Chapter 1 - Introduction

1.1 A gas at 20°C may be rarefied if it contains less than 10" molecules per mm’. If
Avogadro’s number is 6.023E23 molecules per mole, what air pressure does this represent?

Solution: The mass of one molecule of air may be computed as

. -1
m= Molecular weight _ 28.97 mol —481E23 ¢
Avogadro’s number  6.023E23 molecules/g-mol

Then the density of air containing 10" molecules per mm’ is, in SI units,

p= 10'2 molecules 48]E023 — &
3 molecule

mm
48111 —&_ —481E-5 <&
mim m

Finally, from the perfect gas law, Eq. (1.13), at 20°C = 293 K, we obtain the pressure:

kg m*
p=pRT= (4.81E—5 —j(287 Z-K]Q% K)=4.0Pa Ans.

Il’l3 S

1.2 The earth’s atmosphere can be modeled as a uniform layer of air of thickness 20 km
and average density 0.6 kg/m3 (see Table A-6). Use these values to estimate the total mass
and total number of molecules of air in the entire atmosphere of the earth.

Solution: Let R, be the earth’s radius = 6377 km. Then the total mass of air in the
atmosphere is

m, = [ p dVol= p,, (Air Vol) = p,,, 47R? (Air thickness)
= (0.6 kg/m*)47(6.377E6 m)*(20E3 m) =~ 6.1E18 kg  Ans.

Dividing by the mass of one molecule = 4.8E-23 g (see Prob. 1.1 above), we obtain the
total number of molecules in the earth’s atmosphere:

N = m(atmosphere) _ 0.1E21 grams = 1.3E44 molecules Ans.

molecules

m(one molecule)  4.8E-23 gm/molecule
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1.3 For the triangular element in Fig. P1.3,
show that a tilted free liquid surface, in
contact with an atmosphere at pressure p,, 0 /
must undergo shear stress and hence begin

to flow. A / cC

Liquid, density p

Solution: Assume zero shear. Due to Fig. P1.3
element weight, the pressure along the
lower and right sides must vary linearly as
shown, to a higher value at point C. Vertical
forces are presumably in balance with ele-
ment weight included. But horizontal forces
are out of balance, with the unbalanced
force being to the left, due to the shaded
excess-pressure triangle on the right side
BC. Thus hydrostatic pressures cannot keep
the element in balance, and shear and flow
result.

1.4 The quantities viscosity g, velocity V, and surface tension Y may be combined into
a dimensionless group. Find the combination which is proportional to . This group has a
customary name, which begins with C. Can you guess its name?

Solution: The dimensions of these variables are {u} = {M/LT}, {V} ={L/T},and {Y} =
{M/Tz}. We must divide ¢ by Y to cancel mass {M}, then work the velocity into the

group:
{%} = {AA{I//?Z} = {%}, hence multiply by {V} = {%},

)7A%

finally obtain Ea = dimensionless. Ans.

This dimensionless parameter is commonly called the Capillary Number.

1.5 A formula for estimating the mean free path of a perfect gas is:

U u
(=126—"—— =126+ (RT 1
pV (RT) p ®D M
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where the latter form follows from the ideal-gas law, p = p/RT. What are the dimensions
of the constant “1.26”? Estimate the mean free path of air at 20°C and 7 kPa. Is air
rarefied at this condition?

Solution: We know the dimensions of every term except “1.26”:

M M 12
{(}={L} {ﬂ}—{ﬁ} {p}—{F} {R}—{ng} {T}={0©}

Therefore the above formula (first form) may be written dimensionally as

{M/L-T}

L}={1.26?
thh=t }{M/L3}\/[{L2/T2-®}{G)}]

={1.267}{L}

Since we have {L} on both sides, {1.26} = {unity}, that is, the constant is dimensionless.
The formula is therefore dimensionally homogeneous and should hold for any unit system.

For air at 20°C = 293 K and 7000 Pa, the density is p = p/RT = (7000)/[(287)(293)] =
0.0832 kg/m3. From Table A-2, its viscosity is 1.80E—5 N- s/m”. Then the formula predict
a mean free path of

1.80E-5

(0.0832)[(287)(293)]'* -

94E-7m Ans.

This is quite small. We would judge this gas to approximate a continuum if the physical
scales in the flow are greater than about 100 /, that is, greater than about 94 ym.

1.6 If p is pressure and y is a coordinate, state, in the {MLT} system, the dimensions of
the quantities (a) dp/dy; (b) [ p dy; (c) & pldy*; (d) Vp.

Solution: (a) {ML°T}; (b) {MT *}; (c) {MLT°}; (d) {ML°T °}

1.7 A small village draws 1.5 acre-foot of water per day from its reservoir. Convert this
water usage into (a) gallons per minute; and (b) liters per second.

Solution: One acre = (1 mi*/640) = (5280 ft)*/640 = 43560 ft’. Therefore 1.5 acre-ft =
65340 ft’ = 1850 m’. Meanwhile, 1 gallon = 231 in’ = 231/1728 ft’. Then 1.5 acre-ft of
water per day is equivalent to

3
Q=65340 1L (@ g—al)(L d;“,yjzsm gl @
day \ 231 ft* J{ 1440 min min
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Similarly, 1850 m’ = 1.85E6 liters. Then a metric unit for this water usage is:

0=|1.8586 & ( ! dayjzuE Ans. (b)
day )\ 86400 sec S

1.8 Suppose that bending stress ¢ in a beam depends upon bending moment M and
beam area moment of inertia I and is proportional to the beam half-thickness y. Suppose
also that, for the particular case M = 2900 in-lbf, y = 1.5 in, and I = 0.4 in4, the predicted
stress 1s 75 MPa. Find the only possible dimensionally homogeneous formula for o.

Solution: We are given that o=y fcn(M,I) and we are not to study up on strength of
materials but only to use dimensional reasoning. For homogeneity, the right hand side
must have dimensions of stress, that is,

{o}={y}{fcn(M,])}, or: {%} ={L} {fcn(M,])}

or: the function must have dimensions {fcn(M,I)} = {Li\”/lfz }
Therefore, to achieve dimensional homogeneity, we somehow must combine bending
moment, whose dimensions are {ML2T72}, with area moment of inertia, {I} = {L4}, and
end up with {ML_ZT_Z}. Well, it is clear that {I} contains neither mass {M} nor time {T}
dimensions, but the bending moment contains both mass and time and in exactly the com-
bination we need, {MT72}. Thus it must be that o is proportional to M also. Now we
have reduced the problem to:

M ML? _
o =yM fen(l), or {W} = {L}{ o }{fcn(l)}, or: {fen(I)}={L 4}

We need just enough I’s to give dimensions of {LA}: we need the formula to be exactly
inverse in I. The correct dimensionally homogeneous beam bending formula is thus:

O'=C$, where {C}={unity} Ans.

The formula admits to an arbitrary dimensionless constant C whose value can only be
obtained from known data. Convert stress into English units: o = (75 MPa)/(6894.8) =
10880 Ibf/in”. Substitute the given data into the proposed formula:

1bf My C (2900 1bf-in)(1.5 in)

0=10880 —-=C

2 2 , or: C=1.00 Ans.
in I 0.4 in

The data show that C =1, or ¢ = My/I, our old friend from strength of materials.
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1.9 The dimensionless Galileo number, Ga, expresses the ratio of gravitational effect to
viscous effects in a flow. It combines the quantities density p, acceleration of gravity g,
length scale L, and viscosity x#. Without peeking into another textbook, find the form of
the Galileo number if it contains g in the numerator.

Solution: The dimensions of these variables are {p} = {M/L3}, {g} = {L/Tz}, {L} =
{L}, and {u} = {M/LT}. Divide p by u to eliminate mass {M} and then combine with g
and L to eliminate length {L} and time {T}, making sure that g appears only to the first

power:
pl_ ML { T }
ul |M/LT| |I?

while only {g} contams {T}. To keep {g} to the Ist power, we need to multiply it by

{plu}*. Thus {plu*{g} = {TIL*HL/T*} = {L™°}.
We then make the combination dimensionless by multiplying the group by L’. Thus
we obtain:

_sl’

V2

3
Galileo number = Ga —( j (g )(L) _Psn gL Ans.
U /J

1.10 The Stokes-Oseen formula [10] for drag on a sphere at low velocity V is:
or 242
F=3nuDV +EpV D

where D = sphere diameter, 1 = viscosity, and p = density. Is the formula homogeneous?

Solution:  Write this formula in dimensional form, using Table 1-2:

{F}= {37f}{ﬂ}{D}{V}+{ }{P}{V} {Dy*?

 {Hnfeo o e

where, hoping for homogeneity, we have assumed that all constants (3,m9,16) are pure,
1.e., {unity}. Well, yes indeed, all terms have dimensions {ML/T}! Therefore the Stokes-
Oseen formula (derived in fact from a theory) is dimensionally homogeneous.
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1.11 Test, for dimensional homogeneity, the following formula for volume flow Q
through a hole of diameter D in the side of a tank whose liquid surface is a distance &

above the hole position:
Q=0.68D%/gh

where g is the acceleration of gravity. What are the dimensions of the constant 0.68?

Solution: Write the equation in dimensional form:

1/2 3
Q)= {3} {068‘?}{L2}{1]j} {}“2—{068}{L}

Thus, since Dzw/( gh) has provided the correct volume-flow dimensions, {LS/T 1, it follows
that the constant “0.68” is indeed dimensionless Ans. The formula is dimensionally
homogeneous and can be used with any system of units. [The formula is very similar to the
valve-flow formula Q =C A /(Ap/p) discussed at the end of Sect. 1.4, and the number
“0.68” is proportional to the “discharge coefficient” Cq4 for the hole.]

1.12 For low-speed (laminar) flow in a tube of radius r,, the velocity u takes the form

u:B%(ro2 —r2)

where £ is viscosity and Ap the pressure drop. What are the dimensions of B?

Solution: Using Table 1-2, write this equation in dimensional form:

{Ap} _ (M/LT?} _, 12
{u}= {B}{ }{ ’}, or { } {"}{M/LT}{L} {9}{ }

or: {B}={L"} Ans.

The parameter B must have dimensions of inverse length. In fact, B is not a constant, it
hides one of the variables in pipe flow. The proper form of the pipe flow relation is

where L is the length of the pipe and C is a dimensionless constant which has the
theoretical laminar-flow value of (1/4)—see Sect. 6.4.
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1.13 The efficiency 71 of a pump is defined as

7= QAp
Input Power

where Q is volume flow and Ap the pressure rise produced by the pump. What is 7 if
Ap =35 psi, Q =40 L/s, and the input power is 16 horsepower?

Solution: The student should perhaps verify that QAp has units of power, so that 77 is a
dimensionless ratio. Then convert everything to consistent units, for example, BG:

2 _
Q=40 =141 ™ Ap=35 025040 13: Power=16(550)=8800 1
g S in ft s
3 2
_(LALCR)EO40 II) o e
8800 ft1bf/s

Similarly, one could convert to SI units: Q = 0.04 m’/s, Ap = 241300 Pa, and input power =
16(745.7) = 11930 W, thus h = (0.04)(241300)/(11930) = 0.81.  Ans.

1.14 The volume flow Q over a dam is
proportional to dam width B and also varies
with gravity g and excess water height H
upstream, as shown in Fig. P1.14. What is
the only possible dimensionally homo-
geneous relation for this flow rate?

Solution: So far we know that
Q =B fen(H,g). Write this in dimensional
form:

T
12
or: {f(H,g)}= {?}

So the function fen(H,g) must provide dimensions of {LZ/T}, but only g contains time.
Therefore g must enter in the form g”2 to accomplish this. The relation is now

3
Q)= { L } - (B} {f(H.9)} = (L} {f(H.g)},

Q=Bg"fen(H), or: {LYT}={L}{L"/T}{fen(@)}, or: ({fen(H)}={L"*}
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In order for fcn(H) to provide dimensions of {L3/2}, the function must be a 3/2 power.

Thus the final desired homogeneous relation for dam flow is:

Q= CBgmHm, where C is a dimensionless constant  Ans.

1.15 As a practical application of Fig. P1.14, often termed a sharp-crested weir, civil
engineers use the following formula for flow rate: Q = 3.3 BH”, with Q in ft'/s and B
and H in feet. Is this formula dimensionally homogeneous? If not, try to explain the
difficulty and how it might be converted to a more homogeneous form.

Solution: Clearly the formula cannot be dimensionally homogeneous, because B and H
do not contain the dimension time. The formula would be invalid for anything except
English units (ft, sec). By comparing with the answer to Prob. 1.14 just above, we see
that the constant “3.3” hides the square root of the acceleration of gravity.

1.16 Test the dimensional homogeneity of the boundary-layer x-momentum equation:

w2y py Q9P e L OT
p ax p dy  Ix Pex Ay

Solution: This equation, like all theoretical partial differential equations in mechanics,
is dimensionally homogeneous. Test each term in sequence:

-l (3
PYox P dy] I’T L 12T?2]" | 9x L 2T

et ). o] e
PRI e 1ox)- LT

All terms have dimension {ML72T72}. This equation may use any consistent units.

1.17 Investigate the consistency of the Hazen-Williams formula from hydraulics:
0.54
Q=61.9D>% (@j
L

What are the dimensions of the constant “61.9”? Can this equation be used with
confidence for a variety of liquids and gases?
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Solution: Write out the dimensions of each side of the equation:

L3 ? 2.63 Ap 04 2.63 NI/LT2 04
{Q}={?}={61-9}{D }{T} = {61.9}{L }{T}

The constant 61.9 has fractional dimensions: {61.9} = {L1'45T0'08M_0’54} Ans.

Clearly, the formula is extremely inconsistent and cannot be used with confidence
for any given fluid or condition or units. Actually, the Hazen-Williams formula, still
in common use in the watersupply industry, is valid only for water flow in smooth
pipes larger than 2-in. diameter and turbulent velocities less than 10 ft/s and (certain)
English units. This formula should be held at arm’s length and given a vote of “No
Confidence.”

1.18*% (*“*” means “difficult”—not just a
plug-and-chug, that is) For small particles at
low velocities, the first (linear) term in Stokes’
drag law, Prob. 1.10, is dominant, hence horizontal

F =KV, where K is a constant. Suppose

a particle of mass m is constrained to move horizontally from the initial position x = 0
with initial velocity V = V. Show (a) that its velocity will decrease exponentially with
time; and (b) that it will stop after travelling a distance x = mV /K.

Solution: Set up and solve the differential equation for forces in the x-direction:

dv %
> F =-Drag=ma,, or: -KV=m—, integrate | —=— dt
¢ a e [ -=-]

m
v, o K

mIZO (1 _ e MUK ) Ans. (a,b)

t
Solve V=V,e™* and x=[Vdt=
0

Thus, as asked, V drops off exponentially with time, and, as t = e, x =mV_ /K.

1.19 Marangoni convection arises when a surface has a difference in surface
tension along its length. The dimensionless Marangoni number M is a combination
of thermal diffusivity &= k/(pc,) (where k is the thermal conductivity), length scale
L, viscosity , and surface tension difference OY. If M is proportional to L, find
its form.
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Solution: List the dimensions: {¢} = {L*/T}, {L} = {L}, {¢} = {M/LT}, {6Y} = {(M/T"}.
We divide oY by uto get rid of mass dimensions, then divide by & to eliminate time:

oY MLT| [L oY 1 LT 1
— V= —2— =<—7, then - A= ——2 =< —
u| Ml |1 wol T2 L
. . . oYL
Multiply by L and we obtain the Marangoni number: M =—— Ans.

uo

1.20C (“C” means computer-oriented, although this one can be done analytically.) A
baseball, with m = 145 g, is thrown directly upward from the initial position z = 0 and
V, = 45 m/s. The air drag on the ball is CV2, where C = 0.0010 N-s*/m”. Set up a
differential equation for the ball motion and solve for the instantaneous velocity V(t) and
position z(t). Find the maximum height z,,,, reached by the ball and compare your results
with the elementary-physics case of zero air drag.

Solution: For this problem, we include the weight of the ball, for upward motion z:

M t
2>F, =-ma,, or —Cvz_mg:mﬂ’ solve J‘d—Vz:_ dt = —t
dt y g+CVim g
Thus V = 22 tan P—t Ce and z="1n COS((D—t\/(gC/m)
c m C cosg

where ¢=tan_1[V0\/ (C/mg)]. This is cumbersome, so one might also expect some
students simply to program the differential equation, m(dV/dt) + CV’ = —mg, with a
numerical method such as Runge-Kutta.

For the given data m = 0.145 kg, V, =45 m/s, and C = 0.0010 N-sz/mz, we compute

¢=0.8732 radians, ,|—£ =37.72 =, ,/g 026015, D=145m
C S m C
Hence the final analytical formulas are:

V(in Ej =37.72tan(0.8732 -.2601t)
S

and z(in meters) =145 In [ c0s(0.8732-0.260 10}

c0s(0.8732)

The velocity equals zero when t = 0.8732/0.2601 = 3.36 s, whence we evaluate the
maximum height of the baseball as z,,x = 145 In[sec(0.8734)] = 64.2 meters. Ans.
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For zero drag, from elementary physics formulas, V=V, —gtand z=Vt — gt2/2, we
calculate that

2 2
Vo _ Yoo @ _4432m

t o =——=——=459s and z_ = =
max height g 981 max 2g 2(981)

Thus drag on the baseball reduces the maximum height by 38%. [For this problem I
assumed a baseball of diameter 7.62 cm, with a drag coefficient Cp = 0.36.]

1.21 The dimensionless Grashof number, Gr, is a combination of density p, viscosity 4,
temperature difference AT, length scale L, the acceleration of gravity g, and the
coefficient of volume expansion f, defined as B = (—=1/p)(do/JT),. If Gr contains both g
and f in the numerator, what is its proper form?

Solution: Recall that {1/p} = {LZ/T } and eliminates mass dimensions. To eliminate tem-
perature, we need the product { SAT} = {1}. Then {g} eliminates {T}, and L’ cleans it all up:

Thus the dimensionless Gr = /)2gﬂATL3/,u2 Ans.

1.22*%  According to the theory of Chap. 8,

as a uniform stream approaches a cylinder

of radius R along the line AB shown in u

Fig. P1.22, —0 < x < -R, the velocities are >

u=U_(1-R*/x%); v=w=0
Fig. P1.22

Using the concepts from Ex. 1.5, find (a) the maximum flow deceleration along AB; and
(b) its location.

Solution: We see that u slows down monotonically from U., at A to zero at point B,
x = —R, which is a flow “stagnation point.” From Example 1.5, the acceleration (du/dt) is

2 2 2
dt Jdt dx X X R\ ¢ R
This acceleration is negative, as expected, and reaches a minimum near point B, which is
found by differentiating the acceleration with respect to x:

d (du roen D X
—— =0 if §"=—, or —|udeca. =—1.291 Ans. (b
dx[ dtj =% ot e (b)

2
= —0.372k Ans. (a)
R

min

Substituting { =—1.291 into (du/dt) gives ((11—11
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A plot of the flow deceleration along line AB is shown as follows.

fal
A4

'l '
L] L]

-3 -2.5 -2 1.5 - 1 -0.5 _g.054
-0.14
-0.154

]
."-.: / -0.2 1
. J 0.254
/
/

-0.3
-0.35 -
-0.4

Ll

—0.372---;'---" aR/VooA2

—

1.23E This is an experimental home project, finding the flow rate from a faucet.

1.24  Consider carbon dioxide at 10 atm and 400°C. Calculate p and ¢, at this state and
then estimate the new pressure when the gas is cooled isentropically to 100°C. Use two
methods: (a) an ideal gas; and (b) the Gas Tables or EES.

Solution: From Table A.4, for CO,, k = 1.30, and R = 189 mz/(sz-K). Convert pressure
from p; = 10 atm = 1,013,250 Pa, and 7| = 400°C = 673 K. (a) Then use the ideal gas laws:

P 1,0213,2250Pa . k_g3 |

RT, (189 m¥s*K)(673K) m
c = kR = 1.3(189) =819 o Ans. (a)
PTk-1 13-1 ke K

For an ideal gas cooled isentropically to 7, = 100°C = 373 K, the formula is

l(k—1) 1.3/(1.3-1)

b (Q) =P (373]{ j =0.0775, or: p,=79KkPa Ans. (a)

12 T, 1013 kPa \673K

For EES or the Gas Tables, just program the properties for carbon dioxide or look them up:
p =798 kg/m’; ¢, =1119 J(kgK); p,=43kPa Ans. (b)

(NOTE: The large errors in “ideal” ¢, and *“ideal” final pressure are due to the sharp drop-
off in k of CO, with temperature, as seen in Fig. 1.3 of the text.)




Chapter 1 o Introduction 13

1.25 A tank contains 0.9 m’ of helium at 200 kPa and 20°C. Estimate the total mass of
this gas, in kg, (a) on earth; and (b) on the moon. Also, (c) how much heat transfer, in
M, is required to expand this gas at constant temperature to a new volume of 1.5 m’?

Solution: First find the density of helium for this condition, given R = 2077 m’/(s>K)
from Table A-4. Change 20°C to 293 K:

_p _ 200000 N/m*
R, T (2077 J/kgK)(293 K)

P ~0.3286 kg/m’

Now mass is mass, no matter where you are. Therefore, on the moon or wherever,
My, = Py = (0.3286 kg/m?®)(0.9 m*) = 0.296 kg  Ans. (a,b)

For part (c), we expand a constant mass isothermally from 0.9 to 1.5 m’. The first law of
thermodynamics gives

andded —dw,

by gas = AdE=mc AT =0 since T, =T, (isothermal)

Then the heat added equals the work of expansion. Estimate the work done:
dv
v

2 2 2
W, =[pdv=| %RT dv=mRT | = =mRT In,/v)),
1 1 1

or: W, =(0.296 kg)(2077 J/kg-K)(293 K)In(1.5/0.9) = Q,, = 92000  Ans. (c)

1.26 A tire has a volume of 3.0 ft’ and a ‘gage’ pressure of 32 psi at 75°F. If the
ambient pressure is sea-level standard, what is the weight of air in the tire?

Solution: Convert the temperature from 75°F to 535°R. Convert the pressure to psf:
p = (32 Ibf/in?)(144 in?/ft*) + 2116 Ibf/ft* = 4608 + 2116 = 6724 1bf/ft?
From this compute the density of the air in the tire:

P 6724 Ibf/ft?
RT (1717 ftIbf/slug-°R)(535°R)

Duic =0.00732 slug/ft’

Then the total weight of air in the tire is

W,.. = pgv =(0.00732 slug/ft*)(32.2 ft/s*)(3.0 ft’) = 0.707 Ibf  Ans.
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1.27 Given temperature and specific volume data for steam at 40 psia [Ref. 13]:

T, °F: 400 500 600 700 800
v, ft/lbm: 12,624 14.165 15.685 17.195 18.699

Is the ideal gas | law reasonable for this data? If so, find a least-squares value for the gas
constant R in m*/(s> -K) and compare with Table A-4.

Solution: The units are awkward but we can compute R from the data. At 400°F,

wge  _PV_(40 Ibf/in®)(144 in*/ft*) (12.624 ft’/Ibm)(32.2 Ibm/slug) _ 57pq fUIbE
WOET (400+459.6)°R slug®R

The metric conversion factor, from the inside cover of the text, is “5.9798”: R ctic =
2721/5.9798 = 455.1 mz/(sz-K). Not bad! This is only 1.3% less than the ideal-gas approxi-
mation for steam in Table A-4: 461 mz/(sz-K). Let’s try all the five data points:

T, °F: 400 500 600 700 800
R, m%(s>K): 455 457 459 460 460

The total variation in the data is only £0.6%. Therefore steam is nearly an ideal gas in
this (high) temperature range and for this (low) pressure. We can take an average value:

~ ZR 458 )
11 g

p =40 psia, 400°F<T <800°F: R

steam

+0.6% Ans.
‘K

With such a small uncertainty, we don’t really need to perform a least-squares analysis,
but if we wanted to, it would go like this: We wish to minimize, for all data, the sum of
the squares of the deviations from the perfect-gas law:

5 2 5
Minimize E = Z(R —pTVI) by dlfferentlatlng —=0= Z2(R PV, j
i=1 i i=1 T;
5
Thus R least-squares B z 40(144) 12. 624 et 18.699 (322)
54 860°R 1260°R

For this example, then, least-squares amounts to summing the (V/T) values and converting
the units. The English result shown above gives Rieyg-squares = 2739 ft-1bf/slug-°R. Convert
this to metric units for our (highly accurate) least-squares estimate:

R =2739/5.9798 = 458 £0.6% J/kg:K Ans.

steam
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1.28 Wet air, at 100% relative humidity, is at 40°C and 1 atm. Using Dalton’s law of
partial pressures, compute the density of this wet air and compare with dry air.

Solution: Change T from 40°C to 313 K. Dalton’s law of partial pressures is

m, m,,

ptot =1 atm = pair + pwater = RaT + RWT
[ (%

_ PV Pw

orr my, =m,+m, = RT R.T

for an ideal gas

where, from Table A-4, R,;. =287 and R, s = 461 m /(s -K). Meanwhile, from Table A-5, at
40°C, the vapor pressure of saturated (100% humid) water is 7375 Pa, whence the partial
pressure of the air is p, = 1 atm — p,, = 101350 — 7375 = 93975 Pa.

Solving for the mixture density, we obtain

MMy P Pe 995 L T3S e 0051110 X8 Ans.
v RT R,T 287(313) 461(313) m’

By comparison, the density of dry air for the same conditions is

p 101350 RE kg

Pryair = RT = 287313) m’

Thus, at 40°C, wet, 100% humidity, air is lighter than dry air, by about 2.7%.

1.29 A tank holds 5 ft’ of air at 20°C and 120 psi (gage). Estimate the energy in ft-1bf
required to compress this air isothermally from one atmosphere (14.7 psia = 2116 psfa).

Solution: Integrate the work of compression, assuming an ideal gas:

2 2

Wl_zz—jpdvz—j mRTdl)=—mRTln b =p,0,1n by
i i v Yy Py

where the latter form follows from the ideal gas law for isothermal changes. For the given
numerical data, we obtain the quantitative work done:

Ibf 134.7
W,,=p,0, 1 (1347 144 j 5ft>) In ( j = 215,000 ft-1bf Ans.
12 = P20y nL J 2 ( ) 47 s ns
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1.30 Repeat Prob. 1.29 if the tank is filled with compressed water rather than air. Why
is the result thousands of times less than the result of 215,000 ft-1bf in Prob. 1.29?

Solution: First evaluate the density change of water. At 1 atm, p, = 1.94 slug/ft3. At
120 psi(gage) = 134.7 psia, the density would rise slightly according to Eq. (1.22):

p 1347 o Y ;
P o220 23001 £ | —3000, solve p =1.940753 slug/ft’,
p, 147 1.94

Hence m = pv=(1.940753)(5 ft3) =9.704 slug

water

The density change is extremely small. Now the work done, as in Prob. 1.29 above, is

2

2 2 2
W, = —I pdv= I pd(mj = I p m (1’0 = pavgmA—'D for a linear pressure rise
1 1 1 P pavg

14.7+134.7 Ibf
Hence W,, z[—3 b j

3
x 144 ] (9.704 slug)(o'ooo753 ft
t

> j =21 ft-1Ibf Ans.
1.9404" slug

[Exact integration of Eq. (1.22) would give the same numerical result.] Compressing
water (extremely small Ap) takes ten thousand times less energy than compressing air,
which is why it is safe to test high-pressure systems with water but dangerous with air.

1.31 The density of water for 0°C < T < 100°C is given in Table A-1. Fit this data to a
least-squares parabola, p = a + bT + cT?, and test its accuracy vis-a-vis Table A-1.
Finally, compute p at T = 45°C and compare your result with the accepted value of p =
990.1 kg/m”.

Solution: The least-squares parabola which fits the data of Table A-1 is:
P (kg/m’) = 1000.6 — 0.06986T — 0.0036014T>, T in°C Ans.

When compared with the data, the accuracy is less than £1%. When evaluated at the
particular temperature of 45°C, we obtain

Pusec = 1000.6 — 0.06986(45) — 0.003601(45)* = 990.2 kg/m®  Ans.

This is excellent accuracy—a good fit to good smooth data.
The data and the parabolic curve-fit are shown plotted on the next page. The curve-fit
does not display the known fact that p for fresh water is a maximum at T = +4°C.
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1.32 A blimp is approximated by a prolate spheroid 90 m long and 30 m in diameter.
Estimate the weight of 20°C gas within the blimp for (a) helium at 1.1 atm; and (b) air at
1.0 atm. What might the difference between these two values represent (Chap. 2)?

Solution: Find a handbook. The volume of a prolate spheroid is, for our data,

v =%7ILR2 :%n(90 m)(15 m)® = 42412 m*

Estimate, from the ideal-gas law, the respective densities of helium and air:

(a) phelium = Pre = 11(101350) =(.1832 k_gg}’
Ry T 2077(293) m
. 101 k

(b) p= Lo = 23Dy 505 =3

R, T 287(293) m
Then the respective gas weights are
Wy, = pHegv:(O.1832 k—%j(%l EZJ(42412 m®)=76000N  Ans. (a)

m S

W, = .20 =(1.205)(9.81)(42412) ~ 501000 N  Ans. (b)

The difference between these two, 425000 N, is the buoyancy, or lifting ability, of the
blimp. [See Section 2.8 for the principles of buoyancy.]
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1.33 Experimental data for density of mercury versus pressure at 20°C are as follows:

p, atm: 1 500 1000 1500 2000
p,kg/mS: 13545 13573 13600 13625 13653

Fit this data to the empirical state relation for liquids, Eq. (1.19), to find the best values of
B and n for mercury. Then, assuming the data are nearly isentropic, use these values to
estimate the speed of sound of mercury at 1 atm and compare with Table 9.1.

Solution: This can be done (laboriously) by the method of least-squares, but we can
also do it on a spreadsheet by guessing, say, n = 4,5,6,7,8 and finding the average B for
each case. For this data, almost any value of n > 1 is reasonably accurate. We select:

Mercury: n=7, B=35000+2% Ans.

The speed of sound is found by differentiating Eq. (1.19) and then taking the square root:

n-1 1/2
d_p ~Po n(B+1) (ﬁ) . hence a|p=p ~ [M}
do  p, ° Po

o

it being assumed here that this equation of state is “isentropic.” Evaluating this relation
for mercury’s values of B and n, we find the speed of sound at 1 atm:

1 (7)(35001)(101350 N/m?)
mereury 13545 kg/m’

172
} =1355m/s Ans.

This is about 7% less than the value of 1450 m/s listed in Table 9.1 for mercury.

1.34 Consider steam at the following state near the saturation line: (py, T;) = (1.31 MPa,
290°C). Calculate and compare, for an ideal gas (Table A.4) and the Steam Tables (or the
EES software), (a) the density p;; and (b) the density p, if the steam expands
isentropically to a new pressure of 414 kPa. Discuss your results.

Solution: From Table A.4, for steam, k = 1.33, and R = 461 mz/(sz-K). Convert T} =
563 K. Then,

_P 1’350’2000 Pa =5.05 k_(g; Ans. (a)
RT, (461 m~/s"K)(563 K) m

1/k 1/1.33
Pr_ Py (&J - [M) =0421, or: p,=2.12 k—i Ans. (b)
p 505 \p 1310 kPa m

P1
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For EES or the Steam Tables, just program the properties for steam or look it up:
EESrealsteam: p, =5.23kg/m’ Ans. (a), p,=2.16kg/m’ Ans. (b)

The ideal-gas error is only about 3%, even though the expansion approached the saturation line.

1.35 In Table A-4, most common gases (air, nitrogen, oxygen, hydrogen, CO, NO)
have a specific heat ratio k = 1.40. Why do argon and helium have such high values?
Why does NH; have such a low value? What is the lowest k for any gas that you know?

Solution: In elementary kinetic theory of gases [8], k is related to the number of
“degrees of freedom” of the gas: k = 1 + 2/N, where N is the number of different modes
of translation, rotation, and vibration possible for the gas molecule.

Example: Monotomic gas, N = 3 (translation only), thus k = 5/3
This explains why helium and argon, which are monatomic gases, have k = 1.67.
Example: Diatomic gas, N =5 (translation plus 2 rotations), thus k = 7/5

This explains why air, nitrogen, oxygen, NO, CO and hydrogen have k = 1.40.
But NH; has four atoms and therefore more than 5 degrees of freedom, hence k will
be less than 1.40 (the theory is not too clear what “N” is for such complex molecules).
The lowest k known to this writer is for uranium hexafluoride, 238UF6, which is a very
complex, heavy molecule with many degrees of freedom. The estimated value of k for
this heavy gas is k = 1.06.

1.36  The bulk modulus of a fluid is defined as B = p(dp/dp)s. What are the dimensions
of B? Estimate B (in Pa) for (a) N,O, and (b) water, at 20°C and 1 atm.

Solution: The density units cancel in the definition of B and thus its dimensions are the
same as pressure or stress:

M
B} ={p}={F/L’}= Ans.
{B} ={p} ={F/L"} {LTZ }
(a) For an ideal gas, p = Cpk for an isentropic process, thus the bulk modulus is:
Ideal gas: B= pdi(Cpk) = pkCp*™ =kCp* =kp
Yo

For N, O, from Table A-4, k =1.31, so BNZO =1.31 atm =1.33E5Pa Ans. (a)
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For water at 20°C, we could just look it up in Table A-3, but we more usefully try to
estimate B from the state relation (1-22). Thus, for a liquid, approximately,

d n n
B= pg[po{(B +1)(p/p,)" =B} =n(B+Dp,(p/p,) =n(B+1)p, atl atm
For water, B = 3000 and n = 7, so our estimate is

B =7(3001)p, =21007 atm = 2.13E9Pa  Ans. (b)

water

This is 2.7% less than the value B = 2.19E9 Pa listed in Table A-3.

1.37 A near-ideal gas has M = 44 and ¢, = 610 J/(kg-K). At 100°C, what are (a) its
specific heat ratio, and (b) its speed of sound?

Solution: The gas constant is R = A/M = 8314/44 = 189 J/(kg-K). Then
c, =R/(k=1), or: k=1+R/c, =1+189/610=1.31 Ans. (a) [Itis probably N,O]
With k and R known, the speed of sound at 100°C = 373 K is estimated by

a=+KkRT =+/1.31[189 m2/(s> - K)](373 K) = 304 m/s  Ans. (b)

1.38 In Fig. P1.38, if the fluid is glycerin
at 20°C and the width between plates is
6 mm, what shear stress (in Pa) is required
to move the upper plate at V = 5.5 m/s?
What is the flow Reynolds number if “L” is
taken to be the distance between plates?

Fig. P1.38

Solution: (a) For glycerin at 20°C, from Table 1.4, u= 1.5 N- s/m”. The shear stress is
found from Eq. (1) of Ex. 1.8:

T—ﬂ _ (1.5 Pas)(5.5 m/s)
h (0.006 m)

~1380Pa Ans. (a)
The density of glycerin at 20°C is 1264 kg/m3. Then the Reynolds number is defined by
Eq. (1.24), with L = h, and is found to be decidedly laminar, Re < 1500:

_ pVL _ (1264 kg/m*)(5.5 m/s)(0.006 m)
U 1.5 kg/m-s

Re, =28 Ans. (b)
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1.39 Knowing i = 1.80E=5 Pa-s for air at 20°C from Table 1-4, estimate its viscosity at
500°C by (a) the Power-law, (b) the Sutherland law, and (c) the Law of Corresponding
States, Fig. 1.5. Compare with the accepted value #(500°C) = 3.58E-5 Pa-s.

Solution: First change T from 500°C to 773 K. (a) For the Power-law for air, n = 0.7,
and from Eq. (1.30a),

0.7
p= 41, (T/T,)" = (1.80E—5)(7—73j ~3.55E-5 X2 A (a)
293 m-s

This is less than 1% low. (b) For the Sutherland law, for air, S = 110 K, and from Eq. (1.30b),

1.5 1.5

_ O[(T/TO) (T0+S)} (1.80E—5)[(773/293) (293+110)}
(T+8S) (773+110)
kg

=3.52E-5 —2  Ans. (b)
m-S

This is only 1.7% low. (c) Finally use Fig. 1.5. Critical values for air from Ref. 3 are:
Air: ., =193E-5Pas T, =132 K (“mixture” estimates)

At 773 K, the temperature ratio is T/T. = 773/132 = 5.9. From Fig. 1.5, read w/y. = 1.8.
Then our critical-point-correlation estimate of air viscosity is only 3% low:

1~184, = (1.8)(1.93E-5) ~ 3.5B=5 “& Ans. (¢)
m:-S

1.40 Curve-fit the viscosity data for water in Table A-1 in the form of Andrade’s equation,

U=A exp(gj where T is in °K and A and B are curve-fit constants.

Solution: This is an alternative formula to the log-quadratic law of Eq. (1.31). We have
eleven data points for water from Table A-1 and can perform a least-squares fit to
Andrade’s equation:

Minimize E—i[,u ~AexpB/T)P. thenset “E=0 and ZE=
i PREL JA JB

The result of this minimization is: A = 0.0016 kg/m-s, B = 1903°K. Ans.
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The data and the Andrade’s curve-fit are plotted. The error is 7%, so Andrade’s
equation is not as accurate as the log-quadratic correlation of Eq. (1.31).

2.0#’ T T
n 4
© I O . - Table A1
Oé - Andrade's Equation

1.0 | -
3.

A~ C c P
0 o ' 'l 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

T-°C

1.41 Some experimental values of u for argon gas at 1 atm are as follows:

T, °K: 300 400 500 600 700 800
U, kg/m-s:  2.27E-5 2.85E-5 3.37E-5 3.83E-5 4.25E-5 4.64E-5

Fit these values to either (a) a Power-law, or (b) a Sutherland law, Eq. (1.30a,b).

Solution: (a) The Power-law is straightforward: put the values of x and T into, say,
“Cricket Graph”, take logarithms, plot them, and make a linear curve-fit. The result is:

ToK "7
Power-law fit: u =2.29E-5 Ans. (a)
300K

Note that the constant “2.29E-5" is slightly higher than the actual viscosity “2.27E-5”
at T = 300 K. The accuracy is 1% and would be poorer if we replaced 2.29E-5 by
2.27E-5.

(b) For the Sutherland law, unless we rewrite the law (1.30b) drastically, we don’t
have a simple way to perform a linear least-squares correlation. However, it is no trouble
to perform the least-squares summation, E = X[ — 1,(Ti/300)' (300 + S)/(T; + S)]” and
minimize by setting JE/dS = 0. We can try u, = 2.27E-5 kg/m:-s for starters, and it works
fine. The best-fit value of S = 143°K with negligible error. Thus the result is:

)7 _ (T/300)'°(300+ 143 K)
2.27E-5 kg/m:s (T+143 K)

Sutherland law: Ans. (b)
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We may tabulate the data and the two curve-fits as follows:

T, °K: 300 400 500 600 700 800
ux ES, data: 2.27 2.85 3.37 3.83 4.25 4.64
ux ES5, Power-law: 2.29 2.83 3.33 3.80 4.24 4.68
U x ES5, Sutherland: 2.27 2.85 3.37 3.83 4.25 4.64

1.42 Some experimental values of y of helium at 1 atm are as follows:

T, °K: 200 400 600 800 1000 1200
M, kg/m-s:  1.50E-5 243E-5 3.20E-5 3.88E-5 4.50E-5 5.08E-5

Fit these values to either (a) a Power-law, or (b) a Sutherland law, Eq. (1.30a,b).

Solution: (a) The Power-law is straightforward: put the values of x# and T into, say,
“Cricket Graph,” take logarithms, plot them, and make a linear curve-fit. The result is:

T oK "6
Power-law curvefit: . =1.505E-5 Ans. (a)
200K

The accuracy is less than +1%. (b) For the Sutherland fit, we can emulate Prob. 1.41 and
perform the least-squares summation, E = X[y — ,Lto(Ti/200)1'5(200 + S)/(T; + S)]2 and
minimize by setting JE/JS = 0. We can try y, = 1.50E-5 kg/m-s and T, = 200°K for
starters, and it works OK. The best-fit value of S = 95.1°K. Thus the result is:

Htetiom _ (T/200)"°(200+ 95.1°K)
1.50E-5 kg/m-s (T + 95.1°K)

Sutherland law:

+ 4% Ans. (b)

For the complete range 200-1200°K, the Power-law is a better fit. The Sutherland law
improves to £1% if we drop the data point at 200°K.

1.43 Yaws et al. [ref. 34] suggest a 4-constant curve-fit formula for liquid viscosity:
log,, 4 = A+B/T+CT+DT? with T in absolute units.

(a) Can this formula be criticized on dimensional grounds? (b) If we use the formula
anyway, how do we evaluate A,B,C,D in the least-squares sense for a set of N data points?



24 Solutions Manual e Fluid Mechanics, Fifth Edition

Solution: (a) Yes, if you're a purist: A is dimensionless, but B,C,D are not. It would be
more comfortable to this writer to write the formula in terms of some reference
temperature T,:

log,, # = A+B(T,/T)+C(T/T, )+ D(T/T, )2, (dimensionless A,B,C,D)

(b) For least squares, express the square error as a summation of data-vs-formula
differences:

N N
E=Y[A+B/T,+CT, +DT? ~log,o 4, | = 7 for short.

i
i=1 i=l1

Then evaluate JE/JA = 0, JE/JB = 0, JE/JC = 0, and JE/JdD = 0, to give four
simultaneous linear algebraic equations for (A,B,C,D):

=0, Yf/T,=0; XfT,=0; XfT; =0,

Presumably this was how Yaws et al. [34] computed (A,B,C,D) for 355 organic liquids.

1.44 The viscosity of SAE 30 oil may vary considerably, according to industry-agreed
specifications [SAE Handbook, Ref. 26]. Comment on the following data and fit the data
to Andrade’s equation from Prob. 1.41.

T, °C: 0 20 40 60 80 100
Usarzo, kg/m-s: 2.00 0.40 0.11 0.042  0.017  0.0095

Solution: At lower temperatures, 0°C < T < 60°C, these values are up to fifty per cent
higher than the curve labelled “SAE 30 Oil” in Fig. A-1 of the Appendix. However, at 100°C,
the value 0.0095 is within the range specified by SAE for this oil: 9.3 < v< 12.5 mm?/s,
if its density lies in the range 760 < p < 1020 kg/m3, which it surely must. Therefore a
surprisingly wide difference in viscosity-versus-temperature still makes an oil “SAE 30.”
To fit Andrade’s law, y = A exp(B/T), we must make a least-squares fit for the 6 data points
above (just as we did in Prob. 1.41):

6 2
Andrade fit: With E = Z M, — A exp E , then set &—E =0 and &—E =0
=1 T; JA JB
This formulation produces the following results:
k 6245 K
Leastsquares of i versus T: u = 2.35E-10 g exp( ) Ans. (#1)
m-s T°K
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These results (#1) are pretty terrible, errors of £50%, even though they are “least-
squares.” The reason is that ¢ varies over three orders of magnitude, so the fit is biased to
higher L.

An alternate fit to Andrade’s equation would be to plot In(x) versus 1/T (°K) on, say,
“Cricket Graph,” and then fit the resulting near straight line by least squares. The result is:

1 k 5476 K
Least-squares of In(x) versus —  u = 3.31E-9 - exp( ) Ans. (#2)
T m-s T°K
The accuracy is somewhat better, but not great, as follows:
T, °C: 0 20 40 60 80 100

Msagzo, kg/m-s: 2.00 0.40 0.11 0.042  0.017  0.0095
Curve-fit #1: 2.00 0.42 0.108  0.033  0.011 0.0044
Curve-fit #2: 1.68 0.43 0.13 0.046  0.018  0.0078

Neither fit is worth writing home about. Andrade’s equation is not accurate for SAE 30 oil.

1.45 A block of weight W slides down an
inclined plane on a thin film of oil, as in
Fig. P1.45 at right. The film contact area
is A and its thickness h. Assuming a linear

Oil film,

velocity distribution in the film, derive an @ thicknessh
analytic expression for the terminal velocity
V of the block. Fig. P1.45

Solution: Let “x” be down the incline, in the direction of V. By “terminal” velocity we
mean that there is no acceleration. Assume a linear viscous velocity distribution in the
film below the block. Then a force balance in the x direction gives:

YFE =Wsinf-tA=W sine—(,u%JA:maX =0,

hW sin@
HA

or: V, Ans

erminal —

1.46 Find the terminal velocity in Prob. P1.45 if m =6 kg, A =35 cmz, 6= 15°, and the
film is 1-mm thick SAE 30 oil at 20°C.
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Solution: From Table A-3 for SAE 30 oil, £ = 0.29 kg/m-s. We simply substitute these
values into the analytical formula derived in Prob. 1.45:

_hWsing  (0.001 m)(6x9.81 N)sin(15°) 15 m Ans

\%
UA (0.29 kg/m - $)(0.0035 m?) s

1.47 A shaft 6.00 cm in diameter and 40 cm long is pulled steadily at V = 0.4 m/s
through a sleeve 6.02 cm in diameter. The clearance is filled with oil, v= 0.003 m*/s and
SG = 0.88. Estimate the force required to pull the shaft.

Solution: Assuming a linear velocity distribution in the clearance, the force is balanced
by resisting shear stress in the oil:

_ uVzDL
R, -R,

o 1

F=7A =| u— |[(#D.L
wall ( ‘RJ( i )

For the given oil, £ = pv = (0.88 x 998 kg/m’)(0.003 m*/s) = 2.63 N - s/m (or kg/m - s).
Then we substitute the given numerical values to obtain the force:

p_ MVADL _ (263 N-s/m’)(0.4 m/s)7(0.06 m)(0.4 m)
R, —R, (0.0301—0.0300 m)

=795 N Ans.

1.48 A thin moving plate is separated from two fixed plates by two fluids of unequal
viscosity and unequal spacing, as shown below. The contact area is A. Determine (a) the
force required, and (b) is there a necessary relation between the two viscosity values?

¥

Fixed
hl pl
Moving . ———
V, F
I h2 u2
Fixed

Solution: (a) Assuming a linear velocity distribution on each side of the plate, we obtain

F=7,A+T,A= (/ﬁ_erﬂjA Ans. (a)
1 2

The formula is of course valid only for laminar (nonturbulent) steady viscous flow.
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(b) Since the center plate separates the two fluids, they may have separate, unrelated
shear stresses, and there is no necessary relation between the two viscosities.

1.49 An amazing number of commercial and laboratory devices have been developed to
measure fluid viscosity, as described in Ref. 27. Consider a concentric shaft, as in Prob. 1.47,
but now fixed axially and rotated inside the sleeve. Let the inner and outer cylinders have
radii r; and r,, respectively, with total sleeve length L. Let the rotational rate be € (rad/s)
and the applied torque be M. Using these parameters, derive a theoretical relation for the
viscosity u of the fluid between the cylinders.

Solution: Assuming a linear velocity distribution in the annular clearance, the shear stress is

AV Qr;
’Z':lu—:-::ﬂ—
Ar r,—r

This stress causes a force dF = 7dA = 7(r;d@)L on each element of surface area of the inner
shaft. The moment of this force about the shaft axis is dM = r; dF’. Put all this together:
2 3
Qr. 27uQr’L
M = I;;dF: _[rl-,u—r’ riLdHZ—ﬂ’u d
0 o™

o~k =

Solve for the viscosity: u = M(r, - r,.)/ {2ﬂQri3L} Ans.

1.50 A simple viscometer measures the time ¢ for a solid sphere to fall a distance L
through a test fluid of density p. The fluid viscosity u is then given by

- W, ..t if 1> 2pDL
3zDL

where D is the sphere diameter and W, is the sphere net weight in the fluid.

(a) Show that both of these formulas are dimensionally homogeneous. (b) Suppose that a
2.5 mm diameter aluminum sphere (density 2700 kg/m3) falls in an oil of density 875 kg/m3.
If the time to fall 50 cm is 32 s, estimate the oil viscosity and verify that the inequality is valid.

Solution: (a) Test the dimensions of each term in the two equations:

2
(u) = {ﬁ} { Wae ! } = {(ML/T )(T)} = {ﬂ} Yes, dimensions OK.
LT (3z)DL (D(L)(L) LT

3
{t}={T} and {Z’DDL} = {(1)(M/L )(L)(L)} ={T} Yes, dimensions OK. Ans. (a)
L MILT
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(b) Evaluate the two equations for the data. We need the net weight of the sphere in the fluid:

Woet = (Psphere = Pituia) (VoD g = (2700 -875 kg/m?)(9.81 m/s? )(77/6)(0.0025 m)°

=0.000146 N
Then 1= Woel _ (0000146 N)325) _ 0 k8, b)
37DL  37(0.0025 m)(0.5 m) m-s
2pDL _ 2(875 kg/m®)(0.0025 m)(0.5 m)

Check t =32 s compared to
Y7, 0.40 kg/m- s

=5.5s OK, ¢ is greater

1.51 Use the theory of Prob. 1.50 for a shaft 8 cm long, rotating at 1200 r/min, with
r; = 2.00 cm and r, = 2.05 cm. The measured torque is M = 0.293 N-m. What is the fluid
viscosity? If the experimental uncertainties are: L (£0.5 mm), M (£0.003 N-m), Q (£1%),
and 1; and r, (£0.02 mm), what is the uncertainty in the viscosity determination?

Solution: First change the rotation rate to Q = (27760)(1200) = 125.7 rad/s. Then the
analytical expression derived in Prob. 1.50 directly above is

M®R,-R,)  (0.293 N-m)(0.0205—0.0200 m) kg
= 3L I rad = 0.29 E Ans.
27OR; 2;:[125.7 j (0.02 m)*(0.08 m)
S

It might be SAE 30W oil! For estimating overall uncertainty, since the formula involves
five things, the total uncertainty is a combination of errors, each expressed as a fraction:

0.003 0.04
Sy = ——>=0.0102; S, =——=0.08: S, =0.01
M 0.293 AR08 @

S 3 =3S; =3 002 =0.003; S :E: 0.00625
R 20 80

One might dispute the error in AR—here we took it to be the sum of the two (+£0.02-mm)
errors. The overall uncertainty is then expressed as an rms computation [Refs. 30 and 31
of Chap. 1]:

S, =V (S, +Sir +85 +52; +57 |

=[(0.0102) +(0.08)* + (0.01)* +(0.003)? +(0.00625)* ] = 0.082  Ans.
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The total error is dominated by the 8% error in the estimate of clearance, (R, — R;). We
might state the experimental result for viscosity as

loy = 0.29£8.2% = 0.29£0.024 —5 Aps.
m-S

1.52 The belt in Fig. P1.52 moves at steady velocity V and skims the top of a tank of oil
of viscosity #. Assuming a linear velocity profile, develop a simple formula for the belt-
drive power P required as a function of (h, L, V, B, y). Neglect air drag. What power P in
watts is required if the belt moves at 2.5 m/s over SAE 30W oil at 20°C, with L =2 m,
b=60cm, andh=3cm?

[ L a

moving belt, width b

Fig. P1.52

Solution: The power is the viscous resisting force times the belt velocity:
P =701 Apei Voen = (/J %J (bL)V = ﬂvzb% Ans.

(b) For SAE 30W oil, i = 0.29 kg/m-s. Then, for the given belt parameters,

kg-m?

S3

k m 2.0m
P=uV?bLh=|029 ~& (2.5 —J 0.6 m)——2 =73
S 0.03m

=73 W Ans. (b)
m-s

1.53* A solid cone of base r, and initial
angular velocity @, is rotating inside a
conical seat. Neglect air drag and derive a
formula for the cone’s angular velocity Qil 20 h
axt) if there is no applied torque. (n)

Solution: At any radial position r < r, on Fig. P1.53
the cone surface and instantaneous rate @,

d(Torque)=r7 dA,, = r(,u E)(%H Fir j,
h sin@
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4
O s g T
hsin@ 2hsin@

or: Torque M = I
0

We may compute the cone’s slowing down from the angular momentum relation:

dw

3
M=-], I where I (cone) = Emroz, m = cone mass

Separating the variables, we may integrate:

w 4 t 2
5
d_a):_ir,u—r? Idt, or: ®=a, exp —er’t Ans.
o o 2hl, sin6 ; 3mhsin@
1.54* A disk of radius R rotates at Q

angular velocity €2 inside an oil container
of viscosity 4, as in Fig. P1.54. Assuming a
linear velocity profile and neglecting shear
on the outer disk edges, derive an expres-
sion for the viscous torque on the disk.

Id— R —Dl Clearance h

Fig. P1.54

Solution: At any r <R, the viscous shear 7= pQr/h on both sides of the disk. Thus,

d(torque)=dM =2r7 dA, = ZrﬂTQrmtr dr,

R 1Q 4
or: M:47Z'£J'r3dr:u Ans.
h h h

1.55 Apply the rotating-disk viscometer of Prob. 1.54, to the particular case R =5 cm,
h = 1 mm, rotation rate 900 rev/min, measured torque M = 0.537 N-m. What is the fluid
viscosity? If each parameter (M,R,h,Q2) has uncertainty of £1%, what is the overall
uncertainty of the measured viscosity?

Solution: The analytical formula M = 7z;uQR4/h was derived in Prob. 1.54. Convert the
rotation rate to rad/s: = (900 rev/min)(27z rad/rev + 60 s/min) = 94.25 rad/s. Then,

si= hM _ (0.001 m)(0.537 N-m) —0.29 N-s [o kgj Ans.

AOR*  7(94.25 rad/s)(0.05 m)* m?

m-S
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For uncertainty, looking at the formula for 1, we have first powers in h, M, and € and a
fourth power in R. The overall uncertainty estimate [see Eq. (1.44) and Ref. 31] would be

1/2
S, =| St +8% +S5 +(4Sy) |
~[(0.01)* +(0.01)* +(0.01)* +{4(0.0D)}*1"> =0.044 or: +4.4% Ans.

The uncertainty is dominated by the 4% error due to radius measurement. We might
report the measured viscosity as i = 0.29 +4.4% kg/m-s or 0.29 = 0.013 kg/m:-s.

1.56* For the cone-plate viscometer in
Fig. P1.56, the angle is very small, and the
gap is filled with test liquid . Assuming a
linear velocity profile, derive a formula for

the viscosity 4 in terms of the torque M e
and cone parameters.

Fig. P1.56

Solution: For any radius r <R, the liquid gap is h =r tané. Then

d(Torque):dM:TdAWr:(/J L j(Zﬂ'r dr )r, or

rtan@ cosf@
3 .
27:!2/,1 J» dr = ZﬂQuR Do u= M sm30 s,
sin@ 3sin@ 27QR

1.57 Apply the cone-plate viscometer of Prob. 1.56 above to the special case R = 6 cm,
6=3°, M =0.157 N-m, and a rotation rate of 600 rev/min. What is the fluid viscosity? If
each parameter (M,R,€2,6) has an uncertainty of 1%, what is the uncertainty of x?

Solution: We derived a suitable linear-velocity-profile formula in Prob. 1.56. Convert
the rotation rate to rad/s: = (600 rev/min)(27zrad/rev + 60 s/min) = 62.83 rad/s. Then,

_ 3Ms1n39: 3(0.157 N-m)sin(3°) —029 N-Zs [O kgj Ans.
270QR°  27(62.83 rad/s)(0.06 m) m

m-S

For uncertainty, looking at the formula for &, we have first powers in 6, M, and  and a
third power in R. The overall uncertainty estimate [see Eq. (1.44) and Ref. 31] would be

1/2
S, =[S +Su +Sa+38:)’ |
~[(0.01)* +(0.01)* +(0.01)* +{3(0.01)}*1""?* =0.035, or: #3.5% Ans.

The uncertainty is dominated by the 3% error due to radius measurement. We might
report the measured viscosity as @ = 0.29 + 3.5% kg/m-s or 0.29 £ 0.01 kg/m:-s.
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1.58 The laminar-pipe-flow example of Prob. 1.14 leads to a capillary viscometer [27],
using the formula ¢ = er04Ap/(8LQ). Given r,=2 mm and L = 25 cm. The data are

Q, m’/hr: 0.36 0.72 1.08 1.44 1.80
Ap, kPa: 159 318 477 1274 1851

Estimate the fluid viscosity. What is wrong with the last two data points?
Solution: Apply our formula, with consistent units, to the first data point:

4 4 2
_miAp _ 2(0.002 m)* (159000 N/m*) _ N_zs

Ap =159 kPa: 3
8LQ  8(0.25 m)(0.36/3600 m™/s) m

Do the same thing for all five data points:

Ap, kPa: 159 318 477 1274 1851
U, N-s/m’: 0.040 0.040 0.040 0.080(7) 0.093(7) Ans.

The last two estimates, though measured properly, are incorrect. The Reynolds number of the
capillary has risen above 2000 and the flow is turbulent, which requires a different formula.

1.59 A solid cylinder of diameter D, length L, density py falls due to gravity inside a tube of
diameter D,,. The clearance, (D, —D) <« D, is filled with a film of viscous fluid (p,u). Derive
a formula for terminal fall velocity and apply to SAE 30 oil at 20°C for a steel cylinder with
D=2cm,D,=2.04 cm, and L = 15 cm. Neglect the effect of any air in the tube.

Solution: The geometry is similar to Prob. 1.47, only vertical instead of horizontal. At
terminal velocity, the cylinder weight should equal the viscous drag:

/)
a =0 XF =—W+Drag=—peg—DL+| u— |7 DL,
g ETAEY [ﬂ (DO—D)/J

gD(D, -D)

or: V= P Ans.
8u

For the particular numerical case given, Pge = 7850 kg/m3. For SAE 30 oil at 20°C,
M1 =0.29 kg/m-s from Table 1.4. Then the formula predicts

v _PeD(D,=D) _ (7850 ke/m’)(9.81 mis’)(0.02 m)(0.0204—0.02 m)
terminal 8/1 8(0.29 kg/m *S)
=0.265 m/s Ans.
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1.60 A highly viscous (non-turbulent) fluid fills the gap between two long concentric
cylinders of radii a and b > a, respectively. If the outer cylinder is fixed and the inner
cylinder moves steadily at axial velocity U, the fluid will move at the axial velocity:

L _Ulnbir)
© In(bla)

See Fig. 4.2 for a definition of the velocity component v,. Sketch this velocity distribution
between the cylinders and comment. Find expressions for the shear stresses at both the
inner and outer cylinder surfaces and explain why they are different.

Solution: Evaluate the shear stress at each cylinder by the Newtonian law, Eq. (1.23):

Tinner: i Uln(b/r) - IUU (lj - ﬂU Ans.
dr| In(bla) In(b/a)\r ),_, aln(bla)

., @ UG | uU (1} _uU

M dr | In(bla) | Inbla)\r)._, bIn(bla)

They are not the same because the outer cylinder area is larger. For equilibrium, we need
the inner and outer axial forces to be the same, which means %,,..d = Tyerb-

A sketch of v,(r), from the logarithmic formula above, is shown for a relatively wide
annulus, a/b = 0.8. The velocity profile is seen to be nearly linear.

1

08 [

06 \
>' 04

0.2

0 .
058 0.85 0.9 0.95 1
r/b

1.61 An air-hockey puck has m = 50 g and D = 9 cm. When placed on a 20°C air
table, the blower forms a 0.12-mm-thick air film under the puck. The puck is struck
with an initial velocity of 10 m/s. How long will it take the puck to (a) slow down to 1 m/s;
(b) stop completely? Also (c) how far will the puck have travelled for case (a)?

Solution: For air at 20°C take 4 = 1.8E-5 kg/m-s. Let A be the bottom area of the
puck, A = aD*/4. Let x be in the direction of travel. Then the only force acting in the
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x direction is the air drag resisting the motion, assuming a linear velocity distribution in
the air:

> F, =-7A= —,u%A = m(il—\t/, where h = air film thickness

Separate the variables and integrate to find the velocity of the decelerating puck:

\% t
av_ —KJ. dt, or V=Ve ™ whereK = HA
v, vV 0 mh

Integrate again to find the displacement of the puck:

t
X = det:&[l—e‘Kt]
; K

Apply to the particular case given: air, 4= 1.8E-5 kg/m-s, m =50 g, D=9 cm, h=0.12 mm,
V, = 10 m/s. First evaluate the time-constant K:

1 = MA _ (L8E-S kg/m -5)[(7r/4)(0.09 m)°]
“mh  (0.050 kg)(0.00012 m)

~0.0191 s~

(a) When the puck slows down to 1 m/s, we obtain the time:
V=lms=Ve X =10ms)e @ s or t=121s Ans. (a)

(b) The puck will stop completely only when eX'=0,0r: t=co Ans. (b)
(c) For part (a), the puck will have travelled, in 121 seconds,
10 m/s

o1 T [1-e @OPVEDT< 472 m  Ans. (0)
. S

V. Kt
x=—2(1-e )=
K )

This may perhaps be a little unrealistic. But the air-hockey puck does accelerate slowly!

1.62 The hydrogen bubbles in Fig. 1.13 have D = 0.01 mm. Assume an “air-water”
interface at 30°C. What is the excess pressure within the bubble?

Solution: At 30°C the surface tension from Table A-1 is 0.0712 N/m. For a droplet or
bubble with one spherical surface, from Eq. (1.32),

Ay = 2Y _ 2(0.0712 N/m)
R (SE-6m)

~28500 Pa Ans.
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1.63 Derive Eq. (1.37) by making a ApdA
force balance on the fluid interface in

YdL2
Fig. 1.9c. YdL1

Solution: The surface tension forces

YdL1 and YdL2 have a slight vertical YdL2
component. Thus summation of forces in

the vertical gives the result YdL1

S F =0=2YdL, sin(d6,12) Fig. 1.9¢

+2YdL, sin(d6,/2)—ApdA
But dA = dL;dL, and sin(d@2) = d@/2, so we may solve for the pressure difference:

apoy 00 A0, (00, a0\ (1 1)
dL,dL, dL, dL, R, R,

1.64 A shower head emits a cylindrical jet of clean 20°C water into air. The pressure
inside the jet is approximately 200 Pa greater than the air pressure. Estimate the jet
diameter, in mm.

Solution: From Table A.5 the surface tension of water at 20°C is 0.0728 N/m. For
a liquid cylinder, the internal excess pressure from Eq. (1.31) is Ap = Y/R. Thus, for
our data,

Ap =Y/R =200 N/m* = (0.0728 N/m)/R,
solve R=0.000364 m, D=0.00073 m Ans.

1.65 The system in Fig. P1.65 is used to

estimate the pressure pl in the tank by T d=1mm
measuring the 15-cm height of liquid in 15 cm pl
the 1-mm-diameter tube. The fluid is at —
60°C. Calculate the true fluid height in _L B

the tube and the percent error due to 60°C

capillarity if the fluid is (a) water; and
(b) mercury. Fig. P1.65
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Solution: This is a somewhat more realistic variation of Ex. 1.9. Use values from that
example for contact angle 6:
(a) Water at 60°C: y= 9640 N/m3, 0=0°:

_4Y cos®  4(0.0662 N/m)cos(0°)
yD (9640 N/m>)(0.001 m)

or: Ahy=15.0-2.75 cm = 12.25 cm (+22% error) Ans. (a)

h =0.0275 m,

(b) Mercury at 60°C: y= 132200 N/m’, = 130°:

_4Ycos®  4(0.47 N/m)cos 130°
yD (132200 N/m?)(0.001 m)
=15.0+091=15.91cm(—6%error) Ans. (b)

h =-0.0091 m,

or: Ah

true

1.66 A thin wire ring, 3 cm in diameter, is lifted from a water surface at 20°C. What is
the lift force required? Is this a good method? Suggest a ring material.

Solution: In the literature this ring-pull device is called a DuNouy Tensiometer. The
forces are very small and may be measured by a calibrated soft-spring balance.
Platinum-iridium is recommended for the ring, being noncorrosive and highly wetting
to most liquids. There are two surfaces, inside and outside the ring, so the total force
measured is

F=2(YzD)=2YzD

This is crude—commercial devices recommend multiplying this relation by a correction
factor f= O(1) which accounts for wire diameter and the distorted surface shape.
For the given data, Y = 0.0728 N/m (20°C water/air) and the estimated pull force is

F=27(0.0728 N/m)(0.03 m) = 0.0137 N Ans.

For further details, see, e.g., F. Daniels et al., Experimental Physical Chemistry, 7th ed.,
McGraw-Hill Book Co., New York, 1970.

1.67 A vertical concentric annulus, with outer radius r, and inner radius r;, is lowered
into fluid of surface tension Y and contact angle € < 90°. Derive an expression for the
capillary rise 4 in the annular gap, if the gap is very narrow.
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' Y
...... 1\—’<j!:>\_JV
G LR

b

Solution: For the figure above, the force balance on the annular fluid is

N—

i
!
!
|

Y cos@Q2rr, +2rr) = pg7r(r02 —rz)h

Cancel where possible and the result is

h=2Y cosO/{pg(r,-r;)} Ans.

1.68* Analyze the shape n(x) of the
water-air interface near a wall, as shown.
Assume small slope, R™! = dzn/dxz. The
pressure difference across the interface is
Ap = pgn, with a contact angle € at x =0
and a horizontal surface at X = o. Find an
expression for the maximum height 4.

Fig. P1.68

Solution: This is a two-dimensional surface-tension problem, with single curvature. The
surface tension rise is balanced by the weight of the film. Therefore the differential equation is

Y _d’n (dn j
Ap = =—=Y— |l
p=pgn=p=Y (dx

This is a second-order differential equation with the well-known solution,
n =C, exp[Kx]+C, exp[-Kx], K=4/(pg/Y)

To keep 17 from going infinite as X = oo, it must be that C; = 0. The constant C, is found
from the maximum height at the wall:

M.o=h=C, exp(0), hence C, =h

Meanwhile, the contact angle shown above must be such that,

0 _cot(6)=—hK, thush =27
dx K
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The complete (small-slope) solution to this problem is:
n= hexp[—(pg/Y)]j2 x], where h= (Y/pg)”2 cotd Ans.

The formula clearly satisfies the requirement that 7= 0 if x = c. It requires “small slope”
and therefore the contact angle should be in the range 70° < < 110°.

1.69 A solid cylindrical needle of diameter
d, length L, and density p, may “float” on a
liquid surface. Neglect buoyancy and assume
a contact angle of 0°. Calculate the maxi-
mum diameter needle able to float on the
surface.

Fig. P1.69

Solution: The needle “dents” the surface downward and the surface tension forces are
upward, as shown. If these tensions are nearly vertical, a vertical force balance gives:

SF,=0=2YL-pgTd’L, or dp = o0 Ans. (a)
4 7pg
(b) Calculate d,,,, for a steel needle (SG = 7.84) in water at 20°C. The formula becomes:

d,. = |2X - SOOPRM) 000156 m =1.6 mm  Ans. (b)
pg 7(7.84 X 998 kg/m~)(9.81 m/s”)

1.70 Derive an expression for the capillary-
height change h, as shown, for a fluid of
surface tension Y and contact angle 6 be-
tween two parallel plates W apart. Evaluate
h for water at 20°C if W = 0.5 mm.

Solution: With b the width of the plates
into the paper, the capillary forces on each

wall together balance the weight of water Fig. P1.70
held above the reservoir free surface:
pgWhb =2(Ybcosd), or: h~23%0 4.

pgW
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For water at 20°C, Y = 0.0728 N/m, pg = 9790 N/m3, and 0 = 0°. Thus, for W = 0.5 mm,

2(0.0728 N/m)cos 0°

= =0.030 m=30 mm Ans.
(9790 N/m? )(0.0005 m)

1.71*% A soap bubble of diameter D; coalesces with another bubble of diameter D, to
form a single bubble D5 with the same amount of air. For an isothermal process, express
Dj; as a function of Dy, D,, p.m, and surface tension Y.

Solution: The masses remain the same for an isothermal process of an ideal gas:
m; +m, = pU; + 0,0, =My = P3Us,
(pa +4Y/r1j(£ij+(pa +4Y/r2)(£ng :(pa +4Y/r3j(£ng
RT 6 RT 6 RT 6
The temperature cancels out, and we may clean up and rearrange as follows:
p.D} +8YD] =(p,D; +8YD3 ) +(p,D;] +8YD] ) Ans.

This is a cubic polynomial with a known right hand side, to be solved for Ds.

1.72 Early mountaineers boiled water to estimate their altitude. If they reach the top and
find that water boils at 84°C, approximately how high is the mountain?

Solution: From Table A-5 at 84°C, vapor pressure p, = 55.4 kPa. We may use this
value to interpolate in the standard altitude, Table A-6, to estimate

z=4800 m Ans.

1.73 A small submersible moves at velocity V in 20°C water at 2-m depth, where
ambient pressure is 131 kPa. Its critical cavitation number is Ca = 0.25. At what
velocity will cavitation bubbles form? Will the body cavitate if V = 30 m/s and the
water is cold (5°C)?

Solution: From Table A-5 at 20°C read p, = 2.337 kPa. By definition,

2(p, —p,) _ 2(131000-2337)
pV? (998 kg/m*)V?

solve V

crit

=32.1m/s Ans. (a)
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If we decrease water temperature to 5°C, the vapor pressure reduces to 863 Pa, and the
density changes slightly, to 1000 kg/m3. For this condition, if V =30 m/s, we compute:

Ca = 2(131000-863) _ 0.

289
(1000)(30)*

This is greater than 0.25, therefore the body will not cavitate for these conditions. Ans. (b)

1.74 A propeller is tested in a water tunnel at 20°C (similar to Fig. 1.12a). The lowest
pressure on the body can be estimated by a Bernoulli-type relation, pyi, = po — pV2/2,
where p, = 1.5 atm and V is the tunnel average velocity. If V = 18 m/s, will there be
cavitation? If so, can we change the water temperature and avoid cavitation?

Solution: At 20°C, from Table A-5, p, = 2.337 kPa. Compute the minimum pressure:

2
P =p.—L pV2 = 15101350 Pa)—l(998 Ej(ls 2) = 9650 Pa(??)
2 2 m’ S

The predicted pressure is less than the vapor pressure, therefore the body will cavitate.
[The actual pressure would not be negative; a cavitation bubble would form.]

Since the predicted pressure is negative; no amount of cooling—even to T = 0°C,
where the vapor pressure is zero, will keep the body from cavitating at 18 m/s.

1.75 Oil, with a vapor pressure of 20 kPa, is delivered through a pipeline by equally-
spaced pumps, each of which increases the oil pressure by 1.3 MPa. Friction losses in the
pipe are 150 Pa per meter of pipe. What is the maximum possible pump spacing to avoid
cavitation of the 0il?

Solution: The absolute maximum length L. occurs when the pump inlet pressure is
slightly greater than 20 kPa. The pump increases this by 1.3 MPa and friction drops the
pressure over a distance L until it again reaches 20 kPa. In other words, quite simply,

1.3 MPa =1,300,000 Pa = (150 Pa/m)L, or L, =8660 m Ans.

It makes more sense to have the pump inlet at 1 atm, not 20 kPa, dropping L to about 8 km.

1.76 Estimate the speed of sound of steam at 200°C and 400 kPa, (a) by an ideal-gas
approximation (Table A.4); and (b) using EES (or the Steam Tables) and making small
isentropic changes in pressure and density and approximating Eq. (1.38).
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Solution: (a) For steam, k = 1.33 and R = 461 m’/s™K. The ideal gas formula predicts:
a =~ WKRT) =V{1.33(461 m*/s>-K)(200+273K)} =539 m/s Ans. (a)

(b) We use the formula a = N(dp/dp), =~ V{Ap|J/Apl} for small isentropic changes in p
and p. From EES, at 200°C and 400 kPa, the entropy is s = 1.872 kJ/kg-K. Raise and
lower the pressure 1 kPa at the same entropy. At p = 401 kPa, p = 1.87565 kg/m3. At
p =399 kPa, p=1.86849 kg/mS. Thus Ap=0.00716 kg/mS, and the formula for sound
speed predicts:

a = {Apl./Apl.} =N{(2000 N/m?)/(0.00358 kg/m>)} =529 m/s  Ans. (b)

Again, as in Prob. 1.34, the ideal gas approximation is within 2% of a Steam-Table solution.

1.77 The density of gasoline varies with pressure approximately as follows:

p, atm: 1 500 1000 1500
P Ibm/ft’: 4245 44.85 46.60 47.98

Estimate (a) its speed of sound, and (b) its bulk modulus at 1 atm.

Solution: For a crude estimate, we could just take differences of the first two points:

(500 —1)(2116) Ibf/ft> ft m
a=+(Ap/Ap) = ~3760 —=~1150 — Ans. (a)
piap \/ { (44.85—42.45)/32.2 slug/ft® s s

B~ pa® =[42.45/32.2 slug/ft’](3760 ft/s)* ~ 1.87E7 lfb—zf ~895MPa Ans. (b)
t

For more accuracy, we could fit the data to the nonlinear equation of state for liquids,
Eq. (1.22). The best-fit result for gasoline (data above) is n = 8.0 and B = 900.

Equation (1.22) is too simplified to show temperature or entropy effects, so we
assume that it approximates “isentropic” conditions and thus differentiate:

P _B+1)plp) B, or a>=3 DBFTDP, e
P. dp Py

or, atlatm, ay;=~+n(B+Dp,/po,

The bulk modulus of gasoline is thus approximately:

“B” = pj—;';l1 um=n(B+1)p, = (8.0)(901)(101350 Pa) ~ 731 MPa  Ans. (b)
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And the speed of sound in gasoline is approximately,

a, ., =[(8.0)(901)(101350 Pa)/(680 kg/m*)]"> =1040 =  Ans. (a)
S

1.78 Sir Isaac Newton measured sound speed by timing the difference between
seeing a cannon’s puff of smoke and hearing its boom. If the cannon is on a mountain
5.2 miles away, estimate the air temperature in °C if the time difference is (a) 24.2 s;
(b) 25.1 s.

Solution: Cannon booms are finite (shock) waves and travel slightly faster than sound
waves, but what the heck, assume it’s close enough to sound speed:

Ax _ 5.2(5280)(0.3048)

a) a=
@ At 24.2

=3458 == \1.4(287)T, T=298 K=25°C Ans. (a)
S

(b) a~ X _ 5:2(5280)(0.3048)
At 25.1

=3334 2= 1.4(287)T, T=277K=4°C Ans. (b)
S

1.79 Even a tiny amount of dissolved gas can drastically change the speed of sound of a
gas-liquid mixture. By estimating the pressure-volume change of the mixture, Olson [40]
gives the following approximate formula:

0 _ pgKl
mixture [xpg +(1—x)p1][XKl +(1_x)pg]

where x is the volume fraction of gas, K is the bulk modulus, and subscripts { and g
denote the liquid and gas, respectively. (a) Show that the formula is dimensionally
homogeneous. (b) For the special case of air bubbles (density 1.7 kg/m3 and pressure 150 kPa)
in water (density 998 kg/m3 and bulk modulus 2.2 GPa), plot the mixture speed of sound
in the range 0 < x <0.002 and discuss.

Solution: (a) Since x is dimensionless and K dimensions cancel between the numerator
and denominator, the remaining dimensions are pressure divided by density:

(e} = PP} = [(M/LT?)/(M/LH]2 =[12/T%]"?

=L/T Yes, homogeneous Ans. (a)
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(b) For the given data, a plot of sound speed versus gas volume fraction is as follows:

Sound Speed of a Water-Air Mixture

» 1600
£ 1400 \
= 1200 -

1000 1\

800 1N\
& 600
: 5% i ————
& o

0 0.001 0.002
Volume fraction of air

The difference in air and water compressibility is so great that the speed drop-off is quite sharp.

1.80* A two-dimensional steady velocity field is given by u = x> — yz, v = -2xy. Find
the streamline pattern and sketch a few lines. [Hint: The differential equation is exact.]

Solution: Equation (1.44) leads to the differential equation:

%_d_y_ dx  dy

5 = , or: (2xy)dx+(x* —y?)dy =0
u v o x -y -2xy

As hinted, this equation is exact, that is, it has the form dF = (dF/dx)dx + (JF/dy)dy = 0.
We may check this readily by noting that 9/dy (2xy) = d/Ix(x* — y*) = 2x = J°F/dx dy. Thus
we may integrate to give the formula for streamlines:

F =x’y—y’/3+constant Ans.

This represents (inviscid) flow in a series of 60° corners, as shown in Fig. E4.7a of the
text. [This flow is also discussed at length in Section 4.7.]

1.81 Repeat Ex. 1.13 by letting the velocity components increase linearly with time:

V = Kxti— Kytj+ 0k

Solution: The flow is unsteady and two-dimensional, and Eq. (1.44) still holds:

Streamline: %:d_y’ o 9% __dy
u v Kxt —Kyt
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The terms K and t both vanish and leave us with the same result as in Ex. 1.13, that is,
Idx/x = —Idy/y, or: xy=C Ans.

The streamlines have exactly the same “stagnation flow” shape as in Fig. 1.13.
However, the flow is accelerating, and the mass flow between streamlines is
constantly increasing.

1.82 A velocity field is given by u = Vcosé, v = Vsin6, and w = 0, where V and 6 are
constants. Find an expression for the streamlines of this flow.

Solution: Equation (1.44) may be used to find the streamlines:

dx _dy__dx _ d.y , or: d—yztan9
u v Vcos@ Vsinf dx

Solution: y=(tan@)x+ constant Ans.

The streamlines are straight parallel lines which make an angle € with the x axis. In
other words, this velocity field represents a uniform stream V moving upward at
angle 6.

1.83* A two-dimensional unsteady velocity field is given by u = x(1 +2t), v =y. Find
the time-varying streamlines which pass through some reference point (x,,y,). Sketch
some.

Solution: Equation (1.44) applies with time as a parameter:

B dx o dy dy
u x(1+2t) v y 1+2t

In(x) + constant

or: y= Cx(+20 ,  where C is a constant

In order for all streamlines to pass through y =y, at x = x,, the constant must be
such that:

y=y,(x/x, )" Aps.

Some streamlines are plotted on the next page and are seen to be strongly time-varying.
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1.84* Modify Prob. 1.83 to find the equation of the pathline which passes through the
point (X,, ¥,) at t = 0. Sketch this pathline.

Solution: The pathline is computed by integration, over time, of the velocities:

X _ u=x(1+2t), or: X _ I(l +2t)dt, or: x= xoetthz
dt X
dy _

5= V=Y or J.d7y:J.dt, or: y=y,e'

We have implemented the initial conditions (X, y) = (X,, Y,) at t = 0. [We were very lucky, as
planned for this problem, that u did not depend upon y and v did not depend upon x.] Now
eliminate t between these two to get a geometric expression for this particular pathline:

X =X, exp{In(y/y,) + In* (y/y,)} This pathline is shown in the sketch below.
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1.85-a Report to the class on the achievements of Evangelista Torricelli.

Solution: Torricelli’s biography is taken from a goldmine of information which I did not
put in the references, preferring to let the students find it themselves: C. C. Gillespie (ed.),
Dictionary of Scientific Biography. 15 vols., Charles Scribner’s Sons, New York, 1976.

Torricelli (1608-1647) was born in Faenza, Italy, to poor parents who recognized his
genius and arranged through Jesuit priests to have him study mathematics, philosophy,
and (later) hydraulic engineering under Benedetto Castelli. His work on dynamics of
projectiles attracted the attention of Galileo himself, who took on Torricelli as an
assistant in 1641. Galileo died one year later, and Torricelli was appointed in his place as
“mathematician and philosopher” by Duke Ferdinando II of Tuscany. He then took up
residence in Florence, where he spent his five happiest years, until his death in 1647. In
1644 he published his only known printed work, Opera Geometrica, which made him
famous as a mathematician and geometer.

In addition to many contributions to geometry and calculus, Torricelli was the first to
show that a zero-drag projectile formed a parabolic trajectory. His tables of trajectories
for various angles and initial velocities were used by Italian artillerymen. He was an
excellent machinist and constructed—and sold—the very finest telescope lenses in Italy.

Torricelli’s hydraulic studies were brief but stunning, leading Ernst Mach to proclaim
him the ‘founder of hydrodynamics.” He deduced his theorem that the velocity of efflux
from a hole in a tank was equal to V(2gh), where A is the height of the free surface above
the hole. He also showed that the efflux jet was parabolic and even commented on water-
droplet breakup and the effect of air resistance. By experimenting with various liquids in
closed tubes—including mercury (from mines in Tuscany)—he thereby invented the
barometer. From barometric pressure (about 30 feet of water) he was able to explain why
siphons did not work if the elevation change was too large. He also was the first to
explain that winds were produced by temperature and density differences in the atmo-
sphere and not by “evaporation.”

1.85-b Report to the class on the achievements of Henri de Pitot.

Solution: The following notes are abstracted from the Dictionary of Scientific Biography
(see Prob. 1.85-a).

Pitot (1695—-1771) was born in Aramon, France, to patrician parents. He hated to study
and entered the military instead, but only for a short time. Chance reading of a textbook
obtained in Grenoble led him back to academic studies of mathematics, astronomy, and
engineering. In 1723 he became assistant to Réamur at the French Academy of Sciences
and in 1740 became a civil engineer upon his appointment as a director of public works in
Languedoc Province. He retired in 1756 and returned to Aramon until his death in 1771.

Pitot’s research was apparently mediocre, described as “competent solutions to
minor problems without lasting significance”—not a good recommendation for tenure
nowadays! His lasting contribution was the invention, in 1735, of the instrument which
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bears his name: a glass tube bent at right angles and inserted into a moving stream with
the opening facing upstream. The water level in the tube rises a distance & above the
surface, and Pitot correctly deduced that the stream velocity ~ V(2gh). This is still a
basic instrument in fluid mechanics.

1.85-¢c Report to the class on the achievements of Antoine Chézy.

Solution: The following notes are from Rouse and Ince [Ref. 23].

Chézy (1718-1798) was born in Chalons-sur-Marne, France, studied engineering at the Ecole
des Ponts et Chaussées and then spent his entire career working for this school, finally being
appointed Director one year before his death. His chief contribution was to study the flow in open
channels and rivers, resulting in a famous formula, used even today, for the average velocity:

V = const/AS/P

where A is the cross-section area, S the bottom slope, and P the wetted perimeter, i.e., the
length of the bottom and sides of the cross-section. The “constant” depends primarily on
the roughness of the channel bottom and sides. [See Chap. 10 for further details.]

1.85-d Report to the class on the achievements of Gotthilf Heinrich Ludwig Hagen.

Solution: The following notes are from Rouse and Ince [Ref. 23].

Hagen (1884) was born in Konigsberg, East Prussia, and studied there, having among
his teachers the famous mathematician Bessel. He became an engineer, teacher, and
writer and published a handbook on hydraulic engineering in 1841. He is best known for
his study in 1839 of pipe-flow resistance, for water flow at heads of 0.7 to 40 cm,
diameters of 2.5 to 6 mm, and lengths of 47 to 110 cm. The measurements indicated that
the pressure drop was proportional to Q at low heads and proportional (approximately) to
Q2 at higher heads, where “strong movements” occurred—turbulence. He also showed
that Ap was approximately proportional to D

Later, in an 1854 paper, Hagen noted that the difference between laminar and turbulent
flow was clearly visible in the efflux jet, which was either “smooth or fluctuating,” and in
glass tubes, where sawdust particles either “moved axially” or, at higher Q, “came into
whirling motion.” Thus Hagen was a true pioneer in fluid mechanics experimentation.
Unfortunately, his achievements were somewhat overshadowed by the more widely
publicized 1840 tube-flow studies of J. L. M. Poiseuille, the French physician.

1.85-e Report to the class on the achievements of Julius Weisbach.

Solution: The following notes are abstracted from the Dictionary of Scientific Biography
(see Prob. 1.85-a) and also from Rouse and Ince [Ref. 23].
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Weisbach (1806—1871) was born near Annaberg, Germany, the 8th of nine children
of working-class parents. He studied mathematics, physics, and mechanics at Gottingen
and Vienna and in 1931 became instructor of mathematics at Freiberg Gymnasium. In
1835 he was promoted to full professor at the Bergakademie in Freiberg. He published
15 books and 59 papers, primarily on hydraulics. He was a skilled laboratory worker and
summarized his results in Experimental-Hydraulik (Freiberg, 1855) and in the Lehrbuch
der Ingenieur- und Maschinen-Mechanik (Brunswick, 1845), which was still in print
60 years later. There were 13 chapters on hydraulics in this latter treatise. Weisbach
modernized the subject of fluid mechanics, and his discussions and drawings of flow
patterns would be welcome in any 20th century textbook—see Rouse and Ince [23] for
examples.

Weisbach was the first to write the pipe-resistance head-loss formula in modern form:
htpipey = f(L/D)(V2/2g), where f was the dimensionless ‘friction factor,” which Weisbach
noted was not a constant but related to the pipe flow parameters [see Sect. 6.4]. He was also
the first to derive the “weir equation” for volume flow rate Q over a dam of crest length L:

2 V2 3/2 V2 3/2 2
~2C (20)? [H+—] _[_j ~2C (20)?PH*?
Q 3 w(28) 2 22 3 w(28)

where H is the upstream water head level above the dam crest and C,, is a
dimensionless weir coefficient = O(unity). [see Sect. 10.7] In 1860 Weisbach received
the first Honorary Membership awarded by the German engineering society, the Verein
Deutscher Ingenieure.

1.85-f Report to the class on the achievements of George Gabriel Stokes.

Solution: The following notes are abstracted from the Dictionary of Scientific
Biography (see Prob. 1.85-a).

Stokes (1819-1903) was born in Skreen, County Sligo, Ireland, to a clergical family
associated for generations with the Church of Ireland. He attended Bristol College and
Cambridge University and, upon graduation in 1841, was elected Fellow of Pembroke
College, Cambridge. In 1849, he became Lucasian Professor at Cambridge, a post once
held by Isaac Newton. His 60-year career was spent primarily at Cambridge and resulted
in many honors: President of the Cambridge Philosophical Society (1859), secretary
(1854) and president (1885) of the Royal Society of London, member of Parliament
(1887-1891), knighthood (1889), the Copley Medal (1893), and Master of Pembroke
College (1902). A true ‘natural philosopher,” Stokes systematically explored hydro-
dynamics, elasticity, wave mechanics, diffraction, gravity, acoustics, heat, meteorology,
and chemistry. His primary research output was from 1840-1860, for he later became tied
down with administrative duties.
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In hydrodynamics, Stokes has several formulas and fields named after him:

(1) The equations of motion of a linear viscous fluid: the Navier-Stokes equations.
(2) The motion of nonlinear deep-water surface waves: Stokes waves.

(3) The drag on a sphere at low Reynolds number: Stokes’ formula, F = 3muVD.

(4) Flow over immersed bodies for Re << 1: Stokes flow.

(5) A metric (CGS) unit of kinematic viscosity, v: 1 cm’/s = 1 stoke.

(6) A relation between the 1st and 2nd coefficients of viscosity: Stokes’ hypothesis.
(7) A stream function for axisymmetric flow: Stokes’ stream function [see Chap. 8].

Although Navier, Poisson, and Saint-Venant had made derivations of the equations of
motion of a viscous fluid in the 1820’s and 1830’s, Stokes was quite unfamiliar with the
French literature. He published a completely independent derivation in 1845 of the
Navier-Stokes equations [see Sect. 4.3], using a ‘continuum-calculus’ rather than a
‘molecular’ viewpoint, and showed that these equations were directly analogous to the
motion of elastic solids. Although not really new, Stokes’ equations were notable for
being the first to replace the mysterious French ‘molecular coefficient’ & by the
coefficient of absolute viscosity, 4.

1.85-g Report to the class on the achievements of Moritz Weber.

Solution: The following notes are from Rouse and Ince [Ref. 23].

Weber (1871-1951) was professor of naval mechanics at the Polytechnic Institute of
Berlin. He clarified the principles of similitude (dimensional analysis) in the form used
today. It was he who named the Froude number and the Reynolds number in honor of
those workers. In a 1919 paper, he developed a dimensionless surface-tension (capillarity)
parameter [see Sect. 5.4] which was later named the Weber number in his honor.

1.85-h Report to the class on the achievements of Theodor von Kdrmdn.

Solution: The following notes are abstracted from the Dictionary of Scientific Biography
(see Prob. 1.85-a). Another good reference is his ghost-written (by Lee Edson) auto-
biography, The Wind and Beyond, Little-Brown, Boston, 1967.

Karmén (1881-1963) was born in Budapest, Hungary, to distinguished and well-
educated parents. He attended the Technical University of Budapest and in 1906 received
a fellowship to Gottingen, where he worked for six years with Ludwig Prandtl, who had
just developed boundary layer theory. He received a doctorate in 1912 from Géttingen
and was then appointed director of aeronautics at the Polytechnic Institute of Aachen. He
remained at Aachen until 1929, when he was named director of the newly formed
Guggenheim Aeronautical Laboratory at the California Institute of Technology. Kédrman
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developed CalTech into a premier research center for aeronautics. His leadership spurred
the growth of the aerospace industry in southern California. He helped found the Jet
Propulsion Laboratory and the Aerojet General Corporation. After World War II, Karmén
founded a research arm for NATO, the Advisory Group for Aeronautical Research and
Development, whose renowned educational institute in Brussels is now called the Von
Karman Center.

Karmén was uniquely skilled in integrating physics, mathematics, and fluid mechanics
into a variety of phenomena. His most famous paper was written in 1912 to explain the
puzzling alternating vortices shed behind cylinders in a steady-flow experiment conducted
by K. Hiemenz, one of Kidrmén’s students—these are now called Kdrmdn vortex streets
[see Fig. 5.2a]. Shed vortices are thought to have caused the destruction by winds of the
Tacoma Narrows Bridge in 1940 in Washington State.

Kéarman wrote 171 articles and 5 books and his methods had a profound influence on
fluid mechanics education in the 20th century.

1.85-i Report to the class on the achievements of Paul Richard Heinrich Blasius.

Solution: The following notes are from Rouse and Ince [Ref. 23].

Blasius (1883—-1970) was Ludwig Prandtl’s first graduate student at Gottingen. His
1908 dissertation gave the analytic solution for the laminar boundary layer on a flat plate
[see Sect. 7.4]. Then, in two papers in 1911 and 1913, he gave the first demonstration that
pipe-flow resistance could be nondimensionalized as a plot of friction factor versus
Reynolds number—the first “Moody-type” chart. His correlation, f =0.316 Regm, is still
is use today. He later worked on analytical solutions of boundary layers with variable

pressure gradients.

1.85-j Report to the class on the achievements of Ludwig Prandtl.

Solution: The following notes are from Rouse and Ince [Ref. 23].

Ludwig Prandtl (1875-1953) is described by Rouse and Ince [23] as the father of modern
fluid mechanics. Born in Munich, the son of a professor, Prandtl studied engineering and
received a doctorate in elasticity. But his first job as an engineer made him aware of the lack
of correlation between theory and experiment in fluid mechanics. He conducted research
from 1901-1904 at the Polytechnic Institute of Hanover and presented a seminal paper in
1904, outlining the new concept of “boundary layer theory.” He was promptly hired as
professor and director of applied mechanics at the University of Gottingen, where he
remained throughout his career. He, and his dozens of famous students, started a new
“engineering science” of fluid mechanics, emphasizing (1) mathematical analysis based upon
by physical reasoning; (2) new experimental techniques; and (3) new and inspired flow-
visualization schemes which greatly increased our understanding of flow phenomena.
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In addition to boundary-layer theory, Prandtl made important contributions to
(1) wing theory; (2) turbulence modeling; (3) supersonic flow; (4) dimensional analysis; and
(5) instability and transition of laminar flow. He was a legendary engineering professor.

1.85-k Report to the class on the achievements of Osborne Reynolds.

Solution: The following notes are from Rouse and Ince [Ref. 23].

Osborne Reynolds (1842-1912) was born in Belfast, Ireland, to a clerical family and
studied mathematics at Cambridge University. In 1868 he was appointed chair of
engineering at a college which is now known as the University of Manchester Institute
of Science and Technology (UMIST). He wrote on wide-ranging topics—mechanics,
electricity, navigation—and developed a new hydraulics laboratory at UMIST. He was
the first person to demonstrate cavitation, that is, formation of vapor bubbles due to high
velocity and low pressure. His most famous experiment, still performed in the
undergraduate laboratory at UMIST (see Fig. 6.5 in the text) demonstrated transition of
laminar pipe flow into turbulence. He also showed in this experiment that the viscosity
was very important and led him to the dimensionless stability parameter pVD/u now
called the Reynolds number in his honor. Perhaps his most important paper, in 1894,
extended the Navier-Stokes equations (see Egs. 4.38 of the text) to time-averaged
randomly fluctuating turbulent flow, with a result now called the Reynolds equations of
turbulence. Reynolds also contributed to the concept of the control volume which forms
the basis of integral analysis of flow (Chap. 3).

1.85-1 Report to the class on the achievements of John William Strutt, Lord Rayleigh.

Solution: The following notes are from Rouse and Ince [Ref. 23].

John William Strutt (1842—-1919) was born in Essex, England, and inherited the title
Lord Rayleigh. He studied at Cambridge University and was a traditional hydro-
dynamicist in the spirit of Euler and Stokes. He taught at Cambridge most of his life and
also served as president of the Royal Society. He is most famous for his work (and his
textbook) on the theory of sound. In 1904 he won the Nobel Prize for the discovery of
argon gas. He made at least five important contributions to hydrodynamics: (1) the
equations of bubble dynamics in liquids, now known as Rayleigh-Plesset theory; (2) the
theory of nonlinear surface waves; (3) the capillary (surface tension) instability of jets;
(4) the “heat-transfer analogy” to laminar flow; and (5) dimensional similarity, especially
related to viscosity data for argon gas and later generalized into group theory which
previewed Buckingham’s Pi Theorem. He ended his career as president, in 1909, of the
first British committee on aeronautics.
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1.85-m Report to the class on the achievements of Daniel Bernoulli.

Solution: The following notes are from Rouse and Ince [Ref. 23].

Daniel Bernoulli (1700-1782) was born in Groningen, Holland, his father, Johann,
being a Dutch professor. He studied at the University of Basel, Switzerland, and taught
mathematics for a few years at St. Petersburg, Russia. There he wrote, and published in
1738, his famous treatise Hydrodynamica, for which he is best known. This text
contained numerous ingenious drawings illustrating various flow phenomena. Bernoulli
used energy concepts to establish proportional relations between kinetic and potential
energy, with pressure work added only in the abstract. Thus he never actually derived the
famous equation now bearing his name (Eq. 3.77 of the text), later derived in 1755 by his
friend Leonhard Euler. Daniel Bernoulli never married and thus never contributed
additional members to his famous family of mathematicians.

1.85-n Report to the class on the achievements of Leonhard Euler.

Solution: The following notes are from Rouse and Ince [Ref. 23].

Leonhard Euler (1707-1783) was born in Basel, Switzerland, and studied mathematics
under Johann Bernoulli, Daniel’s father. He succeeded Daniel Bernoulli as professor of
mathematics at the St. Petersburg Academy, leaving there in 1741 to join the faculty of
Berlin University. He lost his sight in 1766 but continued to work, aided by a prodigious
memory, and produced a vast output of scientific papers, dealing with mathematics,
optics, mechanics, hydrodynamics, and celestial mechanics (for which he is most famous
today). His famous paper of 1755 on fluid flow derived the full inviscid equations of fluid
motion (Egs. 4.36 of the text) now called Euler’s equations. He used a fixed coordinate
system, now called the Eulerian frame of reference. The paper also presented, for the first
time, the correct form of Bernoulli’s equation (Eq. 3.77 of the text). Separately, in 1754
he produced a seminal paper on the theory of reaction turbines, leading to Euler’s turbine
equation (Eq. 11.11 of the text).
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FUNDAMENTALS OF ENGINEERING EXAM PROBLEMS: Answers

FE-1.1 The absolute viscosity  of a fluid is primarily a function of
(a) density (b) temperature (c) pressure (d) velocity (e) surface tension

FE-1.2 If a uniform solid body weighs 50 N in air and 30 N in water, its specific gravity is
(@15 () 1.67 (¢)2.5 (d)3.0 (e)5.0
FE-1.3 Helium has a molecular weight of 4.003. What is the weight of 2 cubic meters

of helium at 1 atmosphere and 20°C?
@33N @B)65SN (¢)11.8N (d)23.5N (e)942N

FE-1.4 An oil has a kinematic viscosity of 1.25E—4 m?/s and a specific gravity of 0.80.
What is its dynamic (absolute) viscosity in kg/(m-s)?
(2)0.08 (b)0.10 (c)0.125 (d)1.0 (e)1.25

FE-1.5 Consider a soap bubble of diameter 3 mm. If the surface tension coefficient is
0.072 N/m and external pressure is O Pa gage, what is the bubble’s internal gage pressure?

(a) 24Pa (b)+48Pa (c)+96Pa (d)+192Pa (e)—-192Pa
FE-1.6 The only possible dimensionless group which combines velocity V, body size L,
fluid density p, and surface tension coefficient o is:

(a) Lpo/V  (b) pVL /o (c) poV /L (d) oLV/p (e) pLV/c
FE-1.7 Two parallel plates, one moving at 4 m/s and the other fixed, are separated by
a 5-mm-thick layer of oil of specific gravity 0.80 and kinematic viscosity 1.25E—4 m’/s.

What is the average shear stress in the oil?
(a)80Pa (b)100Pa (c)125Pa (d)160Pa (e) 200 Pa

FE-1.8 Carbon dioxide has a specific heat ratio of 1.30 and a gas constant of 189 J/(kg-°C).
If its temperature rises from 20°C to 45°C, what is its internal energy rise?
(a) 12.6 kJ/kg (b)15.8kJ/kg (c) 17.6kJ/kg (d)20.5kl/kg (e)?25.1 klJ/kg

FE-1.9 A certain water flow at 20°C has a critical cavitation number, where bubbles
form, Ca = 0.25, where Ca = 2(p, — pvap)/(sz). If p, = 1 atm and the vapor pressure is
0.34 psia, for what water velocity will bubbles form?
(a) 12 mi/hr  (b) 28 mi/hr (¢) 36 mi/hr  (d) 55 mi/hr  (e) 63 mi/hr
FE-1.10 A steady incompressible flow, moving through a contraction section of length L,
has a one-dimensional average velocity distribution given by u = Uy(1+2x/L). What is its
convective acceleration at the end of the contraction, x = L?
(@) UL (b) 2U, /L (c) 3U, /L (d) 4U, /L (e) 6U, /L
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COMPREHENSIVE PROBLEMS

C1.1 Sometimes equations can be developed and practical problems solved by knowing
nothing more than the dimensions of the key parameters. For example, consider the heat
loss through a window in a building. Window efficiency is rated in terms of “R value,”
which has units of ft*hr-°F/Btu. A certain manufacturer offers a double-pane window with
R = 2.5 and also a triple-pane window with R = 3.4. Both windows are 3 ft by 5 ft. On
a given winter day, the temperature difference between inside and outside is 45°F.
(a) Develop and equation for window heat loss Q, in time period At, as a function of
window area A, R value, and temperature difference AT. How much heat is lost through the
above (a) double-pane window, or (b) triple-pane window, in 24 hours? (c) Suppose the
building is heated with propane gas, at $1.25 per gallon, burning at 80% -efficiency.
Propane has 90,000 Btu of available energy per gallon. In a 24-hour period, how much
money would a homeowner save, per window, by installing a triple-pane rather than a
double-pane window? (d) Finally, suppose the homeowner buys 20 such triple-pane
windows for the house. A typical winter equals about 120 heating days at AT = 45°F.
Each triple-pane window costs $85 more than the double-pane window. Ignoring interest
and inflation, how many years will it take the homeowner to make up the additional cost of
the triple-pane windows from heating bill savings?

Solution: (a) The function Q = fcn(At,R,A,AT) must have units of Btu. The only
combination of units which accomplishes this is:

_ AtATA (24 hr)(45°F)(3 ft-5 fr)

Ans. Thus Q,,,, = =6480 Btu Ans.(a)

Q 2.5 ft* - hr-°F/Btu

(b) Triple-pane window: use R = 3.4 instead of 2.5 to obtain Q3 p,ne = 4760 Btu  Ans. (b)
(c) The savings, using propane, for one triple-pane window for one 24-hour period is:

ACost = $1.25/gal

__ S125al  (1e0_ 4760 Buy— = $0.030=3 cents Ans. (c)
90000 Btulgal

*OVefficiency
(d) Extrapolate to 20 windows, 120 cold days per year, and $85 extra cost per window:

Pay-back time = $85hwindow =24 years Ans.(d)
(0.030%8/windowlday)(120 days/year)

Not a good investment. We are using ‘$’ and ‘windows’ as “units” in our equations!
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C1.2 When a person ice-skates, the ice surface actually melts beneath the blades, so
that he or she skates on a thin film of water between the blade and the ice. (a) Find an
expression for total friction force F on the bottom of the blade as a function of skater
velocity V, blade length L, water film thickness h, water viscosity 4 and blade width W.
(b) Suppose a skater of mass m, moving at constant speed V,, suddenly stands stiffly with
skates pointed directly forward and allows herself to coast to a stop. Neglecting air
resistance, how far will she travel (on two blades) before she stops? Give the answer X
as a function of (V,, m, L, h, 4, W). (c) Compute X for the case V, =4 m/s, m = 100 kg,
L =30 cm, W =5 mm, and h = 0.1 mm. Do you think our assumption of negligible air
resistance was a good one?

Solution: (a) The skate bottom and the melted ice are like two parallel plates:

r= y%, Fera=*EW  4s. )
(b) Use F = ma to find the stopping distance: w
L
ZFX=—F=—2'UVLW:max=md—V \
(the ‘2’ is for two blades) Melted/h%"&{? %* \\AV

Ice film nf-%

Separate and integrate once to find the
velocity, once again to find the distance
traveled:

V&\

—2,uLWt oo
av _ _J‘ ZﬂLW t. or: V= Voe mh , I = Vomh Ans. (b)
0

(c) Apply our specific numerical values to a 100-kg (!) person:

_ (4.0 m/s)(100 kg)(0.0001 m)
2(1.788E-3 kg/m - 5)(0.3 m)(0.005 m)

=7460 m (1) Ans. (c)

We could coast to the next town on ice skates! It appears that our assumption of
negligible air drag was grossly incorrect.

C1.3 Two thin flat plates are tilted at an angle « and placed in a tank of known surface
tension Y and contact angle 6, as shown. At the free surface of the liquid in the tank, the
two plates are a distance L apart, and of width b into the paper. (a) What is the total
z-directed force, due to surface tension, acting on the liquid column between plates? (b) If
the liquid density is p, find an expression for Y in terms of the other variables.
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Solution: (a) Considering the right side of
the liquid column, the surface tension acts
tangent to the local surface, that is, along the
dashed line at right. This force has
magnitude F = Yb, as shown. Its vertical
component is F cos(8—a), as shown. There
are two plates. Therefore, the total z-directed
force on the liquid column is

Fyerticat = 2Yb cos(8 — @) Ans. (a)

(b) The vertical force in (a) above holds up the entire weight of the liquid column
between plates, which is W = pg{bh(L — h tan)}. Set W equal to F and solve for

U = [pgbh(L — htan®)]/[2 cos(8— )] Ans. (b)

C14 Oil of viscosity ¢ and density p F
drains steadily down the side of a tall, wide .
vertical plate, as shown. The film is fully oil
developed, that is, its thickness & and . film
velocity profile w(x) are independent of *
distance z down the plate. Assume that the i
atmosphere offers no shear resistance to the { W)
film surface.
(a) Sketch the approximate shape of the
velocity profile w(x), keeping in mind the e 3 4
boundary conditions. '

X
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(b) Suppose film thickness d is measured, along with the slope of the velocity profile at
the wall, (dw/dx)y.y, with a laser-Doppler anemometer (Chap. 6). Find an expression for
4 as a function of p, 6, (dw/dx)y,, and g. Note that both w and (dw/dx)y,; will be
negative as shown.

Solution: (a) The velocity profile must
be such that there is no slip (w = 0) at the
wall and no shear (dw/dx = 0) at the film
surface. This is shown at right. Ans. (a)

(b) Consider a freebody of any vertical
length H of film, as at right. Since there is
no acceleration (fully developed film), the
weight of the film must exactly balance the

<4—
shear force on the wall: H
: ' =0
wall T l @W '/

Solve this equality for the fluid viscosity:

o

dw
(Hb)’ Twan =— M

W=pg(HOb)=1, —
dx

vall

-pgo
P8 4
H= awldx) ns. (b)

wall

C1.5 Viscosity can be measured by flow through a thin-bore or capillary tube if the
flow rate is low. For length L, (small) diameter D <« L, pressure drop Ap, and (low)
volume flow rate Q, the formula for viscosity is u = D4Ap/(CLQ), where C is a
constant. (a) Verify that C is dimensionless. The following data are for water flowing
through a 2-mm-diameter tube which is 1 meter long. The pressure drop is held
constant at Ap = 5 kPa.

T, °C: 10.0 40.0 70.0
Q,L/min: 0.091 0.179  0.292

(b) Using proper SI units, determine an average value of C by accounting for the variation
with temperature of the viscosity of water.

Solution: (a) Check the dimensions of the formula and solve for {C}:

{}_{ﬂi}_ D*'Ap| | L'(ML'T™) _{ M'}
B=1Tr (™ cLo | ey my| \Lricy)

therefore {C}={1} Dimensionless Ans. (a)
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(b) Use the given data, with values of .., from Table A.1, to evaluate C, with L =1 m,
D = 0.002 m, and Ap = 5000 Pa. Convert the flow rate from L/min to m’/s.

T, °C: 10.0 40.0 70.0
0, m’/s: 1.52E-6  2.98E-6  4.87E—6
Uyyaters KE/M-S: 1.307E-3  0.657E-3  0.405E-3
C=D*Ap/(ULQ): 403 40.9 40.6

The estimated value of C =40.6 £ 0.3. The theoretical value (Chap. 4) is C = 128/7=40.74.

C1.6 The rotating-cylinder viscometer in Fig. C1.6 shears the fluid in a narrow
clearance, Ar, as shown. Assume a linear velocity distribution in the gaps. If the driving
torque M is measured, find an expression for ¢ by (a) neglecting, and (b) including the
bottom friction.

Solution: (a) The fluid in the annular region has the same shear stress analysis as
Prob. 1.49:

2 3
QR QR’L
M= J.RdF: j(R)(r)dA Oj R(ﬂEJRL do =27 ="
MAR
or: =—— Ans.(a
a 27QR3L (@)

(b) Now add in the moment of the (variable) shear stresses on the bottom of the cylinder:

R
Qr Q
M =|rrdA= ( —j 2nrd |
bottom I r 6[ r IUAR rar \Tj '
2mu® . 220uR -z 1\:/11351015
=—— | rdr=————
Oj 4AR —
3 4 L .
Thus Mt = 27Z£21UR L + 27ZQ‘UR thd
ota AR 4AR cylinder
Solve for u= AfAR Ans. (b) > [ Ar<<R
27QR° (L + R/4) v

Fig. C1.6
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C1.7 SAE 10W oil at 20°C flows past a flat surface, as in Fig. 1.4(b). The velocity
profile u(y) is measured, with the following results:

y, m: 0.0 0.003  0.006 0.009 0.012 0.015
u,m/s: 0.0 1.99 3.94 5.75 7.29 8.46

Using your best interpolating skills, estimate the shear stress in the oil (a) at the wall (y = 0);
and (b) at y =15 mm.

Solution: For SAE10W oil, from Table A.3, read 4 = 0.104 kg/m-s. We need to
estimate the derivative (du/dy) at the two values of y, then compute 7= u(du/dy).

Method 1: Use a Newton-Raphson three-point derivative estimate.
At three equally-spaced points, du/dyl, = (=3u, +4u; —u,)/(2Ay). Thus

(a) at'y =0: du/dyl,_o=[~3(0.00) +4(1.99) — (3.94)}/(2{0.003}) =670 5"
Then 7= u(du/dy)=(670 s™)(0.104 kg/m-s) =70 Pa  Ans. (a)
(b) aty =0.015 m: du/dyl,_o=[3(8.46)— 4(7.29) +(5.75))(2{0.003}) =328 5"
Then 7= u(du/dy)= (328 s™)(0.104 kg/m-s) =34 Pa  Ans. (b)

Method 2: Type the six data points into Excel and run a cubic “trendline” fit. The result is
u = 656.2y +4339.8y* —699163y°

Differentiating this polynomial at y=0 gives du/dy =656.2s™', 7~68 Pa Ans. (a)
Differentiating this polynomial at y =0.015 gives du/dy =314 s™, 7=33Pa Ans. (b)

C1.8 A mechanical device, which uses the rotating cylinder of Fig. C1.6, is the Stormer
viscometer [Ref. 27 of Chap. 1]. Instead of being driven at constant €2, a cord is wrapped
around the shaft and attached to a falling weight W. The time ¢ to turn the shaft a given number
of revolutions (usually 5) is measured and correlated with viscosity. The Stormer formula is

t = Au/(W — B)

where A and B are constants which are determined by calibrating the device with a known
fluid. Here are calibration data for a Stormer viscometer tested in glycerol, using a weight
of 50 N:

U, kg/m-s: 0.23 0.34 0.57 0.84 1.15
1, sec: 15 23 38 56 77
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(a) Find reasonable values of A and B to fit this calibration data. [Hint: The data are not
very sensitive to the value of B.] (b) A more viscous fluid is tested with a 100-N weight
and the measured time is 44 s. Estimate the viscosity of this fluid.

Solution: (a) The data fit well, with a standard deviation of about 0.17 s in the value of
t, to the values

A=3000 and B=3.5 Ans. (a)

(b) With a new fluid and a new weight, the values of A and B should nevertheless be
the same:

r=dds= M S000U o for ph, i =142 8 Ans. (b)

W—B 100N-35 mes




Chapter 2 - Pressure Distribution
in a Fluid

2.1 For the two-dimensional stress field O'yy
in Fig. P2.1, let I

Oy =3000 psf o, =2000 psf

Gxx T ny
O,y =500 psf e A ?_.
30° el Cyx

Find the shear and normal stresses on plane

: o c
AA cutting through at 30°. Xy S :
X
Solution: Make cut “AA” so that it just y Yo
. . yy
hits the bottom right corner of the element. .
Fig. P2.1

This gives the freebody shown at right.
Now sum forces normal and tangential to A o
side AA. Denote side length AA as “L.” ‘

ZF,aa =0=0aL
—(3000sin30+500cos30)L sin 30 Lcos30

. 500
—(2000c0s30+500sin30)L cos 30
( : 500 ¥ 2000

Solve for o, = 2683 1bf/ft> Ans. (a)

Lsin30

2 F sa =0=17,,L—(3000c0s30-500sin30)L sin 30 — (500 cos 30 — 2000 sin 30)L cos 30
Solve for 7,, =683 1bf/ft> Ans. (b)

2.2 For the stress field of Fig. P2.1, change the known data to g, = 2000 psf, gy, = 3000 psf,
and o,(AA) = 2500 pst. Compute 0, and the shear stress on plane AA.

Solution: Sum forces normal to and tangential to AA in the element freebody above,
with 0,(AA) known and &, unknown:

2 F, aa =2500L - (0, cos30° +20005sin30°)Lsin 30°
—(0,, sin30°+3000cos 30°)L cos 30° =0
Solve for o, =(2500—-500—-2250)/0.866 ~ —289 Ibf/ft>  Ans. (a)
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In like manner, solve for the shear stress on plane AA, using our result for oyy:

2 Fan = TaaL —(2000cos 30°+289sin30°)L sin 30°
+(289¢c0s30°+3000sin 30°)L cos30° =0
Solve for 7,, =938-1515=-577 Ibt/ft>  Ans. (b)

This problem and Prob. 2.1 can also be solved using Mohr’s circle.

2.3 A vertical clean glass piezometer tube has an inside diameter of 1 mm. When a
pressure is applied, water at 20°C rises into the tube to a height of 25 cm. After correcting
for surface tension, estimate the applied pressure in Pa.

Solution: For water, let ¥ = 0.073 N/m, contact angle 8= 0°, and y= 9790 N/m>. The
capillary rise in the tube, from Example 1.9 of the text, is

_2Ycos® _ 2(0.073 N/m)cos(0°)

h =
“r YR (9790 N/m*)(0.0005 m)

=0.030 m

Then the rise due to applied pressure is less by that amount: 7. = 0.25 m — 0.03 m = 0.22 m.
The applied pressure is estimated to be p = Hypees = (9790 N/m3)(0.22 m) =2160 Pa Ans.

2.4 Given a flow pattern with isobars p, — Bz + Cx” = constant. Find an expression
x = fen(z) for the family of lines everywhere parallel to the local pressure gradient Vp.

Solution: Find the slope (dx/dz) of the isobars and take the negative inverse and
integrate:

i(pO—Bz+Cx2):—B+2CX%:O, or: ﬁlpzwmt: B _ -
dz dz dz T 2Cx (dx/dz)gygient
d d —2Cd
Thus d—X |gradiem: ——X, integrate I—X = I B z , x=conste®  Aps.
zZ X

2.5 Atlanta, Georgia, has an average altitude of 1100 ft. On a U.S. standard day, pres-
sure gage A reads 93 kPa and gage B reads 105 kPa. Express these readings in gage or
vacuum pressure, whichever is appropriate.
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Solution: We can find atmospheric pressure by either interpolating in Appendix Table A.6
or, more accurately, evaluate Eq. (2.27) at 1100 ft = 335 m:

_(0.0065 K/m)(335 m)
288.16 K

Bz g/RB 5.26
Pa =Po [1—T—j =(101.35 kPa){l } ~97.4 kPa

Therefore:

Gage A =93 kPa—97.4 kPa = —4.4 kPa (gage) = +4.4 kPa (vacuum)
Gage B=105 kPa—97.4 kPa =+7.6 kPa (gage) Ans.

2.6 Express standard atmospheric pressure as a head, h = p/pg, in (a) feet of ethylene
glycol; (b) inches of mercury; (c) meters of water; and (d) mm of methanol.

Solution: Take the specific weights, y= pg, from Table A.3, divide p,, by ¥:
(a) Ethylene glycol: h = (2116 Ibf/ft*)/(69.7 Ibf/ft’) =~ 30.3 ft  Ans. (a)

(b) Mercury: h = (2116 Ibf/ft*)/(846 Ibf/ft’) = 2.50 ft =~ 30.0 inches Ans. (b)

(c) Water: h= (101350 N/m?)/(9790 N/m’) ~10.35 m Ans. (c)

(d) Methanol: h= (101350 N/m?)/(7760 N/m’) = 13.1 m = 13100 mm  Ans. (d)

2.7 The deepest point in the ocean is 11034 m in the Mariana Tranch in the Pacific. At
this depth Y%eawater = 10520 N/m’. Estimate the absolute pressure at this depth.

Solution: Seawater specific weight at the surface (Table 2.1) is 10050 N/m’. It seems
quite reasonable to average the surface and bottom weights to predict the bottom
pressure:

(11034)=1.136E8 Pa=1121atm Ans.

Pbottom = Po 7abgh =101350+ (wj

2.8 A diamond mine is 2 miles below sea level. (a) Estimate the air pressure at this
depth. (b) If a barometer, accurate to 1 mm of mercury, is carried into this mine, how
accurately can it estimate the depth of the mine?
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Solution: (a) Convert 2 miles = 3219 m and use a linear-pressure-variation estimate:
Then p=p,+yh=101,350Pa+ (12 N/m?)(3219 m) = 140,000 Pa =~ 140 kPa  Ans. (a)
Alternately, the troposphere formula, Eq. (2.27), predicts a slightly higher pressure:

p=p,(1-Bz/T,)’** =(101.3 kPa)[1-(0.0065 K/m)(—3219 m)/288.16 K]**°
=147kPa Ans. (a)
(b) The gage pressure at this depth is approximately 40,000/133,100 = 0.3 m Hg or

300 mm Hg 1 mm Hg or £0.3% error. Thus the error in the actual depth is 0.3% of 3220 m
or about £10 m if all other parameters are accurate. Ans. (b)

2.9 Integrate the hydrostatic relation by assuming that the isentropic bulk modulus,
B = p(db/dp)s, is constant. Apply your result to the Mariana Trench, Prob. 2.7.

Solution: Begin with Eq. (2.18) written in terms of B:

B Ldp g 1 1 g .
dp=—pegdz=—dp, or: —=—-—=|dz=——+—=-—=—, also integrate:
p=-pedz="dp [Z5=-4] = g

P ; PP

P 7 dp
Idszj— to obtain p—p, = B In(p/pn,)
P

Po Po

Eliminate p between these two formulas to obtain the desired pressure-depth relation:

=~ 2.33E9 Pa from Table A.3,

seawater

p=p, —Bh{H%j Ans. () With B

Prency = 101350 (2.33E9) ln[1+ (9'81)(1025)(_“034)}

2.33E9
=1.138E8 Pa= 1123 atm Ans. (b)

2.10 A closed tank contains 1.5 m of SAE 30 oil, 1 m of water, 20 cm of mercury, and
an air space on top, all at 20°C. If pyoiom = 60 kPa, what is the pressure in the air space?

Solution: Apply the hydrostatic formula down through the three layers of fluid:
Pbottom = Pair + }/oilhoil + }/waterhwater + }/mercuryhmercury
or: 60000 Pa=p,, +(8720 N/m?)(1.5 m)+(9790)(1.0 m)+ (133100)(0.2 m)

Solve for the pressure in the air space: p,;, = 10500 Pa Ans.
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2.11 In Fig. P2.11, sensor A reads 1.5 kPa
(gage). All fluids are at 20°C. Determine
the elevations Z in meters of the liquid
levels in the open piezometer tubes B
and C.

Solution: (B) Let piezometer tube B be
an arbitrary distance H above the gasoline-
glycerin interface. The specific weights are
Yir = 12.0 N/M’, Yasoline. = 6670 N/m’, and
Yolycerin = 12360 N/m’. Then apply the
hydrostatic formula from point A to point B:

2m Air

1.5m Gasoline

1m

Fig. P2.11

1500 N/m? +(12.0 N/m*)(2.0 m) +6670(1.5 - H) —6670(Z —H —1.0) = p = 0 (gage)

Solve for Zg=2.73m (23 cm above the gasoline-air interface) Ans. (b)

Solution (C): Let piezometer tube C be an arbitrary distance Y above the bottom. Then

1500 + 12.0(2.0) + 6670(1.5) + 12360(1.0 = Y) — 12360(Z¢c — Y) = pc = 0 (gage)

Solve for Zc=1.93m (93 cm above the gasoline-glycerin interface) Ans. (¢)

2.12 In Fig. P2.12 the tank contains water
and immiscible oil at 20°C. What is h in
centimeters if the density of the oil is
898 kg/m’?

Solution: For water take the density =
998 kg/m3. Apply the hydrostatic relation
from the oil surface to the water surface,
skipping the 8-cm part:

Pam +(898)(g)(h +0.12)
—(998)(2)(0.06+0.12) =p,..,

Solvefor h=0.08 m=8.0cm Ans.

Fig. P2.12
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2.13 In Fig. P2.13 the 20°C water and
gasoline are open to the atmosphere and
are at the same elevation. What is the
height h in the third liquid?

Solution: Take water = 9790 N/m’ and
gasoline = 6670 N/m’. The bottom pressure
must be the same whether we move down
through the water or through the gasoline
into the third fluid:

Solutions Manual e Fluid Mechanics, Fifth Edition

1.5 m

water

gasoline

I m

Liquid, SG=1.60

f

h

v

Fig. P2.13

Protom = (9790 N/m? )(1.5 m)+1.60(9790)(1.0) =1.60(9790)h + 6670(2.5—h)
Solve for h=1.52m Ans.

2.14 The closed tank in Fig. P2.14 is at
20°C. If the pressure at A is 95 kPa
absolute, determine p at B (absolute). What
percent error do you make by neglecting
the specific weight of the air?

Solution: First compute py, = pa/RT =
(95000)/[287(293)] = 1.13 kg/m3, hence y =
(1.13)9.81)=11.1 N/m’. Then proceed around
hydrostatically from point A to point B:

95000 Pa + (11.1 N/m?)(4.0 m)+9790(2.0) —9790(4.0) — (%} (9.81)(2.0)=pg

—_— " 5
. 2m
4 m air
— 4m
2m water +
Fig. P2.14

Solve for pg =75450Pa Accurate answer.

If we neglect the air effects, we get a much simpler relation with comparable accuracy:

95000+9790(2.0)-9790(4.0) = pg = 75420 Pa  Approximate answer.

2.15 In Fig. P2.15 all fluids are at 20°C.
Gage A reads 15 Ibf/in” absolute and gage B
reads 1.25 Ibf/in® less than gage C. Com-
pute (a) the specific weight of the oil; and
(b) the actual reading of gage C in Ibf/in®
absolute.

2 ft Air
1ft

------ Oil A
1ft

2 ft Water

=5
o

Fig. P2.15

_@

A

B

C
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Solution: First evaluate ¥, = (pa/RT)g = [15 x 144/(1717 x 528)](32.2) = 0.0767 Ibf/tt’.
Take %yarer = 62.4 Ibf/ft’. Then apply the hydrostatic formula from point B to point C:

Pp + Vo (1.0 ft) +(62.4)(2.0 ft) = pc = pg +(1.25)(144) pst
Solve for  y,;, =552 Ibf/ft®  Ans. (a)
With the oil weight known, we can now apply hydrostatics from point A to point C:
P =Pa + 2 pgh =(15)(144)+(0.0767)(2.0) +(55.2)(2.0) + (62.4)(2.0)
or: pe=2395 Ibf/ft> =16.6 psi  Ans. (b)

2.16 Suppose one wishes to construct a barometer using ethanol at 20°C (Table A-3) as
the working fluid. Account for the equilibrium vapor pressure in your calculations and
determine how high such a barometer should be. Compare this with the traditional
mercury barometer.

Solution: From Table A.3 for ethanol at 20°C, p = 789 kg/m3 and py,, = 5700 Pa. For a
column of ethanol at 1 atm, the hydrostatic equation would be

Pam — Puap = An&leg,.  or: 101350 Pa—5700 Pa = (789 kg/m*)(9.81 m/s)h,,
Solve for h,, =12.4m Ans.

A mercury barometer would have h,,... = 0.76 m and would not have the high vapor pressure.

2.17 All fluids in F1g P2.17 are atf 20°C. Air Air 2ft C
If p = 1900 psf at point A, determine the 3ft A B _
pressures at B, C, and D in psf. —_

4ft
Solution: Using a specific weight of 5ft Air
62.4 Ibf/ft’ for water, we first compute pg Water 21t o
and pp: —_

Fig. P2.17

Pg =Pa — Ywater (Zg —Z4) =1900-62.4(1.0 ft) =1838 Ibf/ft>  Ans. (pt. B)

Pp = Pa + Veater (Za —2Zp) =1900+62.4(5.0 ft) = 2212 Ibf/ft*>  Ans. (pt. D)
Finally, moving up from D to C, we can neglect the air specific weight to good accuracy:
Pc =Pp — Vwater (Zc —Zp) =2212-62.4(2.0 ft) = 2087 Ibf/ft>  Ans. (pt. C)

The air near C has y=0.074 Ibf/ft’ times 6 ft yields less than 0.5 psf correction at C.
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2.18 All fluids in Fig. P2.18 are at 20°C. ——
If atmospheric pressure = 101.33 kPa and SAE 300il | 1m
the bottom pressure is 242 kPa absolute,

) o . ) water 2m
what is the specific gravity of fluid X?
Solution: Simply apply the hydrostatic flui 3 m

uid X
formula from top to bottom:
mercury | 0.5m

Pbottom = ptop + Z ;/h’

Fig. P2.18
or:  242000=101330+(8720)(1.0)+(9790)(2.0) + ¥, (3.0) + (133100)(0.5)
Solve for yy =15273 N/m?®, or: SGy = % =1.56 Ans.

2.19 The U-tube at right has a 1-cm ID
and contains mercury as shown. If 20 cm’
of water is poured into the right-hand leg, :
what will be the free surface height in each 10 cm
leg after the sloshing has died down? .

Solution: First figure the height of water
added:

20 cm® = %(1 cm)®h, or h=25.46cm
Then, at equilibrium, the new system must have 25.46 cm of water on the right, and a

30-cm length of mercury is somewhat displaced so that “L” is on the right, 0.1 m on the
bottom, and “0.2 — L on the left side, as shown at right. The bottom pressure is constant:

P +133100(0.2—L) = p,,,, +9790(0.2546)+133100(L), or: L =0.0906 m

Thus right-leg-height =9.06 + 25.46 =34.52 cm Ans.
left-leg-height =20.0 — 9.06 = 10.94 cm  Ans.

2.20 The hydraulic jack in Fig. P2.20 is
filled with oil at 56 Ibf/ft’. Neglecting
piston weights, what force F on the
handle is required to support the 2000-1bf
weight shown?
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Solution: First sum moments clockwise about the hinge A of the handle:
XM, =0=F(15+1)—-P(l),
or: F=P/16, where P is the force in the small (1 in) piston.
Meanwhile figure the pressure in the oil from the weight on the large piston:

W 2000 Ibf
Ay (/43112 fr)

p()ﬂ = =40744 pSf,
(1)
Hence P=p ;A= (40744)2 1 =222 Ibf

Therefore the handle force required is F=P/16=222/16 =14 1bf Ans.

2.21 In Fig. P2.21 all fluids are at 20°C. Air, 180 kPa abs
Gage A reads 350 kPa absolute. Determine
(a) the height h in cm; and (b) the reading
of gage B in kPa absolute.

h | Water

Solution: Apply the hydrostatic formula
from the air to gage A:

P =Py + 270 Fig. P2.21
=180000+(9790)h +133100(0.8) =350000 Pa,
Solve for h=6.49m Ans. (a)

Then, with & known, we can evaluate the pressure at gage B:

pg = 180000 + 9790(6.49 + 0.80) = 251000 Pa = 251 kPa Ans. (b)

2.22 The fuel gage for an auto gas tank LI —

. r_.r R T
reads proportional to the bottom gage i,—
pressure as in Fig. P2.22. If the tank |
accidentally contains 2 cm of water plus i

gasoline, how many centimeters “h” of air T
remain when the gage reads “full” in error?

B e  r — ———

|
Fig. P2.22
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Solution:  Given J,501ine = 0.68(9790) = 6657 N/m3, compute the pressure when “full”:
Prutt = Yeasoline (full height) = (6657 N/m?)(0.30 m) = 1997 Pa
Set this pressure equal to 2 cm of water plus “Y” centimeters of gasoline:
P = 1997 =9790(0.02 m)+6657Y, or Y =0.2706 m=27.06 cm

Therefore the air gap & =30 cm — 2 cm(water) — 27.06 cm(gasoline) = 0.94 cm  Ans.

2.23 In Fig. P2.23 both fluids are at 20°C.
If surface tension effects are negligible,
what is the density of the oil, in kg/mS?

Solution: Move around the U-tube from
left atmosphere to right atmosphere:

p, +(9790 N/m?)(0.06 m)
- 7/0“ (0.08 m) = pa,
solve for 7,y = 7343 N/m’, Fig. P2.23

or: p,, =7343/9.81~748 kg/m>  Ans.

2.24 In Prob. 1.2 we made a crude integration of atmospheric density from Table A.6
and found that the atmospheric mass is approximately m = 6.08E18 kg. Can this result be
used to estimate sea-level pressure? Can sea-level pressure be used to estimate m?

Solution: Yes, atmospheric pressure is essentially a result of the weight of the air
above. Therefore the air weight divided by the surface area of the earth equals sea-level
pressure:

W, - 08E18 kg)(9.81 m/s’
psea-level = = mng = (6 08 8 g)(9 8 I;]/S ) = 117000 Pa Ans.
‘ A 4R 47(6.377E6 m)

This is a little off, thus our mass estimate must have been a little off. If global average
sea-level pressure is actually 101350 Pa, then the mass of atmospheric air must be more
nearly

2
m. = A rth Pseatevel _ 47(6.377E6 m)“ (101350 Pa) ~528E18kg  Ans.

g 9.81 m/s>
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2.25 Venus has a mass of 4.90E24 kg and a radius of 6050 km. Assume that its atmo-
sphere is 100% CO, (actually it is about 96%). Its surface temperature is 730 K, decreas-
ing to 250 K at about z =70 km. Average surface pressure is 9.1 MPa. Estimate the pressure on
Venus at an altitude of 5 km.

(Il

Solution: The value of “g” on Venus is estimated from Newton’s law of gravitation:

.67E-11)(4.90E24 k
gVenus - GmVenus = (6 6 )( 90 g) = 893 l’Il/S2

Ry (6.05E6 m)*

Now, from Table A.4, the gas constant for carbon dioxide is Rc02 =189 mz/(s2 -K). And
we may estimate the Venus temperature lapse rate from the given information:

Finally the exponent in the p(z) relation, Eq. (2.27), is “n” = g/RB = (8.93)/(189 x 0.00686) =
6.89. Equation (2.27) may then be used to estimate p(z) at z= 10 km on Venus:

6.89
0.00686 K/m(5000 m)} ~65MPa  Ans.
730 K

Pskm = Po(1-B2Z/T,)" = (9.1 MPa){l—

2.26* A polytropic atmosphere is defined by the Power-law p/p, = (0/p,)", where m is
an exponent of order 1.3 and p, and p, are sea-level values of pressure and density.
(a) Integrate this expression in the static atmosphere and find a distribution p(z).
(b) Assuming an ideal gas, p = pRT, show that your result in (a) implies a linear
temperature distribution as in Eq. (2.25). (c) Show that the standard B = 0.0065 K/m is
equivalent to m = 1.235.

Solution: (a) In the hydrostatic Eq. (2.18) substitute for density in terms of pressure:

)1/m

lgdz, or:

o Y dp _ pg
dp =-pgdz=—p,(plp, f I z

llm
Po

m/(m-1)
Integrate and rearrange to get the result P _ [1 —M} Ans. (a)
P, m(p,/p,)

(b) Use the ideal-gas relation to relate pressure ratio to temperature ratio for this process:

m m (m—1)/m
RT
Lz[ﬁj :[L ] Solve for 1:[1]
Po \P, RT p, I, \p,

o
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_(m=Dgz
mRT

o

Using p/p, from Ans. (a), we obtain Tl = [1 } Ans. (b)

Note that, in using Ans. (a) to obtain Ans. (b), we have substituted p,/p, = RT,.
(c) Comparing Ans. (b) with the text, Eq. (2.27), we find that lapse rate “B” in the text is
equal to (m — 1)g/(mR). Solve for m if B =0.0065 K/m:

2
m=—2% 981 mis =1.235 Ans. (c)

" g—BR  9.81 m/s>—(0.0065 K/m)(287 m*/s> — R)

2.27 This is an experimental problem: Put a card or thick sheet over a glass of water,
hold it tight, and turn it over without leaking (a glossy postcard works best). Let go of the
card. Will the card stay attached when the glass is upside down? Yes: This is essentially a
water barometer and, in principle, could hold a column of water up to 10 ft high!

2.28 What is the uncertainty in using pressure measurement as an altimeter? A gage on
an airplane measures a local pressure of 54 kPa with an uncertainty of 3 kPa. The lapse
rate is 0.006 K/m with an uncertainty of 0.001 K/m. Effective sea-level temperature is
10°C with an uncertainty of 5°C. Effective sea-level pressure is 100 kPa with an
uncertainty of 2 kPa. Estimate the plane’s altitude and its uncertainty.

Solution: Based on average values in Eq. (2.27), (p = 54 kPa, p, = 100 kPa, B = 0.006 K/m,
T, = 10°C), 24y, = 4835 m. Considering each variable separately (p, p,, B, T,), their predicted
variations in altitude, from Eq. (2.27), are 8.5%, 3.1%, 0.9%, and 1.8%, respectively. Thus
measured local pressure is the largest cause of altitude uncertainty. According to uncertainty
theory, Eq. (1.43), the overall uncertainty is & = [(8.5)" + (3.1)" + (0.9)" + (1.8)°]"* = 9.3%, or
about 450 meters. Thus we can state the altitude as z = 4840 + 450 m. Ans.

2.29 Show that, for an adiabatic atmosphere, p = C(p)k, where C is constant, that

. =| 1 k-Dez - here k=c./
ppO_ kRTo b Wee _CpCV

Compare this formula for air at 5 km altitude with the U.S. standard atmosphere.

Solution: Introduce the adiabatic assumption into the basic hydrostatic relation (2.18):

k
dp __ g:M:kak—ld_p

dz dz dz
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Separate the variables and integrate:

k-1

ICpk_zd/D:—_[%dZ, or: %:—%+constant

The constant of integration is related to z = 0, that is, “constant” = Cplf_l/(k— 1). Divide
this constant out and rewrite the relation above:

(P _,_ (k=D

) =t e

=(p/p, since p=Cp~

Finally, note that CpX™' =Cp¥/p, =p,/p, =RT,, where T, is the surface temperature.
Thus the final desired pressure relation for an adiabatic atmosphere is

k/(k-1)
P _|_(k-Degz Ans.
Po kRT,

At z=35,000 m, Table A.6 gives p = 54008 Pa, while the adiabatic formula, with k = 1.40,
gives p = 52896 Pa, or 2.1% lower.

2.30 A mercury manometer is connected
at two points to a horizontal 20°C water-
pipe flow. If the manometer reading is & =
35 cm, what is the pressure drop between h /]\ b
the two points?

— (1) @

Solution: This is a classic manometer Mercury
relation. The two legs of water of height b
cancel out:

p; +9790b +9790h —133100h —9790b = p,
P —p, =(133,100-9790 N/m?)(0.35 m) =~ 43100 Pa  Auns.

2.31 InFig. P2.31 determine Ap between points A and B. All fluids are at 20°C.

Water
Fig. P2.31
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Solution: Take the specific weights to be
Benzene: 8640 N/m’ Mercury: 133100 N/m’
Kerosene: 7885 N/m’ Water: 9790 N/m’
and %, will be small, probably around 12 N/m’. Work your way around from A to B:

pa +(8640)(0.20 m)—(133100)(0.08) —(7885)(0.32)+(9790)(0.26) — (12)(0.09)
=pp, Or after cleaningup, p, —pg =8900Pa Ans.

2.32  For the manometer of Fig. P2.32, all Meriam red oil, SG = 0.827
fluids are at 20°C. If pg — pa = 97 kPa,
determine the height H in centimeters.

Solution: Gamma = 9790 N/m’ for water
and 133100 N/m’ for mercury and
(0.827)(9790) = 8096 N/m’ for Meriam red
oil. Work your way around from point A to
point B:

3
pa — (9790 N/m”)(H meters) —8096(0.18) Fig. P2.32

+133100(0.18 + H+0.35) = pg =p, +97000.
Solve for H=0.226 m=22.6cm Ans.

2.33 In Fig. P2.33 the pressure at point A SAE 30 oil Air B
is 25 psi. All fluids are at 20°C. What is the
air pressure in the closed chamber B?

Solution: Take y= 9790 N/m’ for water,
8720 N/m’ for SAE 30 oil, and (1.45)(9790) =
14196 N/m’ for the third fluid. Convert the
pressure at A from 25 Ibf/in” to 172400 Pa.
Compute hydrostatically from point A to
point B:

Fig. P2.33

P +2 yh =172400— (9790 N/m?)(0.04 m)+(8720)(0.06) — (14196)(0.10)
=pg =171100 Pa+47.88+144 =24.8psi  Ans.
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2.34 To show the effect of manometer
dimensions, consider Fig. P2.34. The
containers (a) and (b) are cylindrical and
are such that p, = py, as shown. Suppose the
oil-water interface on the right moves up a
distance Ah < h. Derive a formula for the
difference p, — p, when (a) d< D; and
(b) d=0.15D. What is the % difference?

Fig. P2.34

Solution: Take y=9790 N/m” for water and 8720 N/m’ for SAE 30 oil. Let “H” be the
height of the oil in reservoir (b). For the condition shown, p, = py, therefore

}/water (L + h) = }/oil (H + h)’ or: H= (ywater/yoil )(L + h) —h (1)

Case (a), d < D: When the meniscus rises Ah, there will be no significant change in
reservoir levels. Therefore we can write a simple hydrostatic relation from (a) to (b):

Pa + ywater(L—i_h_Ah)_ }/oil(H+h_Ah) = Pob>»
or: P, —Pp = Ah( Y water — 70i1) Ans. (a)

where we have used Eq. (1) above to eliminate H and L. Putting in numbers to compare
later with part (b), we have Ap = Ah(9790 — 8720) = 1070 Ah, with Ah in meters.

Case (b), d = 0.15D. Here we must account for reservoir volume changes. For a rise
Ah < h, a volume (7[/4)d2Ah of water leaves reservoir (a), decreasing “L” by
Ah(d/D)z, and an identical volume of oil enters reservoir (b), increasing “H” by the
same amount Ah(d/D)z. The hydrostatic relation between (a) and (b) becomes, for
this case,

Do + Vwaer [L — Ah(d/D)* + h — Ah] - 7, [H + Ah(d/D)* + h— Ah] = p,,
or: P, =Py = AD[¥ e (14 d*/D?) — 7 (1-d*/D?*)]  Ans. (b)

where again we have used Eq. (1) to eliminate H and L. If d is not small, this is a
considerable difference, with surprisingly large error. For the case d = 0.15 D, with water
and oil, we obtain Ap = Ah[1.0225(9790) — 0.9775(8720)] = 1486 Ah or 39% more
than (a).
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2.35 Water flows upward in a pipe
slanted at 30°, as in Fig. P2.35. The
mercury manometer reads h = 12 cm. What
is the pressure difference between points
(1) and (2) in the pipe?

Solution: The vertical distance between
points 1 and 2 equals (2.0 m)tan 30° or
1.155 m. Go around the U-tube hydro-
statically from point 1 to point 2:

p, +9790h —133100h le—2m —»l

Fig. P2.35

-9790(1.155 m) = p,,
or: p;—p, =(133100—9790)(0.12) +11300 = 26100 Pa  Ans.

2.36 In Fig. P2.36 both the tank and the slanted tube are open to the atmosphere. If L =
2.13 m, what is the angle of tilt ¢ of the tube?

Fig. P2.36

Solution: Proceed hydrostatically from the oil surface to the slanted tube surface:
p, +0.8(9790)(0.5)+9790(0.5) - 9790(2.13sin @) = p,,
8811

or: sing= M =0.4225, solve ¢=25° Ans.

2.37 The inclined manometer in Fig. P2.37
contains Meriam red oil, SG = 0.827.
Assume the reservoir is very large. If the
inclined arm has graduations 1 inch apart,
what should @ be if each graduation repre-
sents 1 psf of the pressure ps?

Reservoir

Fig. P2.37



Chapter 2 ¢ Pressure Distribution in a Fluid 77

Solution: The specific weight of the oil is (0.827)(62.4) = 51.6 Ibf/ft’. If the reservoir
level does not change and AL = 1 inch is the scale marking, then

Ibf Ibf\( 1
age)=1—=yulAz=y,;AL sin9=(51.6—)[—ft)sin9,
pa(gage) e Yoil Yoil w12
or: sin@=0.2325 or: 6=13.45° Ans.

2.38 In the figure at right, new tubing |
contains gas whose density is greater
than the outside air. For the dimensions 0
shown, (a) find p;(gage). (b) Find the (tubing gas)
error caused by assuming pPupe = Puir-

(c) Evaluate the error if p, = 860, p, =

1.2, and p, = 1.5 kg/m’, H = 1.32 m, and

h=0.58 cm.

p. ot locanon |
u

n, (air)

U-tube
manometer

Solution: (a) Work hydrostatically around
the manometer:
Fig. P2.38
p+pgH =p,+p,gh+p,g(H—h),
O Prgage = (Pn—R)gh—(p—p)gH  Ans. (a)
(b) From (a), the error is the last term: Error = —(p,— p,)gH Ans. (b)
(c) For the given data, the normal reading is (860 — 1.2)(9.81)(0.0058) = 48.9 Pa, and
Error =—(1.50-1.20)(9.81)(1.32) = -3.88 Pa (about 8%) Ans. (c)

2.39 In Fig. P2.39 the right leg of the Air
manometer is open to the atmosphere. Find

the gage pressure, in Pa, in the air gap in

the tank. Neglect surface tension. SGOil,O .

Solution: The two 8-cm legs of air are
negligible (only 2 Pa). Begin at the right
mercury interface and go to the air gap:

0 Pa-gage + (133100 N/m?)(0.12+0.09 m)
—(0.8x9790 N/m?)(0.09—0.12—0.08 m)
= Pairgap Mercury
Fig. P2.39

or: =27951 Pa-2271 Pa = 25700 Pa-gage Ans.

pairgap
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240 In Fig. P2.40 the pressures at A and B are the same, 100 kPa. If water is
introduced at A to increase p, to 130 kPa, find and sketch the new positions of the
mercury menisci. The connecting tube is a uniform 1-cm in diameter. Assume no change
in the liquid densities.

Fig. P2.40

Solution: Since the tube diameter is constant, the volume of mercury will displace a
distance Ah down the left side, equal to the volume increase on the right side; Ah = AL. Apply
the hydrostatic relation to the pressure change, beginning at the right (air/mercury) interface:
Pp + Vu (ALsin @+ Ah) -y, (Ah+ALsin6) =p, with Ah=AL
or: 100,000+ 133100(Ah)(1+sin15°)—9790(Ah)(1+sin15°) =p, =130,000 Pa
Solve for Ah = (30,000 Pa)/[(133100—9790 N/m?*)(1+5in15°)]=0.193m Ans.

The mercury in the left (vertical) leg will drop 19.3 cm, the mercury in the right (slanted)
leg will rise 19.3 cm along the slant and 0.05 cm in vertical elevation.

2.41 The system in Fig. P2.41 is at 20°C. ater
Determine the pressure at point A in
pounds per square foot.

0il, SG = 0.85
p,= 14.7 Ibf/in”

Solution: Take the specific weights of
water and mercury from Table 2.1. Write
the hydrostatic formula from point A to the
water surface:

Mercury

Fig. P2.41

)l
pa +(0.85)(62.4 Ibf/ft )[12 ft] =(346)| 15| +(©24)| 17| = Pan = (1472144 =5

Solve for p, =27701bf/ft> Ans.
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2.42 Small pressure differences can be —
measured by the two-fluid manometer in l
Fig. P2.42, where p, is only slightly larger

than p,. Derive a formula for p, — pg if the / ’

reservoirs are very large.

Y4
A
/4
A
7/
7
7
7
YA
A
7
YA
7
Z
/

,

%

2
7
7,

2
”//x//////////////

Solution: Apply the hydrostatic formula
from A to B: Fig. P2.42

pa tpoghy —p,gh—pg(h; —h) =pg
Solve for p, —pg =(%—p)gh Ans.

If (p, — p1) 1s very small, & will be very large for a given Ap (a sensitive manometer).

2.43 The traditional method of measuring blood pressure uses a sphygmomanometer,
first recording the highest (sysfolic) and then the lowest (diastolic) pressure from which
flowing “Korotkoff” sounds can be heard. Patients with dangerous hypertension can
exhibit systolic pressures as high as 5 Ibf/in>. Normal levels, however, are 2.7 and 1.7 lbf/inz,
respectively, for systolic and diastolic pressures. The manometer uses mercury and air as
fluids. (a) How high should the manometer tube be? (b) Express normal systolic and
diastolic blood pressure in millimeters of mercury.

Solution: (a) The manometer height must be at least large enough to accommodate the
largest systolic pressure expected. Thus apply the hydrostatic relation using 5 Ibf/in” as
the pressure,

h = pg/pg = (5 Ibf/in*)(6895 Pa/lbf/in*)/(133100 N/m?)=0.26 m
So make the height about 30cm. Ans. (a)

(b) Convert the systolic and diastolic pressures by dividing them by mercury’s specific
weight.

= (2.7 Ibf/in” )(144 in*/ft*)/(846 Ibf/ft>) = 0.46 ft Hg = 140 mm Hg
= (1.7 1bf/in®)(144 in®/ft* (846 Ibf/ft) = 0.289 ft Hg = 88 mm Hg

h
h

systolic
diastolic

The systolic/diastolic pressures are thus 140/88 mm Hg. Ans. (b)
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2.44 Water flows downward in a pipe at
45°, as shown in Fig. P2.44. The mercury
manometer reads a 6-in height. The pressure
drop p, — p; is partly due to friction and
partly due to gravity. Determine the total
pressure drop and also the part due to
friction only. Which part does the
manometer read? Why?

Fig. P2.44

Solution: Let “h” be the distance down from point 2 to the mercury-water interface in
the right leg. Write the hydrostatic formula from 1 to 2:

P: +62.4(55in45°+h+£) —846[£] -62.4h=p,,

12 12
P — P, =(846-62.4)(6/12)—62.4(5s5in45°) =392 -221
....friction loss... ..gravity head..
= 171% Ans.
ft

The manometer reads only the friction loss of 392 Ibf/ft>, not the gravity head of
221 psf.

245 Determine the gage pressure at point A e Paim
in Fig. P2.45, in pascals. Is it higher or lower () W —
than Patmosphere? — Ooil,
N T SG=0.85
Solution: Take y = 9790 N/m’ for water ™
and 133100 N/m’ for mercury. Write the . 0em 40 cm
hydrostatic formula between the atmosphere o l
and point A: -
1Scm
Pum +(0.85)(9790)(0.4 m) __(Ab R t
—(133100)(015 m)—(12)(030 m) Water Mercury
Fig. P2.45

+(9790)(0.45 m) =p,,

Or: P =Pum — 12200 Pa =12200 Pa (vacuum) Ans.
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246 In Fig. P2.46 both ends of the
manometer are open to the atmosphere.
Estimate the specific gravity of fluid X.

Solution: The pressure at the bottom of the
manometer must be the same regardless of
which leg we approach through, left or right:

Fluid X

Pam +(8720)(0.1) +(9790)(0.07)
+75(0.04)  (left leg) | zem 1

Fig. P2.46
=P T (8720)(0.09) +(9790)(0.05) + 5 (0.06)  (right leg)

or: ¥y =14150 N/m?, SGX:%zms Ans.

2.47 The cylindrical tank in Fig. P2.47 b—s0 cm——
is being filled with 20°C water by a pump T

developing an exit pressure of 175 kPa. 75 em e

At the instant shown, the air pressure is

110 kPa and H = 35 cm. The pump stops L
when it can no longer raise the water
pressure. Estimate “H” at that time.

e
4~ Pump

|~—=c
£
z
8

Fig. P2.47

Solution: At the end of pumping, the bottom water pressure must be 175 kPa:
P.ir + 9790H =175000
Meanwhile, assuming isothermal air compression, the final air pressure is such that

Pur _ Vol  #R*0.75m) _ 0.75
110000 Vol #R*1.1m-H) 1.1-H

where R is the tank radius. Combining these two gives a quadratic equation for H:

0.75(110000)

CH +9790H =175000, or H?-18.98H+11.24=0

The two roots are H = 18.37 m (ridiculous) or, properly, H=0.614 m Ans.

2.48 Conduct an experiment: Place a thin wooden ruler on a table with a 40% overhang,
as shown. Cover it with 2 full-size sheets of newspaper. (a) Estimate the total force on top
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of the newspaper due to air pressure.

(b) With everyone out of the way, perform Newsgaper
a karate chop on the outer end of the ruler.

(c) Explain the results in b.

Results: (a) Newsprint is about 27 in (0.686 m)
by 22.5 in (0.572 m). Thus the force is:

Ruler

F = pA = (101325 Pa)(0.686 m)(0.572 m)

=39700 N! Ans. Fig. P2.48

(b) The newspaper will hold the ruler, which will probably break due to the chop. Ans.
(c) Chop is fast, air does not have time to rush in, partial vacuum under newspaper. Ans.

2.49 An inclined manometer, similar in Pa
concept to Fig. P2.37, has a vertical
cylinder reservoir whose cross-sectional
area is 35 times that of the tube. The fluid H
is ethylene glycol at 20°C. If &= 20° and the
fluid rises 25 cm above its zero-difference
level, measured along the slanted tube,
what is the actual pressure difference being
measured?

D

Solution: The volume of the fluid rising into the tube, 7K12Ah/4, must equal the volume
decrease in the reservoir. Thus H decreases by (d/D)2 Ah where,

Ah =Lsin 8 =(0.25 m)sin20° =0.0855 m
AH = (d/D)*Ah = Ah/35 = 0.0024 m
Applying the hydrostatic relation,
p, +7(=AH)-)Ah = p,

P, =Py = Y(AH+ Ah) = (1117 kg/m>)(9.81 m/s>)(0.0855 m +0.0024 m) = 963 Pa
Ap=963Pa Ans.

2.50 A vat filled with oil (SG = 0.85) is 7 m long and 3 m deep and has a trapezoidal
cross-section 2 m wide at the bottom and 4 m wide at the top, as shown in Fig. P2.50.
Compute (a) the weight of oil in the vat; (b) the force on the vat bottom; and (c) the force
on the trapezoidal end panel.
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Solution: (a) The total volume of oil in the vat is (3 m)(7 m)(4 m + 2 m)/2 = 63 m’.
Therefore the weight of oil in the vat is

W= y.,(Vol)=(0.85)(9790 N/m*)(63 m®) =524,000N  Ans. (a)
(b) The force on the horizontal bottom surface of the vat is

K

bottom

= Yot Aparon = (0.85)(9790)(3 m)(2 m)(7 m) = 350,000 N Ans. (b)

Note that F is less than the total weight of oil—the student might explain why they differ?
(c) I found in my statics book that the centroid of this trapezoid is 1.33 m below the
surface, or 1.67 m above the bottom, as shown. Therefore the side-panel force is

Fe = YoihegAgge = (0.85)(9790)(1.33 m)(9 m?) = 100,000 N  Ans. (c)

These are large forces. Big vats have to be strong!

2.51 Gate AB in Fig. P2.51 is 1.2 m long
and 0.8 m into the paper. Neglecting
atmospheric-pressure effects, compute the
force F on the gate and its center of
pressure position X.

Solution: The centroidal depth of the
gate is

Fig. P2.51
heg =4.0+(1.0+0.6)sin40° =5.028 m,
=(0.82x9790)(5.028)(1.2x0.8) =38750 N Ans.

gate
The line of action of F is slightly below the centroid by the amount
L, sinf _ (1/12)(0.8)(1.2)’sin 40°
hegA (5.028)(1.2x0.8)
Thus the position of the center of pressure is at X=0.6 +0.0153 =0.615m Ans.

=-0.0153 m

Yep =~
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2.52 A vertical lock gate is 4 m wide and separates 20°C water levels of 2 m and 3 m,
respectively. Find the moment about the bottom required to keep the gate stationary.

Solution: On the side of the gate where the water measures 3 m, F; acts and has an hcg
of 1.5 m; on the opposite side, F, acts with an hcg of 1 m.

20° Water

2.0m
1333 m
20° Water
F,
<«— F
LoOm W% 667 m
B

F = yheg A, =(9790)(1.5)(3)(4)=176,220 N
E, = yheg A, =(9790)(1.0)(2)(4) = 78,320 N
Yepr =1 —~(1/12)(4)(3)” sin 90°1/[(1.5)(4)(3)] =—0.5 m; so F, acts at 1.5-0.5
=1.0 m above B
Yepr =1 —(1/12)(4)(2)* sin 90°1/[(1)(4)(2)] =—0.333 m; F, acts at 1.0—0.33
=0.67 m above B

Taking moments about points B (see the figure),

2 M =(176,220 N)(1.0 m)— (78,320 N)(0.667 m)
=124,000 N-m; M, =124kN-m.

ottom

2.53 Panel ABC in the slanted side of a
water tank (shown at right) is an isoceles
triangle with vertex at A and base BC =2 m.
Find the water force on the panel and its
line of action.

4'm

Solution: (a) The centroid of ABC is 2/3
of the depth down, or 8/3 m from the
surface. The panel area is (1/2)(2 m)(5 m) =
5 m”. The water force is

Fasc = egA pana = (9790)(2.67 m)(5 m?) =131,000N  Ans. (a)
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(b) The moment of inertia of ABC is (1/36)(2 m)(5 m)’ = 6.94 m". From Eq. (2.44),

Yep ==L, sin O/(hegA ) = —6.94sin (53°)/[2.67(5)] ==0.417m  Ans. (b)

panel

The center of pressure is 3.75 m down from A, or 1.25 m up from BC.

2.54 In Fig. P2.54, the hydrostatic force F is the same on the bottom of all three
containers, even though the weights of liquid above are quite different. The three bottom
shapes and the fluids are the same. This is called the hydrostatic paradox. Explain why it
is true and sketch a freebody of each of the liquid columns.

\ /

W%\
Fig. P2.54

Solution: The three freebodies are shown below. Pressure on the side-walls balances
the forces. In (a), downward side-pressure components help add to a light W. In (b) side
pressures are horizontal. In (¢) upward side pressure helps reduce a heavy W.

—> <+
F<w
F=
(a) (b) (©)
2.55 Gate AB in Fig. P2.55 is 5 ft wide R

into the paper, hinged at A, and restrained
by a stop at B. Compute (a) the force on
stop B; and (b) the reactions at A if 7 =9.5 ft.

Solution: The centroid of AB is 2.0 ft
below A, hence the centroidal depth is
h + 2 —4 ="1.5 ft. Then the total hydrostatic g
force on the gate is Fig. P2.55

F=yhogA,,, = (62.4 Ibf/ft’)(7.5 ft)(20 ft*)= 9360 Ibf

gate
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The C.P. is below the centroid by the amount A
I, sin@ _ (1/12)(5)(4)* sin 90° — g

hegA (7.5)(20)
=—-0.178 ft

Yep =~

2.178 ft
This is shown on the freebody of the gate F 40 ft
at right. We find force B, with moments
about A:

>M, =B, (4.0)-(9360)(2.178) =0,
or: B, =51001bf (toleft) Ans. (a)

1.822 ft [}

The reaction forces at A then follow from equilibrium of forces (with zero gate weight):
>F =0=9360-5100—A,, or: A, =42601bf (to left)
YF, =0=A,+W_,.=A,, or: A,=01Ibf Ans. (b)

gate z

2.56 For the gate of Prob. 2.55 above, stop “B” breaks if the force on it equals 9200 1bf.
For what water depth 4 is this condition reached?

Solution: The formulas must be written in terms of the unknown centroidal depth:
heg =h—-2 F=yhsA=(62.4)h5(20)=1248hg
Ixsing _ (1/12)(5)(4)’in90° _ 1.333
hegA heg(20)  heg

Yer =

Then moments about A for the freebody in Prob. 2.155 above will yield the answer:

J, or hy;=14.08 ft, h=16.08 ft Ans.
CG

2.57 The tank in Fig. P2.57 is 2 m wide \V/
into the paper. Neglecting atmospheric —_—
pressure, find the resultant hydrostatic
force on panel BC, (a) from a single water
formula; (b) by computing horizontal and
vertical forces separately, in the spirit of
curved surfaces.

4m
Fig. P2.57
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Solution: (a) The resultant force F, may be found by simply applying the hydrostatic
relation
F=yhgA=(9790 N/m*)(3+1.5 m)(5 mx2 m)=440,550 N =441 kN  Ans. (a)

(b) The horizontal force acts as though BC were vertical, thus hqg is halfway down from
C and acts on the projected area of BC.

F; =(9790)(4.5)(3x2)=264,330 N =264 kN Ans. (b)
The vertical force is equal to the weight of fluid above BC,
E, =(9790)[(3)(4) + (1/2)(4)(3)]1(2) = 352,440 = 352 KN  Ans. (b)

The resultant is the same as part (a): F = [(264)2 + (352)2]1/2 =441 kN.

258 In Fig. P2.58, weightless cover gate

|
1 200 kg

\vi
AB closes a circular opening 80 cm in = s

diameter when weighed down by the 200-kg T 4 e
mass shown. What water level # will dislodge T
the gate? Water am
Solution: The centroidal depth is exactly Fig. P2.58

equal to & and force F will be upward on the gate. Dislodging occurs when F equals the
weight:

F=7yh A

gate

=(9790 N/m?) h%(O.S m)? = W =(200)(9.81) N

Solve for h=0.40m Ans.

2.59 Gate AB has length L, width b into
the paper, is hinged at B, and has negligible
weight. The liquid level h remains at the
top of the gate for any angle 6. Find an
analytic expression for the force P, per-
pendicular to AB, required to keep the gate
in equilibrium.

Solution: The centroid of the gate remains
at distance L/2 from A and depth h/2 below
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the surface. For any 6, then, the hydrostatic force is F = (h/2)Lb. The moment of inertia
of the gate is (1/12)bL’>, hence ycp = —(1/12)bL’sin@[(h/2)Lb], and the center of pressure
is (L/2 — ycp) from point B. Summing moments about hinge B yields

PL=F(L/2—yep), or P=(yhb/4)(L—L2sin6/3h) Ans.

2.60 The pressure in the air gap is 8000 Pa
gage. The tank is cylindrical. Calculate the Air 8 cm
net hydrostatic force (a) on the bottom of
the tank; (b) on the cylindrical sidewall
CC; and (c) on the annular plane panel BB.

!
i 25 cm
10 cm 4| 10em
Solution: (a) The bottom force is simply +—» | O je—>
equal to bottom pressure times bottom area: R A R 12 cm

Poottom = Pair + Puarer8|AZ| = 8000 Pa

+(9790 N/m?)(0.25+0.12 m) [&—— p=36em —|

=11622 Pa-gage Fig. P2.60
Fbottom = pbOttOmAbotmm = (1 1622 Pa)(7z’/4)(036 m)2 =1180N Ans. (a)

(b) The net force on the cylindrical sidewall CC is zero due to symmetry. Ans. (b)
(c) The force on annular region CC is, like part (a), the pressure at CC times the area of CC:

Pec = Pair + Puaer|A2] o =8000 Pa+(9790 N/m?)(0.25 m) = 10448 Pa-gage

Fee = pecAce = (10448 Pa)(7/4)[(0.36 m)* —(0.16 m)> | =853 N Ans. (c)

2.61 Gate AB in Fig. P2.61 is a homo-
geneous mass of 180 kg, 1.2 m wide into
the paper, resting on smooth bottom B. All y
fluids are at 20°C. For what water depth h
will the force at point B be zero?

Glycerin

Solution: Let y= 12360 N/m’ for glycerin
and 9790 N/m° for water. The centroid of

Fig. P2.61
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AB is 0.433 m vertically below A, so h¢g = W =1766N
2.0 - 0.433 = 1.567 m, and we may compute
the glycerin force and its line of action:

F, = yhA = (12360)(1.567)(1.2) =23242 N

_(112)(1.2)(1)’sin 60°

_ =-0.0461
Ycpg (1.567)(1.2) ;

These are shown on the freebody at right.
The water force and its line of action are
shown without numbers, because they
depend upon the centroidal depth on the
water side:

F, = (9790)hqs(1.2)

_ (12)1.2)(1)°sin60° _ 0.0722
Yep he(1.2) heg

The weight of the gate, W = 180(9.81) = 1766 N, acts at the centroid, as shown above.
Since the force at B equals zero, we may sum moments counterclockwise about A to find
the water depth:

M, =0=(23242)(0.5461)+ (1766)(0.5 cos 60°)
~(9790)h (1.2)(0.5+0.0722/h ;)

Solve for  heg yaer =2.09 m, or: h=he;+0.433=2.52m Ans.

2.62 Gate AB in Fig. P2.62 is 15 ft long
and 8 ft wide into the paper, hinged at B
with a stop at A. The gate is 1-in-thick
steel, SG = 7.85. Compute the 20°C
water level h for which the gate will start
to fall.

Solution: Only the length (& csc 60°) of
the gate lies below the water. Only this part
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contributes to the hydrostatic force shown Aa
in the freebody at right:

10,000 Ibf

N\, Length AB=15ft

F=yhegA= (62.4)(%] (8hcsc60°)

=288.2h” (Ibf)

_ (1/12)(8)(hcse 60°)’sin 60°
cP (h/2)(8h csc 60°)

= —Ecsc 60° B

+

The weight of the gate is (7.85)(62.4 1bf/ft3)(15 ft)(1/12 ft)(8 ft) = 4898 Ibf. This weight

acts downward at the CG of the full gate as shown (not the CG of the submerged

portion). Thus, W is 7.5 ft above point B and has moment arm (7.5 cos 60° ft) about B.
We are now in a position to find 4 by summing moments about the hinge line B:

> M = (10000)(15) — (288.2h%)[(h/2) csc 60° — (h/6) csc 60°] — 4898(7.5 cos 60°) = 0,
or: 110.9h* =150000-18369, h=(131631/110.9)"* =10.6 ft Ans.

2.63 The tank in Fig. P2.63 has a 4-cm- v /
diameter plug which will pop out if the Water
hydrostatic force on it reaches 25 N. For 50°
20°C fluids, what will be the reading 4 on
the manometer when this happens? _f_ H
Solution: The water depth when the plug h l Plug
pops out is I “o-4cm
71.(004)2 Mercury
F=25N=7rhcA= (9790)hCGT Fig. P2.63

or heg=2.032m

It makes little numerical difference, but the mercury-water interface is a little deeper than
this, by the amount (0.02 sin 50°) of plug-depth, plus 2 cm of tube length. Thus

Pam +(9790)(2.032+0.02sin 50°+0.02) — (133100)h = p .,
or: h=0.152m Ans.
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2.64 Gate ABC in Fig. P2.64 has a fixed c
hinge at B and is 2 m wide into the paper.

If the water level is high enough, the gate _ §
will open. Compute the depth i for which , A 20em B
this happens. 1m |

Solution: Let H = (h — 1 meter) be the

Water at 20°C l

depth down to the level AB. The forces on
AB and BC are shown in the freebody at
right. The moments of these forces about B
are equal when the gate opens:

2 Mg =0=yH(0.2)b(0.1)

-A(g)em(3)

or: H=0.346 m,
h=H+1=1.346 m Auns.

Fig. P2.64

This solution is independent of both the water
density and the gate width b into the paper.

91

2.65 Gate AB in Fig. P2.65 is semi- -
circular, hinged at B, and held by a -
horizontal force P at point A. Determine sm
the required force P for equilibrium. Vacer

Solution: The centroid of a semi-circle

3m ate:
is at 4R/37 = 1.273 m off the bottom, as [, Side vew
shown in the sketch at right. Thus it is wmrr
3.0 —1.273 =1.727 m down from the force P.
The water force F is
T 0.0935m (A
F=yhcgA =(9790)(5.0+ 1.727)5(3) 1
=931000 N F-ook=f- -@

The line of action of F lies below the CG:
I,sind (0. 10976)(3)* sin 90° B
hegA  G+172D)7I2)3)*

Then summing moments about B yields the proper support force P:
> Mg =0=(931000)(1.273-0.0935)-3P, or: P=366000 N Ans.

Yep =~

—0.0935 m
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2.66 Dam ABC in Fig. P2.66 is 30 m wide L
into the paper and is concrete (SG = 2.40).
Find the hydrostatic force on surface AB
and its moment about C. Could this force tip 80
the dam over? Would fluid seepage under
the dam change your argument?

Water 20°C

R —

Fig. P2.66

Solution: The centroid of surface AB is
40 m deep, and the total force on AB is

F = yhogA = (9790)(40)(100 X 30)
=1.175E9 N

The line of action of this force is two-thirds
of the way down along AB, or 66.67 m
from A. This is seen either by inspection
(A is at the surface) or by the usual
formula:

I, sin6 _ (1/12)(30)(100)’sin(53.13°)
hegA (40)(30 % 100)

to be added to the 50-m distance from A to the centroid, or 50 + 16.67 = 66.67 m. As
shown in the figure, the line of action of F is 2.67 m to the left of a line up from C normal
to AB. The moment of F about C is thus

M =FL =(1.175E9)(66.67-64.0) = 3.13E9 N-m Ans.

-16.67 m

Yep =—

This moment is counterclockwise, hence it cannot tip over the dam. If there were seepage
under the dam, the main support force at the bottom of the dam would shift to the left of
point C and might indeed cause the dam to tip over.

2.67 Generalize Prob. 2.66 with length
AB as “H”, length BC as “L”, and angle
ABC as “g”, with width “b” into the paper.
If the dam material has specific gravity
“SG”, with no seepage, find the critical
angle 6. for which the dam will just tip
over to the right. Evaluate this expression
for SG =2.40.

Solution: By geometry, L = Hcosé and
the vertical height of the dam is Hsing. The
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force F on surface AB is #(H/2)(sin6)Hb, and its position is at 2H/3 down from point A,
as shown in the figure. Its moment arm about C is thus (H/3 — Lcosd). Meanwhile the
weight of the dam is W = (SG)y(L/2)H(sin6)b, with a moment arm L/3 as shown. Then
summation of clockwise moments about C gives, for critical “tip-over” conditions,

XM =0= (}/%sin& Hbj [%—Lcos 9}—[SG(;/)%Hsin9 b}[%} with L =Hcosé.

1

3+SG

Any angle greater than 6. will cause tip-over to the right. For the particular case of
concrete, SG = 2.40, cos@, = 0.430, or 6. = 64.5°, which is greater than the given angle
6 =53.13° in Prob. 2.66, hence there was no tipping in that problem.

Solve for cos’6, = Ans.

2.68 Isosceles triangle gate AB in
Fig. P2.68 is hinged at A and weighs 1500 N.
What horizontal force P is required at point
B for equilibrium?

Solution: The gate is 2.0/sin 50° =2.611 m
long from A to B and its area is 1.3054 m’.

Its centroid is 1/3 of the way down from A,
so the centroidal depth is 3.0 + 0.667 m. The
force on the gate is

F = yhccA =(0.83)(9790)(3.667)(1.3054)
=38894 N

The position of this force is below the
centroid:

I, sin@

Yep =

3a: o
_ _(/36)A.0)261D7sin50° _ ) 17, py

(3.667)(1.3054)

The force and its position are shown in the freebody at upper right. The gate weight of
1500 N is assumed at the centroid of the plate, with moment arm 0.559 meters about point A.
Summing moments about point A gives the required force P:

>M, =0=P(2.0)+1500(0.559)—-38894(0.870+0.0791),
Solve for P=18040N Auns.
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2.69 Panel BCD is semicircular and line
BC is 8 cm below the surface. Determine
(a) the hydrostatic force on the panel; and
(b) the moment of this force about D.

Solution: (a) The radius of BCD is 5 cm.
Its centroid is at 4R/3x or 4(5 cm)/37w =
2.12 cm down along the slant from BC to D.
Then the vertical distance down to the cen-
troid is hog = 8 cm + (2.12 cm) cos (53.13°) =
9.27 cm.

The force is the centroidal pressure
times the panel area:

4cm D
Fig. P2.69

F=7yhcA=(9790 N/m?)(0.0927 m)(/2)(0.05 m)* =3.57 N Ans. (a)

(b) Point D is (0.05 — 0.0212) = 0.288 cm from the centroid. The moment of F about D

is thus

Mp =(3.57N)(0.05 m-0.0212 m)=0.103N-m Ans. (b)

270 The cylindrical tank in Fig. P2.70
has a 35-cm-high cylindrical insert in the
bottom. The pressure at point B is 156 kPa.
Find (a) the pressure in the air space; and
(b) the force on the top of the insert.
Neglect air pressure outside the tank.

Solution: (a) The pressure in the air
space can be found by working upwards
hydrostatically from point B:

156,000 Pa — (9790 N/m®)(0.35+0.26 m)
= p,; ~150,000 Pa=150kPa Ans. (a)

12 cm Air
26 cm l ¥
35cm Water
at 20°C
B
10 10 10 cm

Fig. P2.70

(b) The force on top of the insert is simply the pressure on the insert times the insert area:

Pinsert top

E

insert

= 156,000 Pa — (9790 N/m*)(0.35 m) = 152,600 Pa
= PinserAineen = (152600 Pa)(7/4)(0.1 m)> =1200 N Ans. (b)
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2,71 In Fig. P2.71 gate AB is 3 m wide o
into the paper and is connected by a rod %scxu

o
3

and pulley to a concrete sphere (SG =
2.40). What sphere diameter is just right to
close the gate?

f—

ES

Solution: The centroid of AB is 10 m
down from the surface, hence the hydrostatic
force is

F=7yhgA =(9790)(10)(4 x3)

=1.175E6 N
The line of action is slightly below the
centroid:
3. o
e (1/12)(3)(4)’sin 90 0133 m
(10)(12)

Sum moments about B in the freebody at
right to find the pulley force or weight W:

XMy =0=W(6+8+4 m)—(1.175E6)(2.0-0.133 m), or W =121800 N

Set this value equal to the weight of a solid concrete sphere:

W=121800 N = 7,0 §D3 = (2.4)(9790)§D3, or: Dy =215m Ans.
272 Gate B is 30 cm high and 60 cm
wide into the paper and hinged at the top. —
What is the water depth 2 which will first water
cause the gate to open? Air at h

10 kPa

Solution: The minimum height needed to gage i
open the gate can be assessed by calculating D
the hydrostatic force on each side of the gate Fig. P2.72

and equating moments about the hinge. The
air pressure causes a force, F,;,, which acts
on the gate at 0.15 m above point D.

F,, = (10,000 Pa)(0.3 m)(0.6 m)=1800 N
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Since the air pressure is uniform, F,, acts at the centroid of the gate, or 15 cm below the
hinge. The force imparted by the water is simply the hydrostatic force,

E, = (YhooA), = (9790 N/m*)(h—0.15 m)(0.3 m)(0.6 m) = 1762.2h —264.3
This force has a center of pressure at,

1 :
) E(0.6)(0.3)3(sm90) 00075
~ (h—0.15)0.3)(0.6) h-0.15

Ycp with & in meters

Sum moments about the hinge and set equal to zero to find the minimum height:
2 Myjpge =0=(1762.2h —264.3)[0.15+ (0.0075/(h — 0.15))] - (1800)(0.15)

This is quadratic in A, but let’s simply solve by iteration: h=1.12m Ans.

2.73 Weightless gate AB is 5 ft wide into 4 1
the paper and opens to let fresh water out 1T v g
when the ocean tide is falling. The hinge at .!ET—_
A is 2 ft above the freshwater level. Find & 1o fe A
when the gate opens. o
Stop B
Solution: There are two different hydro- Fig. P2.73
static forces and two different lines of A
action. On the water side, ~ ______ ®-——-
F, = 7hog A = (62.4)(5)(10 X 5) = 15600 Ibf S PO
positioned at 3.33 ft above point B. In the 667 I -
seawater, 23
F,—»
h «— F;
F, =(1.025%62.4) [—j (5h) 3336 |
2 . BN
=159.9h" (Ibf) No force

positioned at h/3 above point B. Summing moments about hinge point A gives the
desired seawater depth h:

> M, =0=(159.9h?)(12 -h/3)— (15600)(12 —3.33),
or 53.3h*-1918.8h? +135200=0, solve for h=9.85ft Ans.
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2.74 Find the height H in Fig. P2.74 for -y
which the hydrostatic force on the rect- —
angular panel is the same as the force on
the semicircular panel below. Find the

H
force on each panel and set them equal: ot L

I:rect = thGArect = 7(H/2)[(2R)(H)] = yRHZ
Foomi = MegAsem = YH+4RBD[(7/2)R?] Fig. P2.74

Set them equal, cancel y: RH” = (7/2)R’H + 2R/3, or: H’— (#/2)RH - 2R*/3=0

Solution: H = R[z/4+{(x/4)* +2/3}*1=1.92R Ans.

2.75 Gate AB in the figure is hinged at A,
has width b into the paper, and makes
smooth contact at B. The gate has density
ps and uniform thickness t. For what gate
density, expressed as a function of (h, t, p, 6),
will the gate just begin to lift off the
bottom? Why is your answer independent
of L and b?

Solution: Gate weight acts down at the B

center between A and B. The hydrostatic Fig. P2.75

force acts at two-thirds of the way down the

gate from A. When “beginning to lift off,” there is no force at B. Summing moments
about A yields

h
W%cosé’:Fz?L, F:ngbL, W = p.gbLt

Combine and solve for the density of the gate. L and b and g drop out!

2.76 Panel BC in Fig. P2.76 is circular. Compute (a) the hydrostatic force of the
water on the panel; (b) its center of pressure; and (c) the moment of this force about
point B.
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Solution: (a) The hydrostatic force on the Y/
gate is: —
F=7hecA
= (9790 N/m>)(4.5 m)sin 50°(7)(1.5 m)>
=239 kN Auns. (a)

Water
at 20°C

(b) The center of pressure of the force is:

T 4 .
Ising Zr sin@
YT oA hegA

. Fig. P2.76
Z(1.5)“sin 50°

= 5-=0.125m Ans. (b)
(4.5sin50°)(7)(1.5%)

Thus y is 1.625 m down along the panel from B (or 0.125 m down from the center of
the circle).

(c) The moment about B due to the hydrostatic force is,

Mj =(238550 N)(1.625 m)=387,600 N-m =388 kN-m Ans. (c)

2.77 Circular gate ABC is hinged at B. ¥
Compute the force just sufficient to keep ] Water
the gate from opening when h = 8 m. | b

Neglect atmospheric pressure.

Solution: The hydrostatic force on the — U’ .
gate is cq~—r>
F=7yhcgA =(9790)(8 m)(x m?) -

Fig. P2.77
=246050 N
This force acts below point B by the distance
. 4 . °
Vep == I..sin@ __ (7/4)(1)"sin 90 — _0.03125m

hegA (8)(m)
Summing moments about B gives P(1 m) =(246050)(0.03125m), or P=7690N Ans.
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2.78 Analyze Prob. 2.77 for arbitrary depth /4 and gate radius R and derive a formula for
the opening force P. Is there anything unusual about your solution?

Solution: Referring to Fig. P2.77, the force F and its line of action are given by

F = yh A = yh(7R?)

— I,sin6 _ (m4)R%in90°  R*
T heA h(7R?) 4h

Summing moments about the hinge line B then gives
(R*) r
Mg =0=(yhaR*)| — [-P(R), or: P==yR’ Ans.
XMy (rhaRD)| ] ~PR) 47

What is unusual, at least to non-geniuses, is that the result is independent of depth 4.

279 Gate ABC in Fig. P2.79 is 1-m- %

square and hinged at B. It opens auto- p e
matically when the water level is high vd)
enough. Neglecting atmospheric pressure, Bg‘_{%‘“‘
determine the lowest level i for which the 7,;,11]——‘"‘
gate will open. Is your result independent

of the liquid density? Fig. P2.79

Solution: The gate will open when the
hydrostatic force F on the gate is above B,
that is, when

_ (1/12)(1 m)(1 m)*sin 90°

<0.1 m,
(h+0.5 m)(1 m?)

or: h+05>0.833m, or: h>0.333m Ans.

Indeed, this result is independent of the liquid density.
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2.80 For the closed tank of Fig. P2.80, all
fluids are at 20°C and the air space is
pressurized. If the outward net hydrostatic
force on the 40-cm by 30-cm panel at the
bottom is 8450 N, estimate (a) the pressure
in the air space; and (b) the reading 4 on
the manometer.

Panel, 30 cm high,

Solution: The force on the panel yields _ 40 cm wide
water (gage) pressure at the centroid of the Fig. P2.80
panel:

F=8450 N = pogA =P (0.3x0.4 m?), or peg =70417 Pa (gage)

This is the water pressure 15 cm above the bottom. Now work your way back through the
two liquids to the air space:

=70417 Pa—(9790)(0.80—-0.15)—-8720(0.60) = 58800 Pa  Ans. (a)

Pair space

Neglecting the specific weight of air, we move out through the mercury to the atmosphere:

58800 Pa— (133100 N/m? )h=p,,, =0 (gage), or: h=0.44m Ans. (b)

2.81 Gate AB is 7 ft into the paper and
weighs 3000 1bf when submerged. It is
hinged at B and rests against a smooth wall
at A. Find the water level & which will just
cause the gate to open.

Solution:  On the right side, hcg = 8 ft, and
E, =¥hcerA,
=(62.4)(8)(70) = 34944 Ibf

(1112)(7)(10)° sin(53.13°)
(8)(70)

Yepr =~

=-0.833 ft
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On the right side, we have to write everything in terms of the centroidal depth hcg; =h + 4 ft:

F, = (62.4)(hcg)(70) = 4368h g,
N (1/12)(7)(10)* sin(53.13°) _  6.67
- hegi(70) hea

Then we sum moments about B in the freebody above, taking F5 = 0 (gate opening):

> My =0=4368h, (5 - 667} —34944(5-0.833)—3000(5cos 53.13°),

hCGl

_ 183720
oF Mot =5 1840

=8412 ft, or: h=hyg —4=4411t Ans.

2.82 The dam in Fig. P2.82 is a quarter-
circle 50 m wide into the paper. Determine
the horizontal and vertical components of
hydrostatic force against the dam and the

point CP where the resultant strikes the dam. Fig. P2.82
Solution: The horizontal force acts as if Jr\mm : L
the dam were vertical and 20 m high: N
13.3? m \\ |l53.8 MN
FH = }/hCGAvert --— 979 TN, /
= (9790 N/m?)(10 m)(20x50 m?) ss1n 074
=979 MN Ans. A melem P

This force acts 2/3 of the way down or 13.33 m from the surface, as in the figure at right.
The vertical force is the weight of the fluid above the dam:

F, = y(Vol),,,, = (9790 N/m3)%(20 m)*(50 m)=153.8 MN  Ans.

This vertical component acts through the centroid of the water above the dam, or 4R/37=
4(20 m)/37 = 8.49 m to the right of point A, as shown in the figure. The resultant
hydrostatic force is F = [(97.9 MN)* + (153.8 MN)’]"* = 182.3 MN acting down at an
angle of 32.5° from the vertical. The line of action of F strikes the circular-arc dam AB at
the center of pressure CP, which is 10.74 m to the right and 3.13 m up from point A, as
shown in the figure. Ans.
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2.83 Gate AB is a quarter-circle 10 ft
wide and hinged at B. Find the force F just
sufficient to keep the gate from opening.
The gate is uniform and weighs 3000 Ibf.

Solution: The horizontal force is computed
as if AB were vertical:

Fy = YhegA o = (62.4)(4 ft)(8 %10 ft?)
=19968 Ibf acting 5.33 ft below A

The vertical force equals the weight of the
missing piece of water above the gate, as
shown below.

F, =(62.4)(8)(8 x10)— (62.4)(/4)(8)* (10)
=39936—-31366 = 8570 Ibf

39936 Ibf

_ 4 ft 4 ft

31366 Ibf

4.6 ft

34 ft

=4R/3n

The line of action x for this 8570-Ibf force is found by summing moments from above:

Y Mg (of Fy) =8570x =39936(4.0)-31366(4.605), or x=1.787 ft

Finally, there is the 3000-Ibf gate weight W, whose centroid is 2R/z = 5.093 ft from
force F, or 8.0 — 5.093 = 2.907 ft from point B. Then we may sum moments about hinge B
to find the force F, using the freebody of the gate as sketched at the top-right of

this page:

2. Mg (clockwise) = 0 = F(8.0)+(3000)(2.907) — (8570)(1.787) — (19968)(2.667),

59840

or F=—=74801bf Ans.
8.0
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2.84 Determine (a) the total hydrostatic - 2B
force on curved surface AB in Fig. P2.84 ~  WATER :

and (b) its line of action. Neglect atmospheric
pressure and assume unit width into the

paper.

Solution: The horizontal force is
Fig. P2.84

Ey = vhegA or = (9790 N/m*)(0.5 m)(1x1 m*) = 4895 N at 0.667 m below B.

For the cubic-shaped surface AB, the weight 0.4
of water above is computed by integration: AR R

1 N
F, :ybj(l—x3)dx:§yb LRI AN
5 4 0.333 oy : 4895 N

m-_/..

YEy \LINE OF ACTION
7343 N

The line of action (water centroid) of the vertical force also has to be found by integration:

=(3/4)(9790)(1.0) =7343 N

The vertical force of 7343 N thus acts at 0.4 m to the right of point A, or 0.6 m to the left
of B, as shown in the sketch above. The resultant hydrostatic force then is

F,. =[(4895)* +(7343)*]"* =8825N acting at 56.31° down and to the right. ~Ans.

This result is shown in the sketch at above right. The line of action of F strikes the
vertical above point A at 0.933 m above A, or 0.067 m below the water surface.

2.85 Compute the horizontal and vertical
components of the hydrostatic force on the
quarter-circle panel at the bottom of the
water tank in Fig. P2.85.

1

Solution: The horizontal component is —————

Fy = 7heg Ay =(9790)(6)(2%6)
=705000 N Ans. (a) Fig. P2.85
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The vertical component is the weight of the fluid above the quarter-circle panel:

F, = W(2 by 7 rectangle) — W(quarter-circle)
=(9790)(2x7x6) —(9790)(7r/4)(2)* (6)
=822360—-184537=638000 N Ans. (b)

2.86 The quarter circle gate BC in P
Fig. P2.86 is hinged at C. Find the
horizontal force P required to hold the gate
stationary. The width b into the paper
is 3 m.

Solution: The horizontal component of Fig. P2.86
water force is

Fy = 7vhegA =(9790 N/m?)(1 m)[(2 m)(3 m)] = 58,740 N

This force acts 2/3 of the way down or 1.333 m down from the surface (0.667 m
up from C). The vertical force is the weight of the quarter-circle of water above
gate BC:

F, = 7(Vol), ,; = (9790 N/m?)[(7/4)(2 m)*(3 m)]= 92,270 N

F, acts down at (4R/37) = 0.849 m to the left of C. Sum moments clockwise about
point C:
> M =0=(2 m)P— (58740 N)(0.667 m)— (92270 N)(0.849 m) = 2P — 117480
Solve for P =58,700 N=58.7kN Ans.

2.87 The bottle of champagne (SG =
0.96) in Fig. P2.87 is under pressure as
shown by the mercury manometer reading.
Compute the net force on the 2-in-radius
hemispherical end cap at the bottom of the
bottle.

Solution: First, from the manometer, com-
pute the gage pressure at section AA in the

Fig. P2.87
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champagne 6 inches above the bottom:
2 4
pas T(0.96x62.4) (E ft) —(13.56x 62.4)(5 ft) = Patmosphere = 0 (82ge),
or: P, =272 Ibf/ft* (gage)

Then the force on the bottom end cap is vertical only (due to symmetry) and equals the
force at section AA plus the weight of the champagne below AA:

F= I::V = pAA(Area)AA + w6-in cylinder — W2-in hemisphere
= (272)%(4/12)2 +(0.96 x 62.4)7(2/12)* (6/12) — (0.96 X 62.4)(27/3)(2/12)’

=23.74+2.61-0.58 = 25.8 Ibf  Ans.

2.88 Circular-arc Tainter gate ABC
pivots about point O. For the position
shown, determine (a) the hydrostatic force
on the gate (per meter of width into the
paper); and (b) its line of action. Does the
force pass through point O?

Solution: The horizontal hydrostatic
force is based on vertical projection:

Fig. P2.88
Fy = YhegA o = (9790)3)(6x1)=176220 N at 4 m below C

The vertical force is upward and equal to the
weight of the missing water in the segment
ABC shown shaded below. Reference to a
good handbook will give you the geometric
properties of a circular segment, and you
may compute that the segment area is
3.261 m” and its centroid is 5.5196 m from
point O, or 0.3235 m from vertical line AC,
as shown in the figure. The vertical (upward)
hydrostatic force on gate ABC is thus

F, = YA ,gc(unit width) =(9790)(3.2611)
=31926 N at 0.4804 m from B
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The net force is thus F = [FI?I +F\2,]l/ 2 =179100 N per meter of width, acting upward to
the right at an angle of 10.27° and passing through a point 1.0 m below and 0.4804 m
to the right of point B. This force passes, as expected, right through point O.

2.89 The tank in the figure contains ! 60cm
benzene and is pressurized to 200 kPa
(gage) in the air gap. Determine the vertical
hydrostatic force on circular-arc section AB
and its line of action.

Solution: Assume unit depth into the
paper. The vertical force is the weight of
benzene plus the force due to the air
pressure:

Fig. P2.89

F, = %(0.6)2 (1.0)(881)(9.81) +(200,000)(0.6)(1.0) = 122400 % Ans.

Most of this (120,000 N/m) is due to the air pressure, whose line of action is in the
middle of the horizontal line through B. The vertical benzene force is 2400 N/m and has a
line of action (see Fig. 2.13 of the text) at 4R/(37) = 25.5 cm to the right or A.

The moment of these two forces about A must equal to moment of the combined
(122,400 N/m) force times a distance X to the right of A:

(120000)(30 cm) +(2400)(25.5 cm) =122400(X), solve for X=29.9cm Ans.

The vertical force is 122400 N/m (down), acting at 29.9 cm to the right of A.

2.90 A 1-ft-diameter hole in the bottom

P =3 Ibf/in® gage

of the tank in Fig. P2.90 is closed by a 7 T
45° conical plug. Neglecting plug weight, il A +' “
compute the force F required to keep the |
plug in the hole. e

——-J/A\}--lﬂ 1
Solution: The part of the cone that is JEAN -
inside the water is 0.5 ft in radius and h = t_

0.5/tan(22.5°) = 1.207 ft high. The force F
equals the air gage pressure times the hole
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area plus the weight of the water above the plug:

F= pgageAhole +W

—(3x 144)%(1 ft)? + (62.4)%(1)2 (3)—(62.4) {(

=339.3+147.0-19.7=4671bf Ans.

3-ft-cylinder W1.207—ft—cone

1
3

~1Zay
j 7O (1.207)}
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291 The hemispherical dome in Fig. P2.91
weighs 30 kN and is filled with water and
attached to the floor by six equally-
spaced bolts. What is the force in each
bolt required to hold the dome down?

Solution: Assuming no leakage, the
hydrostatic force required equals the weight
of missing water, that is, the water in a 4-
m-diameter cylinder, 6 m high, minus the
hemisphere and the small pipe:

Ftotal = W2

-m-cylinder ~ W2—m—hemisphere -

Fig. P2.91

=(9790)7(2)*(6)— (9790)(27/3)(2)* = (9790)(72/4)(0.03)*(4)

=738149-164033-28 = 574088 N

The dome material helps with 30 kN of weight, thus the bolts must supply 574088—-30000

or 544088 N. The force in each of 6 bolts is 544088/6 or Fi.;; = 90700 N  Ans.

292 A 4-m-diameter water tank consists
of two half-cylinders, each weighing
4.5 kN/m, bolted together as in Fig. P2.92.
If the end caps are neglected, compute the
force in each bolt.

Solution: Consider a 25-cm width of
upper cylinder, as at right. The water
pressure in the bolt plane is

p; = yh=(9790)(4) =39160 Pa

Fig. P2.92
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Then summation of vertical forces on this
25-cm-wide freebody gives

W,

z Fz =0= plAl -W, tank 21:bolt

water

= (39160)(4x0.25)— (9790)(/2)(2)(0.25)
—(4500)/4—2F, .

Solve for F

one bolt

=11300 N Auns.

293 In Fig. P2.93 a one-quadrant spherical z
shell of radius R is submerged in liquid of 0.y
specific weight yand depth h > R. Derive an
analytic expression for the hydrodynamic o
force F on the shell and its line of action. 1

Solution: The two horizontal components
are identical in magnitude and equal to the <
force on the quarter-circle side panels, whose Fig. P2.93
centroids are (4R/37x) above the bottom:

4R

Horizontal components: F, =F, = yhcgA e, = y(h—3—j %Rz
T

Similarly, the vertical component is the weight of the fluid above the spherical surface:

T, 14 3\ 7., 2R
Fz :Wc in er_ws ere — (_R hj - [__”R j =y—R [h__
ylind ph 4 4 4 33 74 3

There is no need to find the (complicated) centers of pressure for these three components,
for we know that the resultant on a spherical surface must pass through the center. Thus

/
F=[R+R2+E]" = 7% R*[(h—2R/3)* +2(h—dRABx) | Ans.

2.94 The 4-ft-diameter log (SG = 0.80)
in Fig. P2.94 is 8 ft long into the paper
and dams water as shown. Compute the
net vertical and horizontal reactions at
point C.
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Solution: With respect to the sketch at
right, the horizontal components of hydro-
static force are given by

F,, = (62.4)(2)(4 x8) = 3994 Ibf
F,, = (62.4)(1)(2x8) = 998 Ibf

The vertical components of hydrostatic
force equal the weight of water in the
shaded areas:

F, = (62.4)%(

re Distribution in a Fluid 109

2)*(8)=3137 Ibf

F, = (62.4)%(2)2(8) ~1568 Ibf

The weight of the log is W, = (0.8 X 62.4)71(2)2(8) = 5018 1Ibf. Then the reactions at C
are found by summation of forces on the log freebody:

> F =0=3994-998—C,,
> F,=0=C,-5018+3137+

or C,=29961bf Ans.
1568, or C,=3131bf Ans.

2.95 The uniform body A in the figure
has width b into the paper and is in static
equilibrium when pivoted about hinge O.
What is the specific gravity of this body
when (a) h=0; and (b) h=R?

Solution: The water causes a horizontal
and a vertical force on the body, as shown:

R R
Fy = j/ERb at ? above O,

4R
F, = 7£R2b at — to the left of O
4 3z

These must balance the moment of the body weight W about O:

2 2 2
B8] (8] () ()

2 \3 4 3z

4 3z
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2 h|"
Solve for:  S$Gy,,, = Vs o {— + —} Ans.
y L3 R

Forh=0,SG=3/2 Ans.(a). Forh=R,SG=3/5 Ans. (b).

296 Curved panel BC is a 60° arc,
perpendicular to the bottom at C. If the
panel is 4 m wide into the paper, estimate
the resultant hydrostatic force of the water

on the panel. R=
Solution: The horizontal force is,
Fy =7hcoAy Fig. P2.96
= (9790 N/m*)[2 +0.5(35in 60°) m]
X[(3sin 60°)m(4 m)]
=335,650 N 4 A =30m’
B

The vertical component equals the weight \at
of water above the gate, which is the sum \A2= 1133 m?
of the rectangular piece above BC, and the 1
curvy triangular piece of water just above LLam

arc BC—see figure at right. (The curvy-
triangle calculation is messy and is not
shown here.)
F, = 7(Vol),.... gc = (9790 N/m*)[(3.0+1.133 m*)(4 m)] = 161,860 N
The resultant force is thus,
F, =[(335,650)* +(161,860)*1"* =372,635 N=373kN Ans.

This resultant force acts along a line which passes through point O at

6 = tan"'(161,860/335,650) = 25.7° 7
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2.97 Gate AB is a 3/8th circle, 3 m wide ¥ E

Seawater. 10050 Nim>

into the paper, hinged at B and resting on a
smooth wall at A. Compute the reaction
forces at A and B.

Solution: The two hydrostatic forces are
F, =7rhccA,
=(10050)(4 —0.707)(1.414 x 3)
=140 kN

F, = weight above AB =240 kN

To find the reactions, we need the lines of
action of these two forces—a laborious task
which is summarized in the figure at right. Then summation of moments on the gate, about
B, gives

>M

=0=(140)(0.70)+(240)(1.613)-F, (3.414), or F, =142KkN Ans.

B, clockwise

Finally, summation of vertical and horizontal forces gives

SF, =B, +142sin45°~240=0, or B,=139kN
2 F =B, —142c0s45°=0, or B, =99kN Ans.

2.98 Gate ABC in Fig. P2.98 is a quarter
circle 8 ft wide into the paper. Compute the
horizontal and vertical hydrostatic forces
on the gate and the line of action of the
resultant force.

Solution: The horizontal force is
F, = vhgA,, =(62.4)(2.828)(5.657 x8)
=7987 Ibf « .

located at -
3 .'&'-_—'.""_ 7 L4 W
yo = (112)®8)(5.657)" _ _0.943 ft
(2.828)(5.657 % 8)
Area ABC = (7/4)(4)* — (4 sin 45°)*
=4.566 ft?
Thus F, = ¥Vol pe = (62.4)(8)(4.566) = 2280 Ibf T

(S T pp——
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The resultant is found to be
Fp =[(7987)* +(2280)*1"* =8300 Ibf acting at & = 15.9° through the center O. Ans.

2.99 A 2-ft-diam sphere weighing 400 kbf
closes the I1-ft-diam hole in the tank
bottom. Find the force F to dislodge the
sphere from the hole.

Solution: NOTE: This problem is
laborious! Break up the system into regions
LILULIV, & V. The respective volumes are:

vy =0.0539 ft*; v =0.9419 ft’
Uy = U, = vy = 1.3603 ft°
Then the hydrostatic forces are:
Fiown = Yo =(62.4)(0.9419) = 58.8 1bf
E,, = V(0 + vy) = (62.4)(2.7206)
=169.8 Ibf

Then the required force is  F =W + Fy,yn — Fypy =400 + 59 — 170 = 289 1bf T Ans.

2.100 Pressurized water fills the tank in
Fig. P2.100. Compute the hydrostatic force
on the conical surface ABC.

150 kPa

gage

Solution: The gage pressure is equivalent
to a fictitious water level h = p/y =
150000/9790 = 15.32 m above the gage or
8.32 m above AC. Then the vertical force
on the cone equals the weight of fictitious
water above ABC:

F, = yVol

above
_ oy 17,y
= (9790)[ 2 (2)7(8.32)+ 34 2) (4)}

=297,000N Auns.
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2.101 A fuel tank has an elliptical cross-section as shown, with gasoline in the (vented)
top and water in the bottom half. Estimate the total hydrostatic force on the flat end panel
of the tank. The major axis is 3 m wide. The minor axis is 2 m high.

. 0.576 m
Gasoline ! 1m
680 @ §a4m
‘ - - -
1
Water !
et oo Im

1.5m

1.5m

1
1
)
I
]
]
]

Solution: The centroids of the top and bottom halves are 4(1 m)/(37) = 0.424 m from
the center, as shown. The area of each half ellipse is (#72)(1 m)(1.5 m) = 2.356 m?. The
forces on panel #1 in the gasoline and on panel #2 in the water are:

F, = pighegi A, = (680)(9.81)(0.576)(2.356) = 9050 N
F, = pecaA, =[680(1.0)+998(0.424)](9.81)(2.356) = 25500 N

Then the total hydrostatic force on the end plate is 9050 + 25500 = 34600 N  Ans.

2.102 A cubical tank is 3 X 3 X 3 m and is layered with 1 meter of fluid of specific
gravity 1.0, 1 meter of fluid with SG = 0.9, and 1 meter of fluid with SG = 0.8. Neglect

atmospheric pressure. Find (a) the hydrostatic force on the bottom; and (b) the force on a
side panel.

Solution: (a) The force on the bottom is the bottom pressure times the bottom area:

Foo = ProiApo; = (9790 N/m*)[(0.8 x1 m)+(0.9x1 m)+(1.0x1 m)](3 m)*
=238,000 N  Ans. (a)

(b) The hydrostatic force on the side panel is the sum of the forces due to each layer:

Fip. = 2 7hegA gy = (0.8X9790 N/m?)(0.5 m)(3 m*)+(0.9x 9790 N/m?)(1.5 m)(3 m?)
+(9790 N/m*)(2.5 m)(3 m?) = 125,000 kN Ans. (b)
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2.103 A solid block, of specific gravity 0osu T g, ] fluid X
0.9, floats such that 75% of its volume is in

water and 25% of its volume is in fluid X,

which is layered above the water. What is 0.75H block width b water
the specific gravity of fluid X? . 1Mo paper

Solution: The block is sketched at right.
A force balance is

0.97(HbL) = 7(0.75HbL) + SGy 7(0.25HbL)
0.9-0.75=0.255Gy, SGy=0.6 Ans.

2.104 The can in Fig. P2.104 floats in

-
the position shown. What is its weight in Jem| 1
newtons? — | =X
s t | Water
Solution: The can weight simply equals _L |
the weight of the displaced water: — h=b=9em
Fig. P2.104

W = Piicpraced = (9790)%(0.09 m)*(0.08 m)=5.0N  Ans.

2.105 Archimedes, when asked by King Hiero if the new crown was pure gold
(SG = 19.3), found the crown weight in air to be 11.8 N and in water to be 10.9 N. Was
it gold?

Solution: The buoyancy is the difference between air weight and underwater weight:

B=W,, —W,,. =11.8-10.9=0.9 N = ¥,.... Vuroun

water

But also Wair :(SG)ywatervcrown’ so W,

in water

=B(SG-1)
Solve for SG =1+ W,

crown in water

/B=1+10.9/0.9 =13.1 (not pure gold) Ans.

2.106 A spherical helium balloon is 2.5 m in diameter and has a total mass of 6.7 kg.
When released into the U. S. Standard Atmosphere, at what altitude will it settle?
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Solution: The altitude can be determined by calculating the air density to provide the
proper buoyancy and then using Table A.3 to find the altitude associated with this density:

Puir = My ioon/ VOl . = (6.7 kg)/[7£(2.5 m*)/6] = 0.819 kg/m?

sphere

From Table A.3, atmospheric air has p=0.819 kg/m3 at an altitude of about 4000 m. Ans.

2.107 Repeat Prob. 2.62 assuming that
the 10,000 Ibf weight is aluminum (SG =
2.71) and is hanging submerged in the water.

Solution: Refer back to Prob. 2.62 for
details. The only difference is that the force
applied to gate AB by the weight is less
due to buoyancy:

86D =2 0000y = 6310 1bt

F -
tTTgg Moy T

ne

This force replaces “10000” in the gate moment relation (see Prob. 2.62):
».(h h
2 M; =0=6310(15)—-(288.2h") ECSC 60° — gcsc 60° | —4898(7.5¢c0s60°)

or: h®=76280/1109=688, or: h=8.83ft Ans.

2.108 A yellow pine rod (SG = 0.65) is
5 cm by 5 cm by 2.2 m long. How much
lead (SG = 11.4) is needed at one end so
that the rod will float vertically with 30 cm
out of the water?

Solution: The weight of wood and lead
must equal the buoyancy of immersed
wood and lead:

W ood + wlead = Bwood + Blead’

Wi

or:  (0.65)(9790)(0.05)*(2.2)+11.4(9790)v,.,4 = (9790)(0.05)*(1.9)+ 979004
Solve for v,,,4 =0.000113 m> whence W, , =11.4(9790)v,., =12.6N Ans.
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2.109 The float level & of a hydrometer is ‘_(L_ o
a measure of the specific gravity of the Tsene
liquid. For stem diameter D and total .
weight W, if & = 0 represents SG = 1.0, ]
derive a formula for 4 as a function of W, ol
D, SG, and ¥, for water. @
Solution: Let submerged volume be v, .
when SG = 1. Let A = 7D*/4 be the area of Fig. P2.109
the stem. Then

W=7,0, = (SG)7,(U, ~ Ah), or: h=—NOG=D_

SG7,(zD"/4)

2.110 An average table tennis ball has a
diameter of 3.81 cm and a mass of 2.6 gm.
Estimate the (small) depth 4 at which the tennis
ball will float in water at 20°C and sea- ball

level standard air if air buoyancy is —
(a) neglected; or (b) included. N—r-- _f -

Table

Solution: For both parts we need the volume of the submerged spherical segment:
2
W =0.0026(9.81)=0.0255 N = pwam,g%GR —h), R=0.01905m, p=998 k—é;
m

(a) Air buoyancy is neglected. Solve for h=0.00705 m =7.05 mm Ans. (a)
(b) Also include air buoyancy on the exposed sphere volume in the air:

0.0255 N = p,, 80y, + Pui& Bnl@ —vseg}, P =1.225 -5

The air buoyancy is only one-80" of the water. Solve i =7.00 mm Ans. (b)

2.111 A hot-air balloon must support its
own weight plus a person for a total weight
of 1300 N. The balloon material has a mass
of 60 g/mz. Ambient air is at 25°C and
1 atm. The hot air inside the balloon is at
70°C and 1 atm. What diameter spherical
balloon will just support the weight?
Neglect the size of the hot-air inlet vent.
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Solution: The buoyancy is due to the difference between hot and cold air density:

p 101350 | 1gs ke, 101350 030 K

Pt ZRT - 281273425 md P T g1273470) T m?

The buoyant force must balance the known payload of 1300 N:
W =1300 N=Apg Vol = (1.185—1.030)(9.81)%D3,

Solve for D*=1628 or D ~11.8m Auns.

balloon

Check to make sure the balloon material is not excessively heavy:

W(balloon) = (0.06 kg/m*)(9.81 m/s*)(7)(11.8 m)* =256 N OK, only 20% of W,_,,.

2.112 The uniform 5-m-long wooden rod in the figure is tied to the bottom by a string.
Determine (a) the string tension; and (b) the specific gravity of the wood. Is it also
possible to determine the inclination angle 6?7

String
tension T

Fig. P2.112

Solution: The rod weight acts at the middle, 2.5 m from point C, while the buoyancy is
2 m from C. Summing moments about C gives

2M:=0=W(2.5sin6)-B(2.0sinf), or W =0.8B
But B =(9790)(/4)(0.08 m)*(4 m)=196.8 N.
Thus W =0.8B=157.5 N =SG(9790)(7/4)(0.08)>(5 m), or: SG=0.64 Ans. (b)

Summation of vertical forces yields
String tension T=B-W =196.8—-157.5=39 N Ans. (a)

These results are independent of the angle 8, which cancels out of the moment balance.
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2.113 A spar buoy is a rod weighted to
float vertically, as in Fig. P2.113. Let the
buoy be maple wood (SG = 0.6), 2 in by
2 in by 10 ft, floating in seawater (SG =
1.025). How many pounds of steel (SG =
7.85) should be added at the bottom so that
h=18in? Fig. P2.113

Solution: The relevant volumes needed are

2 (2
Spar volume = —[—j (10)=0.278 ft>; Steel volume = ~ Waea
12\12 7.85(62.4)

Immersed spar volume = %(%} (8.5)=0.236 ft>

The vertical force balance is: buoyancy B = W04 + Wteel,

or: 1.025(62.4)] 0.236 + — sl |_ 0 6(62.4)(0.278)+ W,
7.85(62.4) ‘
or: 15.09+0.1306W,,, =10.40+W,,, solvefor W, ~5.41bf Ans.

steel steel » steel

2.114 The uniform rod in the figure is
hinged at B and in static equilibrium when
2 kg of lead (SG = 11.4) are attached at its
end. What is the specific gravity of the rod
material? What is peculiar about the rest
angle 8= 30°?

Solution: First compute buoyancies: B, = 9790(717’4)(0.04)2(8) =98.42 N, and W,q =
2(9.81) =19.62 N, Bjc,q = 19.62/11.4 = 1.72 N. Sum moments about B:

XMy =0=(SG—-1)(98.42)(4cos30°) +(19.62—-1.72)(8 cos 30°) =0

Solve for SG,_ 4 =0.636 Ans. (a)

rod

The angle 6 drops out! The rod is neutrally stable for any tilt angle! Ans. (b)
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2.115 The 2 inch by 2 inch by 12 ft spar
buoy from Fig. P2.113 has 5 Ibm of steel
attached and has gone aground on a rock. If
the rock exerts no moments on the spar,
compute the angle of inclination 6.

Solution: Let ¢ be the submerged length
of spar. The relevant forces are:

2

Wwood = (06)(640) (%j (E

Buoyancy = (64.0)(%) (%j{ =1.778¢ at distance %sin@ to the right of AT

Wood
(SG =0.6)

Seawater

64 Ibf/ft’

The steel force acts right through A. Take moments about A:

>M,=0=12.8(6sin 0)—1.778§[£sin 6’)

2

Solve for (*=86.4, or (=9.295ft (submerged length)

Thus the angle of inclination 6= cos ' (8.0/9.295) = 30.6° Ans.

119

j(lZ) =128 Ibf at distance 6sin@ to the right of Al

2.116 When the 12-cm cube in the figure
1s immersed in 20°C ethanol, it is balanced
on the beam scale by a 2-kg mass. What is
the specific gravity of the cube?

Solution: The scale force is 2(9.81) =
19.62 N. The specific weight of ethanol is
7733 N/m’. Then

Fig. P2.116

F=19.62=(W-B). = Vewe —7733)(0.12 m)’

Solve for ¥4, =7733+19.62/(0.12)° = 19100 N/m>  Ans.
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2.117 The balloon in the figure is filled
with helium and pressurized to 135 kPa
and 20°C. The balloon material has a mass
of 85 g/mz. Estimate (a) the tension in the
mooring line, and (b) the height in the
standard atmosphere to which the balloon
will rise if the mooring line is cut. Fig. P2.117

Solution: (a) For helium, from Table A-4, R = 2077 mz/sle, hence its weight is

135000 T .3
Wistium = () = ———[(9.81)| =(10)" |=1139 N
helium pHeg balloon |:2077(293)i|( )|:6( ) j|
Meanwhile, the total weight of the balloon material is
Woaiioon = (0.085 k—iJ(QSl Ezj [7(10 m)*]1=262 N
m s

Finally, the balloon buoyancy is the weight of displaced air:

100000

UMY Zaov | =
287(293)}(9.81){6(10) } 6108 N

Bair = pairgvballoon = |:

The difference between these is the tension in the mooring line:
Tive = Buir = Wictium = Woatioon = 0108 =1139-262 = 4700 N  Ans. (a)

(b) If released, and the balloon remains at 135 kPa and 20°C, equilibrium occurs when
the balloon air buoyancy exactly equals the total weight of 1139 + 262 = 1401 N:

kg

B, =1401 N = pm.,(9.81)%(10)3, or. P =0273 =5
m

From Table A-6, this standard density occurs at approximately

Z=12,800m Ans. (b)

2.118 A 14-in-diameter hollow sphere of
steel (SG = 7.85) has 0.16 in wall thickness.
How high will this sphere float in 20°C
water? How much weight must be added
inside to make the sphere neutrally
buoyant?
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Solution: The weight of the steel is
3 3
(14 13.68
W ., =yVol=(7.85)(62.4)— [—j —(—j
steel 9/ ( )( )6 [ 12 12
=27.3 Ibf
This is equivalent to 27.3/62.4 = 0.437 ft’ of displaced water, whereas Ugppere = 0.831 f'.

Therefore the sphere floats slightly above its midline, such that the sphere segment
volume, of height 4 in the figure, equals the displaced volume:

D,

T T
egment = 0437 ft* = §h2<3R ~h)= ghz[amz) —h]
Solve for h=0.604 ft = 7.24in Ans.

In order for the sphere to be neutrally buoyant, we need another (0.831 — 0.437) = 0.394 ft’
of displaced water, so we need additional weight AW = 62.4(0.394) = 25 Ibf. Ans.

2.119 With a 5-Ibf-weight placed at one
end, the uniform wooden beam in the J’_h °, .
B —

figure floats at an angle @ with its upper J@

right corner at the surface. Determine (a) 6,
() Kvood- Fig. P2.119

Solution: The total wood volume is (4/ 12)2(9) =1 ft’. The exposed distance i = 9tan6.
The vertical forces are

2 F, =0=(62.4)(1.0)—(62.4)(h/2)(9)(4/12) - (SG)(62.4)(1.0) - 5 1bf
The moments of these forces about point C at the right corner are:
XM =0=y(1)(4.5)—y(1.5h)(6 ft)—(SG)()(1)(4.5 ft)+ (5 1bf)(O ft)
where y=62.4 Ibf/tt’ is the specific weight of water. Clean these two equations up:
1.5h=1-SG-5/y (forces) 2.0h=1-SG (moments)

Solve simultaneously for SG =0.68 Ans. (b); h=0.16ft; 6=1.02° Ans. (a)
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2.120 A uniform wooden beam (SG =
0.65) is 10 cm by 10 cm by 3 m and hinged
at A. At what angle will the beam float in
20°C water?

Solution: The total beam volume is
3(.1)2 =0.03 m3, and therefore its weight is
W =(0.65)(9790)(0.03) = 190.9 N, acting
at the centroid, 1.5 m down from point A.
Meanwhile, if the submerged length is H, Fig. P2.120
the buoyancy is B = (9790)(0.1)’H = 97.9H

newtons, acting at H/2 from the lower end.

Sum moments about point A:

2>M, =0=(97.9H)(3.0-H/2)cos #—190.9(1.5cos 6),
o H(3-H/2)=2.925, solvefor H=1.225m

Geometry: 3 — H =1.775 m is out of the water, or: sin@=1.0/1.775, or 6= 34.3° Ans.

2.121 The uniform beam in the figure is of width b<< L
size L by h by b, with b,h < L. A uniform
heavy sphere tied to the left corner causes
the beam to float exactly on its diagonal.
Show that this condition requires (a) %, =
¥/3; and (b) D = [Lhb/{ (SG — 1)}]1"".

Diameter D

Solution: The beam weight W = »Lhb
and acts in the center, at L/2 from the left
corner, while the buoyancy, being a perfect Fig. P2.121
triangle of displaced water, equals B =
¥Lhb/2 and acts at L/3 from the left corner.
Sum moments about the left corner, point C:

> M = 0= (y,Lhb)(L/2)— (yLhb/2)(L3), or ¥, =7/3 Ans. (a)

Then summing vertical forces gives the required string tension T on the left corner:

2F, =0=yLbh/2—y,Lbh—T, or T=yLbh/6 since ¥, =7¥/3

Lhb

Butalso T= (W - B) (ST])
T —

1/3
:(SG—1)7%D3, s0 that D:[ } Ans. (b)

sphere
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2.122 A uniform block of steel (SG =
7.85) will “float” at a mercury-water

us[lq

interface as in the figure. What is the ratio Vater Y s ) @
of the distances a and b for this condition? = Zblock 774 b

Mercury: SG = 11.50

Solution: Let w be the block width into
the paper and let ¥ be the water specific Fig. P2.122
weight. Then the vertical force balance on

the block is

7.85y(a+b)Lw = 1.0yaLw + 13.56ybLw,

orr 7.85a+7.85b=a+13.56b, solve for a_ M =0.834 Ans.

b 7.85-1

2.123 A spherical balloon is filled with helium at sea level. Helium and balloon
material together weigh 500 N. If the net upward lift force on the balloon is also 500 N,
what is the diameter of the balloon?

Solution: Since the net upward force is 500 N, the buoyancy force is 500 N plus the
weight of the balloon and helium, or B = 1000 N. From Table A.3, the density of air at
sea level is 1.2255 kg/m3.

B=1000 N = p,;.2Vi.i00n = (1.2255)(9.81)(7{/6)D3
D=542m Ans.

2.124 A balloon weighing 3.5 Ibf is 6 ft
in diameter. If filled with hydrogen at 18 psia
and 60°F and released, at what U.S.
standard altitude will it be neutral?

D=6 ft
W =3.51bf
Hydrogen,

18 psi, 60°F

Solution: Assume that it remains at 18 psia and 60°F. For hydrogen, from Table A-4,
R =24650 ftz/(sz-OR). The density of the hydrogen in the balloon is thus

P 18(144)
RT  (24650)(460 +60)

P, ~0.000202 slug/ft’
In the vertical force balance for neutral buoyancy, only the outside air density is unknown:

YF, =By, — Wiy, = Woattoon = pair(32.2)§(6)3 = (0.000202)(32.2)%(6)3 ~3.51bf
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Solve for p,;, =0.00116 slug/ft® = 0.599 kg/m*

From Table A-6, this density occurs at a standard altitude of 6850 m = 22500 ft.

2.125 Suppose the balloon in Prob. 2.111 is constructed with a diameter of 14 m, is
filled at sea level with hot air at 70°C and 1 atm, and released. If the hot air remains at

70°C, at what U.S. standard altitude will the balloon become neutrally buoyant?

Solution: Recall from Prob. 2.111 that the hot air density is p/RTj, = 1.030 kg/m3.
Assume that the entire weight of the balloon consists of its material, which from Prob. 2.111
had a density of 60 grams per square meter of surface area. Neglect the vent hole. Then

the vertical force balance for neutral buoyancy yields the air density:

Z Fz = Bair - Whot - Wballoon

= pair(9.81)§(14)3 - (1.030)(9.81)%(14)3 —(0.06)(9.8)7z(14)>

Solve for p,;. =~1.0557 kg/m’.

From Table A-6, this air density occurs at a standard altitude of 1500 m. Ans.

2.126 A block of wood (SG = 0.6) floats
in fluid X in Fig. P2.126 such that 75% of
its volume is submerged in fluid X. Estimate
the gage pressure of the air in the tank.

Solution: In order to apply the hydro-
static relation for the air pressure calcula-
tion, the density of Fluid X must be found.
The buoyancy principle is thus first applied.
Let the block have volume V. Neglect the
buoyancy of the air on the upper part of the
block. Then

Ans.

Air = 0 kPa gage Air pressure?
40 cm wood
70 cm Fluid X
Fig. P2.126

O'6ywaterv = 7X(075V)+§Lm-€9%%-’ Tx = 0'87W21ter =7832 N/m3

The air gage pressure may then be calculated by jumping from the left interface into fluid X:

0 Pa-gage — (7832 N/m?)(0.4 m) = P.ir =—3130 Pa-gage = 3130 Pa-vacuum Ans.
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2.127* Consider a cylinder of specific <« D —
gravity S < 1 floating vertically in water A

(§=1), as in Fig. P2.127. Derive a formula f
for the stable values of D/L as a function of L

S and apply it to the case D/L = 1.2. h
Solution: A  vertical force balance l
provides a relation for h as a function of S #

and L, Fig. P2.127

yD*h/4 = SyrD?L/4, thus h=SL

To compute stability, we turn Eq. (2.52), centroid G, metacenter M, center of buoyancy B:

% (pny* D’
MB=I /., =% —MG+GB and substituting h = SL, = MG +GB
o’ Vsub T 16SL
5D

where GB =1/2 —h/2 =1/2 — SL/2 = L(1 — S)/2. For neutral stability, MG = 0. Substituting,

D2
16SL

=O+§(1—S) solving for DIL, %= 8S(1-S) Auns.

For D/L=1.2, S2—S—0.18=0giving 0<S<0.235and 0.765<S<1 Ans.

2.128 The iceberg of Fig. 2.20 can be /5"“‘:“; gravity
idealized as a cube of side length L as
shown. If seawater is denoted as S = 1, the / omr |—L—
iceberg has S = 0.88. Is it stable? 1 °G Water
L} S=1.0
!
Solution: The distance 4 is determined by T , l
y,hL?> =Sy L', or: h=SL Fig. P2.128

The center of gravity is at /2 above the bottom, and B is at h/2 above the bottom. The
metacenter position is determined by Eq. (2.52):
L'12 1 L

S — = = =MG+GB
L'h 12h 128

MB =1 /vy, =
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Noting that GB =L/2 — h/2 = L(1 — S)/2, we may solve for the metacentric height:

MG:L—E(l—S)zo if Sz—S+l=0, or: S=0.211 or 0.789
12S 2 6

Instability: 0.211 < S < 0.789. Since the iceberg has S = 0.88 > (.789, it is stable. Ans.

2.129 The iceberg of Prob. 2.128 may S ~0.88 “T
become unstable if its width decreases. i

Suppose that the height is L and the depth f oM

into the paper is L but the width decreases h G L
to H < L. Again with S = 0.88 for the oB l
iceberg, determine the ratio H/L for which l

the iceberg becomes unstable.

Sﬂi' H h

Solution: As in Prob. 2.128, the submerged distance h = SL = 0.88L, with G at L/2
above the bottom and B at h/2 above the bottom. From Eq. (2.52), the distance MB is

3 2
vpo lo _ LHM2 _H
v, HL(SL) 12SL

su

:MG+GB:MG+(%—STLJ

Then neutral stability occurs when MG = 0, or

H _ £(1—3) or H_ [6S(1-S)]"* =[6(0.88)(1—0.88)]"> =0.796 Ans
12SL. 2 ’ L ' ' ) '

2.130 Consider a wooden cylinder (SG =

0.6) 1 m in diameter and 0.8 m long. é _—
Would this cylinder be stable if placed to S=06
float with its axis vertical in oil (SG = 0.85)? T M
L=0.8m
Solution: A vertical force balance gives h |7 G
04
0.857R*h = 0.67R*(0.8 m), _l i 5 $=0.85

or: h=0.565m

The point B is at h/2 = 0.282 m above the bottom. Use Eq. (2.52) to predict the meta-
center location:

MB =1 /v,,, = [7(0.5)*/41/[7(0.5)*(0.565)]=0.111 m = MG +GB
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Now GB=0.4m—-0.282 m=0.118 m, hence MG =0.111 — 0.118 =-0.007 m.
This float position is thus slightly unstable. The cylinder would turn over. Ans.

2.131 A barge is 15 ft wide and floats
with a draft of 4 ft. It is piled so high with
gravel that its center of gravity is 3 ft above
the waterline, as shown. Is it stable?

Solution: Example 2.10 applies to this
case, with L =7.5 ftand H =4 ft:

2 2
MA = L _H_G5fy 4ft_ 2.69 ft, where “A” is the waterline
3H 2 3(4 ft) 2

Since G is 3 ft above the waterline, MG = 2.69 — 3.0 = —0.31 ft, unstable. Auns.

2.132 A solid right circular cone has SG =
0.99 and floats vertically as shown. Is this a
stable position?

Solution: Let r be the radius at the surface > R |
and let z be the exposed height. Then Fig. P2.132

SE =0=7, Z(R*h-r*2)-0.997, ZR?h, with =
3 3 h
Thus ﬁz 0.0D)"® =0.2154

The cone floats at a draft {=h — z = 0.7846h. The centroid G is at 0.25h above the
bottom. The center of buoyancy B is at the centroid of a frustrum of a (submerged) cone:
_ 0.7846h ( R? +2Rr +3r°

3 4 R% +Rr+1?

] =0.2441h above the bottom

Then Eq. (2.52) predicts the position of the metacenter:

4 2
MB=—o - PO A _ 4 500544 " MG +GB
Var  0.997R*h h

= MG +(0.25h - 0.2441h) = MG +0.0594h
Thus MG > 0O (stability) if (R/h)’>1093 or R/M>3.31 Ans.
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2.133 Consider a uniform right circular
cone of specific gravity S < 1, floating with
its vertex down in water, S = 1.0. The base
radius is R and the cone height is H, as
shown. Calculate and plot the stability
parameter MG of this cone, in dimensionless
form, versus H/R for a range of cone
specific gravities S < 1.

Solution: The cone floats at height 4 and radius r such that B =W, or:

3 3
V) /) h r
Zrh1.0)=ZR*H(S), orr —=—=5<1
3 (L0) 3 %) H R

usr/R = = = ¢ for short. Now use the stability relation:
Thus /R =h/H = S'” = ¢ for short. N he stability relati

4 2
MG+GB:MG+[3—H—ﬁj: I, _7r'/A _3¢R

4 4) v, wr*hi3 4H
MG _3(, R
H '4( H?2

Non-dimensionalize in the final form:

—1+{], {=5" Auns.

This is plotted below. Floating cones pointing down are stable unless slender, R <« H.

3
2.5 ~
9 P's —e—S =02
MGH , ——S=04
) —a—S=0.6
1 —=—S5=08
0.5 —e—S=0.99
0 A
0.5 ,
0 0.5 1 15 2
R/H




Chapter 2 ¢ Pressure Distribution in a Fluid 129

2.134 When floating in water (SG = 1), S

A2

an equilateral triangular body (SG = 0.9) i i —

might take rwo positions, as shown at right. L \/
Which position is more stable? Assume

large body width into the paper. @ ©

Fig. P2.134

Solution: The calculations are similar to the floating cone of Prob. 2.132. Let the
triangle be L by L by L. List the basic results.

(a) Floating with point up: Centroid G is 0.289L above the bottom line, center of buoyancy B
is 0.245L above the bottom, hence GB = (0.289 — 0.245)L = 0.044L. Equation (2.52) gives

MB =1 /v, =0.0068L = MG+ GB = MG +0.044L
Hence MG =-0.037L. Unstable Ans. (a)

(b) Floating with point down: Centroid G is 0.577L above the bottom point, center of
buoyancy B is 0.548L above the bottom point, hence GB = (0.577 — 0.548)L = 0.0296L.
Equation (2.52) gives

MB=1 /v, =0.1826L = MG+ GB = MG +0.0296L
Hence MG =+0.153L Stable Ans. (b)

2.135 Consider a homogeneous right
circular cylinder of length L, radius R, and

specific gravity SG, floating in water (SG = 1) R R

with its axis vertical. Show that the body is CE?

stable if !

R/L >[2SG(1-SG)]"2 1 ! =

]

Solution: For a given SG, the body floats (SG)L E f

with a draft equal to (SG)L, as shown. Its !

center of gravity G is at L/2 above the SG<

|

bottom. Its center of buoyancy B is at
(SG)L/2 above the bottom. Then Eq. (2.52)
predicts the metacenter location:

R4 R®
aR*(SG)L  4(SG)L
Thus MG >0 (stability) if R*/L*>2SG(1-SG) Ans.

SG=1

MB =1 /v, = :MG+GB=MG+%—SG%

For example, if SG = 0.8, stability requires that R/L > 0.566.
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2.136 Consider a homogeneous right

Width L
circular cylinder of length L, radius R, and E i,,::, paper
specific gravity SG = 0.5, floating in water 'R
(SG = 1) with its axis horizontal. Show that 2G ¥
the body is stable if L/R > 2.0. "= \ SG=05 4R/3m

SG=1 "By

Solution: For the given SG = 0.5, the

body floats centrally with a draft equal to

R, as shown. Its center of gravity G is exactly at the surface. Its center of buoyancy B is
at the centroid of the immersed semicircle: 4R/(37) below the surface. Equation (2.52)
predicts the metacenter location:

3 2
MB=1 /v, = (1/12)(22R)L = L =MG+GB=MG+ 4R
7(R°/2)L 3zR RY/4

L2
 37R

—i—R >0 (stability) if L/R>2 Ans.
T

2.137 A tank of water 4 m deep receives a
a constant upward acceleration a,. . T ‘
Determine (a) the gage pressure at the tank = T
bottom if a, = 5 mz/s; and (b) the value of 4 m

a, which causes the gage pressure at the water
tank bottom to be 1 atm.

Solution: Equation (2.53) states that Vp = p(g — a) = p(—kg — ka,) for this case. Then,
for part (a),

Ap = p(g+a,)AS = (998 kg/m*)(9.81+5 m?/s)(4 m) = 59100 Pa (gage) Ans. (a)

For part (b), we know Ap = 1 atm but we don’t know the acceleration:

Ap=p(g+a,)AS=(998)(9.81+a,)(4.0)=101350 Pa if a, =15.6 mz Ans. (b)
s

2f138 A 1‘2 fluid ounce glass, 3 inches in 12 Merry-go-round:
diameter, sits on the edge of a merry-go- gi BN 1()2=_312ﬁ,r/m
round 8 ft in diameter, rotating at 12 r/min. | ro a7
How full can the glass be before it spills? 3in
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Solution: First, how high is the container? Well, 1 fluid oz. = 1.805 in3, hence 12 fl. oz. =
21.66 in’ = (1.5 in)zh, or h = 3.06 in—It is a fat, nearly square little glass. Second,
determine the acceleration toward the center of the merry-go-round, noting that the
angular velocity is £ = (12 rev/min)(1 min/60 s)(2zrad/rev) = 1.26 rad/s. Then, for r = 4 ft,

a, = Q%r = (1.26 rad/s)* (4 ft) = 6.32 ft/s>
Then, for steady rotation, the water surface in the glass will slope at the angle

tan @ = A _ 6.32 =0.196, or: Ah
g+a, 322+0

=(0.196)(1.5in) = 0.294 in

left to center

Thus the glass should be filled to no more than 3.06 — 0.294 = 2.77 inches
This amount of liquid is v= 77(1.5 in)*(2.77 in) = 19.6 in’ =~ 10.8 fluid 0z. Ans.

2.139 The tank of liquid in the figure P2.139

accelerates to the right with the fluid in ~ o,
rigid-body motion. (a) Compute a, in m/s’. 28 cm T

(b) Why doesn’t the solution to part (a) 100 em L
depend upon fluid density? (c) Compute SNO)

gage pressure at point A if the fluid is Fig. P2.139
glycerin at 20°C.

Solution: (a) The slope of the liquid gives us the acceleration:

tang =S =28710CM ¢ 15 1 74
g 100 cm
thus a,=0.13g=0.13(9.81)=1.28 m/s>  Ans. (a)
(b) Clearly, the solution to (a) is purely geometric and does not involve fluid density. Ans. (b)
(c) From Table A-3 for glycerin, p = 1260 kg/m3. There are many ways to compute pa.
For example, we can go straight down on the left side, using only gravity:

p. = pgAz = (1260 kg/m*)(9.81 m/s*)(0.28 m) = 3460 Pa (gage) Ans. ()
Or we can start on the right side, go down 15 cm with g and across 100 cm with a,:

Pa = P8Az+ pa, Ax = (1260)(9.81)(0.15) +(1260)(1.28)(1.00)
=1854+1607=3460 Pa Ans. (¢)
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2.140 Suppose that the elliptical-end fuel A + B
tank in Prob. 2.101 is 10 m long and filled
completely with fuel oil (p = 890 kg/m3). +
Let the tank be pulled along a horizontal ¢ D
road in rigid-body motion. Find the
acceleration and direction for which (a) a
constant-pressure surface extends from the top of the front end to the bottom of the back
end; and (b) the top of the back end is at a pressure 0.5 atm lower than the top of the front end.

2m  Fueloil » a,=?

4+—— 10m —»

Solution: (a) We are given that the isobar or constant-pressure line reaches from point
C to point B in the figure above, 6 is negative, hence the tank is decelerating. The
elliptical shape is immaterial, only the 2-m height. The isobar slope gives the acceleration:

tang, , =—— = 02=% jence a=-02(9.81)=-1.96m/s> Ans. (a)
10 m g

(b) We are now given that p, (back end top) is lower than pg (front end top)—see the
figure above. Thus, again, the isobar must slope upward through B but not necessarily
pass through point C. The pressure difference along line AB gives the correct
deceleration:

kg

Ap,_y =—0.5(101325 Pa) = p,,a,Ax,_ = (890 .

jax(IO m)

solve for a, =-5.69 m/s>  Ans. (b)

This is more than part (a), so the isobar angle must be steeper:

-5.69

tan0=—=-0.580, hence 6. =-30.1°
9.81

isobar

The isobar in part (a), line CB, has the angle 6,, = tan_l(—0.2) =-11.3°.

2.141 The same tank from Prob. 2.139 is
now accelerating while rolling up a 30°
inclined plane, as shown. Assuming rigid-
body motion, compute (a) the acceleration a,
(b) whether the acceleration is up or down,
and (c) the pressure at point A if the fluid is
mercury at 20°C.

Fig. P2.141
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Solution: The free surface is tilted at the angle 8= -30° + 7.41° = -22.59°. This angle
must satisfy Eq. (2.55):

tan @ = tan(—22.59°) =-0.416 =a /(g +a,)
But the 30° incline constrains the acceleration such that a, = 0.866a, a, = 0.5a. Thus

tan@=-0.416 = m, solve for a=-3.80 Ez (down) Ans. (a,b)
9.81+0.5a s

The cartesian components are ay = —3.29 m/s” and ay; =-1.90 m/s’.
(c) The distance AS normal from the surface down to point A is (28 cosé) cm. Thus

P, =plal +(g+a,)* 1" = (13550)[(=3.29) +(9.81-1.90)*1"*(0.28 cos 7.41°)
=~ 32200 Pa (gage) Ans. (c)

2.142 The tank of water in Fig. P2.142 is ™~ —
12 cm wide into the paper. If the tank is 8 A v
accelerated to the right in rigid-body — ~ 3
motion at 6 m/sz, compute (a) the water ~locm
depth at AB, and (b) the water force on Water at 20°C
panel AB. 4
lr 24 cm *ql
Solution: From Eq. (2.55), Fig. P2.142

tanf=a, /g= 6—0 =0.612, or 6=31.45°
9.81

Then surface point B on the left rises an additional Az = 12 tan8= 7.34 cm,
or: water depth AB=9+7.34=16.3cm Ans. (a)
The water pressure on AB varies linearly due to gravity only, thus the water force is

Fap = PegAnap = (9790)[% mj (0.163 m)(0.12 m) = 15.7N  Ans. (b)
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2.143 The tank of water in Fig. P2.143 is
full and open to the atmosphere (pym =
15 psi = 2160 psf) at point A, as shown.
For what acceleration a,, in ft/sz, will the
pressure at point B in the figure be
(a) atmospheric; and (b) zero absolute
(neglecting cavitation)?

Solution: (a) For ps = pg, the imaginary
‘free surface isobar’ should join points A
and B:

T‘ === | p, = 15 Ibf/in? abs
21t -

‘1‘ Water

11t

1

l—~—l fl-‘J*—Zfl—"I

Fig. P2.143

tanf,, =tan45°=1.0=a /g, hence a, = g=322ft/s> Ans. (a)

(b) For pg =0, the free-surface isobar must tilt even more than 45°, so that

ps=0=p, +pgAz— pa Ax = 2160+1.94(32.2)(2) —1.94a,(2),

solve a, =589 ft/s>  Ans. (b)

This is a very high acceleration (18 g’s) and a very steep angle, 6= tan~' (589/32.2) = 87°.

2.144 Consider a hollow cube of side
length 22 cm, full of water at 20°C, and
open to pum = 1 atm at top corner A. The
top surface is horizontal. Determine the rigid-
body accelerations for which the water at
opposite top corner B will cavitate, for (a)
horizontal, and (b) vertical motion.

— =,
-
-
-
-
-
-
-

>y
—~water

Solution: From Table A-5 the vapor pressure of the water is 2337 Pa. (a) Thus
cavitation occurs first when accelerating horizontally along the diagonal AB:

Pa— Py =101325-2337= pa_ ;AL = (998)a, ,5(0.2242),

solve a5 =319 m/s’>  Ans. (a)

If we moved along the y axis shown in the figure, we would need a, = 319V2 = 451 m/s”.
(b) For vertical acceleration, nothing would happen, both points A and B would continue

to be atmospheric, although the pressure at deeper points would change.

Ans.
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2.145 A fish tank 16-in by 27-in by —L

14-inch deep is carried in a car which Az \\ _T

may experience accelerations as high as — 2 14in

6 m/s”. Assuming rigid-body motion, estimate AN

the maximum water depth to avoid h? —a N\ ‘l

spilling. Which is the best way to align _

the tank? 16 in = (begt choice)

Solution: The best way is to align the 16-inch width with the car’s direction of motion,

to minimize the vertical surface change Az. From Eq. (2.55) the free surface angle will be

6.0 thus Az = 16

tan@. .. =a /g:;1=0.612,

Thus the tank should contain no more than 14 — 4.9 = 9.1 inches of water.

Ans.

> tan @ =4.9 inches (6 =31.5°)

2.146 The tank in Fig. P2.146 is filled
with water and has a vent hole at point A.
It is 1 m wide into the paper. Inside is a
10-cm balloon filled with helium at

60 cm

Water at 20°C

D =10cm

1 atm

e 6

20 cm

130 kPa. If the tank accelerates to the
right at 5 m/s/s, at what angle will the
balloon lean? Will it lean to the left or to
the right?

Stri

/ "

|

O
Fig. P2.146

Solution: The acceleration sets up
pressure isobars which slant down and to
the right, in both the water and in the
helium. This means there will be a
buoyancy force on the balloon up and to
the right, as shown at right. It must be
balanced by a string tension down and to
the left. If we neglect balloon material
weight, the balloon leans up and to the
right at angle

6 =tan" [a—"j =tan"! (%} =27° Ans.
g .

measured from the vertical. This acceleration-buoyancy effect may seem counter-intuitive.
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2.147 The tank of water in Fig. P2.147 AN
accelerates uniformly by rolling without
friction down the 30° inclined plane. What
is the angle @ of the free surface? Can you
explain this interesting result?

Solution: If frictionless, X F = W sinf=ma , 20°
along the incline and thus a = g sin 30° =0.5g.

Fig. P2.147

Thus tan 8= a, _ 0.5gcos30

g+a, - g—0.5gsin30°

; solve for 8=30°! Ans.

The free surface aligns itself exactly parallel with the 30° incline.

2.148 Modify Prob. 2.146 as follows: Let
the 10-cm-diameter sphere be concrete (SG =
2.4) hanging by a string from the rop. If the
tank accelerates to the right at 5 m/s/s, at
what angle will the balloon lean? Will it
lean to the left or to the right?

Solution: This problem differs from 2.146 only in the heavy weight of the solid sphere,
which still reacts to the acceleration but not due to an internal “pressure gradient.” The
x-directed forces are not in balance. The equations of motion are

ZFX:m :BX+TX’

sphereax
or: T, = ax(2.4—1.0)(998)§(0.1)3 =3.66 N
S>F,=0=B,+T,—W,

or: T, = g(2.4—1.0)(998)%(0.1)3 =7.18 N
Thus T=(T;+T,)” =8.06 N acting at 6 =atan 718 =27°

The concrete sphere hangs down and to the left at an angle of 27°.  Ans.
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2.149 The waterwheel in Fig. P2.149 lifts
water with 1-ft-diameter half-cylinder
blades. The wheel rotates at 10 r/min. What 10 r/min
is the water surface angle @ at pt. A?

Solution: Convert Q = 10 r/min = 1.05
rad/s. Use an average radius R = 6.5 ft. ] 1 ft

Then Fig. P2.149

a, =Q’R =(1.05)*(6.5)~ 7.13 ft/s* toward the center
Thus tanf@=a,/g=7.13/32.2, or: 6=12.5° Ans.
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2.150 A cheap accelerometer can be __L ) —>
made from the U-tube at right. If L = H

18 cm and D = 5 mm, what will A be if o Restleel

a, = 6 m/s>? -
Solution: We assume that the diameter is

so small, D «< L, that the free surface is a F‘— L—]

point.” Then Egq. (2.55) applies, and Fig. P2.150

tané’:ax/g:6;0: 0.612, or 6=31.5°
9.81

Then h=(L/2)tanf=(9 cm)(0.612)=5.5cm Ans.

Since h = (9 cm)a,/g, the scale readings are indeed linear in a,, but I don’t recommend it

as an actual accelerometer, there are too many inaccuracies and disadvantages.

2.151 The U-tube in Fig. P2.151 is open
at A and closed at D. What uniform accel-
eration a, will cause the pressure at point C :
to be atmospheric? The fluid is water. Ift

Solution: If pressures at A and C are
the same, the “free surface” must join
these points:

Fig. P2.151
0=45° a =gtanf=g=32.2ft/s> Ans.
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2.152 A 16-cm-diameter open cylinder !
27 cm high is full of water. Find the central 1Q g —mee

rigid-body rotation rate for which (a) one- -

third of the water will spill out; and (b) the (a) 18 cm

bottom center of the can will be exposed. [\ SN—fZf -
9cm

Solution: (a) One-third will spill out if the |l d______
resulting paraboloid surface is 18 cm deep:

_QR* Q°(0.08 m)

, solve for Q? =552,
2¢g 2(9.81)

h=0.18 m

Q=235rad/s=224r/min Ans. (a)
(b) The bottom is barely exposed if the paraboloid surface is 27 cm deep:

2 2
h=027 m= Qg()'g#r)n), solve for Q=288 rad/s = 275 r/min  Ans. (b)

2.153 Suppose the U-tube in Prob. 2.150
is not translated but instead is rotated about
the right leg at 95 r/min. Find the level 4 in
the left leg if L =18 cm and D =5 mm.

Solution: Convert Q = 95 r/min = 9.95
rad/s. Then “R” = L = 18 cm, and, since
D«L,

_Q°R* (9.95°(0.18)°
4g 4(9.81)
thus  hyppe, =9+82=17.2cm  Ans.

Ah =0.082 m,

2.154 A very deep 18-cm-diameter can : Q
has 12 cm of Water, .overlald with 10 cm o N L
of SAE 30 oil. It is rotated about the S~—

. . . . . . 10cm
center in rigid-body motion at 150 r/min. i LY,
(a) What will be the shapes of the S~——
interfaces? (b) What and where will be the 12cm
maximum fluid pressure? gbaer |
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Solution: Convert = 150 r/min = 15.7 rad/s. (a) The parabolic surfaces which result
are entirely independent of the fluid density, hence both interfaces will curl up into the
same-shape paraboloid, with a deflection Ah up at the wall and down in the center:

_Q°R*  (15.7)*(0.09)
4g 4(9.81)

Ah

=0.05lm=5.1cm Ans. (a)
(b) The fluid pressure will be highest at point B in the bottom corner. We can compute
this by moving straight down through the oil and water at the wall, with gravity only:

pB = poilgAzoil + p watergAzwater
=(891)(9.81)(0.1 m)+(998)(9.81)(0.051+0.12 m) = 2550 Pa (gage) Ans. (b)

2.155 For what uniform rotation rate in
r/min about axis C will the U-tube fluid in
Fig. P2.155 take the position shown? The
fluid is mercury at 20°C.

Solution: Let h, be the height of the
free surface at the centerline. Then, from

Eq. (2.64), Fig. P2.155
2p 2 2p 2
ZB:h0+QRB; ZA:h0+QRA; R;=005m and R, =0.1m
2g 2g
QZ 2 2
Subtract: z, —z, =0.08 m = 0.1)" —(0.05"],
A~ Zgp 2081 [(0.1) —(0.05)]
solve Q=145 29_138 L aps
S min

The fact that the fluid is mercury does not enter into this “kinematic” calculation.

2.156 Suppose the U-tube of Prob. 2.151
is rotated about axis DC. If the fluid is
water at 122°F and atmospheric pressure is
2116 psfa, at what rotation rate will the
fluid begin to vaporize? At what point in
the tube will this happen?
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Solution: At 122°F = 50°C, from Tables A-1 and A-5, for water, p = 988 kg/m3 (or
1.917 slug/ft3) and p, = 12.34 kPa (or 258 psf). When spinning around DC, the free surface
comes down from point A to a position below point D, as shown. Therefore the fluid
pressure is lowest at point D (Ans.). With & as shown in the figure,

Pb = Pyap =258 =Py — Pgh =2116-1.917(32.2)h, h=Q’R*/(2g)

Solve for h = 30.1 ft (!) Thus the drawing is wildly distorted and the dashed line falls far
below point C! (The solution is correct, however.)

Solve for Q% =2(32.2)(30.D/1 ft)> or: Q=44 rad/s =420 rev/min. Ans.

2.157 The 45° V-tube in Fig. P2.157
contains water and is open at A and
closed at C. (a) For what rigid-body
rotation rate will the pressure be equal at
points B and C? (b) For the condition of
part (a), at what point in leg BC will the
pressure be a minimum?

Fig. P2.157

Solution: (a) If pressures are equal at B and C, they must lie on a constant-pressure
paraboloid surface as sketched in the figure. Taking zg = 0, we may use Eq. (2.64):

2p2 2 2
20 =03m=2R O3 e or 0=800 o771 TV 4 @)
2¢g 2(9.81) S min

(b) The minimum pressure in leg BC occurs where the highest paraboloid pressure
contour is tangent to leg BC, as sketched in the figure. This family of paraboloids has the
formula

2,2
=rtan45° or: z,+ 3.333r>—r=0 fora pressure contour

z=17z,+

2g
The minimum occurs when dz/dr=0, or r=0.15m Ans. (b)

The minimum pressure occurs halfway between points B and C.
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2.158* It is desired to make a 3-m- 7
diameter parabolic telescope mirror by _i
rotating molten glass in rigid-body motion Focus
until the desired shape is achieved and then irgor

0
cooling the glass to a solid. The focus of M“\ h=4m
the mirror is to be 4 m from the mirror, L: /
el = - - >

measured along the centerline. What is the
proper mirror rotation rate, in rev/min?

Solution: We have to review our math book, or Mark’s Manual, to recall that the focus F
of a parabola is the point for which all points on the parabola are equidistant from both
the focus and a so-called “directrix’ line (which is one focal length below the mirror).

For the focal length £ and the z-r axes shown in the figure, the equation of the parabola is
given by r’ = 4hz, with 1 = 4 m for our example.

Meanwhile the equation of the free-surface of the liquid is given by z = rZQZ/(Zg).

Set these two equal to find the proper rotation rate:

22 2
= 2= 8 98 e
2¢  4h 2h 2(4)
Thus Q=1.107 294 (S—O):wﬁrev/min Ans.
S T

The focal point F is far above the mirror itself. If we put in » = 1.5 m and calculate the
mirror depth “L” shown in the figure, we get L = 14 centimeters.

2.159 The three-legged manometer in | ;
Fig. P2.159 is filled with water to a depth o o L

of 20 cm. All tubes are long and have equal S i el _—f-
small diameters. If the system spins at 10 em 10 em 20 cm
angular velocity €2 about the central tube, l

(a) derive a formula to find the change of
height in the tubes; (b) find the height in
cm in each tube if Q = 120 rev/min. [HINT:
The central tube must supply water to both Fig. P2.159
the outer legs.]

Solution: (a) The free-surface during rotation is visualized as the red dashed line in
Fig. P2.159. The outer right and left legs experience an increase which is one-half that
of the central leg, or Ahg = Ahc/2. The total displacement between outer and center
menisci is, from Eq. (2.64) and Fig. 2.23, equal to QZRZ/(Zg). The center meniscus
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falls two-thirds of this amount and feeds the outer tubes, which each rise one-third of
this amount above the rest position:

22 2p2
lAh L Ah __EAhtotalz_g2 K

outer — 3 total — ? center — 3 3g Ans. (a)

Ah

For the particular case R = 10 cm and € = 120 r/min = (120)(2/760) = 12.57 rad/s, we obtain
Q°R* _ (12.57 rad/s)*(0.1 m)*

2g 2(9.81 m/s?)
Ah, =0.027 m (up) Ah. =-0.054 m (down) Ans. (b)

=0.0805 m;




Chapter 2 ¢ Pressure Distribution in a Fluid 143

FUNDAMENTALS OF ENGINEERING EXAM PROBLEMS: Answers

FE-2.1 A gage attached to a pressurized nitrogen tank reads a gage pressure of 28 inches
of mercury. If atmospheric pressure is 14.4 psia, what is the absolute pressure in the tank?
(a)95kPa (b)99kPa (c) 101 kPa (d) 194KkPa (e) 203 kPa

FE-2.2 On a sea-level standard day, a pressure gage, moored below the surface of the
ocean (SG = 1.025), reads an absolute pressure of 1.4 MPa. How deep is the instrument?
@4m (GB)129m () 133m (d)140m (e) 2080 m

FE-2.3 In Fig. FE-2.3, if the oil in region
B has SG = 0.8 and the absolute pressure
at point A is 1 atmosphere, what is the
absolute pressure at point B?

(a) 5.6 kPa (b) 10.9kPa (c)106.9 kPa

(d) 112.2kPa (e) 157.0 kPa

oi

8 cm

SG =13.56

Fig. FE-2.3
FE-2.4 1In Fig. FE-2.3, if the oil in region B has SG = 0.8 and the absolute pressure at

point B is 14 psia, what is the absolute pressure at point B?
(@) 11 kPa (b)41kPa (c)86kPa (d)91KkPa (e) 101 kPa

FE-2.5 A tank of water (SG = 1.0) has a gate in its vertical wall 5 m high and 3 m wide.

The top edge of the gate is 2 m below the surface. What is the hydrostatic force on the gate?
(a) 147kN (b)367kN (c)490kN (d) 661 kN (e) 1028 kN

FE-2.6 In Prob. FE-2.5 above, how far below the surface is the center of pressure of the
hydrostatic force?
@)450m (b)546m (c)6.35m (d)533m (e)4.96m

FE-2.7 A solid 1-m-diameter sphere floats at the interface between water (SG = 1.0) and
mercury (SG = 13.56) such that 40% is in the water. What is the specific gravity of the sphere?
(a)6.02 (b)7.28 (c)7.78 (d)8.54 (e) 12.56
FE-2.8 A 5-m-diameter balloon contains helium at 125 kPa absolute and 15°C, moored
in sea-level standard air. If the gas constant of helium is 2077 mz/(sz-K) and balloon
material weight is neglected, what is the net lifting force of the balloon?
(a)67N (b) 134N (c)522N (d)653N (e) 787N
FE-2.9 A square wooden (SG = 0.6) rod, 5 cm by 5 cm by 10 m long, floats vertically
in water at 20°C when 6 kg of steel (SG = 7.84) are attached to the lower end. How high
above the water surface does the wooden end of the rod protrude?
@)06m (b)lo6m (©19m ([d24m (e)4.0m
FE-2.10 A floating body will always be stable when its
(a) CG is above the center of buoyancy (b) center of buoyancy is below the waterline
(c) center of buoyancy is above its metacenter (d) metacenter is above the center of buoyancy
(e) metacenter is above the CG
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COMPREHENSIVE PROBLEMS

C2.1 Some manometers are constructed as in the figure at To measurement pa
right, with one large reservoir and one small tube open to the
atmosphere. We can then neglect movement of the reservoir
level. If the reservoir is not large, its level will move, as in
the figure. Tube height £ is measured from the zero-pressure
level, as shown.

(a) Let the reservoir pressure be high, as in the Figure, so its level
goes down. Write an exact Expression for pjg,. as a function of
h, d, D, and gravity g. (b) Write an approximate expression for pj e, neglectmg the movement
of the reservoir. (c) Suppose h =26 cm, p, = 101 kPa, and p,, = 820 kg/m Estimate the ratio
(D/d) required to keep the error in (b) less than 1.0% and also < 0.1%. Neglect surface tension.

Solution: Let H be the downward movement of the reservoir. If we neglect air density,
the pressure difference is p; — p, = png(h + H). But volumes of liquid must balance:

%DzH - %dzh, or: H=(dID)*h

Then the pressure difference (exact except for air density) becomes
P1—Pa = Pigage = Pugh(1+d*ID*)  Ans. (a)
If we ignore the displacement H, then pjga0. = pugh Ans. (b)

(c) For the given numerical values, h = 26 cm and p,, = 820 kg/m3 are irrelevant, all that
matters is the ratio d/D. That is,

A —A 2
Error E = Pexact — approx _ (d/D) 5, or: Dld=,\/(1-E)E
AP ract 1+(d/D)
ForE=1% or 0.01, D/d=[(1-0.01)/0.011"*>9.95 Ans. (c-1%)
For E=0.1% or 0.001, D/d=[(1-0.001)/0.001]"*>31.6 Ans. (c-0.1%)

C2.2 A prankster has added oil, of specific gravity SG,,
to the left leg of the manometer at right. Nevertheless, the
U-tube is still to be used to measure the pressure in the
air tank. (a) Find an expression for 4 as a function of H
and other parameters in the problem.

(b) Find the special case of your result when pu = Pa-
(c) Suppose H =5 cm, p, = 101.2 kPa, SG, = 0.85, and
Pank 18 1.82 kPa higher than p,. Calculate 4 in cm,
ignoring surface tension and air density effects.

Air tank:
Prank
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Solution: Equate pressures at level i in the tube:
Pi =P, +pgH+ p,g(h—H) =Py,
p=SG,p, (ignore the column of air in the right leg)
Solve for: h=P%=Pa 4 H1-8G,) Ans. (a)

P8
If Prank = Pas then

h=H(1-SG,) Ans.(b)
(c) For the particular numerical values given above, the answer to (a) becomes

1820 Pa
998(9.81)

Note that this result is not affected by the actual value of atmospheric pressure.

+0.05(1-0.85)=0.186 +0.0075=0.193 m=19.3 cm Ans. (c)

C2.3 Professor F. Dynamics, riding the merry-go-round with his son, has brought along
his U-tube manometer. (You never know when a manometer might come in handy.) As
shown in Fig. C2.2, the merry-go-round spins at constant angular velocity and the manometer
legs are 7 cm apart. The manometer center is 5.8 m from the axis of rotation. Determine
the height difference h in two ways: (a) approximately, by assuming rigid body
translation with a equal to the average manometer acceleration; and (b) exactly, using
rigid-body rotation theory. How good is the approximation?

< 7cm N
|/ Q=60rev/min |l 7 |
' h
! R = 5.8 m (to center of manometer) :
' >
Center of » '
rotation

Solution: (a) Approximate: The average acceleration of o\ - .
the manometer is R,,,Q° = 5.8[6(27/60)]> = 2.29 rad/s Nt
toward the center of rotation, as shown. Then

tan(@) = a/g =2.29/9.81 =h/(7 cm)=0.233
Solve for h=1.63cm Ans. (a)
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(b) Exact: The isobar in the figure at right would be on the parabola z = C + rZQZ/(2g),
where C is a constant. Apply this to the left leg (z;) and right leg (z,). As above, the
rotation rate is 2 = 6.0*(22/60) = 0.6283 rad/s. Then

Q? (0.6283)°
B e A T

> [(5.840.035)* = (5.8—0.035)*]
g
=0.0163m Ans. (b)

This is nearly identical to the approximate answer (a), because R > Ar.

C2.4 A student sneaks a glass of cola onto a roller coaster ride. The glass is cylindrical,
twice as tall as it is wide, and filled to the brim. He wants to know what percent of the cola
he should drink before the ride begins, so that none of it spills during the big drop, in which
the roller coaster achieves 0.55-g acceleration at a 45° angle below the horizontal. Make the
calculation for him, neglecting sloshing and assuming that the glass is vertical at all times.

Solution: We have both horizontal and ver- <4+—p —»
tical acceleration. Thus the angle of tilt ¢ris Al
‘e, @ /Tilted surface
o e
ang =% — 0.55gcos'45 — 0.6364 '.,<
g+a, g—0.55gsin45° D

Thus o= 32.47°. The tilted surface strikesthe | |  No-—----- 5"
centerline at Rtana = 0.6364R below the top. 45
So the student should drink the cola until its
rest position is 0.6364R below the top. The + a=0.55(9.81)

percentage drop in liquid level (and therefore
liquid volume) is

% removed = % =0.159 or. 159% Ans.

C2.5 Dry adiabatic lapse rate is defined as DALR = —dT/dz when T and p vary
isentropically. Assuming T = Cp*, where a = (y— 1)/y% y= Cp/Cy, (a) show that DALR =
g(y— D/(yR), R = gas constant; and (b) calculate DALR for air in units of °C/km.

Solution: Write T(p) in the form T/T, = (p/p,)" and differentiate:

a—1
T 1
d— =T,a v —d—p, But for the hydrostatic condition: @ =—pg
dz D, p, dz dz
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Substitute p = p/RT for an ideal gas, combine above, and rewrite:

a-1 a a
dTr T T T
2L _ Ty (ﬁj Lg = —%(—0] [ﬁj . But: —O(ﬁj =1 (isentropic)
dz p, \p,) RT R\T/\p, T \p,

Therefore, finally,

9T parr=98 Vg,
dz R YR
(b) Regardless of the actual air temperature and pressure, the DALR for air equals
_ 2 o o
paLR =L | S QA=DOI M) _ 660077 € o977 “C Ans. (b)
dz 1.4(287m"/s*/°C) m km

C2.6 Use the approximate pressure-density relation for a “soft” liquid,

dp=a’dp, or p=p,+a’(p-p,)

to derive a formula for the density distribution p(z) and pressure distribution p(z) in a
column of soft liquid. Then find the force F on a vertical wall of width b, extending from
z =0 down to z = —h, and compare with the incompressible result F = poghzb/2.

Solution: Introduce this p(p) relation into the hydrostatic relation (2.18) and integrate:

T
J= =

assuming constant a’. Substitute into the p(p) relation to obtain the pressure distribution:

dp=a’dp=—-ydz=—-pgdz, or: J'g_(iz or: p= poe—gz/az Ans.
a
0

Po

- Za2
p=p,+a’p,[e ¥ 1] (1)

Since p(z) increases with z at a greater than linear rate, the center of pressure will always
be a little lower than predicted by linear theory (Eq. 2.44). Integrate Eq. (1) above,
neglecting p,, into the pressure force on a vertical plate extending from z =0 to z = —h:

~h 0 2
F=- [pbdz= [a’p, (e ~Dbdz=ba’p, [a—(eg“faz— - h} Ans.

0 -h g
In the limit of small depth change relative to the “softness” of the liquid, h <« az/g, this
reduces to the linear formula F = poghzb/Z by expanding the exponential into the first
three terms of its series. For “hard” liquids, the difference in the two formulas is
negligible. For example, for water (a = 1490 m/s) with h = 10 m and b = 1 m, the linear
formula predicts F = 489500 N while the exponential formula predicts F = 489507 N.




Chapter 3 - Integral Relations
for a Control Volume

3.1 Discuss Newton’s second law (the linear momentum relation) in these three forms:

d d
>F=ma ZF—Z(mV) ZF—E[IVpdv]

system

Solution: These questions are just to get the students thinking about the basic laws of
mechanics. They are valid and equivalent for constant-mass systems, and we can make
use of all of them in certain fluids problems, e.g. the #1 form for small elements, #2 form
for rocket propulsion, but the #3 form is control-volume related and thus the most
popular in this chapter.

3.2 Consider the angular-momentum relation in the form

d
>M, :E[ j (rxV)pdv]

system

What does r mean in this relation? Is this relation valid in both solid and fluid
mechanics? Is it related to the linear-momentum equation (Prob. 3.1)? In what manner?

Solution: These questions are just to get the students thinking about angular
momentum versus linear momentum. One might forget that r is the position vector from
the moment-center O to the elements p dv where momentum is being summed. Perhaps
Io is a better notation.

3.3 For steady laminar flow through a long tube (see Prob. 1.12), the axial velocity
distribution is given by u = C(R® — 1°), where R is the tube outer radius and C is a
constant. Integrate u(r) to find the total volume flow Q through the tube.

Solution: The area element for this axisymmetric flow is dA = 27r dr. From Eq. (3.7),

R
0= [udA=[C(R -r*)2zrdr= %CR" Ans.
0
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3.4 Discuss whether the following flows are steady or unsteady: (a) flow near an
automobile moving at 55 m/h; (b) flow of the wind past a water tower; (c) flow in a pipe
as the downstream valve is opened at a uniform rate; (d) river flow over a spillway of a
dam; and (e) flow in the ocean beneath a series of uniform propagating surface waves.

Solution: (a) steady (except for vortex shedding) in a frame fixed to the auto.
(b) steady (except for vortex shedding) in a frame fixed to the water tower.

(c) unsteady by its very nature (accelerating flow).

(d) steady except for fluctuating turbulence.

(e) Uniform periodic waves are steady when viewed in a frame fixed to the waves.

3.5 A theory proposed by S. L. Pai in 1953 gives the following velocity values u(r) for
turbulent (high-Reynolds number) airflow in a 4-cm-diameter tube:

r,em 0 025 05 075 1.0 125 1.5 1.75 2.0
u,m/s 600 597 588 572 551 523 489 443 0.00

Comment on these data vis-a-vis laminar flow, Prof. 3.3. Estimate, as best you can, the
total volume flow Q through the tube, in m’/s.

Solution: The data can be plotted in the figure below.

6.00 Wem—
o ——— — JI\- I
~~ T ——
~N- - \-
5.00 ~—— ——
u, m/s ~ \\ \-
4.00 > \
\\
=== Turbulent Data N
3.00 S
\~
————— Laminar, Prob. N \
2.00 33 AN
\
N
\
1.00 \\
\ \
\

0.00 ]

0 0.5 1 r,cm 1.5 2

As seen in the figure, the flat (turbulent) velocities do not resemble the parabolic laminar-
flow profile of Prob. 3.3. (The discontinuity at » = 1.75 cm is an artifact—we need more
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data for 1.75 < r < 2.0 cm.) The volume flow, Q = | u(2zr)dr, can be estimated by a
numerical quadrature formula such as Simpson’s rule. Here there are nine data points:

Ar
Q =27 (ru, +4ru, +2ruy +4r,u, + 2rsus + 4rgug + 2ru, +4rgug + rgug)(?

For the given data, Q = 0.0059 m’/s  Ans.

3.6 When a gravity-driven liquid jet
issues from a slot in a tank, as in Fig. P3.6,
an approximation for the exit velocity
distribution is u=./2g(h—z), where h is
the depth of the jet centerline. Near the
slot, the jet is horizontal, two-dimensional,
and of thickness 2L, as shown. Find a
general expression for the total volume
flow Q issuing from the slot; then take the
limit of your result if L < h.

Solution: Let the slot width be b into the paper. Then the volume flow from Eq. (3.7) is
+L 2b
Q= j udA = j [2g(h—2)]"*bdz = ?\/(Zg)[(h +L)"> —(h-L)**1 Ans.
-L

In the limit of L <« h, this formula reduces to Q= (2Lb)./(2gh) Ans.

3.7 In Chap. 8 a theory gives the velocities for flow past a cylinder:
v, =Ucos@(1-R*/r?)
v, =—Usin@(1+R*/r*)

Compute the volume flow Q passing through surface CC in the figure.

Imaginary surface:
c / Width b into paper

%

U R

Fig. P3.7
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Solution: This problem is quite laborious and illustrates the difficulty of working with
polar velocity components passing through a cartesian (plane) surface. From Eq. (3.7),

+R
Q= I(V-n)dA = I(Vr cosf —v,sinf)bdy, where y=rsinf
-R

We have to integrate over surface CC, where r varies from 2R to 2.24R and 6 varies from
153.4° to 206.6°. Inserting the velocity components as given we obtain

+R
Q= j [Ucos’6(1-R*/r*)+ Usin®0(1+R*/r*)]bdy |, ,r =1.6URb  Ans.

-R

The integration is messy. In Chaps. 4&8 we find the result easily using the stream function.

3.8 Three pipes steadily deliver water at \ B
20°C to a large exit pipe in Fig. P3.8. The Dy =6cm
velocity V, = 5 m/s, and the exit flow rate  D,=5 cr\

Q, =120 m’h. Find (a) V;; (b) Vi; and
(c) V4 if it is known that increasing Q5 by > ’

20% would increase Q4 by 10%. //_-D =9 cm
/ D;=4cm

Solution: (a) For steady flow we have _
Q1 + Q2 + Q3 = Q4, or Flg. P3.8

VIA +V,A, +V;A; =V, A, (1)

Since 0.2Q; = 0.1Q4, and Q, = (120 m*/h)(h/3600 s) = 0.0333 m’/s,

0, _(0.0333 m’/s)
24, §(0.062)

V; = =589 m/s Ans. (b)

Substituting into (1),
4 2 4 2 4 2
Vi (ZJ(O.M )+(5)(ZJ(O.05 )+(5.89)(ZJ (0.067)=0.0333 V,=545m/s Ans. (a)

From mass conservation, Q, = V,A,

(0.0333 m’/s) = V,(7)(0.06*)/4  V,=524m/s Ans. (c)
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3.9 A laboratory test tank contains
seawater of salinity S and density p. Water
enters the tank at conditions (S, p;, A, V1)
and is assumed to mix immediately in the
tank. Tank water leaves through an outlet
A, at velocity V,. If salt is a “conservative”
property (neither created nor destroyed),
use the Reynolds transport theorem to find
an expression for the rate of change of salt
mass Mg, within the tank.

Solution: By definition, salinity S = pg,/p. Since salt is a “‘conservative” substance (not
consumed or created in this problem), the appropriate control volume relation is

dMsalt _ d . .
dt |System_a(C£ P va-l-sz —Slml =0

M

3.10 Water flowing through an 8-cm-diameter pipe enters a porous section, as in
Fig. P3.10, which allows a uniform radial velocity vy, through the wall surfaces for a
distance of 1.2 m. If the entrance average velocity V; is 12 m/s, find the exit velocity V,
if (a) vy, = 15 cm/s out of the pipe walls; (b) vy, = 10 cm/s into the pipe. (c) What value
of vy, will make V, =9 m/s?

Fig. P3.10

Solution: (a) For a suction velocity of v, = 0.15 m/s, and a cylindrical suction surface area,
A, =27(0.04)(1.2)=0.3016 m*
Q=Q,+Q,
(12)(7)(0.08%)/4 = (0.15)(0.3016) + V, ()(0.08 /4 V,=3m/s Ans. (a)
(b) For a smaller wall velocity, v, =0.10 m/s,
(12)(7)(0.08%)/4 = (0.10)(0.3016) + V, ()(0.08% /4 V, =6m/s Ans. (b)
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(c) Setting the outflow V, to 9 m/s, the wall suction velocity is,
(12)(7)(0.08 /4 = (v,,)(0.3016)+ (9)(7)(0.08° /4 v, =0.05m/s =5 cm/s out

3.11 A room contains dust at uniform concentration C = pg,/p. It is to be cleaned by
introducing fresh air at an inlet section A;, V; and exhausting the room air through an
outlet section. Find an expression for the rate of change of dust mass in the room.

Solution: This problem is very similar to Prob. 3.9 on the previous page, except that
here C; = 0 (dustfree air). Refer to the figure in Prob. 3.9. The dust mass relation is

dM dust
dt

system: 0= dt { j Pdust dvj + Coutrr1 C 1’hin’

. . dM
or, since C,, =0, we obtain %lcvz—CpAoVo Ans.

To complete the analysis, we would need to make an overall fluid mass balance.

3.12 The pipe flow in Fig. P3.12 fills a cylindrical tank as shown. At time t = 0, the water
depth in the tank is 30 cm. Estimate the time required to fill the remainder of the tank.

D=75cmy, l
A
I
— > — >

V,=25m/s Rd=12cm Vy=19m/s
Fig. P3.12

Solution: For a control volume enclosing the tank and the portion of the pipe below the tank,
d ) .
E[J.pdv}-i_mout -m, = 0

(pAV),, =0

pﬂ.Rz %4_ (pAV)out
dn__ 4 |y
dt  998(7)(0.75%)

At=0.7/0.0153=46s Ans.

[ ( j(O 12%)(2.5-1 9)} 0.0153 mls,
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313 Water at 20°C flows steadily at
40 kg/s through the nozzle in Fig. P3.13. If
Dy = 18 cm and D, = 5 cm, compute the
average velocity, in m/s, at (a) section 1 and
(b) section 2.

Fig. P3.13

Solution: The flow is incompressible, hence the volume flow Q = (40 kg/s)/(998 kg/m3) =
0.0401 m’/s. The average velocities are computed from Q and the two diameters:

Vi =g—w=1.ss m/s Ans. (a)

A (7/4)(0.18)

0 00401

2

3.14 The open tank in the figure contains l

water at 20°C. For incompressible flow, @) ' Q3=0.01m’/s
(a) derive an analytic expression for dh/dt (U__Jl @)

in terms of (Q;, Q,, Q3). (b) If & is constant, —»> — h L
determine V, for the given data if V| =3 m/s D;=5cm D2=—7c>m

and Q; = 0.01 m/s.

Solution: For a control volume enclosing the tank,

dt

cv

2
h
i{ IPdU}L,O(Qz—Ql—Q3)=,0%%+,0(Q2—Q1—Q3),

dh _Q,+Q;-Q,

solve 5
dt (md”/4)

ns. (a)
If & is constant, then

0, =0, +0; =001 +%(0.05)2(3.0) =0.0159 = %(0.07)%/2,

solve V,=413m/s Ans. (b)
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3.15 Water flows steadily through the r=R

round pipe in the figure. The entrance A

velocity is V,,. The exit velocity a;)proximates f r >
turbulent flow, u =u,, (1 —t/R)"’. Determine [ %] 7777
the ratio Uy/u,,, for this incompressible flow.

|
Solution: Inlet and outlet flow must balance: x=0 x=L

R R 7
=0, or IU02ﬁr dr = Iumax (1—%j 2rrdr, or: Uoiz'R2 =U,,.

0 0

Cancel and rearrange for this assumed incompressible pipe flow:

155

u(r)

497 R2
60

Y, :Q Ans.
U, 60
3.16 An incompressible fluid flows past v, = e v,
an impermeable flat plate, as in Fig. P3.16, : 71
with a uniform inlet profile u = U, and a | |
cubic polynomial exit profile : |
y=0 (&%
| —— S J -
_ U 377 —773 h _ y Solid plate, width b into paper cubie
u=U, = where 77 =" Fig. P3.16

Compute the volume flow Q across the top surface of the control volume.

Solution: For the given control volume and incompressible flow, we obtain
fo (3 Y ;
0= Qtop + Qright _Qleft =Q+ (_)[ Uo (%_ﬁj b dy_ 6'. Uobdy

:Q+§Uob5—Uob5, solve for Q=%U0b§ Ans.

3.17 Incompressible steady flow in the ;

inlet between parallel plates in Fig. P3.17 is bt iiee e s 2%
uniform, u = U, = 8 cm/s, while downstream g% U
the flow develops into the parabolic laminar TR I 220
profile u = az(z, — z), where a is a constant.

If z, = 4 cm and the fluid is SAE 30 oil at Fig. P3.17

20°C, what is the value of u,,,, in cm/s?
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Solution: Let b be the plate width into the paper. Let the control volume enclose the
inlet and outlet. The walls are solid, so no flow through the wall. For incompressible flow,

0=Qu —Qy, = [az(z,—2)bdz— [ U bdz=abz)/6-U,bz, =0, or: a=6U,/z
0 0

Thus continuity forces the constant a to have a particular value. Meanwhile, a is also
related to the maximum velocity, which occurs at the center of the parabolic profile:

Atz=z,/2: u=u,, = a(%j(z —%) = az2/4 = (6U,/22)(22/4)

or: u =§U0=§(80m/s)=12E Ans.
2 2 S

max

Note that the result is independent of z, or of the particular fluid, which is SAE 30 oil.

3.18 An incompressible fluid flows INLET
steadily through the rectangular duct in the \

. . . e 2b
figure. The exit velocity 2proflle is given by
U = Upax(1 — y/b5)(1 — Z/h%). (a) Does this

profile satisfy the correct boundary conditions 2h z

for viscous fluid flow? (b) Find an analytical y
expression for the volume flow Q at the /

exit. (c) If the inlet flow is 300 ft3/min, / \
estimate U,,, in m/s. EXIT X, U

Solution: (a) The fluid should not slip at any of the duct surfaces, which are defined by
y =1b and z = th. From our formula, we see u = 0 at all duct surfaces, OK. Ans. (a)
(b) The exit volume flow Q is defined by the integral of u over the exit plane area:

T ’ 2 4b\( 4h
ot Jucp i o (S

_ 16bhu,,,

9 Ans. (b)

(c) Given Q = 300 ft’/min = 0.1416 m3/s, we need duct dimensions, also (sorry). Let us
take b = h = 10 cm. Then the maximum exit velocity is

m® 16

0=0.1416 —= E(O.l m)(0.1 m)u solve for u_, =796 m/s Ans. (c)
S

max?®
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3.19 Water from a storm drain flows over an outfall onto a porous bed which absorbs the
water at a uniform vertical velocity of 8 mm/s, as shown in Fig. P3.19. The system is 5 m
deep into the paper. Find the length L of bed which will completely absorb the storm water.

Initial depth =40 cm

AN
bbby

e e a s,
aniiniated,
-

Fig. P3.19
Solution: For the bed to completely absorb the water, the flow rate over the outfall
must equal that into the porous bed,

Q;=Qpg; or (2m/s)(0.2 m)(5Sm)=(0.008 m/s)(Sm)L L=50m Ans.

3.20 Oil (SG-0.91) enters the thrust
bearing at 250 N/hr and exits radially
through the narrow clearance between
thrust plates. Compute (a) the outlet
volume flow in mL/s, and (b) the average
outlet velocity in cm/s.

Solution: The specific weight of the oil is Fig. P3.20
(0.91)(9790) = 8909 N/m’. Then
250/3600 N/s 6 m’ mL
Q,=Q, =" "2 2 78x10° — =78 —  Ans. (a)
>~ 8909 N/m® s s

Butalso Q, =V, z(0.1 m)(0.002m)=7.8x10", solve for V, =1.24 <& Ans. (b)
S

3.21 A dehumidifier brings in saturated wet air (100 percent relative humidity) at 30°C
and 1 atm, through an inlet of 8-cm diameter and average velocity 3 m/s. After some of
the water vapor condenses and is drained off at the bottom, the somewhat drier air leaves
at approximately 30°C, 1 atm, and 50 percent relative humidity. For steady operation,
estimate the amount of water drained off in kg/h. (This problem is idealized from a real
dehumidifier.)
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Solution: Recall that “relative humidity” is the ratio of water-vapor density present in
the air to the saturated vapor density at the same temperature. From Tables A-4 and A-5
for water at 30°C, Ry, = 461 J/(kg-°K) and p, /= 4242 Pa. Then, at 100% humidity,

Praper =2 =22 0304 ke/m’
RT  (461)(303)

Meanwhile, the inlet volume flow of wet air is Q;, = AV = (7/4)(0.08 m)2(3 m/s) =0.0151 m’/s.
It follows that the mass of water vapor entering is p,,,Qin = 4.58E~4 kg/s. If the air leaves
at 50% relative humidity, exactly half of this is drained away:

M sined away = (1/2)(4.58E—4)(3600) = 0.82 % Ans.

3.22 The converging-diverging nozzle \/4
shown in Fig. P3.22 expands and accelerates i

dry air to supersonic speeds at the exit, where A S EE
p> =8 kPa and T, = 240 K. At the throat, ﬁ\i
p1 =284 kPa, T, = 665 K, and V; = 517 mis. ) ;
For steady compressible flow of an ideal gas, Di=tem ©)
estimate (a) the mass flow in kg/h, (b) the D,=25cm
velocity V,, and (c) the Mach number Ma,. Fig. P3.22

Solution: The mass flow is given by the throat conditions:

284000 kg

(287)(665) m®

}%(0.01 m)* (517 Ej =0.0604 kg Ans. (a)
S s

m=pAV, = {

For steady flow, this must equal the mass flow at the exit:

kg

£ 2 (0.025)°V,, or V,=1060 2 Ans. (b)
S

4 S

0.0604 5000 }

=p,A,V, =| —
P s [287(240)
Recall from Eq. (1.39) that the speed of sound of an ideal gas = (kRT)l/Z. Then

_ 1060 _
[1.4(287)(240)]"2

Mach number at exit: Ma=V,/a, 3.41 Ans. ()

3.23 The hypodermic needle in the figure contains a liquid (SG = 1.05). If the serum is
to be injected steadily at 6 cm’/s, how fast should the plunger be advanced (a) if leakage
in the plunger clearance is neglected; and (b) if leakage is 10 percent of the needle flow?
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D, =0.75in

TTRRE TN
TRERTELITN

Solution: (a) For incompressible flow, the volume flow is the same at piston and exit:

3 . 3
0=6 " -0366 "= Ay, :%(0.75 in)V,, solve V.

iston
S N P

083 2 Ans. (a)
S

(b) If there is 10% leakage, the piston must deliver both needle flow and leakage:

3 . 3
AV, =0+ 0 =6+0.1(6)=6.6 < =0.403 L = %(0.75)2\/,

S N

V=091 2 Ans. (b)
S

3.24 Water enters the bottom of the cone
in the figure at a uniformly increasing —_—
average velocity V = Kt. If d is very small, 0
derive an analytic formula for the water h(r)
surface rise h(f), assuming A =0 at 1 =0.

Solution: For a control volume around
the cone, the mass relation becomes

d ., d| 7 2 T
E(jpdv)—mm —O—E{pg(htanﬁ) h}—pzd Kt

Integrate: p§h3tan20 = pgalth2

13
Solve for h(t)= {% Kt2d? cotze} Ans.

3.25 As will be discussed in Chaps. 7 and 8, the flow of a stream U, past a blunt flat
plate creates a broad low-velocity wake behind the plate. A simple model is given in
Fig. P3.25, with only half of the flow shown due to symmetry. The velocity profile
behind the plate is idealized as “dead air” (near-zero velocity) behind the plate, plus a higher
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velocity, decaying vertically above the wake according to the variation u = U, + AU, where
L is the plate height and z = 0 is the top of the wake. Find AU as a function of stream speed U,,.

2 ~ Exponential curve

Width b v
Uo into paper U+ AU
—_— L Dead air (negligible velocity)
—_— ?
— € - —_ —
Fig. P3.25

Solution: For a control volume enclosing the upper half of the plate and the section
where the exponential profile applies, extending upward to a large distance H such that
exp(—H/L) = 0, we must have inlet and outlet volume flows the same:

H H
Q, = j U,dz=Q,, = j (U, +AUe ™™ )dz, or: UO(H+%J:UOH+AUL
0

-L/2

Cancel U_H and solve for AU = %UO Ans.

3.26 A thin layer of liquid, draining from
an inclined plane, as in the figure, will have
a laminar velocity profile u = Uy(2y/h — y2/h2),
where U, is the surface velocity. If the
plane has width b into the paper, (a) deter-
mine the volume rate of flow of the film.
(b) Suppose that 2 = 0.5 in and the flow
rate per foot of channel width is 1.25 gal/min.
Estimate U, in ft/s.

Solution: (a) The total volume flow is computed by integration over the flow area:
h 2
2y 'y 2
=|V,dA=|U,| ——— |bdy=—U,bh Ans. (a
o=[v, Jo(hh2)y3° (a)

(b) Evaluate the above expression for the given data:

3
0=125 3 _ 0002785 =2y pn=20 (1.0 ft)(o—'s ftj,
min Ky 3 3 12

solve for U, =0.10 E Ans. (b)
S
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3.27 The cone frustum in the figure
contains incompressible liquid to depth A.
A solid piston of diameter d penetrates the
surface at velocity V. Derive an analytic
expression for the rate of rise dh/dt of the
liquid surface.

/
|
|

Solution: The piston motion is equivalent to a volume flow Q;, = VAo into the
liquid. A control volume around the frustum tank yields

d P 4 2 2 T »
E(Ipdv)—mm —O—pz{g[(R+htan6’) (h+Rcotd)—R (RcotH)]}—pVZd

Cancel p and r: di(3R2h +3Rh*tan@ + 1’ tan*6) = %de
t

2
Differentiate and rearrange: dh =— vd >, Ans.
dt 4R°+8Rhtand +4h”tan”@

3.28 According to Torricelli’s theorem, the Z

velocity of a fluid draining from a hole in a T ‘ 7r\—
tank is V = (Zgh)l/z, where £ is the depth of h
water above the hole, as in Fig. P3.28. Let i \L

water

the hole have area A, and the cylindrical
tank have bottom area A;. Derive a formula B

for the time to drain the tank from an initial + v
depth A,

Fig. P3.28

Solution: For a control volume around the tank,

%dev}mm:o

0 t
Idh J.AO\@dt; I,‘=ﬂ ﬂ Ans.
0




162 Solutions Manual e Fluid Mechanics, Fifth Edition

3.29 Inelementary compressible-flow theory

(Chap. 9), compressed air will exhaust from a

small hole in a tank at the mass flow rate e — e ——— -
m = Cp, where pis the air density in the tank
and C is a constant. If p, is the initial density in
a tank of volume v, derive a formula for the
density change p(7) after the hole is opened.
Apply your formula to the following case: a
spherical tank of diameter 50 cm, with initial
pressure 300 kPa and temperature 100°C, and
a hole whose initial exhaust rate is 0.01 kg/s.
Find the time required for the tank density to
drop by 50 percent.

Volume v

Density p (t)

Solution: For a control volume enclosing the tank and the exit jet, we obtain

vd—pz—'

0= %( I pdv) +m,,, Or: " m,, =—-Cp,

P t
or: J.d—p:—gj.dt, or: ﬁzexp{—gt} Ans.
o P vV Po 4

Now apply this formula to the given data. If p, = 300 kPa and T, = 100°C = 373°K,
then p, = p/RT = (300,000)/[287(373)] = 2.80 kg/mS. This establishes the constant “C”:
kg

m, =Cp, =0.01 —:C(2.80
S

kg
3

m’
j, or C=0.00357 — for this hole.
m

S

The tank volume is v = (2/6)D> = (7/6)(0.5 m)® = 0.00654 m>. Then we require

0.00357
0.00654

plp, =0.5=exp {— t} if t=13s Ans.

3.30 A wedge splits a sheet of 20°C
water, as shown in Fig. P3.30. Both
wedge and sheet are very long into the
paper. If the force required to hold the
wedge stationary is F' = 124 N per meter
of depth into the paper, what is the angle 6

of the wedge? 4 cm 6 m/s

Fig. P3.30
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Solution: Since the wedge is very deep, assume uniform flow (neglect and effects) and
apply momentum,

S F,=—F =—n,u, Where i, =(pAV)=(998)(0.04 X 1)(6) =239.5 kg/s

(124 N/m)(1 m) = (239.5)(6)[005 [g} - 1)

6=48° Ans.

3.31 A bellows may be modeled as a
deforming wedge-shaped volume as in
Fig. P3.31. The check valve on the left
(pleated) end is closed during the stroke.
If b is the bellows width into the paper,
derive an expression for outlet mass flow
r1, as a function of stroke &(1).

Solution: For a control volume enclosing =
the bellows and the outlet flow, we obtain Fig. P3.31

%( pv)+1i,, =0, where v=bhL =bL’tané

o

since L is constant, solve for m_ = —%( pbL? tan §) = — pbL2 seczag Ans.

3.32 Water at 20°C flows through the

piping junction in the figure, entering section o) d=4cm

1 at 20 gal/min. The average velocity at d=15cm
section 2 is 2.5 m/s. A portion of the flow is \ /d =2cm
diverted through the showerhead, which

contains 100 holes of 1-mm diameter. ) +— -~

Assuming uniform shower flow, estimate the
exit velocity from the showerhead jets.

Solution: A control volume around sections (1, 2, 3) yields
Q, =Q, +Q, =20 gal/min = 0.001262 m’/s.

Meanwhile, with V, = 2.5 m/s known, we can calculate Q, and then Qjs:

/4 2 m3
0, = V4, = (2.5 m)7(0.02 m)’ = 0.000785 -,
S
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3
hence Q5 =0, -0, =0.001262—-0.000785 = 0.000476 =
S
m3 T 2
Each hole carries  Q5/100 =0.00000476 — = Z(O.OOl) Viets
S

solve 'V,

~6.06 2 Ans.
S

3.33 In some wind tunnels the test section Test section

is perforated to suck out fluid and provide a oS
thin viscous boundary layer. The test section | |
wall in Fig. P3.33 contains 1200 holes of
5-mm diameter each per square meter of
wall area. The suction velocity through each
hole is V; = 8 m/s, and the test-section
entrance velocity is V| = 35 m/s. Assuming
incompressible steady flow of air at 20°C,
compute (a) V,, (b) V>, and (¢) V}, in m/s.

Dy= 22m

e imim —

Fig. P3.33

Solution: The test section wall area is (7)(0.8 m)(4 m) = 10.053 mz, hence the total
number of holes is (1200)(10.053) = 12064 holes. The total suction flow leaving is

Quuetion = NQpope = (12064)(7r/4)(0.005 m)*(8 m/s) ~ 1.895 m*/s

(o)

() Find V,: Q,=Q, or V %(2.5)2 :(35)%(0.8)2,
solve for V, =3.58 ? Ans. (a)
®) Q; =Q = Quoion = (397 (0.8 ~1.895=V, 7(0.8)"
or: V, =312 ? Ans. (b)
() FindV;: Q;=Q, or Vf%(z.zf :(31.2)%(0.8)2,

solve for V; =4.13 m Ans. (c)
S
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3.34 A rocket motor is operating steadily, ‘

as shown in Fig. P3.34. The products of © L'%”,'f:.’:;i‘":
combustion flowing out the exhaust nozzle @
approximate a perfect gas with a molecular v
weight of 28. For the given conditions W000°R ! e

calculate V; in ft/s. oo g 10O%F
D,=55m

Solution: Exit gas: Molecular Wei%ht = @ | Liauid foct

28, thus Ry, = 49700/28 = 1775 ft*/(s™-°R). ‘ e

Then, Fig. P3.34

b DAt 000780 sttt

Pesites = R = (1775)(1100 + 460)

For mass conservation, the exit mass flow must equal fuel + oxygen entering = 0.6 slug/s:

2
m,,; =0.6 Sllg: LAV, :(0.00078)Z 53 V,, solve for V, =4660 ft Ans.
S 4\ 12 S
3.35 In contrast to the liquid rocket in Propellant
Fig. P3.34, the solid-propellant rocket in WELLLAN .
Fig. P3.35 is self-contained and has no = 1500 K 950 kPa T Vs

entrance ducts. Using a control-volume
analysis for the conditions shown in
Fig. P3.35, compute the rate of mass loss
of the propellant, assuming that the exit gas
has a molecular weight of 28.

Propellant

Fig. P3.35

Solution: With M = 28, R = 8313/28 =297 m”/(s*K), hence the exit gas density is

p _ 90,000 Pa

p exit —

=2 ° _—=0.404 kg/m’
RT (297)(750 K)

For a control volume enclosing the rocket engine and the outlet flow, we obtain

d
—(mey)+my, =0,
dt( CV) out

d

or: a(mpropellant) ==

M, =—p. AV, =—(0.404)(7r/4)(0.18)*(1150) ~ —11.8 % Ans.
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3.36 The jet pump in Fig. P3.36 injects N Mixing Fuily
water at U, = 40 m/s through a 3-in pipe and 1 5

entrains a secondary flow of water U, =3 m/s
in the annular region around the small pipe.
The two flows become fully mixed down-
stream, where Us is approximately constant.
For steady incompressible flow, compute
U; in m/s.

Solution: First modify the units: D; = 3 in = 0.0762 m, D, = 10 in = 0.254 m. For
incompressible flow, the volume flows at inlet and exit must match:

Q,+Q,=Q, or %(0.0762)2(40) + %[(0.254)2 —(0.0762)*1(3) = %(0.254)2U3

Solve for U; =6.33m/s Ans.

3.37 A solid steel cylinder, 4.5 cm in Vi
diameter and 12 cm long, with a mass of

1500 grams, falls concentrically through a //d =45cm

5-cm-diameter vertical container filled with _
/ ! D=5cm
'
L=12cm . /
]

oil (SG =0.89). Assuming the oil is incom-
pressible, estimate the oil average velocity
in the annular clearance between cylinder
and container (a) relative to the container;
and (b) relative to the cylinder.

Solution: (a) The fixed CV shown is i REEEEED] SEEEE 3+
relative to the container, thus: Ven
. T o T 2 2 d2
Qcyl = Qoil’ or: Zd chl = Z(D —d )Voil’ thus Voil = ])Z—_dZVCyl Ans. (a)
For the given dimensions (d = 4.5 cm and D = 5.0 cm), V;; = 4.26 V yinder-
(b) If the CV moves with the cylinder we obtain, relative to the cylinder,
2
Voil relative to cylinder — Vpart(a) + chl = ])z—_szCyl = 5'26‘/cyl Ans. (b)
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3.38 An incompressible fluid is squeezed Yo
between two disks by downward motion V,
of the upper disk. Assuming 1-dimensional SAAANNRANSAN AW
radial outflow, find the velocity V(r). Loy v

h(t) i f— r —=]
Solution: Let the CV enclose the disks " i
and have an upper surface moving down at € AN SSETTUTERETTTT S
speed V,. There is no inflow. Thus Fixed cireular sk

Fig. P3.38

i[ Ipdvj+ [ PVou dA:O:i(pitrzh)+p27trh v,
dt Cv CS dt

or: 1’ % +2rhV =0, but % = -V, (the disk velocity)

As the disk spacing drops, h(t) = h, — V,t, the outlet velocity is V =V r/(2h). Ans.

3.39 For the elbow duct in Fig. P3.39,
SAE 30 oil at 20°C enters section 1 at
350 N/s, where the flow is laminar, and exits
at section 2, where the flow is turbulent:

2 . 17 '
Uy = Vay (1 —FJ Uy = Vi [1 _R_j Fig. P3.39

1 2

Assuming steady incompressible flow, compute the force, and its direction, of the oil on
the elbow due to momentum change only (no pressure change or friction effects) for
(a) unit momentum-flux correction factors and (b) actual correction factors B, and f.

Solution: For SAE 30 oil, y= 8720 N/m3, thus Q = 350/8720 = 0.0401 m’/s. This flow
Q must equal the integrated volume flow through each section:

—142

a av,2 T
S

Q=0.0401=7(0.05)°V,,, =7(0.03)*V,,,, or V, =511 2,V
S
Now apply the linear momentum relation to a CV enclosing the inlet and outlet, noting
from Eqgs. (3.43), p. 136, that B, = 1.333 (laminar) and /3, = 1.020 (turbulent):
F = ﬂszzvazv,z cosd — ﬁIpAIVaZV,l; F = ﬂszzvazv,z sin@

(a) If we neglect the momentum-flux correction factors, = 1.0, we obtain

F, =(890)7(0.03)*(14.2)* cos 30° - (890)7(0.05)*(5.11)* =439—183 =256 N Ans. (a)
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F, =(890)7(0.03)*(14.2)* sin30°~ 254 N Ans. (a)
Whereas, if we include correction factors ; = 1.333 and £, = 1.020, we obtain

F, = (1.020)(439) — (1.333)(183) =205 N; F, =(1.020)(254) =259 N Ans. (b)

3.40 The water jet in Fig. P3.40 strikes
normal to a fixed plate. Neglect gravity and
friction, and compute the force F in - 10em
newtons required to hold the plate fixed. 6>, g

V’.=8mls

Solution: For a CV enclosing the plate
and the impinging jet, we obtain:

‘ ‘ . Fig. P3.40
ZFX =-F= mupuup + M yown Udown _mjuj °

=-mju, my=pAGY

Thus F=pA;V} =(998)7(0.05)*(8)* ~500N « Ans.

3.41 In Fig. P3.41 the vane turns the water
jet completely around. Find the maximum
jet velocity V, for a force F,,.

Solution: For a CV enclosing the vane

and the inlet and outlet jets, Fig. P3.41
Z:Fx = _Fo = 1;noutuout - 1’hinuin = 1’hjet (_Vo) - 1’hjet (+V0)
2 Fo
or: F =2p A Vg, solvefor V = [—>—— Ans.
2p (7/4)D;
3.42 A liquid of density p flows through FOV o 2
the sudden contraction in Fig. P3.42 and Atrmosoh ! !
exits to the atmosphere. Assume uniform S e 2 | p
.. . 1 1 1
conditions (pj, V}, D) at section 1 gnd Pa - i
(p2, Vs, D,) at section 2. Find an expression . :
for the force F exerted by the fluid on the E(g) (1)
contraction. ' .
N e ]

Fig. P3.42
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Solution: Since the flow exits directly to the atmosphere, the exit pressure equals
atmospheric: p, = p,. Let the CV enclose sections 1 and 2, as shown. Use our trick (page 129
of the text) of subtracting p, everywhere, so that the only non-zero pressure on the CS is at
section 1, p = p; — p.. Then write the linear momentum relation with x to the right:

2F =F-(p,—p,)A, =m,u, —myu;, where m, =m, =pA,V,
But u, ==V, and u, =-V,. Solvefor F g,4 =(p;—P.)A; + A V,(-V,+V))
Meanwhile, from continuity, we can relate the two velocities:
Q,=Q,, or (#/4)D}V,=(x/4)D;V,, or: V,=V,(D;/D3)
Finally, the force of the fluid on the wall is equal and opposite to Foy fuia, to the lefi:

Fﬂuid onwall — (pl _pa)Al _plAl\]l2 |:(D12/D§)_1:|’ Al :%D% Ans.

The pressure term is larger than the momentum term, thus F > 0 and acts to the left.

3.43 Water at 20°C flows through a

5-cm-diameter pipe which has a 180° -
vertical bend, as in Fig. P3.43. The total
length of pipe between flanges 1 and 2 is
75 cm. When the weight flow rate is
230 N/s, p; = 165 kPa, and p, = 134 kPa.
Neglecting pipe weight, determine the total
force which the flanges must withstand for
this flow. Fig. P3.43

Solution: Let the CV cut through the flanges and surround the pipe bend. The mass flow rate
is (230 N/s)/(9.81 m/sz) = 23.45 kg/s. The volume flow rate is Q =230/9790 = 0.0235 m’/s.
Then the pipe inlet and exit velocities are the same magnitude:

3
0.0235 m’/s ~12.0 m

V. =V,=V=Q/A=
b (7r/4)(0.05 m)> s

Subtract p, everywhere, so only p; and p, are non-zero. The horizontal force balance is:
2E =F fange T (P1 —P2)A; +(py —P)A,; = myu, —myy,
=F+ (64000)%(0.05)2 + (33000)%(0.05)2 =(23.45)(—-12.0—12.0 m/s)
=—-126-65-561=-750 N Ans.

or: F

x,flange
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The total x-directed force on the flanges acts to the left. The vertical force balance is

SF, =F, e = Woioe + W = 0+ (9790)%(0.05)2(0.75) ~14N  Ans.

pipe

Clearly the fluid weight is pretty small. The largest force is due to the 180° turn.

3.44 Consider uniform flow past a cylinder with a V-shaped wake, as shown. Pressures
at (1) and (2) are equal. Let b be the width into the paper. Find a formula for the force F
on the cylinder due to the flow. Also compute Cp, = F/(pUsz).

U

Strea‘“_} 1_?-6—' —
- v |

\
)
\ 7
N

O

Fig. P3.44
Solution: The proper CV is the entrance (1) and exit (2) plus streamlines above

and below which hit the top and bottom of the wake, as shown. Then steady-flow
continuity yields,

L
U y)
0=[puda—[puda=2[p|1+2|bdy—2pUbH,
2]/) lfp ojpz( = Jpdy-2p

where 2H is the inlet height. Solve for H = 3L/4.

Now the linear momentum relation is used. Note that the drag force F is to the
right (force of the fluid on the body) thus the force F of the body on fluid is to the left.
We obtain,

L
U y|. U y 2
SF. =0= [upudA— [upudA=2 —(1+—J —(1+—jbd _2HpU’b=-F,,
zfp lfp OIZ = || 1+ bdy—2Hp rag

Use H= %L, then Fy,, = %pUsz —% pUZLb = % pU*Lb  Ans.

The dimensionless force, or drag coefficient F/(pUsz), equals Cp =1/3. Ans.
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3.45 In Fig. P3.45 a perfectly balanced
700-N weight and platform are supported
by a steady water jet. What is the proper jet

velocity? -~ R

Water jet

Solution: For a CV surrounding the weight, Dy=5cm

platform, and jet, vertical forces yield, f
Fig. P3.45
z I::y =-W= 1’hleft\/left + 1’i’lright\/vright - 1’ho\/vo =0+0- (pOAOVO )Vo

Thus W =700 N = (998)%(0.05)2V§, solve for V, =V, =18.9 ™= Ans.

3.46 When a jet strikes an inclined plate, wQ.v
it breaks into two jets of equal velocity V 4
but unequal fluxes aQ at (2) and (1 — ®)Q OV
at (3), as shown. Find ¢, assuming that the D —

tangential force on the plate is zero. Why
doesn’t the result depend upon the properties
of the jet flow? 100, V

Fig. P3.46

Solution: Let the CV enclose all three jets and the surface of the plate. Analyze the
force and momentum balance rangential to the plate:

2F =F =0=m,V+m,;(-V)—-m,Vcoséf

=amV —-(1-a)mV-mVcos@ =0, solve for a:%(1+c050) Ans.

The jet mass flow cancels out. Jet (3) has a fractional flow (1 — &) = (1/2)(1 — cos6).

3.47 A liquid jet V; of diameter D; strikes a fixed cone and deflects back as a conical sheet
at the same velocity. Flnd the cone angle 6 for which the restraining force F = (3/2)pA; V

Conical sheet

Jet

Fig. P3.47
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Solution: Let the CV enclose the cone, the jet, and the sheet. Then,

XF =-F=mgu,, —m;,u, =m(-V;cos@)—mV,, where m=pA;V,

out “out m ~in

Solve for F = ijVJg(1+cos 0)= %/)AJ-VJ2 if cos@ =% or 6=60° Ans.

3.48 The small boat is driven at steady speed V, by compressed air issuing from a
3-cm-diameter hole at V. = 343 m/s and p.= 1 atm, T, = 30°C. Neglect air drag. The hull
drag is kV,’, where k = 19 N-s*/m’. Estimate the boat speed V,,.

D=3 cem [ Compressed
Ve = air

1\

Fig. P3.48
Solution: For a CV enclosing the boat and moving to the right at boat speed V,,
the air appears to leave the left side at speed (V, + V). The air density is p./RT, =

1.165 kg/m3. The only mass flow across the CS is the air moving to the left. The
force balance is

Z:Fx = _Drag = _kvg = Ii’loutuout = [peAe (Vo + Ve )](_Vo - Ve)’
or: P AV, +V.)* =kV2, (1.165)(m/4)(0.03)*(V, +343)* =19V

work out the numbers: (V, +343)= VO\/ (23060), solve for V, =2.27m/s Ans.

3.49 The horizontal nozzle in Fig. P3.49 P = 15 Ibflin? abs
has D; = 12 in, D, = 6 in, with p; = 38 psia w B
and V, = 56 ft/s. For water at 20°C, find
the force provided by the flange bolts to
hold the nozzle fixed.

Solution: For an open jet, p, = p, =
15 psia. Subtract p, everywhere so the only
nonzero pressure is p; = 38 — 15 = 23 psig.
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The mass balance yields the inlet velocity:

t  bolts T cv!
Vi 5027 =56 767, V=14 23 prig — o | a6 1
s Vl .._i_.. : 0 psig
The density of water is 1.94 slugs per cubic ' i

foot. Then the horizontal force balance is
.\ T .2 . . .
>F =-F+(23 p51g)z(12 in)” =m,u, —myu, =m(V, -V,)

Compute Fi, :2601—(1.94)%(1 ft)2(14 EJ(56—14 Ejznoo Ibf  Ans.
S S
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3.50 The jet engine in Fig. P3.50 admits et

air at 20°C and 1 atm at (1), where A; = /——“6\\

0.5 m” and V| =250 m/s. The fuel-air ratio : Combustion !
is 1:30. The air leaves section (2) at 1 atm, g | chamber [
V, =900 m/s, and A, = 0.4 m>. Compute | !

the test stand support reaction R, needed. \U/

Solution: fJI = p/RT = 101350/[287(293)] =

RX
Fig. P3.50
1.205 kg/m”. For a CV enclosing the engine, '9

m, = p,A,V, =(1.205)(0.5)(250) = 151 kg/s, m, = 151(1+%j =156 kg/s

SF, =R, =1i,u, — MU, — gy =156(900)—151(250)—0 ~ 102,000 N  Ans.

3.51 A liquid jet of velocity V; and area A; strikes a single 180° bucket on a turbine

wheel rotating at angular velocity €2. Find an expression for the power P delivered.

At

what Q is the power a maximum? How does the analysis differ if there are many buckets,

so the jet continually strikes at least one?

Fig. P3.51
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Solution: Let the CV enclose the bucket MOVING
and jet and let it move to the right at bucket Vi~ CV
velocity V = QR, so that the jet enters the Relative |

CV at relative speed (V; — QR). Then, velocity |

. . \'
2 Fx = _Fbucket =mu,, —muy,

= t[~(V; — QR)] - [V, - QR]

or: Fyue =2m(V;—QR) =2pA,(V, - QR)’,
and the poweris P =QRF, . =2pA,QR(V,—QR)* Ans.
Maximum power is found by differentiating this expression:

V.
P _o it QR=" Ans. (whence P = ijvﬁj
dQ 3 27

If there were many buckets, then the full jet mass flow would be available for work:

M yiae = PAV, P=2pAVOR(V,~QR), P,

1 3 Vi

available

3.52 The vertical gate in a water channel is partially open, as in Fig. P3.52.
Assuming no change in water level and a hydrostatic pressure distribution, derive an
expression for the streamwise force F, on one-half of the gate as a function of (p, A,
w, 6, Vi). Apply your result to the case of water at 20°C, V; =0.8 m/s, h=2 m, w= 1.5 m,
and 8= 50°.

3 v A
Vi N
— 2w —
V h
0 2
Top View
Side View

Solution: Let the CV enclose sections (1) and (2), the centerline, and the inside of the
gate, as shown. The volume flows are

W 1

V,Wh=V,Bh, or: V,=V,—=YV, -
B 1-sin@
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gate on
fluid

centerline

since B = W — Wsin#. The problem is unrealistically idealized by letting the water depth
remain constant, whereas actually the depth would decrease at section 2. Thus we have
no net hydrostatic pressure force on the CV in this model! The force balance reduces to

2F, =Fpeonmia =MV, —mV,, where m=pWhV, and V,=V/(1-sinf)

1
_ 2
Solve for Fﬂuid ongate — —pWth |:(1Tina) - 1:| (tO the left) Ans.

This is unrealistic—the pressure force would turn this gate force around to the right. For
the particular data given, W = 1.5 m, 8= 50°, B = W(l —sin8) = 0.351 m, V; = 0.8 m/s,
thus V, =V /(1 —sin 50°) = 3.42 m/s, p =998 kg/m3, h =2 m. Thus compute

Firuid on gte = (998)(2)(1.5)(0.8)? {ﬁ— 1} ~6300N Ans.

3.53 Consider incompressible flow in the
entrance of a circular tube, as in Fig. P3.53. T
The inlet flow is uniform, u; = U,. The flow QD\
at section 2 is developed pipe flow. Find
the wall drag force F as a function of (p;,
P2, P, Uy, R) if the flow at section 2 is

Friction drag on fluid

i r’ Fig. P3.53
(a) Laminar: ) =u,,, | 1-—
R

7
(b) Turbulent: u, =u,,, (1 —%)

Solution: The CV encloses the inlet and outlet and is just inside the walls of the tube.
We don’t need to establish a relation between u,,,, and U, by integration, because the
results for these two profiles are given in the text. Note that U, = u,, at section (2). Now
use these results as needed for the balance of forces:
R
S F, =(p) —p,)TR” —Fyy = [0, (pu, 271 dr) - U, (pR*U,) = prR*UZ(B, ~ 1)
0



176 Solutions Manual e Fluid Mechanics, Fifth Edition

We simply insert the appropriate momentum-flux factors  from p. 136 of the text:
(a) Laminar:  Fy,, =(p; —p,)7R* —(1/3)p7R*U;  Ans. (a)
(b) Turbulent, 3, =1.020: F, p, —P,)7R* =0.02p7R*U2  Ans. (b)

rag =(

3.54 For the pipe-flow reducing section ©
of Fig. P3.54, D; =8 cm, D, =5 cm, and p, =
1 atm. All fluids are at 20°C. If V|, =5 m/s
and the manometer reading is & = 58 cm,
estimate the total horizontal force resisted
by the flange bolts.

- Py =P, =101 kPa

i Mercury

Fig. P3.54

Solution: Let the CV cut through the bolts and through section 2. For the given
manometer reading, we may compute the upstream pressure:

P = P2 = Vinere = Yewarer 1 = (132800 —9790)(0.58 m) = 71300 Pa (gage)
Now apply conservation of mass to determine the exit velocity:
Q,=Q,, or (5m/s)(7/4)(0.08 m)* =V, (/4)(0.05)*, solve for V, =12.8 m/s
Finally, write the balance of horizontal forces:
2F, =—Fos + Prgage A1 =(V, = V)),

or: Foy = (71300)%(0.08)2 = (998)%(0.08)2(5.0)[12.8 ~50]=163N Ans.

3.55 In Fig. P3.55 the jet strikes a vane
which moves to the right at constant velocity
V. on a frictionless cart. Compute (a) the force
F, required to restrain the cart and (b) the
power P delivered to the cart. Also find the
cart velocity for which (c) the force F, is a
maximum and (d) the power P is a maximum.

Fig. P3.55

Solution: Let the CV surround the vane and cart and move to the right at cart speed.
The jet strikes the vane at relative speed V; — V.. The cart does not accelerate, so the
horizontal force balance is

XE, =-F =[pA;(V; = VOI(V;= V) cos8 — pA(V; = V)’
or: F,=pA;(V;-V,)*(1-cosf) Ans. (a)
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The power deliveredis P=V_F, = pA iVe (Vj -V, )2 (1—cosf) Ans. (b)
The maximum force occurs when the cart is fixed, or: 'V, =0 Ans. (c)
The maximum power occurs when dP/dV, =0, or: V. =V,;/3 Ans. (d)

3.56 Water at 20°C flows steadily through

the box in Fig. P3.56, entering station /‘

(1) at 2 m/s. Calculate the (a) horizontal, 65°

and (b) vertical forces required to hold the D, =3 cm D;=5cm

box stationary against the flow momentum. | Ty

‘—

Solution: (a) Summing horizontal forces, ] .

z F;c = Rx = moutuout - minuin Fig. P3.56

R, = (998){[%} (0.032)(5.56)} (=5.56)—(998) [(9 (0.052)(2)} (=2)(c0s65°)

=-18.46 N Auns.
Rx=18.5 N to the left

Y F, =R, =ity it;, = —(998)(%)(0.052)(2)(—2 sin65°)=71N up

3.57 Water flows through the duct in B

Fig. P3.57, which is 50 cm wide and 1 m
deep into the paper. Gate BC completely | 5 ./ -
50 cm *

closes the duct when = 90°. Assuming one- —» e
dimensional flow, for what angle 3 will the L
force of the exit jet on the plate be 3 kN? I i
Solution: The steady flow equation
applied to the duct, Q; = Q,, gives the jet Fig. P3.57
velocity as V, = V(1 — sinf). Then for a

force summation for a control volume
around the jet’s impingement area,

2
. ) 1
SF =F=m}V, =p(h1—h1smﬁ><D>[1_Smﬁ} V)

2 2
5 i {1_ phDY, } . [1_ (998)(0.5)(1)(1.2)
F 3000

} =49.5° Ans.




178 Solutions Manual e Fluid Mechanics, Fifth Edition

3.58 The water tank in Fig. P3.58 stands
on a frictionless cart and feeds a jet of
diameter 4 cm and velocity 8 m/s, which is
deflected 60° by a vane. Compute the
tension in the supporting cable.

Solution: The CV should surround the S
tank and wheels and cut through the cable Fig. P3.58
and the exit water jet. Then the horizontal

force balance is

S F, = Topie = My oy = (PAV)V,cosf = 998(%) (0.04)*(8)*cos60° =40 N Ans.

3.59 A pipe flow expands from (1) to (2), Pressure = p, control
causing eddies as shown. Using the given

CV and assuming p = p; on the corner
annular ring, show that the downstream
pressure is given by, neglecting wall
friction,

A A
PfPl“’Vf(A—lj( ‘A—lj
2 2 Fig. P3.59

Solution: From mass conservation, V{A; = V,A,. The balance of x-forces gives

P2 V2. Ay

If p,.1 =p; as given, this reduces to p, =p; + inf 1—i Ans.
Ay A,

3.60 Water at 20°C flows through the
elbow in Fig. P3.60 and exits to the atmo-
sphere. The pipe diameter is D; = 10 cm,
while D, = 3 cm. At a weight flow rate of
150 N/s, the pressure p; = 2.3 atm (gage).
Neglect-ing the weight of water and elbow,
estimate the force on the flange bolts at
section 1.
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Solution:  First, from the weight flow, compute Q = (150 N/s)/(9790 N/m’) = 0.0153 m’/s.
Then the velocities at (1) and (2) follow from the known areas:

Q 0.0153 s m v Q 0.0153 by M

TA @dH01? s PTA, @m0 s

The mass flow is pA|V, = (998)(7[/4)(0.1)2(1.95) =~ 15.25 kg/s. Then the balance of forces
in the x-direction is:

solve for Fy, = (2.3><101350)%(0.1)2 +15.25(21.7¢0s40°+1.95) =~ 2100 N Ans.

3.61 A 20°C water jet strikes a vane on a e T T T T v
tank with frictionless wheels, as shown. D F -

The jet turns and falls into the tank without / _

spilling. If = 30°, estimate the horizontal bj=2in

force F needed to hold the tank stationary.

Solution: The CV surrounds the tank and
wheels and cuts through the jet, as shown. =l e e e
We have to assume that the splashing into Fig. P3.61
the tank does not increase the x-momentum
of the water in the tank. Then we can write
the CV horizontal force relation:

YF =-F= %( [updv) -y, =0-V,, independent of &

tank

2 2
Thus F=pA,V? =(1.94 %E(% ftJ (50 ﬁj ~106Ibf Ans.
t S

3.62 Water at 20°C exits to the standard
sea-level atmosphere through the split
nozzle in Fig. P3.62. Duct areas are
A, = 0.02 m® and A, = A; = 0.008 m”. If
p1 = 135 kPa (absolute) and the flow rate is
O, =05=275 m3/h, compute the force on
the flange bolts at section 1.

Fig. P3.62
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Solution: With the known flow rates, we can compute the various velocities:

3
v :V3:275/3600rr21 /s:9.55 E; V1=550/3600=7.64 m
0.008 m S 0.02 S

The CV encloses the split nozzle and cuts through the flange. The balance of forces is

z Fx = _Fbolts + pl,gageAl = pQ2 (_V2 cos 300) + IOQ3 (_V3 cos 300) - le (+Vl ),

275 550
: B =2(998)] —— [(9.55¢0s30°)+998| —— [(7.64)+ (135000 -101350)(0.02
or:  Fys =2( )(3600j( 0s30°) (3600} )+( )(0.02)
=1261+1165+673=3100 N Ans.
3.63 The sluice gate in Fig. P3.63 can =~  _ ___ __ _ _ _ — Stuice

control and measure flow in open channels. N e vidh b

At sections 1 and 2, the flow is uniform and
the pressure is hydrostatic. The channel
width is b into the paper. Neglecting bottom
friction, derive an expression for the force F
required to hold the gate. For what condition L
ho/h; is the force largest? For very low

velocity V? < gh,, for what value of h,/h, Fig. P3.63
will the force be one-half of the maximum?

\

Solution: The CV encloses the inlet and exit and the whole gate, as shown. From mass
conservation, the velocities are related by

V,h,b=V,h,b, or: V,=V,(h/h,)
The bottom pressures at sections 1&2 equal pgh; and pgh,, respectively. The horizontal
force balance is

1 1 : ;
F, = ~Fye + pehy (D)= pghy (n;0) =1V, = V)), 1= ph;bY,

gate
1 2 2 2| hy
2

For everything held constant except h,, the maximum force occurs when

13
13 2

Ll =0 whichyields h, = (Vlzhlz/g) or: hy = Vi Ans.

dh, h, gh,

Finally, for very low velocity, only the first term holds: F = (1/2)/)gb(h12 —h%). In this

case the maximum force occurs when h, =0, or F,,x = (1/2)pgbh12. (Clearly this is the
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special case of the earlier results for F,, when V| = 0.) Then for this latter case of very
low velocity,

F=(12)F

max

when h, =h,~N2. Ans.

3.64 The 6-cm-diameter 20°C water jet
in Fig. P3.64 strikes a plate containing a
hole of 4-cm diameter. Part of the jet
passes through the hole, and part is
deflected. Determine the horizontal force
required to hold the plate.

Solution: First determine the incoming
flow and the flow through the hole:

3 2
Q.. :%(0.06)2(25) =0.0707 =, Q. :%(0.04)2(25) =0.0314
S S

Then, for a CV enclosing the plate and the two jets, the horizontal force balance is

—m; u.

2 Fx = _Fplate = My Upole +m u + My Uiower in“in

upper - upper

=(998)(0.0314)(25)+0+0—-(998)(0.0707)(25)
=784—-1764, solve for F =980 N (to left) Ans.

3.65 The box in Fig. P3.65 has three 0.5-in
holes on the right side. The volume flows of F —>>
20°C water shown are steady, but the details of
the interior are not known. Compute the force,
if any, which this water flow causes on the box.

0.1 f%ss

0.2 fss

0.1 firs

Solution: First we need to compute the

velocities through the various holes: Fig. P3.65
0.1 ft*/
Viep = Voottom = 5 =T33 fU/S; Viyigare = 2Vigp = 146.6 fU/s
(7/4)(0.5/12)
Pretty fast, but do-able, I guess. Then make a force balance for a CV enclosing the box:
zFx = Fbox = _minuin + 2n.1t0put0p’ where Uy, = _Vmiddle and utop = Vtop

Solve for F ., =(1.94)(0.2)(146.6)+2(1.94)(0.1)(73.3) = 851Ibf  Ans.




182 Solutions Manual e Fluid Mechanics, Fifth Edition

3.66 The tank in Fig. P3.66 weighs 500 N
empty and contains 600 L of water at 20°C.
Pipes 1 and 2 have D = 6 cm and Q =
300 m’/hr. What should the scale reading
W be, in newtons?

Solution: Let the CV surround the tank,
cut through the two jets, and slip just under Fig. P3.66
the tank bottom, as shown. The relevant jet

velocities are

Q _ (300/3600) m*/s

~29.5 m/s
A (7/4)(0.06 m)>

V=V, =

The scale reads force “P” on the tank bottom. Then the vertical force balance is

ze = P_\Vtank _Wwater = thVZ _rhlvl = m[o - (_Vl)]
\ 300
Solve for P =500+9790(0.6 m”)+998 (%) (29.5)=8800N Ans.

3.67 Gravel is dumped from a hopper, at a rate of 650 N/s, onto a moving belt, as in
Fig. P3.67. The gravel then passes off the end of the belt. The drive wheels are 80 cm in
diameter and rotate clockwise at 150 r/min. Neglecting system friction and air drag,
estimate the power required to drive this belt.

Fig. P3.67

Solution: The CV goes under the gravel on the belt and cuts through the inlet and
outlet gravel streams, as shown. The no-slip belt velocity must be

0.4 m)~628 2
S

Voere = V.

rev rad 1 min
outlet

:QRWheel = 150_27[___
min rev60 s
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Then the belt applies tangential force F to the gravel, and the force balance is

z Fx = Fon belt — 1h()utl’lout - 1’hinuin’ but U, = 0.
Then F,, =mV,, = (65—0 gj{azg Ej =416 N
9.81 s S

The power required to drive the beltis P=FV,, =(416)(6.28) =2600 W  Ans.

3.68 The rocket in Fig. P3.68 has a super-
sonic exhaust, and the exit pressure p, is
not necessarily equal to p,. Show that the
force F required to hold this rocket on the
test stand is F = peAeVe2 + Ap. — po)- Is
this force F what we term the thrust of the
rocket?

Solution:

Oxidizer

Fig. P3.68

The appropriate CV surrounds the entire rocket and cuts through the exit jet.

Subtract p, everywhere so only exit pressure # 0. The horizontal force balance is

zFx :F_(pe _pa)Ae :meue _rhfuf _rhouo’ but Up =U, = O’ rhe = peAeVe

Thus F=pAV:+(p,—p,)A, (thethrust) Ans.

3.69 A uniform rectangular plate, 40 cm
long and 30 cm deep into the paper, hangs in
air from a hinge at its top, 30-cm side. It is
struck in its center by a horizontal 3-cm-
diameter jet of water moving at 8 m/s. If the
gate has a mass of 16 kg, estimate the angle
at which the plate will hang from the vertical.

Solution: The plate orientation can be
found through force and moment balances,

YF =F,

Fjel

Fig. P3.69

= —ri, U, = —(998)(%)(0.032)(82) =451N

2 My =0=—(45)(0.02)(sin@) +(16)(9.81)(0.02)(cosf) 6 =16°
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3.70 The dredger in Fig. P3.70 is loading
sand (SG = 2.6) onto a barge. The sand
leaves the dredger pipe at 4 ft/s with a weight
flux of 850 Ibf/s. Estimate the tension on the
mooring line caused by this loading process.

Solution: The CV encloses the boat and cuts Fig. P3.70
through the cable and the sand flow jet. Then,

z Fx = _Tcable = MgypgUgayg = —M Vsand COs 0’

or: T =| 30 slug)f, 10 30o~01Ibf Ans.
able {300 g s

3.71 Suppose that a deflector is deployed
at the exit of the jet engine of Prob. 3.50, as
shown in Fig. P3.71. What will the reaction
R, on the test stand be now? Is this reaction
sufficient to serve as a braking force during
airplane landing?

Solution: From Prob. 3.50, recall that the
essential data was

V, =250 m/s, V,=900m/s, m, =151kg/s, m, =156 kg/s

Fig. P3.71

The CV should enclose the entire engine and also the deflector, cutting through the support
and the 45° exit jets. Assume (unrealistically) that the exit velocity is still 900 m/s. Then,

o : 3 o 3
>F =R, =m_,u,,, —m,u,, where u , =-V,, cos45° and u, =V,

Then R, =-156(900co0s45°)—-151(250)=-137,000 N
The support reaction is to the left and equals 137 KN  Ans.

3.72 A thick elliptical cylinder immersed U
in a water stream creates the idealized wake
shown. Upstream and downstream pressures
are equal, and U, =4 m/s, L = 80 cm. Find the
drag force on the cylinder per unit width into
the paper. Also compute the dimensionless
drag coefficient Cp, = 2F/(p U,’bL).

-

@
)]
!

oo

Width b into paper

Fig. P3.72
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Solution: This is a ‘numerical’ version of the “analytical” body-drag Prob. 3.44. The
student still must make a CV analysis similar to Prob. P3.44 of this Manual. The wake is
exactly the same shape, so the result from Prob. 3.44 holds here also:

1

Fipe = 3 pUZLb = %(998)(4)2(0.8)(1.0) ~4260N Ans.

The drag coefficient is easily calculated from the above result: Cp=2/3. Ans.

3.73 A pump in a tank of water directs a jet
at 45 ft/s and 200 gal/min against a vane, as
shown in the figure. Compute the force F to
hold the cart stationary if the jet follows
(a) path A; or (b) path B. The tank holds
550 gallons of water at this instant.

Solution: The CV encloses the tank and
passes through jet B.

(a) For jet path A, no momentum flux crosses Fig. P3.73

the CV, therefore F=0 Ans. (a)

(b) For jet path B, there is momentum flux, so the x-momentum relation yields:

z Fx =F= MouUour = mjetuB

Now we don’t really know ug exactly, but we make the reasonable assumption that the jet
trajectory is frictionless and maintains its horizontal velocity component, that is, ug =
Viecc0s 60°. Thus we can estimate

3
F =riwg =| 1.94 szif 200 S (45c0560°) =195 Ibf  Ans. (b)
)\ 4488 s

3.74 Water at 20°C flows down a vertical 6-cm-diameter tube at 300 gal/min, as in the
figure. The flow then turns horizontally and exits through a 90° radial duct segment 1 cm
thick, as shown. If the radial outflow is uniform and steady, estimate the forces (Fy, Fy, F,)
required to support this system against fluid momentum changes.

Vertical Horizontal
plane plane

b
Lem]

Radial outflow
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Solution: First convert 300 gal/min = 0.01893 m ’/s, hence the mass ﬂow is pQ =18.9 kg/s.
The vertical-tube velocity (down) is V. = 0.01893/[(7/4)(0. 06) = —6.69 k m/s. The
exit tube area is (/2)RAh = (#/2)(0.15)(0.01) = 0.002356 m?, hence Vexit = QA =
0.01893/0.002356 = 8.03 m/s. Now estimate the force components.

+45°
YF =F = J. u,, dm,, = J. i SINO PARRAO =0 Ans. (a)
—45°
+45°
SF, =F, = v, dii, =1, = [ =V, cos6 pAhRdO —0 =V, pAhRN2

—45°
or: Ky = —(8.03)(998)(0.01)(0.15)\/5 =~—17 N Ans. (b)
X F =F, =m(w w;,) =(18.9 kg/s)[0—(—6.69 m/s)] =+126 N Ans. (c)

out

3.75 A liquid jet of density r and area A \ w“
strikes a block and splits into two jets, as
shown in the figure. All three jets have the
same velocity V. The upper jet exits at angle
0 and area oA, the lower jet turns down at
90° and area (1 — @)A. (a) Derive a formula
for the forces (Fy,Fy) required to support
the block against momentum changes.
(b) Show that F, = 0 only if & = 0.5.
(¢) Find the values of o and @ for which both
F, and F, are zero.

Solution: (a) Set up the x- and y-momentum relations:
Y F =F =om(-Vcos@)—m(-V) where m=pAV of the inlet jet
2 F, =F,=amVsin@+(1-a)m(-V)
Clean this up for the final result:
F.=mV(1-acosf)
F, = mV(asin@+a—-1) Ans. (a)
(b) Examining F, above, we see that it can be zero only when,
-«

sinf = ——
a

But this makes no sense if < 0.5, hence Fy,=0 onlyif a=0.5. Ans. (b)
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(c) Examining F,, we see that it can be zero only if cos@= 1/, which makes no sense
unless o= 1, 8= 0°. This situation also makes F, = 0 above (sin@= 0). Therefore the only
scenario for which both forces are zero is the trivial case for which all the flow goes
horizontally across a flat block:

FX=Fy=0 only if: =1, 68=0° Ans. (c)

3.76 A two-dimensional sheet of water,
10 cm thick and moving at 7 m/s, strikes a
fixed wall inclined at 20° with respect to
the jet direction. Assuming frictionless flow,
find (a) the normal force on the wall per
meter of depth, and the widths of the sheet
deflected (b) upstream, and (c) downstream
along the wall.

Vjet

Fig. P3.76

Solution: (a) The force normal to the wall is due to the jet’s momentum,
> Fy =—m,u, =—(998)(0. 1)(7*)(cos 70°) =1670 N/m  Ans.
(b) Assuming V; =V, =V3=V,, VjA;=V;A,+V;A; where,
A, =A;sinf =(0.1)(1)(sin20°)=0.034 m =3 cm Ans.

(c) Similarly, Az = A; cos@=(0.1)(1)(cos 20°) =0.094 m =9.4 cm Ans.

3.77 Water at 20°C flows steadily through O)
a reducing pipe bend, as in Fig. P3.77. '
Known conditions are p; = 350 kPa, D, =
25 cm, V| =2.2 m/s, p, = 120 kPa, and D, =
8 cm. Neglecting bend and water weight,
estimate the total force which must be
resisted by the flange bolts.

= 100 kPa

Solution: First establish the mass flow
and exit velocity:

Fig. P3.77

m=pA,V, = 998( j(ozs) (2.2)=108 kg—998( j(ooz;) V,, or V2:21.5?
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The CV surrounds the bend and cuts through the flanges. The force balance is

2 F, =—Fgis T Pigage A1 T P2 gage Ay =Myu, —myuy, where u, ==V, and u; =V,

or Fyy, = (350000 100000)%(0.25)2 + (120000 — 100000)%(0.08)2 +108(21.5+2.2)

=12271+101+2553=14900N  Ans.

3.78 A fluid jet of diameter D, enters a
cascade of moving blades at absolute
velocity V; and angle f;, and it leaves at
absolute velocity V; and angle [, as in
Fig. P3.78. The blades move at velocity u.
Derive a formula for the power P delivered
to the blades as a function of these
parameters.

Solution: Let the CV enclose the blades
and move upward at speed u, so that the
flow appears steady in that frame, as shown
at right. The relative velocity V, may be
eliminated by the law of cosines:

V2 =V?+u®-2Vucos f3,

=V3+u’—2V,ucos f3,
(12)(Vi -V3)

V, cos B, —V,cos 3,

solve for u=

Then apply momentum in the direction of blade motion:

vanes

The power delivered is P = Fu, which causes the parenthesis “cos 7 terms to cancel:

1.
P=Fu=5mjet

(Vi-V3) Ans.
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3.79 Air at 20°C and 1 atm enters the
bottom of an 85° conical flowmeter duct at
a mass flow rate of 0.3 kg/s, as shown in the
figure. It supports a centered conical body
by steady annular flow around the cone and
exits at the same velocity as it enters.
Estimate the weight of the body in newtons.

Solution: First estimate the velocity from the known inlet duct size:

p _ 101350 _ o ke

Par = o1 = 2870203 T md’

thus m=03=pAV = (1.205)%(0.1)2 V, solve V=231.7 m
S
Then set up the vertical momentum equation, the unknown is the body weight:
Y F =W =mVcos42.5°—mV =mV(cos42.5°-1)
Thus W,y =(0.3)(31.7)(1-cos42.5°)=2.5N Ans.

3.80 A river (1) passes over a “drowned”
weir as shown, leaving at a new condition
(2). Neglect atmospheric pressure and assume
hydrostatic pressure at (1) and (2). Derive an
expression for the force F exerted by the river
on the obstacle. Neglect bottom friction. Fig. P3.80

|
~Width b into paper

Solution: The CV encloses (1) and (2) and cuts through the gate along the bottom, as
shown. The volume flow and horizontal force relations give

V,bh, = V,bh,
1 1
z Fx = _Fweir +Epghl(hlb) _Epgh2(h2b) = (phlbvl)(VZ - Vl)

Note that, except for the different geometry, the analysis is exactly the same as for the
sluice gate in Prob. 3.63. The force result is the same, also:

Fweir = %pgb(hf - h% ) - phlef (%— j Ans.
2
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3.81 Torricelli’s idealization of efflux
from a hole in the side of a tank is
Vz\/ﬂ,as shown in Fig. P3.81. The
tank weighs 150 N when empty and
contains water at 20°C. The tank bottom
is on very smooth ice (static friction
coefficient ¢ = 0.01). For what water depth
h will the tank just begin to move to Siatic
the right? friction
Fig. P3.81

Solution: The hole diameter is 9 cm. The CV encloses the tank as shown. The coefficient
of static friction is {=0.01. The x-momentum equation becomes

z Fx = _gwtank = n.u]’out =-m Vhole = _pAV2 = _pA(Zgh)
or: 0.01 |:(9790)%(1 m)2 (h+0.3+0.09)+ 150:| =998 (%) (().09)2 (2)(9.81)h

Solve for h=0.66 m Ans.

3.82 The model car in Fig. P3.82 weighs .
17 N and is to be accelerated from rest by 14 D
a l-cm-diameter water jet moving at 75 m/s. =
Neglecting air drag and wheel friction, G
estimate the velocity of the car after it has
moved forward 1 m.

Fig. P3.82

Solution: The CV encloses the car, moves to the left at accelerating car speed V(t), and
cuts through the inlet and outlet jets, which leave the CS at relative velocity V; — V. The
force relation is Eq. (3.50):

ZFX - ,[arel dm=0- M, ey = 1’houtuout _minuin = _Zrhjet (VJ - V)’
or: mg, (11\1;/ =2pA(V,-V)’

Except for the factor of “2,” this is identical to the “cart” analysis of Example 3.12 on
page 140 of the text. The solution, for V=0 at t =0, is given there:
V2Kt 20A. 2
Vo Vi . where K = PA; _ 2(998)(7x/4)(0.01)
1+ VKt m (17/9.81)

car

=0.0905 m™!
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t
Thus V (inm/s) = & and then compute distance S = IV dt

1+6.785t ;

The initial acceleration is 509 m/s’, quite large. Assuming the jet can follow the car
without dipping, the car reaches S =1 m at t = 0.072 s, where V = 24.6 m/s. Ans.

3.83 Gasoline at 20°C is flowing at V; = suction

12 m/s in a 5-cm-diameter pipe when it — A4 Ay
encounters a 1-m length of uniform radial 12m/s E cv L_’
wall suction. After the suction, the velocity 120 kPla ! ' 0mds

has dropped to 10 m/s. If p; = 120 kPa, .
2

estimate p, if wall friction is neglected. M pesemL=1m

Solution: The CV cuts through sections 1 and 2 and the inside of the walls. We
compute the mass flow at each section, taking p = 680 kg/rn3 for gasoline:

kg

)
S

kg

m, =680 (%) (0.05)>(12) =16.02 m, =680 (%}(0.05)2(10) =13.35 —=
S

The difference, 16.02 — 13.35 =2.67 kg/s, is sucked through the walls. If wall friction is
neglected, the force balance (taking the momentum correction factors = 1.0) is:
. . /3
LE =pA —pA, =m,V, —mV, = “20000‘1’2)2(0'05)2

=(13.35)(10) - (16.02)(12), solve for p, =150 kPa Ans.

3.84 Air at 20°C and 1 atm flows in a Tem,
25-cm-diameter duct at 15 m/s, as in P .
Fig. P3.84. The exit is choked by a 90° cone,
as shown. Estimate the force of the airflow
on the cone.

Solution: The CV encloses the cone, as
shown. We need to know exit velocity. The
exit area is approximated as a ring of Fig. P3.84
diameter 40.7 cm and thickness 1 cm:

3

Q=AV, = %(0.25)2(15) =0.736 mT = A,V, = 7(0.407)(0.0)V,, or V,=57.6 ?
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The air density is p= p/RT = (101350)/[287(293)] = 1.205 kg/m3. We are not given any
pressures on the cone so we consider momentum only. The force balance is

> F =F u, ) =(1.205)(0.736)(57.6 cos 45° —15) = 22.8 N Ans.

cone = (u

out

The force on the cone is fo the right because we neglected pressure forces.

3.85 The thin-plate orifice in Fig. P3.85
causes a large pressure drop. For 20°C water
flow at 500 gal/min, with pipe D = 10 cm
and orifice d = 6 cm, p; — p, = 145 kPa. If
the wall friction is negligible, estimate the
force of the water on the orifice plate.

Fig. P3.85

Solution: The CV is inside the pipe walls, cutting through the orifice plate, as shown.
At least to one-dimensional approximation, V; = V5, so there is no momentum change.
The force balance yields the force of the plate on the fluid:

2F = —Fucon fuia +PiAT = P2As = Ty Ay =m(V, = V) = 0

=(, we obtain F

Since 7. olate

wall

= (145000)%(0.1)2 =1140 N Ans.

The force of the fluid on the plate is opposite to the sketch, or fo the right.

3.86 For the water-jet pump of Prob. 3. 36 e e Fully
add the following data: p, = p, = 25 Ibf/in®, *'7°" — T
and the distance between sections 1 and 3
is 80 in. If the average wall shear stress
between sections 1 and 3 is 7 Ibf/ft’, esti-
mate the pressure p;. Why is it higher than p,?

Fig. P3.36

Solution: The CV cuts through sections 1, 2, 3 and along the inside pipe walls. Recall
from Prob. 3.36 that mass conservation led to the calculation V3 = 6.33 m/s. Convert data
to ST units: L = 80 in = 2.032 m, p; = p, = 25 psi = 172.4 kPa, and 7,,; = 7 psf = 335 Pa.
We need mass flows for each of the three sections:

m,; —998( )(O 0762)*(40) =~ 182 kg

kg

m2—998( )[(0254) —(0.0762)*1(3) =138 kg and m;=182+138=320 — S
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Then the horizontal force balance will yield the (high) downstream pressure:
LF =pi(A +A,)-p3A; — 77D, L =m;V; -m, V, —m,V,
= (172400 —p; )%(0.254)2 —3357(0.254)(2.032) =320(6.33) —138(3) —182(40)

Solve for p; =274000Pa Ans.

The pressure is high because the primary inlet kinetic energy at section (1) is converted
by viscous mixing to pressure-type energy at the exit.

3.87 Figure P3.87 simulates a manifold Y.

flow, with fluid removed from a porous | {

Wall or perforated sectiqn of pipe: Assume TSVt B L ¥
incompressible flow with negligible wall % _1 l- 50-—.1 : A
friction and small suction V, <V,. If * Lf J’ Porous section 1)

(1, Vi, V,, p, D) are known, derive l 11
expressions for (a) V, and (b) p».

Fig. P3.87

Solution: The CV cuts through sections 1 and 2 and runs along the duct wall, as shown.
Assuming incompressible flow, mass conservation gives

5D
VA =V,A,+ [V, (1 —i}zD dx =V, D? +2.57V,D* = V2 D?
0 5D 4 4
Assuming V, <V,, solvefor V, =V, =10V, Ans.(a)
Then use this result while applying the momentum relation to the same CV:
EE =(p~py) 5 D* - [7,dA, =t ~thyu; + [u, din,

Since 7, =0 and u,, = 0 and the area A, cancels out, we obtain the simple result

Py =p, +p(Vi—V3)=p, +20pV, (V, ~5V,) Ans. (b)

3.88 The boat in Fig. P3.88 is jet-propelled
by a pump which develops a volume flow
rate Q and ejects water out the stem at
velocity V. If the boat drag force is F'= KV,
where k is a constant, develop a formula for
the steady forward speed V of the boat.
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Solution: Let the CV move to the left at boat speed V and enclose the boat and the
pump’s inlet and exit. Then the momentum relation is

YF =kV? =, (V;+V=V,.) = pQ(V;+V) if weassume V,, <V,

172

If, further, V <« Vi, then the approximate solution is: V = (pQV;/K) Ans.

If V and V; are comparable, then we solve a quadratic equation:

Vz{,’+[{,’2+2§’Vj]l/2, where é’=% Ans.

3.89 Consider Fig. P3.36 as a general problem for analysis of a mixing ejector pump. If
all conditions (p, p, V) are known at sections 1 and 2 and if the wall friction is negligible,
derive formulas for estimating (a) V3 and (b) ps.

Solution: Use the CV in Prob. 3.86 but use symbols throughout. For volume flow,
Vl% D2+ VZ%(Dg -D})= V3% D2 or: V,=Vaa+V,(l-a), a=([D,/D,)’ (A)

Now apply x-momentum, assuming (quite reasonably) that p; = p,:

T T T V4
(b p9) T D3~z 2D;L = p T D3V2 - o (D1 -DY) V3 - p 7 D]

2
4L D
Clean up: p;=p, - DTW +p [an +(1-a)V; - Vﬂ where o= (—1) Ans.
2 2

You have to insert V3 into this answer from Eq. (A) above, but the algebra is messy.

3.90 As shown in Fig. P3.90, a liquid
column of height % is confined in a vertical
tube of cross-sectional area A by a stopper.
At t = 0 the stopper is suddenly removed,
exposing the bottom of the liquid to
atmospheric pressure. Using a control-
volume analysis of mass and vertical
momentum, derive the differential equation
for the downward motion V(¥) of the liquid.
Assume one-dimensional, incompressible, Stopper

frictionless flow. Fig. P3.90
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Solution: Let the CV enclose the cylindrical blob of liquid. With density, area, and the
blob volume constant, mass conservation requires that V = V(t) only. The CV accelerates
downward at blob speed V(t). Vertical (downward) force balance gives

deown—jamldmzi(jvdownpdv)+m V,, —m;, V,, =0

dt out 'out in Vin

or: my,eg+ApA-7,A, —am, , =0

Since Ap=0 and 7=0, we are left with a,, = % =g Ans.

3.91 Extend Prob. 3.90 to include a linear (laminar) average wall shear stress of the form
7= cV, where c is a constant. Find V(t), assuming that the wall area remains constant.

Solution: The downward momentum relation from Prob. 3.90 above now becomes

a dt My,

where we have inserted the laminar shear 7= cV. The blob mass equals p(7z%4)D2L. For
V =0 at t =0, the solution to this equation is

V=8(1_e?) where ¢ = DL _ d¢
4 my,, pPD

3.92 A more involved version of Prob. 3.90
is the elbow-shaped tube in Fig. P3.92, with
constant cross-sectional area A and diameter
D < h, L. Assume incompressible flow,
neglect friction, and derive a differential
equation for dV/dt when the stopper is
opened. Hint: Combine two control volumes,
one for each leg of the tube.

Solution: Use two CV’s, one for the
vertical blob and one for the horizontal
blob, connected as shown by pressure.
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From mass conservation, V; = V,= V(t). For CV’s #1 and #2,

. dv
% Faun = [ 80 dm = AGV) =0 = (P ~p)A+ pgAh—m, = (No. )
. dv
SF, — [a, dm = A(u) =0 = (p, = py)A +0—m, o (No. 2)

Add these two together. The pressure terms cancel, and we insert the two blob masses:

dv h
=8

—= Ans.
dt L+h

pgAh—(pAh+ pAL)(il—\t[ =0, or

3.93 Extend Prob. 3.92 to include a linear (laminar) average wall shear stress of the form
T=cV, where c is a constant. Find V(t), assuming that the wall area remains constant.

Solution: For the same two CV’s as in Prob. 3.92 above, we add wall shears:

ApA + pgAh —(cV)ZrDh =m, % (No. 1)
dv
—ApA+0—(cV)ZDL =m, E (No. 2)

Add together, divide by (pA), A = 71'D2/4, and rearrange into a 1st order linear ODE:

ﬂ+ de V= gh subjectto V=0 at t=0, h=h, Ans.
dt pD L+h
The blob length (L + h) could be assumed constant, but h = h(t). We could substitute for

V = —dh/dt and rewrite this relation as a 2nd order ODE for h(t), but we will not proceed
any further with an analytical solution to this differential equation.

3.94 Attempt a numerical solution of Prob. 3.93 for SAE 30 oil at 20°C. Let 2 =20 cm,
L =15 cm, and D = 4 mm. Use the laminar shear approximation from Sec. 6.4: 7 =
8uV/D, where u is the fluid viscosity. Account for the decrease in wall area wetted by the
fluid. Solve for the time required to empty (a) the vertical leg and (b) the horizontal leg.

Solution: For SAE 30 oil, ¢ = 0.29 kg/(m-s) and p = 917 kg/m3. For laminar flow as
given, ¢ = 8u/D, so the coefficient (4c/pD) = 4[8(0.29)/0.004]/[917(0.004)] = 632 s
[The flow is highly damped.] Then the basic differential equation becomes

Y 630y =250

dt 0.15+h

t
. with h:o.z—det and V(0)=0
0
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We may solve this numerically, e.g., by Runge-Kutta or a spreadsheet or whatever.
After h reaches zero, we keep h = 0 and should decrease L = 0.15 — [V dt until L = 0.
The results are perhaps startling: the highly damped system (lubricating oil in a
capillary tube) quickly reaches a ‘terminal’ (near-zero-acceleration) velocity in 16 ms
and then slowly moves down until h = 0, t = 70 s. The flow stops, and the horizontal leg
will not empty.

The computed values of V and h for the author’s solution are as follows:

t, s: 0 5 10 15 20 30 40 50 60 70
V,m/s: 0 0.008 0.007 0.006 0.005 0.003 0.001 0.000 0.000 0.000
h, m: 0.2 0.162 0.121 0.089 0.063 0.028 0.011 0.004 0.001 0.000

3.95 Attempt a numerical solution of Prob. 3.93 for mercury at 20°C. Let 2 =20 cm,
L =15 cm, and D = 4 mm. For mercury the flow will be turbulent, with the wall
shear stress estimated from Sec. 6.4: 7= O.OOSpVZ, where p is the fluid density.
Account for the decrease in wall area wetted by the fluid. Solve for the time
required to empty (a) the vertical leg and (b) the horizontal leg. Compare with a
frictionless flow solution.

Solution: For this turbulent case the differential equation becomes

—tD(h+L)+ pgAh = pA(h + L)%, A= %DZ and 7=0.005pV>

dv  0.02V?*  gh
_+ e

= ., V=0 and h=02att=0
D h+L

Clean this up and rewrite:

We insert L = 0.15 m and d = 0.004 m and solve numerically. Note that the fluid density
and viscosity have been eliminated by this ‘highly turbulent flow’ assumption. This time
the heavy, low-viscosity fluid does have momentum to empty the horizontal tube in 0.65 s.
The vertical tube is emptied (h = 0) in approximately 0.34 sec.

The computed values of V and h and L for the author’s solution are as follows:

t, s: 0 0.1 0.2 0.3 034 04 0.5 0.6 0.65
V,m/s 0 0.507 0.768 0.763 0.690 0.570 0.442 0.362 0.330
h, m: 02 0.173 0.107 0.029 0.0 0.0 0.0 0.0 0.0
L, m: 0.15 0.15 0.15 0.15 015 0.109 0.059 0.019 0.0
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3.96 Extend Prob. 3.90 to the case of the
liquid motion in a frictionless U-tube whose
liquid column is displaced a distance Z
upward and then released, as in Fig. P3.96.
Neglect the short horizontal leg and combine
control-volume analyses for the left and
right legs to derive a single differential
equation for V(¢) of the liquid column.

Equilibrium position

Liquid - column length
L=hy +hy+hy

Solution: As in Prob. 3.92, break it up
into two moving CV’s, one for each leg, as
shown. By mass conservation, the velocity
V(1) is the same in each leg. Let p; be the 'z
bottom pressure in the (very short) cross-
over leg. Neglect wall shear stress. Now
apply vertical momentum to each leg:

rel

Leg#l: ZFdown—J.a dm

dv
=(p, —p1)A+ pgAh, —mlazO

dv
Leg#2: zFup - jarel dm = (pI _pa)A - pgAhZ —m, E =0

Add these together. The pressure terms will cancel. Substitute for the h’s as follows:

dv dv av
PeA(hy —hy) = pEAQZ) = (m; +m,)--= pA(hy +hy)— - = pAL-—-

2
Since V = —d—Z, we arrive at, finally, % + 2_g Z=0 Ans.
dt dt L

The solution is a simple harmonic oscillation: Z =C cos [t\/(Zg/L)} +Dsin [t\/(2g/L) }

3.97 Extend Prob. 3.96 to include a linear (laminar) average wall shear stress resistance
of the form 7= 8§uV/D, where u is the fluid viscosity. Find the differential equation for
dV/dt and then solve for V(¢), assuming an initial displacement z =z,, V=0 at t = 0. The
result should be a damped oscillation tending toward z = 0.

Solution: The derivation now includes wall shear stress on each leg (see Prob. 3.96):

Leg#l: deown - Iarel dm = ApA+pgAh1 _TwﬂDhl —M (31_\'[/ =0
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Leg#2: XF, - jarel dm =-ApA - pgAh, —7,7Dh, —m, (il_\t/ =0

Again add these two together: the pressure terms cancel, and we obtain, if A = 7ZD2/4,

+2—gZ=0, where 7 =8‘u—V Ans.
L D

w

d’zZ 47,
2t
dt pD
The shear term is equal to the linear damping term (32,u/pD2)(dZ/dt). If we assume an

initial static displacement Z =Z,,, V =0, at t = 0, we obtain the damped oscillation

2
Z=7,"" cos(wt), where t*=% and @=./2g/L Ans.
y

3.98 As an extension of Ex. 3.10, let the
plate and cart be unrestrained, with fric-
tionless wheels. Derive (a) the equation of
motion for cart velocity V.(t); and (b) the
time required for the cart to accelerate to
90% of jet velocity. (c) Compute numerical
values for (b) using the data from Ex. 3.10
and a cart mass of 2 kg.

Solution: (a) Use Eq. (3.49) with a, equal to the cart acceleration and > F, = 0:

av,

SF~fem= [upV-nda=—m T ==p,4;(V; =V Ans. @

The above 1¥-order differential equation can be solved by separating the variables:

V.

c t A
J‘Lzzl(jdt, where sz /
0 (Vj - Vc) 0 m,
VKt
Sobve for: Ye— I 000 if tyg =——=—M Ang (b)
V, 1+VKi KV, pAv,
92 kg)

For the Example 3.10 data, tyy, = =3.0s Ans. (c)

(1000 kg/m*)(0.0003 m?)(20 m/s)
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3.99 Let the rocket of Fig. E3.12 start at z = 0, with constant exit velocity and exit mass
flow, and rise vertically with zero drag. (a) Show that, as long as fuel burning continues,
the vertical height S(7) reached is given by

S—Ve—%[{ln{—{+l], where é’—l—ﬂ
m M

o

(b) Apply this to the case V., = 1500 m/s and M, = 1000 kg to find the height reached after
a burn of 30 seconds, when the final rocket mass is 400 kg.

Solution: (a) Ignoring gravity effects, integrate the equation of the projectile’s velocity
(from E3.12):

S(1) = J.V(t)dt: j[ v, h{l—ﬁﬂm
0 o

» .
Let { = 1—%, then d{ :_Mﬂ dt and the integral becomes,

o o

st =(-1,)| }j@l O =XM1 gng ¢ (Yo g g ¢ o

(b) Substituting the numerical values given,

(20 kg/s)(30 s)

M.,-M,
AM M 1000kg 400 kg — 20 ke's

m= = and {=1- =0.40
At At 30 s 1000 kg
S(r=30 5)= 1200 mAA00KE) () 11 0.4)—(0.4)+1]1=17,500 m  Ans.
(20 ke/s)

3.100 Suppose that the solid-propellant rocket of Prob. 3.35 is built into a missile of
diameter 70 cm and length 4 m. The system weighs 1800 N, which includes 700 N of
propellant. Neglect air drag. If the missile is fired vertically from rest at sea level, estimate
(a) its velocity and height at fuel burnout and (b) the maximum height it will attain.

Solution: The theory of Example 3.12 holds until burnout. Now M, = 1800/9.81 =
183.5 kg, and recall from Prob. 3.35 that V., = 1150 m/s and the exit mass flow is 11.8 kg/s.
The fuel mass is 700/9.81 = 71.4 kg, so burnout will occur at tyymeu = 71.4/11.8 = 6.05 s.
Then Example 3.12 predicts the velocity at burnout:

11.8(6.05)

V, =-1150In| 1—
83.5

j—9.81(6.05)z507 M Ans. (a)
S
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Meanwhile, Prob. 3.99 gives the formula for altitude reached at burnout:

_ 183.5(1150)

b 13 [1+(0.611){ln(0.611)—1}]—%(9.81)(0.605)2 =1393m Ans. (a)

where “0.611” = 1 — 11.8(6.05)/183.5, that is, the mass ratio at burnout. After burnout,
with drag neglected, the missile moves as a falling body. Maximum height occurs at

At :&:ﬂ:ﬂﬂ s, whence
g 981

S=S, +% gAt? =1393+(1/2)(9.81)(51.7)* =14500 m  Ans. (b)

3.101 Modify Prob. 3.100 by accounting for air drag on the missile F = CpDZVz, where
C = 0.02, p is the air density, D is the missile diameter, and V is the missile velocity.
Solve numerically for (a) the velocity and altitude at burnout and (b) the maximum
altitude attained.

Solution: The CV vertical-momentum analysis of Prob. 3.100 is modified to include a
drag force resisting the upward acceleration:

mcil—\t[:rhVe—mg—CDpDsz, where m=m —mt, and p:po(

4.26
T,—Bz
T

o

with numerical values m, =183.5 kg, m=11.8 E, V, =1150 E, D=0.7m, C, =0.02
S S

We may integrate this numerically, by Runge-Kutta or a spreadsheet or whatever, starting
with V=0, z =0, at t = 0. After burnout, t = 6.05 s, we drop the thrust term. The density
is computed for the U.S. Standard Atmosphere from Table A-6. The writer’s numerical
solution is shown graphically on the next page. The particular values asked for in the
problem are as follows:

Atburnout, t=6.05s: V=470m/s, z=1370m Ans. (a)
At maximum altitude: t=40s, z,, =8000m Ans. (b)

m

We see that drag has a small effect during rocket thrust but a large effect afterwards.
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500

— Burnout

450
V, m/s

400

Maximum altitude = 7900 im
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Problem 3.101 — NUMERICAL SOLUTION

Hydraulic
jump T

3.102 As can often be seen in a kitchen
sink when the faucet is running, a high-
speed channel flow (Vj, h;) may “jump” to
a low-speed, low-energy condition (V», h,) T— :
as in Fig. P3.102. The pressure at sections 1 ,
and 2 is approximately hydrostatic, and L
wall friction is negligible. Use the continuity

and momentum relations to find 4, and V, Fig. P3.102

in terms of (A, V).

Solution: The CV cuts through sections 1 and 2 and surrounds the jump, as shown.
Wall shear is neglected. There are no obstacles. The only forces are due to hydrostatic

pressure:
1 1 .
>FE =0= Epghl(hlb) —Epghz(hzb) =m(V, -V,),
where m = pV,h,b = pV,h,b

Solve for V,=V;h;/h, and h,/h, = —% + %\/1 +8V3i/(gh,) Ans.
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3.103 Suppose that the solid-propellant rocket of Prob. 3.35 is mounted on a 1000-kg
car to propel it up a long slope of 15°. The rocket motor weighs 900 N, which includes
500 N of propellant. If the car starts from rest when the rocket is fired, and if air drag
and wheel friction are neglected, estimate the maximum distance that the car will travel
up the hill.

Solution: This is a variation of Prob. 3.100, except that “g” is now replaced by “g sinf.”
Recall from Prob. 3.35 that the rocket mass flow is 11.8 kg/s and its exit velocity is 1150 m/s.
The rocket fires for t, = (500/9.81)/11.8 = 4.32 sec, and the initial mass is M, = (1000 +
900/9.81) = 1092 kg. Then the differential equation for uphill powered motion is

m(il—\t]:rhVe —-mgsind, m=M_ —mt

This integrates to:  V(t)=-V, In(1-mt/M_)—gtsin@ for t<4.32s.

After burnout, the rocket coasts uphill with the usual falling-body formulas with “g sin8.”
The distance travelled during rocket power is modified from Prob. 3.99:

S=M,V./m)[1+(1-mt/M,){In(1-mt/M_)—1}] —%gt2 sin@
Apply these to the given data at burnout to obtain

Viurmon = —1150 In(0.9533) —%(9.81)sin 15°(4.32) =~ 44.0 m/s

Sy =220y 6 9533(1n(0.9533) 13 —%(9.81) sin15°(4.32)> =94 m

11.8

The rocket then coasts uphill a distance AS such that V2 = 2gASsind, or AS =
(44.0)2/ [2(9.81)sin 15°] = 381 m. The total distance travelled is 381 + 94 =475 m  Ans.

3.104 A rocket is attached to a rigid x —
horizontal rod hinged at the origin as in I l
Fig. P3.104. Its initial mass is M,, and its y<_——(é\ R l
exit properties are m and V, relative to the s |
rocket. Set up the differential equation for “w '
rocket motion, and solve for the angular cv L 4
velocity a(r) of the rod. Neglect gravity, air 1. Yy P =Py

drag, and the rod mass. Fig. P3.104
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Solution: The CV encloses the rocket and moves at (accelerating) rocket speed €(t).
The rocket arm is free to rotate, there is no force parallel to the rocket motion. Then
we have

. dQ . .
2 Fongent =0~ jarel dm=m(-V,), or mR o mV,, where m=M_—mt

Integrate, with Q=0 att=0, to obtain Q= —% ln(l —%tj Ans.

o

3.105 Extend Prob. 3.104 to the case where the rocket has a linear air drag force F =
cV, where c is a constant. Assuming no burnout, solve for aXt) and find the terminal
angular velocity, i.e., the final motion when the angular acceleration is zero. Apply to the
case M, =6 kg, R=3 m, m = 0.05 kg/s, V., = 1100 m/s, and ¢ = 0.075 N-s/m to find the
angular velocity after 12 s of burning.

Solution: If linear resistive drag is added to Prob. 3.104, the equation of motion
becomes
dQ mV,
m—=
dt R

—-CQ, where m=M_ -mt, withQ=0att=0

The solution is found by separation of variables:

Q t
If B=mV,/R, then j
0

B
JM —mt’ Q:C

¢ C/m
1- (1—%) ] Ans. (a)

o

Strictly speaking, there is no terminal velocity, but if we set the acceleration equal to zero
in the basic differential equation, we obtain an estimate Qer, = mMVJ/(RC).  Ans. (b)
For the given data, at t = 12 s, we obtain the angular velocity

0.075

_ (0.05)(1100) 1_(1_0.05(12)jo.os rad

~36 — Ans. (¢)
(3.0)(0.075) 6.0 sec

Att=12s:

3. 106 Extend Prob. 3.104 to the case where the rocket has a quadratic air drag force F' =
kV?, where k is a constant. Assuming no burnout, solve for ax¢) and find the terminal
angular velocity, i.e., the final motion when the angular acceleration is zero. Apply to the
case M, = 6 kg, R =3 m, m = 0.05 kg/s, V, = 1100 m/s, and k = 0.0011 N-s*/m” to find the
angular velocity after 12 s of burning.
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Solution: If quadratic drag is added to Prob. 3.104, the equation of motion becomes

dQ v,

ma R —kRQZ, where m=M_  —mt, with Q=0att=0

The writer has not solved this equation analytically, although it is possible. A numerical
solution results in the following results for this particular data (V. = 1100 m/s, etc.):

t, sec: 0 3 6 9 12 15 20 30 40 50 60 70
Q,rad/s: 0 92 184 273 35.6 43.1 535 66.7 72.0 739 744 745

The answer desired, € = 36 rad/s at t = 12 s, is coincidentally the same as Prob. 3.105.
Note that, in this case, the quadratic drag, being stronger at high €2, causes the rocket

to approach terminal speed before the fuel runs out (assuming it has that much fuel):

mv, \/0.05(1 100) _ ., 5 rad

Q
Terminal speed, L1 0: Qpou =\/ > = 5 S — Ans.
dt kR 0.0011(3) s

3.107 The cart in Fig. P3.107 moves at R R
constant velocity V, = 12 m/s and takes on
water with a scoop 80 cm wide which dips
h = 2.5 cm into a pond. Neglect air drag
and wheel friction. Estimate the force
required to keep the cart moving.

SR

Fig. P3.107

Solution: The CV surrounds the cart and scoop and moves to the left at cart speed V,,.
Momentum within the cart fluid is neglected. The horizontal force balance is

> F, =-Thrust=—mgV, but V,

scoop ' inlet?®

Therefore Thrust =mV, =[998(0.025)(0.8)(12)](12) = 2900 N  Ans.

et = Y, (water motion relative to scoop)

3.108 A rocket sled of mass M is to be
decelerated by a scoop, as in Fig. P3.108,
which has width b into the paper and dips into
the water a depth A, creating an upward jet at
60°. The rocket thrust is 7 to the left. Let the
initial velocity be V,,, and neglect air drag and
wheel friction. Find an expression for V(r) of
the sled for (a) T=0 and (b) finite 7% 0. Fig. P3.108




206 Solutions Manual e Fluid Mechanics, Fifth Edition

Solution: The CV surrounds the sled and scoop and moves to the left at sled speed V(t).
Let x be positive to the left. The horizontal force balance is

av . .

2E =T-M p m U, —m =m(-Vcosf)-m(-V), m=pbhV

inuin
or: M., (il—\t/ =T-CV? C= pbh(l-cos8)

Whether or not thrust T = 0, the variables can be separated and integrated:

\ t
(a) T=0: d—\gz—gjdt, or: V=L Ans. (a)
v, \" M g 1+ CV, t/M
\ t
M dV
(b) T>0: I W = Idt, or: V= Vﬁnal tanh[at +¢] Ans. (b)
V, 0

where Vg, =[T/pbg(1—cos8)]"*, o =[Tpbh(l-cos8)]”*/M, ¢ =tanh ' (V./V;)

This solution only applies when V, < V.., which may not be the case for a speedy sled.

3.109 Apply Prob. 3.108 to the following data: M, = 900 kg, b=60 cm, h=2cm, V, =
120 m/s, with the rocket of Prob. 3.35 attached and burning. Estimate V after 3 sec.

Solution: Recall from Prob. 3.35 that the rocket had a thrust of 13600 N and an exit
mass flow of 11.8 kg/s. Then, after 3 s, the mass has only dropped to 900 — 11.8(3) = 865 kg,
so we can approximate that, over 3 seconds, the sled mass is near constant at about 882 kg.
Compute the “final” velocity if the rocket keeps burning:

13600 "
998(0.6)(0.02)(1— cos 60°)

~4766 2
S

V.., = [T/ pbh(1-cos8)}]" = [
Thus solution (b) to Prob. 3.108 does not apply, since V, = 120 m/s > V.. We therefore

effect a numerical solution of the basic differential equation from Prob. 3.108:

M (11—:[= T - pbh(1-cos6)V?, or: 882(;—:/: 13600—5.988V%  with V, =120 =
S

The writer solved this on a spreadsheet for 0 < t < 3 sec. The results may be tabulated:

t,sec: 0.0 0.5 1.0 1.5 2.0 2.5 3.0 sec
V,m/s: 120.0 909 755 663 604 56.6 53.9m/s

The sled has decelerated to 53.9 m/s, quite near its “steady” speed of about 46 m/s.
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3.110 The horizontal lawn sprinkler in
Fig. P3.110 has a water flow rate of
4.0 gal/min introduced vertically through
the center. Estimate (a) the retarding torque
required to keep the arms from rotating and Fig. P3.110
(b) the rotation rate (r/min) if there is no re-

tarding torque.

Solution: The flow rate is 4 gal/min = 0.008912 ft'/s, and p =194 slug/ft3. The
velocity issuing from each arm is V, = (0.008912/2)/[(774)(0.25/12 ft)z] =~ 13.1 ft/s. Then:

(a) From Example 3.15, w = ﬁ— T 5 and, if there is no motion (@ =0),
R pQR
T, = pQRV, =(1.94)(0.008912)(6/12)(13.1) = 0.113 ft-Ibf Ans. (a)
(D) IFT, =0, then @, o = Vo/R =28 56 14 9 _ 250 TV 4 ()
6/12 ft S min

3.111 In Prob. 3.60 find the torque caused
around flange 1 if the center point of exit 2
is 1.2 m directly below the flange center.

Solution: The CV encloses the elbow
and cuts through flange (1). Recall from
Prob. 3.60 that D; = 10 cm, D, = 3 cm,
weight flow = 150 N/s, whence V; = 1.95 m/s
and V, =21.7 m/s. Let “O” be in the center
of flange (1). Then ro, =—1.2j and ro; = 0.

The pressure at (1) passes through O, thus causes no torque. The moment relation is

Fig. P3.60

Y M, =Tg =m[(rg, X V,) = (tg; X V)] =(@ T)[(—1.2j)><(—16.6i—13.9j)]

or: T, =-305kN-m Ans.

3.112 The wye joint in Fig. P3.112 splits
the pipe flow into equal amounts Q/2,
which exit, as shown, a distance R, from
the axis. Neglect gravity and friction. Find
an expression for the torque 7 about the
x axis required to keep the system rotating
at angular velocity Q.

Fig. P3.112
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Solution: Let the CV enclose the junction, cutting through the inlet pipe and thus
exposing the required torque 7. If y is “up” in the figure, the absolute exit velocities are
Viper = Vo c080i+V sinf j+ R Qk; V... =V, cos8i-V, sinf j—R Qk

upper

where V,= Q/(2A) is the exit velocity relative to the pipe walls. Then the moments about
the x axis are related to angular momentum fluxes by

z Maxis =Ti= (pQ/Z)(RoJ) X Vupper + (pQ/Z)(_Roj) X Vlower pQ( inlet 1nlet)

PQ(Rzgl R,V,QK)+ pQ(R2§21+RVQk) Q)

Each arm contributes to the torque via relative velocity (Q2R,). Other terms with V,, cancel.

Final torque result: T = pQR2Q = mRﬁ Q Ans.

3.113 Modify Ex. 3.15 so that the arm

starts up from rest and spins up to its final B @ apebony

rotation speed. The moment of inertia of L—Vrﬂd-m
the arm about O is I,. Neglect air drag. ] i
Find dw/dt and integrate to determine w(t), ‘

\______<<;_-_____

,__.._.__...._____.____

assuming w=0att=0. '
Retarding
Solution: The CV is shown. Apply clock- P
wise moments: (.< LX\ ) .
ZMO_I(rXal‘el)dmz J(I‘XV) dm, :th;zty
“ Fig. 3.14 View from above of a single arm of
or: =T -1, d_a)_ pQ(R2w RV,), a rotating lawn sprinkler.
dt

2
d_a)+pQR w:pQRVO_TO
dt I I

o o

or:

Integrate this first-order linear differential equation, with @= 0 at t = 0. The result is:

= {E L )[1 _ e PORM, } Ans.
R pQR’
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3.114 The 3-arm lawn sprinkler of
Fig. P3.114 receives 20°C water through
the center at 2.7 m’/hr. If collar friction is
neglected, what is the steady rotation rate
in rev/min for (a) 8= 0°; (b) 8=40°? [

Solution: The velocity exiting each arm is

_ QB _270G60B)] _, ™ s
(m/iHd®>  (7/4)(0.007)> s Fig. P3.114

o

With negligible air drag and bearing friction,
the steady rotation rate (Example 3.15) is

0. =80y oo = (020CSOT_ypamad g TV ()
R 0.15m S min
()0 =40°: @=a,cos0 =(414)cos40° =317 L Ans. (b)
min

3.115 Water at 20°C flows at 30 gal/min

through the 0.75-in-diameter double pipe B

bend of Fig. P3.115. The pressures are p; = \:\“““r—‘—f

30 Ibf/in® and p, = 24 1bf/in°. Compute the N\ |
. X !

torque T at point B necessary to keep the NN 3

pipe from rotating. EON

Solution: This is similar to Example 3.13,
of the text. The volume flow Q = 30 gal/min = Fig. P3.115
0.0668 ft’/s, and p = 1.94 slug/ft’. Thus the

mass flow pQ = 0.130 slug/s. The velocity

in the pipe is

_ 0.0668 =218 ft
(r/4)(0.75/12) S

V,=V, =Q/A

If we take torques about point B, then the distance “h;,” from p. 143, =0, and h, = 3 ft.
The final torque at point B, from “Ans. (a)” on p. 143 of the text, is

T, = hy(p,A, +mV,) = (3 ft)[(24 psi)%(0.75 in)? +(0.130)(21.8)] = 40 ft - Ibf  Ans.
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3.116 The centrifugal pump of Fig. P3.116
has a flow rate Q and exits the impeller at an
angle 6 relative to the blades, as shown. The
fluid enters axially at section 1. Assuming
incompressible flow at shaft angular velocity
@, derive a formula for the power P required
to drive the impeller.

Solution: Relative to the blade, the fluid
exits at velocity V., tangent to the blade,
as shown in Fig. P3.116. But the Euler
turbine formula, Ans. (a) from Example 3.14
of the text,

Torque T = pQ(1,V,, =1, Vyy)
= pQr,V,, (assuming V,, =0)

involves the absolute fluid velocity tangential to the blade circle (see Fig. 3.13). To
derive this velocity we need the “velocity diagram” shown above, where absolute
exit velocity V, is found by adding blade tip rotation speed wr, to Vi ,. With
trigonometry,

V, =r,w-V,,cotd,, where V,=Q/A,; = .

is the normal velocity
1b,

With torque T known, the power required is P = Tw. The final formula is:

P= pQrzw[rzw—(Lj cotez} Ans.

27r,b,

3.117 A simple turbomachine is con- 2em
structed from a disk with two internal -y
ducts which exit tangentially through

square holes, as in the figure. Water at
20C enters the disk at the center, as
shown. The disk must drive, at 250 rev/min,
a small device whose retarding torque is
1.5 N-m. What is the proper mass flow
of water, in kg/s?

cm -
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Solution: This problem is a disguised version of the lawn-sprinkler arm in Example 3.15.
For that problem, the steady rotating speed, with retarding torque T,, was

T
:ﬁ— e X where V, is the exit velocity and R is the arm radius.
R pOR

Enter the given data, noting that Q =2V, ALem2 is the total volume flow from the two
arms:

a):zso(z—”j rad __ Yo _ Lo N S, solve V,=6.11 =
60/ s 0.16m 998(2V,)(0.02 m)*(0.16 m) .

The required mass flow is thus,

m=p0= (998 k—%j [2[6.11 ED (0.02 my =244 X8 pps
m S S
3.118 Reverse the flow in Fig. P3.116, so R, GUIDE VANE

that the system operates as a radial-inflow
turbine. Assuming that the outflow into
section 1 has no tangential velocity, derive
an expression for the power P extracted by
the turbine.

Solution: The Euler turbine formula, “Ans. (a)” from Example 3.14 of the text, is valid
in reverse, that is, for a turbine with inflow at section 2 and outflow at section 1. The
torque developed is

T, = pQ(, Vy, —=1Vy) = pQ Vy,  if V,; =0

The velocity diagram is reversed, as shown in the figure. The fluid enters the turbine
at angle 6,, which can only be ensured by a guide vane set at that angle. The absolute
tangential velocity component is directly related to inlet normal velocity, giving the
final result

Vt2 = Vn2 cot 02’ Vn2 = Q ’
27xr,b,
thus P=wT, = pQar, ( ]cowz Ans.
D,
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3.119 Revisit the turbine cascade system
of Prob. 3.78, and derive a formula for the
power P delivered, using the angular-
momentum theorem of Eq. (3.55).

Solution: To use the angular momentum
theorem, we need the inlet and outlet
velocity diagrams, as in the figure. The
Euler turbine formula becomes

T, = pQ( Vy, —1, Vo) = pQR(V,; = Vy)

since the blades are at nearly constant radius R. From the velocity diagrams, we find

V,=u+V, cotey; V,=u-V, coter,, where V,, =V, =V, cospf,

n.
The normal velocities are equal by virtue of mass conservation across the blades. Finally,

P = pQwR(V,, —V,)=pQuVY,(cotea, +cote,) Ans.

3.120 A centrifugal pump delivers 4000 gal/min of water at 20°C with a shaft rotating
at 1750 rpm. Neglect losses. If rj =6 in, 1, = 14 in, b; = b, = 1.75 in, V{; = 10 ft/s, and V, =
110 ft/s, compute the absolute velocities (a) V; and (b) V,, and (c) the ideal horsepower
required.

Solution: First convert 4000 gal/min = 8.91 ft'/s and 1750 rpm = 183 rad/s. For water,
take p=1.94 slug/ftS. The normal velocities are determined from mass conservation:

Q 81 —195 8 v, =— 2 g

V., = = =19.
" ogrb,  27(6/12)(1.75/12) s 271,b s
11 242

Then the desired absolute velocities are simply the resultants of V, and V,;:

[(10)* +(19.45)*1"* =22 ft V, =[(110)* +(8.3)*]"* =110
S

Ans. (a, b)

S

The ideal power required is given by Euler’s formula:

P = pQax(r,V, —1,V,)) = (1.94)(8.91)(183)[(14/12)(110) — (6/12)(10)]

ft-1bf
S

=391,000 =T710hp Ans. (c)
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3.121 The pipe bend of Fig. P3.121 has
Dy =27 cm and D, = 13 cm. When water at
20°C flows through the pipe at 4000 gal/
min, p; = 194 kPa (gage). Compute the
torque required at point B to hold the bend
stationary.

Solution: First convert Q = 4000 gal/
min = 0.252 m’/s. We need the exit velocity:
0.252

V,=Q/A, =— 22—
2 = QA (71/4)(0.13)>

50cm4—‘

Fig. P3.121

=19.0 = Meanwhile, V, = Q/A, =4.4 =
S

213

We don’t really need V, because it passes through B and has no angular momentum. The
angular momentum theorem is then applied to point B:

XM, =T, +1, Xp A j+1, Xp,A, (1) =m(r, XV, —1; X V,)

But r; and p, are zero,

hence T =ri(r, X V,) = pQ[(0.5i+0.5j)x(19.0)]

Thus, finally, Ty = (998)(0.252)(0.5)(19.0)(—k) = —2400 k N-m (clockwise) Ans.

3.122 Extend Prob. 3.46 to the problem
of computing the center of pressure L of
the normal face F,, as in Fig. P3.122. (At
the center of pressure, no moments are
required to hold the plate at rest.) Neglect
friction. Express your result in terms of the
sheet thickness %, and the angle € between
the plate and the oncoming jet 1.

Fig. P3.122

Solution: Recall that in Prob. 3.46 of this Manual, we found h, = (h;/2)(1 + cos68) and
that h; = (h;/2)(1 — cosé). The force on the plate was F, = pQVsiné. Take clockwise
moments about O and use the angular momentum theorem:

2 M, ==F L =m,r,0 X V,|,+1ms|r;o X V3| ,—m |0 X V|,

= pVh, (h,V/2)+ pVhy(~hyV/2)—0 = (1/2)pV? (h3 —h3 )
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(1/2)pV? (h3 —h? h3 —h?
Thus L=— . (h: 3):—( 2 3)=—1h1cou9 Ans.
pV~h;sin@ 2h;sin@ 2

The latter result follows from the (h;, h,, h3) relations in 3.46. The C.P. is below point O.

3.123 The waterwheel in Fig. P3.123 is
being driven at 200 r/min by a 150-ft/s jet
of water at 20°C. The jet diameter is 2.5 in.
Assuming no losses, what is the horse-
power developed by the wheel? For what
speed €2 r/min will the horsepower developed
be a maximum? Assume that there are many
buckets on the waterwheel.

|
t 150 fr/s

Solution: First convert Q = 200 rpm = {75 |
20.9 rad/s. The bucket velocity = V, = —
QR =(20.9)(4) = 83.8 ft/s. From Prob. 3.51 Fig. P3.123
of this Manual, if there are many buckets,
the entire (absolute) jet mass flow does the
work:

P =m;, V, (V,

. ~ V)1 =c08165°) = PA . Vie, Vo (Vi = V. )(1.966)

et et

(2.5
=(1.94)—| —
( )4(12

ft-1bf
S

Prob. 3.51: Max. power is for Vi, = Vi¢/2 =75 ft/s, or Q = 18.75 rad/s =179 rpm  Ans.

jet
2
J (150)(83.8)(150—-83.8)(1.966)

=108200

=197hp Ans.

3.124 A rotating dishwasher arm delivers at 60°C to six nozzles, as in Fig. P3.124. The
total flow rate is 3.0 gal/min. Each nozzle has a diameter of % in. If the nozzle flows are
equal and friction is neglected, estimate the steady rotation rate of the arm, in r/min.

5in 6inst<5in 1 1 1
e e s 05

Fig. P3.124
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Solution: First we need the mass flow and velocity from each hole “i,” i =1 to 6:

vi:%:w 581 mi=$=1.94(3/448‘8j 0.00216 S1U&
. S S
; (/4)(3/16)

12

Recall Example 3.15 from the text. For each hole, we need the absolute velocity, V; — Qr;.
The angular momentum theorem is then applied to moments about point O:

2 Mg =Ty =2m; (Ko XV aps) =1, Vi, = 2m5(V; cos 40° - Qry)

m "1

All the velocities and mass flows from each hole are equal. Then, if To =0 (no friction),

Q= Z:IIIII‘IV1 cos40 =V, cos40°-= Z =(5.81)(0. 766)5_32 =425 @ =41rpm Ans.
S

> m.r? I}

3.125 A liquid of density p flows through
a 90° bend as in Fig. P3.125 and issues
vertically from a uniformly porous section
of length L. Neglecting weight, find a
result for the support torque M required at
point O.

Solution: Mass conservation requires

Fig. P3.125

L do
Q= _[ V,(7d)dx =V, rdL, or: —=xdV,
0

dx v

Then the angular momentum theorem applied to moments about point O yields

Mo =T, = [ (1o xV)dri, —kJ.(R+x) LprdV,, dx
CS

L

:EpﬁdV\i[(RwLx)z—Rz]lo

Substitute Vy,zdL = Q and clean up to obtain T, = pQVW(R +%j k€' Ans.
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3.126 Given is steady isothermal flow
of water at 20°C through the device in
Fig. P3.126. Heat-transfer, gravity, and
temperature effects are negligible. Known
data are D; = 9 cm, Q; = 220 m3/h, p1 =
150 kPa, D, = 7 cm, Q> = 100 m’/h, p, =
225 kPa, D; = 4 cm, and p; = 265 kPa.
Compute the rate of shaft work done for
this device and its direction.

Fig. P3.126

Solution: For continuity, Q; =Q; — Q, =120 m’/hr. Establish the velocities at each port:

v, = Q2208600 o o om oy 10058600 o, moy 1208600 o6 5 m

A, 700452 s’ P z0.0357% s’ 7(0.02)? s
With gravity and heat transfer and internal energy neglected, the energy equation becomes

2 2 2
Q_ws_wv:m{&ﬂ_a]mz[P_2+V_z]_ml[&+"_1}
Py 2 Py 2 A2

or: —

100 225000+(7.22)2 . 120 26SOOO+(26.5)2
P = 3600 998 2 3600| 998 2

N 220 150000+(9.61)2
3600| 998 2

Solve for the shaft work: W, =998(—6.99 —20.56+12.00) = 15500 W  Ans.
(negative denotes work done on the fluid)

3.127 A power plant on a river, as in
Fig. P3.127, must eliminate 55 MW of
waste heat to the river. The river
conditions upstream are Q; = 2.5 m’/s
and T, = 18°C. The river is 45 m wide
and 2.7 m deep. If heat losses to the
atmosphere and ground are negligible,
estimate the downstream river conditions

(QO’ TO)

Fig. P3.127
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Solution: For water, take ¢, = 4280 J/kg-°C. For an overall CV enclosing the entire
sketch,

Q = r‘nout (CpTout) - 1‘hin (CpTin)’
or: 55,000,000 W = (998x2.5)[4280T, . —4280(18)], solve for T, =~23.15°C Ans.

The power plant flow is “internal” to the CV, hence Q_,, =Q;, =2.5 m’/s. Ans.

out —

3.128 For the conditions of Prob. 3.127, if the power plant is to heat the nearby river
water by no more than 12°C, what should be the minimum flow rate Q, in m3/s, through
the plant heat exchanger? How will the value of Q affect the downstream conditions

(0o, Tp)?

Solution: Now let the CV only enclose the power plant, so that the flow going through
the plant shows as an inlet and an outlet. The CV energy equation, with no work, gives

Qplam = M Cp Ty =M€, Ty =(998)Q 1 (4280)(12°C) - since Q;, = Qg

out¥p “out in~p “in

25,000,000 ~1.07 m3/s Ans.
(998)(4280)(12)

Solve for Q=

It’s a lot of flow, but if the river water mixes well, the downstream flow is still the same.

3.129 Multnomah Falls in the Columbia River Gorge has a sheer drop of 543 ft. Use the
steady flow energy equation to estimate the water temperature rise, in °F, resulting.

Solution: For water, convert c,= 4200 x5.9798 = 25100 ft-Ibf/(slug-°F). Use the
steady flow energy equation in the form of Eq. (3.66), with “1” upstream at the top of
the falls:

f, +%V12+gz1 =f, +%V§+gz2—q

Assume adiabatic flow, ¢ = 0 (although evaporation might be important), and neglect the

kinetic energies, which are much smaller than the potential energy change. Solve for

T 32.2(543)
25100

A =c AT = g(z,—2,), or: =0.70°F Ans.
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3.130 When the pump in Fig. P3.130
draws 220 m’/h of water at 20°C from the
reservoir, the total friction head loss is 5 m.
The flow discharges through a nozzle to
the atmosphere Estimate the pump power
in kW delivered to the water.

Solution: Let “1” be at the reservoir surface
and “2” be at the nozzle exit, as shown. We
need to know the exit velocity:

Fig. P3.130

= 2203600 _ 1.12 2, while V, = 0 (reservoir surface)

V, =Q/A, = =220
2 > 2(0.025) s

Now apply the steady flow energy equation from (1) to (2):

2 2
&+£+zl :&+ﬁ+z2 +hy—h,,
pg 2g pg  2g

or: 0+O+0:0+(3l.12)2/[2(9.81)]+2+5—hp, solve for h, =56.4 m.

The pump power P = pgQh, =(998)(9.81)(220/3600)(56.4)
=33700 W =33.7kW Ans.

3.131 When the pump in Fig. P3.130 delivers 25 kW of power to the water, the friction
head loss is 4 m. Estimate (a) the exit velocity; and (b) the flow rate.

Solution: The energy equation just above must now be written with V, and Q
unknown:

2
0+0+0= 0+£+2+4—hp, where h, = P __ 25000
2g 0gQ  (998)(9.81)Q
and where V, = Lz Solve numerically by iteration: V,=28.1m/s Ans. (a)
7(0.025)

and Q= (28.1)70.025)* = 0.0552 m*/s = 200 m’/hr Ans. (b)
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3.132 Consider a turbine extracting energy
from a penstock in a dam, as in the figure.
For turbulent flow (Chap. 6) the friction head
loss is hy = CQZ, where the constant C
depends upon penstock dimensions and
water physical properties. Show that, for a
given penstock and river flow Q, the
maximum turbine power possible is P, =
2pgHQ/3 and occurs when Q = (H/3C)"%.

Turbine |——

Solution: Write the steady flow energy equation from point 1 on the upper surface to
point 2 on the lower surface:

2 2
ﬂ+v—1+H:&+V—2+O+hf+h
pPg 28 P8 28

turbine
But p; = p> = pam and V| = V, = 0. Thus the turbine head is given by
hy=H-h, =H-CQ",
or: Power =P = pgQh, = pgQH — pgCO’

Differentiate and set equal to zero for max power and appropriate flow rate:

j_g:pgy_3pgcg2 =0 if Q=vHAC Ans.

Insert Q in P to obtain P,,,, = pgQ (ZTHJ Ans.

3.133 The long pipe in Fig. 3.133 is filled
with water at 20°C. When valve A is
closed, p; — p» = 75 kPa. When the valve is
open and water flows at 500 m’/h, p1—P2=
160 kPa. What is the friction head loss
between 1 and 2, in m, for the flowing
condition?

Constant-
diameter
pipe

¥ 4
Fig. P3.133
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Solution: With the valve closed, there is no velocity or friction loss:
Py _ Db

P — P> 75000
pg pg pg  998(9.81)

When the valve is open, the velocity is the same at (1) and (2), thus “d” is not needed:

_ 2 2
With flow: h, =Pr=P2 Vi=Vs ., ,_ 160000

=—+0-7.66=8.7m Ans.
pg 2¢g 998(9.81)

3.134 A 36-in-diameter pipeline carries oil
(SG = 0.89) at 1 million barrels per day
(bbl/day) (1 bbl = 42 U.S. gal). The friction
head loss is 13 ft/1000 ft of pipe. It is planned
to place pumping stations every 10 mi along - 10 miles >
the pipe. Estimate the horsepower which

must be delivered to the oil by each pump.

Solution: Since AV and Az are zero, the energy equation reduces to

h =22 and h, =0013 1195 (4 mi)(5280 EJ ~ 686 ft

pg ft-pipe mi

Convert the flow rate from 1E6 bbl/day to 29166 gal/min to 65.0 ft’/s. Then the power is

P = QAp = yQh; =(62.4)(65.0)(686) =2.78E6 ft-1of =5060 hp Ans.
3.135 The pump-turbine system in z,= 1501
Fig. P3.135 draws water from the upper .= iy~~~
reservoir in the daytime to produce power i
for a city. At night, it pumps water from v

lower to upper reservoirs to restore the \\sj
situation. For a design flow rate of 15,000 gal/ e
min in either direction, the friction head
loss is 17 ft. Estimate the power in kW
(a) extracted by the turbine and (b) delivered Fig. P3.135
by the pump.
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Solution: (a) With the turbine, “1” is upstream:

2 2
&+&+z1 P2 +V—+zz+h +h,
pg  2g pg 2g
or: 0+0+150=0+0+25+17=h,
Solve for h, = 108 ft. Convert Q = 15000 gal/min = 33.4 ft’/s. Then the turbine power is

P = Qhy, = (62.4)(33.4)(108) = 225,000 - 1PF

=410hp Ans. (a)

(b) For pump operation, point “2” is upstream:
2 2
p—2+£+z2 P +V—+z1 +h; —h,,
pg 28 pg 28
or: 0+0+25=0+0+150+17-h,
Solve for h, =142 ft

The pump poweris Py, = yQh, = (62.4)(33.4)(142) = 296000 ft-Ibf/s = 540 hp. Ans. (b)

3.136 Water at 20°C is delivered from one reservoir to another through a long 8-cm-
diameter pipe. The lower reservoir has a surface elevatlon 7o = 80 m. The friction loss in
the pipe is correlated by the formula A, = 17. S(V /2g), where V is the average velocity
in the pipe. If the steady flow rate through the pipe is 500 gallons per minute, estimate the
surface elevation of the higher reservoir.

Solution: We may apply Bernoulli here,

17.5V?

h. =
1 2g

=370

17.5 (500 gal/min)(3.785 m3/ga1)(min/60 S)
2(9.81 m/s®) 7 (0.08?)
2O

—80 m

z1 =115 m Ans.
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3137 A fireboat draws seawater (SG = Pump
1.025) from a submerged pipe and discharges
it through a nozzle, as in Fig. P3.137. The
total head loss is 6.5 ft. If the pump efficiency
is 75 percent, what horsepower motor is
required to drive it?

Solution: For seawater, y=1.025(62.4) =

63.96 Ibf/ft’. The energy equation becomes Fig. P3.137
2 2
&+£+zl = p—2+£+z2 +h;—h,
pg  2g pg  2g
(120)°

or: 0+0+0=0+ +1O+6.5—hp

2(32.2)

Solve for hy, = 240 ft. The flow rate is Q = V,A, = (120)(7/4)(2/ 12)2 =2.62 ft’/s. Then

. .
7Qh, _ (6396)(2.62)240) _ g3¢ng fIF _gpy 0

P =
efficiency 0.75 S

pump —

3.138 Students in the fluid mechanics lab at Penn State University use the device in the
figure to measure the viscosity of water: a tank and a capillary tube. The flow is laminar and
has negligible entrance loss, in which case Chap. 6 theory shows that hy = 32,uLV/(pgd2).
Students measure water temperature with a

thermometer and Q with a stopwatch and a

graduated cylinder. Density is measured by — "}
weighing a known volume. (a) Write an - 3 H
expression for x4 as a function of these *
variables. (b) Calculate y for the following A

actual data: T = 16.5°C, p=998.7 kg/mS, d=
0.041 in, Q = 0.31 mL/s, L = 36.1 in, and
H = 0.153 m. (c¢) Compare this g with the L
published result for the same temperature. d—> ¢
(d) Compute the error which would occur
if one forgot to include the kinetic energy
correction factor. Is this correction important || ______ ) A
here?
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Solution: (a) Write the steady flow energy equation from top to bottom:

2 2 2
BELA L (HyL)=5 +%+O+hf, or: hf:32’UL2V:H+L—%
g P& g 28 ped 2g

Noting that, in a tube, Q = V7rd2/4, we may eliminate V in favor of Q and solve for the
fluid viscosity:

4
12810 167L

(b) For the given data, converting d = 0.041 in = 0.00104 m, L =36.1 in =0.917 m, and Q =
0.31 mL/s =3.1E-7 m3/s, we may substitute in the above formula (a) and calculate

4
_ 7(998.7)(9.81)(0.00104) (0.153+0.917) 2.0(998.7)(3.1E-7)
128(0.917)(3.1E-T) 167(0.917)

=0.001063-0.000013 = 0.00105 ke Ans. (b)
m-s

(c) The accepted value (see Appendix Table A-1) for water at 16.5°C is = 1.11E-3 kg/m:s,
the error in the experiment is thus about —5.5%. Ans. (c)

(d) If we forgot the kinetic-energy correction factor & = 2.0 for laminar flow, the
calculation in part (b) above would result in

4 =0.001063 -0.000007 = 0.001056 kg/m - s (negligible 0.6% error) Ans. (d)

In this experiment, the dominant (first) term is the elevation change (H+ L)—the
momentum exiting the tube is negligible because of the low velocity (0.36 m/s).

3.139 The horizontal pump in Fig. P3.139
discharges 20°C water at 57 m’/h. Neglecting
losses, what power in kW is delivered to the
water by the pump?

mp _
Dy=3cem Dy =9cm

Solutiqn: First. we need to compute the Fig. P3.139
velocities at sections (1) and (2):
o Q_ STBE00 g m. o Q _ STRE00 ), m

A, 7(0.045?% s’ A, 700157 s
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Then apply the steady flow energy equation across the pump, neglecting losses:

2 2
&+&+z1 :&+&+22 +h;—h,,
pg  2g pg  2g
2 2
120000 + (2.49) +0= 400000 + (22:4) +0+0-h,, solvefor h;, =53.85m
9790  2(9.81) 9790  2(9.81)
Then the pump poweris P, =yQh, =9790 (%j (53.85)=8350 W =8.4 kW Ans.

3.140 Steam enters a horizontal turbine at 350 Ibf/in’ absolute, 580°C, and 12 ft/s and is
discharged at 110 ft/s and 25°C saturated conditions. The mass flow is 2.5 Ibm/s, and the
heat losses are 7 Btu/lb of steam. If head losses are negligible, how much horsepower
does the turbine develop?

Solution: We have to use the Steam Tables to find the enthalpies. State (2) is saturated
vapor at 25°C = 77°F, for which we find h, = 1095.1 Btu/lbm = 2.74E7 ft-Ibf/slug. At
state (1), 350 psia and 580°C = 1076°F, we find h; = 1565.3 Btu/lbm = 3.92E7 ft-1bf/slug.
The heat loss is 7 Btu/lbm = 1.75ES5 ft-Ibf/slug. The steady flow energy equation is best
written on a per-mass basis:

I > 1. >
—-w.=h,+—V5-h,——V;, or
q s 25 V2 175
ft-1bf

~1.75E5—-w, =2.74E7+(110)*/2—3.92E7-(12)*/2, solve for w, =1.16E7 1
slug

The result is positive because work is done by the fluid. The turbine power at 100% is

= thw :(ﬁ Sllg} 11687 101 901000 10 _ 1640 hp  Ans.
322 s slug S

3.141 Water at 20°C is pumped at 1500 gal/
min from the lower to the upper reservoir,
as in Fig. P3.141. Pipe friction losses are
approximated by &y = 27V2/(2g), where V is
the average velocity in the pipe. If the
pump is 75 percent efficient, what horse-
power is needed to drive it?

Pump

Fig. P3.141
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Solution: First evaluate the average velocity in the pipe and the friction head loss:

3 2
Q:ﬂ:&% fL, o) V:gzﬂzﬂﬂ ft and h; =27 17.0) ~121ft
448.8 S A 7z(312)° S 2(32.2)

Then apply the steady flow energy equation:

2 2
ﬂ+£+zl :&+&+z2 +h;—=h
pg 2g pg 2g

or: O+0+50:0+O+150+121—hp

p’

h
Thus h =221ft, so P = rQhy _ (624334221
P Pume T g 0.75

ft-1bf
S

=61600

=112hp Ans.

3.142 A typical pump has a head which,
for a given shaft rotation rate, varies with
the flow rate, resulting in a pump
performance curve as in Fig. P3.142.
Suppose that this pump is 75 percent
efficient and is used for the system in
Prob. 3.141. Estimate (a) the flow rate, in
gal/min, and (b) the horsepower needed to
drive the pump.

Head, ft

Flow rate, ft¥/s

Fig. P3.142

Solution: This time we do not know the flow rate, but the pump head is h, = 300 —
50Q, with Q in cubic feet per second. The energy equation directly above becomes,
V2
2(32.2)

0+0+50=0+0+150+(27)

—(300-50Q), where Q= V%(O.S ft)

This becomes the quadratic Q” +4.60Q—18.4=0, solve for Q =2.57 ft'/s

h -
Then the poer is By =702 - (242SDB0-502.57)
n .
ft-Ibf
S

=36700 =~67hp Ans.
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3.143 The insulated tank in Fig. P3.143 is pr—
to be filled from a high-pressure air supply. valee 1, = 20°
Initial conditions in the tank are 7= 20°C | Tenk:V=200L XS = 500 e
and p = 200 kPa. When the valve is opened, "

the initial mass flow rate into the tank is
0.013 kg/s. Assuming an ideal gas, estimate
the initial rate of temperature rise of the air in
the tank.

Fig. P3.143

Solution: For a CV surrounding the tank, with unsteady flow, the energy equation is

. V? o
i( Iepdv)—min u+£+—+gz =Q-W,,; =0, neglect V>/2 and gz
dt p 2
) d . dT dp
Rewrite as —(pvc, T)=m. c T. =pvc, —+c,Tvo —
dt (p \% ) m~p T p \% dt A\ dt

where p and T are the instantaneous conditions inside the tank. The CV mass flow gives

Combine these two to eliminate v(dp/dt) and use the given data for air:

(;_T . f(c, ¢ )T _ (02.((;(1)3)((1)005—718)(293) 42 C
t pey 2R 0.2 m*)(718) S
287(293)

3.144 The pump in Fig. P3.144 creates
a 20°C water jet oriented to travel a maxi-
mum horizontal distance. System friction
head losses are 6.5 m. The jet may be
approximated by the trajectory of friction-
less particles. What power must be deli-
vered by the pump?

Fig. P3.144

Solution: For maximum travel, the jet must exit at @=45°, and the exit velocity must be

12
V,sin@ =,/2gAz . or: V,= [2(9?1)(25)] ~31.32 2
sin45° S

The steady flow energy equation for the piping system may then be evaluated:

p//y+ViR2g+z, =p,/y+V32g+z,+h,—h

p’
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or: 0+0+15=0+ (31.32)2/[2(9.81)] +24+6.5 —hp, solve for hp =43.5m

pump

Then P, =7Qh, =(9790) {% (0.05)*(31 .32)} (43.5) =26200 W Ans.

3.145 The large turbine in Fig. P3.145
diverts the river flow under a dam as
shown. System friction losses are hy =
3.5 Vz/(2g), where V is the average velocity
in the supply pipe. For what river flow rate
in m’/s will the power extracted be 25 MW?
Which of the two possible solutions has a
better “conversion efficiency”?

Fig. P3.145

Solution: The flow rate is the unknown, with the turbine power known:

2 2
P Vi, =P Vo b thy,, or: 040450=0+0+10+h, +hy,
7 2g v 22
Q
where h; =3.5V2 /(2g) and h =P /(yQ) and V,  =—>——
f pip g p p 7Q pIp: (”/4)Df)ipe

Introduce the given numerical data (e.g. Dpipe =4 m, Pyymp = 25E6 W) and solve:
Q®-35410Q+2.261E6 =0, withroots Q =+76.5,+137.9, and —214.4 m>/s

The negative Q is nonsense. The large Q (=137.9) gives large friction loss, hy = 21.5 m.
The smaller Q (= 76.5) gives hy = 6.6 m, about right. Select Qjye; = 76.5 m’/s. Ans.

3.146 Kerosene at 20°C flows through the
pump in Fig. P3.146 at 2.3 ft’/s. Head losses
between 1 and 2 are 8 ft, and the pump
delivers 8 hp to the flow. What should the
mercury-manometer reading / ft be?

Solution: First establish the two velocities:

0 23fthk N
AN
A (432 ft)? Fig. P3.146
ft 1 ft

=469 —; V,=—-V,=11.7 —
S 4 S
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For kerosene take p = 804 kg/m = 1.56 slug/ft or % = 1.56(32.2) = 50.2 Ibf/ft’. For
mercury take ¥, = 846 1bf/ft’. Then apply a manometer analysis to determine the pressure
difference between points 1 and 2:

Py — D1 =Y = Vi )h =y Az = (846 —50.2)h — (50 2?—f) (5 ft)=796h-251 ;f
1>

Now apply the steady flow energy equation between points 1 and 2:

2 2
n W, Y thy—h, where h = P _ 8(550) fi lb];/s 381
Ve 28 Ve 28 %Q  (50.2)(23 ftls)
Thus: (46 o’ +0= (11 7 +5+8-38.1ft Solve p,—p, =2866 lb—];
50 2 2(32.2) 50 2 2(32.2) St
Now, with the pressure difference known, apply the manometer result to find /:
2
Py — py = 2866 =796h - 251, _ 28004V IBIfI” _ 395 gy pps,

796 Ibflft?

3.147 Repeat Prob. 3.49 by assuming that
p1 is unknown and using Bernoulli’s P = 15 Ibffin? abs
equation with no losses. Compute the new
bolt force for this assumption. What is the
head loss between 1 and 2 for the data of
Prob. 3.49?

Open

Solution: Use Bernoulli’s equation with
no losses to estimate p; with Az = 0: Fig. P3.49

Pi (14) _150144) (56)°

o , solve for p; 4., =34.8 psia
Yy 2322) 624  2(322) P1idea P

From the x-momentum CV analysis of Prob. 3.49, the bolt force is given by

l:bolts = pl,gageAZ _m(VZ - Vl)

=(34.8—- 15)(144) (1 ft)* —1. 94( j(l ft)*(14)(56 —14) ~ 1340 Ibf  Ans.
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We can estimate the friction head loss in Prob. 3.49 from the steady flow energy
equation, with p; taken to be the value of 38 psia given in that problem:

38(144)+ (14)* —15(144)+ (56)*
624  2(322) 624  2(322)

+h¢, solve for hy =7.4 ft Ans.

3.148 Reanalyze Prob. 3.54 to estimate ® 8 cmgy ®

the manometer reading ~ by Bernoulli’s i > cm
equation. For the reading 4 = 58 cm in
Prob. 3.54, what is the head loss?

’ Py =P, =101 kPa

Solution: We were given V; = 5 m/s. | Mereury

Then, by mass conservation V, = V1(8/5)2 =
12.8 m/s. Then find the upstream pressure
by Bernoulli’s equation with no losses:

2 2 2 2
P Vi Voo P 57101000 (12.8)
p 2 p 2 998 2 998

, solve for p, =170300 Pa

Now apply the manometer formula to determine A:
p; —p, =170300-101000 = (13550—-998)(9.81)h,
solve for h=0.563 m=56.3cm Ans.

Estimate the friction head loss for the reading 4 = 58 cm in Prob. 3.54:

&+V_12:p_2+v_§+h
Yy 28 v 2

172300 (5° 101000 . (12.8)* .
9790  2(9.81) 9790  2(9.81) '

fo

Solve for h; =0.21m Ans.

3.149 A jet of alcohol strikes the vertical
plate in Fig. P3.149. A force F = 425 N is B! [
required to hold the plate stationary. Mcohol ! Py =101 kPs ‘

Assuming there are no losses in the —————e e R,

nozzle, estimate (a) the mass flow rate of E ~ .: 1
! D, =2cm

alcohol and (b) the absolute pressure at i
section 1.
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Solution: A momentum analysis of the plate (e.g. Prob. 3.40) will give

F=mV, = pA,V2 = 0.79(998)%(0.02)2V§ — 425 N,

solve for V, =41.4 m/s

whence 1 =0.79(998)(7/4)(0.02)*(41.4) ~10.3 kg/s Ans. (a)

We find V, from mass conservation and then find p; from Bernoulli with no losses:

2
Incompressible mass conservation: V, = V,(D,/D,)* = (41.4)(%) =~ 6.63 m/s

Bernoulli, z, =z,: p,=p, +%p(V§ —V})=101000+

=760,000 Pa Ans. (b)

0T 4147~ .37

3.150 An airfoil at an angle of attack
o, as in Fig. P3.150, provides lift by
a Bernoulli effect, because the lower
surface slows the flow (high pressure)
and the upper surface speeds up the flow
(low pressure). If the foil is 1.5 m long
and 18 m wide into the paper, and the
ambient air is 5000 m standard atmo-
sphere, estimate the total lift if the average
velocities on upper and lower surfaces are
215 m/s and 185 m/s, respectively. Neglect
gravity.

Solution: A vertical force balance gives,

FLtﬁ = (pl —Pu )Aplanform

Um200ms e,
\>
Vlowet<U

Fig. P3.150

—p(v2-vE)eL)

= %(0.7361)(2152 —185%)(18)(1.5)

=119,250 N =119 kN  Ans.
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3.151 Water flows through a circular
nozzle, exits into the air as a jet, and strikes
a plate. The force required to hold the plate
steady is 70 N. Assuming frictionless one-
dimensional flow, estimate (a) the velocities
at sections (1) and (2); (b) the mercury man-
ometer reading A.

Solution: (a) First examine the momen-
tum of the jet striking the plate,

S F=F=—u, =—pAV;

m-mn

D1=100m

Fig. P3.151

70N = —(998)(%)(0.032)(%2) V,=9.96 m/s Ans. (a)

(9.96)(;’)(0.032)

1_ E()lZ
4(-)

(b) Applying Bernoulli,

Py—p, = %p(Vf -V7) :%(998)(9.962 ~0.9%)=49,100 Pa

And from our manometry principles,

Ap 49,100

" pg (133,100—9790)

or V;=09m/s Ans. (a)

=04 m Ans. (b)

231

3.152 A free liquid jet, as in Fig. P3.152,
has constant ambient pressure and small
losses; hence from Bernoulli’s equation
7+ V2/(2g) is constant along the jet. For the
fire nozzle in the figure, what are (a) the
minimum and (b) the maximum values of 6
for which the water jet will clear the corner
of the building? For which case will the jet
velocity be higher when it strikes the roof
of the building?

s0fe b
V, =100 ft/s &

e

& ) e——a0 ft ——
N/

~

Fig. P3.152
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Solution: The two extreme cases are when the jet just touches the corner A of the
building. For these two cases, Bernoulli’s equation requires that

V; +2gz, =(100)* +2g(0) = V3 +2gz, = Vi +2(32.2)(50), or: V, =82.3 It
S

The jet moves like a frictionless particle as in elementary particle dynamics:

. . . 1 . .
Vertical motion: z =V, sin6t 3 gt’; Horizontal motion: x =V, cos 6t

Eliminate “t” between these two and apply the result to point A:

2 2
ZA:50=XAtan0—%:4Otan0—%
Vi cos@ 2(100)“ cos“@

; clean up and rearrange:
tan 6 =1.25+0.0644 sec®d, solve for 0 =85.94° Ans. (a) and 55.40° Ans. (b)

Path (b) is shown in the figure, where the jet just grazes the corner A and goes over the
top of the roof. Path (a) goes nearly straight up, to z = 155 ft, then falls down to pt. A.

3.153 For the container of Fig. P3.153

use Bernoulli’s equation to derive a

formula for the distance X where the free r
jet leaving horizontally will strike the floor, b Free
as a function of & and H. For what ratio

h/H will X be maximum? Sketch the three L

trajectories for /H = 0.4, 0.5, and 0.6.

Fig. P3.153
Solution: The velocity out the hole and
the time to fall from hole to ground are AV
given by -
h=075H =
Then the distance travelled horizontally is 025 H «
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Maximum X occurs at h = H/2, or X,,,x = H. When h = 0.25H or 0.75H, the jet travels
out to H=0.866H. These three trajectories are shown in the sketch on the previous page.

3.154 In Fig. P3.154 the exit nozzle is
horizontal. If losses are negligible, what
should the water level 4 cm be for the free
jet to just clear the wall?

Solution: The fall distance is 0.3 m =

(1/2)gt2, hence t = [2(0.3)/g]. The exit

velocity is V = (2gh). Then

x=0.4 m=V,t=(2gh)"[2(0.3)/g]"
=2(0.3h)"?, or: h=0.133m Ans.

Thin
wall

TN

\

l—- 40cm *J

Fig. P3.154

3.155 Bernoulli’s 1738 treatise Hydro-
dynamica contains many excellent sketches
of flow patterns. One, however, redrawn here
as Fig. P3.155, seems physically misleading.
What is wrong with the drawing?

Solution: If friction is neglected and the
exit pipe is fully open, then pressure in the
closed “piezometer” tube would be
atmospheric and the fluid would not rise at
all in the tube. The open jet coming from
the hole in the tube would have V = (2gh)
and would rise up to nearly the same height
as the water in the tank.

Fig. P3.155

3.156 A blimp cruises at 75 mi/h through
sea-level standard air. A differential pressure
transducer connected between the nose and the
side of the blimp registers 950 Pa. Estimate
(a) the absolute pressure at the nose and (b) the
absolute velocity of the air near the blimp side.

75 mi/hr : 3 Sea Level
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Solution: Assume that the nose reads “‘stagnation” pressure and the side reads the local side
pressure and senses a local velocity not equal to the blimp speed. The nose velocity is zero.
Then Bernoulli’s equation, assuming Az = 0, yields

1 1 1 k
Phrose +Epvn2ose = Pside +5st%de’ Or: Duose ~ Pside = 950 Pa = 5(1225 m_g3j Vs?de

~39.4 2 — 88 mi/hr Ans. (b)
S

Now relate Bernoulli to the ambient upstream conditions, Vyjim, = 75 mi/hr = 33.5 m/s:

1.225

solve for 'V,

side

(33.5)> =102,000 Pa  Ans. ()

Prose = Pam +%pvvzehicle =101350 +

(b) nitrogen, at 20°C and 1 atm.

3.157 The manometer fluid in Fig. P3.157 ¥
is mercury. Estimate the volume flow in the O 3in (1) (zi'\ — (;
tube if the flowing fluid is (a) gasoline and ( l 1

Solution: For gasoline (a) take p = 1.32
slug/ft3. For nitrogen (b), R =297 J/kg-°C and
p = p/RT = (101350)/[(297)(293)] = 1.165 Fig. P3.157

kg/ m’ =0.00226 slug/ftS. For mercury, take

p=2634 slug/ftS. The pitot tube (2) reads stagnation pressure, and the wall hole (1) reads
static pressure. Thus Bernoulli’s relation becomes, with Az = 0,

1
Pi +EPV12 =p,, or V,=2(p,—p)/p
The pressure difference is found from the manometer reading, for each fluid in turn:

(a) Gasoline:  Ap = (py, — )y = (26.34—1.32)(32.2)(1/12 ft) = 67.1 Ibf/ft>
2 3
V, =[2(67.1y1.32]" =10.1 E, Q=VA, = (10.1)(5)(ij 0495 I s (a)
s 4 \12 s
(b) N,:  Ap =(py, — p)gh =(26.34-0.00226)(32.2)(1/12) = 70.7 Ibf/ft>

2 3
V, =[2(70.7)/0.00226]"* = 250 E, Q=VA, =250 % 3 ~12.3 e Ans. (b)
! s i 4 )\ 12

S
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D, =6cm

3.158 In Fig. P3.158 the flowing fluid is
CO, at 20°C. Neglect losses. If p; = 170 kPa
and the manometer fluid is Meriam red oil
(SG = 0.827), estimate (a) p, and (b) the
gas flow rate in m’/h.

D, =10cm

Solution: Estimate the CO, density as p =
p/RT = (170000)/[189(293)] = 3.07 kg/m3.
The manometer reading gives the down-
stream pressure:

Fig. P3.158

P1 — P2 = (Pt = Pco, )gh =[0.827(998) —3.07](9.81)(0.08) = 645 Pa
Hence p, =170,000-645~=169400Pa Ans. (a)

Now use Bernoulli to find V,, assuming p; = stagnation pressure (V; = 0):

1 2 |
+—p(0) =p, +—=pV3,
P 2p() p2t5p

o V= 2(pl—p2>:\/2(645)z2053
C p 3.07 s

3

Then Q=V,A, =(20.5)(7/4)(0.06)* = 0.058 m*/s = 209 ‘l‘l‘— Ans. (b)
r

235

3.159 Our D = 0.625-in-diameter hose is

too short, and it is 125 ft from the d = v? /—\
0.375-in-diameter nozzle exit to the

garden. If losses are neglected, what is the <o 1258 - >Garden
minimum gage pressure required, inside

the hose, to reach the garden? Pinside?

Solution: Assume that the water jet from the hose approximates the trajectory of a

frictionless particle. Then Ax = 125 ft can be translated to the jet velocity needed:

2 2

Vjet Vjet
Ax, . =125 ft = =——, solve for V,
g 322

=63.44 fils

et
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Then write Bernoulli’s equation and continuity from outside to inside of the nozzle:

4 3 2 4

0 s d 1.94 sluglft [ ftj (0.375j

=D =2 V2 1o 2| =2 fezg B o] 222
Pinside — Patm ) ]et[ (Dj] 2 s 0.625

= 3400 g Ans
ft

3.160 The air-cushion vehicle in Fig. W= 50 kN
P3.160 brings in sea-level standard air
through a fan and discharges it at high
velocity through an annular skirt of 3-cm
clearance. If the vehicle weighs 50 kN,
estimate (a) the required airflow rate and
(b) the fan power in kW.

Solution: The air inside at section 1 is
nearly stagnant (V = ) and supports the
weight and also drives the flow out of the
interior into the atmosphere:

Fig. P3.160

Dy =Dyl Doy =D _ weight _50,000N _ 1
1 ol* ol atm — ”(3 m)2 5

PV = l(l.ZOS)foit ~1768 Pa

exit —
2

3

Solve for V_;, =54.2 m/s, whence Q. =A_V, =7(6)(0.03)(54.2) =30.6 m
S

exit

Then the power required by the fan is P = Q.Ap = (30.6)(1768) = 54000 W  Ans.

3.161 A necked-down section in a pipe
flow, called a venturi, develops a low
throat pressure which can aspirate fluid
upward from a reservoir, as in Fig. P3.161.
Using Bernoulli’s equation with no losses,
derive an expression for the velocity V;
which is just sufficient to bring reservoir
fluid into the throat.

VyPi=h

Fig. P3.161
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Solution: Water will begin to aspirate into the throat when p, — p; = pgh. Hence:

Volume flow: V, =V,(D,/D,)*; Bernoulli (Az=0): p, +%pV12 = Patm +%pV§

Ans.

Solve for p, —p, :£(054 ~1)V; > pgh, « :&, or: V,2 24gh

Similarly, Vi i, = anz,min = %#h“ Ans.
1-(D,/D,)

3.162 Suppose you are designing a 3 X 6-ft

air-hockey table, with 1/16-inch-diameter

holes spaced every inch in a rectangular Pa
pattern (2592 holes total), the required jet

speed from each hole is 50 ft/s. You must ) | =T o
select an appropriate blower. Estimate the

volumetric flow rate (in ft3/min) and pressure Manifold: p;, , V;~0

rise (in psi) required. Hint: Assume the air is
stagnant in the large manifold under the table
surface, and neglect frictional losses.

Vjet

Solution: Assume an air density of about sea-level, 0.00235 slug/ft3. Apply Bernoulli’s
equation through any single hole, as in the figure:

0.00235 Ibf Ibf
Aprequired =P1—DP.= giet = > (50)2 =2.94 F =0.0204 in_2 Ans.
The total volume flow required is
2
Q=VA,_,,.# of holes)= (50 ﬁ)%(% ftj (2592 holes)
s
3 3
—276 I 166 T Ans.
s min

It wasn’t asked, but the power required would be P = QAp = (2.76 ft3/s)(2.94 lbf/ftz) =
8.1 ft-1bf/s, or about 11 watts.
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3.163 The liquid in Fig. P3.163 is Air
kerosine at 20°C. Estimate the flow rate p =20 Ibffin? abs
from the tank for (a) no losses and (b) pipe
losses ;= 4.5V/(2g).

= 14.7 1bf/in? abs

D=1lin
|
Solution: For kerosine let y=50.3 Ibf/ft. T —eV
Let (1) be the surface and (2) the exit jet: (2)
Fig. P3.163
V2 V2 2
Piy g =Py 247 4h,, withz,=0andV, =0, h, =K—=
Y 2g Y 28 2g
\% - -
Solve for 2 (14K)=7,+ PPz _ 5, GOZIENAYD) o5 4
2¢g ¥ 50.3

We are asked to compute two cases (a) no losses; and (b) substantial losses, K = 4.5:

172
@K=0: V,= {2(32.2)(20.2)} ft

(1 2 £t
=36.0 —, Q:36.0—(—j =~0.197 — Ans. (a)
1+0 S 412 S

2 3
D K=45 V,=, 22220 _ 6, 1t Q:16.41(ij ~0.089 T 4ns. v)
1+45 s 412 s

3.164 An open water jet exits from a ﬁ——-
nozzle into sea-level air, as shown, and dem ! t
strikes a stagnation tube. If the centerline - Water - i
pressure at section (1) is 110 kPa and 122em @)——
losses are neglected, estimate (a) the mass
flow in kg/s; and (b) the height H of the Sea-level air
fluid in the tube. Fig. P3.164

J

—/

|
| }

: —_— - == Open jet
|

l 1

Solution: Writing Bernoulli and continuity between pipe and jet yields jet velocity:

4 4
0 D,, 998 , (4}
—p =£Vv2 |1-| L] |=110000-101350="2V2 | 1-| — | |,
D1~ Pq ) jet[ (Dl J] 2 Jet 12

solve 'V, =4.19 o
s

Then the mass flow is m = PAY e = 998%(0.04)2 (4.19)=5.25 E Ans. (a)
S
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(b) The water in the stagnation tube will rise above the jet surface by an amount equal to
the stagnation pressure head of the jet:

14 2
H=R, +Z-=002m+ 10 00240.89=091m Ans. (b)
< 2(9.81)

2g

3.165 A venturi meter, shown in Fig.
P3.165, is a carefully designed constriction
whose pressure difference is a measure of |
the flow rate in a pipe. Using Bernoulli’s
equation for steady incompressible flow
with no losses, show that the flow rate Q is
related to the manometer reading /1 by

_ 4 28h(py = p)
J1-(D,/D)Y* p

Q

Fig. P3.165

where py, is the density of the manometer
fluid.

Solution: First establish that the manometer reads the pressure difference between 1
and 2:

pi— P, =(py —P)gh (D

Then write incompressible Bernoulli’s equation and continuity between (1) and (2):

A \%:
(Az=0): %+71 ~ %2+72 and V,=V,(D,/D,?, Q=A,V,=A,V,

A,+2gh(py— p)ip

Ans
J1-m,m,)’

Eliminate V, and (p, —p,) from (1) above: Q=

3.166 A wind tunnel draws in sea-level standard air from the room and accelerates it
into a 1-m by 1-m test section. A pressure transducer in the test section wall measures Ap =
45 mm water between inside and outside. Estimate (a) the test section velocity in mi/hr;
and (b) the absolute pressure at the nose of the model.
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Patm \ Pump
()] @ ) o)
ﬁ Ap =45 mm water

Solution: (a) First apply Bernoulli from the atmosphere (1) to (2), using the known Ap:

p.—p, =45 mm H,0 =441 Pa; p, =1.225 ke/m*; p, +§V§ ~p, +§V§

Since V, =0 and p, =p,, we obtain V, = | 222 — \/ 204D _ 68 M _go ™ 4 (a)
p V1225 s hr

(b) Bernoulli from 1 to 3: both velocities = 0, SO ppose = P = 101350 Pa.  Ans. (b)

3.167 In Fig. P3.167 the fluid is gasoline
at 20°C at a weight flux of 120 Nis.
Assuming no losses, estimate the gage
pressure at section 1.

Solution: For gasoline, p = 680 kg/m3.
Compute the velocities from the given flow
rate:

5 3
\\ 120 N/s 0.018 m

" g 68009.81) s
0018 em o 0018 g om
7(0.04) s 7(0.025) s

Now apply Bernoulli between 1 and 2:

2 2

\Y \Y 2 2
&+—1+gzlz&+—2+gz2, or: &+(3'58) +0z0(gage)+(9.l6)

p 2 p 2 P 2 680

+9.81(12)

Solve for p,; =104,000 Pa(gage) Ans.
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3.168 In Fig. P3.168 both fluids are at
20°C. If V| = 1.7 ft/s and losses are ne-

glected, what should the manometer reading
h ft be?

Solution: By continuity, establish Vj:

ft
S

V, =V,(D,/D,)* =1.7(3/1)* =15.3

Now apply Bernoulli between 1 and 2 to
establish the pressure at section 2:

Py +§V? +pgz, =p; +§V§ +pgz,, Fig. P3.168
or: p+(1.942)(1.7)% +0 = 0+(1.942)(15.3> +(62.4)(10), p, =848 psf

This is gage pressure. Now the manometer reads gage pressure, SO

Ibf
P1 =Py =848 5 = (Prcc = Prer)h = (846 -624)h, _solve for h~1.08 ft ~ Ans

3.169 Once it has been started by ®
sufficient suction, the siphon in Fig. P3.169 '
will run continuously as long as reservoir
fluid 1is available. Using Bernoulli’s
equation with no losses, show (a) that the
exit velocity V, depends only upon gravity
and the distance H and (b) that the lowest
(vacuum) pressure occurs at point 3 and
depends on the distance L + H. Fig. P3.169

Solution: Write Bernoulli from 1 to 2:

2 2 2

\Y \Y \Y
Pry Tt Py 20y o Pajogg =P 2y

vy 2g Y 2g 4 Y 2g

Solve for V, =V, = \/Zg(zl -7,)= \/ZgH Ans.
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Since the velocity is constant throughout the tube, at any point C inside the tube,

Pc t7Zc =p, +7Z,, or,atpoint 3: Pc, min = Pa —¥(23 -z,)=p, —pgL+H) Ans.

3.170 If losses are neglected in Fig.
P3.170, for what water level & will the flow
begin to form vapor cavities at the throat of
the nozzle?

Solution: Applying Bernoulli from (a) to (2)
gives Torricelli’s relation: V, = \ (2gh). Also,

V, = V,(D,/D,)* = V,(8/5)* =2.56V,

Fig. P3.170

Vapor bubbles form when p; reaches the vapor pressure at 30°C, py,, = 4242 Pa (from
Table A.5), while p= 996 kg/m at 30°C (Table A.1). Apply Bernoulli between 1 and 2:

Vi V3
=4+ —+gz, ==+ —+g7,,
p 2

2 2
4242 N (2.56V,) 40~ 100000 +&
996 2 996

Solve for V% =34.62=2gh, or h=34.62/[2(9.81)]=1.76 m Ans.

+0

3.171 For the 40°C water flow in Fig.
P3.171, estimate the volume flow through
the pipe, assuming no losses; then explain
what is wrong with this seemingly innocent
question. If the actual flow rate is Q =
40 m3/h, compute (a) the head loss in ft and
(b) the constriction diameter D which causes
cavitation, assuming that the throat divides
the head loss equally and that changing the
constriction causes no additional losses.

(2)

Scm

Fig. P3.171

Solution: Apply Bernoulli between 1 and 2:

2 2

Pr Vi p, , V2
+—+z1 —+—+z2, or: 0+0+25=0+0+10, or: 25=102??
Y 2¢ Y 2g
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This is madness, what happened? The answer is that this problem cannot be free of losses.
There is a 15-m loss as the pipe-exit jet dissipates into the downstream reservoir. Ans. (a)

(b) Examining analysis (a) shows that the head loss is 15 meters. For water at 40°C, the
vapor pressure is 7375 Pa (Table A.5), and the density is 992 kg/m3 (Table A.1). Now
write Bernoulli between (1) and (3), assuming a head loss of 15/2 =7.5 m:

2 2

\Y% \%
P o, 2P S (B where V, _Q _ 40/360(2) _ 0.01241
p 2 2 2" Ay (m/4)D D
252
Thus 101350 7375 | (QOL4VD)’ o o g1y7.5)

+0+9.81(25) =
992

Solve for D* =3.75E=7 m*, or D=0.0248m=~25mm Ans.

This corresponds to V3 = 23 m/s.

3.172 The 35°C water flow of Fig.
P3.172 discharges to sea-level standard
atmosphere. Neglecting losses, for what
nozzle diameter D will cavitation begin to
occur? To avoid cavitation, should you
increase or decrease D from this critical
value?

Fig. P3.172

Solution: At 35°C the vapor pressure of
water is approximately 5600 Pa (Table A.5).
Bernoulli from the surface to point 3 gives the
Torricelli result V5 = \ (2gh) = \/2(32.2)(6) = 19.66 ft/s. We can ignore section 2 and write
Bernoulli from (1) to (3), with p; = py,p, and Az =0:

2 2 2 2
P Vipp Voo 17 VY2106 V5
p 2 p 2 193 2 193 2

2

butalso V,=V; Db

1/12

Eliminate V, and introduce V; =19.66 ft to obtain D* =3.07E4, D=0.132ft Ans.
s

To avoid cavitation, we would keep D < 0.132 ft, which will keep p; > Pyapor-
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3.173 The horizontal wye fitting in Fig.
P3.173 splits the 20°C water flow rate
equally, if Q, = 5 ft'/s and p, = 25 Ibf/in
(gage) and losses are neglected, estimate
(@) py, (b) p3, and (c) the vector force
required to keep the wye in place.

Solution: First calculate the velocities:

Fig. P3.173
: :A%:—(mig o7 =25 % v, =—(”/4)2(‘;/ 7 =3093 % V, =28.65 %
Then apply Bernoulli from 1 to 2 and then again from 1 to 3, assuming Az = 0:
P, =P, +§(v§ —V3)=25(144) +%[(25.46)2 —(50.93)*1~1713 psfg  Ans. (a)
1.94

Ps =p, +§(V% —V3)=25(144)+—2"[(25.46)" —(28.65)*] = 3433 psfg  Ans. (b)

2
(c) to compute the support force R (see figure above), put a CV around the entire wye:
X FE =R, +pA, —p,A,sin30° - p;A;sin50° = pQ, V,sin30° + pQ,V;sin50° — pQ,V,
=R, +707-42-229=124+106-247, or: R, =-4531bf (to left) Ans. (c)
2F, =R, —p,A, c0s30°+p;A; cos 50° = pQ,V, cos30°+ pQ;(—V;) cos 50°
=R, -73+193=214-89, or: R, =+51bf (up) Ans. (c)

3.174 In Fig. P3.174 the piston drives Dy=8in

water at 20°C. Neglecting losses, estimate - D,=4in
the exit velocity V, ft/s. If D, is further
constricted, what is the maximum possible 7 =10f—=
value of V,?

Solution: Find p; from a freebody of the Fig. P3.174

piston:
10.0 Ibf Ibf

SF =F+p,A —pA,, o p—p,=———=28.
Paft1 =1 PP (71/4)(8/12)> >
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Now apply continuity and Bernoulli from 1 to 2:

V2 VZ
4 p 2 p 2
2(28.65)

Introduce p, —p, and substitute for V, to obtain V5 =————"—"_
1.94(1-1/16)

V, =5.61 L Ans.
s

If we reduce section 2 to a pinhole, V, will drop off slowly until V; vanishes:

Severely constricted section 2: 'V, = _2(28.65) ~5.43 L Ans.
1.94(1-0) S

3.175 If the approach velocity is not too 10em
high, a hump in the bottom of a water | A v
channel causes a dip A/ in the water level, I 1‘( =
which can serve as a flow measurement. P N .
If, as shown in Fig. P3.175, Ah = 10 cm ' | ' //* Water
when the bump is 30 cm high, what is the 1 H S
volume flow Q; per unit width, assuming f
no losses? In general, is Ah proportional oo
Fig. P3.175
to er)
Solution: Apply continuity and Bernoulli between 1 and 2:
2 2
V,h, = V,h,; £+h1 z£+h2+H, solve V3 z# Ans.
2¢g (hi/h3)-1

We see that Ah is proportional to the square of V; (or Q,), not the first power. For the
given numerical data, we may compute the approach velocity:

h, =20-03-01=1.6m; V= |20 DOD e m
[(2.0.6)> —1] s

3
whence Q, =V;h, =(1.87)(2.0)=3.74 = Ans.
S-m
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3.176 In the spillway flow of Fig. P3.176, Y4
the flow 1is assumed uniform and
hydrostatic at sections 1 and 2. If losses are
neglected, compute (a) V, and (b) the force
per unit width of the water on the spillway.

Solution: For mass conservation,
5.0
V, =V,h/h, :ﬁ\ﬁ =7.14V, Fig. P3.176

(a) Now apply Bernoulli from 1 to 2:

A \V&: 2 5
Yy 2g vy 2g 2g 2¢

7

20800201 "y _130 ™ v, =7.14v, 2928 ™ Ans. ()

Solve for Vi = 5
[(7.14)" —1] s S

(b) To find the force on the spillway (F <), put a CV around sections 1 and 2 to obtain

>F =-F +gh12 —%h% =m(V, —V,), or, using the given data,

F= %(9790)[(5.0)2 —(0.7)*1-998[(1.30)(5.0)1(9.28 —1.30) = 68300 N Ans. (b)
m

3.177 For the water-channel flow of
Fig. P3.177, hy =1.5m, H=4 m, and V| =
3 m/s. Neglecting losses and assuming
uniform flow at sections 1 and 2, find the
downstream depth h,, and show that two
realistic solutions are possible.

Solution: Combine continuity and Bernoulli
between 1 and 2:

Fig. P3.177

V? 2 v?2 2
h :3(1'5); —L4h+H=—+h, Ly 5aqe G

Vv, =V, h—l 0 5 = .
) ) g 2g 2(9.81) 2(9.81)

2
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Combine into a cubic equation: h3 —5.959 h3 +1.032 = 0. The three roots are:

h, =-0.403 m (impossible); h, =+5.93 m (subcritical);
h, =+0.432 m (supercritical) Ans.

3.178 For the water channel flow of Fig.
P3.178, h; = 045 ft, H= 2.2 ft, and V| =
16 ft/s. Neglecting losses and assuming
uniform flow at sections 1 and 2, find the
downstream depth h,. Show that two realistic
solutions are possible.

Solution: The analysis is quite similar to
Prob. 3.177 - continuity + Bernoulli:

Fig. P3.178

2 2 2 2
h, h, 2¢ 2¢ 2(32.2) 2(32.2)

+h, +2.2
Combine into a cubic equation: hj —2.225 h3 +0.805 = 0. The three roots are:

h, =-0.540 ft (impossible); h, =+2.03 ft (subcritical);
h, =+0.735 ft (supercritical) Ans.

3.179 A cylindrical tank of diameter D

contains liquid to an initial height A,. At

time ¢ = 0 a small stopper of diameter d is «— D —»
removed from the bottom. Using Bernoulli’s — —{
equation with no losses, derive (a) a h(t)
differential equa}tion fo'r .the free-surface > a—d i
height Ah(f) during draining and (b) an 1
expression for the time z, to drain the entire () v \f

tank.

Solution: Write continuity and the unsteady Bernoulli relation from 1 to 2:

2 2 2 :
I&_V ds+&+&+g22 :&+£+gz1; Continuity: V, :Vlizvl (Bj
7t p 2 p 2 A 4
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The integral term j i,)—‘t] ds = % h is very small and will be neglected, and p; = p,.. Then

o—1

h 12t 12 PP 4
% = —[ﬁ} [dt, or: h=|n}? —{L} t| ., a= (2) Ans. (a)
o h a-1] 2a-1) d

(b) the tank is empty when [] = 0 in (a) above, or tgna = [2(— Dg/h,]"%.  Ans. (b)

2¢h 1" A dh .
V,=| ——| , where a=(D/d)’; but also V, =——, separate and integrate:
dt

3.180 The large tank of incompressible | o |
liquid in Fig. P3.180 is at rest when, at r =0, (1)
the valve is opened to the atmosphere.

h = constant
Assuming & = constant (negligible velocities 1

and accelerations in the tank), use the /D valve
unsteady frictionless Bernoulli equation to V@ @-»
derive and solve a differential equation for } L {' (2)
V(#) in the pipe. Fig. P3.180
Solution: Write unsteady Bernoulli from 1 to 2:
J.E ds+72+gz2 z71+gz1, where p, =p,, V; =0, z, =0, and z, =h =const
1

The integral approximately equals (il—VL, so the diff. eqn. is 2L(i1—v+ V? =2gh
t t

This first-order ordinary differential equation has an exact solution for V=0 at t = 0:

V=Vﬁnaltanh(%} where V. =+/2g¢h  Ans.

3.181 Modify Prob. 3.180 as follows. Let the top of the tank be enclosed and under
constant gage pressure p,. Repeat the analysis to find V(¢) in the pipe.
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Solution: The analysis is the same as Prob. 3.180, except that we now have a (constant)
surface-pressure term at point 1 which contributes to Vi,

2 2 ) )
J‘&_V ds+£+gz2 zp—o—|—L+ng :d_VL+V_:p_0
ot 2 p 2 dt 2 p

The solution is: V=V, tanh (%), where Vg = 2p, +2gh Ans.
\ p

+gh, with V=0att=0.

3.182 The incompressible-flow form of Bernoulli’s relation, Eq. (3.77), is accurate only
for Mach numbers less than about 0.3. At higher speeds, variable density must be accounted
for. The most common assumption for compressible fluids is isentropic flow of an ideal gas,
orp= Cpk, where k = ¢,/c,. Substitute this relation into Eq. (3.75), integrate, and eliminate
the constant C. Compare your compressible result with Eq. (3.77) and comment.

Solution: We are to integrate the differential Bernoulli relation with variable density:

p=Cp", so dp=kCp"'dp, k=c,l,

Substitute this into the Bernoulli relation:

kCp*'dp

d—p+VdV+gdz: +VdV+gdz=0
p

Integrate: J.kak_2 dp+ _[V dv + J-gdz = IO = constant

The first integral equals kakfl/(k — 1) = kp/[p(k — 1)] from the isentropic relation. Thus
the compressible isentropic Bernoulli relation can be written in the form

2
L + V— + gz = constant Ans.
k-1p 2

It looks quite different from the incompressible relation, which only has “p/p.” It becomes
more clear when we make the ideal-gas substitution p/p = RT and ¢, = kR/(k — 1). Then we
obtain the equivalent of the adiabatic, no-shaft-work energy equation:

2
c, T+ > + gz = constant  Ans.
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3.183 The pump in Fig. P3.183 draws _

gasoline at 20°C from a reservoir. Pumps @—b
are in big trouble if the liquid vaporizes
(cavitates) before it enters the pump.
(a) Neglecting losses and assuming a flow
rate of 65 gal/min, find the limitations on z Pam = 100 kPa
(x, v, z) for avoiding cavitation. (b) If pipe-
friction losses are included, what additional SZ.
limitations might be important? S

D=3cm y
Solution: (a) From Table A.3, p =680 kg/
m’ and py=5.51EH4.

p=ry _(p,tP8Y) =D, ~
P8 Pg |

(100,000 —55,100) —
+z= + =6.73m [ —»
(680)(9.81) ¢ x

Fig. P3.183

LTy =ytz=

Thus make length z appreciably less than 6.73 (25% less), orz<Sm. Ans. (a)
(b) Total pipe length (x + y + z) restricted by friction losses. Ans. (b)

3.184 For the system of Prob. 3.183, let the pump exhaust gasoline at 65 gal/min to the
atmosphere through a 3-cm-diameter opening, with no cavitation, when x = 3 m, y =
2.5 m, and z = 2 m. If the friction head loss is /. = 3.7(V2/2g), where V is the average
velocity in the pipe, estimate the horsepower required to be delivered by the pump.

Solution:  Since power is a function of h,, Bernoulli is required. Thus calculate the velocity,

3
(65 gal/min)(6.3083E—5 m/s )
L gal/min J

A Z(0.032)

The pump head may then be found,
2
P P> J
—+z=—=+z,+h,—h,+—
y Ty T T g
2 2
100,OOO+(680)(9.81)(2.5)_2'5: 100,000 +2+3.7(5.8 )—h,,+ (5.879)
(680)(9.81) (680)(9.81) 2(9.81) 2(9.81)
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h, =10.05 m

P =y0h,=(680)(9.81)(0.0041)(10.05) P=275 W=0.37hp Ans.

3.185 Water at 20°C flows through a
vertical tapered pipe at 163 m’/h. The
entrance diameter is 12 cm, and the pipe
diameter reduces by 3 mm for every 2 meter
rise in elevation. For frictionless flow, if the
entrance pressure is 400 kPa, at what
elevation will the fluid pressure be 100 kPa?

Solution: Bernouilli’s relation applies,

2 2
ﬂ+z1+—Q1 =224 sz (1)
14 28A7 Y 2gA;
Where,
d, =d, -0.0015(z, —z,) )

Also, Q; = Q, = Q = (163 m’/h)(h/3600s) = 0.0453 m’/s; ¥=9790; z, = 0.0; p; =400,000; and
p> = 100,000. Using EES software to solve equations (1) and (2) simultaneously, the final
height is found to be z = 27.2 m. The pipe diameter at this elevation is d, =0.079 m =7.9 cm.
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FUNDAMENTALS OF ENGINEERING EXAM PROBLEMS: Answers

FE3.1 In Fig. FE3.1 water exits from a nozzle into atmospheric pressure of 101 kPa. If
the flow rate is 160 gal/min, what is the average velocity at section 1?
@2.6m/s (b)0.81m/s (c)93m/s (d)23m/s (e)1.62m/s

FE3.2 In Fig. FE3.1 water exits from a nozzle into atmospheric pressure of 101 kPa. If
the flow rate is 160 gal/min and friction is neglected, what is the gage pressure at section 1?
(a) 1.4kPa (b)32kPa (c)43kPa (d)22kPa (e) 123 kPa

FE3.3 In Fig. FE3.1 water exits from a nozzle into atmospheric pressure of 101 kPa. If
the exit velocity is V, = 8 m/s and friction is neglected, what is the axial flange force
required to keep the nozzle attached to pipe 1?

(@1IN (b)36N (¢)83N (d) 123N (e) 110N
FE3.4 In Fig. FE3.1 water exits from a nozzle into atmospheric pressure of 101 kPa. If
the manometer fluid has a specific gravity of 1.6 and & = 66 cm, with friction neglected,

what is the average velocity at section 2?
(a)455m/s (b)2.4m/s (¢)2.8m/s (d)5.55m/s (e)3.4m/s

FE3.5 A jet of water 3 cm in diameter strikes normal to a plate as in Fig. FE3.5. If the
force required to hold the plate is 23 N, what is the jet velocity?
(2)2.85m/s (b)S.7m/s (c)81m/s (d)4.0m/s (e)23 m/s

FE3.6 A fireboat pump delivers water to a vertical nozzle with a 3:1 diameter ratio, as
in Fig. FE3.6. If friction is neglected and the flow rate is 500 gal/min, how high will the
outlet water jet rise?
@20m (b)98m (¢)32m (d)64m (e)98m

FE3.7 A fireboat pump delivers water to a vertical nozzle with a 3:1 diameter ratio, as
in Fig. FE3.6. If friction is neglected and the pump increases the pressure at section 1 to
51 kPa (gage), what will be the resulting flow rate?

(a) 187 gal/min (b) 199 gal/min (c) 214 gal/min (d) 359 gal/min (e) 141 gal/min

FE3.8 A fireboat pump delivers water to a vertical nozzle with a 3:1 diameter ratio, as
in Fig. FE3.6. If duct and nozzle friction are neglected and the pump provides 12.3 feet of
head to the flow, what will be the outlet flow rate?

(a) 85 gal/min (b) 120 gal/min (c) 154 gal/min (d) 217 gal/min (e) 285 gal/min
FE3.9 Water flowing in a smooth 6-cm-diameter pipe enters a venturi contraction with
a throat diameter of 3 cm. Upstream pressure is 120 kPa. If cavitation occurs in the throat
at a flow rate of 155 gal/min, what is the estimated fluid vapor pressure, assuming ideal
frictionless flow?

(a)6kPa (b)12kPa (c)24kPa (d)31KkPa (e)52kPa
FE3.10 Water flowing in a smooth 6-cm-diameter pipe enters a venturi contraction with
a throat diameter of 4 cm. Upstream pressure is 120 kPa. If the pressure in the throat is
50 kPa, what is the flow rate, assuming ideal frictionless flow?
(a) 7.5 gal/min  (b) 236 gal/min (c) 263 gal/min (d) 745 gal/min (e) 1053 gal/min
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jet A
2) —»
3cm
v v
F=23N
=101 kPa
\
Fig. FE3.1 Fig. FE3.5

d=4cm

70 cm
—d=12cm

120 cm
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COMPREHENSIVE PROBLEMS

C3.1 In a certain industrial process, oil of
density p flows through the inclined pipe in
the figure. A U-tube manometer with fluid
density p,,, measures the pressure difference
between points 1 and 2, as shown. The flow
is steady, so that fluids in the U-tube are
stationary. (a) Find an analytic expression
for p; — p, in terms of system parameters.
(b) Discuss the conditions on /4 necessary for
there to be no flow in the pipe. (c) What
about flow up, from 1 to 2?7 (d) What about
flow down, from 2 to 1?

Solution: (a) Start at 1 and work your way around the U-tube to point 2:
P+ pgs+pgh—p,8h— pgs— pgAz = p,,
or: py—p,=pgAz+(p, —p)gh where Az=z,-z, Ans. (a)

(b) If there is no flow, the pressure is entirely hydrostatic, therefore Ap = pg and, since
Pm % P, it follows from Ans. (a) above that h=0 Ans. (b)

(c) If h is positive (as in the figure above), p; is greater than it would be for no flow,
because of head losses in the pipe. Thus, if h > 0, flow is up from 1 to 2. Ans. (c)

(d) If & is negative, p; is less than it would be for no flow, because the head losses act
against hydrostatics. Thus, if h < 0, flow is down from 2 to 1. Ans. (d)

Note that £ is a direct measure of flow, regardless of the angle 8 of the pipe.

C3.2 A rigid tank of volume v = 1.0 m’
is initially filled with air at 20°C and p, =
100 kPa. At time t = 0, a vacuum pump is
turned on and evacuates air at a constant
volume flow rate Q = 80 L/min (regardless
of the pressure). Assume an ideal gas and an
isothermal process. (a) Set up a differential
equation for this flow. (b) Solve this equation
for t as a function of (v, Q, p, p,)- (¢c) Com-
pute the time in minutes to pump the tank
down to p = 20 kPa. [Hint: Your answer
should lie between 15 and 25 minutes. ]
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Solution: The control volume encloses the tank, as shown. The CV mass flow relation

becomes
%Updv)+2n‘aom —Z%: 0

Assuming that p is constant throughout the tank, the integral equals pv, and we obtain
vd—p+ p0O=0, or: J.d—p -2 Idt, yielding In (ﬁj -
dt P v P v

Where p, is the initial density. But, for an isothermal ideal gas, p/p, = p/p,- Thus the time
required to pump the tank down to pressure p is given by

v p
t=——In| — | Ans.(a,b)
Q n( \) ns. (a

o

o

(¢) For our particular numbers, noting Q = 80 L/min = 0.080 m’/min, the time to pump a
1 m’ tank down from 100 to 20 kPa is

1.0 m* [ 20
- > ——In
0.08 m”/min 100

j =20.1min Ans. (c)

C3.3 Suppose the same steady water jet

as in Prob. 3.40 (jet velocity 8 m/s and jet
diameter 10 cm) impinges instead on a cup
cavity as shown in the figure. The water is
turned 180° and exits, due to friction, at
lower velocity, V. = 4 m/s. (Looking from
the left, the exit jet is a circular annulus of
outer radius R and thickness h, flowing
toward the viewer.) The cup has a radius of
curvature of 25 cm. Find (a) the thickness 4 of

the exit jet, and (b) the force F required to
hold the cupped object in place. (¢) Compare

part (b) to Prob. 3.40, where F = 500 N, and give a physical explanation as to why F has
changed.

o3
s
|SR P AT Sk Lo

Fig. C3.3

Solution: For a steady-flow control volume enclosing the block and cutting through the
jets, we obtain XQ;, = 2Q,y, Or:

V. D?
Vj%D?:Veﬂ[Rz—(R—h)z], or: h=R- /RZ_VJTJ Ans. (a)
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For our particular numbers,

2
h=025 —\/(0.25)2 _%@

=0.25-0.2398=0.0102 m=1.02cm Ans. (a)
(b) Use the momentum relation, assuming no net pressure force except for F:
. . /2
Y F,==F =1, (-V,)~1,,(V,), or: F=pV, ZDj.(vj +V,) Ans. (b)
For our particular numbers:

F= 998(8)%(0.1)2 (8+4)=752N totheleft Ans. (b)

(c) The answer to Prob. 3.40 was 502 N. We get 50% more because we turned through
180°, not 90°.  Ans. (c)

C3.4 The air flow beneath an air hockey pa
puck is very complex, especially since the air ‘ YVYVYVYY +
jets from the table impinge on the puck at £

various points asymmetrically. A reasonable T T T T T Tpunder
approximation is that, at any given time, the
gage pressure on the bottom of the puck is halfway between zero (atmospheric) and the
stagnation pressure of the impinging jets, p, = 1/2 ijetz. (a) Find the velocity Vi required to
support a puck of weight W and diameter d, with air density p as a parameter. (b) For W =
0.05 Ibf and d = 2.5 inches, estimate the required jet velocity in ft/s.

Solution: (a) The puck has atmospheric pressure on the top and slightly higher on the
bottom:

_wellgrPyv2 \E 2 4 |w
(Punder_Pa)Apuck—W—E(O"‘Evmjzd , Solve for Vjet_E % Ans. (a)

For our particular numbers, W = 0.05 Ibf and d = 2.5 inches, we assume sea-level air,
p=0.00237 slug/ft3, and obtain

v 4 0.05 Ibf
(2,512 ft) \| 2(0.00237 slug/ft’)

=50 ft/s Ans. (b)
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C3.5 Neglecting friction sometimes leads \T r -------------- Z)
to odd results. You are asked to analyze and

discuss the following example in Fig. C3.5.
A fan blows air vertically through a duct

from section 1 to section 2, as shown. \Y,
Assume constant air density p. Neglecting
frictional losses, find a relation between the T

required fan head £, and the flow rate and

the elevation change. Then explain what Atmosphere
may be an unexpected result.
Solution: Neglecting frictional losses, hy =
0, and Bernoulli becomes, :;a-nt
2 2 J k ........
A+V—I+Z1=&+Z2+V—2—hp T ~~~~~ VA
pg 28 pPg 2g
Fig. C3.5
2 2
—+ —
&+V_1+Zl:p2 p8(z Z2)+V_2+Z2—hp
pPg  2¢ pg 2g

Since the fan draws from and exhausts to atmosphere, V| = V, = 0. Solving for hy,
hp = pg(zl _zz)+pg12 — P8 = 0 Ans.

Without friction, and with V; = V,, the energy equation predicts that k, = 0! Because the
air has insignificant weight, as compared to a heavier fluid such as water, the power input
required to lift the air is also negligible.




Chapter 4 - Differential Relations
for a Fluid Particle

4.1 Anidealized velocity field is given by the formula
V = 4mxi — 267 yj+ 4xzk

Is this flow field steady or unsteady? Is it two- or three-dimensional? At the point (x, y, z) =
(-1, +1, 0), compute (a) the acceleration vector and (b) any unit vector normal to the
acceleration.

Solution: (a) The flow is unsteady because time ¢ appears explicitly in the components.
(b) The flow is three-dimensional because all three velocity components are nonzero.
(c) Evaluate, by laborious differentiation, the acceleration vector at (x, y, z) = (-1, +1, 0).

% = %+ u%+ v%+ w% = 4x + 4tx(4t) — 2t7y(0) + 4x2(0) = 4x + 16t°x

dv ov ov ov
—=—+4u—+v—+
dt ot ox ady
(il—‘:/ =%+ u%+ V%+ w%z 0+4tx(4z)—2t2y(0)+4xz(4x) =16txz+16x°z

or: % = (4x +16t°X)i + (—4ty + 4t*y)j+ (16txz + 16x°2)k

w;& = 4ty + 4tx(0) — 2ty(=2t) + 4x2(0) = —4ty + 4t’y
Z

at (x,y, z) = (-1, +1, 0), we obtain % =—4(1+ 4t%)i— 4t(1- ¢ )j+0k Ans. (¢c)

(d) At (-1, +1, 0) there are many unit vectors normal to dV/dt. One obvious one is kK.  Ans.

4.2 Flow through the converging nozzle
in Fig. P4.2 can be approximated by the
one-dimensional velocity distribution

qu0(1+2—xj v=0 w=0
L

u=3V,
(a) Find a general expression for the fluid
acceleration in the nozzle. (b) For the
specific case V, = 10 ft/s and L = 6 in,
compute the acceleration, in g’s, at the
entrance and at the exit.
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Solution: Here we have only the single ‘one-dimensional’ convective acceleration:
2
ﬂ: uﬂz v, (1+2—xj 2%, 2V (1+§) Ans. (a)
dt dx L L L L
St du 20100 (1+ 2x
s odr 6/12\ 6/12

For L=6" and V, =10 ) =400(1+4x), with xin feet

At x = 0, du/dt = 400 ft/s” (12 g’s); at x =L = 0.5 ft, du/dt = 1200 ft/s* (37 g’s). Ans. (b)

4.3 A two-dimensional velocity field is given by
V= (x2 —y2 +x)i — 2xy +y)j

in arbitrary units. At (x, y) = (1, 2), compute (a) the accelerations a, and a,, (b) the
velocity component in the direction € = 40°, (c) the direction of maximum velocity, and
(d) the direction of maximum acceleration.

Solution: (a) Do each component of acceleration:

du ou

I—ug Vg—(x -y +x)(2x+1)+( 2xy —y)(—2y)=a,
dv.  ov
E—ug+vg (X —y +x)(2y)+(2xy —y)(2x—-1)= a,

At(x,y)=(1,2), we obtain a,=18i and a,=26j Ans. (a)

(b) At (x, y) =(1, 2), V=-2i - 6j. A unit vector along a 40° line would be n = cos40°i +
sin40°j. Then the velocity component along a 40° line is

Voo = Viyge = (=21—-6)-(cos40°i +sin40°j) = 5.39 units  Ans. (b)

(c) The maximum acceleration iS ap,,x = [182 + 262] 2 = 31.6 units at £55.3°  Ans. (c,d)

4.4 Suppose that the temperature field T = 4x* - 3y3, in arbitrary units, is associated
with the velocity field of Prob. 4.3. Compute the rate of change d7/dt at (x,y) = (2, 1).

Solution: For steady, two-dimensional flow, the rate of change of temperature is

dar ar ar
E_ug-yvg_(x —y +x0)8x)+ (2xy—y)(— 9}’)

At (x,y)=(2,1), dT/dt=(5)(16) —5(-9) =125 units Ans.
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4.5 The velocity field near a stagnation point (see Example 1.10) may be written in
the form

U -U
u=—2or V= T"y U, and L are constants

(a) Show that the acceleration vector is purely radial. (b) For the particular case L= 1.5 m,
if the acceleration at (x, y) = (1 m, 1 m) is 25 m/sz, what is the value of U,?

Solution: (a) For two-dimensional steady flow, the acceleration components are

du du &u x\( U, O
@ TV (U°IJ(L]+( ]“”—

dv. ov ov [ xj ( y)( UO) O
v fu, X o+ —u, L[ -
a0 Vo Vo T\ ) O U ) =Y

Therefore the resultant a = (Ui/L2 )(xi+yj) = (Uﬁ/L2 )r (purely radial) Ans. (a)

(b) For the given resultant acceleration of 25 m/s” at (X, y)=(1 m, 1 m), we obtain

U; U,
al=25 D= Zopj=——o _>'m, solvefor U,=6.3 = Ans. (b)
$ (1.5m) s

4.6 Assume that flow in the converging nozzle of Fig. P4.2 has the form V =
V(1 + 2x/L)i. Compute (a) the fluid acceleration at x = L; and (b) the time required for a
fluid particle to travel from x =0 to x = L.

Solution: From Prob. 4.2, the general acceleration was computed to be

at x=L Ans. (a)

du _ o _2V, (ng OA
a ox L L

(b) The trajectory of a fluid particle is computed from the fact that u = dx/dt:

L
u:@ Vo[l 2xj, or: Id——IV dt,
dt L 1+2x/L

or: Aty , = %ln@) Ans. (b)

o
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4.7 Consider a sphere of radius R immer- U
sed in a uniform stream U,, as shown in
Fig. P4.7. According to the theory of Chap. 8,

-r.;.,

the fluid velocity along streamline AB is x=-4R
given by
R Fig. P4.7
VZUi:U0[1+—3]i
X

Find (a) the position of maximum fluid acceleration along AB and (b) the time required
for a fluid particle to travel from A to B.

Solution: (a) Along this streamline, the fluid acceleration is one-dimensional:

% = u% =U,(1+R*/x*)(-3U R*/x*)=-3U R*(x* +R’x”7) for x <-R

The maximum occurs where d(a,)/dx =0, or at X = —(7R3/4)1/3 =-1.205R Ans. (a)
(b) The time required to move along this path from A to B is computed from

dx i
u=--= U+ R%/x%), or

OI—."'

J. 1+ R /X’

-R

2

o Ues B SRR (2R Rj
6 V3 R\3

x?—Rx+R?
It takes an infinite time to actually reach the stagnation point, where the velocity is
zero. Ans. (b)

4.8 When a valve is opened, fluid flows
in the expansion duct of Fig. P4.8 accord-
ing to the approximation

\

V—lU(l——)tanhﬂ BT
2L L

/

Find (a) the fluid acceleration at (x, t) =
(L, L/U) and (b) the time for which the fluid
acceleration at x = L is zero. Why does the
fluid acceleration become negative after
condition (b)?

>
n
o

Fig. P4.8
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Solution: This is a one-dimensional unsteady flow. The acceleration is

ax:@+u@_U(l—i)Es hz(Ut) U[l—ij(thanh(Utj
ot ox 2L/ L L 2L/\2L L

2
_U (1——) sech? (Ej—lt h(Utj
L 2L L 2 L
At (x,t)= (L, L/U), a, = (U /L)(1/2)[sech (1) — 0.5tanh(1)] = 0.0196U%/L  Ans. (a)
The acceleration becomes zero when

1 1 2
sech’ [Ej =—tanh (Ej , Or —s1nh[ Utj 2,
L 2 L 2 L

or: %~ 1.048 Ans. (b)

The acceleration starts off positive, then goes through zero and turns negative as the
negative convective acceleration overtakes the decaying positive local acceleration.

4.9 An idealized incompressible flow has the proposed three-dimensional velocity
distribution

V =4xy’i + f0)j - 2k

Find the appropriate form of the function f(y) which satisfies the continuity relation.

Solution: Simply substitute the given velocity components into the incompressible
continuity equation:

du v dw Jd N2 df

= Ay )+ —(—y?) =4y + =y =0
ox dy Jdz 8x( ) dy é’z( =4y dy Y
or: Z—f:—:%yz_ Integrate: f(y):I(—3y2)dy:—y3+constant Ans.
Y

4.10 After discarding any constants of integration, determine the appropriate value of
the unknown velocities u or v which satisfy the equation of two-dimensional incompressible
continuity for:

@u=xy; ®)v=xy ©@u=x-xy; @v=y-xy
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Solution: Substitute the given component into continuity and solve for the unknown
component:

v

(a)£+8—y=0=§(x2y)+&—y,&—y=—2xy, or: v=—xy’+f(x) Ans. (a)
(b)%+g—;:0=%+%(x2y);%=—x2, or: u=—%3+f(y) Ans. (b)
(c)%+g—;=0=%(x2—xy)+g—;;g—;z—zx+y, or: v=—2xy+§+f(x) Ans. ()
(d)%+%:0=%+%@2—xy);%=—2y+x or: u=—2xy+x—22+f(y) Ans. (d)

4.11 Derive Eq. (4.12b) for cylindrical
coordinates by considering the flux of an
incompressible fluid in and out of the
elemental control volume in Fig. 4.2. Vo

Typical
infinitesimal
element

/
Solution: For the differential CV shown, A /

%dvoHZdn'lout ~Ydm,, =0

Fig. 4.2

%(r +%j d@drdz +pvrrdzd0+§(pvr)dr(r +dr)dzd@+ pv,dzdr

+%(pv9)d9dz dr+pv, (r+%) d9dr+0%(pvz)(r+%) d@dr
—pv,rdzd@—pv,dzdr—pv, [r+%j d@dr=0

Cancel (d@drdz) and higher-order (4th-order) differentials such as (drd@dzdr) and,
finally, divide by r to obtain the final result:

dp 19 10 d
0_)—€+;E(prvr)+;%(pVo)+Z(pvz)=0 Ans.
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4.12 Spherical polar coordinates (r, 6, @) 2
are defined in Fig. P4.12. The cartesian
transformations are

r = constant

x=rsinf@cos¢
y=rsin@sing
z=rcosé

Do not show that the cartesian incompres-
sible continuity relation (4.12a) can be
transformed to the spherical polar form

Fig. P4.12

1 ¢
r—zg(l‘zl)r)+

J 19
7 (yysin®)+—— L (1,)=0
rsing 90" Gne 96

What is the most general form of v, when the flow is purely radial, that is, vy and vy
are zero?

Solution: Note to instructors: Do not assign the derivation part of this problem, it
takes years to achieve, the writer can’t do it successfully. The problem is only meant
to acquaint students with spherical coordinates. The second part is OK:

1 1
If v, = v, = 0, then r—zg(rzvr) =0, so,in general, v, = r—zfcn(G, ) Ans.

4.13 A two dimensional velocity field is given by

Ky D= Kx
24y 24y

u=—-

where K is constant. Does this field satisfy incompressible continuity? Transform these
velocities to polar components v, and vg. What might the flow represent?

Solution: Yes, continuity, du/dx + Jdv/dy = 0, is satisfied. If you transform to polar
coordinates, X = rcos@and y = rsiné, you obtain

v.=0 v,= - which represents a potential vortex (see Section 4.10 of text). Ans.
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4.14 For incompressible polar-coordinate flow, what is the most general form of a
purely circulatory motion, Vg= Vg(r, 6, f) and v, =0, which satisfies continuity?

Solution: If v, = 0, the plane polar coordinate continuity equation reduces to:
1 dv,

=0, or: v,=fen(r)only Ans.
r d6 0 (r) only

4.15 What is the most general form of a purely radial polar-coordinate incompressible-
flow pattern, v, = v/(r, 6, t) and vg= 0, which satisfies continuity?

Solution: If vg= 0, the plane polar coordinate continuity equation reduces to:

li(rvr) =0, or: v.= 1fcn(49) only Ans.
ror r

4.16 After discarding any constants of integration, determine the appropriate value of
the unknown velocities w or v which satisfy the equation of three-dimensional incompressible
continuity for:

(a) u= xzyz, V= —yzx; (b) u= X2 + 322)6, w= —Z3 + y2

Solution: Substitute into incompressible continuity and solve for the unknown component:

(a) —+—+—:0:%()62)72)4-%(—)/2)6)4‘%; %z—nyz+2yx,
or: w=-—xyz>+2xyz Ans. (a)

0—)14 &V &W 0—) 2 2 &V 0—) 3 2 0—)V 2 2
()é’x+3y+8z é’x(x " Zx)+8y+3z( ey dy rTIT L

or: v=-2xy Ans.(b)

4.17 A reasonable approximation for the Layer thickness 8(x)
two-dimensional incompressible laminar
boundary layer on the flat surface in
Fig. P4.17 is

( 2y 2) “e

uzng—éJ for y<o

e ——

U = constant

Fig. P4.17
where &= Cx"?, C = const
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(a) Assuming a no-slip condition at the wall, find an expression for the velocity component
v(x, y) for y < 6. (b) Then find the maximum value of v at the station x = 1 m, for the
particular case of airflow, when U =3 m/s and 6= 1.1 cm.

Solution: The two-dimensional incompressible continuity equation yields

&:—&:—U(ﬂd_a+zid—5j, or: —2Ud—5_[[l__jd |x const
0

dy  ox 8 dx & dx dx -\ 5 &
dé y? ) d C 6
s v=2U—| —5—-—=|, where —=—==—Ans.
or. I [252 357 where I 2\/; 3x ns. (a)

(b) We see that v increases monotonically with y, thus v,,,, occurs at'y = J:

.l US _ (3 mis)(0.011 m)
mar = =0 =gy 6(1 m)

Y =0.0055 ™ Ans. (b)
S

This estimate is within 4% of the exact v,,,, computed from boundary layer theory.

4.18 A piston compresses gas in a cylinder

by moving at constant speed V, as in V'= constant
Fig. P4.18. Let the gas density and length at R
t=0be p, and L, respectively. Let the gas
velocity vary linearly from u = V at the N ‘
piston face to u =0 at x = L. If the gas density x=0 x= L)

varies only with time, find an expression Fig. P4.18

for p(1).

Solution: The one-dimensional unsteady continuity equation reduces to

ap du [ xj
+— ——+ —, where u=V|1-—|, L=L -Vi, = p(t) onl
5 oW Py L p = p(t) only
V t
Enter — =-— and separate variables: '[ I
X Po 0

L
The solution is In(p/p,) =—In(1-Vt/L ), or: p=p, [L "th Ans.

4.19 An incompressible flow field has the cylinder components vg = Cr, v, = K(R2 - rz),
v, = 0, where C and K are constants and » < R, z < L. Does this flow satisfy continuity?
What might it represent physically?
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Solution: We check the incompressible continuity relation in cylindrical coordinates:

19 iy yp i e,

———(rv.)+ =0=0+0+0 satisfied identically Ans.
ro"r( ) r d0 oz yoam

This flow also satisfies (cylindrical) momentum and could represent laminar flow inside a
tube of radius R whose outer wall (r = R) is rotating at uniform angular velocity.

4.20 A two-dimensional incompressible velocity field has u = K(1 — e ), for x < L and
0 <y < co. What is the most general form of v(x, y) for which continuity is satisfied and
v =1, at y = 0? What are the proper dimensions for constants K and a?

Solution: We can find the appropriate velocity v from two-dimensional continuity:

%:_%:—%[K(l—e_ay)]zo, or: v=fcn(x) only

Since v=v, aty=0 forall x, then it must be that v =v, =const Ans.

The dimensions of K are {K} = {L./T} and the dimensions of a are {L_l}. Ans.

4.21 Air flows under steady, approximately
one-dimensional conditions through the

conical nozzle in Fig. P4.21. If the speed of .
sound is approximately 340 m/s, what is the Vo

VZ
minimum nozzle-diameter ratio D,/D, for .
which we can safely neglect compressibility [
effects if V,=(a) 10 m/s and (b) 30 m/s? 1 D.
Dq
Solution: If we apply one-dimensional Fig. P4.21

continuity to this duct,

povo %Dg = peVe %Dez:’ or Vo = Ve(De/Do )2 if Po = Pe

To avoid compressibility corrections, we require (Eq. 4.18) that Ma < 0.3 or, in this case,

the highest velocity (at the exit) should be V. < 0.3(340) = 102 m/s. Then we compute
(D,/D,),iy = (V,/VH =(V,/102)"2 =031 if V,=10m/s Ans. (a)

=0.54 if V,=30m/s Ans. (b)

min
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4.22 A flow field in the x-y plane is described by u = U, = constant, v = V, = constant.
Convert these velocities into plane polar coordinate velocities, v, and ve.

Solution: Each pair of components must v, \Y
add to give the total velocity, as seeninthe & e
sketch at right.

The geometry of the figure shows that

. ".Vr

Vo
v.=U, cosO+V, sin0;

v, ==U, sin@+V, cosd Ans. Uo
Fig. P4.22

4.23 A tank volume V contains gas at conditions (py, po, Tp). At time ¢ = 0 it is
punctured by a small hole of area A. According to the theory of Chap. 9, the mass flow
out of such a hole is approximately proportional to A and to the tank pressure. If the tank
temperature is assumed constant and the gas is ideal, find an expression for the variation
of density within the tank.

Solution: This problem is a realistic approximation of the “blowdown” of a high-
pressure tank, where the exit mass flow is choked and thus proportional to tank pressure.
For a control volume enclosing the tank and cutting through the exit jet, the mass relation is

%(mtank )+m,; =0, or: %(pv) =-m.,; =—CpA, where C=constant
p(t) t
RT A
Introduce p= P and separate variables: j dp =— CRT, I dt
RT, o P v

The solution is an exponential decay of tank density: p = p, exp(-CRT,At/v). Ans.

4.24 Reconsider Fig. P4.17 in the following general way. It is known that the boundary
layer thickness &x) increases monotonically and that there is no slip at the wall (y = 0).
Further, u(x, y) merges smoothly with the outer stream flow, where u = U = constant
outside the layer. Use these facts to prove that (a) the component ¥(x, y) is positive
everywhere within the layer, (b) v increases parabolically with y very near the wall, and
(¢) vis a maximum at y = .

Solution: (a) First, if J'is continually increasing with x, then u is continually decreasing
with x in the boundary layer, that is, Ju/dx < 0, hence dv/dy = —du/dx > 0 everywhere. It
follows that, if dv/dy >0and v=0aty =0, then v(x,y) >0 forally<d. Ans. (a)
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(b) At the wall, u must be approximately linear with y, if 7, =0:

Ju df df ov Ju (dfj
Near wall: u=yf(x), or —=y—, where —<0. Then —=——=| —
ear w u =y f(x) r o de wher . Y En i y
y 2
Thus, near the wall, v = [ﬁj Iydy = (ﬁj Y Parabolic Ans. (b)
dx dx/ 2

0
(c) Aty = 6, u — U, then Ju/dx = 0 there and thus Jv/dy =0, or v= V... Ans. (c)

4.25 An incompressible flow in polar

coordinates is given b v =0 along these
! 15 81V y b .« two lines
v, = K cos 9[1——2j
,
) b -
Vg =—Ksin 9[1 + —2j
" Ny
. . . . . =

Does this field satisfy continuity? For
consistency, what should the dimensions of
constants K and b be? Sketch the surface

where v, = 0 and interpret. Fig. P4.25

Solution: Substitute into plane polar coordinate continuity:

19 v ys P o219 Kcos@[r—kj 12 —Ksin0(1+£j =0 Satisfied
ror r do ror r r d6 r

The dimensions of K must be velocity, {K} = {L/T}, and » must be area, {b} = {Lz}. The
surfaces where v, = 0 are the y-axis and the circle r = \b, as shown above. The pattern
represents inviscid flow of a uniform stream past a circular cylinder (Chap. 8).

4.26 Curvilinear, or streamline, coordinates
are defined in Fig. P4.26, where n is normal
to the streamline in the plane of the radius of
curvature R. Show that Euler’s frictionless
momentum equation (4.36) in streamline

coordinates becomes ey R X
N IV _ 19p
a Vs oo ts D
2 Fig. P4.26
_ ﬁ_v_:_l@jL . 2)
Jd R p n
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Further show that the integral of Eq. (1) with respect to s is none other than our old friend
Bernoulli’s equation (3.76).

Solution: This a laborious derivation, really, the problem is only meant to acquaint
the student with streamline coordinates. The second part is not too hard, though.
Multiply the streamwise momentum equation by ds and integrate:

%ds+VdV:—i—p+gs ds=—d7p—gsin9ds=—d—5—gdz

o"V V2

2
Integrate from 1 to 2: '[ J‘?p+ g(z, —z,) =0 (Bernoulli) Ans.
1

4.27 A frictionless, incompressible steady-flow field is given by

V =2xi -y’
in arbitrary units. Let the density be p, = constant and neglect gravity. Find an expression
for the pressure gradient in the x direction.

Solution: For this (gravity-free) velocity, the momentum equation is

p[ugng = Vp. or p @)Y+ -y ) 2xi- 2y = -Vp

Solve for Vp=—-p,(2xy’i+2y’j), or: % =-p,2xy’> Auns.
X

4.28 If z is “up,” what are the conditions on constants a and b for which the velocity
field u = ay, v = bx, w = 0 is an exact solution to the continuity and Navier-Stokes
equations for incompressible flow?

Solution: First examine the continuity equation:

gz gvy i}w :%(ay)+%(bx)+%(0):0+0+0 for all a and b

Given g, = g, =0 and w =0, we need only examine x- and y-momentum:

o, ) %[O P o
p( 3X+ 3yj_ &x”‘(gxﬁay) pl(ay)(0)+ (bx)(a)] = N +1(0+0)

Jov  dv ap v 9% ap
—+V— |=——+ Ul —5+ b)+(bx)(0)]=————+u(0+0
,o(uaX V&yJ 3y ﬂ(&xz &yJ pl(ay)(b)+(bx)(0)] Jy 1(0+0)
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Solve for % =—pabx and % =—paby, or: p= —% ab(x* +y?)+ const Ans.

The given velocity field, u = ay and v = bx, is an exact solution independent of a or b. It
1s not, however, an “irrotational” flow.

4.29 Consider a steady, two-dimensional, incompressible flow of a newtonian fluid
with the velocity field u = -2xy, v = y2 — x%, and w = 0. (a) Does this flow satisfy
conservation of mass? (b) Find the pressure field p(x, y) if the pressure at point (x =0, y =0)
is equal to p,.

Solution: Evaluate and check the incompressible continuity equation:

du v ow
—+—+—=0=-2y+2y+0=0 Yes! Ans.
8x+é’y+ > y+2y+ es ns. (a)

(b) Find the pressure gradients from the Navier-Stokes x- and y-relations:

p[ o Ju é’uj__é’p (Fu Fu _ Fu)

Ma'i‘\/g'i'wa—z = gﬁ'ﬂk&xz + 0_)y2 + 0_)Z2J , Or:
2 2 dp dp 2 3
Pl2xy(2y)+(y" —x")(2x)]=——+u(0+0+0), or: —==2p(xy"+x")

ox ox
and, similarly for the y-momentum relation,
(u&+v&+w&j = _@4_#(52‘; + I + v) or:
Pl oy ™ o o Hlar > 2)
7 0,

P22+ (% =) (2y)] = —5p+u(—2+ 2+0), or: g—’y’ =-2p(*y+5°)

The two gradients Jp/dx and dp/dy may be integrated to find p(x, y):

22 4

pP= I%dx|y=&)nst: _zp[x > +%J + f(y), then differentiate.
L apn+ L= apiiyer), whence L=apy, or f=-Lytsc
dy dy dy >

Thus: p= —5(2)62)72 +xt+yhH+C= p, at(x,y)=(0,0), or: C=p,
Finally, the pressure field for this flow is given by

P=P,— % p2x*y? +x* +y?) Ans. (b)
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4.30 Show that the two-dimensional flow field of Example 1.10 is an exact solution to
the incompressible Navier-Stokes equation. Neglecting gravity, compute the pressure
field p(x, y) and relate it to the absolute velocity Vi=u® Ve Interpret the result.

Solution: In Example 1.10, the velocities were u = Kx, v=-Ky, w = 0, K = constant.
This flow satisfies continuity identically. Let us try it in the two momentum equations:

p[u—+ V—] = p[(Kx)K+0] = _ +uViu= _p +0, or: % = —pK*x
v dv ap ) ap ap )
—+v— [=p[0+(Ky)(-K)]=——+uV'v=—"-4+0, orr —=-pK
p(u§x+vé’yj pl0+(—Ky)(=K)] &y+,u v é’y+ or Jy pK7y

Integrate the two pressure gradients to obtain
p= —g[(KX)Z + (Ky)z] +const, or: p+ %p(u2 +v2)=const Ans.

The given velocity is an exact solution and the pressure satisfies Bernoulli’s equation.

431 According to potential t