


Breast Cancer Chemosensitivity



ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY

Editorial Board:
NATHAN BACK, State University of New York at Buffalo
IRUN R. COHEN, The Weizmann Institute of Science
ABEL LAJTHA, N.S. Kline Institute for Psychiatric Research
JOHN D. LAMBRIS, University of Pennsylvania
RODOLFO PAOLETTI, University of Milan

Recent Volumes in this Series

Volume 600
SEMAPHORINS: RECEPTOR AND INTRACELLULAR SIGNALING MECHANISMS

Edited by R. Jeroen Pasterkamp

Volume 601
IMMUNE MEDIATED DISEASES: FROM THEORY TO THERAPY

Edited by Michael R. Shurin

Volume 602
OSTEOIMMUNOLOGY: INTERACTIONS OF THE IMMUNE AND SKELETALSYSTEMS

Edited by Yongwon Choi

Volume 603
THE GENUS YERSINIA: FROM GENOMICS TO FUNCTION

Edited by Robert D. Perry and Jacqueline D. Fetherson

Volume 604
ADVANCES IN MOLECULAR ONCOLOGY

Edited by Fabrizio d’Adda di Gagagna, Susanna Chiocca, Fraser McBlane
and Ugo Cavallaro

Volume 605
INTEGRATION IN RESPIRATORY CONTROL: FROM GENES TO SYSTEMS

Edited by Marc Poulin and Richard Wilson

Volume 606
BIOACTIVE COMPONENTS OF MILK

Edited by Zsuzsanna B sze

Volume 607
EUKARYOTIC MEMBRANES AND CYTOSKELETON: ORIGINS AND EVOLUTION

Edited by Gáspár Jékely

Volume 608
BREAST CANCER CHEMOSENSITIVITY

Edited by Dihua Yu and Mien-Chie Hung

A Continuation Order Plan is available for this series. A continuation order will bring delivery of each
new volume immediately upon publication. Volumes are billed only upon actual shipment. For further
information please contact the publisher.



Breast Cancer Chemosensitivity
Edited by
Dihua Yu
Department of Surgical Oncology, The University of Texas M.D. Anderson

Cancer Center, Houston, Texas, U.S.A.
Mien-Chie Hung
Department of Molecular and Cellular Oncology, The University of Texas M.D.

Anderson Cancer Center, Houston, Texas, U.S.A.

Springer Science+Business Media, LLC
Landes Bioscience



Breast cancer chemosensitivity / edited by Dihua Yu, Mien-Chie Hung.
       p. ; cm. --  (Advances in experimental medicine and biology ; v. 608)
  Includes bibliographical references and index.
  ISBN 978-0-387-74037-9
 1.  Breast--Cancer--Chemotherapy. 2.  Drug resistance in cancer cells.  I. Yu,
Dihua. II. Hung, Mien-chie. III. Series.
  [DNLM: 1.  Breast Neoplasms--drug therapy. 2.  Antineoplastic Agents--pharma-
cology. 3.  Drug Resistance, Neoplasm--physiology.  W1 AD559 v.608 2007 / WP
870 B82325 2007]
  RC280.B8B6658 2007
  616.99'449061--dc22
                                                            2007030520

Springer Science+Business Media, LLC
Landes Bioscience

Copyright '2007 Landes Bioscience and Springer Science+Business Media, LLC

All rights reserved.
No part of this book may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopy, recording, or any information storage and retrieval system, without
permission in writing from the publisher, with the exception of any material supplied specifically for
the purpose of being entered and executed on a computer system; for exclusive use by the Purchaser of
the work.

Printed in the U.S.A.

Springer Science+Business Media, LLC, 233 Spring Street, New York, New York 10013, U.S.A.
http://www.springer.com

Please address all inquiries to the Publishers:
Landes Bioscience, 1002 West Avenue, 2nd Floor, Austin, Texas 78701, U.S.A.
Phone: 512/ 637 6050; FAX: 512/ 637 6079
http://www.landesbioscience.com

Breast Cancer Chemosensitivity edited by Dihua Yu and Mien-Chie Hung, Landes Bioscience /
Springer Science+Business Media, LLC dual imprint / Springer series: Advances in Experimental
Medicine and Biology

ISBN: 978-0-387-74037-9

While the authors, editors and publisher believe that drug selection and dosage and the specifications
and usage of equipment and devices, as set forth in this book, are in accord with current recommend-
ations and practice at the time of publication, they make no warranty, expressed or implied, with
respect to material described in this book. In view of the ongoing research, equipment development,
changes in governmental regulations and the rapid accumulation of information relating to the biomedical
sciences, the reader is urged to carefully review and evaluate the information provided herein.

Library of Congress Cataloging-in-Publication Data



v

About the Editor...

DIHUA YU, M.D., Ph.D. is the Nylene Eckles Distinguished Professor in Breast
Cancer Research at the The University of Texas, M.D. Anderson Cancer Center.
She is the Director of the Cancer Biology Program, The University of Texas Gradu-
ate School of Biomedical Sciences in Houston.  Dr. Yu�s research focuses on mo-
lecular mechanisms of breast cancer initiation, progression, metastasis, and thera-
peutic resistance. Her research interest covers broad areas including receptor tyrosine
kinases and downstream signal transduction, cell cycle deregulation, apoptosis, cell
polarity, angiogenesis, and cancer metastasis.  She uses 2-Dimensional and 3-
Dimensional cell culture models, SCID and nude mouse models, transgenic and
knockout mouse models, as well as human tumor samples as research models. She
has over 100 publications, has trained many Ph.D. students in her laboratory, and
has received several awards on research and education excellence at the The Uni-
versity of Texas, M.D. Anderson Cancer Center.  She serves on several editorial
boards, including Cancer Research.



vi

About the Editor...

DR. MIEN-CHIE HUNG is Professor and Chair for the Department of Mo-
lecular and Cellular Oncology at The University of Texas M.D. Anderson Cancer
Center, Houston, Texas. He received his Ph.D. from Brandeis University in Massa-
chusetts.  Currently, he also serves as the Director of the Breast Cancer Basic Re-
search Program and is the Ruth Legett Jones Distinguished Chair. Dr. Hung�s labo-
ratory has focused on signaling transduction pathways of tyrosine kinase growth
factor receptors such as EGFR and HER-2/neu; molecular mechanisms of oncogenes,
including transformation and tumorigenesis; and molecular mechanisms of tumor
suppressor gene-mediated anti-tumor activities. His group made a critical break-
through in showing that the transmembrane tyrosine kinase receptor EGFR can bind
to a specific DNA sequence in the nucleus and that it functions as a transcription
factor that can activate genes required for cell proliferation.  The other main re-
search in Dr. Hung�s laboratory is in the area of cancer gene therapy that includes
development of preclinical gene therapy animal models, including breast, ovarian
and pancreatic cancers; identification of therapeutic genes suitable for cancer gene
therapy; and development of gene delivery systems for cancer gene therapy. In ad-
dition to numerous publications and research endeavors, Dr. Hung became an Aca-
demician of the Academia Sinica in Taiwan in July 2002.  Dr. Hung serves as a
founding Editorial Member on Cancer Cell as well as an Associate Editor on Cancer
Research, Clinical Cancer Research, Molecular Cancer Research and Molecular
Carcinogenesis.



vii

PREFACE

Breast cancer is the most common cancer and the second leading cause of can-
cer death in American women. Despite advances in early detection and the improved
understanding of the molecular basis of breast cancer biology, about 30% of pa-
tients with early-stage breast cancer have recurrent disease and need effective sys-
temic treatment. Cytotoxic chemotherapies, hormonal therapies, and immunothera-
peutic agents are used in the adjuvant, neoadjuvant, and metastatic setting.  Systemic
agents are generally active at the beginning of therapy in the majority of breast
cancers. However, progression occurs after a variable period of time when resis-
tance to therapy develops. In this book, a group of world leading experts review
critical aspects of resistance to systemic therapy in breast cancer patients.  The book
begins with a clinical overview of the problem. The following chapters focus on the
latest findings of molecular mechanisms of drug resistance. These include in-depth
discussions on multidrug resistance by P-glycoprotein and the multidrug resistance
protein family, resistance to therapeutic agent-induced apoptosis, cell cycle deregu-
lation, deregulation of DNA repair, loss of tumor suppressor genes, integrin-medi-
ated adhesion, insulin-like growth factors, epidermal growth factor, and ErbB2 in
modulating breast cancer response to systemic therapy, especially certain chemo-
therapeutic agents.  Mechanisms of resistance to hormonal therapy are also dis-
cussed.  Finally, an example of using novel approaches for chemosensitization of
breast cancer cells is described that gives readers an idea about the future direction
in breast cancer treatment. This book is not an encyclopedia of systemic therapy
resistance, but a handy reference to some of the most important aspects of systemic
therapy resistance which allows those who are interested in breast cancer therapy to
get a jump-start on critical issues in breast cancer therapeutic resistance.

Dihua Yu and Mien-Chie Hung
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CHAPTER 1

Overview of Resistance to Systemic Therapy
in Patients with Breast Cancer
Ana Maria Gonzalez-Angulo, Flavia Morales-Vasquez
and Gabriel N. Hortobagyi*

Abstract

Breast cancer is the most common cancer and the second leading cause of cancer death in
American women. It was the second most common cancer in the world in 2002, with
more than 1 million new cases. Despite advances in early detection and the understand-

ing of the molecular bases of breast cancer biology, about 30% of patients with early-stage
breast cancer have recurrent disease. To offer more effective and less toxic treatment, selecting
therapies requires considering the patient and the clinical and molecular characteristics of the
tumor. Systemic treatment of breast cancer includes cytotoxic, hormonal, and immunothera-
peutic agents. These medications are used in the adjuvant, neoadjuvant, and metastatic set-
tings. In general, systemic agents are active at the beginning of therapy in 90% of primary
breast cancers and 50% of metastases. However, after a variable period of time, progression
occurs. At that point, resistance to therapy is not only common but expected. Herein we review
general mechanisms of drug resistance, including multidrug resistance by P-glycoprotein and
the multidrug resistance protein family in association with specific agents and their metabo-
lism, emergence of refractory tumors associated with multiple resistance mechanisms, and re-
sistance factors unique to host-tumor-drug interactions. Important anticancer agents specific
to breast cancer are described.

Breast cancer is the most common type of cancer and the second leading cause of cancer
death in American women. In 2002, 209,995 new cases of breast cancer were registered, and
42,913 patients died of it.1 In 5 years, the annual prevalence of breast cancer will reach 968,731
cases in the United States.2 World wide, the problem is just as significant, as breast cancer is the
most frequent cancer after nonmelanoma skin cancer, with more than 1 million new cases in
2002 and an expected annual prevalence of more than 4.4 million in 5 years.1

Breast cancer treatment currently requires the joint efforts of a multidisciplinary team. The
alternatives for treatment are constantly expanding. With the use of new effective chemo-
therapy, hormone therapy, and biological agents and with information regarding more effec-
tive ways to integrate systemic therapy, surgery, and radiation therapy, elaborating an appropri-
ate treatment plan is becoming more complex. Developing such a plan should be based on
knowledge of the benefits and potential acute and late toxic effects of each of the therapy
regimens.

Despite advances in early detection and understanding of the molecular bases of breast
cancer biology, approximately 30% of all patients with early-stage breast cancer have recurrent

*Corresponding Author: Gabriel N. Hortobagyi—Department of Breast Medical Oncology,
Unit 424, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd.,
Houston, Texas 77030, U.S.A. Email: ghortoba@mdanderson.org

Breast Cancer Chemosensitivity, edited by Dihua Yu and Mien-Chie Hung.
©2007 Landes Bioscience and Springer Science+Business Media.
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disease, which is metastatic in most cases.3 The rates of local and systemic recurrence vary
within different series, but in general, distant recurrences are dominant, strengthening the
hypothesis that breast cancer is a systemic disease from presentation. On the other hand, local
recurrence may signal a posterior systemic relapse in a considerable number of patients within
2 to 5 years after completion of treatment.4

To offer better treatment with increased efficacy and low toxicity, selecting therapies based
on the patient and the clinical and molecular characteristics of the tumor is necessary. Consid-
eration of these factors should be incorporated in clinical practice after appropriate validation
studies are performed to avoid confounding results, making them true prognostic and predic-
tive factors.5 A prognostic factor is a measurable clinical or biological characteristic associated
with a disease-free or overall survival period in the absence of adjuvant therapy, whereas a
predictive factor is any measurable characteristic associated with a response or lack of a re-
sponse to a specific treatment.6 The main prognostic factors associated with breast cancer are
the number of lymph nodes involved, tumor size, histological grade, and hormone receptor
status, the first two of which are the basis for the AJCC staging system. The sixth edition of the
American Joint Committee on Cancer staging system allows better prediction of prognosis by
stage.7 However, after determining the stage, histological grade, and hormone receptor status,
the tumor can behave in an unexpected manner, and the prognosis can vary. Other prognostic
and predictive factors have been studied in an effort to explain this phenomenon, some of
which are more relevant than others: HER-2/neu gene amplification and protein expression,8,9

expression of other members of the epithelial growth factor receptor family,10,11 S phase frac-
tion, DNA ploidy,12 p53 gene mutations,13 cyclin E,14 p27 dysregulation,15 the presence of
tumor cells in the circulation16 or bone marrow,17 and perineural and lymphovascular space
invasion.18

Systemic treatment of breast cancer includes the use of cytotoxic, hormonal, and immuno-
therapeutic agents. All of these agents are used in the adjuvant, neoadjuvant, and metastatic
setting. Adjuvant systemic therapy is used in patients after they undergo primary surgical resec-
tion of their breast tumor and axillary nodes and who have a significant risk of systemic recur-
rence. Multiple studies have demonstrated that adjuvant therapy for early-stage breast cancer
produces a 23% or greater improvement in disease-free survival and a 15% or greater increase
in overall survival rates.19 Recommendations for the use of adjuvant therapy are based on the
individual patient’s risk and the balance between absolute benefit and toxicity.
Anthracycline-based regimens are preferred, and the addition of taxanes increases the survival
rate in patients with lymph node-positive disease.20 Adjuvant hormone therapy accounts for
almost two thirds of the benefit of adjuvant therapy overall in patients with
hormone-receptor-positive breast cancer.21 Tamoxifen is considered the standard of care in
premenopausal patients.22 In comparison, the aromatase inhibitor anastrozole has been proven
to be superior to tamoxifen in postmenopausal patients with early-stage breast cancer.23 The
adjuvant use of monoclonal antibodies and targeted therapies other than hormone therapy is
being studied. Interestingly, some patients have an early recurrence even though they have a
tumor with good prognostic features and at a favorable stage. These recurrences have been
explained by the existence of certain cellular characteristics at the molecular level that make the
tumor cells resistant to therapy. Selection of resistant cell clones of micrometastatic disease has
also been proposed as an explanation for these events.24,25

Neoadjuvant systemic therapy, which is the standard of care for patients with locally ad-
vanced and inflammatory breast cancer, is becoming more popular. It reduces the tumor vol-
ume, thus increasing the possibility of breast conservation, and at the same time allows identi-
fication of in vivo tumor sensitivity to different agents.26 The pathological response to
neoadjuvant systemic therapy in the breast and lymph nodes correlates with patient survival.27,28

Use of this treatment modality produces survival rates identical to those obtained with the
standard adjuvant approach.29 The rates of pathological complete response (pCR) to neoadjuvant
systemic therapy vary according to the regimen used, ranging from 6% to 15% with
anthracycline-based regimens30,31 to almost 30% with the addition of a noncross-resistant agent
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such as a taxane.32,33 In one study, the addition of neoadjuvant trastuzumab in patients with
HER-2-positive breast tumors increased the pCR rate to 65%.34 Primary hormone therapy has
also been used in the neoadjuvant systemic setting. Although the pCR rates with this therapy
are low, it significantly increases breast conservation.35,36 Currently, neoadjuvant systemic therapy
is an important tool in not only assessing tumor response to an agent but also studying the
mechanisms of action of the agent and its effects at the cellular level. However, no tumor
response is observed in some cases despite the use of appropriate therapy. The tumor continues
growing during treatment in such cases, a phenomenon called primary resistance to therapy.37

The use of palliative systemic therapy for metastatic breast cancer is challenging. Five per-
cent of newly diagnosed cases of breast cancer are metastatic, and 30% of treated patients have
a systemic recurrence.2,3,38 Once metastatic disease develops, the possibility of a cure is very
limited or practically nonexistent. In this heterogeneous group of patients, the 5-year survival
rate is 20%, and the median survival duration varies from 12 to 24 months.39 In this setting,
breast cancer has multiple clinical presentations, and the therapy for it should be chosen ac-
cording to the patient’s tumor characteristics, previous treatment, and performance status with
the goal of improving survival without compromising quality of life. Treatment resistance is
most commonly seen in such patients. They initially may have a response to different agents,
but the responses are not sustained, and, in general, the rates of response to subsequent agents
are lower. Table 1 summarizes metastatic breast cancer response rates to single-agent systemic
therapy.

Resistance to Systemic Therapy
In general, systemic agents are active at the beginning of therapy in 90% of primary breast

cancers and 50% of metastases. This is demonstrated by reduced tumor volume, improved
symptoms, and decreased serological tumor markers. However, after a variable period, progres-
sion occurs. At this point, resistance to therapy is not only common, it is expected. With the
objective of overcoming resistance to single agents, the use of combinations of noncross-resistant
regimens has been adopted.40,41 However, tumors continue to develop resistance to these com-
binations. Attributing treatment failure to a single factor is incorrect because of the multifacto-
rial nature of carcinogenesis. The search for biological explanations for treatment failure at the
molecular level is finally helping to explain this phenomenon and providing appropriate solu-
tions to overcome it.

Resistance to therapy is caused in part by a process called genetic amplification. This pro-
cess allows cancer cells to increase their immortality and invasion properties. Each treatment
regimen with a single systemic agent selects a group of cancer cells that is increasingly resistant
to therapy, decreasing the rate of response to further therapies.42 The identification of
P-glycoprotein (P-gp), as a direct transporter of multiple hydrophobic cations and of multidrug

Table 1. Response of metastatic breast cancer to single-agent systemic therapy

Drug Response Rate

Capecitabine 20% to 36%
Docetaxel 18% to 68%
Doxorubicin 25% to 40%
Gemcitabine 14% to 37%
Paclitaxel 17% to 54%
Vinorelbine 25% to 47%
Tamoxifen 21% to 41%
Aromatase inhibitors 10% to 20%
Trastuzumab 12% to 34%
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resistance (MDR) protein 1 (MRP1) as a transporter of hydrophilic anionic and
glutathione-conjugated drugs advanced the study of resistance to cancer therapy. Since then,
multiple mechanisms of both in vitro and in vivo resistance have been identified. These mecha-
nisms range from those with anatomic characteristics and pharmacological properties to those
with host-drug-tumor interaction. Table 2 summarizes the different mechanisms of resistance
to systemic therapy described at the molecular level and those demonstrated in vivo.

General Mechanisms of Drug Resistance
Experimental selection of drug resistance by repeated exposure to single antineoplastic agents

will generally result in cross-resistance to some agents of the same class. This phenomenon is
explained by shared drug transport carriers, drug-metabolizing pathways, and intracellular cy-
totoxic targets of these structurally and biochemically similar compounds. Generally, resistant
cells retain sensitivity to drugs of different classes with alternate mechanisms of cytotoxic ac-
tion. Thus, cells selected for resistance to alkylating agents or antifolates will usually remain
sensitive to unrelated drugs, such as anthracyclines. Exceptions include cases with emergence
of cross-resistance to multiple, apparently structurally and functionally unrelated drugs that
the patient or cancer cells were never exposed to during the initial treatment.43 Despite appar-
ent differences within the families of drugs associated with MDR phenotypes, when the mecha-
nisms underlying these phenotypes are identified, the involved antineoplastic agents fre-
quently share common metabolic pathways, efflux transport systems, or sites of cytotoxic
action (Table 3).

Table 2. General mechanisms of resistance to systemic therapy

Cellular and Biochemical Mechanisms
Decreased drug accumulation

Decreased drug influx
Increased drug efflux
Altered intracellular drug trafficking

Increased inactivation of drug or toxic intermediate
Increased repair of or tolerance to drug-induced damage to

DNA
Protein
Membranes

Decreased drug activation
Altered drug targets (quantitatively or qualitatively)
Altered co-factor or metabolite levels
Altered downstream effectors of cytotoxicity
Altered signaling pathway and/or apoptotic responses to drug insult

Altered gene expression
DNA mutation, amplification, or deletion
Altered transcription, posttranscription processing, or translation
Altered stability of macromolecules

In Vivo Mechanisms
Pharmacological and anatomic drug barriers (tumor sanctuaries)
Host-drug interactions

Increased drug inactivation by normal tissues
Decreased drug activation by normal tissues
Relatively increased normal tissue drug sensitivity (toxicity)
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MDR

Classic (P-Glycoprotein-Dependent) MDR
An in vitro model of MDR was described by Biedler and Riehm 3 decades ago.44 In their

studies, cultured cells selected for resistance by exposure to actinomycin D developed
cross-resistance to a surprising array of structurally diverse compounds, including vinca alka-
loids, puromycin, daunomycin, and mitomycin C. Induction of this pattern of cross-resistance
has since been observed by numerous investigators. This resulted in initiation of the study of
drug resistance. Generally, exposure of cells to drugs such as anthracyclines, vinca alkaloids,
and epipodophyllotoxins is related to the classic MDR phenotype and can result in
cross-resistance to all other members of the phenotype. The emergence of MDR has been
associated with increased levels of expression of a membrane-bound P-glycoprotein (P-170 or
MDR1 protein).

De novo and acquired cross-resistance to multiple antineoplastic agents may result from
several alternative factors and processes. First, MDR patterns of cross-resistance were found to
be frequently associated with decreased drug accumulation, usually because of increased drug
efflux.45 Classic MDR-associated drug resistance is mediated by P-glycoproteins. More re-
cently, a similar but distinct MDR phenotype was attributed to the energy-dependent drug-efflux
activities of MDR protein (MRP) family members.43 An overlapping but discrete resistant
MDR phenotype is associated with increased expression of the recently isolated putative efflux
breast cancer resistance protein (BCRP).46 MDR has also been described in association with

Table 3. Mechanisms of resistance for specific chemotherapeutic agents

Mechanism of Resistance Drugs Involved Pharmacological Defect

Decreased drug uptake MTX Decreased expression of folate transporter
Arabinosylcytosine

Decreased drug Fludarabine Decreased deoxycytidine kinase
activation Cladribine Decreased folyl- polyglutamyl synthetase
Increased drug targeting MTX Amplified DHFR

5-FU Amplified TS
Etoposide Altered topoisomerase II
Doxorubicin Altered topoisomerase II

Altered drug targeting Etoposide Altered topoisomerase II
Doxorubicin Altered topoisomerase II
MTX Altered DHFR

Increased detoxification Alkylating agents Increased GST
Enhanced DNA repair Alkylating agents Increased nucleotide excision repair

Platinum derivates Increased nucleotide excision repair
Nitrosoureas Increased O6-alkyl-guanine alkyl transferase

Defective recognition Cisplatin Defective mismatch repair
of DNA adducts Doxorubicin Increased MDR expression or MDR gene

amplification
Etoposide Increased MDR expression or MDR gene

amplification
Vinca alkaloids Increased MDR expression or MDR gene

amplification
Paclitaxel Increased MDR expression or MDR gene

amplification
Defective checkpoint Most anticancer drugs p53 mutations
function and apoptosis
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overexpression of the lung resistance protein (LRP). The mechanism of LRP-associated resis-
tance is unclear, and whether LRP alone is sufficient to confer resistance is unknown. Some
have speculated that as a major vault protein, LRP is involved in nucleocytoplasmic transport
and cytoplasmic sequestration of drugs.47 Drug resistance defined by alterations in
topoisomerases represents a third major category of MDR.48,49

MRP Family
Similar phenotypes of multiple resistance to antineoplastic agents that are associated with

the expression of other membrane proteins have been described. In many of these phenotypes,
resistance occurs independently of P-glycoprotein expression.50

A distinct gene, mrp1 (MRP1 or MDR-associated protein 1), was isolated from a
doxorubicin-selected MDR lung cancer cell line. This gene encodes a 190-kDa transmem-
brane protein whose structure is strikingly homologous with that of P-glycoprotein/MDR1
and other members of the ATP-binding cassette transmembrane transporter proteins.51,52 The
importance of MRP1 overexpression in clinical drug resistance is unknown. However, because
MRP1 expression varies widely in tumor cells, MRP1 may be a significant mediator of drug
resistance in human cancer. At least five other human MRP isoforms have been identified.53

Among them, MRP2 (cMOAT) and MRP3 are capable of supporting efflux detoxification of
cancer drugs, including epipodophyllotoxins (MRP2 and MRP3), doxorubicin (MRP2), and
cisplatin (MRP2). Recent results indicated that MRP1 and MRP2 are also able to confer resis-
tance to the polyglutamatable antifolate methotrexate (MTX).54

MDR Associated with Topoisomerase Poisons
Topoisomerases are nuclear enzymes that catalyze the formation of transient single- or

double-stranded DNA breaks, facilitate the passage of DNA strands through these breaks, and
promote rejoining of the DNA strands.55 As a consequence of these activities, topoisomerases
are thought to be critical for DNA replication, transcription, and recombination. The drugs
responsible for these activities are called topoisomerase poisons and include anthracyclines,
epipodophyllotoxins, and actinomycin D. Their effect is thought to depend on the DNA cleavage
activities of topoisomerases. There are two classes of mammalian enzymes: topoisomerase I and
topoisomerase II. Topoisomerase I catalyzes the formation of single-stranded DNA breaks,
whereas topoisomerase II as well as  isoforms catalyzes both single- and double-stranded breaks.

The formation of these stabilized DNA-topoisomerase-drug complexes is thought to ini-
tiate the production of lethal DNA strand breaks. Of the chemotherapeutic drugs that affect
topoisomerase activities, the topoisomerase II poisons have been found to be the most clini-
cally important. Hence, decreased drug accumulation caused by increased expression of
P-glycoprotein or MRP1 is a potential mechanism of resistance to these topoisomerase II poi-
sons. However, a distinct pattern of topoisomerase II-related MDR that differs from the pat-
tern of P-glycoprotein-associated MDR in several important ways has been described. For
example, cells that develop topoisomerase II alterations following exposure to amsacrine may
show cross-resistance to other intercalating topoisomerase II poisons but not to
epipodophyllotoxins. Finally, two mammalian isozymes of topoisomerase II have been found:
a 170-kDa form (topoisomerase I ) and a 180-kDa form (topoisomerase II ).56 These isozymes
differ in their regulation during the cell cycle and their relative sensitivity to topoisomerase II
poisons.57 Hence, both the relative levels of the specific topoisomerase II isozymes and the total
topoisomerase II activity may be significant determinants of the sensitivity of tumor cells to
topoisomerase II drugs.

The molecular bases of drug resistance associated with qualitatively altered topoisomerase
II expression have been described in several reports. However, the relevance of topoisomerase I
for clinical drug resistance is unknown. Alternatively, altered subcellular localization of
topoisomerase II isoforms58 and altered posttranslational phosphorylation have been reported
in association with some etoposide-resistant cell lines.59,60 The cytotoxicity of topoisomerase II
poisons is believed to depend on the formation of DNA strand breaks secondary to stabilization of
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the reversible enzyme-DNA cleavable complex.61 A new family of drugs targeting topoisomerase
II function that includes fostriecin, merbarone, aclarubicin, and bis(2,6-dioxopiperazine) de-
rivatives (e.g., ICRF193, ICRF 187) has emerged. Also, the cytotoxic agent camptothecin has
been shown to enhance topoisomerase I-mediated strand breaks. Previously, host toxicity was
found to prohibit the clinical use of such topoisomerase I poisons. However, the prospect of
less toxic analogues of this drug that maintain a high level of activity against topoisomerase
I-rich human cancer cells has renewed interest in the clinical application of this class of com-
pounds.62 Consequently, the emergence of resistance to these agents may become an increas-
ingly important consideration.

MDR Associated with Altered Expression of Drug-Metabolizing Enzymes
and Drug-Conjugate Export Pumps

The manner in which cells metabolize cancer drugs and other xenobiotics is often described
as three phases of detoxification. Alterations in any of these phases can influence the sensitivity
and resistance to a particular drug or xenobiotic toxin. For example, phase I metabolism is
mediated by cytochrome P450 mixed-function oxidases. These metabolites or the unmodified
drug may then be converted to a less reactive, presumably less toxic form in phase II reactions.
Phase II detoxifications include the formation of drug/xenobiotic conjugations with glutathione,
glucuronic acid, or sulfate, reactions that are catalyzed by multiple isozymes of glutathione
S-transferase (GST), UDP-glucuronosyl transferase, and sulfatase, respectively.63-65 Phase III
detoxification consists of exportation of the parent drug/xenobiotic or its metabolites with the
use of energy-dependent transmembrane efflux pumps, including P-glycoprotein, MRP family
members, and breast cancer resistance protein. Frequently, coordinated downregulation of phase
I drug-activating enzymes and upregulation of specific phase II drug-conjugating enzymes are
observed in cellular and animal models of drug or xenobiotic resistance.66,67 Such a programmed
cellular stress response offers a versatile, generalized protective mechanism against exposure to
a variety of exogenous toxins.

Whether GST levels in tumor cells are sufficient to detoxify antineoplastic drugs to a clini-
cally significant degree is a matter of considerable debate, and the role of GSTs in drug resis-
tance remains uncertain because of inconsistent results from different laboratories.68-70 Thus,
the relative resistance of cells expressing drug-metabolizing enzymes may depend on cellular
levels of drug conjugate transporters, including the glutathione conjugate transporters,71 such
as the MRP family proteins.72 Indeed, recent results using model cell lines have demonstrated
that combined expression of specific isozymes of GST with MRP1 is necessary to achieve full
protection from the toxic effects of the cancer drug chlorambucil41 and the carcinogen
4-nitroquinoline 1-oxide. In these studies, the expression of either GST or MRP1 alone pro-
vided little if any protection from toxic effects, a finding that illustrates the synergistic interac-
tion of phase II and III detoxification processes in the emergence of resistance to some drugs.

Emergence of Refractory Tumors Associated with Multiple Resistance Mechanisms
The backbone of many treatment regimens designed to circumvent the proliferation of

resistant tumor cells is the administration of multiple drugs with different structural properties
and mechanisms of action. This approach supposes that if enough carefully selected drugs are
delivered at optimal doses and intervals, individual clones of cells resistant to one class of drug
will be effectively killed by another drug in the regimen. The rapid appearance of a refractory
tumor despite an initially favorable cytoreductive response suggests that the emergence of tu-
mor cell clones with resistance to multiple drugs is a common clinical occurrence. We have
seen how a single genetic change such as increased P-glycoprotein or altered topoisomerase II
can mediate cross-resistance to several, but not all, useful antineoplastic drugs. Although these
mechanisms provide a molecular explanation for broad-spectrum resistance, it is clear that
many refractory tumor clones must simultaneously develop multiple resistance mechanisms.
These mechanisms may arise from multiple independent genetic changes in single-cell clones
or, as suggested by Muller et al,73 cell-to-cell transfer of genetic information.
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Resistance to Free-Radical-Mediated Drug Cytotoxicity
Several antineoplastic agents form free radical intermediates that are thought to contribute

to drug cytotoxicity. Anthracyclines, such as doxorubicin, are among the most important mem-
bers of this class of compounds. Whereas DNA-intercalating anthracyclines can damage cells
through multiple mechanisms, including inhibition of nucleic acid synthesis, induction of
topoisomerase II-mediated DNA strand breaks, and perturbation of cell membranes, these
quinone-hydroquinone compounds can also generate toxic free radical species that may cause
cell death.74 The semiquinone radical thus generated may either form a covalently binding free
radical derivative or, in the presence of oxygen, be reoxidized to the quinone species in a reac-
tion producing superoxide anion. Decomposition of hydrogen peroxide formed by dismutation
of superoxide anion produces the highly reactive hydroxyl radical, which may directly damage
DNA, lipids, and proteins. Thus, cellular factors that limit hydrogen peroxide production or
repair peroxidative damage to macromolecules could theoretically confer some resistance to
anthracyclines. Several pathways may contribute to protection of tumor cells from
anthracycline-mediated free radical damage. First, superoxide anion formation is limited in
poorly vascularized, relatively hypoxemic tissues, such as in the center of large solid tumors.
Second, increased intracellular levels of catalase and glutathione peroxidase can deplete hydro-
gen peroxide, thus reducing the formation of toxic hydroxyl radicals.75

Resistance to Genotoxic Cancer Treatments Related to Suppression
of Apoptotic Pathways

Chemotherapeutic drugs are cytotoxic because of their interactions with a variety of mo-
lecular targets. Despite these varied primary targets, most, if not all, cancer drugs instigate cell
death, at least partially, via downstream events, especially those that converge upon pathways
mediating programmed cell death or apoptosis. This process is conveniently conceptualized in
three phases. First, initiation of apoptosis (e.g., secondary to chemotherapy-mediated DNA
damage) is characterized by its reversibility. Second, the decision to complete the death pro-
gram is irreversible. The commitment phase may involve mitochondrial changes and the re-
lease of cytochrome-c and apoptosis-inducing factor, which are hallmarks of apoptosis. Third,
the degradation or execution phase includes downstream events, such as DNA fragmentation
and morphological changes. Prior to commitment, apoptosis can be modulated by regulatory
elements, such as p53 and the Bcl-2 family of proteins. Although apoptosis may be either p53
dependent or p53 independent, frequently, the cellular response to DNA damage is regulated
by p53.76 Depending on the particular cell type and damage, p53 may then initiate one of two
possible pathways: apoptosis or cell cycle arrest and repair.

The mitogen-activated protein kinase-signaling cascades are involved in the regulation of
cellular response to exogenous factors, including genotoxic and cytotoxic anticancer agents.77

Additionally, the extracellular signal-regulated kinase pathway is implicated in the proliferative
response to growth factors. In cells treated with potentially cytotoxic stressors, such as radiation
and anticancer drugs, the p38 and stress-activated/c-Jun N-terminal protein kinase (SAPK/
JNK) pathways are implicated in mediating cell cycle arrest and apoptosis. Furthermore, the
Bcl-2 family of proteins comprises several important regulators of apoptosis. Although their
mechanism or mechanisms of action are not completely known, the balance of expressed
antiapoptotic family members (Bcl-2, Bcl-XL, Bcl-w, A1, and Mcl-1) and proapoptotic family
members (Bax, Bak, Bad, Bik, and Bid) can influence the relative sensitivity of cells to toxic
stressors.78 This genomic instability may further lead to mutations that activate additional
resistance mechanisms and confer more aggressive tumor behavior.79 Thus, the expression of
mutant and wild-type p53, Bcl-2 family members, mitogen-activated protein kinase (MAPK)
family members, and other proteins associated with the control of apoptosis may contribute
significantly to the clinical sensitivity of tumor cells. These proteins are the targets of investiga-
tional agents that may become important in future strategies for overcoming clinical drug
resistance.
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Resistance Factors Unique to Tumor Cells in Vivo: Host-Tumor-Drug Interactions
The failure of chemotherapy to eradicate a tumor in vivo despite exquisite sensitivity to the

chemotherapeutic drug or drugs in vitro may be caused by anatomic or pharmacological sanc-
tuaries. For example, brain and testicular barriers probably account for the relatively high fre-
quency of acute lymphoblastic leukemia relapse at these sites.80 In cases with a large solid
tumor, failure of chemotherapy is frequently attributed to decreased drug delivery to a tumor
that has overgrown its vascular supply. Additionally, development of acidosis and hypoxia in
poorly perfused areas of large tumors may interfere with the cytoxicity of some drugs. Finally,
altered prodrug activation by the liver or other normal tissues may profoundly influence the
efficacy of drugs such as cyclophosphamide.

Mechanisms of Resistance for Agents Used to Treat Breast Cancer

Anthracyclines

Mechanism of Action
The mechanisms of action of anthracyclines are pleiotropic effects, including activation of

signal transduction pathways, generation of reactive oxygen intermediates, stimulation of
apoptosis, and inhibition of DNA topoisomerase II catalytic activity.

Metabolism
Anthracyclines are metabolized by reduction of a side-chain carbonyl to alcohol, resulting

in some loss of cytotoxicity, and a one-electron reduction to a semiquinone free radical inter-
mediate by flavoproteins, leading to aerobic production of superoxide anion, hydrogen perox-
ide, and hydroxyl radical.

Pharmacokinetics
The protein-binding rate of doxorubicin ranges from 60% to 70%, whereas its cerebro-spinal

fluid (CSF)/plasma ratio is very low. Doxorubicin circulates predominantly as a parent drug,
and doxorubicinol is its most common metabolite, although doxorubicin 7-deoxyaglycone
and doxorubicinol 7-deoxyaglycone form in a substantial fraction of patients. In addition,
substantial interpatient variation in biotransformation has been observed, and dose-related
changes in clearance do not appear to be greater in men than in women. Daunorubicin me-
tabolizes faster than an equivalent dose of doxorubicin does.

Elimination
Only 50% to 60% of the parent drug is eliminated by known routes. A substantial fraction

of the parent compound is bound to DNA and cardiolipin in tissues. Although changes in
anthracycline pharmacokinetics may be difficult to demonstrate in patients with mild alter-
ations in liver function, anthracycline clearance is definitely decreased in patients with signifi-
cant hyperbilirubinemia or a marked burden of metastatic tumor in the liver.

Mechanism of Resistance
The mechanism of resistance in anthracyclines is increased expression of the P-170 glyco-

protein related to the enhancement of drug efflux. The evidence supporting this role includes
correlation between this protein and resistance, transfer of the cloned MDR1 gene, and rever-
sal of resistance by agents that block P-170. The in vivo cells are different from the in vitro
cells. The nature of resistance that develops after a single prolonged exposure to doxorubicin
was evaluated by using classic fluctuation analysis.81 The researchers found that MDR1 expres-
sion did not occur and that the resistance arose from a spontaneous mutation with an apparent
generation rate of approximately 2 x 10-6 per cell. Also, under certain circumstances, expres-
sion of the MDR1 gene clearly may be transcriptionally modulated by doxorubicin itself as
well as by inhibitors of protein kinase C and calmodulin. In vivo, the resistance is more
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complex, with most tumors and many normal tissues exhibiting increased expression of a gene
copy.82 Other mechanisms of resistance include a 190-kDa protein that is a member of the
ATP-binding cassette transmembrane transporter superfamily. MRP expression alone, in the
absence of alterations in MDR1 or topoisomerase II expression, can also produce anthracycline
resistance.83 Furthermore, altered topoisomerase II activity has been implicated in resistance to
anthracyclines. Overexpression of bcl-2 can significantly diminish the toxicity of doxorubicin,
as can mutations of the p53 gene.84 Potent nuclear DNA repair systems also contribute sub-
stantially to the ability of tumor cells to withstand the cytotoxic effects of doxorubicin. For
example, ADP ribosylation is a well-known posttranslational modification of topoisomerase II
and plays an important role in the use of nicotinamide adenine dinucleotide (oxidized form).
These results suggest that intermediary metabolism affects DNA cleavage and doxorubicin
resistance.85

Overcoming Resistance
As discussed above, resistance to anthracyclines may occur as a consequence of P-glycoprotein

overexpression or altered topoisomerase II activities. However, neither of these mechanisms
will necessarily result in cross-resistance to topoisomerase II in all cases. Additionally, tumor
cells resistant to classic topoisomerase II poisons frequently retain sensitivity to the cytotoxic
effects of the novel class of topoisomerase II catalytic inhibitors (fostriecin, merbarone,
aclarubicin, and bis(2,6-dioxopiperazine)).86,87 This class of topoisomerase-directed drugs of-
fers an alternative for the treatment of topoisomerase-poison-resistant tumors. Finally, struc-
tural analogues of parent topoisomerase II poisons may overcome resistance based on altered
topoisomerase II.88-89 The use of noncross-resistant agents with cytotoxic activity but different
mechanisms of action after administration of anthracycline-based regimens has proven to be
beneficial in patients with breast cancer.90,91 Finally, the time and method of delivering
anthracyclines affects toxicity and results. For example, continuous infusion of doxorubicin
(Adriamycin) increases its therapeutic index (Table 4).92

Taxanes

Mechanism of Action
The mechanisms of action of taxanes are high-affinity binding to microtubules with en-

hanced microtubule formation at high drug concentrations and inhibition of mitosis.

Table 4. Approaches to overcoming or circumventing drug resistance

Prevention
Aggressive multiagent therapy
Appreciation of factors that induce resistance mechanisms
Circumvention: drug screening programs and rational drug design
Circumvention of drug-uptake defects

Dose escalation
Drugs that use alternate transport mechanisms
Agents that reverse increased efflux
Co-factors that augment drug activation or efficacy
Inhibition of drug inactivation
Novel treatment modalities

Immunotherapy
Development of agents that target signaling and apoptotic pathways
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Metabolism
The effects of taxanes on microtubules differ from those of the vinca alkaloids. Unlike

colchicine and the vinca alkaloids, which prevent microtubule assembly, submicromolar con-
centrations of the taxanes decrease the lag time and shift the dynamic equilibrium between
tubulin dimers and microtubule assembly and stabilize microtubules against depolymeriza-
tion.93 The metabolism and elimination of paclitaxel and docetaxel are similar. In humans,
urinary excretion accounts for a small percentage of drug disposition, averaging 2%. Both
hepatic metabolism and biliar excretion are also important. Approximately 80% of the admin-
istered dose is excreted in the feces within 7 days after treatment. Also, the hepatic cytochrome
P450 is responsible for the bulk of drug metabolism, and the cytochrome P450 isoforms CYP3A,
CYP2B, and CYP1A may play a role in biotransformation. The main metabolic pathway for
taxanes consists of oxidation of a tertiary butyl group on the side chain at the C-13 position of
the taxane ring as well cyclization of the side chain.94

Pharmacokinetics
The pharmacokinetics of taxanes consist of saturable elimination and distribution, which

are particularly evident with a short (3-hour) schedule.

Elimination
Taxanes are eliminated predominantly by hepatic hydroxylation of cytochrome P450 en-

zymes and biliary excretion of metabolites. Less than 10% of each dose is eliminated intact in
the urine.

Mechanism of Resistance
Two main mechanisms of taxane resistance have been described in cells exposed to taxanes

at low concentrations for prolonged periods pf time. The first is changes in the expression of
-tubulin isotopes, mainly -III, whereas the second is part of the MDR system. Upregulation

of caveolin-1, a membrane component involved in small molecule transport and intracellular
signaling, has also been found to be related to taxane resistance.95

Overcoming Resistance
The use of a polyoxyl compound (Cremophor) as an MDR expression modulator has been

evaluated. Other modulators of MDR that have been studied include verapamil, cyclosporine
A, and PC 833.96,97 When paclitaxel is given over 3 hours at 135 to 175 mg/m2, plasma
concentrations of Cremophor are able to revert MDR in vitro.98

Antimetabolites

Mechanism of Action
The cytotoxic effects of antimetabolites stem from their ability to interfere with key enzy-

matic steps in nucleic acid metabolism. This group of agents includes three well-studied com-
pounds: the antifolate MTX and the pyrimidine analogues 5-fluorouracil (5-FU) and
arabinosylcytosine. Inhibition of dihydrofolate reductase (DHFR) leads to partial depletion of
reduced folates. Polyglutamates of MTX and dihydrofolate inhibit purine and thymidylate
biosynthesis.

Metabolism
The metabolism of 5-FU is complex. The best characterized mechanism of fluoropyrimidine

cytotoxicity involves the inhibition of thymidylate synthase by 5-fluoro-2'-deoxyuridine mono-
phosphate (FdUMP). Additionally, the incorporation of the metabolite 5-fluorouridine triph-
osphate into RNA has been correlated with cytotoxicity in some systems. Although
5-fluoro-2'-deoxyuridine triphosphate can be incorporated into DNA, the relationship be-
tween this process and the cytocidal activity of fluoropyrimidines remains undetermined.
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Pharmacokinetics
Following uptake by a folate transport system, MTX can bind avidly to and inhibit DHFR,

its primary enzyme target. In the presence of adequate thymidylate synthase activity, inhibition
of DHFR results in depletion of the reduced folate pools essential for thymidylate and de novo
purine synthesis. The cytotoxicity of MTX is significantly influenced by intracellular
polyglutamation. MTX polyglutamates are retained preferentially by cells and bind more effec-
tively to DHFR. Additionally, these polyglutamyl derivatives can inhibit other folate-dependent
enzymes, including thymidylate synthase and 5-aminoimidazole-4-carboxamide ribonucleo-
side (AICAR) trans-formylase,99 enzymes involved in thymidylate and de novo purine synthe-
sis, respectively.

Elimination
Antimetabolites are eliminated primarily in the urine.

Mechanism of Resistance
Resistance to 5-FU may be conferred by alterations in enzymes involved in fluoropyrimidine

metabolism, particularly those enzymes associated with the conversion of 5-FU to the
thymidylate synthase inhibitor FdUMP.100 Furthermore, changes in the thymidylate synthase
level or its affinity for FdUMP have been associated with 5-FU resistance.101

A multifactorial process involving DHFR gene amplification, a transport defect, and a de-
crease in the formation of polyglutamic acid has been seen in patients with tumors resistant to
MTX.102,103 Resistance to MTX may result from a number of alternative mechanisms, includ-
ing (1) reduced MTX uptake via defective folate transport systems,104,105 such as decreased
expression of the reduced folate carrier106 or folate receptors;107 (2) increased exportation via
MRPs108,109 or other exporters of polyglutamatable antifolates; (3) reduced polyglutamation
leading to decreased drug retention as well as reduced inhibition of thymidylate synthase and
AICAR transformylase;110 (4) elevated levels of DHFR or reduced affinity of DHFR for
MTX;111,112 and (5) expression of Bcl-2 during apoptosis.

Overcoming Resistance
Strategies designed to overcome resistance to antimetabolites include dose escalation, phar-

macological manipulation of drug metabolism, and rational design of new antimetabolites.113

The rationale for the use of high-dose MTX with subsequent rescue of normal tissues by ad-
ministration of the reduced folate leucovorin (N5-formyl tetrahydrofolate) in the treatment of
cancers other than breast cancer was recently questioned.114,115 Other antifolate compounds capable of
inhibiting folate-dependent enzymes besides DHFR have been investigated. In particular, trimetrexate,
10-propargyl-5,8-dideazafolate, and 5,10-dideazatetra-5,6,7,8-tetrahydrofolate have shown promise
in cells resistant to MTX.116,117 Finally, the synergistic interaction between interferon and
halogenated pyrimidines has been described.118,119

Alkylating Agents and Platinum Compounds

Mechanism of Action
All alkylating agents and platinum compounds produce alkylation of DNA through the

formation of reactive intermediates that attack nucleophilic sites.

Metabolism
Cyclophosphamide is metabolized by microsomal hydroxylation and hydrolysis to

phosphoramide mustard (active) and acrolein. It is excreted as inactive oxilation products.
Chlorambucil undergoes chemical decomposition to active phenyl acetic acid mustard and to
inert dechlorination products. Melphalan undergoes chemical decomposition to inert dechlo-
rination products, and 20% to 35% of it is excreted unchanged in the urine. Carmustine
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undergoes chemical decomposition to active and inert products and enzymatic conjugation
with glutathione. Finally, cisplatin covalently binds to DNA bases and disrupts DNA function.
The toxicity of these agents may be related to DNA damage.

Elimination
Approximately 25% of each dose of alkylating agents and platinum compounds is excreted

from the body during the first 24 hours after administration. About 90% of excretion is renal,
whereas about 10% is biliary. Extensive long-term protein binding has been observed in many
tissues.

Mechanism of Resistance
Resistance to alkylating agents and platinum compounds can be described by at least four

broad mechanistic categories: (1) decreased alterations in transmembrane cellular drug accu-
mulation;120 (2) increased cytosolic drug inactivation; (3) enhanced repair of DNA damage;121

and (4) resistance to apoptosis.122 The correlation between the glutathione or GST level and
drug resistance is variable. Indeed, some investigators have been unable to demonstrate a rela-
tionship between overexpression of multiple isozymes of GST and antineoplastic resistance.123-124

Aldehyde dehydrogenase is another drug-metabolizing enzyme that has been linked with
resistance to cyclophosphamide derivatives in murine and human models of drug resistance.125

These results suggest that coadministration of DNA polymerase alpha inhibitors with cisplatin
is useful in overcoming cisplatin resistance. Also implicated in platinum sensitivity and resis-
tance are alterations in mismatch repair or regulators of apoptosis, such as Bcl-2, Bax, p21, and
p53.126 Modulation of these pathways by therapeutic agents now in development represents an
emerging strategy for overcoming resistance to platinum and other alkylating compounds.

Overcoming Resistance
Other results also suggest that coadministration of DNA polymerase alpha inhibitors with

cisplatin is useful in overcoming cisplatin resistance. Also implicated in platinum sensitivity
and resistance are alterations in mismatch repair or regulators of apoptosis, such as Bcl-2, Bax,
p21, and p53.127 Modulation of these pathways by therapeutic agents now in development
represents an emerging strategy for overcoming resistance to platinum and other alkylating
compounds.

Vinca Alkaloids
This group of drugs includes vincristine sulfate, vinblastine sulfate, vindesine sulfate, and

vinorelbine tartrate.

Mechanism of Action
The mechanism of action of the vinca alkaloids is inhibition of polymerization of tubulin.

Metabolism
Vinca alkaloids are metabolized hepatically. Metabolites accumulate rapidly in the bile so

that only 46.5% of the total biliary product is the parent compound. The specific contribution
of cytochrome P450-mediated metabolism of vincristine is uncertain, although its importance
is suggested by observations of enhanced clearance with phenytoin and increased toxicity with
the 3A inducer itraconazole.

Pharmacokinetics
The pharmacokinetics of vinca alkaloids is characterized by large distribution volumes,

high clearance rates, and long terminal half-lives. At conventional dosages, the peak plasma
concentrations, which persist for only a few minutes, range from 100 to 500 nmol/L, and
plasma levels remain above 1 to 2 nmol/L for relatively long durations.
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Elimination
The vinca alkaloids are eliminated by biliary excretion.

Mechanism of Resistance
Resistance to vinca alkaloids arises by at least two different mechanisms and is associated

with decreased drug accumulation and retention. The first mechanism is implicated by the
phenomenon of pleiotropic resistance or MDR, whereas the second mechanism is one of resis-
tance to antimicrotubule agents in vitro resulting from alterations in - and -tubulin pro-
teins. An important feature of this type of resistance to the vinca alkaloids is that collateral
sensitivity is conferred to the taxanes, which inhibit microtubule disassembly.

Overcoming Resistance
Studies have suggested that coadministration of DNA polymerase alpha inhibitors with

vinca alkaloids is useful in overcoming resistance. Also, modulation of pathways such as Bcl,
Bax, p21, and p53 by therapeutic agents now in development represents an emerging strategy
for overcoming resistance to alkylating compounds.

Gemcitabine

Mechanism of Action
Gemcitabine inhibits DNA polymerase , is incorporated into DNA, and terminates

DNA-chain elongation.

Metabolism
Gemcitabine is activated to triphosphate in tumor cells, degraded to inactive uracil arabino-

side by deamination, and converted to an arabinosylcytosine diphosphate choline derivative.

Elimination
Gemcitabine is eliminated by deamination in the liver, plasma, and peripheral tissues.

Mechanism of Resistance
Resistance to gemcitabine is not fully understood, although several mechanisms of resis-

tance to gemcitabine have been described. In general, cells with deficient nucleoside transport
are highly resistant to gemcitabine,128 and the degree of resistance may vary according to the
nucleoside transporter expressed on the cellular surface.129 Also, enzymes involved in gemcitabine
cell metabolism have been associated with the development of resistance to it. The initial in
vitro studies suggested that deficiency in deoxycytidine kinase enzymatic activity was the most
important cause of gemcitabine resistance, as gemcitabine-sensitive cell lines expressed 10 times
more deoxycytidine kinase than gemcitabine-resistant ones.130 However, experiments using
KB cells from human epidermoid carcinoma suggested that the enzyme ribonucleotide reduc-
tase (RR) could play an important role. RR is specific for S phase and limits DNA synthesis.
Resistant cells have 9.0 times greater expression of RR mRNA and 2.3 times greater RR activ-
ity than sensitive cells do.131 The role of RR as a determinant of resistance to gemcitabine has
been confirmed with the use of K563 erythroleukemia cell lines, in which the enzymatic activ-
ity of RR correlated with resistance to gemcitabine.132 A cross-resistance pattern between nucleo-
side analogues also may have potential implications. Researchers have shown that gemcitabine
has more antitumor activity than cytarabine does in sensitive (L1210 and BCLO) and resistant
(LA46 and Bara C) cell lines.133 An in vitro experiment using HL-60 promyelocytic leukemic
cells made resistant to cladribine created two resistant sublines with no cross-resistance to
gemcitabine.134

Overcoming Resistance
No strategies for overcoming gemcitabine resistance have proven to be effective. Use of

combination schedules is the main approach.
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Tamoxifen

Mechanism of Action
Tamoxifen binds to the estrogen receptor (ER) and induces dimerization and DNA bind-

ing to finally inactivate it.

Metabolism
Tamoxifen metabolism is mediated in the liver by cytochrome P450-dependent oxidases

into 10 major metabolites.

Pharmacokinetics
After initiation of therapy, steady-state concentrations of the active metabolites of tamoxifen

are achieved in 4 weeks, suggesting a half-life of 14 days.

Elimination
Metabolites and a small portion of tamoxifen are excreted in the bile as conjugates.

Mechanisms of Resistance
Several mechanisms of resistance to tamoxifen have been described. Absence of ER expres-

sion explains primary resistance in certain tumors. ER mutations may explain the variability in
response to tamoxifen in patients with ER-positive tumors; however, these mutations occur in
less than 1% of patients with breast cancer.135 Alternative mRNA splicing has been identified
in normal and malignant breast tissue with variants lacking one or more exons. The transcript
with deleted exon 5 binds to DNA but not to estrogen and activates transcription in an
estrogen-independent manner.136 Because ER function is strongly influenced by growth factor
signaling, studies have shown decreased tamoxifen response in patients whose tumors coexpress
ER and HER-2.137 Finally, the information on coactivators and coexpressors of tamoxifen
resistance is limited; however, evidence of the importance of these molecules has been shown.
MCF-7 tumor cells regress with the use of tamoxifen, but if tamoxifen administration is con-
tinued, they grow back in a tamoxifen-dependant manner; subsequently, withdrawal of tamoxifen
causes regression.138 N-CoR corepressor levels are suppressed in tumors stimulated by tamoxifen
when compared with tumors that are sensitive to tamoxifen.139

Overcoming Resistance
The use of aromatase inhibitors that block ligand production is an alternative for treating

tumors that are resistant to tamoxifen. Also, the use of pure antiestrogens like fulvestrant that
block ER function before coactivator binding theoretically may overcome tamoxifen resis-
tance.140,141 Finally, the use of growth factor receptor inhibitors in the form of monoclonal
antibodies and small tyrosine kinase inhibitors to reestablish tamoxifen sensitivity is being
studied.

Aromatase Inhibitors, Antiestrogens, and Progestins
The mechanisms and percentages of resistance in these groups of drugs are currently being

investigated.

Trastuzumab

Mechanism of Action
Trastuzumab is a humanized monoclonal antibody that selectively binds with high affinity

to the extracellular domain of HER-2. It inhibits tumor-cell proliferation through
antibody-dependent cellular toxicity,142 inducing apoptosis,143 inhibiting HER-2/neu intrac-
ellular signaling pathways,144 and downregulating expression of HER-2 receptors.145 It also
has synergistic action in combination with chemotherapy drugs.146,147
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Metabolism
The metabolism of trastuzumab is not clear. Clearance of it by the liver and kidneys is

minimal.

Pharmacokinetics
The mean half life of trastuzumab is 21 days. Its disposition is not altered by age or renal

function.

Mechanism of Resistance
Resistance to trastuzumab is an active research field. Several known mechanisms of resis-

tance have been identified: increased production of insulin-like growth factor (insulin-like
growth factor-1 or insulin-like growth factor-I receptor),148 dysregulation of p27,149

overexpression of epidermal growth factor receptor with activation of the AKT pathway,150

and decreased PTEN function.151

Overcoming Resistance
Targeting the epidermal growth factor receptor family with monoclonal antibodies or single

or multiple tyrosine kinase inhibitors to prevent or overcome trastuzumab resistance is a sub-
ject of active research. Combinations of trastuzumab with both gefitinib and erlotinib are
being evaluated in phase I and II studies.152 Several strategies for blocking insulin-like growth
factor-1 signaling, including the use of monoclonal antibodies with antitumor effects in breast
cancer such as IR3153 and antisense molecules, are being developed.154

Chemotherapy Sensitivity and Resistance Assays
Chemotherapy sensitivity and resistance assays are laboratory tests that pretend to select the

most appropriate treatment by studying an individual’s tumor behavior when exposed to cer-
tain drugs. The goal is to individualize therapy, optimize resources, and reduce toxicity. These
assays are also known as chemosensitivity tests. Several of these assays have been discarded,
whereas others are being studied in clinical trials. The American Society of Clinical Oncology
does not recommend the use of these assays to select a therapeutic agent outside of a clinical
trial, because even the assays with better potential still require more evaluation.155

The 3-(4,5-dimethylthyazol-2-yl)-2,5-dyphenil tetrazolium bromide assay has been stud-
ied in patients with breast cancer. Using tumor-cell suspension cultures incubated with various
chemotherapeutic agents, 3-(4,5-dimethylthyazol-2-yl)-2,5-dyphenil tetrazolium bromide is
added after 4 days to reduce intercellularity and generate a blue staining. The number of viable
cells treated is determined according to the field intensity.156

In general, applying these techniques in the clinical field is significantly limited. The appli-
cability of the results for all tumor cells, impact of the results on selecting and discarding
treatments, and difficulty in accessing laboratories with the appropriate technology to apply
and interpret the assays are issues that must be addressed before chemotherapy sensitivity and
resistance assays are ready for prime time.

Conclusions and Future Directions
Different studies, the majority of which were performed in vitro, have identified several

mechanisms of drug resistance in breast cancer. How these processes operate in vivo and their
clinical impact must be further studied in controlled prospective examinations of patient tu-
mor specimens correlated with therapeutic responses to different agents. The search for these
mechanisms continues to aid the development of useful approaches to overcoming drug resis-
tance. The use of newer technologies such as genomics and proteomics will continue to expand
this field of study. For instance, recent studies using gene arrays of breast tumor tissue were able
to predict response to neoadjuvant chemotherapy.157,158

These discoveries should impact the rationale for designing clinical trials to continue studying
drug resistance and achieve the goal of being able to administer tailored therapy for breast cancer.
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Abstract

ATP binding cassette (ABC)-containing drug efflux transporters play important roles in
regulating intracellular drug concentrations that determine cell sensitivity to chemo-
therapeutic agents. Of particular relevance to cancer chemotherapy are the transporters

P-glycoprotein (Pgp) encoded by multidrug resistance 1 gene, multidrug resistance protein
(MRP), and breast cancer resistance protein (BCRP). More than 80% of currently used anti-
tumor agents can be transported by these three transporters, and overexpression of these
transporters renders multidrug resistance to a broad spectrum of antitumor agents. Elevated
expression of these transporters is frequently found in breast cancers and correlations with
elevated expression of Pgp or MRP1 to chemotherapeutic outcomes have been observed in
some cases, suggesting that these transporters may contribute to chemoresistance in breast
cancers. However, attempts to modulate the activities of these transporters using reversal
agents have met with limited success. Future studies should focus on better understanding of
the upregulation mechanisms of ABC transporter genes in breast cancers, and of the pharma-
cologic mechanisms of transporter-reversal agent interactions. These studies may lead to novel
strategies for improving chemotherapeutic efficacies through targeted interventions of these
ABC transporters.

Introduction
Breast cancer is a major health threat to women worldwide. One in every ten new cancers

diagnosed each year is female breast cancer. It is also the principal cause of cancer-related
death in women.1 In United States alone, breast cancer is estimated to account for 32%
(215,900) of all new cancer cases among women in year 2004, making breast cancer the
leader among the 10 top cancer types.2 Primary breast cancers without distant spread are
highly curable with local or regional treatment. However, most women with primary breast
cancer have subclinical metastases and eventually develop distant metastases that compli-
cates the curability of the disease.

Over the past several decades, breast cancer survival rates have significantly improved.3

While many factors are credited, including the development of early detection methods,
this improvement can be attributed to the development of new treatment modalities and
new drugs. Regimens based on anthracyclines (doxorubicin, daunomycin, and epirubicin)4

and taxanes (paclitaxel and docetaxel)5,6 are the most frequently used combination therapy
for breast cancers. However, the response rates remain suboptimal. Moreover, few effective
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therapeutic regimens are available to treat those had been exposed to anthracyclines or failed
to anthracycline treatments.7,8 These observations underscore the importance of multidrug
resistance in breast cancer chemotherapy.

One important strategy by which cancer cells acquire drug resistance is the overexpressing
drug transporters through which intracellular drug contents reduce to sublethal levels. Of par-
ticular importance are ATP-binding cassette (ABC) transporters.

Forty-eight ABC proteins, grouped into seven subfamilies ranging from A to G, are en-
coded by the human genome (see http://nutrigene.4t.com/humanabc.htm), but only about a
dozen are associated with resistance to chemotherapeutic agents. The first ABC transporter
known to be associated with multidrug resistance to chemotherapeutic agents was identified
about three decades ago as P-glycoprotein (MDR1/Pgp, ABCB1).9 The later realization that
MDR1/Pgp alone could not account for all the MDR in many independently established
multidrug resistance cells led to the discoveries of other drug resistance-related transporters,
notably multidrug resistance (-acssociated) protein (MRP1, ABCC1)10 and breast cancer resis-
tance protein (BCRP, ABCG2).11 These ABC transporters contain multiple transmembrane
domains (TMD) and intracellularly localized nucleotide-binding domains (NBD) (Fig. 1).
These transporters function as efflux pumps by eliminating a diverse array of structurally dis-
similar compounds. Because many antitumor agents used in current breast cancer chemo-
therapy are substrates of these ABC transporters and because these ABC transporters are fre-
quently overexpressed in breast cancers, it is relevant to discuss their roles in breast cancer
chemoresistance. Because of space limitation, this review can only briefly describes MDR1,
MRP1 and BCRP, and evaluates their roles in breast cancer.

Figure 1. Predicted secondary structures of ABC transporters. Three classes of transporters are presented
here each contains multiple transmembrane domain (TMD)(cylinders) and intracellularly located
nucleotide-binding domain (NBD). Pgp, MRP1 and BCRP have 12, 17, and 6 TMD, respectively.
MDR1/Pgp and MRP1 have two NBD whereas BCRP has only one. N and C refer to the amino- and
carboxyl-terminal ends of the molecules, respectively.
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General Descriptions of MDR1/Pgp, MRP1, and BRCP

MDR1/Pgp
The MDR1-encoded Pgp is responsible for multidrug resistance in cultured cells exposed to

antitumor agents, including doxorubicin, vincristine, and taxanes, etoposide, teniposide, Acti-
nomycin D.12-14 Many of these agents are used to treat breast cancers. Although structurally
dissimilar, they are generally hydrophobic and therefore readily to interact with cytoplasmic
membrane. It is believed that these agents enter the cells through passive diffusion and subse-
quently evicted by Pgp through a drug concentration gradient across the membrane. How Pgp
transports such structurally diverse substrates has been a challenging topic to structural biolo-
gists and pharmacologists alike. While X-ray crystallographic information of Pgp is not avail-
able, crystallographic determinations of a bacterial homolog of multidrug transporter MsbA
have been instrumental in elucidating the transport mechanism of Pgp.15 This information,
together with biochemical studies which have identified several drug binding sites on various
TMD of Pgp,14 suggest that the initial event of Pgp-mediated drug transport is substrate bind-
ing, resulting in conformational changes that bring the two NBD into cross proximity to facili-
tate ATP binding. Mutation analyses have demonstrated that both NBD are required for trans-
porter activity. Nucleotide binding and subsequent ATP hydrolysis provide the needed energy
for releasing the substrate outward through the multi-TMD forming pore.14,16 However, much
of the complex dynamic and vectorial processes involved in the Pgp-mediated drug transport
remains to be learned.

Humans have two MDR genes, MDR1 and MDR2. Only MDR1-encoded Pgp functions as
drug transporter. MDR2-encoded Pgp functions as a phospholipid transporter. MDR1/Pgp is
expressed in many normal tissues, including liver, kidney, small intestine, colon, adrenal gland,
and blood-brain barrier, whereas MDR2/Pgp is expressed mainly in the liver (Table 1). Mice
have three mdr genes, two of which (mdr1a and mdr1b) are drug transporters, whereas the
third (mdr2) has a similar function as human MDR1. The endogenous substrates for MDR1,
mdr1a, mdr1b are not known. Mice without mdr1a (-/-) or both mdr1a (-/-) mdr1b(-/-) alleles
generated by knockout strategies are viable and fertile, suggesting that mdr1a and mdr1b are
not essential for cell viability.17,18 However, these animals exhibit elevated sensitive to cytotoxic

Table I. Properties of some ABC transporters

ABC Resistance Reversal Important Endogenous* Major Tissue
Transporter Spectrum* Agents* Substrates Expression*

MDR1 (ABCB1) ¶Anth. Vinc, Vera, Cycl, Phospholipid blood-brain barrier,
MDR2 (ABCB2)  Etop, Taxa, Colc GF120918, adrenal gland, liver
MRP1 (ABCC1) Anth. Vinc. Etop. LTC4 ubiquitous

Topo,
MRP2 (ABCC2) Anth. Vinc. Etop. Bilirubin glucuronide liver, kidney

Camp.
MRP3 (ABCC3) Etop, MTX E217G, LTC4 liver, intestine,

pancreas, kidney
BCRP (ABCG2) Dox, Mitoxan- GF120918, Porphyrin, heme placenta, hema-

trone, Anth, Grfitnib poietic stem cells,
ST1571, Topo kidney liver

* The list is not meant to be complete, just representatives are included. ¶Anth, anthracyclines; Camp,
Camptotechin; Colc, Colcine; Cycl, cylosporin A; Etop, Etoposine; MTX, methotrexate;  Mito,
Mitoxantrone; Topo, Topotechan; Vera, Verpamil;  Vinc, Vinca;
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effects upon challenged by cytotoxic agents. While the endogenous substrates for P-gp remains
unknown, it is generally accepted that animals utilize this efflux pump to prevent xenotoxins
from entering the body (intestine, colon) and to remove cytotoxic compounds once inside the
body (liver, kidney, bone marrow, and brain).

MDR1/Pgp-mediated transport can be inhibited by the so-called MDR-reversal agents or
Pgp blockers. Some inhibitors have been in clinical applications in attempts to block MDR in
chemotherapy-resistant tumors that express elevated levels of Pgp. Agents, e.g., calcium chan-
nel blocker verapamil and immunosuppressive agent cyclosporin A, are themselves Pgp sub-
strates. They act as competitive inhibitors to Pgp-mediated transport. Other inhibitors, e.g.,
PSC-833, GF120918, and LY335979 have been used in various stages of clinical trials.13 The
development of clinically applicable reversal agents are an important avenue in combating
MDR in cancer chemotherapy.

If Pgp plays a role in cancer chemotherapy, its expression in tumor cells most likely is
elevated. Indeed, Pgp expression levels are frequently elevated in many types of cancer. Under-
standing the upregulation mechanisms is of importance for modulating its expression. Most of
our understanding on MDR1 regulation mechanisms are from cultured cell studies.19

Upregulation of MDR1 in cultured cells can be at the transcriptional and/or posttranscrip-
tional levels. Transcriptional regulation involves a host of basal transcriptional factors, e.g.,
NF-Y, SP1, Egr1, and ets-1. Moreover, MDR1 expression can be induced by various stress
conditions, including UV, inflammation, carcinogens, hypoxia, and chemotherapeutic agents.
We have demonstrated that induction of MDR1 by the carcinogen (2-acetylaminofluorene) is
mediated by DNA sequence located at -6092 bp which contains a NF-kappaB binding site,
through upstream signaling via phosphoinositide 3-kinase- Rac1-and NAD(P)H oxidase-AKT
pathway.20 Upregulation of MDR1 expression by chemotherapeutics is in part by posttran-
scriptional (enhanced mRNA stability). Posttranslational regulation phosphorylation is associ-
ated with enhanced MDR activity. Pgp phosphorylation can be regulated by PKC  which in
turn is regulated by wild-type p53, a tumor suppressor protein.21

MRP
MRP1 was first identified in doxorubicin-resistant cells that did not express elevated levels

of Pgp.10 Like Pgp1, MRP1 contains two intracellularly localized NBD. However, unlike Pgp1,
it contains 17 TMD14,23,24 (Fig. 1). The function of the five extra TMD is not clear, they are
apparently not essential for catalytic function, because deleting this domain did not compro-
mise its activity.22 Overexpression of MRP1 conferred resistance to a spectrum of antitumor
agents that is similar, but not identical, to that of Pgp1. For example, while taxanes are good
substrate for MDR1 Pgp but are poor for MRP1. Additionally, unlike Pgp1, MRP1-mediated
efflux requires cofactors, glutathione (GSH), glucuronic acid or sulfate. Mice lacking mrp1 are
viable and fertile but have a deficient imflammatory response to its mediator leucotriene LTC4,
which is an endogenous substrate of MRP1.25

Since the discovery of MRP1, eight related sequences have been identified, i.e, MRP2 to
MRP9.23,24 MRP1 and MRP2 have similar substrate selectivity but the tissue expression pro-
files are quite different: MRP1 expression is rather ubiquitous, whereas MRP2 expression is
restricted to liver and kidney. Hepatic MRP2 is involved in the hepatobiliary extrusion of
bilirubin glucuronide and defected MRP2 is associated with Dubin-Johnson syndrom.26

While the structural organization of MRP3 is similar to those of MRP1 and MRP2, namely,
it also possesses 17 TMD, but the substrate specificity of MRP3 is quite different from those of
MRP1 and MRP2. MRP3-mediated transport does not require intracellular GSH. Etoposide
appears to be transported by MRP3 in unmodified form,27 whereas vincristine and doxorubi-
cin which are transported by MRP1 and MRP2 through GSH conjugates are not transported
by MRP3. It is important to note that cancer cells overexpress MRP3 are not resistant to
anthracyclines which are important antitumor agents in breast cancer treatment.

MRP4 and MRP5 contain 12 TMD rather than 17 TMD, making them structurally more
like MDR1 than does MRP1. MRP428 and MRP5 transport cyclic nucleotides and nucleotide



27Roles of Multidrug Resistance Genes in Breast Cancer Chemoresistance

analogs which are not transported by MRP1, MRP2, or MRP3. The roles of MRP4 and MRP5
in breast cancer chemoresistance are not known. MRP6, MRP7, MRP8, and MRP9 are newly
cloned MRP gene family members. The substrate specificities and pharmacologic properties of
these ABC transporters remain to be determined.

Like MDR1, expression of MRP1 in cultured cells can be induced by a variety of cytotoxic
agents including prooxidants, heavy metals, antitumor agents, and nitric oxides. Because
MRP1-mediated efflux requires GSH, intracellular GSH levels may play important roles in
regulating the expression of MRP1. Biosynthesis of GSH is regulated by the rate-limiting en-
zyme -glutamylcysteine synthetase ( -GCS), which consists of one heavy catalytic subunit
( -GCSh) and one light (regulatory) subunit ( -GCSl). Our laboratory has demonstrated that
expression of -GCSh can be induced by many cytotoxic agents that also upregulate MRP1.29

Moreover, expression of MRP1 and -GCSh is frequently upregualted in colorectal cancers.30

These observations suggest that both genes may be regulated by the same mechanisms. Tran-
scriptional regulation of -GCSh gene expression is mediated by an oxidative stress response
element (ORE) located at -3802 bp which interacts with the leucine zipper transcription factor
complex Nrf2/Maf.31 However, no ORE element has yet been identified in the promoter of
MRP1. Expression of MRP3 can also be induced by prooxidants.32 While MDR1, MPR1 and
MRP3, like -GCSh, may be considered as a stress inducible ABC transporters, but because
many different signaling pathways can be associated with stress-induced gene expression, regu-
lation mechanisms of these genes may not be the same.

BCRP
The ABC transporter BCRP was first cloned from the doxorubicin-resistant MCF-7 breast

cancer cell line,11 but it is not implied that the expression is associated with breast cancer. This
tranporter encodes only 655 amino acids, about one half of the sizes of MDR1 and MRP
transporter (Fig. 1). It is likely that two half-molecules form a homodimer to function as a drug
transporter.33-35 Cell lines selected for resistance to many antitumor agents, including
mitoxantrone, topotecan, doxorubicin, SN-38 exhibit MDR phenotype and overexpressed
BCRP, suggesting an important role of BCRP in MDR development. BCRP-mediated trans-
port apparently does not require GSH cofactor. Like mdr1a(-/-), mdr1b(-/-), and mrp(-/-) mice,
bcrp(-/-) animals are fertile with no apparent phenotypic alterations as compared with those in
the wild-type animals, suggesting that murine bcrp is not essential for normal animal physiol-
ogy.36 The fact that these individual knockout animals fail to display normal physiological
abnormality also suggest that there are functional redundancy among these transporters.

Roles of Pgp, MRP1, and BCRP in Breast Cancer Chemotherapy
For an ABC transporter to play a role in reducing cancer chemoresistance, its expression

levels should be inversely correlated with the chemosensitivity of antitumor agents that are
known to be substrates of the transporter. In addition, an enhanced response to chemotherapy
should be observed when inhibitors or reversal agents are used. These criteria are discussed here
in the context of Pgp, MRP1 and BCRP in breast cancer chemotherapy. A review describing
similar issues has recently been published.37

Expression of MDR1/Pgp in nonneoplastic breast tissue and in breast cancer tissues has
been extensively investigated at mRNA and protein levels. MDR1 mRNA levels were mainly
determined by using RT-PCR method and proteins levels were by immunohistochemical (IHC),
flow cytometry, and western blot analyses. Agreement between IHC analyses and RT-PCR
results were found in many studies, although inconsistent results were also found, perhaps
because the levels of MDR1/Pgp regulation (transcriptional vs. prostranslcriptional regula-
tion) vary in different patient population. The disparate results may also reflect differences in
analytic methodologies, including tissue sampling (IHC analysis detects expression in tumor
cells whereas RT-PCR may use a heterogeneous pool of cell types), the use of different probes
(RT-PCR can be gene-specific, whereas some antibodies used for IHC can cross-react both
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MDR1- and MDR2-encoded Pgp). It is therefore, careful evaluation of experimental designs is
needed before results can be compared.38

Many studies aimed at determining the correlation between expression levels of MDR1/
Pgp in various tumor types and responses to chemotherapy with antitumor agents that are
substrates of MDR1/Pgp have been published. For breast cancer treatment, while some studies
showed positive correlations between reduced Pgp expression levels and improved response
rates39,40 whereas other failed to find such a correlation.40

Expression of MRP1 is frequently observed in breast cancer even before chemotherapy, and
chemotherapy has been reported to increased MRP1 expression.41 A correlation between MRP1
expression and patient survival rates after chemotherapy has been noted in some studies.41,42

whereas other reports showed no correlation between MRP1 expression and prognosis.43-45

Evaluation of BCRP expression in human cancers has most been performed in leukemia.
And several studies have also been published for the expression of BCRP in breast cancers, mostly
determined by using RT-PCR method. While levels of BCRP in AML patients are variable in
some studies and the expression levels are increased in associated with relapsed/reflactory,46 whereas
other studies did not show correlation.47 In breast cancer, expression levels of BCRP are low.48

The role of BCRP in the chemoresistance of breast cancer remains to be investigated.
The fact that ABC transporter expression levels and resistance to chemotherapy are posi-

tively correlated in some, but not all, breast cancers may reflect differences in analytic meth-
ods, patient population, or the chemotherapeutic drugs used. The use of reversal agents for
combating MDR1/Pgp-related clinical drug resistance began soon after the discovery of Pgp
inhibitors in many types of cancer, including breast cancer. Verapamil was one of the very
early discovered MDR1 reversal agent used in clinical trials. From a pool of four studies,
verapamil appears to resensitize 15% of advanced breast cancer patients refractory to
anthracycline-containing regimens.18 However, this may not be beneficial because the re-
sponse rate of the same patients to alternative second-line chemotherapy could achieve a
better response. Reversal agents such as quinidine and biricodar in clinical trials have not
shown evidence of benefits. These results suggest that expression levels of MDR1/Pgp1 lev-
els are not readily for prognostic evaluation of drug sensitivities and thus for pharmacologic
intervention for improving chemotherapeutic efficacies remain to be further developed.

The difficulties associated with clinical trials using reversal agents may be explained as fol-
lows: Reliably assessing the contribution of the overexpressed ABC transporter to drug resis-
tance is difficult, even the transporters are overexpressed in the tumors. Not all the Pgp- tumor
respond to chemotherapeutics; and not all the Pgp+ tumors are resistant to chemotherapy.
Aside from the technical aspects in measuring expression levels, no studies have convincingly
shown that high levels of transporter expression translate into high transporter activities. An-
other difficulty is that there is no direct evidence showing that reversal agents indeed downregulate
the transporter activity at tumor sites. A third consideration is that multiple ABC transporters
can pump the same antitumor substrate, and in many cases, overexpression of multiple trans-
porters is found in tumors. Thus, inhibition of one or a few ABC transporters may not be
sufficient to bring down drug resistance to therapeutic achievable levels. The functional redun-
dancy of ABC transporter family proteins may then encourage the development of reversal
agents that can simultaneously inhibit multiple transporters. For instance, some Pgp inhibitors
such as cyclosporin A and PSC 833 also inhibit the function of MRP, albeit less effective, and
another Pgp inhibitor GF129018 can also suppress the function of BCRP. Last but not the
least, in clinical settings where combination chemotherapy is often used, multiple mechanisms
may contribute to the overall response to chemotherapeutic agents. Inhibition of drug trans-
port alone may be insufficient to overcome the overall drug resistance.

Conclusion
The discovery of ABC transporters associated with MDR phenotype in cultured cells re-

vealed an important mechanism bywhich cancer cells acquire resistance to many chemothera-
peutic agents. Much has been learned about how expression of these transporters, notably MDR1,
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MRP1, and BCRP, in cultured cells confer resistance to antitumor agents. This knowledge
holds great implications for clinical drug resistance. Overexpression of Pgp and MRP1 in some
breast cancers has been correlated with chemoresistance in clinical setting in some studies but
not in others. The disappointing results of clinical applications in using reversal agents suggest
that more investigation is needed for translational gains in breast cancer chemotherapy. Future
studies should focus on the molecular basis of how the expression of these transporters is regu-
lated in normal breast cells and in their malignant counterparts. These studies may lead to novel
strategies of controlling MDR through gene regulation. Another area of research may involve
developing strategies for modulating transporter activities through better understanding phar-
macodynamic and pharmacogenetic behaviors of reversal agents. In combination of advancing
imaging systems, suppression of transporter activities in tumor sites can be measured. These
studies may eventually lead to effective evaluation on the roles of these ABC transporters in
breast cancer chemoresistance and the development of strategies of circumventing it.
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CHAPTER 3

Therapy-Induced Apoptosis
in Primary Tumors
David J. McConkey*

Abstract

An enormous body of literature has accumulated over the past 15 years implicating
apoptosis (programmed cell death) in breast cancer cell death induced by conventional
and investigational cancer therapies in preclinical models. As a result, new therapeutic

approaches that directly target key components of apoptotic pathways are either entering or
will soon enter clinical trials in patients, raising hopes that the information gained from the
preclinical studies can be translated to improve patient care. However, there is a new apprecia-
tion for the fact that apoptosis is not the only relevant pathway that mediates physiological cell
death, and many investigators are challenging the notion that targeting apoptosis is the best
means of optimizing therapeutic efficacy in primary tumors. Here I will review some of the
basic concepts that have emerged from the study of apoptosis in preclinical models, the evi-
dence that apoptosis does or does not mediate the effects of current front line therapies in
patients, and the new strategies that are emerging that are designed to more directly target
apoptotic pathways.

Introduction

Components of the Core Apoptotic Machinery
Kerr, Wyllie, and Currie first coined the term “apoptosis” to describe a series of stereotyped

morphological alterations they observed in cells undergoing diverse examples of physiological
cell death.1,2 A more biochemical definition of the response was advanced in 1980 with Wyllie’s
observation that the chromatin within apoptotic cells is fragmented in a regular pattern to
produce the so-called “DNA ladders” that are usually associated this form of cell death.3

However, it was not until Horvitz and his coworkers began to define the genes required for
programmed cell death in the nematode Caenorhabditis elegans4-8 that a true understanding of
the molecular regulation of the process began to emerge. Their first studies established that two
genes, termed ced-3 and ced-4, were required for all of the 131 cell deaths that occur during
embryonic development of the organism,4 and in subsequent work they identified two more
(ced-9 and egl-1) that function upstream of ced-3 and ced-4 to control their activation.5,7

These genes all have structural and functional homologues in higher organisms (Fig. 1), and a
good deal is known about how they promote cell death. Ced-3 is the founding member of a
family of aspartate-specific cysteine proteases termed caspases,8,9 and ced-4 is an adaptor
protein homologous to human amino-terminal activation function (AF-1) domain (for
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“apoptosis protease activating factor-1”)10-12 that promotes ced-3 activation.6 Ced-9 is ho-
mologous to human Bcl-2, and like Bcl-2 it inhibits caspase activation.7 Conversely, Egl-1 is
homologous to the BH3-only Bcl-2-like protein subfamily, and like mammalian BH3-only
proteins it inhibits Ced-9 to promote caspase activation (Fig. 1).5 Thus, it appears that the
positive and negative regulators of apoptosis function to promote or inhibit caspase activation,
respectively, leading most investigators to conclude that apoptosis is best defined by its depen-
dency on caspase activation.13 Studies of the effects of targeting Apaf-114,15 or key downstream
caspases (3, 7 or 9)16-19 in mice or chicken cells have largely supported this conclusion.

Investigations into the molecular control of apoptosis by viruses also converged with
genetic studies in Drosophila to produce important information about another family of cell
death regulators termed inhibitor of apoptosis proteins (IAPs). First identified by Lois Miller’s
group in baculoviruses,20,21 IAPs contain structural elements termed baculovirus inhibitor of
apoptosis repeats (BIR domains) that directly bind to caspases 3, 7, and 9 and inhibit their
enzymatic activation and/or interaction with substrates.22-24 Parallel studies in Drosophila iden-
tified three genes (reaper, hid, and grim) that play central roles in the regulation of programmed
cell death in the organism25-27 (Fig. 2), and subsequent functional studies demonstrated that
all three contain short N-terminal peptide motifs that enable them to bind to a Drosophila IAP
(DIAP1) to inhibit its functions.24,28 Again, a structural homologue of these proteins has been
identified in mammalian cells (termed second mitochondrial activator of caspases/SMAC in
human cells29,30 or DIABLO in murine cells) that also binds to IAPs (particularly XIAP) and
promotes caspase activation when it is released from mitochondria during apoptosis (Fig. 2).29-31

Studies in primary tumor tissues have confirmed that alterations in the expression and/or
function of key apoptotic regulatory proteins accumulate in human tumors. The best example
of the role of Bcl-2 in tumorigenesis can be found in nonHodgkins B cell lymphomas, where
the t(14;18) translocation juxtaposes the E  enhancer with the bcl-2 coding sequence,32

driving high level expression of Bcl-2 in B cell precursors.33 Bcl-2 is also overexpressed in
chronic lymphocytic leukemia (CLL)34 and androgen-independent prostate cancer,35 but its
role in breast cancer is less clear. High level expression of Bcl-2 has been linked to therapeutic
resistance,36 but several studies have concluded that in untreated tumors Bcl-2 is expressed by
well-differentiated, ER+PR+, EGFR-, HER-2- tumors,37-41 strongly suggesting that other mo-
lecular defect(s) in the control of apoptosis play more important roles in the later stages of
tumor progression.42-44

Figure 1. Control of caspase activation by Bcl-2 family polypeptides in the nematode Caenorhabditis
elegans and mammals. In the nematode, activation of the cysteine protease ced-3 is facilitated by the
adaptor protein ced-4, which is normally held in check by the ced-9 protein. Induction of EGL-1 leads
to inhibition of ced-9, releasing ced-4 to promote ced-3 interaction. This pathway is structurally and
functionally conserved in mammals, where caspases are the cyteine proteases, Apaf-1 is the caspase-ac-
tivating adaptor protein, anti-apoptotic members of the Bcl-2 family inhibit Apaf-1 activation, and the
BH3-only proteins trigger cell death in part by inhibiting Bcl-2 and its homologues.
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Alterations in the expression of IAPs may also promote breast cancer progression and resis-
tance to adjuvant therapy. The first IAP to be implicated in tumor progression was survivin,
which with one BIR domain is the smallest member of the family. Survivin is expressed at high
levels in many human tumor cell lines45 and its expression correlates with drug sensitivity in
the NCI’s panel of 60 human cancer cell lines.46 Furthermore, one report demonstrated that
four common human breast cancer cell lines displayed relatively high levels of caspase-3-like
activity and processed (active) caspase-3 as compared to nontumorigenic normal mammary
epithelial cells and that the viability of these cells was dependent on their coexpression of high
levels of surviving and XIAP.47 However, survivin expression has been correlated with expres-
sion of Bcl-248 and appears to be associated with a good prognosis.49 On the other hand,
baseline levels of XIAP have been linked to the levels of cleaved (active) caspases 3 and 6,50

consistent with the results obtained with cell lines.47 Therefore, a subset of human breast can-
cers may rely on continuous expression of XIAP for survival.

Current Approaches to Target Apoptosis

Effects of Conventional Chemotherapy and Radiation on Apoptosis
in Preclinical Models

Some of the first evidence that cancer chemotherapy might work by inducing apoptosis in
tumor target cells came from studies of the effects of glucocorticoids in primary hematological
tumor cells and leukemic cell lines.51,52 Soon after Wyllie demonstrated that glucocorticoids
induce apoptosis in immature thymocytes, others showed that they also stimulate apoptosis in
primary ALL and CLL cells as well as in ALL and lymphoma cell lines (CEM-C7, WEHI) in
vitro.51-55 This was followed by a wave of studies demonstrating that cancer chemotherapeutic
agents such as cisplatin, etoposide, and nucleoside analogues induce apoptosis in human solid
and hematological tumor cell lines in vitro.56-58

Figure 2. Control of caspase activation by inhibitor of apoptosis proteins (IAPs) in Drosophila and
mammals. In Drosophila, developmental cell death is dependent upon induction of REAPER, a small
polypeptide that contains a critical N-terminal motif that enables it to bind to and inhibit Drosophila
inhibitor of apoptosis protein-1 (DIAP1). This releases the Drosophila caspase, DREDD, from its
interaction with DIAP1 and allows it to trigger cell death. In mammals, caspases 3 and 9 are held in check
by mammalian IAPs (particularly XIAP). This interaction is disrupted by SMAC (second mitochondrial
activator of caspases), a mammalian REAPER homologue that is released from mitochondria with
cytochrome c in response to Bid cleavage or other signals.



Breast Cancer Chemosensitivity34

Even earlier work implicated apoptosis in normal and tumor cell death induced by ionizing
radiation in vitro.59-62 Subsequent studies demonstrated that levels of apoptosis correlated with
overall radiosensitivity in tumor xenografts exposed to ionizing radiation62 and that
radiation-resistant lymphoma cells overexpressed Bcl-2.63 Work by Potten’s group linked
radiation-induced apoptosis to the susceptibility of normal intestinal crypt cells to radiation
toxicity,59 and studies of the molecular mechanisms involved in radiation-induced apoptosis in
immature thymocytes isolated from p53-deficient animals were instrumental in implicating
p53-mediated apoptosis in the cellular response to DNA damage.64,65

One conceptual paradox that has emerged from this work concerns the existence of a thera-
peutic index in patients treated with cytotoxic agents (doxorubicin, taxanes, etc). Specifically, if
tumor progression is associated with the accumulation of defects in the control of apoptosis,
why does chemo- or radiotherapy selectively kill tumor cells in vivo? An answer to this question
has come from studies of oncogenes like Myc, E2F-1, or adenovirus E1A that function to
promote cell cycle progression.66-68 Studies in cell lines or gene-targeted mice have demon-
strated that these proteins not only promote growth factor-independent cell cycle progression,
they also promote susceptibility to cell death.68,69 These effects are regulated in part via
Arf-dependent activation of the tumor suppressor, p53, and in part via Arf/p53-independent
mechanisms.70 Thus, the model predicts that the cell cycle dysregulation that occurs at the
earliest stages in tumor progression predisposes transformed cells to apoptosis. Subsequent
progression to a chemoresistant and/or metastatic state requires the acquisition of additional
defect(s) that complement cell cycle dysregulation to specifically inhibit cell death.71 It seems
likely that exposure to the natural pressures associated with cancer progression and/or cancer
therapy could accelerate this process by selecting for tumor cell clones that contain molecular
alterations that render them resistant to apoptosis.72 The model also predicts that molecular
defects that simultaneously lead to increased proliferation and decreased cell death might occur
most commonly during tumor progression. Two excellent examples of this phenomenon can
be found in loss of p5373 and activation of the PI-3 kinase/AKT pathway, both of which
promote cell cycle progression while inhibiting specific pathways of apoptosis.

Effects of Conventional Chemotherapeutic Agents in Primary Tumors
Cytotoxic agents including anthracyclines and taxanes extend patient survival in the adju-

vant setting, but it is currently not possible to prospectively identify the patients who would
most benefit from therapy. Ongoing genomics- and proteomics-based efforts are defining the
patterns of gene and protein expression associated with response to specific agents, and it seems
likely that such strategies will ultimately provide us with viable approaches to address this
problem. However, another potential opportunity is provided by the increasing use of these
agents in the neoadjuvant setting in breast cancer, where matched pre and post-treatment biop-
sies can usually be obtained.74 Thus, it may be possible to use tissue-based assays to monitor
biological responses to these agents at an early stage in therapy to ensure that therapy is having
the desired effects on the tumor.

Because cytotoxic chemotherapy and radiation induce apoptosis in tumor cells in preclini-
cal models, one straightforward hypothesis that can be proposed is that effective neoadjuvant
therapy should be associated with increased programmed cell death. Although to many this
conclusion appears self evident, in practice it has been difficult to prove or disprove. Limita-
tions associated with these studies include the potentially strong influence of tumor heteroge-
neity on the results obtained and the lack of reproducible, quantitative methods to measure
proliferation, apoptosis, and other biological markers. Core biopsies or fine needle aspirates
may not provide information that is representative of changes within the tumor as a whole, and
when to sample the tumor after therapy remains unclear. Although reasonably good methods
for measuring apoptosis in tissue sections (assessment of cellular morphology, TUNEL, immu-
nohistochemistry using antibodies that recognize active forms of the caspases) exist, quantify-
ing levels of apoptosis usually relies on manual detection of apoptotic cells, which is limited by
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inter-observer variability and the relatively small sample size (number of cells) evaluated in
such studies. Nonetheless, several studies have concluded that post-treatment increases in
apoptosis correlate with clinical response in tumors treated with a variety of different conven-
tional agents.75-77

In an effort to address some of the limitations described above, we have adapted current
methods for measuring apoptosis so that they are compatible with analysis by laser scanning
cytometry (LSC).78 The LSC is an instrument that is designed to measure multiple fluorescent
markers across whole tissue sections at the single cell level. Therefore, like fluorescence-activated
cell sorting (FACS), use of the LSC removes much of the investigator bias associated with
determining which cells are postive or negative for a given marker, and thousands of cells can
be analyzed in an automated fashion in each tissue section. Furthermore, the use of combina-
tions of fluorescent markers can provide information about target antigen expression within
subsets of cells within tumors (for example, tumor-associated endothelial cells), thereby allow-
ing more informative comparisons to be made concerning the effects of therapy on marker
expression.

We performed a pilot study to evaluate the accuracy and sensitivity associated with using
the LSC to measure apoptosis by fluorescent TUNEL staining in 18 g core biopsies collected
just before and 24-72 h after neoadjuvant therapy with doxorubicin plus taxotere (the so-called
AT regimen).78 We obtained a total of 12 matched biopsy sets, approximately half from tumors
that displayed a major clinical response and half from tumors that did not. Quantification of
apoptosis at 24 h revealed no major changes compared to baseline, and as a consequence we did
not observe a correlation between apoptosis and response.78 However, levels of apoptosis at 48
h were closely associated with response, increasing by at least 10% in all of the tumors that
displayed an excellent clinical response.78 These increases persisted for at least 72 h and may
have been evident at later time points, as has been suggested by other groups. Thus, while an
exact assessment of whole tumor biological response is still not possible using these methods,
the pilot study does strongly suggest that biopsy-based assessment of biological markers could
still prove valuable in identifying those tumors that are responding to therapy at a relatively
early time. Parallel efforts are underway to develop noninvasive strategies to measure apoptosis
using labelled forms of annexin-V79 or specific contrast-enhanced caspase substrates.80 As long
as tumor perfusion and/or high background do not limit their sensitivities, these approaches
could provide even more accurate, real time information than biopsy-based approaches.

Effects of Estrogen Pathway Inhibitors on Apoptosis
Agents that target estrogen receptor signaling play central roles in the chemoprevention and

adjuvant treatment of breast cancer, and it is clear that they possess substantial anti-tumor
activity. There is a sound biological basis for this approach given the importance of
estrogen-estrogen receptor interactions in the control of tissue homeostasis in normal breast
epithelial cells. Early work established that estrogen functions as a survival factor for these cells,
such that estrogen withdrawal triggers apoptosis.81 The situation is very similar in the normal
prostate, where androgen availability directly controls levels of epithelial cell apoptosis within
the gland.82,83

An enormous amount of effort has been directed towards understanding the biological
significance of the estrogen receptor pathway in breast cancer progression, metastasis, and therapy,
and a great deal of information is therefore available describing their effects on tumor cell
proliferation and apoptosis. Most of this work has been conducted with the ER-positive MCF-7
cell line and xenografts derived from it. The proliferation of MCF-7 cells is increased by exog-
enous estrogen in vitro and in vivo,84,85 and ER antagonists like tamoxifen and aromatase
inhibitors consistently inhibit this proliferation. Similarly, a large number of studies has con-
cluded that estrogen blocks apoptosis in MCF-7 cells,86,87 but it is possible that in translating
this information into primary tumors, the effects of estrogen on cell survival have been over-
stated. Tamoxifen and aromatase inhibitors are strong inhibitors of the hormone-dependent
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growth of MCF-7 tumors in vivo, and some of the early work established that the effects are
associated with increased tumor cell death.86 Nonetheless, their effects on the growth of experi-
mental tumors are largely cytostatic,88 which contrasts with the effects of conventional chemo-
or radiotherapy, where tumor involution associated with large increases in apoptosis can be
observed. There are certainly limitations associated with generating general conclusions from
preclinical studies that primarily employ one cell line, and MCF-7 cells are unique among solid
tumor lines because they express an inactive mutant form of caspase-3.89 Clearly, some
estrogen-dependent tumors may retain a dependency upon estrogen for their survival, and in
these tumors ER antagonists like tamoxifen or aromatase inhibitors would be expected to in-
duce tumor cell death and cause frank regression. However, it is also possible that most
ER-positive tumor cells retain their sensitivity to estrogen for cell cycle progression but no
longer depend on it for survival, and that the therapeutic benefit obtained from adjuvant hor-
monal therapy is mediated by cell cycle arrest.

The data emerging from neoadjuvant studies with SERMs and aromatase inhibitors strongly
supports this conclusion. For example, in a recent study Dowsett and coworkers studied the
effects of neoadjuvant anastrozole or tamoxifen alone or combined in a clinical trial involving
330 patients (the IMPACT trial).90 Biopsies were collected before and 2 or 12 weeks after
initiation of therapy for analysis of proliferation (by Ki-67 immunohistochemistry) and apoptosis
(by TUNEL staining). Overall, the vast majority of tumors displayed reductions in prolifera-
tion at both 2 and 12 weeks. Furthermore, the effects of therapy on proliferation correlated
well with the clinical responses observed within each arm of a larger adjuvant trial of the same
design (the ATAC trial), where single-agent anastrozole outperformed either single-agent
tamoxifen or the tamoxifen plus anastrozole combination.91,92 In contrast, apoptosis was not
increased in any of the treatment arms.90 Instead, mean levels of apoptosis appeared to decrease
slightly in all of the treatment arms at 2 weeks and in the anastrozole arm at 12 weeks, but only
the latter reached statistical significance.90

These results may have important implications for best exploiting the biological effects of
these drugs. Use of a cytostatic drug in the setting of bulky disease is unlikely to produce
substantial tumor regression but would be expected to be quite effective in blocking the expan-
sion of micrometastases and/or prevent recurrence. Furthermore, given the relationship be-
tween cell proliferation and apoptosis sensitivity discussed above, combining a cytostatic drug
with a cytotoxic one may not be the best means of exploiting the pro-apoptotic effects of the
latter. This may be especially true in the case of combinations involving taxanes, which appear
to kill cells via a cyclin-dependent kinase-dependent mechanism only after they have been
arrested in mitosis. It would probably be better to combine them with agent(s) such as TRAIL
that promote apoptosis most effectively in growth-arrested cells, as will be discussed below.

Effects of Growth Factor Receptor Inhibitors on Apoptosis
Recent studies have implicated members of the erbB family of growth factor receptors in

breast cancer progression and the development of resistance to SERMs and aromatase inhibi-
tors.93 The gene encoding erbB2/HER-2 is amplified in approximately one third of tumors
and is associated with a poor disease-free and overall survival and response to therapy.94 Pre-
clinical studies of the biology of HER-2 indicate that it inhibits apoptosis induced by taxanes
via a p21-dependent mechanism95,96 and that it promotes tumor metastasis by promoting
invasion and angiogenesis.97-99 A blocking anti-HER-2 antibody (herceptin) inhibits the growth
of HER-2-expressing breast cancer cells in vitro and tumor xenografts in vivo,100,101 and expo-
sure to combinations of herceptin and conventional therapies (particularly taxanes) lead to
further growth inhibition and enhanced clinical activity.102,103

The receptor for epidermal growth factor (EGFR, also erbB1) also appears to play an im-
portant role in breast cancer progression.104-106 Although the EGFR can function as a
homodimer, it preferentially forms heterodimers with HER-2 and probably serves as the pri-
mary ligand-binding component of these heterodimers.106 Furthermore, recent work indicates
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that EGFR is expressed on the vast majority of primary tumors that express activated (phos-
phorylated) HER-2 and that patients with these tumors have a very poor prognosis.106 Breast
cancers constitutively express EGFR ligands (EGF, TGF- , HB-EGF)107,108 and it appears
that the ligands promote autocrine and paracrine proliferation. Several small molecule and
antibody-based inhibitors of the EGFR have been developed,109,110 and preclinical studies
with these agents have demonstrated that they inhibit tumor cell growth in vitro and in vivo.110

HER-2 amplification is more prevalent in ER- as compared to ER+ tumors, and HER-2
expression is increased in tumors that develop resistance to SERMs. Recent studies have pro-
vided a biological explanation for this observation by showing that HER-2 and the EGFR
interact directly with the ER pathway to enhance cell proliferation.111 ErbB-mediated phos-
phorylation of the ER appears to promote its sensitivity to ligand-dependent and possibly
ligand-independent activation, and erbB family proteins alter tumor cell expression of tran-
scriptional coactivators and corepressors that control the inhibitory activity of the SERMs.
Thus, combination therapy with tamoxifen plus herceptin leads to synergistic inhibition of
tumor growth in preclinical models, and clinical trials are underway to test the effects of EGFR
or HER-2 blockade on tumor response to SERMs or aromatase inhibitors in patients.111,112

Although ErbB antagonists have displayed very promising activity in preclinical models, it
appears that, like the SERMs, their effects may be largely cytostatic rather than cytotoxic.
Thus, in xenograft studies erbB antagonists consistently inhibit tumor growth (completely at
high doses), but they do not appear to induce marked tumor regression. This may explain why
herceptin (like tamoxifen) is most effective when used to prevent recurrence in the adjuvant
setting and why studies of single-agent EGFR antagonists have yielded disappointing results in
patients with bulky metastatic disease. Indeed, preclinincal studies of single-agent herceptin or
various EGFR antagonists (ZD1839/Iressa, OSI-774/Tarceva, C225/Erbitux) have demon-
strated that they consistently reduce tumor cell proliferation (as measured by Ki-67, PCNA, or
BrdU staining) but have more variable effects on apoptosis.110 Similarly, the preliminary results
that have been obtained to date in neoadjuvant trials with these agents have demonstrated that
they tend to inhibit proliferation without inducing substantial increases in apoptosis.112

It has recently been appreciated that these effects on tumor cell proliferation can have im-
portant (negative) implications for erbB-based conbination therapy with cytotoxic agents. Some
of this concern was spawned by the disappointing results of combinations of EGFR antago-
nists plus taxanes or other cell cycle-active agents in large clinical trials in patients with nonsmall
cell lung cancer, where the combinations performed no better than single-agent chemo-
therapy.113,114 Because taxanes induce apoptosis via a cdc2-dependent mechanism in cells that
are first arrested in M phase,95 the p27-dependent growth arrest induced by erbB antagonists
in cancer cells at the G1/S restriction point might actually interfere with apoptosis induced by
taxanes and any other agent that is most active at other phases of the cell cycle. Indeed, a recent
study concluded that intermittent, high-dose therapy with Iressa given two days before docetaxel
was more effective than continuous exposure to both agents, in part because higher doses of
Iressa could be delivered and in part because cell cycle interference was avoided.115

Targeting Core Apoptotic Pathway Components

TRAIL and Agonistic Anti-TRAIL Receptor Antibodies
TNF-related apoptosis-inducing ligand (TRAIL) is a cell surface-associated cytokine that

was isolated based on its homology to tumor necrosis factor (TNF).116 However, unlike TNF
or TNF’s other cell death-associated homologue, FasL, systemic administration of TRAIL at
physiologically relevant doses does not result in detectable toxicity in rodents or primates.117

TRAIL stimulates apoptosis via the so-called “extrinsic”, or death receptor-mediated pathway.
Specifically, upon engagement by trimeric ligand, TRAIL’s two receptors [known as TRAIL
receptors 1 and 2 (TR1, TR2) or death receptors 4 and 5 (DR4, DR5)]118,119 bind to a cytoso-
lic adaptor protein, Fas-associated death domain (FADD),120 which recruits two of the caspases
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(8 and 10)121,122 to the activated receptor (Fig. 3). This complex of aggregated death receptor(s),
FADD, and caspase-8/10 is known as the death-inducing signaling complex, or DISC,123 and
it functions to promote caspase activation via aggregation. Once activated, caspases 8/10 can
either directly activate caspases 3 and 7 to stimulate cell death (in so-called Type I cells),124 or
they interact with the mitochondrial (intrinsic) pathway of apoptosis (in Type II cells)124 by
promoting cytochrome c release to activate caspase-9 and stimulate cell death. The latter is
accomplished by caspase-mediated cleavage of the BH3 protein, Bid,125,126 forming a trun-
cated product that is capable of directly activating Bax and Bak and restructuring mitochon-
dria to induce cytochrome c release.127 Although many different properties might contribute
to make cells Type I or Type II, most solid tumors appear to be Type II cells, and recent work
suggests that direct caspase-8/10-mediated caspase-3/7 activation is limited in these cells by the
expression of polypeptides (XIAP, / -crystallin) that function to attenuate caspase-3 activa-
tion.128-131

Approximately half of human breast cancer cell lines are highly sensitive to TRAIL
receptor-mediated apoptosis at baseline,129,132 and apoptosis sensitivity can be augmented in
many of the rest by combining TRAIL with conventional or investigational anti-cancer thera-
pies.132 These observations prompted parallel efforts by the University of Alabama SPORE
in Breast Cancer132 (“TRA-8”) and Human Genome Sciences, Inc. (HGS)133 (“HGS-ETR1”,

Figure 3. Downstream effectors of TRAIL receptor-mediated cell death. TRAIL and agonistic anti-TRAIL
receptor antibodies oligomerize TRAIL’s receptors (death receptors 4 and 5), leading to recruitment of
the adaptor protein, FADD (Fas-associated death domain) and procaspases 8 and 10 and caspase acti-
vation. Active caspase-8 can then either directly promote activation of caspase-3 (Type I cells) or can
acdtivate the so-called “intrinsic” pathway by cleaving Bid, which then translocates to mitochondria to
promote cytochrome c release. Inhibitors of apoptosis proteins (IAPs), and in particular XIAP, appear to
dampen caspase-8-mediated activation of caspase-3. Thus, inhibitors of XIAP and SMAC peptides and
mimetics are particularly potent TRAIL-sensitizing agents because they may lower the threshold for
direct caspase-8-mediated activation of caspase-3.
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“HGS-ETR-2”, and “HGS-TR2J”) to develop antibodies that are capable of crosslinking
TRAIL’s receptors to stimulate cell death. Subsequent in vivo studies have confirmed that
recombinant TRAIL and these agonistic anti-DR antibodies display potent growth inhibi-
tory activity in human breast cancer xenografts without detectable toxicity.132 Furthermore,
their in vivo activities are greatly enhanced by combining them with conventional chemo-
therapy.132 Phase I and II clinical trials with the HGS antibodies have been open since 2003,
and a consortium of biotechnology companies (Amgen, Genentech, and Immunex) cooper-
ated to open Phase I trials employing recombinant TRAIL in 2005. There are advantages
and disadvantages associated with the antibodies and rhTRAIL that make these trials far
from redundant. The antibodies have very long serum half lives (> 1 week), which enables
them to be delivered less frequently and in a more sustained fashion. However, each anti-
body only engages one of TRAIL’s two receptors, and it is possible that sustained exposure of
normal cells to death receptor signaling will produce more substantial toxicity than transient
exposure. On the other hand, recombinant TRAIL is cleared from the serum very rapidly,
necessitating a more frequent (daily) dosing schedule. Perhaps because of this, preclinical
studies demonstrated that mice and primates tolerate very high doses of rhTRAIL (100 mg/
kg) without toxicity, and in fact no MTD has been reached to date. Some evidence is emerg-
ing that less frequent dosing with higher doses of rhTRAIL are more efficacious than chronic
exposure to lower doses.

Although there is considerable enthusiasm for TRAIL and the agonistic antibodies as
candidate therapies for refractory breast cancer, it seems unlikely that single-agent TRAIL
will display substantial clinical activity in this population of heavily pretreated patients. Thus,
identifying the most promising combination regimens and evaluating their potential toxici-
ties in preclinical studies remains a high research priority. A wide array of agents are capable
of promoting additive or synergistic enhancement of apoptosis in human breast cancer cells
in vitro, and in some cases xenograft studies have been performed which demonstrate that
these combination regimens are tolerated in vivo (Table 1). Importantly, most of these
TRAIL-sensitizing agents are cytostatic, and in fact evidence has been advanced which sug-
gests that tumor cell sensitivity to TRAIL may be highest in the G1 phase of the cell cycle.134,135

It may be possible to evaluate all of these combinations in clinical trials in patients, but this
will certainly prove to be expensive, so prioritizing them in terms of their promise should be
attempted. Furthermore, some (or perhaps all) of these combinations will unmask toxicity
in normal tissues, and understanding these toxicity profiles will be important to fully exploit
TRAIL’s anti-cancer activity. For example, we have found the proteasome inhibitor bortezomib
(Velcade, PS-341) to be an extremely potent TRAIL-sensitizing agent in vitro and in vivo,
but simultaneously combining TRAIL with bortezomib (at its MTD) results in rapid lethal-
ity. Although a detailed characterization of the target tissue(s) involved is underway, this
toxicity can be avoided by decreasing the dose of bortezomib or by staggering dosing
(bortezomib followed by TRAIL 16 h later).

Table 1. TRAIL-sensitizing agents

Compound References

Chemotherapy 184-190
HDAC inhibitors 191-198
Retinoids 199, 200
PPAR  agonists 201-203
Flavopiridol 204
Herceptin 205
Velcade 133, 135, 206-215



Breast Cancer Chemosensitivity40

Bcl-2 Family Proteins
As discussed earlier, members of the Bcl-2 family usually control commitment to apoptotic

cell death, and as such they make extremely attractive therapeutic targets. As the oldest mem-
ber of the family, most previous efforts have been directed towards targeting Bcl-2 itself, al-
though as discussed above it is not clear that Bcl-2 is the most relevant anti-apoptotic family
member in breast cancer. The first attempts to target Bcl-2 as a therapeutic approach in cancer
involved the use of specific antisense oligonucleotides, usually identified through a combina-
tion of computer-based predictive modeling and empiricism, that partially downregulate ex-
pression of bcl-2 mRNA in whole cells.136-138 One such reagent (Genasense/oblimersen, devel-
oped by Genta, Inc)137,139 is currently being evaluated for single agent efficacy in Phase III
clinical trials in patients with CLL, and it is being combined with various therapeutic modali-
ties in Phase II trials in a variety of different disease sites, including breast cancer. Preliminary
findings in prostate cancer and multiple myeloma suggest that the compound has biological
and clinical activity.140,141 Another antisense product (SPC-2996), developed by Santaris Pharma,
is being evaluated in Phase II and II trials in patients with CLL in Europe (see www.santaris.com).
Unfortunately, Genasense failed to reach the primary survival endpoint in a randomized, open
label Phase III trial in melanoma when given with dacarbazine compared to dacarbazine alone,142

dampening enthusiasm for the approach somewhat. However, whether or not Bcl-2 plays an
obligate role in the progression of melanoma has not been established, so the negative trial
results may be more a problem of an incomplete understanding of tumor biology rather than
to a poor therapeutic approach.

Clinical experience with Genasense raises several other issues that are important to the
further development of antagonists of Bcl-2 and other anti-apoptotic members of the family.
First, considering that these proteins function by inhibiting the actions of pro-apoptotic mem-
bers of the family, it seems likely that effective inhibition of their expression will sensitize most
cancer cells to cytotoxic stimuli but will not directly result in apoptosis. Second, it will be
important to develop pharmacodynamic assays that are capable of measuring their effects on
their targets, either in biopsies or via noninvasive strategies, to ensure that target inhibition was
efficient. Third, and most importantly, there is probably considerable redundancy among mem-
bers of the family, such that strategies designed to be highly specific might fail because other
members compensate for loss of one family member’s expression. Evidence in support of this
concept can be found in preclinical studies with Bcl-2 or Bcl-XL transgenics, where modula-
tion of one of the proteins in thymocytes led to compensatory changes in the other.143 Finally,
as touched upon above, a better understanding of the biological relevance of each family mem-
ber to disease progression and therapeutic resistance in breast cancer must be obtained. Al-
though preclinical studies can aid in this effort, well-designed neoadjuvant trials with these
agents in patients could provide the most valuable information about the importance of
inter-patient heterogeneity and the factor(s) that dictate reliance upon one family member
versus another.

A newer, more sophisticated approach involves using gene therapy to drive expression of
proapoptotic Bcl-2 family proteins.144 Such strategies have been developed and evaluated for
Bax,145 Bak,146 and Bik147 in preclinical models, where effective gene transfer has almost in-
variably produced very efficient induction of cell death. The major concern associated with
these approaches is that overexpression of Bax and Bak can be lethal to packaging cells144 and
to normal tissues. To address this concern, various groups are employing cancer-specific pro-
moters to selectively drive high-level transgene expression.148 Although concerns about pro-
moter “leakiness” and gene transfer efficiency remain, preclinical studies provide strong evi-
dence for the feasibility of this approach.148 With improvements in viral delivery systems systemic
gene transfer may be possible within the context of metastatic disease. Again, because Bax and
Bak probably need to be “activated” by a proapoptotic signal to be optimally effective, it is
likely that the biological effects of Bcl-2 family-directed gene therapy will be best exploited by
combining these agents with cytotoxic stimuli (conventional chemotherapy, TRAIL, etc).
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A third emerging approach to target Bcl-2 family proteins involves the development of
so-called “BH3 mimetics”.149,150 These peptide-based compounds and small molecules are
designed to either disrupt the interactions between anti-apoptotic members of the Bcl-2 family
and pro-apoptotic members of the family or directly activate Bax and Bak. Proof-of-principle
for this approach came from studies with isolated BH3 domains themselves, and this work
demonstrated that some BH3 domains, such as those found in Bid or Bim, function as direct
activators of Bax and Bak, triggering mitochondrial pore formation and release of cytochrome
C and SMAC via a BH3-dependent mechanism.149,150 Other BH3 proteins, such as Bad or
Bik, cannot directly activate Bax or Bak. Rather, they function as facilitators of apoptosis by
virtue of their abilities to bind to Bcl-2 and other anti-apoptotic members of the Bcl-2 family,
thereby displacing the direct activators such as Bid or Bax so that they can directly promote
cytochrome c release.149,150 There are clearly conceptual strengths and weaknesses associated
with mimicking the direct activators or the facilitators. Although the direct activators would be
expected to trigger cell death independently of any other signal, this could produce significant
systemic toxicity that might be most severe in cells that possess the lowest thresholds for apoptosis,
which might include normal cells. Conversely, while the Bad or Bik mimetics might require a
second signal for efficient cell death induction, one could imagine developing agents that selec-
tively target only the anti-apoptotic Bcl-2 family protein that is required for survival in a given
tumor. Thus, given the functional redundancy among members of the family, this might repre-
sent a strategy to induce selective tumor cell killing.

Several groups have developed modified (cell-permeant) BH3 peptides that display promis-
ing activity in preclinical models.151-153 In the most prominent example of the feasibility of
such an approach, Korsmeyer’s group synthesized Bid BH3 analogs that contained

, -disubstituted unnatural amino acids to stabilize the critical -helix found within the Bid
BH3 domain, thereby making it more protease resistant and cell permeant.153 These so-called
“stapled” BH3 peptides directly induced apoptosis in whole cells and inhibited the growth of
leukemia xenografts in vivo, prolonging survival.153 Importantly, this was accomplished with-
out systemic toxicity, addressing one of the concerns raised above. Others have shown that
other strategies can enhance the membrane permeability of BH3 peptides, allowing them to
enter cells and induce apoptosis.151,152

Past experience with nonantibody proteins and peptides in vivo has been mixed. Liposomal
encapsulation and other approaches can enhance their serum half lives, but overall they tend to
display relatively poor pharmacokinetic properties and low bioavailability. Not withstanding
the preclinical successes described above, it is clear that the development of small molecule
approaches to target Bcl-2 family proteins would receive significantly more enthusiasm from
industry. High throughput screening strategies have already identified several small molecules
(gossypol,154-156 antimycin A,157 chelerythrine,158 and others) that bind to Bcl-2, Bcl-XL, and
Bcl-w with low micromolar affinity. These compounds can induce apoptosis in tumor cells in
vitro and in some cases in vivo, but their clinical applicability will probably be limited because
they do not inhibit their targets in the nanomolar range.

Recently, a more potent Bcl-2 family antagonist was developed by Abbott laboratories in
collaboration with a large group of very experienced academic investigators.159 Called ABT-737,
the compound binds to Bcl-2, Bcl-XL, and Bcl-w with subnanomolar affinity.159 It appears to
function as a Bad mimetic (i.e., facilitating rather than directly causing apoptosis), and it ex-
hibits synergistic cytotoxicity with chemotherapeutic agents and radiation in vitro.159 Impor-
tantly, it also displayed single-agent activity in lymphoma and leukemia cell lines, primary
patient-derived cells, and small cell lung cancer (SCLC) cell lines, all of which probably de-
pend on the drug target(s) for their survival.159 Finally, dose-intensive therapy (100 mg/kg/day
for 3 weeks) with ABT-787 in mice bearing subcutaneous human SCLC xenografts produced
complete regressions and cures in a high percentage of mice, and lower doses of the drug
(25-75 mg/kg/day) still displayed significant anti-tumor activity.159 Clinical trials with ABT-787
in lymphoma, leukemia, and SCLC are scheduled to open soon. Together with the ongoing
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trials employing TRAIL and agonistic anti-DR antibodies, these trials will be watched very
closely as an indication of how effective apoptosis-targeting therapy will be relative to other
approaches. In spite of the high scientific/conceptual enthusiasm, many other recent biological
approaches have failed to live up to their preclinical potential. Pharmacodynamic studies de-
signed to confirm drug targeting and biological effects may prove to be critical in the evalua-
tion of the overall approach if clinical activity is not observed.

Targeting IAPs
The inhibitors of apoptosis proteins (IAPs) are the other direct apoptotic regulators that

control commitment to cell death. X-linked inhibitor of apoptosis protein (XIAP) is the
best-studied mammalian member of the family160 and is an attractive therapeutic target.161

Although it probably does not function exclusively as a caspase inhibitor, its ability to inhibit
caspases 3,7 and 9 is well established and the structural elements involved have been defined
through mutagenesis and structural analyses. XIAP’s BIR2 domain and the linker between
BIR1 and BIR2 are responsible for inhibition of caspases 3 and 7,162 with the linker occupying
the caspase active site.163,164 In contrast, XIAP inhibits caspase-9 via its BIR3 domain, which
binds the caspase-9 monomer and inhibits aggregation-dependent activation.165,166 Smac pro-
motes apoptosis by competing with caspase-9 for binding to the BIR3 domain, releasing caspase-9
to participate in apoptosome formation.167,168 A recent report presented evidence that the level
of XIAP expression is critical in dictating whether a given tumor cell is Type I or Type II with
respect to TRAIL-induced apoptosis; high level expression of the protein may limit caspase-8’s
ability to directly activate caspase-3/7, thereby making cell death more dependent on the
tBid-dependent mitochondrial amplification loop.128

While XIAP’s function as a caspase inhibitor is well established, the role of its homologue
survivin is less clear.169 Studies with antisense and siRNA have clearly established that inhibiton
of survivin expression sensitizes cancer cells to apoptosis,169 but it is not clear that this inhibi-
tion is due to direct binding to caspases. Rather, survivin expression is tightly linked to mitosis
(it associates with the mitotic spindle),170 and it is possible that survivin inhibitors (like taxanes
and vinca alkaloids) promote apoptosis indirectly by interfering with mitosis.

Proof-of-principle evidence for the potential therapeutic efficacy of XIAP inhibitors has
come from studies with XIAP antisense and siRNA constructs, which induce apoptosis on
their own in some cancer cells and synergize with TRAIL in others.171-176 Cell-permeable SMAC
peptides enhanced the pro-apoptotic effects of conventional chemotherapeutic agents in vitro
and in vivo, and Smac peptidomimetics have also been developed that induce caspase activa-
tion in vitro and inhibit the growth of tumor xenografts in vivo. Smac peptides may be particu-
larly effective in promoting TRAIL-induced apoptosis for the reasons described above.177 Fi-
nally, several small molecule inhibitors of XIAP that induce apoptosis and bind to the XIAP
BIR3 domain have been described.178-180 At present, all of these approaches are still in the
preclinical development stage, and most of the in vivo studies conducted to date involved
intratumoral injection of the agents. Therefore, their potential systemic activity and toxicity
remain to be explored.

Other Promising Targets
Several other pathways that are disrupted in cancer cells have major impacts on cell death

sensitivity. Of these, the ones that exhibit the most obvious importance are the p53 and PI-3
kinase/AKT pathways. Early work established that conventional chemotherapeutic agents and
radiation induce apoptosis via p53-sensitive mechanisms, and loss of p53 pathway integrity in
tumor cells renders them resistant to multiple triggers of cell death.181 Conversely, autocrine
growth factor receptor signaling, loss of the lipid phosphatase PTEN, and other defects com-
monly lead to constitutive activation of AKT in tumors, and PI3 kinase/AKT inhibitors sensi-
tize a variety of different cancer cells to death.182,183 However, what distinguishes p53 and
AKT from members of the Bcl-2 and IAP families as therapeutic targets is that defects in the
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former clearly have effects on cell cycle progression and metabolism that are just as significant
as their effects on cell death. Thus, restoration of wild-type p53 via gene therapy or inhibition
of AKT’s target, mTOR, with small molecules consistently leads to inhibition of cell cycle
progression. It is possible that as new information about the molecular mechanisms underlying
the effects of Bcl-2 and IAP family polypeptides emerges their “side effects” on other aspects of
cellular physiology will be more greatly appreciated as well.

Summary and Conclusions
With respect to currently available therapies for breast cancer, the bulk of preclinical and

clinical evidence (mostly from neoadjuvant studies) indicates that induction of apoptosis is a
major determinant of clinical response in human breast cancer. Thus, minimally invasive and
noninvasive strategies to monitor the effects of therapy on apoptosis could aid in the optimiza-
tion of therapeutic benefit, and strategies to reverse molecular defects that limit apoptosis hold
great promise in enhancing the effects of cytotoxic therapy. In contrast, although endocrine
therapy and growth factor receptor antagonists targeting members of the erbB family may
promote apoptosis in some preclinical models, most of the available evidence from preclinical
in vivo models and neoadjuvant clinical trials suggests that they are cytostatic rather than cyto-
toxic, and they may even reduce baseline levels of apoptosis as well as apoptosis induced by
conventional therapies. Thus, attempts to combine them with conventional cytotoxic agents in
bulky disease should be pursued with caution. However, emerging evidence suggests that the
pro-apoptotic effects of TRAIL may be enhanced by cytostatic therapy, a possibility that should
be explored further in appropriate preclinical models.

Of the core apoptotic pathway components, only Bcl-2 has been evaluated as a therapeutic
target in primary tumors, and the only approach evaluated involved antisense-mediated
downregulation of the protein. Given concerns about the efficacy and potential side effects
associated with the use of antisense oligonucleotides, the results obtained in single agent trials
Bcl-2 antisense in hematological tumors were actually quite encouraging. However, it appears
that better, small molecule-based strategies to target Bcl-2 are close to being ready for clinical
evaluation and that combining them with direct conventional and investigational cytotoxic
agents makes good sense. It is possible that the complex role of Bcl-2 in breast cancer will make
it a suboptimal choice for therapeutic targeting in the disease. However, if small molecule Bcl-2
inhibitors prove effective in diseases that clearly rely on Bcl-2, then it is likely that other agents
will be developed that will target other members of the Bcl-2 family, and ultimately a strategy
to tailor therapy to a given tumor will emerge from ongoing genomics and proteomics efforts.

Among mammalian members of the IAP family, XIAP is probably the most attractive current
therapeutic target. Although the applicability of XIAP inhibitors as direct apoptosis inducers may
be limited by the fact that cytochrome c release (which acts upstream of their actions) is critically
important for the activation of most proapoptotic pathways, their potential to synergize with
conventional agents and TRAIL also makes them very attractive targets in cancer. Because they
contain structural elements that possess clear functions that may be unrelated to caspase inhibi-
tion (particularly domains that regulate ubiquitylation), it will be interesting to observe how IAP
inhibitors affect cellular processes that are not directly related to cell death.
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CHAPTER 4

Cell Cycle Deregulation in Breast Cancer:
Insurmountable Chemoresistance or Achilles’ Heel?
Laura Lambert and Khandan Keyomarsi*

Abstract

Deregulation of the G1 cyclin, cyclin E, has been shown to be both the most powerful
predictor of prognosis in early stage breast cancer as well as a significant determinant
of tumor aggressiveness.1,2 It may also contribute to treatment failure due to chemore-

sistance. Because some form of cell cycle deregulation is present in all malignant cells,3 increas-
ing understanding of these processes is starting to provide new opportunities to overcome the
cells’ resistance mechanisms.

One particular form of cyclin E deregulation, the generation of hyperactive low molecular
weight isoforms, is especially intriguing. Because only tumor cells contain the machinery nec-
essary to generate these isoforms,4 they not only provide a mechanism of targeting critical cell
cycle events, but their presence may also provide both a means of increased specificity for
targeting malignant cells, as well as an objective measure of response.

This review describes the mechanisms of resistance to commonly used systemic therapies for
the treatment of breast cancer, with particular respect to the role of the cell cycle. The mechanisms
and effects of the deregulation of cyclin E in breast cancer are reviewed and novel approaches to
circumventing chemoresistance through abrogation of the malignant cell cycle are proposed.

Introduction
Tumor resistance to systemic antineoplastic therapy is the main cause of failure of breast

cancer treatment. For early stage breast cancer, adjuvant endocrine and cytotoxic agents have
resulted in only an 8-37% reduction in mortality.5,6 For patients with more advanced disease
the success rate is even lower. Investigation into the means by which tumor cells resist cytotoxic
therapies have revealed multiple mechanisms of drug resistance and efforts to devise ways of
circumventing resistance are currently underway.

The cytotoxic mechanisms of most conventional chemotherapeutic agents used in the current
treatment of breast cancer (doxorubicin, cyclophospamide, 5-flourouracil, methotrexate and the
taxanes) are attributable to their damaging or inhibitory effects on DNA. However, as illustrated
by the high rate of resistance, this approach is limited in a number of ways. First it is highly
nonspecific. Second, these agents rely upon a relative rate of cell division to establish a cytotoxic
threshold to distinguish between rapidly dividing malignant cells and normal cells. Another limi-
tation is the nonlethality of the effect of the drug on the DNA with the ultimate outcome (sus-
ceptibility versus resistance) dependent upon the status of the cell’s mechanisms of DNA repair
and apoptosis. Because of the redundancy of the cell salvage pathways, continuing to use conven-
tional approaches only prolongs the inevitable occurrence of drug resistance (Table 1).
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The sine quo non of the malignant phenotype is deregulation of the cell cycle.3 However,
while deregulation of the tightly controlled cell cycle events clearly leads to malignant transfor-
mation, it also provides intriguing targets for alternative therapeutic approaches to overcome
the problem of chemoresistance. One target of particular interest for this approach is the cyclinE/
cyclin-dependent kinase 2 (Cdk2) complex and the G1/S transition of the cell cycle.

The G1/S transition is regulated through the cooperation of two essential, parallel cell cycle
pathways, RB and Myc, which converge on the control of the G1 cyclin-dependent kinase

Table 1. Response rates and possible mechanisms of resistance in neoadjuvant
chemotherapy and endocrine regimens for breast cancer

Neoadjuvant
Chemotherapy/ Possible
Endocrine Mechanism(s)
Regimen Response of Resistance Ref.

Adriamycin Pathologic Adriamycin: 19-27,
(doxorubicin) and   complete 10%   Increased cellular efflux 31-42,
cyclophosphamide Objective   Alterations in topoisomerases 117
(AC)   clinical 70%   Aberrant intracellular localization

Cyclophosphomide:
  Intracellular inactivation
  Increased conjugation

Adriamycin and Pathologic Taxol: 87-92,
Taxol (paclitaxel)   complete 16%   Increased cellular efflux 117
(AT) Objective   Impaired microtubule polymerization

  clinical 89%   Microtubule instability

Flourouracil, Pathologic Flourouracil: 43,44,
Adriamycin, and   - complete 24%   Reduced anabolism 50-56,
cyclophosphamide   - partial 55%   Increased catabolism 118
(FAC) Clinical   Reduced FdUMP affinity

  - complete 18%   Increased thymidylate synthase
 - partial 82%   Mode of administration

Taxol Pathologic (See above) 118
  - complete 24%
  - partial 55%
Clinical
  - complete 18%
  - partial 82%

Tamoxifen Objective Tamoxifen: 87-92,
  clinical 17-36%   Her2 over-expression 119-124

  ER-negative tumor

Aromatase inhibitors Objective clinical Aromatase inhibitors: 114,
  Letrozole   Letrozole 30-55%   Lack of estrogen-response 119-124
  Anastrozole   Anastrozole 21-43%
  Exemestane   Exemestane 41%

Trastuzumab Objective Trastuzumab: 116,125
(Herceptin)*   - complete 6%   Decreased PTEN

  - partial 20%

*Used for treatment of metastatic breast cancer.
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- Cdk2.7-12 Cdk2 activity in the G1/S transition is both rate-limiting and necessary for cell
replication, and it is dependent upon appropriate interaction with the G1 cyclin, cyclin E.13,14

A number of recent studies have suggested that deregulation of cyclin E plays a significant role
in the aggressiveness of breast cancer and other malignancies.1,2,15-18 In fact, a form of cyclin E
deregulation caused by the generation of recently identified hyperactive low molecular weight
(LMW) isoforms has been shown to be the most powerful predictor of outcome in patients
with early stage breast cancer.2 Because only tumor cells possess the machinery to generate
these forms,4 they provide both a potential means of identifying malignant versus normal cells
as well as a multi-leveled target within an essential cell cycle pathway. For these reasons thera-
pies designed to take advantage of the deregulation of cyclin E and the G1/S transition are
appealing. This review describes the mechanisms of resistance to commonly used systemic
therapies for the treatment of breast cancer, with particular respect to the role of the cell cycle.
The mechanisms and effects of the deregulation of cyclin E in breast cancer are reviewed and
novel approaches to circumventing chemoresistance through abrogation of the malignant cell
cycle are proposed.

Conventional Chemotherapies of Breast Cancer

Anthracyclines
Anthracycline-based chemotherapy is the current standard of care in breast cancer treat-

ment. Anthracyclines (doxorubicin, epirubicin) are intercalating, topoisomerase II poisons that
bind to double-stranded DNA causing structural changes which interfere with DNA and RNA
synthesis. Multiple forms of resistance to these drugs have been identified. Because many of
these agents are natural products, resistance by cellular efflux mechanisms, such as the mdr1,
mrp1 and mrp2 gene product members of the ATP-binding cassette (ABC) family, have been
demonstrated.19-21 In addition, alterations in topoisomerases, including point mutations as
well as defects in phosphorylation, have been described in some drug-resistant cell lines.22,23

Furthermore, aberrant intracellular localization (cytoplasmic) has been implicated by decreas-
ing the potential for DNA binding.24-27 Finally, although not yet clearly demonstrated, be-
cause these agents function by causing structural DNA damage which should ultimately lead
to apoptosis, alterations in the apoptotic proteins of the cell (e.g., p53 and the Bcl-2 family),
have been suggested to confer drug resistance.28

Alkylating Agents
The alkylating agent cyclophosphamide is frequently used in anthracycline-based chemo-

therapy regimens for breast cancer. A member of the nitrogen mustard family, cyclophospha-
mide activation requires cytochrome P450-mediated oxidation in the liver to produce
4-hydroxycyclophosphamide. Relatively nonpolar, 4-hydroxycyclophosphamide readily diffuses
into target cells where its tautomer, aldophosphamide, decomposes to the active alkylating
agent, phosphoramide mustard.29 At least three mechanisms of resistance to cyclophospha-
mide have been identified. Because cyclophosphamide enters the cell through diffusion, it is
not a known substrate for the multiple-drug-resistance (MDR) export systems.30 Intracellular
inactivation of cyclophosphamide by its natural detoxifier, aldehyde dehydrogenase, has been
shown not only to protect normal cells from the cytotoxicity of this agent, but also to confer
resistance in tumor cells.31-36 In addition, increased 4-hydroxycyclophosphamide glutathione
conjugation, either spontaneous or through enhanced transcription of glutathione S-transferase,
has been shown to contribute to cyclophosphamide resistance.37-41 Finally, resistance related to
the cell’s ability to either repair DNA interstrand cross-links or to arrest in the G2 phase of the
cell cycle in response to the alkylating damage has also been demonstrated.42
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Antimetabolites
The pyrimidine analog 5-flourouracil (5-FU) is used in the management of many epithelial

malignancies, including breast cancer. Potential mechanisms of cytotoxicity caused by 5-FU
include RNA incorporation,43,44 dTTP depletion by thymidylate synthase inhibition,45 DNA
incorporation, or DNA damage due to excision of uracil or 5-FU.46-49 Resistance to 5-FU
therapy has been demonstrated in the form of reduced anabolism of the analog to the nucle-
otide form either through altered condensation with pyrophosphorylribose-5-PO4 (PRPP) or
the pyrimidine salvage pathway.43,44 In addition, increased catabolism of 5-FU due to elevated
dihydropyrimidine dehydrogenase (DPD) activity can lead to decreased sensitivity and has
been shown to be a predictor of decreased response in some tumor types.50,51Other mecha-
nisms of resistance have been related to changes in thymidylate synthase (reduced affinity for
FdUMP,52 increased rate of synthesis or activity53), and the mode of exposure to the drug
(enteral versus parenteral).54-56

Folate Antagonists
Another important agent in the management of breast cancer is the folate antagonist,

methotrexate (MTX). MTX stoichiometrically inhibits the enzyme dihydrofolate reductase
(DHFR) leading to decreased availability of thymidine, decreased DNA synthesis and ulti-
mately cell death.57 Resistance to MTX can be either intrinsic or acquired. A significant
mechanism of intrinsic resistance to MTX is reduced formation of long-chain MTX
polyglutamates due to decreased folylpolyglutamate synthetase (FPGS) activity which can
lead to both decreased affinity for DHFR as well as increased cell efflux.58-62 Other mecha-
nisms of intrinsic resistance to MTX include impaired transport through the reduced folate
carrier (RFC),63,64 and increased DHFR levels due to increased levels of the transcription
factor E2F which occur in the absence of the tumor-suppressor retinoblastoma protein.65-67

Acquired mechanisms of resistance to MTX include increased DHFR activity due to ampli-
fication of its gene,68-74 altered binding of MTX to DHFR due to DHFR mutations,75-79

decreased MTX uptake secondary to decreased long-chain polyglutamate formation, and
decreased influx through the RFC.80

Microtubule-Targeting Agents
Recently added to the breast cancer chemotherapy armamentarium are the taxanes (paclitaxel,

docetaxel) which are naturally-occurring antimicrotubule agents. Taxanes have been shown to
prevent depolymerization of the microtubule by binding and stabilizing the molecular confor-
mation of the protofilament of the microtubule.81 This stabilization causes a mitotic arrest at
the metaphase/anaphase juncture.82 The mechanisms of cell death caused by the taxanes in-
clude apoptosis through the activation of caspase 3 and 8 as well as a noncaspase activated
mechanism of DNA fragmentation that causes apoptosis.83-86 Multiple possible mechanisms
of resistance to taxane therapy exist including increased expression of the mdr1 gene and Pgp
efflux pump,87 structural alterations in the - and - tubulins which impair microtubule poly-
merization,87-92 and dynamic instability of the microtubule caused by increased expression of
the III isotype of  tubulin.90-92

Hormonal and Targeted Therapies
Because of the important role of estrogen in the development of breast cancer, endocrine

therapy, either in the form of anti-estrogens or estrogen deprivation, plays a significant role in
the medical treatment of breast cancer. With respect to the cell cycle, estrogen has been shown
to have a regulatory role of the molecules involved in the G1/S phase progression, including
the expression and function of c-Myc93-95 and cyclin D1.96,97 Furthermore, other studies have
demonstrated estrogen-mediated inhibition of the generation of the cyclin-dependent kinase
inhibitor (CKI) p21, resulting in increased cyclinE/Cdk2 complex activity.96,98,99 Deregula-
tion of any of these cell cycle regulators may contribute to increased anti-estrogen resistance.
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In addition, increasing evidence suggests that breast cancer growth may also be influenced
by the coordinated actions of the estrogen receptor (ER) and the HER2 growth factor receptor
signaling pathway.100 Estrogen binding of the ER induces a series of both membrane-bound
(G-protein-coupled receptor activation101) and nuclear events (phosphorylation of the recep-
tor, conformational alteration, receptor dimerization, receptor complex-promoter binding, and
recruitment of coactivators).102 The nuclear events ultimately lead to the transcriptional regu-
lation of the ER target genes.103,104 The membrane-bound events have been shown to lead to
the paracrine or autocrine activation of the HER2 signaling pathway through the release of
epidermal growth factor (EGF).105 Activation of the HER2 signaling pathway initiates a kinase
signaling cascade which has been shown to augment the transcriptional activation potential of
ER resulting in enhanced cell proliferation and survival.105-107 This “crosstalk” between the ER
and the HER2 signaling pathway may also be one of the major mechanisms for resistance to
endocrine therapy in breast cancer treatment.105,108,109

The current mainstay of anti-estrogen therapy, tamoxifen, is known to display partial
agonist-antagonist activities in different tissues and cells, depending upon the various ER
coactivators and corepressors present.110 Like estrogen, tamoxifen also has both nuclear and
membrane-bound effects.105 In addition to preventing the binding of estrogen to the ER,
under favorable conditions such as negative or very low levels of HER2, tamoxifen’s effects are
primarily antagonistic and nuclear. In this setting, the ER conformation induced by the bind-
ing of tamoxifen leads to the recruitment of corepressors and deacetylases which inhibit tran-
scriptional activity. On the other hand, in the setting of abundant HER2, evidence suggests
that agonist effects of tamoxifen may predominate through membrane-bound events which
lead to HER2 signaling activation, tumor growth and resistance to anti-estrogen therapy.105,110

Options to overcome anti-estrogen therapy resistance in breast cancer patients include two
currently used therapies: estrogen deprivation through aromatase inhibition and inhibition of
HER2 signaling by the monoclonal antibody receptor tyrosine kinase inhibitor—trastuzumab
(Herceptin). Aromatase inhibitors (AIs) are a group of agents that inhibit the steroid hydroxy-
lations involved in the conversion of androstenedione to estrone, thereby lowering both the
circulating and intratumoral amounts of estrogen available to bind the ER.111 In theory, these
agents should be able to abrogate both the membrane-bound HER2 activating ER events, as
well as the nuclear steroid signaling events. In support of this theory, clinical trials have demon-
strated the superiority of AIs over tamoxifen in both HER2-overexpressing breast cancers as
well as ER-positive/PR-negative tumors.112,113 Resistance to AIs is thought not to be due to
failure of these agents to suppress estradiol, but rather through resistance to the hormone it-
self.114

Trastuzumab is a humanized monoclonal antibody that specifically binds to the extracellu-
lar domain of the HER2/neu tyrosine kinase receptor. Down-regulation and inactivation of
the receptor by the antibody occur through multiple mechanisms including accelerated degra-
dation, interference with the hetrodimerization of the receptor, and targeting of the immune
system to HER2 overexpressing cells.115 In addition, trastuzumab has been shown to stabilize
and activate the PTEN tumor suppressor leading to down-regulation of the P13K-Akt signal-
ing pathway and initiating cell cycle arrest.116 Recently, Nagata et al demonstrated that when
the expression of PTEN is reduced, the antitumoral effects of trastuzumab are impaired. Based
on these findings, the authors predicted and confirmed that clinical resistance to trastuzumab
correlated with low levels of PTEN.116

The Cell Cycle as a Therapeutic Target in Breast Cancer

Deregulation of G1/S Transition
Cell division is a complex and orderly process divided into four phases involving cell growth

and monitoring (G1 and G2 phase), DNA synthesis (S phase), and mitosis (M phase).126 In
the settings of favorable cellular and tissue environments, cells can initiate their own division
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and enter a mitogen-dependent growth phase (early G1). Upon entering the cell cycle, the
order and quality of the cell cycle events are monitored and ensured by a series of check-
points.127 Commitment to genome replication and eventual cell division occurs late in the G1
phase at a period defined as the restriction point.128 Recent studies have suggested that this
molecular “point of no return” revolves around the activity of Cdk2 and its G1-associated
cyclin, cyclin E, which is also the point of convergence of the RB (p16-Cdk4/6-cyclin D-pRb)
and Myc proto-oncogene pathways.7-12

Cdk2 belongs to a family of serine and threonine protein kinases whose substrates include
intracellular, cell cycle-regulatory proteins that control the major cell cycle events: DNA repli-
cation, mitosis and cytokinesis. One of the most important functions of Cdk2 is the mid-late
G1 phase phosphorylation and inactivation of the tumor suppressor pRb which, in normal
cells, is essential to cell cycle progression. Like all Cdks, Cdk2 activity is governed by an array
of enzymes and proteins, the most prominent of which are cyclins. Unlike Cdk levels which
normally remain constant throughout the cell cycle, cyclins, as the name implies, undergo a
tightly regulated cycle of synthesis and degradation resulting in the cyclic assembly and activa-
tion of cyclin-Cdk complexes.129,130 In each phase of the cell cycle, Cdk activity is dependent
upon binding to the appropriate cyclin protein and it is this activation that propels the cell
through the cell cycle. In late G1 phase, cyclin E complexes with Cdk2 to control the transition
into S-phase.131

In normally dividing cells, the G1-synthesis and S phase-degradation of cyclin E are tightly
regulated.132 In late G1, cyclin E transcription is activated when pRb is hyperphosphorylated
by cyclin D/Cdk4/Cdk6 complexes, relieving repression of the cyclin E gene. This event causes
a G1 arrest allowing further accumulation of cyclin E protein. This accumulation continues to
a level where cyclin E/Cdk2 itself phosphorylates pRb, relieving the repression of the S-phase
cyclin, cyclin A, and Cdk1, and allowing the cell cycle to progress to mitosis.133 Concomitant
activation of cyclin E-Cdk2 kinase also occurs through the Myc proto-oncogene pathway.12

c-Myc proto-oncogene is a mitogen-induced transcription factor of the helix-loop-helix/leu-
cine zipper protein family whose role in cyclin E activation includes both direct mechanisms
(transcriptional effects) and indirect mechanisms (sequestration or enhanced degradation of
the cyclinE/Cdk2 inhibitor p27).11,12,134-136 Deregulation of any of these cell cycle compo-
nents can lead to the unscheduled expression of cyclin E that is often seen in cancer (Fig. 1).

Multiple mechanisms of malignant deregulation of cyclin E have been identified including
gene amplification,137,138 overexpression,139,140 downregulation of inhibitory proteins such as
p27,141 faulty degradation139,140,142 and the generation of LMW isoforms of cyclin E.4,143 Of
these cyclin E alterations, the most profound is the generation of the LMW isoforms which
have been associated with poor clinical outcomes in breast cancer and other malignancies. In
fact, in a retrospective study of 395 breast cancer patients, the presence of the LMW isoforms
of cyclin E was found to be eight times more predictive of poor prognosis than nodal status.2

Significant biochemical and functional differences between the full-length and LMW isoforms
of cyclin E are thought to explain the correlation between this type of deregulation and in-
creased breast cancer mortality.144

Six cyclin E isoforms (EL1-6) have been identified (Fig. 2).1 The predominant, full-length
(50-kDa) isoform (EL1) is the only isoform found in normal cells. The LMW isoforms (EL2-6)
are generated either by alternative translation (EL4) or proteolytic processing of the full-length
protein by an elastase-like protease which creates two paired-isoforms (EL2/3 and EL5/6).
Only tumor cells are capable of processing cyclin E into its LMW forms which are nuclear and
functionally hyperactive.143

Tumorigenic properties associated with the LMW cyclin E isoforms involve both aber-
rant control of both the cell cycle as well as many aspects of DNA replication. In normal
cells, direct binding of chromatin by cyclin E initiates DNA replication and also potentially
blocks rereplication.145 Cyclin E has been shown to induce histone gene transcription at the
beginning of S phase through the phosphorylation of NPAT146,147 and control centrosome
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duplication through the phosphorylation of nucleophosmin B23148,149 and stabilization of
the Mmps1p-like kinase.148 Additional cyclin E substrates involved in other DNA replica-
tion processes such as transcriptional regulation (SWI/SNF),150 pre-mRNA splicing
(spliceosomal protein)151,152 and modulation of transcription factors

(Id2, Id3)153,154 have also been identified. Deregulation of cyclin E impacts many of these
aspects of DNA replication, often conferring a growth advantage to tumor cells.

With respect to the cell cycle, the LMW forms of cyclin E have been shown to result in
decreased cell doubling times, decreased cell size and loss of growth factor requirements for
proliferation.131,155 These effects are due to both the increased biochemical and biological ac-
tivity of the LMW forms as compared with the full-length cyclin E. Specifically, because of the
increased affinity for Cdk2 of the LMW cyclin E, there appears to be at least a two-fold in-
crease in associated Cdk2 kinase activity and a three- to five-fold increase in resistance to the
Cdk inhibitors p21 and p27 in cells with these forms.156 Through this increased activity de-
regulated cyclin E has been shown to independently and sufficiently phosphorylate pRb, enough
to induce aberrant cell cycle progression.4

Targeting the G1/S Transition Therapeutically
The central role of cyclinE/Cdk2 in the regulation of the G1/S transition makes this com-

plex an attractive target for novel cancer therapy. First, differential expression of the tumor-specific
LMW cyclin E provides a unique means of both identifying and targeting tumor cells only,
potentially increasing selective lethality of the therapy. In addition the same target may also act
as a more objective measure of both the degree of tumor aggressiveness as well as therapeutic
response. Elucidation of the mechanisms of this differential expression have helped identify
opportunities for therapeutic exploitation.

Figure 1. Regulation of the G1/S transition by the cyclin-dependent kinase (Cdk) 2 and its G1-associated
cyclin, cyclin E, at the point of convergence of the RB (p16-Cdk4/6-cyclin D-pRb) and Myc proto-oncogene
pathways.
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Proteolytic processing of the full length cyclin E has recently been identified as the mecha-
nism responsible for the generation of the hyperactive LMW forms of cyclin E seen in some
tumor cells.4,143 Two proteolytically sensitive domains in cyclin E have been identified and
four of the five LMW forms are accounted for by proteolysis at these two sites, with
post-translational modification creating two closely migrating doublets—EL2/3 and EL5/6.
Sequence analysis of the proteolytically cleaved regions of cyclin E have identified an elastase-like
serine protease as responsible for generating these LMW forms.4

The differential expression of the LMW forms of cyclin E in tumor versus normal cells may
be due to either increased elastase-like activity in tumor cells, increased elastase inhibitor levels
in normal cells, or decreased elastase-inhibitor levels in tumor cells. Each of these possible
mechanisms presents a potential target for cancer therapy. Recent studies looking at the neu-
trophil (elastase) inhibitor, CE-2072, demonstrated partial abrogation of some of the LMW
forms of cyclin E in the breast cancer cell line MDA-MB-157, a cell line that expresses all 6
isoforms of cyclin E. In comparison, CE-2072 treatment of MCF-10A breast cancer cells,
which do not express the LMW isoforms, did not affect the expression of cyclin E in these cells.
In addition, treatment with CE-2027 was found to cause partial arrest in the G1 phase of the
cell cycle in tumor cells, but not normal cells. These results suggest a cause and effect relation-
ship between the disappearance of some of the LMW forms of cyclin E in tumor cells and
partial growth arrest of these cells.156 Although elastase inhibitors are not used in the clinic for
the treatment of cancer at this time, some reports have suggested that the use of these agents for
chemotherapy may provide a high therapeutic index. Following identification of the specific
protease of the elastase class which cleaves cyclin E into the LMW forms, cyclin E-specific
protease inhibitors may then be engineered.

The differential expression of the LMW forms of cyclin E in tumor versus normal cells
may also occur through a relative decrease in the presence or function of an endogenous
elastase inhibitor—elafin.156 Thus an alternative approach to elastase inhibition could be to
increase intracellular levels of functional elafin. Potential mechanisms for this approach in-
clude increased elafin expression through adenoviral gene therapy or by the administration
of the elafin protein in target-specific, trigger-specific liposomes. While effective results through
this means of drug delivery remain on the horizon,157 it is possible that someday liposomes
targeted to breast cancer-specific membrane receptors (e.g., ER, HER2) could deliver the
relatively small elafin protein (9 kDa) intracellularly where a tumor-specific enzyme (elastase)
could release the liposomal payload. Finally, as on-going studies better elucidate the mecha-
nisms by which elafin is down-regulated in tumor cells, other approaches to increasing elafin
expression will become available.

Figure 2. Western blot analysis of cyclin E in normal and immortalized breast epithelial cell lines and
estrogen receptor positive (ER+ve) and negative (ER-ve) breast cancer cell lines. Deregulated cyclin E caused
by the proteolytic generation of hyperactive, low molecular weight isoforms (35-50 kDa), is seen only in
the breast cancer cell lines.
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Another target at this nodal point in the cell cycle is Cdk2. Because of their central role in
cell cycle regulation, Cdks have been targeted for both drug and small molecule therapy. The
two basic schemes employed to inhibit Cdks include either direct blockade of their kinase
activity or targeting of their major regulators (indirect). Over 50 direct chemical Cdk inhibi-
tors have been described with varying degrees of Cdk specificity. Most of these compounds
modulate kinase activity by interacting specifically with the ATP-binding pocket of the en-
zyme. Both in vitro and in vivo Cdk-specific cell cycle and anti-tumoral effects have been
described for three Cdk modulators—flavopiridol, R-roscovitine, and BMS-387032—which
have also recently been tested in phase I and II clinical trials.

Flavopiridol is a semisynthetic flavonoid which appears to induce cell cycle arrest by direct
inhibition of all Cdks as well as through transcriptional repression of cyclin D1.158-160 Phase I
trials for flavopiridol have demonstrated tolerable toxicity with some objective responses across
a spectrum of advanced solid and nonsolid tumors.161,162 Furthermore, a Phase II trial in meta-
static lung cancer showed a median overall survival consistent with both a randomized trial of
four platinum-based chemotherapy regimens and with the survival observed with the approved
EGFR inhibitor gefitinab (Iressa).163-165 R-roscovitine (CYC202) is an olomoucine analogue
and a potent inhibitor of Cdk1, Cdk2, and Cdk5.166 Preclinical studies in multiple xenograft
models have shown antitumoral effects in the forms of both cell cycle arrest as well as evidence
of apoptosis.167 Two phase I clinical trials of oral CYC202 have demonstrated tolerable toxic-
ity168,169 and both single agent and combination chemotherapy phase II clinical trials are being
planned. BMS-387032 is an aminothiazole Cdk2 inhibitor with a 10-100-fold selectivity for
Cdk2 over Cdk1, Cdk4 and other kinases.170 In vitro and in vivo antiproliferative effects of
this class of compounds include cell cycle arrest with loss of pRb phosphorylation and some
evidence of apoptosis. Three phase I trials have shown tolerable toxicity and some objective
responses.171-173 Phase II and combination phase I trials are planned.

One nonspecific chemical Cdk modulator, UCN-01, has also been tested in clinical trials.
In addition to anti-Cdk activity, UCN-01 also exhibits a number of other cell cycle and non-cell
cycle molecular effects. With respect to the cell cycle, UCN-01 has been shown to abrogate
both the G1174-181 and G2 checkpoints through inappropriate cdc2 activation182 and chk1
inhibition,183-185 and also appears to possess increased cytotoxicity in cells with p53 muta-
tions.182 Important non-cell cycle effects include potent inhibition of protein kinase C isoen-
zymes and modulation of the PI3 kinase/Akt survival pathway.186,187 UCN-01 has been evalu-
ated in both phase I and II trials with tolerable toxicity and some objective responses.188,189

Synergistic effects of UCN-01 have been observed with many chemotherapeutic agents in
preclinical models174,190-193 and clinical trials of combination chemotherapies are underway.

While the Cdk modulation approach is certainly intriguing, one major limitation of the
current agents under investigation is their lack of true cytotoxicity. Although most of the agents
being tested in clinical trials have shown some preclinical evidence of inducing apoptosis, a G1
or G2 cell cycle arrest is the predominant result. For this reason, results of the combination
chemotherapy trials are eagerly awaited.

Another limitation shared by both these agents and other conventional chemotherapies is a
lack of tumor-specificity. Once again, cell cycle deregulation in the form of LMW cyclin E
isoforms may help overcome this lack of specificity. Indole-3-carbinol (I3C) is an indirect
Cdk2 inhibitor which has recently been shown to induce a G1 arrest in breast cancer cells by
inhibiting Cdk2 activity associated with the LMW forms of cyclin E.194 In a study by, Garcia
et al, MCF-7 breast cancer cells treated with I3C demonstrated a shift in the size distribution
of the Cdk2 protein complex from an enzymatically active 90kDa protein to a larger, 200kDa
protein, with reduced kinase activity. In addition, the treated cells appeared to have lost their
association with the 35 kDa LMW isoform of cyclin E as compared with nontreated cells.
Furthermore, I3C treatment was also associated with a subcellular cytoplasmic localization of
the Cdk2-cyclin E complex. These changes were felt to be indole-specific as treatment with the
I3C natural dimerization product, DIM, or the anti-estrogen, tamoxifen, did not produce
similar results. No changes in CKI (p21 or p27) levels were seen with I3C treatment. While
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compelling, this study is not without some limitations. Whether the effects of I3C on MCF-7
breast cancer cells are tumor-specific has not been determined as they were not compared to
normal breast epithelial cells. Nor was the generalizability of the I3C treatment effects assessed
in other cancer cell lines that express the proteolytic generated LMW isoforms of cyclin E (e.g.,
MDA-MB-157, MDA-MB-436, and Ovcar).

Other potential indirect modulators of Cdk2 activity worth considering include the CKIs p27
and p21. With respect to breast cancer, increasing the expression of p21 may provide an addi-
tional means of overcoming some anti-estrogen resistance as well as increase anti-estrogen sensi-
tivity in ER-negative breast cancers. In a study by Chen et al,195 after demonstrating a strong
association between p21 and ER expression, the investigators proceeded to induce the ER and
estrogen receptor element promoters in an estrogen responsive manner through over-expression
of p21 in a p21-negative, ER-negative breast cancer cell line. These cells were sensitive to both the
growth inhibitor effects of anti-estrogen treatment as well as the growth stimulatory effects of
17 -estradiol. These findings suggest that p21 may play a significant role in the estrogen-signaling
pathway and raise the possibility that anti-estrogen therapy may be effective in p21-positive,
ER-negative breast cancers. Furthermore, a number of commonly used breast cancer chemo-
therapeutic agents have also been shown to induce p21, including paclitaxel,196,197 doxorubi-
cin,198 and vinorelbine,199 raising the potential of treatment strategies that combine chemotherapy
and anti-hormonal therapy in ER-negative breast cancers induced to express p21.

Other possible strategies for targeting CKIs include increased protein expression through
gene therapy or administration of tumor-targeted peptidomimetics of CKIs or other peptides
that inhibit CDK activity. Because both p21 and p27 are substrates for ubiquitination and
proteosome-dependent degradation, strategies designed to decrease the turnover of these CKIs
through inhibition of ubiquitin-mediated proteolysis by the proteosome should also be consid-
ered. In fact, induction of both p21 and p27 in MDA-MB-157 cells through inhibition of the
proteosome by treatment with the HMG-CoA reductase inhibitor, lovastatin, has been dem-
onstrated to cause a G1 arrest.200 In this study, the mechanism of p21 and p27 accumulation
was clearly shown to be due to unique inhibitory effects of the closed-ring prodrug form of
lovastatin on the proteosome, and not related to the HMG-CoA reductase inhibition of the
open-ring form of the drug. With respect to breast cancer, as low levels of p27 have also been
correlated with poor prognosis in young breast cancer patients,16 efforts geared towards in-
creasing the levels of both p27 and p21, for previously described reasons, may be particularly
helpful in overcoming cell cycle-related drug resistance. Currently investigations with other
proteosome inhibitors such as farnesyl transferase inhibitors are also on-going.

Summary
As some facet of cell cycle deregulation is present in all tumors, it is reasonable to consider

cancer a disease of the cell cycle. In addition to driving the malignant transformation of normal
cells, cell cycle deregulation also contributes to the chemotherapy resistance of cancer cells, as
these agents often rely on the presence of normal cell cycle checkpoints to cause cell death.
However, while this cell cycle-driven resistance often seems insurmountable, it may ultimately
prove to be the Achilles’ heel of cancer cell survival.

As illustrated in this review, the deregulated cell cycle provides multiple opportunities for
tumor targeted therapies to either break the cycle by reregulation or to target it in combination
with more conventional chemotherapies in ways that result in mitotic catastrophe (e.g., DNA
damage plus G1 and G2 checkpoint abrogation.) However, in order for these cell cycle-directed
strategies to work, there are some basic requirements that need to be met. First, specificity
through differential expression of the target in normal versus tumor cells must be present.
Second, the mechanism of the differential expression needs to be understood. Finally, the mecha-
nism needs to be exploited therapeutically. Deregulation of cyclin E through the proteolytic
generation of hyperactive LMW isoforms meets these criteria and means of exploiting this
potential Achilles’ heel are underway.
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CHAPTER 5

p53, BRCA1 and Breast
Cancer Chemoresistance
Kimberly A. Scata and Wafik S. El-Deiry*

Abstract

The tumor suppressor genes p53 and BRCA1 are involved in hereditary as well as
sporadic breast cancer development and therapeutic responses. While p53 mutations
contribute to resistance to chemo- and radiotherapy, BRCA1 dysfunction leads to en-

hanced sensitivity to DNA damaging therapeutic agents. The biochemical pathways used by
p53 and BRCA1 for signaling tumor suppression involve some cross-talk including repression
of BRCA1 transcription by p53 and altered selectivity of p53-dependent gene activation by
BRCA1. In this chapter we review clinical and preclinical data implicating p53 and BRCA1 in
breast cancer chemosensitivity. We discuss the known signaling pathways downstream of p53
or BRCA1 that contribute to their modulation of therapeutic responses, and we discuss the
implications of p53 or BRCA1 mutation in therapeutic design.

Introduction
A woman’s chances of being diagnosed with breast cancer increase with age resulting in a

lifetime risk of 1 in 7 (ACS, 2005). Breast cancer accounts for roughly 32% of the cancers
diagnosed in women in the U.S. and accounts for 15% of the 272,00 predicted cancers deaths
in 2004 (ACS). Currently, only a fraction of patients respond to postsurgical chemo- and/or
radiotherapy. It is therefore critical to identify markers that will (1) help define which women
benefit from chemotherapy and (2) identify the most appropriate therapeutic regimen for the
patient. While the search to identify such prognostic indicators has been going on for years
(i.e., factors that will predict the patients’ outcome), only recently have efforts begun to look
for predictive factors, (i.e., factors that will predict response to a given treatment) as well.

Early studies were limited by the available technologies and it was only possible to measure
several “candidate” genes at a time to try to determine whether or not a candidate could be used
as a prognostic or a predictive indicator. Microarrays and other “high throughput” technolo-
gies now allow evaluation of global changes in gene expression, histology or chromosome num-
ber without any preconceived notion as to what might be important. Microarrays, for example,
can be used to screen through thousands of genes in order to identify prognostic signatures as
well as predictive signatures. Such signatures should enable a more accurate diagnosis and
hopefully direct the choice of the most appropriate therapy for the disease. This technology is
already playing a role in determining which patients with early stage breast cancer may benefit
from chemotherapy. Oncotype DX uses a signature of 21 genes to determine the likelihood of
recurrence at ten years from patient samples.1 This assay is used for a very defined population,
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specifically, newly diagnosed, Stage I or II, ER positive patients (Genomic Health website:
www.genomichealth.com). Clearly there is a need for predictive factors for patients who do not
fall into these categories. Of the vast number of genetic alterations in cancers, it is important to
determine the significance of an alteration with respect to treatment outcome. Specifically, two
genes that are important in the development of breast cancer are the tumor suppressors BRCA1
and p53. Both of these genes have been intensively studied in the laboratory and the clinic.

To understand the importance of BRCA1 and p53 or, any tumor suppressor gene, one must
first understand its function in the cell. At the simplest level, a dividing cell has two functions:
duplicate its genome exactly and segregate one copy of the genome to each daughter cell. To
distill the cell’s life to such simplicity belies the complexity of the events that must be coordi-
nated in order for these two “simple” processes to occur. Many disparate events must be coor-
dinated in an ordered fashion such that the cell moves forward at the proper time and only in
the forward direction. Acting as the cell’s policemen, tumor suppressor genes ensure that the
cell acts according to the rules for an orderly life. When tumor suppressors are incapacitated,
the cell begins a life of chaos that can result in the uncontrolled growth that could lead to
cancer. In familial syndromes, such as Li-Fraumeni or hereditary breast cancer, one copy of a
tumor suppressor gene has been inactivated in the germline. Patients with such mutations have
an increased risk of cancer. Knudson postulated this increased risk of cancer when he stated
that the rate-limiting step for tumor formation is the inactivation of the tumor suppressor’s
second allele.2 Originally interpreted to mean an inactivating mutation in the second allele or
loss of heterozygosity (LOH), it is now clear that epigenetic events such as methylation of CpG
islands can also contribute to the loss of function of a tumor suppressor.3

Among tumor suppressors, p53, arguably the best characterized, is still enigmatic. Fre-
quently referred to as the “guardian of the genome”, p53 is mutated in roughly 50% of all
cancers.4 p53 seems to control genome stability by monitoring and regulating key events in a
cell’s life. Given p53’s importance in maintaining genomic stability, it is believed that other
components of the p53 pathway are inactivated in the remaining cancers.5

Activated by intrinsic and extrinsic stresses, such as DNA damage, oncogene activation,
hypoxia and reactive oxygen species, p53 directs the cell to inhibit cell cycle progression, steer
the cell to senescence, or induce apoptosis. p53 can act as a transcriptional activator and
repressor but may induce apoptosis in a transcription-independent manner as well (reviewed
in refs. 6, 7). Consistent with its role in regulating the response to cellular stress, some pa-
tients with Li-Fraumeni syndrome, who are susceptible to a wide variety of cancers, carry p53
mutations.8 It has been of great interest to determine whether or not p53 is a prognostic
indicator for the chemo- and radio-responsiveness of tumors. The increased incidence of breast
cancers in Li-Fraumeni patients as well as the observation that p53 is mutated in roughly 20%
of breast cancers suggested that p53 should be assessed for its prognostic/predictive signifi-
cance in breast cancer.9

After genetic linkage studies suggested a candidate for a breast cancer suppressor gene on
17q21, positional cloning techniques were used to identify BRCA1.10,11 The impact of the
BRCA1 mutation is not immediately obvious if one considers that familial breast cancer ac-
counts for only 10% of all breast cancer cases.12 The impact of mutations in this gene becomes
obvious, however, when one realizes that the BRCA1 carrier has an 80% lifetime risk of breast
cancer and a 40% risk of ovarian cancer.13 These high levels of susceptibility, as well as the early
belief that this tumor suppressor would also be mutated in sporadic cancers (and therefore lead
to insights into the mechanisms of sporadic breast cancer) sparked a flurry of work to decipher
the function of the BRCA1 gene.14 Despite this activity, BRCA1 remains enigmatic. A role for
BRCA1 has been found in the regulation of transcription (both positive and negative), cen-
trosome number, protein stability, cell cycle checkpoints as well as chromatin remodeling,
DNA damage repair and X-inactivation.15-20 Unfortunately, the crucial function of BRCA1 is
still unclear. In addition, the key question “How can a ubiquitously expressed protein such as
BRCA1 give rise to a very limited tumor spectrum?” remains unanswered. In the case of some



Breast Cancer Chemosensitivity72

proteins, tissue-specific tumor types can be attributed to the expression of homologous pro-
teins in overlapping tissues. This is clearly not the case for BRCA1. Furthermore, it is still
unclear which function or functions might be the most important for tumor progression.

Despite the many questions remaining about the functions of p53 and BRCA1, several
pieces of evidence suggest that it is important to look at whether or not these proteins might be
used as prognostic or predictive factors for treating breast cancer. In the case of BRCA1, carri-
ers of a germline mutation are frequently younger at the time of disease onset than patients
with sporadic tumors.10 It is therefore important to determine whether this early onset is a
prognostic indicator. Furthermore, given its function in DNA repair, it is important to under-
stand if the BRCA1 mutation carriers have a better or worse prognosis after chemo and/or
radiation therapy, or if there is an increased risk of secondary cancers due to adjuvant therapy.
In the case of p53, its status as guardian of the genome and its role in promoting apoptosis
make it a prime target for a prognostic and/or a predictive factor. This review will discuss and
compare data from basic research including tissue culture and animal models with data from
clinical studies.

p53
Initially identified as an SV40 large T antigen interacting protein, p53 was believed to be an

oncogene.5 Further studies demonstrated that p53, mutated in roughly 50% of all cancers, is a
tumor suppressor gene.5 Although p53 has many functions ascribed to it, most, if not all of its
tumor suppressor activity can be ascribed to its function as a transcriptional activator.21 p53
can also repress transcription, regulate the G1 checkpoint, induce apoptosis via direct interac-
tions at the mitochondria, bind to damaged DNA and regulate recombination (reviewed in
refs. 7, 22). Consisting of 393 amino acids, p53 can be divided into several functional do-
mains. The transcriptional activation domain resides at the amino-terminus followed by a pro-
line rich region important for p53-mediated repression. DNA binding activity resides in the
middle of the protein. To activate transcription, p53 must form tetramers, which is mediated
by the carboxy-terminal oligomerization domain. The carboxy-terminus also functions as a
regulatory domain (see ref. 23).

As a transcription factor, p53 has been shown to activate numerous genes including cell
cycle arrest genes, DNA repair genes, apoptotic genes and anti-angiogenic genes.7 Because of
the potential to activate genes that can kill the cell, p53 activity must be tightly regulated. In
unstressed cells, p53 is rapidly degraded via ubiquitin mediate proteolysis. Hdm2, the ubiquitin
E3 ligase primarily responsible for targeting p53 for degradation, is itself transcriptionally acti-
vated by p53. This feedback loop serves to keep p53 (and hdm2) levels under control. Numer-
ous cellular stresses such as DNA damage, hypoxia, nucleotide depletion or oncogene activa-
tion, induce kinases that phosphorylate p53 and activate a cascade of p53 post-translational
modifications, which stabilize and activate the p53 protein. Among the post-translational
modifications identified on p53 are phosphorylation, ubiquitylation, sumoylation, neddylation
and acetylation (reviewed in refs. 24, 25). Methylation has also recently been described.26 In
addition to inhibiting the ability of hdm2 to interact with p53, phosphorylation also allows the
carboxy-terminus to be acetylated (reviewed in refs. 24, 25). Although widely believed to be
important for stabilization and activation of p53, recently a knock-in mouse in which the
seven carboxy terminal lysines were mutated to arginines shows a remarkably normal response
to adriamycin treatment.27

Regardless of the significance of p53 acetylation, phosphorylation inhibits the p53-mdm2
interaction and permits p53 to accumulate. Activated p53 is able to bind to p53 consensus
sequences in target genes and activate their transcription. The best characterized target gene is
p21waf1, a cyclin dependent kinase (cdk) inhibitor.28-30 While p21 seems to be the primary p53
target responsible for inhibiting cell cycle progression in G1 phase, there are a plethora of p53
targets involved in both intrinsic and extrinsic apoptotic pathways. These pro-apoptotic genes
fall into three categories: the first consists of genes such as death receptor 5 (DR5), which act at
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the cell surface to mediate death signals through the TNF family of ligands. Genes such as
Puma, Noxa, Bid, Bax and Bak, which act at the mitochondrial membrane, activate apoptosis
in response to intrinsic death signals. The final group of pro-apoptotic p53 target genes in-
cludes the PIDD and the PIG genes, which seem to have some role in generating or reacting to
reactive oxygen species (reviewed in refs. 31,32). Although different apoptotic targets have
been implicated as “key” in different studies, it seems clear that the “key” apoptosis inducer(s)
is (are) tissue and perhaps stressor specific.33-35

In addition to its role in inducing pro-apoptotic genes, there is evidence that p53 is also able
to act directly at the mitochondrial membrane to induce the release of cytochrome c.31,36 p53
also has the ability to repress gene transcription of some anti-apoptotic genes, thereby tipping
the balance to favor apoptosis.31,36

As mentioned previously, the prevalence of p53 mutations in cancers along with its key role
in guarding genomic stability, makes it an obvious candidate factor with prognostic and/or
predictive significance for various cancers. Although recent meta-analysis has demonstrated
the mutant p53 correlates with more aggressive breast cancer and poorer survival,37 early stud-
ies were contradictory. Recent observations have explained these contradictory results and have
shed light on important considerations for future studies. Studies in which immunohistochem-
istry has been used to assess p53 status have mistakenly designated cells positive for p53 as “p53
mutant” while those not staining (or with low staining) as p53 wild-type. This system of scor-
ing for p53 mutants derived from the belief that p53 mutations stabilized the protein. While
this is certainly true for some p53 mutations, it is not true for all. In fact, closer examination of
p53 mutants via DNA sequencing has shown that roughly 30% of p53 mutations do not
stabilize the p53 protein.38,39 Additionally, mutations in exons 4, 9 and 10 are more likely to be
frameshift mutations and therefore negative in IHC studies.39 Nonsense mutations are also
likely to be undetected by IHC. Furthermore, Soussi and Bernoud suggest that splice site
mutations that impact p53 structure have been underestimated. Importantly, in the stressful
tumor environment, it is likely that wild-type p53 will be activated therefore giving a false
positive result.

Studies in which DNA sequencing has been used have also been flawed in some cases.
Roughly 40% of studies have analyzed exons 5-8 of p53 while nearly 14% of mutations reside
outside of this region.39 These recent sequence-based studies suggest many reasons for the
controversial findings regarding p53 mutations and patient diagnosis (reviewed in ref. 39).
When first published, however, such data were perplexing because in vitro data demonstrate a
convincing role for p53 in cell cycle arrest and apoptosis (reviewed in ref. 7). These studies
suggested that the inability to induce apoptosis should result in disease progression in vivo.
Further evidence using mouse models supported this hypothesis. For example, p53-null mice
showed a tumor-prone phenotype and p53-dependent apoptosis contributes to this tumor
phenotype (reviewed in ref. 40). Examination of p53 mutations using the entire gene has
demonstrated a relationship between p53 mutation and resistance to chemo- and radiothera-
pies.39 More specifically, several groups have noted that mutations in the Loop2/Loop 3 (L2/
L3) domains of p53 correlate with poor prognosis although one study contradicted these find-
ings (reviewed in ref. 39).

In studies that examined p53 status and response to therapy, several groups showed that
mutations in the L2/L3 domains of p53 correlate with progressive breast cancer growth in
response to doxorubicin as well as to a combined 5’FU/MMC regimen.38,41-43 Another study
demonstrated that patients with breast cancers containing mutations in L3 or in the DNA
contact residues of p53 showed a poor response to tamoxifen treatment.44 Interestingly, Bertheau
and colleagues found that there was no correlation between neoadjuvant treatment and clinical
response but found that 8/14 patients with mutant p53 had a complete histological response to
a cyclophosphamide/epirubicin regimen. In contrast, none of the 36 patients with wild-type
p53 showed a complete histological response.45 It is unclear why there should be such a dra-
matic difference in results between the studies. In the Bertheau study, it is not clear why tumors
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expressing wild-type p53 did not undergo apoptosis in response to therapy. It is possible that
these cancers were dysfunctional for some other part of the p53 pathway. Finally, it is possible
that the tumors expressing wild-type p53 may have upregulated a proliferative or pro-survival
pathway that was able to compensate for p53-mediated apoptosis.

These studies suggest that future studies should be designed to identify the specific p53
mutation in each patient as well as loss of wild-type p53 function. The importance of identify-
ing the exact mutation is supported by a paper from the Borresen-Dale laboratory, which
showed that a common polymorphism at codon 72 may affect the function of p53 mutations
in patients with breast cancer.46 Patients with the Pro72 polymorphism were more likely to
have wild-type p53 while patients homozygous for the Arg72 polymorphism (or heterozygous)
were likely to have a mutant p53. Furthermore, this mutation was likely to be on the Arg
allele.46 In head and neck cancers, the mutations in the Arg72 polymorphism correlated with
decreased responsiveness to cisplatin therapy and Arg72 mutants that inhibited p73, a p53
family member with pro-apoptotic ability, had a particularly poor prognosis.47 A follow-up
study demonstrated that the Arg allele induces apoptosis in response to various chemothera-
peutic agents while the Pro allele is more likely to induce G1 arrest.48 The increased apoptosis
noted with the Arg allele correlated with an increased ability to induce Puma and Noxa, but
not bax, mdm2 or p21. The authors also demonstrated that patients with advanced head and
neck cancers were more likely to respond to chemo if they retained a wild-type p53 Arg allele.
A recent study demonstrated that roughly 40% of women carrying Arg/Pro or Arg/Arg had a
good pathological response to chemotherapy (either CTF, CAF or FEC regimen) while those
women with Pro/Pro alleles had a much lower response (13%) to therapy.49 Furthermore, the
women with Pro/Pro alleles were more likely to have positive axillary lymph nodes. Although
small, this study suggests that this common polymorphism may play an important role in
determining the appropriate therapeutic regimen for women with breast cancer.

As stated above, the clinical data demonstrated that specific mutations, i.e., the loop muta-
tions, correlated with poor outcome. Mouse models and in vitro studies demonstrate that
different p53 mutations have very different effects on cellular biology. When one compares the
phenotypes seen in the various p53 knock-in mice to p53-null mice it becomes very clear that
all mutations are not equivalent nor are they all null.40 NMR studies have demonstrated that
the disruptiveness of the L2/L3 mutations are dependent upon the amino acid change as well
as the amino acid mutated.50,51 Other mutations shown to have predictive value (i.e., resis-
tance to chemotherapy) disrupted the structure of p53 to the extent that they were rendered
null mutations.41 Cell culture studies have demonstrated that there are true “gain-of-function”
alleles of p5352-55 as well as alleles that exert dominant-negative effects on the remaining wild-type
p53 allele (reviewed in ref. 39). There is also evidence that some p53 mutants can interact with
and impair the ability of p73, a p53 family member, to induce apoptosis.47,56 A recent study of
251 primary breast tumors demonstrated that dysregulated expression of genes repressed or
activated by p53 correlated with the development of distant metastases within 5 years and
poorer survival.57 These data suggest that at a minimum, identifying the specific p53 mutation
will be important for determining the best therapeutic regimen for a patient. Ideally, one will
also screen for activation of downstream p53 targets as this will indicate whether or not the p53
pathway is intact.

BRCA1
BRCA1 is an equally enigmatic protein. Despite being cloned more than 10 years ago and

having multiple functions attributed to it, the key question surrounding BRCA1 remains un-
answered: “Why do BRCA1 mutations result in relatively cell-type specific cancers when BRCA1
is ubiquitously expressed and has important roles in transcription, DNA repair, cell cycle check-
points, and centrosome regulation?” For years models have been proposed to explain this prob-
lem (reviewed in ref. 58). It is possible that the mammary and ovarian epithelium receive
greater exposure to damage that requires a BRCA1 response. For example, the mammary gland
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is subject to high levels of estrogen metabolites that can form adducts with DNA.58 It is also
possible that there is a functional homolog of BRCA1 in other tissues that is not present in the
breast and ovary. Another model suggests that the mammary and ovarian epithelium are more
likely to have a delayed apoptotic response to the loss of BRCA1, thereby allowing damaged
cells to survive long enough to gain another mutation that allows them to become cancerous.59

Monteiro suggests that it is possible that the breast and ovary have different (increased) rates of
mitotic recombination, therefore allowing a second hit to occur preferentially in these tissues.58

After extensive mapping, BRCA1 was cloned in 1994.10,11 The initial enthusiasm about
cloning BRCA1 has given way to an appreciation for the protein’s complexity. Part of the
problem is the size: the 1863 amino acid nuclear phospho-protein had few recognizable motifs.
The amino-terminus RING domain, initially believed to mediate protein-protein or
protein-nucleic acid interactions is now known to function as an E3 ubiquitin ligase. Although
BRCA1 homodimers have some ligase activity, in vitro assays show that activity increases dra-
matically when the protein heterodimerizes with BARD1.60-63 The best-characterized function
of ubiquitylation is to target a protein for ubiquitin-mediated proteolysis via the proteasome
pathway.64 Recent work has shown that ubiquitylation may also serve as a protein-targeting
mechanism.64 The unusual lysine 6 linkage mediated by the BRCA1-BARD1 heterodimer
may in fact be a targeting signal.65 There are several known in vitro targets for the ubiquitin
ligase activity of BRCA1 including p53, nucleophosmin, the C-terminal domain of the large
subunit of RNA polymerase II, H2AX, topoisomerase II and -tubulin.60,66-71 With the excep-
tion of Pol II, Topoisomerase II and -tubulin, the substrates have been identified in in vitro
reactions and the significance of the ubiquitylation in vivo is unclear. Pol II is ubiquitylated in
response to UV irradiation thereby transiently inhibiting 3’end processing of mRNA tran-
scripts.70 Topoisomerase II is ubiquitylated in a BRCA1-dependent manner and loss of either
BRCA1 or topoisomerase II expression results in defective DNA decatenation.68 The inability
to properly decatenate sister chromatids results in lagging chromosomes and missegregation of
chromosomes. Neither of these functions, however, are not specific to breast and ovarian cells.

Interestingly, the only evidence for a breast/ovarian-specific function for BRCA1 is related
to its ligase activity. In breast cancer cells but not other cell lines, BRCA1/BARD1 regulates
centrosome number via the ubiquitylation of -tubulin, a centrosome component.67 Inhibi-
tion of ubiquitylation of -tubulin results in an aberrant increase in centrosome number thereby
resulting in genomic instability, a hallmark of BRCA1 tumors.67 Apparently, in nonmammary
cell types, there is another protein able to regulate -tubulin but in mammary epithelial cells,
this “backup” mechanism is not present. At the present time, it is unknown if ovarian cells also
lack this “backup” regulator of centrosome number. It is also unknown how this relates to
development of breast cancer in vivo.

The carboxy-terminus of BRCA1 has two tandem BRCT domains. The BRCT domain is
present in many DNA damage responsive genes and mediates protein-protein interactions.72

BRCA1 has been shown to play a role in DNA repair via homologous recombination,
nonhomologous end-joining, transcription-coupled repair and global genomic repair.17,18,20,73,74

BRCA1 interacts with numerous proteins and has been suggested to play a scaffolding role in
response to damage.75 Given the capacity to participate in numerous types of repair, it is of
great interest to determine how BRCA1 selects which pathway to use.

In addition to the role in DNA damage signaling, the BRCT domains are important in the
transcriptional role of BRCA1.76 One of the two interactions between p53 and BRCA1 occurs
via the BRCT domains.76 This domain also seems to be important for the transcriptional
activity of BRCA1.76 The acidic nature of BRCA1, particularly at its C-terminus suggested
that BRCA1 might be a transcription factor.77 BRCA1 has been shown to interact with many
transcription factors including p53.78 This interaction increases the expression of p53 reporter
constructs and increases p21 expression.78 BRCA1 is also able to activate p21 expression inde-
pendently of p53.79 BRCA1 interacts with the transcriptional repressor, CtIP via the BRCT
domains, thereby repressing expression of p21.80 Upon DNA damage, the interaction is re-
leased, allowing BRCA1 to activate transcription.80
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Additional research has shown that BRCA1 is able to regulate several checkpoints, includ-
ing the G2/M checkpoint, the inter-S-phase checkpoint and the DNA decatenation check-
point.68,73,81 Intriguingly, BRCA1 seems to be playing a role in X-inactivation in mammary
epithelial cells.16 Despite the flurry of activity, the regulation of centrosome number and the
role in X-inactivation are the only known breast specific functions of BRCA1.

BRCA1 in Sporadic Breast Cancer
By virtue of its tumor suppressor function and the germline mutations seen in familial

breast cancer, it was reasonable to hypothesize that BRCA1 would be mutated in sporadic
breast cancers as well. BRCA1 shows frequent loss of heterozygosity (LOH) in sporadic breast
tumors. Using samples from 72 cases of sporadic breast cancer, 36 showed LOH at loci in and
around BRCA1.14 Another study looked at 120 sporadic breast tumors ranging from Stage I to
Stage III saw LOH at the BRCA1 locus in 50% of the cases.82 Interestingly, there was also loss
of heterozygosity at BRCA2 and p53 in 28% of the BRCA1 LOH cases.82 If there is LOH at a
disease-associated locus, the gene of interest usually has a mutation in the remaining allele.82

Unfortunately, the search for mutations in BRCA1 in sporadic cancers, however, has not yielded
many. The study by Futreal and colleagues identified only 3 BRCA1 mutations in the 36 breast
cancer cases they screened.14 Garcia-Patino and colleagues screened 105 patients with sporadic
breast cancers and identified only six frameshift mutations (leading to putative truncation
mutants) and three missense mutations of unknown consequences.83 One report demonstrated
a germline mutation in the 5’UTR of BRCA1, which decreases translation efficiency.84 Clearly,
mutation of the coding regions of the remaining BRCA1 allele is not playing an important role
in sporadic breast tumors.

Other data, however, clearly support a role for loss of BRCA1 in sporadic tumors. For
example, Thompson and colleagues demonstrated that BRCA1 mRNA levels are lower in inva-
sive breast cancers than in normal mammary epithelial cells and DCIS85 and a study by Wilson
and colleagues demonstrated that normal breast tissue or invasive lobular cancers or lower
grade ductal carcinomas all had higher BRCA1 protein levels than high grade tumors86 sug-
gesting that BRCA1 expression is lost during cancer progression. While these studies investi-
gated relatively small numbers of samples, all of the invasive tumors had decreased levels of
BRCA1. Another mechanism for silencing the BRCA1 locus seems to be through epigenetic
means. Several groups have investigated BRCA1 methylation status and demonstrated that
BRCA1 is silenced by methylation in 11 to 30% of sporadic tumors.87,88 High levels of BRCA1
promoter methylation were seen in medullary breast carcinomas, which share morphological
features with the BRCA1 familial tumors.89 Evidence for abnormal expression of other DNA
repair proteins, including hRAD51, BARD1, and components of the mismatch repair path-
way, suggests that perhaps there is an important role for DNA repair associated proteins in
breast cancers.90

Many groups have generated BRCA1 mice. A recent review extensively summarizes the
mouse phenotypes.91 Therefore, only a few pertinent points will be commented on here. First,
the BRCA1 targeting vector was important to the observed phenotype. For example, the tar-
geting vector that allowed expression of a BRCA1 splice product survived longer than those
mice with insertions in exons 2, 5 or 11 (see Moynahan). This suggests that identifying a
patient’s mutation may be important for predicting her response to therapy. Furthermore, the
genetic background was shown to be important by Ludwig and colleagues who showed that an
exon 11 insertion was tolerated in the 129/Sv and the 129/Sv/MF1 strains. Although mam-
mary development was normal in these mice, 85% showed spontaneous tumors, including
mammary tumors.91 In order to better address the function of BRCA1 in breast cancer, condi-
tional mutants of BRCA1 have been generated.92 Using either Cre driven by the WAP pro-
moter or by the MMTV promoter, 25% of the conditional knock-out mice showed spontane-
ous mammary tumor formation by two years of age.93 The number of mice developing tumors
increased when the conditional BRCA1 mice were crossed with p53+/- mice.93 The interaction
between BRCA1 and p53 will be discussed extensively later in the chapter.
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BRCA1 and Response to Therapy
Drugs that impair microtubule dynamics are important chemotherapeutic agents in the

treatment of breast cancer.94 In tissue culture models of breast cancer, exogenous expression of
BRCA1 increases the sensitivity to taxol, vincristine and vinorelbine, suggesting that these
would not be good chemotherapeutic agents for use in patients with a germ-line mutation of
BRCA1 or who show low/no expression of BRCA1.95-99 Perhaps due to the resistance to mi-
crotubule disrupting agents in vitro, there are no studies published in which these agents are
used to treat patients with BRCA1 mutations.

Early studies of BRCA1 demonstrated that BRCA1 colocalized with the homologous re-
combination protein Rad51 during S phase.95 It was subsequently demonstrated that BRCA1
plays a role in double strand break repair.91 BRCA1 has also been implicated in nonhomologous
end joining, a more error prone pathway for the repair of DSBs, global genomic repair and
transcription coupled repair.94 Based on these studies, one might predict that patients with a
mutant form of BRCA1 should be more responsive to chemotherapeutic agents that induce
DNA damage. The results, in fact, are mixed (see Table 1). Exogenous expression of BRCA1 in
breast cancer cells does not affect the cells’ response to 5FU, cyclophosphamide or hydroxyurea

Table 1. Phenotype when WT BRCA1 is expressed

Lafarge Mullan Quinn Tassone
Bhattaycharyya Thangaraju Oncogene Oncogene Cancer Res (2003)

Drug JBC (2000) JBC (2000) (2001) (2001) (2003) BJCancer

5FU NT NT NT NT No change NT

Etoposide NT NT Increases NT Increases NT
resistance resistance

Cisplatin Increases NT Increases Increases Increases Increases
resistance resistance sensitivity* resistance resistance

Bleomycin NT NT NT NS Increases NT
resistance

Doxorubicin NT NT NT No NT Decreases
difference resistance

Vinorelbine NT NT NT NT Increases NT
sensitivity

Paclitaxel NT Increases Increases Increases Increases Increases
sensitivity sensitivity sensitivity sensitivity sensitivity

IR Increases Decreases NT NT NT NT
resistance resistance

Vincristine NT NT Increases Increases NT NT
sensitivity sensitivity

ES cells1 Breast Breast MBR-62 Breast Breast
cancer cells4 cancer5 bcl cells 3 cancer2 cancer2

NT = not tested; NS = data not shown in the reference
1. WT vs. 11/ 11
2. Hcc1937
3. Authors say they had no change in sensitivity for 5FU, cyclophosphamide, bleomycin, HU (data

not shown)
4. T47D, Mcf7, Hcc1937 and ovarian line OV177
* Note: Authors use a concentration of cisplatin that kills both sets of cells.
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(HU), suggesting that women with germline mutations in BRCA1 should respond in a manner
similar to other breast cancer patients. One study using etoposide showed that exogenous BRCA1
expression increased resistance to the drug, suggesting that this might be a good choice for
BRCA1 carriers.96 Two studies using different models obtained conflicting results with respect
to doxorubicin. The human breast cancer cell line Hcc1937, with a 5382 ins C mutation in its
only BRCA1 allele, has been used extensively to study the role of BRCA1.97 Reconstituting
expression of wild-type BRCA1 in Hcc1937 resulted in an increased sensitivity to doxorubi-
cin.98 In a breast cancer cell line expressing a tetracycline regulated BRCA1 derived from the
MDA-MB231 breast cancer line, doxorubicin treatment did not differentially affect the cells
when BRCA1 was induced.99 Studies using cisplatin have also shown conflicting results. Several
studies have shown that exogenous wild-type BRCA1 increases resistance to cisplatin while one
study reported no difference (see Table 1). The clinical results are suggestive of a positive re-
sponse to chemotherapy for BRCA1 patients. In response to anthracyclines, BRCA1 carriers
showed a better pathological response than noncarriers.100 Another study showed that BRCA1
carriers, although having many characteristics that correlate with poor survival, were more likely
to receive adjuvant chemotherapy and/or radiotherapy. Although the follow up time was rather
short, these patients didn’t show worse overall survival than nonmutation carriers.101

As mentioned above, the tumor type-specificity of BRCA1 suggested that estrogen might
play a role in breast and ovarian tumor formation. Subsequent studies demonstrated that BRCA1
is able to inhibit ER  function in a ligand-independent manner.102 This itself is rather puz-
zling given the fact that most BRCA1-related breast cancers are ER negative.101 It is possible
that loss of BRCA1 allows ER  to signal excessively and that after some early tumor-promoting
activity, ER  mediated signaling is no longer required. This is entirely possible, as it is well
known that sporadic breast cancers frequently lose ER  expression.103 A recent study looking
at expression of ER and PR in the benign epithelium close to BRCA1 tumors found that there
is a trend toward higher ER expression in the normal epithelium of BRCA1 carriers and a
significant increase in PR expression in the benign epithelium near the tumor margins.104

Because this benign tissue retained the WT BRCA1 allele it seems that haploinsufficiency of
BRCA1 is responsible for some changes in the “normal” epithelium. It is also possible that
these changes are non-cell autonomous and are being induced by the nearby tumor tissue. The
hypothesis that BRCA1 is inducing non-cell autonomous changes is supported by a condi-
tional knock-out mouse in which BRCA1 is only inhibited in the granulosa cells.105 Of the 59
homozygous knock-out mice sacrificed, 40 of them had visible cysts in the ovary or uterine
horn. None of the age matched control mice had tumors. Furthermore, the tumor tissue
had characteristics of epithelial cells while lacking characteristics of granulosa cells. It seems
that BRCA1 regulates a substance produced by the granulosa cells that inhibits ovarian and
uterine tumor formation. Recent studies have shown that there is a pattern of promoter methy-
lation seen in the ER negative cancers that is not seen in the ER positive tumor cell lines or in
normal mammary epithelial cells.106 Furthermore, loss of ER expression results downregulation
and methylation of ER signaling targets as well as an increase in the expression of proteins
involved in gene silencing such as HDAC1 and DNMT1 and 3b.106,107 How loss of BRCA1
might affect these downstream events requires further experimentation.

Understanding the interaction between these two proteins has important implications for
BRCA1 mutation carriers as well as in sporadic breast cancers without BRCA1 (or with low
expression of BRCA1). After adjuvant tamoxifen treatment was shown to reduce the risk of
contralateral breast cancer, it was of interest to determine whether tamoxifen might be a useful
prophylactic agent for women with a high risk for breast cancer.108 Studies clearly demon-
strated a reduction in the number of ER positive breast cancers. The initial belief was that,
because the majority of BRCA1 breast cancers are ER negative, tamoxifen would not be useful
for these women. Analysis of data from the National Adjuvant Breast and Bowel Project
(NSABP-P1) Breast Cancer Prevention Trial showed that tamoxifen did not reduce the risk of
breast cancer in carriers of BRCA1 mutations.108 Unfortunately, there were only 8 patients
with BRCA1 mutations that were diagnosed with breast cancer: 5 received tamoxifen and 3
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received the placebo. The 95% confidence interval was quite large: 0.32-10.70. In a later
case-control study of 848 patients with BRCA1 mutations, tamoxifen treatment reduced the
risk of contralateral breast cancer by 50%.108a Perhaps surprisingly, tamoxifen induced mam-
mary gland proliferation and induced earlier adenocarcinoma formation than placebo treated
BRCA1 co/co MMTV-cre/p53+/- mice.103 The reason for this difference is not clear but may
have to do with the fact that the mice started with a loss of both BRCA1 alleles, which is not
the case for carriers of a germline mutation of BRCA1. Perhaps the haploinsufficiency of BRCA1
in humans is important mediating the tamoxifen effect.

p53 and BRCA1
The relationship between p53 and BRCA1 is complex. p53, activated in response to cellular

stresses is believed to activate pro-apoptotic targets when levels are high enough to activate the
promoters of these genes, which usually have greater divergence from the p53 consensus site.109

When BRCA1 is overexpressed, however, p53 is stabilized but is preferentially directed to cell
cycle arrest targets and DNA repair targets.110-112 The result of this preferential activation is
that cells are more resistant to chemotherapeutics.110,111 The severity of a p53 response (i.e.,
apoptosis) mandates that p53 be tightly regulated. In order to keep p53 under control, it is
regulated by a number of feedback loops. For example, mdm2, the ubiquitin ligase primarily
responsible for degrading p53, is also a direct transcriptional target of p53.113 There is evidence
that BRCA1 and p53 are also able to regulate each other. While BRCA1 stabilizes and increases
p53’s activity towards cell cycle arrest and repair targets, at some point in the DNA damage
response, p53 is able to downregulate the expression of BRCA1.114,115 The downregulation of
BRCA1 by p53 could be the tipping point in the decision between life and death.

In addition to these studies, mouse studies demonstrate a genetic interaction between the
two proteins. Early attempts to make a BRCA1 knockout mouse showed that homozygous
inactivation of BRCA1 resulted in embryonic lethality.91 Crossing the BRCA1 heterozygotes
with p53+/- mice allowed the mice to survive a few more days. In these mice, inhibition of
BRCA1 results in genomic instability, which in turn activates p53. When p53 is eliminated,
the cells exhibiting genomic instability are no longer eliminated, thereby allowing the mice to
survive a few extra days. Recent studies using MEFs demonstrate that MEFs null for p53 and
BRCA1 are more sensitive to topoisomerase I and II inhibitors and platinum compounds than
p53-/-; BRCA1+/- MEFs. The double-null MEFs showed no change in sensitivity to
anti-metabolites or taxanes. It remains to be tested whether or not this holds true in mammary
epithelial cells (specifically breast cancer cells).116 These results are also important to consider
in the clinics because p53 is frequently mutated in the BRCA1-associated breast cancers.116

Interestingly, the spectrum of p53 mutations observed in patients with familial breast can-
cer (specifically BRCA1-associated breast cancer) is quite different from the spectrum of muta-
tions seen in any other type of cancer and includes several mutations never seen in any other
cancer.117 Even more surprising is the fact that there is often more than one p53 mutation,
which is not due to a more generalized mutator phenotype.118 Recent analysis of some of the
p53 mutations found in BRCA1 or BRCA2 related breast cancers showed surprising results:
many of the mutants retained transcriptional activation activity and the ability to induce apoptosis
but were unable to suppress colony formation.119 This study was very interesting but there are
several important considerations. First and foremost, the authors addressed the significance of
these mutants in nonbreast cell lines. Second, the authors dissected out the various functions of
p53 via specific assays, their phenotypes were sometimes subtle and it is unclear how these
various differences might affect tumorigenicity in vivo. Finally, the cells were also positive for
BRCA1 (and BRCA2) expression. Given the fact that BRCA1 interacts with p53 to activate
transcription, it would be interesting to know how these p53 mutants act in BRCA1-null lines
(or lines expressing BRCA1 with clinically relevant mutations), a question that is now more
amenable to study via the RNAi technology. It will be important to identify the functions of
these mutants in the context of breast cancer models, specifically those in which BRCA1 func-
tion is inhibited.
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Screening Mutations via Yeast Experiments
For several years now, different groups have tried to use activation of genes in yeast as an

assay for differentiating between disease causing mutants and benign polymorphisms.120 The
use of a yeast reporter assay to identify p53 mutations in tumor samples has been used in
several studies.53 The authors of one study maintain that the assay is sensitive enough to iden-
tify p53 mutations in as few as 15% of the tumor cells. This is a “quick and dirty” way to
identify which patients have a p53 mutation but in light of the arguments given above, it seems
important that once identified, these samples should be sequenced in order to identify the
exact mutation present in the tumor. A recent paper by Furuta and colleagues suggest that yeast
or mammalian transcriptional activation assays must be interpreted with care.121 The authors
used a three dimensional Mcf10A model system, which differentiates into acinar structures in
culture. Inhibition of wild-type BRCA1 with an adenovirus expressing BRCA1 shRNA gave
rise to cells unable to form acinar structures. The group further went on to address the effects
of two disease-associated mutations, Q356R and M1775R. Although Q356R had growth sup-
pressing abilities almost equal to that of wild-type BRCA1, the M1775R mutant was severely
compromised in its ability to suppress cell number. Because both are disease-associated muta-
tions, the question arises as to whether BRCA1-mutated tumors may be further stratified with
regard to responsiveness to chemo- and/or radiation therapy and suggests that the mutation
seen in BRCA1 patients should be included in any clinical studies focused on chemo- and
radiation responsiveness. Although an important question, it is very likely to be difficult to
address experimentally. Currently, there are more than 1500 known BRCA1 mutations (BIC
website: http://research.nhgri.nih.gov/projects/bic). The size of the BRCA1 locus was the original
impetus for using the yeast model to identify mutations. Another caveat for using the yeast
system affects both p53 and BRCA1-both proteins have functions beyond transcriptional con-
trol, as seen in the Furuta paper, so merely identifying mutants with problems in transcrip-
tional regulation may not be sufficient to identify how they will respond to therapy. It may be
useful to score all mutants in homologous recombination, ubiquitylation or decatenation as-
says or other assays that evaluate tumorigenicity or protection from DNA damage.

Summary and Future Questions
Ultimately, an important question to ask is “Is BRCA1 a druggable target?” Recently, two

groups reported that poly-(ADP-ribose) polymerase (PARP) inhibitors could be used as single
agent treatments in cells with DNA repair defects.122,123 Their hypothesis was based on the role
of PARP in single strand break repair. If PARP is inhibited, DNA replication proceeds in the
presence of the single strand break, thereby turning a minor damage event into a double strand
break. Double strand break repair can occur via the nonmutagenic homologous recombination
pathway or via one of two more mutagenic pathways: single strand annealing or nonhomologous
end-joining (reviewed in ref. 124). Bryant, Farmer and their colleagues decided to test whether
PARP inhibition might be more lethal if the homologous recombination pathway was inacti-
vated. Bryant and colleagues showed that siRNA-mediated knock-down of BRCA2 in either
Mcf7 or MDA-MB-231 breast cancer cell lines resulted in increased death when treated with
PARP inhibitors. Both groups demonstrated that PARP inhibitors decreased tumor burden in
nude mice injected with cells lacking BRCA2. There are several caveats to these experiments.
First, the Bryant group had a relatively small number of animals and the three animals that
responded showed responses from minor to complete remission. The Farmer group had an
impressive response to the treatment in mice containing BRCA2-null tumors, however, they
used ES cells as a model and looked at tumor formation, i.e., began their experiment prior to the
presence of discernable tumors. While both studies are exciting and intriguing, they bring up
some questions. First: are all mutations that inhibit homologous recombination equal? There
was an early controversy about whether the PARP inhibitors were effective against a naturally
occurring BRCA2 mutation seen in the CAPAN-1 pancreatic cell line. One follow-up study
demonstrated that PARP-inhibitors had no effect on cell survival in vitro.125 However, when
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CAPAN-1 cells were treated with the more potent PARP inhibitors used by the Ashworth labo-
ratory, these cells were very sensitive to PARP inhibition.126 A second caveat is that neither group
used a breast cell line for their in vivo experiments. Would their results be as good in a more
relevant mouse model of breast cancer? What happens in mammary tumors induced by loss of
BRCA2? Are there differences between mammary tumors induced by BRCA1 compared to
BRCA2? Farmer and colleagues looked at BRCA1-deficient and BRCA2-deficient cell lines and
found similar results in vitro, making it tempting to speculate that BRCA1 mutant cancers
would behave in a manner similar to the BRCA2 mutant cancers. While BRCA2 seems to be
primarily involved in homologous recombination, BRCA1 has also been implicated in tran-
scriptional activation and repression, chromatin remodeling, centrosome regulation, and regula-
tion of the G1/S and G2/M checkpoints. Might any or all of these functions of BRCA1 not
related to its role in homologous recombination affect the response of these cells to PARP inhibi-
tors? Clinical studies show that there is a difference in BRCA1 tumors compared to BRCA2
tumors with respect to gene expression and histology (see above). But, as mentioned previously,
BRCA2 is frequently lost in sporadic tumors (as is BRCA1). The tumors in which both tumor
suppressors have been lost seem to have features of BRCA1-mutated familial breast cancers.82

This is consistent with the double BRCA1/BRCA2 knock-out mice, which clearly show that
BRCA1 is epistatic over BRCA2.127 Without a clearer understanding of how and why these
differences arise, it seems premature to extrapolate data from the BRCA2-deficient tumors. Ca-
veats aside, PARP inhibition is an exciting new chemotherapeutic avenue waiting to be explored.

A diagnosis of breast cancer, as for any cancer, is a frightening experience. For women who
carry a BRCA1 mutation, the probability of such a diagnosis increases dramatically. While a
cure for all of these women is still a long way off, recent data suggests that we should be
optimistic. Clinical, mouse and tissue culture data support the use of anthracyclines while
suggesting that agents such as paclitaxel are unlikely to be useful when treating the BRCA1
mutation carriers. Exciting data suggests that even for BRCA1 carriers who have ER negative
tumors, tamoxifen may be beneficial for some of these women. Finally, preclinical studies on
the PARP-inhibitors suggest that we may soon have tumor specific agents that have minimal
effects on normal tissues, thereby minimizing side effects. The challenge is to determine who
benefits and why.
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Abstract

The integrin family of extracellular matrix receptors plays an important role in normal
development, epithelial morphogenesis, angiogenesis, and in tumor progression and
metastasis. Integrins cooperate with growth factor receptors to control many cellular

functions including proliferation and cell survival. Integrin-mediated adhesion regulates many
of the cell cycle checkpoints including activation of cyclin D/cdk4/6 complexes, expression of
cyclin D genes, and regulation of levels of cyclin-dependent kinase inhibitors. In addition,
integrin-mediated cell adhesion regulates apoptosis by modulating the activity of both the
mitochondrial pathway and the death receptor pathways. Therefore, integrin-mediated adhe-
sion modulates the decision of life or death. A role for tumor-matrix interactions in the acqui-
sition of drug resistance has been reported for many cancers including breast cancer. Recent
evidence suggests that integrin-mediated adhesion to the ECM may undermine the response of
tumors to chemotherapeutic agents. Integrins have been shown to be readily accessible drug
targets and are therefore attractive potential targets for combined modality chemotherapy.

The Integrin Family of Cell Adhesion Receptors
The integrin family of extracellular matrix (ECM) receptors plays an important role in

normal development, epithelial morphogenesis, angiogenesis, and in tumor progression and
metastasis.1-5 Recent evidence suggests that integrin-mediated adhesion to the ECM may un-
dermine the response of tumors to chemotherapeutic agents. Integrins have been shown to be
readily accessible drug targets and are therefore attractive potential targets for combined mo-
dality chemotherapy.6-9 This chapter reviews the molecular mechanisms by which integrins
regulate cell survival, cell proliferation and the response to chemotherapeutic agents with a
focus on breast cancer.

The integrins are a family of noncovalently associated heterodimeric adhesive receptors that
play roles in mediating the cell-substrate and cell-cell interactions. Several general reviews are
available.10-12 At least 18 different  subunits and 8 different  subunits combine to form the
24 distinct heterodimers identified in humans.11,12 These  heterodimers act as receptors for
a variety of ECM proteins including collagens, fibronectin and laminins. Some integrins act as
receptors for soluble ligands, such as fibrinogen, while other integrins bind to counterreceptors
on other cells, such as intracellular adhesion molecules.13 Ligand specificity is a function of
particular alpha/beta combination although great deal of redundancy is inherent in the system.
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The significant redundancy in adhesive receptors for small numbers of ECM ligands suggests
that each receptor may mediate distinct sets of post-receptor ligand occupancy events. The
degree of integrin activation may also contribute to ligand binding specificity.14

Integrins cooperate with growth factor receptors to control many cellular functions such as
migration, proliferation and cell survival.15 To accomplish this function, integrins link the
ECM through the cell membrane to the cytoskeleton and many cytoplasmic signaling and
structural proteins such as focal adhesion kinase (FAK), integrin-linked kinase (ILK), Src-family
kinases, -actinin, paxillin, as well as many others.16-24 FAK interacts with cytoplasmic do-
mains of the integrin  subunit and cytoplasmic adaptor proteins that also bind to the  cyto-
plasmic domain such as talin, vinculin, and paxillin. FAK is activated by autophosphorylation
which results in the recruitment of additional focal adhesion adaptors including tensin and
p130cas.25-30 This activation leads to downstream activation of Crk and c-Jun N-terminal
kinase (JNK).31 The Src-family kinases also phosphorylate FAK to create a binding site for the
adaptor protein Grb2. Grb2 then recruits mSOS and activates Ras and the extracellular
signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) cascade.26 Activated
FAK also binds and activates the phosphoinositide 3-OH kinase (PI 3-kinase).32 Activation of
the Ras/MAPK, PI3K, and JunK cascades stimulate cell proliferation and inhibit cell death.

Following ligand binding, the 1 1, 5 1, and v 3 integrins have been shown to inter-
act with the membrane protein caveolin-1 through the transmembrane portion of the integrin

 subunit.16,17 This interaction has been shown to recruit the Src-family kinases Fyn and Yes to
the integrin signaling complex and to activate the Shc-pathway which leads to activation of the
Ras-ERK MAPK pathway and promotes cell proliferation and cell survival.16,17 Other integrin

 subunits use their extracellular or transmembrane domains to interact with other proteins.
For example, the 3 1 and the 6 1 integrins bind to members of a family of four transmem-
brane domain containing proteins that activate phosphatidylinositol-4-OH kinase.33 The
integrin associated protein has been shown to bind to the extracellular portion of the  subunit
of the IIb 3, v 3, and 2 1 in a complex with thrombospondin.34,35 Other molecules that
have been shown to interact with integrin  subunits include calreticulin, F-actin, paxillin,
Nisharin, Mss4, and BIN1.36-40

ILK is a serine-threonine protein kinase that also interacts with  integrin subunits to me-
diate downstream signals via interactions with a diverse set of signaling molecules, in a manner
similar to but not identical to FAK. ILK interacts with paxilllin,41-43 but in addition, ILK also
interacts with a family of novel adaptors called the double zinc finger domain (LIM)-only
proteins that include PINCH-1 and PINCH-2, and the F-actin binding proteins, parvins to
activate PI3K/Akt and stimulate cell survival.43-46 Overexpression of ILK in epithelial cells
stimulates anchorage-independent cell cycle progression and suppresses anoikis.47,48

Integrins and Cell Proliferation
Integrins modulate cell proliferation and cell cycle progression at many steps.49 As cells

progress through the cell cycle from a quiescent state in G0 towards duplication of their
DNA in S-phase, the first gap-phase, G1, serves as a checkpoint to ensure that the cell is in
the proper environment to proceed with replication. Integrins regulate many of the cell cycle
checkpoints. Integrin-mediated adhesion is required to activate the cyclin D/cdk4/6 com-
plexes and in some cell types is required for cyclin D expression. Integrin ligation synergizes
with signals from growth factor receptors to activate the JNK and ERK MAPK pathways
that ultimately lead to increase transcription of cyclin D genes.50 In some cells, robust acti-
vation of the growth factor-induced activation of Raf, MAPK, Rac or PI3K requires
integrin-mediated cell adhesion.51,52

During the late G1 phase of the cell cycle, up-regulation of cyclin E and activation of the
the cyclin E/cdk2 kinase is required for S-phase entry. In many cell types this checkpoint is also
coordinately regulated by growth factor activation and integrin-mediated adhesion. Adhesion
regulates the levels of the cyclin-dependent kinase inhibitors (CKI) of the p21 family (p21,
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p27, and p57). Cell adhesion to the ECM down-regulates the levels of p21 and p27, thereby
decreasing levels available to inhibit the cdk2/cyclin E complex.53-55 In addition, the
adhesion-dependent up-regulation of cyclin D1, increased cyclin D/cdk4/6 complexes act to
sequester p21 and p27.56-58 Thus through changes in the inhibitor levels, redistribution of
inhibitor, or a combination of both, integrin-dependent adhesion reduces the amount of free
p21 and p27.

Integrins and Apoptosis
Epithelial cells and endothelial cells require attachment to matrix for cell survival through

the inhibition of apoptosis.59,60 Programmed cell death (apoptosis) is the active process of cell
suicide induced by the withdrawal of survival factors. Although many diverse stimulae can
induce apoptosis, apoptosis that is induced by the loss of adhesion or inadequate or inappro-
priate cell-matrix interaction is called “anoikis”, based on the Greek word for homelessness.
Anoikis is a normal biologic process used by both epithelial cells and endothelial cells to main-
tain appropriate cell numbers and tissue organization.59,60 In epithelial and endothelial cells
detachment from matrix leads to increased expression of p53, a stimulus of apoptosis. In other
cells, including malignant cells such as melanoma and sarcoma, and transformed fibroblasts,
matrix detachment leads to decreased levels of p53 and changes in p14/p19 Arf after DNA
damage that result in cell survival and genomic instability.61 Therefore, in these cell types, loss
of adhesion-mediated regulation of apoptosis may contribute to both malignancy and therapy
resistance.

The expression of specific oncogenes including overexpression of bcl-2 or transformation of
epithelial cells with v-Ha-ras, v-src, or treatment with phorbol ester renders certain cells
anchorage-independent. In human cancers, loss of control of apoptosis contributes to the de-
velopment of mammary, gastrointestinal and lung cancers.62-65

To understand how integrin-mediated adhesion controls apoptosis we need a brief over-
view of apoptosis. Apoptosis occurs when the delicate balance of pro-survival and pro-apoptotic
stimuli shifts toward apoptosis.66 Our current understanding is that apoptosis occurs via two
separate pathways, the death receptor-dependent (extrinsic) pathway and the independent
(intrinsic or mitochondrial) pathway. As extensively reviewed by Martin and Vuori,
integrin-mediated cell adhesion has been shown to modulate the activity of both the mito-
chondrial pathway and the death receptor pathway.67 The mitochondrial pathway is medi-
ated by a balance of anti-apoptotic and pro-apoptotic proteins of the Bcl-2 family. The Bcl-2
family regulates the decision between life and death through interaction of pro- and
anti-apoptotic family members. Integrin-mediated adhesion influences apoptosis via numerous
mechanisms including enhanced transcription of the Bcl-2 gene, erk/MAPK-induced phos-
phorylation of Bad, preventing its proapoptotic function, and erk/MAPK-induced phos-
phorylation of Bcl-2, preventing its unbiquitin-mediated degradation.68-74 Stromblad et al
demonstrated that disruption of integrin-mediated adhesion leads to apoptosis or cell cycle
arrest through activation of p53.76 p53 regulates the transcription of proapoptotic Bcl-2
family members, including Bax. Increased expression of Bax then alters Bcl-2/Bax ratio in
favor of cell death.77,78

In mammary epithelial cells, Gilmore et al showed that detachment of normal primary
mammary epithelial cells induced a rapid translocation of Bax to the mitochondria. Bax trans-
location occurred prior to activation of the caspase cascade.74 In mammary epithelial cells, Bid
also translocates to the mitochondria with identical kinetics to Bad following cell detachment.
Bid translocation is required for anoikis.79 In contrast to the role of Bax and Bid is mediating
anoikis, the role of Bim is controversial. Reginato et al demonstrated that Bim was a critical
mediator of anoikis using MCF-10A cells. In fact, after detachment of MCF-10A cells from
the matrix only levels of Bim changed and not levels of Bad, Bim, Bmf or Bid.80 In contrast,
Wang et al reported that apoptosis following deadhesion of a primary mouse mammary epithe-
lial cells and a mouse mammary epithelial cell line did not utilize Bim.81 Further studies are



Breast Cancer Chemosensitivity90

required to resolve these issues. Additional mechanisms by which cell adhesion regulates anoikis
were reviewed by Hazlehurst et al.82 In some cases proapoptotic Bcl-2 family members such as
Bmf and Bim are sequestered to the cytoskeleton in normal healthy cells and released following
matrix detachment or UV exposure.83-86

Integrin ligation activates many kinase/phosphatase signaling molecules implicated not only
in the control of cell proliferation but also in anoikis.87-91 Following integrin ligation FAK
activates PI3K and the serine-threonine kinase Akt directly or indirectly via the p130cas path-
way. FAK activation also leads to activation of c-Jun.92-75 FAK-mediated activation of PKB/
Akt inactivates the pro-apoptotic proteins, Bad and caspase 9, thereby inhibiting apoptosis.96,97

In addition, FAK has been shown to regulate the expression of caspase inhibitors of the IAP
(inhibitor of apoptosis) family by a proposed mechanism involving PI3K/Akt activation of the
NF- B pathway.66,98

ILK binding to the cytoplasmic domain of the  integrins results in transient phosphoryla-
tion of PI3K/Akt. Overexpression of ILK leads to prolonged activation of Akt and suppression
of anoikis. Expression of dominant-negative ILK results in decreased phosphorylation of Akt
and enhanced apoptosis.99-101

Integrins and Cancer
One of the earliest suggestions that integrins play a role in differentiation and malignancy

came from studies of the malignant transformation of cells in culture. Plantefaber and Hynes
demonstrated that oncogenic transformation of rodent fibroblasts with Rous sarcoma virus
encoding the src oncogene or murine sarcoma virus encoding the ras oncogene led to reduced
expression of the 5 1 integrin and two other unidentified integrins.102 Expression of the

3 1 integrin was retained. Later, Dedhar and Saulier demonstrated that treatment of a hu-
man osteogenic sarcoma cell line (HOS) with N-methyl-N’-nitro-N-nitrosoguanidine
(MMNG), a potent carcinogen, altered integrin expression. Increased expression of the 6 1,

2 1, 1 1 integrins contrasted with reduction in v 3 expression and no change in 5 1 or
3 1.103 In both examples, transformation was associated with morphologic alterations and

increased invasiveness, suggesting that changes in integrin expression might contribute to changes
in cell phenotype associated with malignant transformation.

In the human breast, oncogenesis results from amplification and/or over-expression of mem-
bers of the epidermal growth factor receptor (EGF-R) family. EGF-R is over-expressed in ap-
proximately 40% of ductal carcinomas.104 In approximately 30% of other breast cancers, the
c-erbB2/c-neu oncogene is either amplified or over-expressed.103-107 Moreover, over-expression
of c-erbB2 is an independent risk factor for poor prognosis suggesting that this particular
proto-oncogene may be involved in cancer progression. Over-expression of c-erbB2 in an im-
mortalized human mammary epithelial cell line derived from luminal epithelial cells disrupted
morphogenesis in three-dimensional collagen gels when compared to parental cells in which
the c-erbB2 proto-oncogene was not over-expressed.108 Over-expression of c-erbB2 in this model
system resulted in decreased expression of the 2 integrin subunit protein and mRNA.109,110

These findings suggested an inverse correlation between c-erbB2 expression and the expression
of the 2 1 integrin.

Using biopsy samples of human cancers, many investigations including our own have de-
scribed alterations in expression or cellular localization of many different integrin heterodimers
in carcinoma of the breast, colon, prostate, lung, pancreas, and skin. The 2 1, 3 1, and the

6 4 integrins are expressed at high levels in most normal epithelial cells and associated with
the differentiated epithelial phenotype. Loss of expression of any one of these receptors has
been associated with loss of differentiation in malignancies. In contrast, expression of the 5 1
and the v 3 integrin is increased, decreased, or unchanged in different malignancies. In-
creased expression of the v 3 integrin has been associated with a poor clinical course in a
number of malignancies, including epithelial malignancies and melanoma.111-117
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Integrin-Mediated Drug Resistance
Cancer therapies including both ionizing irradiation and chemotherapy selectively induce

apoptosis of rapidly dividing cells.9 Cancer recurrence and metastasis is thought to result from
incomplete killing of all tumor cells. Tumors that recur are at a selective advantage, will not
respond to the same chemotherapeutic and/or radiation therapeutic regimens and ultimately
become more aggressive. The ability of radiation and chemotherapy to damage DNA is a criti-
cal component of therapeutic intervention. DNA damage leads to apoptosis via a complex
pathway regulated by p53 family members. P53, a tumor suppressor protein, serves as a mo-
lecular switch deciding between apoptosis and cell cycle arrest following DNA damage and
other genotoxic stresses (reviewed in ref. 9). As discussed above, integrin-mediated adhesion
modulates many pathways that lead to the decision of life or death.

Resistance to chemotherapy may be an intrinsic property of the tumor cells or tumor cells
may develop resistance to chemotherapy during treatment. The mechanisms for drug resis-
tance include drug efflux, drug inactivation, alterations in drug targets, processing of
drug-induced damage and evasion of apoptosis, modulation of cell cycle checkpoint media-
tors, and changes in the downstream mediators of the apoptotic pathways.9 Many of these
mechanisms such as changing patterns of drug efflux, the ability to inactivate the drug or alter
the drug target depend on the tumor cell alone. We now appreciate that cell adhesion may play
an important role in controlling drug responsiveness.8

The earliest works demonstrating a contribution of integrin-mediated adhesion to drug
resistance was in small cell lung cancer (SCLC). Fridman et al demonstrated that the majority
of SCLC cell lines adhered to laminin and that adhesion to laminin resulted in resistance to a
number chemotherapeutic agents including etoposide, cisplatinum, doxorubicin, and nitro-
gen mustard. The cells that failed to adhere to laminin were not resistant to these chemothera-
peutic agents.118 Although a role for a specific integrin was not directly addressed, these data
suggested that integrin-mediated adhesion was at least in part responsible for the chemoresis-
tance. Kraus et al later showed that chemoresistance of SCLC cells resulted from the induction
of apoptosis-resistant variants that up-regulated the expression of the integrin subunits 2, 3
and 4. The resistance to chemotherapy required matrix adhesion, activation of the Akt and
MAP kinase pathways, increased levels of phosphorylated Bad protein and activation of
NF-kappa B.119

In vivo, SCLC is surrounded by an ECM-rich environment composed of fibronectin, col-
lagen IV, and tenascin both at primary sites and at sites of tumor metastasis. Cells from several
small cell lung cancer cell lines expressed many of the 1 integrins including the 2 1, 3 1,

6 1 and v 1 integrins and adhered to fibronectin, laminin and type IV collagen in a 1
integrin-dependent manner. Integrin-mediated adhesion to all three matrix components pro-
tected the cells from apoptosis induced by doxorubicin, cyclophosphamide and cis-plantinum.120

Protection from cell death was prevented by the tyrosine phosphorylation inhibitor Tyrphostin-25
or by an anti- 1 integrin antibody. The integrin-dependent, anti-apoptotic effect was a conse-
quence of blocking the proteolytic cleavage of pro-caspase-3.121 Hartmann et al also demon-
strated that activation of integrins or the chemokine receptor CXCR4 resulted in increased
chemotherapy resistance by SCLC cells.122 Similar observations were made using the nonsmall
cell carcinoma cell line A549.123 Attachment of these cells to fibronectin resulted in chemore-
sistance to irradiation, cisplatin, paclitaxel or mitomycin C.

Integrin expression predicts chemoresistance in vivo. Okita et al investigated the relation-
ship between expression of the 1 integrin family, p53 expression, and resistance to chemo-
therapy in a cohort of patients with SCLC. The overall survival of patients with elevated ex-
pression of either both 1 integrin and p53, or 1 integrin, or p53 was significantly worse than
that of patients without high level expression of 1 integrin or p53. When the association
between survival and prognostic factors, including gender, age, performance status, clinical
stage were examined by the Cox proportional hazards model, expression of both 1 integrin
and p53 were independent risk factors (hazard ratio = 0.394, p = 0.0005).124
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Integrin-mediated adhesion also modulates the expression of proteins that block apoptosis.
Increased expression of proteins that block apoptosis, including X-linked inhibitor of apoptosis
(XIAP) and survivin were associated with decreased overall survival, increased recurrence and
resistance to radiotherapy in nonsmall cell lung and colon cancer.125-128 Cao et al demon-
strated that inhibition of survivin or XIAP greatly increased irradiation-induced cell death by
stimulating apoptosis and inhibiting cell survival. Using an in vivo mouse model of lung can-
cer, the combination of radiotherapy with inhibition of survivin or XIAP inhibited tumor
growth better than either agent alone.129 1 integrin-mediated adhesion of the aggressive PC3
prostate adenocarcinoma cell line to fibronectin resulted in up-regulation of survivin and pro-
tection from tumor necrosis factor-  (TNF- )-induced apoptosis.130 Inhibition of survivin
activity or decreased expression of survivin in PC3 cells using dominant-negative or antisense
survivin constructs obliterated the adhesion-mediated protection from apoptosis. In addition,
adhesion to fibronectin resulted in increased expression of survivin protein via a PI3K/ Akt
dependent pathway.130

In contrast to the importance of the 1 integrin family described above, drug-induced
apoptosis of glioma cell lines was inhibited by adhesion to vitronectin, but not to fibronectin.
Either of the two classic vitronectin-binding integrins, v 3 or v 5, conferred chemoresis-
tance to topoisomerase. The chemoresistance observed with vitronectin was associated with
increased expression of two antiapoptotic proteins, Bcl-2 and Bcl-X(L), with a consequent
increase in the ratios for Bcl-2:Bax and Bcl-X(L):Bax.13 A role for tumor-matrix interactions in
the acquisition of drug resistance had been reported for pancreatic cancer, colon cancer, and
ovarian cancer.131-135

Integrins and Chemoresistance in Breast Cancer
MCF7 cells are a relatively well-differentiated and nonmetastatic human breast cancer cell

line. Nista et al reported that adriamycin-resistant MCF-7 cells demonstrated increased expres-
sion of the 5 1 integrin in comparison to the MCF-7 parental cells. Augmented adhesion to
fibronectin correlated with inhibition of apoptosis in response to serum starvation.136 Narita et
al demonstrated that the 6 1 but not the 2 1 integrin was also upregulated in an
adriamycin-resistant MCF-7 cell line.137 The highly metastatic MDA-MB-435 breast carci-
noma cell line with targeted deletion of the 6 1 integrin exhibited growth suppression and
increased apoptosis in comparison to the parental tumors in vivo. These data suggested that
expression of the 6 1 integrin in breast carcinoma cell lines facilitated tumorigenesis and
promoted tumor cell survival in distant organs.138

To directly address the impact of integrin-mediated cell adhesion on drug-induced
apoptosis, Aoudjit and Vuori evaluated whether cell adhesion to different matrices altered
the response of MDA-MB-231 and MDA-MB-435, both highly metastatic breast cancer
cell lines that are sensitive to the microtubule-targeting chemotherapeutic agents paclitaxel
and vincristine.139 MDA-MB-231 cells adhered well and survived to an equal extent on type
I collagen, fibronectin, laminin-1, and vitronectin under baseline conditions. However, when
MDA-MB-231 cells were treated with increasing concentration of paclitaxel, cells plated on
uncoated dishes or on nonmatrix coated (poly-L lysine) died by apoptosis, as demonstrated
by increased DNA fragmentation. Cell attachment to type I collagen or fibronectin inhib-
ited apoptosis and DNA fragmentation. In contrast, adhesion to vitronectin and laminin-1
failed to protect from drug-induced apoptosis. The ability of type I collagen and fibronectin
to protect MDA-MB-231 cells from apoptosis was dependent specifically on two integrins,
the 2 1 and 5 1. In contrast, MDA-MB-435 cells demonstrated different chemoresistant
properties. Adhesion to neither type I collagen nor fibronectin protected MDA-MB-435
cells from paclitaxel-induced apoptosis. However, adhesion of MDA-MB-435 cells to
laminin-1 via the 6 1 integrin provided protection from apoptosis. These studies demon-
strated that protection from drug-induced apoptosis is exquisitely matrix protein-, integrin-
and cell type-dependent. In these studies, integrin-mediated regulation of drug-induced cell
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death was dependent on PI3K/Akt activation, inhibition of cytochrome c release from the
mitochondria and sustained high level expression of Bcl-2.139

Menendez et al utilized the MCF7 cell model to evaluate the effect of overexpression of the
CYR61 (CCN1; the human homolog of a mouse immediate early response gene, Cyr61) gene.140

CYR61 was identified as a gene that was differentially expressed in invasive and metastatic hu-
man breast cancer cells.141 CYR61, a secreted protein that associates with the cell surface and
extracellular matrix, is a member of the Cysteine-rich 61/Connective tissue growth factor/
nephroblastoma-overexpressed (CCN) gene family of angiogenic and growth regulators.142-148

In breast cancer CYR61 is a downstream effector of heregulin (HRG). Overexpression of CYR61
without HRG or Her-2/neu (erbB-2) oncogene overexpression promoted hormone indepen-
dence and drug resistance, and enhanced the metastatic phenotype.148-152 CYR61 functioned in
an autocrine-paracrine manner through interaction with multiple integrins ( v 3, v 5, 6 1
and IIb 3). Overexpression of CYR61 in HRG-negative MCF-7 cells resulted in markedly
increased expression (greater than 200 fold) of the v 3 integrin and rendered the cells resistant
to paclitaxel-induced cytotoxicity. In fact the resistance of breast cancer cells to Taxol-induced
cytotoxicity was blocked by functional inhibition of the integrin v 3. These results suggested
that CYR61 modulates chemosensitivity or chemoresistance to therapeutic agents such as Taxol
via interaction with the v 3 integrin. In addition, Menendez et al demonstrated that func-
tional antagonism of the v 3 integrin enhanced Taxol-induced apoptosis, although antago-
nism of the integrin alone reduced cell proliferation but failed to increase apoptosis, suggesting
a synergism between integrin antagonism and chemotherapy. Additional data utilizing this sys-
tem suggested a model in which CYR61 overexpression in breast cancer cells led to increased
expression of the v 3 integrin and subsequent v 3 integrin activation via CYR61 of the Raf/
MEK1/MEK2-ERK1/ERK2 cascade. These data suggest the potential clinical use of
peptidomimetic integrin-antagonists in combination with chemotherapy for breast cancer.140

Kayaselcuk et al compared the expression of survivin in biopsies of malignant breast cancer
to nonmalignant, intraductal epithelial neoplasia. Breast cancer cells exhibited increased survivin
expression. Increased expression of survivin in this series of breast cancer was associated with
increased expression of Bcl-2 and p53.153 In other studies of breast cancer, survivin expression
was associated with clinical features including high histologic grade, p53 gene mutation and
loss of heterozygosity at chromosome 17p13.1.154-155 A direct correlation between survivin
expression and integrin-mediated drug resistance in breast cancer has not been reported, how-
ever the data from prostate cancer suggests an important association.

The Tumor Microenvironment and Breast Cancer
The important roles that three-dimensional (3-D) tissue architecture and the microenvi-

ronment play on normal mammary gland development, tumor progression and chemotherapy
resistance have emerged from studies by numerous investigators (review by Zahir and Weaver).156

The mammary gland and breast cancers develop within a 3-D environment where cells are
influenced by the extracellular matrix and other cells. Teicher et al (1990) demonstrated using
EMT-6 mammary tumor cells grown in mice that the tumors rapidly developed drug resis-
tance when treated with a number of different drugs including cis-diamminedichloroplatinum
(II) (CDDP), carboplatin, cyclophosphamide (CTX), or thiotepa.157 Cells treated in 2D cell
culture with the same agents failed to develop drug resistance. These in vivo selected drug-resistant
variants expressed their resistance when cultured in vitro as spheroids. The term “multicellular
drug resistance” was coined to refer to therapeutic resistance of cancer cells in 3-D tumor
spheroids in vitro or solid tumors in vivo to chemotherapy, ionizing radiation, and Fc-dependent
host defense mechanisms.158,159 The resistance behavior of cancer cells in 3-D spheroids mim-
icked that of solid tumors in vivo. The resistance was in part mediated by changes in tissue
architecture, cell-cell adhesion, integrin expression, and ECM organization.160 Green et al dem-
onstrated that much of the drug resistant phenotype resulting from tumor spheroid formation
was dependent on E-cadherin mediated cell-cell adhesion.161
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Additional roles that integrins play in the 3-D architecture of the mammary gland and the
influence of integrins on breast cancer survival have been described. Boudreau demonstrated
that tissue architecture was crucial for homeostasis, suppression of apoptosis, and maintenance
of differentiated mammary epithelial cell phenotype.162 Weaver et al subsequently demon-
strated that polarized 3-D glandular structures surrounded by basement membrane conferred
protection from apoptosis in both nonmalignant and malignant mammary epithelial cells. The
resistance to apoptosis required ligation of the 4 integrin and NF- B activation.163 Apoptosis
resistance was acquired in breast cancers via autocrine synthesis of laminin-5 and a positive
feedback loop from 6 4 integrin-laminin-5 ligation and anchorage-independent survival.164

Conclusions
In summary, integrin ligation plays an important role in modulating the decision of a can-

cer cell to live or to die. In modulating cell survival, the integrin family determines the impact
of chemotherapy and can determine the acquisition of the drug resistant phenotype. Since
integrins have been shown to be readily accessible drug targets, future directions should in-
clude the evaluation of integrin antagonists in combined modality chemotherapy.6-9
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Abstract

Despite improvements in breast cancer therapy in recent years, additional therapies
need to be developed. New therapies may have activity by themselves or may have
utility in combination with other agents. Population, preclinical, and basic data sug-

gest the insulin-like growth factor (IGF) system functions to maintain the malignant pheno-
type in breast cancer. Since the IGFs act via transmembrane tyrosine kinase receptors, targeting
of the key receptors could provide a new pathway in breast cancer. In addition, IGF action
enhances cell survival, so combination of anti-IGF therapy with conventional cytotoxic drugs
could lead to synergistic effects. In this review, we will discuss the rationale for targeting the
IGF system, potential methods to disrupt IGF signaling, and identify potential interactions
between IGF inhibitors and other anti-tumor strategies. We will also identify important issues
to consider when designing clinical trials.

Introduction
Breast cancer is the most common cancer in women responsible for over 40,000 deaths in

the United States.1 Since cancer death is almost always caused by growth of breast cancer in
metastatic sites, systemic cytotoxic and endocrine therapies are commonly given. In operable
breast cancer, systemic adjuvant therapy is employed to reduce the risk of recurrence and pro-
long overall survival. In women with metastatic disease, systemic therapy is given to control
growth of breast cancer in distant organs. Both treatments essentially target metastatic disease;
in the adjuvant setting, the goal is to eradicate any microscopic disease that is not clinically
detectable while treatment of metastatic disease targets clinically obvious sites.

Though systemic treatment is clearly effective in both adjuvant and advanced settings, therapy
is far from completely effective. In the adjuvant setting, administration of chemotherapy re-
duces the relative risk of recurrence by approximately 30%.2 Identifying methods to enhance
the cytotoxicity of chemotherapy are clearly needed. Since normal and cancer cells receive
survival and proliferative signals from their extracellular environment, targeting of these signals
could enhance the clinical benefit of chemotherapy. Indeed, trastuzumab, an antibody directed
against the human epidermal growth factor receptor-2 (HER2), is commonly used in combi-
nation with chemotherapy for women with advanced cancer.3 While the exact mechanism for
the synergy between trastuzumab and chemotherapy is not completely understood, it is likely
that trastuzumab renders cells more sensitive to the apoptotic effects of chemotherapy by at-
tenuating cells survival pathways.
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Identifying additional survival pathways could also be used to enhance the benefits of che-
motherapy. Insulin-like growth factors (IGFs) and the IGF signaling pathways play a role in
development of the normal mammary gland. Numerous studies have now demonstrated that
the IGF system regulates all of the key metastatic phenotypes in breast cancer cells: survival,
proliferation, and metastasis.

Extensive data are available on the importance of IGF system in growth regulation of breast
cancer cell lines.4 The type I insulin-like growth factor receptor (IGF-IR) is significantly
overexpressed5 or hyperphosphorylated in tumor cells relative to normal breast epithelium and
benign tumors.5,6 In addition, several clinical studies also support a role for IGF-I in breast
cancer risk.7,8 In cell line model systems, IGF-IR conferred resistance to trastuzumab-induced
growth inhibition9 and a kinase inhibitor to IGF-IR increased radiosensitivity in some breast
cancer cells lines.10 Thus, data from population and laboratory studies provide a rationale for
targeting IGF-IR in breast cancer. Moreover, disruption of IGF-IR may render cells more
sensitive to apoptotic stimuli. Several reviews have already addressed the important role of the
IGF system in breast cancer.11-13 Here we will summarize the potential role of IGF action on
breast cancer chemotherapy.

The IGF System
The IGF system involves the coordination of growth factors (IGF-I and IGF-II), cell sur-

face receptors (IGF-IR, IGF-IIR, and the insulin receptor IR), six high affinity binding pro-
teins (IGFBP-1 to 6), IGFBP proteases, and the downstream proteins involved in intracellular
signaling distal to IGF-IR.

IGF-I and IGF-II are single-chain 7.5 kDa polypeptide growth factors with a high de-
gree of homology to insulin. The main function of IGF-I is to act as an effector molecule of
growth hormone (GH), which is fundamental to linear growth and development.14 During
puberty, pulsatile GH release from the pituitary stimulates expression of IGF-I in the liver.
In addition to its endocrine role, it has been suggested that IGF-I may also have an impor-
tant role in prenatal growth. Mice with a homozygous deletion of the IGF-I gene have a
birth weights less than 60% of their wildtype littermates, these mice have a high post-natal
mortality rate.15 Thus, besides its endocrine role, IGF-I plays an important paracrine and
autocrine role during normal development and growth of the organism. IGF-II expression
is not regulated by GH. However, IGF-II has proliferative and antiapoptotic actions simi-
lar to IGF-I. In addition, IGF-II plays a fundamental role in embryonic and fetal growth,
this was proven by IGF-II gene knockout mice, which survive but remain smaller than
their wildtype littermates.16 Interestingly, size at birth and height at age 14 have been linked
to increase breast cancer risk suggesting an etiologic role for the IGFs and breast cancer
development.17

The actions of IGFs can be modulated by interaction with a family of six insulin-like
growth factor-binding proteins, IGFBP-1 to IGFBP-6, which share 40-60% amino acid
identity. IGFBP3 is the largest and most abundant IGFBP, more than 75% IGF is confined
to the vascular compartment as a ternary complex with IGFBP3 and the acid labile sub-
unit. By binding IGF-I and IGF-II, IGFBPs regulated the bioavailability of IGFs in the
circulation. IGFBP-3 has also been shown to competitively inhibit IGF action at the cellu-
lar level in the absence of IGF binding and exert IGF-independent proapoptotic and
antiproliferative effects through the activation of caspases involved in a death
receptor-mediated pathway.18

Although at least two receptors for IGFs exist, the primary signaling receptor through which
both IGF-I and IGF-II exert their biological actions is the IGF-IR. Hybrid IGF-IR/insulin
receptors also exist and could mediate IGF and insulin action in breast cancer cells.19,20 Pres-
ence of the hybrid receptor adds an additional layer of complexity to IGF signaling.

Binding of ligand to the receptor induces autophosphorylation and activation of multiple
downstream cell survival and proliferation signaling pathway via recruitment and tyrosine
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phosphorylation of specific adaptor/effector molecules.21 While individual pathways have
been linked to specific cancer phenotypes, it is clear that the intracellular signals initiated
after IGF-IR activation constitute a network of interacting molecular events. It is likely
oversimplistic to ascribe a specific behavior to a specific pathway. Nonetheless, activation of
PI3 kinase downstream of the insulin receptor substrate-1 (IRS-1) adaptor protein has been
linked to cell survival and regulation of several proteins involved in apoptosis.22 Induction of
cell growth and proliferation has been linked to both the PI3 kinase pathway and the MAP
kinase pathway downstream of IGF-IR and its phosphorylated substrates, IRS-1 and
Src-collagen homology (Shc) protein. The type II insulin-like growth factor receptor (IGF-IIR)
lacks tyrosine kinase activity and appears to exert antiproliferative and proapoptotic activi-
ties by sequestration of IGF-II, reducing its availability for interaction with the IGF-IR.23

IGFs and Normal Mammary Tissue
IGFs play a key role in proliferation and survival in the mammary gland, particularly dur-

ing puberty and pregnancy.24,25 IGF-I is a potent mitogen for mammary epithelial cells and in
combination with mammotrophic hormones, such as estrogen receptor (ER), it induces ductal
growth in mammary gland explant cultures.26 IGF-IR null mice have deficient mammary de-
velopment with reductions in the number of terminal end buds, ducts and the per cent of the
fat pad occupied by glandular elements. This phenotype is partially restored by administration
of des(1-3) IGF-I.27 In addition, IGF-I also plays a role in the maintenance of the adult mam-
mary gland during lactation, lactating transgenic mice overexpressing the Igf1 gene undergo
ductal hypertrophy and fail to show normal mammary gland involution following weaning.28

The same group also demonstrated that IGF-I slows the apoptotic loss of mammary epithelial
cells during the declining phase of lactation.29

It is known that IGFs is one of the developmental/essential survival factors for the mam-
mary gland, although other factors such as epidermal growth factor (EGF) and its homologues
also deliver intracellular signals that suppress apoptosis. Direct evidence for IGFs as survival
factors comes from culture studies.24,30,31 IGF-I or IGF-II can suppress the apoptosis of mam-
mary epithelial cells induced by serum withdrawal. It has been recently established that this is
achieved through PI3K and MAPK signals that ultimately inhibit activity of a proapoptotic
protein, BAD and enhance expression of another antiapoptotic protein Bcl-xL.24,30 Indirect
evidence came from the transgenic mice overexpressing IGFBP-5 in the mammary gland, these
mice had reduced numbers of alveolar end buds, with decreased ductal branching and in-
creased expression of the pro-apoptotic molecule caspase-3,and decreased expression of
pro-survival molecules of the Bcl-2 family.32

IGF and Breast Cancer
The IGFs and IGF-IR function to promote proliferation, inhibit death and stimulate trans-

formation in breast cancer cells.11 High levels of serum IGF-I are associated with an increased
risk of breast cancer in premenopausal women.33 There is also substantial evidence that IGF
expression occurs locally in breast cancer tissues. Although IGF-I is rarely expressed in primary
breast cancer, IGF-II message is more frequently detectable in breast cancer cells compared to
normal cells.34 Moreover, the stroma is a rich source of both IGFs.

Studies in transgenic mice have revealed an important role of IGF-I in mammary tumori-
genesis. Transgenic mice expressing human des(1-3) IGF-I (under the control of the rat
whey acid protein) display an increased incidence of mammary tumors, with 53% of the
mice developing mammary adenocarcinomas by 23 months of age.35,36 Furthermore, data in
a transgenic mouse system suggest that mice deficient in liver-expressed IGF-I have a re-
duced ability to develop mammary tumors.37 In human studies, circulating IGF-I levels are
higher in breast cancer patients than in controls. In addition, cohort studies have shown that
higher levels of circulating IGF-I are associated with an increased risk of breast cancer in
premenopausal women.38
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The IGF-IR, the primary mediator of the biological actions of IGF-I, has been detected in
a majority of primary breast tumor samples with overexpression in 30% to 40% of breast
cancers.39 Furthermore, IGF-IR autophosphorylation has been found to be elevated in human
breast cancer suggesting that this is an active pathway in primary breast cancer.6,40 Interest-
ingly, a high level of IGF-IR in patients with breast cancer is associated with a greater recur-
rence risk of recurrence after local radiation therapy.41

Insulin receptor substrate-1 (IRS-1), the primary signaling molecule activated in response
to IGF in MCF-7 human breast cancer cells, is reported to be overexpressed in some primary
breast tumors and a high IRS-1 are associated with a decreased disease-free survival in a subset
of patients with all tumors.42,43 Activation of specific IRS species are associated with distinct
biological effects.44 Activation of IRS-1 signaling was associated with cell growth, whereas
insulin receptor substrate-2 (IRS-2) signaling was associated with cell motility.44,45 Nagle et al
showed that mammary tumor cells obtained from IRS-2 knock-out mice were less invasive and
more apoptotic in response to growth factor deprivation than their WT counterparts. In con-
trast, IRS-1(-/-) tumor cells, which express only IRS-2, were highly invasive and were resistant
to apoptotic stimuli.46 These data suggest that signaling pathways downstream of IGF-IR may
ultimately be responsible for the malignant phenotype mediated by this growth factor signal-
ing system.

Breast cancer cells also produce several IGFBPs that could modulate IGF action. In addi-
tion to the indirect modulation of IGF’s mitogenic and antiapoptotic signals by ligand seques-
tration, IGFBPs also exert IGF-independent effects on cell survival. For example, IGFBP-4
and IGFBP-5 can rescue cells from ceramide or integrin-mediated apoptosis, which may ac-
count for the poor prognosis in breast cancers with high IGFBP-4 expression13,47 whereas
IGFBP-3 has been found to directly inhibit breast cancer cell growth without interacting with
IGFs.13,48

Conventional Chemotherapy for Breast Cancer
It is well established that most chemotherapeutic agents eliminate cells by triggering apoptosis.

Most currently approved agents target specific molecules required for a cell to traverse the cell
cycle. Targets range from DNA itself, to enzymes (topoisomerases), or structural proteins (tu-
bulin) required for cell division. There are three kinds of cells in a solid tumor: dividing cell
that are continuously cycling, resting cell which may potentially enter the cell cycle, and those
cells no longer able to divide. In breast cancer, Clarke et al have suggested that only a minority
of cells contained within a tumor have the capacity to contribute to all these subpopulations of
tumor cells leading to the idea that cancer stem cells exist.49 Essentially only dividing cells are
susceptible to the currently available chemotherapy drugs. It is the existence of resting or stem
cells that makes it difficult to completely eradicate advanced tumors by chemotherapy; even
after a substantial clinical response, a population of cells may still exist that have full capacity to
enter the cell cycle.

The primary therapy of localized-early stage I and II- breast cancer is either breast-conserving
surgery and radiation therapy or mastectomy with or without reconstruction.50 Systemic adju-
vant therapies designed to eradicate clinically undetectable microscopic deposits of cancer cells
that may have spread from the primary tumor result in decreased recurrences and improved
survival.2,51 Adjuvant therapies include chemotherapy and hormonal therapy. In the adjuvant
setting, chemotherapy is usually given in combination for 4-6 months. A wide variety of agents
have been effective in breast cancer including DNA alkylators (cyclophosphamide),
topoisomerase inhibitors/DNA intercalators (doxorubicin), anti-metabolites (5-fluorouracil,
methotrexate), and tubulin interacting agents (paclitaxel).2 Adjuvant chemotherapy effectively
reduces the odds of recurrence and death by approximately 20% to 60% of patients. However,
since this reduction of risk is not complete, substantial research effort is directed toward im-
proving the benefits of chemotherapy. New target discovery and combination of new agents
with “conventional” agents represent an active area of investigation.
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IGF Signaling Confers Resistance to Chemotherapy
Besides inducing cell cycle progression, IGF-I also protects breast cancer cells from

drug-induced apoptosis.52-54 In fibroblasts, protection from apoptosis requires the tyrosine
kinase activity of IGF-IR, as kinase defective receptors do not protect fibroblasts from apoptosis.55

In addition to drug-induced apoptosis, IGF-IR activation appears to block other stimuli as
well. For example, BNIP3 (Bcl-2/E1B 19 kDa interacting protein) is a proapoptotic member
of the Bcl-2 family expressed in hypoxic regions of tumors. Treatment of the breast cancer cell
line MCF-7 cells with IGF effectively protected these cells from BNIP3-induced cell death56

likely via activation of PI3K and the Akt/PKB pathways.55,57 Akt/PKB phosphorylates BAD, a
member of the Bcl-2 family of proapoptotic proteins, phosphorylated BAD cannot
heterodimerize with Bcl-2 or Bcl-Xl, remains in the cytosol and cell death is inhibited.58 It has
also been suggested that IGF can inhibit apoptosis by increasing the expression of Bcl-XL at
both the mRNA and protein level.59 Thus, signaling from IGF-IR to multiple proteins in-
volved in the intrinsic apoptotic pathways suggest a mechanism for protection from cell death
signals.

IGFs provide resistance of breast cancer cells to chemotherapeutic agents.53 IGF-I alters
drug sensitivity of HBL100 human breast cancer cell by inhibition of apoptosis induced by
diverse anticancer drugs, it increased cell survival of HBL100 cells treated with 5-FU, methotr-
exate, tamoxifen or camptothecin, but no changes were observed in Bcl-2 protein or Bax mRNA
levels.60 IGF-I signaling is also associated with resistance to the growth-inhibitory actions of
trastuzumab by upregulation of ubiquitin-related p27kip1 degradation and activation of the
PI3K signaling pathway.61 In breast cancer cells, IGF-I can activate JNK which is generally
associated with a pro-apoptotic response. However, activation of Akt seems to override
pro-apoptotic effects of JNK activation.62 Thus targeting IGF-IR could enhance a pro-apoptotic
response initiated by many different agents.

IGF-IR and DNA Repair
Several reports indicate that IGF-IR activation is also important in regulating DNA repair.

Fibroblasts can be rescued from DNA damage by IGF-I via activation of the p38 MAP kinase
signaling pathway.63,64 Increasing IGF-IR expression increased radioresistance in breast tumor
cells,65 and delayed UVB-induced apoptosis by enhancing repair of DNA cyclobutane thymidine
dimers in keratinocytes.66,67 IGF-I stimulation supports homologous recombination-directed DNA
repair (HRR) via an interaction between IRS-1 and Rad51, a key enzyme of HRR.68 In con-
trast, IGF-I may actually inhibit the ability of A549 cells to repair potentially lethal DNA
damage induced by radiation.69 Though these observations are somewhat conflicting as they
suggest IGF-IR may both enhance and inhibit DNA repair, it is possible that these differences
relate to the varied experimental model systems and cell types studied. However, these experi-
ments support a link between DNA repair and IGF-I action and the exact IGF effects may be
context dependent.

Effects of Breast Cancer Therapy on the IGF System
On the other hand, breast cancer chemotherapy also affects IGFs. It has been reported that

serum IGFBP-3 falls significantly following initiation of chemotherapy in breast cancer pa-
tients, those individuals with a decrease in IGFBP-3 greater than the median had significantly
poorer survival (median survival 5.5 months vs 18 months).70 Another clinical trial showed
that plasma IGF-I concentration significantly decreased after the first cycle of cyclophospha-
mide, methotrexate and 5-fluorouracil adjuvant chemotherapy in breast cancer patients.71

Retinoids such as fenretinide (4-HPR) inhibit breast cell growth while decreasing IGF-I and
increase IGFBP-3.72,73

Proline analogues of melphalan can be effectively transported into the MDA-MB 231 cells,
evoking higher cytotoxicity, with reduction in IGF-I receptor and MAP kinase expression.74

Tamoxifen also affects the IGF system. IGFBP-3,4,6 levels are lower in breast cancer patients
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compared to normal controls and levels increased after tamoxifen treatment.75,76 Raloxifene, a
selective estrogen receptor modulator being tested in cancer prevention trials, significantly de-
creased IGF-I and IGF-I/IGFBP-3 ratios when compared to placebo.77 Urokinase plasmino-
gen activator(uPA) inhibitor -17 AAG inhibit MDA-MB-231 cell growth by inhibiting the
IGF-IR and ultimately uPA, while expression of the IGF-IR and uPA in breast cancer is asso-
ciated with poor survival.78

Thus, it is clear that anti-proliferative agents affect IGF system signaling. These associations
do not prove a cause and effect relationship, however, given the role of IGF signaling in cell
survival, the downregulation of this signaling pathway is consistent with the effects of many
anti-cancer drugs.

Anti-IGF Strategies in Breast Cancer
Given the role for IGF signaling in many aspects of the malignant phenotype, it would be

valuable to have reagents to disrupt IGF action. Several strategies to interrupt IGF signaling are
currently under investigation, including endocrine maneuvers to suppress IGF production;
antisense oligonucleotides to reduce functional IGF-IR levels; monoclonal antibodies, domi-
nant negatives, and tyrosine kinase inhibitors to inhibit IGF-IR activation; and neutralization
of IGF action using IGFBPs.79,80

Suppression of IGF Production
The majority of circulating IGF-I is produced by the liver in response to growth hormone

(GH) released from the pituitary gland, acting through hepatic growth hormone receptors
(GHR). GH-releasing hormone antagonists disrupt the pituitary production of GH and re-
duce circulating levels of GH and have been shown to inhibit the growth of a variety of cancers
in animal model systems, including breast cancer.81,82 Somatostatin and its analogues also in-
hibit the release of GH and thyroid-stimulating hormone from the pituitary gland. Preclinical
studies on the anticancer activity of the somatostatin analog octreotide showed 50% reduction
in tumor growth using two in vivo breast cancer models, ZR-75-1 breast xenografts and DMBA
induced mammary tumors in rats. However, octreotide administered with tamoxifen did not
improve response or survival in patients with metastatic breast cancer compared to tamoxifen
alone.83 While octreotide was able to reduce serum IGF-I levels, it was possible that this reduc-
tion was insufficient to block IGF-IR signaling.

More potent methods to disrupt endocrine IGF-I have been developed. GH-RH antago-
nists MZ-5-156 or JV-1-36 administered induced the growth-arrest of estrogen-independent
MDA-MB-468 human breast cancers xenografted into nude mice.84 Pegvisomant, a competi-
tive antagonist of GHR, is the most potent therapy for reducing serum IGF-I levels in acrome-
galic patients and may have a role in cancer treatment.84 However, these strategies to disrupt
endocrine IGF-I do not address paracrine or autocrine sources of IGF-I. Furthermore, IGF-II
is not under GH control, and merely suppressing serum IGF-I levels may be insufficient to
block all IGF ligands.

Ligand Neutralization Using IGFBPs
Since IGF ligands are required to activate IGF-IR, disruption of ligand-receptor interac-

tions is an attractive method to disrupt IGF signaling. Blockade of IGF-mediated cellular
effects can be accomplished with overexpression of IGFBPs or by treatment with exogenous
IGFBPs. IGFBP-1, either exogenously added or endogenously produced, has been observed to
inhibit IGF-IR function resulting in inhibition of IGF-I mediated growth of MCF-7 breast
cancer cells.85,86 Silibinin has been shown to have anti-proliferative action against some malig-
nant cell lines by increasing IGFBP3 mRNA and protein levels.87 In vivo, treatment with
polyethylene glycol-conjugated recombinant IGFBP-1, inhibited growth of MDA-MB-231
breast tumor xenografts and malignant ascites formation in the MDA-MB-435/LCC6 cells.85

Similar neutralization of IGF ligands has been accomplished using the extracellular domain of
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IGF-IR88,89 and with neutralizing antibodies.90 Thus, several methods to neutralize IGF ligand
interaction with IGF-IR have been tested. Neutralization strategies have the advantage of tar-
geting both IGF-I and IGF-II without the need to identify a specific receptor subtype.

Inhibition of IGF-IR Activation
Abundant evidence implicating IGF-IR is essential for the transformed phenotype and in-

hibition of apoptosis in breast cancer, targeting this receptor directly may be an effective cancer
therapy. Antibody blockade of growth factor receptors is a proven strategy to inhibit
receptor-mediated effects, with the effectiveness of trastuzumab against HER2 overexpressing
breast cancers being a prime example. Several anti-IGF-IR antibodies have been developed and
tested in preclinical model systems. -IR3, the first monoclonal antibody directed against
IGF-IR, inhibited clonal growth and blocked the mitogenic effects of exogenous IGF-I in
breast cancer cells in vitro.91 Interestingly, -IR3 inhibited MDA-MB-231 tumor formation
in athymic mice when administered at the time of tumor cell inoculation, but was ineffective
against MCF-7 tumor xenografts. Since MCF-7 cells are sensitive to IGF-IR blockade in vitro,
it was possible that the pharmacokinetic properties of the antibody are an important determi-
nant of anti-tumor activity. A chimeric humanized single chain antibody(scFv-Fc), a partial
agonist of IGF-IR, exhibited dose-dependent growth inhibition of IGF-IR-overexpressing
NIH-3T3 cells, and significantly suppresses MCF-7 breast tumor growth in athymic mice.92-94

EM164, a purely antagonistic anti-IGF-IR antibody, displays potent inhibitory activity against
IGF-I and IGF-II, and serum-stimulated proliferation and survival of MCF-7 breast cancer
cells.95 A high-affinity fully human monoclonal antibody, A12, blocks IGF-I and IGF-II sig-
naling and exhibits strong anti-tumor cell activity against MCF-7 xenograft tumors by enhanc-
ing apoptosis.96

An alternative strategy to inhibit IGF action is to target the tyrosine kinase activity of the
receptor. Several members of the tyrphostin tyrosine kinase inhibitor family (e.g., AG10124,
AG1024, AG538, and I-OMe AG538) were shown to competitively inhibit IGF-IR
autophosphorylation and kinase activity in intact IGF-IR-overexpressing NIH-3T3 cells and
to inhibit growth of MDA-MB468 and MCF-7 breast cancer cells in monolayer and colony
formation in soft agar.97,98 However, cross-reactivity of these compounds with the insulin
receptor tyrosine kinase was reported due to the high degree of homology between the two
receptors. Newer agents have been developed with apparently more selective IGF-IR activ-
ity.99,100 However, it is uncertain if a highly selective IGF-IR tyrosine kinase inhibitor is
desirable. Since insulin receptor may mediate some of the biological effects of the IGFs, it is
possible that both IGF-IR and insulin receptor will need to be inhibited in tumors. Using
anti-sense oligonucleotides, Salatino et al have shown that specific targeting of the IGF-IR in
mice inhibits tumor growth,101 supporting the idea that specific inhibition of IGF-IR may
block tumor growth. However, since mice have very low serum levels of IGF-II after birth,16

it remains to be seen if targeted disruption of IGF-IR alone is sufficient to inhibit tumor
growth in humans.

Combination of Anti-IGF Strategy with Chemotherapy
In theory, inhibition of survival pathways by blocking IGF-IR signaling while enhancing

apoptotic stimuli has appeal. Combination of anti-IGFIR antibody IR3 with doxorubicin
resulted in increased cytotoxicity in IGF-I stimulated cells than with chemotherapy alone.102

Similar enhancement of chemotherapy effects have been shown in Ewing’s sarcoma cells.103

Tyrphostin AG1024 (a tyrosine kinase inhibitor of IGF-IR) demonstrated a marked enhance-
ment in radiosensitivity and amplification of radiation-induced apoptosis which was associated
with increased expression of Bax, p53 and p21, and a decreased expression of Bcl-2.10 Another
study demonstrated that cotargeting IGF-IR and c-kit synergistic inhibit proliferation and
induction of apoptosis in H209 small cell lung cancer cells.104 There is also evidence that
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somatostatin analogues may enhance the effect of tamoxifen in animal models by suppressing
plasma IGF-I and –II levels.9

In addition to conventional agents, it is also possible that anti-growth factor receptor strat-
egies can be combined. Recent evidence shows that increased levels of IGF-IR signaling ap-
pears to interfere with the action of trastuzumab in breast cancer cell models that overexpress
HER2/neu.9 Thus, strategies that target IGF-IR signaling may prevent or delay development
of resistance to trastuzumab.

Conclusion
The IGF-IR is a promising target in breast cancer therapy because it signals to multiple

pathways required for maintenance of the malignant phenotype. Given the role for IGF-IR in
cell survival, it is logical to combine anti-IGF therapies with conventional agents. Indeed, the
preclinical data suggest that blockade of IGF-IR induces apoptosis and lowering a “survival
threshold” with disruption of this signaling system should enhance chemotherapy efficacy.

However, there are several challenges that will need to be addressed before the idea that
combination anti-IGF therapy and chemotherapy display synergy. First, there are many ways
that IGF signaling could be targeted. As recently noted by Professor Baserga,105 the potential
anti-IGF strategies have gone from “rags to riches” in the course of a few short years. Clinical
trials to test the most effective strategy will need to be completed before combination trials can
begin. Second, the phenotypes regulated by IGF-IR are not restricted to survival alone. Since
proliferation is also affected by IGF-IR, it will be important to consider scheduling and choice
of chemotherapeutic agent when designing appropriate combinations. For example, it is pos-
sible that anti-metabolites would be less efficacious when combined with anti-IGF because of
the requirement for cells in S-phase for anti-metabolites to function. Indeed, interference be-
tween hormonal therapy and chemotherapy has been noted in breast cancer106 and it is pos-
sible that such interference could exist between anti-IGF therapy and certain drugs. On the
other hand, agents that have a different mechanism of action, such as DNA alkylators or thera-
pies that induce DNA strand breaks, may be enhanced by blocking IGF-IR due to the receptor’s
role in DNA repair. Careful preclinical studies will need to be performed before clinical trials
should proceed with testing anti-IGF therapy with conventional cytotoxics. Lastly, the idea
that multiple molecules are involved in growth factor signaling leads to the potential for “com-
bination targeted therapy” trials. As mentioned, blockade of both HER2 and IGF-IR may have
benefit in preclinical systems. It is also highly likely that blockade of IGF-IR and downstream
signaling events (MAPK, Akt, etc), could be synergistic. Given the complexity of the cross-talk
and feedback between these systems, preclinical studies should also be able to guide us with
designing the optimal therapies.

However, it is clear that anti-IGF therapies will soon find their way into clinical trials.
Hopefully, the vast experience with preclinical model systems will guide us in the optimal
development of these agents.
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Introduction

Acquisition of resistance of breast cancer to chemotherapy is commonly associated with
progression of the disease to increased metastatic spread. Although early studies on this
problem examined the possible roles of chemotherapy drug metabolism and efflux by

resistant breast cancer cells, more recent work has implicated aberrant growth factor receptor
and signal transduction pathways in the process for such commonly used drugs as the
anthracyclines. Cell mutability, DNA repair defects, and loss of DNA damage checkpoint
controls certainly must play key roles in the ability of cancer cells to evolve such resistance
mechanisms.1,2

Identification of specific growth factor-receptor pathways involved in chemo-resistance has
allowed the possibility of targeting its specific determinants to enhance effectiveness of tumor
eradication. To date, the most clear data on growth factor pathway involvement involve the
EGF receptor family, a group of four related receptors: EGF receptor (ErbB), ErbB2, ErbB3,
and ErbB4. The family forms heterodimeric and homodimeric associations, with ErbB2 and
ErbB homodimers and heterodimers most likely to bear poor prognostic relationships to breast
cancer. Specifically, their overexpression is associated with the estrogen receptor negative form
of the disease, which is intrinsically the most clinically aggressive form. ErbB2 is now widely
accepted as a poor prognostic biomarker of breast cancer, with implications for therapy choice.4-6

Specifically, ErbB2 expression appears to indicate that a tumor will be refractory to therapy
with anthracyclines and will be sensitive to an ErbB2 targeted therapy (herceptin, or
trastuzumab).7-9

EGFR Signal Transduction
Multiple cellular signal transduction pathways emanate from EGF receptor complexes with

its family members. EGFR has also been shown to be transactivated by ligand stimulated,
G-protein coupled receptors. However, four dominant pathways govern cell proliferation and
survival, key determinants of chemoresistance: the PI-3 kinase/AKT pathway, JAK-STAT path-
way, phospholipase C , the Shc-Grb2-SOS-Ras MAPK pathway, and cytoplasmic tyrosine ki-
nases (c-Src, c-Yes). Phosphorylated tyrosine residues on EGF receptor family members serve
as docking/activation sites for these various signal transduction cascades. Other signal trans-
duction pathways also exist, but are beyond the scope of the current, brief review.2,3

The functions of each of the major EGF receptor family signal transduction pathways
noted above are varied. The PI-3K pathway, possibly the most polyfunctional of all, utilizes
Akt to regulate p53, cyclin D1, nitrous oxide synthetase, FKHR, NF- B, Fas-L, Bad, and
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mTor. These pathways modulate cell proliferation, cell survival, and angiogenesis. Phospho-
lipase C  regulates cellular calcium influx and protein kinase C family enzymes, and activa-
tion of transcription factors STAT and STAT5 have strong influences on breast cancer pro-
gression. The cytoplasmic tyrosine kinase c-Src regulates cell transforming effects of EGF
receptor family, particularly as they relate to ErbB2. Finally, the Ras-MAPK pathway is espe-
cially important in regulating cell proliferation.2,3 It is important to note that cross-talk
between these signaling mechanisms is also observed in many breast cancer cells, with poten-
tial amplification of signals.

A Central Role for Akt in Chemoresistance
As noted in the prior section, Akt is a key mediator of PI-3K for important determinants of

oncogenesis and chemoresistance. Akt, a three gene family, is commonly gene-amplified or
overexpressed in multiple cancers, including breast cancer. In ovarian cancer, expression of Akt
2 confers cancer cell-resistance to paclitaxel.10 In MCF-7 breast cancer cells expressing ErbB3,
ErbB2 transfection causes PI-3K-dependent activation of Akt and polychemotherapy resis-
tance (paclitaxel, doxorubicin, 5-fluorouracil, etoposids, and camptothecin).12-14 Resistance
was reversed by cell transfection with dominant negative forms of PI-3K and Akt. While PI-3K
is able to dock and become activated through interactions with EGF receptor, ErbB3, and
ErbB4, ErbB2 does not possess the cognate protein-protein docking site for PI-3K, and so
ErbB2 must interact with a heterotypic partner in order to function through the PI-3K-Akt
pathway.3 This would imply that although ErbB2 may be the most important EGF receptor
family member biomarker for chemoresistance in breast cancer, the actual signal transduction
pathway of interest for resistance to proapoptotic therapies passes directly through other ErbB
family members to reach Akt.

Akt is known to be activated by growth factors and other stimuli, through both PI-3K
-dependent and independent mechanisms.15-18 This kinase is a ubiquitous lipid kinase and a
upstream effector of Akt.19 It has also been implicated in a wide variety of cellular functions:
cell survival and antiapoptosis,20,21 growth and proliferation,22,23 differentiation,24,25 cytoskeletal
rearrangement,26 translocation of glucose transporter GLUT427,28 and membrane ruffling.29

Following cell exposure to growth factors, PI-3K produces phosphatidylinositol 3,4-biphosphates
and phosphatidyl inositol 3,4,5-triphosphates, at the plasma membrane. These phospholipids
serve as binding anchors for the pleckstrin homology domain of Akt. This results in accumula-
tion of Akt on the inner surface of the plasma membrane.10,30-32 There Akt is phosphorylated
at Ser-473 and Thr-308 to become fully activated.33 There also exists, a PI-3K-independent
mechanism(s) of Akt activation, involving calmodulin kinase kinase, which directly phospho-
rylates Akt, independent of calcium.15 Calmodulin, an allosteric regulator of calmodulin ki-
nases, also regulates Akt activation. This regulation is independent of calmodulin kinase ki-
nase, and has been reported for neuronal cell survival34,35 and GLUT4 translocation in 3T3-L1
adipocytes.36 A consensus sequence in the p110 catalytic subunit of PI-3K is a likely binding
site of calmodulin, but no biochemical data currently exist to support this idea.37

Since mammary epithelial cells can release calcium from intracellular stores in response to
growth factors and survival ligands,38,39 our group has examined the role calcium plays in
survival of these cells. We reported that EGF-induced survival of c-Myc-overexpressing mam-
mary carcinoma cells is mediated by activation of PI-3K/Akt kinase.40 We next searched for a
specific survival mechanism(s), downstream of EGFR, which may be a therapeutic target(s) in
breast carcinoma. Our studies41 identified a calcium/calmodulin-dependent Akt activation and
survival mechanism in these cells. We found that EGF-induced Akt activation is mediated by
calmodulin, resulting in cell survival. Calmodulin did not exert its effects directly at the PI-3K
level. Rather, we found that an EGF-dependent complex forms between calmodulin and Akt.
It appears that this mechanism serves transport Akt to the plasma membrane for its subsequent
activation by a PI-3K-dependent mechanism. Cellular treatment with calmodulin antagonists
leads to apoptotic cell death in tumorigenic mammary carcinoma cells. Recent other studies
further confirm the important link provided by Ca++-CaM in growth factor survival signaling.
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For example, a recent study42 using PTEN-deficient tumor cells as a screen for novel inhibitors
of PI-3K/Akt survival signaling identified multiple antagonists of calmodulin signaling. A sec-
ond, completely independent line of investigation used a proteomic scan of human proteins to
identify Akt-1 as a direct binding partner of calmodulin.43 Thus interference with CaM-Akt
interaction could represent a novel therapeutic target in the EGF pathway.

EGFR as a Target for Therapy in Chemoresistant Tumors
As described above, multiple therapeutic approaches may be possible, targeting EGF recep-

tor family members and their survival signaling pathways. While ErbB2-directed therapy is
now well established, the areas relating to targeting of Akt and EGF receptor are still rapidly
emerging.44,45 EGF receptor-targeted therapies began with the isolation by Dr. John
Mendelsohn’s group and therapeutic application of antibodies that blocked human EGF
ligand-receptor interactions. An early application of these antibodies in the MDA MD-468
human breast cancer cell line demonstrated their anti-cancer activity for breast carcinoma.46,47

Since these early studies, the approach has been further validated in animal models, the anti-
bodies humanized, and clinical trials are now underway.47 In addition, small molecule drugs
directed toward the tyrosine kinase domain of the EGF receptor are now moving forward in
clinical trials.47 For the latter class, both EGF receptor-selective drugs, as well as pan-EGF
receptor family drugs are now in use. Dosing and scheduling regimens are now being tested to
optimize the various therapeutic approaches.47 A particularly exciting recent development was
the identification of a subset of EGF therapy-responsive lung cancer tumors bearing particular
EGF receptor kinase-domain mutations. However, these mutations have not yet been detected
in human breast cancer.47

In terms of the monoclonal antibody approach, there are now in clinical trial three
anti-EGF-directed drugs (ABX-EGF, EMD-7200, and h-R3), and one ErbB2-directed drug
(Pertuzamab), in addition to the already marketed Cetuximab (against EGF receptor) and
Trastuzumab (against ErbB2). The EGF receptor monoclonal antibody derived antagonists
have not been particularly effective against breast cancer, so their clinical trials focus on cancers
of the colon, head and neck, kidney, cervix, lung, and pancreas. In contrast, the small molecule
inhibitors, particularly the pan EGF family tyrosine kinase inhibitors may have more promise
in breast cancer. The currently available drugs in this class are the following: Gefitinib (EGF
receptor selective) Erlotinib (EGF receptor), Lapatinib (EGF receptor and ErbB2), C1-1033
(all EGF receptor family members), and EKB-569 (EGF receptor, ErbB2, VEGF receptor).
Among these, Lapatinib is currently in Phase III trial from breast cancer, while the others are
either openly marketed (Gefitinib, Erlotinib) or in clinical trials in other disease sites (lung
cancer, pancreatic, skin, colon).47

Current clinical trials are now using pre and post therapy biopsies in order to more rapidly
begin to evaluate therapeutic efficacy and mechanism of action of EGF receptor antagonists in
breast cancer therapy. Lapatinib, a reversible inhibitor of the EGF receptor and ErbB2 tyrosine
kinases, has been recently examined for its effects on patient tumors by sequential biopsy.
Responsive tumors showed inhibition of phosphorylation on EGF receptors, ErbB2, Erk1/2,
Akt, cyclin D1, and transforming growth factor alpha. Clinical responses were also associated
with increased apoptotis as determined by TUNEL staining.48

As the diversity of monoclonal antibodies against the EGF receptor continue to be studied
for their efficacy and mechanism of action, it is clear that multiple classes are emerging. For
example, while most therapeutic antibodies applied so far to therapy block receptor ligand
interactions, this need not be the only approach to a therapeutically effective mechanism of
action. For example, Pertuzumab is a recombinant, humanized monoclonal antibody that binds
ErbB2 and blocks its ability to dimerize with other family members, such as the EGF receptor.
Thus, this antibody is fundamentally different from other approaches with anti EGF
receptor-directed antibodies or small molecule drugs, and potentially targets downstream sur-
vival signaling pathways. A Phase I trial, recently demonstrated good toleration and pharmaco-
kinetics and some partial responses.49
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Conclusions and Future Directions
In summary, although the EGF receptor has been under study for many years, its potential

as a target of therapy for breast cancer is only just beginning to be appreciated. Although
ErbB2 may stand at the top of a key growth factor-dependent pathway driving breast cancer
progression, other pathway elements, such as EGF receptor, PI-3K and Akt may eventually
yield key targets for therapy. However, in order for the field to most rapidly move forward,
researchers must take advantage of new in vitro and in vivo assay methodologies. In particular,
relevant animal models for drug testing have been particularly problematic, slowing progress.
Some of these hurdles may now be resolving with new advances in molecular imaging of tu-
mors for rapid assays that compliment classical pathology approaches.50,51
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CHAPTER 9

Molecular Mechanisms of ErbB2-Mediated
Breast Cancer Chemoresistance
Ming Tan and Dihua Yu*

Introduction

The erbB2 (also known as HER2 or neu) gene encodes a 185-kDa transmembrane glyco-
protein, which belongs to the epidermal growth factor receptor (EGFR) family. ErbB2
is a receptor tyrosine kinase with intrinsic tyrosine kinase activity. The mammalian

EGFR family comprises four receptors (EGFR, ErbB2, ErbB3, and ErbB4), which are derived
from a series of gene duplications early in vertebrate evolution and are 40%–45% identical.1

ErbB2 is the only EGFR family member for which no ligand has been found. This may be
explained by the unique structure of the ErbB2 extracellular domain, which is not favorable for
ligand binding.2,3 Since ErbB2 extracellular domain is always in the open conformation, ErbB2
is the preferred binding partner of all ErbB receptors even as a monomer.2-4 The binding of
ErbB2 to other ErbB receptors results in increased signaling potency of the dimerized receptors
through several means, including increased ligand affinity, increased coupling efficiency to
signaling molecules, and decreased rate of receptor internalization.5-8

ErbB2 plays an important role in human malignancies. The erbB2 gene is amplified or
overexpressed in approximately 30% of human breast cancers9 and in many other cancer types,
including ovarian,9 stomach,10 bladder,11 salivary,12 and lung carcinomas.13 Overwhelming
evidence from numerous studies indicates that amplification or overexpression of ErbB2 dis-
rupts normal cell-control mechanisms and gives rise of aggressive tumor cells.14 Patients with
ErbB2-overexpressing breast cancer have substantially lower overall survival rates and shorter
disease-free intervals than patients whose cancer does not overexpress ErbB2. Moreover,
overexpression of ErbB2 leads to increased breast cancer metastasis.15-17 The important roles of
ErbB2 in cancer progression render it a highly attractive target for therapeutic interventions of
breast cancer.18,19 The humanized ErbB2-targeting antibody trastuzumab (Herceptin, from
Genentech)20 was approved for the treatment of ErbB2-overexpressing breast cancers in 1998.
In both phase II and phase III clinical trials, the antibody has shown remarkable therapeutic
efficacy when given in combination with chemotherapeutic agents.21,22 Trastuzumab repre-
sents an excellent example of the ErbB2-targeting therapies. Other efforts to develop
ErbB2-targeting cancer therapies also have yielded promising results, such as E1A gene
therapy,23,24 single-chain antibodies,25,26 and tyrosine kinase inhibitors,27 just to name a few.

These novel targeted cancer therapies provide exciting new hope and opportunity for fighting
breast cancers. However, the majority of patients with breast carcinoma still receive chemotherapy
as a critical component of multimodality treatment.28 Thus, understanding the effect and
mechanisms of ErbB2 on chemosensitivity is important for anticancer agent selection and individu-
alization of patient treatment, which are critical to the success of treatment of breast cancers.
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ErbB2 and Chemoresistance
Although the role and the mechanisms of ErbB2 overexpression on chemosensitivity still

require intensive investigation, findings of many clinical and laboratory studies suggest that
ErbB2 overexpression leads to increased chemoresistance to certain chemotherapeutic agents.

Clinical Studies
In a clinical study of breast cancer patients receiving adjuvant chemotherapy (cyclophos-

phamide, methotrexate, 5-fluorouracil, and prednisone [CMFP]), those with ErbB2-negative
tumors showed a significantly greater rate of disease free survival in response to therapy than
patients with ErbB2-positive tumors, indicating that overexpression of ErbB2 may play a role
in resistance to chemotherapy.29 In another study, it was found that tumors that overexpress
ErbB2 are less responsive to cyclophosphamide, methotrexate, and 5-fluorouracil (CMF) adju-
vant therapy regimen than tumors that express a normal amount of ErbB2 protein.30 ErbB2
overexpression was also shown to have predictive value in epirubicin therapy in patients with
advanced breast cancer.31 It has been reported that tumors coexpressing ErbB2 and Ras pro-
teins were less responsive to tamoxifen and CMF regimens than those expressing low levels of
ErbB2 and Ras.32 Recently, several groups reported that an elevated serum ErbB2 level pre-
dicted an unfavorable response to hormonal therapy or chemotherapy in patients with ad-
vanced metastatic breast cancer.33-36 Supporting data also came from the clinical trials in which
trastuzumab was combined with chemotherapeutic agents. In a phase III first-line study, the
combination of trastuzumab and chemotherapy produced significantly greater clinical benefit
than chemotherapy alone.37 Similarly, a randomized phase II study comparing trastuzumab
plus docetaxel with docetaxel alone in 188 patients with metastatic breast cancer yielded a
statistically significant difference in terms of overall response rate, time to treatment progres-
sion and overall survival in favor of the combination.38 These results suggest that ErbB2
overexpression plays a role in inducing chemoresistance.

Laboratory Findings
Data from laboratory studies have provided more direct evidence that ErbB2-overexpressing

breast cancer cells are more resistant to certain chemotherapeutic agents than cells that do not
overexpress ErbB2. A panel of human breast cancer cell lines expressing ErbB2 at different
levels was tested for their sensitivity to paclitaxel and docetaxel.39 Higher expression of ErbB2
in these cell lines correlated well with resistance to the drugs, and downregulation of cell-surface
ErbB2 using an anti-ErbB2 monoclonal antibody significantly sensitized the cell lines to
paclitaxel. The results indicate that overexpression of ErbB2 renders human breast cancer cells
resistant to paclitaxel.39 In another study, MDA-MB-435 human breast cancer cells40 were
stably transfected with the erbB2 gene that led to increased ErbB2 expression and no change
in the expression of the multidrug resistance gene mdr1, but the ErbB2-overexpressing
transfectants were more resistant to paclitaxel and docetaxel than their parental cells.41 This
leads to the conclusion that overexpression of ErbB2 can lead to intrinsic paclitaxel and docetaxel
resistance independent of the mdr1-mediated multidrug resistance mechanism. These find-
ings are supported by results of other independent studies using multiple breast cancer cell
lines that express high levels of ErbB2 protein.42-46 Moreover, downregulation of ErbB2 with
the antisense oligonucleotides in ErbB2-overexpressing BT-474 breast cancer cells suppressed
ErbB2 overexpression by 60.5% and subsequently increased the sensitivity of these cells to
adriamycin and paclitaxel 20.8- and 10.8-fold, respectively.47 Furthermore, several other
ErbB2-targeting approaches that downregulate ErbB2, such as humanized anti-ErbB2 anti-
bodies,48,49 tyrosine kinase inhibitors,50 and adenovirus type 5 E1A,51,52 all led to sensitiza-
tion to certain chemotherapeutic agents in cultured cancer cells or in animal models. Taken
together, these laboratory findings clearly indicate that ErbB2 overexpression is linked to
resistance to particular chemotherapeutic agents.
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The Existing Controversy
Despite the supporting evidence just described, current clinical and experimental data on

the effect of ErbB2 overexpression on chemosensitivity remain controversial. Results of several
clinical studies have suggested that ErbB2 overexpression does not necessarily lead to chemore-
sistance. One clinical study showed that ErbB2 expression does not predict response to docetaxel
or sequential methotrexate and 5-fluorouracil in advanced breast cancers.53 Another study showed
that ErbB2 expression was not significantly associated with tumor response to neoadjuvant
treatment with fluorouracil, adriamycin and cyclophoshamide (FAC) in 329 cases of breast
cancer.54 In yet another study, ErbB2-overexpressing breast cancers responded better to
doxorubicin than did breast cancers expressing low levels of ErbB2.55

These contradictory clinical observations may be partly explained by intrinsic differences in
the design of the studies. Since clinical studies are complicated processes, numerous factors
may affect the outcome of the investigations. For example, amplification and overexpression of
ErbB2 can be detected by fluorescence in situ hybridization, immunohistochemistry, or
enzyme-linked immunosorbent assay on tumor tissue samples.56 However, use of
nonstandardized assay, subjectivity of the assay performer, limitations of techniques, differ-
ences in antibodies or DNA probes used, and differences in tissue treatment procedure have
resulted in discordance in determining ErbB2 expression levels. In other words, the way in
which the ErbB2 expression level was determined and defined is a very important factor that
may affect the outcome of a study. Other factors that may affect outcome include the timing of
treatment (neoadjuvant or adjuvant); the type of regimen (e.g., FAC or CMF); the treatment
status of the patient (previously treated or untreated); patient’s age (younger or older),
menopausal status, and ethnic background; estrogen-receptor status of the tumor (positive or
negative); and presence or absence of other genetic alterations that may interact with the ErbB2
receptor. Thus, any of these factors may lead to discordance in the outcomes of investigations
on the role of ErbB2 in modulating chemosensitivity.57

The controversy over the role of ErbB2 in chemosensitivity also exists in laboratory studies.
For example, In a laboratory study in which erbB2-transfected breast and ovarian cancer cells
were used to determine the effect of ErbB2 overexpression on chemosensitivity, ErbB2
overexpression was found to be insufficient to induce intrinsic resistance to drugs, including
paclitaxel.58 Although this study involved the use of a series of erbB2-transfected breast cancer
cells, including erbB2-transfected MDA-MB-435 breast cancer cells, it yielded results
that apparently disagreed with those of an earlier study showing that ErbB2 can confer paclitaxel
resistance in erbB2-transfected MDA-MB-435 cells.41 The discrepancy may be explained partly
by differences in ErbB2 expression levels between the erbB2-transfected MDA-MB-435 cells
used in the two studies. In particular, the erbB2 transfectants that showed paclitaxel resistance
expressed very high levels of ErbB2 protein, similar to those expressed in the SKBR3 breast
cancer cell line, which was established from an ErbB2-overexpressing primary breast tumor.41

However, the erbB2 transfectants that showed no paclitaxel resistance produced less than
one-third of the level of ErbB2 protein expressed by SKBR3 cells.58,57 Based on the data from
these two independent studies, we suggest that ErbB2 overexpression must reach a threshold
level in breast cancer cells before they become resistant to paclitaxel. This might provide a
reasonable explanation for the discrepancy between the findings of the two studies.

Molecular Mechanisms of ErbB2-Mediated Chemoresistance
The role of ErbB2 in chemoresistance is a problem of great clinical importance, and the

observational data are abundant, as described above. Because of the controversy and the
complexity of this problem, however, our knowledge on the molecular mechanisms of how
ErbB2 confers chemoresistance is still limited. It is generally believed that breast cancer cells
overexpressing ErbB2 are intrinsically resistant to DNA-damaging agents such as cisplatin as
the result of an altered cell-cycle checkpoint, altered DNA repair mechanisms, and altered
apoptosis responses.59,60
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Apoptosis is a predominant mechanism by which cancer chemotherapeutic agents kill
cells.61,62 The failure of cancer cells to detect chemotherapeutic agent-induced damage and to
activate apoptosis may lead to multidrug resistance. The results from our studies indicate that
overexpression of ErbB2 renders human breast cancer cells resistant to paclitaxel.39,41 While
studying the molecular mechanisms of ErbB2-mediated paclitaxel resistance, we found that
treatment of MDA-MB-435 breast cancer cells with paclitaxel caused them to undergo apoptosis,
which was inhibited in their paired transfectants overexpressing ErbB2. Further investigation
showed that paclitaxel-treatment induced a premature activation of p34Cdc2 kinase, the
mitotic serine/threonine kinase that binds to cyclin B and also plays an important role in
cancer cell apoptosis.63 The premature activation of p34Cdc2 led to mitotic catastrophe, i.e.,
apoptosis. A chemical inhibitor of p34Cdc2 and a dominant-negative mutant of p34Cdc2 blocked
paclitaxel-induced apoptosis in these cells, indicating that a premature Cdc2 activation is a
prerequisite for paclitaxel-induced apoptosis in MDA-MB-435 cells. We demonstrated that
overexpression of ErbB2 in MDA-MB-435 cells transcriptionally upregulates p21Cip1, which
associates with p34Cdc2, inhibits paclitaxel-mediated p34Cdc2 activation, delays cell entrance to
G2/M phase, and thereby inhibits paclitaxel-induced apoptosis. Therefore, upregulation of
p21Cip1 by ErbB2 inhibits p34Cdc2 and deregulates G2/M checkpoint that contributes to
resistance to paclitaxel-induced apoptosis in ErbB2-overexpressing breast cancer cells.64

In addition, we found that phosphorylation on tyrosine (Tyr)15 of Cdc2, the crucial inhibi-
tory phosphorylation site of Cdc2, is elevated in ErbB2-overexpressing breast cancer cells and
primary tumors independent of Wee1, Cdc25C, and p21Cip1. We showed that ErbB2 binds to
and colocalizes with cyclin B-Cdc2 complexes and can directly and specifically phosphorylate
Cdc2 on Tyr15. Increased Cdc2-Tyr15 phosphorylation in ErbB2-overexpressing cells corre-
sponds with delayed M phase entry and reduced sensitivity to paclitaxel-induced apoptosis.
Expression of a kinase-defective ErbB2 in MDA-MB-435 breast cancer cells or expression of a
nonphosphorylatable Cdc2Y15F mutant in ErbB2 gene transfectant of the MDA-MB-435
cells render the cells sensitive to paclitaxel-induced apoptosis. These data indicate that the
increased Cdc2-Tyr15 phosphorylation by ErbB2 tyrosine kinase may be a pertinent cell-cycle
checkpoint defect that is involved in paclitaxel resistance in ErbB2-overexpressing breast
cancers. Taken together, these findings indicate that ErbB2 overexpression can confer breast
cancer cell resistance to paclitaxel-induced apoptosis by inhibiting Cdc2 activation through at
least two mechanisms: (1) ErbB2 kinase-independent p21 upregulation and (2) ErbB2
kinase-dependent direct phosphorylation of Cdc2 on Tyr15 (Fig. 1). This model is further
supported by results of a study on patient samples showing that ErbB2 overexpression is
correlated with p21Cip1 upregulation and with increased p34Cdc2-Tyr15 phosphorylation in
breast tumors.65

Other molecular mechanisms may also underlie ErbB2-mediated paclitaxel resistance. In
addition, the molecular mechanisms of ErbB2-mediated resistance to different chemothera-
peutic agents could be different. For example, other molecular mechanisms of ErbB2-mediated
chemoresistance may involve activation of the PI3K/Akt pathway by ErbB2, which leads to
increased cancer cell survival,46 the estrogen receptor-ErbB2 cross-talk in ErbB2-positive breast
cancer cells,66,67 and coexpression of ErbB2 with other ErbB family receptors.44 Although
hints of how ErbB2-overexpressing breast tumors evade chemotherapeutic agent-induced
apoptosis and develop chemoresistance are beginning to surface, it is obvious that many questions
remain to be answered.

Targeting ErbB2 to Overcome Chemoresistance
Numerous lines of laboratory and clinical evidence indicate that ErbB2-targeting agents

can sensitize the response of tumor cells to chemotherapeutic agents; therefore, developing
ErbB2-targeting strategies to improve the therapy of ErbB2-overexpressing breast cancer re-
mains a high priority. During the last decade, several exciting techniques have been developed
to target ErbB2. Although some are still under investigation, many studies have shown that
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these ErbB2-targeting techniques not only inhibit tumor growth, but also lead to
chemosensitization of ErbB2-overexpressing cancer cells (Table 1).

One of the most successful example is Trastuzumab, which is a humanized antibody that
binds to the extracellular domain of ErbB2.20 Recent studies have shown that, in addition to
inhibition of ErbB2 signaling, trastuzumab has other functions, such as activation of the PTEN
tumor suppressor gene,68 induction of p27Kip1, and induction of G1 cell cycle arrest.69,70

Trastuzumab has demonstrated tumor-inhibitory and chemosensitizing effects for paclitaxel
and several other chemotherapeutic agents in preclinical studies and in phase II and phase III
clinical trials.21,22,48,71 These results represent an excellent example of anti-ErbB2
antibody-mediated chemosensitization. On the basis of our understanding of the mechanisms
of ErbB2-mediated paclitaxel resistance, we investigated the mechanisms by which trastuzumab
enhances the antitumor effects of paclitaxel in vitro and in vivo. We found that treatment of
ErbB2-overexpressing cells with trastuzumab can inhibit ErbB2-mediated Cdc2-Tyr15 phos-
phorylation and p21Cip1 upregulation, which allows effective p34Cdc2 activation and induction
of apoptosis upon paclitaxel treatment.49,65

In addition, the past 15 years have witnessed the development of several effective
ErbB2-tageting strategies. These include, but not limited to, adenovirus type 5 E1A protein
(please refer to the chapter by Liao and Hung for more details),51,72-75,76 ErbB2-specific
tyrosine kinase inhibitors such as emodin,50 HKI-272,27 and GW572016,77 anti-ErbB2 intra-
cellular single-chain antibodies (sFv),25,26,78,79 ErbB2-targeting antisense oligonucleotide,47,80-83

rationally designed anti-ErbB2 peptide mimetics (AHNP),84-86 all-trans retinoic acid (ATRA)
and fenretinide (4-HPR).87 These ErbB2-tageting strategies either have been shown to have
chemosensitization effect or are currently under testing for chemosensitization in
ErbB2-overexpressing breast cancer cell lines, animal models, or clinical trials.57

These approaches discussed above have already shown promise in overcoming
ErbB2-mediated chemoresistance in either laboratory or clinical studies. Other new technologies
are also under development. For example, ErbB2-targeting small interfering RNAs (siRNAs)

Figure 1. Model of inhibition of p34Cdc2 activation and apoptosis by ErbB2. P34Cdc2 remains inactive
without binding to cyclin B as it is phosphorylated on Thr14 by Myt1 and Tyr15 by Wee1. Activation of
p34Cdc2 occurs by accumulation and binding of cyclin B, dephosphorylation of Thr14 and Tyr15 by
Cdc25C, and phosphorylation of Thr161 by Cdk7/cyclin H. The ErbB2 tyrosine kinase inhibits p34Cdc2

activity by directly phosphorylating Cdc2 on Tyr15, which requires ErbB2 kinase activity. On the other
hand, ErbB2 can upregulate p21Cip1, which inhibits p34Cdc2 activities independent of the ErbB2 kinase
activity. Since paclitaxel (Taxol)-induced apoptosis requires the activation of p34Cdc2, overexpression of
ErbB2 can confer resistance to paclitaxel-induced apoptosis by inhibiting p34Cdc2 activation through at least
two mechanisms, direct phosphorylation of Cdc2-Tyr15 and upregulation of p21Cip1. (Figure reprinted
from the article by Tan et al, Molecular Cell 9:993-1004, ©2002 Elsevier, with permission).
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silence erbB2 mRNA by using double-stranded RNA oligonucleotides.88-90 One study showed
that ovarian cancer cells and breast cancer cells infected with a retrovirus expressing anti-ErbB2
siRNA exhibited effective downregulation of ErbB2 expression and slower proliferation, in-
creased apoptosis, increased G0/G1 arrest, and decreased tumor growth in mouse models.89 On
the basis of these results, ErbB2-targeting siRNA may have great potential in overcoming
ErbB2-mediated chemoresistance in ErbB2-overexpressing breast cancer cells. Additionally,
attempts are being made to modulate existing chemotherapeutic agents so that they can over-
come resistance.91 These combined efforts held great potential to improve the therapies for
patients with ErbB2-overexpressing breast tumors.

Future Investigation
Understanding the role of ErbB2 in chemoresistance is important and has significant clinical

relevance. Although many studies have been done during the last decade, our current knowledge
on the role of ErbB2 in cancer chemosensitivity is still limited. To develop more effective
treatment for patients with ErbB2-overexpressing breast cancers, scientists and physicians need
to team up to pursue the following and other related issues.

Well Designed and Performed Laboratory and Clinical Studies
Current data from our studies and those of others indicate that ErbB2 renders breast cancers

resistant to DNA-damaging agents such as cisplatin60 and to the microtubule-stabilizing agents

Table 1. Possible ways to overcome ErbB2-mediated chemoresistance

ErbB2-Targetng Agents ErbB2-Targeting Mechanism Chemosensitization Efficacy

Anti-ErbB2 antibodies
    Trastuzumab (Herceptin) Binds to the extracellular domain Demonstrated in animal

of ErbB2 and downregulates the and in Phase II and Phase III
cell membrane ErbB2, block clinical trials
ErbB2 initiated cell signaling

    Pertuzumab (Omnitarg) Prevent HER2 homodimer or Phase Ib studies are planned
heterodimer formation and with pertuzumab in
inhibits ErbB2 downstream combination with docetaxel
signaling pathways in breast cancer

Adenovirus type 5 E1A Transcriptionally repress Tested in Phase I clinical
erbB2 gene expression trial

Tyrosine kinase inhibitors Inhibits the tyrosine kinase Tested in laboratory studies
activity of ErbB2 receptor
tyrosine kinase

Retinoic acid Downregulation of erbB2 Tested in laboratory studies
mRNA and protein expression

ErbB2 antisense Block erbB2 transcription Tested in laboratory studies
oligonucleotides

Small anti-ErbB2 Binds to the extracellular domain Tested in laboratory studies
peptide mimic of ErbB2 and downregulates the

cell membrane ErbB2, block
ErbB2 initiated cell signaling

SiRNA Block ErbB2 transcription To be tested
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taxenes.39,41 To better understand the role of ErbB2 in chemosensitivity, we must determine
whether ErbB2 overexpression also renders breast cancers resistant to other chemotherapeutic
agents frequently used for treating such cancers. This should be investigated (1) in carefully
designed laboratory studies that use ErbB2-overexpressing breast cancer cell lines that express
ErbB2 at levels similar to those detected in primary breast tumors and compare between cell
lines having similar genetic backgrounds, and (2) in well-controlled and -defined large-scale
clinical trials that can adequately assess the impact of the various factors important for the
chemoresponse of tumors.

Other Possible Mechanisms for ErbB2-Mediated Chemoresistance
Many mechanisms of drug resistance in various tumor cells are well established, including

enhanced drug metabolism, reduced drug accumulation, drug target amplification, and repair
of damaged targets and apoptosis resistance.61 Our data indicate that in breast cancer cells,
ErbB2 can block paclitaxel-induced apoptosis by upregulating p21cip1 and by directly
phosphorylating the inhibitory tyrosine on p34Cdc2. Both mechanisms lead to the inhibition
of p34Cdc2 kinase, which is required for paclitaxel-induced apoptosis. It has also been reported
that chemotherapeutic agents-induced apoptosis depends on a balance between cell-cycle check-
points and DNA-repair mechanisms. In addition, downstream signaling of the ErbB2 receptor
tyrosine kinase, e.g., Akt activation, also plays a critical role in ErbB2-mediated chemoresis-
tance.46 However, the downstream signal-transduction cascades by which ErbB2 affects
chemosensitivity still require more investigation. Most ErbB2-overexpressing breast cancers
also express other ErbB receptors, which can form heterodimers with ErbB2. An intercon-
nected network of ErbB signaling pathways may be activated by the overexpression of ErbB2,
and that determines tumor cell response to chemotherapeutic stress. It is, therefore, important
to perform in-depth investigations into the role of ErbB2 receptor signaling in the regulation
of stress-responsive genes. A better understanding of other possible mechanisms underlying
ErbB2-mediated chemoresistance is also critical to the development of better alternative
therapeutic strategies to overcome intrinsic chemoresistance.

Tailoring Therapeutic Strategies to Individual Patients
One of the important aspects of future research efforts on ErbB2-mediated chemoresis-

tance is to identify other unknown genetic alterations that interact with ErbB2 and contribute
to ErbB2-mediated chemoresistance. ErbB2-mediated chemoresistance is a very complicated
problem, as it may be specific to tumor, cell, chemotherapeutic agent, regimen, timing, popu-
lation, or patient age.57 With today’s powerful genomic, proteomic, kinomic, and tissue
microarray technologies, it has become feasible to identify factors that interact with ErbB2 and
contribute to ErbB2-mediated chemoresistance from tumors of individual patient. This
information can then be used to develop therapeutic strategies that are tailored for individual
patient and are based on the ErbB2 biology and any identified relevant factors. These individually
tailored therapeutic strategies will greatly maximize the therapeutic benefit for individual breast
cancer patients.

New Approaches for Overcoming ErbB2-Mediated Chemoresistance
We have discussed several promising strategies for overcoming ErbB2-mediate

chemoresistance (Table 1). New and more effective strategies are still in demand and can be
developed. Recently, nanotechnology has emerged as a promising strategy for drug delivery.
Nanotechnology-based delivery systems can be used to achieve cellular or tissue targeted drug
delivery, to improve drug bioavailability, to sustain drug effect in target tissue, to solubilize
drugs for intravascular delivery, and to improve the stability of therapeutic agents.92 With
nanotechnology-based delivery systems, chemotherapeutic agents such as paclitaxel, doxorubicin,
and 5-fluorouracil, have been shown to achieve improved efficacy to inhibit tumor growth in
vitro and in vivo.93,94 In addition, nanotechnology-based system has been shown to potentially
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improve the antitumor efficacy of ErbB2-targeting agents, such as trastuzumab.95 It is
foreseeable that by using these new techniques, which will produce highly efficient chemothera-
peutic agents and ErbB2-targeting strategies, we may conquer ErbB2-mediated chemoresistance
more effectively.
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Abstract

Estrogen and its receptors  and  (ER  and ER ) play a major role in tumor progression
and approximately two-thirds of breast cancers express these functional receptors. Thus,
the ER is a major target for current and developing therapies. Although most ER-positive

tumors initially respond to hormonal therapies such as tamoxifen, many tumors will eventually
become resistant to tamoxifen induced growth inhibition. This chapter will discuss molecular
mechanisms that contribute to hormonal resistance of current therapies including ER  muta-
tions, the roles of proliferation and apoptosis in tumor homeostasis and receptor coregulator
proteins. Additionally, the role of nonclassical ER  signaling through growth factor receptors
and the subsequent downstream-initiated signaling, and the role of the progesterone receptors
will be discussed.

Introduction
Aberrant estrogenic signaling has been associated with a number of human cancers includ-

ing breast,1 colon2 and ovarian3 cancers. Estrogen and its receptors, ERs  and , play a par-
ticularly important role in the growth and progression of breast cancer.4,5 As early as the 1800s
it was shown that oophorectomy of premenopausal women with metastatic breast cancer caused
tumor regression in approximately one-third of patients.6,7 However it was not until the later
half of the 20th century that the molecular mechanisms behind this therapy were discovered.
In the 1950s, Jenson and Jacobson demonstrated that estrogen was targeted to specific tis-
sues,8,9 and ER  was purified in the following decade.10 However, it was not until the 1980s
that ER  was actually cloned11-14 and the second estrogen receptor, ER , was cloned in the
mid 1990s.15-17 Because ER  was discovered and cloned much earlier than ER , much more is
known about this receptor, thus this chapter will focus mainly on ER .

It has been demonstrated that the majority of human breast cancers express ER . Be-
cause of the important role of the ERs in breast cancer growth, targeting this receptor has
proven to be an effective therapy for ER-positive breast cancer. Selective estrogen receptor
modulators (SERMS), such as tamoxifen and raloxifene, inhibit the ability of estrogen to
bind to the ERs through competitive inhibition, and have been shown to display agonist or
antagonist activity in a tissue-type specific manner.18 The pure antiestrogen fulvestrant
(ICI182,780) binds with the ERs resulting in antagonistic effects and downregulation of
ER.19,20 A newer class of drugs called the aromatase inhibitors (AI), seek to block estrogen
signaling by inhibiting the production of estrogen compounds from testosterone precursors.
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Clinically, the AIs are demonstrating increased efficacy and reduced side effects when com-
pared with tamoxifen,21-24 the most commonly prescribed antiestrogen. Targeting the ER
with tamoxifen has proven to be an effective therapy for many patients with ER-positive
breast cancer. However, the majority of tumors initially responding to tamoxifen will de-
velop hormone resistance (HR) and relapse within five years. A number of different molecu-
lar mechanisms have been implicated in HR and will be discussed in this chapter.

Receptor Structure and Function
ERs  and  belong to the nuclear hormone receptor superfamily.14,25,26 The ERs contain

six structural domains and several defined functional domains (Fig. 1A). ER  contains a
ligand-independent, amino-terminal activation function (AF-1) domain, a DNA-binding do-
main, a hinge region, and the hormone binding domain with its associated ligand-dependent
AF-2 region. ER  shares a similar structure but lacks the AF-1 domain (Fig. 1B), thus ER  has
significantly reduced ligand-independent activity. Binding of hormone to the ER results in
reduced binding of the coregulatory repressor protein complexes with histone deacetylase com-
plexes (HDACs), and the subsequent recruitment of coactivator proteins with histone acetyl
transferase (HAT) activity, leading to increased transcriptional activity. Thus, altered associa-
tion with these coregulatory molecules modulates and “fine-tunes” ER transcriptional activity.

When the crystal structures of ER  bound to various ligands were solved, the structural
mechanisms behind the agonist action of SERMS was firmly established. Hormone binding
induces helix 12 in the receptor to reposition itself over the ligand binding pocket forming a
tight cover over the bound ligand.27-32 This conformational change stabilizes helix 12 allowing

Figure 1. Domains of the estrogen receptors. Exons are numbered in the corresponding blocked region with
the nucleotide number above. ATG start codon and the TAG stop codon are shown below. The protein
domains are labeled A-F, nucleotide numbers corresponding to the start of each domain are above with
amino acid numbers below. Relative positions of some of the known functional domains are represented by
solid bars below. A) ER , B) ER .
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for the recruitment of receptor coactivator proteins.33,34 In contrast, when ER is bound to
partial agonists or antagonists such as tamoxifen, raloxifene, or faslodex, the “bulky” side chain
of the compound prevents helix 12 from forming the agonist bound structure, thus inhibiting
coactivator recruitment.31,32,35-38 Inhibitory compounds without “bulky” side chains, such as
genestein, inhibit full ER activation by stabilizing nonproductive conformations of the
ligand-binding pocket.36 Stabilization of helix 12 over the ligand binding pocket allows
coactivator recruitment, while the antagonist bound conformation of helix 12 prevents
coactivator recruitment, thereby preventing transcriptional activity.

Does Estrogen Receptors  or  Expression Predict Response
to Therapy?

Approximately two-thirds of invasive breast cancers express ER  and  isoforms.39-44 It is
clear that ER  expression is an important prognostic factor and a positive predictor of response
to endocrine therapy.45-47 The prognostic value of ER  is much less clear. While the majority of
studies suggest that ER  protein expression is associated with a more favorable outcome corre-
lating with know prognostic factors,48-51 a few studies have demonstrated that ER  expression is
associated with a poor clinical outcome.41,52,53 However, it must be noted that the majority of
studies suggesting a less favorable outcome with ER  expression, have only analyzed RNA ex-
pression levels. Additionally, multiple studies have demonstrated that ER  protein expression is
associated with a more favorable response to tamoxifen54-56 and low ER  expression predicts
tamoxifen resistance.57 Thus, while ER  is an accepted prognostic and predictive factor, the
value of ER  protein expression has not been fully elucidated. However, direct protein analyses
have suggested that like ER , ER  is an indicator of a more favorable clinical outcome.

Mechanisms of Resistance to Hormonal Therapies

Estrogen Receptor  Mutations
While mutations in ERs  and  directly causing HR is an attractive hypothesis, to date,

clinical data supporting ER mutations as a major means of HR do not exist. One study from
the mid 1990s estimated that only 1% of primary invasive breast tumors exhibit missense
mutations.58 Currently, approximately 19 separate mutations have been identified in ER
while even fewer have been found in ER  (for a complete see review ref. 59). Karnik et al
identified an ER  437stop mutation in 1 of 5 metastatic breast tumors.60 A similar mutation
ER  417stop was identified in the tamoxifen resistant T47DCO cell line.61 While we found
mutations in 3 of 30 metastatic lesions, only Y537N demonstrated tamoxifen resistance.62

Although a number of experimental mutations have been made in ER  and a few result in
tamoxifen resistance including, G400V63 and L540Q,49,64 only a handful of mutations have
been identified in breast cancer patient samples, thus clinical evidence that ER  mutations in
tumors play a fundamental role in HR is lacking.

While the laboratory value of ER mutations is immense (see ref. 59), the clinical value of
ER mutations is only beginning to be elucidated. Recently we identified an ER  somatic A to
G transition in 30% of the premalignant breast lesions studied. This mutation changes the 303
lysine to arginine (K303R) resulting in a receptor that is hypersensitive to estrogen leading to
increased transcriptional activity at subphysiological estrogen concentrations.65 Additionally,
this K303R mutant receptor has increased binding to coactivator proteins.65 In contrast to the
previously identified mutations, this mutation that has been identified in a large number of
patient samples suggesting a potential role for this mutant receptor in breast tumorigenesis and
progression. What role, if any, the K303R ER  mutant has in HR remains to be elucidated.

Tumor Homeostasis (Proliferation and Apoptosis Signals)
Tumor homeostasis requires a balance between proliferation and apoptosis. ER  signaling

has been implicated in a number of different processes involved in tumor homeostasis. For
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instance, upregulation of growth signals, or downregulation of apoptotic signals, could lead to
an inability of a cell to respond to antiestrogens in an antagonistic manner, thus contributing
to HR. Many genes involved in cell cycle regulation such as cyclin A1, cyclin D1, and the E2F1
transcription factor have been identified as estrogen-upregulated genes.66-68 Furthermore,
tamoxifen can function as an agonist to upregulate genes promoting cell cycle progression,
including c-fos, c-myc, cyclin A2, and E2F1.69 Estrogen has also been shown to upregulate the
antiapoptotic genes bcl-2 and bcl-xl,70 thereby protecting a cell from death-inducing signals.
Overexpression of HER-2 in MCF-7 cells leads to tamoxifen resistance and an upregulation of
bcl-2 and bcl-xl,71 suggesting a role for these proteins in blocking cell death following tamoxifen
treatment. Additionally, Teeck et al has demonstrated that long-term tamoxifen treatment in
vitro leads to a reduction in proapoptotic genes and increased antiapoptotic genes.72 This
antiapoptotic effect extended to other drugs such as the topoisomerase inhibitor, etoposide.72

Both estrogen and tamoxifen have been shown to upregulate genes involved in tumor homeo-
stasis, thereby altering normal growth controls.

One of the more studied estrogen mediated growth control proteins is cyclin D1, a key
regulatory subunit for the cyclin dependent kinases, cdk4 and cdk6. Recently, retrospective
analysis of patients with long-term clinical follow-up demonstrated that high cyclin D1 levels
were associated with a worse overall survival in tamoxifen-treated patients,73 suggesting a role
for cyclin D1 in HR. Increased levels of cyclin D1 may titrate out the cell cycle inhibitors Cip/
kip, thus “forcing” the cell through G1 progression and bypassing normal control mecha-
nisms.74 Additionally, cyclin D1 can form a complex with ER  and coactivators thereby affect-
ing ER  signaling.75,76 Cyclin D1 has also been shown to stimulate estrogen-independent
ER  activity, thus providing a mechanism for estrogen-independent proliferation in the pres-
ence of high cyclin D1 levels.77 It is clear that ER  signaling plays a key role in the balance
between life and death signals which can significantly affect the cellular response to tamoxifen.
We are just beginning to dissect the molecular mechanisms behind the roles of proliferation
and apoptosis in HR.

Coactivators and Corepressors
Coregulator proteins directly affect the activity of ER , thus it is not surprising that these

proteins have been implicated in breast cancer progression and HR. In fact, the expression of
many of these coregulator molecules have been shown to be altered during breast tumorigen-
esis.78-80 However, one study was not able to find altered expression of coregulators in de novo
tamoxifen-resistant tumors,81 suggesting a role in tumorigenesis, but not HR. One such al-
tered protein, the coactivator SRC-1, has been shown to increase the tamoxifen agonist activity
in certain cells.82 Furthermore, in endometrial cells, where tamoxifen acts as an agonist, tamoxifen
treatment recruits SRC-1 to ER .83 These data showing tissue-type specificity of tamoxifen
agonist effects clearly demonstrate a role for SRC-1 in tamoxifen-stimulated ER  transactivation.
Additionally, clinical studies have shown that high SRC-1 levels may correlate with a favorable
response to tamoxifen treatment in women with recurrent breast cancer,84 an apparent contra-
diction to the previously mentioned in vitro studies. Although the exact role of SRC-1 in
tamoxifen induced ER  activity is undecided, it is clear that SRC-1 plays a key role in tamoxifen
signaling through ER .

Gene amplification of AIB1/SRC3 has been demonstrated in a number of breast and ova-
rian cancer cell lines, as well as breast cancer biopsies.85,86 Increased AIB1 resulted in
estrogen-independent growth and tamoxifen resistance.87 These effects may be mediated through
AIB1’s interactions with the E2F1 transcription factor, thereby leading to increased cell prolif-
eration.87 Analysis of clinical samples has revealed that patients with elevated levels of AIB1
and HER-2 did not respond well to tamoxifen therapy.88 However, elevated AIB1 levels are
associated with a better prognosis in patients not receiving adjuvant tamoxifen.88

In addition to a role for coactivators in HR, the corepressor NCoR1 is associated with
tamoxifen resistance.89,90 Tamoxifen-bound ER  can recruit corepressors such as NCoR1 and
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SMRT.82,84,91-94 Hence, if corepressor expression is reduced, then it cannot be recruited to
repress the activity of ER . The effects of NCoR1 recruitment occur in a tissue-type specific
manner, hence leading to agonist activity of tamoxifen in some cells,91 but not others.95 Nu-
merous in vitro studies have visibly displayed a role for coactivator upregulation or corepressor
downregulation leading to HR. However, clinical evidence demonstrating a role for coregulator
proteins in HR is not as clear, and their role is just beginning to materialize.

Estrogen Receptor Phosphorylation
Phosphorylation of ER  has been shown to be an important mechanism of

ligand-independent activation. Mutational analysis has shown that serines 104 and 106 are
phosphorylated by cyclin A-CDK2.96-98 However, the role of phosphorylation at these serines
is not clearly defined. Serine 118 is phosphorylated by the MAPKs Erk 1/2 and Cdk7, as well
as unknown kinases.99-102 Additionally, S118 phosphorylation can be induced by a number of
different ligands including, estrogen, tamoxifen, ICI 164,384, EGF, IGF, and TPA.99-105 While
some studies have shown that S118 phosphorylation can lead to ligand-independent activ-
ity,101 other studies have shown that S118 phosphorylation is not sufficient for ER -induced
transactivation.102 However, many studies have shown that phosphorylation of S118 is re-
quired for the full transcriptional activation of ER .97,101,102,104,106 Casein kinase II, AKT2,
and pp90rsk1 have all been shown to phosphorylate S167,97,104,107,108 in response to various
ligands including estrogen, EGF and PMA.104,109 Mutational analysis has demonstrated re-
duced transactivation of S167A mutants,97,104,107,108 demonstrating an important role for S167
phosphorylation in ER  transcactiavtion. Protein Kinase A (PKA) phoshporylates S236 which
lies within the DNA-binding domain.110 Futhermore, S236 phosphorylation is important for
ER  dimerization.110 Recently, PKA has also been shown to phosphorylate S305 inducing a
switch between the antagonistic to the agonistic effects of tamoxifen, thus leading to tamoxifen
induced ER  transactivation.111 The Src family kinases c-Src and Lck have been shown to
phosphorylate Y537 of ER .112 Y537 lies at the amino-terminal cap of helix 12 and forms a
hydrogen bond with N348 upon ligand binding,113,114 thus stabilizing the ligand bound con-
formation. Additionally, experimental mutations (Y537S and Y537E) in ER  that mimic this
hydrogen bond lead to a constitutively-active receptor.114-117 Interestingly, Y537 is the only
phosphorylation site of ER  that has been found to be mutated in patient samples.62 It is clear
that numerous nonestrogen mediated events can lead to phosphorylation of ER , hence af-
fecting ER  transactivation and possibly HR.

Signal Transduction
As mentioned in the previous section, a number of different kinases have been shown to

significantly affect the activity of ER , and additional clinical and laboratory data suggest a
significant role for several of these kinases in the development of HR. One of the most studied
kinases in HR is the EGFR family of receptor tyrosine kinase. Analysis of clinical samples has
shown that elevated HER-2 or EGFR expression in a pretreatment biopsy correlated with a
reduced response to tamoxifen.118 Additionally, a number of groups have found increased lev-
els of HER-2 and EGFR in tamoxifen-resistant MCF-7 breast cancer cells.53,119,120 HER-2
overexpressing MCF-7 cell line form tamoxifen-resistant tumors when grown as xenografts in
nude mice.121 Ropero et al found that cytostatic levels of tamoxifen were able to upregulate
HER-2 mRNA and protein levels by 66% and 49%, respectively.122 This recent data asks the
question, are HER-2 cells selected by tamoxifen treatment, or is HER-2 expression stimulated
by tamoxifen and simply a byproduct of treatment? The fact that tamoxifen-resistance in breast
cancer cells can be reversed with EGFR/HER-2 tyrosine kinase inhibitors123-125 demonstrates
an active role for HER-2 in the development of HR. Recently, HER-2 overexpression has been
correlated with overexpression of the ER  coactivator AIB1, and poor disease-free survival for
patients receiving adjuvant tamoxifen.88 Additionally, HER-2 status was correlated with ex-
pression of the ER  coactivators PEA3, AIB1, and SRC1.126 However, in this study, only
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SRC1 and PEA3 were significantly associated with disease recurrence on endocrine treatment.126

Collectively, these data demonstrate an important role for EGFR and HER-2 signaling in the
development of HR in ER -positive breast cancer.

MAPK activation can contribute to estrogen-induced proliferation,127 estrogen sensitiv-
ity,128 and cell survival,129 therefore it is not surprising that MAPK activation has been impli-
cated in HR. Gee et al analyzed breast cancer patient samples and found that activated MAPKs,
Erk-1/2, are biomarkers for a shorter response to tamoxifen.130 Furthermore, blocking Erk-1/
2 activity restored the inhibitory effect of tamoxifen on ER  mediated transcription and cell
proliferation in tamoxifen-resistant, HER-2 overexpressing MCF-7 cells.125 However, activa-
tion of the upstream activator of Erk-1/2 MEK1, was insufficient to induce tamoxifen resis-
tance in MCF-7 cells.131 Additionally, MAPK can affect ER  through the downstream effec-
tor of MAPK, pp90rsk1,105 thus effecting ER  phosphorylation indirectly. In addition to
MAPK-induced phosphorylation of ER , estrogen signaling can also induce the activation of
MAPK,132 thereby suggesting the existence of a two-way crosstalk and feedback loops between
these pathways. Although it is clear that MAPK activation can lead to phosphorylation and
possible activation of ER , the molecular mechanisms of MAPK- induced HR remain to be
defined.

Activation of the PI3K/AKT pathway has also been implicated in HR.133 Tamoxifen-resistant
ER-negative HER-2 overexpressing MCF-7 cells demonstrate increased ligand-induced (estro-
gen, EGF, heregulin, and tamoxifen) AKT phosphorylation.124 Additionally, overexpression of
AKT3 in MCF-7 cells leads to estrogen-independent tumors in nude mice.134 Furthermore,
these AKT3-overexpressing tumors were growth stimulated with tamoxifen and growth inhib-
ited with estrogen,134 thus demonstrating an in vivo role for AKT3 in changing tamoxifen
from an antagonist to an agonist. Shoman et al examined protein expression of the AKT regu-
lator, PTEN (phosphatase and tensin homolog deleted on chromosome ten), in tamoxifen-treated
ER -positive breast cancer patients and found that reduced PTEN protein expression was
associated with shorter disease-free survival.135 These in vitro and in vivo experiments, as well
as analysis of patient samples, demonstrate a potential role for the PI3K/AKT pathway in HR.

Much less defined are the roles of PKA and PKC-induced phosphorylation of ER . Activa-
tion of both proteins was shown to modestly increase ER  induced transactivation, while
estrogen stimulation combined with PKA or PKC activation resulted in a synergistic activation
of ER  transactivation.136 Activation of PKA, or downregulation of the PKA negative regula-
tor, PKA-R1 , and subsequent phosphorylation of ER  at S305 resulted in tamoxifen resis-
tance.111 Additionally, in clinical samples, it was found that downregulation of PKA-R1  prior
to treatment, was associated with tamoxifen resistance.111 While disrupting normal signaling
in these pathways may contribute to tamoxifen resistance, their role has yet to be defined.

Collectively these data help to elucidate the crosstalk between kinase signal transduction
pathways and ER . This coordinated crosstalk may significantly contribute to the cell-type
and tissue specific effects of SERMS. A full understanding of the complex interactions between
signaling pathways will undoubtedly lead to newer, more effective single and/or combination
therapies for the treatment of HR breast cancer.

Interactions with Other Transcription Factors
Functional studies of the AF-1 and AF-2 domains have revealed differential transcriptional

activity, many of which are dependent upon the cellular and promoter context.137 Because the
AF-2 domain is the ligand-dependent domain, it is not surprising that when AF-2 is the domi-
nant activity within a cell, tamoxifen can act as a pure antagonist.138-140 In contrast, when the
ligand-independent AF-1 domain is the dominant activity, then tamoxifen behaves as a partial
agonist and can stimulate transcriptional activity. While ER  and ER  demonstrate similar
AF-2 transactivation, ER  has reduced AF-1 activity.141-145

Additional studies have demonstrated that ERs  and  can differentially interact with
other cellular promoters and with differential ligand-induced activity. For instance, it has been
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demonstrated that Seratonin-1A can be upregulated through nuclear factor- B (NF- B) in-
duced by ER  signaling, but not ER  signaling.146 Paech et al have demonstrated that
estrogen-induced ER  can upregulate AP-1 activity.147 In contrast, ER  AP-1 activity was
reduced following estrogen stimulation.147 Although the receptors displayed differential re-
sponses to estrogen, the antiestrogens tamoxifen, raloxifene, and ICI 164,384 all stimulated
AP-1 activity147 to varying amounts, dependent upon the cell-type.148 Additionally, ER  has
been shown to bind with the Sp1 transctriptional activator protein149 leading to an upregulation
of a number of genes including c-myc, heat shock protein 27, and transforming growth factor

, to name a few.150 In MCF-7 and MDA-MB-231 cells, estrogen, tamoxifen, and fulvestrant,
all increased ER -induced SP1 activity.149 In contrast, tamoxifen stimulated AP-1 activity
through ER  only in the MCF-7 cells.149 These cell-type specific effects involve a number of
different factors, of which, the molecular identification will undoubtedly lead to new targeted
therapies to counteract the partial agonist action of antiestrogens.

Progesterone Receptors A and B
The progesterone receptors A and B (PRA and PRB) isoforms have a strong prognostic and

predictive value for response to tamoxifen and longer time to HR.151-153 Retrospective data
supports the concept that ER-positive, but PR-negative tumors are relatively HR.154 Current
data from the ATAC trial has shown a major benefit for the aromatase inhibitor anastrazole in
ER+/PR- subgroup while only a modest advantage was seen in the tamoxifen-sensitive ER+/
PR+ subgroup when compared with tamoxifen.155 It has been hypothesized that PR status
might be used to select first-line therapy.156 Tamoxifen followed by an aromatase inhibitor
might be the best therapy in ER-/PR+ tumors, while ER+/PR- tumors might receive and initial
therapy of aromatase inhibitors because of their relative resistance to tamoxifen.156 Addition-
ally, we have recently demonstrated that tamoxifen treated, PR-positive tumors with a high
PR-A/PR-B ratio were 2.76 times more likely to relapse on tamoxifen than patients with lower
ratios.157 The PR-B isoform is generally a transcriptional activator while the PR-A isoform can
act as a dominant negative repressor for ER  and PR-B.158-161 Thus, an increase in the relative
amounts of PR-A can act to repress ER  signaling, hence affecting the response to tamoxifen.

Future Directions
The development of HR in breast cancer is a major clinical problem. This chapter has

outlined many of the mechanisms currently thought to be involved in the development of HR
following endocrine therapy. It is clear that HR can develop via multiple mechanisms either
directly affecting ER signaling such as coregulator proteins, or independent of ER such as
hormone-independent cell cycle progression. While we learn more about the mechanisms in-
volved in the development of HR, we also learn that there will not be one simple answer to this
devastating problem. The recent introduction of new estrogen/ER targeting therapies is show-
ing some promise for the treatment of recurrent breast cancer. As these newer therapies inhibit
ER via different mechanisms of action, it will be necessary to know the reasons behind HR for
the accurate treatment of recurrent breast cancer. For instance, the aromatase inhibitor letrozole,
was more effective than tamoxifen when tumors coexpressed ER , and EGFR or HER-2.162

Additionally, therapies developed to inhibit the molecular crosstalk between ER and other
signal transduction pathways may be necessary to freely overcome HR. Important strides are
already being demonstrated in the treatment of HR caused by HER-2 overexpression by using
specific inhibitors to HER-2 and EGFR to reverse HR.123-125 The key to targeting HR will be
identifying the molecular mechanisms involved in HR in individual patients, and developing
therapeutic agents to specifically target those mechanisms. This will require an emergence of
accurate diagnostic biomarkers.

One exciting approach to identify individual proteins and signal transduction pathways
involved in HR is the technique of microarray expression profiling. Recently, these tools have
been used to identify a set of genes associated with clinical outcome in breast cancer patients
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treated with tamoxifen.163 Interestingly, the set of genes identified that were predictive of out-
come in these patients was different than the genes that were prognostic in untreated patients.164

These large-scale gene identification approaches allow for the simultaneous analysis of complex
signaling pathways, enabling scientists to identify hidden patterns in gene expression.

The problem of HR is complex involving a number of different mechanisms. Understand-
ing the molecular aspects of HR will allow for the development and use of newer, targeted
therapies to combat this problem. Additionally, the use of large-scale proteomic and genomic
approaches will undoubtedly aid in the identification of new targets for combating HR.
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Abstract

The adenoviral E1A-mediated sensitization to a variety of anti-cancer drug-induced
apoptosis is a well-established phenomenon on different types of cell systems. However,
the mechanisms underlying E1A-mediated chemosensitization are still not fully under-

stood. Recent studies demonstrate that E1A-mediated sensitization to drug-induced apoptosis
can occur via multiple pathways; some of which depend on the expression of functional p53
and/or p19ARF proteins, while some are not. In human breast cancer cells with Her-2/neu
overexpression, which usually are more resistance to anti-cancer drugs than cells without Her-2/
neu overexpression, may be sensitized through E1A-mediated downregulation of Her-2/neu.
Alternatively, E1A can induce sensitization to anticancer drugs in cancer cells or normal dip-
loid fibroblast cells through upregulating the expression of caspase proenzymes, or
downregulating the activity of a critical survival factor Akt and/or upregulating the activities of
a pro-apoptotic kinase p38 and a protein phosphatase PP2A, etc. This review summarizes these
progresses and proposes a plausible feed-forward model for E1A-mediated chemosensitization
in human breast cancer cells.

Introduction
Breast cancer is the most common malignancy in American and northwestern European

women. In 2005, 211,240 new cases of invasive breast cancer will be diagnosed among Ameri-
can women, as well as an estimated 58,490 additional cases of in situ breast cancer, and 39,800
women are expected to die from this disease. Only lung cancer accounts for more cancer deaths
in women. Men are also susceptible to the disease, with an estimated 1,690 cases and 460
deaths in 2005 in the United States.1 Despite recent advances in the treatment of breast cancer,
survival rates for patients with metastatic breast cancer remain poor. Chemotherapeutics are
the most effective treatment for metastatic tumors. However, the ability of cancer cells to be-
come simultaneously resistant to different drugs—a trait known as multidrug resistance—
remains a significant impediment to successful chemotherapy. Three decades of
multidrug-resistance research have identified a myriad of ways in which cancer cells can elude
chemotherapy, and it has become apparent that resistance exists against every effective drug,
even the newest agents.2 Therefore, the ability to circumvent drug resistance is likely to im-
prove the efficacy of chemotherapy.
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The adenoviral type-5 and type-2 early region 1A (E1A) proteins were reported originally as
an oncogene that could cooperate with other viral and cellular oncogenes to transform primary
culture cells but not established cell lines, as distinct from the type-12 E1A, a potent oncogene
that can transform established cell lines.3 However, E1A has not been associated with human
malignancies despite extensive studies. Instead, E1A was shown to suppress experimental me-
tastasis of rodent cells transformed by the ras oncogene4-6 and the Her-2/neu oncogene7-9 and
metastasis of certain human cancer cell lines.10,11 In addition, increasing experimental results
indicate that E1A can inhibit the tumorigenicity of both the transformed rodent cells and the
human cancer cell lines.7,8,12 Therefore, based on its ability to suppress both tumorigenicity
and metastasis, E1A has been considered as a tumor suppressor gene3,11,13-20 and translated
into multiple clinical trials.3,21-27 In addition to tumor suppressor activities, expression of the
E1A gene in stably transfected normal fibroblast and human cancer cells has also been shown
to increase sensitivity to the in vitro cytotoxicity of several anticancer drugs (such as etoposide
and cisplatin) in normal fibroblasts and sarcoma cells, doxorubincin in colon and hepatocellu-
lar carcinoma cells, gemcitabine in hepatocellular and breast cancer cells, and paclitaxel in
breast and ovarian cancers.28-39 In primary mouse embryo fibroblasts, E1A-mediated sensitiza-
tion to apoptosis induced by ionizing radiation and chemotherapeutic drugs has been reported
through a p53-dependent and p19ARF-dependent pathway.28,40-44 Moreover, a p53-independent
mechanism for E1A-mediated chemosensitization to the anticancer drugs etoposide and cisplastin
has been demonstrated in human cancer cell lines, including Saos-2 osteosarcoma cells.30,31,42,45

So far, E1A has been shown to mediate sensitization to a wide variety of apoptotic stimuli,
including serum starvation, ultraviolet (UV)- and -radiation, tumor necrosis factor (TNF)- ,
and different categories of anticancer drugs. This review describes a framework for drug-induced
apoptosis and summarizes some recent work that improves our understanding of the molecular
mechanisms underlying the adenovirus E1A-mediated chemosensitization.

Mechanisms of Apoptosis: Intrinsic versus Extrinsic
Apoptotic Pathways

Most chemotherapeutic drugs kill cancer cells by inducing apoptosis, and many similarities
exist in cellular response to drug-induced apoptosis, regardless of their primary target.46-52

Defects in apoptosis signaling contribute to resistance of tumors.47,48,53,54 Apoptosis, from the
Greek word for “falling off ” or “dropping off ” (as leaves from a tree), is defined by distinct
morphological and biochemical changes mediated by a family of cysteine aspartic acid-specific
proteases (caspases), which are expressed as inactive precursors or zymogens (pro-caspases) and
are proteolytically processed to an active state following an apoptotic stimulus. To date, ap-
proximately 14 mammalian caspases have been identified and can be roughly divided into
three functional groups: apoptosis initiator (including caspase-2, -9, -8, -10), apoptosis effec-
tor (including caspase-3, -6, -7), and cytokine maturation (including caspase-1, -4, -5, -11,
-12, -13, -14).55-57 Two separable pathways lead to caspase activation: the extrinsic pathway
and the intrinsic pathway. The extrinsic pathway is initiated by ligation of transmembrane
death receptors (Fas, TNF receptor, and TRAIL receptor) with their respective ligands (FasL,
TNF, and TRAIL) to activate membrane-proximal caspases (caspase-8 and –10), which in turn
cleave and activate effector caspases such as caspase-3 and –7. This pathway can be regulated by
c-FLIP, which inhibits upstream initiator caspases, and inhibitor of apoptosis proteins (IAPs),
which affect both initiator and effector caspases.58-60 The intrinsic pathway requires disruption
of the mitochondrial membrane and the release of mitochondrial proteins, such as cytochrome
c. Cytochrome c, released from the mitochondrial intermembrane space to cytoplasm, works
together with the other two cytosolic protein factors, Apaf-1 (apoptoic protease activating
factor-1) and procaspase-9, to promote the assembly of a caspase-activating complex termed
the apoptosome, which in return induces activation of caspase-9 and thereby initiates the
apoptotic caspase cascade.56,57,61-63
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The primary regulatory step for mitochondrial-mediated caspase activation (the intrinsic
pathway) might be at the level of cytochrome c release.62,63 The known regulators of cyto-
chrome c release are Bcl-2 family proteins.62-65 According to their function in apoptosis, the
mammalian Bcl-2 family can be divided into pro-apoptotic and anti-apoptotic members. The
pro-apoptotic members include Bax, Bcl-Xs, Bak, Bok/Mtd, which contain 2 or 3 Bcl-2 ho-
mology (BH) regions, and molecules such as Bad, Bik/Nbk, Bid, Hrk/DP5, Bim/Bod, and
Blk, which contains only the BH3 region. The anti-apoptotic Bcl-2 family members include
Bcl-2, Bcl-XL, Bcl-w, A1/Bfl-1, Mcl-1, and Boo/Diva, which contain three or four regions
with extensive amino acid sequence similarity to Bcl-2 (BH1-BH4).65,66 Overexpression of the
anti-apoptotic molecules such as Bcl-2 or Bcl-XL blocks cytochrome c release in response to a
variety of apoptotic stimuli. On the contrary, the pro-apoptotic members of the Bcl-2 family
proteins (such as Bax and Bid) promote cytochrome c release from the mitochondria.
Pro-apoptotic and anti-apoptotic members of the Bcl-2 protein family can physically interact.
For example, binding of BH-3 only proteins (e.g., Noxa, Puma, Bad, and Bim) to anti-apoptotic
Bcl-2 proteins (e.g., Bcl-2 and Bcl-XL) results in activation of Bax and Bak.64,65 In addition,
there is considerable cross-talk between the extrinsic and intrinsic pathways. For example,
caspase-8 can proteolytically activate Bid, which can then facilitate the release of cytochrome c
and amplifies the apoptotic signal following death receptor activation.52,56,57,61-63 Most of the
anticancer agents either directly induce DNA damage or indirectly induce secondary
stress-responsive signaling pathways to trigger apoptosis by activation of the intrinsic apoptotic
pathway, and some can simultaneously activate the extrinsic receptor pathway. Therefore, mol-
ecules or signaling events that regulate the processes of apoptosis can also affect cellular re-
sponse to drugs.

Factors and Key Molecules Involved in the Regulation of Apoptosis
and Drug Response in Breast Cancer

Her-2/neu
The erbB2 gene (also known as HER-2, neu, and NGL) encodes a 185-kDa transmem-

brane glycoprotein (ErbB2) that belongs to the epithelial growth factor receptor (EGFR) fam-
ily and heterodimerizes with other EGFR family members upon ligand stimulation. Similar to
EGFR, the Her-2/neu growth factor receptor has intrinsic tyrosine-kinase activities that
autophosphorylates and phosphorylates its dimerization partners, resulting in simultaneous
activation of several signal transduction pathways and leading to the activation of the PI3K-Akt
cell survival pathway and mitogen-activated protein kinase pathways that induce mitogenesis,
cell proliferation, cell survival, and genomic instability. Amplification or overexpression of Her-2/
neu or both have been detected in about 30% of human breast cancers and in many other types
of human malignancies. In addition, overexpression of HER-2/neu in breast cancer has been
associated with poor overall survival and has been shown preclinically to enhance malignancy
and the metastatic phenotype.67-69 Although discrepancies exist among different reports, Her-2/
neu overexpression seems to have induced chemoresistance in several preclinical studies and a
few clinical observations.69 The predictive value of Her-2/neu overexpression and chemoresis-
tance has been demonstrated in breast and ovarian cancer patients. In general, tumor cells
overexpressing Her-2/neu are intrinsically resistant to DNA-damaging agents such as cisplatin.
Although the molecular mechanisms by which Her-2/neu induces drug resistance are not yet
established, there is evidence that this may be a consequence of altered cell cycle checkpoint
and DNA repair mechanisms and dysregulation of apoptotic pathway(s)67,69 (please refer to
section PI3K/Akt Pathway and chapters by Yu et al in this book). Drug-induced apoptosis
depends on the balance between cell cycle checkpoints and DNA repair mechanisms.51 Block-
ade of Her-2/neu signaling using Her-2/neu antagonists, dominant negative mutants, or chemical
inhibitors of Her-2/neu tyrosine kinase activity induces cell cycle arrest, inhibits DNA repair,
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and (or) promotes apoptosis.22,68 Less understood are downstream signal transduction cas-
cades by which Her-2/neu affects these regulatory mechanisms.

P53
The p53 tumor suppressor gene is the most frequently mutated gene in human tumors, and

loss of p53 function can both disable apoptosis and accelerate tumor development in transgenic
mice. In addition, functional mutations or altered expression of p53 upstream regulators (such
as ATM, Chk2, MDM2, and p14ARF) and downstream effectors (PTEN, Bax, Bak, and Apaf-1)
are also common in human tumors, including human breast cancer. Mutations in p53 or in the
p53 pathway can produce the multidrug resistance phenotype in vitro and in vivo, and reintro-
duction of wild-type p53 into p53-null tumor cells can reestablish chemosensitivity.48,70-73

Direct DNA damage that caused by most DNA-damaging drugs and UV or ionizing radiation
and overexpression of oncoproteins (e.g., E1A, ras, myc) can activate the intrinsic apoptotic
pathway.52 As a sensor of cellular stress, p53 is a critical initiator of this pathway. P53 can
transcriptionally activate pro-apoptotic Bcl-2 family members (such as Bax, Bak, PUMA, and
Noxa) and repress anti-apoptotic Bcl-2 proteins (e.g., Bcl-2, Bcl-XL) and IAPs (e.g., Survivin).
Additionally, p53 can also transactivate other genes that may contribute to apoptosis, includ-
ing tumor-suppressor PTEN, apoptosis regulators or inducers such as Apaf-1, PERP, p53AIP1,
CD95 and TRAIL receptors (TRAIL-R2/DR5), and genes that leading to an increase in reac-
tive oxygen species (ROS).71,72,74

Bcl-2 Family Proteins
As discussed above, Bcl-2 family proteins play a pivotal role in the regulation of the intrinsic

apoptotic pathway as guardians of the mitochondria, since these proteins localize particularly
to the mitochondrial membrane.75 Mutations or altered expression of pro-apoptotic or
anti-apoptotic Bcl-2 family proteins can drastically alter drug response in experimental sys-
tems.76,77 In addition, several clinical reports have provided support that a high expression level
of anti-apoptotic Bcl-2 proteins confers a clinically important chemoresistant phenotype on
cancer cells. Likewise, reduced expression of pro-apoptotic Bax levels has been associated with
poor response to chemotherapy and shorter overall survival for patients with breast cancers,
whereas enhanced expression of Bax protein correlated with a good response to chemotherapy
in vivo.76,78 In addition, chemotherapeutic drugs exert their effect in part by modulating the
expression of several members of the Bcl-2 family proteins.79 For example, paclitaxel, doxoru-
bicin, and thiotepa upregulate several pro-apoptotic Bcl-2 proteins and downregulate
anti-apoptotic Bcl-2 proteins. Blockade of Bcl-2 activity or expression by either an anti-Bcl-2
single chain antibody (anti-Bcl-2 sFv) or a novel Bcl-2/Bcl-XL bi-specific anti-sense oligo-
nucleotide has demonstrated remarkable effect in enhancing drug-induced cytotoxicity in breast
cancer cells.79,80

P-Glycoprotein and MDR
Expression of the multidrug resistance gene (mdr) is one of the most-studied potential

mechanisms underlying multidrug resistance. The human mdr gene family encompasses two
homologous members, the first of which, called the mdr1 gene, is the best characterized so far.
The human mdr1 gene encode a membrane P-170 glycoprotein that, on the basis of its struc-
ture, is considered to act as a drug-efflux pump excreting various drugs from cells. Resistance
results because increased drug efflux lowers intracellular drug concentrations.81,82 Analysis of
31 reports published between 1989 and 1996 found that 41% of breast tumors expressed
P-170 glycoprotein. P-170 expression increased after therapy and was associated with a greater
likelihood of treatment failure, although there was considerable inter-study variability.2,82 In
addition to actively effluxing chemotherapeutic drugs, the P-170 glycoprotein can also protect
cells against apoptosis mediated by the death receptor pathway, UV irradiation, and serum
starvation.2,52
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Ceramide
Ceramide, or N-acyl-sphingosine, has been implicated in the acquired drug resistance in

breast cancer. Ceramide is a metabolite of sphingomyelin hydrolysis by neutral or acidic
sphingomyelinases. Sphingomyelin is the most abundant lipid in the plasma membrane of
mammalian cells. Ceramide functions as a second messenger to signaling cascades that pro-
mote cell differentiation, proliferation, senescence, and apoptosis.83 Ceramide is produced in
response to a wide range of stimuli, including a long list of chemotherapeutic agents. Several
lines of evidence have linked the failure of ceramide production to chemotherapy resistance,
including the lack of a ceramide response in drug-resistant cell lines and the abrogation of
paclitaxel-induced apoptosis by blocking ceramide synthesis.79,83 In addition, protein phos-
phatases activated by ceramide, such as protein phosphatase 2A (PP2A), have been shown to
promote inactivation of a number of anti-apoptotic molecules or pro-growth regulators, in-
cluding Bcl-2, PKC, and Akt.51,83

PI3K/Akt Pathway
The PI3K-Akt signaling pathway, a major signaling component downstream of growth

factor receptor tyrosine kinases, regulates fundamental cellular processes such as cell survival,
growth, and motility—that are critical for tumorigenesis.84 Indeed, aberrant activation of the
PI3K-Akt pathway has been widely implicated in many cancers. For example, the serine/threo-
nine kinase Akt and its family members Akt 2 and 3 are amplified or their activity is constitu-
tively elevated in human carcinomas such as breast, pancreatic, ovarian, brain, prostate, lung,
and gastric cancers.85,86 As a direct downstream target of PI3K, Akt is a key oncogenic survival
factor that can phosphorylate and inactivate a panel of critical pro-apoptotic molecules, in-
cluding Bad, caspase-9, the Forkhead transcription factor FKHRL1 (known to induce expres-
sion of pro-apoptotic factors such as Fas ligand), GSK3- , ASK1 (apoptosis signal-regulating
kinase-1), cell cycle inhibitors p21 and p27, and tumor-suppressor TSC2.71,84,87-93 In addi-
tion, we and others found that Akt can also inactivate p53 through phosphorylation and nuclear
localization of MDM2.88,89 Blockage of the Akt pathway by a genetic approach using a
dominant-negative Akt (DN-Akt) construct resulted in p53 stabilization and accumulation
and had a synergistic effect with the genotoxic anti-cancer drug etoposide in inducing apoptosis
in NIH3T3 cells both in vitro and in vivo.88 Numerous groups have reported the effects of
chemotherapy on Akt activity in tumor cell lines. These studies showed that the administration
of chemotherapeutic agents commonly results in reduced activity of the PI3K/Akt pathway.
Although in certain cases chemotherapy agents increased Akt activity, in most cases such in-
creases in Akt activity were transient and were followed by subsequent decreases in activity.94,95

In addition, studies performed in vitro and in vivo combining small molecule inhibitors of the
PI3K/Akt pathway with standard chemotherapy have successfully attenuated chemotherapeu-
tic resistance.85,96-98

NF- B
NF- B is a multi-subunit nuclear transcription factor that regulates several cellular func-

tions, including cell growth, differentiation, development, adaptive response to redox balance,
and apoptosis.99 In its inactive form, NF- B resides in the cytoplasm bound to inhibitory I B
proteins that shield the DNA binding site. External stimuli, such as pro-inflammatory agents,
infectious agents, stress, and chemotherapeutic drugs, activate NF- B by phosphorylation and
subsequent degradation of I B proteins by the I B kinase (IKK), whereupon NF- B is trans-
ported into the nucleus and transcription of the target genes occur. As a nuclear transcription
factor, NF- B target genes including several anti-apoptotic proteins, e.g., the IAP family of
caspase inhibitory proteins, TRAF1 and TRAF2 (which are thought to repress caspase-8 acti-
vation), Bfl1/A1, Bcl-XL, FLIP, and inducible nitric oxide synthetase. Interestingly, NF- B
also controls promoter activation of certain pro-apoptotic factors, such as CD95 (Fas) and
CD95 ligand (FasL) and TRAIL receptors (TRAIL-R1 and -R2).99,100 Whether NF- B targets
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pro- or anti-apoptotic genes depends on the stimulus-specific signaling pathway activated.
Administration of certain types of anticancer drugs induced NF- B transcriptional activation,
whereas inhibition of NF- B in parallel with chemotherapy strongly enhanced the cytotoxic
effect of chemotherapy.79,80,100 Thus, NF- B may play an important role in inducible chemore-
sistance, and inhibition of NF- B may confer sensitivity to cytotoxic anticancer drugs.

Structures, Biochemical Features, and Associated Cellular Proteins
of E1A

The adenovirus type 5 (Ad5) E1A encodes two differentially spliced 12S and 13S mRNAs
that give rise to 243 and 289 residue (243R, 289R) proteins, respectively. Each is comprised of
two exons and, as splice joining exons 1 and 2 of the 12S mRNA is in frame with the spliced
13S transcript, the encoded proteins are identical apart from a central 46 residue region present
in the larger product.101,102 There are three minor E1A mRNA transcripts from Ad5 (11S,
10S, and 9S) that are expressed primarily at later stages of infection, and their functions are
largely unknown.101,103 The roles of the major 12S and 13S E1A products have been studied
extensively and their importance in sensitization to apoptosis induced by anticancer drugs is
well-documented and will be discussed here.

Both major E1A products are nuclear, highly acidic, and extensively phosphorylated tran-
scription factors that exert their effects through their functional domains, which are highly
conserved in virtually all human adenoviruses and in many adenoviruses of other animal spe-
cies. These regions in Ad5 include conserved regions 1 and 2 (CR1 and CR2) located in Ad5
between residues 40 to 80 and between residues 120 to 139, respectively, and CR3 is located
between residues 140 to 185. All three are encoded within exon 1 of the 289R product. CR1
and CR2 are present in both 289R and 243R; however, CR3 is unique to 289R, as it represents
the 46 residues eliminated by splicing of the 12S mRNA101 (Fig. 1). In addition, a region at the
amino terminus, which is not highly conserved, is also of great importance. The first E1A-binding
proteins to be detected were pRb tumor suppressor and the related proteins p107 and p130,
and a 300-kDa transcriptional coactivator/signal integrating protein p300 and CBP, which is a
relative of the cyclic AMP responsive element binding (CREB) protein.101,104 In addition to
pRb and p300/CBP, E1A also interacts with a 400-kDa protein doublet through its amino
terminus 25-36 residues, which was recently characterized as a strong SWI2/SNF2 homology,
p400, and TRRAP/PAF400, a myc-associated, transcriptional coactivator (TRRAP,
transactivation/transformation-domain-associated protein) as well as a component of the p/
CAF histone acetyltransferase complex (PAF400).102 The E1A-p400 complex interaction is
mainly linked to the E1A transformation mechanism and is not the focus of the current review.

Binding of the pRb family of proteins occurs primarily through a conserved binding site
Leu-X-Cys-X-Glu found in the CR2 domain; however, a minor but critical contact is also
made with a portion of CR1. Binding of p300/CREB/p400 requires the amino terminus and
a region of CR1. P300 and CBP possess endogenous histone acetyl transferase (HAT) activity,
which can be directly inhibited by E1A.104,105 E1A may serve as a substrate for p300 and CBP
to repress the HAT activity of p300/CBP, as it can be acetylated at Lys-239 by p300 and P/
CAF.105,106 The CR3 domain interacts with a number of transcription factors, including the
TATA-binding protein (TBP), a critical component of the basal transcription complex, and
upstream factors such as ATF members, Sp1, and c-Jun. A relatively uncharacterized 48-kDa
proteins, termed CtBP, bind to a region encoded by exon 2, just adjacent to the carboxy termi-
nal nuclear localization signal. CtBP is a transcriptional corepressor that was identified origi-
nally by its interaction with a conserved PXDLS motif near the carboxyl terminus of E1A.107

Various repressor proteins that also contain the PXDLS motif recruit CtBP to promoters,
where it represses transcription by subsequent recruitment of histone deacetylases (HDACs).107

It has been shown that mutants of E1A that mimic the effect of acetylation of the Lys239 at the
PXDLS motif of E1A by p300/CBP and P/CAF make E1A defective in CtBP binding. These
E1A mutants that mimic the effect of acetylation were also defective in repressing
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CREB-stimulated (CBP-dependent) transcriptional activation under certain conditions, sug-
gesting that E1A-mediated transcriptional repression may require interaction with CtBP. In
addition, the tumor-suppressor proteins pRb and BRCA1 also recruit CtBP through an adap-
tor protein CtIP, indicating that CtBP might be involved in the transcriptional repression and/
or apoptosis that is regulated by these proteins.107

E1A products interact with pRb, p107, and p130 via the major binding site in the CR2
domain and the N-terminal portion of the CR1 domain plays an auxiliary role; however, it is
the CR1 domain that competes directly with E2F for access to the pRB pocket, i.e., the E1A
CR1 domain can inhibit E2F-pRb complex formation and E1A, by binding with pRB through
CR1, releases E2F.101,108 E2F was originally described as a factor regulating adenovirus E2
transcription; however, it soon became apparent that it is of general importance in the expres-
sion of genes encoding DNA synthetic enzymes and regulators of the cell cycle and
apoptosis.109,110 E2F is a sequence-specific, DNA-binding transcription factor that exists as a
family of heterodimers containing one of six E2F proteins bound to either DP1 or DP2.110 A
major function of the pRb tumor-suppressor family is to bind to and inactivate E2F. E2F-1, -2,
and –3 heterodimers bind to pRb; E2F-4 to pRb, p107 and p130; and E2F-5 to p130 only.
E2F6 does not interact with the pRb family of pocket proteins and functions as a negative
regulator of E2F-dependent transcription via complexing with chromatin modifiers.109-111 Bind-
ing of E2F to pRb family members involves the “large binding pocket” that overlaps the region
required for E1A protein binding. When E1A proteins bind to pRb and its family members,
the viral protein competes with E2F for occupancy of the pocket domain, dissociating E2F
from the tumor suppressor proteins. When E2F is released, it can activate transcription from
promoters that contains its binding site.108 Exogenous expression of E2F1, E2F2 or E2F3 in
quiescent cells results in S-phase entry. In addition, ectopic expression of E2F1 leads to apoptosis
in tissue culture cells and transgenic mice.109

Chemosensitization by E1a
Ever since the landmark discovery by Lowe and coworkers in 199328,40 that the adenovirus

E1A can sensitize fibroblasts to apoptosis induced by ionizing radiation and anticancer drugs
in a p53-dependent manner, a variety of mechanisms for E1A-mediated chemosensitization
have been proposed. It is now recognized that both p53-dependent and –independent path-
ways, p14ARF-dependent and –independent pathways, and additional pathways may all con-
tribute to E1A-mediated chemosensitization in different cellular contexts. Summarizing these
different molecular mechanisms underlying E1A-mediated chemosensitization is the major
focus of this review.

Figure 1. Map of E1A functional domains in 13S and 12S E1A proteins: conserved regions (CR) 1, 2, 3 and
consensus sites for binding to cellular proteins.
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Trancriptional Activation of Pro-Apoptotic Molecules: The E2F-1 Pathway
Earlier studies in mouse embryo fibroblasts (MEF) with wild-type p53 or p53 deletion

demonstrated that the E1A-mediated sensitization to apoptosis induced by ionizing radiation
and several chemotherapeutic agents (5-fluorouracil, etoposide, and doxorubicin) depends on
the expression of functional p53 tumor suppressor, as treatment with E1A-expressing cells
lacking p53 had little or no effect on viability.28,40-42,112-118 The stability of p53 protein is
increased in cells expressing E1A. Further study showed that stabilization and accumulation of
p53 by E1A is through the p19ARF tumor suppressor, since the ability of E1A to induce p53
and its transcriptional targets is severely compromised in ARF-null cells.44,117,119 ARF (p19ARF

in the mouse, p14ARF in human cells) is encoded by an Alternative Reading Frame of the
Ink4A tumor suppressor locus. It binds to MDM2, an E3 ubiquitin ligase of p53, and inhibits
its E3 ligase activity, thereby allowing p53 to escape MDM2-mediated ubiquitination and
degradation and a consequent accumulation of active p53.120 Reports from White’s group
showed that E1A inhibited MDM2 transactivation without affecting the expression of p21 or
Bax, which resulted in a high level of p53 accumulation and apoptosis by a p300-dependent
mechanism.121 Since p300 is required for MDM2 induction by p53 and subsequent inhibition
of p53 stabilization, inhibition of p300 by E1A results in p53 stabilization and causes
apoptosis.121

A recent report from our group demonstrated that an alternative mechanism may also con-
tribute to the stabilization of p53 by E1A.122 By screening a yeast two-hybrid library, an
MDM2-related p53 binding protein, MDM4, was identified as a direct binding partner of
E1A. The NH2-terminal region of MDM4 and the CR1 domain of E1A were required for the
interaction between MDM4 and E1A.122 Since the CR1 domain of E1A is involved in binding
with p300, it is not clear whether p300 is also involved in the interaction between MDM4 and
E1A. However, we were able to show a tri-complex formation among E1A, MDM4, and p53
that resulted in the stabilization of p53 independent of the p14ARF protein expression.122 E1A
did not affect the p53-MDM2 interaction, but it inhibited MDM2 binding to MDM4, result-
ing in decreased nuclear exportation of p53.122 As discussed above, p53 can initiate apoptosis
by transcriptionally activating pro-apoptotic Bcl-2 family members and repressing anti-apoptotic
bcl-2 proteins and IAPs. In addition, p53 can also transactivate other genes that contribute to
apoptosis, including PTEN, Apaf-1, PERP, p53AIP1. Among these p53 target genes, elevated
expressions of Apaf-1 and Bax have been reported in response to E1A and partly contributed to
E1A-mediated chemosensitzation.123,124 In baby rat kidney cells, the activity of p53 as a tran-
scription factor is directly correlated with the ability of E1A to induce apoptosis. Whether
other p53 target genes are also altered in E1A-expressing cells needs further investigation.

Disrupting RB-E2F heterodimers and subsequent releasing of free E2F-1 by E1A has been
suggested to contribute to ARF induction, which is also consistent with the possibility that ARF
is an E2F-response gene. Enforced expression of E2F induces p19ARF and, conversely, ARF null
cells are resistant to E2F-1-induced apoptosis.109,110,118,125-130 In addition to the ARF protein,
E2F1 can directly activate transcription of p73, a member of the p53 family, in turn leading to
activation of p53-responsive target genes and apoptosis. Disruption of the p73 function, by
dominant negative p73 mutants or by gene targeting, inhibits E2F-1-induced apoptosis.109,131

E2F-1 also directly activates the expression of the Apaf-1 gene.132 Induction of E2F-1 activity
results in an increase of mRNA and protein levels of Apaf-1 and a concomitant activation of
caspase-9, -3, and -6 and possibly caspase-7. E2F-1-induced apoptosis is significantly reduced
by gene disruption of Apaf-1. In addition, RB null embryos exhibit increased levels of Apaf-1,
suggesting that Apaf-1 is required for apoptosis induced by E1A-mediated pRb deficiency and
subsequent E2F-1 activation.109,132 Apaf-1 is a also direct transcriptional target of p53, raising
the possibility that its transactivation by E2F-1 is indirect. However, E2F-1 binds the Apaf-1
promoter and transactivates the Apaf-1 gene in cells lacking p53, and E2F-1 also activates the
deleted version of the Apaf-1 promoter that is not activated by p53, suggesting Apaf-1 is a direct
target of E2F-1.109 In addition to ARF, p53, p73, and Apaf-1, a recent study from Lowe’s
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laboratory also demonstrated that pro-caspase-3, -7, -8, and –9 can also be direct transcrip-
tional targets of E2F-1 and disrupting pRb-E2F-1 complex by E1A, loss of pRb expression by
genetic approach, or enforced E2F-1 expression results in the accumulation of caspase proen-
zymes and sensitization to apoptosis after the release of cytochrome c in fibroblasts.130 Although
a number of recent studies have demonstrated that RB inactivation or E2F-1 overexpression
leads to apoptosis that is inhibited by loss of p53 but not by loss of ARF, E1A induces expression
of these pro-caspase enzymes in cells deficient in either p53 or ARF, suggesting that E1A regu-
lates pro-caspase expression through a p53-independent mechanism.130

Interestingly, studies using E2F-1 mutants have demonstrated that although its DNA-binding
activity is required, transcriptional transactivation is not necessary for the induction of apoptosis
by E2F-1.129,133,134 Regardless of the fact that expression of E1A induced accumulation of
caspase pro-enzymes in human normal diploid fibroblasts, screening the expression levels of
caspase pro-enzymes in E1A–expressing human carcinoma cells with epithelial origin, includ-
ing breast cancer MDA-MB-231, MDA-MB-453, MCF-7, and ovarian cancer 2774, did not
observe a unanimous increase of these caspase pro-enzymes.37 This again suggests that tran-
scriptional upregulation of these caspase pro-enzymes in human cancer cells may not be as
critical as that in the normal fibroblast cells for E1A–mediated sensitization to apoptosis. The
discrepancy between normal diploid fibroblasts and epithelial carcinoma cells in E1A–medi-
ated sensitization to apoptosis may reflect the nature of the intrinsic difference between normal
fibroblasts and carcinoma cells. In addition, the pRb pathway is functionally inactivated in
most human cancers; however, loss of pRb expression in human cancer cells may not necessar-
ily result in an increased expression of caspase pro-enzymes, according to our screening of
human breast cancer cells and normal skin cells and fibrosarcoma cell lines with different ge-
netic backgrounds in expression of p53, ARF, and pRb proteins (Fig. 2). Intriguingly, notice-
able induction of apoptosis in anticancer drug-treated cells expressing E1A mutant incapable
of binding to pRB was also observed recently by Chattopadhyay et al,135 and they also failed to
detect the release of E2F-1 in their system, suggesting that additional mechanisms may be
involved in E1A-mediated sensitization to apoptosis in human cancer cells.

Transcriptional Inactivation of Receptor Tyrosine Kinases: The Her-2/neu
and Axl Pathway

Earlier studies from our group demonstrated that E1A may function as a tumor suppressor
for Her-2/neu-overexpressing cancer cells by repressing the expression of Her-2/neu at the
transcriptional level.7-9,17,22,32,136-139 The Her-2/neu promoter contains several positive ele-
ments that require the p300/CBP coactivator proteins, which are inhibited by direct E1A
interaction. The NH2-terminus and CR1 domain of E1A that is required for E1A to bind with
p300 is also required for transcriptional repression of Her-2/neu.140,141 When introduced into
rat B104-1-1 cells transformed by the mutated rat Her-2/neu gene, E1A gene products sup-
pressed the transformed phenotypes and inhibited the metastatic potential of the B104-1-1
cells. Similar results were also observed in SKOV3.ip1 human ovarian cancer cells that overexpress
Her-2/neu. The E1A-expressing ovarian cancer cell lines showed decreased p185Her-2/neu
expression and reduced malignancy, including a decreased ability to induce tumors in nu/nu
mice. In addition, preclinical studies using either liposome- or adenovirus-mediated E1A gene
transfer found inhibited tumor growth of Her-2/neu-overexpressing breast cancer cells injected
into the mammary fat pads of mice and prolonged animal survival compared with controls.32,137-

139 As discussed above, breast tumors that overexpress Her-2/neu are less responsive to treat-
ment with various anticancer agents, such as cyclophosphamide, methotrexate, 5-fluorouracil,
epirubicin, paclitaxel and docetaxel, and patients with cancers that overexpress Her2/neu are
associated with unfavorable prognosis, shorter relapse time, and lower survival rate.69,142-144

Therefore, we were prompted to test whether downregulation of Her-2/neu expression by E1A
conferred an enhanced sensitivity to anticancer drugs in Her-2/neu overexpressing breast can-
cer cells. When the E1A gene was transferred into two human breast cancer cell lines that
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Figure 2. Expression of caspase-3, –7, –8, and –9 proenzymes in human cancer cells. A) Caspase proenzyme
expression in E1A stable cells established in human breast cancer cell lines MCF-7, MDA-MB-231, and
MDA-MB-453; and ovarian cancer cell line 2774. V: vector control; E: E1A stable cells. B) Procaspase
enzyme expression in Rb wild-type breast cancer cells MCF-7, MDA-MB-231, MDA-MB-453; normal
foreskin fibroblast cell SK-27; and osteosarcoma U2OS cells versus Rb-deficient cells (MDA-MB-468,
BT-549, HBL-100, and Soas2). SK-27, U2OS, and Soas2 cells were obtained from the American Type
Culture Collection (ATCC, Manassas, VA). Mouse monoclonal antibodies against human caspase–3 and
–7 were from Transduction Laboratories (1:1000; C31720, Lexington, KY) and BD PharMingen (1:1000;
66871A, San Diego, CA), respectively. Rabbit polyclonal antibodies against human caspase-8 and –9 were
from Santa Cruz Biotechnology (1:500; SC-7890/H-134, Santa Cruz, CA) and Cell Signaling Technology
(1:500; #9502, Beverly, MA), respectively. A) Adapted with permission from reference 37 (Liao Y, Hung
MC. Mol Cell Bio 2003; 23:6836).
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overexpress Her-2/neu (MDA-MB-453 and MDA-MB-361), levels of Her-2/neu expression
in the E1A transfected cells were reduced. The cell proliferation assay and soft agar
colony-formation assay indicated a synergistic growth-inhibitory effect following treatment
with the combination of E1A gene and paclitaxel in breast cancer cells that overexpress Her-2/
neu. A similar synergistic effect was also observed recently following liposome-mediated sys-
temic delivery of the E1A gene via the mouse tail vein in Her-2/neu over-expressing human
breast cancer xenograft model.145 The data indicated that E1A can sensitize Her-2/
neu-overexpressing breast cancer cells to paclitaxel through E1A-mediated Her-2/neu repres-
sion. This finding has important clinical implications for the development of a novel therapeu-
tic strategy by combining paclitaxel chemotherapy with E1A gene therapy for the treatment of
Her-2/neu-overexpressing breast cancers, and a Phase I/II clinical trial is currently underway to
determine the therapeutic efficacy of this combination strategy in such cancers. An earlier
report by Sabbatini et al demonstrated that expression of Her-2/neu and c-Ha-ras oncogenes
induces expression of the P-glycoprotein MDR1 mRNA and confers resistance to doxorubicin
in immortalized normal epithelial MCF-10A breast cells, which are negative for the expression
of P-glycoprotein.146 In studies of low Her-2/neu-expressing MDA-MB-435 breast cancer cells,
Yu et al observed that expression of Her-2/neu in the cells did not induce P-glycoprotein ex-
pression and blocking MDR1 by thioradazine did not sensitize these transfectants to paclitaxel
treatment, suggesting that overexpression of Her-2/neu leads to intrinsic paclitaxel resistance
independent of the MDR1 mechanism.142 Further studies by Yu et al suggested that Her-2/
neu acts synergistically with MDR1 to confer a higher degree of paclitaxel resistance.147 It is yet
to be determined whether expression of E1A also affects MDR1 expression, in addition to
down-regulation of Her-2/neu, for E1A-mediated chemosensitization.

Using a tyrosine kinase differential display (TK-DD) approach, we found that Axl, another
oncogenic receptor tyrosine kinase, can also be transcriptionally repressed by the expression of
E1A. Similar to the observed downregulation of Her-2/neu, transcriptional repression of Axl
by E1A also sensitized cells to apoptosis induced by serum deprivation.148 Further elucidation
of the molecular mechanisms underlying E1A-mediated inhibition of Axl led to the finding
that Akt, a critical Axl downstream molecule, was inactivated as a result of E1A expression (see
detailed discussions below).149 However, when we enforced Axl expression in the E1A-expressing
cells, E1A-mediated sensitization to apoptosis was abrogated and Akt was reactivated in the
presence of the Axl ligand Gas6.149 These studies suggest that E1A can sensitize cells to apoptosis
using alternative pathways in addition to its function in repressing Her-2/neu expression. In-
deed, we and others have reported that sensitization to the cytotoxic effects of anticancer drugs
(such as cisplatin, adriamycin, gemcitabine, methotrexate, and paclitaxel) by the expression of
E1A was also achieved in cells that do not overexpress Her-2/neu.30,37,39,150-152 In one study,
expression of 12S E1A alone or 12S plus 13S E1A did not affect Her-2/neu expression in
cancer cell lines expressing a low level of Her-2/neu; however, expression of E1A not only
severely reduced the anchorage-independent and tumorigenic growth of these cell lines but
also sensitized these cells to the cytotoxic effects of the anticancer drugs.30 In an E1A-expressing
murine melanoma cell system that does not overexpress Her-2/neu, expression of E1A re-
pressed tumor growth in vivo and sensitized the cells to apoptosis induced by either -radiation
or cisplatin.150 In addition, recent reports from our group showed that E1A mediated
chemosensitization in the low Her-2/neu-expressing breast cancer cell lines MCF-7 and
MDA-MB-231 in vitro and in an orthotopic animal model in vivo in a systemic gene therapy
setting.37,39,152 We had previously shown that E1A, through downregulation of Her-2/neu,
sensitized cellular response to paclitaxel-induced apoptosis in Her-2/neu overexpressing
cells.32,137,138 In those studies, we could not detect E1A-mediated chemosensitization in the
low Her-2/neu-expressing cells. The major reason for this discrepancy was due to the paclitaxel
concentrations tested. The Her-2/neu-overexpressing cancer cells are resistant to paclitaxel at a
dosage of 10.0 M; in the presence of E1A, however, they became sensitive at a paclitaxel dose
of 1.0 M. Whereas, the low Her-2/neu-expressing cells, such as MDA-MB-231and
MDA-MB-435, are much more sensitive to paclitaxel, even at a concentration of 0.1 M.
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Therefore, in the previous studies, the dose of paclitaxel applied was too high (1 M) to detect
the in vitro E1A-mediated paclitaxel sensitization that was found in the later study (0.01 M).
Therefore, transcriptional repression of Her-2/neu expression is only one of the many mecha-
nisms underlying E1A-mediated chemosensitization and tumor suppression.

Targeting the Intracellular Signaling: The Akt/ASK-MEKK3/p38 Pathway
The breast cancer cell lines MCF-7 and MDA-MB-231 express low levels of Her-2/neu,

however, expression of E1A enhanced their sensitivity to apoptosis induced by various antican-
cer drugs. Because MDA-MB-231 cells express no functional p53 and ARF, whereas MCF-7
cells express an undetectable level of Axl mRNA and protein,153 we therefore prompted to
explore whether additional mechanisms may contribute to E1A-mediated chemosensitization
in these cell systems. To determine whether apoptosis-related kinases are involved in
E1A-mediated sensitization to apoptosis, we examined the phosphorylation status of the
well-known kinases representing different signaling pathways involved in the regulation of
apoptosis154—p38, Akt, Erk, and JNK—in E1A-expressing MDA-MB-231 and MCF-7 cells
(231-E1A and MCF-7-E1A) versus vector-transfected cells (231-Vect, MCF-7-Vect). The phos-
phorylation levels of JNK1/2 kinases were unchanged in E1A-expressing versus vector control
cells in the absence of drug stimuli, whereas upon treatment with paclitaxel, the JNK1/2 kinases
were transiently activated and then reduced to the basal level. Kinetically, phosphorylation of
JNK1/2 does not correlate with paclitaxel-induced Bcl-2 phosphorylation and PARP cleavage,
two hallmarks of paclitaxel-induced apoptosis; therefore, it is unlikely that JNK is the critical
player in E1A-mediated chemosensitization in these cell systems. Although the basal phospho-
rylation level of Erk1/2 was increased in E1A-expressing cells compared with their respective
vector controls, blocking of Erk1/2 activity by a specific MEK (a direct upstream kinase of
Erk1/2) inhibitor PD98058 alone drastically enhanced spontaneous apoptosis in the absence of
paclitaxel in E1A-expressing cells but not in the vector controls, suggesting that Erk is a critical
survival factor in stable E1A-expression cells and that elevated Erk1/2 activity do not contribute
to E1A-mediated chemosensitization in our system (Liao et al, unpublished data). Elevated
expression of phosphorylated p38 was observed in both E1A-expressing MCF-7 and
MDA-MB-231 cells, whereas the total level of p38 protein was similar in cells with or without
expression of E1A. To test whether alteration of the kinase activity of p38 played a role in
E1A-mediated sensititization to drug-induced apoptosis, we compared the kinetics of phospho-
rylation of p38 with paclitaxel-induced apoptosis in 231-E1A cells, using PARP cleavage and
Bcl-2 phosphorylation as apoptotic cell death markers. Kinetically, PARP cleavage and Bcl-2
phosphorylation occurred after increased p38 phosphorylation in 231-E1A cells upon exposure
to paclitaxel, suggesting that elevated p38 phosphorylation may be associated with E1A-mediated
sensitization to paclitaxel-induced apoptosis. To evaluate whether activation of p38 is required
for E1A-mediated sensitization to paclitaxel, we tested whether blocking p38 activity will in-
hibit E1A-mediated sensitization in 231-E1A cells. We used a specific p38 inhibitor (SB203580)
and an IPTG-inducible dominant-negative p38 (DN-p38) mutant to block p38 activation; as
expected, blockade of p38 activation in 231-E1A cells by either the p38 inhibitor or the DN-p38
obviously compromised E1A-mediated sensitization to anticancer drug-induced apoptosis, sug-
gesting that p38 activation is required for E1A-mediated sensitization to apoptosis.37

Unlike results for p38, the level of phosphorylated Akt was reduced in E1A-expressing
231-E1A and MCF-7-E1A cells. Kinetically, decreased levels of phosphorylated Akt correlated
with paclitaxel-induced PARP cleavage and Bcl-2 phosphorylation in 231-E1A cells, suggest-
ing that downregulation of Akt phosphorylation in E1A-expressing cells may also contribute to
E1A-mediated chemosensitization. To determine whether downregulation of Akt activity is
required for E1A-mediated chemosensitization to paclitaxel, we examined whether activation
of Akt by transfection of a constitutively active Akt construct (CA-Akt) would inhibit
paclitaxel-induced apoptosis in 231-E1A cells. Reactivation of Akt in E1A-expressing 231-E1A
cells repressed p38 phosphorylation in the presence or absence of paclitaxel and reduced
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paclitaxel-induced apoptosis in the cells. In addition, we also observed that activation of p38
and inactivation of Akt represent a general cellular mechanism in response to different apoptotic
stimuli in the presence or absence of E1A.37

In an attempt to elucidate whether downregulation of Akt and upregulation of p38 are
separate events or are linked events, we sought to determine whether Akt might act upstream of
p38. Blockade of Akt activity in MDA-MB-231 cells by wortmannin, a specific PI3K inhibitor,
decreased Akt phosphorylation and increased p38 phosphorylation. Similar results were also
obtained by using LY2049002, another PI3K inhibitor. These results indicated that Akt phos-
phorylation is required for repressing p38 activation, that is, that the former is upstream from
the latter. This conclusion was further supported by our study on Akt1 knockout mouse embryo
fibroblast (MEF) cells and myr-Akt1 transfected stable cells. In that study, we observed that the
level of phosphorylated p38 was increased in Akt1 (–/–) MEF cells compared with that in Akt1
(+/+) and Akt1 (+/–) MEF cells. Furthermore, the phospho-p38 protein was undetectable in the
myr-Akt1 stable cells, suggesting that activation of p38 is associated with inactivation of Akt or,
in other words, that Akt represses p38 activation in a physiological condition (Fig. 3).

Recent reports have demonstrated that ASK1 and MEKK3 are substrates of Akt, and both
kinases have been shown to be upstream kinases of p38,91,155-157 suggesting that Akt may

Figure 3. Inhibition of Akt activation by the PI3K inhibitor wortmannin or gene disruption of Akt1 results
in p38 activation. A) Stable E1A-expressing or parental MDA-MB-231 cells were serum starved for 24 hours
before exposure to 0.1 M wortmannin. B) Expression of phospho-p38 and phospho-Akt in Akt1 knockout
MEF cells and myr-Akt–transfected Rat1 cells. C) E1A upregulates the expression of PP2A/C, the catalytic
subunit of PP2A. D) Expression of E1A upregulates protein phosphatase activity of PP2A. A-B and C-D)
Adapted with permission from reference 37 (Liao Y, Hung MC. Mol Cell Bio 2003; 23:6836) and reference
152 (Liao Y, Hung MC. Cancer Res 2004; 64:5938), respectively.
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indirectly regulate p38 activity through repression of ASK1 or MEKK3 or both. To test this,
we blocked the activity of either ASK1 or MEKK3 by using a kinase-dead, dominant-negative
mutant of ASK1 (DN-ASK1) or MEKK3 (DN-MEKK3). As expected, blockade of either
ASK1 or MEKK3 activity by DN-ASK1 or DN-MEKK3 repressed p38 phosphorylation and
its kinase activity, as measured by phosphorylation of GST-ATF-2 fusion protein in a
dose-dependent manner in Akt1 (–/–) MEF cells. This result suggests that Akt can inhibit p38
activation through repression of ASK1 and/or MEKK3 activation. Unlike what we expected,
however, the combination of both DN-ASK1 and DN-MEKK3 did not results in an addi-
tional reduction of p38 kinase activity or phosphorylation of p38 in these MEF Akt1 (–/–)
cells.37 These data imply that alternative pathway(s) may exist in which Akt acts on p38, though
low transfection efficiency may also contribute to the incomplete blockade of ASK1 and MEKK3
activity and subsequent p38 activation in the Akt1 (–/–) cells. The data established that E1A
induced p38 activation by repressing Akt. A recent report by Yuan et al158 demonstrated that,
like Akt1, Akt2 can also inhibit p38 activation through phosphorylation of ASK1, which is
attributed to Akt2-mediated chemo-resistance; whether E1A also represses Akt2 phosphoryla-
tion needs further elucidation. We also observed that p38 activity is repressed in different types
of human tumors, which is associated with enhanced Akt activation in human tumor tissue
samples.37

Akt is a critical downstream target of PI3K and plays a pivotal role in positive regulation of
cell survival and cell growth and also in negative regulation of apoptotic cell death, as summa-
rized above.78,84,86,87,159-163 Inhibition of Akt activation by E1A has important implications in
terms of E1A-mediated sensitization to apoptosis. Akt regulates cell survival through phospho-
rylation of downstream substrates that directly or indirectly control the apoptotic machinery.
For example, phosphorylation of IKK by Akt releases NF- B from inhibition by I- B (an
inhibitor of NF- B) and increases transcription of pro-survival genes, such as inhibitors of
caspases (c-IAP1 and c-IAP2), Bcl-2 homologues (A1/Bfl-1 and Bcl-xL), and adaptor mol-
ecules intercepting death signals (e.g., c-FLIP, TRAF-1, and TRAF-2). In return, TRAF-2 can
augment TNF- -induced NF- B activation.60,87,164-166 Earlier reports from our laboratory
demonstrated that expression of E1A downregulated IKK and NF- B activities, which was
also attributed to E1A-mediated sensitization to apoptosis induced by -radiation, TNF-  and
anticancer drug gemcitabine.38,167,168 In addition, E1A has been shown to sensitize cells to
TNF- -induced apoptosis, by downregulating the expression of c-FLIP and preventing its
induction by TNF- .169 Expression of c-FLIP has been reported to depend on the activity of
PI3K/Akt pathway;164,166 it is not yet clear whether E1A-mediated down-regulation of c-FLIP,
IKK and NF- B activities are resulted from E1A-mediated inhibition of Akt.

Expression of exogenous E2F-1 or induction of endogenous E2F-1 activity by inactivation
of pRb was shown to downregulate TRAF-2 protein levels, thus leading to impaired
TNF-receptor-mediated NF- B activation in response to TNF- , which does not require
E2F-1-dependent transactivation.134 A recent report further showed that E2F-1 can inhibit
NF- B activation by either stabilizing I- B or competing with p50 for RelA/p65 binding,170,171

which provide another mechanism for E1A-mediated inhibition of NF- B activation, though
it does not exclude the possibility that Akt may still be involved.

Studies from our group and several others have demonstrated that Akt can also regulate the
stability of p53 by phosphorylation and nuclear localization of MDM2.71,72,88,172 Phosphory-
lation of MDM2 by Akt promotes nuclear localization of MDM2 and its interaction with
p300 and inhibits the interaction of MDM2 with p19ARF, thus increasing p53 degradation
through MDM2-mediated ubiquitination.71,72,88,172 If E1A-mediated repression of Akt activ-
ity could also affect p53 stability by this mechanism, it would be another E2F-1-independent
pathway for p53 stabilization in E1A-expressing cells, and application of the dominant nega-
tive E2F-1 or the E2F-1-null MEF cell system may help to clarify this issue.

Duelli et al173 have shown that E1A facilitates cytochrome c release from the mitochon-
dria, thereby contributing to E1A-mediated sensitization to anticancer drugs; however, the
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mechanism by which E1A facilitates cytochrome c release is unclear. Akt is known to play an
important role in maintaining mitochondria integrity and inhibiting the release of cytochrome
c, and overexpression of Akt confers resistance to paclitaxel by inhibiting paclitaxel-induced
cytochrome c release.174 Akt also negatively regulates FasL transcription and translation by
phosphorylating members of the Forkhead protein family. In addition, FasL transcriptional
activation has been shown to depend on p38;175 p38 is also involved in the regulation of
cytochrome c release.176 Therefore, E1A may alter mitochondrial potential by downregulating
Akt and upregulating p38, thereby facilitating the release of cytochrome c or the expression of
FasL upon treatment with chemotherapeutic drugs such as paclitaxel. Thus, in E1A-expressing
cells, a relatively low concentration of drug would be sufficient to trigger apoptosis, regardless of
the drug’s primary target. Yet, it is not clear whether expression of E1A altered FasL expression.

Moreover, Schmidt et al demonstrated that expression of an active Akt suppresses
chemotherapy-induced apoptosis by preventing mammary epithelial cells from undergoing
anoikis (from the Greek word for “homelessness”),177 another form of apoptotic cell death that
occurs when epithelial cells lose contact with the extracellular matrix or bind through an inap-
propriate integrin.16,18,178-182 Tumor suppressor PTEN has been shown to promote anoikis
through its ability to repress Akt activation.183-185 A recent report by Nagata et al186 demon-
strated that PTEN activation contributes to tumor inhibition by the Her-2/neu targeting anti-
body trastuzumab (Herceptin). Like constitutive activation of Akt, which confers resistance to
chemotherapy and trastuzumab in breast cancer cells,94 loss of PTEN also predicts trastuzumab
resistance in patients due to deregulated PI3K-Akt activation and PI3K inhibitors can rescue
loss of PTEN-induced resistance to trastuzumab. E1A is the first protein that has been re-
ported to confer sensitivity to anoikis, and the ability to induce anoikis has also been linked to
E1A-mediated tumor suppression and mesenchymal-epithelial transition (MET).16,18,180,181

Therefore, it would be interesting to test whether down-regulation of Akt by E1A contributes
in part to E1A-induced anoikis and MET.

Taken together, these findings indicate that many cellular proteins that interact with and/or
are regulated by E1A, such as p53, caspase-8, caspase-9, Bax, NF- B, p38, are also regulated by
Akt. Although not tested, the critical apoptotic regulators Apaf-1 and Bcl-2 may be direct
targets of Akt as they both contain the consensus Akt phosphorylation sites. In addition, phe-
notypes induced by expression of E1A, such as apoptosis, anticancer drug response, anoikis,
MET, and tumor formation, are also subject to regulation by Akt. Thus, Akt is not only a
pivotal cellular target for the development of anticancer drugs; it is also a critical target of E1A.

Targeting the Protein Phosphatase 2A (PP2A): A Feed-Forward Model
Repression of Akt activation by E1A has also been demonstrated in normal fibroblast IMR90

and Cos-7 cells and linked to the sensitization to apoptosis induced by anticancer drug cisplatin.
In addition, expression of E1A can inhibit insulin-mediated Akt activation in the Cos-7 cells.36

We also observed a similar inhibition effect on Akt activation by insulin in the epithelial breast
cancer cell lines MDA-MB-231 and MCF-7 cells, which stably express E1A (unpublished
data). However, the mechanisms underlying E1A-mediated repression of Akt activation are
not yet known. In Cos-7 cells, E1A was shown to directly repress basal and insulin-stimulated
Akt phosphorylation without affecting the Akt protein expression.36 This raises a question how
can E1A, which is not a kinase, represses another kinase without affecting the protein expres-
sion or upstream factors or respective protein phosphatases? As discussed above, downregulation
of Her-2/neu and/or Axl expression may contribute in part to repression of Akt activation by
E1A in cells that overexpress Her-2/neu or Axl. Again, both MDA-MB-231 and MCF-7 cells
express low levels of Her-2/neu, and MCF-7 cells have an undetectable level of Axl mRNA and
protein.153 We also failed to detect alterations of PI3K activity or protein expression in
E1A-expressing versus control cells. Therefore, the contribution of downregulation of Her-2/
neu and Axl by E1A to the repression of Akt activation is minimal in these cells that express low
levels of Her-2/neu or Axl.
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Phosphorylation of protein kinases is tightly regulated by related protein phosphatases, and
two phosphatases, PTEN and PP2A, have been shown to repress Akt activation through de-
phosphorylation.71,187-201 To determine whether protein phosphatases were involved in the
E1A-mediated downregulation of Akt activation, we measured the alteration of protein phos-
phatases, such as PTEN and PP2A, in stable E1A-expressing cells versus vector control cells.
We did not detect any increased expression of PTEN protein in stable E1A-expressing cells
versus the controls. Furthermore, there was no change in the expression level of the PP2A
regulatory A subunit PP2A/A; however, we did detect elevated expression of the catalytic sub-
unit of PP2A (PP2A/C) in multiple stable E1A-expressing cells (Fig. 3C).152 We therefore
further measured the PP2A activity and found it was enhanced in E1A-expressing MDA-MB-231
cells (231-E1A) in a dose (protein and substrate concentration)-dependent manner compared
with that of the vector control cells (231-Vect), suggesting that E1A enhances the activity of
PP2A by upregulating PP2A/C expression (Fig. 3D). In addition, we were able to show that
activation of PP2A/C is required for E1A–mediated sensitization to drug–induced apoptosis,
since blocking PP2A/C expression using a specific small interfering RNA (siRNA) against
PP2A/C reduced drug sensitivity in E1A-expressing cells. Deletion mutation of the conserved
domain of E1A, which is required for E1A-mediated upregulation of PP2A/C, also abrogated
E1A’s ability to sensitize cells to drug-induced apoptosis. We also observed that blockade of
PP2A activity by a specific PP2A phosphatase inhibitor (okadaic acid) or repression of PP2A/
C expression by a specific siRNA resulted in enhanced Akt phosphorylation and reduced p38
phosphorylation, which further suggests that PP2A regulates Akt and p38 activities.152 In other
words, E1A-induced p38 activation resulted from E1A-mediated upregulation of PP2A activ-
ity, which in turn repressed Akt activation.

The core enzyme of PP2A is a dimer consisting of a catalytic subunit (PP2A/C) and a
regulatory or structural A subunit (PP2A/A). A third regulatory B subunit (PP2A/B), which
determines substrate specificity, can be associated with this core structure.188,190,192,194,196-198,202

The A and C subunit each exist as two isoforms, whereas the 16 B subunits fall into four
families. PP2A A subunits are composed of 15 nonidentical tandem repeats of a 39 amino acid
sequence, termed a HEAT motif (named after proteins that contain them: huntingtin, elonga-
tion factor, A subunit, TOR kinase). The B subunits bind to repeats 1-10, and the C subunits
binds to repeats 11-15 of the A subunit. Recent evidence indicates that PP2A forms stable
complexes with protein kinase signaling molecules, indicating that it plays a central regulatory
role in signal transduction mediated by reversible protein phosphorylation.188,190,192,194,196-198

Although the role of PP2A in the regulation of apoptosis is not clear, results from a gene
knockout study of PP2A/C imply that PP2A may play a critical role in the regulation of apoptotic
signaling.203 In support of this notion, several groups reported that PP2A, through the dephos-
phorylation of the key oncogenic survival factor Akt, participated in the regulation of apoptosis
induced by ceramide, mistletoe lectin, and 4-hydroxynonenal, an aldehyde product of mem-
brane lipid peroxidation.204-208 Furthermore, it has been known that PP2A is a Bcl-2 phos-
phatase and that the PP2A holoenzyme colocalizes with Bcl-2 at the mitochondrial mem-
brane.209,210 PP2A can be activated by lipid ceramide to dephosphorylate Bcl-2, converting
Bcl-2 to a pro-apoptotic molecule. In addition, PP2A can also dephosphorylate Bad and refur-
bish its pro-apoptotic activity, which is repressed by Akt-mediated phosphorylation and inacti-
vation.205 Considering the fact that p38 is known to activate PP2A phosphatase activity211 and
that both p38 and Akt can regulate FasL expression and cytochrome c release from the mito-
chondria,97,174-176,212-215 we reasoned that p38 might also affect Akt activation. To test that
possibility, we blocked p38 activation in 231-E1A cells with SB203580, a specific p38 inhibi-
tor. When the level of phosphorylated p38 was inhibited by SB20358, the level of phosphory-
lated Akt increased (Fig. 4A). Similar results were also observed by using an IPTG-inducible
dominant-negative p38 in 231-E1A-expressing cells (Fig. 4B). The results suggested that PP2A/
Akt/ASK1/p38 may form a feed-forward loop to regulate cellular response to apoptosis (Fig.
5). To test the notion of this feed-forward regulatory mechanism, we asked whether blockage
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of Akt activation might also activate PP2A activity. We found that blocking Akt activity by
wortmannin indeed increased PP2A activity and induced PARP cleavage, while stimulating
Akt activation by growth factor IGF-1 repressed PP2A activity (Fig. 4C). In addition, we also
observed that treatment with TNF- , which has been shown to inhibit Akt phosphorylation,
also enhanced PP2A activity and PARP cleavage (Fig. 4D). However, the MEK1/2 kinase
inhibitor PD98059 did not affect PP2A activity (Fig. 4D). Blocking Akt activation by using
LY249002, another PI3K inhibitor, also increased PP2A activity. Thus, the results support the
feed-forward mechanism and E1A, through upregulation of PP2A activity, may turn on this
feed-forward mechanism and induce sensitization to apoptosis (Fig. 4D).

This feed-forward loop may represent a highly efficient and coordinated way to drive cells
to death. This model is very consistent with all the results presented in this review and the data
in the literatures.37,91,152,154-158,187,199,205,206,211,216,217 For instance, PP2A directly dephospho-
rylated Akt and blockade of PP2A activity enhanced Akt-phosphorylation and inhibited
p38-phosphorylation. Inhibition of Akt activity increased p38-phosphorylation and stimu-
lated PP2A activity, whereas activation of Akt by growth factor IGF-1 repressed PP2A activity.
Blocking p38 resulted in elevated Akt phosphorylation. Thus, the feed-forward loop is likely to

Figure 4. PP2A is involved in the cross-regulation between the Akt and p38 pathways. A) Expression of
phospho-Akt and -p38 in stable E1A-expressing or parental MDA-MB-231 cells that were serum-starved
for 24 hours before exposure to 20.0 M SB203580, a specific p38 inhibitor. B) Repression of p38 activity
by IPTG-inducible DN-p38 enhances Akt phosphorylation and abrogates E1A-mediated sensitization to
paclitaxel in E1A-expressing cells in the presence of 5 M IPTG for 24 hours. C) Regulation of PP2A
phoaphatase activity by IGF-1, wortmannin, and TNF-  in MDA-MB-231 cells. D) PARP cleavage and
Akt and p38 phosphorylation in MDA-MB-231 cells after exposure to IGF-1, wortmannin, and TNF- .
WORT: wortmannnin; PD: PD98058; Flag: anti-Flag tag. B and C-D) Adapted with permission from
reference 37 (Liao Y, Hung MC. Mol Cell Bio 2003; 23:6836) and reference 152 (Liao Y, Hung MC. Cancer
Res 2004; 64:5938), respectively.
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be a general mechanism for cellular response to apoptosis, as it can be observed in sensitization
to apoptosis induced by serum starvation, TNF- , UV irradiation, and different categories of
anticancer drugs. It also suggests that chemotherapeutic drug-induced apoptosis may utilize
this feed-forward mechanism by upregulation of p38 and downregualtion of Akt activity and
that E1A, by increasing PP2A activity, turns on this feed-forward loop and makes cells more
sensitive to a variety of apoptotic stimuli.

Conclusion
The adenoviral E1A-mediated sensitization to anticancer drug-induced apoptosis is a

well-established phenomenon in different types of cell systems. However, the molecular mecha-
nisms underlying E1A-mediated chemosensitization are still not yet fully understood. Ever
since the first report by Lowe et al28,40 demonstrates that E1A-mediated activation of p53 is
critical for its chemosensitization, the pRb-E2F-ARF-p53-dependent pathway is subsequently
delineated. This was further amended by their recent report that an E2F-1-dependent,
p53-independent mechanism that controls the transcriptional activation of pro-caspase en-
zymes also contributes to E1A-mediated chemosensitization in diploid fibroblasts.130 Mecha-
nisms underlying E1A-mediated chemosensitization in human cancer cells may be more com-
plicated than those observed in normal diploid fibroblasts. For example, downregulation of
Her-2/neu expression is critical for E1A-mediated chemosensitization in Her-2/
neu-overexpressing cancer cells, but it may not so critical for E1A-mediated sensitization in
diploid normal fibroblast cells, which do not overexpress Her-2/neu. Almost half of human
cancers lose functional p53; however, expression of E1A in p53-mutated or functionally inac-
tive cancer cells, such as MDA-MB-231, can also sensitize them to apoptosis induced by differ-
ent types of anticancer drugs. A similar situation can also apply to ARF in human cancer; in
addition, an ARF- and p53-independent mechanism for E1A-mediated chemosensitization is
also observed in normal diploid fibroblasts. The apoptotic processes are tightly regulated by
both pro- and anti-apoptotic signals, and either external or internal stresses can directly trigger
apoptotic cell death program; however, growth factors and growth-stimulating hormones may
counteract these death-stimulating stress signals by activation of intracellular cell survival path-
ways. For example, Akt can block apoptotic processes at different levels through direct phos-
phorylation and inactivation of Bad (which controls the release of cytochrome c from mito-
chondria) and caspase-9 (which controls downstream caspases activation after cytochrome c
release from mitochondria). Therefore, it is not surprising for E1A to target such critical intra-
cellular signaling molecules as Akt.

To date, most of domain analysis has pinpointed that the pRB-binding domain of E1A is
critical for its sensitization to apoptosis, i.e., ARF and p53 stabilization, downregulation of Akt
and upregulation of PP2A and p38, all depend on an intact pRb binding domain, suggesting
that disrupting the pRb-E2F-1 pathway is critical in most cases of apoptosis, including those
human cancer cells. Therefore, it would be helpful to further defining the roles of pRb and

Figure 5. A feed-forward model for E1A-mediated sensitization to apoptosis.
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E2F-1 played in E1A-mediated chemosensitization by studying E1A in pRb inactivated hu-
man cancer cells or E2F-1-null fibroblast cells.

Understanding the molecular mechanisms underlying E1A-mediated sensitization to anti-
cancer agents can help us to better design future E1A clinical trials and help to select an appro-
priate patient subpopulation to be recruited into or excluded from the trials. Moreover, results
obtained from Phase I/II clinical trials studying combination of E1A gene therapy with che-
motherapy may help us to determine whether such regimens may benefit patients who do not
respond to conventional chemotherapy.
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