mentioned in the previous section, a Table does not generate an
error if a property in its Columns collection—in this case, the date/time
property whose value is in the array as val(8)—is not present on an indi-
vidual item. However, Outlook will raise an error if you try to get the date/
time with UTCToLocalTime and the value is not a date/time. Therefore,
you should use the IsDate() function first to confirm a date is present,
before converting it with UTCToLocalTime.

Note: The time converter methods for both Row and PropertyAccessor
round the result to the nearest minute, ignoring any seconds part of the
date/time value.

Also pay attention to the fact that the array returned by Row.GetVal-
ues() is a zero-based array, but the conversion methods like Binary-
ToString and UTCToLocalTime take as their parameter the column index
from Table.Columns, which is a 1-based collection. That explains why the
code checks the value of val(8) but performs the conversion with
objRow.UTCToLocalTime(9). The date/time property that we are inter-
ested in is the ninth element of the zero-based val() array and also the
ninth column in the Columns collection.

After the loop, the code uses Excel methods to add column headings
to the worksheet, fit each column to the data it contains, turn on the
AutoFilter feature, and display the worksheet. We will spend more time
working with Excel in Chapter 24, but this sample demonstrates the
basics of opening and populating a new worksheet with Outlook data. As
with Word, you can learn a lot about Excel methods by turning on the
macro recorder.

15.5 Using Item methods
Messages, contacts, appointments, and the other different Outlook items
have many programming methods in common. Table 15.7 provides a sum-
mary. Not all methods apply to each type of item. See the Help topic for an
individual method for details. Other methods, specific only to certain types
of items, are shown later in Table 15.10.

15.5 Using Item methods 493

Caution: Using the item.Close method in VBScript code behind a cus-
tom form may cause the initially released version of Outlook to crash. Let’s
hope that this problem will be eliminated in a hotfix or service pack.

To copy an item to another folder, first use the Copy method to make a
copy of the item, and then use the Move method to place the copy in the
destination folder, as in the following example, where objItem is an Out-
look item and objFolder is the target Folder object:

Set newItem = objItem.Copy
Set movedItem = newItem.Move(objFolder)

Table 15.7 Common Item Methods

Method Description

ClearTaskFlag Clears the task flag from a message, contact, or post, removing it from the To
Do List

Close SaveMode Closes the item, saving changes if desired, using the same SaveMode argument
values shown in Table 15.1

Copy Returns an unsaved copy of the item

Delete Deletes the item

Display Modal Shows the item in an Inspector window. The default for Modal is False;
the use of True to show an item modally is not recommended.

Forward Returns a new MailItem object containing the item to be forwarded

MarkAsTask MarkInterval Add a message, contact, or post to the To Do List marked for action in the
MarkInterval time frame

Move(DestFld) Moves the item to the DestFld destination folder; returns the moved item

PrintOut Prints the item with Outlook’s default settings

Reply Returns a new MailItem object addressed to the original sender

ReplyAll Returns a new MailItem addressed to the original sender and any Cc recipients

Save Saves the item in the folder from which it was opened or to which it was added;
for a new item, saves to the default folder for the item type

SaveAs Path, Type Saves the item to a system file using the specified Path and one of the Type
constants listed in Table 15.10

Send Sends the item (appointment, meeting request, message, task request)

ShowCategoriesDialog Displays the Categories dialog so the user can modify the categories for the item

494 15.5 Using Item methods

Note that Move returns the new item that was placed in the target folder.
If the item you want to copy is in a folder other than the user’s own
Exchange mailbox or a Personal Folders .pst file, you may be blocked by
permissions on the folder from copying or moving the item. To copy an
item, you need permission to create new items in the same folder as the
original item. To move an item, you need permission to delete items from
the item’s folder. You always have those permissions for your own mailbox
and for any .pst files, but may not have such permission for other Exchange
mailbox or Public Folders folders.

The behavior of the Delete method depends on what store the item is
in. Table 15.8 lists the possibilities.

The process of permanently deleting an item is surprisingly compli-
cated. The VBA code in Listing 15.11 uses this sequence of operations:

1. Move the item to the Deleted Items folder.

2. Get the EntryID value from the moved item.

3. Release both the original item and the moved item.

4. Use the Namespace.GetItemFromID method to return the
moved item from the the EntryID saved in Step 2.

5. Delete the moved item.

Caution: The DeleteSelectedItem procedure in Listing 15.11 does not
ask the user to confirm the permanent deletion of the selected item. You
might want to add such a prompt if you implement this technique in your
own applications.

You should recall from the discussion in Chapter 8 that you should use a
countdown loop instead of a For Each ... Next loop to delete multiple

Table 15.8 Behavior of the Delete Method

Information Store Holding the Item Delete Behavior

User’s own Exchange mailbox Moves item to the mailbox’s Deleted Items folder

Personal Folders .pst file Moves item to the .pst file’s Deleted Items folder

Exchange Public Folders Permanently deletes the item

IMAP account proxy .pst file Marks the item for deletion during the folder’s next purge operation

Other user’s Exchange mailbox Moves item to either the current user’s Deleted Items folder or other
user’s Deleted Items folder, depending on the registry value described in
Microsoft Knowledge Base Article 202517

15.5 Using Item methods 495

items in a collection. The same applies to moving items, since moving an
item involves deleting it. Also remember that, in order to move an item, the
user needs delete permission on the source folder and create permission on
the target folder.

You saw an example of the new MarkAsTask method in Listing 15.5.
Table 15.9 lists the values for the required MarkInterval parameter.

Outlook can save files in system folders in the formats shown in Table
15.10. The formats available for any given item depend on the type of item
and, in the case of messages and post items, whether the item body format
is HTML, plain text, or rich text. If you do not specify a format with the
SaveAs method, the default message (.msg) format is used.

Note: The vCard, vCalendar, and iCalendar formats follow accepted speci-
fications for exchanging contact and schedule data over the Internet. These
formats are used by many applications besides Outlook.

Listing 15.11 Permanently delete an item

Sub DeleteSelectedItem()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objExpl As Outlook.Explorer
 Dim objItem As Object
 Dim objDelItem As Object
 Dim objDelFolder As Outlook.Folder
 Dim strID As String
 On Error Resume Next
 Set objOL = Application
 Set objNS = objOL.Session
 Set objExpl = objOL.ActiveExplorer
 If objExpl.Selection.Count = 1 Then
 Set objItem = objExpl.Selection(1)
 Set objDelFolder = _
 objNS.GetDefaultFolder(olFolderDeletedItems)
 Set objDelItem = objItem.Move(objDelFolder)
 Set objItem = Nothing
 strID = objDelItem.EntryID
 Set objDelItem = Nothing
 Set objDelItem = objNS.GetItemFromID(strID)
 objDelItem.Delete
 End If
 Set objOL = Nothing
 Set objNS = Nothing
 Set objExpl = Nothing
 Set objDelItem = Nothing
 Set objDelFolder = Nothing
End Sub

496 15.5 Using Item methods

Caution: The SaveAs method overwrites any existing file with the same
name, without any warning.

In addition to the Reply and Forward methods, three other methods—
ForwardAsVcal, ForwardAsBusinessCard, ForwardAsVcard—return a
new MailItem ready to be completed and sent. Those are among the meth-
ods that are specific to individual Outlook items. Table 15.11 summarizes
these and other item-specific methods. For more information and usage
examples, see the Help topic for each method. We will look at some of these
methods in Chapter 20.

Table 15.9 OlMarkInterval Constants for Use with the MarkAsTask Method

Interval Constant Value

Today olMarkToday 0

Tomorrow olMarkTomorrow 1

This Week olMarkThisWeek 2

Next Week olMarkNextWeek 3

No Date olMarkNoDate 4

Table 15.10 OlSaveAsType Constants for Use with the SaveAs Method

Format Constant Value

Message (.msg) olMSG 3

Unicode message (.msg)—not compatible with
Outlook 2003 or earlier versions

olMSGUnicode 9

Text only (.txt) olTXT 0

Rich text format (.rtf) olRTF 1

HTML format (.htm) olHTML 5

Outlook form template (.oft) OlTemplate 2

vCard (.vcf) olVCard 6

vCalendar (.vcs) olVCal 7

iCalendar (.ics) olICal 8

Word document (.doc) olDoc 4

15.5 Using Item methods 497

Table 15.11 Item-Specific Methods (* = new in Outlook 2007)

Item Type Method Description

AppointmentItem ClearRecurrencePattern Changes a recurring appointment to a
non-recurring appointment

ForwardAsVcal Returns a MailItem object with an
attached vCal .vcs file for the appoint-
ment

GetRecurrencePattern Returns the RecurrencePattern
object defining a recurring appointment;
use only if IsRecurring = True for
an existing item or if you make the
appointment recurring

Respond Response, fNoUI,
fAdditionalTextDialog

Responds to an AppointmentItem
contained in a meeting request.
Response is one of the following
OlMeetingResponse constants:

olMeetingAccepted 3

olMeetingDeclined 4

olMeetingTentative 2

fNoUI and fAdditionalTextDialog
are optional Boolean parameters that
determine whether the user sees dialog
boxes for choosing the response and add-
ing text comments

ContactItem * AddBusinessCardLogoPicture
Path

Adds the picture file from Path as the
new logo for the contact’s electronic busi-
ness card; this picture is stored as a binary
property, not in the Attachments col-
lection

AddPicture Path Adds the picture file from Path as the
new picture displayed for the contact.
The picture is stored in the Attach-
ments collection as ContactPicture.jpg.

* ForwardAsBusinessCard Returns a MailItem containing the con-
tact’s electronic business card both as a
.vcf attachment and, if the default mes-
sage formt is HTML, as a .jpg image in
the message body

ForwardAsVcard Returns a MailItem containing the con-
tact’s information as a vCard .vcf file

498 15.5 Using Item methods

ContactItem (cont’d.) RemovePicture Removes the picture associated with the
contact

* ResetBusinessCard Resets the electronic business card layout
to Outlook’s default settings

* SaveBusinessCardImage Path Saves contact information as a .png file
using the electronic business card layout

* ShowBusinessCardEditor Displays the Edit Business Card dialog

* ShowcheckPhoneDialog Phone-

Number

Displays the Check Phone Number dia-
log for the PhoneNumber represented by
the constant from the OlContact-
PhoneNumber enumeration, e.g.,
OlContactPhoneBusiness

DistListItem AddMember Recipient Adds a single Recipient to the distri-
bution list

AddMembers Recipients Adds a Recipients collection as new
members of the distribution list

GetMember(Index) Return a member of the distribution list

RemoveMember Recipient Removes a Recipient object from the
distribution list membership

RemoveMembers Recipients Removes a Recipients collection of
members from the distribution list

JournalItem StartTimer Starts the timer on a Journal entry

StopTimer Stops the timer on a Journal entry

MailItem * AddBusinessCard Contact Adds information from the Electronic
Business Card for Contact to the mes-
sage as a vCard .vcf attachment and, for
HTML-format messages, a .gif image in
the message body

ClearConversationIndex Clears the ConversationIndex prop-
erty

MeetingItem GetAssociatedAppointment
(AddToCalendar)

Returns the AppointmentItem associ-
ated with the meeting request

PostItem ClearConversationIndex Clears the ConversationIndex prop-
erty

Post Saves the post in the target folder and
closes it

Table 15.11 Item-Specific Methods (* = new in Outlook 2007) (continued)

Item Type Method Description

15.5 Using Item methods 499

TaskItem Assign Assigns a task

CancelResponseState Resets the ResponseState property to
its original value; use to convert a task
response to a simple task before respond-
ing to a task request

TaskItem (cont’d.) ClearRecurrencePattern Changes a recurring task to a non-recur-
ring task

GetRecurrencePattern Returns the RecurrencePattern
defining a recurring task

MarkComplete Updates PercentComplete to 100%,
Complete to True, and DateCom-
pleted to the current date

Respond Response, fNoUI,
fAdditionalTextDialog

Responds to an TaskItem contained in
a task request. Response is one of the
following OlTaskResponse constants:

olTaskAssign 1

olTaskAccept 2

olTaskDecline 3

olTaskSimple 0

fNoUI and fAdditionalTextDialog
are optional Boolean parameters that
determine whether the user sees dialog
boxes for choosing the response and add-
ing text comments

SkipRecurrence Clears the current instance of a recurring
task and sets the recurrence to the next
instance

StatusReport Sends a status report to all recipients
listed in the StatusUpdateRecipi-
ents property

TaskRequestAcceptItem

TaskRequestDeclineItem

TaskRequestItem

TaskRequestUpdateItem

GetAssociatedTask
(AddToTaskList)

Returns the TaskItem object associated
with a task request, response, or update

Table 15.11 Item-Specific Methods (* = new in Outlook 2007) (continued)

Item Type Method Description

500 15.6 Summary

15.6 Summary
In this first of four chapters on working with items, we saw many ways to
create new items—including both standard and custom form items—and
to access and process existing items. The newest approach is to use the
Table object that Outlook 2007 introduces for rapid, read-only item itera-
tion.

Any Outlook item can be displayed in an Inspector window. In addi-
tion to common item methods, such as Close and Save, each different
item type has its own special methods.

Among the practical examples in this chapter are procedures to send a
Word document or Excel worksheet as the body of an email message, to
process items selected in a folder or get the current item, to delete all the
items in a folder or permanently delete an individual item, to generate the
next number in a sequence, to fill a custom form list box with the user’s
contacts, and to report on when a user responded to messages in a folder.

In Chapter 16, we’ll explore the many different ways to search for items,
and in Chapter 17, we’ll examine techniques for working with the bodies of
messages and other items. Finally, Chapter 20 demonstrates some of the
methods specific to different types of Outlook items.

501

16
Searching for Outlook Items

Finding an item through the Outlook user interface is very easy. When the
user types text in an area at the top of the current window, Outlook 2007
begins to search immediately. Performing a search programmatically is not
quite as straightforward, because there are six different methods and two
different syntaxes for writing search queries. This chapter reviews these dif-
ferent approaches, suggests when it is most appropriate to use each of them,
and discusses the implications of the new indexed Instant Search feature in
Outlook 2007. On Windows XP and Windows 2003 Server, the Instant
Search feature requires Windows Desktop Search (WDS) 3.0. WDS installs
automatically on Windows Vista.

Highlights of this chapter include discussions of the following:

Which search technique to use, depending on what you want to
search for, whether you want to search one folder or many, and what
you plan to do with the results

How to write search queries to search inside attachments and/or item
bodies

How to use the Application.AdvancedSearch and Explorer.
Search methods to show search results using Outlook’s user interface

When you should use a DASL query instead of a Jet search string

How to return all appointments, including recurrences, within a date
range

16.1 Introduction to Outlook search methods
Outlooks offers programmers multiple search methods to return one or
many results; search synchronously or asynchronously; search one folder or
many; search on standard, custom, or MAPI properties; and return the
search results in an Outlook Explorer interface or with no user interface.
With so many options available from six different search methods, it’s hard

502 16.1 Introduction to Outlook search methods

to know which to choose! As a start, let’s introduce each of the different
methods, and then consider when you might want to use each one.

The Folder.Items collection has two search methods, Find and
Restrict, each of which takes a Filter parameter containing your search
string, that is, a string that defines the conditions for the search. The Find
method returns a single item and can be followed by FindNext to return the
next item matching the conditions. (You can repeat FindNext until it returns
Nothing—in other words, no result.) The Restrict method returns an Items
collection, which you can iterate using the techniques discussed in the previous
chapter. Here is the basic syntax for Find, FindNext, and Restrict:

Set objItem = colItems.Find(Filter)
Set objNextItem = colItems.FindNext
Set colFoundItems = colItems.Restrict(Filter)

Very similar to the Find and FindNext methods are the FindRow and
FindNextRow methods of a Table object returned from a Folder object:

Set objRow = objTable.FindRow(Filter)
Set objNextRow = objTable.FindNextRow

Similarly, the Table.Restrict method returns a new, filtered Table
object:

Set objNewTable = objTable.Restrict(Filter)

You should recall from the previous chapter that Table is an object new
to Outlook 2007 and that the data returned in a Table object is read-only.

Find, FindRow, and Restrict only return the data; it is up to the call-
ing application to provide any user interface that the application might
need to show the results.

Another new method in Outlook 2007 is Explorer.Search, which
uses this syntax:

objExpl.Search Query, SearchScope

where Query is the search string and SearchScope is either olSearch-
ScopeAllFolders (literal value 1) or olSearchScopeCurrentFolder
(literal value 0). This is one of two approaches that can return the search
results in the Outlook user interface. (The other is to use AdvancedSearch
to create a search folder.) It is also unlike Find, FindRow, and Restrict in
that it can search more than one folder and it does not return an object con-
taining the results for further processing.

Note: You can also filter the items displayed in a folder window by updat-
ing the value of the Filter or XML property of a View object, using the
same DASL query syntax that we’ll see in this chapter. We’ll discuss views in
Chapter 22.

16.2 Building search strings 503

The last method, Application.AdvancedSearch, is both the most
complex to implement and the most powerful. It can either return individ-
ual items for processing or create a permanent search folder, a virtual folder
that searches in the background to maintain a results set that the user can
view at any time. It can search one folder or many folders within the user’s
Exchange mailbox or any single Personal Folders .pst file. The syntax for
Advanced Search looks like this:

Set objSearch = Application.AdvancedSearch _
 (Scope, Filter, SearchSubFolders, Tag)

All parameters but the first are optional, but as a practical matter, you’ll
almost always provide a search string for the Filter argument as well as a
value for Scope. (A search wouldn’t be much of a search without a search
string of some kind, would it?)

Notice that the AdvancedSearch method returns a Search object. The
search results are available either as the Results collection of the Search
object or as a Table object returned by Search.GetTable. However, in
most cases, the complete search results will be unavailable until the search
completes. You can perform multiple simultaneous searches with the
AdvancedSearch method. Outlook 2007 can support up to 100 simulta-
neous searches launched programmatically or through the UI. As you’ll see
when we look at AdvancedSearch in detail a little later in the chapter,
most implementations use the AdvancedSearchComplete and Advanced-
SearchStopped events of the Application object to process the results.

Table 16.1 lists recommendations on which methods lend themselves best
to particular search scenarios that Outlook programmers often encounter.

After a discussion of how to build search strings, we’ll look at each of
these search methods in more depth, with examples.

16.2 Building search strings
Crucial to each search method introduced in the previous section is a search
string argument that contains the conditions that define the search.
Depending on the method, the search string can use one of four available
syntaxes:

Microsoft Jet syntax, similar to that used by validation formulas on
Outlook items

DASL (Distributed Authoring Search and Location) syntax, using
the same namespace schema property names that the Property-
Accessor object uses

Content indexer syntax, which adds some additional operators to the
DASL syntax

504 16.2 Building search strings

Advanced Query Syntax (AQS) for searching the Windows Desktop
Search index

The Find and FindRow methods can use only the Jet syntax, which is
not available for the AdvancedSearch method. Only the Explorer.
Search method can use the AQS syntax. Table 16.2 summarizes the syntax
options for the different methods. The sections that follow explain how to

Table 16.1 Recommended Outlook Search Techniques

When You Want to . . . Use this Outlook Search Method . . .

Locate a single item in a known folder using a stan-
dard or custom property and edit that item

Items.Find

Locate a single item or multiple items in a known
folder using any kind of property and edit the items

Items.Restrict

Locate all appointments in a date range, including
recurrences

Items.Restrict

Quickly locate a single item in a known folder and
read a limited set of properties without editing the
item

Table.FindRow

Locate multiple items in a known folder and rap-
idly read a limited set of properties without editing
the items

Table.Restrict

Locate multiple hidden items, such as custom
forms or views, in a known folder

Table.Restrict

Search a single folder and show the results in an
Explorer window

Explorer.Search

Search all folders of particular type (all mail folders,
all contact folders, and so on) and show the results
in an Explorer window

Explorer.Search

Create a permanent search folder Application.AdvancedSearch

Search across specific multiple folders in a .pst file
or the user’s Exchange mailbox and return results to
be processed

Application.AdvancedSearch

Search for text in any text field (including the item
body and attachment contents), and read the
results without editing the items

Table.Restrict

Search for text in any text field (including the item
body and attachment contents), and return results
to be processed

Items.Restrict

Application.AdvancedSearch

16.2 Building search strings 505

construct Jet and DASL search strings, including those for searching
indexed content. The AQS search syntax is covered in Section 16.5, “Using
Explorer.Search,” since it applies only to that method.

Section 16.2.2 below on “Using the DASL search syntax” explains how
to use the prefix @SQL= to incorporate a DASL search string into a
Restrict or FindRow search. However, you cannot mix combine Jet and
DASL search expressions into a single search string.

16.2.1 Using the Jet search syntax

For the simple Jet syntax, a search string should contain at least one field
name, a comparison operator, and the value you want to find for that field.
Put the field names in brackets. The field can be either a standard field or a
custom field (see Section 16.2.6). Surround string values with one set of
single quotation marks or two sets of double quotation marks. Express date/
time values as strings, without a seconds component. Here are examples of
some simple Jet search strings:

"[City] = 'Arlington'"
"[Unread] = True"
"[Start] >= ""March 3, 2007 10:00 AM"""
"[Duration] < 1440"

If you have multiple criteria, join them with an AND or OR operator, as
appropriate, for example:

"[City] = 'Arlington' AND [State] = 'VA'"

You can use literals, variables, or the results of functions in the search
string, as long as they evaluate to a string. When the search expression
involves anything other than literal values, you should build the search
string as a separate variable, both to make the code more readable and to
make debugging easier. Use the Quote() function from Listing 7.4 when

Table 16.2 Search String Syntax Support

Method Jet DASL
DASL with
Content Indexer AQS

Items.Find X

Items.Restrict X X (with @SQL=) X (with @SQL=)

Table.FindRow X X (with @SQL=)

Table.Restrict X X (with @SQL=) X (with @SQL=)

Explorer.Search X

Application.AdvancedSearch X X

506 16.2 Building search strings

you need to surround the value from a string or date variable with quota-
tion marks:

Function Quote(val)
 Quote = Chr(34) & CStr(val) & Chr(34)
End Function

For example, this code snippet builds a search string to locate appoint-
ments starting today or at a later date:

strFind = "[Start] >= " & Quote(Date)
Set colItems = objFolder.Items.Restrict(strFind)

If you use a Debug.Print or MsgBox statement to display the result of
the strFind expression, the Immediate window or message box will show
text like this (with today’s date) to help you confirm that the search string
looks good:

[Start] >= "4/18/2007"

A key limitation of the Jet syntax is that the standard property names from
the Outlook object model work only in English. If Outlook is configured for
another language, the Jet syntax needs to use localized property names.
Unfortunately, no comprehensive list is available. If you need to write code
for multiple locales, you should use the DASL syntax for your searches.

Other important Jet limitations are that it supports only three operators
(=, >, and <) and wildcards are not allowed. This means that for searches of
text properties, you are limited to exact matches and initial string searches.
To do a “starts with” search, use the < and > operators. For example, this
statement builds the search string to return all contacts whose last name
begins with M:

strFind = "[LastName] >= 'M' AND [LastName] < 'N'"

If you need to search for a substring match, in other words, for a string
contained within a text property value, use the DASL syntax instead of Jet.

A relatively minor Jet limitation is that it doesn’t provide a way to handle
apostrophes, such as those you might find in a person’s name (O’Brien) or
in the subject of an appointment (Sue Mosher’s Birthday). In those scenar-
ios, you should use a DASL search instead.

A final limitation is that many standard properties, including EntryID,
Body, HTMLBody, and computed properties like ContactItem.Last-
FirstAndSuffix, are not supported in Jet searches. The Help topics on
the Find and Restrict methods provide a detailed list.

Tip: You don’t need to be able to search for an EntryID value, since you
can use that value with the Namespace.GetItemFromID method to locate
an item directly.

16.2 Building search strings 507

16.2.2 Using the DASL search syntax

The DASL search syntax is supported by all the search methods except
Explorer.Search and Items.Find. It is similar to Jet in that a search
string involves a field name, a comparison operator, and the value you want
to search for, but there are two big differences. The field names for DASL
use the namespace schema names discussed in Chapter 14. This means you
can search on many properties that are not exposed in the Outlook object
model. Plus, you can perform substring searches using the LIKE operator,
which you may be familiar with if you have constructed queries with
Microsoft Access or SQL Server.

Table 16.3 should help you compare some the Jet syntax examples from
the previous section with their DASL equivalents. Note that, when building
a DASL search string, the property name must be enclosed in double quo-
tation marks and, for text and date properties, the search value enclosed in
single quotation marks. Omit the seconds element from date property val-
ues. Where Jet uses True and False for Boolean property search values,
DASL uses 1 and 0. Use schema property names that you’ve looked up in a
view’s Filter dialog or their equivalents from the MAPI proptag or MAPI
ID namespaces.

To use DASL syntax with any method that supports it other than
AdvancedSearch, you must prefix the search string with @SQL=. Compare

Table 16.3 Examples of Jet and DASL Search Strings

Jet DASL

"[City] =
'Arlington'"

"""urn:schemas:contacts:mailingcity"" = 'Arlington'"
""" http://schemas.microsoft.com/mapi/id/{00062004-
0000-0000-C000-000000000046}/8046001E"" =
'Arlington'"

"[Unread] = True" """urn:schemas:httpmail:read"" = 0"

"[Start] >= ""March
3, 2007"""

"""urn:schemas:calendar:dtstart"" >= '3/3/2007 12:00
AM'"
""" http://schemas.microsoft.com/mapi/id/{00062002-
0000-0000-C000-000000000046}/820D0040"" >= '3/3/2007
12:00 AM'"

"[Duration] < 1440" """http://schemas.microsoft.com/mapi/id/{00062002-
0000-0000-C000-000000000046}/82130003"" < 1440"

"[MailingAddressCity]
= 'Arlington' And
[MailingAddressState]
= 'VA'"

"""urn:schemas:contacts:mailingcity"" = 'Arlington'
AND ""urn:schemas:contacts:mailingstate"" = 'VA'"
""" http://schemas.microsoft.com/mapi/id/{00062004-
0000-0000-C000-000000000046}/8046001E"" = 'Arlington'
AND ""http://schemas.microsoft.com/mapi/proptag/
0x3A28001E"" = 'VA'"

508 16.2 Building search strings

the code in the previous section to locate appointments starting on or after
a particular date with this DASL equivalent:

strFind = Quote("urn:schemas:calendar:dtstart") & _
 " >= '12/18/2006 12:00 AM'"
Set colItems = objFolder.Items.Restrict("@SQL=" & strFind)

To perform a DASL substring search, use the LIKE operator and % as a
wildcard. This search string, for example, would find all contacts whose last
names begin with “M”:

"""urn:schemas:contacts:sn"" LIKE 'M%'"

Here’s a more complicated example that builds a search string, strFind,
to locate all annual birthday and anniversary events in a calendar folder:

Const PR_SUBJECT = _
 "http://schemas.microsoft.com/mapi/proptag/0x0037001E"
strfind = Quote("urn:schemas:calendar:alldayevent") & _
 " = 1 AND " & _
 Quote("http://schemas.microsoft.com/mapi/id/" & _
 "{00062002-0000-0000-C000-000000000046}/" & _
 "82310003") & _
 " = 4 AND (" & _
 Quote(PR_SUBJECT) & " LIKE '%Birthday%' OR " & _
 Quote(PR_SUBJECT) & " LIKE '%Anniversary%')"

A Debug.Print strFind statement would display this as the search
string in the Immediate window:

"urn:schemas:calendar:alldayevent" = 1 AND "http://
schemas.microsoft.com/mapi/id/{00062002-0000-0000-C000-
000000000046}/82310003" = 4 AND ("http://
schemas.microsoft.com/mapi/proptag/0x0037001E" LIKE
'%Birthday%' OR " http://schemas.microsoft.com/mapi/
proptag/0x0037001E" LIKE '%Anniversary%')

Compare this result with the query built in the Section 16.2.3, “Using
the Query Builder,” which uses a different namespace to refer to the same
Subject property.

Tip: The PR_SUBJECT name for the constant for the MAPI proptag schema
name for the Subject property refers to the property’s name in the
Extended MAPI programming model, which is well documented on
MSDN. Such PR* names give you a convenient and familiar shorthand for
naming constants to represent various MAPI properties. We’ll see them in
other examples in this chapter.

It may look complex, but the fields in the first, third, and fourth search
terms should be recognizable as the AllDayEvent and Subject properties.
The second search term is the MAPI property tag for the recurrence fre-
quency of an appointment; the value 4 corresponds to yearly appointments.

16.2 Building search strings 509

Notice the search term for AllDayEvent, a Boolean property in the Outlook
object model, takes a value 1 in DASL, corresponding to a value of True.

As useful as the LIKE operator is, though, if Outlook is configured for
indexed search, then you’ll probably want to use the content indexer opera-
tors discussed in the next section whenever you want to search for words in
the text.

16.2.3 Using the Query Builder

A good way to learn about the DASL search syntax is to experiment, using
the dialog for building filters on folders. To create complex searches with
multiple search terms joined by OR as well as AND, you can enhance Out-
look’s Filter dialog with a Query Builder dialog that allows you to build
searches graphically using Outlook field names and see the results in the
DASL syntax. Make a backup of your Windows registry, then run Regedit
and in the HKCU\Software\Microsoft\Office\12.0\Outlook key, add a new
key named QueryBuilder; no value is required. After you add the Query-
Builder key, display the Filter dialog by choosing View | Current View |
Customize Current View | Filter. Between the Advanced and SQL tabs,
you’ll see a new Query Builder tab like that in Figure 16.1.

As an example of how to use the Query Builder to investigate DASL
syntax, let’s build a query to locate all birthdays and anniversaries. Follow
these steps:

1. Switch to your default Calendar folder.

2. Choose View | Current View | Customize Current View | Filter,
and then switch to the Query Builder tab.

3. Under Field, choose Subject from the Frequently Used Fields list.
For the Condition, choose “contains,” and for the Value, type in
“Birthday.”

Figure 16.1
Add a Query

Builder tab to help
you work with

Outlook’s DASL
search syntax.

510 16.2 Building search strings

4. Click Add to List to add the Birthday condition to the filter.

5. Repeat steps 3 and 4, substituting “Anniversary” for “Birthday.”

6. Under Logical Group, choose OR. The Query Builder should
look like Figure 16.1.

7. Under Field, choose All Day Event from the Frequently Used
Fields list. For the Condition, choose “equals,” and for the Value,
select Yes.

8. Click Add to List to add the All Day Event condition to the filter.

9. In the list of conditions, select “All Day Event equals Yes.”

10. Click Move Up three times to move the All Day Event condition
up as far as it will go. The Query Builder should now look like
Figure 16.2.

11. Switch to the SQL tab and check the box for Edit These Condi-
tions Directly. You should see the search criteria in Figure 16.3.

Figure 16.2
The Query Builder
tab adds the ability

to construct
complex searches
with both AND

and OR operators.

Figure 16.3
The DASL syntax
supports the LIKE

operator for
substring searches.

16.2 Building search strings 511

These expressions

"urn:schemas:httpmail:subject" LIKE '%Birthday%'
"urn:schemas:httpmail:subject" LIKE '%Anniversary%'

will filter for items whose Subject property contains “Birthday” or “Anni-
versary.” Joining those expressions with OR means that any item with
“Birthday” or “Anniversary” in the subject will satisfy the search conditions.
The expression

"urn:schemas:calendar:alldayevent" = 1

will filter for items with AllDayEvent = True. Joining this expression to
the OR’d subject expression produces a search string that will look for all day
events with either “Birthday” or “Anniversary” in the subject. You can test
how well the filter works by clicking OK to apply it to the Calendar folder.

16.2.4 Searching for indexed content

Outlook 2007 includes a new feature, Instant Search, that uses Windows
Desktop Search (WDS) 3.0 to perform background content indexing. The
WDS content index includes:

All Outlook standard text and keywords properties, including item
bodies

All custom text properties, including those defined only on individ-
ual items

Certain standard properties whose content can be stored as text, such
as Unread and FlagStatus

Text from attachments, both files and Outlook items

A search of the content index is potentially much faster than the other
types of searches you’ve seen so far, because it searches the index, not indi-
vidual items. Furthermore, only with a content index search can you locate
items based on text in an attachment.

That indexed content is available to DASL searches using two additional
operators:

CI_PHRASEMATCH

CI_STARTSWITH

Neither of the content index operators supports wildcards. The CI_
PHRASEMATCH operator generates a search for an instance of a whole word
or phrase, while the CI_STARTSWITH operator generates a search for a
whole word or phrase that begins with the specified text. Thus, these are
not at all the same as LIKE '%search text%' searches, which search for
substrings, with no regard for word boundaries.

Five MAPI property tags, listed in Table 16.4, are available for use with
content index searches for text in item bodies, attachments, and recipients.

512 16.2 Building search strings

With the exception of urn:schemas:httpmail:textdescription, you
cannot use these properties with other DASL search operators, only with
CI_PHRASEMATCH and CI_STARTSWITH. Also searches that use the property
related to Bcc recipients will return results only for items that the current
user has sent; incoming items contain no Bcc information.

Let’s look at a few examples. These statements create a search string
(strFind) that will find items with attachments that contain the word
“error” or “errors”:

Const PR_SEARCH_ATTACHMENTS = _
 "http://schemas.microsoft.com/mapi/proptag/0x0EA5001E"
strFind = Quote(PR_SEARCH_ATTACHMENTS) & _
 " CI_STARTSWITH 'error'"

This next example shows how to construct a search string to locate items
sent to someone at microsoft.com:

Const PR_SEARCH_RECIP_EMAIL_TO = _
 "http://schemas.microsoft.com/mapi/proptag/0x0EA6001E"
strFind = Quote(PR_SEARCH_RECIP_EMAIL_TO) & _
 " CI_PHRASEMATCH 'microsoft.com'"

You can combine CI_PHRASEMATCH and CI_STARTSWITH expressions
with DASL search expressions using other operators and other properties,
such as this example that creates a search string to locate unread items with
the phrase “investment management” in the body of an item:

Const PR_BODY = "urn:schemas:httpmail:textdescription"
strFind = Quote(PR_BODY) & " CI_PHRASEMATCH " & _
 "'investment management' AND " & _
 Quote("urn:schemas:httpmail:read") & " = 0"

The search string value returned by strFind would be:

"urn:schemas:httpmail:textdescription" CI_PHRASEMATCH
'investment management' AND "urn:schemas:httpmail:read" = 0

Table 16.4 MAPI Property Tags for Body, Attachment, and Recipient Content Searches

Mapi Property Namespace Schema Name

PR_BODY urn:schemas:httpmail:textdescription

PR_SEARCH_ATTACHMENTS http://schemas.microsoft.com/mapi/proptag/
0x0EA5001E

PR_SEARCH_RECIP_EMAIL_TO http://schemas.microsoft.com/mapi/proptag/
0x0EA6001E

PR_SEARCH_RECIP_EMAIL_CC http://schemas.microsoft.com/mapi/proptag/
0x0EA7001E

PR_SEARCH_RECIP_EMAIL_BCC http://schemas.microsoft.com/mapi/proptag/
0x0EA8001E

16.2 Building search strings 513

To determine whether the data in a given information store is available
for a content index search, check the value of the Store.IsInstant-
SearchEnabled property. If IsInstantSearchEnabled returns False,
then you cannot use a CI_PHRASEMATCH or CI_STARTSWITH expression in
your DASL search.

You’ll see additional examples of content index searches as we review
more aspects of searching with Outlook. Also check out this article in Out-
look developer Help:

How to: Filter the Body of a Mail Item (HV10016698)

The number in parentheses is a topic ID you can search for in Help to
find the article faster.

16.2.5 Searching on item bodies, text, and
keyword properties

So far we have seen several different ways to search for content in text prop-
erties. Let’s recap the most important points:

Searches with Jet syntax support only the =, >, and < operators, and
thus can locate only an exact match for the entire property value or a
match for a starting string. They cannot perform substring searches.

The Jet syntax cannot search for text in Outlook item bodies.

For substring searches that look for an exact word or phrase (or the
beginning of exact word or phrase), use DASL syntax with the CI_
PHRASEMATCH and CI_STARTSWITH operators. This technique is
available only in indexed information stores.

For other substring searches, use DASL syntax with the LIKE operator.

The Help topics for the Items.Find and Items.Restrict methods
list other text properties besides Body and HTMLBody that the Jet filter can-
not handle.

The Categories property and other keywords properties are a special
type of text property. You can locate items with a specific category using
both Jet and DASL syntax. This statement builds a Jet search string for
items with a category of Important:

strFind = "[Categories] = " & Quote("Important")

In a Jet query, the search term must be an exact match for the category.
The above search would not return any items with the category Important
Customer.

If you want to search for items that fit two categories, combine two such
[Categories] search expressions with the AND operator:

strFind = "[Categories] = " & Quote("Important") & _
 " AND [Categories] = " & Quote("Key Customer")

514 16.2 Building search strings

Now consider four possible DASL syntax searches in a folder that con-
tains items that have a category of Holiday and also some with the catego-
ries of Holiday Card, Vacation Holiday, and HolidayOnIce. This search
string for an exact match for Holiday will find only those items that have
Holiday and will ignore those with the other three categories:

CONST SEARCH_KEYWORDS = _
 "urn:schemas-microsoft-com:office:office#Keywords"
strFind = Quote(SEARCH_KEYWORDS) & " = 'Holiday'"

If you use the LIKE operator, as in

strFind = Quote(SEARCH_KEYWORDS) & " LIKE '%Holiday%'"

Outlook will search each category for the substring “Holiday” and so
will find items containing any of the four categories.

If you use the CI_PHRASEMATCH operator, as in

strFind = Quote(SEARCH_KEYWORDS) & _
 " CI_PHRASEMATCH 'Holiday'"

Outlook will search the words and phrases in each individual category
for an exact match for the word “Holiday” and so will find items marked
with the Holiday, Holiday Card, or Vacation Holiday category.

If you use the CI_STARTSWITH operator, as in

strFind = Quote(SEARCH_KEYWORDS) & _
 " CI_STARTSWITH 'Holiday'"

Outlook will look for words and phrases in each individual category that
start with “Holiday” and so will find items marked with any of the four cat-
egories.

Thus, you should be careful when searching the Categories prop-
erty—or any other keywords field—to use the operator appropriate to the
goal of your search, depending on whether you want to locate an exact
match for a category or to locate categories that may be related because they
contain the same word or string.

Another common issue related to text properties is how to handle items
where a string property may never have received a value. This can create an
odd situation where items have more than one kind of “blank.” Users see
this oddity when they group by a field and see two different groups with the
value of (none). One group consists of those items that have never had a
value, while the other contains those items that once had a non-blank value
for that property but now are blank. This behavior is particularly likely to
occur with a user-defined property.

For example, if you have a custom property named Industry in a con-
tacts folder, you might use this Jet search string to try to find contacts that
don’t have a value for Industry:

strFind = "[Industry] = " & Quote("")

16.2 Building search strings 515

However, that will not return any items that have never had a value set
for Industry. It will return only those items that are now blank, but previ-
ously had a non-blank value for Industry. To locate all blank items,
regardless of whether the property has ever had a value, you must use a
DASL query with the keywords Is Null, for example:

strFind = _
 Quote("http://schemas.microsoft.com/mapi/string/" & _
 "{00020329-0000-0000-C000-000000000046}/" & _
 "Industry") & " Is Null"

As you’ll see in the next section, the Is Null keywords are also useful to
determine if a date/time property has been set to a value.

16.2.6 Searching on date/time fields

As you learned earlier in the section on Jet queries, to search for a value in a
date/time property, you must enclose the search value in quotation marks
and show time only in hours and minutes, without any seconds. Use those
techniques with DASL queries, too. Date/time queries also have some
tricky nuances that Outlook developers need to contend with:

Dealing with “None” date/time values

Handling time zones and localized date formats

Searching a date range

Just as with text searches, date/time fields present a challenge when the
goal is to return items that do not have a date value assigned. In the user
interface, the user will see None both for dates that have never had a value
and for those that had a value previously, but the user (or code) removed it.
Outlook stores #1/1/4501# for the latter “None” values.

In a Jet search, to locate all “None” date/time values, you must look
both for items with a blank date/time value and for those with a value of
#1/1/4501#. This statement builds a Jet search string to locate items that
don’t have a value for a custom property named First Met:

strFind = "[First Met] = " & Quote("") & " OR " & _
 "[First Met] = " & Quote("1/1/4501 12:00 AM")

The DASL equivalent of that search would use the Is Null keywords
that you saw in the previous section on string searches:

strFind = _
 Quote("http://schemas.microsoft.com/mapi/string/" & _
 "{00020329-0000-0000-C000-000000000046}/" & _
 "First%20Met") & " Is Null OR " & _
 Quote("http://schemas.microsoft.com/mapi/string/" & _
 "{00020329-0000-0000-C000-000000000046}/" & _
 "First%20Met") & " = '1/1/4501 12:00 AM'"

516 16.2 Building search strings

Note: Since the First Met custom property contains a space in its name,
to use it in a DASL query, you must replace the space with the escape
sequence %20.

To ensure that Outlook interprets a date value correctly, according to the
locale set in the Regional Settings applet in Control Panel, you should use
the Format() function in VBA or the FormatDateTime() function in
VBScript to format the date and time in one of the defined formats for the
locale. This Jet search string for VBA could be used to locate items created
during the past week:

dteDate = DateAdd("d", -7, Now)
strFind = "[CreationTime] >= " & _
 Quote(Format(dteDate, "Short Date") & _
 " " & Format(dteDate, "Short Time"))

The Format() function is not available in VBScript, so you would need
to use FormatDatetime() instead:

dteDate = DateAdd("d", -7, Now)
strFind = "[CreationTime] >= " & _
 Quote(FormatDateTime(dteDate, vbShortDate) & _
 " " & FormatDateTime(dteDate, vbShortTime))

Jet and DASL queries differ significantly in their handling of time zones.
A date/time value in a Jet query is compared with the property value
expressed in local time, while a DASL query uses Coordinated Universal
Time (UTC) time values for its comparisons. Therefore, when building a
DASL search string for a date/time property that uses time values, you must
convert the search value to UTC using the LocalToUTC method of either
the PropertyAccessor or Row object. Here is the DASL equivalent of the
above search for recently created items, showing the value returned by the
Now function converted to UTC by the PropertyAccessor for the folder
that you want to search:

Set objPA = objFolder.PropertyAccessor
dteDate = objPA.LocalTimeToUTC(DateAdd("d", -7, Now))
strFind = Quote("DAV:creationdate") & " >= '" & _
 Format(dteDate, "Short Date") & " " & _
 Format(dteDate, "Short Time") & "'"

Note: The CreationDate property is a good example of a property that has
more than one namespace schema property name. In the above example, the
DASL query uses DAV:creationdate, but these schema property names
from other namespaces would also work: urn:schemas:calendar:created
and http://schemas.microsoft.com/mapi/proptag/0x30070040.

16.2 Building search strings 517

Oddly enough, for a few standard Outlook properties, you do not need
to perform any conversion to UTC for DASL searches. Examples include
the TaskItem.DueDate, TaskItem.StartDate, MailItem.TaskDue-

Date, and MailItem.TaskStartDate properties, all of which truncate
their time values to midnight. In fact, when using these properties in que-
ries, you should omit not just the seconds portion of the date/time, but also
the hours and minutes. Pass only a date string in the query.

The final date/time search issue that we need to cover is searching a date
range. To help with this common programming task, Outlook provides
DASL “macros” for the most common date range scenarios. If you use one
of the macros in Table 16.5, you do not need to worry about performing
any local-to-UTC date/time conversion.

Notice that the namespace schema name for the property needs to be
surrounded by quotation marks when you use one of the macros from Table
16.5. For example, this code snippet builds a DASL search string to look for
items created in the past seven days:

strFind = "%last7days(" & Quote("DAV:creationdate") & ")%"

For DASL date ranges that the macros don’t cover—and for any Jet query
that spans a date range—you must include two expressions in the search
string, one for the beginning of the date range, and one for the end. To search
for items created last month using Jet, you would use code like this:

dteStart = GetMonthStart(Date, -1)
dteEnd = DateAdd("m", 1, dteStart)

Table 16.5 DASL Macros for Date Searches

Date Macro Syntax

today %today("Property_schema_name")%

tomorrow %tomorrow("Property_schema_name")%

yesterday %yesterday("Property_schema_name")%

next7days %next7days("Property_schema_name")%

last7days %last7days("Property_schema_name")%

nextweek %nextweek("Property_schema_name")%

thisweek %thisweek("Property_schema_name")%

lastweek %lastweek("Property_schema_name")%

nextmonth %nextmonth("Property_schema_name")%

thismonth %thismonth("Property_schema_name")%

lastmonth %lastmonth("Property_schema_name")%

518 16.2 Building search strings

strFind = "[CreationTime] >= " & _
 Quote(FormatDateTime(dteStart, vbShortDate) & " " _
 & FormatDateTime(dteStart, vbShortTime)) & _
 " AND [CreationTime] < " & _
 Quote(FormatDateTime(dteEnd, vbShortDate) & _
 " " & FormatDateTime(dteEnd, vbShortTime))

The GetMonthStart() function for VBA is shown in Listing 16.1 and
uses the DateAdd() function to step back to the beginning of the month
for the dateVal argument and then go forward or backwards a set number
of months, depending on whether numMonths is positive or negative. To
adjust it for use with VBScript, you would need to remove the As Date
clauses.

The above code snippet produces this Jet search string if today’s date is
in the month of December 2007:

[CreationTime] >= "12/1/2007 00:00" AND [CreationTime] <
"1/1/2008 00:00"

The code to build an equivalent DASL search string for items created
last month uses a similar structure to obtain the start and end dates for the
range, only using LocalTimeToUTC method to account for the time zone
offset from UTC. This example uses the Format() function and thus is for
VBA:

Set objPA = objFolder.PropertyAccessor
dteStart = _
 objPA.LocalTimeToUTC(GetMonthStart(Date, -1))
dteEnd = DateAdd("m", 1, dteStart)
strFind = Quote("DAV:creationdate") & " >= '" & _
 Format(dteStart, "Short Date") & " " & _
 Format(dteStart, "Short Time") & "' AND " & _
 Quote("DAV:creationdate") & " < '" & _
 Format(dteEnd, "Short Date") & " " & _
 Format(dteEnd, "Short Time") & "'"

Since I live in a time zone that is five hours west of Greenwich, England
(during non-Daylight Savings Time hours), my DASL search string would
look like this:

"DAV:creationdate" >= '12/1/2007 05:00' AND
"DAV:creationdate" < '1/1/2008 05:00'

Listing 16.1 Get the start date of a month relative to any date

Function GetMonthStart _
 (dateVal As Date, numMonths As Integer) As Date
 Dim dteDate As Date
 dteDate = DateAdd("d", -Day(dateVal) + 1, _
 dateValue(dateVal))
 GetMonthStart = DateAdd("m", numMonths, dteDate)
End Function

16.2 Building search strings 519

The final date search scenario of interest is locating appointments that
fit a particular date range, including recurring appointments. This is not as
simple as the other date range scenarios we’ve already looked at, because an
appointment has both a Start and End date. Given any date/time range,
you may have appointments that lie wholly inside that range, appointments
that overlap the range on either end, and appointments that overlap the
range completely. For example, if you want to return all the appointments
for a particular day, you need to consider not only those that begin and end
on that date, but also those that overlap that date and start or end (or both!)
on a different date. The trick to capturing all the items in that range may
sound counterintuitive, but it works: To search for appointments within a
date range, search for items whose Start date is earlier than the range end
date and whose End date occurs after the range start date.

The GetApptDateSpan() function in Listing 16.2 takes a folder and two
dates as arguments and uses a Jet query with the Folder.Items.Restrict
method to return all the appointments that fall within the date span. Here is
an example of how to call GetApptDateSpan() from another VBA proce-
dure to generate a list in the Immediate window of all the appointments for
today:

Set objFld = _
 Application.Session.GetDefaultFolder(olFolderCalendar)
Set itms = GetApptDateSpan(objFld, Date , Date + 1)
For Each itm In itms
 Debug.Print itm.Subject, itm.Start, itm.End
Next

To adapt the code in Listing 16.2 for use in VBScript, simply remove
the As data type clauses.

The GetApptDateSpan() function demonstrates several important
aspects of searching for appointments so that individual recurrences that fit
the date span are included:

You must use an explicit Items collection, in this example,
colItems.

If you want to include recurring appointments in the search results,
you must sort the Items collection on the Start property and set
IncludeRecurrences = True before running the search:
colItems.Sort "[Start]"
colItems.IncludeRecurrences = True

The IncludeRecurrences technique works only with Jet queries,
not DASL queries.

You should never use IncludeRecurrences without specifying a
finite date range. Otherwise, if the resulting Items collection con-
tains recurring appointments with no end date, you will have an infi-
nite number of items to process.

520 16.2 Building search strings

You cannot process the items in a loop that uses the Items.Count
property value. Any time you use IncludeRecurrences = True to
retrieve recurring appointments, the Count property will not return
an accurate count of the number of appointments retrieved. There-
fore, you should process the items in a For Each ... Next loop, as
shown above.

16.2.7 Searching with custom properties

In general, custom properties can be included in searches just like standard
properties. Here are some key points to remember:

For Jet search queries, the custom property must be defined in the
folder not just in individual items. This architectural issue is covered
in Chapter 21. You cannot search on custom formula or combination
properties.

For DASL search queries, the schema property name for a custom
property comes from the MAPI string namespace and always takes
this format, where property_name is the name you gave to the prop-
erty when you created it in Outlook:
http://schemas.microsoft.com/mapi/string/{00020329-0000-
0000-C000-000000000046}/property_name

If the property name contains spaces, you must replace them with the
%20 escape sequence. For example, a DASL search using a property
named Service Contract would use this property schema name:

Listing 16.2 Return appointments for a given date range

Function GetApptDateSpan(fld As Outlook.folder, _
 startDate As Date, endDate As Date) As Outlook.Items
 Dim colItems As Outlook.Items
 Dim colSpanItems As Outlook.Items
 Dim strFind As String
 On Error Resume Next
 Set colItems = fld.Items
 colItems.Sort "[Start]"
 colItems.IncludeRecurrences = True
 strFind = "[Start] <= " & _
 Quote(FormatDateTime(endDate, vbShortDate) & " " _
 & FormatDateTime(endDate, vbShortTime)) & _
 " AND [End] > " & _
 Quote(FormatDateTime(startDate, vbShortDate) & " " _
 & FormatDateTime(startDate, vbShortTime))
 Set colSpanItems = colItems.Restrict(strFind)
 If Err = 0 Then
 Set GetApptDateSpan = colSpanItems
 End If
 Set colSpanItems = Nothing
End Function

16.3 Using Items.Find and Items.Restrict 521

http://schemas.microsoft.com/mapi/string/{00020329-0000-
0000-C000-000000000046}/Service%20Contract

Custom date and text properties are more likely than standard prop-
erties to have null values. Use the syntax shown earlier in the chapter
to make sure you search both for true nulls and for items whose prop-
erty has never had a value at all.

Custom text properties are indexed and thus can be searched with the
CI_PHRASEMATCH and CI_STARTSWITH operators in information
stores that have been indexed.

16.3 Using Items.Find and Items.Restrict
Now that you know how to construct Jet and DASL search strings, let’s see
some of those searches in action using the different search methods that
Outlook 2007 supports. The Folder.Items.Find, .FindNext, and
.Restrict methods are the easiest techniques to apply when you need to
conduct a search in a single folder. Both Find and Restrict can use Jet
queries, and as you’ll see, Restrict can also use a DASL query.

The Find method returns the first item (if any) that meets your condi-
tions:

Set objItem = objFolder.Items.Find(Filter)

If no item meets the conditions, then Find returns Nothing. Which
item is the “first” item depends on how the Items collection is sorted. If
you want to sort the Items collection or if you plan to use FindNext after
calling Find, you must instantiate an explicit Items collection for use with
these methods, for example:

Set objFolder = _
 Application.Session.GetDefaultFolder(olFolderTasks)
Set colItems = objFolder.Items
colItems.Sort "[CreationTime]", True
strFind = "[Subject] = 'Mail Payment'"
Set objItem = colItems.Find(strFind)
Do While Not objItem Is Nothing
 MsgBox objItem.Subject & " " & objItem.DueDate
 Set objItem = colItems.FindNext
Loop

The Restrict method uses the same syntax for Jet queries, but returns
an Items collection rather than a single Outlook item object:

Set colItems = objFolder.Items.Restrict(Filter)

Listing 16.2 provided an example of using a Jet query to return all the
appointments within a given date range.

In addition to Jet queries, the Restrict method can also run a DASL
query—including a query using the CI_PHRASEMATCH and CI_STARTSWITH
content index operators—by prefixing the DASL search string with @SQL=.

522 16.3 Using Items.Find and Items.Restrict

It is also possible to take an Items collection that has already been filtered
with the Restrict method and apply Restrict again to further narrow
the results. To demonstrate both these techniques, the CelebrationList
procedure in Listing 16.3 (for VBA) uses both a Jet query and a DASL
query, in succession, to locate birthdays and anniversaries for next month
and create a new Outlook task to remind you that these celebrations are
coming up.

Some notes on the CelebrationList procedure:

The colCal collection is the result of a Jet query executed by the
GetApptDateSpan() function to get all the appointments for next
month from the Calendar folder.

The colBA collection is the result of a DASL query executed against
the colCal collection.

The birthday and anniversary dates are obtained from the contact
linked to the event in the calendar folder through the Appointment-
Item.Links collection. We will discuss this technique in Chapter 20.

Listing 16.3 Create a task to remind you about upcoming celebrations

Sub CelebrationList()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objFld As Outlook.folder
 Dim colCal As Outlook.Items
 Dim colBA As Outlook.Items
 Dim objAppt As Outlook.AppointmentItem
 Dim objTask As Outlook.taskItem
 Dim objContact As Outlook.ContactItem
 Dim dteStart As Date
 Dim dteEnd As Date
 Dim dteEvent As Date
 Dim strFind As String
 Dim strEvents As String
 Dim arrMonthNames() As String
 Dim strYears As String
 On Error Resume Next
 Set objOL = Application
 Set objNS = objOL.Session
 Set objFld = objNS.GetDefaultFolder(olFolderCalendar)
 ' GetMonthStart() from Listing 16.1
 dteStart = GetMonthStart(Date, 1)
 dteEnd = DateAdd("m", 1, dteStart)
 ' GetApptDateSpan() from Listing 16.2
 Set colCal = GetApptDateSpan(objFld, dteStart, dteEnd)
 If objNS.DefaultStore.IsInstantSearchEnabled Then
 strFind = Quote("urn:schemas:httpmail:subject") & _
 " CI_PHRASEMATCH 'Birthday' OR " & _
 Quote("urn:schemas:httpmail:subject") & _
 " CI_PHRASEMATCH 'Anniversary'"

16.3 Using Items.Find and Items.Restrict 523

 Else
 strFind = Quote("urn:schemas:httpmail:subject") & _
 " LIKE '%Birthday%' OR " & _
 Quote("urn:schemas:httpmail:subject") & _
 " LIKE '%Anniversary%'"
 End If
 Set colBA = colCal.Restrict("@SQL=" & strFind)
 For Each objAppt In colBA
 dteEvent = #1/1/4501#
 If objAppt.Links.Count > 0 Then
 Set objContact = objAppt.Links.Item(1).Item
 If Not objContact Is Nothing Then
 If InStr(objAppt.Subject, _
 "Birthday") > 0 Then
 dteEvent = objContact.Birthday
 Else
 dteEvent = objContact.Anniversary
 End If
 End If
 End If
 If dteEvent <> #1/1/4501# Then
 strYears = " (" & _
 CStr(Year(dteStart) - Year(dteEvent)) & _
 " years)"
 Else
 dteEvent = DateValue(objAppt.Start)
 strYears = ""
 End If
 strEvents = strEvents & _
 FormatDateTime(dteEvent, vbShortDate) & vbTab & _
 objAppt.Subject & strYears & vbCrLf
 Next
 If strEvents <> "" Then
 Set objTask = objOL.CreateItem(olTaskItem)
 With objTask
 .Subject = "Celebration Events for " & _
 Format(dteStart, "MMMM")
 .DueDate = dteStart
 .StartDate = DateAdd("d", -7, dteStart)
 .ReminderTime = DateAdd("h", 12, dteStart)
 .ReminderSet = True
 .Body = strEvents
 .Display
 End With
 Else
 MsgBox "No celebrations in " & Format(dteStart, "MMMM")
 End If
 Set objOL = Nothing
 Set objNS = Nothing
 Set colCal = Nothing
 Set colBA = Nothing
 Set objTask = Nothing
 Set objAppt = Nothing
 Set objContact = Nothing
End Sub

Listing 16.3 Create a task to remind you about upcoming celebrations (continued)

524 16.3 Using Items.Find and Items.Restrict

This expression—Format(dteStart, "MMMM")—returns a string
with the full name of the month, in the user’s locale language.

This subroutine is a good example of how you can reuse the basic
procedures that you build in VBA to construct new procedures. It
uses the GetMonthStart() and GetApptDateSpan() functions that
you saw earlier in Listings 16.1 and 16.2.

The MonthName() function is another handy, reusable function. It
returns the text for the name of the month, given the month number.

Tip: To run the CelebrationList procedure once a month, create a
monthly recurring task with a reminder and the subject “Run Celebration
List” and use the ReminderFire event discussed in Chapter 11 to call Cele-
brationList whenever the reminder fires for the Run Celebration List task.

Does it make any difference whether you use Find or Restrict? If you
need to return only one particular item from a folder, Find is the logical
choice. For example, the Find method is very commonly used to locate an
item that is likely to have a unique property value, such as a contact with a
specific name or an appointment based on its GlobalAppointmentID
property. If your code needs to work with all the items in a folder that meet
specific criteria, Restrict makes more sense. However, in an Exchange
Server environment—especially in public folders—be wary of using
Restrict. Exchange caches restrictions on its folders. Whenever an item is
created or modified, it is matched against existing restrictions on the folder.
While this can improve performance if a folder has a few cached restrictions
that are used repeatedly, if a folder has many restrictions, that can greatly
increase the time required to save an item in the folder.

Note: When Outlook receives an update to a meeting request that the user
has accepted, it creates a new item in the Calendar folder and deletes the
old one. Since the update is a completely new item, it will have a different
EntryID value from the original. Thus, you cannot rely on the EntryID to
help you track an appointment—even the same appointment in the same
folder. The property value that does stay the same, even through multiple
updates, is GlobalAppointmentID, a new property added to the Appoint-
mentItem object in Outlook 2007.

For additional examples using Items.Restrict, check out these arti-
cles in Outlook developer Help:

How to: Programatically Change the Display Format for All Contacts
(HV10178474)

16.4 Using Table search techniques 525

How to: Enumerate the Contacts Folder and Set Custom Property
for only Contact Items (HV10038452)

The numbers in parentheses are topic IDs you can search for in Help to
find the articles faster.

16.4 Using Table search techniques
As covered in the beginning of this chapter, the Table object, new to Out-
look 2007, has FindRow, FindNextRow, and Restrict methods that are
analogous to the Find, FindNext, and Restrict methods for the Items
collection. These methods are available only to Table objects returned with
the Folder.GetTable method (not those returned by the Search.GetTa-
ble method):

Set objTable = objFolder.GetTable
Set objRow = objTable.FindRow(Filter)
Set objNextRow = objTable.FindNextRow
Set objNewTable = objTable.Restrict(Filter)

The FindRow method takes a Jet or DASL query search string as its argu-
ment and returns a Row object. Use the Row.GetValues method to return an
array of values from the row’s columns or, if you need write access to the item
represented by the row, you can use the Row.Item method to return the
item’s EntryID, which is one of the default columns in all tables, and then use
the Namespace.GetItemFromID method to return the actual item.

The Restrict method can take a Jet query or a DASL query and
returns a new Table object whose data you can process using the methods
listed in Table 15.6. A key difference between Items.Restrict and
Table.Restrict is that there is no equivalent of IncludeRecurrences
for a Table object. The Table object for a calendar folder contains a row
for each non-recurring appointment and a single row for the master
instance of each recurring appointment.

Another difference is that a DASL query for the item body using the
urn:schemas:httpmail:textdescription property will operate only
on the first 255 characters of the body, because that is the maximum
amount of body text that the Table can contain.

Another way to return a filtered Table object is to specify the filter
when GetTable is called:

Set objTable = objFolder.GetTable(Filter, TableContents)

Both parameters are optional. The Filter parameter can be either a Jet
or a DASL filter. The TableContents parameter can be one of these values
from the OlTableContents enumeration:

olHiddenItems 1

olUserItems 0

526 16.4 Using Table search techniques

The default value is olUserItems. For example, to return a Table con-
taining all the hidden items in a folder (such as custom forms and views),
use this statement:

Set objTable = objFolder.GetTable(olHiddenItems)

Listing 21.1 in Chapter 21 applies this technique to the task of listing all
the forms published to a particular folder or to the Organizational Forms or
Personal Forms library.

Use the Table search methods when your primary goal is rapid access to
read-only filtered data. For example, you might want to determine whether
a particular email address is already represented by a contact. You don’t need
to edit that contact; you just want to know if it exists at all. To make that
determination, the IsInContacts() function in Listing 16.4 performs a
FindRow search on the Table for the user’s default Contacts folder. If the
search returns a row, IsInContacts() returns True; otherwise, it returns
False.

In Listing 18.2 in Chapter 18, we’ll see the IsInContacts() function
at work in a procedure that creates new contacts from the email addresses in
outgoing messages. Also, in Listing 20.7 in Chapter 20, we’ll use a
Table.FindRow search to try to locate contacts that previously were linked

Listing 16.4 Determine if a contact exists with a certain email address

Function IsInContacts(address As String)
 Dim strFind As String
 Dim objNS As Outlook.NameSpace
 Dim objFolder As Outlook.Folder
 Dim objTable As Outlook.Table
 Dim objRow As Outlook.Row
 Dim objItems As Outlook.Items
 Dim blnIsInContacts As Boolean
 blnIsInContacts = False
 Set objNS = Application.Session
 Set objFolder = objNS.GetDefaultFolder(olFolderContacts)
 Set objTable = objFolder.GetTable
 strFind = "[Email1Address] = " & Quote(address) & _
 " OR [Email2Address] = " & Quote(address) & _
 " OR [Email3Address] = " & Quote(address)
 Set objRow = objTable.FindRow(strFind)
 If Not objRow Is Nothing Then
 blnIsInContacts = True
 End If
 IsInContacts = blnIsInContacts
 Set objNS = Nothing
 Set objFolder = Nothing
 Set objItems = Nothing
 Set objRow = Nothing
End Function

16.5 Using Explorer.Search 527

to an item through the Links collection. That example also uses Row.Item
to get the contact’s EntryID for use with Namespace.GetItemFromID.

For another example of a Table filter, check out this article in Outlook
developer Help:

How to: Use the Table Object to Performantly Enumerate Filtered
Items in a Folder (HV10007264)

The number in parentheses is a topic ID you can search for in Help to
find the article faster.

16.5 Using Explorer.Search
Use the Explorer.Search method when your primary goal is to present
the user with the results of a search using an Outlook folder (Explorer)
window. This method filters the designated Explorer window to show the
results of a search—either for the current folder or for all folders of the same
type as the current folder. The basic syntax for Explorer.Search looks
like this:

objExpl.Search Query, SearchScope

where Query is the search string and SearchScope is either olSearch-
ScopeAllFolders (literal value 1) or olSearchScopeCurrentFolder
(literal value 0).

To remove a temporary search filter from the window, use the
Explorer.ClearSearch method.

The Query search string parameter uses the AQS syntax and thus can be
any word or phrase or any search string that the user can build in the Out-
look user interface with the dropdown Query Builder that appears in any
folder window.

There is no direct method for processing the results of an
Explorer.Search, which makes it quite different from all the other meth-
ods discussed in this chapter. Explorer.Search automatically uses the
content index, if available, for its searches.

To demonstrate Explorer.Search, let’s consider a small, but common
Outlook frustration: The user can right-click a message and execute a
menu command for Find All | Items From Sender to see the results appear
in an Advanced Find window. Wouldn’t it be nice if you could search not
just for all items from the sender but all items sent to the sender and have
the results appear in an Explorer window, so that you get more functional-
ity than the Advanced Find window offers? The code in Listing 16.5 gets
the sender address (or name, if the sender is an Exchange user) from the
current open or selected message using the GetCurrentItem() function
from Listing 15.5, then creates a new Explorer window and calls

528 16.5 Using Explorer.Search

Listing 16.5 Search for messages to or from the current message’s sender

Sub SearchForCurrentMessageSenderAddress()
 Dim objItem As Object
 Dim objMail As MailItem
 Dim strAddress As String
 Dim objExpl As Outlook.Explorer
 ' GetCurrentItem() from Listing 15.5
 Set objItem = GetCurrentItem()
 If objItem.Class = olMail Then
 Set objMail = objItem
 If objMail.SenderEmailType = "EX" Then
 strAddress = objMail.SenderName
 Else
 strAddress = objMail.SenderEmailAddress
 End If
 Set objExpl = DoSearch(strAddress, olModuleMail, _
 olSearchScopeAllFolders, True)
 If Not objExpl Is Nothing Then
 objExpl.Activate
 End If
 End If
 Set objItem = Nothing
 Set objMail = Nothing
 Set objExpl = Nothing
End Sub

Function DoSearch(searchText As String, _
 searchModule As Outlook.OlNavigationModuleType, _
 searchScope As Outlook.OlSearchScope, _
 useNewWindow As Boolean) As Outlook.Explorer
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objNavPane As Outlook.NavigationPane
 Dim objFld As Outlook.folder
 Dim objExpl As Outlook.Explorer
 On Error Resume Next
 Set objOL = Application
 Set objNS = objOL.Session
 If useNewWindow Then
 If searchModule = olModuleFolderList Then
 Set objFld = objNS.GetDefaultFolder(olFolderInbox)
 Set objExpl = objOL.Explorers.Add(objFld, _
 olFolderDisplayNormal)
 Set objNavPane = objExpl.NavigationPane
 objNavPane.CurrentModule = _
 objNavPane.Modules.GetNavigationModule _
 (olModuleFolderList)
 ElseIf searchModule <> olModuleShortcuts Then
 Set objFld = _
 GetDefaultFolderForModule(searchModule)
 Set objExpl = objOL.Explorers.Add(objFld, _
 olFolderDisplayNormal)
 End If
 objExpl.ShowPane olToDoBar, False

16.5 Using Explorer.Search 529

Explorer.Search to search for that address in all mail folders. This search
takes place across all text fields, including the sender and recipient fields
and the message body.

The real work of the search is performed by the DoSearch() function,
which takes as its parameters the two arguments required by the
Explorer.Search method—the search string and the scope—plus two
other pieces of information that help configure the Explorer to display

 Else
 Set objExpl = objOL.ActiveExplorer
 End If
 If Not objExpl Is Nothing Then
 objExpl.Search searchText, searchScope
 End If
 Set DoSearch = objExpl
 Set objOL = Nothing
 Set objNS = Nothing
 Set objFld = Nothing
 Set objExpl = Nothing
 Set objNavPane = Nothing
End Function

Function GetDefaultFolderForModule _
 (searchModule As Outlook.OlNavigationModuleType) _
 As Outlook.folder
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim lngDefaultFolder As Long
 Set objOL = Application
 Set objNS = objOL.Session
 Select Case searchModule
 Case olModuleCalendar
 lngDefaultFolder = olFolderCalendar
 Case olModuleContacts
 lngDefaultFolder = olFolderContacts
 Case olModuleJournal
 lngDefaultFolder = olFolderJournal
 Case olModuleMail
 lngDefaultFolder = olFolderInbox
 Case olModuleNotes
 lngDefaultFolder = olFolderNotes
 Case olModuleTasks
 lngDefaultFolder = olFolderTasks
 End Select
 If lngDefaultFolder <> 0 Then
 Set GetDefaultFolderForModule = _
 objNS.GetDefaultFolder(lngDefaultFolder)
 End If
 Set objNS = Nothing
End Function

Listing 16.5 Search for messages to or from the current message’s sender (continued)

530 16.6 Using Application.AdvancedSearch

correctly—the navigation pane module (always olModuleMail in this
example) and the option to show the search in a new Explorer window.
Using the correct navigation pane module is what makes it possible to
search all folders of a given type using the Explorer.Search method.

The DoSearch() function can be reused in any number of ways. For
example, these statements search for contacts in a particular city and display
them in the current Explorer:

Set objExpl = DoSearch("city:Arlington", _
 olModuleContacts, olSearchScopeAllFolders, False)
objExpl.Activate

The "city:Arlington" search string is an example of the AQS syntax.
Use the dropdown search Query Builder in the main Outlook window to
experiment with the keywords available for use with the AQS feature and
thus also with the Explorer.Search method. For more details on the
AQS syntax, search the Microsoft Developer Network site at http://
msdn.microsoft.com for the article “Advanced Query Syntax.”

16.6 Using Application.AdvancedSearch
The search techniques discussed so far all operate on a single folder, with
the exception of Explorer.Search, which can search either one folder or
all folders of the same type. To search specific multiple folders, you must
use the Application.AdvancedSearch method, which always uses the
DASL syntax. It can search one or more folders within either a .pst file or
the user’s own Exchange mailbox. In the Public Folders store or another
user’s Exchange mailbox, AdvancedSearch can search only a single folder.

The other distinguishing feature of the AdvancedSearch method is that
most of its searches are asynchronous. This means that after the method is
invoked, code execution does not wait for the search results to be returned
(as they would be with the Items.Restrict method). Instead, the search
takes place in the background, and your code must determine when the
search has ended before it can process the results. It also means that more
than one search may be under way at any given moment. Outlook can han-
dle up to 100 simultaneous searches launched either through the Advanced
Find dialog in the user interface or programmatically with the Advanced-
Search method.

The basic syntax to initiate a search with the AdvancedSearch method
has one required parameter (Scope) and three optional parameters (Fil-
ter, SearchSubFolders, and Tag):

Set objSearch = Application.AdvancedSearch _
 (Scope, Filter, SearchSubFolders, Tag)

The AdvancedSearch method returns a Search object, but because the
search is likely to be asynchronous, the Search.Results collection of

16.6 Using Application.AdvancedSearch 531

items meeting the search criteria may not be available until some time has
passed after AdvancedSearch was called. As you’ll see shortly, Outlook
provides two Application-level events to help you monitor the status of
asynchronous searches.

The Scope parameter takes a string that contains the folder paths for the
folder(s) to be searched. Enclose each folder’s path in single quotation
marks, and separate multiple folders with commas. For standard folders in
the default information store, you can use the name of the folder instead of
the complete path. Since the search scope can be complex, covering multi-
ple folders, it is a good idea to build it using a separate string variable. All
these statements are acceptable values for the Scope parameter for a user
whose mail profile contains an Exchange mailbox as the default store, plus a
.pst file with the display name “Personal Folders”:

strScope = "'Inbox'"
strScope = "'Inbox', 'Sent Items'"
strScope = "'Inbox', 'Sent Items', " & _
 "'Mailbox - Sue Mosher\Current\Betas'"
strScope = "'\\Personal Folders\Old Projects\Web Site'"
strScope = "'\\Personal Folders\Old Projects\Web Site'" & _
 ",'\\Personal Folders\Software\Exchange'"
strScope = "'\\Public Folders\All Public Folders\" & _
 "Sales Department\Sales Contacts'"

Remember that you cannot search across information stores with
AdvancedSearch, nor can you search across multiple folders in the Public
Folders hierarchy or in another user’s mailbox.

Tip: Don’t forget that you can use the Folder.FolderPath method to
return the full folder path for any folder, ready to use in a Scope expression.

The optional Filter parameter takes a DASL search string. If the store is
indexed, you can use the CI_PHRASEMATCH and CI_STARTSWITH operators.

Tip: It may seem strange that the Filter parameter for the Advanced-
Search method is optional, but there are scenarios where it makes sense.
For example, you might want to combine the appointments from several
calendar folders into one results set. By performing a search with no filter,
you could get the complete contents of all those folders in one operation.

The optional Boolean parameter SearchSubFolders indicates whether
the search should traverse the complete subfolders hierarchy for each of the
folders in the Folders argument. A value of True is valid only for searches
in a .pst file or the user’s own Exchange mailbox.

532 16.6 Using Application.AdvancedSearch

The optional Tag string parameter provides an identifier for the search.
To understand its importance for managing multiple searches, we will look
next at the code necessary to know when a search has completed.

The Application object supports two events related to searches. The
AdvancedSearchComplete event fires when a search completes, while the
AdvancedSearchStopped event fires if a search stops short of completion
for any reason. The code in Listing 16.6 provides a basic framework for

Listing 16.6 Basic framework for handling AdvancedSearch* events

Public gblnPracticeSearchDone As Boolean
Public gblnPracticeSearchStopped As Boolean

Private Sub Application_AdvancedSearchComplete _
 (ByVal SearchObject As Search)
 If SearchObject.Tag = "PracticeSearch" Then
 Debug.Print "Search completed at " & Time
 gblnPracticeSearchDone = True
 End If
End Sub

Private Sub Application_AdvancedSearchStopped _
 (ByVal SearchObject As Search)
 If SearchObject.Tag = "PracticeSearch" Then
 Debug.Print "Search stopped at " & Time
 gblnPracticeSearchStopped = True
 gblnPracticeSearchDone = True
 End If
End Sub

Sub PracticeSearch()
 Dim objOL As Outlook.Application
 Dim objSearch As Outlook.Search
 Dim strScope As String
 Set objOL = Application
 gblnPracticeSearchDone = False
 gblnPracticeSearchStopped = False
 strScope = "'Inbox', 'Sent Items'"
 Debug.Print "Search started at " & Time
 Set objSearch = objOL.AdvancedSearch _
 (strScope, , True, "PracticeSearch")
 Do Until gblnPracticeSearchDone
 DoEvents
 Loop
 If gblnPracticeSearchStopped Then
 Debug.Print "Search was stopped"
 Else
 Debug.Print objSearch.Results.count
 End If
 Set objOL = Nothing
 Set objSearch = Nothing
End Sub

16.6 Using Application.AdvancedSearch 533

handling these events. To test it, place all the code in the ThisOutlook-
Session module in Outlook VBA. (You can also place just the two Appli-
cation event handlers in ThisOutlookSession and put the
PracticeSearch procedure and the declarations for the gblnPractice-
SearchDone and gblnPracticeSearchStopped variables in a regular
code module.) When you run the PracticeSearch procedure, you should
see in the Immediate window a date stamp for the time the search began,
followed in a few seconds by a date stamp for the time the search completed
and the number of items in the Inbox and Sent Items folders and all their
subfolders.

After the PracticeSearch procedure launches the search, it uses a Do
Until loop to wait until the value of the gblnPracticeSearchDone vari-
able has been set to True. The code depends on the two Application
events to set the value of gblnPracticeSearchDone to True. The parame-
ter passed by each event is the Search that completed or stopped. From its
Tag property, you can determine whether the search launched by
PracticeSearch is the one that completed and set the variable values
appropriately, for example:

If SearchObject.Tag = "PracticeSearch" Then
 Debug.Print "Search stopped at " & Time
 gblnPracticeSearchStopped = True
 gblnPracticeSearchDone = True
End If

Tip: You may want to use the TimeToQuit function from Listing 11.27 to
force the code to exit the Do loop if too much time has passed, even if nei-
ther of the AdvancedSearch* events has fired. You’ll see an example of this
technique in Listing 16.9 in the next section.

To handle multiple searches in the same code project, you would use a
single pair of event handlers, but for each search use a unique Tag and a
unique pair of Boolean variables to indicate when the search has completed
or stopped.

Once the search completes, the Search.Results collection provides
access to the items matching the Filter criteria. You can either iterate that
collection as you would an Items collection or, for faster, read-only access
to the data, use the Search.GetTable method to return a Table object
and use the Table methods discussed in the previous chapter.

16.6.1 Example: Update all birthday and
anniversary events

If you look back at the code for the birthday/anniversary reminder form
that you worked with in Chapters 3 and 8, you’ll see that it looped through

534 16.6 Using Application.AdvancedSearch

all the items in the Calendar folder. You can speed up the process by apply-
ing the Restrict method to that folder’s Items collection, as you saw in
Listing 16.3. But what if you have multiple calendar folders? Outlook 2007
is the first version to fire reminders for appointments in calendar folders
other than the default. So, won’t you want appropriate reminders on birth-
days and appointments in those calendar folders, too? That sounds like a
job for AdvancedSearch, which can search across multiple folders in a sin-
gle .pst file or primary mailbox store.

Our goal, therefore, is to enhance the birthday/anniversary reminder
user form for VBA—the latest version from Section 8.9.3—so that it
searches across all calendar folders in the user’s default information store to
locate any birthday or anniversary item. Once we have those items, the code
will update the reminder on each one, just as in the earlier versions of the
form.

The first step is to build a Scope argument string that includes all cal-
endar folders. The BuildCalScope() function in Listing 16.7 takes a
Namespace parameter and returns a comma-delimited string of folder
paths, each surrounded by single quotation marks, for use with
AdvancedSearch. Notice that the ProcessFolderPaths procedure uses
folder recursion and a parameter (scopePaths) passed By Ref to build
the string.

Listing 16.7 Build a Scope argument

Function BuildCalScope(ns As Outlook.NameSpace) As String
 Dim objFld As Outlook.Folder
 Dim strScope As String
 Set objFld = ns.DefaultStore.GetRootFolder
 Call ProcessFolderPaths(objFld, strScope)
 BuildCalScope = Mid(strScope, 2)
 Set objFld = Nothing

End Function

Sub ProcessFolderPaths(fld As Outlook.folder, _
 ByRef scopePaths As String)
 Dim objFolder As Outlook.folder
 For Each objFolder In fld.Folders
 If objFolder.DefaultItemType = olAppointmentItem Then
 scopePaths = scopePaths & "," & Chr(39) & _
 objFolder.FolderPath & Chr(39)
 End If
 Call ProcessFolderPaths(objFolder, scopePaths)
 Next
 Set objFolder = Nothing
End Sub

16.6 Using Application.AdvancedSearch 535

Add the code from Listing 16.7 to the existing code behind the user
form, and also add the code in Listing 16.8, which sets up the event han-
dlers. Since a form’s code module is a class module, you can handle the
AdvancedSearch* events in the module that holds the rest of the form’s
code. Notice how the parent Application object for these events is instan-
tiated when the form initializes.

The next procedure to add is the subroutine that builds the search filter,
which you’ll find in Listing 16.9. Notice that it uses the CI_PHRASEMATCH
content index keyword if the store is enabled for Instant Search. Otherwise,
it uses a normal DASL filter string.

Finally, replace the cmdUpdate_Click and cmdClose_Click proce-
dures for the two buttons on the form with the code in Listing 16.10.
When the user clicks Close, the cmdClose_Click procedure stops the
search before unloading the form.

Here’s how it works: when the user clicks Update in the birthday/anni-
versary reminder form, the code in Listing 16.9 builds scope and search
strings with the BuildCalScope() and BuildFilter() functions from
Listing 16.7. It then launches the search, setting the search’s Tag to "BARe-
minders". How does the routine know when the search is finished? The
event handlers for AdvancedSearchComplete and AdvancedSearch-
Stopped in Listing 16.8 change the value of the Tag property of the txt-
Progress control on the form when either of those events fires. A Do loop

Listing 16.8 Declarations and event handlers for managing the search

Dim WithEvents mobjOL As Outlook.Application
Dim mobjSearch As Outlook.Search

Private Sub mobjOL_AdvancedSearchComplete _
 (ByVal SearchObject As Search)
 If SearchObject.Tag = "BAReminders" Then
 txtProgress.Tag = "complete"
 End If
End Sub

Private Sub mobjOL_AdvancedSearchStopped(ByVal SearchObject As Search)
 If SearchObject.Tag = "BAReminders" Then
 txtProgress.TabIndex = "stopped"
 End If
End Sub

Private Sub UserForm_Initialize()
 Set mobjOL = Application
End Sub

536 16.6 Using Application.AdvancedSearch

Listing 16.9 Build a filter string to find birthdays and anniversaries

Function BuildFilter(ns As Outlook.NameSpace) As String
 Dim strFilter As String
 Dim objStore As Outlook.Store
 Set objStore = ns.DefaultStore
 If objStore.IsInstantSearchEnabled Then

 strFilter = _
 "(" & Quote("urn:schemas:httpmail:subject") & _
 " CI_PHRASEMATCH 'Birthday' OR " & _
 Quote("urn:schemas:httpmail:subject") & _
 " CI_PHRASEMATCH 'Anniversary')"

 Else
 strFilter = _
 "(" & Quote("urn:schemas:httpmail:subject") & _
 " LIKE '%Birthday%' OR " & _
 Quote("urn:schemas:httpmail:subject") & _
 " LIKE '%Anniversary')"

 End If
 BuildFilter = strFilter
 Set objStore = Nothing

End Function

Listing 16.10 New code for the reminder update form’s buttons

Private Sub cmdClose_Click()
 mobjSearch.Stop
 Unload Me
End Sub

Private Sub cmdUpdate_Click()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objItem As Outlook.AppointmentItem
 Dim strFind As String
 Dim strScope As String
 Dim sngTimeStart As Single
 Dim strSubject As String
 Dim lngMinutes As Long
 Dim intCount As Integer
 Dim intCountBA As Integer
 On Error Resume Next
 If IsNumeric(txtDays.Value) Then
 Set objOL = Application
 Set objNS = objOL.Session
 ' BuildFilter from Listing 16.9
 strFind = BuildFilter(objNS)
 ' BuildCalScope from Listing 16.7
 strScope = BuildCalScope(objNS)
 txtProgress.Tag = ""
 Set mobjSearch = objOL.AdvancedSearch(strScope, _
 strFind, False, "BAReminders")
 ' UpdateProgress subroutine from Listing 8.15

16.6 Using Application.AdvancedSearch 537

 Call UpdateProgress("Running search with filter: " & _
 vbCrLf & strFind & vbCrLf & vbTab & _
 "and scope:" & vbCrLf & strScope)
 sngTimeStart = Timer
 Do While txtProgress.Tag = ""
 DoEvents
 ' TimeToQuit function from Listing 11.27
 If TimeToQuit(sngTimeStart, 120) Then Exit Do
 Loop
 Call UpdateProgress("Search " & txtProgress.Tag)
 If txtProgress.Tag = "complete" Then
 Call UpdateProgress("Processing " & _
 mobjSearch.Results.count & " items")
 lngMinutes = CLng(24 * 60) * txtDays.Value
 intCount = 0
 intCountBA = 0
 For Each objItem In mobjSearch.Results
 strSubject = objItem.Subject
 If InStr(strSubject, "Birthday") > 0 And _
 (optBirthdays.Value Or optBoth.Value) Then
 objItem.ReminderSet = True
 objItem.ReminderMinutesBeforeStart = _
 lngMinutes
 objItem.Save
 intCountBA = intCountBA + 1
 End If
 If InStr(strSubject, "Anniversary") > 0 And _
 (optAnniversaries.Value Or optBoth.Value) Then
 objItem.ReminderSet = True
 objItem.ReminderMinutesBeforeStart = _
 lngMinutes
 objItem.Save
 intCountBA = intCountBA + 1
 End If
 intCount = intCount + 1
 If intCount Mod 10 = 0 Then
 Call UpdateProgress _
 (intCount & " items processed")
 End If
 Next
 Call UpdateProgress _
 ("Finished: " & intCountBA & _
 " items updated out of " & _
 intCount & " items processed")
 Else
 MsgBox "Could not perform update"
 End If
 Else
 Call UpdateProgress("Value for days is not numeric.")
 End If
 Beep
 Set objItem = Nothing
 Set objNS = Nothing
 Set objOL = Nothing
End Sub

Listing 16.10 New code for the reminder update form’s buttons (continued)

538 16.6 Using Application.AdvancedSearch

in the cmdUpdate_Click procedure keeps looping until it sees a change in
the value of txtProgress.Tag or until time runs out, as measured by the
TimeToQuit() function from Listing 11.27:

sngTimeStart = Timer
Do While txtProgress.Tag = ""
 DoEvents
 If TimeToQuit(sngTimeStart, 120) Then Exit Do
Loop

After the code execution exits the Do loop, if the value of txt-
Progress.Tag indicates the search completed successfully, the code pro-
cesses each item in the mobjSearch.Results collection. The code to
actually do the item processing and show the operation’s progress on the
form is identical to that in Listing 8.15.

16.6.2 Creating a new search folder

The AdvancedSearch method has one other unique feature: In addition to
returning a results set, it can also be used to create a permanent search folder,
that is, a virtual folder that continuously performs a background search for
items meeting the folder’s search criteria. While the Outlook user interface
provides a way to create search folders only for mail folders, with
AdvancedSearch code, you can create a search folder for any type of item.

Note: Microsoft does not officially support search folders for non-mail
folders, even though the Search.Save method described in this section
does work for folders that hold other types of items besides messages.

The syntax for creating a new search folder is very simple; just call the
Save method of the Search object and provide a name, which must be
unique. (In any given store, you cannot have two search folders with the
same name.) This code starts the search in Listing 16.8 and then saves it as
a search folder:

Set mobjSearch = objOL.AdvancedSearch(strScope, _
 strFind, False, "BAReminders")
mobjSearch.Save "Birthdays and Anniversaries"

You can save the search folder without waiting for the search to com-
plete. However, if you do wait for the search to complete, then you can dis-
play the complete results to the user in a search folder. (This is the second of
two built-in techniques for presenting search results to the user, the other
being the Explorer.Search method.) To see how this works, add the code
in Listing 16.11 to the ThisOutlookSession module in VBA, and then
run the SenderSearchFolder procedure. This procedure builds a search
for all items in the current store from the sender of the currently selected or
open message. It then creates a search folder for the results and, when the

16.6 Using Application.AdvancedSearch 539

Listing 16.11 Create a new search folder from a message’s sender address

Private Sub Application_AdvancedSearchComplete _
 (ByVal SearchObject As Search)
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objDefStore As Outlook.Store
 Dim objFolder As Outlook.folder
 Dim strTag As String
 On Error Resume Next
 strTag = SearchObject.Tag
 If InStr(strTag, "@") > 0 Then
 Set objOL = Application
 Set objNS = objOL.Session
 Set objDefStore = objNS.DefaultStore
 Set objFolder = _
 objDefStore.GetSearchFolders.item(strTag)
 objFolder.Display
 End If
 Set objOL = Nothing
 Set objNS = Nothing
 Set objDefStore = Nothing
 Set objFolder = Nothing
End Sub

Sub SenderSearchFolder()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objDefStore As Outlook.Store
 Dim objItem As Object
 Dim objMail As Outlook.MailItem
 Dim objSearch As Outlook.Search
 Dim strSender As String
 Dim strFind As String
 Dim strScope As String
 On Error Resume Next
 Set objOL = Application
 ' GetCurrentItem() function from Listing 15.5
 Set objItem = GetCurrentItem()
 If objItem.Class = olMail Then
 Set objMail = objItem
 If objMail.SenderEmailType = "SMTP" Then
 strSender = objMail.SenderEmailAddress
 strFind = BuildSenderSearch(strSender)
 Set objNS = objOL.Session
 Set objDefStore = objNS.DefaultStore
 strScope = "'" & _
 objDefStore.GetRootFolder.FolderPath & "'"
 Set objSearch = objOL.AdvancedSearch _
 (strScope, strFind, True, strSender)
 objSearch.Save strSender
 End If
 End If
 Set objOL = Nothing

540 16.6 Using Application.AdvancedSearch

search completes, displays the search folder to the user in a new window.
The search string produced by the BuildSenderSearch() function uses
four properties from the MAPI proptag namespace related to the sender
address and name. (Remember that since one person can send on behalf of
another, a message actually may have two different sets of sender name and
address information.)

Caution: When constructing a search string to create a search folder, do not
use the CI_PHRASEMATCH or CI_STARTSWITH keywords. They are intended
only for use in non-persistent searches; when used for a search folder, they
may cause performance issues. Use the LIKE operator instead.

This example’s code for handling the completion of the search is differ-
ent from the other examples you’ve seen, because all the processing of the

 Set objNS = Nothing
 Set objDefStore = Nothing
 Set objItem = Nothing
 Set objMail = Nothing
 Set objSearch = Nothing
End Sub

Public Function BuildSenderSearch(sender As String)
 Dim strSearch As String
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Const PR_SENDER_NAME = _
 "http://schemas.microsoft.com/mapi/proptag/0x0C1A001E"
 Const PR_SENDER_EMAIL_ADDRESS = _
 "http://schemas.microsoft.com/mapi/proptag/0x0C1F001E"
 Const PR_SENT_REPRESENTING_NAME = _
 "http://schemas.microsoft.com/mapi/proptag/0x0042001E"
 Const PR_SENT_REPRESENTING_EMAIL_ADDRESS = _
 "http://schemas.microsoft.com/mapi/proptag/0x0065001E"
 On Error Resume Next
 Set objOL = Application
 Set objNS = objOL.Session
 strSearch = Quote(PR_SENDER_NAME) & _
 " LIKE '%" & sender & "%' OR " & _
 Quote(PR_SENDER_EMAIL_ADDRESS) & _
 " LIKE '%" & sender & "%' OR " & _
 Quote(PR_SENT_REPRESENTING_NAME) & _
 " LIKE '%" & sender & "%' OR " & _
 Quote(PR_SENT_REPRESENTING_EMAIL_ADDRESS) & _
 " LIKE '%" & sender & "%' "
 BuildSenderSearch = strSearch
End Function

Listing 16.11 Create a new search folder from a message’s sender address (continued)

16.7 Summary 541

finished search takes place in the Application_AdvancedSearchCom-
plete event handler, rather than in the procedure that launched the search.
(Recall that you’ve also seen the results processed in the procedure that
launched the search and that you’ve seen the AdvancedSearchComplete
event handler operate in a VBA user form’s code module, rather than in the
ThisOutlookSession module.)

Compared with the Explorer.Search method, the advantage of creating
a search folder with Application.AdvancedSearch and Search.Save is
that the search folder is a permanent addition to the user’s folders. The user
can see the current search results at any time, simply by clicking on the
search folder in the folder list. The SenderSearchFolder macro thus can
be a powerful tool for creating search folders to help track messages from
the people you correspond with the most.

16.7 Summary
Searching for items that meet specific criteria is a fundamental Outlook
programming task that can be accomplished faster in Outlook 2007
through the read-only Table object and the new content index keywords
available to DASL searches on indexed information stores. While this chap-
ter has tried to suggest when each of the six search methods and two syn-
taxes might be most appropriate, in the end, the only true assessment of
their suitability can come from analysis of your own application’s perfor-
mance and the results returned.

Two useful samples in this chapter showed how to generate an Outlook
task containing a list of birthdays and anniversaries for next month and
how to search for and find all birthdays and anniversaries in the user’s
default store and update them with reminders. You also learned how to pro-
grammatically create a search folder to capture messages from a particular
Internet address.

Two new helper functions streamline the process of working with dates.
The GetMonthStart() function returns the first date of any month, given
a date and the number of months forward or backward that you want to
move. The MonthName() function returns the name of the month in the
user’s language. You also now have a GetApptDateSpan() function to
return all appointments, including recurrences, within a specific date range.

This page intentionally left blank

543

17
Working with Item Bodies

The large text box at the bottom of every standard form exposes what Out-
look stores as the Body property and, on HTML-format messages and
posts, the HTMLBody property. Generically, this information can be referred
to as the item body. In earlier chapters, we learned how to access standard,
custom, and hidden MAPI properties of Outlook items, but these two stan-
dard properties require a more in-depth treatment. Almost every Outlook
programmer will work with item bodies at some point, yet the skills needed
to work with them successfully go beyond Outlook programming to
include Word text handling techniques and even the ability to read text
from a file.

Highlights of this chapter include:

How to change the format of a message or post

How to append or prefix text to an item body

How to insert text at the user’s insertion point

Techniques for creating complex HTML-format messages, including
inserting hyperlinks and pictures

How to create, insert, and remove the user’s automatic signature text

17.1 Basic item body techniques
Outlook provides three ways to work with the item body, through three dif-
ferent properties:

Through the plain-text representation provided by the Body property

Through the tagged HTML representation provided for HTML-for-
mat messages and posts through the HTMLBody property

Through the Inspector.WordEditor property, which returns a
Word.Document object, even if Word 2007 is not installed, for each
item except “sticky notes” and distribution lists.

544 17.1 Basic item body techniques

Note: Earlier versions of Outlook also supported an Inspector.HTMLEdi-
tor object property, but since Internet Explorer is no longer the rendering
engine for HTML messages and posts, HTMLEditor is no longer supported.

Table 17.1 suggests when you might want to use which approach.

After a review of some basic item body techniques, we’ll look at exam-
ples of each of the scenarios in Table 17.1, and also discuss Outlook signa-
tures.

Any new MailItem created by the Application.CreateItem method
uses the default message format set by the user on the Tools | Options | Mail
Format dialog. The same is true for any new PostItem. To determine what
format the message or post is using, check the value of its BodyFormat
property. Table 17.2 lists the possible values.

Message and post items can be in HTML, rich-text (RTF), or plain text
format. “Sticky note” items are always plain text. All other items are always
RTF.

You can change the format of a message or post by setting its BodyFor-
mat property to a different value. Doing so will lose all formatting if the
original message was in HTML or RTF format.

If you set the HTMLBody property for a message or post, the message for-
mat changes to HTML and the value of BodyFormat changes to olFor-
matHTML (2).

If you create and display a message programmatically and automatic sig-
natures are turned on for the user, the displayed message will contain the

Table 17.1 Suggested Item Body Techniques

When You Want to . . . Use this Approach

Parse text from the body of an incoming message Parse the contents of the Body property.

Append text to an existing non-message item If you don’t care about formatting, modify the Body
property.

If you want to preserve formatting, use Inspector.
WordEditor.

Insert text at the location the user has selected Use Inspector.WordEditor.

Create a highly formatted email message with no embed-
ded images

Use HTMLBody.

Create a formatted email message with embedded images Use Inspector.WordEditor.

17.2 Parsing text from a message body 545

user’s default signature. If you do not display the message, it will not con-
tain the signature. Later in this chapter, we’ll see code for removing the
user’s signature from a message and adding the default signature to an exist-
ing message.

The Body, HTMLBody, and WordEditor properties are all subject to the
provisions of Outlook “object model guard” security, as discussed in Chap-
ter 10, because item bodies are a significant source of personal details such
as email addresses.

17.2 Parsing text from a message body
A common Outlook programming task is to extract information from a
message that contains structured text. For example, many Web sites contain
forms where site visitors enter information that the Web site, in turn, uses
to generate a plain text email message. Such a message likely would have
multiple lines, each with a different Label: Data pair, such as:

Name: Flavius J. Littlejohn
Email: flaviusj@turtleflock.net

The code in Listing 17.1 includes a ParseTextLinePair() function
you can use to extract the data portion from any such text pair. In this
example, the FwdSelToAddr procedure calls ParseTextLinePair() in
order to extract the email address from the body of a selected message; it
then forwards the message to that address.

The ParseTextLinePair() function uses several built-in functions
that we learned about in Chapter 8. It locates the text label (in this example,
“Email”) in the source string and then extracts it from the line where it was
found, by following these steps:

1. Locate where search text begins (InStr(strSource, str-

Label))

2. Locate the end of the line on which the label text appears
(InStr(intLocLabel, strSource, vbCrLf))

Table 17.2 OlBodyFormat Constants for the BodyFormat Property

Constant Literal Value

olFormatHTML 2

olFormatPlain 1

olFormatRichText 3

olFormatUnspecified 0

546 17.2 Parsing text from a message body

3. Extract the text between the label text and the end of the line
(Mid(strSource, intLocLabel + intLenLabel)). Alterna-
tively, if this is the last line, extract the text from the end of the
label text until the end of the source text (Mid(strSource,
intLocLabel + intLenLabel)).

Listing 17.1 Extract data from a structured text block

Sub FwdSelToAddr()
 Dim objOL As Outlook.Application
 Dim objItem As Object
 Dim objFwd As Outlook.MailItem
 Dim strAddr As String
 On Error Resume Next
 Set objOL = Application
 Set objItem = objOL.ActiveExplorer.Selection(1)
 If Not objItem Is Nothing Then
 strAddr = ParseTextLinePair(objItem.Body, "Email:")
 If strAddr <> "" Then
 Set objFwd = objItem.Forward
 objFwd.To = strAddr
 objFwd.Display
 Else
 MsgBox "Could not extract address from message."
 End If
 End If
 Set objOL = Nothing
 Set objItem = Nothing
 Set objFwd = Nothing
End Sub

Function ParseTextLinePair _
 (strSource As String, strLabel As String)
 Dim intLocLabel As Integer
 Dim intLocCRLF As Integer
 Dim intLenLabel As Integer
 Dim strText As String
 intLocLabel = InStr(strSource, strLabel)
 intLenLabel = Len(strLabel)
 If intLocLabel > 0 Then
 intLocCRLF = InStr(intLocLabel, strSource, vbCrLf)
 If intLocCRLF > 0 Then
 intLocLabel = intLocLabel + intLenLabel
 strText = Mid(strSource, _
 intLocLabel, _
 intLocCRLF - intLocLabel)
 Else
 intLocLabel = _
 Mid(strSource, intLocLabel + intLenLabel)
 End If
 End If
 ParseTextLinePair = Trim(strText)
End Function

17.3 Adding text to an item 547

Three integer variables assist in this operation:

intLocLabel to hold the character position of the label text relative
to the entire text body

intLocCRLF to hold the character position of the end of the line
where the label text appears

intLenLabel to hold the length of the label text

This basic text parsing technique is worth studying, because it has many
applications, both in Outlook programming and in many other environ-
ments.

17.3 Adding text to an item
Another common Outlook programming task is to append or prefix text to
an item. Before you undertake this operation, you should consider whether
you need to preserve the formatting of text that may already exist in the
item, whether you need to format the text you add, and whether you need
to position the cursor in a particular location in the item body after insert-
ing the text. That will help determine which of these three methods to use:

Modify the Body property (does not preserve formatting)

Modify the HTMLBody property (supports formatting)

Use Word programming methods to add text through Inspec-
tor.WordEditor (supports formatting and cursor positioning)

If the item in question is an HTML-format message or post and you
don’t need to position the cursor, whether you use the HTMLBody or Word-
Editor technique depends largely on your comfort level with those two
very different approaches. In other words, which do you know better,
HTML tags or Word objects and methods?

17.3.1 Adding text to the Body property

If you don’t need to preserve the formatting in an item, you can append or
prefix text to the item body by working with the Body property. For exam-
ple, the StampDate macro in Listing 17.2 adds the current date/time and
user name to the bottom of the currently open item.

If you wanted the date stamp to appear at the top of the item instead of
the bottom, you’d use this variation:

objItem.Body = Now & " - " & _
 objNS.CurrentUser.Name & vbCrLf & objItem.Body

Any formatting in the item will be lost when you run StampDate,
because the Body property provides information only about the plain text
representation of the item body.

548 17.3 Adding text to an item

17.3.2 Adding text to the HTMLBody property

If you do care about the formatting of the original item body, you need to use
a different approach. For an HTML-format message or post, you can provide
fully tagged HTML content and insert it into the existing HTML body.

Having fully tagged HTML content is critical. You cannot simply concat-
enate a text string like the date stamp in Listing 17.1 with the existing HTML-
Body content. You must format the string you want to add with full HTML
tags and insert it into HTMLBody (note: not append or prefix) in such a way
that the structure of the existing body is not compromised. An HTML mes-
sage or post has, at a minimum, two pairs of tags at the beginning—
<html><body>—and end—</body></html>—that define the HTML con-
tent. Any text you want to add needs to go between those two tags.

To insert text at the very end of a message, you can replace the </body>
tag with your fully tagged HTML content plus a new </body> tag. This
code snippet inserts a hyperlink at the end of an existing message (objMsg):

strLink = "http://www.outlookcode.com"
strLinkText = "Get Outlook code samples here"
strNewText = "<p><a href=" & Chr(34) & strLink & _
 Chr(34) & ">" & strLinkText & "</p>"
objMsg.HTMLBody = Replace(objMsg.HTMLBody, "</body>", _
 strNewText, 1, 1, vbTextCompare)

If you took a look at strNewText with a Debug.Print or MsgBox state-
ment, you’d see that it contains a well-formed HTML hyperlink <a> ele-
ment:

Get Outlook code
samples here

Listing 17.2 Stamp the date and current user on an Outlook item

Sub StampDate()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objItem As Object
 Dim strStamp As String
 On Error Resume Next
 Set objOL = Application
 Set objItem = objOL.ActiveInspector.CurrentItem
 If Not objItem Is Nothing Then
 Set objNS = objOL.Session
 strStamp = Now & " - " & objNS.CurrentUser.Name
 objItem.Body = objItem.Body & vbCrLf & strStamp
 End If
 Set objOL = Nothing
 Set objNS = Nothing
 Set objItem = Nothing
End Sub

17.3 Adding text to an item 549

Another key concept for adding text to an HTML message or post is
that the vbCrLf constant that defines a carriage return/linefeed in VBA and
VBScript has no meaning in HTML. In the example above, the code inserts
the hyperlink as a new paragraph enclosed inside a pair of <p></p> tags. To
insert a single line break, use a
 tag. This code snippet replaces the
vbCrLf instances in a text string with double line breaks:

strNewText = Replace(strOldText, vbCrLf, "

")

Listing 17.3 shows another practical application of the </body> replace-
ment technique, stamping the date as a separate paragraph at the end of an
HTML-format message or post. Compare with Listing 17.2.

The two main differences between Listing 17.2 and Listing 17.3 are the
way the strStamp date stamp string is constructed—one with <p></p>
tags and one with vbCrLf—and the use of the Replace() function to
insert the new content immediately before the existing </body> tag. Again,
the trick is to replace the </body> tag with a new string constructed from
the date stamp followed by </body>.

Prefixing the existing content with a date stamp is a little trickier than
appending, because the <body> tag may contain attribute settings. In other
words, the tag may be something other than just plain <body>. It may be as
verbose as <body lang=EN-US link=blue vlink=purple>. To handle
that scenario, you need to find the entire tag, using the same kind of text

Listing 17.3 Stamp the date and current user on an HTML-format message or post

Sub StampDateHTML()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objItem As Object
 Dim strStamp As String
 On Error Resume Next
 Set objOL = Application
 Set objItem = objOL.ActiveInspector.CurrentItem
 If Not objItem Is Nothing Then
 If objItem.BodyFormat = olFormatHTML Then
 Set objNS = objOL.Session
 strStamp = "<p>" & Now & " - " & _
 objNS.CurrentUser.Name & "</p>"
 objItem.HTMLBody = Replace(objItem.HTMLBody, _
 "</body>", _
 strStamp & "</body>", _
 , , vbTextCompare)
 End If
 End If
 Set objOL = Nothing
 Set objNS = Nothing
 Set objItem = Nothing
End Sub

550 17.3 Adding text to an item

parsing with Instr() and Mid() that you saw in the ParseTextLine-
Pair() function in Listing 17.1. Once you have the entire tag, you use the
same Replace() technique as in Listing 17.3. Only this time, you replace
the initial <body> tag (with all its attributes) with a new string consisting of
the full <body> tag followed by the date stamp:

strHTMLBody = objItem.HTMLBody
intTagStart = InStr(1, strHTMLBody, "<body", _
 vbTextCompare)
intTagEnd = InStr(intTagStart + 5, strHTMLBody, ">")
strBodyTag = _
 Mid(strHTMLBody, _
 intTagStart, intTagEnd - intTagStart + 1)
objItem.HTMLBody = _
 Replace(strHTMLBody, strBodyTag, strBodyTag & strStamp)

To insert text into the middle of an HTML-format message or post, you
could use the same text-parsing technique to locate the tag or text where
you want to place the insertion, then replace that tag or text with a string
that consists of the original content concatenated with your new content.
Later in this chapter, we’ll see a simple application of that technique, as we
customize a previously saved message template to tailor it to the current
recipient.

If you know a bit about HTML, you can start embellishing such text
insertions with formatting. For example, these statements build a date
stamp string that will appear in red, bold, Arial text:

strStyle = "'font-family:" & Chr(34) & _
 "Arial" & Chr(34) & ";color:red'"
strStamp = "<p>" & _
 "" & _
 Now & " - " & objNS.CurrentUser.Name & _
 "</p>"

The bold formatting is handled by the tags while the font for-
matting is handled by the tag containing a style attribute.
We can’t cover HTML in detail in this book, but tutorials abound on the
Internet. Another good learning tool is to create an email message with
some other mail program such as Outlook Express, Windows Mail, or even
a Web-based mail service such as Gmail. Send the message to yourself, and
then examine its HTML content by clicking in the body of the message and
choosing View Source or by looking at the value of its HTMLBody property.

The third method for inserting text requires the use of the Word.Docu-
ment object returned by the Inspector.WordEditor property. This is the
most versatile method, because it allows you not only to preserve format-
ting in any type of Outlook item, but also to insert text where the user has
placed the cursor. We cover it later in this chapter, in the section on Word-
Editor.

17.4 Creating a formatted message 551

17.4 Creating a formatted message
The previous sections have been concerned with reading text from a mes-
sage and inserting text, with some simple formatting options. Sometimes,
though, you have a more complicated task—creating a complete message
with complex formatting. In almost all cases, this will be an HTML-format
message, since RTF messages work only when the recipient has Outlook,
and you usually don’t know what mail application the recipient uses. We’ll
look at two techniques in this chapter:

Reading HTML content from a saved file

Adding customized text to a boilerplate message created from a saved
Outlook template file

You can also build an HTML message on the fly, element by element.
Skip ahead to Listings 18.1 and 18.2 in the next chapter to see examples
that build an HTMLBody that contains a table, one reporting on the user’s
available address lists, the second example listing colleagues in the same
department along with their contact information.

17.4.1 Creating an HTML-format message from a file

Chapter 8 explained how to use FileSystemObject to work with folders
and files. A common application of those techniques is to use the data in a
saved HTML file to create a new HTML message. This is a particularly
good strategy if you want to use a dedicated HTML editor to create, for
example, a newsletter.

Note: Outlook 2007’s support for cascading style sheets and various
HTML elements has changed substantially from that in previous versions,
now that Word is both the editor and the rendering engine. To learn what is
and is not supported in Outlook 2007 HTML-format messages, read the
article “Word 2007 HTML and CSS Rendering Capabilities in Outlook
2007” at http://msdn2.microsoft.com/en-us/library/aa338201.aspx.

The CreateHTMLMsg() procedure in listing 17.4 is a VBA function that
reads the text from an existing .htm file and creates and displays a new Out-
look message. Recall that you need a reference to the Microsoft Scripting
Runtime library to be able to declare objFSO as Scripting.FileSystem-
Object. Use code like this to call CreateHTMLMsg and display the newly
created message:

Set objMsg = CreateHTMLMsg("C:\MyNewsletter.htm")
objMsg.Display

552 17.4 Creating a formatted message

Listing 17.4 Create a message from an .htm file

Function CreateHTMLMsg(fileHTML As String) _
 As Outlook.MailItem
 Dim objOL As Outlook.Application
 Dim objMsg As Outlook.MailItem
 Dim objFSO As Scripting.FileSystemObject
 Dim objStream As Scripting.TextStream
 Dim strHTMLFile As String
 On Error Resume Next
 Set objFSO = CreateObject("Scripting.FileSystemObject")
 If objFSO.FileExists(fileHTML) Then
 Set objOL = Application
 Set objMsg = objOL.CreateItem(olMailItem)
 Set objStream = objFSO.OpenTextFile(fileHTML, _
 ForReading)
 objMsg.HTMLBody = objStream.ReadAll
 End If
 Set CreateHTMLMsg = objMsg
 Set objOL = Nothing
 Set objMsg = Nothing
 Set objFSO = Nothing
 Set objStream = Nothing
End Function

When you need to render an HTML message in the browser

Because Outlook 2007 has shifted the rendering engine for HTML-format messages from
Internet Explorer to Word, HTML tags like <script> and <form> are no longer sup-
ported. Earlier versions of Outlook ignored those tags by default. At the same time, though,
they supported a View | View in Internet Zone command that would allow users to see the
message, but in a less secure fashion. Outlook 2007 doesn’t support the concept of different
security zones for viewing messages, but it does still have a command that will allow a user
to view a message in their default Internet browser—the View in Browser command under
Other Actions in the Actions group.

To direct the recipient of a message to use the View in Browser command to see the mes-
sage content that Outlook 2007 blocks, you can include a special element in your HTML
code. To display directions to Outlook 2007 users at the top of the message, put code like
this just after the <body> tag:

<!--[if gte mso 12]>
To see the submission button using Outlook
2007, click the Other Actions button, then
View in Browser.
<![endif]-->

The <!--[if gte mso 12]> tag in effect says: Show this tag’s content only if the ren-
dering engine is greater than or equal to Office “12”—that is, only if it is Office 2007 or
later.

17.4 Creating a formatted message 553

Once you have the message returned by CreateHTMLMsg(),you could
modify its contents further, using the other methods in this chapter, before
displaying it.

17.4.2 Creating a message from a boilerplate template

Another common Outlook message scenario is replying to an incoming
message with a standard response. For example, you might want to reply to
requests for product literature with an attractive, personalized message that
includes the literature as one or more attached files. This is not a task that
you can accomplish with a published custom form. The solution is to use a
saved .oft form template file constructed with text that your code can easily
find and replace with personalized information. That text consists of
“tokens” in the message body, each beginning and ending with % or some
other character that makes them easy to distinguish from the actual message
text.

To implement this solution, start by following these steps to create a
boilerplate response message:

1. Create a new HTML-format message, and type in the fully for-
matted message body you want the recipient to see, including
your signature, if desired. Don’t forget to give the message a sub-
ject and attach any desired files.

2. In the message body, type in a “token” wherever you want a cus-
tomizable text “field,” each token starting and ending with %.
For example, if you want to address the sender of the original
message by name, put “Dear %sender%” in the message body.
Add more tokens where you want other fields that can be person-
alized.

3. Save the message as an .oft file.

Once you have saved the response message, the next step is to write a
VBA procedure that creates a new message from the .oft file, using the
Application.CreateItemFromTemplate method. That code will need to
replace each token with specific text, using the Replace() function. The
To address for the new message comes from the SenderEmailAddress of
the original that you want to reply to.

Figure 17.1 shows an example of such a message, ready for saving as an
.oft file. The code to generate a reply using that template is in Listing 17.5.
Call the InquiryReply procedure by passing it an Outlook message. For
example, you could use the GetCurrentItem() function from Listing
15.5:

Call InquiryReply(GetCurrentItem())

554 17.5 Using WordEditor

As you can see in Figure 17.1, the reply template has two tokens—
%sender% and %project_type%. The InquiryReply procedure fills in the
%project_type% token from the result of an InputBox() statement and
attempts to fill in the %sender% token with the first name of the sender of
the original message. Just in case the sender name wasn’t available or wasn’t
parsed correctly, the code uses the Word editor’s search capability to high-
light the %sender% token (or the text that replaced it) in the displayed reply
message. (More on the Word editor is coming up shortly.)

What if you want to include the original sender’s message in your reply?
That’s possible, too, and we’ll look at it later in the chapter, after you’ve
learned how to move around in the WordEditor.

17.5 Using WordEditor
The Outlook object model itself provides no direct way to determine the
position of the cursor in an item body. However, since the editor for every
item body (except on “sticky notes” and distribution lists) is a special ver-
sion of Microsoft Word, you can use Word techniques not only to add text
at the insertion point, but also to add formatted text anywhere in the item,
or even to add a picture. To use these techniques in Outlook VBA code, use
the Tools | References command to add a reference to the Microsoft Word
12.0 Object Library.

Figure 17.1
Use a “tokenized”

boilerplate message
to generate

customized replies.

17.5 Using WordEditor 555

Note: In earlier versions of Outlook, the WordEditor was available only for
messages and posts and only if the user had configured Word as the email
editor. Since Word is the only editor in Outlook 2007 (except for
NoteItem and DistListItem objects), it is available not just for messages
and posts, but also for appointments, contacts, tasks, and journal entries. It
even works if only Outlook 2007 is installed, and not Word 2007.

As an initial example of how to invoke the Word editor programmati-
cally, using the Inspector.WordEditor method, Listing 17.6 builds on
the earlier examples in Listings 17.2 and 17.3 and inserts a date stamp at

Listing 17.5 Create a reply from a tokenized boilerplate message

Sub InquiryReply(msg)
 Dim objOL As Outlook.Application
 Dim objReply As Outlook.MailItem
 Dim objDoc As Object
 Dim strSender As String
 Dim arr() As String
 Dim strProject As String
 Dim strHTML As String
 On Error Resume Next
 Set objOL = msg.Application
 Set objReply = _
 objOL.CreateItemFromTemplate _
 ("C:\Data\inquiry response.oft")
 objReply.To = msg.SenderEmailAddress
 strSender = msg.SenderName
 strProject = InputBox("Enter project type:", _
 "Replace %project_type%", _
 "custom form")
 strHTML = Replace(objReply.HTMLBody, _
 "%project_type%", strProject)
 If strSender <> msg.SenderEmailAddress Then
 arr = Split(strSender, " ")
 strSender = arr(0)
 strHTML = Replace(strHTML, "%sender%", strSender)
 Else
 strSender = "%sender%"
 End If
 objReply.HTMLBody = strHTML
 objReply.Display
 Set objDoc = objReply.GetInspector.WordEditor
 objDoc.Windows(1).Selection.Find.ClearFormatting
 objDoc.Windows(1).Selection.Find.Execute strSender
 Set objOL = Nothing
 Set objReply = Nothing
 Set objDoc = Nothing
End Sub

556 17.5 Using WordEditor

the top of the currently displayed item, with a blank line following it. It also
positions the cursor on the blank line, so that if the focus is on the message
body control, the user can begin typing right after the date stamp.

Two key objects from the Word object model can be derived from Doc-
ument object that the Inspector.WordEditor method returns. If objDoc
is the object variable representing the Document, then the expression obj-
Doc.Application returns a Word Application object. The other key
object is the Selection object (not to be confused with Active-
Explorer.Selection from the Outlook object model), which represents
the text that is currently highlighted in the Outlook item. If no text is high-
lighted, it represents the cursor position. Use this syntax to return a Selec-
tion object from an Outlook item’s Document object:

Set objSel = objDoc.Windows(1).Selection

The Selection object includes a number of methods, including Move,
to reposition the insertion point. We’ll look at Move in more detail in the
next section.

To insert text at the current insertion point, use the Selec-

tion.InsertBefore method. (As you might expect, there is also a Selec-
tion.InsertAfter method.) In this code snippet, strText is a variable
holding the text you want to insert:

Set objOL = Application
Set objDoc = objOL.ActiveInspector.WordEditor

Listing 17.6 Insert text and reposition the cursor

Sub StampDateDoc()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objDoc As Word.Document
 Dim objSel As Word.Selection
 Dim strStamp As String
 On Error Resume Next
 Set objOL = Application
 If objOL.ActiveInspector.EditorType = olEditorWord Then
 Set objDoc = objOL.ActiveInspector.WordEditor
 Set objNS = objOL.Session
 strStamp = Now & " - " & objNS.CurrentUser.Name
 Set objSel = objDoc.Windows(1).Selection
 objSel.Move wdStory, -1
 objDoc.Characters(1).InsertBefore _
 strStamp & vbCrLf & vbCrLf
 objSel.Move wdParagraph, 1
 End If
 Set objOL = Nothing
 Set objNS = Nothing
End Sub

17.5 Using WordEditor 557

Set objSel = objDoc.Windows(1).Selection
objSel.InsertBefore strText

You can even format the inserted text. The Selection expands to
include the inserted text whenever you use Selection.InsertBefore or
Selection.InsertAfter. Since the inserted text is selected automatically,
it is easy to use the Selection.Font object to change the appearance of
the new text. This snippet inserts text and then makes it bold, red, Arial:

Set objSel = objDoc.Windows(1).Selection
With objSel
 .Collapse wdCollapseStart
 .InsertBefore strText
 .Font.Name = "Arial"
 .Font.Bold = True
 .Font.Color = wdColorRed
End With

Note: Most of the time, you will want to collapse the selection to the inser-
tion point, using the Selection.Collapse method, before inserting the
text. If you don’t do that, your code will replace any text that the user has
selected. The Selection.Move method automatically collapses the inser-
tion point.

To learn more about working with formatted text in Word, a good strat-
egy is to open Word 2007, create a new document, and turn on the Word
macro recorder. (The Word macro recorder is not available in an Outlook
message or other item.) Much of the code it produces uses a Selection
object. The code you’ve seen in this section shows how to return the
Selection object for an Outlook item using Inspector.WordEditor and
the Document.Application.Selection object. You should be able to
adapt almost any code that the Word macro recorder produces to a Word
Selection object derived from an Outlook item.

17.5.1 Moving around in the Word editor

The key to moving the cursor position—also known as the insertion point—
inside the Word editor is found in these statements from Listing 17.6:

Set objDoc = objOL.ActiveInspector.WordEditor
Set objSel = objDoc.Windows(1).Selection
objSel.Move wdStory, -1
objSel.Move wdParagraph, 1

The Selection.Move method collapses the selection and then moves it
a specified distance. The first parameter for Move is a wdUnits constant
(from the Word object model) defining how big a step to take during the
move. The second parameter is an integer defining how many steps to take.
If the number is positive, the insertion point is collapsed to the end of the

558 17.5 Using WordEditor

selection and then moved forward the specified number of units. If the
number is negative, the insertion point collapses to the start of the selection
and moves backwards the specified number of units. Table 17.3 lists the
wdUnits constants that are useful in moving through email messages.

Thus, to move the insertion point to the beginning of a message, assum-
ing you already have a Selection object (objSel), use:

objSel.Move wdStory, -1

To move the insertion point to the end of the message, use:

objSel.Move wdStory, 1

To move the insertion point to the cell in the second column of the
third row of the first table in a message, use:

objSel.Move wdStory, -1
objSel.Move wdTable, 1
objSel.Move wdRow, 2
objSel.Move wdCell, 1

Note: Word also supports a Selection.GoTo method to reposition the
insertion point, but it raises an error if Word 2007 is not installed. Since
Move and related Selection methods work even without Word 2007, you
should rely on them, not GoTo.

In addition, the Selection object supports methods like MoveUp and
MoveDown that can be used to extend the selection to cover additional text.
You can look them up in the object browser.

Table 17.3 Word wdUnits Constants for Moving the Insertion Point

Unit Constant Value

Story (= the entire message) wdStory 6

Paragraph wdParagraph 4

Line wdLine 5

Sentence wdSentence 3

Word wdWord 2

Character wdCharacter 1

Table wdTable 15

Row wdRow 10

Column wdColumn 9

Cell wdCell 12

17.5 Using WordEditor 559

The Move method can return an integer representing the number of
units moved. For example, given this statement

intMoved = objSel.Move(wdParagraph, 3)

if intMoved is less than 3, that means the insertion point is now at the end
of the message, because it couldn’t move forward three whole paragraphs.

Another useful technique for moving around in the Word editor win-
dow is to invoke the Find command programmatically. Earlier in Listing
17.5, you saw these statements that find and highlight the text in a reply
message showing the original sender’s name, so that the user can confirm
and correct it as needed:

Set objDoc = objReply.GetInspector.WordEditor
objDoc.Windows(1).Selection.Find.ClearFormatting
objDoc.Windows(1).Selection.Find.Execute strSender

Always use the Selection.Find.ClearFormatting method to clear
any previously used option to search for text with specific formatting. The
example above is the simplest implementation of Find.Execute to search
forward in a document for specific text. The Find.Execute method also
supports many optional parameters, which you can look up in the object
browser, including those that allow you to replace text or control the direc-
tion of the search.

17.5.2 Example: Boilerplate reply that includes
incoming text

Back in the discussion of Listing 17.5, to create a reply message from a
saved boilerplate .oft file, we said that it’s possible to include the original
message text in the reply message, just as a manually created Outlook reply
would do. Now that you know how to use the WordEditor, we can walk
through the steps in that process:

1. Generate a reply to the original message.

2. Create a new message from the boilerplace .oft file

3. Copy the text from the reply body to the end of the new message,
using Word methods.

4. The InquiryReplyWithOrig procedure in Listing 17.7 builds
on the InquiryReply procedure Listing 17.5 to add the code to
generate a reply and copy its content to the message created from
the .oft file.

Listing 17.7 demonstrates several other useful methods in the Word
Selection object:

MoveEnd to expand the end point of the Selection object so that
more text is selected; these statements locate the From: text in the

560 17.5 Using WordEditor

reply, select all the text from that point to the end of the reply, then
copy that text to the Windows clipboard:
With objSel
 .Find.Execute "From:"
 .Collapse wdCollapseStart
 .MoveEnd WdUnits.wdStory, 1, True
 .Copy
End With

InlineShapes to add a shape to the message, in this case, a horizon-
tal line

PasteAndFormat to paste the text from the clipboard into the new
message, preserving its formatting.

The next two sections look at other techniques you’re likely to use—
inserting hyperlinks and pictures.

Tip: For another example of the PasteAndFormat method, Listing 20.1
includes a CopyFormattedBody subroutine that copies a complete item
body, including formatting, from one Outlook item to another.

Listing 17.7 Include the original sender’s message with a boilerplate reply

Sub InquiryReplyWithOrig(msg)
 Dim objOL As Outlook.Application
 Dim objReply As Outlook.MailItem
 Dim objOrigReply As Outlook.MailItem
 Dim objDoc As Word.Document
 Dim objDocOrigReply As Word.Document
 Dim objSel As Word.Selection
 Dim strSender As String
 Dim arr() As String
 Dim strProject As String
 Dim strHTML As String
 Dim f As Boolean
 Set objOL = msg.Application
 Set objReply = _
 objOL.CreateItemFromTemplate _
 ("C:\Data\inquiry response.oft")
 objReply.To = msg.SenderEmailAddress
 strSender = msg.SenderName
 strProject = InputBox("Enter project type:", _
 "Replace %project_type%", _
 "custom form")
 strHTML = Replace(objReply.HTMLBody, _
 "%project_type%", strProject)
 If strSender <> msg.SenderEmailAddress Then
 arr = Split(strSender, " ")
 strSender = arr(0)
 strHTML = Replace(strHTML, "%sender%", strSender)

17.5 Using WordEditor 561

17.5.3 Inserting hyperlinks

Earlier in this chapter, we saw how to insert a hyperlink at the end of an
HTML-formatted message using the </body> tag replacement technique.
That technique won’t work if you want to insert a hyperlink in an RTF
message or an item other than a message or post. It also can’t help you insert
a hyperlink at the current insertion point. For those scenarios, you need to
use Inspector.WordEditor and the Document.Hyperlinks.Add

method from the Word object model. The Hyperlinks.Add method uses
this syntax:

objDoc.Hyperlinks.Add(Anchor, Address, SubAddress, _
 ScreenTip, TextToDisplay, Target)

The Anchor parameter is the only required argument. It needs to be an
object representing the text or image that you want to mark as a hyperlink;
it can also be the Selection.Range object representing a collapsed inser-
tion point. The actual URL for the link is passed as the Address parameter.
Pass the display text for the link with the TextToDisplay parameter. The
other three parameters do not apply to hyperlinks in email messages.

 Else
 strSender = "%sender%"
 End If
 objReply.HTMLBody = strHTML
 Set objOrigReply = msg.Reply
 Set objDoc = objReply.GetInspector.WordEditor
 Set objDocOrigReply = objOrigReply.GetInspector.WordEditor
 Set objSel = objDocOrigReply.Windows(1).Selection
 With objSel
 .Find.Execute "From:"
 .Collapse wdCollapseStart
 .MoveEnd WdUnits.wdStory, 1
 .Copy
 End With
 Set objSel = objDoc.Windows(1).Selection
 With objSel
 .Move wdStory, 1
 .InlineShapes.AddHorizontalLineStandard
 .PasteAndFormat wdFormatOriginalFormatting
 .Move wdStory, -1
 .Find.ClearFormatting
 .Find.Execute strSender
 End With
 objReply.Display
 Set objOL = Nothing
 Set objReply = Nothing
 Set objDoc = Nothing
End Sub

Listing 17.7 Include the original sender’s message with a boilerplate reply (continued)

562 17.5 Using WordEditor

Compare this code to insert a hyperlink into an existing message
(objMsg) with the corresponding code snippet in Section 17.3.2:

strLink = "http://www.outlookcode.com"
strLinkText = "Get Outlook code samples here"
Set objInsp = objMsg.GetInspector
Set objDoc = objInsp.WordEditor
Set objSel = objDoc.Windows(1).Selection
If objMsg.BodyFormat <> olFormatPlain Then
 objDoc.Hyperlinks.Add objSel.Range, strLink, _
 "", "", strLinkText, ""
Else
 objSel.InsertAfter strLink
End If

Notice that the syntax for inserting a link into a plain text message is dif-
ferent from that for HTML and RTF messages. For a plain text message,
you should insert only the URL.

17.5.4 Inserting pictures

If you want a picture to appear in the body of an email message, rather than
as an attachment, you should send it as an embedded picture, not as an
 HTML tag with a link to an external URL. Outlook 2003 and Out-
look 2007 block external content by default, as do a growing number of
other mail programs.

Inserting an embedded picture is very similar to inserting a hyperlink,
except that the method is Selection.InlineShapes.AddPicture,
instead of Document.Hyperlinks.Add. The InlineShapes.AddPicture
method uses this syntax:

objSel.AddPicture(FileName, LinkToFile, _
 SaveWithDocument, Range)

where FileName is the name of the file that contains the picture. For Out-
look items, the LinkToFile and SaveWithDocument parameters should
always be False and True respectively. Omit the optional Range parameter
to insert the picture at the current insertion point.

Compare this code snippet for inserting a picture to the one in the pre-
vious section for inserting a hyperlink:

strFile = "C:\Pictures\logo.gif"
Set objInsp = objMsg.GetInspector
Set objDoc = objInsp.WordEditor
Set objSel = objDoc.Windows(1).Selection
If objMsg.BodyFormat <> olFormatPlain Then
 objSel.InlineShapes.AddPicture strFile, False, True
End If

What about combining a picture with a hyperlink? The Inline-
Shapes.AddPicture method returns an InlineShape object. You can use
the InlineShape.Range object property as the anchor for a hyperlink

17.6 Working with Outlook signatures 563

instead of the Selection.Range object used by the hyperlink sample code
in the previous section:

Set objShape = objSel.InlineShapes.AddPicture _
 (strFile, False, True)
objDoc.Hyperlinks.Add objShape.Range, strLink, _
 "", "", strLinkText, ""

We don’t have room in this book to go into detail on all the functional-
ity available with the Word objects available to you from WordEditor, but
you can explore them on your own with the object browser and Word’s
macro recorder (which is available only in Word documents, not in Out-
look messages).

17.6 Working with Outlook signatures
As in previous versions, Outlook 2007 offers extensive support for personal
email signatures, which are stored as .htm, .rtf, and .txt files to support the
three different message formats. Users may create one or more signatures
and have Outlook apply them automatically or insert signatures manually.

Note: One difference between Outlook 2007 and earlier versions is that
inserting a signature in Outlook 2007 always replaces any existing signature
in the message. Thus, you cannot use signatures in Outlook 2007 as a way
of inserting multiple blocks of text into a single message. Instead, you can
use the Word insertion methods described earlier in the chapter; the section
on inserting the default signature provides another example.

The replacement for the AutoText feature in earlier versions is Quick
Parts, found on the ribbon on the Insert tab, in the Text group and stored
in the Normalemail.dotm template. To insert a quick part named “Sales
Inquiry,” use this code:

Set objDoc = objOL.ActiveInspector.WordEditor
Set objWord = objDoc.Application
Set objSel = objDoc.Windows(1).Selection
Set objETemp = objWord.Templates(1)
Set colBlocks = objETemp.BuildingBlockEntries
colBlocks("Sales Inquiry").Insert _
 objSel.Range, True

The three key signature tasks that we’ll cover are creating a signature
programmatically, inserting the user’s default signature into a message, and
removing a signature that has already been inserted.

17.6.1 Creating a signature

As part of the task of creating a new signature for the current user, if the
user has an Exchange mailbox, we can incorporate company contact infor-

564 17.6 Working with Outlook signatures

mation into the signature. For this task, we will make use of the new
ExchangeUser object that Outlook 2007 introduces. The code in Listing
17.8 is written in VBScript, but it’s structured differently from the
VBScript for Outlook forms. That’s because this script is intended to be run
as part of a login or as an independent script stored in a .vbs file. (You saw
an example of this technique earlier in Listing 7.8.) The code that actually
creates the signature is in the CreateSignature subroutine, which takes a
Namespace object, representing the Outlook session where the user has
logged in, as its sole parameter.

Listing 17.8 Script to create and format a new default signature

Dim objOL ' As Outlook.Application
Dim objNS ' As Outlook.NameSpace
Dim blnWeStartedOutlook ' As Boolean
Const olFolderInbox = 6
On Error Resume Next
Set objOL = GetObject(, "Outlook.Application")
If objOL Is Nothing Then
 Set objOL = CreateObject("Outlook.Application")
 Set objNS = objOL.GetNamespace("MAPI")
 objNS.Logon "", "", True, True
 ' objNS.Logon "Outlook Settings", "", False, True
 blnWeStartedOutlook = True
Else
 Set objNS = objOL.GetNamespace("MAPI")
 objNS.Logon "", "", False, False
End If
If Not objNS.GetDefaultFolder(olFolderInbox) Is Nothing Then
 Call CreateSignature(objNS)
Else
 MsgBox "Could not start Outlook to set up signature"
End If
If blnWeStartedOutlook Then
 objNS.Logoff
 objOL.Quit
End If
Set objOL = Nothing
Set objNS = Nothing

Sub CreateSignature(objNS)
 Dim objMsg ' As Outlook.MailItem
 Dim objDoc ' As Word.Document
 Dim objSel ' As Word.Selection
 Dim objSig ' As Word.EmailSignature
 Dim colSig ' As Word.EmailSignatureEntries
 Dim objExUser ' As Outlook.ExchangeUser
 Dim objUser ' As Outlook.AddressEntry
 Dim strSig ' As String
 Dim objInsp ' As Outlook.Inspector
 Const olmailitem = 0

17.6 Working with Outlook signatures 565

 Const wdCollapseEnd = 0
 Const wdStory = 6
 Const olDiscard = 1
 Const olMinimized = 1
 Set objUser = objNS.CurrentUser.AddressEntry
 Set objMsg = objNS.Application.CreateItem(olmailitem)
 objMsg.Display
 Set objInsp = objMsg.GetInspector
 objInsp.WindowState = olMinimized
 Set objDoc = objInsp.WordEditor
 Set objSel = objDoc.Application.Selection
 With objSel
 .Move wdStory, -1
 .InsertAfter "--" & vbCrLf & Space(3)
 .Collapse wdCollapseEnd
 .InsertAfter objUser.Name
 .Font.Bold = True
 .InsertAfter " "
 .Collapse wdCollapseEnd
 End With
 If objUser.AddressEntryUserType = _
 olExchangeUserAddressEntry Then
 Set objExUser = objUser.GetExchangeUser
 If objExUser.Department <> "" Then
 strSig = vbCrLf & Space(3) & objExUser.Department
 End If
 If objExUser.CompanyName <> "" Then
 strSig = strSig & vbCrLf & Space(3) & _
 objExUser.CompanyName
 End If
 If objExUser.BusinessTelephoneNumber <> "" Then
 strSig = strSig & vbCrLf & Space(3) & _
 objExUser.BusinessTelephoneNumber
 End If
 With objSel
 .InsertAfter objExUser.PrimarySmtpAddress
 .Font.Bold = False
 objDoc.Hyperlinks.Add objSel.Range, _
 "mailto:" & objExUser.PrimarySmtpAddress
 .Collapse wdCollapseEnd
 .InsertAfter strSig
 End With
 Else
 With objSel
 .InsertAfter objUser.Address
 .Font.Bold = False
 objDoc.Hyperlinks.Add objSel.Range, _
 "mailto:" & objUser.Address
 .Collapse wdCollapseEnd
 End With
 End If

Listing 17.8 Script to create and format a new default signature (continued)

566 17.6 Working with Outlook signatures

As with the other item body manipulation techniques in this chapter,
the CreateSignature subroutine uses Word methods to insert and format
text. From the Namespace.CurrentUser.AddressEntry object, the code
can add information about the user to the signature. If the user is an
Exchange user, the GetExchangeUser method provides access to properties
like Department, BusinessTelephoneNumber, and PrimarySmtpAd-
dress as stored in the Global Address List on the server, for example:

Set objExUser = objUser.GetExchangeUser
If objExUser.Department <> "" Then
 strSig = vbCrLf & Space(3) & objExUser.Department
End If

Surprisingly, the objects used to actually set the default signature for the
new messages and replies/forwards are Word objects, not Outlook objects.
Thus, the code accesses the signature options through the parent Applica-
tion object of the Word Document where the signature text is being built:

Set objSig = _
 objDoc.Application.EmailOptions.EmailSignature
Set colSig = objSig.EmailSignatureEntries
colSig.Add objUser.Name, objSel.Range
objSig.NewMessageSignature = objUser.Name
objSig.ReplyMessageSignature = objUser.Name

Through the user interface, the user can also set a different automatic
signature for each mail account. Those per-account signature settings can-
not be programmatically managed through Outlook or Word objects, but
are buried in the registry entries for the user’s Outlook mail profile.

 objSel.InsertAfter vbCrLf
 objSel.MoveStart wdStory, -1
 objSel.Font.Color = wdColorBlack
 Set objSig = _
 objDoc.Application.EmailOptions.EmailSignature
 Set colSig = objSig.EmailSignatureEntries
 colSig.Add objUser.Name, objSel.Range
 objSig.NewMessageSignature = objUser.Name
 objSig.ReplyMessageSignature = objUser.Name
 objInsp.Close olDiscard
 Set objMsg = Nothing
 Set objDoc = Nothing
 Set objSel = Nothing
 Set objSig = Nothing
 Set colSig = Nothing
 Set objExUser = Nothing
 Set objUser = Nothing
 Set objInsp = nothing
End Sub

Listing 17.8 Script to create and format a new default signature (continued)

17.6 Working with Outlook signatures 567

17.6.2 Inserting the default signature

The insertion technique used in Listing 17.7 can also be used to add the
user’s default automatic signature to an existing message. The technique
consists of creating a new message, copying the content, then pasting that
content into the existing message. This VBA code snippet creates a new
message and then copies the signature:

Set objMsg = Application.CreateItem(olMailItem)
Set objSigDoc = objMsg.GetInspector.WordEditor
Set objSel = objSigDoc.Windows(1).Selection
With objSel
 .Collapse wdCollapseStart
 .MoveEnd WdUnits.wdStory, 1
 .Copy
End With

You can then use the Selection.PasteAndFormat method, as shown
in Listing 17.7, to paste the signature into the desired location in another
Outlook message.

17.6.3 Removing signature text

What if you want to do the opposite—remove a signature that Outlook
inserts automatically for the user? The key to that task is knowing that the
signature is contained in a hidden Word bookmark named _MailAutoSig.
The DeleteSig procedure in Listing 17.9 locates that bookmark in a mes-
sage body, selects it, and then deletes the content of the selection.

Listing 17.9 Use a Word bookmark to delete an automatic signature

Sub TestDeleteSig()
 Dim objMsg As Outlook.MailItem
 Set objMsg = Application.CreateItem(olMailItem)
 objMsg.Display
 Call DeleteSig(objMsg)
 Set objMsg = Nothing
End Sub

Sub DeleteSig(msg As Outlook.MailItem)
 Dim objDoc As Word.Document
 Dim objBkm As Word.Bookmark
 On Error Resume Next
 Set objDoc = msg.GetInspector.WordEditor
 Set objBkm = objDoc.Bookmarks("_MailAutoSig")
 If Not objBkm Is Nothing Then
 objBkm.Select
 objDoc.Windows(1).Selection.Delete
 End If
 Set objDoc = Nothing
 Set objBkm = Nothing
End Sub

568 17.7 Summary

If you wanted to replace an existing signature with another one, you
could combine the removal technique in Listing 17.9 with the insertion
technique in the previous section.

17.7 Summary
As Outlook items are the core of the application’s data, the body of each
item is the heart of the item. Now that Word is the editor for both mail
messages and other Outlook items, you can take advantage of its text
manipulation and formatting techniques in most Outlook items. Inserting
hyperlinks and pictures also works through the Document object returned
by the Inspector.WordEditor method. Inserting text, hyperlinks, and
pictures are all possible through the WordEditor object.

Among the things we’ve learned in this chapter are three different ways
to insert a date stamp (or other text) into an item, several methods for creat-
ing complex HTML-format messages, and techniques for creating, insert-
ing, and removing a signature. A key reusable routine introduced in this
chapter is the ParseTextLinePair() function to extract data from a struc-
tured text block.

569

18
Working with Recipients and Address Lists

Messages, meeting requests, and task requests are all examples of Outlook
items that involve recipients. Recipients are useful not just for sending mes-
sages, though. In Chapter 13, we saw that the Namespace.GetSharedDe-
faultFolder method requires a Recipient object as one of the
parameters necessary to return a folder from another user’s Exchange mail-
box and that the Namespace.CreateRecipient method provides an easy
way to create a Recipient that is not attached to any message or other
Outlook item. The Recipient object is also crucial to determining
whether a user is available for a meeting at a particular time.

This chapter provides an overview of the key Outlook objects that
expose information about recipients and address lists, plus examples of
common Outlook programming tasks that use recipients and address lists.

Highlights of this chapter include discussions of the following:

When to use the MailItem.To property versus the Mail-

Item.Recipients.Add method to address an email message

How to use the Select Names dialog to return a name that the user
selects

How to automatically add a Bcc recipient to all outgoing messages

How to automatically create contacts for the people you send mes-
sages to

What hidden property can help you work with members of a distri-
bution list

How to find out whether someone is busy at a given time

What happens when a user clicks the Check Names command

570 18.1 Key recipient and address list objects

18.1 Key recipient and address list objects
Table 18.1 lists the key objects and collections in the Outlook object model
that are related to address lists and recipients. All these objects are interre-
lated, as you can see in Figure 18.1. A Recipient object, for example, can
be created with the Namespace.CreateRecipient method, or it can be
derived from the Recipients collection available from the SelectNames-
Dialog object after a user selects one or more recipients from the Select
Names dialog, or it can be returned as an item in a Recipients collection
for a MailItem or other Outlook item.

The most basic address-related object is the AddressEntry. You have
already seen samples that use the Namespace.CurrentUser property to
return an AddressEntry object for the current Outlook user. The
ExchangeUser and ExchangeDistributionList objects, both new to

Table 18.1 Key Objects Related to Addresses and Address Lists (* = new in Outlook 2007)

Object Description

AddressEntries Collection of AddressEntry objects that an
AddressList object contains; can also be derived
from a DistListItem or ExchangeDistribu-
tionList object

AddressEntry Address details from an item in an AddressEn-
tries collection or from a Recipient object

AddressLists Collection of all the address lists available in the
current Outlook mail profile

AddressList Individual list item from the AddressLists col-
lection

CurrentUser AddressEntry for the current user, as a property
of the Namespace object

*ExchangeDistributionList Distribution list from the Global Address List for an
Exchange server; read-only, inherits properties and
methods from AddressEntry

*ExchangeUser Individual user record from the Global Address List
for an Exchange server; read-only, inherits proper-
ties and methods from AddressEntry

Recipient Individual addressee for a message or other item

Recipients Collection of addressees for a message or other item

*SelectNamesDialog Dialog where the user can select one or more names
from the address lists present in the mail profile

18.2 Understanding address lists 571

Outlook 2007, inherit the properties and methods from the AddressEntry
object. You’ll see an example of their usage later in Listing 18.2.

18.2 Understanding address lists
Which address lists are available to the user in the Address Book and Select
Names dialogs depend on two factors—the user’s email and address book
settings in the Tools | Account Settings dialog and what contact folders have
been marked to appear in the Outlook Address Book, which is a container
to display the user’s contact folders in the Address Book. The user’s default
Contacts folder is always marked as an address list, by default. Other Out-
look contacts folders, including those synchronized from a SharePoint con-
tacts list, may also be displayed as address lists.

If a user has an Exchange mailbox, one or more address lists related to
the Exchange server will be present. The user may also have LDAP lists and
other lists from third-party address book providers. Each AddressList has
an AddressEntries collection that you can use to enumerate the names,
addresses, and other information exposed by the address list. The informa-
tion available will vary with the type of list; the Exchange Global Address
List is likely to contain the most information about each entry.

Table 18.2 shows key properties and methods for the AddressList
object, several of which are new in Outlook 2007. The VBA code in Listing
18.1 iterates the AddressLists collection and generates an email message
reporting on the properties of the user’s address lists. All AddressList
properties are read-only.

Figure 18.1 Relationships among Outlook’s address-related objects.

572 18.2 Understanding address lists

Notice that the message created in Listing 18.1 is laid out using an
HTML <table> element. Each row in the table consists of a set of
<tr></tr> tags surrounding several <td> elements, each of which repre-
sents a table cell. Formatting in the table is handled with align='center'
attributes to center text in some cells and class='header' attributes that
point to the header style set up in the <style> element. This example
demonstrates some of the relatively complex layouts and formatting you
can perform with a little basic knowledge of HTML tables and styles.

18.2.1 Displaying a contact folder as an address book

The only technique in the Outlook object model related to showing or hid-
ing an address list is the ability to display any Outlook contacts folder as an
address list under the Outlook Address Book. Two properties of the Folder
object control this option: ShowAsOutlookAB and AddressBookName.

Table 18.2 Key AddressList Properties and Methods (* = new in Outlook 2007)

Property Description

AddressEntries Collection of entries in the address list

*AddressListType Type of list, from the OlAddressListType enumera-
tion:

olCustomAddressList 4

olExchangeContainer 1

olExchangeGlobalAddressList 0

olOutlookAddressList 2

olOutlookLdapAddressList 3

*IsInitialAddressList True if this list is the one the user sees first in the
Address Book or Select Names dialog

IsReadOnly In general, True for server-based address lists, and
False for Outlook contacts lists

Name Display name for the address list

*PropertyAccessor Object used to return values from hidden MAPI proper-
ties

*ResolutionOrder Position of this address list among the lists used to
resolve names and addresses to valid recipients; equals -1
if the list is not used for name resolution

Method Description

*GetContactsFolder If AddressListType = olOutlookAddressList,
returns the Folder object for the contacts list that the
address list exposes

18.2 Understanding address lists 573

Listing 18.1 Enumerate the user’s address lists

Sub EnumAddressLists()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objList As Outlook.AddressList
 Dim objMsg As Outlook.MailItem
 Dim strHTML As String
 Set objOL = Application
 Set objNS = objOL.Session
 Set objMsg = Application.CreateItem(olmailitem)
 ' build HTML style head
 strHTML = "<html><head><style><!-- td.header " & _
 "{font-family: Arial; font-weight: bold; " & _
 "}--></style></head>"
 ' build title and subtitle
 strHTML = strHTML & "<body><p>Address Lists for " & _
 objNS.CurrentUser.Name & "
" & _
 "Profile Name: " & objNS.CurrentProfileName & _
 "</p>"
 ' build table header row
 strHTML = strHTML & "<table cellspacing='5' " & _
 "cellpadding='2'><tr><td class='header'>" & _
 "Address List</td>" & _
 "<td class='header'>Type</td>" & _
 "<td class='header' align='center'>" & _
 "Initial
List</td>" & _
 "<td class='header' align='center'>" & _
 "Resolution
Order</td>" & _
 "<td class='header'>Read-only</td>" & _
 "<td class='header' align='center'>" & _
 "Number
of entries" & _
 "</td></tr>"
 ' build table body rows
 For Each objList In objNS.AddressLists
 strHTML = strHTML & AddListRow(objList)
 Next
 ' end table
 strHTML = strHTML & "</table></body></html>"
 objMsg.HTMLBody = strHTML
 objMsg.Subject = "Address Lists for " & _
 objNS.CurrentUser.Name
 objMsg.Display
 Set objOL = Nothing
 Set objNS = Nothing
 Set objList = Nothing
 Set objMsg = Nothing
End Sub

Function AddListRow(list As Outlook.AddressList) As String
 Dim strRow As String
 Dim lngCount As String
 Dim objFolder As Outlook.Folder
 strRow = "<tr><td>" & list.Name

574 18.2 Understanding address lists

This code snippet sets the current folder as an address list and builds its dis-
play name from the folder name and its parent folder’s path:

Set objFolder = Application.ActiveExplorer.CurrentFolder
If objFolder.DefaultItemType = olContactItem Then
 objFolder.ShowAsOutlookAB = True
 objFolder.AddressBookName = objFolder.Name & " in " & _
 objFolder.Parent.FolderPath
End If

 If list.AddressListType = olOutlookAddressList Then
 Set objFolder = list.GetContactsFolder
 strRow = strRow & "
" & objFolder.FolderPath
 End If
 strRow = strRow & "</td>"
 Select Case list.AddressListType
 Case olCustomAddressList
 strRow = strRow & "<td>Custom</td>"
 Case olExchangeContainer
 strRow = strRow & "<td>EX Container</td>"
 Case olExchangeGlobalAddressList
 strRow = strRow & "<td>EX GAL</td>"
 Case olOutlookAddressList
 strRow = strRow & "<td>Outlook Contacts</td>"
 Case olOutlookLdapAddressList
 strRow = strRow & "<td>LDAP</td>"
 End Select
 If list.IsInitialAddressList Then
 strRow = strRow & "<td align='center'>X</td>"
 Else
 strRow = strRow & "<td></td>"
 End If
 If list.ResolutionOrder <> -1 Then
 strRow = strRow & "<td align='center'>" & _
 CStr(list.ResolutionOrder) & "</td>"
 Else
 strRow = strRow & "<td align='center'>n/a</td>"
 End If
 If list.IsReadOnly Then
 strRow = strRow & "<td align='center'>X</td>"
 Else
 strRow = strRow & "<td></td>"
 End If
 If list.AddressListType <> olExchangeContainer Then
 lngCount = list.AddressEntries.Count
 strRow = strRow & "<td align='right'>" & _
 CStr(lngCount) & "</td>"
 Else
 strRow = strRow & "<td></td>"
 End If
 AddListRow = strRow
End Function

Listing 18.1 Enumerate the user’s address lists (continued)

18.2 Understanding address lists 575

To stop showing a contacts folder as an address list, set its ShowAsOut-
lookAB property to False.

18.2.2 Example: Generate a report on Exchange users

If the user is working in a mail profile that includes an Exchange account,
the Exchange Global Address List (or a subset of the GAL, if the adminis-
trator so chooses) will be present among the AddressLists collection. Use
the Namespace.GetGlobalAddressList method to return the Address-
List object for the GAL. The new ExchangeUser and ExchangeDistri-
butionList objects in Outlook 2007 make it relatively easy to generate a
report on the contents of the GAL.

For example, the code in Listing 18.2 creates an Outlook PostItem in
the user’s default Drafts folder and fills it with a table containing names,
e-mail addresses, and phone numbers of Exchange users in the GAL, plus
information about the number of entries in each Exchange distribution list.
Since the GAL may contain tens or even hundreds of thousands of entries
in a large organization, the report is limited to the users in the same depart-
ment as the current user, plus the distribution lists.

Listing 18.2 Report on Exchange user information

Sub CreateGALReport()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objFolder As Outlook.Folder
 Dim objPost As Outlook.PostItem
 Dim objList As Outlook.AddressList
 Dim objEntry As Outlook.AddressEntry
 Dim objEXUser As Outlook.ExchangeUser
 Dim objEXDL As Outlook.ExchangeDistributionList
 Dim strHTML As String
 Dim strDept As String
 Set objOL = Application
 Set objNS = objOL.Session
 Set objList = objNS.GetGlobalAddressList
 Set objEntry = objNS.CurrentUser.AddressEntry
 If objEntry.AddressEntryUserType = _
 olExchangeUserAddressEntry Then
 Set objEXUser = objEntry.GetExchangeUser
 strDept = objEXUser.Department
 End If
 If Not objList Is Nothing And strDept <> "" Then
 Set objFolder = _
 objNS.GetDefaultFolder(olFolderDrafts)
 Set objPost = objFolder.Items.Add("IPM.Post")
 objPost.Subject = "_GAL Report - " & _
 FormatDateTime(Now, vbGeneralDate)
 strHTML = "<html><body>" & _
 "<table cellspacing='5' cellpadding='2'>"

576 18.2 Understanding address lists

 For Each objEntry In objList.AddressEntries
 If objEntry.AddressEntryUserType = _
 olExchangeUserAddressEntry Then
 Set objEXUser = objEntry.GetExchangeUser
 If objEXUser.Department = strDept Then
 strHTML = strHTML & AddUserRow(objEXUser)
 End If
 ElseIf objEntry.AddressEntryUserType = _
 olExchangeDistributionListAddressEntry Then
 Set objEXDL = _
 objEntry.GetExchangeDistributionList
 strHTML = strHTML & AddDLRow(objEXDL)
 End If
 Next
 strHTML = strHTML & "</table></body></html>"
 objPost.HTMLBody = strHTML
 objPost.Save
 objPost.Display
 End If
 Set objOL = Nothing
 Set objNS = Nothing
 Set objList = Nothing
 Set objFolder = Nothing
 Set objPost = Nothing
 Set objEntry = Nothing
 Set objEXUser = Nothing
 Set objEXDL = Nothing
End Sub

Function AddUserRow(exUser As Outlook.ExchangeUser) As String
 Dim strRow As String
 strRow = "<tr><td>" & exUser.Name & "</td>" & _
 "<td><a href='mailto:" & _
 exUser.PrimarySmtpAddress & "'>" & _
 exUser.PrimarySmtpAddress & "</td>" & _
 "<td>" & exUser.BusinessTelephoneNumber & _
 "</td></tr>"
 AddUserRow = strRow
End Function

Function AddDLRow(exDL As Outlook.ExchangeDistributionList) _
 As String
 Dim strRow As String
 Dim lngDLCount As Long
 lngDLCount = _
 exDL.GetExchangeDistributionListMembers.Count
 strRow = "<tr><td>" & exDL.Name & "</td>" & _
 "<td><a href='mailto:" & _
 exDL.PrimarySmtpAddress & "'>" & _
 exDL.PrimarySmtpAddress & "</td>" & _
 "<td>" & CStr(lngDLCount) & " members" & _
 "</td></tr>"
 AddDLRow = strRow
End Function

Listing 18.2 Report on Exchange user information (continued)

18.3 Working with item recipients 577

As with the report on the user’s address lists in Listing 18.1, the report
generated by the code in Listing 18.2 uses an HTML table to organize the
information, but with an additional twist. This expression builds a cell con-
taining an <a> element, specifically, a mailto: hyperlink to each Exchange
user’s SMTP address:

"<td><a href='mailto:" & _
exUser.PrimarySmtpAddress & "'>" & _
exUser.PrimarySmtpAddress & "</td>"

The Outlook user can thus look at this report in the Drafts folder and
click on any of those mailto: links to create a new email message to that
user.

Both the ExchangeUser and ExchangeDistributionList have many
properties and methods useful for creating such reports, including the
PropertyAccessor object property for returning the values of hidden
MAPI properties. For other examples that demonstrate how to work with
these new objects, review these articles in Outlook developer Help:

How to: List the Name and Office Location of Each Manager
Belonging to an Exchange Distribution List (HV10046760)

How to: List the Groups that My Manager Belongs to
(HV10034111)

The number in parentheses is the article’s topic ID, which you can use
to search for the article.

18.3 Working with item recipients
Each Recipient in a Recipients collection supports three methods,
listed in Table 18.3.

We will look at the FreeBusy and Resolve methods in detail later in
the chapter.

Table 18.3 Recipient Methods

Method Description

Delete Remove the Recipient from its parent Recip-
ients collection

FreeBusy(Start, MinPerChar,
CompleteFormat)

Returns free/busy information for a recipient that
represents an Exchange user or for an Outlook
contact that has a free/busy location listed

Resolve Attempt to resolve name or address to a valid
address

578 18.3 Working with item recipients

The Recipient object includes the basic properties in Table 18.4. If
you need to access MAPI properties that are not exposed in the Outlook
object model, use the Recipient.PropertyAccessor object discussed in
Chapter 14.

Notice that the Address and Name properties of a Recipient object are
read-only. If you need to set these properties, you can use the Recipi-
ent.AddressEntry object, whose Address and Name properties are read/
write.

The object browser and Outlook developer Help list some other con-
stants for Recipient.Type besides those in Table 18.6, but I’ve never seen
them in “the wild.” Notice that for meeting requests, there is no equivalent
of a Bcc recipient that you can use to send an informational copy of the

Table 18.4 Key Recipient Properties (* = new in Outlook 2007)

Property Description

Address Email address; read-only

AddressEntry Address details, available only if Resolved = True;
use this object to set the name, address, and address type
for a Recipient

AutoResponse Response received from a recipient in response to a voting
button message

DisplayType Type of recipient, using one of the constants from the
OlDisplayType enumeration in Table 18.5; read-only

MeetingResponseStatus For appointments and meeting items, status of each indi-
vidual’s response to the meeting, using one of the con-
stants from the OlResponseStatus enumeration; read-
only:

olResponseAccepted 3

olResponseDeclined 4

olResponseNone 0

olResponseNotResponded 5

olResponseOrganized 1

olResponseTentative 2

Name Display name; read-only

*PropertyAccessor Object used to get and set properties, especially those not
exposed in the Outlook object model

Resolved True, if the recipient has been successfully validated as
either a valid SMTP address or an Exchange or other
non-Internet address listed in one of the address lists for
the profile

18.3 Working with item recipients 579

meeting to someone you don’t want to actually invite. The Recipi-
ent.Type value that would designate a Bcc recipient in a mail message is
reserved in meeting requests for resource invitees. The best way to send an
informational copy of a meeting is, oddly enough, to reply to (not forward!)
the item in your own Calendar folder.

TrackingStatus Read and delivery status for the recipient from the
OlTrackingStatus enumeration:

olTrackingDelivered 1

olTrackingNone 0

olTrackingNotDelivered 2

olTrackingNotRead 3

olTrackingRead 6

olTrackingRecallFailure 4

olTrackingRecallSuccess 5

olTrackingReplied 7

Only the latest tracking status information is stored.

TrackingStatusTime Date/time of the latest tracking status information
received

Type Type of entry, such as To, Cc, or Bcc, using the constants
in Table 18.6

Table 18.5 OlDisplayType Constants for the Recipient.DisplayType Property

OlDisplayType Constant Value Description

olAgent 3 An automated agent (generally not seen in
Outlook)

olDistList 1 Exchange GAL distribution list

olForum 2 Mail-enabled Exchange public folder

olOrganization 4 Special organization-wide alias (generally
not seen in Outlook)

olPrivateDistList 5 Personal distribution list from Outlook
contacts folder

olRemoteUser 6 External contact from Exchange GAL

olUser 0 Exchange user or private SMTP recipient

Table 18.4 Key Recipient Properties (* = new in Outlook 2007) (continued)

Property Description

580 18.3 Working with item recipients

18.3.1 Adding recipients

Outlook provides two ways to add recipients to an outgoing message, meet-
ing request, or task request:

Set the value of the To, Cc, and Bcc properties, replacing or append-
ing to any previous entries in those properties

Use the Recipients.Add method

It is not possible to copy the members of one Recipients collection to
another directly.

You can use To, Cc, and Bcc when you have a complete list of people
you want to send to, delimited by semicolons. Use Recipients.Add when
you want to add to an existing set of recipients or when you need to add a
single recipient as a Bcc or Cc address. Add a recipient by name or address,
and then use the Resolve method to check it against the user’s address
book. Outlook returns True if the item can be resolved to a valid address. If
the recipient can be resolved, you can set its Type property to olBcc to
make the recipient a Bcc addressee that the people listed as To and Cc recip-
ients won’t see in the message. Here is a VBA example:

Set objMsg = Application.CreateItem(olMail)
Set objRecip = objMsg.Recipients.Add("Sue Mosher")
If objRecip.Resolve Then
 objRecip.Type = olBcc
End If

To perform the same operation in VBScript, add code statements to
declare constants for olMail and olBcc.

Table 18.6 Recipient.Type Constants

Item Type Recipient.Type Constant Value

MailItem

SharingItem

olTo (default) 1

olCC 2

olBCC 3

AppointmentItem

MeetingItem

olRequired (default) 1

olOptional 2

olResource 3

TaskItem olUpdate 2

olFinalStatus 3

18.3 Working with item recipients 581

In addition to the Recipients collection, the MailItem object also
includes a ReplyRecipients collection that defines what address(es) will
appear in the To field (instead of the sender) when the user replies to a mes-
sage. Use the ReplyRecipients.Add method to add to that collection.

18.3.2 Example: Checking outgoing recipients

Back in Chapter 11, we discussed how to build functions that embody “rules”
for outgoing messages and call them from the ItemSend event handler. The
CheckCC() function in Listing 18.3 asks the user to confirm that the message
really should go to the people copied in as Cc or Bcc recipients. If the user
answers No to the prompt, Outlook aborts the send operation. Compare the
ItemSend event handler in Listing 18.3 with the one in Listing 11.4 to see
how easily the CheckCC() function was added as a new “rule.”

The CheckCC() function uses two properties of the Recipient object:
Type to determine whether it’s a Cc or Bcc, and Name to get the display
name of the recipient.

18.3.3 Example: Automatically add a Bcc recipient to
an outgoing message

A common request from Outlook users is to add a Bcc recipient automati-
cally to all outgoing messages. Outlook rules provide a Cc action, but not a
Bcc action. However, you can accomplish that goal with some simple VBA
code that uses the Application.ItemSend event. Put the code in Listing
18.4 in the built-in ThisOutlookSession module.

Outlook cannot send an email message with unresolved recipients, so you
should always make sure that any recipient you add in the ItemSend event
handler is resolved. The code in Listing 18.4 deletes the Bcc recipient if it
cannot resolve to a valid address. Also, it is not possible to set the Type prop-
erty of a Recipient until that recipient is resolved to a valid email address.
The next section explains this key Outlook concept of address resolution.

18.3.4 Understanding address resolution

Address resolution matches up the names of recipients with the actual email
addresses present in the user’s address lists. Before you send any Outlook
item (message, sharing item, meeting request, or task request), all recipient
names and addresses should be resolved to valid addresses. Outlook will
attempt to resolve all addresses when the user clicks Send or code executes
the Send method, but will raise an error and abort the sending process if
any address cannot be resolved.

Resolution occurs in any of these situations:

The user clicks the Send command.

582 18.3 Working with item recipients

The user clicks the Check Names command.

Background name resolution is enabled, and Outlook finds a match
during the background process’ execution.

Listing 18.3 Ask the user to confirm Cc and Bcc recipients

Private Sub Application_ItemSend(ByVal Item As Object, _
 Cancel As Boolean)
 Dim objMail As Outlook.MailItem
 If Item.Class = olMail Then
 Set objMail = Item
 ' CancelBlankOrNoAttachments from Listing 11.3
 If CancelBlankOrNoAttachments(objMail) = True Then
 Cancel = True
 ' CheckSendAccount from Listing 11.4
 ElseIf CheckSendAccount(objMail) = True Then
 Cancel = True
 ElseIf CheckCC(objMail) = True Then
 Cancel = True
 End If
 End If
 Set objMail = Nothing
End Sub

Function CheckCC(mail As Outlook.MailItem)
 Dim strCC As String
 Dim objRecip As Outlook.Recipient
 Dim intRes As Integer
 For Each objRecip In mail.Recipients
 If objRecip.Type = olCC Then
 strCC = strCC & vbCrLf & _
 "Cc - " & objRecip.Name
 ElseIf objRecip.Type = olBCC Then
 strCC = strCC & vbCrLf & _
 "Bcc - " & objRecip.Name
 End If
 Next
 If strCC <> "" Then
 strCC = "Do you really want to copy these " & _
 "recipients?" & vbCrLf & strCC
 intRes = MsgBox(strCC, vbQuestion + vbYesNo, _
 "Confirm Cc and Bcc Recipients")
 If intRes = vbNo Then
 CheckCC = True
 Else
 CheckCC = False
 End If
 Else
 CheckCC = False
 End If
 Set objRecip = Nothing
End Function

18.3 Working with item recipients 583

Program code uses the Recipients.ResolveAll or Recipi-

ent.Resolve method.

Program code executes the Send method.

Outlook automatically resolves Internet addresses in the proper
name@domain.dom format; such addresses do not need to be present in any
of the user’s address lists. Outlook also automatically resolves any address in
this format:

[TYPE:name@address]

For example, a fax number: [FAX:suemosher@17035555678]. For other
names and addresses, Outlook looks for a match in the various address lists in
the Address Book. Resolution begins with the list that has a ResolutionOr-
der property value of 1. If Outlook finds a single match, it sets the Resolved
property of the Recipient to True and does not search further. If no match
is found, Outlook continues the search with the list that has a Resolution-
Order property value of 2, and so on until either a single match is found or all
address lists have been searched. For performance reasons, Outlook searches
address lists one at a time. Once a match has been found, the address resolu-
tion process stops, and no further lists are searched. In a displayed Outlook
item, resolved recipients are shown underlined.

Note: For Internet addresses, resolution does not tell you whether a given
SMTP corresponds to an actual mailbox on a real mail server. All it does is
tell you that the address is in correct name@domain.dom format.

Listing 18.4 Set a Bcc recipient for outgoing messages

Private Sub Application_ItemSend _
 (ByVal Item As Object, Cancel As Boolean)
 Dim objMail As Outlook.MailItem
 Dim objRecip As Outlook.Recipient
 If Item.Class = olMail Then
 Set objMail = Item
 Set objRecip = objMail.Recipients.Add _
 ("flaviusl@turtleflock.net")
 If objRecip.Resolve Then
 objRecip.Type = olBCC
 Else
 objRecip.Delete
 End If
 End If
 Set objMail = Nothing
 Set objRecip = Nothing
End Sub

584 18.4 Reading Recipient and AddressEntry information

In the two resolution scenarios where the user clicks Send or Check
Names, if Outlook does not find a match, it displays a dialog where the user
can either try to find the recipient or create a new contact with an email
address. The Outlook object model’s Resolve and ResolveAll methods
do not provide an option for displaying that dialog. If you are creating and
sending a message programmatically, several workarounds are available. The
simplest is to display the message (objMsg in this example) to the user if
ResolveAll returns False to indicate that some recipients could not be
resolved:

If objMsg.Recipients.ResolveAll Then
 objMsg.Send
Else
 objMsg.Display
End If

Another approach would be to use the CommandBars techniques that
Chapter 23 will cover to execute the Check Names command. You’ll need
to know the ID for that command: it’s 361. A third approach is to use the
SelectNamesDialog object. We’ll cover that technique at the end of the
chapter.

In Exchange environments, Outlook will search for a match on an
Exchange user’s SMTP address, name, or mailbox alias. The alias and
SMTP address are guaranteed to be unique. In the case of a large Exchange
environment where several people may have similar names, you may want
to prefix the name or alias with an equals sign (=) to force Outlook to look
for an exact match. Consider for example, a company with a John D. Smith
with an alias smithjd and a John Smith with an alias smithj. These state-
ments will ensure that a resolvable match is found for the second John
Smith, the one with no middle initial:

Set objRecip = objMsg.Recipients.Add("=smithj")
objRecip.Resolve

If you used Recipients.Add("smithj"), on the other hand, Outlook
would not be able to resolve the address.

18.4 Reading Recipient and AddressEntry
information

Many common Outlook programming tasks involve reading information from
recipients. We saw one example in the previous chapter, where the Create-
Signature subroutine in Listing 17.8 used the Namespace.Current-
User.AddressEntry property to return an AddressEntry object with the
details for the current user. That procedure also used the Address-
Entry.GetExchangeUser property to return an ExchangeUser object (an
object with properties and methods inherited from AddressEntry) so that
it could get the user’s phone number and other details from the GAL.

18.4 Reading Recipient and AddressEntry information 585

Other practical applications of reading recipient information include
reporting on meeting request and voting button message responses, creating
contacts for outgoing messages, sending a bulk reply to all messages in a
folder, creating distribution lists, and reading free/busy information to find
out when a person is available for a meeting.

In addition to the very basic address information exposed by the Recip-
ient object (see Table 18.4), the Recipient.AddressEntry object pro-
vides more information about each recipient, along with methods to get the
Exchange user, Exchange distribution list, or Outlook contact associated
with any recipient. Table 18.7 summarizes the key AddressEntry proper-
ties and methods.

Notice how the new AddressEntryUserType property added in Out-
look 2007 provides information similar to the Recipient.DisplayType
and AddressEntry.DisplayType property, but with greater precision.
Compare the possible values for AddressEntryUserType in Table 18.8
with those for DisplayType in Table 18.5. Once you know the Address-
EntryUserType, you can use one of three new methods—GetContact,
GetExchangeDistributionList, and GetExchangeUser—to return the
Outlook contact or GAL user or distribution list (DL) associated with the
address entry. Both the ExchangeUser and ExchangeDistributionList
objects have many properties that expose information about the user or DL.

The next few sections look at common applications related to reading
Recipient and AddressEntry information.

Table 18.7 Key AddressEntry Properties and Methods (* = new in Outlook 2007)

Property Description

Address Email address

*AddressEntryUserType Type of Exchange or other address using one of the constants from the
OlAddressEntryUserType enumeration in Table 18.8 (note similar-
ities to values in Table 18.5); read-only

DisplayType Type of recipient, using one of the constants from the OlDisplayType
enumeration in Table 18.5; read-only

ID Unique ID; read-only

Name Display name for address

*PropertyAccessor Object used to get and set properties, especially those not exposed in the
Outlook object model

Type String representing the type of address, such as "EX" for an Exchange
user or "SMTP" for an Internet address

586 18.4 Reading Recipient and AddressEntry information

Method Description

Details Display a modal dialog box with the address entry’s name, address, and
address type

*GetContact If AddressEntryUserType = olOutlookContactAddressEntry,
returns the ContactItem object associated with the address entry

*GetExchangeDistributionList If AddressEntryUserType = olExchangeDistributionList-
AddressEntry, returns the ExchangeDistributionList object
associated with the address entry

*GetExchangeUser If AddressEntryUserType = olExchangeUserAddressEntry,
returns the ExchangeUser associated with the address entry

GetFreeBusy(Start, MinPerChar,
CompleteFormat)

Return 30 days’ worth of availability information for the address entry

Update Update the address entry with changes made to the Address, Type,
or Name property or to other properties using PropertyAccessor

Table 18.8 OlAddressEntryUserType Constants for the AddressEntry.AddressEntryUserType Property

OlAddressEntryUserType Constant Value Description

olExchangeAgentAddressEntry 3 An automated agent (generally not seen in
Outlook)

olExchangeDistributionListAddressEntry 1 Exchange GAL distribution list

olExchangeOrganizationAddressEntry 4 Special organization-wide alias (generally
not seen in Outlook)

olExchangePublicFolderAddressEntry 2 Mail-enabled Exchange public folder

olExchangeRemoteUserAddressEntry 5 External contact from Exchange GAL

olExchangeUserAddressEntry 0 Exchange user or private SMTP recipient

olLdapAddressEntry 20 Entry from LDAP address list

olOtherAddressEntry 40 Entry from other type of address list

olOutlookContactAddressEntry 10 Contact from Outlook contacts folder

olOutlookDistributionListAddressEntry 11 Personal distribution list from Outlook con-
tacts folder

olSmtpAddressEntry 30 One-off SMTP address

Table 18.7 Key AddressEntry Properties and Methods (* = new in Outlook 2007) (continued)

18.4 Reading Recipient and AddressEntry information 587

18.4.1 Example: Create contacts for outgoing
message recipients

Some Outlook users want to create a contact for each recipient they send a
message to. This is another task you can accomplish with VBA and the
Application.ItemSend event.

Put the code from Listing 18.5 in the built-in ThisOutlookSession
module. The AddRecipToContacts procedure processes each recipient in
the outgoing message, checking to see what kind of recipient it is. For
SMTP addresses, it calls the IsInContacts() function from Listing 16.4
to determine whether the user’s default Contacts folder already contains a
contact with the recipient’s address. If not, the code creates a new contact in
the Contacts folder, populating it with the name and address from the
recipient. If you wanted to collect these contacts in a folder other than the
default Contacts folder, you would use one of the methods described in
Chapter 13 to return the desired folder, then use the Items.Add method
for that folder to create the new ContactItem.

Listing 18.5 Create contacts for outgoing message recipients

Private Sub Application_ItemSend _
 (ByVal Item As Object, Cancel As Boolean)
 Dim objMail As Outlook.MailItem
 If Item.Class = olMail Then
 Set objMail = Item
 Call AddRecipToContacts(objMail)
 End If
 Set objMail = Nothing
End Sub

Sub AddRecipToContacts(msg As Outlook.MailItem)
 Dim objRecip As Outlook.Recipient
 Dim objContact As Outlook.ContactItem
 For Each objRecip In msg.Recipients
 If objRecip.AddressEntry.AddressEntryUserType = _
 olSmtpAddressEntry Then
 ' IsInContacts() function from Listing 16.4
 If Not IsInContacts(objRecip.address) Then
 Set objContact = _
 Application.CreateItem(olContactItem)
 objContact.Email1Address = objRecip.address
 objContact.FullName = objRecip.Name
 objContact.Save
 End If
 End If
 Next
 Set objRecip = Nothing
 Set objContact = Nothing
End Sub

588 18.5 Reading free/busy information

18.4.2 Example: Respond to all the messages in a folder

Instead of collecting contacts, some users collect messages and then want to
come back later and send a bulk reply—either a single message with a bunch
of Bcc recipients or individual replies all with the same message content. It’s
better to do bulk mailings as individual messages rather than as one message
with a lot of Bcc recipients. For one thing, many mail servers put a limit on
the number of recipients per message—possibly even a separate limit on the
number of Bcc recipients. Second, a message that arrives addressed to the
recipient is more likely to get through the addressee’s spam filter than a bulk
message that doesn’t have the recipient’s address in the To field.

The RespondToFolder procedure in Listing 18.6, written for Outlook
VBA, uses the currently open message (Application.ActiveInspec-
tor.CurrentItem) as a template and the currently visible folder (Appli-
cation.ActiveExplorer.CurrentFolder) as the source of the messages
to which you want to generate a bulk reply.

Instead of relying solely on the sender email address, the procedure also
checks the ReplyRecipients collection, just in case the original sender
wanted replies sent to a different address. Thus, the code relies on two dif-
ferent expressions to get the address to respond to and uses those expres-
sions in two different statements to add addresses to the response message:

objResponse.To = objItem.SenderEmailAddress
objResponse.Recipients.Add objRecip.address

where objRecip is a member of the ReplyRecipients collection on a
message in the source folder. Since it is not possible to copy the contents of
one Recipients collection to another, to handle Reply-To recipients, the
code must loop through the ReplyRecipients collection on the original
received message and call Recipients.Add as many times as needed to cre-
ate one recipient in the response message for each member of the ReplyRe-
cipients collection on the original message. The task is simpler on items
with no Reply-To recipients; the SenderEmailAddress property contains
the address that the response needs.

18.5 Reading free/busy information
When planning a meeting, users often want to know if key personnel or
resources are available. On the standard Appointment form, Outlook pro-
vides a Scheduling tab that displays this information. However, the data in
the Scheduling tab is not exposed programmatically in any direct way.
Instead, Outlook provides the GetFreeBusy method of the AddressEntry
and ExchangeUser objects to give your code a way of learning about
another person’s availability. The syntax for GetFreeBusy looks like this:

strFBInfo = objAddressEntry.FreeBusy _
 (Start, MinPerChar, CompleteFormat)

18.5 Reading free/busy information 589

Listing 18.6 Respond to all messages in a folder

Sub RespondToFolder()
 Dim objOL As Outlook.Application
 Dim objFolder As Outlook.Folder
 Dim objInsp As Outlook.Inspector
 Dim objMsg As Outlook.MailItem
 Dim objResponse As Outlook.MailItem
 Dim objItem As Object
 Dim colReply As Outlook.Recipients
 Dim objRecip As Outlook.Recipient
 Dim strMsg As String
 Set objOL = Application
 Set objFolder = objOL.ActiveExplorer.CurrentFolder
 If objFolder.DefaultItemType = olMailItem Then
 Set objInsp = Application.ActiveInspector
 If Not objInsp Is Nothing Then
 If objInsp.CurrentItem.Class = olMail Then
 Set objMsg = objInsp.CurrentItem
 For Each objItem In objFolder.Items
 If objItem.Class = olMail Then
 Set objResponse = objMsg.Copy
 Set colReply = objItem.ReplyRecipients
 If colReply.Count > 0 Then
 For Each objRecip In colReply
 objResponse.Recipients.Add _
 objRecip.address
 Next
 Else
 objResponse.To = _
 objItem.SenderEmailAddress
 End If
 objResponse.Send
 End If
 Next
 Else
 strMsg = "Please display the message " & _
 "that you want to use to " & _
 "respond to the items in " & _
 "this folder."
 End If
 Else
 strMsg = "Please display the message " & _
 "that you want to use to " & _
 "respond to the items in " & _
 "this folder."
 End If
 Else
 strMsg = "Please display the folder that " & _
 "contains the messages you want " & _
 "to reply to."
 End If
 If strMsg <> "" Then
 MsgBox strMsg, vbExclamation, "Cannot Respond to Folder"
 End If

590 18.5 Reading free/busy information

The string returned by GetFreeBusy is a long string of numeric charac-
ters—one per time period, starting with midnight on the date passed as the
Start parameter, and covering the next month of data. The length of the
time period each character represents is the number of minutes in the Min-

PerChar parameter. Both Start and MinPerChar are required arguments.
The last parameter, CompleteFormat, controls whether Outlook returns
basic or more detailed availability information. If the parameter value is
False (the default), Outlook returns 0 for each period the user is free and 1
for each busy period. If the parameter value is True, Outlook returns this
more detailed information for each time period, corresponding to the
OlBusyStatus enumeration values for the AppointmentItem.Busy-
Status property:

Given that the GetFreeBusy method returns a string of numeric char-
acters covering 30 days, how can you learn from it whether a user is busy
during any particular time period? You must parse the text string to focus
on the particular period of time you’re interested in. The IsBusy() func-
tion in Listing 18.7 takes three parameters:

A name or address that can be resolved to a Recipient

The start date/time for the time period you want to check

The end date/time for the time period you want to check

Note: In the initial released version of Outlook 2007, the GetFreeBusy
method does not return any information if the user is connecting to a
Microsoft Exchange 2007 server that does not have a Public Folders store.
Let’s hope Microsoft releases an update to fix this problem quickly.

 Set objOL = Nothing
 Set objFolder = Nothing
 Set objInsp = Nothing
 Set objMsg = Nothing
 Set objResponse = Nothing
 Set objItem = Nothing
 Set colReply = Nothing
 Set objRecip = Nothing
End Sub

0 Free
1 Tentative
2 Busy
3 Out of office

Listing 18.6 Respond to all messages in a folder (continued)

18.5 Reading free/busy information 591

Listing 18.7 Get availability information for a person or resource

Function IsBusy(strRecip As String, _
 dteStart As Date, _
 dteEnd As Date) As Integer
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objRecip As Outlook.Recipient
 Dim objAEntry As Outlook.AddressEntry
 Dim objContact As Outlook.ContactItem
 Dim blnCanDoFreeBusy As Boolean
 Dim intMinutes As Integer
 Dim intIsBusy As Integer
 Dim intStartChar As Integer
 Dim intDurChars As Integer
 Dim strFB As String
 On Error Resume Next
 Set objOL = Application
 Set objNS = objOL.Session
 Set objRecip = objNS.CreateRecipient(strRecip)
 If objRecip.Resolve Then
 Set objAEntry = objRecip.AddressEntry
 Select Case objAEntry.AddressEntryUserType
 Case olExchangeUserAddressEntry
 blnCanDoFreeBusy = True
 Case olOutlookContactAddressEntry
 Set objContact = objAEntry.GetContact
 If objContact.InternetFreeBusyAddress _
 <> "" Then
 blnCanDoFreeBusy = True
 Else
 intIsBusy = -1
 End If
 Case Else
 intIsBusy = -1
 End Select
 End If
 If blnCanDoFreeBusy Then
 ' adjust dates to 15 minute boundaries
 dteStart = AdjustTimeTo15(dteStart, True)
 dteEnd = AdjustTimeTo15(dteEnd, False)
 ' get starting character
 intMinutes = DateDiff("n", DateValue(dteStart), dteStart)
 intStartChar = (intMinutes / 15) + 1
 ' get number of characters to check
 intMinutes = DateDiff("n", dteStart, dteEnd)
 intDurChars = intMinutes / 15
 strFB = objAEntry.GetFreeBusy(DateValue(dteStart), 15)
 If strFB <> "" Then
 strFB = Mid(strFB, intStartChar, intDurChars)
 If InStr(strFB, "1") > 0 Then
 intIsBusy = 1
 Else
 intIsBusy = 0
 End If

592 18.5 Reading free/busy information

For example, to check a person’s availability between 1 PM and 5 PM
on January 26, call the function like this:

MsgBox IsBusy("flaviusj", #1/26/2007 01:00PM#, _
 #1/26/2007 05:00PM#)

The IsBusy() function returns -1 if free/busy information is not avail-
able—for example, if the name or address does not correspond to an
Exchange user or an Outlook contact with a free/busy lookup address. It
returns 0 if the person or resource is free, according to the data that Get-
FreeBusy returns, and 1 if not free.

To check a person’s availability for one or more entire days, call the func-
tion with the start date and the day after the day(s) you’re interested in.
Thus to check availability for any time on January 26, you’d use:

MsgBox IsBusy("flaviusj", #1/26/2007#, #1/27/2007#)

It is necessary to use the day after the actual end date you’re interested in
because VBA interprets a date without a time element as starting at mid-
night. The above code snippet is equivalent to:

 Else
 intIsBusy = -1
 End If
 End If
 IsBusy = intIsBusy
 Set objOL = Nothing
 Set objNS = Nothing
 Set objRecip = Nothing
 Set objAEntry = Nothing
 Set objContact = Nothing
End Function

Function AdjustTimeTo15(dateVal As Date, _
 adjustDown As Boolean) As Date
 Dim intMin As Integer
 Dim dteAdjusted As Date
 If Minute(dateVal) Mod 15 = 0 Then
 dteAdjusted = dateVal
 ElseIf adjustDown Then
 intMin = (Hour(dateVal) * 60) + _
 ((Minute(dateVal) \ 15) * 15)
 dteAdjusted = DateAdd("n", intMin, _
 DateValue(dateVal))
 Else
 dateVal = DateAdd("n", 15, dateVal)
 dteAdjusted = AdjustTimeTo15(dateVal, True)
 End If
 AdjustTimeTo15 = dteAdjusted
End Function

Listing 18.7 Get availability information for a person or resource (continued)

18.5 Reading free/busy information 593

MsgBox IsBusy("flaviusj", #1/26/2007 00:00AM#, _
 #1/27/2007 00:00AM#)

The IsBusy() function uses a helper function, AdjustTimeTo15(), to
adjust the start and end date/time values to 15-minute boundaries, and
then returns the free/busy information also in 15-minute segments. These
two functions show why it’s important to learn the programming basics we
covered in Chapter 8. They use many fundamental techniques including
date arithmetic, text parsing, and recursion. Let’s examine some of the key
details of these functions.

Looking up free/busy data is not limited to Exchange users. Outlook
can look up free/busy information for an AddressEntry based on an Out-
look contact if the contact has a valid InternetFreeBusyAddress prop-
erty value. The IsBusy() function checks to see whether the name or
address belongs to a contact with a free/busy lookup address:

Case olOutlookContactAddressEntry
 Set objContact = objAEntry.GetContact
 If objContact.InternetFreeBusyAddress <> "" Then
 ' etc.

Note: Outlook may not raise an error for the GetFreeBusy method if you
try to look up availability information for a contact that has no free/busy
address or an invalid address or if network problems prevent a connection
to the Internet or to the Exchange server’s free/busy information. Instead, in
those scenarios, you’ll get a free/busy availability string with all zeroes.
Thus, the GetFreeBusy method is not a definitive indicator of a user’s
availability.

The AdjustTimeTo15() function takes a date/time value and returns a
date/time value adjusted up or down to the next or previous 15-minute
boundary, depending on the value of the adjustDown parameter. It first
determines whether a time value is already on one of the 15-minute interval
boundaries:

If Minute(dateVal) Mod 15 = 0 Then

Mod is an operator that returns the remainder obtained when the first
number is divided by the second. Hence, it’s 0 if the value for the minutes
in the date value is 0, 15, or 45.

The function uses the Hour() and Minute() functions to return the
number of minutes past midnight, rounded down to a 15-minute time:

intMin = (Hour(dateVal) * 60) + _
 ((Minute(dateVal) \ 15) * 15)

The expression (Minute(dateVal) \ 15) uses the integer division
operator (\) to get the number of whole 15-minute periods in the minutes

594 18.6 Showing the Select Names dialog

value for dateVal. When adjustDown has a value of False, the
AdjustTimeTo15() function uses recursion: It adds 15 minutes to the
date/time value and then calls itself to round down to the nearest 15-
minute interval:

dateVal = DateAdd("n", 15, dateVal)
dteAdjusted = AdjustTimeTo15(dateVal, True)

The GetFreeBusy method returns a string of “1” and “0” characters, in
this case, some 2,800 (30 days * 24 hours * 4 15-minute periods per hour)
characters, because the code specifies a 15-minute interval:

strFB = objAEntry.GetFreeBusy(DateValue(dteStart), 15)

But we’re interested only in a small segment of that string—the segment
whose characters correspond to the time period from dteStart to dteEnd:

strFB = Mid(strFB, intStartChar, intDurChars)

The time period from midnight to 00:15 is represented by the first char-
acter. We calculated the position of the character to start with, intStart-
Char, by getting the number of minutes past midnight for the adjusted start
date, dividing by 15 and adding 1:

intMinutes = _
 DateDiff("n", DateValue(dteStart), dteStart)
intStartChar = (intMinutes / 15) + 1

To get the number of characters to check, intDurChars, we calculated
the duration, based on the adjusted start and end dates, and then divided by
15, because each character in the free/busy string represents a 15-minute
period:

intMinutes = DateDiff("n", dteStart, dteEnd)
intDurChars = intMinutes / 15

Once the code trims the strFB string down to the segment covering the
time period we’re interested in, the code can use the text parsing expression
InStr(strFB, "1") > 0 to determine whether the string contains a
“1”—indicating that the user is busy for at least part of that time period.

18.6 Showing the Select Names dialog
The last technique to round out this chapter on recipients and address lists
involves giving the user the opportunity to select one or more names from
the available address lists and return the selection to the calling code. Just as
the Namespace object has a PickFolder method for choosing a folder
from the hierarchy, it also supports a GetSelectNamesDialog method that
returns a SelectNamesDialog object. But where PickFolder has no
options, the SelectNamesDialog option has many different options that
you can use to customize the display to:

Show only a particular address list

18.6 Showing the Select Names dialog 595

Collect just one or up to three types of addresses (corresponding to
To, Cc, and Bcc)

Customize the labels for up to three types of addresses being collected
(so the user sees something other than To, Cc, and Bcc)

Allow only one address to be selected

Accordingly, the process of using the Select Names dialog is more com-
plicated than using the Pick Folder dialog. In a nutshell, it follows these
steps:

1. Call Namespace.GetSelectNamesDialog to return a Select-
NamesDialog object.

2. Optionally, call the SelectNames.SetDefaultDisplayMode

method to set up the dialog to use the localized caption, number
of buttons, and localized button labels for eight common Select
Names scenarios, such as picking recipients for a message or pick-
ing rooms for a meeting request.

3. Set the desired SelectNamesDialog properties to handle various
options, which are listed in Table 18.9.

4. Call the SelectNamesDialog.Display method to show the user
the dialog, which is always modal.

5. Check the return value of SelectNamesDialog.Display, which
will be True if the user clicked OK to make a selection.

6. Work with the SelectNamesDialog.Recipients collection,
which contains the recipients that the user selected from the dia-
log.

Table 18.9 Key SelectNamesDialog Properties and Methods

Property Description

AllowMultipleSelection True (default) to allow the user to select more than one name from the
dialog; False to allow the user to choose only one name

BccLabel String for the command button used to select Bcc recipients

Caption Title for the dialog, followed by a colon and the name of the initial
address list

CcLabel String for the command button used to select Cc recipients

ForceResolution True (default) if the user must resolve all addresses or names typed in
before clicking OK; otherwise, False

InitialAddressList AddressList object that the dialog should display initially in the drop-
down list of available address lists

596 18.6 Showing the Select Names dialog

To demonstrate the basic procedure, the code in Listing 18.8 presents
the user with a dialog where one name can be selected and only from the
user’s default Contacts folder. You can test the SelectSingleContact-
Name() function using this syntax from the VBA Immediate window:

MsgBox SelectSingleContactName()

The SelectSingleContactName() demonstrates some of the interesting
features of the Select Names dialog. After iterating the Namespace.Address-
Lists collection to locate the list that exposes data from the user’s default
Contacts folder, the code sets the dialog to show only that Contacts list:

NumberOfRecipientSelectors Number of address selector buttons to show, using a constant from the
OlRecipientSelectors enumeration:

olShowNone 0

olShowTo 1

olShowToCC 2

olShowToCcBcc 3

Recipients Collection of recipients entered or selected by the user in the dialog; can
also be used to set an initial collection of recipients pre-selected for display
in the dialog

ShowOnlyInitialAddressList True to show only the list in InitialAddressList; otherwise,
False (default)

ToLabel String for the command button used to select To recipients

Method Description

Display Display the dialog modally; returns True if the user makes a selection and
False if the user cancels the dialog or closes it without making a selec-
tion

SetDisplayDefaultMode Set options for the dialog for 8 common scenarios, using constants from
the OlDefaultSelectNamesDisplayMode enumeration:

olDefaultDelegates 6

olDefaultMail 1

olDefaultMeeting 2

olDefaultMembers 5

olDefaultPickRooms 8

olDefaultSharingRequest 4

olDefaultSingleName 7

olDefaultTask 3

Table 18.9 Key SelectNamesDialog Properties and Methods (continued)

Property Description

18.6 Showing the Select Names dialog 597

With objSelNames
 .InitialAddressList = objAddrList
 .ShowOnlyInitialAddressList = True

A name selected from an address book is the address’ display name. For
contacts, that often includes both the contact name and the email address.
To get the contact name by itself, the code uses two AddressEntry mem-
bers, which you saw earlier in the chapter, to return the value of the con-
tact’s FullName property:

If objAddrEntry.AddressEntryUserType = _
 olOutlookContactAddressEntry Then
 Set objContact = objAddrEntry.GetContact
 strName = objContact.FullName

The next section uses the Select Names dialog to solve another common
Outlook programming challenge—selecting contact links exclusively from
a public folder. For another example, see this article in Outlook developer
Help:

How to: Display a Dialog Box for Selecting Entries from the Con-
tacts Folder (HV10034110)

The number in parentheses is a topic ID you can search for in Help to
find the article faster.

Listing 18.8 Select a single item from the default Contacts folder

Function SelectSingleContactName() As String
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objContacts As Outlook.Folder
 Dim objAddrList As Outlook.AddressList
 Dim objSelNames As Outlook.SelectNamesDialog
 Dim colRecip As Outlook.Recipients
 Dim objAddrEntry As Outlook.AddressEntry
 Dim objContact As Outlook.ContactItem
 Dim strName As String
 Dim blnAddrListFound As Boolean
 On Error Resume Next
 Set objOL = Application
 Set objNS = objOL.Session
 Set objSelNames = objNS.GetSelectNamesDialog
 Set objContacts = _
 objNS.GetDefaultFolder(olFolderContacts)
 For Each objAddrList In objNS.AddressLists
 If objAddrList.GetContactsFolder = objContacts Then
 blnAddrListFound = True
 Exit For
 End If
 Next

598 18.6 Showing the Select Names dialog

18.6.1 Example: Select contact links from a
public folder

Our application of the SelectNamesDialog is to solve a problem with the
Contacts controls that appear at the bottom of the standard Outlook
forms (except for the message form, where they appear on the Options dia-
log). In public folder applications, form designers often want to coerce the
selection of contact links to a particular public contacts folder or at least
display that folder as the default when the user clicks the Contacts button.

 If blnAddrListFound Then
 With objSelNames
 .SetDefaultDisplayMode olDefaultSingleName
 .InitialAddressList = objAddrList
 .ShowOnlyInitialAddressList = True
 .Caption = "Select a Name from"
 If .Display = True Then
 If .Recipients.Count > 0 Then
 Set objAddrEntry = _
 .Recipients(1).AddressEntry
 If objAddrEntry.AddressEntryUserType = _
 olOutlookContactAddressEntry Then
 Set objContact = _
 objAddrEntry.GetContact
 strName = objContact.FullName
 Else
 strName = _
 "User did not select a contact."
 End If
 Else
 strName = "User selected no name."
 End If
 Else
 strName = "User selected no name."
 End If
 End With
 Else
 strName = "Contacts folder was not available."
 End If
 SelectSingleContactName = strName
 Set objOL = Nothing
 Set objNS = Nothing
 Set objSelNames = Nothing
 Set colRecip = Nothing
 Set objAddrEntry = Nothing
 Set objContact = Nothing
 Set objContacts = Nothing
 Set objAddrList = Nothing
End Function

Listing 18.8 Select a single item from the default Contacts folder (continued)

18.6 Showing the Select Names dialog 599

Outlook provides no such control over the Select Contacts dialog, but you
can solve the problem by using the SelectNamesDialog to show only the
specific public folder (as we did with the default Contacts folder in Listing
18.8). Ths approach assumes that all the contacts that you want to use as
links have email addresses; only contacts with electronic addresses (fax or
email) appear in the address book.

To test this solution, create a new custom post form and in design mode,
follow these steps to add the necessary controls and code:

1. Shorten the width of the Categories box so that it takes up about
half the width of the form.

2. From the Field Chooser, drag the Contacts field to the bottom of
the form, to the space you made in Step 1.

3. Delete the Contacts... button.

4. From the control toolbox, drag a command button to the space
freed up by deleting the Contacts . . . button. On the Properties
dialog for this control, give it the name cmdContacts and cap-
tion “Contacts”

5. Widen the Contacts box so it fills out the width of the page.

6. Add the code in Listings 18.9 and 13.7 to the form’s code mod-
ule.

7. In the AddContacts procedure, change the value for str-
FolderPath so that it points to any contact folder in your Out-
look mail profile.

8. Create a new folder to hold the post form items, and publish the
form to that folder. On the Properties dialog for the folder, make
the newly published form the default.

Listing 18.9 Add contact links from a public folder

Sub cmdContacts_Click()
 Call AddContacts
End Sub

Sub AddContacts()
 Dim objNS ' As Outlook.NameSpace
 Dim objFolder ' As Outlook.Folder
 Dim objAddrList ' As Outlook.AddressList
 Dim objContact ' As Outlook.ContactItem
 Dim objRecip ' As Outlook.Recipient
 Dim objAE ' As Outlook.AddressEntry
 Dim strFolderPath ' As String
 Dim objSelNames ' As SelectNamesDialog
 Dim blnAddrListFound ' As Boolean

600 18.6 Showing the Select Names dialog

 Const olDefaultMembers = 5
 Const olOutlookContactAddressEntry = 10
 On Error Resume Next
 ' ### USER OPTION ###
 strFolderPath = _
 "\\Public Folders\All Public Folders\Contacts\Sales"
 Set objNS = Application.Session
 Set objSelNames = objNS.GetSelectNamesDialog
 ' GetFolder() from Listing 13.7
 Set objFolder = GetFolder(strFolderPath)
 If Not objFolder Is Nothing Then
 If objFolder.ShowAsOutlookAB = False Then
 objFolder.ShowAsOutlookAB = True
 objFolder.AddressBookName = objFolder.Name & _
 " in " & objFolder.Parent.FolderPath
 End If
 End If
 For Each objAddrList In objNS.AddressLists
 If objAddrList.GetContactsFolder = objFolder Then
 blnAddrListFound = True
 Exit For
 End If
 Next
 If blnAddrListFound Then
 With objSelNames
 .SetDefaultDisplayMode olDefaultMembers
 If Not objAddrList Is Nothing Then
 Set .InitialAddressList = objAddrList
 .ShowOnlyInitialAddressList = True
 .NumberOfRecipientSelectors = 1
 .Caption = "Select Contacts"
 .ToLabel = "Contacts"
 If .Display = True Then
 For Each objRecip In .Recipients
 Set objContact = Nothing
 Set objAE = objRecip.AddressEntry
 If objAE.AddressEntryUserType = _
 olOutlookContactAddressEntry Then
 Set objContact = _
 objAE.GetContact
 Item.Links.Add objContact
 End If
 Next
 End If
 End If
 End With
 End If
 Set objNS = Nothing
 Set objFolder = Nothing
 Set objAddrList = Nothing
 Set objContact = Nothing
 Set objAE = Nothing
 Set objRecip = Nothing
 Set objSelNames = Nothing
End Sub

Listing 18.9 Add contact links from a public folder (continued)

18.7 Summary 601

To use this custom contact linking mechanism, create a new item in the
folder and click the Contacts . . . button at the bottom of the item. You
should see the address book dialog display your chosen folder from the
path in strFolder. After you select a few contacts, the code behind the
form will add them to the post as links in the Links collection, which
Outlook displays in the Contacts box. We spend more time with Links in
Chapter 10.

If you compare the code in Listing 18.9 with that in Listing 18.8, you
will see one oddity in this statement:

Set .InitialAddressList = objAddrList

The corresponding statement in Listing 18.8, which was designed as
VBA code, has no Set keyword, but the VBScript code in Listing 18.9
requires Set.

18.7 Summary
The various objects that expose information about address lists and recipi-
ents in Outlook are all interrelated. Outlook 2007 includes new objects
that can return information about Exchange users and distribution lists and
Outlook contacts without using PropertyAccessor or assorted hacks that
previous versions required.

As practical applications, you’ve learned how to report on the Global
Address Lists and other address lists, enhance outgoing messages with a Bcc
recipient and a saved contact for each outgoing message recipient, send a
response to all the messages in a folder, look up any person’s availability for
scheduling purposes, and present the user with a dialog for selecting names
from the address book. The address book display has particular application
for some common custom form challenges, such as selecting contacts from
a particular public contacts folder.

As a bonus, you saw two examples of building an HTML-format mes-
sage or post item with a table that organizes out a report in a highly read-
able layout.

This page intentionally left blank

603

19
Working with Attachments

Many email messages exist solely for the purpose of transmitting a file.
Appointments, tasks, journal entries, and contacts also can contain attach-
ments, links to files on the network, and even other Outlook items. Insert-
ing attachments and extracting attachments and their content are key
Outlook programming tasks that can help you create highly functional
Outlook items and process incoming data.

Highlights of this chapter include discussions of the following:

What different types of attachments an Outlook item may contain

Why you need to save an attachment as a file before you can access its
content

How to add a file or Outlook item as an embedded attachment or a
link

How to import any kind of embedded Outlook item

How to reply to a message, attaching the files contained in the origi-
nal item

How to distinguish hidden from “real” attachments

We already learned one key attachment technique in Chapter 16: how
to search the content inside attachments using the new content index key-
words in Outlook 2007.

19.1 Understanding Outlook attachments
Outlook differs from many mail applications in that it stores attachments
not as separate files on the user’s hard drive but as part of each Outlook
item. In other words, the attachments that you see in Outlook are stored,
like the items themselves, in your Personal Folders.pst file, Exchange mail-
box, or other store. To work with the attachments, your code will need to
go through an individual item’s Attachments collection.

604 19.1 Understanding Outlook attachments

Outlook items can contain many different types of attachments:

Word documents, Excel worksheets, HTML files, pictures you send
to friends and family, and other “normal” file attachments

Hidden file attachments, such as the picture associated with an
Outlook contact or the images embedded in an HTML-format
mail message

Links to files on the hard drive or on a network drive

Files that are hidden from the user because they are blocked by Out-
look’s attachment security

Embedded Outlook items

Links to Outlook items (available only in items using rich-text format
for the item body)

Objects embedded using Object Linking and Embedding (OLE)
technology

Each Outlook item, except for “sticky notes,” supports an Attachments
collection containing the item’s attachments, each as an Attachment object.
Table 19.1 lists the key properties and methods for the Attachment object.

If you study Table 19.1, you might notice a glaring omission: There is
no property that provides access to the content of the attachment itself. For
“normal” file attachments (Type = olByValue) and attachments that are
embedded Outlook items (Type = olEmbeddedItem), the only way to
work with the attachment’s content is to save it as a file first, using the
SaveAsFile method, which we’ll examine later in the chapter. Once you
save the attachment, your code can use methods appropriate to the saved
file to work with its content.

Attachments that are shortcuts to files—say, a file on a network drive—
have Type = olByReference and a PathName property value pointing to
the actual location of the file. In that case, you already know the location of
the saved file and can use methods appropriate for that type of file to open it.

Files attached by reference are the only type of attachment for which
PathName has a meaningful value. Outlook does not “remember” the path
of the original file when a file is attached olByValue. (If you think about it,
this makes some sense: The original file could be moved or even deleted and
Outlook wouldn’t care, because it has a complete copy of the original file
stored as an attachment.)

Attachments that are shortcuts to Outlook items have Type = olOLE
and will not have meaningful values for DisplayName, FileName, or
PathName, nor is there any way to save or open such a linked item pro-
grammatically.

19.1 Understanding Outlook attachments 605

Table 19.1 Key Attachment Properties and Methods (* = new in Outlook 2007)

Property Description

*BlockLevel Indicates whether or not an item has a security block which prevents it from being
opened; read-only, using a constant from the OlAttachmentBlockLevel enumera-
tion:

olAttachmentBlockLevelNone 0

olAttachmentBlockLevelOpen 1

DisplayName Display name for the attachment; useful only for Type = olEmbeddedItem; Out-
look displays only the first 30 characters as labels for attachment icons in rich-text for-
mat items

FileName File name for the attachment; read-only

PathName Path to a linked file, present only if Type = olByReference; read-only

Position For rich-text format items, long integer for the position of the attachment icon on the
item body; largely non-functional in the original release of Outlook 2007

*PropertyAccessor Object used to access hidden properties

*Size Size of the attachment, in bytes; read-only

Type Type of attachment, using a constant from the OlAttachmentType enumeration
shown in Table 19.2

Method Description

Delete Remove the attachment from the Attachments collection

SaveAsFile Path Save the attachment to the designated Path, which should be a complete path and file
name, not just a path

Table 19.2 Constants from the OlAttachmentType Enumeration for Use with Attachment.Type

Constant Value Description

olByReference 4 Link to a file stored in the file system

olByValue 1 File embedded in the Outlook item

olEmbeddedItem 5 Outlook item embedded in the Outlook item

olOLE 6 Content embedded using Object Linking and Embedding (OLE) tech-
nology

606 19.2 Adding attachments to Outlook items

19.2 Adding attachments to Outlook items
To add an attachment to an Outlook item, use the Attachments.Add
method with this syntax:

objItem.Attachments.Add Source, Type, Position, DisplayName

The Source parameter is the only required parameter and can be either
a file or an Outlook item. The Type parameter uses one of the first three
values in Table 19.2; the default is olByValue. The Position parameter
applies only to items in rich-text format (RTF) and, according to the Out-
look object model documentation, determines where in the body of the
item the attachment icon will appear. However, this parameter apparently
does not work in the original release of Outlook 2007, except that you can
set it to 0 to hide the attachment. If you set Position to a non-zero value,
Outlook ignores the value and displays the attachment icon at the end of
the item body, rather than at the specified position. The DisplayName

parameter is meaningful only for an Outlook item attached with Type =
olEmbeddedItem.

All of the following are examples of attaching different types of items in
different ways; assume that objAppt is an AppointmentItem object and
that objInbox is a Folder object representing the Inbox:

Insert a file into the item:
objAppt.Attachments.Add "C:\data\agenda.doc", olByValue

Add a shortcut to a file:
objAppt.Attachments.Add _
 "\\nas-01\suedata\OL2007 Book\promo.doc", olByReference

Insert an Outlook item:
Set objItem = objInbox.Items(1)
objAppt.Attachments.Add objItem, olEmbeddedItem, , _
 objItem.Subject & " from " & objItem.Parent.Name

Add a shortcut to an Outlook item:
objAppt.Attachments.Add objInbox.Items(2), olByReference

Note that the last approach—inserting a shortcut to an Outlook item—
works only on items that are in rich-text format (RTF). Outlook will not
raise any error if you add a shortcut to an Outlook item to a plain text or
HTML-format message or post, but the shortcut simply won’t work.

19.2.1 Viewing attachments in the user interface

To be able to add attachments to an item, the message body control must
be present. If you have customized a form to remove the message body, nei-
ther users nor your code will be able to add any attachments to items that
use that form. Existing attachments will be available, but only through pro-
gramming code, not through the user interface.

19.2 Adding attachments to Outlook items 607

Plain text and HTML-format messages and posts display attachments in
a small separate pane above the message body control. RTF-format mes-
sages and posts and all other Outlook items display attachments as icons in
the item body control. In the initial release of Outlook 2007, all attach-
ments added programmatically to RTF items appear at the end of the item.

19.2.2 Creating a “freedoc” in an Outlook folder

Outlook allows users to drag files from the file system into an Outlook
folder. Such an independent file, not attached to an Outlook message,
appointment, etc. is called a freedoc and appears in Outlook with an icon
related to the original file type. However, it is actually a DocumentItem
object with a single attached file. You can create such freedocs programmat-
ically using the PostFile() procedure in Listing 19.1, which takes a file
path string and an Outlook.Folder object as its parameters. The code
sample is for VBA, but can be adapted to VBScript simply by removing the
As clauses in the procedure and variable declarations.

As a usage example, this VBA code snippet would copy a file named
agenda.pdf into the Drafts folder:

Set objFolder = _
 Application.Session.GetDefaultFolder(olFolderDrafts)
Call PostFile("C:\data\agenda.pdf", objFolder)

Changing the value of the MessageClass property from the original
class, IPM.Document, to a new file-specific class will change the icon to
one appropriate for the type of file. To discover more message classes for
different types of files, drag a file into a folder and check the value of the
MessageClass property on the item that Outlook creates.

Listing 19.1 Create a “freedoc” DocumentItem in an Outlook folder

Sub PostFile(strFilePath As String, objFolder As Folder)
 Dim objDocItem As Outlook.DocumentItem
 Dim strFileType As String
 Dim intLoc As Integer
 Dim objAtt As Outlook.Attachment
 On Error Resume Next
 Set objDocItem = objFolder.Items.Add("IPM.Document")
 Set objAtt = objDocItem.Attachments.Add(strFilePath)
 objDocItem.Subject = objAtt.FileName
 intLoc = InStrRev(strFilePath, ".")
 strFileType = LCase(Mid(strFilePath, intLoc + 1))
 Select Case strFileType
 Case "doc", "docx"
 objDocItem.MessageClass = _
 "IPM.Document.Word.Document"
 Case "xls", "xlsx"
 objDocItem.MessageClass = "IPM.Document.Excel.Sheet"

608 19.3 Working with attachments on existing items

19.3 Working with attachments on existing items
As noted earlier, file and Outlook item attachments are stored in individual
Outlook items and are not accessible directly as Outlook files or items. This
means that to work with the data in an attachment, you must first save the
item or file to the file system.

Outlook does this automatically when users work with files in the user
interface. When a user opens an attachment from the reading pane, Out-
look copies the file to a folder to hold temporary files, and opens the file as
read-only. No changes the user makes are saved back into the file.

In contrast, when the user opens an attachment from an open item,
Outlook copies the file to the file system and opens it for editing. If the user
makes changes and closes and saves the file, those changes are saved back to
the open Outlook item. The user must then save the changes to the Out-
look item in order to persist the changes to the attachment. If the user
doesn’t save the file or doesn’t save the item, the changes do not get stored in
the original Outlook item.

Note: It bears repeating that if a file is attached (Type = olByValue), not
linked (Type = olByReference), Outlook maintains no connection to the
original file and neither knows nor cares where the original file is located.

 Case "pps", "pptx"
 objDocItem.MessageClass = _
 "IPM.Document.PowerPoint.Show"
 Case "pub", "pubx"
 objDocItem.MessageClass = _
 "IPM.Document.Publisher.Document"
 Case "jpg"
 objDocItem.MessageClass = "IPM.Document.jpegfile"
 Case "pdf"
 objDocItem.MessageClass = _
 "IPM.Document.AcroExch.Document"
 Case Else
 objDocItem.MessageClass = "IPM.Document." & _
 strFileType & "file"
 End Select
 If Err = 0 Then
 objDocItem.Save
 End If
 Set objDocItem = Nothing
End Sub

Listing 19.1 Create a “freedoc” DocumentItem in an Outlook folder (continued)

19.3 Working with attachments on existing items 609

Code that makes changes to an attached file must follow a similar pro-
cess. To update an attachment already present in an item’s Attachments
collection, you must:

1. Save that attachment as a file using the Attachment.SaveAs-
File method

2. Make any changes you want to the file using the application
appropriate for that file

3. Save the updated file

4. Remove the old file from the Outlook item using the Attach-
ments.Remove or Attachment.Delete method

5. Attach the updated file to the Outlook item using Attach-
ments.Add

In the following sections, we will learn how to save attachments to the
file system, how to detect files that are not visible in the user interface, and
how to open saved files in their appropriate application. We will also see
some practical applications of these techniques, such as replying to a mes-
sage and including the original attachments and saving an HTML-format
message without saving its embedded images twice.

19.3.1 Saving attachments to the file system

To save an attachment to the file system, the Attachment.SaveAsFile
method requires one parameter, a string containing the path and name for
the file. Usually, you will want to use the file’s original name. Therefore,
most code routines using SaveAsFile build a path string, for example:

Set objAtt = objItem.Attachments(1)
strPath = "C:\Data\" & objAtt.FileName
objAtt.SaveAsFile strPath

Three important things to remember about the SaveAsFile method:

It is available only if the value of Attachment.Type is olByValue or
olEmbeddedItem.

The Attachment.PathName property is irrelevant to the SaveAs-
File method; it is relevant only if Attachment.Type is olByRefer-
ence. Your code must always supply the path, not just the file name.

The SaveAsFile method overwrites any existing file with the same
name, without warning. Therefore, if you are planning to save a file
permanently (rather than just use it temporarily), it is a good practice
to use the FileSystemObject techniques that we saw in Chapter 8
to determine if a file with the same name already exists. If it does, you
can ask the user whether to overwrite that file. Listing 19.5 provides
an example of this technique.

610 19.3 Working with attachments on existing items

A review of the FileSystemObject material might be worthwhile in
any case, since even saving files temporarily—as in our first two examples—
uses FileSystemObject techniques such as returning the user’s Temp
folder and deleting a file. In this chapter, we’ll also see an example of creat-
ing a new system folder to hold saved attachment files. Notice that the VBA
samples require that you use the Tools | References command to add a refer-
ence to the Microsoft Scripting Runtime Library.

19.3.2 Example: Import embedded Outlook items

The first SaveAsFile example demonstrates how to import Outlook items
that may be embedded in an email message and save and display them. To
make this VBA sample as useful as possible, it handles not just Outlook
items embedded with Attachment.Type = olEmbedded, but also vCard
.vcf and iCalendar .ics and .vcs files that are attached as Attachment.Type
= olByValue or as links with Attachment.Type = olByReference.

To test the ImportOutlookItems procedure in Listing 19.2, call it by
passing an Outlook item as a parameter, for example:

Call ImportOutlookItems(GetCurrentItem())

where GetCurrentItem() is the procedure from Listing 15.5 that returns
the currently open or selected item.

Listing 19.2 Import Outlook item attachments

Sub ImportOutlookItems(item As Outlook.MailItem)
 Dim objAtt As Outlook.Attachment
 Dim objNS As Outlook.NameSpace
 Dim objItem As Object
 Dim objFolder As Outlook.Folder
 ' requires reference to Microsoft Scripting Runtime
 Dim objFSO As Scripting.FileSystemObject
 Dim objFldTemp As Scripting.Folder
 Dim strPath As String
 Dim strFile As String
 Dim strFileExt As String
 Dim intPos As Integer
 Dim blnUseTempFile As Boolean
 On Error Resume Next
 Set objNS = item.Session
 Set objFSO = CreateObject("Scripting.FileSystemObject")
 Set objFldTemp = objFSO.GetSpecialFolder(TemporaryFolder)
 strPath = objFldTemp.Path & "\"
 For Each objAtt In item.Attachments
 intPos = InStrRev(objAtt.fileName, ".")
 If intPos > 0 Then
 strFileExt = Mid(objAtt.fileName, intPos)
 Select Case objAtt.Type
 Case olByReference

19.3 Working with attachments on existing items 611

 If InStr(".vcf.ics.vcs", strFileExt) > 0 Then
 strFile = objAtt.PathName
 strFileExt = Mid(strFileExt, 2)
 blnUseTempFile = False
 Else
 strFileExt = ""
 End If
 Case olByValue
 If InStr(".vcf.ics.vcs", strFileExt) > 0 Then
 strFile = strPath & objAtt.fileName
 objAtt.SaveAsFile strFile
 strFileExt = Mid(strFileExt, 2)
 blnUseTempFile = True
 Else
 strFileExt = ""
 End If
 Case olEmbeddeditem
 strFile = Left(objAtt.fileName, intPos - 1)
 strFile = CleanFileName(strFile)
 strFile = strPath & strFile & ".msg"
 objAtt.SaveAsFile strFile
 strFileExt = "msg"
 blnUseTempFile = True
 End Select
 End If
 If strFileExt <> "" Then
 Select Case strFileExt
 Case "msg", "vcf", "vcs"
 Set objItem = objNS.OpenSharedItem(strFile)
 objItem.Save
 objItem.Display
 Case "ics"
 Set objItem = objNS.OpenSharedItem(strFile)
 If Err.Number <> 0 Then
 Set objFolder = _
 objNS.OpenSharedFolder(strFile)
 objFolder.GetExplorer.Activate
 Else
 objItem.Display
 End If
 End Select
 If blnUseTempFile Then
 objFSO.DeleteFile strFile, True
 End If
 End If
 Next
 Set objAtt = Nothing
 Set objItem = Nothing
 Set objFolder = Nothing
 Set objNS = Nothing
 Set objFldTemp = Nothing
 Set objFSO = Nothing
End Sub

Listing 19.2 Import Outlook item attachments (continued)

612 19.3 Working with attachments on existing items

After the procedure runs, you should see each attached Outlook item
open in its own window, and also an open window showing any calendar
folder that was attached as an .ics calendar file. Notice how the procedure
deals with the possibility that an .ics file can hold either a single appoint-
ment or an entire calendar’s worth of appointments:

Set objItem = objNS.OpenSharedItem(strFile)
If Err.Number <> 0 Then
 Set objFolder = _
 objNS.OpenSharedFolder(strFile)
 objFolder.GetExplorer.Activate
Else
 objItem.Display
End If

It tries first to open the .ics file as an appointment, but if that fails
(Err.Number <> 0), it tries again, this time opening the file as a shared cal-
endar folder.

The CleanFileName() helper function is useful any time you need to
make sure that your file name does not contain any characters that Win-
dows does not allow in file names. We’ll use it again later in Listing 19.6.

19.3.3 Example: Reply with attachments

For our second example, let’s look at a more general Outlook programming
challenge and a specific application of the solution to that challenge. The
challenge is to copy an attachment from one item to another. Recall that
you cannot copy a Recipient object from one message to another but
need to use Recipients.Add method instead. Attachments work the same
way: You cannot copy an Attachment object from one item to another
directly, but must add the attachment through the Attachments.Add
method. The Attachments.Add method requires a saved file. Therefore, to
copy an attached file from one item to another, you must save the file first.
As with the code in Listing 19.2, the CopyAtts() procedure in Listing 19.3
uses a temporary folder to save the files and deletes them afterwards. This

Function CleanFileName(fileName As String) As String
 Dim strBadChars As String
 Dim strChar As String
 Dim i As Integer
 strBadChars = "*|\:<>?/" & Chr(34)
 For i = 1 To Len(strBadChars)
 fileName = Replace(fileName, Mid(strBadChars, i, 1), "_")
 Next
 CleanFileName = fileName
End Function

Listing 19.2 Import Outlook item attachments (continued)

19.3 Working with attachments on existing items 613

time, the code is for VBScript; you can use it in VBA by commenting out
the three Outlook constant declarations.

Listing 19.3 Copy attachments between Outlook items

Sub CopyAtts(source, target)
 Dim objFSO, fldTemp, strPath, strFile
 Dim objAtt, blnUseTempFile
 Const olByReference = 4
 Const olByValue = 1
 Const olEmbeddeditem = 5
 Const TemporaryFolder = 2
 Set objFSO = CreateObject("Scripting.FileSystemObject")
 Set fldTemp = objFSO.GetSpecialFolder(TemporaryFolder)
 strPath = fldTemp.Path & "\"
 For Each objAtt In source.Attachments
 Select Case objAtt.Type
 Case olByReference
 strFile = objAtt.PathName
 blnUseTempFile = False
 Case olByValue, olEmbeddeditem
 strFile = strPath & objAtt.fileName
 objAtt.SaveAsFile strFile
 blnUseTempFile = True
 End Select
 If blnUseTempFile Then
 target.Attachments.Add strFile, olByValue
 objFSO.DeleteFile strFile
 Else
 target.Attachments.Add strFile, olByReference
 End If
 Next
 Set fldTemp = Nothing
 Set objFSO = Nothing
End Sub

Listing 19.4 Reply with attachments from the original message

Sub ReplyWithAtts()
 Dim objItem ' As Object
 Dim objReply ' As Outlook.MailItem
 ' GetCurrentItem() from Listing 15.6
 Set objItem = GetCurrentItem()
 Set objReply = objItem.Reply
 ' CopyAtts from Listing 19.3
 Call CopyAtts(objItem, objReply)
 objReply.Display
 Set objReply = Nothing
 Set objItem = Nothing
End Sub

614 19.3 Working with attachments on existing items

As an application of the CopyAtts() procedure, consider this common
Outlook scenario: You want to reply to someone who sent you an attach-
ment, but you want to include the latest version of the attachment with
your own edits. Outlook does not include attachments in replies, only in
forwards. The ReplyWithAtts() procedure in Listing 19.4 provides a
solution, replying to the original message and copying the attachments
from the original message to the reply.

The code in Listing 19.4 is for VBScript, but would also work in VBA
without modification.

19.3.4 Opening attachments

The right technique to open an attachment depends on the type of
attachment. For an embedded Outlook item, the ImportOutlookItems
procedure in Listing 19.2 shows how to open it with the
Namespace.OpenSharedFolder method. That method can also handle
.ics, .vcs, or .vcf files.

Another common scenario is opening an attached file so that you can
process the data in it. Chapter 8 showed how to display a file using the
Windows Script Host technique. However, if you want to work with the
file’s data, you need to know the programming methods appropriate to that
particular type of file. For text files, use the FileSystemObject methods
discussed in Chapter 8. We can’t cover all types of files in this book, but to
give you an example of how to approach this scenario, Listing 19.5 is a
VBA procedure to open an Excel worksheet attachment and display a mes-
sage box with the contents of the first cell. You can test the OpenExcelWB
procedure with this statement, which uses the GetCurrentItem() func-
tion from Listing 15.5 to return the currently selected or open item:

Call OpenExcelWB(GetCurrentItem())

A typical application using this technique might be to process new
incoming messages using the NewMailEx event or one of the other tech-
niques from Chapter 11, extracting data from an attached Excel workbook
for use in another VBA procedure or to create a report.

There are two key differences between this sample and the previous two.
The OpenExcelWB procedure uses a fixed folder (C:\Data) not the user’s
Temp folder, and it asks the user to overwrite if a workbook file with the
same name as the attachment already exists in that folder.

Note: We’ll see more code for working with Excel in upcoming chapters.
Listing 21.3 in Chapter 21 demonstrates how to import data from an Excel
worksheet into Outlook. Listing 24.6 in Chapter 24 works in the other
direction, filling a worksheet with details from items in the Inbox.

19.3 Working with attachments on existing items 615

Listing 19.5 Open an Excel workbook

Sub OpenExcelWB(msg As Outlook.MailItem)
 Dim objAtt As Outlook.Attachment
 ' requires reference to Microsoft Excel library
 Dim objExcel As Excel.Application
 Dim objWB As Excel.Workbook
 ' requires reference to Scripting Runtime
 Dim objFSO As Scripting.FileSystemObject
 Dim intPos As Integer
 Dim strFile As String
 Dim strFileExt As String
 Dim strMsg As String
 Dim intRes As Integer
 For Each objAtt In msg.Attachments
 If objAtt.Type = olByValue Then
 strFile = objAtt.fileName
 intPos = InStrRev(strFile, ".")
 strFileExt = LCase(Mid(strFile, intPos + 1))
 If Left(strFileExt, 3) = "xls" Then
 strFile = "C:\Data\" & strFile
 Set objFSO = _
 CreateObject("Scripting.FileSystemObject")
 If Not objFSO.FileExists(strFile) Then
 objAtt.SaveAsFile strFile
 Else
 strMsg = "File exists in temp folder. " & _
 "Overwrite?"
 intRes = MsgBox(strMsg, _
 vbYesNo + vbQuestion, _
 "Open attachment " & _
 objAtt.fileName)
 If intRes = vbYes Then
 objFSO.DeleteFile strFile, True
 objAtt.SaveAsFile strFile
 Else
 strMsg = "Could not save file"
 MsgBox strMsg, vbExclamation, _
 "Open attachment " & objAtt.fileName
 End If
 Exit For
 End If
 Set objExcel = CreateObject("Excel.Application")
 Set objWB = objExcel.Workbooks.Open(strFile)
 If Not objWB Is Nothing Then
 strMsg = objWB.Sheets(1).Cells(1, 1)
 MsgBox strMsg, , "Data in " & objAtt.fileName
 objExcel.Visible = True
 objWB.Activate
 End If
 End If
 End If
 Next

616 19.3 Working with attachments on existing items

19.3.5 Working with hidden attachments

Just as Outlook items and the AddressEntry and Folders object support
a PropertyAccessor property for access to hidden MAPI properties, so
can you use PropertyAccessor to assist with some special attachment sce-
narios—especially working with hidden attachments. Such attachments,
which the user does not see as attached files, play a role in at least two types
of Outlook items:

Outlook contacts, which may contain a contact picture as a hidden
attachment named ContactPicture.jpg

HTML-format messages and posts, which may contain hidden image
files shown to the user as inline images through tags

To help us explore the concept of hidden attachments, the VBA sample
code in Listing 19.6 saves an HTML-format message to the file system as
an HTML file, along with all its attachments. Outlook automatically cre-
ates a folder to hold embedded images and other content files that help for-
mat the item. Therefore, the code doesn’t need to save those hidden
attachment files a second time. It should save only the non-hidden files—
the ones the user actually sees in the user interface. You can test the Save-
HTMLMessage procedure with this statement, using the GetCurrent-
Item() function from Listing 15.5:

Call SaveHTMLMessage(GetCurrentItem())

These code statements are the key to determining if an attachment is a
hidden component of the message and saving only the “real” attachments:

Set objPA = objAtt.PropertyAccessor
strContentID = objPA.GetProperty(PR_ATTACH_CONTENT_ID)
If Err = 0 Then
 If InStr(1, strHTML, strContentID, vbTextCompare) > 0 Then
 objAtt.SaveAsFile strAttFolderPath & objAtt.fileName
 End If
Else
 objAtt.SaveAsFile strAttFolderPath & objAtt.fileName
End If

If the PR_ATTACH_CONTENT_ID property is present—that is, if Get-
Property(PR_ATTACH_CONTENT_ID) does not return an error—then you

 Set objAtt = Nothing
 Set objExcel = Nothing
 Set objWB = Nothing
 Set objFSO = Nothing
End Sub

Listing 19.5 Open an Excel workbook (continued)

19.3 Working with attachments on existing items 617

Listing 19.6 Save an HTML-format message with all attachments

Sub SaveHTMLMessage(msg As Outlook.MailItem)
 Dim objPA As Outlook.PropertyAccessor
 Dim objAtt As Outlook.Attachment
 ' requires reference to Scripting Runtime library
 Dim objFSO As Scripting.FileSystemObject
 Dim objFolder As Scripting.Folder
 Dim strPath As String
 Dim strCleanSubject As String
 Dim strAttFolderPath As String
 Dim strAttFilePath As String
 Dim strContentID As String
 Dim strHTML As String
 Const PR_ATTACH_CONTENT_ID = _
 "http://schemas.microsoft.com/mapi/proptag/0x3712001E"
 If msg.BodyFormat <> olFormatHTML Then
 Exit Sub
 End If
 strPath = "C:\Data\"
 ' CleanFileName from Listing 19.2
 strCleanSubject = CleanFileName(Trim(msg.Subject))
 strHTML = msg.HTMLBody
 msg.SaveAs strPath & strCleanSubject & ".htm", olHTML
 strAttFolderPath = strPath & strCleanSubject & "_files"
 Set objFSO = CreateObject("Scripting.FileSystemObject")
 If objFSO.FolderExists(strAttFolderPath) Then
 Set objFolder = objFSO.GetFolder(strAttFolderPath)
 Else
 Set objFolder = objFSO.CreateFolder(strAttFolderPath)
 End If
 strAttFolderPath = strAttFolderPath & "\"
 For Each objAtt In msg.Attachments
 Set objPA = objAtt.PropertyAccessor
 strContentID = _
 objPA.GetProperty(PR_ATTACH_CONTENT_ID)
 If Err = 0 Then
 If InStr(1, strHTML, _
 strContentID, vbTextCompare) > 0 Then
 objAtt.SaveAsFile _
 strAttFolderPath & objAtt.fileName
 End If
 Else
 objAtt.SaveAsFile _
 strAttFolderPath & objAtt.fileName
 End If
 Next
 MsgBox "Message saved!", , "Save HTML Message"
 Set objAtt = Nothing
 Set objPA = Nothing
 Set objFolder = Nothing
 Set objFSO = Nothing
End Sub

618 19.4 Summary

know you have a probable hidden attachment. The confirmation that it’s an
attachment associated with the message content comes from the result of
the Instr() function, which searches the HTML content of the message
to see if the content ID is present there. If it is, you know the attachment is
hidden and does not need to be saved a second time, because Outlook
already saved it when you called SaveAs on the message itself.

19.4 Summary
This chapter demonstrated how to insert files and Outlook items into Out-
look items as embedded or linked attachments and how to extract those
attachments so your applications can use them and the data they contain.
Of particular interest is the fact that HTML-format messages may include
hidden attachments that the user doesn’t see with a paperclip icon but that
are essential to the layout and formatting of the message.

To work with Outlook attachments, you often need to look beyond
Outlook to other object models, such as the Scripting Runtime library and
its FileSystemObject, which provides key methods for working with the
Windows file system, or object models for Excel, Word, and other Office
applications. For example, copying an attachment from one item to another
involves saving the item first to the file system and later deleting it after the
copy operation is complete.

For more on attachments, see Chapter 23, where we’ll discuss how to
program the context menu that appears when the user right-clicks on an
attachment in the reading pane or an open item.

619

20
Common Item Techniques

Earlier chapters in this section have covered many basic techniques for
working with Outlook items—creating them, finding them, manipulating
text in item bodies, dealing with attachments, adding and removing recipi-
ents, and so on. This chapter rounds out your Outlook item skills with
some techniques that are common to all Outlook items and some that are
specific to messages, contacts, and other individual item types.

Most of the examples in this chapter combine several of the techniques
covered earlier and involve multiple steps. For example, to create a meeting
request, you need to set a property, and then add recipients. To create a task
request, you need to execute a method, and then add recipients. To add a
contact’s phone number to a task, you need to look up the contact, read a
property value to get the phone number, set a property on the task, then
save the task. As you look at these examples, think about how you might
combine the basic Outlook item techniques they illustrate to construct your
own Outlook applications.

Highlights of this chapter include discussions of the following:

Why Outlook message forms usually are a poor choice for surveys
and other data-gathering operations

How to use voting buttons to create a vacation request form that gen-
erates an appointment for approved requests

How to determine the user’s default email account and use that
account to send all messages

How to create a meeting request and assign a task

What different methods are available to build links between Outlook
items

How to automatically add a contact’s phone number to a task

How to create appointments related to a custom date field on a con-
tact form

620 20.1 Using custom message forms

20.1 Using custom message forms
Two key Outlook security features discussed in Chapter 10 limit the practi-
cal applications of Outlook custom message forms:

Code runs only on published forms.

Unpublished forms that include custom properties will not display
their custom layouts if launched from an .oft file.

A third factor hindering custom message form usage is the mysterious
Winmail.dat file. For messages created with a published form, Outlook trans-
mits information about the form and any custom fields by attaching a file
named Winmail.dat to the outgoing message. The Winmail.dat file also
encapsulates any attachments added to the custom form message. Only Out-
look recipients can make sense of the data in this file. If you use a published
custom form to send a message to a non-Outlook recipient, at best the recipi-
ent will be puzzled by the Winmail.dat attachment. But worse, the recipient
will not see any normal attachments that you included in the message.

Note: Voting button messages, which are covered later in the chapter, also
carry a Winmail.dat attachment, so you’ll want to be careful to use them
only with known Outlook recipients.

These limitations restrict the practical use of Outlook message forms to
this narrow list of applications:

Message templates with no custom fields or code, saved as .oft files

Published message forms that use code to generate new messages
based on the standard message form

Message forms that are internal to an organization and are published
to the Organizational Forms library on an Exchange server or to each
user’s Personal Forms library

The first application, message templates saved as .oft files, covers the
boilerplate messages that you send frequently, including voting button mes-
sages. As long as the message “form” consists only of your custom message
body, subject, recipients, custom actions, and other standard properties, it
will work fine when saved and launched from an .oft file. What will cause
problems is including custom fields in such a saved message template. The
chief practical implication of this limitation is that you cannot conduct a
survey by sending a message form .oft file to other users or to customers to
fill out and return to you.

20.1 Using custom message forms 621

Tip: The Microsoft Office applications that can conduct surveys by email
are InfoPath 2007 and Access 2007. Access can generate HTML-format
messages that collect data to populate a database table. Included with Office
2007 is an add-in for Outlook that automatically updates the records in the
database with the email responses received. InfoPath is a relatively new
application with robust form design capability that is much easier to use
than Outlook’s designer.

For an example of the second application—published message forms
that generate a message based on the standard form—consider this scenario:
Much of the mail you send involves the same subjects or the same recipi-
ents. You want to streamline the process by providing dropdown lists for
the Subject, To, or Cc fields. Such a form might help you work more effi-
ciently, but any recipients who don’t use Outlook will encounter the Win-
mail.dat problem described above. The solution is to write code behind
your published form that creates a new standard message using the informa-
tion that you’ve gathered with the custom form. The code in Listing 20.1
shows how to use the Item_Send event handler on the published form to
create a new message that uses the body, recipients, attachments, and other
properties of the original item (the one created from the published form).

The procedure uses three different techniques to copy the item body
from the original message to the outgoing message, depending on the mes-
sage format of the original. For a plain text message, it copies the Body
property. For an HTML message, it copies HTMLBody. For an rich-text mes-
sage, it uses Word objects in the CopyFormattedBody helper procedure to
copy and paste the content from one item to another. It also changes the
BodyFormat property so that the outgoing message is in HTML format.

The original custom form message stays open on the screen after the
Item_Send event handler creates and sends the new standard message.
Using the Close method in a form’s VBScript code can cause the original
release of Outlook 2007 to crash.

The third type of custom message form—that used internally in an
organization—can serve many purposes. It can conduct a survey of staff
members or facilitate a workflow, for example. It can even distribute custom
Outlook settings, as we’ll see in Chapter 22. What distinguishes this type of
message form is that, because it is a published form, it can run code both
for the sender and for the recipient.

622 20.1 Using custom message forms

Listing 20.1 Create a new standard message from the content of a custom form message

Function Item_Send()
 Dim objMsg ' As Outlook.MailItem
 Dim objRecip ' As Outlook.Recipient
 Dim objNewRecip ' As Outlook.Recipient
 Const olMailItem = 0
 Const olFormatPlain = 1
 Const olFormatHTML = 2
 Const olFormatRichText = 3
 On Error Resume Next
 Item_Send = False
 Set objMsg = Application.CreateItem(olMailItem)
 For Each objRecip In Item.Recipients
 Set objNewRecip = _
 objMsg.Recipients.Add(objRecip.address)
 If objNewRecip.Resolve Then
 objNewRecip.Type = objRecip.Type
 End If
 Next
 If Item.Attachments.Count > 0 Then
 Call CopyAtts(Item, objMsg) 'CopyAtts procedure from Listing 19.3
 End If
 With objMsg
 Select Case Item.BodyFormat
 Case olFormatPlain
 .BodyFormat = olFormatPlain
 .Body = Item.Body
 Case olFormatHTML
 .BodyFormat = olFormatHTML
 .HTMLBody = Item.HTMLBody
 Case olFormatRichText
 .BodyFormat = olFormatHTML
 Call CopyFormattedBody(Item, objMsg)
 End Select
 .Categories = Item.Categories
 .DeferredDeliveryTime = Item.DeferredDeliveryTime
 .DeleteAfterSubmit = Item.DeleteAfterSubmit
 .ExpiryTime = Item.ExpiryTime
 .Importance = Item.Importance
 .OriginatorDeliveryReportRequested = _
 Item.OriginatorDeliveryReportRequested
 .ReadReceiptRequested = _
 Item.ReadReceiptRequested
 .ReminderSet = Item.ReminderSet
 .ReminderTime = Item.ReminderTime
 .Subject = Item.Subject
 If .Recipients.count > 0 _
 And .Recipients.ResolveAll Then
 .Send
 MsgBox "Message sent successfully. " & _
 "You can close the original now."
 Else
 .Display
 End If

20.1 Using custom message forms 623

Tip: In Chapter 22, we’ll build a message form that installs a custom form
for a user and another message form that transmits a report on the user’s
Outlook rules. Both of these work only if published to the Organizational
Forms library.

However, before you start designing a custom message form for internal
use, be aware that many organizations cannot meet the minimum prerequi-
sites for forms that run code. Some that have Exchange as their mail server
do not permit users to publish forms to the Organizational Forms library,
which is the central forms registry. Others don’t have Exchange and are not
inclined to go to the effort to publish a custom form to each user’s Personal
Forms library. (The next chapter includes a script to publish a custom form
programmatically.) Before you put a lot of effort into writing code for a cus-
tom message form, find out whether you will be able to publish that form
so others can use it.

The next few sections discuss the Reply, Forward, and CustomAction
actions and associated events, which are crucial to the operation of many
custom message forms.

 End With
 Set objMsg = Nothing
 Set objRecip = Nothing
 Set objNewRecip = Nothing
End Function

Sub CopyFormattedBody(oldItem, newItem)
 Dim objOldDoc ' As Word.Document
 Dim objNewDoc ' As Word.Document
 Dim objRange ' As Word.Range
 Const wdPasteDefault = 0
 Set objOldDoc = oldItem.GetInspector.WordEditor
 Set objNewDoc = newItem.GetInspector.WordEditor
 Set objRange = objOldDoc.Content
 objRange.Select
 objRange.Copy
 Set objRange = objNewDoc.Content
 objRange.Select
 objRange.PasteAndFormat wdPasteDefault
 Set objOldDoc = Nothing
 Set objNewDoc = Nothing
 Set objRange = Nothing
End Sub

Listing 20.1 Create a new standard message from the content of a custom form message (continued)

624 20.1 Using custom message forms

20.1.1 Controlling the settings for replies
and forwards

The options on the (Actions) page of a custom form govern the behavior of
the standard Reply, Reply to All, and Forward commands. You can disable
any of these commands by setting the Enabled option to False on the
(Actions) page.

If you are creating a custom message form, you should always visit the
(Actions) page and update the Forward action’s Message Class option so
that it points to the same published custom form. This form must be in the
Personal Forms library or Organizational Forms library. For example, if you
have a custom message form published with the class IPM.Note.MyForm,
use the (Actions) page to set the Message Class option for the Forward
action also to IPM.Note.MyForm. If you leave the Message Class option on
its default setting (IPM.Note), when the user forwards an item that uses
your custom form, the form definition will one-off, becoming embedded in
the item, where it will no longer run code and may not even be able to dis-
play your custom page layout.

You can also set the Reply action to use a custom form. However, replies
do not automatically copy property values from the original item to the
reply, unless you write code to perform that task.

20.1.2 Adding code to the Reply and Forward events

The Reply, ReplyAll, and Forward events fire when the user replies to or
forwards a message through the user interface or when code calls the Reply,
ReplyAll, or Forward method. Each of these events creates a new message.
Whether the new message uses a custom form depends on the settings on
the (Actions) tab of the form, as described in the previous section.

However, replying to a message does not copy data from the original
message to the reply, except for the subject and message body. Forwarding a
message copies attachments, as well as the subject and message body, but
neither reply nor forward messages copy the categories set on the original
message. This has substantial implications for a scenario that would seem to
be a natural fit for an Outlook custom message form solution: gathering
information from users. Because replies and forwards won’t copy data fields
automatically, to perform information gathering with custom message
forms, you must write code to propagate property values from one message
to another. That also means that custom message forms can’t be used to
gather data from customers, even if they use Outlook, because such forms
outside your organization won’t run code.

Let’s assume, though, that you can publish forms to the Organizational
Forms library or each user’s Personal Forms library. The event handlers for
the Reply, ReplyAll, and Forward events all follow a similar structure:

20.1 Using custom message forms 625

Outlook passes the new item created by the event as a parameter to the
event handler. For example, this code behind a custom form would pop up
a message box with the subject of each newly created reply or forward mes-
sage before displaying it:

Function Item_Reply(ByVal Response)
 MsgBox Response.Subject, , "Reply"
 Response.Display
End Function

Function Item_ReplyAll(ByVal Response)
 MsgBox Response.Subject, , "Reply to All"
 Response.Display
End Function

Function Item_Forward(ByVal ForwardItem)
 MsgBox ForwardItem.Subject, , "Forward"
 ForwardItem.Display
End Function

Just because the event creates a new message doesn’t mean that you have
to use that message. To cancel any of these events so that the new item is
not created, set the return value of the function to False. This statement,
for example, cancels the Item_Reply event:

Item_Reply = False

As an example, let’s say that your organization always use a certain cus-
tom form to send particular documents and wants the users to send back
those attached files when they reply. A reply message doesn’t transmit the
original message’s attachments, but a forward message does include the
attachments. On the other hand, forwarding the item doesn’t address the
new message to the original sender. To get the best of both events, the
Item_Reply event handler in Listing 20.2 uses the Forward method to cre-
ate a new message and populates the message’s To property from the sender
information on the original item. The user clicks Reply as usual, without
any need for a special command.

The Reply event handler in Listing 20.2 replies either to all the recipi-
ents in the ReplyRecipients collection or, if that collection is empty, to
the original sender. When using this technique, you may want to use the
(Actions) page to disable the Reply to All command. Alternatively, you
could expand the code in Listing 20.2 to iterate all the original
Item.Recipients and ReplyRecipients collections and add each of
those recipient addresses to the Recipients collection on the new forward
item. Go back to Listing 18.5 if you want to see an example of working
with the ReplyRecipients collection.

To copy property values other than the subject, item body, and attach-
ments, you need code behind the form. This code snippet expands the
With objForward block in Listing 20.2 to copy the Categories property

626 20.2 Working with voting buttons and other custom actions

value and the values of all custom properties from the original item to the
forward message:

With objForward
 .To = strAddress
 .Subject = Response.Subject
 .Categories = Item.Categories
 For Each objProp in Item.UserProperties
 Set objFwdProp = .UserProperties(objProp.Name)
 objFwdProp.Value = objProp.Value
 Next
 .Display
End With

You could expand this technique further to copy other property values
such as Importance.

20.2 Working with voting buttons and other
custom actions

Each Outlook item has an Actions collection that contains various Action
objects that represent key “verbs” for the item; Reply, Reply to All, and For-
ward are all represented in the Actions collection, along with any custom
actions created for the item. Custom actions are a unique Outlook tech-

Listing 20.2 Discard a reply and send a forward instead

Function Item_Reply(ByVal Response)
 Dim objForward ' As Outlook.MailItem
 On Error Resume Next
 Item_Reply = False
 For Each objRecip In Item.ReplyRecipients
 If objRecip.Type = True Then
 strAddress = strAddress & ";" & _
 objRecip.Name & " [" & _
 objRecip.AddressEntry.Type & _
 ":" & objRecip.address & "]"
 End If
 Next
 If strAddress = "" Then
 strAddress = Item.SenderName & " [" & _
 Item.SenderEmailType & _
 ":" & Item.SenderEmailAddress & "]"
 End If
 Set objForward = Item.Forward
 With objForward
 .To = strAddress
 .Subject = Response.Subject
 .Display
 End With
 Set objForward = Nothing
End Function

20.2 Working with voting buttons and other custom actions 627

nique that can create a new item from an existing item and run code related
to the new item.

Voting buttons are the most familiar application of custom actions. To
add voting buttons to an open message, switch to the Options tab in the
ribbon, and then click Use Voting Buttons. You can choose from one of
three standard sets of buttons or click Custom and type in your own names
for the buttons, separated by semicolons.

Only one set of voting buttons appears per item. When a user receives a
voting button message and clicks on one of the voting buttons (see Figure
20.1), Outlook generates a response back to the sender. The sender’s copy
of Outlook tallies those responses and stores them in the original voting
button message (as long as that original message remains in the Sent Items
folder). Each person’s Recipient object stores that person’s “vote” in the
AutoResponse property.

As with other custom action applications, a voting button message
works only if both the sender and all the recipients are using Outlook as
their mail program. Each voting button corresponds to a custom action in
the outgoing message’s Actions collection and uses default property values
that determine what kind of response will come back from recipients. Fig-
ure 20.2 shows two voting buttons, Approve and Disapprove, and the Form
Action Properties dialog for the Approve button.

Voting buttons create custom actions with properties that return the
“votes” to the original sender. As you’ll see in the next section, Outlook pro-
vides many options for customizing voting buttons and creating actions
other than voting buttons.

20.2.1 Custom Action Properties

The Actions collection supports Add, Item, and Remove methods like
most other Outlook collections. To create a new voting button or other cus-
tom action for an Outlook item, call the Actions.Add method to create
the action and then set properties for the new Action. Here’s a code snip-
pet from Listing 10.3, which creates a message (objMsg) and then adds vot-
ing buttons, getting the names for the actions from a comma-delimited
string:

arrActions = Split(strActions, ",")
Set objAction = objMsg.Actions.Add

Figure 20.1
Outlook clearly

marks voting
button messages in
the reading pane.

628 20.2 Working with voting buttons and other custom actions

With objAction
 .CopyLike = olRespond
 .Enabled = True
 .Name = Trim(arrActions(i))
 .Prefix = ""
 .ReplyStyle = olOmitOriginalText
 .ResponseStyle = olPrompt
 .ShowOn = olMenuAndToolbar
End With

Use Table 20.1 to help understand which option in the Form Action
Properties dialog box (refer to Figure 20.2) corresponds to a particular
property of the Action object.

How does a user know that an item has custom actions? Messages with
voting button actions have a clear indicator in the reading pane—the
“Click here to vote” area, shown in Figure 20.1. For an open voting button
message, Outlook shows a Vote command on the ribbon. Vote options are
also listed on the right-click context menu for the item in the folder view.

Users will see custom action command buttons only on sent or saved
items. The indicators are similar to those for voting button messages. If the
ShowOn property of the action is set to olMenu or olMenuAndToolbar, the
custom action command will appear on the right-click context menu for

Figure 20.2
Voting buttons
create custom

Response actions.

20.2 Working with voting buttons and other custom actions 629

Table 20.1 Outlook Form Action Properties

Form Action
Property Settings Object Property Possible Values Outlook Constant (Value)

Address Form Like CopyLike Reply olReply (0)

Reply to all olReplyAll (1)

Forward olForward (2)

Reply to folder olReplyFolder (3)

Response olRespond (4)

Enabled Enabled True or false

Message Class MessageClass (Any published form)

Action Name Name (Any name)

Subject Prefix Prefix (Any prefix)

When Responding ReplyStyle Do not include original
message text

olOmitOriginalText (0)

Attach original message olEmbedOriginalItem (1)

Include original message
text

olIncludeOriginalText (2)

Include and indent original
message text

olIndentOriginalText (3)

Prefix each line of the origi-
nal message

olReplyTickOriginalText (1000)

Attach link to the original
message

olLinkOriginalItem (4)

Respect user’s default olUserPreference (5)

This Action Will ResponseStyle Open the form olOpen (0)

Send the form immediately olSend (1)

Prompt the user to open or
send

olPrompt (2)

Show Action On ShowOn Don’t show olDontShow (0)

Menu and toolbar olMenu (1)

Menu only olMenuAndToolbar (2)

630 20.2 Working with voting buttons and other custom actions

the item. The clearest indicator that the item has a custom action comes
from an open item (Figure 20.3), which displays the Custom Action button
on the ribbon to indicate that it has one or more custom actions. Later in
this chapter, we’ll see how to use a command button on a custom form to
make a custom action more visible.

Note: For the Show Action On option, the “Menu and Toolbar” and
“Menu Only” settings are essentially equivalent, since Outlook 2007 does
not have the Response toolbar that previous versions did.

Caution: Do not add a custom action programmatically to an item created
from a published form. Doing so will cause the form to one-off, embedding
it in the item, where it will no longer run code. Put all your custom actions
into the published form.

One of the key functions of a custom action is to create a new item. For
example, each action on a voting button message generates an email mes-
sage containing the recipient’s response. Custom actions also have a special
feature that can copy property values from the original item to the new
item. The CopyLike property (labeled on the (Actions) tab as Address
Form Like) governs how Outlook copies properties from the original item
to the new item that the custom action creates. Table 20.2 offers sugges-
tions on when to use which option.

Notice that in Table 20.2, there’s no Address Form Like option to copy
data from one message to another message. Instead, you’d need to write
code to copy data from one item to another, as shown in the example for
the Reply event in Listing 20.2.

20.2.2 Writing code for custom actions

A custom action can create other types of items besides messages. For exam-
ple, a custom action on a custom contact form could generate a new task.

Figure 20.3
Many users may

not notice that an
item has a custom
action unless they

open the item.

20.2 Working with voting buttons and other custom actions 631

In fact, as a project that will help you learn about custom actions, let’s add
some actions to a custom contact form to restore functionality that Out-
look 2003 has but Outlook 2007 doesn’t. Outlook 2007 lacks the earlier
version’s menu command to create a new appointment related to a contact
without creating a meeting request. It’s not hard to add that functionality
with a little code to go with a custom action.

The first thing you need to know in order to write that code is that,
when the user clicks a voting button or other custom action button, the
item’s CustomAction event fires. In most cases an item will have more than
one custom action. Therefore, the Item_CustomAction event handler has
an extra parameter, compared with the event signatures for Item_Reply
and Item_Forward. The two parameters for the Item_CustomAction
event handler are:

This event handler would pop up a message box for each Action whose
button is clicked, displaying the Subject of the new item that the action
creates and the display name of the Action:

Function Item_CustomAction(ByVal Action, ByVal NewItem)
 MsgBox NewItem.Subject, , Action.Name
End Function

For a more practical application, we can create a custom actions to
replace a command that Outlook 2007 left out: the New Appointment
with Contact command to create a linked appointment that isn’t a meeting
request. Open a new contact form in design mode and on the (Actions)
page, create a custom action, using New Appointment with Contact for

Table 20.2 Suggested Uses for the Address Form Like Options

If You Want to . . . Address Form Like . . .

Send a reply to the sender of the original item Reply

Send a reply to the sender of the original item and any Cc recipients Reply to all

Copy data from fields on one post item to fields of the same name on a
different post item

Reply to folder (reply post form must
be published in the same folder)

Copy data from fields on one task, contact, or appointment item to
another item of the same type

Forward

Present the user with voting buttons, whose responses will be tracked on
the Tracking tab of the original message in the sender’s Sent Items folder

Response

Create a task, appointment, journal entry, or contact Reply to Folder

Action The custom action executed by the user

NewItem The new Outlook item that the custom action creates

632 20.2 Working with voting buttons and other custom actions

the action name and entering IPM.Appointment for the corresponding
form name:

For the “Address form like a” setting, choose Reply to Folder. You can
accept the defaults for all the other action settings.

Next, add this code to the form:

Function Item_CustomAction(ByVal Action, ByVal NewItem)
 If Action.Name = "New Appointment with Contact" Then
 NewItem.Links.Add Item
 End If
End Function

Publish the form to your Contacts folder with the form name
IPM.Contact.Actions. Use the Actions | New Actions command to create a
contact with the new form, and then save and close the contact. (Remem-
ber that custom actions don’t appear until you save an item.) Right-click the
contact in the folder view; to see the New Appointment with Contact cus-
tom action you just created, refer to Figure 20.4. Open the item to see the
custom action on the ribbon, as shown in Figure 20.3. Click the action to
see Outlook create a new item that is linked to the current contact through
the Links collection, which we’ll discuss later in the chapter.

Tip: The New Journal Entry for Contact is also missing from the ribbon,
but you can add it by customizing the Quick Access Toolbar. Look for the
command on the All Commands list.

This is a very simple example of code for the CustomAction event,
because there is only action on the form. More often, though, you’ll want to

Figure 20.4
Custom actions

create commands
on an item’s right-

click context menu.

20.2 Working with voting buttons and other custom actions 633

run code for several different actions. The best way to handle that scenario
is with a Select Case block. Use a different Case for each action, or more
precisely for each Action.Name, since it is the Name string property that
distinguishes the actions.

For example, if you had a custom form with two voting buttons,
Approve and Disapprove, the code to handle each action would fit into a
structure such as this:

Function Item_CustomAction(ByVal Action, ByVal NewItem)
 Select Case Action.Name
 Case "Approve"
 ' approval code goes here
 Case "Disapprove"
 ' disapproval code goes here
 Case Else
 ' no need to do anything
 End Select
End Function

If you added a third action, you’d add another Case block after Case
"Disapprove".

The NewItem parameter for the CustomAction event is analogous to
the Response parameter for the Reply event or the ForwardItem parame-
ter for the Forward event and represents the new item that the action cre-
ates. As with those other events, you can prevent the item from being
created by setting the return value of the Item_CustomAction event han-
dler to False. This example sets the Importance property to High on the
new item created by the Approve action, but cancels the creation of a new
item for the Disapprove action

Function Item_CustomAction(ByVal Action, ByVal NewItem)
 Const olImportanceHigh = 2
 Select Case Action.Name
 Case "Approve"
 NewItem.Importance = olImportanceHigh
 Case "Disapprove"
 Item_CustomAction = False
 End Select
End Function

To put this technique to work, in the next section we’ll build a simple
vacation request form that sends an approved appointment back to the per-
son making the request.

20.2.3 Example: A vacation approval form

Everyone likes to take vacations, right? However, unless you’re the boss,
someone must approve your time off. Instead of having every staffer submit
their vacation request in their own fashion, an organization can standardize
an Outlook message form with Approve and Disapprove buttons that a

634 20.2 Working with voting buttons and other custom actions

supervisor can use to act on a vacation request. To create the form, follow
these steps:

1. Open a new message.

2. Enter “Vacation request” as the text for the subject.

3. Switch to the Options tab of the ribbon, click Use Voting But-
tons, and then choose Custom.

4. On the Message Options dialog box, in the “Use voting buttons”
box, replace the default button text (“Approve; Reject”) with
(“Approve; Disapprove”), and then click Close.

5. Switch to the Developer tab, and click Design This Form to put
the message into design mode.

6. Set the Subject text box to read-only.

7. Select the large message body text box at the bottom of the form
and drag the top of it down to make some room above the body
of the message.

8. In the Field Chooser, create two new fields, VacationStart and
VacationEnd, both as date/time fields. Drag them to the blank
space above the message body to create two text boxes. Give the
text box controls the names txtVacationStart and txtVaca-
tionEnd. Edit their labels so that the form looks like Figure 20.5.
On the Value tab of each text box’s Properties dialog, change the

Figure 20.5
This custom

message form will
make it easy to

request time off.

20.2 Working with voting buttons and other custom actions 635

Format option so that it shows only the day of the week and the
date, not the hours and minutes.

9. Select the txtVacationStart and txtVacationEnd text boxes
and their labels, right-click, and choose Copy to copy them to the
Clipboard.

10. Click Edit Read Page to switch to the form’s read layout. Adjust
the height of the large-message text box as you did in step 2.

11. Paste the copied text boxes and labels from step 4 into the blank
area.

12. Set the txtVacationStart and txtVacationEnd text boxes on
the read layout to be read-only.

Tip: Did you notice that we’re using a message form, not an appointment
form? This is a good example of how you can put Outlook forms to unex-
pected uses, based on the different features that each supports. Because the
goal of the vacation approval form is simply to generate a response, not to
schedule a meeting, a message form is more appropriate than an appoint-
ment form.

To see the properties of the voting buttons, switch to the (Actions) page
of the form. You should see that two custom actions, Approve and Disap-
prove, were added.

The next step is to add code to the form that will automatically create an
appointment item and send it back with the approval. The user who made
the vacation request then can open the appointment and save it to the Cal-
endar folder.

In the code window for the Vacation Request form, add the code shown
in Listing 20.3. To test the form, you can publish it to your own Personal
Forms library and send a vacation request to yourself. If other people are
going to use it, though, you will need to publish it to the Organizational
Forms library on the Exchange server or have each person publish it to their
own Personal Forms library.

The Item_CustomAction event handler in Listing 20.3 handles both
the Approve and Disapprove actions and puts appropriate text in the
response message for each action. It enhances the Approve action by creat-
ing a new appointment from the data in the request message and attaching
that appointment to the approval message. Once the saved appointment is
attached, it is no longer needed, and so the code deletes it from the
approver’s mailbox.

636 20.2 Working with voting buttons and other custom actions

Note: Why does Listing 20.3 use a vCalendar attachment created with the
objAppt.ForwardAsVCal method instead of simply attaching objAppt
itself? When a user receives and opens a vCal or iCal attachment, the open
item’s Save command will save the appointment in the Calendar folder. If
the attachment were an Outlook appointment item, the user would need to
drag the attached appointment to the Calendar folder—not as intuitive or
easy a process as simply opening the vCal attachment and clicking Save.

Listing 20.3 Enhance custom actions with code to build a more functional vacation
request form

Const olOutOfOffice = 3
Const olAppointmentItem = 1

Function Item_CustomAction(ByVal Action, ByVal NewItem)
 Dim objAppt ' As Outlook.AppointmentItem
 Dim objMsg ' As Outlook.MailItem
 Dim dteStart ' As Date
 Dim dteEnd ' As Date
 On Error Resume Next
 Select Case Action.Name
 Case "Approve"
 Item_CustomAction = False
 dteStart = _
 Item.UserProperties.Find("VacationStart")
 dteEnd = _
 Item.UserProperties.Find("VacationEnd")
 Set objAppt = _
 Application.CreateItem(olAppointmentItem)
 With objAppt
 .Start = dteStart
 .End = dteEnd
 .ReminderSet = False
 .Subject = "Vacation"
 .AllDayEvent = True
 .BusyStatus = olOutOfOffice
 End With
 objAppt.Save
 Set objMsg = objAppt.ForwardAsVcal
 ' CopyAtts from Listing 19.3
 Call CopyAtts(objMsg, NewItem)
 NewItem.Body = "Your vacation has been " & _
 "approved. Open the attached " & _
 "Appointment and save it " & _
 " to your Calendar folder."
 NewItem.Send

20.3 Sending a message with a specific account 637

20.2.4 Using command buttons with custom actions

To make the commands associated with your custom actions more notice-
able, you may want to use command buttons on a custom form page to run
them. You can enhance the Vacation Request form by adding two com-
mand buttons to the custom Message page’s read layout. Give them the
names cmdApprove and cmdDisapprove, with matching captions, and
then add this code to the code that is already in the form:

Sub cmdApprove_Click()
 Item.Actions("Approve").Execute
End Sub

Sub cmdDisapprove_Click()
 Item.Actions("Disapprove").Execute
End Sub

Each Click event handler runs a different action using the Execute
method of the Action object.

20.3 Sending a message with a specific account
One new Outlook 2007 programming feature is the ability to specify which
account Outlook will use to send a message, thanks to the new Mail-
Item.SendUsingAccount property. That means you now have two ways to
specify the sender, one appropriate within Exchange environments and one
for more general uses.

To send a message in the name of another Exchange user, set the value of
the SentOnBehalfOfName property of the message to the alias or SMTP
address of the other user. If you use the alias, prefix it with an equals sign to
force Outlook to look for an exact match:

objMsg.SentOnBehalfOfName = "=flaviusj"

 Case "Disapprove"
 NewItem.Body = "Your vacation has not been " & _
 "approved. Please feel free " & _
 "to submit other proposed dates."
 NewItem.Send
 End Select
 Set objAppt = Nothing
 Set objMsg = Nothing
End Function

Listing 20.3 Enhance custom actions with code to build a more functional vacation
request form (continued)

638 20.3 Sending a message with a specific account

Whether the recipient sees the actual sender’s name or the name of the
user in whose name you sent the message is not something the sender can
control. It depends on the permissions set on the other user’s mailbox. If
User A has Send On Behalf permission over User B’s mailbox, recipients
will see in the From field, “From User A on behalf of User B.” If User A has
Send As permission, recipients will see “From User A.” Only an administra-
tor can grant Send As permission over a mailbox to another user.

The new SendUsingAccount property returns an Account object rep-
resenting an account from the Namespace.Accounts collection (also new
in Outlook 2007). This is the account that Outlook will use to send the

Listing 20.4 Set all outgoing messages to use the default account

Private m_objDefAcct As Outlook.Account
Private WithEvents m_colInsp As Outlook.Inspectors
Private WithEvents m_objInsp As Outlook.Inspector

Private Sub Application_MAPILogonComplete()
 Dim objMail As Outlook.MailItem
 Set objMail = Application.CreateItem(olMailItem)
 With objMail
 .Subject = "GETACCOUNT"
 .To = Application.Session.CurrentUser.Address
 .Send
 End With
 Set m_colInsp = Application.Inspectors
End Sub

Private Sub Application_ItemSend(ByVal Item As Object, _
 Cancel As Boolean)
 If Item.Subject = "GETACCOUNT" Then
 Set m_objDefAcct = Item.SendUsingAccount
 Cancel = True
 Item.Delete
 End If
End Sub

Private Sub m_colInsp_NewInspector _
 (ByVal Inspector As Inspector)
 Set m_objInsp = Inspector
End Sub

Private Sub m_objInsp_Activate()
 Dim objItem As Object
 Set objItem = m_objInsp.CurrentItem
 If objItem.Class = olMail Then
 If objItem.Size = 0 Then
 objItem.SendUsingAccount = m_objDefAcct
 End If
 End If
End Sub

20.4 Creating a meeting request 639

message. This property has one significant limitation, though: On a new
message (not a reply or forward), it returns a value of Nothing. Further-
more, there is no property in Outlook to tell you which Account corre-
sponds to the user’s default email account, nor does an unsent message give
you any information in SendUsingAccount unless the user has explicitly
set an account for that message. Getting the user’s default account is not
impossible, though: To determine the default account, send a message and
check the SendUsingAccount property of the Item passed as a parameter
by the ItemSend event handler.

A practical application of this technique is to force Outlook to always
use the user’s default account to send messages. Normally, Outlook will
send a reply or forward using the account that the original message arrived
on. But some users want to receive on multiple accounts, but send only
with their default account. There are two parts to this solution—determin-
ing the default account and using that account to set the sending account
for all messages. Place all the code in Listing 20.4 in the built-in ThisOut-
lookSession module and run the Application_MAPILogonComplete
procedure or restart Outlook, which will cause the MAPILogonComplete
event handler to run automatically.

A new message always uses the default account for sending. The code in
the MAPILogonComplete event handler creates and sends such a new mes-
sage, and then the ItemSend event handler processes it to set a module-
level variable, m_objDefAcct, to the Account that represents the user’s
default account. That operation takes place only once—and therein lies the
limitation of this solution: If the user changes the default account during
the Outlook session, the value of m_objDefAcct does not change. The
MAPILogonComplete event handler also instantiates a module-level
Inspectors collection, m_colInsp.

For later messages that the user creates, the Inspectors.NewInspec-
tor and Inspector.Activate events fire. Code in the m_colInsp_
NewInspector event handler instantiates a module-level Inspector

object, m_objInsp. In the m_objInsp_ Activate event handler, Outlook
sets the SendUsingAccount property for any new outgoing message to the
user’s default Account, stored in m_objDefAcct.

For another example that uses the SendUsingAccount property, go
back to Listing 11.4 in Chapter 11.

20.4 Creating a meeting request
The secret to creating a meeting request, as opposed to a simple appoint-
ment, is the AppointmentItem.MeetingStatus property, which takes the
values from the OlMeetingStatus enumeration shown in Table 20.3.

640 20.4 Creating a meeting request

This VBA code snippet creates a new one-hour appointment for tomor-
row at 2 PM, turns it into a meeting request by setting the MeetingStatus
property, and then sends it:

Set objAppt = Application.CreateItem(olAppointmentItem)
With objAppt
 .Subject = "Project Meeting"
 .Start = DateAdd("h", Date, 38)
 .End = DateAdd("h", Date, 39)
 .MeetingStatus = olMeeting
 .Location = " "
 .RequiredAttendees = "flaviusj@turfleflock.net"
 .Send
End With

It is necessary to give the Location property some value—even if it’s
just a space—in order to avoid the prompt that Outlook displays when the
user attempts to send a meeting request with no Location information.
Also, remember that instead of setting the values for OptionalAttendees
and Resources, you can use the Recipients.Add method to add each in-
vitee and then set the Recipient.Type property appropriately to ol-
Optional or olResource, as we saw in the previous chapter.

To update a meeting that you have already created in your Calendar
folder, make whatever changes you need to make, and then call the Send
method again to generate a meeting update, for example:

objAppt.Location = "Conference Room B"
objAppt.Send

To cancel a meeting, change the MeetingStatus property value to
olMeetingCanceled and send again:

objAppt.MeetingStatus = olMeetingCanceled
objAppt.Send

To delete a meeting without sending a cancellation—for example, if you
were creating the meeting for someone else and don’t need it on your own
calendar—use the Delete method without sending a cancellation.

Table 20.3 OlMeetingStatus enumeration constants for use with AppointmentItem.MeetingStatus

Constant Value

olMeeting 1

olMeetingCanceled 5

olMeetingReceived 3

olMeetingReceivedAndCanceled 7

olNonMeeting 0

20.5 Assigning a task 641

To convert an appointment that was originally a meeting into a simple
non-meeting appointment, remove all the recipients and then set the value
of the MeetingStatus property to olNonMeeting. The ConvertMeet-
ingToAppt procedure in Listing 20.5 takes an AppointmentItem as its sole
parameter. Notice that the recipients are removed in a Do loop. An alterna-
tive would be to use a down-counting For ... Next loop.

20.5 Assigning a task
To assign a task to someone else, call the TaskItem.Assign method and
then add recipients. Tasks have three different recipient properties for dif-
ferent purposes:

Listing 20.5 Convert a meeting to a plain appointment

'VBA version
Sub ConvertMeetingToAppt(myMeeting As
Outlook.AppointmentItem)
 With myMeeting
 ' remove all recipients
 Do Until .Recipients.count = 0
 .Recipients.Remove 1
 Loop
 ' reset meeting status
 .MeetingStatus = olNonMeeting
 .Save
 End With
End Sub

'VBScript version
Sub ConvertMeetingToAppt(myMeeting)
 Const olNonMeeting = 0
 With myMeeting
 ' remove all recipients
 Do Until .Recipients.count = 0
 .Recipients.Remove 1
 Loop
 ' reset meeting status
 .MeetingStatus = olNonMeeting
 .Save
 End With
End Sub

Recipients Contains the person to whom the
task is assigned

StatusOnCompletionRecipients Semi-colon delimited string of
people who should be notified
when the task is completed

642 20.6 Linking Outlook items

If you don’t set StatusOnCompletionRecipients or StatusUpdate-
Recipients, Outlook automatically sets them to the original task creator.
This code snippet assigns an existing task (objTask) and sends the task
request:

Set objRecip = _
 objTask.Recipients.Add("flaviusj@turtleflock.net")
If objRecip.Resolved Then
 objTask.Send
End If

You can assign a task to only one person. If you need to assign it to mul-
tiple people, make as many copies of the task as you need and assign each to
a different person. To maintain some connection among these “subtasks,”
assign the same category to each one.

20.6 Linking Outlook items
Once you get a taste for Outlook items, especially for custom forms and
custom properties, you will probably encounter situations where you want
to link different Outlook items together. For example, you might want to
keep a master record for a company and be able to find the individual con-
tacts at that company easily. Or, you might have a project going and want
to collect all the items related to that project—messages, contacts, meetings,
tasks, and so on.

Different types of Outlook items offer various methods for linking with
other items. In this section, we look at both built-in methods and those
links that you can create with programming code.

The simplest way to create a connection among different items is to
assign the same category to them. Users can then search for the items by
category, or programming code can perform a search using the techniques
discussed in Chapter 16. You could, for example, use a different category
for all items related to each distinct project that you’re working on.

Two other approaches are common in Outlook applications:

In each item, use a standard or custom property to hold a unique ID
that your code can employ to look up a related item

Maintain a relationship between various items and a related contact
using the Links collection

The next few sections cover these techniques.

StatusUpdateRecipients Semi-colon delimited string of
people who should get a message
when the task is updated

20.6 Linking Outlook items 643

20.6.1 Linking with a unique identifier

One linking technique that is familiar to database programmers is the idea
of using a unique ID or key to look up an item. Because the key value is
unique, once you know that value, you can use the techniques discussed in
Chapter 16 to locate the one item that meets the condition key_field =
"key value".

To implement this kind of linking in an Outlook application, you need
to make two decisions:

What field should hold the key information

How to generate the key values

Each Outlook item has two standard text properties—BillingInfor-

mation and Mileage—that have no established function and thus can be
used to hold a key value. The ContactItem object has four additional text
properties, User1 through User4. If you are building an application for
your personal use, you can use any of these properties as a key. If you are
building an application for someone else, you can’t guarantee that they
won’t already be using these properties for some other purpose. In that case,
you should use a custom property, text or numeric depending on the type
of ID you plan to use.

How should you generate the key values? If your application needs a
unique identifier that will never appear in the user interface, you can use a
value from the EntryID property, which Outlook populates when an item is
saved for the first time. Take an item’s initial EntryID and copy it into the
field that you want to use to hold the key value for that item, for example:

objItem.Save
objItem.Mileage = objItem.EntryID
objItem.Save

The value of the item’s actual EntryID property may change if you
move the item (depending on the information store), but the value in the
key field won’t.

Tip: If the item is never moved, then you can use the EntryID property
itself as the key field and use the Namespace.GetItemFromID method to
return the item with a particular EntryID value.

If you prefer a human-readable ID, you can use the code in Listing 20.6,
which will work in VBA or VBScript. The DateID() function builds an ID
from the current date and time by mapping the month, hour, and the last
two digits of the year to alphabetic characters, leaving the day, minute, and

644 20.6 Linking Outlook items

second as numeric. For example, running the DateID() function on Janu-
ary 5, 2007, at 10:56:30 AM returns the string A05G-J5630. Running it
again five minutes later will return the string A05G-K0130.

The DateID() function will not reliably generate a guaranteed unique
ID if used in a high-volume situation, but it’s quite suitable for an Outlook
form where the user creates a new item at most every few minutes, but not
several items per second. If you want to use it in a multi-user environment,
you could use the Namespace.CurrentUser.Name property to return the
user’s name and append the initials or a few characters from the user’s name
to the string returned by DateID().

If you need a sequential number, not just a unique number, you can use
the GetLastNumber() function from Listing 15.7 to find the item with the
largest value for a particular field and then increment it.

To retrieve a linked item, use the Items.Find or Items.Restrict
method or one of the other search methods shown in Chapter 16 to search
the property that holds the key for the unique key value.

20.6.2 Understanding the Activities page

As explained in Chapter 4, the contact form has a special page called Activ-
ities that can display items related to the current contact. The different
activities groups shown on the page are defined in the Properties dialog for
the parent contacts folder. An activities group cannot show multiple
Exchange public folders, nor can it show folders from different information
stores. It also cannot show multiple folders from another user’s Exchange
mailbox. That somewhat limits the Activities page’s usefulness, especially in
Exchange public and shared folder applications.

Listing 20.6 Build an ID from the current date/time

Function DateID()
 DateID = Chr(64 + Month(Now)) & _
 AddLeadingZeroUnderTen(Day(Now)) & _
 Chr(64 + Right(Year(Now), 2)) & _
 "-" & Chr(64 + Hour(Now)) & _
 AddLeadingZeroUnderTen(Minute(Now)) & _
 AddLeadingZeroUnderTen(Second(Now))
End Function

Function AddLeadingZeroUnderTen(strNum)
 If CInt(strNum) < 10 Then
 strNum = "0" & strNum
 End If
 AddLeadingZeroUnderTen = strNum
End Function

20.6 Linking Outlook items 645

Outlook uses a variety of properties to build the lists that show in the
Activities page—including the sender and recipients on mail messages, invi-
tees on appointments, and people assigned to perform different tasks. It
also uses a special collection called Links that allows the user to make a
connection manually between an Outlook item and any contact. That’s the
subject of the next section.

20.6.3 Using the Links collection

The contact-linking feature is turned off by default in Outlook 2007
(unlike previous versions). To enable it, the user can choose Tools | Options
| Contact Options and check the box for “Show Contact Linking on all
Forms.” Administrators can enable this feature with a Group Policy Object.

If the user has turned on contact linking, a Contacts button and text box
(see Figure 20.6) will appear at the bottom of each task, appointment, contact,
and journal entry and on the Options dialog for a mail message. For “sticky
notes,” the Contacts command appears on the menu for the top-left icon.
Click the Contacts button to display the default Contacts folder in a dialog
box, where you can select one or more contacts related to the item. The user
can also navigate to other contact folders to pick a contact to link to.

Figure 20.6 Choose one or more contacts to link to the current item.

646 20.6 Linking Outlook items

Note: Clicking the Contacts button always displays the user’s default Con-
tacts folder. Outlook provides no way to display a different folder program-
matically. It’s up to the user to navigate to some other contacts folder.
However, as we saw in Listing 18.8, the address book dialog can be used as
a substitute for selecting contact links, especially if it is essential to your cus-
tom form application that the links be chosen from a particular folder.

When the user adds a contact link, Outlook stores that link in the cur-
rent item’s Links collection. If you modify a contact to add a link to
another contact, the linking is reciprocal; Outlook automatically adds a link
from the linked contact back to the current item.

While you can create a link on any type of Outlook item, the target of a
link can only be a contact. You cannot, for example, link a task to an
appointment with the Links collection.

If you don’t want to select a contact from the Select Contacts dialog, you
can also type a name into the box next to the Contacts button. When you
save the item, Outlook will resolve the link to the actual contact, just as it
resolves a name in an email message’s To box. You cannot link to an entry in
the Global Address List from an Exchange server, though, only to an Out-
look contact.

If a name is underlined in the Contacts box, the user can double-click it
to open the related contact. (Names that are not underlined do not have
matching contact entries.) As a programmer, you can gain access to the tar-
get contact for a link through the Links collection. This collection sup-
ports the standard Add, Item, and Remove methods that you have seen for
other Outlook collections. An individual Link object has an Item property
that returns the actual ContactItem object that the Link points to. Thus,
you can return a linked contact from a task, for example, with a statement
like this:

Set objContact = objTask.Links(1).Item

Tip: When programming the Links.Add method to add a link on a newly
created Outlook item, you must save the item first.

One limitation of the Links collection is that all the links will be bro-
ken if the user exports the data, then imports it onto another machine.
Even if a contact name is still underlined, double-clicking it will not pop
up the related contact. You can, however, use the ReconnectLinks sub-
routine in Listing 20.7, for Outlook VBA, to try to reconnect the links to
the right contacts. To test the procedure, display the folder you want to

20.6 Linking Outlook items 647

Listing 20.7 Restore connection using the Links collection

Sub ReconnectLinks(fld As Outlook.Folder)
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objContTable As Outlook.Table
 Dim objItem As Object
 Dim colItems As Outlook.Items
 Dim objContact As Outlook.ContactItem
 Dim objRow As Outlook.Row
 Dim colLinks As Outlook.Links
 Dim objLink As Outlook.Link
 Dim objMsg As Outlook.MailItem
 Dim objRecip As Outlook.Recipient
 Dim objAE As Outlook.AddressEntry
 Dim strFind As String
 Dim strFindContact As String
 Dim intCount As Integer
 Dim i As Integer
 Dim SEARCH_CONTACTS As String
 Const PR_MESSAGE_CLASS = _
 "http://schemas.microsoft.com/mapi/proptag/0x001A001E"
 On Error Resume Next
 Set objOL = fld.Application
 Set objNS = objOL.Session
 Set objContTable = _
 objNS.GetDefaultFolder(olFolderContacts).GetTable
 SEARCH_CONTACTS = "http://schemas.microsoft.com/" & _
 "mapi/id/{00062008-0000-0000-C000-000000000046}/" & _
 "8586001E"
 strFind = "NOT (" & Quote(SEARCH_CONTACTS) & " IS NULL)"
 Set colItems = fld.Items.Restrict("@SQL=" & strFind)
 For Each objItem In colItems
 Set colLinks = objItem.Links
 intCount = colLinks.Count
 If intCount > 0 Then
 For i = intCount To 1 Step -1
 Set objLink = colLinks.item(i)
 If objLink.item Is Nothing Then
 strFindContact = _
 Quote("urn:schemas:contacts:cn") & _
 " = '" & objLink.Name & _
 "' AND " & _
 Quote(PR_MESSAGE_CLASS) & _
 " LIKE 'IPM.Contact%'"
 Set objRow = objContTable.FindRow _
 ("@SQL=" & strFindContact)
 If Not objRow Is Nothing Then
 colLinks.Remove i
 Set objContact = objNS.GetItemFromID _
 (objRow.item("EntryID"))
 colLinks.Add objContact

648 20.6 Linking Outlook items

process, and then call ReconnectLinks with this statement in the VBA
Immediate window:

ReconnectLinks Application.ActiveExplorer.CurrentFolder

The ReconnectLinks procedure uses two of the different search proce-
dures we learned about in Chapter 16. First, it uses an Items.Restrict
statement to return an Items collection of all items in the folder that have a
non-empty Links collection. Then it uses the FindRow method on a Table
object for the default Contacts folder to try to locate a contact matching the
link. (The Link.Name property stores the value of the FullName property
of the original linked contact.) If it finds a match, it gets the EntryID value
of the item using the Row.Item method, returns a contact using
Namespace.GetItemFromID and that EntryID value, and finally, creates a
link using that contact.

 Else
 Set objMsg = objOL.CreateItem(olMailItem)
 Set objRecip = _
 objMsg.Recipients.Add(objLink.Name)
 If objRecip.Resolve Then
 Set objAE = objRecip.AddressEntry
 If objAE.AddressEntryUserType = _
 olOutlookContactAddressEntry Then
 colLinks.Remove i
 colLinks.Add objAE.GetContact
 End If
 End If
 End If
 End If
 objItem.Save
 Next
 End If
 Next
 MsgBox "Done!", vbInformation, "Reconnect Links"
 Set objOL = Nothing
 Set objNS = Nothing
 Set objContTable = Nothing
 Set colItems = Nothing
 Set objItem = Nothing
 Set objContact = Nothing
 Set objRecip = Nothing
 Set objAE = Nothing
 Set colLinks = Nothing
 Set objLink = Nothing
End Sub

Private Function Quote(val) As String
 Quote = Chr(34) & CStr(val) & Chr(34)
End Function

Listing 20.7 Restore connection using the Links collection (continued)

20.7 Creating an annual event from a custom date field 649

If there is no matching contact in the Contacts folder, the Recon-
nectLinks procedure makes one more attempt to find a matching contact
in the contacts folders. It creates a new mail message, adds the name as a
recipient, and if the name can be resolved to a contact’s address, it uses that
contact (returned by Outlook 2007’s new AddressEntry.GetContact
method) to create a new link.

20.6.4 Example: Add a contact phone number
to a task

Any Outlook folder view shows only the data in that folder, although Out-
look does not prevent you from adding fields appropriate for other folders
to the view. For example, you can drag the Business Phone field to a Tasks
folder view, expecting that it will show the phone numbers of linked con-
tacts, but that field will stay empty because the Tasks folder itself contains
no data in that field.

To populate tasks with phone or other information from linked con-
tacts, you can use a VBA event handler to watch for new items in your
Tasks folder, look up any linked contact, and add the phone information.
Put the code in Listing 20.8 in the ThisOutlookSession module in Out-
look VBA and then either run the Application_Startup procedure or
restart Outlook to initialize the event-enabled m_colTasks object.

The code in Listing 20.8 is like the other ItemAdd examples we saw in
Chapter 11. It instantiates an Items collection for the Tasks folder and
then watches for new tasks. If a new task’s Subject property contains the
word “call” or “phone,” the ItemAdd event handler looks for a contact
linked to the task. If it finds one, it appends the contact’s business, home, or
mobile number to the task subject.

20.7 Creating an annual event from a custom
date field

If you add an additional date field to a custom contact form, Outlook does
not give such date fields the same functionality as the standard Birthday
and Anniversary properties. It does not automatically create an annual
event in the Calendar folder when the user sets a value for a custom date
field.

You can build your own solution to create related annual events using
either VBScript code behind a custom contact form or VBA code that
monitors the Contacts folder for new and changed items. The VBA tech-
nique is similar to that shown in Listing 20.8. As you’ll see, the VBA
approach has a couple of advantages over the VBScript method.

650 20.7 Creating an annual event from a custom date field

We’ll build both solutions, using a custom date field named Employee-
StartDate, so you can see that they have a lot in common. Both handle
four different scenarios:

Creating a related appointment after the user fills in the Employee-
StartDate for the first time

Updating the related appointment when the user changes the
EmployeeStartDate

Listing 20.8 Add phone numbers for task calls

Private WithEvents m_colTasks As Outlook.Items

Private Sub Application_Startup()
 Dim objNS As Outlook.NameSpace
 Set objNS = Application.Session
 Set m_colTasks = _
 objNS.GetDefaultFolder(olFolderTasks).Items
 Set objNS = Nothing
End Sub

Private Sub m_colTasks_ItemAdd(ByVal Item As Object)
 Dim objTask As Outlook.TaskItem
 Dim objContact As Outlook.ContactItem
 Dim strPhone As String
 On Error Resume Next
 If Item.Class = olTask Then
 Set objTask = Item
 If InStr(1, objTask.Subject, "Phone", _
 vbTextCompare) > 0 Or _
 InStr(1, objTask.Subject, "Call", _
 vbTextCompare) > 0 Then
 If objTask.Links.Count > 0 Then
 Set objContact = objTask.Links(1).Item
 strPhone = objContact.BusinessTelephoneNumber
 If strPhone = "" Then
 strPhone = objContact.HomeTelephoneNumber
 End If
 If strPhone = "" Then
 strPhone = _
 objContact.MobileTelephoneNumber
 End If
 End If
 End If
 If strPhone <> "" Then
 objTask.Subject = objTask.Subject & " - " & strPhone
 objTask.Save
 End If
 End If
 Set objTask = Nothing
 Set objContact = Nothing
End Sub

20.7 Creating an annual event from a custom date field 651

Deleting the related appointment if the user changes the Employee-
StartDate to “None”

Deleting the related appointment if the user deletes the contact

For the VBScript solution, open a contact form in design mode. In the
Field Chooser, add an EmployeeStartDate date property. Drag that prop-
erty to any custom page. Add the code in Listing 20.9 to the form. Finally,
publish the form to the Contacts folder with the display name “Date
Form.”

To test the custom form, click the Actions menu, and choose New Date
Form. Enter a value for the person’s name and EmployeeStartDate, and
then save the item. You should see a link appear in the item body. Double-
click it and Outlook should display the related appointment with the cor-
rect date. Close the contact, and then delete it. If you look in the Calendar
folder, the related appointment should still be there.

Now, repeat the test without closing the item. Delete the contact using
the Delete command in the open item. Check the Calendar: The related
appointment should be gone, too.

What you’re seeing is the significant limitation of the BeforeDelete
event for individual items. This event fires only when an item is open in an
Inspector window. If the user deletes the item from a folder view,
BeforeDelete does not fire.

The other limitation of the VBScript approach is that we can’t create a
link in the appointment’s Links collection to point back to the original
contact. The obstacle is that we need a saved contact in order to create a
link, but we’re creating the appointment in the contact’s Item_Write event
handler, where the contact is not yet saved.

Listing 20.9 Create an appointment related to a custom date property (VBScript)

Dim m_dteEmployeeStart ' As Date

Function Item_Open()
 If Item.Size = 0 Then
 Item.UserProperties("EmployeeStartDate") = #1/1/4501#
 End If
 m_dteEmployeeStart = _
 Item.UserProperties("EmployeeStartDate")
End Function

Function Item_Write()
 Dim objAppt ' As Outlook.AppointmentItem
 Dim objAtt ' As Outlook.Attachment
 Const olByReference = 4
 On Error Resume Next

652 20.7 Creating an annual event from a custom date field

 ' contact never had a start date before
 ' create the related appointment
 If m_dteEmployeeStart = #1/1/4501# Then
 If Item.UserProperties("EmployeeStartDate") _
 <> #1/1/4501# Then
 Set objAppt = CreateAllDayAppt(_
 Item.UserProperties("EmployeeStartDate"), 1)
 objAppt.Subject = Item.FullName & "'s Start Date"
 objAppt.Save
 Item.Attachments.Add objAppt, olByReference
 m_dteEmployeeStart = _
 Item.UserProperties("EmployeeStartDate")
 End If
 ' contact had a start date earlier but now has none
 ' delete the related appointment
 ElseIf Item.UserProperties("EmployeeStartDate") _
 = #1/1/4501# Then
 Set objAppt = GetContactStartAppt()
 objAppt.Delete
 For Each objAtt In Item.Attachments
 If objAtt.Type = olByReference Then
 If objAtt.DisplayName = _
 Item.FullName & "'s Start Date" Then
 objAtt.Delete
 Exit For
 End If
 End If
 Next
 ' contact's start date has changed
 ' update the related appointment
 ElseIf Item.UserProperties("EmployeeStartDate") _
 <> m_dteEmployeeStart Then
 Set objAppt = GetContactStartAppt()
 If Not objAppt Is Nothing Then
 objAppt.Start = CDate(FormatDateTime _
 (Item.UserProperties("EmployeeStartDate"), _
 vbShortDate))
 objAppt.Save
 End If
 m_dteEmployeeStart = _
 Item.UserProperties("EmployeeStartDate")
 End If
 Set objAppt = Nothing
 Set objAtt = Nothing
End Function

Function Item_BeforeDelete(ByVal Item)
 Dim objAppt ' As Outlook.AppointmentItem
 On Error Resume Next
 If Item.UserProperties("EmployeeStartDate") _
 <> #1/1/4501# Then
 Set objAppt = GetContactStartAppt()

Listing 20.9 Create an appointment related to a custom date property (VBScript) (continued)

20.7 Creating an annual event from a custom date field 653

 If Not objAppt Is Nothing Then
 objAppt.Delete
 End If
 End If
End Function

Function CreateAllDayAppt(startDate, numDays)
 Dim objAppt ' As Outlook.AppointmentItem
 Dim objRP ' As Outlook.RecurrencePattern
 Const olAppointmentItem = 1
 Const olRecursYearly = 5
 Set objAppt = Application.CreateItem(olAppointmentItem)
 Set objRP = objAppt.GetRecurrencePattern
 With objRP
 .RecurrenceType = olRecursYearly
 .DayOfMonth = Day(startDate)
 .MonthOfYear = Month(startDate)
 .PatternStartDate = objAppt.Start
 .StartTime = #12:00:00 AM#
 .NoEndDate = True
 .Interval = 1
 .Duration = numDays * 24 * 60
 End With
 With objAppt
 .AllDayEvent = True
 .ReminderSet = False
 End With
 Set CreateAllDayAppt = objAppt
 Set objAppt = Nothing
End Function

Function GetContactStartAppt()
 Dim objNS ' As Outlook.NameSpace
 Dim objCal ' As Outlook.Folder
 Dim strFind ' As String
 Dim colItems ' As Outlook.Items
 Const olFolderCalendar = 9
 On Error Resume Next
 Set objNS = Application.Session
 Set objCal = objNS.GetDefaultFolder(olFolderCalendar)
 strFind = Quote("urn:schemas:httpmail:subject") & _
 " = '" & Item.FullName & "''s Start Date'"
 Set colItems = objCal.Items.Restrict("@SQL=" & strFind)
 If colItems.Count > 0 Then
 Set GetContactStartAppt = colItems.GetFirst
 End If
 Set objNS = Nothing
 Set objCal = Nothing
End Function

Function Quote(val)
 Quote = Chr(34) & CStr(val) & Chr(34)
End Function

Listing 20.9 Create an appointment related to a custom date property (VBScript) (continued)

654 20.7 Creating an annual event from a custom date field

The VBA approach to this scenario gets around both those problems.
Again, you need a custom form, but the form won’t run any code. Create a
custom contact form containing two custom fields—EmployeeStartDate

and OldEmployeeStartDate, making sure that both fields are visible on
the “User-defined fields in this item” list on the All Fields page of the form
in design mode. If you display the OldEmployeeStartDate property on a
custom page, set its control to read-only. Publish the form to your Contacts
folder with the display name “Date Form VBA” and message class
“IPM.Contact.Date Form VBA.” Add the code in Listing 20.10 to the
ThisOutlookSession module in Outlook VBA, then either restart Out-
look or run the Application_MAPILogonComplete procedure to initialize
the objects declared WithEvents.

To test this approach, display the Contacts folder, and use the Actions |
New Date Form VBA command to launch a new contact using the custom
form. As before, set a value for the EmployeeStartDate property and save
the contact. Experiment with deleting contacts from both the folder view
and the open Inspector window. With the VBA approach, you should see
links in the appointment items’ Contacts box and also see the appointment
items disappear when the related contacts are deleted, even if you delete a
contact from its Inspector window.

Note: The VBA approach uses the new Folder.BeforeItemMove event in
Outlook 2007. This cancelable event fires whenever the user moves or
deletes an item from the folder. It passes the item that will be deleted or
moved as a parameter.

Both solutions require a way to track the original value of Employee-
StartDate, in order to respond to a change in value. The VBScript version
uses a module-level variable (m_dteEmployeeStart), while the VBA ver-
sion uses a second custom property (OldEmployeeStartDate). Using the
CustomPropertyChange event in the VBScript version would be overkill,
because we’re only interested in whether the property has changed values
since the last time it was saved.

Also worth noting is the way that the code looks up the related appoint-
ment, with a DASL query:

strFind = Quote("urn:schemas:httpmail:subject") & _
 " = '" & cont.FullName & "''s Start Date'"
Set colItems = objCal.Items.Restrict("@SQL=" & strFind)

The code creates appointments whose Subject property uses the for-
mat “Full Name’s Start Date.” A DASL search string for Items.Restrict
can handle the apostrophe in the subject while a Jet search string for
Items.Find can’t.

20.7 Creating an annual event from a custom date field 655

Listing 20.10 Create an appointment related to a custom date property (VBA)

Private WithEvents colContacts As Outlook.Items
Private WithEvents objContacts As Outlook.Folder

Private Sub Application_MAPILogonComplete()
 Dim objNS As Outlook.NameSpace
 Set objNS = Application.Session
 Set objContacts = _
 objNS.GetDefaultFolder(olFolderContacts)
 Set colContacts = objContacts.Items
 Set objNS = Nothing
End Sub

Private Sub colContacts_ItemAdd(ByVal Item As Object)
 Dim objAppt As Outlook.AppointmentItem
 On Error Resume Next
 If Item.MessageClass = "IPM.Contact.Date Form VBA" Then
 If Item.UserProperties("EmployeeStartDate") _
 <> #1/1/4501# Then
 Set objAppt = CreateAllDayAppt(_
 Item.UserProperties("EmployeeStartDate"), 1)
 objAppt.Subject = Item.FullName & "'s Start Date"
 objAppt.Links.Add Item
 objAppt.Save
 Item.Attachments.Add objAppt, olByReference
 Item.UserProperties("OldEmployeeStartDate") = _
 Item.UserProperties("EmployeeStartDate")
 Item.Save
 End If
 End If
 Set objAppt = Nothing
End Sub

Private Sub colContacts_ItemChange(ByVal Item As Object)
 Dim objAppt As Outlook.AppointmentItem
 On Error Resume Next
 If Item.MessageClass = "IPM.Contact.Date Form VBA" Then
 If Item.UserProperties("OldEmployeeStartDate") <> _
 Item.UserProperties("EmployeeStartDate") Then
 Set objAppt = GetContactStartAppt(Item)
 If Not objAppt Is Nothing Then
 objAppt.Start = CDate(FormatDateTime _
 (Item.UserProperties("EmployeeStartDate"), _
 vbShortDate))
 objAppt.Save
 End If
 Item.UserProperties("OldEmployeeStartDate") = _
 Item.UserProperties("EmployeeStartDate")
 Item.Save
 End If
 End If
 Set objAppt = Nothing
End Sub

656 20.7 Creating an annual event from a custom date field

Private Sub objContacts_BeforeItemMove(ByVal Item As Object, _
 ByVal MoveTo As MAPIFolder, Cancel As Boolean)
 Dim objNS As Outlook.NameSpace
 Dim objDelItms As Outlook.Folder
 Dim objAppt As Outlook.AppointmentItem
 Dim blnDelAppt As Boolean
 If Item.MessageClass = "IPM.Contact.Date Form VBA" Then
 If MoveTo Is Nothing Then
 blnDelAppt = True
 Else
 Set objNS = Application.Session
 Set objDelItms = _
 objNS.GetDefaultFolder(olFolderDeletedItems)
 If MoveTo.EntryID = objDelItms.EntryID Then
 blnDelAppt = True
 End If
 End If
 End If
 If blnDelAppt Then
 Set objAppt = GetContactStartAppt(Item)
 If Not objAppt Is Nothing Then
 objAppt.Delete
 End If
 End If
 Set objNS = Nothing
 Set objDelItms = Nothing
 Set objAppt = Nothing
End Sub

Function CreateAllDayAppt _
 (startDate As Date, numDays As Integer) _
 As Outlook.AppointmentItem
 Dim objAppt As Outlook.AppointmentItem
 Dim objRP As Outlook.RecurrencePattern
 Set objAppt = Application.CreateItem(olAppointmentItem)
 Set objRP = objAppt.GetRecurrencePattern
 With objRP
 .RecurrenceType = olRecursYearly
 .DayOfMonth = Day(startDate)
 .MonthOfYear = Month(startDate)
 .PatternStartDate = objAppt.Start
 .StartTime = #12:00:00 AM#
 .NoEndDate = True
 .Interval = 1
 .Duration = numDays * 24 * 60
 End With
 With objAppt
 .AllDayEvent = True
 .ReminderSet = False
 End With
 Set CreateAllDayAppt = objAppt
 Set objAppt = Nothing
End Function

Listing 20.10 Create an appointment related to a custom date property (VBA) (continued)

20.7 Creating an annual event from a custom date field 657

Another key technique that this sample demonstrates is creating a recur-
ring appointment. Outlook stores recurrence details in a RecurrencePat-
tern object—in this example, objRP:

Set objRP = objAppt.GetRecurrencePattern
With objRP
 .RecurrenceType = olRecursYearly
 .DayOfMonth = Day(startDate)
 .MonthOfYear = Month(startDate)
 .PatternStartDate = objAppt.Start
 .StartTime = #12:00:00 AM#
 .NoEndDate = True
 .Interval = 1
 .Duration = numDays * 24 * 60
End With
With objAppt
 .AllDayEvent = True
 .ReminderSet = False
End With

When creating a recurring appointment, set the RecurrenceType prop-
erty first, and then set the properties that define the details of the recur-
rence, such as the month and day in which a yearly appointment occurs.

If you plan to implement the VBA solution permanently, you might
want to make the custom form the default for your Contacts folder and
convert existing items to use it, as discussed in the next chapter. If you use a

Private Function GetContactStartAppt _
 (cont As Outlook.ContactItem) As Outlook.AppointmentItem
 Dim objNS As Outlook.NameSpace
 Dim objCal As Outlook.Folder
 Dim strFind As String
 Dim colItems As Outlook.Items
 On Error Resume Next
 Set objNS = Application.Session
 Set objCal = objNS.GetDefaultFolder(olFolderCalendar)
 strFind = Quote("urn:schemas:httpmail:subject") & _
 " = '" & cont.FullName & "''s Start Date'"
 Set colItems = objCal.Items.Restrict("@SQL=" & strFind)
 If colItems.Count > 0 Then
 Set GetContactStartAppt = colItems.GetFirst
 End If
 Set objNS = Nothing
 Set objCal = Nothing
End Function

Private Function Quote(val) As String
 Quote = Chr(34) & CStr(val) & Chr(34)
End Function

Listing 20.10 Create an appointment related to a custom date property (VBA) (continued)

658 20.8 Summary

different message class, be sure to change the value in the Item.Message-
Class = expressions to match.

20.8 Summary
Individual Outlook items support a great deal of built-in functionality, such
as task assignments, meeting requests, recurrence patterns for appointments
and tasks, custom actions to add new commands, and links between items
and contacts. The key to putting that functionality to work is using the
methods and properties that each item supports.

Event handlers, either behind custom forms or in VBA, can enhance
Outlook’s functionality, especially by creating or updating items related to
existing items. Specific examples in this chapter have included custom
actions to restore a contact command that Outlook 2007 omits, a vacation
request form that generates an approved appointment ready to save in the
requestor’s Calendar, tasks that look up phone numbers for contacts, and
appointments related to a custom date field on a contact.

Pay special attention to the limitations on the use of custom message
forms. Unless you can publish a message to the Organizational Forms
library on an in-house Exchange server or in each user’s Personal Forms
library, you’re not going to be able to use that form for data gathering or
any other task that requires code behind the form.

659

21
Deploying and Managing Outlook Forms

By now, you may have quite a few Outlook forms that you’re eager to put
into action, and perhaps even share them with other people. But before you
start depending on those forms in your daily work, it’s important to under-
stand the architecture behind Outlook custom forms, so that you can antic-
ipate and (hopefully) avoid potential problems.

Four specific architectural issues deserve special attention. We need to
consider how Outlook decides which form to display for a certain message
class, given that there are three different types of form libraries, plus the
new form regions in Outlook 2007. Second, unexpected and unwanted
effects occur in situations where the form becomes part of the data item, a
situation known to Outlook developers as one-off forms. Third, for best
results, the fields in a form and a folder should match. Finally, for better
performance, Outlook caches custom forms locally. Recovering from forms
cache corruption is an important technique.

We’ll also cover key maintenance issues, such as publishing and remov-
ing forms programmatically, importing data with a custom form, and con-
verting existing items to use a custom form.

Highlights of this chapter include discussions of the following:

What key architectural issues can cause problems for Outlook forms
developers

Where Outlook looks for custom form definitions

How to publish an Outlook form programmatically

How to create custom form items using imported data

How to convert existing items to use a custom form

How to use the Forms Manager to move and delete forms

660 21.1 Understanding Outlook forms architecture

21.1 Understanding Outlook forms architecture
You can build legacy Outlook forms without understanding the underlying
architecture, but it helps to know how forms interact with Outlook data
items. An Outlook form is a template that provides a custom view of the
data that an individual Outlook item contains. It may also contain code
that modifies the behavior of an individual item to add new functionality or
suppress existing functionality for that type of item. The form’s designer
decides what information should be displayed to the user, what it should
look like, and what interactivity the form should offer.

One of the most confusing things about legacy custom form design in
Outlook is that the form designer presents three different commands that
can save the form. The three methods available are:

Click the Office button, and then click Save. This saves the form
design and the item (that is, the data record) in the default Outlook
folder for that type of item. The form design is embedded in the
item. This embedded form is called a one-off form. Such a form can-
not run any VBScript code behind the form and causes the item to be
much larger than an item without an embedded form. Therefore,
using Save to save a form and data item together is not recom-
mended.

Click the Office button, and then click Save As to save the form as an
Outlook template .oft file. Use this technique to make backup copies
of your custom forms. To use a saved .oft file form, use the Tools |
Forms | Choose Form or Design Form command. Such a form will
not run code.

In the Form group in design mode, click Publish. This publishes the
form in the forms library you choose. Only a published form can run
VBScript code. This is the preferred method for putting forms into
production.

Of these three commands, you should be using only the last one to put
your forms into production.

Note: If you alter an Outlook item—say, by typing some text into a blank
message—and save it as an .oft file, that file technically is also a custom
form. However, if it doesn’t have custom fields, a custom layout, or code
behind it, it can be opened by double-clicking it. You don’t have to use the
Choose Form command. Throughout the rest of this chapter, we’ll be talk-
ing about published forms, not these “templates” that don’t have custom
page layouts or code.

21.1 Understanding Outlook forms architecture 661

Publishing a form stores the form definition as a hidden Outlook item
in the target location. This hidden item has a MessageClass property
value of IPM.Microsoft.FolderDesign.FormsDescription. Table 21.1 lists
the three locations where you can publish a form.

Note: In the Tools | Forms | Choose Form dialog, you will also see a Stan-
dard Forms library. This is the library of standard Outlook forms. You can-
not publish custom forms to it or modify any of the forms it contains.

As discussed in the previous chapter, to be fully functional, message
forms with code behind them must be published to the Organizational
Forms or Personal Forms library, not to a folder library. Non-message forms
for use with items in a folder are usually published to that folder. If you
want to replace one of the standard non-message forms with your own cus-
tom form, as described later in the chapter, the custom form must be pub-
lished to the Personal Forms or Organizational Forms library.

Tip: Understanding how custom forms are stored helps explain why per-
forming an export with Outlook’s File | Import and Export command does
not transfer any custom forms; only the data items are exported, not the
hidden form items. Also not exported are custom views and field defini-
tions for a folder, which also are stored as hidden items.

To see a list of the forms stored in a particular folder, use the EnumCus-
tomForms() VBA procedure in Listing 21.1, which lists the display name
and message class in the Immediate window. Call it like this to generate a
list of the forms in your Personal Forms library:

Call EnumCustomForms(olPersonalRegistry)

Table 21.1 Three Types of Outlook Form Libraries

Form Library Purpose Location

Organizational Forms Forms for enterprise-wide use in an orga-
nization using Microsoft Exchange as its
mail server

Hidden system folder on the Exchange
server

Personal Forms Forms for the user’s personal use Hidden folder in the root of the user’s
default information store

Folder libraries Forms for use with a particular folder,
often a folder in an Exchange server’s Pub-
lic Folders hierarchy

In the particular folder

662 21.1 Understanding Outlook forms architecture

Listing 21.1 List the custom forms in a folder

Sub EnumCustomForms(reg As Outlook.OlFormRegistry, _
 Optional fld As Outlook.Folder)
 Dim objTable As Outlook.Table
 Dim objRow As Outlook.Row
 Dim objFld As Outlook.Folder
 Dim strFind As String
 Const SEARCH_FORM_MESSAGECLASS = _
 "http://schemas.microsoft.com/mapi/proptag/0x6800001E"
 Const PR_DISPLAY_NAME = _
 "http://schemas.microsoft.com/mapi/proptag/0x3001001E"
 On Error Resume Next
 Select Case reg
 Case olPersonalRegistry
 Set objFld = GetCommonViews()
 If Not objFld Is Nothing Then
 Debug.Print "Forms in Personal Forms Library"
 Else
 Debug.Print "Could not get Personal Forms"
 End If
 Case olFolderRegistry
 If fld Is Nothing Then
 Debug.Print "Must supply folder argument"
 Else
 Set objFld = fld
 End If
 Case olOrganizationRegistry
 Set objFld = GetOrgForms()
 If Not objFld Is Nothing Then
 Debug.Print "Forms in Organizational Forms: "
 Else
 Debug.Print "Could not get Org Forms"
 End If
 End Select
 If Not objFld Is Nothing Then
 strFind = "[MessageClass] = " & _
 Quote("IPM.Microsoft.FolderDesign.FormsDescription")
 Set objTable = objFld.GetTable(strFind, olHiddenItems)
 objTable.Columns.Add PR_DISPLAY_NAME
 objTable.Columns.Add SEARCH_FORM_MESSAGECLASS
 objTable.Restrict strFind
 Do Until objTable.EndOfTable
 Set objRow = objTable.GetNextRow
 Debug.Print , objRow(PR_DISPLAY_NAME), _
 objRow(SEARCH_FORM_MESSAGECLASS)
 Loop
 End If
 Set objFld = Nothing
 Set objTable = Nothing
 Set objRow = Nothing
End Sub

21.1 Understanding Outlook forms architecture 663

Function GetCommonViews() As Outlook.Folder
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objStore As Outlook.Store
 Dim objPA As Outlook.PropertyAccessor
 Dim strEntryID As String
 Const PR_COMMON_VIEWS_ENTRYID = _
 "http://schemas.microsoft.com/mapi/proptag/0x35E60102"
 Set objOL = Application
 Set objNS = objOL.Session
 Set objStore = objNS.DefaultStore
 Set objPA = objStore.PropertyAccessor
 strEntryID = objPA.BinaryToString _
 (objPA.GetProperty(PR_COMMON_VIEWS_ENTRYID))
 If strEntryID <> "" Then
 Set GetCommonViews = objNS.GetFolderFromID(strEntryID)
 End If
 Set objOL = Nothing
 Set objNS = Nothing
 Set objStore = Nothing
 Set objPA = Nothing
End Function

Function GetOrgForms() As Outlook.Folder
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objStore As Outlook.Store
 Dim objPA As Outlook.PropertyAccessor
 Dim strEntryID As String
 Dim blnPFFound As Boolean
 Dim objFolder As Outlook.Folder
 Const PR_EFORMS_REGISTRY_ENTRYID = _
 "http://schemas.microsoft.com/mapi/proptag/0x66210102"
 Set objOL = Application
 Set objNS = objOL.Session
 For Each objStore In objNS.Stores
 If objStore.ExchangeStoreType = _
 olExchangePublicFolder Then
 blnPFFound = True
 Exit For
 End If
 Next
 If blnPFFound Then
 Set objPA = objStore.PropertyAccessor
 strEntryID = objPA.BinaryToString _
 (objPA.GetProperty(PR_EFORMS_REGISTRY_ENTRYID))
 If strEntryID <> "" Then
 Set objFolder = objNS.GetFolderFromID(strEntryID)
 If Not objFolder Is Nothing Then
 Set objFolder = objFolder.folders.GetFirst
 End If
 End If

Listing 21.1 List the custom forms in a folder (continued)

664 21.1 Understanding Outlook forms architecture

Call it like this to generate a list of the forms in the currently displayed
folder:

Call EnumCustomForms(olFolderRegistry, _
 Application.ActiveExplorer.CurrentFolder)

Notice that because the forms are hidden items, the code calls the
Folder.GetTable method in a way that returns only such hidden items:

Set objTable = objFld.GetTable(strFind, olHiddenItems)

The GetCommonViews() function returns a hidden folder at the root of
the default information store that holds forms for the Personal Forms
library, cached copies of folder views, information about search folders, and
other storage items that Outlook uses internally. Similarly, the GetOrg-
Forms() function returns the hidden folder that holds forms published to
the Organizational Forms library. Both these functions depend on the fact
that the default store and the Public Folders store each have hidden proper-
ties that store the EntryID values for other key Outlook folders.

21.1.1 Understanding the forms cache

To improve performance, Outlook uses a folder on the local hard drive to
cache a copy of each published form that the user invokes. This folder is not
normally visible to the user in Windows Explorer. On Windows XP and
Windows Server 2003, the location of that folder is %userprofile%\Local
Settings\Application Data\Microsoft\FORMS. Windows Vista machines
(see Figure 21.1) use %userprofile%\appdata\local\Microsoft\FORMS.
The location of the forms cache folder cannot be changed.

The forms cache contains a folder for each form, plus a FRM-
CACHE.DAT file that holds information about what’s in the cache. If a
form is used in multiple folders, the cache will keep folder-specific copies
of the form. In other words, if you use a form named IPM.Task.MyForm
in three different folders, the forms cache may contain three separate

 End If
 Set GetOrgForms = objFolder
 Set objOL = Nothing
 Set objNS = Nothing
 Set objStore = Nothing
 Set objPA = Nothing
 Set objFolder = Nothing
End Function

Private Function Quote(val) As String
 Quote = Chr(34) & CStr(val) & Chr(34)
End Function

Listing 21.1 List the custom forms in a folder (continued)

21.1 Understanding Outlook forms architecture 665

folders for that form with folder names like IPM.Task.MyForm,
IPM.Task.MyForm000, and IPM.Task.MyForm001.

By default, Outlook maintains the size of the forms cache at 2MB,
removing the oldest unused forms as necessary to keep the size under the
limit. The user can change the size of the forms cache with the Manage
Forms dialog discussed later in the chapter. The size of the forms cache can-
not be changed programmatically; it is stored in the FRMCACHE.DAT
file in an undocumented binary format.

Most of the time, “forms cache” refers to this cache of forms in the
FORMS folder. However, there is one other forms cache you should be
aware of. To facilitate the use of forms from the Organizational Forms
library while a user is working offline, Outlook 2007 can synchronize forms
during a send/receive session. Configure this setting in the properties of the
main send/receive group, as shown in Figure 21.2.

21.1.2 Launching a custom form

The link between a data item and the form used to display it depends on
the value of the MessageClass property of the data item. When you pub-
lish a form, you set properties on the form definition that control its display
name and message class. When you create a new item or open an existing
item, Outlook uses the MessageClass value to determine what form to
display.

Figure 21.1
The Outlook forms

cache is a folder
on the user’s
hard drive,

normally hidden
from the user.

666 21.1 Understanding Outlook forms architecture

A user can create a new item using a published custom form using any
of these techniques:

Choose Tools | Forms | Choose Form (or File | New | Choose Form),
and select a form from any of the form libraries. If you have any
replacement and replace-all form regions, you’ll see them in the Form
Regions library.

If the form is the default for a non-message folder, display that folder,
and then click New.

On the Actions menu for a folder, click the New name_of_form
menu command to create an item using a form published to the
folder.

When the user creates a new item using any of those techniques, Out-
look sets the value of the MessageClass property of the new item to the
class stored in the published form definition. Thus, the MessageClass
value for an item created with a published contact form would be
IPM.Contact.formname, where formname is the name you gave to the
form when you published it. When the user creates an item or opens an
existing item, Outlook decides what form to use to display the item by
looking at the item’s MessageClass property value.

Figure 21.2
Outlook 2007 can
synchronize forms

with the Exchange
server for offline

use.

21.1 Understanding Outlook forms architecture 667

Note: There is one other, less widely used technique for launching a custom
form, which we cover a little later in the chapter. A custom form can be set
as a default form replacing the standard appointment, contact, task, or jour-
nal form.

As a practical matter, this means there are two requirements for an item
to display a particular custom form:

The item’s MessageClass needs to point to that form.

The form needs to be published in one of the locations where Out-
look looks to find published forms and form regions.

It’s important to consider form regions, as well as legacy published
forms, since form regions can not only stack on an existing standard or
published form, but can also replace a non-default form.

So, where does Outlook look for form definitions when the user opens
an item with a particular message class? It first looks to see there is a form
region registered for the message class. If there is a form region, Outlook
doesn’t look for legacy custom forms unless the region’s <loadLegacy-
Form> option is set to false. Otherwise, Outlook looks to see if an
instance of the legacy custom form is already open. If so, Outlook loads the
form from memory. If the form is not in memory, Outlook looks to see if
the form is in the local forms cache because you’ve used it before. If the
form isn’t in the cache, Outlook looks in the libraries for published forms,
in this order:

1. Currently displayed folder’s forms library

2. Personal Forms library

3. Organizational Forms library

This load order helps explain why custom message forms are often
impossible to use in an organization: Unless the form is published to the
Organizational Forms library or to each user’s Personal Forms library, Out-
look probably will not be able to locate a published form definition it can
use to display the form. The only time it will look in a folder in the Public
Folders hierarchy is when the user is currently viewing a public folder.

If Outlook loads a form from the local cache, it also checks the pub-
lished form locations to see if a later version of the form is available. If so, it
loads the later version and refreshes the copy in the cache.

Actually, the above description of how form regions load was oversimpli-
fied. While an item can display the layout of only a single legacy form, form
regions are additive. A given message class could even have different types of

668 21.2 Managing Outlook forms

regions registered for it—an adjoining region and a separate region, for
example.

Also, by default, regions are inherited by derived message classes. For
example, a region registered for IPM.Contact will also display on items
from the message class IPM.Contact.Customer. A region registered for
IPM.Contact.Customer will also display on items using the message class
IPM.Contact.Customer.International.

Note: The region developer can specify in the region’s manifest that the
region should be used only for items with the exact message class that the
region is registered to. The Help topic “How to: Specify a Form Region to
be Used Only for the Exact Message Class” (HV10205415) explains how to
use the <exactMessageClass> element in the manifest.

If Outlook finds a replacement region for the item’s message class, it will
replace the main page with the replacement region. If it finds one or more
replace-all regions, Outlook will hide all the pages of the standard or legacy
custom form for that message class and show only the replace-all region(s).

21.2 Managing Outlook forms
To manage legacy custom forms, choose Tools | Options | Other | Advanced
Options | Custom Forms to display the Custom Forms dialog box shown in
Figure 21.3. This is the dialog where you can set the size of the forms cache
discussed above. The check box for “Allow forms that bypass Outlook” con-
trols whether older MAPI forms built with C++, rather than the Outlook
form designer, are allowed to run.

Note: Oddly, the Password button on the Custom Forms dialog box is not
related to Outlook forms at all. It performs a reset of the user’s Windows
password.

To manage individual forms, click the Manage Forms button to display
the Forms Manager shown in Figure 21.4. You can also open the Forms
Manager for a particular folder: Right-click the folder, choose Properties,
switch to the Forms tab, and then click Manage.

In the Forms Manager dialog box, use the Set buttons to select a folder
or one of the two general forms libraries. Use the Copy, Update, and Delete
buttons to manage forms, or the Properties button to find out more about a
form. The dialog also includes a Clear Cache button to empty the forms
cache if it shows signs of corruption.

21.2 Managing Outlook forms 669

The Save As button on the Forms Manager allows you to save a form as
an .fdm file. This is a good alternative to .oft files for custom form backups.
The Install button imports an .fdm file into a forms library.

Here’s a typical Forms Manager task. Let’s say you have successfully
tested a form in your Personal Forms library. You can use the Forms Man-
ager to make a backup as an .fdm file, copy it to the Organizational Forms
library, and then delete it from your Personal Forms library. Remember that
you must have appropriate permissions from the Exchange administrator to
put a form in the Organizational Forms library and must be a folder owner
to add to a folder forms library.

Note: The Forms Manager handles only published legacy custom forms. To
manage saved .oft form templates, use Windows Explorer; those forms are
stored in the file system. There is no equivalent of the Forms Manager for
form regions. Regions are managed completely by the settings in their man-
ifests and their entries in the Windows Registry.

Figure 21.3
Manage the forms

cache size and
allow or disable

older forms.

Figure 21.4
Copy, move, install,
and delete forms in

the Forms
Manager.

670 21.2 Managing Outlook forms

To set a custom form as the default form for a folder, use not the Forms
Manager but the folder’s Properties dialog as shown in Figure 21.5.
Remember that you cannot make a message form the default for any folder.
If your application needs to set the default form for a folder programmati-
cally, turn back to Listing 14.3 for a code sample that shows how to accom-
plish that task with the new PropertyAccessor object in Outlook 2007.

Later in this chapter, we’ll address the issue of publishing forms pro-
grammatically.

21.2.1 Making a custom form the new global default

Even though you cannot edit the standard Outlook forms directly, you can
replace any standard form with a custom form that has been published to
the Organizational Forms or Personal Forms library. For example, you
might want to make a custom task form the default so that Outlook will use
it even when the user creates a new task by typing in the To Do List.

Caution: Using registry substitution to force Outlook to use a custom form
for all outgoing messages is not recommended. See the discussion in the
previous chapter of the problems involved in using a custom message form
over the Internet.

Substituting a custom form for a standard form requires a change to the
Windows registry. Before attempting this, you should make a backup of the
registry. Depending on your access level on your computer, you may not be

Figure 21.5
To set the default
form for a folder,

use the General tab
of the folder’s

Properties dialog,
not the Forms page.

21.2 Managing Outlook forms 671

able to make the necessary changes to the Windows registry. If that’s the
case, you will not be able to use this technique.

To facilitate the substitution process, Microsoft provides a Forms
Administrator tool. This tool was designed to work with Outlook 2000,
but can assist with the process for later versions. Follow these steps to down-
load and install the Forms Administrator tool:

1. From the Web page at http://www.microsoft.com/office/orkar-
chive/2000ddl.htm#outladm, download the Formsadmin.exe file.

2. Run the downloaded Formsadmin.exe file.

3. When prompted for “the location where you want to place the
extracted files,” choose a folder on your local hard drive. This will
extract the actual tool, FormSwap.exe, to the folder you indicate.

To use the Forms Administrator to make a published task form (for
example, IPM.Task.All Fields) the default form replacing IPM.Task, follow
these steps:

1. Run the FormSwap.exe tool.

2. In the Outlook Forms Administrator dialog (Figure 21.6), choose
the basic Outlook form to override, in this case the task form,
IPM.Task.

3. Under “For composing use,” enter the published form’s class,
IPM.Task.All Fields.

4. Also enter the published form’s class under “For reading use.”

5. Click Save, then Export Saved Settings and choose a file name
and location for the .reg file that the tool exports.

6. Click Close to close the tool.

Figure 21.6
Use the free Forms
Administrator tool
to help modify the

registry so that a
custom form can

replace a standard
form as the global

default.

672 21.2 Managing Outlook forms

7. Browse to the folder where you saved the .reg file, right-click it,
and choose Edit to open the file in Notepad.

8. Change the references to Office\9.0\Outlook to Office\12.0\
Outlook, as shown in Figure 21.7.

9. Save and close the .reg file.

10. Right-click the file again, choose Merge, and answer any prompts
that ask if you want to merge this data with the registry.

What this process does is update the HKCU\Software\Microsoft\Office\
12.0\Outlook\Custom Forms key with entries that tell Outlook how to
substitute custom forms for the standard forms. Figure 21.8 shows one of
the two registry values added in the above steps.

Caution: Replacing any default form is not a trivial matter. You should
ensure that your replacement form includes all the functionality of the
default form in addition to any special operations you have designed into
the custom form. Also make sure that you enter the correct message class
for a form published to the Personal Forms or Organizational Forms library.
The Outlook Forms Administrator tool does not check to make sure that
the form name you enter is a valid, published form of the correct type.

The registry entries have two separate effects on new and existing items.
Existing items that used the default form will open in the form whose mes-
sage class you substituted, but the value of the MessageClass property on

Figure 21.7
The Forms

Administrator tool
was designed for

use with Outlook
2000, but you can

modify its output to
work with Outlook

2007.

21.2 Managing Outlook forms 673

the existing items will remain that of the standard form. For new items,
however, the MessageClass property value will be that of the custom form
that was substituted. If you later remove the substitution registry entry, the
message class of those items does not change; Outlook will continue to look
for the custom form, even if it is no longer available. In that scenario, if you
want the items to revert to the built-in default form, you will need to
change the value of the MessageClass property on the items using the
technique covered in the next section.

A better solution is to use code in the published custom form to reset
the MessageClass value on new items to the default form. For example,
this code ensures that tasks will always be associated with the IPM.Task
form, even if they’re created with a substitute custom task form
(IPM.Task.All Fields):

Function Item_Write()
 Item.MessageClass = "IPM.Task"
End Function

To completely remove a substitution, just delete the registry entries in
the Outlook\Custom Forms key.

21.2.2 Converting existing items to use a custom form

Many times, you’ll want to make existing items use a newly published custom
form. For example, you may have a contacts folder with hundreds of items
that you want to display in a new, customized contact form. Converting data

Figure 21.8
Substituting a

custom form for a
default form

requires a new
Windows registry

value.

674 21.2 Managing Outlook forms

from one form to another is a simple operation of changing one property
value on each individual item—the MessageClass property—so that it
points to the new published form.

You can run the RunUpdateMessageClass VBA macro in Listing 21.2
to update items in a folder to use a custom form instead of one of Outlook’s
default forms. The user selects the folder from the Select Folder dialog and
supplies the name of the custom form via an input box.

The RunUpdateMessageClass procedure gets the default message class
for a folder, and then calls the UpdateMessageClass procedure, which
does the actual updating and has a lot of flexibility built in with its three
parameters, which include the folder whose items are to change, the old
message class, and the new message class. For example, the calling statement
in the RunUpdateMessageClass procedure changes only the items that
match the default message class for the folder, for example, only items with
a message class of IPM.Task:

Call UpdateMessageClass(objFolder, _
 strFolderClass, strNewClass)

You can also call UpdateMessageClass from other procedures. For
example, this statement would update all the contacts in the currently dis-
played folder, whether they use the standard form or a custom form:

Call UpdateMessageClass(_
 Application.ActiveExplorer.CurrentFolder, _
 "IPM.Contact.Customer", True)

After the UpdateMessageClass procedure performs some validation to
confirm that the new message class is appropriate for the items in the target
folder, it filters the target folder with an Items.Restrict statement, and
then processes the filtered items. This is the heart of the procedure, the part
that actually updates the message class:

For Each objItem In colItems
 objItem.MessageClass = class
 objItem.Save
Next

If you have hundreds of items in the folder, the procedure may take a
while to complete the update.

21.2.3 Importing to a custom form

Outlook does not allow you to export directly to custom forms or custom
fields using its File, Import and Export command. The same limitation
applies to importing data. If you want to import to a custom form or to an
item that contains custom fields, you must write code to copy the data into
each field.

21.2 Managing Outlook forms 675

Listing 21.2 Update the MessageClass for existing items to point to a new form

Sub RunUpdateMessageClass()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objFolder As Outlook.Folder
 Dim strMsg As String
 Dim strFolderClass As String
 Dim strNewClass As String
 On Error Resume Next
 Set objOL = Application
 Set objNS = objOL.Session
 Set objFolder = objNS.PickFolder
 If Not objFolder Is Nothing Then
 strMsg = "Change all items in folder to what class?"
 strFolderClass = objFolder.DefaultMessageClass
 strNewClass = InputBox(strMsg, "Update Message Class", _
 strFolderClass)
 If strNewClass <> "" Then
 Call UpdateMessageClass(objFolder, strFolderClass, strNewClass)
 End If
 End If
 Set objOL = Nothing
 Set objNS = Nothing
 Set objFolder = Nothing
End Sub

Sub UpdateMessageClass(fld As Outlook.Folder, _
 oldClass As String, newClass As String)
 Dim colItems As Outlook.Items
 Dim objItem As Object
 Dim strFolderClass As String
 Dim strBaseClass As String
 Dim strMsg As String
 Dim strTitle As String
 Dim strFind As String
 Dim lngCount As Long
 Const PR_MESSAGE_CLASS = _
 "http://schemas.microsoft.com/mapi/proptag/0x001A001E"
 On Error Resume Next
 strFolderClass = fld.DefaultMessageClass
 If UCase(Left(newClass, 8)) <> "IPM.POST" Then
 If InStr(1, newClass, strFolderClass, _
 vbTextCompare) = 0 Then
 strMsg = "The class you specified is not " & _
 "the normal type for this folder. " & _
 "Conversion will not proceed."
 strTitle = "Convert Items in " & fld.Name & _
 " to " & newClass
 MsgBox strMsg, , strTitle
 Exit Sub
 End If

676 21.2 Managing Outlook forms

Note: It is also not possible to program Outlook’s built-in Import and
Export feature to automate importing or exporting even when custom fields
or forms are not involved. Chapter 24 provides a number of code and non-
code techniques for extracting data from Outlook items.

The exact code, of course, will depend on the data source. You must use
the appropriate syntax for any particular source to get the source records
and fields. If the data is in a delimited text file, an Excel worksheet, or a
database you can access with ADO, the VBA code to write the code should
follow this basic sequence:

1. Open the source file or database.

2. Create a new Outlook item using the custom form.

3. Get the first record from the source file or database.

4. Copy the data from the data source fields to the corresponding
properties in the Outlook item.

5. Save the Outlook item.

6. Repeat steps 2 to 7 until you run out of source data.

7. Close the data source and perform any other cleanup.

Let’s consider a relatively simple example—an Excel workbook with one
active worksheet that contains data in two columns. Column A contains a
list of contact names, while Column B contains their email addresses. The
data rows in these two columns are marked with a range named Customers.

 End If
 strFind = Quote(PR_MESSAGE_CLASS) & _
 " LIKE '" & oldClass & "'"
 Set colItems = fld.Items.Restrict("@SQL=" & strFind)
 For Each objItem In colItems
 objItem.MessageClass = newClass
 objItem.Save
 lngCount = lngCount + 1
 Next
 strMsg = CStr(lngCount) & " items updated to " & newClass
 MsgBox strMsg, vbInformation, "Update Message Class"
 Set colItems = Nothing
 Set objItem = Nothing
End Sub

Private Function Quote(val) as String
 Quote = Chr(34) & CStr(val) & Chr(34)
End Function

Listing 21.2 Update the MessageClass for existing items to point to a new form (continued)

21.2 Managing Outlook forms 677

The goal is to import these rows into Outlook contact items that use a cus-
tom form named IPM.Contact.Customer. The code in Listing 21.3
includes a ### USER OPTIONS ### section where the workbook file name,
range name, and custom form class are hard-coded. Adjust the names to fit
your own scenario.

Tip: To insert a named range in Excel 2007, select the data you want to
include in the range. Type the name of the range in the Name Box control
at the top left of the worksheet, and press Enter.

Breaking down the ExcelToContacts procedure in terms of the seven
basic import steps, Step 1 is opening the data source:

Set objExcel = GetObject(, "Excel.Application")
If objExcel Is Nothing Then
 Set objExcel = CreateObject("Excel.Application")
 blnWeOpenedExcel = True
End If
Set objWB = objExcel.Workbooks.Add(strWB)
Set objWS = objWB.Worksheets(1)
Set objRange = objWS.Range(strRange)

Listing 21.3 Import from an Excel worksheet to a custom contact form

Sub ExcelToContacts()
 Dim objExcel As Excel.Application
 Dim objWB As Excel.Workbook
 Dim objWS As Excel.Worksheet
 Dim objRange As Excel.Range
 Dim strWB As String
 Dim strRange As String
 Dim strForm As String
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objFolder As Outlook.Folder
 Dim objContact As Outlook.contactItem
 Dim intRowCount As Integer
 Dim i As Integer
 Dim blnWeOpenedExcel As Boolean
 Dim strMsg as String
 Dim i as Integer
 On Error Resume Next
 ' ### USER OPTIONS ###
 strWB = "C:\Data\Customers.xlsx"
 strRange = "Customers"
 strForm = "IPM.Contact.Customer"
 ' ### END USER OPTIONS ###
 blnWeOpenedExcel = False
 Set objExcel = GetObject(, "Excel.Application")

678 21.2 Managing Outlook forms

The code checks to see if Excel is already running and, if it is not, starts
an instance. The blnWeOpenedExcel variable helps track Excel’s initial
state, so we can invoke an objExcel.Quit statement to shut down Excel if
it wasn’t already running. The objRange variable contains the rows and col-
umns that we want to import.

Step 2 is to create a new Outlook item from the desired custom form. As
we discussed in Chapter 15, that operation involves using the Add method
on the target folder’s Items collection and passing the message class as the
argument. In this case, the target folder is the default Contacts folder:

 If objExcel Is Nothing Then
 Set objExcel = CreateObject("Excel.Application")
 blnWeOpenedExcel = True
 End If
 Set objWB = objExcel.Workbooks.Add(strWB)
 Set objWS = objWB.Worksheets(1)
 Set objRange = objWS.Range(strRange)
 intRowCount = objRange.Rows.Count
 intCount = 0
 If intRowCount > 0 Then
 Set objOL = Application
 Set objNS = objOL.Session
 Set objFolder = objNS.GetDefaultFolder(olFolderContacts)
 For i = 1 To intRowCount
 Set objContact = objFolder.Items.Add(strForm)
 With objContact
 .FullName = objRange.Cells(i, 1)
 .Email1Address = objRange.Cells(i, 2)
 .Save
 If Err.Number = 0 Then
 intCount = intCount + 1
 Else
 Err.Clear
 End If
 End With
 Next
 End If
 objWB.Close False
 If blnWeOpenedExcel Then
 objExcel.Quit
 End If
 strMsg = "Items imported:" & CStr(intCount)
 MsgBox strMsg, vbInformation, "Import from Excel to Contacts"
 Set objExcel = Nothing
 Set objWB = Nothing
 Set objWS = Nothing
 Set objRange = Nothing
 Set objOL = Nothing
 Set objNS = Nothing
 Set objContact = Nothing
End Sub

Listing 21.3 Import from an Excel worksheet to a custom contact form (continued)

21.3 Managing custom fields 679

Set objFolder = objNS.GetDefaultFolder(olFolderContacts)
Set objContact = objFolder.Items.Add(strForm)

To get a record (in this case, a row) from the named range (Steps 3 and
6), the code uses a loop:

intRowCount = objRange.Rows.Count
For i = 1 To intRowCount
 ' process the data
Next

During each pass through the loop, Steps 4 and 5 read a record from the
data source, set the Outlook property values, and save the item:

With objContact
 .FullName = objRange.Cells(i, 1)
 .Email1Address = objRange.Cells(i, 2)
 .Save
End With

where i is the number of the current row in the Customers range. The
syntax for returning the value of an Excel cell is very simple:
objRange.Cells(row_number, column_number).

In Step 6, the loop continues processing until it has read all the rows
from the named range and created a new contact for each one. The final
step is to close the data source and leave Excel as we found it:

objWB.Close False
If blnWeOpenedExcel Then
 objExcel.Quit
End If

The process of importing from a delimited text file would follow the
same structure. Instead of Excel objects, you could use the FileSystemOb-
ject methods discussed in Chapter 8.

Note: Importing from Microsoft Access or another database would follow
exactly the same sequence of steps using a Microsoft programming interface
called ADO. One of the trickier aspects of database import is that there are
many different kinds of databases, each with its own syntax for connecting
to the database. Once you get a database connection, though, the process of
reading the records and fields with ADO is the same for every database.

21.3 Managing custom fields
Outlook is sometimes referred to as a “semi-structured” database. This
means that while there is a default data structure for items stored in a par-
ticular folder, any individual item may contain a custom property that is
not defined as part of the folder. It might not even be defined on any other
items in that folder!

680 21.3 Managing custom fields

Publishing or copying a form to a folder only saves the form definition
in the folder. It does not automatically create custom fields in the folder
that match the custom fields in the form definition. Why does this matter?
There are three main reasons:

A custom view can display only fields defined in the folder.

Searches that use the Jet and basic DASL query syntaxes can only
search fields that are defined in the folder.

If the field is not defined in the folder, the user could create a new
custom field in the folder with a different data type from the field
with the same name in the individual items.

Note: Searches using content index keywords can handle custom text prop-
erties that are in the items, but not defined in the folder. The content
indexer indexes all custom text properties in each item.

Problems can also arise in the opposite scenario, where the folder contains
field definitions that are not carried over into the forms used in the folder. For
example, consider a tasks folder with a custom ProjectStatus field added
to the folder. A table view can show that property, and with in-cell editing
turned on, users can set the value for individual items by typing values into
the view. However, if an item is using a custom form that doesn’t include the
ProjectStatus property, setting a value for that property will one-off the
item, with the negative consequences discussed later in the chapter.

The ideal situation, therefore, is a three-way match between:

custom properties in the folder

custom properties in each custom form used in the folder

custom properties in the items stored in the folder

The biggest challenge is achieving that congruence when you decide to
use an existing form in a different folder. For example, if you make a form
available to another user, either by publishing it in the Organizational
Forms library or using the deployment methods discussed later in the chap-
ter, the other user probably will not have the required fields in his or her
folders. The same is true if you decide to use an existing form to create
items in a newly added folder.

Unfortunately, Outlook provides no straightforward way to copy a set of
custom properties from one folder to another: Publishing a custom form to
a folder’s forms library does not propagate custom properties to the folder.
While Exchange users have available a File | Folder | Copy Folder Design
command that can copy forms and views, that command does not copy
folder-level field definitions.

21.3 Managing custom fields 681

21.3.1 Deploying custom fields

Three methods are available to deploy custom field definitions to a new
folder:

1. Copy an entire folder

2. Create new fields manually using the Field Chooser

3. Create new fields programmatically

If you already have a folder that contains not just the published form you
want to use, but also the custom properties, views, and other folder design
elements, you can copy that folder to another location elsewhere in the
folder hierarchy to create a new folder with exactly the same characteristics.
This is a very good method to use when one department in an organization
wants to start using a folder-based application that was developed for a dif-
ferent department.

You can, of course, also create new fields manually with the Field
Chooser, but this approach not only is tedious, but also holds the potential
for inaccuracies, since the data type and field name must exactly match
those used by the forms and items in the folder.

The best practice is to take care to build the custom forms for use in the
folder in such a way that each field added to the form is also present as a
folder-level field definition. The next section reviews the recommend tech-
nique for adding custom fields to custom forms.

If you have a folder that already contains the fields you want to use
in another folder, Outlook 2007 makes it possible to write code to copy
the folder-level field definitions, through a new Folder.UserDefined-
Properties collection, analogous to the UserProperties collection on
an individual Outlook item. The code in Listing 21.4 iterates all the fields
in a source folder and creates new fields of the same type in a destination
folder. Use a statement like this to call the CopyFields procedure:

Call CopyFields(objSourceFolder, objTargetFolder)

After running the CopyFields procedure, the target folder should con-
tain all the fields that were in the source folder, except for any fields of the
same name that already existed in the target folder.

Caution: Do not attempt to use the fields in the UserProperties collec-
tion of an Outlook item as a model for creating fields in the UserDefined-
Properties collection of a folder. The item-level property definitions will
not have all the detail needed to create the correct properties at the folder
level.

682 21.3 Managing custom fields

21.3.2 Best practices for adding fields to custom forms

Having considered how to transfer field definitions from one folder to
another, let’s return to the issue of how best to ensure that a folder, its
forms, and the items created from those forms all have the same field defini-
tions. The key is to use a very specific method to add fields to any non-mes-
sage form designed for use in a specific folder. If you add fields correctly to
the form, they’ll be defined correctly at the folder level, at the form level,
and in the individual items created from the form.

Note: If you are designing a message form or a form that will be used in
multiple folders, use these techniques to design the initial form. Then use
the CopyFields procedure in Listing 21.4 to propagate the fields from the
original folder to the additional folder(s) that will hold items created from
the custom form. If you’re creating a message form, the “source” folder con-
taining the field definitions will be the Inbox.

First, if you are designing a form for use in a non-default folder, create a
new item in the folder where you plan to use your form. Open the item and
on the Developer tab, click Design This Form. If you are designing a form
for use in a default folder, such as Contacts, you can use the New button or
the Tools | Forms | Design a Form command to create the item used as the
basis for the form.

Listing 21.4 Use a custom form as a template for defining fields at the folder level

Sub CopyFields(source As Folder, target As Folder)
 Dim colProps As Outlook.UserDefinedProperties
 Dim objOldProp As Outlook.UserDefinedProperty
 Dim objProp As Outlook.UserDefinedProperty
 On Error Resume Next
 Set colProps = target.UserDefinedProperties
 For Each objOldProp In source.UserDefinedProperties
 With objOldProp
 If .Type = olCombination Or .Type = olFormula Then
 Set objProp = colProps.Add(_
 .Name, .Type, , .Formula)
 Else
 Set objProp = colProps.Add(_
 .Name, .Type, .DisplayFormat, .Formula)
 End If
 End With
 Next
 Set objProp = Nothing
 Set objOldProp = Nothing
 Set colProps = Nothing
End Sub

21.4 Deploying Outlook forms 683

On the form’s Field Chooser, create each yes/no field that your form
needs. This adds the field to the folder’s field definitions. Drag each field to
the desired custom page. This adds a check box control to the form, bound
to the yes/no field, and adds the field to the form’s field definitions.

Follow the same procedure for any text fields that you plan to display on
the form in text boxes: Create the field in the Field Chooser, then drag it to
the form.

For other types of fields besides yes/no and text fields, and for text and
yes/no fields that you plan to display with combo boxes, list boxes, or
option buttons, you will need to follow a different procedure. Create the
control first, instead of the field, by dragging the desired control from the
control toolbox. Then, right-click the control, choose Properties, switch to
the Value tab, and click New to create the new field. This will place the field
definition in the form and also in the folder.

After you finish adding fields to the form, check the All Fields page, and
look under both “User-defined fields in this item” and “User-defined fields
in folder.” Each field that you added should appear in both lists.

Tip: Another approach is to simply drag all custom fields from the Field
Chooser to a custom form page. This ensures that the fields are defined in
the custom form. You don’t need to show that page to the user. You don’t
even need to keep the controls on the page. Feel free to delete them and
hide the page. Continue with your form design, adding controls only for
those fields you want the user to see or interact with.

To remove a field definition from both the folder and a form used in
that folder, you must delete each field twice. It’s easiest to do this on the
custom form, in design mode. On the All Fields page, delete the field from
the “User-defined fields in this item” and also from the “User-defined fields
in folder” list. Remember that folders and forms have completely separate
field definitions. If you want to get rid of a field, you must delete the defini-
tion from both folder and form. Deleting a field definition from the folder
or a custom form does not delete the data that any existing items may
already be storing in that field, however.

21.4 Deploying Outlook forms
From the very beginning of our discussion of custom forms in Chapter 4,
we’ve emphasized the need to publish forms in order to get full functional-
ity from them. Forms that you design for your personal use should be pub-
lished to your Personal Forms library or perhaps to individual folders’ form
libraries. In an organization where Microsoft Exchange is the mail server,

684 21.4 Deploying Outlook forms

you may have an Organizational Forms library available to hold forms for
enterprise-wide use, along with a Public Folders hierarchy for folder-based
applications that depend on published custom forms.

In some organizations, though, there is no central forms repository. Put-
ting custom forms into the hands of users requires either that you provide
detailed instructions or that you give users a file and some code to install
the form from that file. The next section provides examples of both form
installation instructions and such code.

21.4.1 Distributing forms to remote users

One way to distribute a form to remote users is to save it as an .oft template
file or export it from the Forms Manager as an .fdm file and email it to the
users, along with instructions on how to publish it to the Personal Forms
library or import it into Forms Manager. Below are sample instructions you
can provide to users if you send them an .oft file; note that they include
details on how to display the Developer tab, which contains the Publish
Form command.

To install the attached .oft file in your Personal Forms library, follow
these steps:

1. From Outlook’s main menu, choose Tools | Options | Other |
Advanced Options.

2. In the Advanced Options dialog, under “In all Microsoft Office
programs,” check the box for “Show Developer tab in the Rib-
bon.” Click OK twice to save the change.

3. Right-click the .oft file attachment, choose Save As, and save it
to your hard drive.

4. From Outlook’s main menu, choose Tools | Forms | Choose
Form.

5. In the Choose Form dialog, in the Look In list, select “User
Templates in File System.”

6. Click the Browse button to browse to the location where you
saved the .oft file in Step 3.

7. Select the .oft file, and click Open.
8. On the open form, switch to the Developer tab in the ribbon.
9. In the Form group, click Publish | Publish Form.

10. The Publish Form As dialog should display your Personal Forms
library. If it doesn’t, use the Look In list to switch to that library.

11. For the display name, enter My Form. For the form name,
enter MyForm.

12. Click Publish to complete the process.

21.4 Deploying Outlook forms 685

In Step 11, replace My Form and MyForm with the names that you
want the user to use for the published form.

Below are sample instructions you can provide to users if you send them
an .fdm file.

An alternative is to skip the instructions and provide code that publishes
the form from an .oft file. The next section provides an example of such
code.

21.4.2 Publishing a custom form programmatically

What makes it possible to install a custom form programmatically is that
each Outlook item includes a FormDescription object that defines the
properties of the form associated with the item. Once you retrieve this
object from the item, you can use its PublishForm method to publish the
form to the user’s Personal Forms Library or any folder’s forms library. Set-
ting the Name property of the FormDescription object controls the display
name and message class of the published form.

Listing 21.5 demonstrates this technique with a VBA sample that you
could use to deploy multiple forms to one or more public folders. To pub-
lish a form to a particular folder, call the PublishForm() function with the
path to an .oft form template file, the target forms library, and for a folder’s
forms library, the folder, for example:

To install the attached .fdm file in your Personal Forms library, follow
these steps:

1. Right-click the .fdm file attachment, choose Save As, and save it
to your hard drive

2. From Outlook’s main menu, choose Tools | Options | Other |
Advanced Options | Custom Forms | Manage Forms.

3. The right side of the Forms Manager dialog should show the
Personal Forms library. If it does not, click the right-hand Set
button, and set the library to the Personal Forms library.

4. On the Forms Manager dialog, click Install.
5. In the Open dialog, from the dropdown list of file types, select

Form Message (*.fdm), and browse to the location where you
saved the .fdm file in Step 1.

6. Select the saved .fdm file, and click Open.
7. On the Form Properties dialog, click OK.
8. Click Close, then click OK three times to return to the main

Outlook window.

686 21.4 Deploying Outlook forms

MsgBox PublishForm("C:\data\allfields2.oft", _
 olFolderRegistry, _
 Application.ActiveExplorer.CurrentFolder)

To publish a form to the Personal Forms library, call PublishForm()
like this:

MsgBox PublishForm("C:\data\allfields2.oft", _
 olPersonalRegistry

The PublishForm() function gets the form name from the name of the
.oft file. It returns a string that gives you the result of the operation,
whether the form was published successfully or whether an error occurred.

The PublishForm() function is useful largely in situations where an
administrator needs to publish a form to multiple folders—say to several
public folders. It’s less useful for installing a form for another user, because,
as discussed in Chapter 2, Outlook doesn’t provide a good way to distribute
VBA code to others. A possible workaround would be to incorporate the
function into a macro contained in a Word document; in that scenario,
refer back to the material in Chapter 7 on writing code to automate Out-
look from other applications.

Listing 21.5 Publish a form using an item’s FormDescription (VBA)

Function PublishForm(oftPath As String, _
 reg As Outlook.OlFormRegistry, _
 Optional fld As Outlook.Folder) As String
 Dim objOL As Outlook.Application
 Dim objItem As Object
 Dim objFormDesc As Outlook.FormDescription
 Dim intLoc As Integer
 Dim intLoc2 As Integer
 Dim strName As String
 Dim strTarget As String
 Dim strRes As String
 On Error Resume Next
 Err.Clear
 Set objOL = Application
 Set objItem = objOL.CreateItemFromTemplate(oftPath)
 If Err.Number = 0 Then
 Set objFormDesc = objItem.FormDescription
 intLoc = InStrRev(oftPath, ".oft")
 intLoc2 = InStrRev(oftPath, "\")
 strName = Left(oftPath, intLoc - 1)
 strName = Mid(strName, intLoc2 + 1)
 objFormDesc.Name = strName
 Select Case reg
 Case olPersonalRegistry
 objFormDesc.PublishForm reg
 strTarget = "Personal Forms"

21.4 Deploying Outlook forms 687

Note: The PublishForm() function does not check to see whether a pub-
lished form with the same name already exists in the target library. If you
want to add that functionality to the procedure, use the techniques demon-
strated in the EnumCustomForms procedure in Listing 21.1 to access the
hidden folder that contains the published form definitions.

Another approach for deploying a form to users programmatically
would be to use VBScript in a login script, a Web page, or even a published
custom form in a special .pst file or in Organizational Forms if you’re using
Exchange. Listings 21.6 and 21.7 provide VBScript versions of the Pub-
lishForm() function, one for publishing to the Personal Forms library and
one for publishing to a folder’s forms library.

Tip: Chapter 22 demonstrates how to get Outlook to run an automation
script at startup.

 Case olFolderRegistry
 If Not fld Is Nothing Then
 objFormDesc.PublishForm reg, fld
 strTarget = fld.Name
 Else
 strRes = "Error: No folder specified."
 End If
 Case Else
 strRes = "Error: This procedure can " & _
 "publish only to Personal Forms or " & _
 "a folder's forms library."
 End Select
 If Err.Number = 0 Then
 strRes = objFormDesc.Name & _
 " was published to " & strTarget
 Else
 strRes = "Error " & Err.Number & _
 ": " & Err.Description
 End If
 Else
 strRes = "Error " & Err.Number & _
 ": " & Err.Description
 End If
 PublishForm = strRes
 Set objOL = Nothing
 Set objItem = Nothing
 Set objFormDesc = Nothing
End Function

Listing 21.5 Publish a form using an item’s FormDescription (VBA) (continued)

688 21.4 Deploying Outlook forms

Listing 21.6 Publish a form to Personal Forms (VBScript)

Function PublishFormToPersonal(oftPath)
 Dim objOL ' As Outlook.Application
 Dim objNS ' As Outlook.NameSpace
 Dim objItem ' As Object
 Dim objFormDesc ' As Outlook.FormDescription
 Dim intLoc ' As Integer
 Dim intLoc2 ' As Integer
 Dim strName ' As String
 Dim strRes ' As String
 Dim blnWeStartedOutlook ' As Boolean
 Const olPersonalRegistry = 2
 On Error Resume Next
 Err.Clear
 blnWeStartedOutlook = False
 Set objOL = GetObject(, "Outlook.Application")
 If objOL Is Nothing Then
 Set objOL = CreateObject("Outlook.Application")
 If Not objOL Is Nothing Then
 Set objNS = objOL.GetNamespace("MAPI")
 objNS.Logon
 blnWeStartedOutlook = True
 End If
 End If
 If objOL Is Nothing Then
 strRes = "Error: Could not start Outlook"
 Else
 Set objItem = objOL.CreateItemFromTemplate(oftPath)
 If Err.Number = 0 Then
 Set objFormDesc = objItem.FormDescription
 intLoc = InStrRev(oftPath, ".oft")
 intLoc2 = InStrRev(oftPath, "\")
 strName = Left(oftPath, intLoc - 1)
 strName = Mid(strName, intLoc2 + 1)
 objFormDesc.Name = strName
 objFormDesc.PublishForm olPersonalRegistry
 If Err.Number = 0 Then
 strRes = objFormDesc.Name & _
 " was published to Personal Forms"
 Else
 strRes = "Error " & _
 Err.Number & ": " & Err.Description
 End If
 Else
 strRes = "Error " & Err.Number & _
 ": " & Err.Description
 End If
 End If
 If blnWeStartedOutlook Then
 objNS.Logoff
 objOL.Quit
 End If

21.4 Deploying Outlook forms 689

Call these VBScript publishing routines like this:

MsgBox PublishFormToPersonal("C:\data\allfields2.oft")
MsgBox PublishFormToFolder("C:\data\allfields2.oft", _
 anyfolder)

where the anyfolder parameter is the Folder object where you want to
publish the form.

If you use a script to deploy programmatically a form that has custom
fields, you may want to enhance the script to use the Folder.UserDe-
finedProperties.Add method, as shown in Listing 21.4, add field defini-
tions to the folder(s) where the items created from the form will be stored.

 PublishFormToPersonal = strRes
 Set objOL = Nothing
 Set objNS = Nothing
 Set objItem = Nothing
 Set objFormDesc = Nothing
End Function

Listing 21.7 Publish a form to a folder’s forms library (VBScript)

 Dim objOL ' As Outlook.Application
 Dim objNS ' As Outlook.NameSpace
 Dim objItem ' As Object
 Dim objFormDesc ' As Outlook.FormDescription
 Dim intLoc ' As Integer
 Dim intLoc2 ' As Integer
 Dim strName ' As String
 Dim strRes ' As String
 Dim blnWeStartedOutlook ' As Boolean
 Const olFolderRegistry = 3
 On Error Resume Next
 Err.Clear
 blnWeStartedOutlook = False
 Set objOL = GetObject(, "Outlook.Application")
 Function PublishFormToFolder(oftPath, fld)
 If objOL Is Nothing Then
 Set objOL = CreateObject("Outlook.Application")
 If Not objOL Is Nothing Then
 Set objNS = objOL.GetNamespace("MAPI")
 objNS.Logon
 blnWeStartedOutlook = True
 End If
 End If
 If objOL Is Nothing Then
 strRes = "Error: Could not start Outlook"

Listing 21.6 Publish a form to Personal Forms (VBScript) (continued)

690 21.5 Troubleshooting Outlook forms

21.5 Troubleshooting Outlook forms
In general, custom forms created in earlier versions should work in Outlook
2007. They are, however, subject to a number of security issues covered in
Chapter 10. Also, forms can’t grow beyond a certain size or complexity. If
you add too many fields to a form, it will stop saving values for some prop-
erties or may no longer calculate formula fields. If your form contains 150
or more custom fields, keep very good backups; you’re probably getting
close to the limit.

The two main problems plaguing developers of legacy Outlook forms
are those related to one-off forms and the forms cache.

 Else
 Set objItem = objOL.CreateItemFromTemplate(oftPath)
 If Err.Number = 0 Then
 Set objFormDesc = objItem.FormDescription
 intLoc = InStrRev(oftPath, ".oft")
 intLoc2 = InStrRev(oftPath, "\")
 strName = Left(oftPath, intLoc - 1)
 strName = Mid(strName, intLoc2 + 1)
 objFormDesc.Name = strName
 objFormDesc.PublishForm olFolderRegistry, fld
 If Err.Number = 0 Then
 strRes = objFormDesc.Name & _
 " was published to " & fld.Name
 Else
 strRes = "Error " & _
 Err.Number & ": " & Err.Description
 End If
 Else
 strRes = "Error " & Err.Number & _
 ": " & Err.Description
 End If
 End If
 If blnWeStartedOutlook Then
 objNS.Logoff
 objOL.Quit
 End If
 PublishFormToFolder = strRes
 Set objOL = Nothing
 Set objNS = Nothing
 Set objItem = Nothing
 Set objFormDesc = Nothing
End Function

Listing 21.7 Publish a form to a folder’s forms library (VBScript) (continued)

21.5 Troubleshooting Outlook forms 691

21.5.1 Understanding one-off forms

One-off forms are items where the form definition has become embedded in
the item. Such items are nothing but trouble. They won’t run code. They
usually will not show the custom form layout. The embedded form design
adds considerably to the size of the saved item. Avoid the most common
causes of one-off forms with these tips:

Always create items with published custom forms, rather than saved
.oft form templates files. Use .oft files only for backups and for simple
template-like solutions, such as sending messages with standard text,
that do not include custom page layouts or custom forms.

On the (Properties) page in the form designer, never check the “Send
form definition with item” box.

Make sure that all the custom properties your form needs are visible
on the All Fields page under “User-defined fields in this item” before
you publish the form, as discussed earlier in the chapter.

Never use the ItemProperties.Add or UserProperties.Add

method to add a custom property to an item that uses a published
custom form. Instead, include the property as part of the published
form design.

Never use the Actions.Add method to add a voting button or other
custom action to an item that uses a custom form. Instead, build the
action into the published form design.

Never use the PossibleValues property to populate the rows of a
list or combo box. Instead, use the AddItem or List techniques dis-
cussed in Chapter 6, “Extending Form Design with Fields and Con-
trols.”

On a custom message form, on the (Actions) tab, set the custom form
for the Forward action to the same message class as the original form.
In other words, publish the form, then go to the (Actions) tab, set the
Forward action’s form to the message class you just published, and
publish the form a second time. (Remember, too, that published mes-
sage forms generally are useful only if they’re published to the Orga-
nizational Forms library on your company’s Exchange server.)

To determine whether you have a one-off form situation, check the
value of the Size and MessageClass properties for the item. If the Size
value is larger than that for a normal item of that type and the Message-
Class no longer shows your custom form’s class but has reverted to the
standard form’s class, you have a one-off. Another telltale sign is that the
icon for the item will revert from your custom form’s icon to the standard
icon for that type of item.

692 21.5 Troubleshooting Outlook forms

If you already have one-off items, resetting the MessageClass property
to the custom form’s class, as shown in Listing 21.2, provides a partial cure.
The form remains embedded in the item, so the size is still large, but the
item should recover its connection to the published form so that the code
will run again.

Tip: The free MFCMAPI.exe tool mentioned in Chapter 14 includes a
Remove One-Off Properties command to purge the embedded form defini-
tion from a one-off item.

To prevent one-offing, you can incorporate the code in Listing 21.8 into
a custom form’s VBScript code. The Item_Open event handler gets the
item’s published form class from its FormDescription object property, and
then the Item_Write event handler sets the item’s MessageClass value to
the published class.

21.5.2 Dealing with forms cache problems

Even though the forms cache improves performance for legacy custom
forms, it can also experience problems, usually problems that seem quite
random. If the Frmcache.dat file or an individual cached form becomes cor-
rupted, the user may see an error message that says, “The form you selected
could not be displayed. Contact your administrator.” Other times, the user
might see the item open in the standard form instead of the custom form.

If the user is having what looks like a cache problem with only one form,
you can try deleting from the cache just the folder that contains the cached
copy of that form.

The brute force solution to forms cache corruption is to clear the cache
completely, using the Clear Cache button on the Forms Manager dialog,
shown in Figure 21.4. This wipes out the entire contents of the forms cache
folder and also generates a fresh Frmcache.dat file. Outlook then will load a
new copy of each form into the cache as the user opens it.

Listing 21.8 Maintain the correct MessageClass value for a published custom form

Dim m_strMessageClass

Function Item_Open()
 m_strMessageClass = Item.FormDescription.MessageClass
End Function

Function Item_Write()
 Item.MessageClass = m_strMessageClass
End Function

21.6 Summary 693

To minimize the impact from severe forms cache problems, Outlook
supports this registry value:

Key: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\12.0\
Outlook

Value name: ForceFormReload
Value type: REG_DWORD
Value: 1 (enabled)

Adding the ForceFormReload value and setting it to 1 causes Outlook
to suppress the user prompt that normally appears when a form load prob-
lem occurs. Instead, Outlook clears the cache for that form and reloads it
from the original source. The result is that the user should be unaware that
a forms cache problem occurred, but may see poorer performance from cus-
tom forms.

21.5.3 Recovering a form from the forms cache

Another benefit of the forms cache is that it often can be used to recover a
form if the user accidentally deletes the original published version. Locate
the folder in the cache (in other words, the subfolder in the Microsoft\
FORMS folder) that has a display name similar to the form name. Inside
the folder, you will find a single file with a .tmp file extension. Copy that
file to another folder, and rename it to .oft. Open the .oft file with the Tools
| Forms | Choose Form or Tools | Forms | Design a Form command, and
republish it to the original location with the same message class.

21.6 Summary
In this chapter, we’ve moved from the details of creating individual Outlook
forms to the “big picture” of how to find, manage, deploy, and troubleshoot
Outlook forms. Knowing where Outlook forms are stored as hidden items
and cached files can help you understand why some form scenarios that
may seem attractive—such as interoffice message forms—simply may not
work in some environments.

Best practices for creating good Outlook forms include creating custom
fields so that the field definition in the form matches those in the related
folder and avoiding common causes of one-off forms. In the worst case sce-
nario, when a form becomes corrupted, you can try to recover it either from
a backup .oft or .fdm file or from the copy stored in the forms cache.

Several of the concepts in this chapter touch on the work that an admin-
istrator may need to do to make custom forms and folder-based applica-
tions available to users. In the next chapter, we’ll look at some other
administrative tasks that Outlook code can help, such as creating custom
rules and views.

This page intentionally left blank

695

22
Rules, Views, and Administrator
Scripting Tasks

Outlook programming can not only help individual users become more
productive, but can also help network administrators meet some of the
challenges that they face in gathering information from users and deploy-
ing Outlook options. Custom message forms and folder home pages are
two ways administrators can use to get script to run inside a user’s Out-
look session.

However, this chapter isn’t just for administrators. Outlook 2007 adds
two new sets of objects that should interest all users who write Outlook
VBA code—an expanded set of objects for managing folder views and com-
pletely new objects creating and managing Rules Wizard rules.

Highlights of this chapter include discussions of the following:

Why writing scripts to configure Outlook is a challenge

How to create and modify a view programmatically

How to create a new rule

How to run rules programmatically against any folder

Where a custom message form can be useful in gathering information
or deploying options

Why a folder home page with an Outlook View Control can help
you deploy Outlook settings

Most of the settings that the user sees in the Tools | Options dialog are
not exposed in the Outlook object model, but are configurable through
Group Policy Objects or the Office Configuration Tool. If you’re interested
in managing those settings or controlling the settings for individual email
accounts, I suggest that you visit Microsoft’s Web site and read the articles
in the Office Resource Kit about those configuration tools. We won’t be
covering those settings in this chapter, since they are not exposed in the
Outlook object model.

696 22.1 Why Outlook scripting is a challenge

22.1 Why Outlook scripting is a challenge
Several factors make scripting Outlook settings a challenge. First, Outlook
must be running before any code can invoke its objects, but many desktop
anti-virus applications block access to the Outlook.Application object.
Even if an external script can successfully start Outlook with a Create-
Object("Outlook.Application") call, it still must make sure that Out-
look is running with the right mail profile. Unless you’re working in an
environment where the desktop is locked down, the user might have more
than one mail profile, and sneaky users might not even have their main pro-
file set as the default.

Given those issues, I’m not going to recommend any specific external
scripting approaches. That said, if your network environment makes it pos-
sible to start Outlook with a particular profile, then you should be able to
incorporate the procedures in this book into your external scripts.

What I propose instead are two “internal scripting” approaches: pub-
lished custom forms (only for Exchange environments) and folder home
pages. Both of these can run the right code, at the right time, in the right
place to update Outlook with new settings.

Note: I’m using “settings” loosely here and throughout the rest of the chap-
ter to denote any change that you might want to make to Outlook, aside
from the data in Outlook items themselves.

Before we look at those solutions in detail, there is one other factor
that makes Outlook scripting a challenge: Outlook’s non-registry set-
tings are stored all over the place—in external files, in hidden folders, in
hidden items, and in hidden properties. Only a thorough knowledge of
the Outlook object model and hours spent with tools like Outlook Spy,
MFCMAPI.exe, and various registry analysis utilities can unlock all the
secrets of Outlook’s settings. Even after working with Outlook for more
than ten years, I’m still learning new things about how it works “under
the hood.”

Because of the many mysteries involved in Outlook settings, I hesitate to
say that some particular operation is impossible. But to save you the trouble
of digging, I can confidently say that these tasks cannot be done, at least not
with the Outlook object model in the initial Office 2007 release:

Add an address or domain to any of the Junk E-mail lists (Use the
Office Customization Tool from the Office 2007 Resource Kit for
this task)

Delete a custom form from the Organizational Forms library or from
an Exchange public folder’s forms library

22.2 Internal scripting with custom message forms 697

Add, modify, or remove an email account or send/receive group

Modify the lists used for address resolution

Change the name display order for the Outlook Address Book

Set permissions on Exchange mailbox folders

Set the default view on an Exchange public folder

The good news is that Outlook 2007 makes more Outlook configura-
tion settings accessible to programming than ever before. It exposes some—
like the master category list, views, and rules—directly in the object model,
while you can get at many others through the new PropertyAccessor and
StorageItem objects.

With that background, we’ll look first at how custom message forms
can contribute to configuration and reporting challenges, then at the end
of the chapter, we’ll examine the potential role of folder home pages. In
between, we’ll dive into the new Outlook 2007 objects that expose rule
and view features.

22.2 Internal scripting with custom message forms
If your mail server is not Microsoft Exchange, or if you have Exchange but
no one is allowed to publish to the Organizational Forms library, you can
skip this section. Why? Because only through the Organizational Forms
library on an Exchange server can you get the functionality needed to run
scripts behind custom Outlook message forms.

If you do have the ability to place forms in the Organizational Forms
library, you can build custom forms to help deploy settings to users and to
collect data from users. Anything that can be done with a VBA macro can
be scripted in a custom form.

22.2.1 Deploying settings with a custom form

To see how a custom form can help propagate Outlook settings, let’s incor-
porate the form publishing technique discussed in the previous chapter into
a published custom form. In other words, we’re going to make one form
publish another!

To design the form that will do the publishing, open a custom message
form and click the Edit Read Page button. (You do not need to customize
the compose layout, although you are certainly free to do so if you like.) On
the Message page, remove the message body control. Add a command but-
ton control, name it cmdInstall, and give it a caption such as “Install
Form.” Add a label control, and name it lblInstructions. You can leave
the label’s caption as is, because the form’s code will change it. The label
should be tall enough to display several lines of text.

698 22.2 Internal scripting with custom message forms

Listing 22.1 Use one custom form to install another

Dim m_objOFT ' As Outlook.Attachment

Sub cmdInstall_Click()
 Dim objAtt ' As Outlook.Attachment
 Dim objFSO ' As Scripting.FileSystemObject
 Dim fldTemp ' As Scripting.Folder
 Dim strPath ' As String
 Dim strMsg ' As String
 Const TemporaryFolder = 2
 If Not m_objOFT Is Nothing Then
 Set objFSO = _
 CreateObject("Scripting.FileSystemObject")
 Set fldTemp = _
 objFSO.GetSpecialFolder(TemporaryFolder)
 strPath = fldTemp.Path & "\" & m_objOFT.fileName
 m_objOFT.SaveAsFile strPath
 ' PublishFormToPersonal from Listing 21.6
 strMsg = PublishFormToPersonal(strPath)
 MsgBox strMsg, , "Form Installer"
 objFSO.DeleteFile strPath
 End If
End Sub

Function Item_Open()
 Dim objInsp ' As Outlook.Inspector
 Dim objPage
 Dim lblInstructions
 If Item.Size <> 0 Then
 Call SetOFT
 If Not m_objOFT Is Nothing Then
 Set objInsp = Item.GetInspector
 Set objPage = _
 objInsp.ModifiedFormPages("Message")
 Set lblInstructions = _
 objPage.Controls("lblInstructions")
 lblInstructions.Caption = _
 "To install this form" & vbCrLf & vbCrLf & _
 vbTab & m_objOFT.fileName & vbCrLf & vbCrLf & _
 "Please click the Install button."
 End If
 End If
 Set objInsp = Nothing
 Set objPage = Nothing
 Set lblInstructions = Nothing
End Function

Function Item_Send()
 Dim strMsg ' As String
 Call SetOFT
 If m_objOFT Is Nothing Then
 strMsg = "Can't send without an .oft file attached."
 MsgBox strMsg, vbExclamation, "Form Installer"
 End If
End Function

22.2 Internal scripting with custom message forms 699

Add the code in Listing 22.1 to the form, and also add the Publish-
FormToPersonal() function from Listing 21.6. To test the form, publish
it to your Personal Forms library, perhaps with a message class of
IPM.Note.InstallForm. Create a new message from the published form,
attach an .oft form template file, and send the message to yourself. When it
arrives, open it, and click the Install Form button to install the attached .oft
file to your Personal Forms library.

If you like the way it works, you can copy the form with the publishing
script to the Organizational Forms library for everyone to access.

The only technique in this form’s script that should be new to you is the
use of the BeforeAttachmentAdd event to prevent the user from adding
files other than .oft files to the form. This event is new to Outlook 2007,
but the Script | Event Handler command in the custom form code window
does not list it. It uses the same FileSystemObject techniques that we saw
in Chapter 19 to save the attached .oft file to the local hard drive and later
delete it.

This approach to distributing Outlook settings—running code from a
command button on a custom form—can be applied to many other scenar-
ios. You could, for example, write a script that creates a rule for the user or
adds an Exchange public folder to the Outlook address book.

Function Item_BeforeAttachmentAdd(ByVal NewAttachment)
 Dim strMsg ' As String
 If StrComp(Right(NewAttachment.fileName, 4), _
 ".oft", vbTextCompare) <> 0 Then
 NewAttachment.Delete
 strMsg = "This form supports only .oft attachments."
 MsgBox strMsg, vbExclamation, "Form Installer"
 BeforeAttachmentAdd = False
 Else
 Item.Subject = "Open this message to install a form"
 End If
End Function

Sub SetOFT()
 Dim objAtt ' As Outlook.Attachment
 For Each objAtt In Item.Attachments
 If StrComp(Right(objAtt.fileName, 4), _
 ".oft", vbTextCompare) = 0 Then
 Set m_objOFT = objAtt
 Exit For
 End If
 Next
 Set objAtt = Nothing
End Sub

Listing 22.1 Use one custom form to install another (continued)

700 22.2 Internal scripting with custom message forms

22.2.2 Using custom forms to generate reports

We’ve used Outlook VBA code in several scenarios to generate reports—
outputting the results to the VBA Immediate window, to a new message, or
even to an Excel worksheet. Code behind a custom form can also generate
reports, using similar Outlook object model techniques, only in VBScript
code. As an example that’s relevant to one of the other key topics of this
chapter, let’s build a form that enables the user to send back a report about
the Outlook rules in the current session.

The form design process is almost identical to that for the form installer.
To design the form, open a custom message form and click the Edit Read
Page button. (You do not need to customize the compose layout, although
you are certainly welcome to do so.) On the Message page, remove the mes-
sage body control. Add a command button control, name it cmdReport
and give it a caption such as “Send Report.” Add a label control, and name
it lblInstructions. The label should be tall enough to display several
lines of text. Set its caption to “Click the Send Report button to send back
a report of your Outlook rules.” On the All Fields page, set the Subject to
“Open message to run a rules report.”

Add the code in Listing 22.2 to the form. To test the form, publish it to
your Personal Forms library. Create a new message from the published
form, and send the message to yourself. When it arrives, open it, and click
the Send Report button to display a message containing a report on your
rules (see Figure 22.1). If you like the way it works, you can copy it to the
Organizational Forms library so that your Help Desk can send requests for
a rules report to individual users.

The R/S column shows whether a rule operates on received or sent mes-
sages. The other columns in the report are self-explanatory. Rules that
invoke a VBA macro using the “run a script” rule action are listed in the
report as “Unknown or Script.” That action should report an ActionType
of olRuleActionRunScript (20), but in the initial release of Outlook
2007, it returns olRuleActionUnknown (0) instead.

Each Rule object has Conditions, Actions, and Exceptions collec-
tions that work a bit differently from the other Outlook collections that you
are familiar with. Each collection holds a fixed number of items—one item
for each type of condition, action, and exception that Outlook supports.
Whether a condition applies to the current rule depends on the value of
each RuleCondition object’s Enabled property (True or False). Actions
and exceptions work the same way. The Exceptions collection, in fact,
contains Condition objects, which is why we can use one function—Get-

Conditions()—to build both the condition and exception lists in the
report.

22.2 Internal scripting with custom message forms 701

Listing 22.2 Generate a report on Outlook rules

Dim m_strHTML ' As String

Sub cmdReport_Click()
 Dim msg ' As MailItem
 Set msg = Item.Reply
 msg.Subject = "Rules report for " & _
 Application.Session.CurrentUser
 msg.HTMLBody = BuildRulesReport
 msg.Display
End Sub

Function BuildRulesReport()
 Dim objNS ' As Outlook.NameSpace
 Dim objStore ' As Outlook.Store
 Dim colRules ' As Outlook.Rules
 On Error Resume Next
 Set objNS = Application.Session
 m_strHTML = BuildHTMLHead & "<body>" & _
 "<p>Rules Report For " & objNS.CurrentUser & _
 "
Profile Name: " & _
 objNS.CurrentProfileName & "</p>"
 For Each objStore In objNS.Stores
 Set colRules = objStore.GetRules
 m_strHTML = m_strHTML & "<p>Number of rules in " & _
 objStore.DisplayName & ": "
 If Err.Number = 0 Then
 m_strHTML = m_strHTML & _
 CStr(colRules.Count) & "</p>"
 m_strHTML = m_strHTML & BuildRulesTable(colRules)
 Else
 m_strHTML = m_strHTML & Err.Description
 Err.Clear
 End If
 Next
 BuildRulesReport = m_strHTML & "</body></html>"
End Function

Function BuildRulesTable(allRules)
 Dim objRule ' As Outlook.Rule
 Dim strHTML ' As String
 strHTML = "<table cellspacing='5' cellpadding='2'>" & _
 "<tr>" & AddColHead("Order") & _
 AddColHead("Name") & AddColHead("Active") & _
 AddColHead("R/S") & _
 AddColHead("Conditions") & _
 AddColHead("Actions") & _
 AddColHead("Exceptions")
 For Each objRule In allRules
 With objRule
 strHTML = strHTML & "<tr>" & _
 AddCell(.ExecutionOrder) & AddCell(.Name)

702 22.2 Internal scripting with custom message forms

 If .Enabled Then
 strHTML = strHTML & AddCell("X")
 Else
 strHTML = strHTML & AddCell("")
 End If
 If .RuleType = olRuleReceive Then
 strHTML = strHTML & AddCell("R")
 Else
 strHTML = strHTML & AddCell("S")
 End If
 End With
 strHTML = strHTML & _
 AddCell(GetConditions(objRule, False)) & _
 AddCell(GetActions(objRule)) & _
 AddCell(GetConditions(objRule, True)) & "</tr>"
 Next
 BuildRulesTable = strHTML & "</table>"
End Function

Function AddColHead(headText)
 AddColHead = "<td class='header'>" & headText & "</td>"
End Function
Function AddCell(newText)
 AddCell = "<td>" & newText & "</td>"
End Function

Function GetConditions(myRule, getExceptions)
 Dim objCond ' As Outlook.RuleCondition
 Dim colCond ' As Outlook.RuleConditions
 Dim strCond ' As String
 If getExceptions Then
 Set colCond = myRule.Exceptions
 Else
 Set colCond = myRule.Conditions
 End If
 For Each objCond In colCond
 If objCond.Enabled Then
 Select Case objCond.ConditionType
 Case 0 ' olConditionUnknown
 strCond = strCond & "Unknown"
 Case 1 ' olConditionFrom
 strCond = strCond & "From"
 Case 2 ' olConditionSubject
 strCond = strCond & "Subject"
 Case 3 ' olConditionAccount
 strCond = strCond & "Account"
 Case 4 ' olConditionOnlyToMe
 strCond = strCond & "OnlyToMe"
 Case 5 ' olConditionTo
 strCond = strCond & "To"
 Case 6 ' olConditionImportance
 strCond = strCond & "Importance"

Listing 22.2 Generate a report on Outlook rules (continued)

22.2 Internal scripting with custom message forms 703

 Case 7 ' olConditionSensitivity
 strCond = strCond & "Sensitivity"
 Case 8 ' olConditionFlaggedForAction
 strCond = strCond & "FlaggedForAction"
 Case 9 ' olConditionCc
 strCond = strCond & "Cc"
 Case 10 ' olConditionToOrCc
 strCond = strCond & "ToOrCc"
 Case 11 ' olConditionNotTo
 strCond = strCond & "NotTo"
 Case 12 ' olConditionSentTo
 strCond = strCond & "SentTo"
 Case 13 ' olConditionBody
 strCond = strCond & "Body"
 Case 14 ' olConditionBodyOrSubject
 strCond = strCond & "BodyOrSubject"
 Case 15 ' olConditionMessageHeader
 strCond = strCond & "MessageHeader"
 Case 16 ' olConditionRecipientAddress
 strCond = strCond & "RecipientAddress"
 Case 17 ' olConditionSenderAddress
 strCond = strCond & "SenderAddress"
 Case 18 ' olConditionCategory
 strCond = strCond & "Category"
 Case 19 ' olConditionOOF
 strCond = strCond & "OOF"
 Case 20 ' olConditionHasAttachment
 strCond = strCond & "HasAttachment"
 Case 21 ' olConditionSizeRange
 strCond = strCond & "SizeRange"
 Case 22 ' olConditionDateRange
 strCond = strCond & "DateRange"
 Case 23 ' olConditionFormName
 strCond = strCond & "FormName"
 Case 24 ' olConditionProperty
 strCond = strCond & "Property"
 Case 25 ' olConditionSenderInAddressBook
 strCond = strCond & "SenderInAddressBook"
 Case 26 ' olConditionMeetingInviteOrUpdate
 strCond = strCond & "MeetingInviteOrUpdate"
 Case 27 ' olConditionLocalMachineOnly
 strCond = strCond & "LocalMachineOnly"
 Case 28 ' olConditionOtherMachine
 strCond = strCond & "OtherMachine"
 Case 29 ' olConditionAnyCategory
 strCond = strCond & "AnyCategory"
 Case 30 ' olConditionFromRssFeed
 strCond = strCond & "FromRssFeed"
 Case 31 ' olConditionFromAnyRssFeed
 strCond = strCond & "FromAnyRssFeed"
 End Select
 strCond = strCond & "
"

Listing 22.2 Generate a report on Outlook rules (continued)

704 22.2 Internal scripting with custom message forms

 End If
 Next
 GetConditions = strCond
End Function

Function GetActions(myRule)
 Dim objAct ' As Outlook.RuleAction
 Dim strAct ' As String
 For Each objAct In myRule.Actions
 If objAct.Enabled Then
 Select Case objAct.ActionType
 Case 0 ' olRuleActionUnknown
 strAct = strAct & "Unknown or Script"
 Case 1 ' olRuleActionMoveToFolder
 strAct = strAct & "MoveToFolder"
 Case 2 ' olRuleActionAssignToCategory
 strAct = strAct & "AssignToCategory"
 Case 3 ' olRuleActionDelete
 strAct = strAct & "Delete"
 Case 4 ' olRuleActionDeletePermanently
 strAct = strAct & "DeletePermanently"
 Case 5 ' olRuleActionCopyToFolder
 strAct = strAct & "CopyToFolder"
 Case 6 ' olRuleActionForward
 strAct = strAct & "Forward"
 Case 7 ' olRuleActionForwardAsAttachment
 strAct = strAct & "ForwardAsAttachment"
 Case 8 ' olRuleActionRedirect
 strAct = strAct & "Redirect"
 Case 9 ' olRuleActionServerReply
 strAct = strAct & "ServerReply"
 Case 10 ' olRuleActionTemplate
 strAct = strAct & "Template"
 Case 11 ' olRuleActionFlagForActionInDays
 strAct = strAct & "FlagForActionInDays"
 Case 12 ' olRuleActionFlagColor
 strAct = strAct & "FlagColor"
 Case 13 ' olRuleActionFlagClear
 strAct = strAct & "FlagClear"
 Case 14 ' olRuleActionImportance
 strAct = strAct & "Importance"
 Case 15 ' olRuleActionSensitivity
 strAct = strAct & "Sensitivity"
 Case 16 ' olRuleActionPrint
 strAct = strAct & "Print"
 Case 17 ' olRuleActionPlaySound
 strAct = strAct & "PlaySound"
 Case 18 ' olRuleActionStartApplication
 strAct = strAct & "StartApplication"
 Case 19 ' olRuleActionMarkRead
 strAct = strAct & "MarkRead"

Listing 22.2 Generate a report on Outlook rules (continued)

22.2 Internal scripting with custom message forms 705

The rest of the report is similar to other reports that generate HTML mes-
sages, such as Listings 18.1 and 18.2—an exercise in building HTML code,
mainly a table, with a couple of styles to format the information. We’ve kept
this report relatively simple by omitting the details, such as what specific
folder a rule is moving items to, but it should give you an idea of how such
reporting forms can assist the Help Desk in gathering information from both
in-house and remote users who connect to your Exchange server.

 Case 20 ' olRuleActionRunScript
 strAct = strAct & "RunScript"
 Case 21 ' olRuleActionStop
 strAct = strAct & "Stop"
 Case 22 ' olRuleActionCustomAction
 strAct = strAct & "CustomAction"
 Case 23 ' olRuleActionNewItemAlert
 strAct = strAct & "NewItemAlert"
 Case 24 ' olRuleActionDesktopAlert
 strAct = strAct & "DesktopAlert"
 Case 25 ' olRuleActionNotifyRead
 strAct = strAct & "NotifyRead"
 Case 26 ' olRuleActionNotifyDelivery
 strAct = strAct & "NotifyDelivery"
 Case 27 ' olRuleActionCcMessage
 strAct = strAct & "CcMessage"
 Case 28 ' olRuleActionDefer
 strAct = strAct & "Defer"
 Case 30 ' olRuleActionClearCategories
 strAct = strAct & "ClearCategories"
 Case 41 ' olRuleActionMarkAsTask
 strAct = strAct & "MarkAsTask"
 End Select
 strAct = strAct & "
"
 End If
 Next
 GetActions = strAct
End Function

Function BuildHTMLHead()
 BuildHTMLHead = "<html><head><style>" & _
 "<!-- td.header {font-family: Arial; " & _
 "font-weight: bold;} " & _
 "td {vertical-align: top;" & _
 "font-family: Arial, Helvetica, sans-serif;" & _
 "font-size: x-small;}--></style></head>"
End Function

Listing 22.2 Generate a report on Outlook rules (continued)

706 22.3 Working with Outlook rules

Tip: To test your own understanding of this technique and your ability to
convert VBA code to VBScript, try your hand at adapting the code in List-
ing 13.10 or Listing 18.1 to build a message form that reports back a list of
all the user’s folders or address lists.

22.3 Working with Outlook rules
As you saw in the previous section, Outlook 2007 introduces a Rules col-
lection containing Rule objects that represent all of the user’s rules. Not
only can code report on those rules, as in Listing 22.2, but you can also cre-
ate new rules programmatically and write code to run them, modify them,
delete them, or disable them.

Rules are store-specific. Each information store has its own set of rules,
although not all stores support rules. For example, stores for non-default
.pst files or SharePoint proxy folders do not support rules. Table 22.1 lists
the important property and methods of the Rules collection, all of which
are new in Outlook 2007.

What should stand out from the list of Rules collection methods in
Table 22.1 is that there is no Add method like other Outlook collections
have. Instead, the Create and Save methods are the beginning and end of
the process of creating a rule. As you’ll see, this process is very different
from creating a folder, a message, or any of the other Outlook objects you’ve
encountered so far.

Figure 22.1
A custom message
form can generate
reports like this to

send back to the
Help desk.

22.3 Working with Outlook rules 707

Table 22.2 shows the key properties and methods for the individual
Rule object, which is also completely new in Outlook 2007.

The Conditions, Actions, and Exceptions collections of the Rule
object correspond to the three screens in the Rules Wizard where the user
can set the conditions, actions, and exceptions for the rule. Unlike most
other collections in the Outlook object model, these collections have no
Add or Remove method. The only method they support is the Item method
to return a member of the collection. These are so-called fixed collections,
because each one already contains all the items it needs—one item for each
supported condition, action, or exception—twenty-four available condi-
tions or exceptions and seventeen actions.

Tip: The Select Case blocks in the GetConditions() and GetActions()
functions in Listing 22.2 list the conditions and actions available to new
rules created programmatically, plus quite a few additional conditions and
actions that can only be enumerated.

To incorporate any condition, action, or exception into a rule, the code
to create or modify that rule first gets the appropriate RuleCondition or
RuleAction object from the collection, and then sets that object’s Enabled
property to True. (Exceptions being the same as conditions, only negated,
they use the same RuleCondition object.)

Table 22.1 Key Rules Collection Property and Methods

Property Description

IsRssRulesProcessingEnabled True or False; corresponds to the value of the “Enable rules on all RSS
Feeds” on the Tools | Rules and Alerts dialog box

Method Description

Create(Name, RuleType) Returns a new rule with the given name and a RuleType from the
OlRuleType enumeration:

olRuleReceive 0

olRuleSend 1

Item(Index) Returns the rule represented by the given Index number or Name of the
rule

Remove Index Removes the rule represented by the given Index number or Name of the
rule

Save ShowProgress Save changes to individual rules in the collection, with an option to show a
progress dialog; raises an error for rules with improperly defined condi-
tions, actions, or exceptions or rules incompatible with the store

708 22.3 Working with Outlook rules

Before we walk through the process of creating a new rule, here are a few
other basics you should know:

Some rule conditions and actions cannot be added to a rule created
programmatically. For example, you cannot create an out-of-office
rule with the Rules collection.

All send rules (RuleType = olRuleSend) are client-side rules.

Some actions are appropriate only for receive or only for send rules.

Whether a receive rule is a server-side (IsLocalRule = False) or
client-side rule depends on the conditions, actions, and exceptions
defined for that rule. It is not possible to directly designate a particu-
lar rule as a server-side or client-side rule.

Table 22.2 Key Rule Object Properties and Methods

Properties Description

Actions Fixed collection exposing all available actions

Conditions Fixed collection exposing all available conditions

Enabled True if the rule is active; False if it is not

Exceptions Fixed collection exposing all available exceptions

ExecutionOrder Integer that indicates the relative position of the rule in the execution order

IsLocalRule True if the rule can run only when Outlook is running; False if the infor-
mation store is an Exchange mailbox and the rule can run on the server;
read-only

Name Display name for the rule

RuleType Read-only value that indicates whether the rule acts on received messages
and RSS feeds or outgoing messages, from the OlRuleType enumeration:

olRuleReceive 0

olRuleSend 1

Method Description

Execute(ShowProgress,
Folder, IncludeSubfolders,
RuleExecuteOption)

Execute the rule immediately against the specified Folder and optionally
its subfolders, with an optional progress dialog; if no Folder is specified,
the rule runs against the Inbox. The fourth parameter, also optional, deter-
mines whether the rule runs against all, read, or unread items, according to
the OlRuleExecuteOption enumeration:

olRuleExecuteAllMessages (default) 0

olRuleExecuteReadMessages 1

olRuleExecuteUnreadMessages 2

22.3 Working with Outlook rules 709

The “redirect” and “have server reply” actions are server-only and
cannot be mixed with client-only actions such as “mark it as read.”

Saving a set of newly created rules may be a time-consuming process,
especially if the store is an Exchange mailbox. You can use the
optional ShowProgress parameter of the Rules.Save method to
give the user an opportunity to cancel the operation.

22.3.1 Creating new rules

Any code to create and turn on a new, permanent rule needs to follow this
sequence of steps:

1. Call the Rules.Create method, giving the rule a name and spec-
ifying whether the rule will act on received items (messages and/
or RSS feeds) or on sent messages.

2. Enable each desired condition, and set any necessary property
value.

3. Enable each desired action, and set any necessary property value.

4. Enable each desired exception, and set any necessary property
value.

5. Set the Enabled property of the rule to True.

6. Call the Save method on the Rules collection.

If you are creating multiple rules, you can defer Step 6 and call Save
after you have added all rules.

To create a rule but not activate it, skip Step 5.

To create a rule and execute it immediately but not save it permanently,
skip both Steps 5 and 6 and call the Rule.Execute method.

Enabling and configuring a condition, action, or exception (as in Steps
2–4 above) is itself a multi-step process:

A. Return the rule condition object for the given condition or excep-
tion or, for an action, the rule action object.

B. If applicable, set the required property associated with the condi-
tion or action object.

C. Set the Enabled property of the condition or action object to
True.

To manage the behavior of the twenty-four available rule conditions and
exceptions, the Outlook object model contains ten different rule condition
objects, listed in Table 22.3. Each rule condition object is based on the
RuleCondition object and inherits from it the Enabled property used in

710 22.3 Working with Outlook rules

Step C above and the read-only ConditionType property that Listing 22.2
uses to build its rules report.

Note: Tables 22.3 and 22.4 list only the conditions and actions that can be
used to create or modify rules programmatically. Other conditions and
actions are possible, but the Outlook object model only allows them to be
enumerated, as in Listing 22.2.

Each rule condition object derived from the RuleCondition object also
contains a property that must be set before the rule can be saved or executed.
The nature of that property varies. For example, the TextRuleCondition
object is used to create rules to search in the body, subject, message header,
and so on; it requires a value for its Text property—an array of the string or
strings to search for. The ToOrFromRuleCondition object requires at least
one recipient in its Recipients property. Table 22.3 lists the available con-
ditions, along with the corresponding rule condition object for each one and
the required property for each condition that has one. It also indicates which
conditions can be used in send rules for outgoing messages.

For example, the following code handles Steps 1 and 2 of the six-step
rule-creation sequence, adding a receive rule to a store’s Rules collection
and enabling the condition that looks for specific sender addresses:

' Step 1: Create the rule
 Set objRule = colRules.Create("From Customers", _
 olRuleReceive)
' Step 2: Enable condition and set mandatory property
 ' Step A: Get the rule condition
 Set objSenderRule = objRule.Conditions.SenderAddress
 ' Step B: Set the required property
 arrSenders = Array("flaviusj@turtleflock.net", _
 "dymka@turtleflock.net")
 objSenderRule.Address = arrSenders
 ' Step C: Enable the condition
 objSenderRule.Enabled = True

Table 22.3 Rule Conditions Available to Outlook Code

Condition Rule Condition Object

Required Rule
Condition
Property

Property Takes this
Data Type or Object

OK for
Send Rule

Account AccountRuleCondition Account Outlook.Account X

AnyCategory RuleCondition None None X

Body TextRuleCondition Text String array X

22.3 Working with Outlook rules 711

BodyOrSubject TextRuleCondition Text String array X

Category CategoryRuleCondition Categories String array X

Cc RuleCondition None None X

FormName FormNameRuleCondition FormName String array of form
message classes

X

From ToOrFromRuleCondition Recipients Outlook.Recipients

FromAnyRssFeed RuleCondition None None

FromRssFeed FromRssFeedRuleCondition FromRssFeed String array of one or
more RSS subscription
names from the Out-
look.Sharing.xml.obi
file on the client
machine

HasAttachment RuleCondition None None X

Importance ImportanceRuleCondition Importance Constant from the
OlImportance enum-
eration

X

MeetingInviteOrUpdate RuleCondition None None X

MessageHeader TextRuleCondition Text String array

NotTo RuleCondition None None

OnLocalMachine RuleCondition None None X

OnlyToMe RuleCondition None None

RecipientAddress AddressRuleCondition Address String array X

SenderAddress AddressRuleCondition Address String array

SenderInAddressList SenderInAddressListRule
Condition

AddressList Outlook.AddressList

SentTo ToOrFromRuleCondition Recipients Outlook.Recipients X

Subject TextRuleCondition Text String array X

ToMe RuleCondition None None

ToOrCc RuleCondition None None

Table 22.3 Rule Conditions Available to Outlook Code (continued)

Condition Rule Condition Object

Required Rule
Condition
Property

Property Takes this
Data Type or Object

OK for
Send Rule

712 22.3 Working with Outlook rules

As there are ten kinds of condition objects, there are seven types of
action objects to manage the behavior of the seventeen possible actions
listed in Table 22.4. Each action object is based on the RuleAction object
and inherits its Enabled and ActionType properties. Each action object
derived from RuleAction has a required property you must set before sav-
ing or executing the rule. Table 22.4 shows the rule actions that you can
add programmatically, along with the corresponding rule action objects and
the action objects’ required properties. It also indicates whether each action
is available for receive and send rules.

To complete the “sender address” rule in the above snippet with a “move
to folder” action, the code needs to return a Folder object:

Table 22.4 Rule Actions Available to Outlook Code

Action Rule Action Object

Required
Rule Action
Property

Property Takes This
Data Type or Object

OK for
Receive
Rules

OK for
Send
Rules

AssignToCategory AssignToCategoryRuleAction Categories String array X X

Cc SendRuleAction Recipients Outlook.Recipients X

ClearCategories RuleAction None None X X

CopyToFolder MoveOrCopyRuleAction Folder Folder X X

Delete RuleAction None None X

DeletePermanently RuleAction None None X

DesktopAlert RuleAction None None X

Forward SendRuleAction Recipients Outlook.Recipients X

ForwardAsAttachment SendRuleAction Recipients Outlook.Recipients X

MarkAsTask MarkAsTaskRuleAction None None X

MoveToFolder MoveOrCopyRuleAction Folder Folder X

NewItemAlert NewItemAlertRuleAction Text String X

NotifyDelivery RuleAction None None X

NotifyRead RuleAction None None X

PlaySound PlaySoundRuleAction FilePath String with full file
path to a .wav file

X

Redirect SendRuleAction Recipients Outlook.Recipients X

Stop RuleAction None None X X

22.3 Working with Outlook rules 713

' Step 3: Enable action and set mandatory property
 ' Step A: Get the rule action
 Set objMoveAction = objRule.Actions.MoveToFolder
 ' Step B: Set the required property
 Set objInbox = objNS.GetDefaultFolder(olFolderInbox)
 Set objFolder = objInbox.folders("Customers")
 objMoveAction.Folder = objCustomers
 ' Step C: Enable the action
 objMoveAction.Enabled = True
' Step 5: Enable the rule
 objRule.Enabled = True
' Step 6: Save the rule
 colRules.Save

We skipped Step 4, because this rule has no exceptions. Step 4 is identi-
cal to Step 2 except that you work with the Exceptions collection of the
Rule object instead of the Conditions collection. The entire procedure,
with object declarations, appears in Listing 22.3.

As you probably noticed from the omissions from Table 22.4, it is not
possible to create programmatically certain types of rules—those to run a
VBA macro, custom action, or external application; clear or set a message
flag; mark a message as read or with a specific importance or sensitivity;
print a message; have the server reply or reply with a template; or defer
delivery.

For another example of a custom rule, check out “How to: Create a Rule
to Move Specific E-mails to a Folder” (HV10038598) in Outlook devel-
oper Help.

The number in parentheses is a topic ID you can search for in Help to
find the articles faster.

Listing 22.3 Create a rule to move items to a folder

Sub CreateFromCustomersRule()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objStore As Outlook.Store
 Dim colRules As Outlook.Rules
 Dim objRule As Outlook.Rule
 Dim objInbox As Outlook.Folder
 Dim objCustomers As Outlook.Folder
 Dim objSenderRule As Outlook.AddressRuleCondition
 Dim objMoveAction As Outlook.MoveOrCopyRuleAction
 Dim arrSenders()
 Set objOL = Application
 Set objNS = objOL.Session
' Step 1: Create the rule
 Set objStore = objNS.DefaultStore
 Set colRules = objStore.GetRules
 Set objRule = colRules.Create(_
 "From Customers", olRuleReceive)

714 22.4 Managing folder views

22.3.2 Running rules programmatically

One of the most useful features of the Rule object is its Execute method,
which allows code to run any rule on demand—either a saved rule or an ad
hoc rule that is created, run, and then discarded. As shown in Table 22.2,
the Execute method has options to show a progress dialog, run rules
against any folder (the default being the Inbox), include subfolders in the
execution, and run rules against only unread items, only read items, or all
items. The RunAllInboxRules in Listing 22.4 executes all available receive
rules against the Inbox, regardless of whether each rule is currently set to
run automatically (in other words, regardless of whether its Enabled prop-
erty is True or False).

To silently run a rule against only read items in a specific folder and its
subfolders, you could use this statement:

objRule.Execute False, objFolder, True, _
 olRuleExecuteReadMessages

Outlook does not fire an event to indicate when a rule has finished its
execution.

22.4 Managing folder views
Outlook 2007 improves on earlier versions by making it easier to create and
modify views programmatically. In addition to a basic View object, the

' Step 2: Enable condition and set mandatory property
 Set objSenderRule = objRule.Conditions.SenderAddress
 arrSenders = Array("flaviusj@turtleflock.net", _
 "dymka@turtleflock.net")
 objSenderRule.address = arrSenders
 objSenderRule.Enabled = True
' Step 3: Enable action and set mandatory property
 Set objMoveAction = objRule.Actions.MoveToFolder
 Set objInbox = objNS.GetDefaultFolder(olFolderInbox)
 Set objCustomers = objInbox.folders("Customers")
 objMoveAction.Folder = objCustomers
 objMoveAction.Enabled = True
' Step 5: Enable the rule
 objRule.Enabled = True
' Step 6: Save the rule
 colRules.Save
 Set objOL = Nothing
 Set objNS = Nothing
 Set objStore = Nothing
End Sub

Listing 22.3 Create a rule to move items to a folder (continued)

22.4 Managing folder views 715

object model now also supports view classes for specific view types, each of
which exposes properties that are particular to that type of view:

BusinessCardView

CalendarView

CardView

IconView

TableView

TimelineView

Modifying views in earlier versions required an understanding of XML
(Extensible Markup Language) and the XML schema that defines a view’s
configuration. In Outlook 2007, most view settings—including fields, sort
order, and group order—are exposed through properties on the different
view objects.

A view name is unique in any Folder.Views collection, so you can
return a view from a folder knowing just its name:

Set objView = objFolder.Views(view_name)

To create a new view, return a Views collection from the Folder, and
then use the Add method. You must specify the name of the view and the

Listing 22.4 Run all receive rules against the Inbox

Sub RunAllInboxRules()
 Dim objStore As Outlook.Store
 Dim colRules As Outlook.Rules
 Dim objRule As Outlook.Rule
 Dim intCount As Integer
 Dim strRuleList As String
 On Error Resume Next
 Set objStore = Application.Session.DefaultStore
 Set colRules = objStore.GetRules
 For Each objRule In colRules
 If objRule.RuleType = olRuleReceive Then
 objRule.Execute ShowProgress:=True
 intCount = intCount + 1
 strRuleList = strRuleList & vbCrLf & objRule.Name
 End If
 Next
 strRuleList = "These rules were executed " & _
 "against the Inbox: " & vbCrLf & strRuleList
 MsgBox strRuleList, vbInformation, _
 "Macro: RunAllInboxRules"
 Set objRule = Nothing
 Set objStore = Nothing
 Set colRules = Nothing
End Sub

716 22.4 Managing folder views

type of view using one of the constants in Table 22.5. To save the new view
and apply it, use the Save and Apply methods:

Set colViews = objFolder.Views
Set objView = colViews.Add(Name, ViewType, SaveOption)
objView.Save
objView.Apply

The third parameter in the Views.Add method, SaveOption, is
optional and defines the scope of the view, using one of the constants in
Table 22.6. The scope—where the view can be used and by whom—
depends on where Outlook saves the view. As Table 22.6 shows, views visi-
ble to everyone are stored in the folder itself. General-use views and folder-
specific views available only to the user are kept in a hidden folder in the
user’s default store. Since search folders are virtual folders and do not con-
tain any actual items, they also cannot contain any view definitions. There-
fore, you cannot create a view on a search folder using the scope, “This
folder, visible to everyone.” If you do not specify a SaveOption argument
for a Views.Add statement, Outlook defaults to OlViewSaveOptionThis-
FolderOnlyMe for search folders and OlViewSaveOptionThisFolder-
Everyone for other folders.

Table 22.5 Possible ViewType Values from the OlViewType Enumeration

ViewType Constant Value

olBusinessCardView 5

olCalendarView 2

olCardView 1

olIconView 3

olTableView 0

olTimelineView 4

Table 22.6 Possible SaveOption Values from the OlViewSaveOption Enumeration

View Scope SaveOption Constant Value Creates View Stored In . . .

All folders of a specific
type

OlViewSaveOptionAllFoldersOfTYpe 2 Store (hidden folder)

This folder, visible to
everyone

OlViewSaveOptionThisFolderEveryone 0 Folder

This folder, visible only to
me

OlViewSaveOptionThisFolderOnlyMe 1 Store (hidden folder)

22.4 Managing folder views 717

The OlViewType enumeration also exposes an olDailyTaskListView
(value = 6), but you cannot create a new view of this type.

You must have owner permission on the folder to create, modify, or
delete a view that has a SaveOption property value of OlViewSave-
OptionThisFolderEveryone.

To delete a custom view, return the View object from the Views collec-
tion and use its Delete method. As with other Outlook collections, you
can also use the Views.Remove method.

If you use objFolder.Views(view_name) to return a standard view,
such as the Messages view for a mail folder, modifying the view will cause
Outlook to create a copy of the view definition for that one folder. It is not
possible to modify the master copy of a standard view, such as Messages,
programmatically. It is also not possible to clean up such folder-level cached
view copies with the View.Delete or Views.Remove method. However,
Listing 14.5 in Chapter 14 showed how to return such cached standard
views as StorageItem objects and delete them.

Table 22.7 lists the important properties and methods of the View
object.

You cannot change the SaveOption or Type of a view after the view is
created. You can only set those properties as arguments in a Views.Add
statement.

Table 22.7 Key View Properties and Methods (* = new in Outlook 2007)

Property Description

Filter String that generates a restriction on the view, using DASL syntax

Language String for an ISO language tag (for example, "EN-US" for the United States); if
present, the view will appear only on menus for that language

LockUserChanges If True, changes that the user makes to the view are not stored permanently;
default is False

Name Name for the view

SaveOption Scope constant from Table 22.6; read-only

Standard True for built-in views; False for custom views; read-only

ViewType Type constant from Table 22.5; read-only

XML XML representation of a view’s layout and options

Method Description

Apply Make the view the currently displayed view for the folder

718 22.4 Managing folder views

22.4.1 Setting view properties

The Customize View dialog box invoked by users with the View | Current
View | Customize Current View command gives users many different
options for customizing views:

Fields

Group By

Sort

Filter

Other Settings (fonts and other settings specific to the type of view)

Automatic Formatting (user-defined font rules)

Format Columns (display formats for each field)

Outlook 2007’s expanded view programmability support makes it possi-
ble to configure most of these options with code. The necessary properties
are exposed not in the general View object, but in the objects specific to the
different types of views listed at the beginning of the previous section. Table
22.8 lists the key properties that the individual view types support in com-
mon, while Table 22.9 lists other properties that work only with one partic-
ular view type.

Note: While automatic formatting settings can be configured with the Auto-
FormatRules collection and the individual AutoFormatRule objects it con-
tains, those rules don’t persist to the next Outlook session. Therefore, you
might want to run any code that sets view automating rules either when Out-
look starts, using the Application.MAPILogonComplete event, or when
the user switches views, using the Explorer.BeforeViewSwitch event.

Method Description

Copy(Name, SaveOption) Make a copy of the view, giving the new copy a Name and optional SaveOption
using one of the constants from Table 22.6

Delete Delete the view

*GoToDate(Date) In a calendar or timeline view, change the display so that the focus is on the spec-
ified date

Reset On built-in views (Standard = True), reset the view to its original settings;
does not apply to custom views

Save Save

Table 22.7 Key View Properties and Methods (* = new in Outlook 2007) (continued)

22.4 Managing folder views 719

Table 22.8 Properties Common to Multiple View Types

Property BusinessCardView CalendarView CardView IconView TableView TimelineView

AllowInCellEditing X X

AutoFormatRules X X X

DefaultExpand
CollapseSetting

X X

GroupByFields X X

HeadingsFont X X X

EndField X X

SortFields X X X X

StartField X X

ViewFields X X

Table 22.9 Properties Specific to Individual View Types

View Type Properties

BusinessCardView CardSize

CalendarView BoldDatesWithinItems

BoldSubjects

CalendarViewMode

DaysInMultiDayMode

DayWeekFont

DayWeekTimeFont

DayWeekTimeScale

DisplayedDates

MonthFont

MonthShowEndTime

CardView BodyFont

ShowEmptyFields

MultiLineFieldHeight

Width

IconView IconPlacement

IconViewType

720 22.4 Managing folder views

Five other objects are important to setting view options:

The OrderFields object returned by the GroupByFields and
SortFields properties of all but the CalendarView object

The individual OrderField objects in the OrderFields collection

The ViewField objects in the ViewFields collection

The ColumnFormat object returned by the ViewField.ColumnFor-
mat property

To demonstrate how to use these objects and how to modify an existing
view, let’s update the standard Active Tasks view in the default Tasks folder
to make three changes:

1. Define two new custom properties in the folder—Project and
Next Milestone Date—and display them in the view

2. Sort the view by Next Milestone Date, which we will display
in a format other than the default date format

3. Turn on in-cell editing and the new item row

TableView AutomaticColumnSizing

AutomaticGrouping

AutoPreview

AutoPreviewFont

ColumnFont

GridLineStyle

HideReadingPaneHeaderInfo

MaxLinesInMultiLineView

MultiLine

MultiLineWidth

RowFont

ShowItemsInGroups

ShowNewItemRow

ShowReadingPane

ShowUnreadAndFlaggedMessages

TimelineView ItemFont

LowerScaleFont

MaxLabelWidth

ShowLabelWhenViewingByMonth

ShowWeekNumbers

TimelineViewMode

UpperScaleFont

Table 22.9 Properties Specific to Individual View Types (continued)

View Type Properties

22.4 Managing folder views 721

As with rules, views are sufficiently complex that it’s helpful to break
down the operation into steps:

1. Get the Tasks folder.

2. Define the custom properties in the folder.

3. Get the existing table view.

4. Insert the properties into the view’s field list.

5. Format the new columns as needed.

6. Set the view’s sort order.

7. Turn on in-cell editing and the new item row.

8. Save the view.

9. Apply the view.

Listing 22.5 shows the complete operation, with all the steps marked.

To create a new property and add it to the view, first add it to the folder’s
UserDefinedFields collection, as discussed in the previous chapter. Then
use the MAPI schema property name for the custom property to insert it
into the ViewFields collection at the desired position:

With objTasks.UserDefinedProperties
 .Add "Project", olText
 .Add "Next Milestone Date", olDateTime
End With
strProjectProp = _
 "http://schemas.microsoft.com/mapi/string/" & _
 "{00020329-0000-0000-C000-000000000046}/Project"
Set objTextViewField = _
 objTableView.ViewFields.Insert(strProjectProp, 6)

Tip: If you’re doing code experiments that involve adding fields to the
folder, so that you can use them in a view, you may want to start with an
empty Folder.UserDefinedProperties collection each time. This little
procedure will remove all existing custom property definitions from the
folder. It won’t affect data stored in existing items.

Sub DeleteAllFolderCustomProps()
 Dim objFolder As Outlook.Folder
 Set objFolder = _
 Application.ActiveExplorer.CurrentFolder
 Do While objFolder.UserDefinedProperties.count > 0
 objFolder.UserDefinedProperties.Remove 1
 Loop
 Set objFolder = Nothing
End Sub

722 22.4 Managing folder views

Listing 22.5 Modify the standard Active Tasks view

Sub UpdateActiveTasksView()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objTasks As Outlook.Folder
 Dim colViews As Outlook.Views
 Dim objView As Outlook.View
 Dim objTableView As Outlook.TableView
 Dim objTextViewField As Outlook.ViewField
 Dim objDateViewField As Outlook.ViewField
 Dim objColFormat As Outlook.ColumnFormat
 Dim colOrderFields As Outlook.OrderFields
 On Error Resume Next
 Dim strProjectProp As String
 Dim strMilestoneProp As String
'Step 1. Get the Tasks folder.
 Set objOL = Application
 Set objNS = objOL.Session
 Set objTasks = objNS.GetDefaultFolder(olFolderTasks)
'Step 2. Define the properties in the folder.
 With objTasks.UserDefinedProperties
 .Add "Project", olText
 .Add "Next Milestone Date", olDateTime
 End With
'Step 3. Get the existing table view.
 Set colViews = objTasks.Views
 Set objView = colViews.Item("Active Tasks")
 If objView.viewType = olTableView Then
 Set objTableView = objView
'Step 4. Insert the properties into the view’s field list
 strProjectProp = _
 "http://schemas.microsoft.com/mapi/string/" & _
 "{00020329-0000-0000-C000-000000000046}/Project"
 Set objTextViewField = _
 objTableView.ViewFields.Insert(strProjectProp, 6)
 strMilestoneProp = _
 "http://schemas.microsoft.com/mapi/string/" & _
 "{00020329-0000-0000-C000-000000000046}/" & _
 "Next%20Milestone%20Date"
 Set objDateViewField = _
 objTableView.ViewFields.Insert(strMilestoneProp, 7)
'Step 5. Format the new columns as needed
 Set objColFormat = objTextViewField.ColumnFormat
 objColFormat.Width = 30
 Set objColFormat = objDateViewField.ColumnFormat
 objColFormat.FieldFormat = _
 olFormatDateTimeShortDayMonth
 objColFormat.Width = 30
'Step 6. Set the view’s sort order.
 Set colOrderFields = objTableView.SortFields
 colOrderFields.RemoveAll
 colOrderFields.Add strMilestoneProp, True

22.4 Managing folder views 723

If a view is already sorted, adding a new field to the SortFields collec-
tion adds a new level of sorting to the levels that already exist. To start with
a fresh sort order, remove all the existing sort fields before you add a new
one:

Set colOrderFields = objTableView.SortFields
colOrderFields.RemoveAll
colOrderFields.Add strMilestoneProp, True

The sample in the next section shows how to create multiple new views
in a batch operation.

22.4.2 Example: Create category-filtered views

Not only can you add fields to views, but you can also filter them to show
only certain items, similar to the way you use Items.Restrict to return
a filtered Items collection. In fact, the syntax for a view filter uses the
same DASL syntax for a Restrict filter, the same syntax we learned in
Chapter 16.

For each unique category represented in a folder, the CreateCategory-
Views procedure in Listing 22.6 creates a new view that displays only the
items in that category. The category list comes from a helper function, Get-
FolderCatArray, which uses the rapid, read-only access provided by an
Outlook Table object to read all the items in a folder and build a list of
unique categories, using a Scripting.Dictionary object, in just seconds.

The CreateCategoryViews procedure requires two arguments, the
folder where you want to create the new views and one of the OlViewType
values from Table 22.5. Optionally, if the view type is a table view
(olTableView), you can specify an option to group by category to make it

'Step 7. Turn on in-cell editing and new item row.
 objTableView.AllowInCellEditing = True
 objTableView.ShowNewItemRow = True
'Step 8. Save the view.
 objTableView.Save
'Step 9. Apply the view.
 objTableView.Apply
 End If
 Set objOL = Nothing
 Set objNS = Nothing
 Set objTasks = Nothing
 Set colViews = Nothing
 Set objView = Nothing
 Set objTableView = Nothing
End Sub

Listing 22.5 Modify the standard Active Tasks view (continued)

724 22.4 Managing folder views

Listing 22.6 Create category-filtered views on any folder

Sub CreateCategoryViews(fld As Folder, _
 viewType As OlViewType, Optional groupByCat As Boolean)
 Dim varCats As Variant
 Dim i As Integer
 Dim objView As Outlook.View
 Dim objTableView As Outlook.TableView
 Dim strCat As String
 Dim strMsg As String
 Dim strViewName As String
 Dim strFind As String
 Dim intScope As Outlook.OlViewSaveOption
 Const SEARCH_KEYWORDS = _
 "urn:schemas-microsoft-com:office:office#Keywords"
 varCats = GetFolderCatArray(fld)
 If Not IsEmpty(varCats) Then
 For i = 0 To UBound(varCats)
 strCat = varCats(i)
 strViewName = "Category: " & strCat
 Set objView = fld.Views(strViewName)
 If objView Is Nothing Then
 Set objView = fld.Views.Add(strViewName, _
 viewType)
 strFind = Quote(SEARCH_KEYWORDS) & _
 " = '" & Replace(strCat, "'", "''") & "'"
 objView.Filter = strFind
 If viewType = olTableView Then
 If groupByCat = True Then
 Set objTableView = objView
 objTableView.GroupByFields.Add _
 SEARCH_KEYWORDS
 objTableView.Save
 End If
 End If
 objView.Save
 If Err.Number <> 0 Then
 strMsg = strMsg & vbCrLf & _
 strViewName & " - error occurred"
 Err.Clear
 End If
 Else
 strMsg = strMsg & vbCrLf & _
 strViewName & " - already exists"
 End If
 Next
 strMsg = CStr(UBound(varCats) + 1) & _
 " unique categories in " & fld.Name & vbCrLf & strMsg
 Else
 strMsg = "No categories for items in " & fld.Name
 End If
 MsgBox strMsg, vbInformation, "Create Category Views"
 Set objView = Nothing
 Set objTableView = Nothing
End Sub

22.4 Managing folder views 725

easier to see what other categories are applied to the items in the current fil-
ter. For example, to create category-based table views, with items grouped
by category, call the CreateCategoryViews procedure like this:

Set objFolder = Application.ActiveExplorer.CurrentFolder
Call CreateCategoryViews(objFolder, olTableView, True)

The first step in building the views is to use the GetFolderCatArray()
function to return the list of unique categories in the folder as an array. To
build the list, the function checks the value of the Categories property for

Function GetFolderCatArray(fld As Folder) As Variant
 ' requires reference to Scripting.Runtime library
 Dim objCats As Scripting.Dictionary
 Dim objTable As Outlook.Table
 Dim objCol As Outlook.Column
 Dim objRow As Outlook.Row
 Dim varCats As Variant
 Dim strFind As String
 Dim strCat As String
 Dim i As Integer
 Const SEARCH_KEYWORDS = _
 "urn:schemas-microsoft-com:office:office#Keywords"
 Set objCats = CreateObject("Scripting.Dictionary")
 objCats.CompareMode = TextCompare
 strFind = "NOT (" & Quote(SEARCH_KEYWORDS) & " IS NULL)"
 Set objTable = fld.GetTable("@SQL=" & strFind)
 objTable.Columns.Add SEARCH_KEYWORDS
 Do Until objTable.EndOfTable
 Set objRow = objTable.GetNextRow
 varCats = objRow(SEARCH_KEYWORDS)
 If Not IsEmpty(varCats) Then
 For i = 0 To UBound(varCats)
 strCat = varCats(i)
 If Not objCats.Exists(strCat) Then
 objCats.Add strCat, 0
 End If
 Next
 End If
 Loop
 GetFolderCatArray = objCats.Keys
 Set objCats = Nothing
 Set objTable = Nothing
 Set objCol = Nothing
 Set objRow = Nothing
End Function

Private Function Quote(val) as String
 Quote = Chr(34) & CStr(val) & Chr(34)
End Function

Listing 22.6 Create category-filtered views on any folder (continued)

726 22.4 Managing folder views

each item in the folder, using a Table object to which a new Column has
been added to expose the Categories property:

Const SEARCH_KEYWORDS = _
 "urn:schemas-microsoft-com:office:office#Keywords"
objTable.Columns.Add SEARCH_KEYWORDS

Because the Column was added with the MAPI schema property name,
not the Outlook object model property name, it returns the data for the
Categories property, which is a keywords field, as a string array instead of
a comma-delimited string. For each row of the table, the code reads the
item in that string array and compares them to the keys of a Script-
ing.Dictionary object (objCat):

Set objRow = objTable.GetNextRow
varCats = objRow(SEARCH_KEYWORDS)
If Not IsEmpty(varCats) Then
 For i = 0 To UBound(varCats)
 strCat = varCats(i)
 If Not objCats.Exists(strCat) Then
 objCats.Add strCat, 0
 End If
 Next
End If

Whenever the code finds a category that doesn’t already exist in the obj-
Cats dictionary, it adds that category to the dictionary:

objCats.Add strCat, 0

In this procedure, we care only about the key, but the Dictionary.Add
method requires a value for the second parameter, so 0 is a good choice.
When the code has processed the entire table, it can return the array of
lookup values from the dictionary with just one code statement:

GetFolderCatArray = objCats.Keys

For each item in the array, the CreateCategoryViews procedure con-
structs the view name from the current entry in the array:

strCat = varCats(i)
strViewName = "Category: " & strCat

and adds a view with that name, if one doesn’t already exist:

Set objView = fld.Views.Add(strViewName, viewType)

using the viewType value passed to the procedure as an argument. To
construct the filter query string, the code needs to replace any apostrophe
characters with two apostrophes to meet a requirement of the DASL syntax:

strFind = Quote(SEARCH_KEYWORDS) & _
 " = '" & Replace(strCat, "'", "''") & "'"

All it takes to apply the filter to the view is to set the value of the Filter
property to the filter query string:

objView.Filter = strFind

22.4 Managing folder views 727

Note: We’ve seen so many uses of DASL search strings with the Restrict
method that it’s worth noting that the view filter usage does not take the
"@SQL=" prefix that Restrict requires.

If the view is a table view and if the optional third parameter is set to
True, the code gets a TableView object and groups the view by the same
property used to filter the view:

Set objTableView = objView
objTableView.GroupByFields.Add SEARCH_KEYWORDS

All the views that Listing 22.6 creates have similar names: “Category:
name of the category.” If you run the CreateCategoryViews procedure and
find that you want to keep just a few of the filtered views, use the View |
Current View | Define Views dialog to rename the views you want to keep
to “Category = name of the category” or something similar. Then, call the
DeleteAllCategoryViews procedure in Listing 22.7, passing the folder as
an argument, to remove all the remaining views with “Category:” names.

You may be surprised at how many categories are being used in a folder!
These procedures can help you start cleaning them up and organizing them
better. They can also make it easier to print out a quick phone list of all
your contacts marked with a favorite category.

Listing 22.7 Clean up unwanted Category: views

Sub DeleteAllCategoryViews(fld As Outlook.Folder)
 Dim objView As Outlook.View
 Dim strMsg As String
 Dim intCount As Integer
 Dim i As Integer
 Dim j As Integer
 intCount = fld.Views.count
 j = 0
 If intCount > 0 Then
 For i = intCount To 1 Step -1
 Set objView = fld.Views(i)
 If objView.Standard = False Then
 If Left(objView, 10) = "Category: " Then
 objView.Delete
 j = j + 1
 End If
 End If
 Next
 strMsg = "Processed " & CStr(j) & " views"
 End If
 MsgBox strMsg, vbInformation, "Delete All Category Views"
 Set objView = Nothing
End Sub

728 22.5 Internal scripting with folder home pages

22.4.3 Managing public folder views

A frequent request in Exchange environments is to control the behavior of
custom folder views to:

Show a particular view when the user first displays the folder

Show only views created specifically for that folder

Prevent the user from making changes to the view created for the
folder

The first two settings can be controlled through the user interface, the
first one on the Properties dialog for the folder and the second on the View
| Current View | Define Views dialog. However, the third can be set only in
code. Therefore, it’s useful to have a VBA macro that can be run against any
folder to lock down all views.

Note: Remember that a user has full access to all the views in the primary
Exchange mailbox and any .pst file, so this technique is relevant only to
folders in the Public Folders hierarchy and shared folders in other users’
mailboxes.

The LockViews procedure in Listing 22.8 sets the CustomViewsOnly
property of the folder to True, so that the folder can display only views cre-
ated for that folder. To prevent users from caching their own copy of any
folder view, the LockUserChanges property for each view is set to True.
You can lock the views on the currently displayed folder by executing this
statement from the VBA Immediate window:

Call LockViews(Application.ActiveExplorer.CurrentFolder)

It is not possible to set the default view for a public folder programmati-
cally with the Outlook 2007 object model, because the StorageItem
object does not work for public folders.

22.5 Internal scripting with folder home pages
Any configuration changes that you can make in Outlook VBA—including
creating rules and views—can also be scripted in a custom form, using the
techniques from the first part of the chapter. And, anything that can be
scripted in a custom form can also be scripted in a folder home page that uses
the Outlook View Control. A folder home page, as we learned in Chapter 1,
is a Web page that Outlook displays instead of the contents of a folder.

When a user first connects to a newly created Exchange mailbox, Out-
look 2007 opens to the Inbox folder. Here’s how a folder home page on the
Inbox can help deploy the kinds of settings we’ve been talking about in this
chapter, the kind that can’t be set unless Outlook is running:

22.5 Internal scripting with folder home pages 729

1. Using your organization’s preferred method to deploy registry
changes, an administrator sets a registry value for a user or
machine that tells Outlook to load a Web page instead of the
Inbox and another value that tells Outlook to display the Inbox
when it starts.

2. When the user starts Outlook, the folder home page displays
instead of the usual Inbox view. An Outlook View Control
(OVC) on the page displays the Inbox items (so the user doesn’t
panic and think all the mail is missing).

3. Code in the Web page’s onload event handler gets a reference to
an Outlook.Application object from the OVC’s Outlook-
Application property and runs code to configure rules, views,
search folders, and so on.

4. After completing the configuration tasks, the code turns off the
folder home page by setting a couple of properties on the Inbox
folder.

Listing 22.8 Lock down views for an Exchange public or shared folder

Sub LockViews(fld As Outlook.Folder)
 Dim objView As Outlook.View
 Dim strMsg As String
 On Error Resume Next
 For Each objView In fld.Views
 If objView.Standard = False Then
 If objView.SaveOption = _
 olViewSaveOptionThisFolderEveryone Then
 objView.LockUserChanges = True
 objView.Save
 strMsg = strMsg & vbCrLf & objView.Name
 If Err.Number = 0 Then
 strMsg = strMsg & " - Locked"
 Else
 strMsg = strMsg & " - Error"
 End If
 End If
 End If
 Next
 If strMsg = "" Then
 strMsg = vbCrLf & "No custom views available to lock"
 Else
 strMsg = _
 "These views were processed:" & vbCrLf & strMsg
 End If
 MsgBox strMsg, vbInformation, "Lock Views"
 fld.CustomViewsOnly = True
 Set objView = Nothing
End Sub

730 22.5 Internal scripting with folder home pages

Ideally, the Web page would be a page on your Intranet, but it could also
be an .htm file that a login script copies to the local hard drive. Figure 22.2
shows a simple folder home page set up to configure a first-time user’s
machine.

Note: One way in which Outlook 2007 has improved security is that it will
no longer load a folder home page for a folder that is in a .pst file other than
the user’s default information store. A setting is available in the administra-
tive template for Outlook 2007 to override this default behavior.

Set these two registry values to make Outlook show the folder home
page for a user’s Inbox:

Show the associated Web page

Key: HKEY_CURRENT_USER\Software\Microsoft\Office\12.0\
Outlook\WebView\Inbox

Value name: Show

Figure 22.2 A folder home page can show Outlook data and run code to configure Outlook options.

22.5 Internal scripting with folder home pages 731

Value type: REG_SZ (string)
Value data: Yes

URL address of associated Web page

Key: HKEY_CURRENT_USER\Software\Microsoft\Office\12.0\
Outlook\WebView\Inbox

Value name: Url
Value type: REG_SZ (string)
Value data: The URL that you want to display as a folder home page

Similar keys are available for other default folders and are documented
in the administrative template for Outlook 2007.

As Figure 22.2 shows, a folder home page can offer solutions to a couple
of other Outlook challenges. This page shows a customizable welcome mes-
sage to provide new Outlook users with the information you want them to
know; the text is simply part of the HTML content of the Web page. It also
automatically switches the user to the Folder List navigation module. This
is helpful to users who need to be able to access folders in the Public Folders
hierarchy, which appears only in the Folder List navigation module.

The code in Listing 22.9 is the complete code used to create the folder
home page shown in Figure 22.2. The visible portion of the page is that
within the <body> and </body> tags at the end of the listing. This portion
was created in an HTML editor by inserting a table, adding text, a button,
and an instance of the Outlook View Control, which is an ActiveX control
that we first encountered in Chapter 6.

The really interesting portion of Listing 22.9 lies in the three procedures
contained between the <script> and </script> tags. The first proce-
dure, window_onload, runs when the page loads, in other words, when
Outlook displays the Web page. This statement is the key to its operation:

Set objOL = ViewCtl1.OutlookApplication

The fact that the Web page is running as a folder home page in Outlook
and that it contains an Outlook View Control allows the code to return an
Outlook.Application object from the OVC’s OutlookApplication
property. If the page were running in an external Web browser, this state-
ment would raise an error, because the OutlookApplication property is
blocked in that environment.

Where does the ViewCtl1 object come from? It is defined by the tag in
the HTML layout code that adds the OVC control:

<object classid="clsid:0006F063-0000-0000-C000-
000000000046" id="ViewCtl1" data="DATA:application/x-
oleobject;BASE64,Y/
AGAAAAAADAAAAAAAAARhAHAACqZwAA6EAAAAgAEgAAAE0AZQBzAHMAYQ
BnAGUAcwAAAAgAAAAAAAgACgAAAE0AQQBQAEkAAAAJAAAAAAAAAAAAAA
AAAAAAAAAJAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAALAAAA"
width="100%" height="100%">

732 22.5 Internal scripting with folder home pages

Listing 22.9 Use a folder home page script to create a rule

<html>
<head>
<meta http-equiv="Content-Language" content="en-us">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>Welcome to Outlook 2007</title>
<script id=clientEventHandlersVBS language=vbscript>
<!--

Sub window_onload()
 Dim objOL ' As Outlook.Application
 Const olPreview = 3
 Const olToDoBar = 5
 Const olFolderList = 2
 Set objOL = ViewCtl1.OutlookApplication
 objOL.ActiveExplorer.ShowPane olPreview, False
 objOL.ActiveExplorer.ShowPane olToDoBar, False
 objOL.ActiveExplorer.ShowPane olFolderList, True
 Set objOL = Nothing
End Sub

Sub btnBegin_onclick()
 Dim objOL ' As Outlook.Application
 Dim objFld ' As Outlook.Folder
 Const olFolderSentMail = 5
 Const olPreview = 3
 Const olToDoBar = 5
 ' perform all Outlook configuration tasks
 Set objOL = ViewCtl1.OutlookApplication
 Call MakeSpamMoveRule
 ' turn off folder home page
 Set objFld = objOL.ActiveExplorer.CurrentFolder
 objFld.WebViewOn = False
 objFld.WebViewURL = ""
 Set sentMail = _
 objOL.Session.GetDefaultFolder(olFolderSentMail)
 Set objOL.ActiveExplorer.CurrentFolder = sentMail
 Set objOL.ActiveExplorer.CurrentFolder = objFld
 objOL.ActiveExplorer.ShowPane olPreview, True
 objOL.ActiveExplorer.ShowPane olToDoBar, True
 Set objOL = Nothing
 Set objFld = Nothing
End Sub

Sub MakeSpamMoveRule()
 Dim objOL 'As Outlook.Application
 Dim objStore 'As Outlook.Store
 Dim colRules 'As Outlook.Rules
 Dim objRule 'As Outlook.Rule
 Dim objCondSubject 'As Outlook.TextRuleCondition
 Dim objActionMove 'As Outlook.MoveOrCopyRuleAction
 Dim objStopMove 'As Outlook.RuleAction
 Dim objFldJunk 'As Outlook.Folder
 Dim arr
 Const olFolderJunk = 23
 Const olRuleReceive = 0
 On Error Resume Next

22.5 Internal scripting with folder home pages 733

 Set objOL = ViewCtl1.OutlookApplication
 Set objStore = objOL.Session.DefaultStore
 Set colRules = objStore.GetRules
 Set objRule = colRules.Create _
 ("Move marked spam to Junk E-mail", olRuleReceive)
 Set objCondSubject = objRule.Conditions.Subject
 With objCondSubject
 arr = Array("[spam]")
 objCondSubject.Text = arr
 objCondSubject.Enabled = True
 End With
 Set objActionMove = objRule.Actions.MoveToFolder
 With objActionMove
 Set objFldJunk = _
 objOL.Session.GetDefaultFolder(olFolderJunk)
 Set .Folder = objFldJunk
 .Enabled = True
 End With
 Set objStopMove = objRule.Actions.Stop
 objStopMove.Enabled = True
 colRules.Save
 Set objStopMove = Nothing
 Set objActionMove = Nothing
 Set objCondSubject = Nothing
 Set objFldJunk = Nothing
 Set objRule = Nothing
 Set colRules = Nothing
 Set objStore = Nothing
 Set objOL = Nothing
End Sub

-->
</script>
</head>
<body>
<table border="0" cellpadding="0" cellspacing="0" width="800" height="825">
 <tr>
 <td valign="top" colspan="3" height="112">
 <blockquote>
 <p>Welcome to Outlook 2007. Since this is your first
 time using this new version, we need to configure a
 few settings. Click the button below to begin the
 configuration process. After it completes, this
 message will disappear, and you will have complete
 access to your mailbox. If you encounter problems,
 please call the Help desk at extension 7893.
 </p>
 <p align="center"><input type="button" value="Begin Outlook
Configuration" name="btnBegin"></p>
 </blockquote>
 </td>
 </tr>
 <tr>
 <td> </td>
 <td valign="top">

Listing 22.9 Use a folder home page script to create a rule (continued)

734 22.5 Internal scripting with folder home pages

Tip: Don’t worry about typing in the long <object> tag for the OVC. If
you build your Web page in a tool such as Expression Web Designer or even
FrontPage 2003, the Web designer will add those tag details for you auto-
matically.

After the window_onload procedure gets the Application object, it
turns off the reading pane and To Do Bar and switches the navigation pane
to the Folder List module. The next chapter includes a section on working
with the navigation pane and its modules.

The second procedure, btnBegin_onclick, contains the code that runs
when the user clicks the button on the page. The button is defined in this
element from the HTML layout:

<input type="button" value="Begin Outlook Configuration"
name="btnBegin">

The btnBegin_onclick procedure also returns an Outlook.Applica-
tion object from the OVC and then calls the third procedure, MakeSpam-
MoveRule, which silently creates a new rule to move messages with
“[spam]” in the subject to the user’s Junk E-mail folder, using the rule tech-
niques discussed earlier in the chapter. After creating the rule, the
btnBegin_onclick procedure turns off the folder home page by setting
two properties on the currently displayed folder:

Set objFld = objOL.ActiveExplorer.CurrentFolder
objFld.WebViewOn = False
objFld.WebViewURL = ""

 <object classid="clsid:0006F063-0000-0000-C000-000000000046"
id="ViewCtl1" data="DATA:application/x-oleobject;BASE64,Y/
AGAAAAAADAAAAAAAAARhAHAACqZwAA6EAAAAgAEgAAAE0AZQBzAHMAYQBnAGUAcwAAAAgAAAAAA
AgACgAAAE0AQQBQAEkAAAAJAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAAAAAAAAAAIAAAA
AAALAAAA" width="100%" height="100%">
 </object>
 </td>
 <td height="638"> </td>
 </tr>
 <tr>
 <td width="81"> </td>
 <td width="700"> </td>
 <td height="75" width="81"> </td>
 </tr>
</table>
</body>
</html>

Listing 22.9 Use a folder home page script to create a rule (continued)

22.6 Summary 735

Because Outlook doesn’t refresh the display cleanly when the folder
home page is turned off programmatically, the code switches the display to
the Sent Items folder and back again:

Set sentMail = _
 objOL.Session.GetDefaultFolder(olFolderSentMail)
Set objOL.ActiveExplorer.CurrentFolder = sentMail
Set objOL.ActiveExplorer.CurrentFolder = objFld

As its last task, the btnBegin_onclick procedure turns on the reading
pane and To Do Bar that the window_onload procedure turned off:

objOL.ActiveExplorer.ShowPane olPreview, True
objOL.ActiveExplorer.ShowPane olToDoBar, True

While this folder home page performs only one configuration task—cre-
ating the spam move rule—there is no limit to what you could do from
inside the page’s code. The btnBegin_onclick procedure could, for exam-
ple, also call a subroutine to mark a public folder for display in the Outlook
Address Book using the Folder.ShowAsOutlookAB property. Another sub-
routine could create a new view or modify an existing view. Think of a
folder home page as a potential platform to run almost any of the script
code you’ve seen in this book; the main difference is that it derives its Out-
look.Application object from an Outlook View Control on the page
instead of from the intrinsic Application object exposed in Outlook VBA
and custom forms’ VBScript.

22.6 Summary
Expanded support for views and totally new support for programming rules
are two of the most exciting features in the Outlook 2007 object model.
They provide powerful mechanisms for running rules on demand, report-
ing on rules, and creating rules to manage incoming and outgoing mes-
sages. Views, too, become far easier to create, modify, and delete than in
previous versions.

Administrators eager to script some of these and other Outlook options
quickly discover that many can be changed only when Outlook already is
running with the correct user mail profile. Such configuration challenges
lend themselves to an “internal” scripting solution, such as custom message
forms in an Exchange environment and, in almost any environment, a
folder home page hosting the Outlook View Control.

As bonuses, this chapter includes a GetFolderCatArray() function
that returns an array containing the names of all the categories used by
items in a particular folder and a LockFolderViews() procedure to pre-
vent users from creating their own views for an Exchange public or shared
mailbox folder.

This page intentionally left blank

737

23
Menus, Toolbars, and the Navigation Pane

For VBA programmers, the most exciting improvement in programmability
for the Outlook 2007 user interface is support for six right-click context
menus. Other than the new access to context menus, though, Outlook
offers limited options for VBA programmers to customize and manipulate
the Outlook user interface, fewer than those available to developers of Out-
look add-ins. It is possible to use VBA to add and remove toolbars, menus,
and commands from the main Outlook window, but not to modify the
“ribbon” user interface in an individual item window. The navigation pane
falls somewhere in between, with a certain amount of programmability,
though less than many Outlook programmers would want to have.

One good reason to learn how to work with toolbars and menus is that
some Outlook features simply don’t have programmatic equivalents. A
workaround in many cases is to execute the corresponding Outlook toolbar
or menu command.

Highlights of this chapter include discussions of the following:

Why menus and toolbars are actually the same thing

How to add a new custom toolbar and populate it with controls

How to run a macro from a right-click context menu

What code can run any menu or toolbar command programmatically

How to show and hide the navigation pane and control what module
is displayed

How to display any Web page in Outlook’s built-in browser

How to work with the folder links in the navigation pane

23.1 Programming Outlook menus and toolbars
The first thing you need to know about Outlook menus and toolbars is that
Explorer windows are different from Inspector windows. Inspector

738 23.1 Programming Outlook menus and toolbars

windows, those that display individual items, use the new “ribbon” inter-
face, which cannot be manipulated from VBA.

In an Explorer window, however, you can not only execute commands,
but also remove, add, and modify menus, toolbars, and commands. The
Explorer window has four standard CommandBar objects you can access
programmatically—the Menu Bar and the Standard, Advanced, and Web
toolbars. Also available for the first time in Outlook 2007 is the ability to
customize the most heavily used right-click context menus.

The basic building blocks of menus and toolbars are the CommandBars
collection and the individual CommandBar objects that collection contains.
The Explorer object exposes a child CommandBars collection consisting
of all the menus and toolbars. Each CommandBar in the collection contains
a CommandBarControls collection, which holds items representing but-
tons, combo boxes, submenus, and other menu and toolbar controls.

Tip: To use the Object Browser to locate information on the CommandBar
object, don’t look in the Outlook library. The CommandBar object is com-
mon to all Office programs, so you will find it in the Office library. Where
Outlook differs from the other Office programs is that for those programs,
the CommandBar collection is a member of the Application object, but in
Outlook it is a member of the Explorer and Inspector objects.

To see what CommandBar objects are intrinsic to Outlook, run the VBA
code in Listing 23.1 to create a post in your Drafts folder that lists the built-
in menus and toolbars for the current Explorer window, along with the
commands on them and the ID for each built-in command. Run the Enum-
CommandBars procedure once for each type of Outlook folder; different
types of folders have different commands visible on the Explorer window,
particularly on the View and Actions menus.

The EnumOneBar procedure, which generates the list of controls on a
menu or toolbar, is recursive, so it can handle any number of submenus.
The post items stored in Drafts will list toolbars and menus that are cur-
rently visible, as well as those that are not currently activated. The first few
lines of the post item created by the EnumCommandBars procedure for an
Explorer window should look like this:

CommandBar: Menu Bar

&File (Submenu) - 30002

CommandBar: File

Ne&w (Submenu) - 30037

CommandBar: New Item
 &Mail Message - 1757
 &Post in This Folder – 2687

23.1 Programming Outlook menus and toolbars 739

The listing starts with the Menu Bar, which contains all the menus and
controls for Outlook’s menus. The File and New controls are submenus.
The New Item command bar corresponds to the New submenu and con-
tains commands to create a new mail message and a new post in the current
folder, along with other commands. The listing shows the ID for each stan-
dard control that can be executed programmatically or added to a menu or
toolbar using code. A little later in the chapter, we’ll cover how to use those
control IDs to disable or execute any built-in command.

Listing 23.1 Generate a list of menus and toolbars for the current Outlook window

Sub EnumCommandBars()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objDrafts As Outlook.Folder
 Dim objPost As Outlook.PostItem
 Dim colCB As Office.CommandBars
 Dim objCB As Office.CommandBar
 Dim strWindow As String
 Dim strExplBars As String
 Dim strText As String
 Dim arrBars() As String
 Dim i As Integer
 On Error Resume Next
 Set objOL = Application
 Set objNS = objOL.Session
 Set objDrafts = objNS.GetDefaultFolder(olFolderDrafts)
 strExplBars = "Menu Bar,Standard,Advanced,Web"
 Set colCB = objOL.ActiveExplorer.CommandBars
 arrBars = Split(strExplBars, ",")
 If Not colCB Is Nothing Then
 Set objPost = objDrafts.Items.Add("IPM.Post")
 objPost.Subject = "CommandBars for Explorer: " & _
 colCB.Parent.Caption
 objPost.BodyFormat = olFormatPlain
 For i = 0 To UBound(arrBars)
 Set objCB = colCB.Item(arrBars(i))
 Call EnumOneBar(objCB, strText)
 strText = strText & vbCrLf & "===========" & vbCrLf
 Next
 objPost.Body = Mid(strText, 5)
 objPost.Save
 objPost.Display
 End If
 Set objOL = Nothing
 Set objNS = Nothing
 Set objDrafts = Nothing
 Set objPost = Nothing
 Set colCB = Nothing
 Set objCB = Nothing
End Sub

740 23.1 Programming Outlook menus and toolbars

Sub EnumOneBar(cb As Office.CommandBar, ByRef postText)
 Dim objControl As Office.CommandBarControl
 Dim objPopupControl As Office.CommandBarPopup
 postText = postText & vbCrLf & vbCrLf & _
 "CommandBar: " & cb.Name
 For Each objControl In cb.Controls
 If objControl.BuiltIn = True Then
 Select Case objControl.Type
 Case msoControlPopup, _
 msoControlButtonPopup, _
 msoControlGraphicPopup, _
 msoControlSplitButtonPopup
 Set objPopupControl = objControl
 Call EnumOneBar(_
 objPopupControl.CommandBar, postText)
 postText = postText & vbCrLf & vbCrLf & _
 objControl.Caption & _
 " (Submenu) - " & objControl.ID
 Case Else
 postText = postText & vbCrLf & vbTab & _
 objControl.Caption & " - " & objControl.ID
 End Select
 End If
 Next
 Set objControl = Nothing
 Set objPopupControl = Nothing
End Sub

Listing 23.2 Show and hide the Web toolbar

Sub ToggleExplorerWeb()
 Dim objOL As Outlook.Application
 Dim objExpl As Outlook.Explorer
 Dim colCB As Office.CommandBars
 On Error Resume Next
 Set objOL = Application
 Set objExpl = objOL.ActiveExplorer
 If Not objExpl Is Nothing Then
 Set colCB = objExpl.CommandBars
 colCB.Item("Web").Visible = _
 Not colCB.Item("Web").Visible
 End If
 Set objOL = Nothing
 Set objExpl = Nothing
 Set colCB = Nothing
End Sub

Listing 23.1 Generate a list of menus and toolbars for the current Outlook window (continued)

23.1 Programming Outlook menus and toolbars 741

To work with a specific CommandBar object menu or toolbar, use its
name or index number to retrieve it from the CommandBars collection as
you would with any other collection. The code in Listing 23.2, for exam-
ple, toggles the Visible property of the Web toolbar on the current
Explorer window. Visible is one of the key CommandBar properties
listed in Table 23.1.

Table 23.1 Key CommandBar Properties and Methods

Property Description

AdaptiveMenu True if the CommandBar should adapt to usage and size by removing and add-
ing controls

BuiltIn True if the CommandBar is a built-in menu or toolbar (read-only)

Controls Returns a CommandBarControls object that represents all the controls on
the toolbar or menu

Enabled True if the CommandBar is enabled

Left The distance in pixels from the left edge of the window to the left edge of the
CommandBar

Name The display name; read-only and in English for built-in command bars

NameLocal The display name in the current language version of Outlook

Parent The parent object of the CommandBar, either an Explorer window, an Inspec-
tor window, or for a submenu or pop-up menu, another CommandBar

Position The screen location, using one of these constants from the Office.MsoBar-
Position enumeration:

msoBarLeft 0

msoBarTop 1

msoBarRight 2

msoBarBottom 3

msoBarFloating 4

Protection Whether the toolbar or menu is protected from customization, using one of
these constants from the Office.MsoBarProtection constants:

msoBarNoProtection 0

msoBarNoCustomize 1

msoBarNoResize 2

msoBarNoMove 4

msoBarNoChangeVisible 8

msoBarNoChangeDock 16

msoBarNoVerticalDock 32

msoBarNoHorizontalDock 4

742 23.1 Programming Outlook menus and toolbars

23.1.1 Working with submenus and other controls

As you can see in the EnumOneBar procedure in Listing 23.1, each Com-
mandBar has a CommandBarControls collection that contains its submenus
and other controls. Each CommandBarControl object in the CommandBar-
Controls collection for a menu or toolbar has a Type property that tells
you what kind of control it is. A Select Case block in the EnumOneBar
procedure distinguishes submenus and pop-up menus from other controls:

Select Case objControl.Type
 Case msoControlPopup, _
 msoControlButtonPopup, _
 msoControlGraphicPopup, _
 msoControlSplitButtonPopup
 Set objPopupControl = objControl
 Call EnumOneBar(_
 objPopupControl.CommandBar, postText)

RowIndex Sets the relative position of the CommandBar within the docking area specified
in the Position property; can be an integer number or one of these constants
from the Office.MsoBarRow enumeration:

msoBarRowFirst 0

msoBarRowLast -1

Top The distance in pixels from the top of the screen or, for docked menus or tool-
bars, from the top of the docking area to the top of the CommandBar

Type The type of toolbar or menu, using one of these constants from the
Office.MsoBarType enumeration:

msoBarTypeNormal 0

msoBarTypeMenuBar 1

msoBarTypePopup 2

Visible True if the toolbar is visible; the Enabled property must be True before
Visible can be set to True

Width The width in pixels

Method Description

Delete Deletes the CommandBar

FindControl(Type, Id,
Tag, Visible, Recursive)

Returns the first CommandBarControl matching the given Type, Id, and/or
Tag; optionally searches only visible or hidden controls; if Recursive =
True, searches all child submenus

Reset Resets a built-in toolbar or menu to its original appearance

Table 23.1 Key CommandBar Properties and Methods (continued)

Property Description

23.1 Programming Outlook menus and toolbars 743

Each pop-up menu control has its own CommandBar property. The
EnumOneBar procedure calls itself to get the controls from that submenu:

Call EnumOneBar(objPopupControl.CommandBar, postText)

Why is it so useful to gather this information about toolbar and menu
commands? First of all, administrators can use the ID values with Group
Policy Objects to disable any control. But more important to Outlook pro-
grammers is that the ID value is usually all you need to return the control
and thus gain access to its properties and methods, including the ability to
execute the command programmatically. You do not need to know what
menu or toolbar the control is on. If you know the ID value for a control,
you can use the CommandBars.FindControl method to return the control
with this syntax:

Set objControl = objExpl.CommandBars.FindControl(, ID)

Once you return a control, you can use its properties to hide or show it,
enable or disable it, change its style or tooltip text, and so on. Table 23.2
lists the key properties and methods common to the different toolbar and
menu control classes, which are all based on the CommandBarControl
object. Since three types of controls can be added to Outlook menus and
toolbars programmatically—the CommandBarButton, CommandBarCom-
boBox and CommandBarPopup (submenu) classes—Table 23.2 notes which
properties and methods apply to each of these types.

We’ll put some of these properties to use later in the chapter in several
examples that add custom commands to toolbars and menus.

Table 23.2 Key Properties and Methods for Menu and Toolbar Controls

Property Description Button Combo Pop-Up

BeginGroup True if the control displays a separator bar to its left in a
toolbar and above it in a menu

X X X

BuiltIn True if the control is built into Outlook; read-only X X X

BuiltInFace True if the control displays the original image built in for
that control

X

Caption Text that the user sees on the control X X X

CommandBar Object containing the controls for a submenu or pop-up
menu

X

DropDownLines Number of lines to show when the combo list is dropped X

DropDownWidth Width of the dropped combo list, in pixels X

Enabled True if the control can be clicked X X X

FaceID ID number for the image on a control X

744 23.1 Programming Outlook menus and toolbars

Property Description Button Combo Pop-Up

Height Height of the control, in pixels X X X

HyperlinkType Constant from the Office.MsoCommandBarButton-
HyperlinkType enumeration:

msoCommandBarButtonHyperlinkNone 0

msoCommandBarButtonHyperlinkOpen 1

msoCommandBarButtonHyperlinkInsertPicture 2

Id ID value for the control; unique for built-in controls, mean-
ingless for custom controls

X X X

IsPriorityDropped True if the control is currently hidden from the menu
because of lack of use

X X X

Left Horizontal position from the left side of the parent
CommandBar’s docking area; read-only

X X X

ListCount Number of items in the dropdown list X

ListHeaderCount Number of items from the list that should appear above the
separator line

X

ListIndex Row number of the item selected in the list; 0 if no row is
selected

X

Mask Object used to determine what parts of the button’s picture
are transparent

X

OnAction Name of a VBA macro to execute when the control is
clicked

X X X

Parameter String value associated with the control X X X

Picture Object used to place a picture on a button X

Priority Number between 0 and 7 that determines whether a toolbar
control will be hidden if all the controls on a toolbar don’t
fit into a single row; use 1 to prevent a control from ever
being dropped

X X X

ShortcutText Set the shortcut key text (e.g., Ctrl+P) when the button
appears on a menu; does not actually assign a command to a
shortcut key

X

State Value of the button state from the Office.MsoButton-
State enumeration:

msoButtonDown 1

msoButtonMixed 2

msoButtonUp 0

X

Table 23.2 Key Properties and Methods for Menu and Toolbar Controls (continued)

23.1 Programming Outlook menus and toolbars 745

Property Description Button Combo Pop-Up

Style Value of the button style from the Office.MsoButton-
Style enumeration listed in Table 23.3 or, for combo boxes,
a style from the Office.MsoComboStyle enumeration:

msoComboLabel 1

msoComboNormal 0

X X

Tag String value associated with a control; used in Outlook add-
ins to help uniquely identify controls

X X X

ToolTipText String for the control’s screen tip X X X

Top Distance from the top of the control to the top of the
screen; read-only

X X X

Type Type of control from the Office.MsoControlType enu-
meration; these are the types of controls found on standard
Outlook toolbars and menus:

msoControlButton 1

msoControlComboBox 4

msoControlGraphicCombo 20

msoControlGrid 18

msoControlLabel 15

msoControlPopup 10

X X X

Visible True if the control is visible X X X

Width Width of the control, in pixels X X X

Method Description

AddItem Text, Index Insert the Text argument at the optional Index position;
if Index is omitted, adds the item at the bottom of the list;
applies only to custom controls

X

Clear Removes all items from the list; applies only to custom con-
trols

X

Copy(Bar, Before) Copies the control to the CommandBar represented by the
Bar parameter or to the current CommandBar; Before
represents the position for the copied control; both parame-
ters are optional; returns the copied CommandBarControl

X X X

CopyFace Copies the face image from a button to the clipboard X

Delete Temporary Deletes the control, with the option of making the deletion
temporary, just for the current session

X X X

Execute Executes the built-in procedure associated with the control
or the VBA macro set in its OnAction property

X X X

Table 23.2 Key Properties and Methods for Menu and Toolbar Controls (continued)

746 23.1 Programming Outlook menus and toolbars

23.1.2 Executing a toolbar command

Perhaps the most useful CommandBarControl method for an Outlook VBA
or custom forms programmer is the Execute method, which runs whatever
command is associated with the control. You can use Execute from both
VBA procedures and scripts behind Outlook custom forms.

For example, the ShowWebPage procedure in Listing 23.3 displays a
Web page in Outlook’s built-in browser. You could use it in a VBA macro
or call it from the Click event on a command button or label control on a

Method Description

Move Bar, Before Moves the control to the CommandBar represent by the
Bar parameter or to the end of the current CommandBar;
Before represents the position for the copied control; both
parameters are optional

X X X

PasteFace Pastes the image face on the clipboard to the button X

RemoveItem Index Removes the item in the Index position from the list X

Reset Resets a control to its original function and face image X X X

SetFocus Moves the focus to the control X X X

Table 23.3 Styles for CommandBarButton Controls from the MsoButtonStyle Enumeration

Constant Value Description

msoButtonAutomatic 0 Uses the default behavior for a built-in button; for a
custom button, text only

msoButtonCaption 2 Displays text only; default for custom buttons

msoButtonIcon 1 Displays image only

msoButtonIconAndCaption 3 Displays image with text to the right

msoButtonIconAndCaptionBelow 11 Displays image with text below

msoButtonIconAndWrapCaption 7 Displays image with text wrapped to the right

msoButtonIconAndWrapCaptionBelow 15 Displays image with text wrapped below

msoButtonWrapCaption 14 Displays text only, with text centered and wrapped

Table 23.2 Key Properties and Methods for Menu and Toolbar Controls (continued)

23.1 Programming Outlook menus and toolbars 747

custom form. In this VBScript example, the URL comes from the Caption
property of a control located on a custom form page named “My Page.”

Sub lblWebURL_Click()
 Set objPage = Item.GetInspector("My Page")
 Set lblWebURL = objPage.Controls("lblWebURL")
 Call ShowWebPage(lblWebURL.Caption)
End Sub

The above example uses a label control (lblWebURL) to illustrate the
flexibility of repurposing form controls for unexpected applications—like
making a label clickable.

23.1.3 Adding a new Explorer toolbar and controls

In Outlook VBA, there are several scenarios where building your own tool-
bar with custom controls can be useful:

To keep visible some built-in controls that the standard toolbars and
menus don’t normally show

To add buttons that open other applications or Web pages

To add buttons to run Outlook macros

To create a new toolbar on an Explorer window, use this syntax:

Set objCB = objExpl.CommandBars.Add(_
 Name, Position, MenuBar, Temporary)

The CommandBars.Add method returns a CommandBar object, ready for
you to add controls to. All the parameters are optional, although you’ll nor-
mally specify the Name, rather than have Outlook assign a default name.
The Position parameter uses one of the Office.MsoBarPosition con-
stants listed in Table 23.1. If the value of the MenuBar parameter is True,
the new CommandBar replaces the active menu bar. If the value of the Tem-

porary parameter is True, the new CommandBar is discarded when the cur-
rent Outlook session ends.

Listing 23.3 Show a Web page in Outlook’s browser

Sub ShowWebPage(url)
 Dim objExpl, objWeb
 Set objExpl = Application.ActiveExplorer
 Set objWeb = objExpl.CommandBars.FindControl(, 1740)
 objWeb.Text = url
 objWeb.Execute
End Sub

748 23.1 Programming Outlook menus and toolbars

To add a control to a toolbar, use the Add method on the Controls col-
lection of the newly created CommandBar:

Set objCBB = objCB.Controls.Add(_
 Type, ID, Parameter, Before, Temporary)

All the parameters are optional. If you omit them all, the Add method
creates a new, permanent CommandBarButton object at the end of the tool-
bar or menu.

The Type parameter supports only these three values from the
Office.MsoControlType enumeration:

Other types of toolbar and menu commands cannot be created pro-
grammatically in Outlook.

Omit the Type and specify an Id value if you want to add a control to
run a built-in command.

Use the Parameter value to store information related to the control,
especially a parameter value that you might want the control to process in a
macro.

To position the control at a particular place on the toolbar, provide a
number for the Before parameter.

To tell Outlook to discard the control when you quit Outlook, use True
for the Temporary argument.

Did you notice that the CommandBar.Controls.Add method does not
include any parameter to uniquely identify a custom control? As soon as
you add any custom control, you should set its Tag property to some
unique value, so that you will be able to return the control later with Com-
mandBars.FindControl.

Looking back to the three custom control scenarios listed at the begin-
ning of the section, we now have enough information to show how to
implement each one in a custom toolbar. You don’t want to create duplicate
toolbars, so it’s always a good idea to check first if a toolbar with the same
name exists. Since we want to create a new one, the code looks for an exist-
ing toolbar named “My First Toolbar” and, if it’s found, deletes it:

Set objOL = Application
Set objExpl = objOL.ActiveExplorer
Set objCB = objExpl.CommandBars("My First Toolbar")
If Not objCB Is Nothing Then
 objCB.Delete
End If

msoControlButton 1

msoControlComboBox 4

msoControlPopup 10

23.1 Programming Outlook menus and toolbars 749

These two statements create the toolbar as a temporary toolbar, position
it so that it floats over the Explorer window, and make it visible:

Set objCB = objExpl.CommandBars.Add(_
 "My First Toolbar", msoBarFloating, False, True)
objCB.Visible = True

These two statements add the built-in Back command and change the
style of the button from its default style to show the caption below the icon:

Set objCBB = objCB.Controls.Add(ID:=6881)
objCBB.Style = msoButtonIconAndCaptionBelow

To add a button that displays a Web site in the user’s default browser,
add another button and set its HyperlinkType and TooltipText proper-
ties:

Set objCBB = objCB.Controls.Add(Type:=msoControlButton)
With objCBB
 .BeginGroup = True
 .Caption = "Go to OutlookCode.com"
 .Tag = "OutlookCode.com link"
 .HyperlinkType = msoCommandBarButtonHyperlinkOpen
 .Style = msoButtonWrapCaption
 .TooltipText = "http://www.outlookcode.com"
End With

To add a pop-up menu to the toolbar, add a pop-up control and return
another CommandBar object from the new control:

Set objCBPop = objCB.Controls.Add(Type:=msoControlPopup)
With objCBPop
 .BeginGroup = True
 .Caption = "My Favorite Macros"
 .Tag = "Macro submenu"
 Set objCBSub = objCBPop.CommandBar
End With

Note: It is not possible to add a pop-up menu control that displays an icon
or picture.

To add a button that runs a macro, add a button to the submenu control
and set the button’s OnAction property:

Set objCBB = _
 objCBSub.Controls.Add(Type:=msoControlButton)
With objCBB
 .BeginGroup = True
 .Caption = "Enumerate CommandBars"
 .Tag = "Run EnumCommandBars"
 .OnAction = "EnumCommandBars"
 .Style = msoButtonIconAndWrapCaption
 .TooltipText = "Run the EnumCommandBars macro"
End With

750 23.2 Working with context menus

As the last step in creating the toolbar, locate the Visual Basic Editor
command using CommandBars.FindControl and copy and paste its icon
to the macro button:

Set objCBBTemp =
objExpl.CommandBars.FindControl(ID:=1695)
If Not objCBBTemp Is Nothing Then
 objCBBTemp.CopyFace
 objCBB.PasteFace
End If

Figure 23.1 shows the newly created toolbar, with six buttons (we added
the built-in Forward and Up One Level buttons to go with Back, plus
another macro). The buttons are in three groups, using three different dis-
play styles, with two of the buttons on a submenu. The complete annotated
code procedure, with variable declarations, is in Listing 23.4. Experiment
with different values for the Position parameter for CommandBars.Add
and for the button’s Style property to get a feel for the different display
options that are available.

23.2 Working with context menus
With a good grounding in how to add controls to toolbars or menus and
run code when users click them, we’re ready to tackle one of the most excit-
ing new features in Outlook 2007—the ability to work with the context
menus that appear when the user right-clicks on an item in a folder, a folder
in the navigation pane, an attachment, and so on.

Context menus are dynamic and, by definition, contextual. The code that
adds controls to the menu runs just before the menu displays. Those controls
should be relevant to the object that received the right-click. To expose that
context, the event handler includes an appropriate object. For example, here
is the signature for the AttachmentContextMenuDisplay event:

Private Sub Application_AttachmentContextMenuDisplay(_
 ByVal CommandBar As Office.CommandBar, _
 ByVal Attachments As AttachmentSelection)
It has two arguments—a CommandBar, which represents the context menu

itself, and an Attachments object representing the attachment(s) the user

Figure 23.1 A custom toolbar can mix built-in and custom commands and use different display styles
for each.

23.2 Working with context menus 751

Listing 23.4 Create a custom toolbar with buttons

Sub BuildMyFirstToolbar()
 Dim objOL As Outlook.Application
 Dim objExpl As Outlook.Explorer
 Dim objCB As Office.CommandBar
 Dim objCBB As Office.CommandBarButton
 Dim objCBPop As Office.CommandBarPopup
 Dim objCBSub As Office.CommandBar
 Dim objCBBTemp As Office.CommandBarButton
 On Error Resume Next
 Set objOL = Application
 Set objExpl = objOL.ActiveExplorer
' Step 1: Delete existing toolbar
 Set objCB = objExpl.CommandBars("My First Toolbar")
 If Not objCB Is Nothing Then
 objCB.Delete
 End If
' Step 2: Create the new toolbar
 Set objCB = objExpl.CommandBars.Add(_
 "My First Toolbar", msoBarFloating, False, True)
 objCB.Visible = True
 With objCB.Controls
' Step 3: Add built-in commands to the toolbar
 Set objCBB = .Add(ID:=6881)
 objCBB.Style = msoButtonIconAndCaptionBelow
 Set objCBB = .Add(ID:=6882)
 objCBB.Style = msoButtonIconAndCaptionBelow
 Set objCBB = .Add(ID:=1762)
 objCBB.Style = msoButtonIconAndCaptionBelow
' Step 4: Add a hyperlink button to the toolbar
 Set objCBB = .Add(Type:=msoControlButton)
 With objCBB
 .BeginGroup = True
 .Caption = "Go to OutlookCode.com"
 .Tag = "OutlookCode.com link"
 .HyperlinkType = msoCommandBarButtonHyperlinkOpen
 .Style = msoButtonWrapCaption
 .TooltipText = "http://www.outlookcode.com"
 End With
' Step 5: Add a submenu to the toolbar
 Set objCBPop = .Add(Type:=msoControlPopup)
 With objCBPop
 .BeginGroup = True
 .Caption = "My Favorite Macros"
 .Tag = "Macro submenu"
 Set objCBSub = objCBPop.CommandBar
 End With
 End With
 With objCBSub.Controls
' Step 6: Add a button to run a macro, putting it on the submenu
 Set objCBB = .Add(Type:=msoControlButton)
 With objCBB
 .BeginGroup = True

752 23.2 Working with context menus

 .Caption = "Enumerate CommandBars"
 .Tag = "Run EnumCommandBars"
 .OnAction = "EnumCommandBars"
 .Style = msoButtonIconAndWrapCaption
 .TooltipText = "Run the EnumCommandBars macro"
 End With
' Step 6: Copy the icon from the Visual Basic Editor command to
' the button that runs the macro
 Set objCBBTemp = _
 objExpl.CommandBars.FindControl(ID:=1695)
 If Not objCBBTemp Is Nothing Then
 objCBBTemp.CopyFace
 objCBB.PasteFace
 End If
 Set objCBB = .Add(Type:=msoControlButton)
 With objCBB
 .BeginGroup = True
 .Caption = "Toggle Web Toolbar"
 .Tag = "Run ToggleExplorerWeb"
 .OnAction = "ToggleExplorerWeb"
 .Style = MsoButtonStyle.msoButtonCaption
 .TooltipText = "Run the ToggleExplorerWeb macro"
 End With
 End With
 Set objOL = Nothing
 Set objExpl = Nothing
 Set objCB = Nothing
 Set objCBB = Nothing
 Set objCBBTemp = Nothing
 Set objCBSub = Nothing
End Sub

Where’s the Click Event Code?

If you’ve written programs for Outlook or other Office applications in Visual Basic 6.0, you
may be wondering why we’re not showing code for the Click event for CommandBarButton
and the Change event for CommandBarComboBox. While those events work just fine in VB
and even VBA code for Outlook 2007, they are not the preferred way to handle events in
.NET languages. In VB.NET, the better approach is to use the AddHandler method to con-
nect a control’s Click event with a specific procedure. This allows a more dynamic
approach to command bar control event handling, without the need to declare every single
control object WithEvents.

The use of the OnAction property to “wire” controls to procedures is the closest thing in
VBA to VB.NET’s AddHandler, especially when the VBA code uses the Command-
Bars.ActionControl property to determine which control was clicked, as in the example
in Listing 23.9. The context menus discussed in the next section also work well with such a
dynamic approach.

Listing 23.4 Create a custom toolbar with buttons (continued)

23.2 Working with context menus 753

selected, either in the reading pane or in an open item. AttachmentSelec-
tion is a new object in Outlook 2007 and, like the Selection object that
holds the items selected in a folder view, it has a Count property. Therefore,
the code in the AttachmentContextMenuDisplay event handler might
check the value of the Count property and then take different actions depend-
ing on whether the user selected one attachment or more than one.

Table 23.4 lists the names of the context menu display events, the con-
text in which they display, and the key object that each passes as an argu-
ment. In addition, a ContextMenuClose event fires when the context
menu is no longer displayed, offering an opportunity to release objects and
perform any other necessary cleanup.

Handling a context menu event in VBA requires several components:

An event handler in the ThisOutlookSession module (or another
class module)

Code to add a control to the context menu

Optionally, a global variable to hold the key object for the current
context

A macro that runs when the user clicks the menu control

Code in the ContextMenuClose event to release the global variable

You can, of course, add multiple controls to the context menu, each
linked to a different macro through its OnAction property.

Note: One right-click context menu that will be sorely missed in Outlook
2007 is the one that appears when the user right-clicks in the message body.
In previous versions of Office, it was possible to write code to work with that
menu, provided that Word was the user’s choice as Outlook email editor. In
Outlook 2007, however, even with Word being the only email editor, the
right-click context menu for the message body is not accessible to developers.

Table 23.4 Application-Level Events for Right-Click Context Menus

Context Menu Event Fires for Context Object Passed as Argument

AttachmentContextMenuDisplay Attachment(s) AttachmentSelection

FolderContextMenuDisplay Folder Folder or, for search folders, Nothing

ItemContextMenuDisplay Item(s) in folder view Selection

ShortcutContextMenuDisplay Shortcut in Shortcuts pane OutlookBarShortcut

StoreContextMenuDisplay Store root folder Store

ViewContextMenuDisplay New line row or blank view area View

754 23.2 Working with context menus

To see all six context menus in action, add the code in Listing 23.5 to
the built-in ThisOutlookSession module. Choose Insert | Module to
insert a new code module, and place the code from Listng 23.6 there. To
test the menus, right-click on any of the locations listed in the “Fires for”
column in Table 23.4. You should see a new command at the top of the
context menu. Click it to see a pop-up message with information about the
object you right-clicked.

Listing 23.5 Basic event handlers for Context Menu

Private Sub Application_AttachmentContextMenuDisplay(_
 ByVal CommandBar As Office.CommandBar, _
 ByVal Attachments As AttachmentSelection)
 Set g_colAttSel = Attachments
 Call AddDemoButton(CommandBar, "Attachment")
End Sub

Private Sub Application_FolderContextMenuDisplay(_
 ByVal CommandBar As Office.CommandBar, _
 ByVal Folder As Folder)
 Set g_objFolder = Folder
 Call AddDemoButton(CommandBar, "Folder")
End Sub

Private Sub Application_ItemContextMenuDisplay(_
 ByVal CommandBar As Office.CommandBar, _
 ByVal Selection As Selection)
 Set g_colSel = Selection
 Call AddDemoButton(CommandBar, "Item")
End Sub

Private Sub Application_ShortcutContextMenuDisplay(_
 ByVal CommandBar As Office.CommandBar, _
 ByVal Shortcut As OutlookBarShortcut)
 Set g_objShortcut = Shortcut
 Call AddDemoButton(CommandBar, "Shortcut")
End Sub

Private Sub Application_StoreContextMenuDisplay(_
 ByVal CommandBar As Office.CommandBar, _
 ByVal Store As Store)
 Set g_objStore = Store
 Call AddDemoButton(CommandBar, "Store")
End Sub

Private Sub Application_ViewContextMenuDisplay(_
 ByVal CommandBar As Office.CommandBar, ByVal View As View)
 Set g_objView = View
 Call AddDemoButton(CommandBar, "View")
End Sub

23.2 Working with context menus 755

The code in Listings 23.5 and 23.6 provides a basic framework for
working with all of the context menu events. Of course, your code probably
won’t need to work with all six events. To understand how just one event
handler works, let’s look at the context menu that appears when the user
right-clicks on an attachment. The AttachmentContextMenuDisplay
event handler performs two operations:

Private Sub Application_AttachmentContextMenuDisplay(_
 ByVal CommandBar As Office.CommandBar, _
 ByVal Attachments As AttachmentSelection)
 Set g_colAttSel = Attachments
 Call AddDemoButton(CommandBar, "Attachment")
End Sub

It sets the value of a global variable, g_colAttSel, which is declared in
the regular code module (see Listing 23.6) and it calls the AddDemoButton
procedure in the regular code module. The AddDemoButton procedure uses
the techniques you’ve seen earlier in the chapter to add a new, temporary
CommandBarButton to the context menu and link it to a macro through
the control’s OnAction property:

Set objCBB = cb.Controls.Add(_
 msoControlButton, , , 1, True)
With objCBB
 .Caption = "Run " & context & "MenuDemo macro"
 .OnAction = context & "MenuDemo"
End With

The context argument is passed to the AddDemoButton procedure
with the value "Attachment" so the Caption becomes "Run Attach-

mentMenuDemo macro" and the OnAction property links the control to the

Private Sub Application_ContextMenuClose(_
 ByVal ContextMenu As OlContextMenu)
 Select Case ContextMenu
 Case olAttachmentContextMenu
 Set g_colAttSel = Nothing
 Case olFolderContextMenu
 Set g_objFolder = Nothing
 Case olItemContextMenu
 Set g_colSel = Nothing
 Case olShortcutContextMenu
 Set g_objShortcut = Nothing
 Case olStoreContextMenu
 Set g_objStore = Nothing
 Case olViewContextMenu
 Set g_objView = Nothing
 End Select
End Sub

Listing 23.5 Basic event handlers for Context Menu (continued)

756 23.2 Working with context menus

Listing 23.6 Global variables and macros for Context Menu controls

Public g_colAttSel As Outlook.AttachmentSelection
Public g_objFolder As Outlook.Folder
Public g_colSel As Outlook.Selection
Public g_objShortcut As Outlook.OutlookBarShortcut
Public g_objStore As Outlook.Store
Public g_objView As Outlook.View
Dim strMsg As String

Sub AddDemoButton(cb As Office.CommandBar, context As String)
 Dim objCBB As Office.CommandBarButton
 Dim objCBBFirst As Office.CommandBarButton
 Set objCBB = cb.Controls.Add(_
 msoControlButton, , , 1, True)
 With objCBB
 .Caption = "Run " & context & "MenuDemo macro"
 .OnAction = context & "MenuDemo"
 End With
 Set objCBBFirst = cb.Controls.Item(2)
 objCBBFirst.BeginGroup = True
 Set objCBB = Nothing
 Set objCBBFirst = Nothing
End Sub

Sub AttachmentMenuDemo()
 strMsg = "Number of attachments selected: " & g_colAttSel.count
 MsgBox strMsg, vbInformation, "Attachment Menu"
End Sub

Sub FolderMenuDemo()
 strMsg = "Folder selected: " & g_objFolder.FolderPath
 MsgBox strMsg, vbInformation, "Folder Menu"
End Sub

Sub ItemMenuDemo()
 strMsg = "Number of items selected: " & g_colSel.count
 MsgBox strMsg, vbInformation, "Item Menu"
End Sub

Sub ShortcutMenuDemo()
 strMsg = "Shortcut target: " & g_objShortcut.target
 MsgBox strMsg, vbInformation, "Shortcut Menu"
End Sub

Sub StoreMenuDemo()
 strMsg = "Store name: " & g_objStore.DisplayName
 MsgBox strMsg, vbInformation, "Store Menu"
End Sub

Sub ViewMenuDemo()
 strMsg = "View name: " & g_objView.Name
 MsgBox strMsg, vbInformation, "View Menu"
End Sub

23.2 Working with context menus 757

AttachmentMenuDemo macro. That’s all it takes to add a functional button
to the context menu!

However, the AddDemoButton code did a little bit more. To make the
new command more visible, it locates the command that was originally at
the top of the list and puts a group separator above it:

Set objCBBFirst = cb.Controls.Item(2)
objCBBFirst.BeginGroup = True

The “Run AttachmentMenuDemo macro” button should appear at the
top of the context menu. When the user clicks it, that macro uses the global
variable, g_colAttSel, to determine the number of attachments clicked
and display that information to the user:

strMsg = "Number of attachments selected: " & _
 g_colAttSel.count
MsgBox strMsg, vbInformation, "Attachment Menu"

Finally, the context menu closes automatically, and the ContextMenu-
Close procedure determines the type of menu that closed and releases the
corresponding global variable:

Private Sub Application_ContextMenuClose(_
 ByVal ContextMenu As OlContextMenu)
 Select Case OlContextMenu
 Case olAttachmentContextMenu
 Set g_colAttSel = Nothing

The ContextMenu argument for the ContextMenuClose event handler
exposes which menu closed, so the code can determine which global object
variable to release.

The next two sections provide additional examples for the store and
items context menus. You should also check out the code samples in these
articles in Help:

How to: Add or Remove a Menu Item on a Context Menu
(HV10038565)

How to: Hide or Disable a Menu Item on a Context Menu
(HV10038566)

How to: Customize an Item Context Menu (HV10045272)

How to: Customize a Context Menu to Support Moving Items
between Calendars (HV10046161)

How to: Share Contact Information Including the Business Card
(HV10038576)

The numbers in parentheses are article IDs you can search for in Help to
find the articles faster.

758 23.2 Working with context menus

23.2.1 Example: Display a store’s data location

This example is a little bit different from the ones in the previous section,
because it doesn’t involve running any code when the user clicks a button
on the context menu. The buttons—two in this example—are there simply
to display information about what file holds the store’s data and whether it
contains any rules. Since there is no macro to run from the button click, all
the code can go into the event handler in the ThisOutlookSession mod-
ule. Alternatively, you can put the three helper functions—GetStore-

Path(), Hex4ToString(), and Hex2ToString()—in a regular code
module. These three functions help extract the file path for certain types of
stores by examining the Store object’s StoreID value. Listing 23.7 shows
the code.

The other different feature of this store menu event handler is that it
looks for another control on the context menu to help determine whether
the store is the .pst file for an IMAP mail account:

Set objIMAP = CommandBar.FindControl(, 5595)
If Not objIMAP Is Nothing Then
 objCBB.Caption = "Store for IMAP account: " & _
 Store.DisplayName

The control whose ID is 5595 is the IMAP Folders command. Since it
appears only on the context menu for IMAP account stores, it’s a reliable
indicator that the Store object is indeed associated with an IMAP account.

Listing 23.7 Show the data file location and rules count for any information store

Private Sub Application_StoreContextMenuDisplay(_
 ByVal CommandBar As Office.CommandBar, _
 ByVal Store As Store)
 Dim objCBB As Office.CommandBarButton
 Dim objIMAP As Office.CommandBarButton
 Dim objFolder As Outlook.Folder
 Dim colRules As Outlook.Rules
 Dim intCount As Integer
 On Error Resume Next
 Set objCBB = CommandBar.Controls.Item(1)
 objCBB.BeginGroup = True
 Set objCBB = CommandBar.Controls.Add(_
 Type:=msoControlButton, Before:=1, Temporary:=True)
 objCBB.Style = msoButtonWrapCaption
 Select Case Store.ExchangeStoreType
 Case olPrimaryExchangeMailbox
 If Store.IsCachedExchange Then
 objCBB.Caption = _
 "Exchange .ost location: " & Store.FilePath
 Else
 objCBB.Caption = "Exchange mailbox: Primary"
 End If

23.2 Working with context menus 759

 Case olExchangeMailbox
 objCBB.Caption = "Exchange mailbox: Secondary"
 Case olExchangePublicFolder
 objCBB.Caption = "Exchange Public Folder Store"
 Case Else
 If Store.IsDataFileStore Then
 Set objFolder = Store.GetRootFolder
 intCount = objFolder.folders.count
 Set objFolder = objFolder.folders(intCount)
 If objFolder.IsSharePointFolder = True Then
 objCBB.Caption = "Sharepoint store: " & _
 GetStorePath(Store)
 Else
 objCBB.Caption = _
 "Store location: " & Store.FilePath
 End If
 Else
 Set objIMAP = CommandBar.FindControl(, 5595)
 If Not objIMAP Is Nothing Then
 objCBB.Caption = _
 "Store for IMAP account: " & _
 GetStorePath(Store)
 Else
 objCBB.Caption = "Store for account: " & _
 GetStorePath(Store)
 End If
 End If
 End Select
 Set objCBB = CommandBar.Controls.Add(_
 Type:=msoControlButton, Before:=2, Temporary:=True)
 Set colRules = Store.GetRules
 If Err.Number = 0 Then
 objCBB.Caption = "Number of rules in store: " & colRules.count
 Else
 objCBB.Caption = "This store does not support rules."
 End If
 Set objCBB = Nothing
 Set objIMAP = Nothing
End Sub

Function GetStorePath(str As Outlook.Store)
 Dim intStart As Integer
 Dim intEnd As Integer
 Dim strProvider As String
 Dim strPathRaw As String
 Dim strStoreID As String
 strStoreID = str.StoreID
 intStart = InStr(9, strStoreID, "0000") + 4
 intEnd = InStr(intStart, strStoreID, "00")
 strProvider = Mid(strStoreID, intStart, intEnd - intStart)
 strProvider = Hex2ToString(strProvider)

Listing 23.7 Show the data file location and rules count for any information store (continued)

760 23.2 Working with context menus

23.2.2 Example: Find related items

When the user right-clicks on a single item, the resulting context menu
shows a Find All | Messages from Sender command, but there’s no compa-
rable “Messages to Sender” command. For senders with Internet (SMTP)
addresses, we’re going to add a third command to the bottom of the Find
All submenu to search for all messages to the given sender and display them
in a separate Explorer window. This process uses the DoSearch() func-
tion and GetDefaultFolderModule() functions from Listing 16.5.

 Select Case LCase(strProvider)
 Case "mspst.dll", "pstprx.dll"
 intStart = InStrRev(strStoreID, "00000000") + 8
 strPathRaw = Mid(strStoreID, intStart)
 GetStorePath = Trim(Hex4ToString(strPathRaw))
 Case "msncon.dll"
 intStart = InStrRev(strStoreID, _
 "00", Len(strStoreID) - 2) + 2
 strPathRaw = Mid(strStoreID, intStart)
 GetStorePath = Trim(Hex2ToString(strPathRaw))
 Case Else
 GetStorePath = "Unknown store path"
 End Select
End Function

Public Function Hex4ToString(Data As String) As String
 Dim strTemp As String
 Dim strAll As String
 Dim i As Integer
 For i = 1 To Len(Data) Step 4
 strTemp = Mid(Data, i, 4)
 strTemp = "&H" & Right(strTemp, 2) & Left(strTemp, 2)
 strAll = strAll & ChrW(CDec(strTemp))
 Next
 Hex4ToString = strAll
End Function

Public Function Hex2ToString(Data As String) As String
 Dim strTemp As String
 Dim strAll As String
 Dim i As Integer
 For i = 1 To Len(Data) Step 2
 strTemp = "&H" & Mid(Data, i, 2)
 strAll = strAll & ChrW(CDec(strTemp))
 Next
 Hex2ToString = strAll
End Function

Listing 23.7 Show the data file location and rules count for any information store (continued)

23.2 Working with context menus 761

Put the event handler code in Listing 23.8 in the ThisOutlookSession
module. Put the macro in Listing 23.9 in a regular code module, along with
the above-mentioned functions from Listing 16.5, if they’re not already
present in your VBA project.

Here’s how the ItemContextMenuDisplay event handler locates the
Find All submenu and adds a button there to run the FindRelatedItems
macro in Listing 23.9:

Set objCBPopup = CommandBar.Controls("Find All")
Set objCB = objCBPopup.CommandBar
Set objCBB = objCB.Controls.Add(_
 Type:=msoControlButton, Temporary:=True)
objCBB.OnAction = "FindRelatedItems"

Since the search needs only one piece of information—the sender’s
e-mail address—the event handler stores that data in the Parameter prop-
erty of the CommandBarButton:

Set objMsg = Selection(1)
strSender = objMsg.SenderEmailAddress
objCBB.Parameter = strSender

Listing 23.8 Event handler for the item’s Context Menu

Private Sub Application_ItemContextMenuDisplay(_
 ByVal CommandBar As Office.CommandBar, _
 ByVal Selection As Selection)
 Dim objCBB As Office.CommandBarButton
 Dim objCBPopup As Office.CommandBarPopup
 Dim objCB As Office.CommandBar
 Dim objMsg As Outlook.MailItem
 Dim strSender As String
 If Selection.count = 1 Then
 If TypeOf Selection(1) Is Outlook.MailItem Then
 Set objMsg = Selection(1)
 If objMsg.SenderEmailType = "SMTP" Then
 Set objCBPopup = CommandBar.Controls("Find All")
 Set objCB = objCBPopup.CommandBar
 Set objCBB = objCB.Controls.Add(_
 Type:=msoControlButton, _
 Temporary:=True)
 strSender = objMsg.SenderEmailAddress
 objCBB.Caption = _
 "Messages to " & strSender
 objCBB.Parameter = strSender
 objCBB.OnAction = "FindRelatedItems"
 End If
 End If
 End If
 Set objCBB = Nothing
 Set objMsg = Nothing
End Sub

762 23.2 Working with context menus

The sender name is also used to set the caption for the button:

objCBB.Caption = "Messages to " & strSender

When the user clicks the “Messages to” button, the FindRelatedItems
macro uses the the CommandBars.ActionControl property to locate the
control that the user clicked:

Set colCB = objExpl.CommandBars
Set objCBB = colCB.ActionControl

The control’s Parameter property contains the address needed to search
for the address using the DoSearch() procedure from Listing 16.5. This
procedure relies on the Explorer.Search method, so we use the correct
syntax for that method, adding "to" before the address, just as you’d see in
Outlook’s search box in the user interface:

strFind = "to:" & objCBB.Parameter

DoSearch() returns its results in a separate Explorer window, which
the code displays:

Set objExpl = DoSearch(searchText:=strFind, _
 searchModule:=olModuleMail, _
 searchScope:=olSearchScopeAllFolders, useNewWindow:=True)
objExpl.Activate

In this example, you’ve seen how to work with a submenu on the context
menu. The other new technique covered is how to pass information to a

Listing 23.9 Search for messages to or from the right-clicked message’s sender

Sub FindRelatedItems()
 Dim objOL As Outlook.Application
 Dim objExpl As Outlook.Explorer
 Dim colCB As Office.CommandBars
 Dim objCBB As Office.CommandBarButton
 Dim strFind As String
 On Error Resume Next
 Set objOL = Application
 Set objExpl = objOL.ActiveExplorer
 Set colCB = objExpl.CommandBars
 Set objCBB = colCB.ActionControl
 strFind = "to:" & objCBB.Parameter
 ' uses DoSearch from Listing 16.5
 Set objExpl = DoSearch(searchText:=strFind, _
 searchModule:=olModuleMail, _
 searchScope:=olSearchScopeAllFolders, _
 useNewWindow:=True)
 objExpl.Activate
 Set objOL = Nothing
 Set objExpl = Nothing
 Set colCB = Nothing
 Set objCBB = Nothing
End Sub

23.3 Working with the navigation pane and other Explorer panes 763

macro associated with a menu command by using a parameter on a menu
control, instead of the global variables used earlier in Listings 23.5 and 23.6.

23.3 Working with the navigation pane and other
Explorer panes

Along with menus and toolbars, the navigation pane and the other panes of
the Explorer window help give the Outlook user context—to know what
can be done at any given moment. You can show different panes and add
new groups and folder links on the navigation modules, but you cannot cre-
ate a totally new navigation module, nor can you remove folder links in
many cases.

Figure 23.2 shows the hierarchy of objects, starting with the parent
Explorer. The Panes collection on the right side of the diagram is some-
what strange, because the only pane that can be accessed through it is the
OutlookBarPane. This pane, known as the Outlook Bar in early versions
of Outlook, appears in Outlook 2007 as the Shortcuts module of the navi-
gation pane. As it is largely overshadowed by the other modules in the navi-
gation pane, we are not going to cover it in this chapter.

Figure 23.2 Objects making up the hierarchy of panes in the Explorer window .

764 23.3 Working with the navigation pane and other Explorer panes

23.3.1 Showing and hiding panes

Two Explorer methods are useful for working with the panes—ShowPane

and IsPaneVisible.

To show or hide a pane, use the ShowPane method on an Explorer
object, with this syntax:

objExplorer.ShowPane(Pane, Visible)

where Pane is one of the constants from the OlPane enumeration shown in
Table 23.5. Use True for the value of Visible when you want to show a
pane and False to hide a pane.

To find out whether a pane is visible, call the IsPaneVisible method
with this syntax:

blnICanSeeIt = objExplorer.IsPaneVisible(Pane)

where Pane again is a value from Table 23.5. IsPaneVisible returns True
or False.

The olNavigationPane constant in Table 23.5 refers to the navigation
pane on the left side of the screen that has item-specific modules—Mail,
Calendar, Contacts, Tasks, Notes, and Journal. Also capable of occupying
the same space on the left side of the screen are the Folder List and Outlook
Bar. Only one of those three panes can be visible at a time.

The To Do Bar occupies the right side of the screen, while the reading
(preview) pane appears in the middle, along with the list of items in the
folder.

To collapse the navigation pane, set its IsCollapsed property to True:

Set objOL = Application
objOL.ActiveExplorer.NavigationPane.IsCollapsed = True

The Outlook object model has no methods to control the position of
the reading pane or to minimize the To Do Bar. However, those options
are available indirectly, through the corresponding commands on the
main Outlook menu using the CommandBars techniques from earlier in

Table 23.5 OlPane Enumeration Constants for Use with ShowPane

Constant Value

olFolderList 2

olNavigationPane 4

olOutlookBar 1

olPreview 3

olToDoBar 5

23.3 Working with the navigation pane and other Explorer panes 765

the chapter. For example, this code snippet switches the position of the
reading pane to the bottom of the screen through the parent Reading Pane
submenu, using that submenu’s Controls collection, rather than directly
by using CommandBars.FindControl.

Set objOL = Application
Set objCB = objOL.ActiveExplorer.CommandBars
Set objCBPopup = objCB.FindControl(, 31134)
If Not objCBPopup Is Nothing Then
 Set objCBB = objCBPopup.CommandBar.Controls("Bottom")
 objCBB.Execute
End If

Unexpectedly, it is necessary to access the Bottom and Right commands
for the reading pane through the parent Reading Pane submenu, using that
submenu’s Controls collection, rather than directly by using Command-
Bars.FindControl.

For other commands, such as the one to minimize the To Do bar, the
FindControl method returns the right command directly, using the same
parent CommandBars object (objCB) as in the above snippet:

Set objCBB = objCB.FindControl(, 14859)
objCBB.Execute

You’ll probably want to experiment with executing other commands
from the lists generated with the EnumCommandBars procedure in Listing
23.1 to control the way the user interface looks in different scenarios.

23.3.2 Working with navigation pane modules

As Figure 23.2 shows, the NavigationPane object has a Modules property
that returns a NavigationModules collection. Use the GetNavigation-
Module method to return any individual module—that is, the individual
Mail, Calendar, Contacts, Tasks, Notes, and Journal modules that display
in the navigation pane, as well as the Folder List and Shortcuts modules.

To show more or fewer module buttons at the bottom of the navigation
pane, change the value of the DisplayedModuleCount property. This code
snippet sets the navigation pane to display just the first two modules in the
module list as buttons:

Set objOL = Application
Set objNavPane = objOL.ActiveExplorer.NavigationPane
objNavPane.DisplayedModuleCount = 2

The order in which the module buttons stack depends on the value of
the Position property for each module.

The basic item in the NavigationModules collection is the Naviga-
tionModule object. To return the current module or switch to a different
module, use the NavigationPane.CurrentModule property. To return
any other module, use the GetNavigationModule method, passing as an

766 23.3 Working with the navigation pane and other Explorer panes

argument one of the constants from the OlNavigationModuleType enu-
meration, shown in Table 23.6.

Tip: The DoSearch() function in Listing 16.5 uses the CurrentModule
property to switch modules in order to be able to conduct a search of all
folders of a given type.

To get information about the folder links in any of the six item-specific
modules, your code must find out what kind of module it is and instantiate
an object of the correct class. For example, this code snippet gets the Calen-
dar module:

Set objOL = Application
Set objNavPane = objOL.ActiveExplorer.NavigationPane
Set colNavMods = objNavPane.Modules
Set objNavMod = _
 colNavMod.GetNavigationModule(olModuleCalendar)
Set objCalPane = objNavMod

Once you have the specific module object, you can drill down into its
NavigationGroups collection, which contains NavigationGroup objects.
To get a particular navigation group, use the GetDefaultNavigation-
Group method, passing as an argument one of the constants from the
OlGroupType enumeration, shown in Table 23.7.

Each NavigationGroup contains a NavigationFolders collection,
containing NavigationFolder items. Continuing with the objCalPane
calendar pane module from the above snippet, this code drills down to the

Table 23.6 OlNavigationModuleType Enumeration Constants
for Use with GetNavigationModule

Constant Value

olModuleCalendar 1

olModuleContacts 2

olModuleFolderList 6

olModuleJournal 4

olModuleMail 0

olModuleNotes 5

olModuleShortcuts 7

olModuleTasks 3

23.3 Working with the navigation pane and other Explorer panes 767

navigation folders in the My Folders group and switches all selected calen-
dars to overlay mode:

Set colNavGroups = objCalPane.NavigationGroups
Set objNavGroup = _
 colNavGroups.GetDefaultNavigationGroup _
 (olMyFoldersGroup)
Set colNavFold = objNavGroup.NavigationFolders
For Each objNavFold In colNavFold
 If objNavFold.IsSelected Then
 objNavFold.IsSideBySide = False
 End If
Next

The IsSelected and IsSideBySide properties apply only to naviga-
tion folders in the Calendar module.

The NavigationGroups and NavigationFolders collections support
the same Add, Item, and Remove methods as most other Outlook collections.
For an example of NavigationFolders.Add, go back to Listing 11.15,
where the AddToMailFavs adds a mail folder to the Favorite Folders group in
the Mail module. It is not possible, however, to remove built-in navigation
groups. It is also not possible to remove from the NavigationFolders
collection any folder other than a shared folder, such as a Web calendar or a
folder from another Exchange user’s mailbox. The Navigation-

Folder.IsRemovable property tells you which folders can be removed.

Outlook Help has many useful code samples on using these new naviga-
tion objects. Be sure to check out these articles:

How to: Show or Hide the Navigation Pane (HV10038583)

How to: Display Specific Modules in the Navigation Pane
(HV10038587)

Table 23.7 OlGroupType Enumeration Constants for Use with GetDefaultNavigationGroup

Constant Value Description

olCustomFoldersGroup 0 Custom group created either in the user
interface or by code

olFavoriteFoldersGroup 4 Favorite Folders navigation group in the
Mail module

olMyFoldersGroup 1 My Folders group containing items from
the default store and .pst files

olPeopleFoldersGroup 2 Shared folders from other people

olOtherFoldersGroup 3 Other shared folders

768 23.3 Working with the navigation pane and other Explorer panes

How to: Set a Module as the Currently Selected Module in the Navi-
gation Pane (HV10038585)

How to: Enumerate, Show, Hide, and Position Modules in the Navi-
gation Pane (HV10038584)

How to: Add a Folder to the Favorite Folders Group (HV10045312)

How to: Add a Custom Folder to a Group and Display It in Overlay
Mode by Default (HV10038592)

How to: Enumerate Active Folders in the Calendar View
(HV10045329)

How to: Add a New Navigation Group and Move a Folder into That
Group (HV10045291)

The numbers in parentheses are topic IDs you can search for in Help to
find the articles faster.

As a final sample in this chapter, the next section shows how to set your
own default folder for the Contacts module, so that Outlook shows that
folder first, instead of the default Contacts folder.

23.3.3 Example: Show a favorite Contacts folder first

Some users don’t like the way that Outlook always shows the default Con-
tacts folder when a user switches to the Contacts navigation module for the
first time during an Outlook session. They’d rather see a different default
folder, and they’d like some way to tell Outlook which folder to show first.
The code sample in Listing 23.10 makes that happen: The first time the
user shows the Contacts module, the code displays the contacts folder that
is at the top of the My Contacts group.

To try out this technique, follow these steps:

1. Put all the code from Listing 23.10 in the ThisOutlookSession
module.

2. Display the Contacts module, showing your default Contacts
folder, and drag the folder you want to use as the default to the
top of the My Contacts list.

3. Display a different navigation pane module.

4. Go back to VBA and run the Application_Startup procedure.

5. Now, display the Contacts module again.

You should see your default folder from Step 3.

The code relies on the ModuleSwitch event of the NavigationPane
object to detect when the user has switched to the Contacts navigation
pane. With the CurrentModule object passed by the event handler as an
argument, the m_objNavPane_ModuleSwitch procedure instantiates a

23.3 Working with the navigation pane and other Explorer panes 769

ContactsModule object, then drills down to its My Contacts group to
locate the first NavigationFolder in the group. From that objNavFolder
object, the code obtains a Folder object and displays it in the current
Explorer.

Since the intent of this application is to show the “default” contacts folder
only the first time the user accesses the Contacts module, the m_objNavPane
object is released, so the ModuleSwitch event will no longer fire.

You can, of course, apply this technique to any navigation pane module.
If you expand the ModuleSwitch event handler to apply defaults to more
modules, replace this statement:

If CurrentModule.NavigationModuleType = _
 olModuleContacts Then

Listing 23.10 Display a user-defined default folder in the contacts module

Dim WithEvents m_objNavPane As Outlook.NavigationPane

Private Sub Application_Startup()
 Set m_objNavPane = _
 Application.ActiveExplorer.NavigationPane
End Sub

Private Sub m_objNavPane_ModuleSwitch _
 (ByVal CurrentModule As NavigationModule)
 Dim objContMod As Outlook.ContactsModule
 Dim colNavGroups As Outlook.NavigationGroups
 Dim objNavGroup As Outlook.NavigationGroup
 Dim colNavFolders As Outlook.NavigationFolders
 Dim objNavFolder As Outlook.NavigationFolder
 Dim objFolder As Outlook.Folder
 If CurrentModule.NavigationModuleType = _
 olModuleContacts Then
 Set objContMod = CurrentModule
 Set colNavGroups = objContMod.NavigationGroups
 Set objNavGroup = _
 colNavGroups.GetDefaultNavigationGroup(_
 olMyFoldersGroup)
 Set colNavFolders = objNavGroup.NavigationFolders
 Set objNavFolder = colNavFolders(1)
 Set objFolder = objNavFolder.Folder
 Set Application.ActiveExplorer.CurrentFolder = objFolder
 Set m_objNavPane = Nothing
 End If
 Set objContMod = Nothing
 Set colNavGroups = Nothing
 Set objNavGroup = Nothing
 Set colNavFolders = Nothing
 Set objNavFolder = Nothing
 Set objFolder = Nothing
End Sub

770 23.4 Summary

with this statement:

Select Case CurrentModule.NavigationModuleType

and build Case statement blocks to handle each desired module. You’ll also
want to eliminate the statement that releases the m_objNavPane object,
since you need to keep it active to fire the ModuleSwitch event for modules
the user has not yet seen during the current session. If you still want to
show the “default” folder for each module only on the initial visit to that
module, use a module-level Boolean variable for each module type to track
whether it has been seen yet.

23.4 Summary
Custom toolbars, menu bars, and the navigation pane make it easy for users
to run VBA macros and navigate to their favorite Outlook folders. You can
also set toolbar buttons to jump to specific Web pages. Key new features in
Outlook 2007 related to the user interface include programmable context
menus and a hierarchy of objects to provide access to the modules, groups,
and folder links in the navigation pane.

Practical applications of these techniques have included examples that
show a Web page in Outlook’s built-in browser, view the data file location
for any information store, search for messages sent to the sender of a mes-
sage, and show a “default” contacts folder in the Contacts module.

771

24
Generating Reports on Outlook Data

If any single area of Outlook falls short, it’s printing and reporting. Out-
look’s built-in ability to regurgitate its data—either as printed reports or as
files in other formats—is very limited. For example, when you use Out-
look’s File, Import and Export command, you cannot export user-defined
fields, and some useful standard fields don’t export at all! Furthermore,
there is no method for printing a legacy custom form or form region in a
format that resembles the on-screen form. An individual item always prints
in Outlook’s memo style, which produces a simple list of fields. Any custom
fields print in alphabetical order.

Because of these major limitations, being able to extract Outlook data
into some other format—either a file or a printed report—is an essential
skill for Outlook programmers. This chapter discusses how you can export
and print from Outlook without programming, using techniques such as
Outlook views. You will also see how to push Outlook data into Excel or
Word. These reporting techniques can be adapted not just for printed out-
put, but also to produce files of exported data.

Highlights of this chapter include discussions of the following:

Why folder views are the key to simple tabular reports

How to use a Word mail merge to build a contact report

How to build tabular reports with Excel

How to print invoices and other reports that combine data from two
different folders

24.1 Built-in report techniques
Users can print individual items or lists from Outlook folders by using the
File | Print command. On a custom form’s VBScript code, you can print an
item by calling Item.PrintOut. For an individual item, Outlook prints
first its standard fields in a preset order (which neither user nor developer

772 24.1 Built-in report techniques

can control), then any custom fields in alphabetical order, and finally the
contents of the item body. For example, Figure 24.1 shows a custom equip-
ment repair request form and the standard printout you’d get from the Print
command on the ribbon or the PrintOut method. The printout doesn’t
follow the order of the form layout at all.

Printing from a folder view can be a good way to generate a report on
multiple items because the user gets pretty much what is displayed on the
screen. You have other built-in reporting options, both programmatic and
those involving no code at all, if you have Microsoft Word and Excel.

Another technique is to use Outlook’s File | Import and Export com-
mand. However, as noted above, this command cannot export custom fields
or even all standard fields. Also, the export feature is not programmable in
any way. If you want to export data to another file format, you will need to
write code to create the file and push Outlook data into it.

24.1.1 Printing from customized folder views

Why are folder views important to Outlook reports? Because almost any-
thing you can show in a view can be printed out. Table views (such as the
default view of your Inbox folder) are particularly useful for quick tabular
reports on all kinds of Outlook data, including custom properties. Other
types of views include timeline (which cannot be printed), card, icon, and
day/week/month.

To create a new view from scratch, choose View | Current View | Define
Views. In the Define Views dialog box, click New or Copy. It is often easier

Figure 24.1
Printouts of custom

forms look little
like the form

layout.

24.1 Built-in report techniques 773

to make a copy of an existing table view and modify it to suit your needs
than create a totally new view.

Table 24.1 lists many different ways to customize a table view. These
techniques can also be accessed by choosing View | Current View | Custom-
ize Current View and using the buttons on the Customize View dialog box,
shown in Figure 24.2. Also use the commands in the Customize View dia-
log to customize non-table views.

Table 24.1 Table View Customization Techniques

To Make This Change . . . Do This . . .

Add columns to show other fields Right-click on any column heading in the view, choose
Field Chooser, and then drag fields from the Field
Chooser to the view

Remove a field from a table view Drag the column heading for the field out of view

Display fields in a different order Drag a column heading to a new position

Change the width of a column Drag the right border of a column heading to the left to
make it narrower or to the right to make it wider

Adjust the width of a column to the best fit for the data Double-click on the right border of the column heading

Organize related items by values in a particular field Right-click the field’s column heading, and then choose
Group By This Field

Sort by particular field(s) Click the column heading for the field you want to sort
by; to sort up to three additional fields, hold down the
Ctrl key as you click the column heading

Show only items that meet particular criteria Choose View, Current View, Customize Current View,
click Filter, and set criteria in the Filter dialog box

Display data that meets particular criteria in a different
font

Choose View, Current View, Customize Current View,
and click Automatic Formatting

Figure 24.2
Modify a view with

any of these
commands.

774 24.1 Built-in report techniques

As we saw in Chapter 22, it is also possible to create and modify views
programmatically. The manual and programmatic approaches run up
against the same limitations, though. For example, Outlook provides no
way to display the entire item body in a view. In a table or timeline view
with AutoPreview turned on, users can see only the first 255 characters.
The same limitation applies to card views showing the Note field (in other
words, the Body property).

Note: The Group By feature functions in a table view to group related
items, such as those with the same category, and displays the number of
items in each group. However, it cannot perform any subtotals or other cal-
culations. If you need subtotals, a good strategy is to use the Excel method
in the next section, then add formulas to do the calculations.

If a column in a table view is too narrow to show the full data in the
field, the print output will also be truncated. To adjust columns accurately
so that they print at the width you want, you may need to turn off auto-
matic column sizing by following these steps:

1. Right-click on a column heading and then choose Customize
Current View.

2. In the Customize View dialog box (see Figure 24.2), click Other
Settings.

3. In the Other Settings dialog box (see Figure 24.3), clear the box
for “Automatic column sizing” and then click OK twice to return
to the view.

Figure 24.3
The choices in the

Other Settings
dialog box depend
on the type of view

you’re modifying.

24.1 Built-in report techniques 775

Turning off automatic column sizing also turns off the two-line or
“compact” layout, allowing you to adjust the column widths for all fields in
a single line.

Printing from an Outlook view is definitely a what-you-see-is-what-you-
get operation. Be sure to use the Preview command on the File | Print dia-
log box to check whether all your columns fit on the page before you print,
especially if you turn off automatic column sizing. To change the margins
for printing, choose File | Page Setup | Table Style, and then switch to the
Paper tab.

24.1.2 Copying data to Excel

One benefit of table views is that you can copy their data to Microsoft Excel
with just a few keystrokes and then use Excel for additional formatting or
data manipulation. Even custom properties can be exported in this fashion.
Follow these steps in any Outlook table view:

1. Add and remove fields from a table view until it shows only the
fields you want to copy. (You don’t need to worry about column
width.)

2. Choose Edit, Select All, then Edit, Copy.

3. Switch to a blank Excel worksheet, and then choose Edit, Paste.

Once you have the data in Excel, you can use Excel’s formatting, for-
mula, pivot table, and other features to get a good-looking printout with
the summary and analysis that you need. For example, you might want to
analyze the messages from an Exchange public discussion folder to find out
how many messages are being posted by each person every month.

Tip: If you try to copy and paste a field that contains carriage returns, the
data will get split into different cells in Excel. One solution is to use an Out-
look formula field to strip the carriage returns. For example, you could use
this formula to extract the first line from the Business Address Street field:

IIf(Left([Business Address Street], InStr([Business
Address Street], Chr(10)))="", [Business Address Street],
Left([Business Address Street], InStr([Business Address
Street], Chr(10)) - 1))

and this one to generate any text on a second line:

IIf(InStr([Business Address Street], Chr(10)) > 0,
Mid([Business Address Street], InStr([Business Address
Street], Chr(10)) + 1, Len([Business Address Street]) -
InStr([Business Address Street], Chr(10))),"")

Use such formula fields instead of Outlook’s built-in fields to “clean up”
the data before you copy and paste to Excel.

776 24.1 Built-in report techniques

The copy-and-paste technique works, of course, only with standard and
hidden properties that are visible in folder views. For hidden properties, you
can write code to push data into Excel, a technique we’ll cover in detail a lit-
tle later in the chapter. We’ve already seen a good example of this, though,
in Listing 15.9, which creates an Excel report on message response times
using two hidden MAPI properties.

24.1.3 Performing a Word mail merge

One of the most powerful ways to report on Outlook contact data is to per-
form a Word mail merge, starting the merge directly from any Outlook
contacts folder. You will need Word 2007 installed. You can even include
custom fields in the merge document, as long as they are defined in the
folder (as discussed in Chapter 21).

Start in the Outlook contacts folder that contains the data you want to
print and follow these steps:

1. Select one or more contacts in the folder.

2. Choose Tools | Mail Merge.

3. Make your choices on the Mail Merge Contacts dialog box (Fig-
ure 24.4), then click OK.

4. After Word displays the merge document, add merge fields, other
text, and formatting as needed. Save the merge document if you
think you might use it again.

5. Click the merge button in Word.

Tip: Mail merge to Word is particularly helpful if you need to export data
from a contacts folder in the Public Folders hierarchy. The built-in File |
Import and Export command doesn’t work with public folders.

Figure 24.4
Perform a mail

merge to Microsoft
Word from any

Outlook contacts
folder.

24.2 Coding reports with the Outlook object model 777

In Step 3, if you want to build a list or table of items, select Catalog
under “Document type,” as Figure 24.4 shows. If you want to see custom
fields in the Word merge field list, make sure you choose “All contact fields”
under “Fields to merge.” Any custom fields must be defined in the User-
Defined Fields in Folder list in the Field Chooser.

After the Word document opens, to insert any Outlook contact field
into the merge document, use the Insert Merge Fields command from the
Write & Insert Fields group (see Figure 24.5). To insert the contact body
into the merge document, select the Notes field.

24.2 Coding reports with the Outlook object model
Once you know how to loop through all the items in a folder, as discussed
in Chapter 15, you are halfway toward the goal of building reports using
the Outlook object model. The other half of the project is to lay out the
data in an informative format. These are all potential “documents” that can
store a report to be printed or saved:

Outlook email messages—especially good if you need to transmit the
report to someone else

Outlook post items—if you want to keep the report in an Outlook
folder

Text files

Word documents

Excel workbooks

Chapter 8 showed us how to create a text file and write data to it using
FileScriptingObject techniques. Here are other code samples from ear-
lier chapters that demonstrate different techniques related to report-build-
ing:

Listing 13.10—Create a message listing all folders, with item count,
in the current Outlook session

Listing 14.2—Create a message listing a spam message’s Internet
headers

Listing 15.9—Create a report in Microsoft Excel on message
response times

Figure 24.5 Outlook fields are available in mail merges from the Insert Merge Field command.

778 24.3 Sending output to Microsoft Excel

Listing 17.5—Create a reply from a tokenized boilerplate message,
inserting property values from another message into the reply

Listing 18.1—Create a message enumerating the user’s address lists

Listing 18.2—Create a post filled with the names, email addresses,
and phone numbers of Exchange users in the Global Address List
(GAL)

Listing 22.1—Create a message reporting on a user’s rules

Listings 18.1, 18.2, and 22.1 are particularly valuable as examples of
how to use an HTML <table> element and related tags to organize infor-
mation in a tabular format inside an Outlook message or post. Word and
Excel can hold tables, too, and we’ll spend the rest of the chapter examining
how to get data from Outlook into documents in those two applications.

If you code a report in the form of an Outlook message or post, you can
use the PrintOut method of the MailItem or PostItem object to print the
report to the default printer. Outlook exposes no objects, however, to con-
trol printing.Therefore, if you need to change printers, print multiple cop-
ies, or otherwise customize the printing operation, consider generating the
printable output in Word or Excel and using those applications’ objects
related to printing.

24.3 Sending output to Microsoft Excel
For reports that require more formatting than Outlook views can provide or
in which you want to perform complex data manipulation, Microsoft Excel
is a good tool. The row and column layout of an Excel worksheet is very
similar to a table view in Outlook and is easy to handle in code.

The feature that makes it possible to write code in Outlook to produce
reports in Excel is called Office automation. You can start an instance of any
other Microsoft Office program (or use an existing copy if it’s already run-
ning), create a new document, and add data to it. Conversely, you can design
an Excel workbook with VBA code that instantiates an Outlook.Applica-
tion object and uses Outlook objects and properties to fill the worksheet
cells. If you want to take that approach, Chapter 7 has information on how to
start an Outlook session programmatically from external code.

To create an Excel report using Outlook VBA code, you first need to
learn the basics of opening a worksheet in Excel and adding data to it.
Then, we’ll look at a specific example that extracts the names and addresses
from an Outlook distribution list.

24.3.1 Understanding Excel report basics

To work with Excel objects in VBA, choose Tools, References, and then
check the box for Microsoft Excel 12.0 Object Library. In Outlook VBA,

24.3 Sending output to Microsoft Excel 779

use the Insert | Module command to insert a new code module for your
report samples and add the code in Listing 24.1.

The GetExcelWS() function in Listing 24.1 not only returns an
Excel.Worksheet object that you can later fill with Outlook data, but it also
sets the module-level variable m_blnWeOpenedExcel to True or False
depending on whether Excel was already open. Knowing the state of Excel
before your Outlook code runs is crucial to being able to return Excel to the
same state when your Outlook code finishes. The Set objExcel = GetOb-
ject(, "Excel.Application") statement checks whether Excel is already
running. If Excel is not running, the code creates a new instance of Excel with
the Set objExcel = CreateObject("Excel.Application") statement.

The RestoreExcel subroutine uses the value of m_blnWeOpenedExcel
to put Excel back in its original state after your code runs. A standard
framework for populating and printing an Excel worksheet, therefore, looks
like this:

Sub PrintGenericExcelReport()
 Dim objWB As Excel.Workbook
 Dim objWS As Excel.Worksheet
 Set objWB = GetExcelWB()
 If Not objWB Is Nothing Then
 Set objWS = objWB.Sheets(1)
 ' code to fill a worksheet with data
 objWS.Cells(1, 1) = "My First Excel Report"
 objWS.Application.Visible = True
 objWS.Activate
 objWS.PrintOut
 objWB.Close SaveChanges:=False
 Call RestoreExcel
 End If
 Set objWS = Nothing
 Set objWB = Nothing
End Sub

If you want to print the worksheet without showing it to the user, omit
the Application.Visible and Activate statements. If you want to dis-
play the worksheet but not print it, omit the Printout, Close, and Call-
RestoreExcel statements. You don’t need to restore Excel to its former
state if you’re displaying a worksheet.

Tip: You can make Excel or Word print to a specific printer by changing
the value of the ActivePrinter property of the Word.Application or
Excel.Application object to the name of the printer you want to use.
For example, for a worksheet object objWS:

objWS.Application.ActivePrinter = "OKI C5500"

That’s something you can’t do with Outlook.

780 24.3 Sending output to Microsoft Excel

The next step is to put data into the worksheet. Within a worksheet, use
the Cells object to specify a particular cell and put data into it. The Cells
object takes row and column numbers as parameters using the syntax
Cells(row, col). This code fragment puts the text “My First Excel
Report” into cell A1 (or row 1, column 1) and the text “End of Report”
into cell E4 (or row 4, column 5) of a Worksheet object (objWS):

objWS.Cells(1, 1) = "My First Excel Report"
objWS.Cells(4, 5) = "End of Report"

Tip: Unlike Outlook, Excel includes a macro recorder that turns your key-
strokes into VBA code. To start the Excel macro recorder, click the macro
recorder button on the status bar at the bottom of the Excel window. Per-
form various operations in Excel and click the macro recorder button again.
Press Alt+F11 to enter Excel’s VBA environment, where you will find the
recorded macro in one of the modules under Modules. You can copy code
from Excel’s VBA window into your Outlook project, editing it as necessary
to change the variable names. This can be a useful technique for discovering
formatting properties and other methods in the Excel object model.

Listing 24.1 Create a new workbook and set a variable to track the status of Excel

Private m_blnWeOpenedExcel As Boolean

Function GetExcelWB() As Excel.Workbook
 Dim objExcel As Excel.Application
 On Error Resume Next
 m_blnWeOpenedExcel = False
 Set objExcel = GetObject(, "Excel.Application")
 If objExcel Is Nothing Then
 Set objExcel = CreateObject("Excel.Application")
 m_blnWeOpenedExcel = True
 End If
 Set GetExcelWB = objExcel.Workbooks.Add
 Set objExcel = Nothing
End Function

Sub RestoreExcel()
 Dim objExcel As Excel.Application
 On Error Resume Next
 Set objExcel = GetObject(, "Excel.Application")
 If Not objExcel Is Nothing Then
 If m_blnWeOpenedExcel Then
 objExcel.Quit
 End If
 End If
 m_blnWeOpenedExcel = False
 Set objExcel = Nothing
End Sub

24.3 Sending output to Microsoft Excel 781

Another useful Excel object is the Range object, which can cover an area
that includes more than one cell, even nonadjacent areas. For simple rectan-
gular ranges, you can use the Cells object to define a Range by its upper-
left and lower-right corners. The MyFirstExcelReport procedure in List-
ing 24.2 adds the text from the code snippet above, then gives it bold for-
matting and displays it to the user. It uses the GetExcelWS() function from
Listing 24.1.

To find out more about Excel objects, properties, and methods, you can
use the object browser in either Outlook or Excel VBA.

24.3.2 Building a distribution list report

Back in Chapter 8, Listing 8.21 demonstrated how to create a distribution
list by reading data from a text file. Let’s go the other way and export an
existing Outlook personal distribution list to an Excel workbook. The
DLToExcel() subroutine retrieves each member of the distribution list and
puts its display name and email address into an Excel worksheet. It takes a
DistListItem object as its parameter. To test it, open any personal distri-
bution list from a contacts folder and run this statement in the Outlook
VBA Immediate window:

Call DLToExcel(Application.ActiveInspector.CurrentItem)

Here are a few notes on the code in Listing 24.3:

The DLToExcel procedure uses the GetExcelWB() function from
Listing 24.1.

Listing 24.2 Apply formatting to Excel worksheets with range objects

Sub MyFirstExcelReport()
 Dim objWB As Excel.Workbook
 Dim objWS As Excel.Worksheet
 Dim objRange As Excel.Range
 ' GetExcelWB from Listing 24.1
 Set objWB = GetExcelWB()
 If Not objWB Is Nothing Then
 Set objWS = objWB.Sheets(1)
 objWS.Cells(1, 1) = "My First Excel Report"
 objWS.Cells(4, 5) = "End of Report"
 Set objRange = objWS.Range _
 (objWS.Cells(1, 1), objWS.Cells(4, 5))
 objRange.Font.Bold = True
 objWS.Application.Visible = True
 objWS.Activate
 End If
 Set objRange = Nothing
 Set objWS = Nothing
 Set objWB = Nothing
End Sub

782 24.3 Sending output to Microsoft Excel

Listing 24.3 Extract the members of a distribution list to an Excel worksheet

Sub DLToExcel(dl As Outlook.DistListItem)
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objWB As Excel.Workbook
 Dim objWS As Excel.Worksheet
 Dim objRecip As Outlook.Recipient
 Dim objTempRecip As Outlook.Recipient
 Dim objAddrEntry As Outlook.AddressEntry
 Dim objRange As Excel.Range
 Dim strAddress As String
 Dim strExType As String
 Dim strType As String
 Dim i As Integer
 Dim intRow As Integer
 Dim intCol As Integer
 On Error Resume Next
 Set objOL = Application
 Set objNS = objOL.Session
 ' GetExcelWB from Listing 24.1
 Set objWB = GetExcelWB()
 Set objWS = objWB.Sheets(1)
 objWS.Cells(1, 1) = dl.Subject
 intRow = 3
 For i = 1 To dl.MemberCount
 strExType = ""
 Set objRecip = dl.GetMember(i)
 If objRecip.AddressEntry.Type = "MAPIPDL" Then
 strExType = "Personal DL"
 Else
 Set objTempRecip = objNS.CreateRecipient _
 (objRecip.Address)
 If objTempRecip.Resolve Then
 Set objAddrEntry = objTempRecip.AddressEntry
 Select Case objAddrEntry.AddressEntryUserType
 Case olExchangeUserAddressEntry
 strExType = "Exchange User"
 Case olExchangeDistributionListAddressEntry
 strExType = "Exchange DL"
 Case olExchangePublicFolderAddressEntry
 strExType = "Exchange Public Folder"
 Case olExchangeRemoteUserAddressEntry
 strExType = "Exchange Contact"
 End Select
 End If
 End If
 objWS.Cells(intRow, 1) = objRecip.Name
 objWS.Cells(intRow, 2) = objRecip.Address
 objWS.Cells(intRow, 3) = objRecip.AddressEntry.Type
 objWS.Cells(intRow, 4) = strExType
 intRow = intRow + 1
 Next

24.3 Sending output to Microsoft Excel 783

The address for each entry in the personal distribution list (DL) is in
SMTP format, except for nested DLs, which have no address.

Even though the DistListItem.GetMember method returns a
Recipient object, the AddressEntry from that recipient doesn’t
have as much information as it would if the Recipient were coming
from a message. To determine the type of entry, the code must create
a new Recipient using the Namespace.CreateRecipient method
and use the AddressEntry details from that new Recipient object.
The code in the Select Case block uses the new Address-
Entry.AddressEntryUserType property to find out what kind of
recipient we’re dealing with.

The Autofit method adjusts the width of each column in the Range
object for the DL member list to make sure that the user can see the
complete name and address.

The procedure also assigns a name to the range that contains the data.
Named ranges are an important Excel feature that make it easy to use
a particular set of cells for mail merge, import into Outlook, and
other functions.

The For ... Next block is the heart of the DLToExcel subroutine.
You can use this type of block to put any kind of Outlook data into Excel
cells. For example, if you wanted to copy data from all items in an Outlook
Folder object (objFolder) into an Excel worksheet (objWS), you would

 intRow = intRow - 1
 Set objRange = objWS.Range _
 (objWS.Cells(3, 1), objWS.Cells(intRow, 4))
 For i = 1 To 4
 objRange.Columns(i).EntireColumn.AutoFit
 Next
 objWB.Names.Add _
 Name:=Replace(dl.Subject, " ", ""), _
 RefersTo:="=" & objWS.Name & _
 "!" & objRange.Address & ""
 objWS.Application.Visible = True
 objWS.Activate
 Set objOL = Nothing
 Set objNS = Nothing
 Set objRecip = Nothing
 Set objTempRecip = Nothing
 Set objAddrEntry = Nothing
 Set objWS = Nothing
 Set objWB = Nothing
 Set objRange = Nothing
End Sub

Listing 24.3 Extract the members of a distribution list to an Excel worksheet (continued)

784 24.3 Sending output to Microsoft Excel

set the value for the starting row and use a For Each ... Next loop to
pick up properties from all items in the folder:

intRow = 1
For Each objItem in objFolder.Items
 objWS.Cells(intRow, 1) = objItem.property1
 objWS.Cells(intRow, 2) = objItem.property2
 objWS.Cells(intRow, 3) = _
 objItem.UserProperties("property3")
 intRow = intRow + 1
Next

The last line in the For Each ... Next loop increments intRow so
that data input for the next item takes place on a blank new row. After the
loop finishes with the last item, the worksheet will contain a block of
intRow – 1 rows, containing data from intRow – 1 items from the
folder.

This type of loop is a valuable technique for exporting information from
both standard and custom fields for use in Excel or in another program that
can read Excel data files (or a comma-delimited file saved from an Excel
worksheet). However, some data values from Outlook need a bit of format-
ting to work properly in Excel.

24.3.3 Formatting Outlook data for Excel

Because Outlook and Excel display data in different ways, you may need
some small helper functions to make Outlook data look good in Excel. The
functions in this section will help you format date/time, Boolean, and text
property values properly.

Use the DateToExcel() function in Listing 24.4 to handle the #1/1/
4501# date that Outlook displays as “None” when the user has not selected
a date.

Listing 24.4 Convert “None” date values to null

Function DateToExcel(propVal)
 Dim dteDate ' As Date
 If IsDate(propVal) Then
 dteDate = CDate(propVal)
 If dteDate = #1/1/4501# Then
 DateToExcel = Null
 Else
 DateToExcel = dteDate
 End If
 Else
 DateToExcel = propVal
 End If
End Function

24.3 Sending output to Microsoft Excel 785

Use the YesNoToString() function in Listing 24.5 to convert data in
yes/no properties to the strings "Yes" and "No". Otherwise, Excel will use
the values -1 and 0 for values that Outlook stores as True and False.

Use the TextToExcel() function in Listing 24.6 to remove carriage
returns and tabs from text and truncate the last string to the maximum
number of characters an Excel cell can hold. (Excel displays these control
characters with an ugly little rectangle.)

The functions in this section do not use data types for the arguments
and function declarations for two reasons. First, omitting the data typing
makes them suitable for use with VBScript behind Outlook forms, as well
as in VBA. Second, all the functions are designed so that you can pass
through data of any type. If the data does not need to be changed to work
well in a worksheet, the function returns the data unchanged.

To put those functions to work, let’s build a rather generic procedure for
exporting Outlook messages to Excel.

The InboxToExcel procedure in Listing 24.7 uses a Table object to
read the data from different properties. But instead of writing code for each
property, just one code statement does all the work of telling the procedure
which properties to export:

strProps = _
 "SenderName,To,Subject,SentOn,ReadReceiptRequested"

Listing 24.5 Convert true and false values to strings

Function YesNoToString(propVal)
 Select Case propVal
 Case True
 YesNoToString = "Yes"
 Case False
 YesNoToString = "No"
 Case Else
 YesNoToString = CStr(propVal)
 End Select
End Function

Listing 24.6 Clean up text to fit into Excel cells

Function TextToExcel(propVal)
 If VarType(propVal) = vbString Then
 propVal = Replace(propVal, vbCr, " ")
 propVal = Replace(propVal, vbTab, " ")
 propVal = Left(propVal, 32767)
 End If
 TextToExcel = propVal
End Function

786 24.3 Sending output to Microsoft Excel

Listing 24.7 Export message properties from the Inbox to Excel

Sub InboxToExcel()
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objInbox As Outlook.Folder
 Dim objTable As Outlook.Table
 Dim objRow As Outlook.Row
 Dim objMsg As Outlook.MailItem
 Dim objWB As Excel.Workbook
 Dim objWS As Excel.Worksheet
 Dim objRange As Excel.Range
 Dim strFind As String
 Dim strProps As String
 Dim arr() As String
 Dim val As Variant
 Dim i As Integer
 Dim intRow As Integer
 Const PR_MESSAGE_CLASS = _
 "http://schemas.microsoft.com/mapi/proptag/0x001a001e"
 On Error Resume Next
 ' ### USER OPTION ###
 strProps = _
 "SenderName,To,Subject,SentOn,ReadReceiptRequested"
 Set objOL = Application
 Set objNS = objOL.Session
 Set objInbox = objNS.GetDefaultFolder(olFolderInbox)
 strFind = Quote(PR_MESSAGE_CLASS) & " LIKE 'IPM.Note%'"
 Set objTable = objInbox.GetTable("@SQL=" & strFind)
 ' GetExcelWB function from Listing 24.1
 Set objWB = GetExcelWB()
 Set objWS = objWB.Sheets(1)
 objWS.Name = "Inbox"
 arr = Split(strProps, ",")
 intRow = 1
 For i = 0 To UBound(arr)
 objWS.Cells(intRow, i + 1) = arr(i)
 objTable.Columns.Add arr(i)
 Next
 Set objRange = objWS.Range _
 (objWS.Cells(1, 1), objWS.Cells(1, i + 1))
 objRange.Font.Bold = True
 Do Until objTable.EndOfTable
 intRow = intRow + 1
 Set objRow = objTable.GetNextRow
 For i = 0 To UBound(arr)
 val = objRow(arr(i))
 Select Case VarType(val)
 Case vbDate
 ' DateToExcel from Listing 24.3
 val = DateToExcel(val)
 Case vbBoolean
 ' YesNoToString from Listing 24.4
 val = YesNoToString(val)

24.3 Sending output to Microsoft Excel 787

From this one statement, the code creates an array that controls the col-
umn headings for the worksheet and columns added to the Table.Col-
umns collection to expose the data. Not all properties can be handled this
way, but most standard properties can. The Help topic on the Table object
provides details on those that can’t, such as Body and HTMLBody. You can
also add custom and hidden properties to the list of processed properties by
adding their MAPI schema property names to the strProps list.

A few notes on the code in Listing 24.6:

The Table object (objTable) is filtered to show only messages by
searching for items whose MessageClass property begins with
"IPM.Note". This statement constructs the filter string:
strFind = Quote(PR_MESSAGE_CLASS) & " LIKE 'IPM.Note%'"

The Select Case VarType(val) block adds a little efficiency by
checking the type of value before running it through one of the con-
verters. VarType() is a built-in function that returns a constant value
that indicates the type of value—such as vbBoolean for a Boolean
value.

The code uses the same techniques as in Listings 24.2 and 24.3 to
define ranges to give bold formatting to the column headings and
autofit the columns.

 Case vbString
 ' TextToExcel from Listing 24.5
 val = TextToExcel(val)
 End Select
 objWS.Cells(intRow, i + 1) = val
 Next
 Loop
 For i = 1 To (UBound(arr) + 1)
 objWS.Columns(i).EntireColumn.AutoFit
 Next
 objWS.Application.Visible = True
 objWS.Activate
 Set objOL = Nothing
 Set objNS = Nothing
 Set objRow = Nothing
 Set objWB = Nothing
 Set objWS = Nothing
 Set objRange = Nothing
End Sub

Private Function Quote(val) As String
 Quote = Chr(34) & val & Chr(34)
End Function

Listing 24.7 Export message properties from the Inbox to Excel (continued)

788 24.4 Sending output to Microsoft Word

Some cells will probably be blank if no value has ever been set for that
property on the item.

To change the list of properties exported from the Inbox, all you need to
do is change the strProps = assignment statement to include more or
fewer properties.

24.4 Sending output to Microsoft Word
Microsoft Word is an even more flexible reporting tool than Excel. Not
only can it handle data in rows and columns like Excel, but it can also
reproduce the look of a custom Outlook form, complete with checkboxes.
Word reports are also ideal for combining information from different types
of Outlook items. For example, you might need an invoice that totals the
time you spent working on a particular contact’s projects.

Two of the basic techniques involved are parallel to those in Excel:

Create a new Word document, tracking whether Word was already
open

Convert data in Outlook to text that looks good in Word

In most cases, your Word report will start with a document template—
an existing .dot file that contains text, formatting, and other components
you want to include in the report. The Outlook code creates a new docu-
ment based on that template, and then populates it with the Outlook data.
One of the advantages of that approach is that the report “consumer”—
someone from the department that will generate or use it—can design the
report template file using Word, without any need to know Outlook code.

24.4.1 Understanding Word report basics

The basics of building reports with Word are very similar to the Excel tech-
niques discussed earlier in the chapter. For VBA code, you must first use
Tools, References to add a reference to the Microsoft Word 12.0 Library
that is installed on your system.

Compare the basic GetWordDoc() and RestoreWord procedures for
VBA in Listing 24.8 with the corresponding Excel procedures in Listing
24.1. Since Word is often used to print the details of a single Outlook cus-
tom form item, the procedures for VBScript code behind an Outlook form
are in Listing 24.9.

One difference from the Excel code is the addition of a parameter—
optional in the VBA version—to create a Word document using a specific
template. As you will see, this is the key to making Word printouts that
duplicate the look of Outlook form pages.

24.4 Sending output to Microsoft Word 789

A Word template can contain boilerplate text, plus marked areas that
you can use to place Outlook data in the text. To create a template from a
new or existing Word document, click the Office button, and then choose
Save As | Word Template. If you specify only a file name and no path for
the template argument for the GetWordDoc() function, Word looks in the
user’s default templates folder.

A standard framework for populating and displaying or printing a Word
document in VBA looks like the code in Listing 24.10, which adds one
sentence at the top of the document, using the objDoc.Content.Insert-
Before method. Compare with the Excel report in Listing 24.2.

To print the document without showing it to the user, omit the Appli-
cation.Visible and Activate statements. To display the document
without printing it, omit the Printout, Close, and Call RestoreWord
statements. There is no need to restore Word to its former state if you’re dis-
playing a document, because you will leave Word open.

Listing 24.8 Create a new document and set a variable to track the status of Word (VBA)

Private m_blnWeOpenedWord As Boolean

Function GetWordDoc(Optional templatePath As String) _
 As Word.Document
 Dim objWord As Word.Application
 On Error Resume Next
 m_blnWeOpenedWord = False
 Set objWord = GetObject(, "Word.Application")
 If objWord Is Nothing Then
 Set objWord = CreateObject("Word.Application")
 m_blnWeOpenedWord = True
 End If
 If templatePath = "" Then
 templatePath = "Normal.dotm"
 End If
 Set GetWordDoc = objWord.Documents.Add(templatePath)
 Set objWord = Nothing
End Function

Sub RestoreWord()
 Dim objWord As Word.Application
 On Error Resume Next
 Set objWord = GetObject(, "Word.Application")
 If Not objWord Is Nothing Then
 If m_blnWeOpenedWord Then
 objWord.Quit
 End If
 End If
 m_blnWeOpenedWord = False
 Set objWord = Nothing
End Sub

790 24.4 Sending output to Microsoft Word

To use the code in VBScript, remove the apostrophe to uncomment the
Const statement and remove the data typing from the Dim statements.

This statement is important to code-driven printouts:

objDoc.PrintOut False

The False argument tells Word not to print the document in the back-
ground. Instead, code execution waits for the document to print. Don’t use
background printing if your code closes the document immediately after
printing. That will avoid the user seeing a prompt about the document try-
ing to close while it’s still printing.

As with Excel, you can use the macro recorder to investigate Word’s
methods and properties, then adapt at least some of the resulting VBA code
to your Outlook projects. Many Word macros use the Selection object,
which represents the currently selected text in a document, and Chapter 17
has other examples of moving around in and adding text to a Word Docu-
ment object using the Selection object.

Listing 24.9 Create a new document and set a variable to track the status of Word (VBScript)

Private m_blnWeOpenedWord ' As Boolean

Function GetWordDoc(templatePath) ' As Word.Document
 Dim objWord ' As Word.Application
 On Error Resume Next
 m_blnWeOpenedWord = False
 Set objWord = GetObject(, "Word.Application")
 If objWord Is Nothing Then
 Set objWord = CreateObject("Word.Application")
 m_blnWeOpenedWord = True
 End If
 If templatePath = "" Then
 templatePath = "Normal.dotm"
 End If
 GetWordDoc = objWord.Documents.Add(templatePath)
 Set objWord = Nothing
End Function

Sub RestoreWord()
 Dim objWord ' As Word.Application
 On Error Resume Next
 Set objWord = GetObject(, "Word.Application")
 If Not objWord Is Nothing Then
 If m_blnWeOpenedWord Then
 objWord.Quit
 End If
 End If
 m_blnWeOpenedWord = False
 Set objWord = Nothing
End Sub

24.4 Sending output to Microsoft Word 791

However, you will gain flexibility if you use the Range object instead, as
it allows you to manipulate the document independently of the user’s selec-
tion. The Content property of a Word document, which Listing 24.10
uses, is a Range object that represents the entire content of the document.
The Range.InsertBefore method inserts text before the Range. Other
examples in this chapter use the Range.InsertAfter method, which adds
text after the area of the document that the Range object represents.

24.4.2 Formatting Outlook data for Word

It would be tedious to write code to insert text into a Word document,
write more code to add data from an Outlook field, then write code to add
more text, and then another field, and so on. In addition, it would be very
difficult to revise such a report if you wanted to change some of the stan-
dard text in the report. And it would be a nightmare to create versions in
different languages.

A better approach is to lay out the report as a Word document template
with content controls acting as placeholders for the Outlook data. If you
include all the boilerplate text in the template itself, the only code you need
to write is that to place the data into the content controls. As an added ben-
efit, this approach makes it easy to divide up the work. For example, a user
who is going to use the printouts could design the template, while you write
the code.

You probably will want to perform the same kind of data conversion for
Outlook date/time and yes/no properties that we did earlier for Excel. The
YesNoToString() function in Listing 24.4 would work just as well in

Listing 24.10 Create and print a simple Word document with VBA

Sub GenericWordReport()
 Dim objDoc As Word.Document
 Dim objSel As Word.Selection
 ' Const wdDoNotSaveChanges = 0
 Set objDoc = GetWordDoc("Normal.dotm")
 If Not objDoc Is Nothing Then
 'fill the document with data
 objDoc.Content.InsertBefore "Today is " & _
 FormatDateTime(Date, vbLongDate)
 objDoc.Application.Visible = True
 objDoc.Activate
 objDoc.PrintOut False
 objDoc.Close wdDoNotSaveChanges
 Call RestoreWord
 End If
 Set objDoc = Nothing
 Set objSel = Nothing
End Sub

792 24.5 Using Word to build an invoice report

Word automation code as in Excel code. Listing 24.11 is a DateTo-
String() function to convert Outlook dates to strings. For dates that Out-
look shows as “None” and stores as #1/1/4501#, it returns the string
"None".

So that the DateToString() function can be used in VBScript, it uses
FormatDateTime() instead of Format() to format the returned date
string. Also, it returns just the date. If you want time values as well as date
values, you might want to build a similar function of your own to return a
date string with both date and time values. Other useful functions for for-
matting that work in both VBScript and VBA are FormatCurrency() and
FormatNumber(). You’ll see both of those in the sample project in the next
section.

24.5 Using Word to build an invoice report
To complete your Outlook report skills, you need to be able to put data
from a single Outlook item into a Word document and also generate a
report on multiple items. This final example combines those two operations
by reporting on an Outlook item—and on its related items contained in a
different folder.

This application depends on the Links collection covered in Chapter
20 to build an invoice with a contact’s details and a table listing the hours
spent working for that contact, as recorded by the linked journal entries in
the Journal folder. It introduces techniques for working with Word tables
and with the new content controls in Word 2007. You’ll see how to write
data into content controls and then lock them, as well as how to insert data
into cells and create new table rows.

Listing 24.11 Convert date values to a string

Function DateToString(propVal) ' As String
 Dim dteDate ' As Date
 If IsDate(propVal) Then
 dteDate = CDate(propVal)
 If dteDate = #1/1/4501# Then
 DateToString = "None"
 Else
 DateToString = _
 FormatDateTime(dteDate, vbLongDate)
 End If
 Else
 DateToString = CStr(propVal)
 End If
End Function

24.5 Using Word to build an invoice report 793

Note: To build this template, you’ll need to display the Developer tab in the
ribbon. If you haven’t done that already for Outlook custom forms design,
in Outlook, choose Tools | Options, switch to the Mail Format tab, click
Editor Options, check the box for “Show Developer tab in the Ribbon,”
and then click OK.

Content controls are a new feature in Word 2007, providing an improved
alternative to the form fields that you might have used in earlier Word ver-
sions. They provide a more modern look that gives better visual feedback to
the user. In a document using content controls, you don’t need to activate
any kind of document protection. Only the controls are available for input.
The user can press the Tab key to jump from one control to the next. Any
control can be locked.

Look for the content controls in the left half of the Developer tab’s Con-
trols group, as shown in Figure 24.6. Besides a plain text input box and a
combo box, there are content controls that support rich-text input, images,
insertion of building blocks (another new Word 2007 feature), and a date
picker. There is, however, no check box content control.

The invoice sample application consists of a Word template and Out-
look code—in this case, VBA code to work with the currently selected con-
tact. No custom form is involved, although it would certainly be possible to
write the code that generates the invoice as VBScript code for a custom
form, rather than as VBA. After presenting the complete example, we’ll go
over what would be necessary to convert it to VBScript.

24.5.1 Building the invoice template

The steps involved in designing the invoice template are as follows:

1. Lay out a table at the top of the document with a content control
for each Outlook contact property the invoice should display and
for the invoice details like the date, invoice number, and com-
ments.

Figure 24.6
Use Word 2007’s

new content
controls to design

reports on Outlook
data.

794 24.5 Using Word to build an invoice report

2. Lay out the first two rows of a table at the bottom of the docu-
ment with column headings for the data that will be pulled from
the Journal folder. Leave the second row blank.

3. In design mode, set the Tag and other properties for each content
control.

4. Add three rich-text content controls to encompass the contact
information at the top of the form, the invoice detail in the table
at the bottom, and the entire template content. These help lock
the content.

5. Save the template file in the default templates folder (%app-
data%\Microsoft\Templates) or in any other folder.

To design the Word template, you can start from a blank Word docu-
ment or from an existing document that already has a layout you want to
use for your invoice. The area at the top of the template will hold the con-
tact details. A table at the bottom will contain a list of the related journal
entries. Let’s walk through the five steps in detail.

Step 1: At the top of the page, type in and format the static text that you
want to appear on every invoice. Add a company logo if you like. I recom-
mend that you use a table to help align the different pieces of information
you want to list. Figure 24.7 shows the invoice with a company logo, some
static text, and a table with no borders that is ready to receive the first con-
tent controls. To turn off the table borders, we used the Borders command
in the Table Styles group on the Design tab. To turn on the table gridlines
to make it easier to adjust column widths, switch to the Layout tab, and
click View Gridlines.

To insert content controls, display the Developer tab in the ribbon.

Where the contact name and address should appear—in the blank table
cell to the right of the “Invoice submitted to:” text, click the Text button in
the Controls group (second from left in top row) to add a text content con-
trol for each Outlook property. This invoice needs text controls for the
user’s name, street address, city, state, and postal code—five controls in
all—with the usual punctuation for the address elements.

Tip: To move the insertion point to the right of a content control so that
you can type text on the same line, press End after you insert the control.

For the date, insert a date picker content control (second from left in
bottom row).

24.5 Using Word to build an invoice report 795

Add a blank table row and then another table row in the top section so
that you can insert static text and additional content controls for the
invoice number and hourly rate. Adjust the table cell widths as needed.

To complete the top section, in the paragraph below the table, click
Rich Text in the controls group to insert a control to hold the comments
that the user will type in after your code generates the invoice. At this stage
in the design process, with step 1 of 5 completed, the template should look
similar to Figure 24.8.

Step 2: For the bottom section that will hold the invoice information,
insert a second table with two rows and four columns. Type column headers
(Date, Activity, Hours, Total) into the cells in the first row. Leave the sec-
ond row empty. You may want to experiment with the different table styles
found on the Design tab.

Make sure there is at least one paragraph below the second table.

Step 3: Once you’re happy with the basic layout of the invoice, click the
Design Mode button in the Controls group on the Developer tab so that
you can modify the controls’ properties. Click on each content control to

Figure 24.7 Start a Word template with static text and perhaps a table to help create a tidy layout.

796 24.5 Using Word to build an invoice report

select it. Then, display its Properties dialog box (see Figure 24.9) by clicking
the Properties button in the Controls group.

You must enter a value for the Tag property, which the code will use to
identify each control. Use the values in Table 24.2, which also lists the Con-
tactItem property that the code will use to fill in the content control,
where applicable. Some controls may have more options in the Properties
dialog than others. For example, as Figure 24.9 shows, you can choose a
date format for the date picker.

Tip: The Title property for a content control is optional, but may be help-
ful if you want the user to see an identifying name above the control when
it has the focus.

After you have entered a value for the Tag property for each control, the
template should look like Figure 24.10. See how the Tag values from Table
24.2 bracket each control. The Comments control has a Title as well as a
Tag.

Figure 24.8 Content controls act as placeholders for data to be entered either manually or through
code.

24.5 Using Word to build an invoice report 797

Figure 24.9
Set a value for the

Tag property of
each content

control you use in
an Outlook report

template.

Table 24.2 Tag Values for Invoice Content Controls

Control Description Tag Will Hold Outlook Property

Customer name Name FullName

Company name Company CompanyName

Street address Address BusinessAddressStreet

City City BusinessAddressCity

State State BusinessAddressState

Postal code Postal Code BusinessAddressPostalCode

Invoice number Invoice Number n/a—generated by code

Invoice date Invoice Date n/a—generated by code

Comments Comments n/a—user types in

Hourly rate Hourly Rate BillingInformation

Top portion of template,
including upper table

Contact Info n/a—container for other controls

Bottom portion of template,
including lower table

Invoice Info n/a—container for other controls

Entire document Invoice n/a—container for other controls

798 24.5 Using Word to build an invoice report

Step 4: Select the document content from the top of the page down
through the table in the first section, leaving out the Comments control.
Click the Rich Text button (top, left of the Controls group) to put the
entire selection inside a new control. Select this control, click Properties,
and give this new control a Tag named “Contact Info.”

Select the document content from the bottom of the page, up through
the second table, again leaving out the Comments control. Click Rich Text
to create a new control containing the table, select the new control, click
Properties, and give this control a Tag named “Invoice Info.”

Now press Ctrl+A to select the entire document, and click Rich Text
again to insert another rich-text control around all the template content.
Set the Tag property to “Invoice” and check the boxes for “Content control
cannot be deleted” and “Contents cannot be edited.” By grouping the con-
tent controls, you can give the template behavior like that in a protected
form. The outermost (or parent) control can be locked to prevent the user
from changing the text, allowing input only in the content controls. A
“container control” can also be used to identify a range in a similar manner

Figure 24.10 Tags on content controls provide the information that code needs to access them pro-
grammatically.

24.5 Using Word to build an invoice report 799

as a bookmark, but can be protected against deletion. The code will use
both the locking and identification features of these controls.

Caution: Make sure that the rich-text controls that enclose the tables at the
top and the bottom of the document, plus the third control that encloses all
the content, have their anchors completely outside the tables. If an anchor
is in a table cell, the code will not be able to put a value into that cell.

Step 5: You’ve completed the template design and can now save and
close the template. Click the Office button, click the arrow next to Save As,
and then choose Word Template. To store it in your default templates
folder, give the file the path and name %appdata%\Microsoft\Templates\
Invoice.dotx. If you use a different path or file name, make a note of it, as
you’ll need it in the code.

24.5.2 Coding the invoice report

Now that you have prepared the template, it’s time to start looking at the
code to enter data into the content controls and fill in the invoice details
table. Listing 24.12 at the end of this section contains the entire code for
the invoice application. You may want to put all the code in a separate Out-
look VBA module to make it easier to manage. Don’t forget to add refer-
ences to the Microsoft Word 12.0 Library and Microsoft Scripting Runtime
libraries, if you have not done so already.

The invoice report code makes several assumptions:

The hourly billing rate for the contact item is stored in the Billing-
Information property. You can use the All Fields page of the contact
to enter this rate.

The Journal folder contains only items that have not yet been
invoiced.

Several procedures are available either as private procedures in the
same module or as public procedures in other Outlook VBA mod-
ules: GetCurrentItem() from Listing 15.5, and DateID() and
AddLeadingZeroUnderTen() from Listing 20.6. These are not
repeated in Listing 24.12, but the code will fail if they are not avail-
able in your VBA project.

Which procedure actually runs the invoice application? It’s the Gener-
ateWordInvoice routine, the only procedure not declared Private. The
GenerateWordInvoice routine calls four other routines in turn:

1. GetCurrentItem() from Listing 15.5 to get the currently
selected or open contact and assign it to the objItem variable.

800 24.5 Using Word to build an invoice report

2. GetNewDocument() to create a new document from the
Invoice.dotx template and assign it to the objDocument variable.
Note that this procedure will only be called if GetCurrent-
Item() returns a contact item type.

3. FillContactInfo() to fill the Word content controls in the
new document with corresponding data from the selected con-
tact.

4. FillInvoiceInfo() to filter the Journal folder for entries
matching the contact, post entries linked to the contact to the
Word table, calculate the charge for each entry, and keep a run-
ning total of the charges to post in the last row of the table.

If you store the invoice template using a file name other than
Invoice.dotx or in a location other than the user’s default Templates folder,
change the GetNewDocument statement in the GenerateWordInvoice
procedure to match your file name and path. For example, if you store the
template as MyInvoice.dotx in a folder named C:\Samples, use this state-
ment:

Set objDoc = GetNewDocument("C:\Samples\MyInvoice.dotx")

Figure 24.11 shows the finished product: an invoice produced entirely
from Outlook items, but laid out with a Word template. The Comments
content control is the only one where the user can type any text. The rest of
the document’s content is locked.

Let’s review the Word techniques involved and then examine the Out-
look techniques.

The challenge of writing code for Word content controls is that they
can’t be addressed by name like many other objects in Outlook and Word
collections can. For example, even though the template should have a con-
trol whose Tag property has the string value "Company", you can’t return
that control with an expression like this:

objDoc.ContentControls("Company")

Instead, to return a specific control, you need to know either a control’s
position in the document or the value of its ID property. Word assigns the
ID property value when the control is generated; a typical value is
72569880. Since obtaining and noting ID values then using them in your
code would involve a lot of work and is not intuitive, we’ll use a helper pro-
cedure named GetContentControls() to create our own index of the
controls, using the Tag property value for each one. This procedure loops
through the entire document and adds each content control to a global
Scripting.Dictionary variable (m_ContentControls) with the Tag
property value as the key (index) value. (Go back to Chapter 8 if you don’t
recall how the Dictionary object works.) Subsequent procedures use this

24.5 Using Word to build an invoice report 801

collection to access the content controls, looking up each with the value
assigned to the Tag property. The following code snippet, for example,
returns the content control that has a Tag property with the value
"Invoice Info", in other words, the control containing the table that will
hold the Journal folder information:

Set objInvoiceControl = objDoc.ContentControls(_
 m_ContentControls("Invoice Info"))

To add text to a plain text content control, which is the type this report
uses most, assign a string value to its Range.Text property, as in this exam-
ple from the FillContentControl procedure:

objContentControl.Range.Text = strContent

That technique works for the date picker content control as well, assum-
ing that strContent is a string representing a date.

Content controls can be locked so that the user cannot edit the content.
A locked control also blocks programmatic data entry. So that the code can
enter data programmatically, each content control is locked not at design

Figure 24.11 This invoice demonstrates how well Word works as a reporting tool that can combine
data from items in different Outlook folders.

802 24.5 Using Word to build an invoice report

time, but at run time, only after its value has been filled in. To lock a con-
tent control, set its LockContents property to True:

objContentControl.LockContents = True

The steps of obtaining a content control object from the m_Content-
Controls collection, assigning the contact information to each control,
then locking the content control, are consolidated in the procedure Fill-
ContentControl. This procedure is used by the FillContactInfo proce-
dure, which fills in all the content in the top half of the report, calling
FillContentControl once for each control that needs to be filled.

Word tables do not support any property that allows them to be
assigned a name with which to easily identify them. The only way to pick
up a Word table is by its index number within a specified range of text. The
range can be the entire document, or you can narrow it down by various
means, such as assigning a bookmark to the table. Since content controls
can be nested, and a content control has a Range property, we used a con-
tent control (“Invoice Info”) to act as a container for the table that will hold
the journal entry data. Since it is the only table inside that control, we can
access it like this:

Set objInvoiceControl = objDoc.ContentControls(_
 m_ContentControls("Invoice Info"))
Set objTable = objInvoiceControl.Range.Tables(1)

The cells in a Word table can be addressed in a similar manner as cells
in Excel by their row and column positions using the syntax
objTable.Cell(row, col), or by using objRow.Cells(index) within a
specified range. Since the data for the invoice is filled row by row, this sam-
ple code works through each row’s cells in turn, inserting the text at the end
of the cell’s current content. For example, to insert the Activity information
for the second column of the first data row, the row you left blank at design
time:

Set objRow = objTable.Rows.Last
objRow.Cells(2).Range.InsertAfter expr

where expr is an expression returning the text to insert. As you’ll see below,
the code generates that expression from an Outlook Table object.

Appending a new row to an existing Word table is quite straightforward:

Set objRow = objTable.Rows.Add

To apply formatting to text in a Word document, first identify the
range, and then specify the format. In this sample, the current table row is
formatted as bold:

objRow.Range.Font.Bold = True

The most interesting Outlook technique used in the invoice report is a
filtered Table object. The filter matches the FullName of the contact that

24.5 Using Word to build an invoice report 803

we’re invoicing against the names in the Contacts box on the journal entry
form (which, as you should recall from Chapter 20, exposes the contents of
the Links collection).

Note: In taking this approach—searching for a name rather than confirming
a Link—we’re making a significant assumption: that the name of the contact
has not changed since the journal entries were created. If the contact name
has changed, then the search won’t return all the linked items, because the
field we’re searching will still have the old names. The performance tradeoff,
though, is considerable. By searching just on the name, we can get back a fil-
tered, read-only Table very quickly. If the code had to depend on confirming
an actual Link in the Links collection, it would be necessary to examine the
Links collection of each item in the Journal folder.

These code statements in the FillInvoiceInfo procedure filter the
Journal folder to return a Table with journal entries related to the contact
being invoiced:

SEARCH_LINKS = "http://schemas.microsoft.com/" & _
 "mapi/id/{00062008-0000-0000-C000-000000000046}/" & _
 "853A101E"
Set objOL = objContact.Application
Set objNS = objOL.Session
Set objJournal = objNS.GetDefaultFolder(olFolderJournal)
strFind = Quote(SEARCH_LINKS) & " = '" & _
 objContact.FullName & "'"
Set objOLTable = objJournal.GetTable("@SQL=" & strFind)

Since the default Columns collection for a journal folder does not con-
tain all the properties that the invoice needs, the code adds a few properties
and sorts the Table:

With objOLTable
 intItemsCount = objOLTable.GetRowCount
 .Columns.Add "Start"
 .Columns.Add "Duration"
 .Columns.Add "Type"
 .Sort "Start"

To complete the With objOLTable section, a Do loop processes each
row in the Outlook.Table object, adding a new Word.Table row on each
pass:

 Do Until .EndOfTable
 Set objOLRow = .GetNextRow
 ' code to fill in the Word table
 If objRow.Index <= intItemsCount Then
 Set objRow = objTable.Rows.Add
 End If
 Loop
End With

804 24.5 Using Word to build an invoice report

Inside the Do loop, the code to fill in the Word table combines the
Cells(index).Range.InsertAfter method discussed above with the
very simple objOLRow("property") syntax to return a property value
from an Outlook table Row object. For example, this statement combines
the Type and Subject property values from the journal entry and inserts
them into the second column of the current row in the Word table:

objRow.Cells(2).Range.InsertAfter _
 objOLRow("Type") & " - " & objOLRow("Subject")

24.5.3 Possible enhancements for the invoice report

Even though Listing 24.12 contains a lot of code, converting it to VBScript
so that it could be incorporated into an Outlook custom form is not as hard
as it looks. You’d need to make these five changes:

Remove or comment all As clauses from Dim statements and proce-
dure declarations.

Remove the GetCurrentItem() function.

Replace this statement in the GenerateWordInvoice procedure
Set objItem = GetCurrentItem()

with this statement:

Set objItem = Item

In the declarations section, after the Option Explicit statement,
add this Outlook constant declaration:
Const olFolderJournal = 11

Add a command button to the contact form and a Click event han-
dler to run the GenerateWordInvoice procedure when the user
clicks the button:
Sub CommandButton1_Click()
 Call GenerateWordInvoice
End Sub

Porting the invoice report code to VBScript behind an Outlook form is
certainly one way to extend its usefulness. What other ways to enhance the
report can you think of? Here are a couple of ideas:

The filter in the FillInvoiceInfo procedure assumes that the Journal
folder contains only uninvoiced entries. If you want to keep all entries, even
after they’re invoiced, you’ll need some way to tell them apart. The Billing-
Information property is a good candidate to hold this information. You
could update each journal entry with the date of the invoice or the invoice
number and save it. You’d also need to modify the filter string so that it looks
for items with an empty or null BillingInformation property.

Another possible enhancement would be to save the invoice and create
a new link to it in the journal folder. Surely you can think of other ways

24.5 Using Word to build an invoice report 805

Listing 24.12 Collate data from two folders into one Word document

Option Explicit

' requires reference to Microsoft Scripting Runtime
Private m_objContentControls As Scripting.Dictionary

Sub GenerateWordInvoice()
 ' requires reference to Microsoft Word 12.0 library
 Dim objDoc As Word.Document
 Dim objContentControl As Word.ContentControl
 Dim objItem As Object
 On Error Resume Next
 ' GetCurrentItem() from Listing 15.5
 Set objItem = GetCurrentItem()
 If objItem.Class = olContact Then
 Set objDoc = GetNewDocument("Invoice.dotx")
 Call FillContactInfo(objDoc, objItem)
 Call FillInvoiceInfo(objDoc, objItem)
 objDoc.Application.Visible = True
 objDoc.Activate
 Set objContentControl = _
 objDoc.ContentControls(_
 m_objContentControls.Item("Comments"))
 objContentControl.SetPlaceholderText , , _
 "Type comments on this invoice here."
 objContentControl.Range.Select
 objDoc.ActiveWindow.View.TableGridlines = False
 End If
 Set objDoc = Nothing
 Set objContentControl = Nothing
 Set objItem = Nothing
 Set m_objContentControls = Nothing
End Sub

Private Function GetNewDocument(strTemplate As String) _
 As Word.Document
 ' requires reference to Microsoft Word 12.0 library
 Dim objWord As Word.Application
 Dim objDoc As Word.Document
 On Error Resume Next
 Set objWord = GetObject(, "Word.Application")
 If objWord Is Nothing Then
 Set objWord = CreateObject("Word.Application")
 End If
 Set objDoc = objWord.Documents.Add(strTemplate)
 Call GetContentControls(objDoc)
 Set GetNewDocument = objDoc
 Set objWord = Nothing
 Set objDoc = Nothing
End Function

Private Sub GetContentControls(objDoc As Word.Document)
 Dim objContentControl As Word.ContentControl

806 24.5 Using Word to build an invoice report

 ' requires reference to Microsoft Scripting Runtime
 Set m_objContentControls = _
 CreateObject("Scripting.Dictionary")
 For Each objContentControl In objDoc.ContentControls
 m_objContentControls.Add objContentControl.Tag, _
 objContentControl.ID
 Next
 Set objContentControl = Nothing
End Sub

Private Sub FillContactInfo(objDoc As Word.Document, _
 objItem As Object)
 Dim objContentControl As Word.ContentControl
 Call FillContentControl("Name", objItem.FullName, objDoc)
 Call FillContentControl(_
 "Company", objItem.CompanyName, objDoc)
 Call FillContentControl(_
 "Address", objItem.BusinessAddressStreet, objDoc)
 Call FillContentControl(_
 "City", objItem.BusinessAddressCity, objDoc)
 Call FillContentControl(_
 "State", objItem.BusinessAddressState, objDoc)
 Call FillContentControl("Postal Code", _
 objItem.BusinessAddressPostalCode, objDoc)
 ' DateID() from Listing 20.6
 Call FillContentControl(_
 "Invoice Number", DateID(), objDoc)
 Call FillContentControl("Hourly Rate", _
 FormatCurrency(objItem.BillingInformation), objDoc)
 Call FillContentControl("Invoice Date", _
 FormatDateTime(Date, vbLongDate), objDoc)
 Set objContentControl = _
 objDoc.ContentControls(_
 m_objContentControls.Item("Contact Info"))
 objContentControl.LockContents = True
 Set objContentControl = Nothing
End Sub

Private Sub FillContentControl(strControl As String, _
 strContent As String, objDoc As Word.Document)
 Dim objContentControl As Word.ContentControl
 Dim strControlID As String
 strControlID = m_objContentControls.Item(strControl)
 Set objContentControl = _
 objDoc.ContentControls(strControlID)
 If Len(strContent) > 0 Then
 objContentControl.Range.Text = strContent
 objContentControl.LockContents = True
 Else
 objContentControl.Delete
 End If
 Set objContentControl = Nothing
End Sub

Listing 24.12 Collate data from two folders into one Word document (continued)

24.5 Using Word to build an invoice report 807

Private Sub FillInvoiceInfo(objDoc As Word.Document, _
 objContact As Object)
 Dim objOL As Outlook.Application
 Dim objNS As Outlook.NameSpace
 Dim objJournal As Outlook.Folder
 Dim objOLTable As Outlook.Table
 Dim objOLRow As Outlook.Row
 Dim objTable As Word.Table
 Dim objRow As Word.Row
 Dim objInvoiceControl As Word.ContentControl
 Dim curHourly As Currency
 Dim curItem As Currency
 Dim curTotal As Currency
 Dim intItemsCount As Integer
 Dim strFind As String
 Dim SEARCH_LINKS As String
 On Error Resume Next
 Set objInvoiceControl = objDoc.ContentControls(_
 m_objContentControls("Invoice Info"))
 Set objTable = objInvoiceControl.Range.Tables(1)
 Set objRow = objTable.Rows.Last
 curHourly = CCur(objContact.BillingInformation)
 Set objOL = objContact.Application
 Set objNS = objOL.Session
 Set objJournal = objNS.GetDefaultFolder(olFolderJournal)
 SEARCH_LINKS = "http://schemas.microsoft.com/" & _
 "mapi/id/{00062008-0000-0000-C000-000000000046}/" & _
 "853A101E"
 strFind = Quote(SEARCH_LINKS) & _
 " = '" & objContact.FullName & "'"
 Set objOLTable = objJournal.GetTable("@SQL=" & strFind)
 With objOLTable
 intItemsCount = objOLTable.GetRowCount
 .Columns.Add "Start"
 .Columns.Add "Duration"
 .Columns.Add "Type"
 .Sort "Start"
 Do Until .EndOfTable
 Set objOLRow = .GetNextRow
 objRow.Cells(1).Range.InsertAfter _
 FormatDateTime(objOLRow("Start"), vbShortDate)
 objRow.Cells(2).Range.InsertAfter _
 objOLRow("Type") & " - " & objOLRow("Subject")
 objRow.Cells(3).Range.InsertAfter _
 FormatNumber(objOLRow("Duration") / 60, 2)
 curItem = objOLRow("Duration") / 60 * curHourly
 objRow.Cells(4).Range.InsertAfter _
 FormatCurrency(curItem)
 curTotal = curTotal + curItem
 If objRow.Index <= intItemsCount Then
 Set objRow = objTable.Rows.Add
 End If

Listing 24.12 Collate data from two folders into one Word document (continued)

808 24.6 Summary

to apply the Word and Outlook techniques in this chapter, which com-
prise a fitting end to your initial excursion into the world of Outlook
2007 programming.

24.6 Summary
Making Outlook data available through reports is an important program-
ming technique, because not everyone who needs to see your data will have
Outlook. Outlook supports several techniques for generating reports—
printing from customized folder views, mail merge to Word, even copy and
paste to Excel. However, no single built-in technique has the flexibility to
handle all Outlook data, including custom fields and “large” properties like
item bodies.

By writing code to automate Outlook, Excel, and Word, developers can
produce custom reports with every imaginable feature. Reports can be gen-
erated as email messages, printed output, or files where the user can fill in
additional information, such as comments on an invoice. Word is a particu-
larly fine reporting tool, especially if you need to print from a custom form
or combine information from two types of folders. The search techniques
covered in Chapter 16 can help you speed up report generation, particularly
if you use the read-only Table object that is new to Outlook 2007.

 Loop
 End With
 Set objRow = objTable.Rows.Add
 objRow.Range.Font.Bold = True
 objRow.Cells(3).Range.InsertAfter "TOTAL"
 objRow.Cells(4).Range.InsertAfter _
 FormatCurrency(curTotal)
 objInvoiceControl.LockContents = True
 Set objInvoiceControl = Nothing
 Set objTable = Nothing
 Set objRow = Nothing
 Set objOL = Nothing
 Set objNS = Nothing
 Set objJournal = Nothing
 Set objOLTable = Nothing
 Set objOLRow = Nothing
End Sub

Private Function Quote(val)
 Quote = Chr(34) & CStr(val) & Chr(34)
End Function

Listing 24.12 Collate data from two folders into one Word document (continued)

809

Index

& (ampersand) character, 104, 156
= (equal sign), 262
/ (slash), 207

Access, Microsoft, 679
Actions

Approve, 633
Disapprove, 633
Forward, 624
Reply, 624
Response, 628
rule, 712
See also Custom actions

(Actions) page, 74, 624
Actions collection, 300, 626, 707
Activities page, 644–45
AddDemoButton procedure, 755
Add method, 298–99
AddRecipientToContacts procedure,

587
AddressEntry object, 321, 570, 584

methods, 586
properties, 585
returning, 584

AddressList object, 570, 571–72
methods, 572
properties, 571–72

Address lists
enumerating, 573–74
understanding, 571–77

Address resolution, 581–84
defined, 581
Internet, 583
scenarios, 584
situations, 581–82
See also Recipients

Add Watch dialog box, 270

Adjoining form regions
defined, 95
displaying, 104
XML manifest, 104
See also Form regions

ADO, 679
Advanced Query Syntax (AQS), 504
AdvancedSearch method, 503, 504

events, 535
events, framework, 532
features, 530
with no filter, 531
in search folder creation, 538
Search object return, 530–31
syntax, 530
using, 530–41

All Fields page, 72–73
Annual events, creating from date fields,

649–58
Anti-virus software, 304
Application-level events, 147–48
Application object, 153, 215, 303,

305
events, 314–29
Reminder event, 356
search events, 532

Application_Startup procedure,
649

Appointment form, 66–67
defined, 66
illustrated, 66
Scheduling page, 67
See also Custom forms

AppointmentItem object, 497
Appointments

converting meetings to, 641
custom date property, creating

(VBA), 655–57

custom date property, creating
(VBScript), 651–53

recurring, creating, 657
Arguments

defined, 146
passing, 192–94

Arrays
declaring, 217
lower bound, 216
multidimensional, 218–19
super, 219
upper bound, 216, 217

AttachmentContextMenuDisplay
event handler, 755

AttachmentMenuDemo macro, 757
Attachment object, 612
Attachments, 603–18

adding to Outlook items, 606–8
blocking, 303
content, access to, 604
copying between items, 613
deleting, 274
file shortcut, 604
hidden, 604, 616–18
iCalendar, 636
methods, 605
opening, 614–16
Outlook item shortcut, 604
properties, 605
removing, 299
reply with, 612–14
saving, 609
saving HTML-format message with,

617
security, 310–11
types of, 604
understanding, 603–8
vCalendar, 636

810 Index

Attachments (cont’d.)
viewing, 606–7
viewing, in user interface, 606–7
working with, 608–18

Attachments collection, 603, 609
Automatic column sizing, 775
Automation

code, 171–75
external, 304
security, 303–8

Auto Quick Info feature, 190

Bcc recipients, 581
determination, 581
for outgoing messages, 581, 583
user confirmation, 582
See also Recipients

Binding controls, 101
to fields, 123–24
option buttons, 131
See also Controls

Birthday/anniversary reminder
filter string, 536
tool, 32
updating, 533–38
user form, 534

Bound controls, 77
defined, 98
using, 102
See also Controls

Break mode, 265, 266
techniques, 271
variable values, changing, 274
working in, 271–72

Breakpoints
defined, 270
in script debugger, 281
setting, 270
using, 270–71

ByRef keyword, 192–93
ByVal keyword, 193

Calendar folder, 31, 636
recurring events, 31
sending to another user, 441

Cc recipients, 581
determination, 581
user confirmation, 582–83
See also Recipients

CelebrationList procedure, 522–24
Check box controls, 45–47

adding, 45–46
defined, 82
integrating, 47
properties, 46
unbounded, 129

using, 129
See also Controls

CheckBox tool, 45
Classes

icons, 292
initialization code, 363
instances, 290
members, 189, 290
message default, 451–52, 453–54
view, 715

Class modules
defined, 314
event handling in, 331–33
Last Seven Days view display, 337
Reminders events, 358
WithEvents declarations in, 330

CleanView procedure, 460–61, 462
Click event, 142, 378

AddHandler method and, 752
common application, 384
firing, 383
handling, 383–84

Close event, 163, 334, 339, 373
CmdUpdate_Click procedure, 43–44
Code

.NET, 12
automation, 171–75
automation security and, 305
document attachment, 173
error response, testing, 277
grammar, 177–259
indenting, 197
reusable, making, 194–96
running on a schedule, 359–69
style tips, 197–98
VBA, 26–27, 28–29, 41–42, 152–58
VBScript, 159–68

Collaboration Data Objects (CDO), 8
Collections

Actions, 300, 626, 707
Attachments, 603, 609
code techniques, 295–302
CommandBarControls, 742
CommandBars, 738
Conditions, 707, 713
Exceptions, 707, 713
Explorers, 333, 410–12
fixed, 707
Folders, 412, 437
For Each ... Next loops for,

231–33
Inspectors, 338, 464
Items, 347
Links, 527, 601, 645–49, 792
NavigationFolders, 766
NavigationGroups, 766

Navigation Modules, 765
properties, 296
Recipients, 625
ReplyRecipients, 588, 625
Rules, 706
SortFields, 723
UserDefinedFields, 721
UserProperties, 681
ViewFields, 720

Combination fields, 116
creating, 117–18
defined, 117
working with, 120–21
See also Fields

Combo boxes, 51–54
defined, 51
properties, 52–53
unbounded, 132
using, 132
See also Controls

CommandBarControls collection, 742
CommandBar object, 738, 741–42

methods, 742
properties, 741–42
returning, 749

CommandBars collection, 738
Command buttons, 38–44, 129

adding, 38–44
cmdUpdate_Click procedure,

43–44
code, 41–42
with custom actions, 637
properties, 40
running code from, 699

Command Button tool, 38
Comments

commands, 196
defined, 196
examples, 196–97

Compile errors
defined, 263
detection, 263–64
VBA code, 263
VBScript code, 264
See also Errors

Compose pages, 137–39
Constants

data, 186
declarations, 160–61, 185–88
declarations, looking up, 187
enumeration, 296
key intrinsic, 187–88
MsgBox, 235
names, 186
procedure-level, 186

Index 811

Contact form, 61–66
Add Contact Picture control, 65
Certificates page, 65
creating, 81–94
Details page, 62, 63
fields, adding, 81–82
General page, 62
limitations, 65
See also Custom forms

ContactItem object, 24
methods, 497–98
properties with hyperlink capability,

386
Contacts

creating, 587
links, adding, 646
no matching, 649
phone number, adding to task, 649
selecting, 646

Contacts folder
custom form default, 657
displaying as address book, 572–75
getting, 420
showing first, 768–70
single item selection from, 597–98

Content controls, 793
date picker, 794
defined, 793
inserting, 794
locking, 801
objects, obtaining, 802
as placeholders, 796
Tag property, 796, 797
tags, 798
text, 801
Title property, 796

Content indexer syntax, 503
Context menus

application-level events, 753
controls, 753
controls, global variables, 756
controls, macros, 756
as dynamic, 750–63
event handling, 753, 754–55
See also Menus

Control events, 144, 145–46
Controls, 45–55

adjacent, selecting, 83
binding, 101
binding to fields, 123–24
bound, 77, 98, 102
check box, 45–47, 82, 129
combo box, 51–54, 132
command buttons, 129
content, 793
context menus, 753, 754–55

copying, 138
default, 46
defined, 76
display properties, 88, 89
drag handles, 83
fields versus, 113–14
folder-based workflow management,

396, 397
form, 131–32
form regions, 97–100
frame, 131–32
image, 133
input, 36–38
label, 82
limitations, 135–37
lining up, 83
linked, 77
list box, 51–54, 132
menu, 742–46
multi-page, 133
name prefix recommendations, 87
naming, 85–86
option buttons, 47–51, 129–31
Outlook View (OVC), 134–35
properties, setting, 85–89
rearranging, 82–85
referring to, 157–58
rich-text, 799
spin buttons, 132–33
state, storing, 392–95
tab order, 54–55, 85
text box, 81
toolbar, 742–46
types, viewing, 77
unbounded, 114
using, 128–37
VBScript reference, 166–68

Control Toolbox, 97, 98, 123
Coordinated Universal Time (UTC),

456, 516
CopyAtts procedure, 612, 614
CreateCategoryViews procedure,

723–25
CreateHTMLMsg() procedure, 551–53
Currency fields, 116
Current folder, 416
Current messages, 528–29
CustomAction event, 163

event handler, 635
firing, 631
NewItem parameter, 633

Custom actions
command buttons, 628, 637
context menu commands, 632
enhancing, 636–37
finding, 628

key functions, 630
properties, 627–30
writing code for, 630–33
See also Custom actions

Custom fields
best practices, 682–83
deploying, 681–82
managing, 679–83

Custom forms, 4–6, 57–94
(Actions) page, 74, 624
adding VBScript code to, 164–66
All Fields page, 72–73
appointment, 66–67
architecture, 660–68
based on existing forms, 60
blank pages, 63
built-in, 5
built-in functionality, 60
built-in pages, hiding, 65
command buttons, 38–44
contact, 61–66
control properties, 85–89
converting existing items to use,

673–74
copying, 669
creation steps, 81
default, 670, 672
deleting, 669
deploying, 683–90
deploying settings with, 697–99
design for folder, 115
distribution to remote users, 684–85
events, 161–64
example, 5–6
fields, 74–75
fields, adding, 81–82
icons, 108, 109
importing from, 674–79
individual, managing, 668
installing, 669
to install others, 698–99
journal entry, 67
layout, determining, 393
legacy, 59, 62, 690
libraries, 79
listing, 662–64
managing, 668–79
Meeting Request, 70, 71
message, 67–70
moving, 669
as new global default, 670–73
new item creation from, 469
in non-default folder, 682
old, removing, 80
post, 70
properties, setting, 90–93

812 Index

Custom forms (cont’d.)
(Properties) page, 73
publishing, 78–80, 93
publishing, programmatically,

686–90
publishing, to Personal Forms library,

686
recovering from forms cache, 693
with required categories, 388–91
saving, 80–81, 93
saving, as Office template, 660
scenarios, coding, 371–400
security, 308–10
selecting, 74–76
showing, hiding, renaming pages, 85
starting, 59–60
storage, 661
storage list, 661
substituting, for default forms, 673
substituting, for standard form, 670
synchronizing, 666
task, 67
Task Request, 70, 71
testing, 89–90, 651
troubleshooting, 690–93
user input controls, 36–38
user input response, 377–91
using, 93–94
VBA forms versus, 60
See also Form pages

Customize View dialog, 774
Custom message forms, 620–26

designing, 623
internal scripting with, 697–706
report generation, 700–706
standard message creation from,

622–23
types, 620–21
vacation approval example, 633–37

Custom properties
null values, 521
searching with, 520–21
unpublished forms, 309

CustomPropertyChange event, 163
code, 381
event handler, 382, 387
firing, 380
ignoring, 382
parameter, 379
using, 379–83

Custom View dialog box, 718

DASL (Distributed Authoring Search
and Location), 503

date ranges, 517
LIKE operator support, 510

macros for date searches, 517
queries, 516, 520
search string, 507
search syntax, 507–9

Data types
adding to parameters/functions, 194
object, 183
variable, 181–83
variant, 181
VBA, 182

Date picker, 102
Dates

converting to null, 784
extraction functions, 208–11
functions, 207–8
international, 214–15
working with, 206–14

Date/time fields, 116, 488
annual event creation from, 649–58
searching on, 515–20
See also Fields

Debugging
with break mode, 271–72
breakpoints, 270–71
defined, 269
with Immediate window, 272–74
program execution continuation and,

274–75
VBA code, 269–77
VBScript code, 277–87

Debug.Print statement, 192, 273, 274
Declaration sections, 178
Default folders, 414

getting, 414–16
getting from another Exchange

mailbox, 419–21
returning, 415, 421
sharing, 439
See also Folders

Default forms
custom form as, 672
replacing, 672
substituting custom form for, 673

Default message class, 451–52, 453–54
DeleteSelectedItem procedure, 494,

495
DeleteSig procedure, 567
Design Form dialog box, 59, 75
Design mode, 39, 61
Dialog boxes, 21
Dictionaries

building, 219–20
using, 219–20

Dim statement, 179–80, 194, 337
DistListItem object, 498

Distribution lists
extracting members of, 782–83
importing from text file, 257
report, building, 781–84

DLToExcel procedure, 781
DoEvents statement, 367
Do loops, 227–29, 465

logic, 228
principle, 227
Until keyword, 228
using, 228
variations, 227
While keyword, 228

Drag handles, 38, 83
Duration fields, 116

Editor Options dialog box, 11, 13, 60
Embedded items, 604
End If statement, 223
EnumCommandBars procedure, 765
EnumCustomForms procedure, 661
Enumeration, 296
EnumOneBar procedure, 738, 742
Err object, 277
Error checking, 262
Error handlers

with script debugger, 279–81
VBA, 275–77
VBScript, 277–78

Errors
code response, testing, 277
compile, 263–64
logic, 268–69
PropertyAccessor, 455–58
runtime, 264–68
simple syntax, 262–63
types of, 261–62
understanding, 261–69

Event handlers
Activate, 341
Application, 314, 331
AttachmentContextMenu-

Display, 755
Click, 486
Close, 386
ContextMenuClose, 757
CustomPropertyChange, 382,

387
item context menu, 761
ItemContextMenuDisplay, 761
Item_Open, 395
ItemSend, 581
MAPILogonComplete, 316, 333,

639
ModuleSwitch, 769
NewMailEx, 365

Index 813

Open, 386
PropertyChange, 387
to test item-level events, 286
writing, for other object events,

329–33
Event handling

in class modules, 331–33
context menu, 753
in ThisOutlookSession, 330–31

Events, 142–46
Activate, 334, 339
AdvancedSearchComplete, 314,

532
AdvancedSearchStopped, 314,

532
application-level, 147–48
Application object, 314–29
AttachmentAdd, 162, 699
AttachmentRead, 162
AttachmentRemove, 162
BeforeAttachmentAdd, 162
BeforeAttachmentPreview, 162
BeforeAttachmentRead, 162
BeforeAttachmentSave, 162
BeforeAttachmentWrite, 163
BeforeCheckNames, 163
BeforeDelete, 163, 651
BeforeFolderMove, 343
BeforeFolderSwitch, 334, 335
BeforeItemCopy, 334
BeforeItemCut, 334
BeforeItemMove, 343, 654
BeforeItemPaste, 334
BeforeMaximize, 334, 339
BeforeMinimize, 334, 339
BeforeMove, 334, 339
BeforeReminderShow, 357
BeforeSize, 334, 339
BeforeUpdate, 147
BeforeViewSwitch, 334, 335, 718
canceling, 166
Click, 142, 378, 383–84, 752
Close, 163, 334, 339, 373, 384
for context menus, 753
control, 144, 145–46
CustomAction, 163, 631
custom form, 161–64
CustomPropertyChange, 163,

379–83
Deactivate, 334, 339
Exit, 144, 147
firing order, 373
FolderAdd, 343, 344
FolderChange, 343, 344
Folder object, 343
FolderRemove, 343, 344

FolderSwitch, 334, 335
form, 143, 145–46
Forward, 163, 624
handling, in class modules, 331–33
Inspector object, 339
item, 162–63, 371–74
ItemAdd, 147, 343, 345, 355–56
ItemChange, 343, 345
item-level, 286
ItemLoad, 327–29
Item object, 343–46
ItemRemove, 343, 345
ItemSend, 319–27
MAPILogonComplete, 336
ModuleSwitch, 768, 769, 770
NewExplorer, 331, 334
NewInspector, 327, 338, 339, 340
NewMail, 317–18
NewMailEx, 318–19, 352–55
Open, 163, 327, 391–92
PageChange, 339, 378
PropertyChange, 163, 219,

379–83
Quit, 317
Read, 163, 327
Reminder, 357
ReminderAdd, 357
ReminderChange, 357
ReminderFire, 357
ReminderRemove, 357
Reminders, 356–59
Reply, 163, 624
ReplyAll, 163, 624
responding to, 313–69
SelectionChange, 334, 338
Send, 163, 384
Snooze, 357
Startup, 316
Unload, 163
validation and, 147
ViewSwitch, 334, 335
Write, 163, 373, 384
for writing code, 313

Excel
cells, text cleanup for, 785
code, copying, 780
copying data to, 775–76
distribution list report, 781–84
exporting message properties to,

786–87
formatting Outlook data for, 784–88
macro recorder, 780
reports, 778–81
sending output to, 778–88
status, tracking, 780

Excel workbooks
creating, 780
opening, 615–16

Excel worksheets
formatting, applying with, 781
importing from, 677–78
inputting data into, 491
sending as email message (VBA),

473–74
Exit For statement, 230
Explorer events, 334–35

list of, 334
practical applications, 335
See also Events

Explorer object, 333
methods, 410–11
properties, 410–11
size and position properties, 336
windows, view techniques, 411–12

Explorers collection, 333, 410–12
Explorer window, 737–38
Expressions

defined, 198
elements of, 198–99
evaluation, 223
mathematical, using, 200
value, checking, 273
watch, 270
working with, 198–200

Extensible Markup Language. See XML

.fdm files, 685
Feedback, 234–40

example, 237–40
with message boxes, 234–36
with VBA forms, 236–37

Field Chooser, 77–78
dragging fields from, 77–78, 82
turning off, 77

Fields, 74–75
adding, 81–82, 122–28
binding controls to, 123–24
built-in, 114
combination, 116, 117–18, 120–21
controls versus, 113–14
creating, 114–22
currency, 116
custom, managing, 679–83
data type, 117
date/time, 116, 488
definition, removing, 683
dragging from Field Chooser, 77–78,

82
duration, 116
formula, 116, 118–21
integer, 116

814 Index

Fields (cont’d.)
keywords, 116
limitations, 135–37
number, 116
percent, 116
removing, 123
return largest number value for, 483
text, 116, 683
types, 115
user-defined, 114–22
validation, 125–26
yes/no, 116, 683

Files
.htm, 563
.oft, 80–81, 469–70, 684
.rtf, 563
.txt, 563
working with, 249–58

FileSystemObject, 251–52
methods, 252–53
using, 251

FillInvoiceInfo procedure, 803,
804

Fixed collections, 707
Folder-based workflow manager,

399–400
Folder home pages, 7–8

defined, 7, 311
illustrated, 8
internal scripting with, 728–35
in rule creation, 732–34
running VBScript code, 7
security, 311–12
solutions, 730, 731

Folder object, 412
events, 343
methods, 413, 434–35

Folders
accessing, 412–33
all items, working with, 480–82
all messages, responding to, 588,

589–90
copying, 438
creating, 437–38
current, getting, 416
currently displayed, setting, 412
default, 414, 419–21
default view, setting, 336–38
deleting, 437–38
“freedoc,” creating, 606–8
hierarchy, 425, 426
listing forms in, 662–64
message view, removing cached

copies, 461
moving, 438
multiple, search, 530

processing selected items in, 475
properties, 435–37
public, 402, 426–30
publishing forms to, 79
recursing, 431–33
returning from Public Folders

hierarchy, 427–29
root, 412
save, 417–19
search, 415, 421–22, 503
setting default message class on,

451–53
settings, 435
shared, 430–31
sharing, 438–42
user deletion, preventing, 344
user selection, 416–17
working with, 434–42

Folders collection, 412, 437
Folder views

category-filtered, 723–27
changing, 411–12
classes, 715
creating, 715–16
locking down, 729
managing, 714–28
methods, 717–18
name, 715–16
one-off, clean up, 460–62
printing from, 772–75
properties, 717
properties, setting, 718–23
public folder, managing, 728

For Each ... Next loops, 44, 369
for collections, 231–33
end of, 233

Form Action Properties dialog, 628
Formatted messages

creating, 551–54
creating from boilerplate template,

553–54
creating from file, 551–53
rendering, in browser, 552

Form events, 143, 145–46
Form pages

(Actions), 74, 624
Activities, 644–45
All Fields, 71–73
common, 71–74
compose, 137–39
converting, 138–39
hiding, 85
(Properties), 73
read, 137–39
renaming, 85
showing, 85

switching between, 61
See also Custom forms; specific forms

Form regions, 6, 95–111
adjoining, 95, 107
contact information, 108
controls for, 97–100
creating, 100–103
defined, 58, 95
deploying, 106–7
elements, 104–6, 108–9
enhancements, 110–11
files, organizing, 103
form version, 106
icons, 108
implementing, 97
limitations, 110
manifests, 104, 108
name, 104
.ofs file, 105
Properties dialogs, 102
registering, 103–10, 110
separate, 95, 108
title, 104
type, 105
understanding, 95–97
visibility, 105

Forms. See Custom forms; VBA forms
Forms Administrator tool, 671

for Outlook 2007, 672
using, 671–72

Forms cache, 664–65
copy, refreshing, 667
defined, 664
folders, 664–65
form loading from, 667
problems, dealing with, 692–93
recovering forms from, 693
size, 665

Forms designer
help, 78
starting, 59–60
working in, 76–78

Forms Manager, 668–69
Clear Cache button, 692
folder selection, 668
functions in, 669

Formula Field dialog, 118–19
Formula fields, 116

advantage, 121
creating, 119
defined, 118
IIF() function for, 119
as read-only, 121
working with, 120–21
See also Fields

Index 815

Formulas
initial value, 124–25
validation, 125, 126–28
validation, messages, 128

For ... Next loops, 229–30
defined, 229
example use, 230
syntax, 229

Forward
action, 624
discarding replies and sending, 626
settings, controlling, 624

Forward event, 624
Frame controls, 131–32

tab order, 132
uses, 131

Free/busy information, reading, 588–94
FreeBusy method, 577
Freedoc

creating in Outlook folder, 607–8
defined, 607

Functions
adding data types to, 194
AddNewPST(), 408
AdjustTimeTo15(), 593
Array(), 218
BuildCalScope(), 534
BuildFilter(), 535
BuildSenderSearch(), 540
calling, 191
CDate(), 208
CheckSendAccount(), 324, 327
CleanFileName(), 612
CStr(), 209
Date, 209
DateAdd(), 211, 212
DateDiff(), 121, 211, 212
date extraction, 208–11
DateID(), 643, 644
DatePart(), 209
date-related, 207–8
DateToExcel(), 784
DateToString(), 792
DateValue(), 209
Day(), 121, 209
DoSearch(), 529, 530, 760, 762
FillContactInfo(), 800
FillInvoiceInfo(), 800
Format(), 208, 282, 516
FormatDateTime(), 208, 209
FormToPersonal(), 699
GetActions(), 707
GetApptDateSpan(), 519, 524,

541
GetCommonViews(), 664
GetConditions(), 707

GetCurrentItem(), 478, 616, 799
GetCurrentTime(), 527, 553
GetDefaultFolderModule(),

760
GetExcelWS(), 779
GetExchangeAccount(), 325

GetFirstNonExchangeAc

count(), 325
GetFolder(), 424, 425
GetFolderCatArray(), 220, 725,

726
GetItemNoStoreID(), 354
GetLastNumber(), 483, 644
GetMessageState(), 392
GetMonthStart(), 518, 524
GetNewDocument(), 800
GetOrgForms(), 664
GetPFFavs(), 430
GetPublicFolder(), 430
GetStorePath(), 758
HasRequiredCategory(), 388
HasWriteAccess(), 448
Hex2ToString(), 403, 758
Hex4ToString(), 403, 758
Hour(), 209
II(), 119, 121
InputBox, 244–46
Instr(), 201, 202
InStrRev(), 202
IsBusy(), 592–93
IsDate(), 207
IsInCategories(), 324–25
IsInContacts(), 526
IsNumeric(), 147, 200
IsWeekend(), 210
ItemNoStoreID(), 354
Join(), 216, 217
LCase(), 205
Len(), 205
LTrim(), 205
MailAddr(), 194
Mid(), 201
Minute(), 210
Month(), 121, 210
MonthName(), 524
MsgBox, 21, 24, 240
NextBusinessDay(), 211–12
Now(), 210
ParseTextLinePair(), 206, 221,

545, 550
PublishForm(), 685, 686, 687
Quote(), 156
Replace(), 203, 204, 217
RTrim(), 205
Second(), 210

SelectSingleContactName(),
596

ShowsComposeLayout(), 392
Space(), 205
Split(), 216, 217, 222
StartOutlook(), 175, 219
StrComp(), 203
String(), 205
subroutines versus, 155–57
TextToExcel(), 785
Time(), 210
Timer(), 210, 228, 229
TimerQuite(), 229
TimeValue(), 210
Trim(), 205
TypeName(), 477
UCase(), 205
Weekday(), 210
WeekdayName(), 210
working with, 198–200
WSHListSep(), 257, 389
Year(), 121, 210
YesNoToString(), 785

GetExcelWB() function, 781
GetFreeBusy method

defined, 588
string returned by, 590
syntax, 588

Global Address List (GAL), 566, 778
Global variables

for context menu controls, 756
instantiating, 316
release, 317
See also Variables

GoTo statements, 233–34
defined, 233
example use, 233
using, 234

Group Policy Objects, 7
GUIDs (globally unique IDs), 455

Help
Outlook, 78
VBA, 24–25

Hidden attachments, 604
concept, 616
working with, 616–18
See also Attachments

Hidden properties, 445, 456
HKEY_CURRENT_USER hive, 109
HKEY_LOCAL_MACHINE hive, 109
.htm files, 563
HTML messages

creating, 551–54

816 Index

HTML messages (cont’d.)
creating, from boilerplate template,

553–54
creating, from file, 551–53
rendering, in browser, 552
saving with attachments, 617
security, 311

Hyperlinks. See Links

iCalendar
attachments, 636
format, 495

If...Then statements, 48, 222–26
ElseIf, 225
expression evaluation, 223
logic, 225
single-line format, 223
syntax, 222

Image control, 133
Immediate window, 272–74, 490
Importing

from custom form, 674–79
from delimited text file, 679
from Excel worksheet, 677–78
item attachments, 610–12
from Microsoft Access, 679

ImportOutlookItems procedure, 610
InboxToExcel procedure, 785
Incoming mail

with Application.NewMailEx,
352–55

with Items.ItemAdd, 355–56
processing, 347–56
“run a script” rule, 349–52
techniques, 348
See also Outgoing messages

Indexed content, 511–13
DASL searches, 511
searching for, 511–13

Information stores
concepts, 401–2
data location display, 758–60
default, 402
defined, 401
enumerating, 403–5
multiple, 402
personal, 402, 406–9
search across, 421
techniques, 403–9

Initial value formula, 124–25
InlineShape object, 562
Input boxes, 242–46
InputBox function, 244–46

optional parameters, 244
syntax, 244
using to prompt user, 245

VBA code, 244
VBScript code, 244–45

InquiryReply procedure, 554
InquiryReplyWithOrig procedure,

559, 560–61
Insertion point

defined, 557
hyperlink insertion at, 561
moving, 558

Inspector object, 338
Close method, 464
events, 339
methods, 466
properties, 466

Inspectors collection, 338, 464
Inspector window, 463

close all but current, 465
defined, 737–38
ribbon interface, 466, 738

Integer fields, 116
Internal scripting, 696

with custom message forms,
697–706

with folder home pages, 728–35
See also Scripting

Intrinsic constants, 36
Invoice report

building with Word, 792–808
coding, 799–804
enhancements, 804–8
template, 793–99

ItemAdd event, 147, 343, 345
setting categories with, 355–56
using, 355–56

Item bodies, 543–68
defined, 543
working with, 543–68

ItemContextMenuDisplay event
handler, 761

Item events, 162–63, 371–77
firing order, 373
order, 372–74
working with, 371–77

ItemLoad event, 327–29
in building add-ins, 327
to instantiate event-enabled objects,

328–29
weak reference, 327

Item method, 296–98
defined, 296–97
using, 297–98

Item object, 282
event limitations, 344–46
events, 343–44

Items
accessing, 474–83

all, working with, 480–82
anniversary, 534
attachments, adding, 606–8
attachments, working with, 608–18
birthday, 534
context menu event handler, 761
converting to use custom form,

673–74
copying attachments between, 613
creating, 467–74
creating, from custom form, 469
creating, from Excel document,

471–74
creating, from .ft template, 469–70
creating, from iCalendar file, 470–71
creating, from .msg file, 470–71
creating, from vCard file, 470
creating, from Word document,

471–74
current, getting, 476–79
as custom form starting point, 75
defined, 60
deleting all, 481
embedded, 604
embedded, importing, 610–12
events, 162–63
linking, 642–49
locking, for changes, 375–77
methods, 492–99
particular, getting, 479–80
properties, referring to, 168–71
registry entry effect, 672
related, finding, 760–63
saving, 60
searching for, 501–41
selected, working with, 474–75
sequential ID application, 482–83
stamping date/user, 548
standard, creating, 467–69
state, checking, 391–92
techniques, 619–58

Items collection, 347, 463
ItemSend event, 319–27

not firing, 325–26
outgoing message checking, 320

Jet search syntax, 505–6
limitations, 506
queries, 516, 520
search string contents, 505

Journal entry form
defined, 67
General page, 69
tracking, 69
See also Custom forms

JournalItem object, 498

Index 817

Journal timer, 340–41
keyboard shortcut, 341
starting automatically, 340–41

Jscript, 175

Keyword fields, 116

Labels, 82
Label tool, 37
Last Seven Days view, 336
LIKE operator, 509, 510
Links

capability, properties with, 386
combining pictures with, 562–63
inserting, 561–62
Outlook item, 604, 642–49
with unique identifier, 643–44

Links collection, 527, 601
limitations, 646
restoring connections with, 647–48
using, 645–49

List boxes, 51–54
defined, 51
filling from table, 486–88
multiselect, 231
properties, 52–53
unbounded, 132
using, 132
See also Controls

Locals window, 272
LockViews procedure, 728, 729
Logic errors, 268–69

defined, 268
fixing, 269
See also Errors

Macros
adding, 149–51
AttachmentMenuDemo, 757
for context menu controls, 756
DASL, for date searches, 517
defined, 141, 148
running, 148–49
running from documents, 172
running from toolbar, 152
running programs on demand with,

148–52
RunUpdateMessageClass, 674
security setting, 17
SenderSearchFolder, 541
SendToOutlook, 326
VBA procedure, 287

MailItem object, 296, 498
MakeSpamMoveRule procedure, 734
MAPI properties, 490

defined, 445

tags, 511–12
MeetingItem object, 498
Meeting Request form, 70, 71
Meetings

canceling, 640
converting, to appointments, 641
creating, 639–41
deleting, 640
updating, 640

Members
defined, 189, 290
distribution list, extracting, 782–83
list of, 189

Menus
building blocks, 738
context, 750–63
controls, methods, 745–46
controls, properties, 743–45
controls, working with, 742–46
list, generating, 739–40
programming, 737–50

Message boxes
disadvantages, 236
feedback with, 234–36
for user input, 240–42

Message form, 67–70
customization costs, 70
defined, 67
Edit Compose button, 69
Edit Read Page layout button, 68–69
layouts, 69, 70
Message page, 67–68

Messages
all, responding to, 588, 589–90
attaching Word document to, 326
creating/sending in another Office

application, 307–8
current, 528–29
default signature, 306
formats, 563
formatted, creating, 551–54
HTML, security, 311
incoming, processing, 347–56
new, processing at intervals, 361–62
outgoing, account test, 321–23
outgoing, checking contents, 320
outgoing, looping through, 324
outgoing, using default account, 638
processing on a schedule, 359–69
response times report, 488–92
send approval, 306
sending, with specific account,

637–39
standard, creating from custom

message form, 622–23
text, parsing, 545–47

voting button, 627
Methods

Add, 298–99, 580, 716
AddBusinessCard, 498
AddBusinessCardLogoPicture,

497
AddHandler, 752
AddMember, 498
AddMembers, 498
AddPicture, 497, 562
AddressEntry object, 586
AddStore, 406, 407
AddStoreEx, 406, 407
AdvancedSearch, 503, 504,

530–41
AllowSharingItem, 439
AppointmentItem object, 497
Assign, 499, 641
Autofit, 783
CancelResponseState, 499
Cells, 804
ClearConversationIndex, 498
ClearRecurrencePattern, 497,

499
ClearTaskFlag, 493
Close, 411, 464, 493
Collapse, 557
CommandBar objects, 742
ContactItem object, 497–98
Copy, 493
CreateItem, 467–68, 544
CreateItemFromTemplate, 469,

470, 553
CreateObject, 308
CreateSharingItem, 439
defined, 155
Delete, 493, 494, 577, 742
DenySharingItem, 440
Display, 493, 596
DistListItem object, 498
Execute, 559
Find, 504, 521, 742
FindNextRow, 484
FindRow, 504, 525
Forward, 493
ForwardAsBusinessCard, 496,

497
ForwardAsICal, 440
ForwardAsVCal, 496, 497
FreeBusy, 577
GetArray, 486
GetAssociatedAppointment,

498
GetCalendarExporter, 440, 441
GetContactsFolder, 572
GetDefaultFolder, 422

818 Index

Methods (cont’d.)
GetExchangeUser, 566
GetFirst, 434
GetFreeBusy, 588–90
GetGlobalAddressList, 575
GetItemFromID, 319
GetLast, 434
GetMember, 498
GetNavigationModule, 765
GetNext, 434, 482
GetNextRow, 484
GetObject, 308, 473
GetPrevious, 434, 482
GetRecurrencePattern, 497,

499
GetSearchFolders, 421
GetSharedDefaultFolder, 419,

569
GetShareDefaultFolder, 278
GetStorage, 435, 459
GetTable, 435, 484, 525, 533
GoTo, 558
InsertAfter, 556, 557
InsertBefore, 556
Inspector object, 466
IsPaneVisible, 764
Item, 296–98
JournalItem object, 498
LocalToUTC, 516
MailItem object, 498
MarkAsTask, 493, 495, 496
MarkComplete, 499
MeetingItem object, 498
menu controls, 745–46
Move, 493, 557, 559
MsgBox, 165
OpenSharedFolder, 440, 442
OpenSharedItem, 470–71
PasteAndFormat, 560, 567
PickFolder, 417
PickFolder, 594
Post, 498
PostItem object, 498
PrintOut, 493, 772
PropertyAccessor object, 447
PublishForm, 685
Recipient object, 577
RegDelete, 258
RegWrite, 258
Remove, 299–300
RemoveMember, 498
RemovePicture, 498
RemoveStore, 407
Repaint, 237
Reply, 493, 496
ReplyAll, 493

Reset, 742
ResetBusinessCard, 498
Resolve, 577
Respond, 497, 499
Restrict, 485, 521
Rule object, 708
Rules collection, 707
Run, 256
Save, 493
SaveAs, 493, 496
SaveAsFile, 609
SaveBusinessCardImage, 498
Search, 411, 527–30
Selection object, 556
SelectNamesDialog object, 596
Send, 493
SendReceive, 308
SetColumns, 482
SetDisplayDefaultMode, 596
SetFocus, 387
SetProperties, 454
SetProperty, 454
Show, 246
ShowBusinessCardEditor, 498
ShowCategoriesDialog, 493
ShowCheckPhoneDialog, 498
ShowPane, 764
SkipRecurrence, 499
Sort, 482
StartTimer, 498
StatusReport, 499
StopTimer, 498
syntax, 189
Table object, 485
TaskItem object, 499
toolbar controls, 745–46
views, 717–18
WordEditor, 554–63

MFCMAPI, 452
Microsoft Script Editor, 279, 280
Modal forms

dialog box behavior, 36
processing user input from, 248

Modeless forms, 36
Modules (VBA)

defined, 21
programming procedures, 22
switching to forms, 22

MsgBox function, 21, 24, 234, 240
constants, 235
return values, 242

Multidimensional arrays, 218–19
Multi-line text boxes, 128–29
Multi-page control, 133

Namespace object, 412, 416

Navigation pane
collapsing, 764
modules, working with, 765–68
shared folders and, 430–31
working with, 763–70
See also Panes

NavigationPane object, 411, 765
.NET code, 12
NewInspector event, 327, 338, 339,

340
NewMail event, 317–18
NewMailEx event, 318–19

challenge, 352
interval-based processing with, 365
message processing activities, 354–55
to process incoming items, 353–54
untouched messages, processing,

368–69
using, 352–55

Non-event subroutines, 141
Nothing keyword, 302
Number fields, 116
Numeric literals, 199

Object Browser
defined, 22
drop-down list, 23
illustrated, 23, 291
opening, 22
as road map, 24
search in, 293

Object model, 289–95
coding reports with, 777–78
defined, 9, 290
guard, 303

Object properties, 419
Objects

Account, 321
AddressEntry, 321, 570, 584
AddressList, 570
Application, 153, 215, 303, 305,

314–29
AppointmentItem, 497
AutoFormatRule, 718
CalendarSharing, 294
CalendarView, 412
code techniques, 295–302
collection, 295
ColumnFormat, 720
CommandBar, 738
CommandBarControl, 742
condition, 712
ContactItem, 24, 386, 497–98
ContactsModule, 769
CurrentModule, 768
CurrentUser, 570

Index 819

DefaultStore, 403
Dictionary, 219, 220
DistListItem, 498
embedded, 604
ExchangeDistributionList,

570, 575
ExchangeUser, 570, 575
Explorer, 333
FileSystem, 251
Folder, 412
help, 292–95
hierarchy, 763
InlineShape, 562
Inspector, 338
Item, 169
IWshShell, 258
JournalItem, 498
MailEnvelope, 473
MailItem, 296, 498
MeetingItem, 498
Namespace, 412, 416
NavigationFolder, 430
NavigationPane, 411, 765
OrderFields, 720
Page, 168
in parent-child relationships, 290
PostItem, 498
properties, 296
PropertyAccessor, 445, 446–58
Recipient, 419, 569, 570
Recipients, 570
RecurrencePattern, 657
releasing, 302
Rule, 700, 708
RuleAction, 707, 712
RuleCondition, 707
searching for, 292–95
Selection, 474
SelectNamesDialog, 570
StorageItem, 445, 458–62
Table, 463, 480, 787
TaskItem, 499
TextStream, 256
variables, 290
View, 714

Office Customization Tool, 7
.oft files, 80–81

double-clicking, 469
installing, 684
new item creation from, 469–70

One-off forms, 691–92
defined, 660, 691
determination, 691
preventing, 692
problem, 690
understanding, 691–92

Open event, 327
checking item state in, 391–92
occurrence, 163

OpenExcelWB procedure, 614
Operators, 157
Option buttons, 47–51

binding, 131
to change caption color, 384–86
defined, 8
illustrated, 50
properties, 49–50, 130
testing, 49
unbounded, 131
uses, 48
using, 129–31
values, 50–51
See also Controls

Option Button tool, 49
Option Explicit statement, 177–79

adding automatically, 179
array declaration and, 217
defined, 178
VBScript support, 179

Organizational Forms library, 76, 79,
459, 624, 669

location, 661
purpose, 661

Other Settings dialog, 774
Outgoing messages

account test, 321–23
checking contents, 320
looping through, 324
setting save folder for, 418–19
setting to use default account, 638
See also Incoming mail; Messages

Outlook
automation, 171–75
bugs, 269
configuration settings, 697
developer commands, showing,

11–13
development components, 11
forms. See Custom forms
object model. See Object model
rules, 700–714
as semi-structured database, 679
sessions, starting, 174–75
tools, selecting, 10

Outlook security, 302–12
attachment, 310–11
automation, 303–8
features, 303
folder home page, 311–12
form, 308–10
HTML message, 311

Outlook Spy utility, 450, 451, 696

Outlook View Control (OVC), 134–35,
729

adding, 134
code, 135
defined, 134
limitations, 134
See also Controls

Panes
collapsing, 764
hiding, 764–65
hierarchy, 763
navigation, 763–70
showing, 764–65
working with, 763–70

Parameters
adding data types to, 194
defined, 146, 191

Parsing text, 545–47
Percent fields, 116
Personal Forms library, 79, 93, 624, 669

location, 661
publishing forms to, 686
purpose, 661

Pictures
combining with hyperlink, 562–63
inserting, 562–63

PostFile() procedure, 607–8
Post form

defined, 70
illustrated, 71
See also Custom forms

PostItem object, 498
PracticeSearch procedure, 533
Printing, from folder views, 772–75
Procedures, 141

calling, 190–92
calling from regular code module,

316–17
creating, 16
documenting, 196–98
event handlers, 142
item-level event handler, 287
macro, 287
rule, 151–52
saving, 17
starting, 153
support, 141–42
writing, 188–98

ProcessFolderPaths procedure,
534–35

ProcessSelection procedure, 475
Program execution

continuing, 274–75
restarting, 275

Program flow control, 222–34

820 Index

Programming
basics, 289–312
key Outlook components, 11
menus, 737–50
Outlook tools, 2–9
reasons for, 2
starting, 9–11
toolbars, 737–50

Programming libraries
objects, same name, 251
references, 250–51
standard, 250

Project Explorer window (VBA), 19–20
illustrated, 19
restoring, 18
Toggle Folders button, 20
View Code button, 20
View Object button, 20

Properties
Accelerator, 40
access blocking, 303
ActionControl, 752
ActionType, 712
ActivePrinter, 779
AdaptiveMenu, 741
Address, 578
AddressBookName, 572
AddressEntry, 578
AddressEntry object, 585
AddressEntryUserType, 321
address-related, 306
AllowWriteAccess, 439
Anniversary, 649
AutoResponse, 578
BackColor, 34, 238
BillingInformation, 365, 367,

375, 804
Birthday, 100, 649
Body, 306, 380, 543, 547–48
BodyFormat, 169, 545
BorderColor, 34, 35
BuiltIn, 741
BusyStatus, 590
CalendarViewMode, 412
Cancel, 40
Caption, 33, 34, 38, 384, 747
Categories, 513, 625
check boxes, 46
CheckDataState, 394
Class, 476
combo boxes, 52–53
control, 85–89
Controls, 167, 741
ControlTipText, 37
CopyLike, 629, 630
Count, 232

CreationDate, 516
CurrentFolder, 412
CurrentItem, 476–77
CurrentView, 411
custom, 309, 520–21
custom, creating programmatically,

170–71
custom keywords, 170
DayWeekTimeScale, 412
DefaultMessageClass, 453, 454
DefaultStore, 403
DisplayedModuleCount, 765
DisplayName, 408
DisplayType, 578, 579
DueDate, 154
EmployeeStartDate, 651
Enabled, 629, 712, 741
EndInEndTimeZone, 215
EndOfTable, 491
EndTimeZone, 215
EntryID, 479, 480, 643
Estimated Work Time, 130
ExchangeStoreType, 403
Expertise, 170
Explorer object, 410–11
FileAs, 486
FilePath, 403
folder, 435–37
Folders, 422
Font, 34, 386
Forecolor, 386
form, setting, 90–93
FullName, 481, 648
GetProperty, 448
GlobalAppointmentID, 524
GroupByFields, 720
Height, 87
hidden, 445, 456
HTMLBody, 543, 545, 548–50
Importance, 453
IncludeRecurrences, 482
Inspector object, 466
intrinsic constants, 36
Introduction, 472
IsDataFileStore, 403
IsRemovable, 767
IsSelected, 767
IsSharePointFolder, 403
IsSideBySide, 767
item, referring to, 168–71
Left, 87, 741
list boxes, 52–53
Locked, 238, 377
MailEnvelope, 471, 472
MAPI, 445, 490
MeetingResponseStatus, 578

MeetingStatus, 640, 641
menu controls, 743–45
MessageClass, 58, 96, 607, 629,

665, 672
Modules, 765
Multiline, 237
(name), 33, 34
Name, 578, 629, 741
NameLocal, 741
object, 419
OnAction, 749, 755
option buttons, 49–50
OutlookApplication, 729
Parameter, 762
Parent, 741
Picture, 34, 133
Position, 741
Prefix, 629
PropertyAccessor object,

454–55
Protection, 741
Range, 562, 563
read-only, 457
Recipient object, 578–79
RecurrenceType, 657
ReplyStyle, 629
ResolutionOrder, 583
Resolved, 578
ResponseStyle, 629
RowIndex, 742
Rule object, 708
schema names, 450–53
SelectedItem, 133, 168
SelectNamesDialog object,

595–96
SelLength, 147
SelStart, 147
SendUsingAccount, 321, 638, 639
SentOnBehalfOfName, 637
ShowAsOutlookAB, 572, 575, 735
ShowModal, 36, 318
ShowOn, 628, 629
SortFields, 720
SpecialEffect, 35
StartDate, 154
StartInStartTimeZone, 215
StartTimeZone, 215
StoreID, 406
Subject, 297, 649, 654, 804
Summary, 398
Tag, 384
TextAlign, 38
text box control, 89
toolbar controls, 743–45
Top, 87, 742
TrackingStatus, 579

Index 821

TrackingStatusTime, 579
Type, 579, 580, 742, 804
Value, 46–47, 50, 129, 167, 268
Visible, 384, 394, 395, 741, 742
voting buttons, 635
Width, 87
WordEditor, 543, 545, 550
WorkflowAction, 398
WorkflowSteps, 398

Properties dialog box, 88, 102
(Properties) page, 73

information, 91
operation property settings, 91

Properties window (VBA), 20
floating, 20
illustrated, 20
restoring, 18

PropertyAccessor object, 446–58
complexity, 446
defined, 445
errors, 455–58
limitations, 446, 455–58
methods, 447
in obtaining headers, 448
SchemaName parameter, 450
SchemaNames parameter, 450
time converter methods, 456
UserProperties versus, 454–55
using, 446–58

PropertyChange event, 339, 378
code, 381
event handler, 387
firing, 380
ignoring, 382
parameter, 379
using, 379–83

Prototypes, 281–86
Pseudo code, 9
.pst stores, 406–9

adding, 406–7
adding with specific display name,

408–9
defined, 402
removing, 407
renaming, 408–9

Public folders
contact links, adding, 599–600
contact links selection, 598–601
defined, 402
returning, 426–30
views, managing, 728
See also Folders

Published forms, code running on, 308
Publish Form As dialog box, 79
Publishing forms, 78–80, 93

advantages, 78–79

copy, 680
defined, 78
to folder, 79
to folder’s form library (VBScript),

689–90
form definition storage, 661
in forms library, 660
with item FormDescription

(VBA), 686–87
to Personal Forms library, 686
to Personal Forms (VBScript),

688–89
programmatically, 685–90
See also Custom forms

Query Builder, 509–11
defined, 509
tab, adding, 509–10

Quick Access Toolbar (QAT), 149, 150

Radio buttons. See Option buttons
Read-only properties, 457
Read pages, 137–39
Recipient object, 419, 569

defined, 569
methods, 577
properties, 578–79

Recipients
adding, 580–81
address resolution, 581–84
Bcc, 581
Cc, 581
contacts, creating, 587
outgoing, checking, 581
working with, 577–84

ReconnectLinks procedure, 646, 648
RecurrencePattern object, 657
Registry entries

in deleting substitutions, 673
existing items and, 672
for forms cache problems, 693

Reminders
adding, 346–47
important, difficult to snooze, 360
important, showing only, 358
snoozing, 359

Reminders events, 359
class module, 358
list of, 357

Reminders window, 358
Remote procedure calls (RPC), 233
Remove method, 299–300
Replies

discarding, 626
settings, controlling, 624

Reply action, 624

Reply All event, 624
Reply event, 624, 625
ReplyRecipients collection, 588
Reports

built-in techniques, 771–77
coding with object model, 777–78
distribution list, 781–84
Excel, 778–81
Exchange user information, 575–77
generating on rules, 701–5
generating with custom forms,

700–706
invoice, 792–808
message response time, 488–92
spam, sending, 448–50
Word, 788–91

Resolve method, 577
Resources, availability information,

591–92
RespondToFolder procedure, 588
Restrict method, 521

DASL queries, 521
filtered Items collection with, 522
Jet queries, 521

Reuse, code, 194–96
Ribbon interface, 466, 737
Rich-text format (RTF), 606
Rows

data values, 491
processing, 491

RSS (really simple syndication) feed, 442
.rtf files, 563
Rule object, 700

methods, 708
properties, 708

Rules
actions, 712
available conditions, 710–11
client-side, 708
creating, 709–14
creating, with folder home pages,

732–34
creating and executing, 710
generating reports on, 701–5
move items to folder, 713–14
receive, 708
“run a script,” 151–52, 349–52
running programmatically, 714
send, 708
steps, 709
working with, 706–14

Rules collection, 706
methods, 707
property, 707

Rules Wizard, 707
“Run a script” rule, 151–52, 349–52

822 Index

Run mode, 39
Runtime errors, 264–68

defined, 264
VBA code, 265–66
VBScript code, 267
See also Errors

RunUpdateMessageClass macro, 674

Save folder, 417–19
SaveHTMLMessage procedure, 616
Schemas

defined, 103
names, finding, 450–53
referencing, 104

Scopes, 184–85
defined, 184
list of, 185
variable names, 184

Script debugger, 279–81
availability, 279
breakpoints, 281
limitations, 280
strategies, 280–81

Scripting
challenge, 696–97
internal, with custom message forms,

697–706
internal, with folder home pages,

728–35
internal approaches, 696

Scripting Runtime library, 251–56
Scripts

blocking, 303
default signature creation, 564–66
disabling of, 303
using, 7

Search(es)
content index keyword, 680
custom properties, 520–21
DASL syntax, 507–9
date/time fields, 515–20
declarations for, 535
event handlers for, 535
filters, removing, 527
indexed content, 511–13
item bodies, 513–15
Jet syntax, 505–6, 513
keyword properties, 513–15
managing, 535
methods, 501–3
multiple, in same code project, 533
multiple folders, 530
recommended techniques, 504
table, 525–27
text properties, 513–15

Search folders, 415
creating, 538–41
defined, 421, 503
getting, 421–22
names, 421
new, syntax, 538
saving, 538
search string construction, 540
See also Folders

Search method, 411
content index use, 527
demonstration, 527–29
syntax, 527
using, 527–30

Search strings
building, 503–5
DASL, 507
Jet, 507
for search folder creation, 540
syntax support, 505

Security
attachment, 310–11
automation, 303–8
folder home page, 311–12
form, 308–10
HTML message, 311
Outlook, 302–12
prompts, 308
VBA, 17

Select Case statements, 226–27
CustomPropertyChange event

and, 226
defined, 226
End Select structure, 195
nesting, 227
PropertyChange event and, 226
refinements, 227

Select Contacts dialog, 646
Select Folder dialog, 417
Selection object, 194, 195, 474

end point, expanding, 559–60
methods, 556

Select Names dialog
in contact link selection, 597
showing, 594–601
use process, 595

SelectNamesDialog object
methods, 596
options, 594
properties, 595–96

SendDocAsMsg procedure, 473
SenderSearchFolder macro, 541
SendSearchFolder procedure,

538–40
Separate form regions

defined, 96

displaying, 108
XML manifest, 108
See also Form regions

SetFolderDefaultClass procedure,
454

Set statement, 262, 290, 424
Shared folders, 430–31
Sharing VBA code, 28–29
ShowWebPage procedure, 746–47
Signatures

automatic, deleting, 567
creating, 363–66
default, 306
default, inserting, 567
text, removing, 567–68
working with, 563–68

Simple syntax errors, 262–63
SMTP addresses, 584
Spam reports, sending, 448–50
Spin buttons, 132–33

advanced properties, 133
defined, 132
unbounded, 133
See also Controls

Standard Forms library, 59
State

control, storing/restoring, 392–95
defined, 391
handling in folder-based workflow,

395–400
item, checking in Open event,

391–92
message, returning, 393
unbounded control, saving, 394
workflow, 400

Stop statement, 279
StorageItem object, 458–62

creation constraints, 459
defined, 445
example use, 460–62
limitations, 459–60
returning, 458
StorageIdentifier parameter,

458
StorageIdentifierType

parameter, 458
using, 458–62

Strings
comparing, 201–3
converting date values to, 792
converting true/false values to, 785
literals, 199
parts, extracting, 201
parts, replacing, 203–4
phone numbers as, 199
substrings, 203

Index 823

working with, 200–206
Strong reference, 327
Subroutines, 141

calling, 191
defined, 146
functions versus, 155–57
non-event, 141

Sub statement, 146
Syntax errors, 262–63

Table object, 463, 480
default columns, 484
filtered, 525, 787
methods, 485
report on message response times,

488–92
return data techniques, 484
search methods, 526
using, 484–92
working with, 485

Tables
to fill list boxes, 486–88
row processing, 491

Table views
columns, 774
customization techniques, 773
Group By feature and, 774

Tab order
accelerators and, 54–55
frame controls, 132
setting, 85

Task form
defined, 67
Details page, 68
Tasks page, 68
See also Custom forms

TaskItem object, 499
Task Request form, 70, 71
Tasks

adding contact phone number to,
649, 650

assigning, 641–42
recipient properties, 641–42

Templates
formatted message creation from,

660
invoice report, 793–99
saving forms as, 660

Testing forms, 89–90
Text

adding to Body property, 547–48
adding to HTMLBody property,

548–50
adding to items, 547–50
bold formatting, 550
content control, 801

extracting data from, 546
inserting, cursor reposition, 556
inserting, in HTML-format message,

550
parsing, from message body, 545–47
pasting, 560

Text box controls
defined, 81
multi-line, 128–29
properties, 89
unbounded, 129
See also Controls

TextBox tool, 37
Text fields, 116, 683
ThisOutlookSession module, 16, 19,

314
defined, 19
drop-down lists, 147
event handling in, 330–31

Timeline views, 774
Times

converter methods, 456
working with, 214–15
zones, 214–15

TimeZones collection, 215
TNEF (transport neutral encapsulation

format), 454
Toolbars

adding, 747–50
building blocks, 738
commands, extracting, 746–47
controls, adding, 748
controls, methods, 745–46
controls, positioning, 748
controls, properties, 743–45
controls, working with, 742–46
custom with buttons, creating,

751–52
list, generating, 739–40
programming, 737–50
Web, showing/hiding, 740

.txt files, 563

Unbounded controls
check box, 129
combo box, 132
defined, 114
list box, 132
option buttons, 131
spin buttons, 133
state, saving/restoring, 394
text box, 129
See also Controls

Unpublished forms
custom properties, 309
error message, 310

security and, 309
See also Outlook security

UpdateMessageClass procedure, 674
User input

controls, 36–38
getting, 240–49
with input boxes, 242–46
with message boxes, 240–42
from modal VBA form, processing,

248
responding to, 377–91
with validation, 247
with VBA forms, 246–49

UserProperties collection, 170–71,
681

Users
Exchange information report,

575–77
folder deletion, preventing, 344
folder selection, 416–17
folder view changes, preventing,

374–75
forcing to select from category list,

389–91
remote, forms distribution, 684–85
stand-alone, 310

Validation, 125–26
cancelable events and, 147
defined, 125
formula messages, 128
formulas, 125, 126–28
in Outlook form code, 386–88

Variables, 154
data types, 181–83
declaring, 160–61, 179–85
defined, 154
global, 316, 317
initializing, 153
names, 199
naming conventions, 183–84
object, 290
scopes, 184–85
value, checking, 273
variant-type, 200
wrong name, 178

Variant data type, 181
VBA, 2–4

advantages, 4
break mode, 265, 266, 271–72
data types, 182
design environment, 15–29
design mode, 39
environment, starting, 15
error handlers, 275–77
Help, 24–25

824 Index

VBA (cont’d.)
modules, 21–22
Object Browser, 22–24, 291–92
programming environment, 3
programming library references in,

250–51
projects, signing, 27
projects, working with, 26–29
Properties window, 18, 20
prototyping VBScript code, 281–86
run mode, 39
security, 17
sessions, ending, 18
starting, 17–18
tools, 3
windows, 18–24

VBA code
appointment creation, 655–57
backing up, 26–27
command button, 41–42
compile errors, 263
constants, 187–88
creating, 16
debugging, 269–77
distributing, 28–29
document attachment, 173
indenting, 197
intrinsic constants, 36
new text file, creating/opening, 254
publishing form, 686–87
runtime errors, 265–66
saving, 17
testing, 269–77
VBScript code conversion, 286–87
walk the folder hierarchy, 425
Word status tracking, 789
writing, 152–58

VBA editor
intellisense, 21, 181
opening, 15–16, 33
options, 179

VBA forms, 20
adding, 21
building, 31–55
Caption property, 33, 34
controls, 21, 32–33, 45–55
creating, 33–34
development planning, 45
dialog boxes, 21
events, 142–46
feedback with, 236–37
illustrated, 23
modal, 36
modeless, 36
(name) property, 33, 34
Outlook custom forms versus, 60

properties, 34–36
referring to, 157–58
at runtime, 36
switching to modules, 22
for user input, 246–49

VbaProject.OTM file, 26–27
defined, 26
replacing, 28
storage locations, 26–27

VBScript, 6–7
defined, 6–7
editor, 262
error handling, 277–78
intrinsic constants and, 282
in login script, 687
Option Explicit support, 179
sending Word document as email

message, 472
using, 7
Word status tracking, 790

VBScript code
adding to Outlook form, 164–66
appointment creation, 651–53
compile errors, 264
constants, 160–61, 187–88
custom form events, 161–64
debugging, 277–87
event cancellation, 166
indenting, 197
new text file, creating/opening, 255
Outlook form control reference,

166–68
publishing forms to folder’s forms

library, 689–90
publishing forms to Personal Forms

library, 688–89
runtime errors, 267
sending files, 174
variables, 160–61
VBA code conversion, 286–87
VBA prototyping of, 281–86
walk the folder hierarchy, 426
writing, 159–68

vCalendar
attachments, 636
format, 495

vCard format, 495
ViewFields collection, 720
View object, 714, 716
Views

category-filtered, 723–27
changing, 411
classes, 715
current, 412
default, setting, 336–38
deleting, 717

general-use, 716
individual types, properties, 719–20
methods, 717–18
modification commands, 773
multiple types, properties, 719
name, 715
properties, 717
properties, setting, 718–23
table, 773, 774
timeline, 774
See also Folder views

Visual Basic for Applications. See VBA
Visual Basic Scripting Edition. See

VBScript
Visual Studio Tools for Applications

(VSTA), 2
Voting buttons

creating custom Response actions,
628

defined, 627
properties, 635

Watches
adding, 270
changing, 271
expressions, 270
removing, 271

Weak reference, 327
Windows Registry, 669
Windows Script Host (WSH), 7

defined, 256
for getting user’s list separator, 258
Object Model, 257
using, 256–57

Winmail.dat file, 620
With ... End With structure, 198
WithEvents declaration, 330
Word

content controls, 793
documents, collating data into,

805–7
documents, sending as email

message, 472
editor, 554–63
formatting Outlook data for, 791–92
invoice report, 792–807
mail merge, performing, 776–77
reports, 788–91
sending output to, 788–92
status, tracking, 789
templates, 789, 790

WordEditor

availability, 555
boilerplate example reply, 559–61
hyperlink insertion, 561–62
insertion point, 557

Index 825

moving around, 557–59
picture insertion, 562–63
use steps, 559

Workflow
handling state in, 395–400
management components, 395
management controls, 396
states, 400

Write event, 163, 373

XML
case sensitivity, 103
declaration, 104
defined, 103
document validation, 103
example, 104
manifest to display adjoining form

region, 104
manifest to display separate form

region, 108
schemas, 103

Yes/no fields, 116, 683

This page intentionally left blank

