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Preface 

The Description of the medium in gas dynamics is based on modeling the 
processes occurring in gases and plasmas. Models of the dynamics of elementary 
collisional processes with the participation of atoms, molecules, ions, and 
electrons are considered in the first volume of this series. Models of the medium 
as a totality of the enormous number of particles mutually interacting in 
collisions are offered to the reader in this volume. If there is no physical-chemical 
equilibrium, the medium is described by kinetic equations. Equilibrium gases and 
plasmas obey the laws of thermodynamics. 

The following kinetic processes are considered in this volume: 

1) translational relaxation as a result of elastic collisions of atoms, 
molecules, ions, and electrons; 

2) rotational and vibrational relaxation as a result of excitation and 
deactivation of rotations and vibrations of molecules and molecular ions 
in collisions with various particles; 

3) electronic relaxation because of the formation and decay of excited 
electronic states of atoms, molecules, and ions; 

4) macroscopic chemical transformation as a result of elementary chemical 
reactions in collisions between neutral particles; and 

5) macroscopic kinetic processes with participation of charged particles in 
low-temperature plasmas. 

Every problem of physical and chemical kinetics requires the answer to two 
basic questions: what is the kinetic mechanism, and what are the equations 
determining relaxation processes and reactions? The kinetic mechanism is 
determined by the totality of elementary processes taking place in the system and 
is represented as a list of the corresponding symbolic reaction formulas. 
Quantitative description of time evolution of the physical-chemical state of a gas 
or plasma, with the use of a corresponding set of kinetic equations, forms the 
basis of the mathematical models of medium. Coefficients in the kinetic 
equations (probabilities, cross sections, and rate constants of the processes) can 
be found in different databases or can be evaluated using the models presented in 
the first volume of this series. 

The hierarchy of the characteristic times of physical-chemical processes in 
comparison with the characteristic gas dynamic time of the problem plays a 
crucial role in the practical development of medium models for the particular 
kinetic problems. Application of this principle allows one to select those process 
kinetics that should be considered explicitly. The faster processes will lead to the 
formation of equilibrium or quasi-stationary state, and the slower ones can be 
neglected. 

In physical-chemical gas dynamics, a possibility of one or the other 
incomplete thermodynamic equilibrium is to be taken into account. Quite often, 
local thermodynamic equilibrium (i.e., equilibrium in separate, physically 
infinitesimally small volumes) or a partial equilibrium (equilibrium in selected 
parts or modes of the medium) occurs. Descriptions of the gas and plasma in 
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local, partial, and complete equilibrium are based on the laws of thermodynamics 
with appropriate formulas and relations. 

Equations of state are also presented in this volume. These equations relate the 
basic parameters (temperature, pressure, and volume) of the medium in a 
particular approximation with respect to density. Quite often, the ideal gas 
equation of state is used in gas dynamics. This equation of state is valid when the 
mean kinetic energy of particles is much higher than the mean potential energy of 
their mutual interaction. 

Computer realization of the second volume of this series was implemented on 
the basis of the KINHELP software component of the CHEMICAL 
WORKBENCH reaction simulation system. References to the models from 
other volumes of this reference book begin from the volume number. 
Thus, for example, in this volume the reference to the model V.6 in the first 
volume is I-V.6. 



Chapter 1 

General Notions 

I. Medium in Gas Dynamics 

EDIUM IS a matter that fills some space and consists of a large number of 
particles (atoms, molecules, electrons, and ions) interacting with one 

another and with electromagnetic fields. In gas dynamics, a neutral or ionized gas 
(plasma) serves as a medium being investigated. 

Gas is a medium in which the constituent particles, such as atoms and 
molecules, move freely and randomly between collisions. The collision duration 
in gases is many orders of magnitude shorter than the mean time of free flight 
between collisions. The degree of rarefaction of a medium in gas dynamics is 
discussed in Refs. 1 - 4 . 

The Boltzmann gas is a medium in which the mean interparticle spacing 
considerably exceeds the range of action of intermolecular forces. 

Plasma is an ionized gaseous medium that is electrically neutral in every 
physically small volume, and the characteristic length scale L* of the problem 
exceeds considerably the Debye length R&, i.e., in CGS system of units: 

D ~ \47re2nG\ 

where 7e is the electron temperature, e is the electron charge, and ne is the 
electron number density. 

Equilibrium state of a medium is the state that a medium insulated against 
external effects or placed in a thermal reservoir reaches after some time (see 
Chapter 8, Thermodynamics of Gases and Plasmas). 

Steady (stationary) nonequilibrium state of a medium is the state in which the 
values of parameters defining the medium (for example, temperature, number 
densities of the components, populations of energy levels, and so on) are time 
independent; this state is reached in a medium that is an open system when a 
constant external action does not let equilibrium to be attained. 

Chemically equilibrium or nonequilibrium gases are characterized by the 
presence or absence of chemical equilibrium, respectively. 

Thermally equilibrium or nonequilibrium gases or plasma are characterized, 
respectively, by the presence or absence of equilibrium within and between the 
various degrees of freedom of particles involved in the processes occurring in 

1 
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these gases. The degrees of freedom include, in addition to translational degrees 
of freedom of molecules, atoms, ions, and electrons, also rotational and 
vibrational degrees of freedom of molecules and molecular ions, and electronic 
degrees of freedom of atoms, molecules, and ions. A chemically nonequilibrium 
gas may also be thermally nonequilibrium. 

The concepts and criteria of ideal gases and plasmas, and of equilibrium of a 
medium, as well as other definitions of the parameters of a medium, are given in 
the appropriate sections of this volume. 

A medium interacting with radiation will be treated in the fourth volume of this 
book (see also the description of models E.4, P.5, P.6, and C.4 in this volume). 

A. Composition of a Medium—Particles 

• atomic gas: atoms 
• molecular gas: atoms, molecules 
• atomic plasma: atoms, atomic ions, electrons 
• molecular plasma: atoms, molecules, atomic and molecular ions, electrons. 

Structureless particles are atoms or molecules whose internal energy 
(electronic energy for atoms, and rotational, vibrational, and electronic energy 
for molecules) does not vary during their interaction with one another and with 
other particles. 

B. Processes in a Medium 

T Translational Processes of establishment of equilibrium or quasistation-
relaxation ary, nonequilibrium distribution of particles with respect to 

translational energy as a result of elastic scattering of atoms, 
molecules, electrons, and ions in collisions: 

TT - involving translational degrees of freedom of heavy particles, 
Te, TI - in collisions with electrons (e) and ions (I). 

R Rotational Processes of establishment of equilibrium or quasistationary 
relaxation nonequilibrium distribution of molecules with respect to 

energy of rotational degrees of freedom as a result of 
excitation and deactivation of rotation of molecules and 
molecular ions in collisions: 

RT - involving translational degrees of freedom of heavy particles, 
RR - involving rotational degrees of freedom of particles, 
Re, RI - in collisions with electrons (e) and ions (I). 

V Vibrational Processes of establishment of equilibrium or quasistationary 
relaxation nonequilibrium distribution of molecules with respect to 

energy of vibrational degrees of freedom as a result of 
excitation and deactivation of vibrations of molecules and 
molecular ions in collisions: 
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VT - involving translational degrees of freedom of heavy particles, 
VR - involving rotational degrees of freedom of particles, 
VV - involving vibrational degrees of freedom of particles, 
VRT - involving rotational and translational degrees of freedom of 

particles, 
VE - involving electronic-vibrational energy exchange, 
VC, VP - involving chemical or plasmachemical reactions, 
Ve, VI - in collisions with electrons (e) and ions (I). 

E Electronic Processes of establishment of equilibrium or quasistationary 
relaxation nonequilibrium distribution of population of electronic 

states of atoms, molecules, and ions in collisions: 

ET - involving translational degrees of freedom of particles, 
EV - involving vibrational degrees of freedom of particles, 
EE - involving energy exchange between electronic states of particles, 
EC, EP - involving chemical and plasmachemical reactions, 
Ee, EI - in collisions with electrons (e) and ions (I). 

C Chemical Transformations of neutral particles (atoms and molecules) 
reactions in collisions: 

C - in thermally equilibrium gases, 
CV - in thermally nonequilibrium gases in the absence of equilibrium in 

vibrational degrees of freedom of particles, 
CE - in thermally nonequilibrium gases in the absence of equilibrium in 

electronic states, 
CVE - in thermally nonequilibrium gases in the absence of equilibrium in 

vibrational and electronic degrees of freedom of particles. 

P Plasmachemical Transformations of charged particles and/or 
reactions changes of their charge in collisions: 

P - in a thermally equilibrium plasma, 
PV - in a thermally nonequilibrium plasma, in the absence of equilibrium 

in vibrational degrees of freedom of particles, 
PE - in a thermally nonequilibrium plasma, in the absence of equilibrium 

in electronic states, 
PVE - in a thermally nonequilibrium plasma, in the absence of equilibrium 

in vibrational and electronic degrees of freedom of particles. 

Elementary process is an interaction between two or three particles during 
their collision, which brings about a change of quantum state and/or chemical 
transformation of the particles (reaction). 

Simple process is a plurality of identical elementary processes occurring in 
some volume of gas. A simple process may be a stage in a complex process. 

Complex process is a combination of different simple processes (stages) in 
gas; for example, methane combustion in air and coal pyrolysis. 



4 G. G. CHERNYI, S. A. LOSEV, S. O. MACHERET, B. V. POTAPKIN 

Heat of a process (reaction), or thermal effect of a process (reaction), is the 
heat released or absorbed by the medium in which the process occurs, under 
conditions when no work is performed in this medium except for the work of 
expansion, and the temperature remains constant. At constant volume, the 
process heat is equal to the change of the internal energy of the system, and at 
constant pressure, it is equal to the enthalpy change (see Chapter 8, 
Thermodynamics of Gases and Plasmas). 

Exothermic process (reaction) is a process accompanied by heat release. 
Endothermic process (reaction) is a process accompanied by heat 

absorption. 
Exoergic process (reaction) is a process accompanied by energy release 

during transition from the ground state of particles before the process to the 
ground state after the process. 

Endoergic process (reaction) is a process accompanied by energy absorption 
during transition from the ground state of particles before the process to the 
ground state after the process. 

An exoergic process may proceed via both endothermic and exothermic 
channels, depending on whether the heat in this process (reaction) is released or 
absorbed. If the internal states of reactant particles and reaction products are not 
preassigned, the concept of exo(endo)ergic process (reaction) coincides with the 
concept of exo(endo)thermic process (reaction). 

C. Models of Medium 

A physical model of a medium is developed as concepts and assumptions 
regarding the medium with the particles in it and the processes occurring in this 
medium between interacting particles. 

A mathematical model includes: 

• a set of variables for description of the medium; 
• equations determining the evolution of these variables in time and/or in 

space; 
• initial and/or boundary conditions; 
• closure relations and formulas for the variables and for the parameters and 

coefficients. 

A combination of physical and mathematical models defines the concept of 
model of medium in gas dynamics. 

D. Levels of Description of Medium 
The levels of description of medium in gas dynamics are distinguished by the 

various types of variables used in the respective models of medium. 

MICROSCOPIC (MOLECULAR) LEVEL OF DESCRIPTION OF MEDIUM 

A medium is described as a combination of a large number of interacting 
particles whose motion is governed by the equations of classical or quantum 
mechanics. 
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Variables in a mathematical model are generalized coordinates and particle 
momenta (in classical mechanics), and eigenvalues and wave functions of 
coordinate and momentum operators of particles of the medium (in quantum 
mechanics). Modeling at the microscopic level is commonly performed with the 
direct simulation Monte-Carlo (DSMC) method.5'6 

KINETIC LEVEL OF DESCRIPTION OF MEDIUM 

A medium is described in terms of single-particles distribution functions of 
components. The distribution functions of components are the variables in a 
mathematical model. 

MACROSCOPIC LEVEL OF DESCRIPTION OF MEDIUM 

A medium is described by a finite number of gas dynamic parameters as 
functions of coordinates and time. 

Examples of variables in a mathematical model are: 

• variables that characterize density of various components; for example, 
number densities, molar densities, mole fractions of components, population 
density for quantum levels of particles, and mass density of particles; 

• vector or tensor variables describing translational motion of components 
of the medium; for example, mean mass velocity of the medium; 

• variables that characterize the energy stored in the medium and its 
distribution among different components and different degrees of freedom 
of particles; for example, translational and vibrational energy, average 
number of vibrational quanta, and so on. 

The notation for the quantities treated in this volume is given in the 
appropriate chapters and descriptions of models. Helpful advices are given in 
Chapter 1 of the first volume of this series. 

CAUTION: enumeration of excited levels in models of rotational, vibrational and 
electronic relaxation starts from the ground level (k = 0, 1, 2,. . .) , but in models 
of plasmachemical processes it starts from the first level (k = 1, 2, 3,...). 

II. Relaxation Processes in Gases and Plasmas 

Relaxation process is a process of establishment of equilibrium or 
quasistationary nonequilibrium distribution in statistical systems. One treats 
the distribution of the number of particles with respect to: 

• velocity of motion, kinetic j for translational degrees of freedom of 
energy of motion I particles 

• quantum states and internal l for internal (rotational, vibrational, elec-
energy of particles J tronic) degrees of freedom of particles 

Equilibrium distributions of particles: 

• Maxwellian distribution in velocity ^ 
and kinetic energy I 

• Boltzmann distribution in quantum 
states and internal energy J 

| See section VI of Chapter 1 in the 
I first volume of this series for a 
[ description. 
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Temperature of different degrees of freedom of particles. See section VI of 
Chapter 1 in the first volume of this series for a description. 

Relaxation time r is the characteristic time of relaxation process, inversely 
proportional to the rate of the process: 

TTT -translational relaxation time 
TRT - rotational relaxation time 
TVT - vibrational relaxation time 
rE -characteristic time of electron excitation or deactivation 
Tc - characteristic time of chemical reaction 
TP -characteristic time of plasmachemical reaction (ionization, 

recombination, etc.). 

The relaxation times of other processes are denoted with appropriate 
subscripts above. 

The hierarchy of relaxation times of most processes is as follows: 

To ~ TTT < TRT <3C Tyr <3C TQ <3C T# <£ Tp 

where TO is the mean time between consecutive collisions. 
The hierarchy of relaxation times does not depend on pressure, because each 

one of the characteristic times is proportional to pressure (a more complex 
pressure dependence of relaxation times is observed in processes involving 
electrons). The temperature dependence of relaxation time is different for each 
process; therefore, the order of sequence of terms in the hierarchy of relaxation 
times may vary with temperature. For example, at room temperatures, Tyr <$C TC, 
and at high temperatures, Tyr ~ TC. 

Simplified methods for description of relaxation processes: for a known time 
scale Ti of the gas dynamic problem, one must treat only the relaxation processes 
with relaxation times (characteristic times) of r ~ TL. One can assume that the 
faster processes on this time scale have already ceased, and the relatively slow 
processes have not yet begun. This approach corresponds to the method of 
quasistationary distribution functions, in which the energy distribution function 
with respect to individual degrees of freedom depends only on the variables that 
characterize this particular degree of freedom. The completed fast processes 
determine the magnitude of the respective parameters in the distribution function, 
which characterizes results of these processes. For example, in studying 
vibrational relaxation of diatomic molecules, the relatively slow process of 
dissociation may be disregarded at TC ^> Tyr- Faster processes of translational 
and rotational relaxation on a Tyr scale are assumed to be terminated, and their 
result, that is, the formation of equilibrium energy distribution in translational 
and rotational degrees of freedom, enters the vibrational energy distribution 
function as a parameter defining the instantaneous value of translational and 
rotational temperature. 

State-to-state or state-specific kinetics describes changes of particle 
population of certain energy levels. 

Mode kinetics describes relaxation of a mean energy or a mean number of 
quanta in each vibrational and rotational mode; this method gives a simplified 
and compact description of state-specific kinetics and does not require 
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information on the details of the distribution function. Basic kinetic equations in 
description of relaxation processes: 

- Boltzmann equation 
quantities to be determined: velocity and translational energy 
distribution functions of particles, 
type of equations: integro-differential equations (see the description of 
models T.l to T.3). 

- Equations of state-specific kinetics (master equations, Pauli equations) 
quantities to be determined: populations (number of particles per unit 
volume) of certain energy levels, 
type of equations: ordinary differential equations (see the description of 
models R.l, V.l to V.3, V.5, V.6, E.l to E.4). 

- Diffusion equations 
quantities to be determined: translational or internal energy distribution 
functions of particles, 
type of equations: partial differential equations (see the description of 
models R.2, V.4). 

- Equations of mode kinetics 
quantities to be determined: mean rotational or vibrational energy, 
type of equations: ordinary differential equations (see the description of 
models R.4 and V.7 to V.9). 
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Chapter 2 

Translational Relaxation (T Models) 

I. Translational Relaxation 

THE PROCESS of the establishment of equilibrium in the subsystem of the 
translational degrees of freedom of particles (translational relaxation) is one 

of the fastest relaxation processes induced by molecular collisions. In an isolated 
system with arbitrary initial conditions, equilibrium distribution in translational 
velocity of particles (Maxwellian distribution) is established during the time of 
the order of several times between collisions. In open systems, which can 
exchange mass, momentum, and/or energy with the environment, the velocity 
distribution of particles may be substantially different from the Maxwellian one, 
even at steady state. 

Theoretical analysis of the translational relaxation in models T.1-T.3 is 
performed for the spatially uniform systems for which the state of the medium 
varies with time only. In these models, gas dynamic variables (such as gas density 
and mass velocity) are assumed to be constant, external body forces are not 
considered, and colliding particles are assumed to be structureless (see Chapter 1, 
Elastic Collisions, in the first volume of the series). 

A. Translational Relaxation in Single- and Two-Component Gases (T.l) 

1. Purpose of the Model 

The model aims at calculating the velocity distribution function for particles 
(atoms or molecules) in spatially uniform single- and two-component gases. 

2. Assumptions 

Translational motion of particles is analyzed within the framework of classical 
mechanics. Molecules interact by centrally symmetric forces. 

3. Restrictions 

a) A rarefied gas is considered, so that three-body collisions can be 
neglected: NR\ «; 1. 

b) The hypothesis of molecular chaos is assumed to be valid; that is, it is 
assumed that the states of colliding particles are not correlated. Under the 
molecular chaos hypothesis, the characteristic time interval Af is subject 
to the restriction depending on the molecule's velocity c: At ^> RQ/\C\. 

9 
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4. Boltzmann Kinetic Equations 

a) For a single-component gas, 

f = \^(ff{-ffi)gbdbd<pdc1 

| c - c i | , / i = / ( c l f 0 , / ' = / ( c ' , 0 , fi=M,t) 

b) For a two-component gas of species A and B, 

( /A/AI -/A/Ai)gAAfcdfcd<pdci 
dt J 

+ | ( / A / B I " fAfm)gABbdbd(pd\i 

^ = I | | ( / B / B I -AAOgBBbdbdip + dfi 

+ J J J (/B/AI -/B/AI W>d*d«pdci 

fA=fA(cf9t)9 fB=fB(y',t)9 fAl=fAKt)9 fBl=M^t) 
^AA = | C - C i | , ^BB = | V - V i | , £AB = | C - V i | , gBA = |v - Ci | 

5. Nomenclature 

a) Quantities calculated with the model: 

/A(c, t) - velocity distribution function for species A 

/B(V, t) - velocity distribution function for species B 

b) Other quantities: 

c, Ci - velocities of particles A before a collision 
v, vi - velocities of particles B before a collision 
c', Cj - velocities of particles A after a collision 
v', \[ - velocities of particles B after a collision 
#AA - absolute value of relative velocity for a collision of two 

particles A 
£BB - absolute value of relative velocity for a collision of two 

particles B 
#AB - absolute value of relative velocity for a collision of A and B 
<p - azimuthal angle 
b - impact parameter 
Af - number density 
AfA - number density of species A 
AfB - number density of species B 
To - mean free t ime between collisions 
6 - angle between the velocity vectors ci—c and c[— c ' 
a - differential cross section for elastic collisions 
©o ~ parameter of an initial distribution conditioned o n / ( c , 0) > 0 
R0 - gas kinetic radius for elastic collisions 
mA» mB ~ masses of species A and B 
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6. Description of Coefficients and Parameters 

The parameters RQ and TO are defined in Chapter 1 of the first volume of the 
series (for example, see model I-T.l). 

7. Model Features 

a) In a gas consisting of species A and B with particle masses mA and mB 

(as well as in a one-component gas with particle mass ra), the translational 
relaxation time, To, is on the order of the mean free time TJT between 
collisions for either species, if raA ~ mB. At atmospheric pressure and 
temperature, T ~ 300 K, T0 ~ 10~10 s. 

b) In a two-component gas with a large difference in masses between the 
species (e.g., mA <£ mB), translational relaxation involves three stages. At 
the first stage, a Maxwellian distribution is reached in the zeroth approxi­
mation for the light particles in a characteristic time, TA. At the second stage, 
a Maxwellian distribution is reached for the heavy particles in a characteristic 
time, TB. As this stage, the temperatures of the light and heavy species may 
differ. At the final stage, a single-temperature Maxwellian distribution is 
reached for the entire gas after temperatures of A and B equalize in a 
characteristic time, TAB. If the concentrations of A and B are almost equal, 
and TA ~ TB, then TA : TB : TAB = 1 : y/mB/mA : mB/mA. 

8. General and Particular Solutions 

a) The time-independent solution of the Boltzmann equation corresponding 
to an equilibrium state is the Maxwellian distribution function 

JA XlirkT) JB \2-TrkT/ 

b) For molecules with an interaction potential of the form U(r) = a/rA, 
(Maxwellian molecules; R is the intermolecular distance, and C4 is the 
parameter of potential) in a uniform gas characterized by the initial 
distribution function 

f m ] 3 / 2 r 6p / mc2 \ 3] 
/ ( C ' } ~ |2u*T(l - ©o)J L + 1 - ©0 \2A:r(l - ©0)/ 2j 

f mc2 I 

1 2*r(i-e0)J 
r,iT2 

x expl 

the exact solution to the Boltzmann equation is (see Refs. 13-15) 

/ ( C , f ) " \27TkTm) L + X(t) \2kTxft) 2J 

( mc2 \ 
X e X P ( - 2 W ) j 

file:///27TkTm
file:///2kTxft
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c) 

where X= 1 - ©o^A/ , (0 < ©0 < 2/5), A = -N(ir/2) £a(Q(l - f)d£ 

£ = c o s 0 , a(g) = gAAo-

The parameter A is inversely proportional to the translational relaxation 
time, and may be expressed through pressure p and dynamic viscosity 
coefficient fi (A = P/3/JL). More information is available in the third 
volume of this series. 
The methods of solution of Boltzmann equation are examined in Refs. 2-4, 
7, 8, 15-19. Direct Simulation Monte-Carlo (DSMC) method (see 
Refs. 20-22) is the most effective and widely used one. 

9. Example 

Figure 2.1 illustrates evolution of the normalized velocity distribution R(v, t) 
for Maxwellian molecules (see above), defined as R(v, t) = / (v , t)/f(v, t = oo), 
v = y/mc2/kT, with a dimensionless time r = Xt — log @o (Refs. 14, 15). 

300 500 

Fig. 2.1 
V 700 

Figure 2.1 demonstrates that the 
high-energy tail of the velocity 
distribution f(v, i) approaches 
the Maxwellian distribution 
f(v, t = oo) at a slower rate as 
compared to the Maxwellization 
rate for the distribution in the 
thermal velocity region, v ~ 1. 
Therefore, linearized Boltz­
mann equation cannot describe 
the relaxation of /(v, t) in the 
high-energy domain. 

10. Comments 

a) Even though the basic equation does not explicitly contain the interaction 
potential, knowledge of the potential is required to determine the 
velocities c' and c[ for given values of c, Ci, and impact parameter (see 
Chapter 1 of volume I). 

b) The solution of the Boltzmann equation for translational relaxation in 
steady-state supersonic flow was studied in Refs. 4, 7, 19. 

Relevant material can be found in Refs. 1-8. 

B. Translational Relaxation in Lorentz and Rayleigh Gases (T.2) 

7. Purpose of the Model 

The model aims at calculation of distribution functions in absolute values of 
velocity or translational energy 
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a) for heavy species as a low-concentration impurity in a light gas (Rayleigh 
gas); 

b) for light species as a low-concentration impurity in a heavy gas (Lorentz 
gas). 

Assumptions 

a) See Assumptions in the description of model T.l. 
b) The velocity distributions for light particles in a Rayleigh gas and heavy 

particles in a Lorentz gas are described by Maxwellian functions with 
temperatures TA and TB, respectively. 

Restrictions 

a) For the Rayleigh gas: 
the mass of the light species A is much smaller than the mass of the 
heavy species B :mA«mB; 
the number density of A is substantially higher than the number density 
o f B : N A » N B . 

The characteristic time interval of interest is greater than the mean free 
time between collisions, TO, for the gas of species A. (The value of TO is 
specified in the descriptions of models I-T.1-I-T.3). 

b) For the Lorentz gas: 
the mass of the light species A is much smaller than the mass of the 
heavy species B : m A « m B ; 
the number density of A is substantially lower than the number density 
ofB:AfA«AfB. 

The characteristic time interval of interest is greater than the mean free 
time between collisions, TO, for the gas of species B. (The value of TO is 
specified in the descriptions of models I-T.1-I-T.5). 

Kinetic Equations 
a) Rayleigh gas: 

for the distribution function for the absolute value of velocity, 

B(V, 0 = J_ 1 [ V / B ( V t) , ^ A V 2 3 / B ( V , 0 1 
dt TRV2 3v L 2 ' 2raB 9v J 

for the translational energy distribution function, 

9/B(e,r) 1 3 IV 3 \ 3 1 mBv2 

~vRds[\s-2)f^e't)+YsieMB't)[ s = 2*rA dt TR del\ 2fDX ' 9e W D V '\ 2kTA 

TR 3 m B
 u \rnnAJ 

b) Lorentz gas: 
for the distribution function for the absolute value of velocity, 

dfA(c, t) 1 3 (kTB c3 SfA(c, t) mAc\ \ 

dt c2 dc \mB lA dc m& lA A 
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for the translational energy distribution function, 

When IA = [ A ^ T K ^ O 6 ) 2 ] - 1 , t n e equations for fA(c, t) and / A ( e , 0 are 
equivalent. 

5. Nomenclature 

a) Quantities calculated with the model: 
For Rayleigh gas 

/B(V, 0 - distribution function for the absolute value v of particle B 
velocity 

/B(S, 0 - distribution function for dimensionless translational 
energy e of particles B 

For Lorentz gas 

fA(c, t) - distribution function for the absolute value c of particle A 
velocity 

fA(s, t) - distribution function for dimensionless translational 
energy e of particles A 

b) Other quantities: 

c - velocity of light particles A 
c - absolute value of the velocity of light particles A 
#U, #*B - masses of particles A and B 
TA - temperature of the gas of particles A (Rayleigh gas) 
7B - temperature of the gas of particles B (Lorentz gas) 
TO - mean free time between collisions 
/A - mean free path for a particle A in the gas of particles B 
Ro - hard-sphere radius (gas kinetic radius) 
TR - characteristic time of translational relaxation of heavy 

particles in the Rayleigh gas 
TL - characteristic time of translational relaxation of light 

particles in the Lorentz gas 
N A , AfB - number density of species A and B 

6. Description of Coefficients and Parameters 

The parameters Ro, lA (as /o), and T0 are defined in Chapter 1 of the first 
volume (see the description of models I-T.1-I-T.4). 

7. Model Features 

a) Translational relaxation consists in maxwellization of the velocity 
distribution functions for light particles A in the Lorentz gas and heavy 
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particles B in the Rayleigh gas over times TR and TL, respectively. 
These relaxation times are substantially greater than the respective 
mean free times between collisions. 

b) The modeled process is characterized by canonical invariance: 
evolution of the Rayleigh gas that had an initial Maxwellian 
distribution with temperature different from the light-gas temperature 
proceeds through a sequence of Maxwellian distributions with varying 
temperature. This means that if 

/B(e, 0) = 2NB Q 1 / 2a"3 / 2 exp(- ^ - Y a0 = T(0)/TA 

then 

Me, t) = 2 N B Q 1 / 2 a " 3 / 2 e x p ( - J ) , a = T(t)/TA 

— = (a-I) 
dt rR 

The kinetic equations for the Lorentz gas are not canonically invariant. 
c) The simple relaxation equation for the Rayleigh gas characterized by a 

dimensionless mean translational energy E has a form: 

6E(t) 1 f00 3 
— y - = [E(t)-E„], E=\ efB(s,t)de, Eoo=-

& TR JO 2 

The Lorentz gas cannot be described by a similar energy relaxation 
equation. 

8. General and Particular Solutions 
The solution to the basic kinetic equation for the translational energy of 

particles B in the Rayleigh gas is: 

Me, t) = NBel'2e-°J2c»Ll/2^e-VT 

where LlJ2{e) is a generalized Laguerre polynomial and T = */TR. 
In contrast to the Rayleigh gas, Lorentz gas kinetics do not admit any simple 

analytical description. 
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9. Example 

^ n, 
D.y) 

far) 
2.5 

2.0 

1.5 

1.0 

0.5 

0 

1 U=o 

|r=0.1 

/JtfcS*1 

U / ^ ^ - ^ ^ 

1 2 3 * 4 
Fig. 2.2 

10. Comment 

Figure 2.2 illustrates the evolution of 
the distribution of particles over the 
dimensionless translational energy e = 
mBV2/2kTA in the course of relaxation 
of an initial Maxwellian distribution 
/B(S, 0) for a Rayleigh gas with 
7B(0) = (l/6)rA> T = t/i* (Ref. 23). 

A diffusion-type kinetic equation for the translational energy distribution can 
be obtained for Rayleigh gas in which the light gas is characterized by a non-
Maxwellian velocity distribution (see Refs. 5, 6, and 24). 

Relevant material can be found in Refs. 5, 6. 

C. Strong-Collision Model (T.3) 

7. Purpose of the Model 

The model aims at calculation of the velocity distribution function in a 
uniform gas. 

2. Assumptions 

See the description of model T.l. 

Each collision is strong in a sense that it transfers the particle into the group of 
particles that have the Maxwellian velocity distribution. 

3. Restrictions 

For qualitative description of relaxation processes, there are no restrictions. 
The model is most accurate for systems close to equilibrium. 

4. Kinetic Equation 

dt 
= v(f<°>-f) 

*m-»(£rr<-"m •M fdc, 7 = 
mtr 

3kN. 
-fdc 
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5. Nomenclature 

a) Quantity calculated with the model: 

/(c, t) - velocity distribution function 

b) Other quantities: 

c - particle velocity 
v - empirical parameter 
y(0) _ Maxwellian distribution function 
N - number density 

6. Description of Coefficients and Parameters 

The empirical parameter v cannot be determined within the framework of the 
model. It is used as an adjustable parameter whose magnitude is on the order of 
the collision frequency per particle, i.e., the number of collisions experienced by 
a particle per unit time. 

7. Model Features 
a) The number density N and gas temperature T are integrals of the 

distribution function/. The kinetic equation is linear when both N and T 
are constant. 

b) For a monatomic gas with particle sources, the equation has the form [6] 

l = v^-f)+q{v)-L 

where q{v) is the rate of production of particles in the velocity interval 
v, v + dv, and r* is the characteristic lifetime of a particle. At steady state 
(vr* ^> 1), / = / ( 0 ) + q(v)/v. In the velocity domain where/(0) < q(v)/v9 

the particle source induces finite disturbances of the Maxwellian 
distribution. 

8. General and Particular Solutions 

When v = const, the solution is: 

f(c9t)=f(ci0)e-vt^f°\l-e-vt) 

9. Example 

See the analytical solution for v = const previously defined. 

10. Comments 

a) The strong-collision model is also known as the Bhatnagar-Gross-
Krook (BGK) model (see Refs. 4, 7, and 25). 
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b) For a nonuniform gas with time-dependent N and T, the kinetic equation 
becomes a nonlinear integro-differential equation, because both N and T 
in/ ( 0 ) depend on/(c, t) (Refs. 4 and 7). 

c) The strong-collision model is employed in analyses of molecular transport 
processes (Ref. 26). 

d) This kinetic equation is sometimes referred to as a relaxation equation 
(see Ref. 4). 

Relevant material can be found in Refs. 4, 6-8. 
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Chapter 3 

Rotational Relaxation (R Models) 

I. Introduction 

FOR THE majority of molecules, the process of establishment of equilibrium 
in the subsystem of rotational degrees of freedom (rotational relaxation, see 

Refs. 1-4) proceeds with the characteristic time of the order of several times 
between collisions. There are two exceptions from this rule: first, light molecules 
(H2, D2, HD), and second, highly rotationally excited molecules, for which the 
rotational relaxation time at room temperature may be hundreds of times longer 
than the time between molecular collisions (see model R.4). 

In an isolated system with arbitrary initial conditions, rotational relaxation leads 
to the equilibrium rotational distribution (Boltzmann distribution), see item 1 of the 
subsection "Model Features" of the model R.1, and also section VI in Chapter 1 of 
the first volume. In open systems that can exchange mass, momentum, and/or 
energy with the environment, for example, in laser excited gases, the rotational 
distribution of molecules may be substantially different from the Boltzmann one. 

The physical reason for the high rate of rotational relaxation lies in the 
impulsive nonadiabatic nature of the RT energy transfer process: the Massey 
parameter £ = LE/hrCoi <& 1, where A£ is the energy spacing of the states 
between which the transition occurs, and rcoi is the duration of molecular collision 
(TCO1 = l/u, where t is a characteristic range of intermolecular interaction, and u is 
the mean velocity of relative molecular motion, see sections V and VII in 
Chapter 1 of the first volume). At low Massey parameters, interaction between 
the collision partners reduces to the elastic interaction of the nearest atoms, and 
the transferred energy is almost equally distributed between the rotational and 
translational degrees of freedom of the relaxing molecule. For light or highly 
rotationally excited molecules, (AE/k) » 1 K , and the Massey parameter is 
larger than unity. Not only the atom nearest to the impinging particle, but the 
molecule as a whole participates in the collision in this case. With increase of 
the Massey parameter, symmetry of the relaxing molecule with respect to the 
collision partner effectively increases, and energy transferred to the rotational 
degrees of freedom decreases. At £ ->• oo the relaxing molecule behaves as a 
spherically symmetric particle, rotations of which are not excited in the collision. 

Theoretical analysis of the rotational relaxation in the models R.1-R.4 is 
performed for the spatially uniform systems, for which the state of the media varies 
with time t only. In these models, gas dynamic variables (such as gas density and 

21 
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mass velocity) are assumed to be constant, and external body forces are not 
considered. When solving gas dynamic problems, the relaxation equations 
mentioned here should be added to the corresponding equations of gas dynamics. 
For example, rotational relaxation models are widely used in studies of supersonic 
jet and nozzle flows (for example, see Ref. 5). Rotational relaxation in a gas of 
polyatomic molecules with a phenomenological energy exchange model was 
studied in Ref. 6 with Direct Simulation Monte Carlo (DSMC) method (see Ref. 7). 

A. Rotational Relaxation: State-to-State Kinetic Model (R.1) 

1. Purpose of the Model 

The model aims at the calculation of rotational state populations in various 
gases, including mixtures where collision partners of the relaxing molecule are 
treated as structureless particles. 

2. Assumptions 

a) Linear or spherical top molecules XY are considered, for which rotational 
energy is a function of a single quantum number. 

b) The characteristic time of rotational relaxation is much longer than 
the translational relaxation time, so that rotational energy transfer 
probabilities are functions of translational temperature (that is, of the gas 
temperature T). 

c) Three-body collisions are ignored, because the product of three-body 
collision rate and the probability of rotational transitions induced by 
those collisions is assumed to be substantially lower than the product of 
collision rate and transition probability for binary collisions. 

d) The frequency (rate) Z of collisions of XY with other particles is 
independent of the rotational state of XY. 

3. Restrictions 

a) Assumption 2 implies that this model is applicable if TRT ^> TTT> This 
requirement is fulfilled for light molecules (H2 and D2) and for molecules 
excited to high rotational levels. In these cases, the Massey parameter is such 
ihat(AEn^/h)(Ro/u) ^> 1, whereto is the radius ofthe domain of interaction 
between molecules, u is the mean relative velocity for the colliding particles, 
and AEntn/ = \En — En> |. Therefore, the cross section for rotational excitation 
n —• n' is significantly smaller than the elastic collision cross section. 

b) In analyses of rotational relaxation of molecules XY diluted in a gas of 
structureless particles My, the XY number density is restricted by the 
condition Mf0

Y'XY « NMJk™~Mj (j > 1). 
c) The number densities NMj are restricted by the inequalities 

kl0 ~ j~ WM^M, <3C kl0 ~ JNMJ (i,j > 1) and by analogous conditions 
for XY-XY-XY and XY-XY-M three-body collisions and XY-XY 
binary collisions, which makes it possible to ignore three-body collisions. 
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4. Kinetic Equations 

dNt Mi \Nm 
m L\ j 

E ^'MiNM)Nn 1 + E (Owv, - o w ) 
;' / J m,s,l 

5. Nomenclature 

a) Quantities calculated with the model: 

Nn - population density on the nth rotational level of XY 
molecules 

b) Kinetic coefficients: 

kmn
 j - rate constant for the m -» n transition associated with RT 

energy transfer in XY-M/ collisions 
kmn~XY ~ r a t e c o n stant for the m —• n transition associated with RT 

energy transfer in X Y - X Y collisions 
kfJniT) - rate constant for RR energy exchange involving m -> n 

rotational transition in one molecule and s —> / transition 
in the other 

kmn
 j~ ' - rate constant for the m ->• n transition associated with RT 

energy exchange in XY-M,—M/ collisions 

c) Other quantities: 

i, j - indices (subscripts) referring to structureless molecules 
T - translational temperature (gas temperature) 
En - rotational energy of a molecule XY in the nth rotational 

level 
N - number density of XY molecules 
NUJ - number density of M/ particles 
No - population density for ground state 
TRT - rotational relaxation time 
TTT - translational relaxation time 
gn - statistical weight (multiplicity) of the nth rotational level 
B - rotational constant 

6. Description of Coefficients and Parameters 

Formulas for the rate constants kmn~Mi(T) of RT energy exchange were 
presented in Chapter 3 of the first volume. Data required to describe RR energy 
exchange can be found in Refs. 1 and 2. 

The rotational energy En as a function of rotational quantum number n was 
described in Chapter 1 of the first volume, where references to more sophisticated 
models of molecules were also given. 
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7. Model Features 

a) 

b) 

At a constant gas temperature T, in the limit t ->• oo, the relaxing system 
evolves toward equilibrium where the population density of rotational 
levels is described by the equilibrium Boltzmann distribution 

Nn = N0gn exp (-1) 
where gn = (2n + 1) for linear molecules, and gn = (2n + 1) for 
spherical top molecules; A^ is the population density of the ground 
rotational state. For both linear and spherical top molecules, En = 
Bn(n +1) , where B is the rotational constant (see Chapter 1 of the first 
volume). 
Detailed balance relations have the form 

JXY-MJ e x p ( - | ) = r f - * e x p ( - | ) 

8. General and Particular Solutions 

In the general case, the kinetic equations are solved by numerical methods. 

9. Example 

Figure 3.1 illustrates the relaxation of population 
density distribution Nn normalized by the total 
number density of HC1 molecules and calculated at 
the moments t = 0 , . . . , 4 for an HC1-H2 mixture 
evolving from an initial delta function distribution 
(see Refs. 1 and 3). The rate constant kmn was 
calculated with the Polanyi-Woodall model (see 
model I-R.2). The two intermediate peaks observed in 
Fig. 3.1 are consistent with the results of infrared (IR) 
chemiluminescence measurements reported in 
Ref. 10. Their occurrence is explained by the facts 
that rotational states are not equidistant, and the 
spacing between the states increases with n, so that 
rate constants of rotational transitions between 
adjacent states n -> n — 1 in the vicinity of the initial 
delta distribution are much lower than the transition 
rate constants in the thermal (low n) energy domain 
(see description of model I-R.2 ([R.l]). 

Fig. 3.1 



ROTATIONAL RELAXATION (R MODELS) 25 

10. Comments 

a) The expression in brackets on the right-hand side of the kinetic equation 
represents rotational-translational energy exchange. When the non-
equilibrium specie XY is a low-concentration impurity in a gas of M, 
particles, the terms containing &*J~XY and k%%~XY should be dropped in 
this expression. The last term on the right-hand side of the kinetic 
equation represents the RR energy exchange in collisions of relaxing 
molecules in a single-component gas or in a multicomponent gas with a 
substantial fraction of nonequilibrium species; this term should be 
dropped when the concentration of nonequilibrium species is low. 

b) Because (TRT/TTT) ~ max{(mxY/^M7); ( ^M ; / ^XY)} for most pairs XY 
and M;, this model cannot be applied when mxY and m^ are of the same 
order of magnitude. When rRj ~ Trr, rotational relaxation kinetics can be 
described by a set of Boltzmann equations for multicomponent mixture 
where molecules in different rotational states are treated as different 
species. 

Relevant material can be found in Refs. 1-3. 

B. Diffusion Approximation for Rotational Relaxation (R.2) 

1. Purpose of the Model 

The model aims at calculation of the energy distribution over rotational levels 
for test molecules diluted in a gas of structureless particles. 

2. Assumptions 

a) See Assumptions 1-4 in the description of model R.l. 
b) A diffusion approximation is assumed to be applicable. 
c) A low concentration of rotators XY is contained in a mixture with 

structureless particles. 
d) The velocity distribution of structureless particles is Maxwellian with 

temperature T. 

3. Restrictions 

a) The diffusion approximation is applicable to slow relaxation processes, if 
the rotational energy quantization can be neglected, i.e., if |AEn+i,rt| <£[ 
kT, where A/w = En— En> (the notation is explained in the description 
of model R. 1). A process can be treated as slow if the change of a quantity 
(e.g., energy) in a single elementary collision act is small compared to a 
typical value of that quantity. 

b) Diffusion approximation can be applied to both Rayleigh and Lorentz 
gases (see definitions in model T.2) under the assumption that the 
molecules are rigid rotators. 
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4. Kinetic Equations 

a) In the general case 

-2 
ff(e, t) = d 

dt de H^+>4 me)=k 
initial condition boundary condition 

f(e, 0) = rfe) (14/) = o 
e=0 

b) For Rayleigh gas (low concentration of heavy molecules in a light gas) 

Vie, 
dt de[ \ de kTJK ' J. 

3 m 
j 

5. Nomenclature 

a) Quantities calculated with the model: 

/ (e , 0 - distribution function of molecules over rotational energy e 

b) Kinetic coefficients: 

D(s) - diffusion coefficient in the rotational energy space 

c) Other quantities: 
- 2 
A - mean square energy transferred to the rotational degrees 

of freedom in a collision with a thermal-bath particle 
TO - mean free t ime between collisions of a rotator in a 

monatomic gas 
j - index referring to structureless particles 
m - mass of an X Y molecule 
ntMj - mass of an M ; particle 
NXY - number density of X Y molecules 
Af^ - number density of My particles 
TRT - rotational relaxation time 
TTT - translational relaxation time 
P(s -> s') - probability density for s -> ef rotational transition in a 

collision, averaged over the Maxwellian velocity 
distribution 

TR - rotational temperature 
ft^.1* - collision integral 
RQJ - gas kinetic radius 
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6. Description of Coefficients and Parameters 

a) D = const: _2 

A constant value of A /2TQ can be used when the probability density P(s, e') 
depends only on the transferred energy \s — s'\ and rapidly decreases with 
increasing |e - e'|, so that P(e - s') » P(kT) if |e - e'| «C kT. The value of 
A2/2TO is determined experimentally or calculated (Refs. 11 and 12) as 

- 2 f°° 
A = (e' - e)2P(e, e') de' 

Jo 

b) D = be: 
For the Rayleigh gas, the hard-sphere model with gas kinetic radii RXY (heavy 

molecules, small admixture) and RMJ (structureless species, the medium of light 
particles) predicts that 

h- V - ^ — 

j 3 m TTTj 

TTTj= h hT*J , % = / ? X Y + ^ 

This expression for b is valid in the impulsive-collision approximation (when 
the duration of a collision between a rotating molecule and a structureless particle 
is short as compared with the rotation period). 

7. Model Features 

The modeled process is canonically invariant in the case of a Rayleigh gas: 

if / (e , t = G) = —— exp 7 kTR(0) F . W*(0)J 

then the solution to the diffusion equation has the form 

N X Y T e l 

where TR is found from the equation 

dTR TR-T kT 
— = with TRT = — 
at TRT b 

8. General and Particular Solutions 

a) General solution for D(e) = const (Refs. 11 and 12): 

J00 

G(e, e', t)f(e', 0) de' 
o 
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G(e, e', t) = ^ -^ ( -— 1 I exp 

where Green's function G is expressed as 

/ e - e' t V TRT I 
^ kT TRT) 4t\ 

2 r 4>(z) = - ^ | exp(-y2)dv, TRT = —— 

b) General solution for D(e) = £e: 

/(e f 0 = ^ c w e x p ( ^ - ^ L w ( ^ ) e x p ( - ^ ) 

cn=^\f(s,t = 0)Ln(^)ds, rRT = 
kT 
~b 

where Ln(x) is a Laguerre polynomial. 
c) In the case of a Lorentz gas (low concentration of light rotators in a heavy 

gas), the diffusion equation does not lend itself to a simple solution. 

Example 

a) If the delta function / (e , t = 0) = NXYS(e — so) is taken as an initial 
distribution, and D(s) — const, then the solution/(e, t) = NXYG(s, e0, 0 
will describe transition of particles from the initial energy domain 
around eo (first expression in braces in the Green's function G) into the 
ensemble of particles described by the Boltzmann distribution (second 
expression in braces in the Green's function). Relaxation starting from 
a delta function can be graphically represented as a slow spread of 
the initial sharp distribution at high energies and a fast transformation 
into the Boltzmann distribution in the low-energy domain. This 
relaxation pattern is quite general. It provides an explanation for 
the experimental fact that higher rotational levels are characterized by 
higher effective temperatures, as compared to lower levels, in 
expanding jet flows with high stagnation temperatures. Because of 
the difference in rotational relaxation rates, the high rotational levels 
are overpopulated, and the low levels are underpopulated. This effect 
may lead to a population inversion between certain groups of rotational 
levels (Ref. 1). 

b) In highly rarefied gases (for example, in interstellar clouds), radiative 
transitions between rotational levels of dipole molecules cause the 
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corresponding populations to deviate from the Boltzmann distribution. 
The effect of radiative transitions on rotational energy distribution was 
studied in diffusion approximation in (Ref. 13). 

10. Comment 

For most molecules, the rotational relaxation time is on the order of the mean 
free time between collisions, TRT ~ TJJ ^ TO, except for light diatomic molecules 
and molecules in highly excited rotational states. In particular, TRT/TQ ~ 4-6 for 
N2 and 02 , and TRT/TQ ~ 100 for H2 and D2. 

Relevant material can be found in Refs. 1, 2, 8, and 9. 

C. Strong Collision Model (R.3) 

1. Purpose of the Model 

The model aims at calculation of rotational state population densities in a 
uniform gas. 

2. Assumptions 

See the description of model R.l and Assumption 2 in the description of 
model T.3. 

3. Restrictions 

For qualitative description of the relaxation process, there are no restrictions. 
The most reliable quantitative characterization of relaxation processes (without 
any additional restrictions) is given by this model for systems close to 
equilibrium, that is, when 

\N°n-Nn\<ZN°n 

4. Kinetic Equations 

5. Nomenclature 

a) Quantities calculated with the model: 

Nn - population density for the nth rotational level of XY molecules 

b) Kinetic coefficients: 

v - empirical parameter 

c) Other quantities: 

A^ - equilibrium population density for the nth rotational level at a 
gas temperature T 

Qr - rotational partition function 
N - number density of molecules 
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gn - statistical weight for the nth rotational level 
B - rotational constant 
TRT - characteristic time of rotational relaxation 

6. Description of Coefficients and Parameters 

The empirical parameter v cannot be determined within the framework of the 
model. It is used as an adjustable parameter on the order of the characteristic time 
rRT of rotational relaxation. 

The values of Qr for some rigid rotators can be found in the Partition 
Functions and Integrals section (in Chapter 8 of this volume). The statistical 
weight gn is equal to gn = (2n + 1) for linear molecules, and gn = (In + l)2 for 
spherical top molecules. The expression for N^ is not valid for spherically 
symmetrical molecules. Since molecules of this type contain equivalent 
nuclei, the corresponding statistical weights depend on the values of nuclear 
spins. For linear and spherical top molecules, En = Bn(n +1) , where B is 
the rotational constant (see Chapter 1 in the first volume of this reference book). 

7. Model Features 

The model does not provide any explicit description of rotational state-to-state 
transitions. 

8. General and Particular Solutions 

The solution for a uniform gas characterized by v = const is 

Nn(t) = Nn(t = 0)e~vt + N°n(l - e~vt) 

9. Example 
The strong-collision model is used to evaluate the bottleneck effect in 

calculations of rotational populations for the vibrational states of a molecular gas 
excited by an infrared laser radiation (see Ref. 14). 

10. Comment 

The model provides the simplest possible description of rotational relaxation 
and can be used only in approximate analyses. 

Relevant material can be found in Refs. 1-3. 

D. Model of Rotational Energy Relaxation (R.4) 

1. Purpose of the Model 

The model aims at determination of the time dependence of rotational energy 
for molecules in a relaxing gas. 

2. Assumptions 

a) The characteristic time TRT of rotational relaxation is substantially longer 
than the translational relaxation time TTT-
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b) The governing kinetic equation has the form of a simple relaxation 
equation. The rotational energy ER is expressed as either: 
• the sum of the rotational energies corresponding to individual levels 

(see the description of model R. l) , 

ER = Y^EnNn 
n 

• or the integral of the energy distribution over rotational levels of 
a molecule (see the description of model R.2), 

ER= \ef(e,t),de. 

Restrictions 

a) The rotational level population densities Nn are close to equilibrium 
values described by the Boltzmann distribution N%; \N%—Nn\<&N% 
(see the description of model R.3). 

b) The model describes the evolution of rotational energy ER for linear and 
spherically symmetric molecules 
• in a Rayleigh gas (low concentration of heavy molecules in a mixture 

with different molecules treated as structureless particles, see the 
Restrictions in the description of model R.2); 

• in an arbitrary gas near equilibrium, when \ER — E%\ <3C EPR and 
TRT ^> TTT-

Kinetic Equation 

6ER = _ER-^ ^ NXYkT 

dt TRT
 R 

Nomenclature 

a) Quantity calculated with the model: 

ER - mean rotational energy of molecules 

b) Kinetic coefficient: 

TRT - rotational relaxation time 

c) Other quantities: 

E% - equilibrium value of rotational energy 
Nn - population density for the nth rotational level 
iV? - equilibrium population density for the nth rotational level 
N*Y - number density of XY molecules 
NMJ - number density of M7 particles 
T - translational temperature (gas temperature) 
En - rotational energy of an XY molecule in level n 
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f(e, t) 
TO 

- rotational energy of XY molecules in the classical 
approximation 

- distribution function for the rotational energy e 
- mean free time between collisions for molecules 

6. Description of Coefficients and Parameters 

The rotational relaxation time TRT for the Rayleigh gas is rRT = kT/b, where b 
can be evaluated by using formulas presented in the description of model R.2. 

In other cases, experimentally measured results can be invoked (see Refs. 1,2, 
15, 16 and Chapter 6). The rotational relaxation time rRT is then written in 
dimensionless form as ZRT = TRT/TQ, where To is the mean free time between 
collisions. Thus, ZRT can be interpreted as the number of collisions required to 
excite the rotational degrees of freedom of a molecule. 

a) Examples for hydrogen molecules: 

Relaxing 
molecules 

para-H2 

ortho-R2 

Collision 
partner 

para-H2 

ortho-H2 

H2 
4He 
Ne 
Ar 
Kr 
Xe 
ortho-H2 

11 

715 
— 
394 
— 

Gas temperature T, K 

90.5 

634 
1124 

— 
— 

369 
235 
225 
— 

ZRT 

170 

711 
151 
— 
194 
207 
140 
198 
253 
356 
790 

293 

122 
— 
— 

530 

Reference 

17 
18 
17 

19 

For heavier diatomic molecules, the values of ZRT increase with temperature, 
approaching unity. 

b) Examples for N 2 -N 2 collisions: 

T, K Reference T, K Reference 

77.1 1.8 20 300 4.3 21 
293 5.6 20 700 8.1 21 

1300 11.4 21 
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For nonpolar molecules, the values of ZRj also increase with temperature. 
Example for CH4-CH4 collisions (spherical top molecules): 

ZRT = 3.0 at T = 77.1 K, ZRT = 8.6 at T = 293 K, and 

ZRT = 14.8 at T = 500 K (Refs. 22 and 23). 

For polar diatomic and polyatomic molecules, the values of ZRT are on the 
order of unity. 

The values of TRT can also be evaluated by using other expressions, such as 
Parker formula (see Refs. 3 and 24). 

7. Model Features 

The model cannot be applied when the initial distribution of molecules over 
rotational levels substantially differs from the Boltzmann distribution. In the case 
of a Boltzmann initial distribution, the model is not canonically invariant, i.e., the 
Boltzmann distribution is not preserved (e.g., for hydrogen molecules; see Refs. 
11 and 25). 

8. General and Particular Solutions 

The solution of the relaxation equation for TRT = const is 

ER(t) = ER(0)e-{^ + 4(1 - e-^) 

9. Example 

r^z^s-mol/cm3 

l l 1 l 1 l I 
1 Q -15 1 0-14 1 0-13 1 0-12 1 0-11 

fp, smd/cm3 

5/?, me V 

tpf smd/cm3 

Fig. 3.2 

Figure 3.2 (part B) shows the 
rotational energy ER for para-H2 

molecules as a function of tp (p is a 
constant gas density) starting from the 
initial Boltzmann distribution with 
rotational temperature TR(0) = 600 K 
and the translational gas temperature 
T(0) = 200 K obtained with the state-
to-state model R.l (solid curve) (Ref. 
25) and with the energy relaxation 
model R.4 (dashed curve) with the 
time-independent rRT shown in the 
upper plot (see Ref. 26). Here, 
AT = 7X0) - 7*(0) < 0. The increase 
in TRT because of slow relaxation of 
high rotational levels has little effect on 
the rotational energy ER. Calculations 
have shown that the value of TRT 
remains virtually invariant when 
Ar > 0, which confirms the applica­
bility of the model R.4. 
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10. Comments 

a) The simple relaxation equation for ER with TRT = const given by the 
model R.4 can be used in approximate estimations. A realistic time 
dependence ER(t) can be obtained with the simple relaxation equation and 
TRT that is a function of ER. However, this function is not universal, that is, 
it varies from problem to problem. 

b) The characteristic time TRT of rotational relaxation used in the model is 
the relaxation time corresponding to the mean rotational energy, i.e., the 
relaxation time for an equilibrium rotational energy distribution. The 
relaxation of the high-energy tail of the distribution can be characterized 
by substantially different relaxation times (Refs. 1 and 3). 

c) Investigations of rotational relaxation in expanding supersonic jet and 
nozzle flows are the main applications of model R.4. 

Relevant material can be found in Refs. 1-3 . 
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Chapter 4 

Vibrational Relaxation (V Models) 

I. Introduction 

E STABLISHMENT OF equilibrium in the system of the vibrational degrees 
of freedom (vibrational relaxation) is a relatively slow process. 

Characteristic vibrational relaxation times are much longer than the translational 
and rotational relaxation times. For example, vibrational relaxation in 
pure oxygen takes 108 collisions at T = 288 K, and 103 collisions at T = 3000 K. 

In an isolated system with arbitrary initial conditions, vibrational relax­
ation leads to the equilibrium vibrational distribution (Boltzmann distri­
bution), see item 1 of the subsection "Features of the Model" of the model 
V.l, and item 2 of the same subsection of the model V.3, and also Sec. VI 
in Chapter 1 of the first volume. In nonisolated (open) systems, which can 
exchange mass, momentum, and/or energy with the environment, the 
vibrational distribution of molecules may be substantially different from the 
Boltzmann one; this occurs, for example, in flows of relaxing gases in nozzles 
and jets. 

Theoretical analysis of the vibrational relaxation with state-specific kinetics 
(V.l-V.3, V.5, and V.6), mode kinetics (V.7-V.9), and in the diffusion 
approximation (V.4) is performed for spatially uniform systems, for which the 
state of the medium varies with time t only. In these models, gas-dynamic 
variables (such as gas density and mean-mass velocity) are assumed to be 
constant, and external forces are not considered. When solving gas dynamic 
problems, the relaxation equations from models V.1-V.9 should be added to the 
corresponding equations of gas dynamics. 

Relaxation equations presented here were formulated assuming that the 
vibrational frequencies of the molecules are much higher than the mean collision 
frequency of a molecule. This provides the possibility to operate only with the 
populations of vibrational levels (diagonal elements of the density matrix, see 
Ref. 1). 

Relaxation processes that cannot be described in terms of populations of 
vibrational levels (such as polarization and super-radiation) are described in terms 
of the coherent kinetics (see Ref. 3). Such processes are not considered in 
this book. 

37 
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A. Vibrational Relaxation of Diatomic Molecules as a Low-Concentration 
Impurity in a Gas of Structureless Particles: State-Specific Kinetic 
Model (V.l) 

1. Purpose of the Model 

The model aims at determination of population densities for vibrational levels 
of diatomic molecules (in particular, harmonic oscillators) as a low-concentration 
impurity in a mixture with other molecules treated as structureless particles. 

2. Assumptions 

a) The system consists of diatomic molecules AB as a low-concentration 
impurity diluted in a gas of other particles Mj(j > 1). The molecules AB 
participate only in vibrational-translational energy exchange. Collisions 
between impurity molecules are neglected. 

b) The characteristic time of vibrational relaxation is much greater than 
the translational and rotational relaxation times. Accordingly, the prob­
abilities of vibrational energy exchange are functions of the gas 
temperature, T. 

c) Three-body collisions are ignored, because the product of three-body 
collision frequency and the probability of vibrational transition induced 
by a three-body collision is assumed to be substantially smaller than an 
analogous product for binary collisions. 

d) The frequency Z of collisions of AB with other particles is independent of 
the vibrational state of AB. For harmonic oscillators, this assumption 
holds if RQ :» (nh/2/jLO))1/2, where Ro is the gas kinetic radius, /x = 
(mAmB/(mA + m*)) is the reduced mass of an AB molecule (mA and m^ 
are the masses of atoms A and B, respectively), <o is the vibrational 
angular frequency, and n is the vibrational quantum number. 

e) For harmonic oscillators, only single-quantum, n «-• n + 1 and 
n «r> n — 1, transitions are taken into account, and the corresponding VT 
transition rate constants are expressed as knn+x

 j = (n+ l)k0l ~ J and 
k Z\j = nk10 ~ j (see description of model I-V.7). 

3. Restrictions 

a) The number density N** of diatomic molecules must be such that 

tion reduces to N** <£ NMK 
b) The particle number densities NMj must be such that k10 ~ J~ {NMi <C 

k10 ~ \i,j > 1). Then, three-body collisions can be ignored. 
c) The harmonic oscillator approximation can be used to describe vibra­

tional relaxation when the mean vibrational energy per molecule is 
smaller than, or on the order of, h(*>, so that the average number of 
vibrational quanta per molecule, a, is restricted by the inequality a = 
(l/N) Y^ nNn 5! 1. If « > 1, this model can be used to obtain qualitative 
results or estimates. 
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4. Basic Kinetic Equations 

I T = Y,NMi £ <C-M<Nm - k%-™Wn), n, m = 0, 1, 2 , . . . 
j m 

5. Kinetic Equations for Molecules as Harmonic Oscillators 

^ = j;*ff-1*^{(i.+ l)Nn+l - [(* + l)exp(-£) +nyn 

+ n e x p ( - ^ W 1 j 0 = Y> ^ = 0,1,2,.. . 

6. Nomenclature 

a) Quantities calculated with the model: 

Nn population density for the nth vibrational level of AB 
molecules 

b) Kinetic coefficients: 

kmn~ J rate constant for the m - • n V - T transitions induced by 
AB-M/ collisions 

k^~AB rate constant for the m -> n V - T transitions induced by 
A B - A B collisions 

c) Other quantities: 

i, j indices (subscripts) referring to structureless species 
T translational temperature (gas temperature) 
Tv vibrational temperature 
<o vibrational angular frequency for AB molecules 
En vibrational energy of AB molecule in level n 
QV(T) v ibrational partition funct ion for A B 
NAB number density of AB molecules 
NMJ number density of M; particles 
6 characteristic vibrational temperature of AB molecules 

(0 = Ex/k) 
Tvr vibrational relaxation time 
a average number of vibrational quanta per molecule 
ao(T) equilibrium value of a at a gas temperature T 

7. Description of Coefficients and Parameters 

Expressions for the rate constants kmn~ j(T) of VT energy exchange are 
presented in Chapter 4 of volume I (models I-V.1-I-V.8). 

Dependence of vibrational energy En for AB on the number n of a vibrational 
level for harmonic and simplest anharmonic oscillators was described in 
Chapter 1 of volume I (including characteristics of species) and supplemented 
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with a list of references to more sophisticated models of molecules. The 
characteristic vibrational temperature 0 is defined as the energy of the first 
vibrationally excited state of AB and measured in Kelvin. 

8. Features of the Model 

a) When the gas has a constant temperature T, the system evolves toward 
equilibrium as t -> oo. The equilibrium vibrational level population 
densities are described by Boltzmann distributions: 
- For arbitrary models of molecular oscillators, 

- For molecules treated as harmonic oscillators, 

rfn=N(\-e-9lT)e-«e'T) 

b) Detailed balance relations: 
- For arbitrary models of molecular oscillators, 

*£-*«*! >(-§)-»£»*«P 

- For molecules treated as harmonic oscillators, 

f AB-M, ( 0\ , AB-M, 

(-1) 

K10 expi i — K01 

c) The model is canonically invariant for molecules treated as harmonic 
oscillators: the Boltzmann form of the initial distribution, Nn(t = 0) = 
N[l - exp(-6/(Tv(t = 0)))]exp(-n(6/(Tv(t = 0)))), is preserved in the 
course of relaxation: 

*,<„=«[!-exp(-^)]e*p(-„4) 

The corresponding variation of vibrational temperature Tv(t) is expressed as 

^exp(-f/rv7-)[l - exp(0/r - 6/(Tv(t = 0)))]"• * _ 1 

-expi$/T)[l - txp(-6/(Tv(t = 0)))] 
e In 

exp(-f/TVr)[l - exp(0/T - 0/{Tv{t = 0)))] 

- [ l - e x p ( - 0 / ( 7 ; ( f = O)))]J 

TVT = (EC^[i-«p(-ra| 

(see descriptions of models I-V.2 and I-V.5). 
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9. General and Particular Solutions 

a) In the general case, the analytical solution to the kinetic equations for 
molecules treated as harmonic oscillators with Tyr = const is 

N„(t) = Y]c m / n (m)exp(- — ) 

W ^B)§HP ©roo 
= F\ -n, m + 1, 1; 1 - expf - - J 

0-
n!/v!(n — v)! if n > v and v > 0 

0 if n < v or v < 0 

1 if v = 0 

/„(0) = exp(-n0/7), ln{\) = exp(-n0/T)[l + (1 - exp 0/T)n] 

The orthogonality condition for nonnegative integer m and n, 

£exp(-v0/r)/n(v)/m(v) = 
Jg{ l exp( -n0 /r ) [ l - exp( -0 /r ) ] n = m 

£exp(n0/r)/n(v)/n(m) = 
^ lexp(v0/r) [ l -exp(-0 /r) ] n = v 

Here, /„(m) is Gottlieb's polynomial, F[—n, m + 1, 1; 1 — exp(—0/r)] is 
a hypergeometric function; Cm denotes coefficients determined by the 
initial level population density Nn(t = 0), which is assumed to be known: 

= [l - e x p ( - ^ ) ] J2lm(n)Nn(t = 0). 

b) The kinetic equations for molecules treated as harmonic oscillators are 
solved by means of a generating function. If a function depending on an 
additional argument z is defined as Gfo i) = Yln=o ^Xnif), then 
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c) 

and 

G(z, t) = 
1 - exp(0/T) 

;GbO0 
(z - exp«9/r)) - (z - l)exp(-r/7vr) 

(z - l)exp(-^/rvT)exp(0/r) - (z - exp(0/D) 

(z - l)exp(-f/rvr) - (z - exp(0/r)) 

G0(z) = G(z,0) = J2^Nn(0) 

The explicit form of Nn(t) is obtained by representing G(z, t) as a power 
series in zn for Go determined by the initial conditions (see Ref. 8). 

An approximate analytical solution to the basic kinetic equations for 
low gas temperatures (T < 0) and a Boltzmann initial distribution with 
Tv(t = 0) < 6 was obtained in Ref. 9 by taking into account only single-
quantum transitions in molecules treated as anharmonic oscillators. 

10. Example 

1.0 

N„ 

0.8 

0.6 

0.4 

0.2 

LH 

A r = o 
B 7=0.01 
c r=o . i 
D r=0.5 
E r= i .o 
F T = 2.0 
G T=3.0 
H r=oo 

E D 

" A — 

r 1 j 

B 

I 

c\ 

\ 
Figure 4.1 shows the time 
evolution of population den­
sities for various vibrational 
levels involved in the relaxation 
of an initial delta distribution 
(curve A) for 0 2 at v = 8 resul­
ting from the reaction O + 
C102 -> CIO + 0 2 in a nitro­
gen atmosphere at T = 288 K 
(see Ref. 10). Curve H corre­
sponds to the equilibrium distri­
bution. The dimensionless time 
is defined as T=t/Tvr-_ The 
level population density Nn is 
measured here in arbitrary units. 

Fig. 4.1 

11. Comments 
a) When a low concentration of molecules treated as harmonic oscillators is 

added to an inert gas characterized by a non-Maxwellian, steady-state 
velocity distribution, vibrational relaxation leads to the Boltzmann 
distribution of molecules over vibrational energy levels with vibrational 
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temperature Tv defined by the condition 

exp( 
\ TVJ k*0 

where fc*0 and k^ are the corresponding rate constants averaged over the 
non-Maxwellian distribution (Ref. 3). 

b) For anharmonic oscillators, the population densities of vibrational levels 
are characterized by relaxation rates different from those for harmonic 
oscillators. (The relaxation in a system of harmonic oscillators is 
canonically invariant; see Refs. 3 and 5). Populations of higher states 
evolve toward equilibrium faster than those of lower levels do, because 
the rate constants for transitions between high levels are higher for an 
anharmonic oscillator as compared to the corresponding harmonic one. 

Relevant material can be found in Refs. 2-7. 

'B. Vibrational Relaxation of a Single-Component Gas of Diatomic 
Molecules: State-Specific Kinetic Model (V.2) 

1. Purpose of the Model 

The model aims at determination of population densities for vibrational levels 
of diatomic molecules (in particular, harmonic oscillators) in a single-component 
system or in a mixture with other molecules treated as structureless particles. 

2. Assumptions 

a) See assumptions 2-4 in the description of model V.l. 
b) For harmonic oscillators, only n <+ n + 1 and n «* n — 1 single-quantum 

transitions are taken into account, with rate constants kn n 7 i ; = 

A£llt„ = nsk^ (see description of model I-V.7). 

3. Restrictions 

See Restrictions 2 and 3 in the description of model V.l. The restrictions 
concerning three-body collisions also apply to AB-AB, AB-AB-AB, and 
AB-AB-M, collisions. 

4. Basic Kinetic Equations 

+Jjt*ZFmfi* ~ ^LNnNi) n, m,s,l = 0, 1, 2,. 
m,s,l 
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5. Kinetic Equations for Molecules as Harmonic Oscillators 

^ = ltf-**N + ^ k £ - * N * )\(n+ l)Nn+1 

-\(n + i ; e x p f - | J + n\Nn + n e x p f - | W 

+ O W " + 1X1 + ajNn+x - [(n + l)a + nf 1 + «)]#„ + naNn.x} 

# = $>„; a = i £/!#„, * = 0fl,2,... 

6. Nomenclature 

a) Quantities calculated with the model: 

Afn populat ion density for the nth vibrational level of A B 
molecule 

b) Kinetic coefficients: 

kmn ~ J rate constant for the m-> n VT transitions induced by 
AB-M7 collisions 

*m«_AB r a t e constant for the m-> n VT transitions induced by 
AB-AB collisions 

k^n{T) rate constant for the VV energy exchange involving 
a n / n - ^ n vibrational transition in one molecule and an 
s —> / transition in the other 

c) Other quantities: 

j indices (subscripts) referring to structureless species 
T translational temperature (gas temperature) 
Tv vibrational temperature 
T\ vibrational temperature of the first vibrational level 
a) vibrational angular frequency 
En vibrational energy of an AB molecule in level n 
QV(T) vibrat ional parti t ion function for A B 
N number density of A B molecules 
NMj number density of structureless particles of the jtfa species 
6 characterist ic vibrational temperature of A B molecules 
a average number of vibrational quanta per molecule 
ao(T) equilibrium value of a at a gas temperature, T 
TVT VT relaxation time 
Tyy VV relaxation time 

7. Description of Coefficients and Parameters 

See the corresponding subsection in the description of model V.l. Expressions 
for the rate constants k^JX) of VV energy exchange are presented in Chapter 4 of 
volume I (models I-V.3,1-V.4, and I-V.6). 
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8. Features of the Model 

a) The first term in each basic kinetic equation describes VT exchange 
processes; the second term describes VV exchange. When the initial state 
is described by the Boltzmann distribution of vibrational-level population 
densities with Tv(t = 0) ^ T, the term representing VV exchange 
vanishes. VV and VT energy exchange processes can be treated 
independently if 

^O»C- A B ^+X:C" M ^ 
j 

where No is the level population density for n = 0. 
b) See model property 1 in the description of model V.l. 
c) Detailed balance relations: 

- For arbitrary models of molecular oscillators, 

- For harmonic oscillators, 

,AB-M ; 

^10 •-P(-D , AB-M, 
^01 C"ABexp H)= IrAB-AB 

^01 k01 - k10 

^10 — *01 

d) The model is canonically invariant for molecules treated as harmonic 
oscillators (see model property 3 in the description of model V.l); TVT is 
expressed as 

TVT = 
7.AB-AB 
*10 N + J^K AB-

10 
• M ^ M j - e x p ( - | ) 

i - i 

9. General and Particular Solutions 
a) Solution of the basic kinetic equations for a single-component gas of 

relaxing harmonic oscillators 
1.1. It is assumed that k% » k$~ABN + £ ^ ~ M W M ' ; i e " t h e r a t e s 

of VV energy exchange are substantially higher than the rates of 
VT energy exchange. In this case, vibrational relaxation 
involves two stages. At the first (fast) stage, characterized by the 
relaxation time Tyy = l/k^Nil + a), the terms describing VT 
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energy exchange can be neglected. The reduced equations have 
the form 

AM 

- ^ = k%N{(n + 1)(1 + a)Nn+l - [(n + \)a + *(1 + a)]Nn 

+ naNn-i} 

The solution for this set of equations is: 

where ln(m) = F[-n, m + 1, 1; 1 - exp(-0/r)] is Gottlieb's poly­
nomial, F is a hypergeometric function, and Cm denotes coefficients 
determined by the initial level population density Nn(t = 0), which 
is assumed to be known (see also description of model V.l, Ref. 2). 

Single-quantum VV energy exchange leaves the total number of 
vibrational quanta invariant; therefore, a = const. 

The fast stage results in the Boltzmann distribution 

with a vibrational temperature, Tv determined by the instantaneous 
number of vibrational quanta according to the equation 

exp(-£)=TT^ 
At the second (slow) stage (characterized by the relaxation time 
Tyr), the Boltzmann distribution is preserved, and only the 
vibrational temperature (or the average number of vibrational 
quanta per molecule) varies as predicted by the equation (see 
description of model V.l) 

da a — c*o 
d£ Tyr 

1.2. The condition k%N0 » fc^-^W + £ / fc£f ~MWM> does not hold. 
In the general case, the kinetic equations for level population 
densities describing simultaneous VT and VV energy exchange 
processes are solved by numerical methods. The dependencies a = 
a(t) and T = T(i) must be taken into account. They can be found by 
using the fact that the sum of translational, rotational, and vibra­
tional energies is a conserved quantity. 
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b) Solution of the basic kinetic equations for a single-component gas of 
relaxing anharmonic oscillators 
2.1. A steady-state solution to the kinetic equations describing single-

quantum VV energy exchange (referred to as the Treanor 
distribution) is 

^L=^oexp^-^-^j 

where y is a parameter determined by the initial number of 
vibrational quanta. 

In practical calculations, a steady state is maintained by keeping 
population densities constant for one or several vibrational levels. 
If a steady N\ or the "vibrational temperature of the first level" T\ is 
determined by the equation 

Nx=N0e-E^\ then y = |(-L-I) 

If T\ < T (as in relaxation behind a shock front), then y > 0; for 
n > 1, this implies that 

If T\ > T (as in the case of relaxation in expanding flows or in cases 
of energy input into vibrational degrees of freedom of molecules), 
then y < 0; for n > 1, this implies that 

Kf\ >N°- N c-EJkT 

The minimum point of the Treanor distribution is the integer 
number closest to 

Ex T 1 „ 

" = 2 A E 7 T + 2 ' r i > r 

where En = nE\ — AEn(n — 1) (AE is the anharmonicity of a mole­
cule). For example, n* » 12 for CO molecules (E\ = 2168 cm"1, 
A£ = 13 cm"1) at T = 350 K and Tx = 2500 K. The positively 
sloped portion of the Treanor distribution (see Fig. 4.2) is not 
physical in the general case, because Nok®+ln < Mn+i,n in this 
domain of n, and VV exchange cannot be treated consistently without 
allowing for VT processes or other mechanisms of dissipation of 
vibrational quanta. For CO molecules at room temperature, k^+l n ~ 
kn+hn for n ~ 20-30. 

2.2. Population densities for vibrational levels in the case of 
simultaneous VV and VT energy exchange. Specific population 
densities for vibrational levels are obtained by applying numerical 
methods to kinetic equations with prescribed rate constants k^ and 
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kmn or, in some cases, by using approximate analytical methods 
(see Refs. 3 and 5). Specific characteristics of level population 
densities are determined by the ratios of VV and VT energy 
exchange probabilities and by the nonequilibrium excess of 
vibrational energy. At low vibrational levels, kinetics are 
dominated by VV exchange leading to the Treanor distribution. 
At high vibrational levels, kinetics are dominated by VT energy 
exchange leading to the Boltzmann distribution over vibrational 
energy levels characterized by the translational temperature of the 
gas. In the intermediate range of vibrational quantum numbers, 
where VV and VT exchange processes are characterized by 
comparable probabilities, the Treanor distribution gradually 
transforms into the Boltzmann distribution. When levels lying 
above the minimum point of the Treanor distribution are excited to 
a significant degree, a population-density plateau develops, where 
a minor inversion may occur. 

10. Example 

Figure 4.2 shows normalized population densities for vibrational levels of CO 
molecules at T\ = 2700 K and various gas temperatures, T. 

Normalized population den­
sities for vibrational levels of 
CO molecules at Tx = 2700 K 
and various gas temperatures. 
Curve 1 corresponds to the 
Treanor distribution at 
T = 325 K. 

0 10 20 30 40 50 60 

Fig. 4.2 

The distribution shown here is typical for most diatomic molecules treated as 
anharmonic oscillators. 

11. Comments 

a) The distribution of population densities for vibrational levels of anharmonic 
oscillators discussed in item 2.2 in the General and Particular Solutions 
subsection is obtained under steady-state conditions when vibrational 
energy flux toward higher levels is balanced by energy input at lower levels. 
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b) One version of a state-specific kinetic model is the so-called energy-flux 
model, in which the system of kinetic equations for level population 
densities of anharmonic oscillators is integrated as a transport equation 
describing vibrational energy transfer between levels as a flux of 
vibrational quanta driven by VV and VT processes. The loss of vibrational 
quanta contained in the highest levels is attributed to a negative source 
(vibrational energy sink), whereas the input of vibrational energy is treated 
as a positive source. The energy-flux model can be used to simplify 
solution of kinetic equations for level population densities (Ref. 8). 

c) For an isolated system of harmonic oscillators in a mixture with 
structureless particles, M,, the value of T is determined by the equation 

Nh o)a0(t = 0) + ^NkT(t = 0) + T(f = 0) ] T cjNMJ 

5 
= Nh coa(T) + -NkT + T ] T CjN

MJ 
j 

Here, Cj is the specific heat per particle for thejth structureless species; for 
monatomic particles, Cj = (3/2)fc (k is Boltzmann constant). 

Relevant material can be found in Refs. 2-6. 

C. Vibrational Relaxation in a Binary Mixture of Diatomic Molecules: 
State-Specific Kinetic Model (V.3) 

1. Purpose of the Model 

The model aims at determination of population densities for vibrational levels 
of molecules (in particular, harmonic oscillators) in a binary mixture of diatomic 
gases with possible addition of other molecules treated as structureless particles. 

2. Assumptions 

a) See Assumptions b -d in the description of model V.l and Assumption b 
in the description of model V.2. 

b) For harmonic oscillators, only n «* n + 1 and n «> n — 1 single-quantum 
transitions are taken into account, and the corresponding VT transition 
rate constants are expressed as 

1 — nK\0 » 
,AB-M, 

+1AB-AB 
Kn+l,n 

Kn+l,n 

= (n+l)*o1 \ knn_ 

= (W+1)(,+ 1)^AB"AB 

^(n+ lX.+ D C ^ 0 

(relations obtained by simultaneously interchanging AB with CD also 
apply here; see description of model I-V.7). 

3. Restrictions 

See Restrictions B and C in the description of model V.l. The restrictions 
concerning three-body collisions also apply to AB-AB, AB-CD, AB-M ;, and 
CD-Mj, and all three-body collisions involving various combinations of AB, 
CD, and M7 molecules. 
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Basic Kinetic Equations 

+ E VC^N? - AST"'A îVf] 

THySjl 

- (e -^* 8 +e- C D ^ D +E*-~ M w M ; W D 

+E^CD^xD-C"CDAf)^D] 

dA£D 

m,sj 

+E^"A BAC^A B-C"A B<D^] 
m,sj 

Kinetic Equations for Molecules as Harmonic Oscillators 

x j(n + l^f , - L + ljexpf——) + n V 

+ ^ " ^ { ( n + 1X1 + aAB)N™ - [(n + l)a™ 

+ n(l + aAB)]NZB+na*BN™} 

+ *ff "^ W f » + 1X1 + «CDjexp/0AB' 
( ^ 

AB 
n+1 
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-[(i! + l)aCDexp(^) + n(l + a C D ) exp^] iV^ 

x l(n + l)A^j - L + 1)expf- — ) + J A £ D 

+ « « p ( - ^ ) i V S } +ik?rCD^CD{(»+ 1X1 + « P ) l C 

- [(n + D a 0 0 + n(l + a C D ) ] < D + n a C D A £ ° } 

+ Ca >"A BNA B{(n + 1)(1 + a A B ) e x p ^ A C » 

- [(„ + Da*8 « p ( ^ ) + "(1 + a*8) e x p ^ ] ^ D 

+ naA Bexp(^)eD
1j 

NAB = J2^> ^CD = E A ^ D ; » = 0,1,2,... 

6. Nomenclature 

a) Quantities calculated with the model: 

N^ population density for the nth vibrational level of AB 

N^° population density for the nth vibrational level of CD 

b) Kinetic coefficients: 

kmn ~ ' rate constant for the m -*• n VT transitions in AB molecules 
induced by AB-M,- collisions 

CD—M' 

knm J rate constant for the m -» n VT transitions in CD molecules 
induced by CD-M, collisions 

km^~AB rate constant for the m -> n VT transitions induced by AB -
AB collisions 

£AB-CD r a t e c o n s t a n t for the m -> n VT transitions in AB molecules 
induced by A B - C D collisions 
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^m« ~CD r a t e constant for the m -> n V T transitions induced by C D -
C D collisions 

^mn _AB r a t e constant for the m - • n VT transitions in CD molecules 
induced by C D - A B collisions 

k%? (T) rate constant for the VV energy exchange between AB 
molecules involving an m -> n vibrational transition in one 
molecule and an s -> / transition in the other 

&^n " (T) rate constant for the VV energy exchange between CD 
molecules involving a n m - ^ n vibrational transition in one 
molecule and an s -> / transition in the other 

^AB-CD ^ ^ ^ constant for the V V energy exchange in collisions of AB 
and CD molecules involving m -> n vibrational transitions 
in AB molecules and s -> I transitions in CD molecules 

Kjln (T) rate constant for the VV energy exchange in collisions of AB 
and CD molecules involving m —> n vibrational transitions 
in CD molecules and s —• / transitions in AB molecules 

c) Other quantities: 

j indices (subscripts) referring to structureless species 
T translational temperature (gas temperature) 
a/3 vibrational angular frequency for an AB molecule 
afD vibrational angular frequency for a CD molecule 
E^3 vibrational energy of an AB molecule in level n 
E%D vibrational energy of a CD molecule in level n 
Q^3 vibrational partition function for AB 
Q%D vibrational partition function for C D 
A ^ number density of A B molecules 
N°D number density of C D molecules 
NMj number density of structureless particles of the j 'th species 
Cj specific heat per particle for the yth structureless species 
0 ^ characteristic vibrational temperature of A B molecules 
(FD characteristic vibrational temperature of C D molecules 
a*3 average number of vibrational quanta per AB molecule 
aCD average number of vibrational quanta per CD molecule 
OQB(T) equil ibrium value of a*3 at a gas temperature T 
aQD(T) equil ibrium value of aCD at a gas temperature T 
Tyj V T relaxation t ime for A B molecules 
Ty£ V T relaxation t ime for C D molecules 
T ^ V V relaxation t ime for A B molecules 
T ^ ? V V relaxation t ime for C D molecules 
Tw YY relaxation time for energy transfer between AB and CD 

molecules 

7. Description of Coefficients and Parameters 

For a description, see the corresponding subsections in the description 
of models V . l and V.2. Expressions for the rate constant k^n of V V 
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energy exchange, as well as for other rate constants with AB changed to CD 
and vice versa, are presented in Chapter 4 of the first volume (models I-V.3 
and I-V.6). 

8. Features of the Model 
a) The first, second, and third terms in the basic kinetic equations represent 

VT, VV, and VV energy exchange processes, respectively. W , VV, and 
VT energy exchange processes can be treated independently if 

f ' V , k^N™ » k^N™ » kff-^N™ + kfi-^N™ 

j J 

and if they are characterized by vastly different time scales. More 
precisely, the fastest processes are those of energy exchange within 
individual modes. They are followed by energy exchange between modes, 
and the final stage is that of VT relaxation. 

b) As t -> oo, the system evolves toward equilibrium. The equilibrium 
vibrational-level population densities are described by Boltzmann 
distributions: 
-For arbitrary models of molecular oscillators, 

(N0)AB __ NAB -E^/kT , wCKCD _ J ^ _ -E™/kT 

O^-E-KTB <S°=X>(^F) 
- For molecules treated as harmonic oscillators, 

( A ^ ) A B = i V A B [ l - e x p ( - ^ ] e x p ( - n ^ ) , *** = ] [ > * 

(A/O)CD = ^ _ e x P ( - ^ ) ] e x p ( - n ^ ) 

c) Detailed balance relations: 
- For arbitrary models of molecular oscillators, 

*£-A B««p(-^) =C" A B exp( -^) 
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J?AB\ / 17AB> 

C - C D e x p ( - ^ r ) = C " C D e x p ( - ^ ) 

""• e x p ' — ^ t r 

E™+E?> 

(-e±F)-er^-e±P) 
-/AB-CD 

Km exp 

nm eXPl 

Additional relations are obtained by interchanging AB with CD. 
- For molecules treated as harmonic oscillators, 

,AB-M, 
MO 

['exP(-^) =C"H; C- A B - P ( -^) = 

C"CDexP(-^) = C"CD. e" = * jp. 

j^AB-AB 
^01 

CD W 
.CD 

e^u = • 

0 1 A B - A B 
K\0 = k 

1 0 A B -

01 

k 
aCD> 

01AB-CD / 6 \ .lOAB-CD / 6 D \ 

*io e x P ( " -jr) = *oi e x P ( ~ ~Y) 

Additional relations are obtained by interchanging AB with CD. 

9. General and Particular Solutions 

1. Solution of the basic kinetic equations for a binary gaseous mixture of 
relaxing harmonic oscillators subject to the condition r ^ , T^J ^> TVV ^ 
Tw> Tvv> where 

AB 
rVT 

«.CD _ 
TVT —* 

^ - A B ^ A B + ^ B - C D ^ C D + ^ ^ - M ^ M , 

J 

fcCD-CDjyCD^CD-AB^AB + £ k ^ N * 

( 0A B \ 
- e x P ( - — j 

1—exp 

Under these conditions for relaxation times, the fastest processes are 
those of energy exchange within individual modes. They are followed by 
energy exchange between modes, and the final stage is that of V-T 
relaxation. 

When these inequalities are satisfied, vibrational relaxation consists of three 
stages: 

• At the first stage, when t < Tyy> Tyy> 
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where ln(m) is Gottlieb's polynomial (see description of model V.2), and 
C^ and C£D denote coefficients determined by the initial level population 
densities N*B(t = 0) and N%D(t = 0), respectively, that are assumed to be 
known (see also description of model V.l). 

At the first stage (characterized by relaxation times Tyy and Tyy)> both AB and 
CD subsystems evolve toward respective Boltzmann distributions with 
temperatures T^ and 7^D, determined by the available number of AB and CD 
vibrational quanta. At this stage, the vibrational relaxation is similar to single-
component vibrational relaxation dominated by VV exchange, because VV 
and VT energy exchanges are negligible on time scales t < r ^ , T ^ . 

• At the second stage, which is characterized by a relaxation time Tyy 
( r ^ , Tyy <C t <C 7$, Typ)> the system evolves toward a state with corre­
lated vibrational temperatures T̂  and 7^D. The Boltzmann distribution 
corresponding to each component retains its form, while the evolution of 
vibrational temperatures results in a state characterized, when dominated 
by single-quantum transitions, by the relation (E\ is the first-level 
vibrational energy) 

£AB £CD £AB _ gCD 

or, when dominated by multiquantum transitions (p vibrational quanta of 
AB transform into q vibrational quanta of CD), by the relation 

pE™ g£fD _pE™ - qE™ 
XT** kT£D "~ kT 

The values of 7 ^ , lfD, and T are determined by two additional equations. 
For example, when the system is isolated, this relation is supplemented 
with a conservation condition for the total number of vibrational quanta 
(when V - V energy transfer is dominated by single-quantum transitions), 

N^a^it = 0) + A^DaCD(r = 0) = N^a** + N^oP* 
and energy conservation, 

^kT(t = OXN** + N0*) + NMc^(t = 0)E** + ^ D a C D ( r = 0)£?D 

+ T(t = 0) £cjN** = ^kTiN^ + N°D) + N^a^E™ 
j 

j 

When controlled by single-quantum W energy exchange, the time 
dependence of T**9 7 f \ and T for r$, r $ « t < rf*, and r$t « T # , 
Tyj is determined by solving the equation 

combined with the conservation equations for total number of quanta and 
energy. 



56 G. G. CHERNYI, S. A. LOSEV, S. O. MACHERET, B. V. POTAPKIN 

At the third stage, when r$rCD < t ~ r^ ' C D , 

£ A B ^ C D gAB _ j?CD 

kT** ~ kT£D = kf 

(predominantly single-quantum transitions) and the temperatures T^3, 
7fD, and T equalize. 

The time dependence of T™, 7^D, and T in the interval T$rCD <£ 
t < T ^ , C D is determined by energy conservation and one of the VT 
relaxation equations 

\B A<CT> ^CD <CT> daAB_ c^-a™ daCD a~ - a„ 

\Xl ' VT VT 

exp((9AB/r) - 1' ° v ' exp(0CD/r) - 1 

More precisely, the governing equation is that for which the value of 
TVT is smaller. 

2. Solution of the basic kinetic equations for a binary mixture of 
relaxing anharmonic oscillators. 

The kinetic equations describing vibrational relaxation in a binary 
mixture of anharmonic oscillators AB and CD are solved by numerical 
methods. As in the case of a single-component gas of anharmonic 
oscillators, it is impossible to single out a process that dominates the 
evolution of all vibrational levels. For this reason, the vibrational spectrum 
is divided into ranges dominated by specific processes. At low vibrational 
levels, kinetics is dominated by single-quantum VV transitions leading to 
Treanor distributions in both species, with constants y ^ and TCD 

determined by their respective pools of vibrational quanta. In VV 
transitions, the vibrational quanta pool is redistributed among the 
components, and the values of y*3 and 7^° equalize (see definition of the 
Treanor distribution parameter y in the description of model V.2). At high 
vibrational levels, kinetics is dominated by VT energy exchange leading to 
the Boltzmann distribution of vibrational energy characterized by the 
translational temperature of the gas. In the intermediate range of 
vibrational energies, the distribution is sensitive to gas temperature, 
vibrational quanta pool, and other characteristics of the mixture. 
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10. Example 

lgXn=Nn/N0,5 5 
Fig. 4.3 

Figure 4.3 illustrates the evolution 
of level population densities for 
nitrogen molecules after the nor­
malized population density of the 
first vibrational level is instantly 
increased by 30% (x\ = x® 4- 0.3, 
xi = N\/N9 where N\ is the 
number density of the first vibra­
tional level, N is the total number 
density of these molecules, x® is 
the initial Boltzmann distribution, 
see Ref. 11) at the gas temperature 
T = 300 K and pressure of 1 atm; 
time is measured in milliseconds. 
The figure demonstrates that the 
vibrational-level population den­
sity approaches a quasi-steady 
distribution at t > 2500 |xs. The 
instant increase in level population 
density can be induced, e.g., by a 
nonlinear interaction with laser 
radiation, as in two-photon Raman 
excitation (see Ref. 12). 

11. Comments 

a) For a binary isolated system of harmonic oscillators in a mixture with 
structureless particles, My, the temperature T at T^rCD < t < T ^ , Ty% is 
determined by solving the equation 

N^h co^a^it = 0) + N^h «fDaCD(t = 0) + 5~ (N** + A^D) 

x kT(t = 0) + T(t = 0)J2 cJNMj = NABn (o^a*8 

j 

+ A^D^o>CDaCD+^(ivAB +M : D)fcr+r£c;ArM; 

When 6** > 0CD, the gas cools down if aCD(t = 0) > aCD(t): T(t) < 
T(t = 0) (Ref. 4). 

b) The results of approximate analytical calculations of vibrational-level 
population densities for a highly nonequilibrium binary mixture of 
diatomic molecules treated as anharmonic oscillators were reviewed in 
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Ref. 13. It was shown that when the distribution of vibrational energy in 
the component with the smaller vibrational quantum has a plateau-like 
portion, the distribution of the other component can exhibit two 
negatively sloped Treanor branches and two plateau regions. 

Relevant material can be found in Refs. 2-6. 

D. Vibrational Relaxation of Diatomic Molecules: Diffusion 
Approximation (V.4) 

1. Purpose of the Model 

The model aims at determination of the vibrational energy distribution for 
diatomic molecules of various gaseous species. 

2. Assumptions 

a) Vibrational relaxation is represented as diffusion in the vibrational energy 
space. The vibrational energy of diatomic molecules is treated in the 
classical approximation (quantization is ignored). 

b) The change in the vibrational energy of a molecule induced by a collision 
is assumed to be small as compared to the thermal energy per molecule: 
(Ae2)1/2 « kT. 

3. Restrictions 

a) Because vibrational energy quantization is ignored, the model can only be 
applied to describe processes that take place at high temperatures 
(T » (9). 

b) In analyzing the vibrational relaxation of molecules of a low-con­
centration impurity in a gas of structureless particles, the number densities 
of the molecules and particles are subject to Restrictions a and b in the 
description of model V.l. 

c) For harmonic oscillator approximation, see Restriction c in the description 
of model V.l. 

4. Basic Kinetic Equation 

• For diatomic molecules as a low-concentration impurity in a gas of 
structureless particles, 

1 \e2 f 
Dvr = , Ae2 = (e' - e)2P(e, e')ds' 

2 T0 J 

Dyr = byre, byr = kdko\N for harmonic oscillator approximation with 
single-quantum transitions. 
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• For a single-component gas of diatomic molecules, 

at ds[ ^yde krj] del \de kTv
J)\ 

Dvr = byre, byr = k6ko\N, 1 for harmonic oscillator 
Dw = bws, bw = kOk%N(l + a), J approximation 

1 f °° / A \ tt* = wJ„*(e)de' ^ = e x p (~n} 
5. Nomenclature 

a) Quantity calculated with the model: 

f(s, i) vibrational energy distribution function 

b) Kinetic coefficients: 

D, Dyr, Dyv diffusion coefficients in the vibrational energy space 

c) Other quantities: 

e' energy of a molecule after a collision 
P(e, e') probability density of an e -> ef transition induced by a 

collision 
As2 mean square energy transferred to a molecule in a collision 
T translational temperature 
Tv vibrational temperature 
6 characteristic vibrational temperature of a molecule 
Af number density of molecules 
ko\ rate constant for the 0 -> 1 VT energy exchange induced by 

a collision of molecules 
&io(r) rate constant for the VV energy exchange in a collision 

involving the 1 —» 0 vibrational transition in one of the 
colliding molecules and the 0 —>• 1 transition in the other 

a average number of vibrational quanta per molecule 
TVT vibrational relaxation time 
TO mean free time between collisions for a molecule 

6. Description of Coefficients and Parameters 

Expressions for the rate constants of VT and VV energy exchange, fcoi and 
k^(T), and the vibrational relaxation time, Tyj, were given in Chapter 4 of the 
first volume (see models I-V.1-I-V.6). 

7. Features of the Model 

a) In the case of VT energy exchange in a system of diatomic molecules 
treated as harmonic oscillators, the solution is 

/ (e , t) = J2cmexp(-^)Lm(^)exp(-
m=0 ^ 

mt\ 

TVT/ 
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If00 / e \ kT 

Cm=-jo/(e,0)Z™(-)de, rvr = -

where Lm(y) is a Laguerre polynomial. 
The coefficients Cm are related to the mth and lower-order moments of 

the initial distribution function. The solution demonstrates that higher-
order moments decay at faster rates with time. As t —> oo, only the 
equilibrium term (with m = 0) remains finite in the sum. 

b) The model is canonically invariant: under the initial condition 

/ ( e , 0 ) = ^ e x p ( - £ ) , 7b = 7W = 0) 

the solution to the diffusion equation is 

where Tv is determined by solving the equation dTv/dt = — (Tv — T)/TVT-

c) In the case of a single-component gas, the first and second terms in the 
kinetic equation represent the vibrational relaxation processes because of 
VT and VV energy exchange, respectively. When byy ^> byr, vibrational 
relaxation proceeds in two stages. At the first (fast) stage, characterized by 
a time scale t ~ Tyy = kTv/byy, the solution is 

/(«, t) = gcmexp(-£)Lm(£) «*(-£) 

This stage results in the Boltzmann distribution with vibrational temperature 
TV9 corresponding to the instantaneous vibrational energy pool. When the initial 
distribution has Boltzmann form, VV energy exchange processes can be ignored 
because they do not affect the form of the Boltzmann distribution and the value of 
Tv. At the second (slow) stage, the Boltzmann form of the distribution is 
preserved. Only VT energy exchange plays an essential role as a factor that makes 
Tv approach T. The resulting formulas are similar to those obtained for a low-
concentration impurity, but the variation of Tv affects the value of T in this case. 

8. General and Particular Solutions 

In the case of diatomic molecules as a low-concentration impurity, the basic 
kinetic equation admits an analytical solution when Dyr = const (see description 
of model R.2). 

9. Example 

Consider vibrational energy distribution in a system with a source creating a 
small population of vibrationally excited molecules with energy, so, as an 
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impurity in an inert gas diluent. In this system, vibrational relaxation is described 
by the equation 

S-r=3-X{Xf^X8~X)+ri8(X-X0) 

where x = e/kT, xo = eo/kT, r = t/ryj, and 77 is the dimensionless source 
intensity. At T^> 1, this equation has a quasi-steady-state solution of the form 
(see Ref. 10) 

f(x, T) = e-x(l <p(0d£+ Vr) + r^"* £ ^ f o ) ^ ( * ) 

where/(x, 0) = cp(x). The first term in this expression represents the addition of 
particles supplied by the source to the vibrational reservoir described by the 
Boltzmann distribution. This energy is carried by the molecules that have already 
thermalized at t ^> Tyr- The second term describes the steady-state distribution 
of relaxing molecules. At x > xo ^> 1, this distribution has the form of a 
decreasing exponential: 7jexp[—(JC — Jto)]Ao- At JCO > JC ^> 1, it behaves as iq/x, 
exhibiting a plateau-like dependence. 

10. Comment 

a) The vibrational energy distributions predicted by models based on state-
specific kinetics (see models V.l -V.3) and diffusion approximation (model 
V.4) are qualitatively similar. In certain cases, the diffusion approximation 
should be recommended because it leads to a single equation, rather than 
many equations for individual level population densities. 

b) The diffusion approximation is more general than the single-quantum 
transition model because it allows for multiquantum transitions. 

c) A diffusion model of vibrational relaxation for anharmonic molecules as a 
low-concentration impurity in an inert gas was presented in Ref. 17; for a 
binary mixture of harmonic and anharmonic oscillators, analogous 
models were developed in Ref. 18. 

Relevant material can be found in Refs. 4, 14-16. 

E. Vibrational Relaxation in a Gas of Polyatomic Molecules: 
State-Specific Kinetic Model (V.5) 

1. Purpose of the Model 

The model aims at the calculation of the population densities for vibrational 
modes in polyatomic molecules in gaseous mixtures. 

2. Assumptions 

a) See Assumptions 2 and 3 in the description of model V. 1. 
b) The frequency Z of collisions of molecules with one another and with 

other particles is independent of the vibrational state of the molecules. 
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c) The ith mode vibrations of polyatomic molecules are modeled in the 
harmonic oscillator approximation characterized by a set of vibrational 
quantum numbers, vt. 

d) Each kinetic equation describes the vibrational energy exchange in a 
mode f via a single channel defined by specifying a pair {/,-, /,} of 
quantum numbers. In the case of energy exchange via several channels, 
the right-hand side of the corresponding kinetic equation is the sum over 
all the pairs {/,-, lj} involved in the process. 

3. Restrictions 

a) In analyzing the vibrational relaxation of polyatomic molecules as a low-
concentration impurity in a gas of structureless particles, the number 
density NXY of polyatomic molecules must be such that 

b) Because three-body collisions are ignored, the number densities of XY, 
Mq, and M^ must satisfy the condition 

as well as analogous conditions with symbol Mq or Mq> replaced by XY. 
c) The vibrational state of a polyatomic molecule can be modeled by a set of 

mutually independent harmonic oscillators only when the degree of 
vibrational excitation is low. As a consequence, the scope of the model is 
restricted to a few low-energy vibrational levels in each mode of 
molecule. 

4. Basic Kinetic Equations 

a) For polyatomic molecules XY as a low-concentration impurity in a gas of 
structureless particles, Mq: 

-*"•*•{ V-V}xW" (* , )] 
b) For a mixture of a single polyatomic species XY with structureless 

particles M^, similar terms are added to the right-hand sides of the 
equations, with symbol M^ replaced by XY. 

c) For a mixture of two polyatomic species, XY and ZW, with structureless 
particles Mq, similar terms are added to the right-hand sides of the 
equations, with symbol Mq replaced by XY, and XY replaced by ZW. 
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5. Nomenclature 

a) Quantities calculated with the model: 

NXY(V{) population density for the vibrational level v% 
in the mode £ of XY molecules 

b) Kinetic coefficients: 

^XY-Mq Vi - > V( — li 

Vj + lj 
rate constant for VV energy transfer of the 
following type induced by an XY-M^ collision: 

(Vj, ...,Vk\ Vk+l, • • • , VL) = {vhVj} -> (Vj ± / ; , . . . , Vk ± Ik', Vk+1 

+ /jfc+l,...,!>L + k) 
— {vi ± /,•; Vj + lj} 

analogous rate constant for VV energy transfer 
induced by an XY-XY collision 

£XY-XY 

£XY-ZW 

,XY-Mq 
"SSH I"' 
7.XY-XY 
^SSH 

OCY-ZW 
^SSH 

-> Vi - lt 

-> Vj + lj 

-* vt - li 

-+ VJ + h 

- > Vi - li 

- + Vj + lj 

-> i;,- - h 
-> Vj + // 

-* Vj + /, 

analogous rate constant for VV energy transfer 
induced by an XY-ZW collision 
analogous rate constant calculated by applying 
the Schwartz-Slawsky-Herzfeld (SSH) theory 
to XY-M^ collisions 
analogous rate constant calculated by applying 
the Schwartz-Slawsky-Herzfeld (SSH) theory 
to XY-XY collisions 

rate constant calculated by applying the SSH 
theory to XY-ZW collisions 

c) Other quantities: 

£ symbol referring to the vibrational mode under analysis 
i, j indices of the modes involved in vibrational energy transfer 
v^ Vj, vs vibrational states with /th, yth, and 5th number 
L total number of vibrational modes in the colliding molecules 
k total number of vibrational modes that lose quanta 
// the number of quanta lost in the fth mode (j = 1 , . . . , k) 
lj the number of quanta gained in the jth mode (j = k + 

1,...,L) 
N number density of molecules 
NXY(Vi, Vj) number density of XY molecules at a particular vibrational 

state (v^ Vj) in modes / and j ; for ZW molecules, the symbol 
XY is replaced by ZW 

NM% NM^ number densities of M^ and M^ molecules 
g(vt, Vj) statistical weight (multiplicity) of the vibrational state {vt, Vj} 
g(vs) statistical weight (multiplicity) of the vibrational state {vs} 
Si characteristic temperature of the /th vibrational mode of 

XY molecules (for ZW molecules, the corresponding 
symbol is used) 
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Yi degeneracy of the ith mode of XY molecules (for ZW 
molecules, the corresponding symbol is used) 

q9 q' indices denoting structureless particles 

A^ 2? 3
2 number density of C0 2 molecules with populations of 

symmetric (7,7=1), bending (1,7 = 2), and asymmetric 
(1,7 = 3) modes; / is the quantum number describing the 
projection of the momentum of bending vibrations onto the 
axis of molecule with r2 = 2 

6. Description of Coefficients and Parameters 

The rate constants for VT and VV energy transfers induced by collisions 
involving different polyatomic molecules can be found in Refs. 20-25. Some 
examples are (from Ref. 20): 

Process 

VT: C02—C02 

(01*0)-•(0000) 
((^(Ulk))-*^^) 
(04 4 0)^ (03*0,01 *0) 

VT: H20—H20 
(010) -* (000) 
(001) - • (000) 
(100) -* (000) 

VT: H20—N2, 02 , CO 
(100) - • (000) 

VV: CO2(00°l) + CO(t; = 0) - • 
CO2(0110) + CO(i;=l) 

k (cm3/mol • s) = 

A 

38.3 
37.2 
30.1 

52.8 
55.1 
58.6 

55.3 

28.7 

= exp(A + BT~ 

B 

-111 
-89.3 

-171 

-363 
-522 
-541 

-435 

0 

-1/3 + CT-2/3) 

c 

451 
227 
264 

1462 
1999 
2084 

1079 

-153 

The rate constants for VT and VV energy transfer can be estimated by using 
generalizations of the SSH theory developed to describe energy exchange in a gas 
of diatomic molecules (see formulas presented in model I-V.3 and references 
cited therein). In such an analysis, each mode should be considered as a separate 
oscillator, without taking into account its degeneracy and the structure of the 
particular polyatomic molecule that has this mode. Note that the actual rates of 
VV energy transfer may be substantially higher than those predicted by the SSH 
theory because of intermode anharmonicity and Coriolis interactions. 

Recursive relations for rate constants: 

^{i:;}-*ii:M*£*Brr)r 
-1-1 
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The last two relations hold when the symbols XY and ZW are interchanged. 
For collisions of XY molecules with structureless particles, the total number of 

vibrational modes, L, is set equal to the number of modes in an XY molecule. In 
the case of interaction between two identical or different molecules, L is set equal 
to the total number of vibrational modes in both molecules. 

7. Features of the Model 

Detailed balance relations: 

I Vj + /; -> Vj J g{Vt - //, Vj + lj) \J Pl 

g{VhVj} = Y\g(Vs) = Y[( S
 v* J' ft = e x p f - y ) ' s = l,...9L 

(p\ = ( P ( p - l ) x - - - x ( p - w + l)) 

W n\ 
A similar relation holds with the symbol M^ replaced by XY, with replacing rs 

by 2rs in the appropriate expression for g{vt, Vj}. 

8. General and Particular Solutions 

No analytical solution is available, and the system of governing equations 
must be solved by a numerical method. 

9. Example 

Results concerning the state-specific vibrational kinetics in the relaxation 
zone behind a shock wave in the mixture of C0 2 and M molecules are presented 
in Ref. 24. The C0 2 molecule consists of three modes (symmetric—i?y, r\ — 1, 
bending—V2, r2 = 2, and asymmetric—V3, r^ — 1 modes—see subsection 
Nomenclature), and M molecule does not change its internal state. Among VT 
and intramode VV processes, only the single-quantum transitions are taken into 
account as the more probable ones. Intermode VV processes include: 

- near-resonant, two-quantum W(vj ^ V2) exchange between the 
symmetric and bending modes, 

- three-quantum VVfe ^ V3) exchange between the asymmetric and 
bending modes, 

- YW(vj T=^V2^±V3) exchange between all three vibrational modes. 
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The required rate constants have been calculated using the SSH theory (see 
Ref. 27 and descriptions of models I-V.2 and I-V.3). 

The probabilities of intramode VV exchange and intermode W(vj ^ v2) 
exchange are much higher than the probabilities of other vibrational energy 
exchange. It leads to a rapid establishment of three-temperature vibrational 
distributions, and C0 2 vibrational populations Nf°* are expressed in terms of the 
gas temperature T9 the temperature of the first vibrational level of the asymmetric 
mode T3, and the vibrational temperature T\2 that characterizes the symmetric 
and bending modes coupled because of their rapid exchange (see Refs. 26 and 28): 

A / c o 2 _ ^ v f (2v1 + v2)E01i0 V3Eo(fii EU/3 - (2vi + v2)E01i0 - VsEopoj] 
"m-Qv™V[ kTn m kT J 

Here gv is the statistical weight (multiplicity), Qv is the vibrational partition 
function, £12/3 is the vibrational energy of level vj,v2,V3, with degeneracy of 
level / (/ = 0 or / = 1 for v2). 

The following free stream conditions for one-dimensional stationary C0 2 flow 
in Euler approximation have been considered: T0 = 293 K, p0 = 100 Pa, Mo 
(Mach number) = 4. The vibrational distributions in the free stream are assumed 
to be equilibrium Boltzmann distributions with the gas temperature To and remain 
the same just behind the shock (x = 0) because the vibrational energy transitions 
in the shock front are frozen. The vibrational levels possessing the total energy 
less than Do/4 (Do is the dissociation energy) have been taken into account. This 
corresponds to the maximum values v\ =6, v2 = 12, V3 = 3. Figure 4.4 shows 
reduced (relative) level populations of the combined mode as functions of energy 
En/3/k, K, where curve 1 — x = 0.07 mm; 2 — x = 2 mm; 3 — x = 2 cm. 

0 3000 6000 9000 12000 
110"1 -
1-10'3 

110"5 

110"7 

HO"9 

MO"11 

HO'13 

MO"15 

reduced population 

Fig. 4.4 

The process of vibrational excitation in the relaxation zone is shown in 
Fig. 4.4, where the populations in the combined mode with the vibrational 
number v = 2vj + v2 and V3 = 0 are given as functions of the vibrational energy 
En/3/k for different distances x from the front. One can notice a sawtooth 
behavior of the vibrational distribution for the location close to the front (at 
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x = 2 mm). Approaching equilibrium, the distributions become smoother. 
Similar distributions have been obtained in Ref. 28 in the three-temperature 
approximation, in the case of very high storage of vibrational energy in the 
combined mode (Jn/T ~ 10). 

10. Comment 

The system of kinetic equations previously described provides the most 
general description of vibrational relaxation of a polyatomic molecule 
represented as a system of harmonic oscillators. The harmonic oscillator model 
can be applied only to polyatomic molecules characterized by relatively low 
degrees of vibrational excitation. In the case of an anharmonic molecule, 
interactions between vibrational modes, as well as effects because of degeneracy, 
rotational splitting, and complex rotational structure, make it possible to treat 
the vibrational spectrum of a polyatomic molecule as a quasi-continuum 
(characterized by a high density of vibrational states), except for a few low levels. 
For example, the lower boundary of the quasi-continuum is close to 3000-
4000 cm" for SF6, which corresponds to the energy of 3 to 4 vibrational quanta 
(Refs. 29 and 30). For triatomic molecules, qualitatively correct results can be 
obtained by using the harmonic oscillator approximation up to the dissociation 
limit (Ref. 31). See also Comments in the description of model V.8. 

Relevant material can be found in Ref. 19. 

F. Vibrational Relaxation in Chemically Reacting Gas: State-Specific 
Kinetic Model (V.6) 

1. Purpose of the Model 

The model aims at the determination of population densities of vibrational 
levels of molecules during simultaneous processes of vibrational energy 
exchange and chemical reactions. 

2. Assumptions 

a) The characteristic time of vibrational relaxation is much greater than the 
translational and rotational relaxation times and is comparable with the 
characteristic time of chemical reaction. The equilibrium Maxwell-
Boltzmann distribution of particles over translational and rotational 
energies with common temperature T is preserved. 

b) Three-body collisions in the absence of recombination are ignored as less 
probable in comparison with binary collisions. 

c) The population densities Nm for vibrational levels m of XY molecules in 
reacting gas mixture are considered. XY molecules are involved in VT, 
VV, and VV energy exchange processes in collisions without the change 
of chemical composition (see description of models V.I-V.3, and V.5), 
and also in chemical transformation, altogether in / processes and 
reactions. The reactions with XY molecules are conventionally classified 
into direct (d,f) for reagents and reverse (r, b) for reaction products (see 
subsection "Nomenclature"). 
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3. Restrictions 

The restrictions on the calculation of the population density of vibrational 
levels as a result of vibrational energy exchange are indicated in descriptions of 
models V.1-V.3 and V.5 in accordance to the problems being solved. 

4. Basic Kinetic Equation 

For change of vibrational states m±±m',n+±nf of components ij,i',f in 
reactions /(/ <=* pj +±f) in binary collisions: 

dt *Y / , ^m'ml^m'^n' 2-J ^mm'l^m^n l 
n,m',n' 

If any vibrational state is not specified (simplified state-specific kinetics) or is 
absent (as an example, for atoms), the corresponding notation of state is omitted, 
and is not considered in the equation. The description of vibrational energy 
exchange without chemical transformation is included in the equation formally 
with / = 0: / <=± /, j <=* j). 

5. Kinetic Equations for Particular Types of Reactions 

For dissociation of diatomic molecules AB, A2, and B2, and for recombination 
of atoms A, B with formation of diatomic molecules, assuming that particle M^ 
state does not change: 

AB(m) + Ms +± A + B + Ms (for A2 and B2-similarly) 

d ^ = M f \ _ y s ^AB-M^AB^ + T - ^A-B-M^A^M, 

d̂  \ dt Jyjyy g g 

For reactions of decomposition and formation of polyatomic molecules, 
assuming that particle M^ state does not change: 

XYZ(£m) + Ms +± XY + Z + M, 

dArXYZ /dNXYZ\ 

\ / VT,W,W s s 

For reactions of a simple exchange with diatomic molecules: 

AB(m) + C+±AC(m') + B 

^=ftPl - E ̂ Ov°+E *£?*?»* 
U f V U f /VT,W,W m> m' 

For reactions of a double exchange with diatomic molecules: 

AB(m) + CD(w) <=± AC(m') + BD(«') 
( W ^ B _ {^*\ _ V^ k**-0 N^hf® 4- V ĵAC-BD ATACATBD 

J , —I J , / /_^ Kjmn,m'riiym iyn ^ ^ Hmn,m'riiym' iyn' 
n,m'n 
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If any vibrational state is not specified, the corresponding notation of state is 
omitted and is not considered in the equation. 

The formulas for rate of population density change for mth vibrational level as 
a result of vibrational energy exchange (cUV^/dOvr.w a n d (dN|JY/a,Ovr,w,vv' 
are determined by the relations presented in the descriptions of models V.1-V.3 
and V.5, with assumptions and restrictions accepted there. Note that the processes 
of VT and VV exchange with reaction products and other chemical components 
must be taken into account. The role of VV and W energy exchange processes is 
negligibly small if A ^ <£ Ns, N

XYZ <£ Ns. 

6. Nomenclature 

a) Quantities calculated with the model: 

^mY> N\n population density for the mth vibrational level of 
XY and M, molecules 

N{ population density for the nth vibrational level of 
N{ molecules 

N^ population density for the mth vibrational level of 
AB molecules 

NfYZ population density for the mth vibrational level in 
the mode £ of XYZ molecules 

b) Kinetic coefficients: 

KOm'i' kfymi r a t e constants for transitions m O m\n <& n' in /th 
reaction 

kj^~ s rate constant for dissociation of AB molecule from 
the mth vibrational level induced by AB-M5 

collisions 
k^B~Ms rate constant for recombination of A and B atoms 

with formation of AB molecule in the mth 
vibrational level induced by A-B-M* collisions 

^djm^^ ^ m ~ Z M j analogous rate constants for decomposition and 
formation of polyatomic XYZ molecules in the 
mode £ 

^ L ~ C > kbm'm* r a t e constants for reactions of a simple exchange 
A B + C ^ A C + B in forward (/) and back (b) 
directions with decomposition and formation of 
AB molecule in the mth vibrational level and with 
formation and decomposition of AC molecule in 
the mth level 

^ " S ' ^ w n ' m n r a t e constants for a double exchange AB + 
C D ^ A C + BD in forward (/) and back (*) 
directions with decomposition and formation of 
AB molecule in the mth level, of CD molecule in 
the nth level, and AC, BD, molecules in the mth 
and nth levels, correspondingly 

c) Superscripts denote chemical components participated in reactions 
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Subscripts 

d,r 

f,b 
m, n 
m', nf 

Uj 
i'J' 

reactions of dissociation (decomposition) and 
recombination (formation), correspondingly 
forward and back reactions, correspondingly 
vibrational states in d,f reactions 
vibrational states in r, b reactions 
mixture components participating in d,f reactions 
mixture components participating in r, b reactions 
vibrational mode of polyatomic molecule under 
analysis 

Other quantities: 

(dA^/dOvr.w 

(dA^YZ/d»VT,W,W< 

N%D, Nff, N*P 

NA, NB, A^, N**, 
NAC, NBD, NXY, NM* 
E gAB c-XYZ 

'tm 

D0,D° 

Ea 

k°d(T) 

KP(T) 

<ro(T) 
nti,mj 

a 

Ro 
wd 

rate of population density change for mth 
vibrational level of AB molecules as a result of 
VT and VV energy exchange 
rate of population density change for mth 
vibrational level of XYZ molecules in the mode 
£as a result of VT, VV, and W energy exchange 
population density for vibrational levels in­
dicated by subscripts, and for molecules, indic­
ated by superscripts 
number densities of species indicated by 
superscripts 
vibrational energy of mth vibrational level, for AB 
and XYZ molecules (in the mode £), in particular 
dissociation energy of diatomic molecule and 
chemical bond energy for decomposition of 
polyatomic molecule, correspondingly 
activation energy in chemical exchange reactions 
thermally equilibrium rate constant of disso­
ciation 
constant of chemical equilibrium in terms of 
partial pressures 
partition functions over vibrational states, for 
molecules indicated by superscripts, in par­
ticular 
averaged cross section for elastic collisions 
mass of particles /, j 
reduced mass of colliding particles 
the efficiency of vibrational energy in activation 
of reaction (see description of model I-C.19) 
average number of vibrational quanta per molecule 
(in subsection "General and Particular Solution") 
gas kinetic collision frequency per unit number 
density 
gas kinetic radius 
dissociation rate 
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Q% probability of resonant VV exchange in 
collisions of identical molecules (vibrational 
transfers 1 -» 0, 0 -* 1) 

7. Coefficients and Parameters 

The state-specific rate constants of chemical reactions depend on vibrational 
state of molecules-reactants and/or reaction products, and also on specifics of 
these molecules and reactions in which they participate. 

For dissociation of diatomic molecules, Marrone-Treanor model (see Ref. 32 
and also Refs. 33-35) leads to 

* ^ - H S V [ T H ) ] ) 
The values of parameter U are presented in the description of model I-C.21. 

The expressions for thermally equilibrium rate constant k® for dissociation of 
molecules 0 2 , N2, NO, CO, CN, and C2 at temperatures from 300 up to 40,000 K 
are presented in Ref. 36 (see also descriptions of models I-C.ll, I-C.12). 

According to the ladder model of dissociation, only single-quantum transitions 
between vibrational levels take place in collisions, and the molecules dissociate 
only in transitions from the uppermost vibrational level m = mmax to continuum 
spectrum (free state). The probability of dissociation per appearance of a 
molecule in the uppermost level m = mmax is equal to one, so that 

kdm(T) = 0 for m < mmax 
1/2 

kdm(T) = I — ) a0(T) for m = mn 
/8m1 / z 

\lTtlJ 

/* = 
miHij 

nti + ntj 

The values of average cross sections for elastic collisions CTQ(T) of the particles 
i-j are reviewed in the descriptions of models I-T.I-I-T.3 (for model of hard 
spheres, (To(T) = TTRQ). 

More complex versions of the ladder model (Refs. 31, 37 and 38) find 
applications in the problems of polyatomic molecules decomposition. In this 
case, the state-specific rate constants for decomposition of polyatomic molecules 
in vibrational states Em < D° (D° is the energy of breaking bond of polyatomic 
molecule) are determined by the same expressions as in reactions of dissociation 
of diatomic molecules (in particular, with the Marrone-Treanor model). 
Spontaneous unimolecular decomposition of molecules whose energy state is 
higher than the threshold D° is modeled by state-specific rate constants in 
accordance with Ref. 39 see the description of model I-C.13. The results of the 
solution of this problem and calculations of the state-specific rate constants of 
decomposition of C0 2 molecules are presented in Ref. 40. 

Assuming 100%-efficiency of translational energy of reactants in overcoming 
the activation barrier Ea (see the description of model I-C.19 and Ref. 41), the 
state-specific rate constants of exchange reactions are: 

[ E — aE 
- a ^ m'0(Ea- aEm) 

kT 

file:///lTtlJ
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where a is the_efficiency of vibrational energy Em utilization in activation of the 
reaction, and 0 is the Heaviside function: 

0(x) = 1 for x > 0 
0(x) = 0 f or x < 0 

The values of the coefficient a are indicated in the description of model I-C.19. 
The pre-exponential factor A(T) is close to the value of rate constant for gas-
kinetic collisions or to the collision frequency per unit number density of particles 
Z = <7TRl(SkT/7rfi)l/2. 

Calculations from Ref. 42 on the basis of the model of chemically active 
collisions in Ref. 43 show that for some exchange reactions: 

kfiniT) = C(m + 1) • 7* expf- ^ ^ • 6(Ea - Em)] 

where C = 4.17 x 1012, p = 0 for reaction N2(m) + O -> NO + N, and C = 
1.15 x 109, j8 = 1.0 for reaction 02(m) + N - • NO + O (kM is in units of cm3/ 
(mol-s)). 

Experimental results for reaction H2(m) + OH -> H20 H- H are approximated 
by the formula (Ref. 43) 

19 /-2165\ , 
kfrn^o = 5.6 x 10 z expl — - — I cmJ/(mol • s) 

The Macheret formulas (Ref. 44) for state-specific rate constants of 
endothermic reactions of simple exchange (see the description of model 
I-C.20) are presented on page 176 of Ref. 6. The results for vibrational energy 
disposal (distribution) in products of many exothermic reactions are listed in the 
review (see Ref. 45). 

Comprehensive data on state-specific kinetics in chemically reacting gases can 
be obtained by numerical solutions of dynamic problems of molecular collisions 
and the use of the Monte-Carlo method (see Refs. 46-53). In such a manner, 
state-specific rate constants for a number of exchange reactions were computed. 
The results of calculations can be approximated by various expressions. The 
examples follow. 

When the results of calculation (in Ref. 47) are approximated by the expression 

kfin(T) = A • e x p l " - E a ~ ^ m ' 0(Ea - yEm)] 

the values of approximation parameters for some reactions are the following: 

Reaction Ea, eV 

H2(m) + 0 -> OH + H 
N2(m) + 0 - • NO + N 
02(m) + N - • NO + 0 

0.41 
3.20 
0.33 

0.72 
0.90 
0.46 

0.21 
0.52 
0.12 
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Here, /3, y are the parameters describing participation of translational and 
vibrational energies in reactions, and A & rrR^kT/ TTIJL)1/2 . 

The results of calculation in Ref. 54 for reaction N2(m) + O -> NO 4- N 
are approximated by the expression logkjm = bo + b\Em + biE^ + b^Em 

{kfm is in cm3/(mol-s), and Em is in eV) with parameters that depend on 
temperature: 

T 

7000 
10,000 
14,000 

bo 

1.099 x 10 
1.193 x 10 
1.258 x 10 

b\ 

7.809 x 10"1 

5.496 x 10_1 

3.919 x 10"1 

b2 

-6.605 x 10"2 

-4.512 x 10"2 

-2.978 x 10"2 

b3 

1.672 x 10"3 

1.257 x 10"3 

7.670 x 10"4 

More complete state-to-state kinetics, with transitions between specified 
vibrational states of reactants and products m —> m! are considered in Ref. 54 for 
the reaction N2(m) + O -> NO(m') + N (see Fig. 9 on page 2832 of Ref. 54), and 
in Ref. 55 for the reaction of unimolecular decomposition of N20. 

8. Features of the Model 

Relations of detailed balance for state-specific rate constants are: 
a) For reactions of dissociation and recombination of diatomic molecules 

r.AB-M, 

*A-B-M. Qxp(-E^/kT) x < 
( 

kT 

'NANBS 

\ N™ 

(1) 

(2) 

eq 

b) For reactions of decomposition and formation of polyatomic molecules 
(disregarding degeneracy of mode £) 

0F(T) Kd&n 

kfl'z-M' ~ expi-E^/kT) 
X I 

( Kp(T) 
kT 

U X Y Z A 9 

(1) 

(2) 

c) For reactions of simple exchange (m +± m') 

KP(T) 

Q$ 
,AB J L A B - C 

Kfinm' 

**£B " expi-E^/kT) 
x { 

(1) 

(NXYNZ\ 
V NXYZ ) e

 ( 2 ) 
eq 
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d) For reactions of double exchange (mn <=± m'n') 

ffiff = 6f^D exp[-(£AC + £ B D ) A r ] j Kp^ 
*fifcS G ^ c e « D e x p [ - ( £ ^ + ^ ) A r ] J ( ^ 4 c D J e (2) 

(1) for reactions in simple gases, with no components other than those 
participating in the reactions under analysis; 

(2) for reactions in complex mixtures with other components. 

The value of an equilibrium constant of chemical reactions KP(T) in terms of 
partial pressures of reacting components for reactions in simple gases is discussed 
in the section Calculation of Thermodynamic Characteristics in Chapter 8 of this 
book. The values with subscripts "eq" correspond to equilibrium number 
densities of components in complex mixtures. 

9. General and Particular Solutions 

The system of equations of state-specific kinetics in chemically reacting gas is 
solved by numerical methods (Refs. 46 and 47). 

For diatomic molecules modeled as truncated harmonic oscillators with fast 
VV exchange, assuming that only single-quantum vibrational transitions occur 
and that dissociation occurs only from the vibrational level mmax closest to the 
dissociation energy Do, the approximate analytical solution for the initial stage of 
dissociation (in the absence of a noticeable recombination) is (Ref. 56): 

Nm=Nt 
Wdexp(-m$/Tv) A exp(^e/r,) - 1 
^ ( l + aWAB ^ n 

(m < mmax) 

where Wd = (dN**/dt)d is the dissociation rate, a = J ] ^ nN^/N*3, 
expi-O/T,) = a/(l + a), N% = N^ll - exp(-0/Tv)] • exp(-m0/7;), R0 is 
gas kinetic radius of elastic collisions, Tv is the vibrational temperature, and 6 
is the characteristic vibrational temperature. In this case, the derivations used the 
conservation law for total (translational plus rotational plus vibrational) energy in 
the following form: 

d #5T "*<* \ 
fa\2~Q + aYlNm) = - m maxWrf 

The solution indicates that a noticeable deviation from Boltzmann distribution 
occurs near the dissociation level m = mmax. 

10. Example 

The calculation results from Ref. 42 for distributions of population density of 
vibrational levels (expressed in molar fractions) for 0 2 molecule behind a shock 
wave front in air are shown in Fig. 4.5; the initial temperature of air immediately 
behind the normal shock front in this example is equal to 22,000 K, the pressure 
before the front is equal to 0.02 Ton*. 
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Fig. 4.5 

The values of state-specific rate constants for dissociation, according to Ref. 
42, are taken as kdm = C(m + 1)7^ exp [-(D0 - Em)/kT] cm3/(mol-s), where 
C = 2 x 1013 and j8 = 0 for dissociation of 02 , and C = 1.14 x 1015 and p = 
—0.6 for dissociation of N2; for exchange reactions, the values of kjm are 
previously discussed in the subsection Description of Coefficients and 
Parameters, with the reference to Ref. 42. When solving the equations of 
vibrational kinetics in Ref. 42, the rate constants for single-quantum VT and VV 
transitions were those calculated in Ref. 5. As seen in Fig. 4.5, the populations of 
excited vibrational levels grow initially (up until about 2 x 10~6 s) because of 
vibrational energy exchange, and then they decrease because of chemical 
reactions. The steady-state equilibrium distribution of molecules 0 2 over 
vibrational levels corresponds to the temperature of 5810 K. 

Examples of solutions of state-specific kinetic problems in chemically 
reacting gases are given in Refs. 55 and 57-59 for flows in shock waves, in 
Refs. 60 and 61 for nozzle flows, and in Refs. 62 and 63 for boundary layers. 

11. Comments 
State-specific kinetics of processes that take place in collisions of molecules 

with electrons is considered in Ref. 5. 
Relevant material can be found in Refs. 5, 6, and 46. 

G. Vibrational Energy Relaxation in Diatomic Molecules: Mode 
Kinetics Model (V.7) 

1. Purpose of the Model 

The model aims at calculation of the vibrational energy of diatomic molecules 
as a function of time in gas mixtures. 
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2. Assumptions 
a) See Assumptions b -d in the description of model V.l and Assumption 2 

in the description of model V.2. 
b) The course of vibrational relaxation processes is characterized by a single 

variable: the mean vibrational energy e per molecule. The value of £ and 
the average number of vibrational quanta a per molecule are calculated 
in the harmonic oscillator approximation. Accordingly, e = 0 • a, where 0 
is the characteristic vibrational temperature and e is measured in Kelvin. 
The anharmonicity of molecular vibrations is taken into account by 
introducing corrections to the vibrational relaxation time r. 

c) When the model parameters are represented as functions of vibrational 
temperature, it is assumed that the rates of intramode VV exchange are 
substantially higher than the rates of VT processes and energy exchange 
between modes (TW <£ Tyr, ryy>). This ensures Boltzmann distributions 
characterized by well-defined vibrational temperatures, at least for the 
lowest vibrational levels, whose population densities determine the total 
vibrational energy. Accordingly, it can be assumed that the dependence of 
vibrational energy on vibrational temperature (Tv) can be represented in 
the harmonic oscillator approximation: 

0 
s(Tv) = -cxp(0/Tv) - 1 

where s is measured in Kelvin. 

3. Restrictions 

See Restrictions a and c in the description of model V.l. 

4. Relaxation Equations 

a) For diatomic molecules in a gaseous mixture of a low concentration 
impurity with structureless particles, and for single-component gas of 
diatomic molecules, 

da a — a?o r / a\ i -
<*o = ©-e xp \r - 1 

dt Tyr 

b) For a binary mixture of diatomic molecules, 

aCD(1 + aAB)exp(0CD/r) - 0 ^ ( 1 + aCD) 

daAB aAB_aw expO^/T) 

dt 

d a C D _ 

TAB 
TVT 

aCD - a£D 

r — 
Tw 

a A B ( 1 + a C D ) e x p ( ( 9 A B / r ) _ - aC D(l + a™) 

exp(0CD/:T) 
^ Ty^ TW 

of = [ e x p ( ^ ) - I ] " ' ; 4 D = [ e x p ( ^ ) - l ] " ' 
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5. Nomenclature 

a) Quantities calculated with the model: 

a, a^ average number of vibrational quanta per AB molecule 
aC D average number of vibrational quanta per CD molecule 

b) Kinetic coefficients: 

TVT, T$ VT relaxation time for AB molecules 
T ^ ? VT relaxation time for CD molecules 
Tyy> characteristic time of V V energy exchange between AB 

and CD molecules 

c) Other quantities: 

AB-M, r a t e c o n s tan t for the 1 -» 0 vibrational transition in AB 
molecules associated with VT energy exchange induced by 
its collision with M, particles 

A:10 ~
 J rate constant for the 1—^0 vibrational transition in CD 

molecules associated with VT energy exchange induced by 
its collision with M/ particles 

£AB-AB r a t e c o n s tant for the 1 -> 0 vibrational transition in an AB 
molecule associated with VT energy exchange induced by 
an A B - A B collision 

k\o~CD r a t e constant for the 1 -> 0 vibrational transition in an AB 
molecule associated with VT energy exchange induced by 
an A B - C D collision 

£CD-CD r a t e c o n s tant for the 1 -> 0 vibrational transition in a CD 
molecule associated with VT energy exchange induced by a 
C D - C D collision 

£CD-AB r a t e constant for the 1 -> 0 vibrational transition in a CD 
molecule associated with VT energy exchange induced by a 
C D - A B collision 

^QJAB-AB ^^^ constant for the V V energy exchange in an AB 
molecule induced by an A B - A B collision involving the 
1—^0 vibrational transition in one molecule and the 0 —• 1 
vibrational transition in the other 

^QICD-CD ^ a t e constant for the VV' energy exchange in a CD molecule 
induced by a C D - C D collision involving the 1 ^ 0 
vibrational transition in one molecule and the 0 -> 1 
vibrational transition in the other 

k% " D rate constant for the V V energy exchange in an AB 
molecule induced by an A B - C D collision involving the 
1 -> 0 vibrational transition in the AB molecule and the 
0 - ^ 1 vibrational transition in the CD molecule 

^QJCD-AB ^ ^ constant for the V V energy exchange in a CD molecule 
induced by a C D - A B collision involving the 1 - • 0 
vibrational transition in the CD molecule and the 0 -> 1 
vibrational transition in the AB molecule 
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0AB 
0CD 

Ncv 

Ei 

(0 

mAB 
mMj 

ap 

Do 
T 

7<:D 
1 v 
Ti 
NAB 

characteristic vibrational temperature of AB molecules 
characteristic vibrational temperature of CD molecules 
equilibrium value of a*3 corresponding to translational 
temperature T 
equilibrium value of aCD corresponding to translational 
temperature T 
characteristic time of intramode energy exchange 
population density in the nth vibrational level of AB 
molecules 
population density in the nth vibrational level of CD 
molecules 
vibrational energy of an AB molecule excited to the level 
with v = 1 
vibrational angular frequency of AB molecule 
mass of an AB molecule 
mass of an M/ particle 
parameter of the Born-Mayer potential (see model I-T.3) 
dissociation energy of a molecule 
translational temperature (gas temperature) 
vibrational temperature of AB molecules 
vibrational temperature of CD molecules 
vibrational temperature of the first excited level 
number density of AB molecules 
number density of CD molecules 
number density of M; particles 

6. Description of Coefficients and Parameters 

Vibrational relaxation times for molecules treated as harmonic oscillators are 
related to the VT and VV energy exchange rate constants by the following 
relations: 

T A B _ 
TVT — 

T C D -

kff-^N^+kfi-^N™ + £C"Htf»*l 1 " exp(-^)l 

jCD-CDtfCD + yfcCD-AB^AB + J^CD-M,^ 1 — exp (-?) 

, - l 

- l 

Tw, = tc^A^r1 = [*sf-"A r̂1 

The VT and VV' energy exchange rate constants for the indicated transitions 
between vibrational levels can be evaluated with various models presented in 
Chapter 4 of the first volume in this series. 

To allow for anharmonicity effects on VT energy exchange, a correction 
factor, Ka, is introduced into the expression for the vibrational relaxation time 
TVT' Tyr = KaTvr (J%T *s t n e vibrational relaxation time for an anharmonic 
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oscillator). Formulas and estimates for Ka can be found in Refs. 3,9, and 64. In the 
approximation developed in Ref. 64, 

* - [ ^ 
y(T) • cxp(-6/Tv)l

2 

• txp(-e/Tv) 

^ / x w 2 mAB • mMj 

2a£fc mAB + rriMj 

for small deviations from equilibrium; for gaseous N2 and 02 , this leads to 
y = exp(1.277-r-1/3) and y = exp( 1.478 • r~1 / 3) , respectively. Here, the 
Morse model is used as the simplest anharmonic oscillator model. It is assumed 
that the Boltzmann distribution over energy levels characterized by a vibrational 
temperature, Tv, is preserved in the course of vibrational relaxation via single-
quantum transitions. The interaction between colliding particles is described 
here by the Born-Mayer potential characterized by the inverse radius ap of 
interaction (see model I-T.3). In calculating the transition probabilities Pn+i/n for 
transition n + l - > n , only the fact that Morse oscillator levels are not energy-
equidistant is taken into account, which leads to Pn+\/n — ( «+ IVIOV 1 

according to Ref. 65. This approximation of Ka is applicable if Tv < 6 • In y. A 
refined version of this approximation allowing for deviation of population 
densities at high vibrational levels from the Boltzmann distribution is: 

a [ l-exp(-0/ri) J 
where 7\ = (E\/k) ln(No/N\) is the temperature of the first vibrational level and 
Syr is the anharmonicity factor specified in model I-V.8; this formula is valid if 
T\ < 6/SVT-

When T > 6, the following approximation proposed in Ref. 9 can be applied: 

K = f l -expC-f l / rQ I 2 

a \\ - exp(-0/7i)/[2exp(8vr) - 1]J 

This formula allows for anharmonicity effects on both the vibrational energy 
distribution function and the probabilities of vibrational transitions. 

In any case, for example, the value of Ka calculated for 0 2 -Ar at T — 8000 K 
decreases from 0.98 at Tv = 300 K to 0.264 at Tv = 8000 K. 

Additional information about the effects of anharmonicity on vibrational 
relaxation rates for various types of deviation from equilibrium can be found in 
Refs. 3, 5 and 6. 

7. Features of the Model 

In a binary mixture of diatomic molecules AB and CD treated as harmonic 
oscillators for which r^ , , 7^?, <£ T ^ , T^?, the evolution of vibrational energy 
involves two stages. At the first stage (t > T W ) , the following correlation 
between a*3 and aCD develops: 

0 ^ ( 1 + aCD)exp(0AB/r) - aCD(l + aAB)exp(0CD/r) = 0 
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which is equivalent to 

6^-6 ,CD 0AB flCD 

JAB ~" JCD 

At the second stage (t ~ r$J, T$?) , VT energy is transferred as predicted by 
the relation above combined with one of the equations below, namely, the one 
having the lower value of TVT' 

d a A B a A B _ a A B da C D ™CD 
• a. 

.CD 

dt ~~ T$ ' dt r 

When r ^ <£ r ^ , the resulting relaxation equation is 

d a A B ^ a A B _ a A B 

df ~ T 

.CD 
VT 

^ J L . . where ^ = T ^ l + — _ j . 

This shows that vibrational relaxation in an AB-CD mixture is characterized by 
an effective time r ^ that is greater than 7$ because the vibrational energy of 
AB molecules can be increased via W exchange induced by collisions with CD 
molecules. 

8. General and Particular Solutions 

When diatomic molecules treated as harmonic oscillators constitute either a 
low-concentration impurity in a diluent or a single-component gas, the variation 
of vibrational energy at T = const can be described by the expression 

•[-*£)] a(0 = a(0) + a0 | 

9. Example 

As an example of vibrational relaxation in a gaseous mixture, consider 
vibrational relaxation in air behind a shock front. Figure 4.6 shows the profiles of 

3000 

2000 
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10"" 10"2 10-1 1 10 102 x 

Fig. 4.6 
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translational temperature T and vibrational temperatures of oxygen and nitrogen, 
7b2 and TN2, calculated in the harmonic oscillator approximation with and 
without allowing for VV energy exchange (solid and dotted curves, respectively) 
for the shock velocity V = 2 km/s and initial pressure px = 1 Torr, as functions 
of the distance x (cm) from the shock front. 

Figure 4.6 reveals a difference between the effects of VV energy exchange on 
the relaxation of nitrogen and oxygen. The relaxation time of N2 is substantially 
reduced by VV energy exchange, whereas the relaxation time of 0 2 is only 
slightly increased. When 0 2 molecules are excited, N2 molecules remain largely 
unexcited, and the vibrational energy transferred from N2 to 0 2 is negligible. The 
vibrational energy transfer from 0 2 to N2 only slightly increases the relaxation 
time for 02 , because the rate of 0 2 excitation via TV energy exchange is higher 
than the rate of deactivation of 0 2 via VV exchange from 0 2 to N2. On the other 
hand, N2 molecules are excited in the presence of already excited 0 2 molecules. 
Under these conditions, the rate of vibrational energy transfer from O2 to N2 can 
be substantially higher than the rate of N2 excitation via direct TV exchange. 
Accordingly, the effective N2 relaxation time is much shorter than in the absence 
of VV energy exchange. Calculations show that the effects because of V - V 
energy transfer are weaker for higher Shockwave velocities. This is explained by 
the more rapid increase in the rate of direct VT excitation with temperature, as 
compared to the increase in the rate of VV energy exchange. At high 
temperatures, the difference between these rates is insignificant, and the effects 
because of VV energy exchange can be ignored. 

10. Comment 

Vibrational relaxation in a mixture of anharmonic oscillators with o^6, aCD > 1 
can be described in the mode kinetics approximation by using the formulas 
obtained for harmonic oscillators and introducing a correction factor Ka into the 
value of TVT- When o ^ , aCD > 1 vibrational relaxation of anharmonic 
oscillators cannot be modeled in the framework of mode kinetics, and the 
vibrational energy must be evaluated by combining the equations of state-specific 
kinetics with the relation 

e=jjT,N"-E* 
n 

where En is the energy of the nth vibrational level. 
Quasi-steady-state approximation for the kinetics of anharmonic oscillators 

was discussed in Ref. 66; diffusion approximation was discussed in Ref. 67. 
Relevant material can be found in Refs. 3-6. 

H. Vibrational Energy Relaxation in Polyatomic Molecules: Mode 
Kinetics Model (V.8) 

1. Purpose of the Model 

The model aims at calculation of vibrational energy of polyatomic molecules 
as a function of time in gaseous mixtures. 
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2. Assumptions 
a) See Assumptions b and c in the description of model V.l. 
b) Each vibrational mode of polyatomic molecules is modeled in the 

harmonic oscillator approximation and characterized by Boltzmann 
distribution over vibrational levels of energy with temperatures Ti9 Tj for 
/th and 7th modes. 

3. Restrictions 

a) See Restriction c in the description of model V.l and Restrictions a and b 
in the description of model V.5. 

b) The times of processes under consideration are vastly longer than the 
characteristic time of intramode VV energy exchange Tyy = (k%N)~l. 
This imposes a constraint on number density N9 because for a 
fast formation of Boltzmann distribution within each vibrational mode 
with corresponding vibrational temperatures, the time of intramode 
energy exchange must be far shorter than the time of intermode energy 
exchange: 

k%NXY » max[*XY-M* ( Vi ^v>-\ lyM,] 

4. Relaxation Equations 

a) For polyatomic molecules XY as a low-concentration impurity in a gas of 
structureless particles M^: 

k L 1 

i = l j=k+\ J 

a ^ r , e x p ( - ^ [ l - e x p ( - | ) j _ 1 , = i,j 

b) For a mixture of a single polyatomic species XY with structureless 
particles M :̂ 

^-(i i"-"{s:4
0}"""rt(4+r ,)^+*1" 
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x fl (ntfrHfltfto + adf fl Wn + cftfi 
j=k+i 

k 

i=l /=*+! 

j=k+l i=l 

+E** :Y-M„ 
0-W, 

NM* 

r * L 

I i= l j=k+\ 

i= l j=k+\ 

c5-r,«p(-|)[l-«p(-|)j" •* = ! , . / 

c) For a mixture of two polyatomic species, XY and ZW, with structureless 
particles M :̂ 

~dT 

Y - Z W M - 0 
- f l [a,(r, + a?)]1' f ] [o£(r7 + a,)]1' + F 

i= l ;=ft+l J 

x ^ i ^ f l f ^ ^ " M l r K i v + a?)]^ f l ( 0 ^ 
<=1 V li ' j=k'+l 
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x 
j=k'+l 

a°s = rs exp 

i=\ V '«' / J=k+l 

[ i=l j=k+l 

- f j [ a , . ( r , + ««)]'• f\ [cf>(rj + aj)A 
(=1 j=k'+l J 

H)[--K-f):' S = l9J 

Here 

p(p-l)...(p-n+l) 

(0 
Nomenclature 

a) Quantities calculated with the model: 

ag average number of vibrational quanta in the mode £ of XY 
molecules 

b) Kinetic coefficients: 
rate constant for VV energy transfer induced 

OCY-M,, I vi ~* v( ~ U 1 by XY-M^ collisions (see the nomenclature 
{ Vj -> vj + lj J for XY-XY and XY-ZW collisions in the 

description of model V.5) 

c) Subscripts: 
£ vibrational mode of XY molecule involved in XY-M^ and 

XY-XY collisions 
£ vibrational mode of XY molecule involved in XY-ZW 

collisions 
/, j modes involved in vibrational energy transfer 
q, q' structureless particles in XY-M^, XY-XY and XY-ZW 

collisions 

d) Other quantities: 
a,-, (Xj average number of vibrational quanta in the rth and7th 

modes of XY, ZW molecules 
a?, o/j equilibrium values of a,, a, at a gas temperature T 
L total number of vibrational modes in XY molecule 

involved in XY-M^ and XY-XY collisions 
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L' total number of vibrational modes in XY molecule 
involved in XY-ZW collisions 

k total number of vibrational modes in which quanta are 
lost 

U the number of quanta lost in the ith mode 
(i = l,...,*;) as a result of XY-M^, XY-XY 
collisions 

/{ the same for XY-ZW collisions (i = 1 , . . . , kf) 
lj the number of quanta gained in the yth mode 

(j = k + 1,.. •, L) as a result of XY-ZW collisions 
lj the same for XY-ZW collisions (j = k' + 1 , . . . , V) 
N number density of molecules 
NXY(vt, vf) number density of XY molecules in a specified 

vibrational mode state (t;,-, vj)\ for ZW molecules the 
symbol XY is replaced by ZY 

pfMq9 ftM* number densities of M^ and M# molecules 
/:% rate constant for intramode VV energy transfer in a 

collision involving the 1 - • 0 vibrational transition in 
one of the colliding molecules and the 0 -> 1 
transition in the other 

ryy characteristic time of intramode VV relaxation 
T(, Tj temperatures of ith and 7th modes in molecules 
0,-, Oj characteristic vibrational temperatures of ith and 7th 

modes in molecules 
r,, rj degeneracy of ith andjth modes in molecules 

6. Description of Coefficients and Parameters 

See the description of model V.5. 

7. Features of the Model 

a) The kinetic equations describe the change of the average number of 
vibrational quanta per molecule, «£, in a mode £ of XY molecule via a 
single channel that is defined by specifying a pair (/,, If) of quantum 
numbers: 

(v1,...,vk;vk+i,...,vL) = {vt,Vj} 

- > (Vj - h, . . . , Vk - lk\ Vk+1 + /fc+7, ...,VL + lL) 

= {vt - U\ Vj + lj} i = l,...,k; j = k + l,...9L 

Similarly, a channel (/(., /p is defined for a change of ag in a mode £' of 
XY molecule in XY-ZW collisions. In the presence of multiple 
relaxation channels, the right-hand side of the kinetic equation needs to be 
summed over all the values /,-, lj and l'.9 lj. With q = 0, processes in gases 
XY, ZW without other components are modeled. 

b) For detailed balance relations, see the appropriate subsection in the 
description of model V.5. 
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c) In the absence of VT energy exchange, when r w « f < Tyr, the quasi-
stationary state takes place in binary mixtures of polyatomic molecules. In 
this quasi-stationary state, there is a relation between the temperatures Tt 

and 7} of vibrational modes in molecules XY, ZW. Specifically, if a 
specific relaxation channel (/;, Ij) plays a dominant role for any mode £in 
collisions XY-ZW, the vibrational temperatures Tt and 7} of the 
appropriate modes are related by: 

Analogous relations, with other channels (/J, /p, occur at the quasi-stationary 
state for energy relaxation in other modes. The complete set of these relations 
for V vibrational temperatures Tj, Tj presents a system of linear equations for 
values 1/7/, 1/7}. If the determinant of this system differs from zero, this 
system has a single trivial solution Tt = 7} = 7\ suggesting that non-
equilibrium quasi-stationary distribution is absent. If the number of 
independent equations is less than L\ then the solution for temperatures 
Tt, Tj ^ T exists, and it determines the relation between vibrational 
temperatures of different modes in the process of VT relaxation. The rate of 
the latter process is mostly determined by the rate of VT energy exchange for 
vibrational mode with the lowest characteristic temperature 0, because the 
rate constant of VT exchange for this mode usually is much higher than the 
analogous rate constants for other modes with higher values of 0. 

8. Example 

The mode kinetics of vibrational energy exchange in the mixture of molecules 
C0 2 -N 2 follows. 

a) Nomenclature and values of parameters: 

Characteristic Mode 
Molecule Mode Index temperature, K degeneracy 

co2 
co2 
co2 
N2 

Symmetric 
Bending 
Asymmetric 
Vibrational 

1 
2 
3 
4 

0i = 2000 
02 = 960 
03 = 3380 
04 = 3354 

ri = l 
r2 = 2 
r 3 = l 
r 4 = l 

b) The principal relaxation channels for transitions between the lowest 
vibrational levels and the appropriate nomenclature of the rate constants 
follow. 

N2(» = 1) + CO2(00°0) = N2(z; = 0) + CO2(00°l) k(4 - • 3) 

N,(V - n + co,rao°c» - !N2(v = 0) + c ° 2 ( 1 1 lQ) k(4 -+ h 2) mv - 1 ) + co2(oo o) - j Nj(p = 0) + CO2(03,0) k{4 _ > 2) 
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CO2(00°l) + M = { C ° 2 ( l l l 0 ) + M W-*1'2* 
lCO2(0310) + M AM(3-»-2) 

CO2(10°0) + M = CO2(02°0) + M kM(l - • 2) 
CO2(01 !0) + M = CO2(00°0) + M kM(2 -* 0) 

M = C02( N2 

c) Vibrational relaxation equations for the average numbers of vibrational 
quanta a,, a, in modes 1 -4 for C02-N2 mixture follow. 

^ = k(4 -*• 3)A/CQl(o3 - 04) + k(4 -»• 2)tfc°2 

at 

* K - f ) ( ? ) V «.>-»,(.+?)'] 
^ = -k(4^3)NNl(a3-a4) + [*£-»• 2)JVOQl + ifc(3->.2)NN2] 

^h(-")(?)3(1+->--(1+f)J] 
d ( a 2 t 2 a i ) = -3[ft(3 - • 2 ) ^ ° * + fc(3 -* 2WN'] 

x [ e - ^ ( f )
3

( 1 + a3)_a3(1+?)
3] 

- k(4 - XtN* [e-™'T(f )3(1 + « . ) - « . ( ! + f ) ] 

df 

df 

+ [ifc(2 -> 0)A^°2 + *(2 -* 0)JVN2](1 - j82)(a02 - «2) 
t(4-»-2) = ik(4-»-l,2) + ft(4-»>2); k(3 -+ 2) 

= /fc(3->- l,2) + Jfe(3->2) 

These kinetic equations are written on the assumptions that 0i = 2^ , 
#3 = fti, T\ = r2. 

The values of rate constants for mixture of molecules C02-N2 are 
listed in Ref. 25 (see also corresponding subsection in the description of 
model V.5). 

The simulation of vibrational energy exchange in C02-N2 mixture 
serves as a basis for the description of processes in C02 lasers (Refs. 25, 68 
and 69). 
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9. Comments 

a) Collections of experimental data on vibrational relaxation times of 
triatomic molecules can be found in Refs. 21, 22, and 70-75. These data 
can be useful in calculations with other types of relaxation equations and 
for approximate estimates. 

b) Anharmonicity of vibrations of polyatomic molecules affects the 
mechanism of the intermode vibrational energy exchange, which 
determines the channels of the W energy exchange. In a polyatomic 
molecule, the quantum of one vibrational mode can be a multiple of the 
quantum of another mode. In this case, the Fermi resonance arises 
between different vibrational levels of the same symmetry, and an-
harmonic intermode coupling leads to the mixing of the energetically 
degenerate states. As a result, shift and splitting of the energy levels takes 
place. Fermi resonance between the bending and symmetric vibrational 
modes is observed in C02 , CS2, N20, and other molecules. The Fermi 
resonance in C0 2 provides fast deactivation of the lower laser level 10°0 
in the C0 2 laser operating on the transition 00° 1 -> 10°0. 

Anharmonic inter-mode coupling leads to the coupling of the vibrational 
distributions in different vibrational modes. Therefore, vibrational relaxation of 
polyatomic molecules is to be considered in the space of the vibrational numbers 
of several vibrational modes (Ref. 3). 

See also comments in the description of model V.5. 
Relevant material can be found in Refs. 3, 4, 5, 6, and 19. 

I. Vibrational Relaxation in Chemically Reacting Gases: Mode Kinetics 
Model (V.9) 

1. Purpose of Model 

The model aims at the determination of the mean vibrational energy of diatomic 
and polyatomic molecules as a function of time in chemically reacting gases. 

2. Assumptions 

a) See Assumption a in the description of model V.6. 
b) The course of vibrational relaxation processes and chemical reactions is 

characterized by a single variable—the mean vibrational energy e per 
molecule. Different types (modes) / of vibrations in molecules s are 
considered in chemically reacting mixture with distinct molecules, 
including polyatomic molecules. In this mixture, different vibrational 
temperatures T( for ith types of vibrations can exist. 

c) The Gulberg-Waage mass action law is obeyed in reacting mixtures with 
simple reversible chemical reactions (see also the description of model 
C.2 in Chapter 6 in this volume). 
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3. Restrictions 

a) The characteristic time of chemical reactions rc is much greater than the 
characteristic time of intramode VV energy exchange ryy = (k^N) 1 * 
Tc > Tyy. 

b) For harmonic oscillator approximation, see Restriction c in the description 
of model V. l . 

4. Relaxation Equations 

a) For vibrational energy of ith type (mode) of vibration in molecules s with / 
chemical reactions: 

b) For vibrational energy of diatomic AB molecules treated as harmonic 
oscillators, comprising a low-concentration impurity in a gas of particles 
M(NAB <£ NM), and experiencing VT exchange and reactions of disso­
ciation and recombination: 

/ « . ABx i / d A ^ X , _ AB 1 / d # A B \ d 6 A B _ e A B - £ A B
 /cm A B . 1 ^ A B ^ - 1 ^ ^ A B ' 

At ~ ryr {E" S V\ UJ / r f 

jAB\ /AATAB 
M 

5. Nomenclature 

a) Quantities calculated with the model: 

St mean vibrational energy of ith type (mode) per 
molecule 

eAB mean vibrational energy per molecule for AB 
molecule 

b) Kinetic coefficients: 

kf, kf rate constants of /th reaction in forward and back 
directions 

kd, kr rate constants for dissociation and recombination, 
correspondingly 

Tyr vibrational relaxation time 

c) Other quantities: 

(dei/dOvT.wL r a t e °f vibrational energy change for /th mode of 
molecule s as a result of VT and W energy 
exchange in accordance with models V.7 and V.8 
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e£B equilibrium value of e™ (at Tv = T) 
Tv vibrational temperature 
NS9 N^, NM, number densities for molecules s, AB, particles M, 

NA, NB and atoms A and B, respectively 
Eft average vibrational energy per molecule lost or 

gained in the ith type of vibration (mode) in each 
act of reaction / 

E*d, E* analogously in reactions of dissociation (d) and 
recombination (r), respectively 

Wi rate of reaction / 
(dN^/dt)^ analogously for reaction of dissociation (d) and 

(dJV^/dOr recombination (r) 
v j , v^ stoichiometric coefficients for component s in the 

/th reaction in forward and back directions 
m number of vibrational level 
Nm population density in the mth vibrational level 
Em vibrational energy of molecule in the mth level 
hm, kdm, km rate constants for /th reaction, dissociation (d) and 

recombination (r), respectively, for molecules in 
the mth level 

Pm probability of chemical transformation of molecule 
in the mth level 

0, 6V characteristic vibrational temperature 
D0 dissociation energy 
Ea activation energy 
^AB-M, r a t e c o n s t a n t s for vibrational VT transfer 1 - • 0 

induced by collisions of AB molecules with Ms 

particles 
Tyy, Tyr time of VV and VT relaxation, respectively 
rc, Td characteristic time of relaxation to chemical 

equilibrium (c), and dissociation equilibrium (d) 
in particular 

6. Description of Coefficients and Parameters 

Evaluation of rate constants of chemical reactions is considered in the 
Chapter 6 of the first volume. In nonequilibrium gases, rate constants ki9 kd 
depend not only on translational temperature, but also on vibrational temperature 
of the ith vibrational mode (see models I-C.19-I-C.28). 

The time of VT relaxation of the molecules AB in collisions with particles Ms 

(here, Ms = AB, A2, B2, A, or B) is given by the formula: 

TvT = I IEC^V- expi-e^/T)] 

Rate constants fcio are evaluated using the formulas from the models I-V.2 and 
I-V.5. For the gas mixtures, T ^ = J^s ( ^ M V T ^ " M 0 , where fM* = NJ £ $ Ns is 
the relative concentration (mole fraction) of the particles M{. 
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The value of the basic parameter E% (in particular, E% and E*) of this model is 
determined by the state-specific kinetics of chemical reaction (see the description 
of model V.6): 

2^m ™mkdm L^m ^rnKrm 

State-specific rate constants fc/m, kdm, ^rm of the chemical reactions that enter 
these expressions can be replaced by the probabilities Pm. 

In the models of distributed probability of thermally nonequilibrium reactions 
(see models I-C.21,1-C.26 and the literature cited there), where the molecules are 
modeled as truncated harmonic oscillators, Pm depends parametrically on the 
number m of vibrational level. Thus, for Tv < T in the Marrone-Treanor model 
(I-C.21) of dissociation of diatomic molecules and recombination of atoms: 

• mean vibrational energy lost (in K) 

d exp(0/7» exp(£>0/7>) - 1' 

• mean vibrational energy gained (in K) 

6 D0 

\TV T U) 

- l 

E: 
exp(0/U) - 1 exp(D0/£/) - 1 

Possible values of the parameter U that characterizes distribution of the 
dissociation probabilities from different vibrational levels are considered in the 
description of the model I-C.21. 

Assumption that dissociation takes place predominantly from high vibrational 
levels of molecule leads to the values of E*d close to D0. If dissociation from low-
lying levels is taken into account, E*d decreases. Estimation in Ref. 67, p. 108, 
gives Ej ^ 0.3D0. 

The mean vibrational energy lost and gained in the exchange reactions, 
dissociation and recombination reactions, and associative ionization, can be 
calculated within the generalized CVCV Marrone-Treanor model (I-C.26). 
Corresponding formulas are given in Ref. 77. 

In gas dynamic problems, the following values of E%, £*, E*t can be used as 
zero-order estimates in many cases: 

E*t& E* & 0.5DQ for dissociation of diatomic molecules, 
decomposition of polyatomic molecules, and 
recombination reactions; 

E?l « 0.1Ea for exchange chemical reactions. 

7. Features of the Model 

At sufficiently high temperatures, T > 6, it may be supposed that the 
following relations between characteristic times of the different processes 
proceeding in the gas take place: Tyr ~ TC(TV ~ r^), Tyy <£ Tyj. Under such 
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conditions, several stages are necessary for the establishment of complete 
equilibrium. During the first, fast, stage, quasi-stationary Boltzmann vibrational 
distribution with the temperature Tv (different from the translational temperature 
T) is established because of VV energy transfer. At the second stage, VT energy 
transfer leads to equilibration between Tv and T. Finally, at the last stage, the role 
of recombination reaction increases, and chemical equilibrium is established. 

An important feature of vibrational relaxation in high-temperature non-
equilibrium chemically reacting gases is a coupling between the vibrational 
relaxation and chemical reactions. This vibration-chemistry (in particular, 
vibration-dissociation) coupling can result in a quasi-stationary state of the gas, 
when the increase of molecular vibrational energy because of VT energy 
exchange is balanced by its decrease in chemical reactions. This quasi-stationary 
state is observed distinctly in dissociation of diatomic molecules in the absence of 
recombination (i.e., at the second stage previously mentioned) when the 
vibrational energy s*3 is determined by the balance between vibrational 
excitation in VT energy exchange and the loss of vibrational energy in molecular 
dissociation: 

d AB AB _ AB 

?* 0, 59 ! _ = (£* _ gM^WT, TV)NS 
at TVT ~ 

where kjs is the rate constant of dissociation of AB molecules in collisions with 
particles s (AB, A2, A, B, etc.), Tyr is the VT relaxation time in the mixture (see 
subsection Description of Coefficients and Parameters). This formula, viewed as 
an implicit transcendental equation, allows one to determine the dependence of 
vibrational temperature Tv on translational temperature T at the quasi-stationary 
stage of the dissociation process. The function Tv =f(T) is determined by the 
model of nonequilibrium dissociation that gives the values of E*d (see above), and 
by the dissociation rate constants kd(T9 Tv) (see the corresponding section in 
Chapter 6 of the first volume). Examples of Tv dependence on T at quasi-
stationary stage of 0 2 and N2 dissociation at different number densities are given 
in Ref. 78. 

8. General and Particular Solutions 

In the general case, the system of kinetic equations given above is solved 
numerically. 

9. Example 

An example of calculated profiles of translational temperature T and vibrational 
temperatures of oxygen (7b2)

 a nd nitrogen (rN2) behind a shock front in air 
(T = 300 K, p = 5.3 x 10~5 atm) is presented in Fig. 4.7. In this figure, x is a 
distance from the shock front, solid curves correspond to the Marrone-Treanor 
model (I-C.21), and dashed curves are the results of calculations with E^ = 0.6D0. 

Other examples of solution of the vibrational relaxation equations in 
chemically reacting gases can be found in Refs. 46 and 76-80. 
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10. Comments 

a) Effect of anharmonicity on vibrational relaxation of various modes in 
chemically reacting gases at different degrees of deviation from 
equilibrium is considered in Refs. 3 and 6. 

b) If anharmonicity is taken into account, the Marrone-Treanor model gives 
the following general expressions for the mean vibrational energy lost 
(E%) and mean vibrational energy gained (£*): 

^m£mexp(-£m /7>) 
£ m e x p ( - £ m / 7 » 

E: = 
Y,mEmexp(-Em/U) 

£ m exp(-E m / t f ) 

where TF = (l/Tv - l/T - l/U)~\ and [/ is a parameter of the 
Marrone-Treanor model (I-C.21). Dependence of the vibrational energy 
Em on the number m of the level is determined by the model of the 
molecular oscillator (see p. 12 in Chapter 1 of the first volume with the 
notation U = m). 

Relevant material can be found in Refs. 2, 6, 46, 67 and 76. 
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Chapter 5 

Electronic Relaxation (E Models) 

I. Introduction 

E LECTRONIC KINETICS deals with the description of processes occurring 
during transitions between electronic states of atoms and molecules below 

the ionization limit. This field of kinetics lies at the junction with plasma 
processes, cluster kinetics, chemical reactions, and vibrational kinetics. The 
boundaries of this field are defined by the following conditions: 

1. Collisions with free electrons do not play any significant part in electronic 
relaxation; 

2. Clusters exist only in an unstable state; 
3. Chemical reactions are treated as a constituent part of the process of 

electronic relaxation; and 
4. The processes of vibrational energy exchange are treated as related to 

their interaction with electronic transitions. 

Electronic kinetics of plasma processes involving collisions with electrons is the 
subject of Chapter 7 (see models P.9, P. 10, P. 11 in this volume). 

A unified system of molecules plus atoms is treated in the case of electronic 
kinetics of atomic-molecular gas. The electronic terms of polyatomic molecules 
represent a system of multidimensional energy surfaces in the space of energy 
and of normal coordinates of molecules. The terms are divided into bonding and 
antibonding (repulsive) ones; they are characterized by the presence or absence 
of a potential well. Each bonding term has a certain number of vibrational and 
rotational levels associated with it. New molecules may be formed in the course 
of electronic relaxation, new relaxation channels may arise, and chemical 
reactions may proceed. Many of the processes are sensitive to minor impurities 
and changes of conditions. In solving the problems of electronic kinetics, three 
main approximations are used. 

A. Adiabatic Approximation 

In the adiabatic approximation, the motion of atoms and molecules is treated 
independently of the motion of electrons and, because of the large difference 
between the characteristic times, the electron and nuclear motions may be 
described separately (Born-Oppenheimer approximation, see Ref. 1). Addition­
ally, electronic transition frequencies \Em — En\/h exceeds considerably 
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molecular vibrational frequencies. Within this approximation, the molecular 
energy E may be represented as a sum of electronic, Ee, vibrational, EV9 and 
rotational, Er, energies, or E = Ee+Ev+Er, and the wave function may be 
represented as the product of the respective wave functions, M> = M^ x ^ v x >Pr. 

In this approximation, the energy terms and the wave functions of atoms and 
molecules are calculated. For polyatomic molecules, the wave function is 
constructed from the wave functions of hydrogen-like atoms, such as atomic 
orbitals (AO). The interaction of each electron with all other electrons is taken 
into account in the form of interaction with the averaged field produced by the 
nucleus and the remaining electrons. The wave function for molecules is 
constructed by the method of molecular orbitals (MO) from the functions 
describing the behavior of individual electrons in the field produced by the 
remaining electrons and by all atomic nuclei that form the molecular core. 
The descriptions of the AO and MO methods, as well as of their applications, are 
given in Refs. 1-3. These methods serve as the basis for the theory of structure of 
molecules and their reactivity. 

For nondegenerate electronic states, calculations in the adiabatic approxi­
mation bring about insignificant errors in calculating the total energy. For 
degenerate electronic states, this approximation is invalid. 

B. Nonadiabatic Approximation for Vibronic Interactions 

When the adiabatic approximation is violated, one must take into account the 
coupling between electron and nuclear motion. This coupling is referred to as 
vibronic interaction. As a result, the single-electron states of molecules 
calculated by the MO method partially lose their individuality and are mixed. 

The vibronic effects are important in analyzing the processes of activation of 
chemical reactions and of formation of excited states of various particles. The 
vibronic approach and its applications are described in Refs. 4-7 . 

C. Nonadiabatic Semiempirical Approximation 

The adiabatic and vibronic approximations provide a general basis for the 
analysis of kinetic phenomena. However, when solving specific problems, a 
semiempirical approach is required in most cases. Because of the mixing 
of electronic states, nonadiabatic processes are characterized by the presence of 
multiple channels. The states of products are often not identified; a number of 
channels of the processes, as well as their cross sections as functions of the 
parameters that determine the mixing of electronic states and the interaction with 
the collision partner, also remain unknown. Experimental data are required for 
the calculation in most cases of practical interest. 

Fast resonant and quasiresonant processes play a critical role in the population 
kinetics of electronic states of atoms and molecules in nonequilibrium media. 
The identification of fast and slow processes and the determination of the 
hierarchy of characteristic times enable one to develop a qualitative pattern of 
kinetics (see Chapter 1). 

The details of the semiempirical approach are treated in Refs. 8-10. 
The theory of electronic relaxation can be divided into three qualitatively 

distinct parts, namely, kinetics of simple media consisting of a single element, 
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kinetics of binary and multicomponent media, and kinetics of media with 
structural transformations. 

1. Media of Simple Chemical Composition 

The electronic relaxation of simple atomic-molecular media containing 
molecules, atoms, and ions of a single element has its own specific features and 
serves as a basis for the analysis of more complex systems. A great part in the 
kinetics of simple media is played by metastable electronically excited states of 
atoms and diatomic molecules, which have very long radiative lifetimes 
( T ~ 0 . 1 - 1 0 S) and small quenching cross sections in collisions with particles 
having a closed electron shell (see Refs. 9, 10, 12, and 46). Because of the long 
radiative lifetime and low rate of quenching, lower metastable states of 
homonuclear diatomic molecules (N2, 02) represent a bottleneck of electronic 
relaxation. This leads to high concentrations (typical number density 
n~ 1012-1016cm -3) of metastable particles that carry considerable energy 
(E ~ l-6eV); therefore, these particles can be used as a reservoir of electronic 
excitation energy. 

The kinetic pattern of processes occurring in media of simple chemical com­
position is largely determined by the magnitude of energy or power loading of the 
medium. In the case of low energy loading, analysis of processes for electronic 
states of molecules below the dissociation limit is sufficient (model E.l). 
For higher energy loading, kinetics of an atomic-molecular medium is used 
(model E.2). 

2. Binary and Multicomponent Media 

For multicomponent atomic-molecular media, the electronic kinetics are 
complex and cannot be described by a universal model. In constructing particular 
models, metastable electronic states of particles of the medium are usually 
identified, and balance equations are written for their populations. Models of 
binary systems containing two chemical elements have been developed in detail, 
with special attention given to models based on the mixing of simple single-
element media. The mixing processes serve as regulators of kinetics; in 
particular, they make it possible to store energy in certain states, which is 
favorable to the development of laser media. The characteristic features of the 
kinetics of binary media in chemically reacting gases are treated in model E.3. 

3. Kinetics of Media with Structural Transformations 

As the energy or power loading of the matter increase, along with the 
emergence of free atoms, molecules and radicals containing an ever-increasing 
number of particles are formed. Chains of structural transformations arise, whose 
rates may reach values corresponding to the gas-kinetic cross sections. This leads 
to a coupled electronic-structural kinetics. An example is provided by the 
combustion kinetics, where the transformation of molecules proceeds via series 
of intermediate particles whose qualitative and quantitative composition largely 
remains uncertain. When a large number of reactions occur simultaneously, the 
possibility of error in determining the mechanism of the processes is quite large. 
One can be guided to a certain extent by the statistical model (see Ref. 11) that 
describes a gas of radicals and free atoms interacting with one another to form 
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ever more complex radicals. Here, two characteristic times may be identified for 
elementary processes, namely, that for radical-molecule collisions (analog of the 
VT process), and that for radical-radical collisions (analog of the VV process). 

Investigation of electronic-structural relaxation lies at the junction of 
electronic kinetics, chemical kinetics, and the cluster theory. Model E.4 for 
polymerization processes is an example of models of electronic-structural 
transformations. 

D. Atomic-Molecular Kinetics of a Medium of Simple Composition (E.l) 

1. Purpose of the Model 

The purpose of the model is the calculation of populations of the electronic 
states of atoms and molecules at a given energy loading. 

2. Assumptions 

The relaxation channels that do not involve metastable particles are ignored. 

3. Restrictions 

The energy loading of the medium should not exceed a certain level at which 
significant numbers of free electrons appear in the medium. The electrons start 
playing an important part in the kinetics at a degree of ionization of about 10"8. 

4. Kinetic Equations 

~$f = YlkmnNm ~~ YlknmNn + 1Z Yl LmlnNmNl 
m m m l 

~Y,YlLmn>iNmNn 

m I 

5. Nomenclature 

a) Quantities calculated with the model: 

Nn population density (population) for nth electronic term 

b) Kinetic coefficients: 

kmn,knm rate constants for the transitions m-+n and n —• m, 
respectively 

kmi,mLmriti rate constants for the transitions m,l - • n and m,n -* /, 
respectively 

c) Other quantities: 

n, m, / indices (subscripts) denoting electronic terms 
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6. Description of Coefficients and Parameters 

The values of rate constants are determined both theoretically and 
experimentally. For relations between rate constants and probabilities, see 
appropriate subsection in the description of model E.2. Data on the probabilities 
of processes in 0 2 - 0 and N 2 -N systems are available in Refs. 12-21. 

7. Typical Values and Examples 

The general set of kinetic equations previously described is used to describe 
electronic processes in oxygen (O2-O system) for energy states up to the 
ionization limit; in particular, the beginning of thermal ionization, at the stage of 
formation of primary electrons, can be analyzed. When heated, a molecular gas 
starts to dissociate because of growing vibrational excitation of molecules. 
Atoms in the ground electronic state are formed. As a result of nonadiabatic 
transitions from the repulsive to bound terms, atoms may compose a molecule in 
a higher excited electronic state. This molecule may dissociate as well, but with 
the formation of atoms in excited states. Gradually formed are bound molecular 
terms with an ever-higher energy, up to the ionization limit. 

The set of kinetic equations for the populations of 14 terms of molecules, 
atoms, and ions of the 0 2 - 0 system is given in Ref. 16. These equations describe 
the following states: 

3s; , %, % \ 3x;, 1AB, Js: , 3s: , X , 3AM, OC'D), O(3PX o^s), 

o+(x2n,), o2, O-(2P°), o+(4s°) 

Altogether, 91 elementary processes are covered by these equations. The results 
of calculation of the initial stage of thermal ionization have demonstrated that, 
under shock-wave conditions at t = 10~6 s, N = 1019 cm -3 , and T = 4000 K, the 
degree of ionization is approximately 10~6. 

8. Error of the Model 

The model gives results correct within an order of magnitude, and its error is 
determined by the error of the probabilities (rate constants) of electronic transitions. 

9. Comments 

Applications of the model to new systems (that is, systems not previously 
studied) must be preceded by an analysis of the system of terms. 

Relevant material can be found in Ref. 16. 

E. Model of Electronic Excitation Exchange (E.2) 

1. Purpose of the Model 

The model aims at calculations of the populations of metastable states in an 
atomic-molecular system, and an estimation of the energy stored in the 
metastable states. 
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2. Assumptions 

EE exchange processes between metastable states are assumed to dominate 
the population kinetics. Moreover, single-quantum EE exchange is assumed to be 
predominant. 

3. Restrictions 

The calculated distributions of metastable states of atoms and molecules, 
which arise due to EE exchange, are valid during time intervals substantially 
shorter than the electronic-translational relaxation (dissipation) time. That such 
an interval exists is due to the hierarchy of the characteristic times of EE 
exchange and the electronic energy dissipation: TEE <3C TET-

4. Kinetic Equations 

j =z / J ^mn s m / j K'nm I n ' / > ^mn^m / v KnmiVn 

m,s,l m,s,l n m 

5. Nomenclature 

a) Quantities calculated with the model: 

Nn population density (population) for the nth metastable 
state of atoms and molecules 

b) Kinetic coefficients: 

k^n rate constants for transitions m -> n in one particle and 
s - • I in the other 

kl*m analogous rate constants for transitions n ->• m and / -> s 
kmn, knm rate constants for transitions m -> n and n -> m, 

respectively, due to collisional and radiative processes 

c) Other quantities: 

n, m, /, s indices (subscripts and superscripts) denoting electronic 
terms 

Z gas kinetic collision frequency per unit number density 
Ro gas kinetic collision radius (see Chapters 1 and 2 in the 

first volume) 
/JL (reduced mass of colliding particles (see Chapters 1 and 2 

in the first volume) 
mx, mY masses of particles X and Y 

6. Description of Coefficients and Parameters 

The rate constants kmn, knm, J^n, kl*m are determined by the corresponding 
values of probabilities Pmn, Pnm, Q^n, so that kmn — ZPmn, etc., where Z = 
7rRl(&kT/'rriJL)1/2 and /i = mxmY/(mx+mY). The values of probabilities are 
treated in the first volume of this handbook. 
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A number of papers are devoted to methods for calculations of specific 
coefficients (for example, see Refs. 12-21). 

7. Typical Values and Examples 

The model is used to analyze kinetic processes in nitrogen plasmas. For the 
conditions of glow discharge, a strong coupling exists between the terms 
N2(A32*), N2(B

3IIg), and N2(C
3IIM), even at relatively low excitation levels. 

The fastest processes of electronic excitation transfer are the EE exchange 
between the N2 molecular terms, 

N2(A) + N 2 (A)^N 2 (B) + N2(X) 

N2(A) + N2(B) <=> N2(C) + N2(X) 

and the electronic energy exchange between molecules and atoms (EE7 

exchange), 

N2(A) + N(4S) ^ N2(X) + N2(
2P) 

These processes of EE exchange approximately conserve the total amount of 
electronic energy. The loss of electronic energy is determined by the rate of 
quenching of molecules and atoms in collisions with heavy particles and 
electrons; the characteristic time is of the order of 10~5 s. A quasistationary 
distribution of populations, similar to the Treanor distribution for vibrational 
levels, was obtained in Ref. 22. 

8. Error of the Model 

The model gives results valid within an order of magnitude. 

9. Comments 

a) Along with the N 2 -N system, the distribution functions for populations of 
electronic molecular terms were obtained for the 0 2 - 0 , C12-C1, and 
S2-S systems. The results obtained with this model were compared with 
the experimental data, in particular, for recombination of chlorine atoms 
in supersonic flows (see Ref. 23). 

b) The form of the set of kinetic equations coincides with that of equations of 
vibrational kinetics (see Chapter 4 of this volume). 

Relevant material can be found in Refs. 16 and 24. 

F. Electronic Energy Exchange in Chemically Reacting Gases: A Kinetic 
Model of Oxygen-Iodine Medium (E.3) 

1. Purpose of the Model 

The model aims at the calculation of the populations of electronic states in an 
atomic-molecular system where electronic energy exchange and chemical 
reactions occur simultaneously. An example is the calculation of the populations 
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of lower terms of oxygen molecules and iodine atoms at various parameters of the 
oxygen-iodine medium. 

2. Assumptions 

a) See the assumptions of model V.6 and substitute vibrational relaxation 
processes by electronic energy exchange (VT, VV -> ET, EE, and so on). 

b) The electronic relaxation channels not related to metastable states are 
ignored. The overall kinetic mechanism of population of excited states of 
oxygen and iodine is defined by the reactions of electronic energy 
exchange, quenching, and by the chemical reactions of formation of 
atomic iodine. 

3. Restrictions 

The model includes a kinetic scheme for the electronic states of a binary 
mixture of molecular oxygen and atomic iodine. Only the lower energy terms are 
taken into account. The electronic states of molecule I2 are not considered. Real 
systems such as the active medium of an oxygen-iodine laser contain impurities 
(H202, H20, Cl2) whose effect can only be estimated. 

4. Master Kinetic Equation 

The kinetic equation for the population of an electronic state, taking into 
account changes of electronic states m *=± m\ n ^ n' of components /, j , /', / in 
binary-collision reactions / (i <=̂  i',j <=*/) is: 

^r=El E *Z?JCK - E c>;*q 
If an electronic state is not specified or is absent, the corresponding notation of 
state is omitted and is not considered in the equation. The equation describes 
electronic energy exchange without chemical transformation; formally, if / = 0, 
then i +± i, j <=* j . 

5. Kinetic Equations for Oxygen-Iodine Medium 

The set of balance (master) equations for the populations of electronic states is 
written on the basis of the kinetic scheme including the following transitions 
between electronic states: 

1. 02(3' A,) + I(2P3/2) & 02(X3SJ) + I(2Pi/2) 
2. OzCa1 A,) + OzCa1 A,) - • 02(X3S;> + 02(b12+) 
3. 02(a

l A,) + I(2Pi/2) -» 02(b1X+) + I(2P3/2) 
4. 02(b12+) + M - • OzCa1 Ag) + M 
5. OzCa1 A,) + M - • 02(X32g") + M 
6. I(2P1/2) + M ^ I ( 2 P 3 / 2 ) + M 

7. 02(b'X+) + h - • 0 2 (X 32;) + 2I(2P3/2) 
8. 02(a' Ag) + 1 2 -»• 0 2 ( X 3 2 p +12(20 < v < 40) 

9. I(2Pi/2) + h - • K2P3/2) +12(20 < v < 40) 
10. OzCa1 A,) +12(20 < v < 40) - • 02(X3S7) + 2I(2P3/2) 
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11. 
12. 
13. 
14. 
15. 

K2Pi/2) + l 2 ( 2 0 < v < 4 0 ) - > ( I 3 ) -
2I(2P3/2) + M ^ I 2 + M 
02(b12^) + W -> 02(X32J) + W 
02(a1 A,) + W -> 0 2(X 32;) + W 
I(2Pi/2) + W-*I( 2 P 3 ) + W 

3I(2P3/2) 

An example of the balance equation for the population of oxygen molecules in 
the electronic state 02(b12^) is: 

dNb 

dt 
= k2N

2
a + k3NaNv - k4NbNM - k7NbNh + k.7NxNr - kl3Nb 

6. Nomenclature 
a) Quantities calculated with the model: 

Nm 

Nb 

b) Kinetic coefficients: 
yiri hrin 
"'mm'l' ^m'ml 

kh k-i 

population density (population) for the mth electronic 
state (term) 
population density (population) for the oxygen 
molecules in the electronic state 02(b

12^") 

rate constants for transitions m<& m!,n <& n' in /th 
reaction 
rate constant for direct and reverse /th reaction, 
respectively, in accordance with the numbering of 
reactions (see above) 

c) Subscripts: 

m, n 
m\ n! 
Uj 
fj 
I 
b,a,x,I',I" 

electronic states in direct reactions 
electronic states in reverse reactions 
mixture components participating in direct reactions 
mixture components participating in reverse reactions 
reaction number 
states notation: b is for 02(b

12^"), a is for 02(aJ Ag), x 
is for 02(X3X:), r is for I(2Pi/2), I" is for I(2P3/2) 

d) Other quantities: 

M 
W 
N N , N , 
Na9NX9Nr,Nr 

nonreacting particle as a collision partner 
collision partner for collisions with a wall or a surface 
population density (population) for electronic states 
indicated by subscripts 
number density of nonreacting particle (collision 
partners) 

7. Description of Coefficients and Parameters 

A summary of data for coefficients, as well as a comparative analysis of the 
procedures and accuracy of measurements, are given in Refs. 25 and 26. 



106 G. G. CHERNYI, S. A. LOSEV, S. O. MACHERET, B. V. POTAPKIN 

8. Typical Values and Examples 

The model of electronic kinetics of an oxygen-iodine medium, in conjunction 
with gas dynamic equations, was used to calculate the operating modes and 
energy characteristics of oxygen-iodine lasers (see Refs. 24-26). The principle 
of its operation is based on near-resonant energy transfer from metastable oxygen 
to an iodine atom that is a radiating component. The main advantages of the laser 
include a high specific energy extraction, high uniformity of the medium in the 
resonator, a short radiation wavelength A = 1.315 micron that lies within the 
atmospheric transparency window, the relative simplicity of design, and a lower 
(compared with an HF laser) toxicity of the reactants. In typical oxygen-iodine 
lasers, the temperature of the gas mixture is usually lower than room temperature, 
the oxygen pressure is several Torr, the singlet oxygen concentration is 
[02(a1Ag)]/{[02(a1Ag)] + [02(X32;)]} > 40%, the molar fraction of injected 
iodine is [I2]/[02] < 2% and the molar fraction of water vapor is [H20]/ 
[O2] < 5%. 

9. Error of the Model 

The model gives results with an accuracy within a factor of 2 -3 . 

10. Comments 

a) A simplified kinetic mechanism for this model can be reduced to a single 
equation for molar fraction of excited oxygen, see Ref. 25. 

b) A comprehensive list of references pertaining to oxygen-iodine lasers 
and to the kinetics of processes occurring in their active media is given in 
the review paper (Ref. 27). A bibliography on sources of singlet oxygen 
can be found in Ref. 26. Experimental investigations of the Na3-Br 
binary system were performed in Refs. 34 and 35. 

c) A model of electronic energy exchange in chemically reacting gases was 
used to analyze H 2 -F-NF 2 and H 2 -F-HN 3 flames (see Ref. 36, also 
Refs. 37-39). In these flames, metastable states of NF(a, b) and N2(A) are 
efficiently produced, which may be used for developing a laser in the 
visible spectral range. The kinetic scheme of this model contains 15 
reactions with seven electronic states of NF and N2 molecules and 
vibrationally excited NF(v) molecules. Specific values of rate constant for 
these reactions are given in Refs. 40-42. 

Relevant material can be found in Refs. 24-33. 

G. Model of Photochemical Polymerization Wave (E.4) 

1. Purpose of the Model 

The model aims at the calculation of the polymerization kinetics and at 
determination of the size distribution function of polymer molecules. 
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2. Assumptions 
a) The original reactant in the process of polymerization is an A=B monomer 

molecule possessing at least one double bond. As a result of absorption of 
radiation with a certain quantum hv, a monomer molecule, after the rupture 
of one bond, makes a transition to excited state and may react with the 
original monomer to form an —A—B—A—B— active dimer radical. This 
radical, in turn, interacts with an A=B monomer and forms a trimer, and so 
on. The following kinetic scheme corresponds to such a chain mechanism: 

1. (AB)i + hv -> (AB)i. 

2. ( A B ^ + C A B h - ^ A B f c . 

3. (AB)2 .+(AB)1-^(AB)3. 

4. (AB)3* + (AB>! -* (AB)4* 

b) The spectral absorption band of the original monomer does not coincide 
with the bands of intermediate (polymer) fragments of the chain process. 

3. Restrictions 

The model is sensitive to the presence of side reactions; impurities may bring 
about a break in the chain. New side channels of the type 

( A B ^ + C A B ^ ^ C A B ) ^ * 

may arise as a result of considerable decrease in the monomer concentration. 

4. Kinetic Equations 

C;M)'~f 
^=-aINl_NlJ^kiN> 

a t 1=1 

^ = o-INi - kMNi 
at 

m dt k^N^N.-kiNlNi i>2 

5. Nomenclature 

c speed of light 
/ electromagnetic radiation flux 
a photoabsorption cross section for process 1 
kt rate constant for respective elementary processes 

(ki, Jt2, h for processes 2, 3, 4) 
Ni9N[9N'2,N'3 number densities of the reactants (AB)j, (AB)t*, 

(AB)2*, (AB)3* respectively 
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6. Description of Coefficients and Parameters 

The coefficients and parameters of the model are treated in Refs. 43-45. 

7. Typical Values and Examples 

At <7=l(r 1 9cm 2 , / = 1021 photon/(cm2 • s), N0 = 1018 cm'3 , and kt = 
10~13 cm3/s, the velocity of the polymerization wave front is D ^ 104 cm/s. 

8. Error of the Model 

The model gives results with accuracy within a factor of 2 -3 . 

9. Comment 

As follows from the solution of the set of kinetic equations, one can change the 
chemical composition of the mixture behind the polymerization wave front by 
varying the intensity of the external radiation flux and, accordingly, the wave 
velocity. Because the final composition depends considerably on the initial 
conditions, the possibility arises of controlling the process to obtain products with 
desired properties, for example, with the aid of short-wavelength irradiation, 
electron beams, and lasers. The possibilities of controlling the processes of 
synthesis of substances during combustion were considered in Ref. 11. 

Relevant material can be found in Refs. 11 and 45. 
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Chapter 6 

Chemical Kinetics (C Models) 

OBJECTS of chemical kinetics are chemical reactions, that is, processes of 
transformation of some chemical species into others, taking place in 

chemically reacting media. The process of chemical transformation is described 
by the stoichiometric and kinetic laws. 

Chemical kinetics studies: 

1. temporal dynamics of a chemical process; relations between the 
concentrations of reactants, rate of the process, and conditions of its 
realization (temperature, pressure, etc.); and 

2. mechanism of chemical process: what elementary stages it consists of, 
how these stages are related to each other, and what intermediate species 
participate in the process. 

Kinetics and mechanisms of chemical processes in ideal gases are considered 
in this chapter. In such gases, the duration of interaction between the reacting 
particles is negligible in comparison with the time of their free motion (see 
Chapter 9, Equations of State, in this volume). 

I. Introduction and Definitions 

A. Chemical System 

Chemically reacting system (medium) is a system, particles of which undergo 
chemical conversion during their interactions with each other. 

Open chemical system is a system that exchanges matter and energy with 
environment. 

Closed chemical system is a system that may exchange energy, but does not 
exchange matter with environment. 

Adiabatic chemical system is a system that does not exchange energy with 
environment. 

Isolated chemical system is a closed adiabatic system, that is, a chemical 
system that exchanges neither matter nor energy with environment. 

Homogeneous chemical system is a system consisting of one phase. Inside 
such a system, there are no phase interfaces or any other surfaces that would 
separate parts of a system having properties different from each other. 

111 
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Thermally equilibrium chemical system is a system in which deviations from 
equilibrium between internal (vibrational, rotational, electronic) and translational 
degrees of freedom of molecules are negligible. 

Thermally nonequilibrium chemical system is a system in which molecular 
translational degrees of freedom have Maxwellian energy distribution, and 
internal (vibrational and/or rotational and/or electronic) degrees of freedom 
have a Boltzmann one, but the temperature(s) of internal degrees of freedom is 
(are) notably different from the translational temperature. 

B. Components (species) of Chemically Reacting Mixture 

Component of chemically reacting mixture is a group of particles that have 
identical elemental compositions and structures. In some problems of gas 
dynamics, the components (species) of a mixture can differ from each other by 
the energy state of particles, for example, groups of molecules with a certain 
vibrational quantum state can be viewed as different components (species), see 
description of model V.6 in Chapter 4, Vibrational Relaxation. 

Initial substances {reactants) are components of a mixture entering into 
chemical transformations. 

Reaction products are components of a mixture that are generated as a result of 
chemical transformations. 

Intermediates are components (species) that are generated in some reactions 
and consumed in other reactions. Reactivity of intermediates varies, depending 
on chemical nature and conditions of the reaction process. Alongside with stable 
intermediates, as, for example, H2 and CO generated during hydrocarbon 
combustion, or those less stable, as the aldehydes and hydrogen peroxide present 
in the same combustion reaction, extremely unstable (labile) intermediates, such 
as free atoms and radicals, are observed. 

Labile intermediates are components of a mixture that are not present in a 
chemical system in quantities commeasurable with quantities of reactants and 
reaction products. 

Inert substances are components of a mixture that are not consumed in 
chemical reactions. 

Catalysts are components of a mixture that initiate or accelerate chemical 
reactions without being substantially consumed in the reaction. 

Inhibitors are components of a mixture that, while having concentrations 
much lower than those of reactants, slow down the reaction. 

C. Measurement Units of Chemical Composition 

Chemical composition of a mixture indicates a proportion between the 
amounts of individual substances present in the mixture. Relative quantity of an 
ith component in a chemically reacting mixture are measured: 

1. by the number of particles in 1 cm3, 1 liter, 1 m3, etc. (number density nt 
[particles/unit volume]); 

2. by the number of moles in 1 cm3, 1 liter, 1 m3, etc. (molar-volume 
concentration yt [moles/unit volume]); 
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3. by the number of moles in 1 g, 1 kg, etc., of a reacting mixture (molar-
mass concentration ct [mole/unit mass]); 

4. by the mass (grams, kilograms, etc.) in 1 cm3, 1 liter, 1 m3, etc. {partial 
density pt [mass unit/unit volume]); 

5. by the ratio of the number of moles of the component to the total number 
of moles of the mixture (molar fraction, or volume fraction £• 
[dimensionless]); 

6. by the ratio of the mass of component i to the total mass of matter in 1 cm3 

(mass fraction, or relative density at [dimensionless]); and/or 
7. by the value of molar-mass concentration of an ith component c, 

in the given region of a chemical system multiplied by the molar mass /JL^ 
of a mixture in another region of this system (normalized molar-mass 
concentration yt [dimensionless]). 

Relations between the different quantities expressing chemical composition of 
a mixture of chemical components / (n = J^i nu P = J2i Pv t1 — P' ^A/W): 

Pi. 

Ci 

Pi 

= 6 
_yj_ 

p 

= mt 

n 

= Pi_ 

to 

-rii 

= ?/ 

P = 

V 
a, 

P-i 

Pi / \ ^ Mi 
ai= — = mr rii / > m,•• n, = c, • /A, =yr—, 

P I i P 

M v w \pj 

Molar weight (that is, the weight of one mole, or molecular weight) of a mixture 
is equal to 

IL=J2&- & = 12^' yt / J^y* = J2to-yi /J2ni 

i i I i i I i 

= E y*• / y E ^ =l / E C- =l /E ^'^-

The values marked here by the subscript oo refer to those regions of the 
medium where they are assumed to be known, according to the problem 
formulation. The quantity yt is used for the description of chemically reacting 
mixtures in flowing media. 

Partial pressure pt is the pressure produced by a gas of component i in the 
volume occupied by the entire gas mixture at the given temperature. The partial 
pressure pt is equal to pt = ntkT for an ideal gas. 
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D. Nomenclature 

NA = 6.0221 x 1023 mole -1 is the Avogadro number (the number of particles 
in one mole of matter) 

Hi molar weight (molecular weight) of a component i (g/mole) 
mt mass of a particle of a component / (g) 
p gas density (g/cm3) 
n number density of a gas mixture (cm-3) 

Generalized nomenclature of particles as components of chemically reacting 
mixtures is presented in the introduction to Chapter 1 of the first volume in this 
series. 

£. Comments 

1. In this book, the usage of chemical kinetics terms is as close as possible to 
the recommendations of the International Union of Pure and Applied 
Chemistry (IUPAC) and the Committee on Data for Scientific Unions 
(CODATA). The measurement units are used in accordance with the 
current practice of chemical kinetics and computer simulation research. 
In some cases, the nomenclature varies from that used in other books. 

2. At high pressures and low temperatures, the notion of fugacity (Refs. 1 
and 2) is used instead of concentration for accurate evaluations of 
chemical composition. 

F. Chemical Reactions 

Elementary chemical process {act) is a chemical transformation of 
components of a system happening at one collision, when interacting particles 
of reactants transform directly to reaction products, without intermediates. 
Two or three particles interact in elementary chemical reaction because the 
probability of simultaneous collision of four and more particles in the gas phase is 
negligible. 

Simple chemical reaction {or single-step reaction) is a set of identical 
elementary chemical processes that take place in the system under consideration. 
A simple reaction proceeds without catalyst, and is not slowed down by 
inhibitors. A simple chemical reaction can be a stage in a complex reaction. 

Irreversible chemical reaction is a reaction that runs in only one direction 
under the given conditions. 

Reversible chemical reaction is a reaction that runs in both direct {forward 
reaction) and reverse {backward, or reverse, reaction) directions. 

Stage of complex chemical reaction {chemical stage) is one or more simple 
chemical reactions that constitute a part of a complex chemical process. 

Elementary stage of complex chemical reaction is a simple reversible reaction 
that is a stage of a complex chemical process. 

Complex chemical reaction is a set of simple chemical reactions interrelated 
with one another through their reactants or products. One of the features, and also 
a criterion, of complexity of a chemical reaction is the formation of intermediates 
during the reaction. Intermediates are products of one of the chemical stages and 
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serve as reactants for other stages. The presence of intermediates during chemical 
reaction indicates its complexity, that is, a presence of multiple chemical stages. 

Consecutive stages of complex chemical reaction are two or more stages of a 
complex chemical reaction in which a chemical component generated at one 
stage is a reactant for another stage. 

Parallel stages of complex chemical reaction are two or more stages of a 
chemical reaction in which the same chemical species is a reactant for all stages. 

Consecutive-parallel stages of complex chemical reaction are two or more 
stages of a complex chemical reaction, which are consecutive with respect to 
one of the components, and are parallel with respect to other components 
participating in these stages. 

Thermal reaction proceeds under the impact of heat, when the reactants are 
activated only because of the thermal motion of molecules. 

Endothermic reaction is a thermal reaction during which energy is consumed. 
For endothermic reaction, the numerical value of thermal effect of chemical 
reaction (the difference between the sum of enthalpies of reaction products and 
the sum of enthalpies of reactants) is positive, Ai/J? > 0 (see the details in 
Chapter 8, Thermodynamics of Gases and Plasmas, of this book). 

Exothermic reaction is a thermal reaction during which energy is released. For 
exothermic reaction, the numerical value of thermal effect of chemical reaction 
(difference between the sum of enthalpies of reaction products and the sum of 
enthalpies of reactants) is negative, A//J? < 0 (see the details in Chapter 8, 
Thermodynamics of Gases and Plasmas, of this book). 

Reaction space is an internal volume of a phase or an area of phase interface 
where chemical reaction occurs. 

Homogeneous chemical reaction is a reaction that runs within one phase. 
(For example, any reaction in the bulk of a gas mixture). A reaction space is the 
liquid, gaseous, solid, or plasma phase of a system. 

Heterogeneous chemical reaction is a reaction that runs at a phase interface. 
(For example, any reaction on a surface of solid catalyst). 

Homogeneous-heterogeneous reaction is a reaction in which some stages are 
homogeneous, and others are heterogeneous (for example, reactions between gases, 
some stages of which occur on the walls of the reaction vessel). Homogeneous-
heterogeneous reaction can be a complex, multistage process only. 

Homo-phase chemical reaction is a process in which reactants, stable inter­
mediates, and reaction products are within one phase. 

Hetero-phase chemical reaction is a process in which reactants, stable inter­
mediates, and reaction products form more than one phase. 

The notions of homo- and hetero-phase reactions are independent from the 
notions of homo- and heterogeneous reactions. For example, neutralization of an 
acid by an alkali is a homogeneous homo-phase process, but hydrogenation of 
ethylene C2H4 + H 2 - > C2H6 in the presence of metallic nickel proceeds on the 
surface of the metal and represents homo-phase heterogeneous process. 
Oxidation of hydrocarbons in liquid phase by gaseous oxygen represents 
homogeneous hetero-phase process. Lime slaking CaO + H2O - • Ca(OH)2, 
when all three components form separate phases and the process proceeds at the 
interface between liquid water and solid CaO, is a heterogeneous hetero-phase 
process. 
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Homogeneous elementary reactions can be distinguished by the number of 
particles participating in the elementary chemical process. 

Molecularity of a simple reaction characterizes the number of particles 
(atoms, molecules, ions, or free radicals) undergoing chemical transformation 
during one elementary act of the reaction: 

• in unimolecular reaction, one particle undergoes transformation; 
• in bimolecular reaction, two particles undergo transformation; 
• in termolecular reaction, three particles undergo transformation. 

Molecular formula {equation) of an elementary chemical act (simple chemical 
reaction) is as follows: 

22 Xi [reactants] -* Y^ X, [products] 

where X denotes a particle of any atomic composition, and the arrow indicates a 
direction of the elementary act (from reactants to products). 

For example: 

N2 + 0 2 -> NO + NO, N 2 + N - * N + N + N 

In a formula (equation) of an elementary act or simple reaction such as 
AB + M - > A + B + M, where M is any particle, it is implied that the density 
(or concentration) of M is equal to the sum of densities (or concentrations) of all 
(or of a certain part of) components of the mixture. Usage of stoichiometric 
coefficients is possible in the molecular formula (equation) of an elementary act 
or simple reaction (see Chemical Reaction Stoichiometry). 

Mechanism of a simple chemical reaction is an actual set of processes 
descriptive of reallocation of the atoms, electrons, and bonds in reactants during 
their transformation into reaction products in one stage. 

Mechanism of a complex chemical reaction is an actual set of coupled simple 
reactions or elementary acts of which a complex reaction consists. 

Kinetic scheme of a complex chemical reaction is a model of the actual 
chemical process reflecting its basic kinetic features (dependence of the rate of 
chemical reaction on concentrations of reactants and temperature). Kinetic 
scheme includes a set of elementary stages together with the values of the 
corresponding kinetic parameters (reaction rate constants of forward and reverse 
reactions and orders of reactions). 

Detailed (comprehensive) kinetic scheme of a chemical reaction is a model of 
the chemical process, including the complete set of all initial reactants, 
intermediates, and reaction products that are possible in the chemical system 
under consideration, and complete list of elementary chemical stages, in which 
each elementary stage and its relation with other stages of the overall chemical 
process is known and justified. Values of kinetic parameters of the 
comprehensive model (such as reaction rate constants of forward and reverse 
reactions and orders of reactions) are defined for each stage. 

Reduced (compact) kinetic scheme of a chemical reaction is a simplified 
kinetic scheme of a chemical process that adequately describes time behavior of 
various quantities (such as temperature and concentrations of components). 
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Global kinetic scheme of a chemical reaction is an extremely simplified model 
of a chemical process that adequately describes the main transformations of initial 
reactants into reaction products with minimum number of intermediates and stages. 
For example, the global scheme of complete combustion of methane in oxygen is 
described by the following two main stages that couple five basic species: two initial 
reactants (CH4, 02), one intermediate (CO), and two products (C02, H20): 

2CH4 + 302 -> 2CO + 4H20 

2CO + 0 2 -> 2C02 

The detailed kinetic scheme of this process includes about a hundred elementary 
stages and dozens of reactants (Refs. 3 and 4). 

Relevant material can be found in Refs. 5-24. 

II. Chemical Reaction Stoichiometry 

The stoichiometry of chemical reactions determines quantitative relations 
between components of a chemical system. Being one of the forms of the matter 
conservation law, the stoichiometric relations allow one to establish some general 
features of a complex chemical process without data on the rates of elementary 
stages. 

A. Basic Definitions 

Stoichiometric coefficients Vy are numbers of particles of a component Xt (i = 
1,2,.. . , iV) participating in a reversible chemical reaction (j th elementary stage 
of a complex reaction); vjj" are stoichiometric coefficients for reactants, and v» are 
those for reaction product. 

Stoichiometric equation of the 7th elementary stage of a complex reaction is a 
phenomenological relation between the molar fractions of reactants (shown on 
the left side of stoichiometric equations) and those of reaction products (shown 
on the right side of stoichiometric equations), with the use of the stoichiometric 
coefficients. A stoichiometric equation may use a sign of equality or double 
arrows (an arrow indicates the direction of the reaction): 

N N N N 

£ vt • X, = £ vy • X,; £ v+ • X,. ^ £ vz • X, 
1=1 1=1 i = l i = l 

Here, N is the number of components participating in a simple reversible 
reaction. 

Homogeneous form of a stoichiometric equation is as follows: 

N 

J]virXi- = 0 
1=1 

where v# are the stoichiometric coefficients, negative for reactants and positive 
for reaction products. 
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B. Example 

Stoichiometric equation: N2 4- O2 <=̂  2NO 

Homogeneous form of the equation: - N2 - O2 + 2NO = 0 

Stoichiometric vector Vj is the well-ordered finite set of the stoichiometric 
coefficients vtj = vjj — v+ for the 7th stage of a complex reaction: 

\_vNj 

Stoichiometric matrix f of a complex chemical reaction is a matrix, 7th 
column of which is a stoichiometric vector of jth stage complex for given 
reaction: 

T = I M = 
V\j '" vis 

VNj • • • VNS J 

, 7=1 ,2 , . . . ,S 

Here, S is the number of stages of a complex chemical reaction. 
Elements of the matrix T are positive and negative integers. 
The element matrix X is a matrix with elements x# equal to the number of 

atoms of the Ath chemical element in the molecule X;: 

X=||x*|| = 
Xll • • • X I L 

X̂ Vl * • * *NL 

Here, L is the total number of chemical elements. 
Vector of chemical components 

X=\Xi\ = 
xr 
x2 

where X,- is the ith component of a reacting system. 
Vector of molar masses of components 

A = IM,-1 = 

Mi 

M2 

LMvJ 

Here, //,,. is the molar mass (the mass of one mole, or molecular weight) of the 
component X,- of the chemical reaction. 
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Vector of charges of components 

z = z,- = 

Zl 

Z2 

ZN 

Here, zt is the electric charge of component of the chemical reaction. 
Stoichiometric equation of a complex reaction is a phenomenological relation 

between reactants, intermediates and reaction products written in the form of 
a system of stoichiometric equations describing all the stages of the complex 
reaction: 

N 

E vnX' = E vnX<- or E vtiX- ^ E vnX' 
i=\ i=l i=l i=\ 

N N N N 

E v*x<- = E v<~2x<- or E v£x- ^ E « • i=l /= ! i=l 

£ v+X,- - J ] v^Xj or J ] v+X; *=* ] T v^X,-

where iV is the number of components participating in the complex reaction that 
consists of S stages. 

Global stoichiometric equation of a complex chemical reaction is a simplified 
stoichiometric equation of a process adequately reflecting transformation of 
initial substances to the reaction products, or most important stages of this 
transformation, without specifying separate stages. Both integer and fractional 
stoichiometric coefficients can be used in a global stoichiometric equation. 

For example, the global stoichiometric equation of the water formation 
reaction can be written in the form 2H2 + 02 = 2H2O. Then the stoichiometric 
coefficients of hydrogen, oxygen and water will be as follows: VH2 = 2, vo2 = 1, 
^H2O = 2. If the equation of this reaction is written in the form 
H2 + I/2O2 = H20, one would get another set of values of stoichiometric 
coefficients, namely VH2 = 1, vo2 = 1/2, VH2O = 1-

Application of the global stoichiometric equations is a matter of importance in 
a number of practical cases, when detailed kinetic mechanism of a complex 
chemical reaction cannot be included in the computational scheme of the gas 
dynamic problem under consideration because of: 

a) hardware and software constraints: limitations of computer memory, 
processor speed, and/or other computer characteristics; 

b) an absence of sufficiently developed and experimentally verified detailed 
kinetic schemes. 
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C. Example 

The global stoichiometric equation of a complex reaction of ethylene chlorination 
can be written as C2H4 + CI2 = C2H4CI2. The mechanism of this complex reaction 
consists of six stages; therefore, the global stoichiometric equation can be replaced 
by six equations written for each reversible simple chemical reactions: 

1. C12 = 2C1 
2. C2U4 + Cl2 = C2H4CI + CI 
3. C2H4 + CI = C2H4CI 
4. C2H4Cl + Cl2 = C2H4Cl2+Cl 
5. C2H4CI + C2H4C1 = C4H8C12 

6. C2H4C1 + CI = C2H4CI2 

Xi = CI2, X2 = C2H4, X3 = CI, X4 = C2H4CI, 

X5 = C2H4CI2, X6 = C4H8CI2 

Chemical elements of the system are as follows: 

Ei = CI, E2 = C, E3 = H 

Correspondingly, the stoichiometric and element matrices have the forms: 

elements 
"2 0 0 

0 2 4 

1 

0 

2 

0 

0 

0 

- 1 

- 1 

1 

1 

0 

0 

reactions 
0 

- 1 

- 1 

1 

0 

0 

- 1 

0 

1 

- 1 

1 

0 

0 

0 

0 

- 2 

0 

1 

0 ' 
0 

- 1 

- 1 

1 

0 . 

m
po

ne
nt

s 

II 

0 
0 

§ f -
I o o 

D. Stoichiometric Conservation Laws 
1 

1 0 0 

1 2 4 

2 2 4 

2 4 8 

conservation law for number of particles of chemical elements in stages 
(orthogonality relation): 
- in matrix form: TTX = 0, where TT is the transposed matrix; 
- in coordinate form: Ylf=\ vy * xtk — 0-

2. mass conservation law_ in stages: 
- in matrix form: /x • T = 0; 
- in coordinate form: ]CiLi Mi * vtj = 0-

3. charge conservation law in stages: 
- in matrix form: z • T = 0; 
- in coordinate form: J2h=i zi' vy = 0. 

Stoichiometric mixture is a mixture containing molar quantities of initial 
substances in proportion equal to the ratio of their stoichiometric coefficients. In 
a stoichiometric mixture, a practically complete transformation of the initial 
substances to reaction products is possible. An example is a hydrogen-oxygen 
mixture where one mole of oxygen is present for two moles of hydrogen, 
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H 2 : 0 2 = 2 : 1 . In mixtures with a nonstoichiometric composition, the relative 
concentrations change nonproportionally to each other in the course of the 
reaction. The reaction terminates when the component that is deficient is 
consumed completely. 

Stoichiometric concentrations are the initial concentrations of reactants in a 
stoichiometric mixture. 

Stoichiometric order of theyth stage of a complex reaction in the forward and 
reverse directions is determined by the sum of the appropriate stoichiometric 
coefficients: vs = Y!!=\ V+, vbj = f^sl v». 

The stoichiometric order of they'th stage (simple reversible chemical reaction) of 
a complex reaction in the forward direction may not coincide with the stoichiometric 
order of the same reaction in the reverse direction, generally, v^ # v#. For example, 
for a recombination of atoms producing a molecule AB, A + B + M = AB + M, 
the values v/ and vb are, correspondingly, vy = 3 and vb = 2. 

Key components are the components of chemical system that correlate with 
linearly independent lines of the stoichiometric matrix. The set of key 
components is invariant with respect to an addition of stoichiometric linearly 
dependent equations. 

Relevant material can be found in Refs. 1, 11, 14, 23, and 25. 

III. Chemical Reaction Rates 

A. Rate of Simple Chemical Reaction 

Rate of simple chemical reaction, w, is the number of elementary chemical 
acts occurring per unit time in unit volume for homogeneous reactions, or at unit 
surface for the heterogeneous reactions. Chemical reaction rate is expressed as a 
function of chemical composition of reagents and the thermodynamic parameters 
of system (for example, temperature). 

Rate of formation (or consumption) of ith reagent of simple chemical 
reaction in closed system Rt = + (dW,/fldt) is an increase (sign "+") or decrease 
(sign "—") of quantity of ith reagent, expressed in moles (dW,), per unit time in 
unit reaction space (fl). For homogeneous reactions, O = V, where V is the 
volume of reacting system; for heterogeneous reactions, fl = 5, where S is the 
surface area of phase interface at which the vt reaction takes place. 

In a closed system, a change in the quantity of a substance with time occurs 
because of chemical reactions only. The changes in quantities of each reagent are 
not independent of each other, but are related by the stoichiometric proportions. 
A quantity of substance reacting per unit time is proportional to the magnitude of 
reaction space, that is, to the volume of a phase or to the surface area of phase 
interface. For example, for reaction Y^=\ v t ' ^ ' = Y^=\ VT ' X; the following 
relation holds true: 

(v+)"1oW1 = (v+)"1oW2 = • • • = (v^yl6NN = d£ 

where d£ is the differential reaction run, as a number of elementary chemical acts 
performed during time period dt, and v^ H V̂T are the stoichiometric coefficients 
of the initial substances and the reaction products, respectively (the rule for 
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algebraic signs of the stoichiometric coefficients in the homogeneous form of 
stoichiometric equation is explained above). 

Chemical reaction rate w and the rates of consumption (or formation) of 
reagents Rt in closed systems are related by the following condition: 

l_ <W__ 1_ dA^_ _ J _ dM__JL ^ _ _ <i£ 
~~ v^ ftdf ~ v j ftdr ~~ ~~ vj" ' ildt ~ v~ ildt ~~ " ' ~ fldf 

Reaction rate value is always positive. 
In a particular case when the magnitude of a reaction space does not change 

during the reaction (£1 = const), the reaction rate is determined by the formula: 

= _ _ L . * ! L = . . . =
 l dyk 

v+ ' dt ' " " vl ' dt 

where yt = N(/£l is the molar-volume or molar-surface concentration of the 
initial /th reagent, and yk = Nk/Ci is the molar-volume or molar-surface 
concentration of the fcth product of chemical reaction. 

Rate of simple chemical reaction in an open system is a change of reacting 
substance quantity with time because of both chemical reactions and the matter 
exchange with environment. Definition of a chemical reaction rate in an open 
system depends on the open system model (see the section Models of Chemical 
Reactors). 

Kinetic function is a function that determines the magnitude of chemical 
reaction rate depending on component concentrations, temperature, and, 
possibly, other parameters of the reacting medium. 

Kinetic equation of reaction is an equation that links chemical reaction rate 
(left-hand side of equation) and the kinetic function (right-hand side of equation). 

Kinetic order of the reaction with respect to a given reactant is the exponent 
with which the reactant concentration (for example, yt) appears in the kinetic 
equation for reaction rate written in polynomial form w = k -y^-y^. For 
simple reactions, the kinetic order of reaction with respect to a given reactant is 
equal to the number of reactant particles participating in an elementary act, and 
it coincides with the reaction molecularity. For example, for reaction 
2NO + CI2 -> 2NOC1, the kinetic order of reaction with respect to Cl2 is equal 
to 1, and with respect to NO it is equal to 2. Note that polynomial representation 
of kinetic function is not applicable for some heterogeneous reactions. 

Overall kinetic order of reaction v = Y^!L\ ̂ i *s m e s u m of kinetic orders of all 
reactants that are included in the kinetic equation for reaction rate. For a simple 
reaction, the overall kinetic order of reaction is equal to the number of all 
particles participating in the elementary act. It is always a positive integer 
number. For example, for reaction 2NO + CI2 -> 2NOC1, the overall order of 
reaction is equal to 3. Kinetic order of a complex chemical reaction with respect 
to /th reacting component is not always equal to its stoichiometric coefficient in 
the chemical equation of the complex reaction. The necessary condition for the 
coincidence of the stoichiometric order of reaction, and the overall kinetic order 
of the reaction is that the chemical reaction is simple. Overall kinetic order of 
reaction can be integer, fractional, and negative (for autocatalytic and chain 
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auto-initiated reactions, see details in Refs. 5 and 9), and can vary with initial 
conditions. Kinetic order of a complex reaction is determined by the mechanism 
of the chemical process. Discrepancy between experimentally observed kinetic 
orders with respect to components and the appropriate stoichiometric coefficients 
is evidence that the chemical reaction is complex. 

Kinetic curve is a plot of concentration of reacting substance (initial reactant 
or reaction product) versus time. 

Equation of kinetic curve is a mathematical expression describing a reacting 
substance concentration variation with time, for example, kinetic curve expressed 
in analytical form. 

Law of mass action (Guldberg and Waage law): the rate of a simple chemical 
reaction in one direction at any moment of time is directly proportional to the 
product of the current concentrations of the reacting substances taken with the 
exponents of power equal to the stoichiometric coefficients. The coefficient of 
proportionality in the expression for reaction rate is called the reaction rate 
constant or specific reaction rate, or the rate for unit concentration of each of the 
reacting substances. 

Kinetically ideal chemical system is a system the kinetic functions of which 
obey the law of mass action. 

Thermodynamic analysis of equations of chemical kinetics is discussed in 
Refs. 23 and 24. 

B. Units of Measurement of Chemical Reaction Rates 

The rate of a homogeneous chemical reaction is measured by: 

a) the number of moles (quantity of matter) reacting in unit volume (1 m3, 
1 liter, 1 cm3, etc.) per unit time (such as second, or hour), or 

b) the number of particles reacting in unit volume per unit time. 

The coefficients of conversion between the units: 

1 mol/(l • s) = 1(T3 mol/(cm3 • s) = 6.02 x 1020particles/(cm3. s). 

C. Kinetic Model of Simple Irreversible Chemical Reaction 
(Mass Action Law) (C.l) 

1. Purpose of the Model 

The model aims at the evaluation of the rate of a simple irreversible chemical 
reaction. 

2. Assumptions 

a) An ideal chemically reacting gas is considered. 
b) The reaction does not distort the equilibrium (Maxwell-Boltzmann) 

energy distribution over translational and rotational degrees of freedom of 
the reacting particles. 

c) The reactants are uniformly distributed over the reactor volume. 
d) Changes in reactant concentration do not affect the properties of medium. 
e) The chemical system is assumed to be kinetically ideal. 
f) The stoichiometric coefficients and the reaction rate constant are known. 
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3. Restrictions 

a) The reaction time scale is much longer than the time of relaxation to 
equilibrium in the translational and rotational degrees of freedom of the 
reactants. 

b) The reaction time is much shorter than the time for mass transport 
processes such as diffusion and convection. 

4. Rate of a Simple Irreversible Chemical Reaction 

N N 

i=i i=i 

• for molar-volume concentrations of components: 

N v+ 

w = kfY\yvii 

i=\ 

• for number densities of components: 

N /„ \vt / 1 \z2 v t N 

• for molar-mass concentrations of components: 

w = kf f\ iciPyt = */(P)£. v< f\ (Cir> 
i=l i = l 

5. Nomenclature 

kf irreversible reaction rate constant 
vf stoichiometric coefficient for a reagent X; 
yh nt, ct concentration of component i in different units of 

measurements (see above) 
Af number of the reacting components 

6. Description of Coefficients and Parameters 
The chemical reaction rate constant k is a function of temperature, and for 

some types of the reactions (for example, for unimolecular decomposition at high 
pressures), it is also a function of pressure. For liquid-phase reactions, k can 
depend on the medium (solvent). The simplest and commonly used dependence 
of reaction rate constant on temperature is given by the Arrhenius formula 
kf(T) = AQxp(-Ea/RT) and its generalization kf(T) = MTnexp(-Ea/RT\ 
kf(T) = A"(T/29S)n exp(-Ea/RT), where A, A', and A" are constant pre-
exponential factors, n is the dimensionless exponent in the temperature cofactor 
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of the pre-exponential factor, Ea is the activation energy of an elementary 
reaction, and R is the universal gas constant (see details in the description of 
model I-C.l in the first volume). According to the Arrhenius formula, 
temperature dependence k(T) is a straight line in coordinates log/:, \/T (the 
Arrhenius coordinates); the line slope is determined by the activation energy. The 
generalized Arrhenius formula takes into account more complex dependence of 
reaction rate constant on temperature. Numerical values of the quantities A, A', 
A", n, Ea are evaluated empirically or with quantum chemistry calculations. The 
units of pre-exponential factor are determined by the kinetic order of reaction and 
are dependent on units of measurement of concentration. For example, for 
concentrations expressed in the traditional for chemical kinetics units mol/cm3, 
the units of reaction rate constant kf are the following: 

s~l for reactions of first order with respect to substance / 

d 7 = " ^ ' 

cm3/(mol • s) for reactions of second order with respect to substance i 
Hv.- « 

= -kfyl df 

cm6/(mol2 • s) for the reactions of third order with respect to substance i 

fyi , 3 
d T - - ^ ' -

Model I-C.l in the first volume is devoted to the calculation of the rate of a 
simple chemical reaction in a thermally equilibrium gas using Arrhenius formula; 
the activation energy Ea can be evaluated with models I-C.2-C.4; the pre-
exponential factor can be evaluated using models I-C.5-C.8. For unimolecular 
decomposition reactions, the rate constant kf is dependent on pressure (see 
descriptions of the models I-C.15, I-C.16 and Refs. 26 and 27). Results of 
experimental and theoretical work on estimation of the numerical values of 
reaction rate constants are summarized in monographs, handbooks, and reviews 
(see, for example Refs. 6 and 28-34), and publications in the Journal of Physical 
and Chemical Reference Data). 

In a thermally nonequilibrium gas that is characterized by an absence of 
equilibrium between the translational and vibrational degrees of freedom of the 
reacting molecules and is described by two different temperatures, translational T 
and vibrational Tv, the dependence of a reaction rate constant on temperature is 
determined by the expression 

k(T, Tv) = Z(T, TV) • k°(T) 

where Z(T, Tv) is a nonequilibrium factor, k°(T) is the thermally equilibrium 
reaction rate constant. Models I-C.19-I-C.28 in the first volume are devoted to 
calculations of the nonequilibrium factor. 
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7. Features of the Model 

For simple reactions of different orders, running at constant temperature in 
constant-volume gas, expressions for the reaction rate w, the current concentrations 
of species (for example, molar-volume concentration yt), and the half-life time r i / 2 

(the time during which half of the initial quantity of reactant is converted) have the 
following forms (yXo is the initial concentration of component X): 

Reaction order 
reaction formula 

First 
X -* products 

Second 
X + Y -> products 

Tl/2 

dy x 

" dt 
= k-yx 

In 2 /k 

dyx d j Y , 

- d r = - d r = * - y x - y Y 

yx = yxo exp (-la) yx = yxo 
CVYO - yxo) exp[-(yYo - yxo)kt] 

yvo - yxo exp[-CvYo - yxo)**] 
y YO - yxo 

y Y = JYO 

yyo - yxo exp[-(yYo - yxo)**] 

see TI/2 for reaction X + X -> products 
Reaction order 

reaction formula 
Second 

X + X —• products 
Third* 

X + Y + Z -> products 
(at yx=yY =yz= y) 

X + 2Y - • products (at yy = y, 
yx = y/2) 

y* 

Tl/2 

y x = * x o 

dyx 
" dt ' 

dyy 

~2df = /^xyY 

1 + 2yX0to 
2/kyxo 

y = y 0 ( l + 2 y ^ r 1 / 2 

3/2ky2
0 

*In the general case, with arbitrary ratio of the concentrations yx, yy, yz, simple analytical 
expressions for yt cannot be derived. 

8. Example 

The reaction of thermal dissociation of molecular oxygen can be written as 
(the arrow indicates the direction of the reaction): 

0 2 + M -> 2 0 + M 

where M is an arbitrary particle. If particles M of all species have the same effec­
tiveness of reaction in their collisions with 0 2 molecules, then the reaction rate: 

w = kfyo2yu 

where yo2 and yu are the concentrations of 0 2 and particles M, respectively. 

9. Comment 

The mass action law of Guldberg and Waage is the basis of the theory of 
formal kinetics of chemical reactions. As a part of chemical kinetics, formal 
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kinetics is devoted to studies of reaction rate dependence on the reactant 
concentrations. The objectives of formal kinetics are to establish the mechanisms 
of complex chemical reactions and to ascertain quantitative relations between 
reaction rates and reagent concentrations in the form of a set of differential 
and/or algebraic equations. 

Relevant material can be found in Refs. 6, 8, and 9. 

D. Kinetic Model of Simple Reversible Chemical Reaction (C.2) 

1. Purpose of the Model 

The model aims at evaluation of the rate of a simple reversible chemical 
reaction (or 7th stage of a complex chemical reaction) Wj. 

2. Assumptions 

a) See assumptions a-f in the description of model C.l. 
b) The simple reversible reaction can be an elementary stage in a complex 

chemical reaction. 

3. Restrictions 

See the appropriate section in the description of model C.l. 

4. Rate of a Simple Reversible Chemical Reaction 

N N N N 

E vtx> * E v* * or E 4 x< = E vu x<-
1=1 1=1 1=1 1=1 

• for molar-volume concentrations of components: 

Wj = W+-W7=kfj f\y? - kbj f\y? 
i=l i=\ 

• for number densities of components: 

• for molar-mass concentrations of components: 

WJ = kfj(p)£ivt Y\ (atf - kbj(p)£iv« Y[ (ct)vi 
i=l i = l 
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5. Nomenclature 

kg, kbj reaction rate constants in the forward and reverse directions, 
respectively 

v+, v^j stoichiometric coefficients for the initial reactants and 
reaction products 

v, molar-volume concentration of component i 
nt number density of substance / 
ct molar-mass concentration of species i 
N number of the substances participating in reaction 

6. Description of Coefficients and Parameters 

See appropriate subsection in the description of model C.l. 

7. Features of the Model 

In the early stages, when mostly the initial reactants are present in the system, 
the reaction runs mainly in the forward direction. With accumulation of the 
reaction products, the rate of a simple reversible reaction (or 7th elementary stage 
of a complex chemical reaction) slows down, and at the chemical equilibrium 
state, the reaction rate becomes zero because the rate of forward reaction is equal 
to the rate of the reverse ones {kinetic condition for chemical equilibrium): 

"# = < or kef\y? =kbjf\p 
1=1 i=l 

where the equilibrium values are marked by the top bars and superscript 0. From 
this, the relation between the rates of forward and reverse reactions, referred to as 
the detailed equilibrium {balance) principle (Refs. 1 and 5), follows: 

kbj(T) n f = i-v, y 

The quantity KCj{T) is called the concentration equilibrium constant for 
reaction/ The equilibrium constant, expressed in terms of partial pressures pt of 
the components, has the following form: 

Y\N 5V'7 TT* vv'7 

Kpj{T) = I i f = 1 / \ = {RT)~^ • l h = 1 \ = {RT)-Av« • Kcj{T) 

where Av/, = ^ v j — ]T vjj (see also Chapter 8, Thermodynamics of Gases and 
Plasmas in this volume). Numerical value of the equilibrium constant depends on 
temperature. 

In thermally nonequilibrium gases, the equilibrium constant Kcj{T) is 
determined by the relation Kcj = K^{T)/k0

bj{T\ where k°fj{T) and k°bj{T) are the 
thermally equilibrium rate constants (see description of model C.l). 



CHEMICAL KINETICS (C MODELS) 129 

8. Example 

The reversible reaction of the thermal dissociation-recombination of mol­
ecular oxygen can be written as (the arrows indicate the possible directions of the 
reaction) 

0 2 + M *± 20 + M 

where M is an arbitrary particle. If particles M of all species have the same 
effectiveness of reaction in their collisions with 0 2 molecules, then the reaction 
rate: 

w = k+ • yo2 • vM - k~ • VQ • yM 

where yo2, yo and VM are the concentrations of 02 , O, and particles M, 
respectively. 

9. Comment 

Equilibrium constant for a reversible reaction is of interest to chemical 
kinetics as a quantity that defines the limit for variations of the concentrations of 
reacting components under the given conditions. Also, based on known values 
of equilibrium constant and the forward reaction rate constant, the rate constant 
of the reverse reaction can be calculated. 

Relevant material can be found in Refs. 6, 8, and 9. 

IV. Rates of Complex Chemical Reactions 

Rate of complex chemical reaction w is a set of rates of the chemical stages 
that determine the change of composition of chemically reacting system per unit 
time in a unit of reaction space in accordance with the kinetic scheme of the 
complex reaction under consideration. The magnitude of the complex reaction 
rate is defined by the vector of rates that characterize the separate elementary 
chemical stages (j = 1, 2 , . . . , S): 

fwil 

LwsJ 
Principle of kinetic independence of simple reactions is defined as following. 

The separate simple reactions that constitute a complex chemical reaction 
proceed independently from each other, so that the kinetic functions (that is, the 
simple reaction rates as functions of concentrations and temperature) are not 
changed when the other reactions run in the given system. The principle of 
independence of complex reaction stages is justified when the separate 
reactions, expressed in the form of stoichiometric equations, are consistent with 
the elementary acts of chemical conversion, that is, the stoichiometric scheme 
represents the actual mechanism of the complex reaction correctly. The 
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principle of independence of simple reactions is applicable to the principal types 
of complex reactions: parallel (concurrent), consecutive, and chain ones. For 
those complex reactions in which some simple reactions substantially affect the 
others, as, for example, in conjugated reactions, the principle of independence is 
not applicable. The principle of independence of complex reaction stages is 
only satisfied in thermally equilibrium gas, when the Maxwell-Boltzmann 
distribution takes place in all degrees of freedom. Under extreme conditions and 
in fast processes, such as those in shock waves and hypersonic flows, electric 
discharges, combustion and explosions, in gas lasers, and in gases subjected to a 
laser or some other powerful radiation, a substantial deviation from thermal 
equilibrium is possible. This nonequilibrium results in acceleration or 
retardation of some chemical reactions. For example, super-thermal vibrational 
excitation, when the vibrational temperature Tv is higher then the translational 
temperature 7\ accelerates endothermic reactions substantially (sometimes, 
by orders of magnitude). The principle of independence of elementary 
stages is violated under nonequilibrium conditions. The description of 
models of thermally nonequilibrium chemical reactions can be found in 
I-C.19-I-C.28. 

Kinetic vector-function of complex chemical reaction is a vector of the kinetic 
functions for separate elementary stages of complex chemical reaction 

f(y,T) = \f(yl9y2,...,yN,T)i\ = 

'Myi,y2'-.,yN, T)' 
f2(yuy2,...,yN, T) 

fs(yi,y2,-",yN, T) 

A representation of kinetic function of a complex chemical reaction as a vector 
is valid if the principle of independence of elementary stages of the complex 
reaction is satisfied. 

A. Kinetic Model of Complex Chemical Reactions (C.3) 

1. Purpose of the Model 

The model aims at evaluation of a complex (multistep) chemical reaction rate. 

2. Assumptions 

a) See assumptions a and b in the description of model C.l. 
b) It is assumed that the principle of independence of stages of complex 

chemical reaction is obeyed. 
c) The kinetic scheme of a complex chemical reaction, the stoichiometric 

coefficients, and the rate constants for the forward and backward 
directions of elementary stages are known. 

3. Restrictions 

See appropriate restrictions in the description of model C.l. 
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4. Rate of Change of the \th Component Concentration Because of 
Complex Chemical Reaction 

• in coordinate form: 

Ri = J2<yj - vpwj = j^(vr - vp • kjj f[yfj 

j=\ j=\ k=i 
S N 

+ E ( 4 - v / / ) ' ^ n ^ i'=l,2,...,iV, ;=1,2 , . . . ,S , wj 
7=1 k=\ 

(see the description of model C.2) 

• in matrix form: R = f • w. 

5. Nomenclature 

wi rate of change of the fth component concentration 
/, j subscripts referring to reacting components and stages of complex 

chemical reaction, respectively 
N, S number of reacting components and stages of complex chemical 

reaction, respectively 
kfi, kbj reaction rate constants in forward and backward directions, 

respectively 
vfj, vjj stoichiometric coefficients for the reactants and products of reactions 

for stages of complex chemical reaction under consideration 
Wj rate of the yth stage of complex chemical reaction 

Nomenclature of other symbols is shown in the appropriate subsection in the 
description of model C.2. 

6. Description of Coefficients and Parameters 

See the appropriate section of the model C.l description. 

7. Features of the Model 

As time goes on, the reacting system comes to chemical equilibrium state, 
when the concentration change rates for all components become zero in closed 
systems, and become equal to reactant supply rate for open systems. 

8. Example 

In the combustion of hydrocarbon fuels, partial oxidation of nitrogen occurs, 
and the combustion products can contain substantial amounts of nitrogen 
monoxide NO. The mechanism of NO formation is determined by the 
stoichiometric equations: 

1. N2 + 0 = NO + N 
2. 0 2 + N = NO + O 
3. OH + N = NO + H 
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which constitute the extended Zel'dovich mechanism. The rate of NO formation: 

RNO = w\ + w2 + w3 

wi = kfiyNlyo - kbiVNOJN 

v̂ 2 = kf2yo2yN - hiyNoyo 

v̂ 3 = kf3yNy0H - kb3yNoyn 

9. Comment 

The rate of change of concentration vector y = |y,- | is defined as the vector 
dy/dt. In closed system with constant volume, where concentration changes 
occur because of chemical reactions only, the kinetic equation is written as 
dy/dt = T • w, where f is the stoichiometric matrix (see Chemical Reaction 
Stoichiometry). The kinetic equation for closed systems with variable volume is 
presented in model C.9. Kinetic equations for open systems, where concentration 
change rate is dependent on reactant flow parameters, are presented in models 
C.10-C.11. 

Relevant material can be found in Refs. 5-10 and 13-22. 

V. Empirical Correlations for Overall Rates of 
Complex Chemical Reactions 

Overall rate of complex chemical reaction is the rate of conversion of the 
initial reactants into reaction products, attributed to the slowest stage (either 
of the reactants consumption or products formation) of a complex chemical 
reaction. For the majority of complex chemical reactions, a priori theoretical 
predictions of the overall rate cannot be made because of insufficient 
knowledge of kinetic mechanisms and of the rate constants for elementary 
stages. In those cases, empirical correlations are widely used for practically 
important chemical reactions. The correlations are inferred from specific 
experiments. 

Example 

For processes of hydrocarbon (fuel) combustion in oxygen (oxidizer) 
according to global stoichiometric equation 

( m r\ /m\ 

n+4~ V°2 ~* nC°2 + V2)H2° 
the overall rate of combustion are approximated by the formula 

*=Aexp(-JpW'. 
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where 

Nuvi 

N2, v2 

A 
E 
n, m, r 

R 

concentration and kinetic parameter for fuel (hydrocarbon 
CwHmOr) 
concentration and kinetic parameter for oxidizer (oxygen 02) 
effective (empiric) per-exponential factor 
effective (empiric) activation energy 
numbers of atoms of carbon, hydrogen and oxygen in hydrocarbon 
molecule accordingly 
universal gas constant 

The numerical values for A, E, v\ and v2 are shown in the following table 
(according to the data from Refs. 4, 35 and 36); the units of measurement: 
A, (cm3/mol)Vl+V2-1 • s"1; E, kcal/mol; Nu N2, mol/cm3. 

Fuel 

CH4 

CH4 

C2H6 

CsH8 

C4H10 

C5H12 

C6Hi4 
C7H16 

QHig 
CgHi8 

1.3 
8.3 
1.1 
8.6 
7.4 
6.4 
5.7 
5.1 
4.6 
7.2 

A 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

108 

10* 
1012 

1012 

1011 

1011 

1011 

10u 

1011 

1011 

E 

48.4 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
40.0 

vi 

-0 .3 
-0 .3 

0.1 
0.1 
0.15 
0.25 
0.25 
0.25 
0.25 
0.25 

v2 

1.3 
1.3 
1.65 
1.65 
1.6 
1.5 
1.5 
1.5 
1.5 
1.5 

Fuel 

C9H20 

Q 0 H 2 2 
CH3OH 
C2H5OH 
C6H6 

C7H8 

C2H4 

C3H6 

C2H2 

4.2 
3.8 
3.2 
1.5 
2.0 
1.6 
2.0 
4.2 
6.5 

A 

X 

X 

X 

X 

X 

X 

X 

X 

X 

1011 

1011 

1012 

1012 

1011 

1011 

1012 

1011 

1012 

E 

30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 

vi 

0.25 
0.25 
0.25 
0.15 

-0 .1 
-0 .1 

0.1 
-0 .1 

0.5 

v2 

1.5 
1.5 
1.5 
1.6 
1.85 
1.85 
1.65 
1.85 
1.25 

VI. Kinetic Behavior of Complex Reactions 

A. Parallel Reactions 

Parallel reactions are two or more stages of a complex chemical reaction, 
when the same component participates in all the stages as an initial reactant. 

Reaction 

X 

Ml 

*2>v2 

• Y 

k\, k2 rate constants of the stages 1 and 2 
vi, v2 stoichiometric coefficients of reagents in the stages 1 and 2 
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— = km^l + k2nj, — = kwj, — = k2nx
2 

Particular solutions for the initial conditions nx = a0, nY = «z = 0 at t = 0 

1. V\ = V2 = v, 
f o r v = 1: nx = 0o*~(*1+*2>', 
forv ^ 1: 

1 * /i i z, \ v - i , nY h kx 

-^ZT--^zr:=(ki+k2)-a0 • t, — = —, nY = -—-r - ( / ix -«o) 

2. vi = 0, v2 = 1 and 8 = k\/ facto): 

nx = a0[(8 + \)e~klt - 8], nY = a08ln 

3. vi = 1, v2 = 2, and 8 = Jfci/(jfc + 2a0): 

\8 + nxJ 

f 8 + (nx/ao) 1 7 -

L("xA*o)(l + 6) J 

4. vi = l , v 2 - 3 , a n d j 8 = (/:i/A:2)1/2: 

nY = j8 • [arctan (ao/(3>) — arctan(«x/j8)] 

B. Consecutive Reactions 

Consecutive reactions are two or more stages of a complex chemical 
reaction, when a component that is formed in one stage is an initial reactant for 
another stage. 

Reaction X —> Y —> Z, k\,k2\v\, v2 (see above) 

Kinetic equations: 

dnx . Vl dnY 6nz V2 

~ "dT = 1 % ' ~dT = 1 % ~ 2 % ' ~dT = 2"Y 

1. vi = v2 = 1, X - ^ > Y; Y - ^ > Z 
Solutions for the initial conditions nx = ao, nY = «z = 0 at t = 0: 

nx = aoe-k", B y =-*!«L(*-*»'-*-*»<), 
*2 — * i 
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Here, nx exponentially decays, «z monotonically increases, tending to 
ao, and ny has a maximum: 

H Ymax = #0 I — I IOr fmax = 
&2 — k\ 

For &2 > &i, nymax - • 0; for &2 < &i, «Ymax -> ^o- The rate of formation 
of species Z for k2 > fci, wz ^ tfo&i exP(~*i0» is determined by the rate 
of the slow first reaction; for k2 <£ k\, wz & tfo&2 exp(—&2O is determined 
by the rate of the slow second reaction. 

2. vi = 2, v2 = 1, 2X-^> Y; Y-^> Z 

Kinetic equations: 

d « x ,_ 2 dwY _ 2 i_ _. dwz , = k\nx, —r- — kinx—k2nY, —^ = k2nY dt x dr x df 

Solution: 

«Y -£h»-*<,+sH "Ymax = «0T m a x( l /26 ) 1 / 2 

*1 6 = ~, r = 1 + ao*ir, a = (1 + 2S)1/2. 

/fate determining (rate-controlling) step is a reaction with the rate constant 
that is much slower than all the other stages in a series of consecutive reactions; 
this slowest reaction determines the overall rate of complex reaction. 

If one of the consecutive stages controls the dynamics of a complex reaction 
(has the slowest rate), then the kinetic order of the complex reaction is equal to 
the kinetic order of the rate-controlling stage. 

C. Conjugated Reactions 

Chemical induction is a process when a spontaneously occurring reaction 
induces or accelerates another reaction that would occur very slowly in the 
absence of the former reaction. 

Conjugated reactions are two reactions, one of which induces the other 
reaction. 

Chemical induction phenomenon is possible only in a case when both 
conjugated reactions are complex. Elementary reaction cannot be induced by 
another reaction because of the principle of kinetic independence of elementary 
stages of complex chemical reactions. 

Inductor is a component of chemical system, the reaction of which with one of 
the initial reactants induces transformation of other initial reactants. 

Actor is an initial substance reacting with the inductor. 
Acceptor is an initial substance, the transformation of which in a chemical 

system is possible only with chemical induction between actor and inductor. 
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Induction factor is a measure of chemical induction effectiveness, equal to the 
ratio of acceptor consumption rate to the inductor consumption rate. Induction 
factor can vary from zero to 1. 

D. Simplest Kinetic Scheme of Two Conjugated Reactions: 

A + l - * R 

R + ml -» raB 

R + C ^ D 

where A is an actor, I is an inductor, B is the product of inductor transformation, 
C is the acceptor, D is the product of acceptor transformation, R is a common 
intermediate product, m is the number of inductor molecules consumed in 
reaction with the intermediate product. 

E. Example 

Reaction of carbon monoxide oxidation 2CO + 02 = 2CO2 proceeds at high 
temperatures only. With H2 present, joint oxidation of hydrogen 2H2 + 02 = 
2H2O and carbon monoxide occurs at lower temperatures. Induction is caused by 
formation of OH radicals in chain reaction of hydrogen oxidation. The OH 
radicals oxidize CO: OH + CO = C0 2 + H. Here, 0 2 is the actor, H2 is the 
inductor, and CO is the acceptor. 

Relevant material can be found in Refs. 5-9. 

VII. Photochemical Reactions 

Photochemical reactions are conjugated chemical reactions induced by visible 
light (wavelength between 400 and 800 nm), near ultraviolet (100-400 nm) or 
infrared radiation (0.8-1.5 |xm). The photons (quanta of light) are the inductors. 

Gershell-Draper law. photochemical transformation occurs because of the 
light absorbed by reactant; the amount of product of photochemical reaction is 
proportional to the intensity of incident light and to the time of its impact. 

Einstein-Stark law {photochemical equivalence law) every absorbed photon 
excites only one molecule of the reactive substance. However, with a very intense 
radiation (for example, in a powerful laser beam), multiquantum absorption 
becomes possible, when more then one photon per molecule can be absorbed. 

Primary photochemical processes are processes that result in formation of 
active intermediate (vibrationally or electronically excited) particles because of 
exposure of reactants to light. Deactivation of the electronically or vibrationally 
excited particles occurs in one of the deactivation channels: 1) molecule 
dissociation into atoms or radicals, 2) molecule ionization with formation of 
molecular ion and electron, 3) light emission by the excited molecule 
(fluorescence), 4) excitation quenching because of collisions with other 
molecules. Rates of primary photochemical processes are independent on 
temperature. Temperature dependence of photochemical reaction rate points to a 
complex chemical mechanism of the process and to a substantial influence of 
secondary chemical reactions on the overall process rate. 
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Example 

Photochemical explosion of gas mixture of hydrogen with chlorine: 

Cl2 + hv -* CI + CI 

CI + H2 -* HC1 -I- H 

H + Cl2 -> HC1 + CI 

Here the first reaction describes the primary photochemical process (chlorine 
atoms formation), and the second and third reactions are the secondary reactions. 

Photolysis is a chemical process in which absorption of a photon results in the 
breakup of a chemical bond. 

Quantum photochemical yield </>A/ is a number of the transformed 
(disintegrated or formed) molecules per unit volume of reacting medium divided 
by the number of absorbed quanta of light with wavelength A. Quantum yield is a 
dimensionless quantity. It characterizes both primary photochemical process 
effectiveness and a contribution of the secondary chemical reactions. The value 
of quantum yield greater than 1 implies that secondary reactions are important. 
The quantum yield value greater than 2 indicates chain branching mechanism of 
the chemical process. 

Secondary photochemical processes are thermal and nonequilibrium reactions 
of the atoms and radicals formed in primary photochemical processes. In 
secondary reactions, the atoms and radicals react with each other or with 
reactants that do not absorb light. 

Lambert's law: the amount of light absorbed is determined by the thickness 
of the absorbing layer. Specifically, in homogeneous optically thin (weak 
absorption) medium the intensity of monochromatic (wavelength A) light I\ (the 
number of photons passed per time unit though a unit surface area) remaining 
after the light has passed the path length /, is equal to 7A = ho^~Bxl, where eA is 
the absorption coefficient (cm-1) (Refs. 6 and 8). 

Beer's law: the amount of light absorbed is determined by the concentration of 
the photo-absorbing species. The intensity of light is decreased exponentially 
with substance concentration: / = Ioe~eK>rl'yi, where eA,i is the specific absorption 
coefficient for ith photo-absorbing species, and yt is the molar-volume 
concentration of the species. 

A. Kinetic Model of Photochemical Reactions 

1. Purpose of the Model 

The model aims at the evaluation of photochemical reaction rates and 
dynamics of chemical composition of reacting systems exposed to photo-
radiation. 

2. Assumptions 

a) An ideal, chemically reacting gas is considered. 
b) The reactants are uniformly distributed in space. 
c) The chemical system is assumed kinetically ideal, 
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d) The quantum photochemical yields of the photoactive reactants, the 
stoichiometric coefficients, and the rate constants for secondary chemical 
reactions are known. 

e) Light radiation absorption occurs uniformly in space. 

3. Restrictions 

The optical thickness should be small DA = eA,/ • / • yt<& 1, so that the main 
system parameters (temperature, pressure, and gas density) are practically 
undisturbed. 

4. Kinetic Equation 

Rate of change of the ith component concentration because of photochemical 
reaction: 

-^ = wphi +Rt = J2 Wphi, A + J2 <v0 - VPWJ 
A 7=1 

=Ew^.A+E(v,7-v^n^+n(v+-v^n^ 
A 7=1 * = 1 7=1 * = 1 

i = l , 2 , . . . , t f , 7 = 1,2, . . . .S 

wphi, \ = vph- <j>\yi - s\yi• • / • I\ • yt is the rate of primary photochemical reaction 
between photo-absorbing component / and photon with wavelength A. 

5. Nomenclature 

yi molar-volume concentration of component i 
vphi stoichiometric coefficient for component i formation in primary 

photochemical reaction 
wt rate of the ith component concentration change because of the 

secondary chemical reactions (see description of model C.3) 
I\ number of photons with wavelength A absorbed in unit volume 

per unit time 
<j>k i quantum photochemical yield for component / induced by light 

with wavelength A 
8A, i specific absorption coefficient for the ith photo-absorbing species 

and light with wavelength A 

6. Description of Coefficients and Parameters 

Numerical values of the quantum yield are determined in photochemical 
experiments and are tabulated (see, for example, Refs. 6 and 37). Typical 
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magnitudes of the quantum yield for some gas-phase photochemical reactions are 
shown in the following table: 

Reaction 

CH3CHO -* CH4 + CO 
2HI -> H2 4-12 

30 2 -* 203 

N20 -> N2 + I/2O2 
2NOC1 -* 2NO + Cl2 

<t> 
0.3 
2.0 
2.0 
1.44 
2.0 

A(A) 

3130-2380 
300-1800 

1900-1300 
1840-1470 
6350-3650 

7. Features of the Model 

The kinetic equation permits one to evaluate, taking into account specific 
features of the problem under consideration, temporal behavior of the reactant 
concentration for arbitrary time-dependent intensity of photo-radiation. 

8. Example 

a) Photodissociation of hydrogen peroxide 

In the presence of carbon monoxide, photodissociation of hydrogen peroxide 
is described by the following kinetic scheme: 

H202 + hv -> 20H 

OH + CO-^> C02H 

C02H + H202 - ^ C0 2 + H20 + OH 

H202 + OH \ H20 + H0 2 

2H02 -^> 0 2 + H202 

and by the set of kinetic equations: 

!- = - 0 • /A[H 2 0 2 ] - fc2[H202] • [C02H] - fc3[H202] • [OH] + fc4[H02] 
dt 

d[OH] 
= + 2 - 0 . /A[H202] - h [OH] • [CO] + fc2[H202] • [C02H] 

dt 

-^[H 20 2 ] - [OH] 

d[C02H] 
= Jki[OH] • [CO] - fc2[H202] • [C02H] 

dt 

:^[OH].[CO]-/:2[H02]2 d[H02] ,_ r _ T 1 r w x l ,_ nm _2 

dt 
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b) Photochemical smog 

Air pollution in large cities due to automobile exhaust gases results, under 
certain conditions, in photochemical smog (Ref. 38). Photodissociation of 
nitrogen dioxide causes smog formation. Nitrogen dioxide absorbs light in the 
entire range of the visible and ultraviolet spectrum. Absorption of light with 
wavelength shorter than 395 nm results in photo-dissociation into NO and O: 
NO2 + hv -* NO + 0(3P). According to Beer's law, the rate of photolysis of 
molecules X is defined by the expression dyx/df = — k$ • yx, where k% is the 
photolysis rate constant (1/s). Given the intensity of sunlight at sea level and 
the small zenith angles of the Sun, the integration over the wavelength range 
290-400 nm yields the value % = 7.8 x 10~3 s"1 for photodissociation rate 
constant. 

Relevant material can be found in Refs. 6, 7, 37, and 38. 

VIII. Radiative-Chemical Reactions 

Radiative-chemical {radiation-induced) reactions are chemical reactions 
induced by ionizing radiation, for example, by high-energy particles (such as 
electrons, protons, a-particles, or neutrons) or by electromagnetic radiation (y 
or X-ray quanta) with energy in the range 103—107 eV. 

Primary radiative-chemical processes are physico-chemical processes of 
excitation and ionization of reactants, radical formation, and formation of 
negative ions due to capture of electrons by atoms and molecules, under the 
impact of high-energy particles or photons on chemical systems. 

Secondary radiative-chemical processes are complex chemical reactions 
between the secondary electrons (so-called 6-electrons), radicals, and excited 
atoms or molecules that are formed during ionization and excitation of atoms and 
molecules by the primary high-energy particles or photons, and the neutral 
reactants of reacting medium. 

Radiation yield Gtj is the number of particles (molecules, atoms, radicals, or 
ions) of type j , formed or consumed during absorption of 100 eV of radiation 
energy by the reactant of type i. For gaseous mixture composed of N components, 
the radiation yield of reactant j is defined by the expression 

G = Eti GijXiZi 

2^i=i x& 

where X[ is the molar fraction of component i, and zt is a weight factor. The 
magnitudes of radiation yields and weight factors zi are determined in radiation-
chemical experiments and are tabulated (see, for example, Refs. 39 and 40). 

Absorbed dose is the ionizing radiation energy absorbed per unit mass of 
irradiated substance. Units of measurement of absorbed dose: 1 gray = 1 J/kg = 
10~3J/g = 0.1rad. 

Power (rate) of absorbed dose is the ionizing radiation dose absorbed 
per unit time. 
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A. Kinetic Model of Radiative-Chemical Reactions (C.5) 

1. Purpose of Model 

Model aims at the evaluation of radiative-chemical reaction rates and temporal 
dynamics of chemical composition of systems exposed to ionizing radiation. 

2. Assumptions 

a) An ideal, chemically reacting gas is considered. 
b) The reactants are uniformly distributed in space. 
c) The chemical system is assumed to be kinetically ideal. 
d) The quantum radiation yields of the reactants, the stoichiometric 

coefficients, and rate constants for secondary chemical reactions are 
known. 

e) Ionizing radiation absorption occurs uniformly in space. 

3. Restrictions 

The magnitude of absorbed dose is small D <^cvT (here, cv is the specific heat 
and T is the temperature of absorbing substance), so that the main parameters of 
the medium (temperature, pressure, and gas density) are practically unchanged. 

4. Kinetic Equation of Radiative-Chemical Reaction 

N 

—Gu • Xt -> 2^ , GijXj 
. 7 = 1 

for molar-volume concentration of components: 

£-5>+' 
E N 

k= ktj = 1.036 x 10- 7 • / • Zi • G^^lXkflk 

E*=l xkZk 

5. Nomenclature 

yi molar-volume concentration of component i 
kij rate constant of component j formation because of the radiation 

impact on component / ( s - 1 ) 
wt rate of change of concentration of the ith component because of 

secondary reactions 
/ power of absorbed dose (kgray) 
Zi weight factor for component / 
Gtj radiation yield for component j under radiation impact on 

component / (particles/100 eV) 
xt molar fraction of particles of type i in the gas 
/*,, molar mass (molecular weight) of particles of type i 
N number of reacting components 
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6. Description of Coefficients and Parameters 

For some common gases, the magnitudes of quantity n are: 

z(He) = 2.24 z(H2) = 3.08 z(Ar) = 6.60 z(02) = 6.24 
z(N2) = 7.02 z(NO) = 7.91 z(CO) = 8.39 z(ClU) = 10.0 
z(C02) = 10.9 z(C2H2) = 14.7 z(Xe) = 14.9 z(C6H6) = 16.5 

7. Features of the Model 

The kinetic equation permits one to evaluate, taking into account specific 
features of the problem under consideration, temporal behavior of the reactant 
concentration for arbitrary time-dependent intensity of radiation. 

8. Example: Electron-Beam Cleaning of Exhaust Gases 

The radiative-chemical effects in gases play a key role in technological 
facilities for electron-beam purification of the exhaust gases in industrial 
facilities and power plants (Ref. 41). For key air components, reactions of 
formation of active components have the following form (Ref. 42): 

4.43N2 - • 0.29N* + 0.89N(2D) + 0.29N(2P) + 1.87N(4S) + 2.27N+ 

+ 0.69N+ + 2.96e~ 

5.3802 - • 0.08O^ + 2.250(1D) + 2.80O(3P) + 0.18O* + 2.07O+ 

+ 1.230++ 3.30e" 

7.33H20 -> 0.51H2 + 0.46O(3P) + 4.250H + 4.15H + 1.99H20+ + 0.01H+ 

+ 0.57OH+ + 0.67H+ + 0.06O+ + 3.30e~ 

7.54C02 -> 4.72CO + 5.160(3P) + 2.24CO+ + 0.51CO+ + 0.07C+ 

+ 0.21O"h + 3.03e" 

Relevant material can be found in Refs. 39, 40, and 42. 

IX. Oscillatory Chemical Reactions 

Oscillatory chemical reaction is a complex chemical reaction in which 
concentrations of intermediates and/or catalyst oscillate in time. The origin of 
oscillatory process is related to the decrease of Gibbs free energy in the reaction 
in a chemical system far from thermodynamic equilibrium. Under certain 
conditions, oscillatory chemical reactions can be accompanied by diffusion 
processes, resulting in the generation of traveling waves of reactivity. 

Gas-phase oscillatory chemical reactions are subdivided into isothermal and 
thermo-kinetic reactions. The most extensively studied isothermal oscillatory 
reaction is the reaction of oscillatory oxidation of carbon monoxide. Oxidation 
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of hydrocarbons at subatmospheric pressures (cool flames) is a typical example 
of thermo-kinetic oscillatory reactions. The basic feature of thermo-kinetic 
reactions is the coupling of thermal and kinetic factors. The balance between heat 
production and its dissipation in environment during temperature changes in 
reaction are important conditions of realization of oscillatory reactions. 

Example 

Two types of behavior are observed for reactions in stoichiometric mixture of 
H2 and 0 2 in an open system at subatmospheric pressures: 

a) reaction proceeds at a sufficiently low rate, providing a stationary yield of 
the reaction products; 

b) reaction proceeds as a series of pronounced pulses of ignition. Each pulse 
can be accompanied by complete consumption of the reactant (H2) and by 
400 K temperature rise. 

However, the nonisothermal effects are not the reason of oscillatory behavior 
of chemically reacting media. During intervals between the pulses, the system is 
filled with fresh reactants. Transition to oscillatory ignition can happen either 
when temperature in the reactor is increased at constant pressure, or when 
pressure is changed at constant temperature. 

Relevant material can be found in Refs. 43-46. 

X. Catalytic Reactions 

Catalytic reactions are reactions that are selectively accelerated at the 
presence of a foreign substance, called the catalyst. A catalyst forms an 
intermediate component with some of the reactants. The intermediate 
component, in turn, reacts with other reactants to create the desired products 
and to regenerate the catalyst. The quantity of the catalyst and its state remain 
virtually unchanged by the end of the process. This quasi-invariance 
distinguishes a catalyst from an inductor (in conjugated reactions) or initiator 
(in chain reactions), which are not regenerated at the end of the process. 

Each catalyst is capable of catalyzing only certain particular chemical 
reactions or classes of reactions. The term "catalyst" with reference to any 
substance is not meaningful in separation from the reactions which it catalyzes. 

If catalyst and reactant are in the same phase, homogeneous catalysis takes 
place, as distinct from a heterogeneous catalysis, when chemical reaction pro­
ceeds at a phase interface between the catalyst and the reactant. Heterogeneous 
catalytic reactions are a subject of one of the subsequent volumes. 

In many reactions, the role of homogeneous catalyst is reduced to initiation of 
the reaction, that is, to create chemically active intermediates. The catalyst not 
only accelerates the reaction, but can also change its direction, causing 
preferential formation of a certain product. 

In some cases, a catalyst is created during the reaction, being one of its products. 
Accumulation of this product during the reaction causes self-acceleration 
(autocatalysis) of the reaction. Catalytic and autocatalytic triggers and oscillators 
in models of critical chemical phenomena are considered in Ref. 47. 



144 G. G. CHERNYI, S. A. LOSEV, S. O. MACHERET, B. V. POTAPKIN 

Example 
• Addition of 0.24% N0 2 to a mixture 2H2 + 0 2 results in 100 K decrease 

of the ignition temperature in this mixture. The accelerating action of N0 2 

is connected with chemical reactions 2N02 = 2NO + 0 2 , H0 2 + NO = 
N02 + OH (see Chain Reactions). 

• Thermal dissociation of hydrogen takes place in the reaction 
H 2 + M - > - H + H + M, where M is any particle. Since the efficiency of 
atomic hydrogen as a particle M is an order of magnitude higher than the 
efficiency of H2, the former can be considered as the catalyst accelerating 
this dissociation reaction. 

Relevant material can be found in Refs. 5-8 and 48. 

XI. Chain Reactions 

Chain reactions are complex chemical reactions, where the transformation of 
initial substances into products takes place by repetitive cycles of interdependent (that 
is, coupled with each other) consecutive reactions that include the active centers. 

Active center (or chain carrier) is an active intermediate particle (free radical 
with unpaired electron, ion, neutral atom or molecule, or a cluster with excited 
internal degrees of freedom), generation, consumption, and reproduction of 
which in a chemical system provides the chain mechanism of a chemical reaction. 
The chain carriers' concentrations are typically at a trace level. 

Chemical chain is a sequence of one or several elementary reactions with the 
participation of active centers, which repeats in time and thereby constitutes the 
chain process. Within each cycle of a chemical chain, the product of each 
elementary reaction is a reactant of the subsequent reaction. Each chemical chain 
cycle either conserves or increases the number of active centers. 

The kinetic mechanism of a chain reaction includes three main stages: 
initiation, propagation, and termination of a chain. 

Initiation of a chain X -> R is a stage of chain reaction, in which the chain 
carriers, R, are formed from the chemically stable reactants, X. The participation 
of these intermediates, R, in the subsequent stages of chain reaction results in 
consumption of reactants and formation of chemically stable products, P. In 
contrast to catalysts in conventional catalytic reactions, the chain carriers are 
irreversibly consumed during chain reaction. The formation of active centers is a 
necessary condition of the beginning of chain reaction. The following principal 
mechanisms of active particle generation in chain reactions exist: 

• Thermal mechanism: active centers are produced in unimolecular decay of 
initial molecules (H2 -> 2H) or in bimolecular reactions, as the reactive 
mixture is heated, as, for example, in the case of oxidation of hydrogen by 
oxygen (H2 + 0 2 -> H 4- H02); 

• Chemical mechanism: chain carriers are generated by introduction to a 
system of external initiators (species that can easily form radicals and thereby 
accelerate chain process while being consumed in it), for example, hydrogen 
peroxide that easily decomposes into two OH radicals: H202 -» 20H; 
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• Radiative-chemical mechanism: active centers are generated by an 
external radiation (such as X-rays, electron beams and protons); 

• Photochemical mechanism: effect of the photons in the visible or 
ultraviolet spectral range, as, for example, photochemical initiation of 
chain reaction of hydrogen with chlorine: CI2 + hv -> CY^ -> 2C1; 

• Catalytic mechanism: introduction into a chemical system of catalyst 
promoting appearance of active centers; 

• Mechanochemical mechanism: generation of active particles as a result of 
a mechanical effect on a system; 

• Electrochemical mechanism: conduction of electrical current in a system 
resulting in appearance of chain carriers; 

• Sonochemical (acoustic) mechanism: effect of ultrasonic waves on a 
reacting mixture. 

Chain propagation is a stage in a chain reaction, where the primary chain 
carriers, R, either reproduce themselves or give birth to new secondary active 
centers, R\, R2, . . . , Rm. In first case, the average number of active centers per 
chain propagation cycle is conserved; in the second case, that number is in­
creased. During the chain propagation, active centers can interact chemically or 
energetically with reactants, with one another, with walls of the reaction vessel, 
or with external factors (such as heat and radiation). Chain propagation stage can 
consist of several elementary reactions. 

Cycle of chain propagation R —> R\ > e • R + P is a sequence of 
1 m 

m elementary reactions of chain propagation, beginning and ending with a 
primary active center, 

Br + H2 -> HBr + H, H + Br2 -> HBr + Br. 

Here, the primary chain carrier (initiator), Br, causes the formation of 
secondary chain carrier, H, during the first reaction. In the second reaction 
of chain propagation cycle, the secondary active particle induces reproduction of 
primary active center, Br. 

The average number of active centers e > 1 produced in the basic cycle (link) 
of a chemical chain, can differ from unity. The case 8 = 1 corresponds to simple 
(non-branched) chain reactions. 

The following types of reactions take place in chain propagation: 

• chain propagation reactions, in which the number of chain carriers is 
conserved, e = 1 (for example, CI + H2 -> HC1 + H, chemical chain 
starts from one chain carrier, CI, and is continued by generation of another 
active center, H); 

• chain branching reactions, when the number of active centers increases, 
e > 1. For example, in the sequence H + 0 2 -» OH + 0, O + H2 -> 
OH + H, one carrier H results in formation of three carriers: one H and 
two OH. 

Chain branching is a kind of chain propagation, during which the average 
number of active centers produced in the chain propagation cycle becomes 
greater than unity. For example, in elementary reactions H + H20 -> 
H + H + OHorH 2 + H ^ H + H + H, atom H plays the roles of both initial 
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reactant and product. Atoms H are also active centers whose number increases in 
each of these two reactions. In this example of autocatalysis, the self-
reproduction of chain carriers and self-acceleration of reaction rate occur. 

The quantity 8 = s — 1 is the probability of branching in one chain link. It 
characterizes the branched chain reactions. If 8 > 0, a branched chain reaction 
takes place, when branching occurs in separate chain links from time to time, 
i.e., instead of one, two chains start to develop. In the limiting case 8 = 1, a 
completely branched chain reaction takes place, where branching happens in 
each chain link. 

Chain termination R -y> P is a stage of a chain reaction where an 
intermediate active particle is lost. Chain carrier disappearance occurs either 
in the bulk of the reacting medium (homogeneous chain termination) or at 
a surface: the surface of the reaction vessel or the surface of liquid or solid 
aerosol particles, if they are present in the reaction zone (heterogeneous chain 
termination). 

For the majority of chain reactions at normal and elevated pressures (about 
1 atm and higher), homogenous chain termination in gas-phase reactions of 
recombination of atoms and radicals dominates. 

At low gas pressures, heterogeneous processes of recombination and 
deactivation of active centers start to play a leading role. If the rate of chain 
termination is limited by diffusion of active centers to the surface, the chain 
reaction is referred to as proceeding in a diffusion regime. A reaction proceeds in 
a kinetic regime if the chain termination is limited by elementary chemical 
reaction of active centers at or with a surface (Refs. 5 and 6). In the kinetic 
regime, the concentration of active centers at the surface is practically equal to 
their concentration in the bulk of gas mixture. 

The following chain termination mechanisms are distinguished: 

• linear chain termination in the bulk, when the rate of loss of chain carriers 
is proportional to their concentration in the bulk of reaction vessel, 
H + 0 2 + M -> H02 + M; 

• linear chain termination at the wall because of adsorption of chain 
carriers with their subsequent loss, Cl(v0/) — > Cl(surf)9 Cl(surf) + 
Cl(surf) — • Cl2;

 adsorp 

recomb 

• quadratic chain termination in the bulk, when the rate of chain carrier 
deactivation is proportional to the square of concentration (e.g., 
CI + CI + M -* Cl2 4- M) or to the product of concentrations of two 
active centers (CI + CC13 4- M -+ CC14 + M). 

Chain length v is the average number of chain links which are realized upon 
appearance of one active center in the system. If the probability of chain 
propagation in each link is a, and the probability of chain termination 
in each link is /3 = 1 — a, then the probability that a chain will include s links 
is Ps — as • (1 — a) and the average number of links per chain is (Refs. 6 and 49) 

00 00 

v = y V P = T V o*(l - a) = (1 - a)(o + 2a2 + 3a3 + • • •) = T ^ ~ = I 
*ri *ri 1-a B 
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That is, the chain length is equal to the ratio of probabilities of chain propagation 
and breaking in one link. If the probability of termination is low, /3 <$C 1, the chain 
length is large, v « 1//3 > 1. 
The numerical value of chain length can be estimated from: 

• v = Wp/wi, the ratio of generation rate wp of product, P, (the rate of chain 
propagation) to the generation rate w, of the primary carriers, R; 

• v = Wp/wtn, the ratio of generation rate wp of product, P, to the rate wtn of 
loss of one of the active particles, R. 

In contrast to conventional catalytic reactions, the value of v in chain reactions 
depends not only on the nature of reactants, but also on the external conditions at 
which the reaction proceeds. Product generation rate that exceeds the rate of 
active center generation (v ^> 1) is the main feature of chain reactions. 

Inhibitor. In is a specie that reacts with chain carriers and causes termination 
of a chain, but does not react with molecules of reactants. Inhibitor can either be 
introduced from outside of the chemical system or be present as an impurity in the 
reaction vessel. An example of inhibitor is oxygen that slows down the reaction 
H2 + CI2 = 2HC1. The reason of the inhibiting action of 0 2 is its interaction with 
the chain carriers. 

Reaction of inhibition: ln + R -> InR is a sort of termination reaction, when 
chemical interaction of chain carrier R with inhibitor In leads to formation of 
inactive or near-inactive intermediate products InR that do not participate in 
chain propagation reactions (Refs. 6 and 50). 

Lifetime of an active center (or time of chain development) is the mean time 
interval from the moment of appearance of primary active center in the initiation 
reaction to the moment of its loss in a termination reaction. 

Interaction of chains is positive if more than two active centers are formed 
because of elementary reaction between two chain carriers. Interaction of chains 
is negative if a chain termination takes place because of reaction between two 
active centers (so called cross-termination of chains). 

Empirical specific features of chain reactions: 

• reaction product yield (the number of product particles per each absorbed 
energy quantum) for radiation or photochemical initiation exceeds unity; 

• reaction rate has a threshold dependence on the ratio of the surface area of 
a reaction vessel to its volume, on the rate of heat removal, and on the 
values of thermodynamic parameters such as temperature and pressure; 

• reaction rate is sensitive to contamination of reactants; 
• introduction of initiators accelerates the reaction. When initiator is added 

to reactants, the reaction may start only after an induction period rather 
than immediately; 

• introduction of small amounts of inhibitors decreases the reaction rate 
(sometimes down to zero). 

Nonbranched chain reaction is a sort of chain reaction in which average 
number of active centers in a cycle of the chemical chain propagation is preserved 
(chain branching reactions are absent). Typical example is given by the reaction 
of hydrogen with chlorine (see Ref. 6). 
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Branched chain reaction is a sort of chain reaction in which the average 
number of chain carriers increases in each link of the chemical chain, leading to 
avalanche growth of concentration of active particles. The chemical critical 
phenomena (such as ignition and detonation) are specific examples of branched 
chain reactions (see Combustion Reactions). 

Chain reaction with degenerate branching is a sort of branched chain reaction 
in which the formation of active centers and the start of new chains happen with 
the participation of sufficiently stable products of the chain reaction. Chain 
reactions with degenerate branching occur in oxidation of a number of 
hydrocarbon and related compounds by oxygen, and also in slow oxidation of 
hydrogen sulfide (see Refs. 5-7). 

Branched chain reactions can proceed in either stationary regime or non-
stationary, self-accelerating regime. Phenomenological manifestations of nonsta-
tionary regime of chain reactions are chemical {chain) and thermal explosions. 
During explosion, a fast self-acceleration (see model C.6 and Combustion Reactions) 
of reaction happens in a short period of time (typically, shorter than 10~3 s). 

Branched chain reactions are classified according to the leading physical or 
chemical mechanism that determines the overall rate of the chain reaction. 
Branched chain reactions with kinetic (also referred to as chemical or radical), 
thermal energy (through vibrational or electronic excitation) and mixed (for 
example, kinetic-thermal) type of branching are distinguished. 

An example of radical chain reaction in which branching through self-
reproduction of radicals occurs is given by combustion of hydrogen in oxygen: 

H + 0 2 -> OH + O, O + H2 -* OH + H 

Reaction between hydrogen and fluorine with participation of vibrationally 
excited molecules H2(v) and F2(v) is an example of energy chain branching, 
which is important for chemical gas lasers: 

H + F2 -* HF(v) + F; H + F2(v) -* HF(v) + F; 

H2(v) + F 2 - * H F + F + H 

A. Semenov's Kinetic Model of Chain Reactions (C.6) 

1. Purpose of the Model 

The model aims at the determination of the change rate of concentrations of 
active intermediates in a chain reaction. 

2. Assumptions 
a) The assumptions adopted for the model C.3 are accepted. 
b) Each of the stages is formally represented by one simple reaction and is 

characterized by a generalized parameter equal to the rate (characteristic 
frequency) of the stage. 

c) The system is under isothermal conditions. 
d) Consumption of initial reactants during the reaction is negligible. 
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e) The initiation of primary active particles, R, happens in a homogeneous 
space. The rate of generation of primary chain carriers does not depend on 
time and is determined by the characteristics of a steady process of 
initiation such as intensity of a beam of photons or radioactive particles 
and concentrations of the initiator or catalyst. 

f) The basic chain link is represented by one simple reaction. 
g) The loss of chain carriers takes place in the bulk of gas and/or at the walls 

of a reaction vessel. 

3. Restrictions 

a) See appropriate restrictions in model C.3. 
b) The rate of chain termination with participation of one of the active 

centers substantially exceeds the rates of chain termination with parti­
cipation of other chain carriers. 

4. Three-Stage Scheme and Kinetic Equations 

X 

R 

R 

W{ 

wp 

Wt 

R 

s -

P' 

R + P 

(i) 

(P) 

(0 

= wt- wpnR + s • wpnR - wtnR = wt - (wp + wt) • (1 - sa) • nR 
dt 

d«P wp= — = wpnR, a = • 
dt wp-\-wt 

5. Nomenclature 

i stage of initiation of active centers, R, from stable reactants, X 
p stage of chain propagation resulting in formation of the product, 

P, and regeneration of active centers, R 
t stage of chain termination 
e average number of active centers arising in the basic chain link 
a probability of chain propagation 
nR number density of primary active centers 
wt rate of initiation of primary active centers 
wp rate of chain propagation 
wt rate of chain termination 
wp rate of generation of the product of chain reaction 
np number density of the reaction product 

6. Description of Coefficients and Parameters 

The characteristic reaction rate wp = T~1 of the chain propagation stage 
isequal to the number of acts of interaction of an active center with 
initialreactants X; per 1 s (Ref. 3). Generally, wp = T~1Y^)=I kpjnRj, where TP (S) 
is the characteristic time of chain propagation stage, kpj (cm3/s) is the 
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rateconstant of elementary reaction of active center with a reactant of the sort /, 
and nRyt (particles/cm3) is the number density of the fth reactant. 

The characteristic rate (frequency) wt = T"1 of the chain termination stage is 
equal to the number of acts of loss of an active center per 1 s in elementary 
reactions of recombination (deactivation). 

For homogeneous reactions: 

1. with linear termination, r~l = kt\, where rt (s) is the characteristic time of 
chain termination stage, and kt\ (s_1) is the rate constant of first-order 
recombination; 

2. with quadratic chain termination, r"1 = kt2nR + J2n=i kt2,nnRn, where kt2 

(cm3/s) and kt2,n (cm3/s) are the rate constants of second-order 
recombination, corresponding to quadratic and cross-termination, respect­
ively, and nRn is the number density of secondary active centers of a sort n. 

In heterogeneous regimes, rt = \/ktg = l/ktcaf + 1/^jbn, where kt<af is the 
diffusion termination rate constant, and ktun is the kinetic termination rate constant. 

7. Restrictions 

See the description of model C.l. 

8. Features of the Model 

Depending on the ratio wp/wt of rates of chain propagation and termination, 
and on specific features of kinetics of chain reaction (quantity e), the model 
describes both stationary and nonstationary regimes of chain reactions. 

9. Particular Cases 

a) Behavior of active centers in nonchain reactions 

If the product is not formed (wp = 0), then 

dnR — = wt - wtnR at 

The analytical solution for n^(t = 0) = n0 is 

nK(T) = m(l-e-t/T<) + n0e-t/T< 

Establishment of the stationary concentration (number density) «R = w;7> of active 
centers takes place at times t ^> rt9 much longer than the characteristic lifetime 
rcc = Tt of the active center. In a nonbranched chain reaction (wp ¥" 0, s = 0), 

dnR dnP 

— = wt - (wp + w,)nR, wp = — = wpnR 

The increase of number density of active centers is given by the expression 

nR(t) = Wi (1 - e-
(w?+Wt)t) + n0e-{w^Wt)t 

wp + wt 

In the case under consideration, the lifetime of an active center is equal to 
rr

cc = rpTt/(rp + rt). After a time period significantly longer than the lifetime of an 
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active center, the stationary concentration (number density) nr
A = WiTpTt/(Tp + rt) 

is reached. Rate of the stationary non-chain reaction is wr
p = wtrt/(Tp + rt) = wia. 

b) Behavior of active centers in chain reactions 

Nonbranched chain reactions (wp ^ 0, e > 0, £ • a < 1). 

c) Increase in the number of active centers 

If the chain reaction starts at time instant t = 0, when the initial concentration 
of active centers is equal to zero, 

dnR _ dnP 

— = Wi•- (wp + w,)(l - e • a) • nR, wp = — = wpnR 

Increase of the number density of active centers is described by the expression 

^ ( 
(wp + Wtp){\ - e • a) 

nR(t) = ^ -(1 - e-iw'+w*Xl-*mayt) 

which at time t much longer than the lifetime TC/C = rpTt/[(Tp + Tt)(\ — e • a)] of 
an active center leads to the stationary number density of active centers nR

r = 
WiTpTt/[(Tp + 7>)(1 — e • a)]. The rate of stationary chain reaction is equal to 

W c r = = = WiV 
p
 (TP + T,)(1 - c . a)] 1 - 8 - a ' 

where v = a/( l — s • a) is the average chain length. At large chain length 
v = a/(I — e • a) ^> 1, the stationary rate w^ = wtv of the chain reaction is 
higher than the rate of nonchain reaction Wp = wta. Because rp characterizes the 
time of development of one chain link, then the lifetime of an active center in the 
chain reaction (T£J = Tpa/ (1 — e • a) = TPV) is equal to the time of development 
of one link (TP) multiplied by the number of links (v). In other words, in a 
nonbranched chain reaction, the total lifetime of an active center is the sum of 
individual lifetimes (TP) of all the chain carriers participating in the development 
of one chain link. 

d) Decay of active centers 

If a stationary chain reaction stops at time instant t = 0 (w, = 0), when the 
number density of active centers is nR(t = 0) = w , ^ , then 

d«R nR _ dnP 

— = ~(wp + w,)(l - 8 • a)nR = —, Wp = — = WpnR 

The decreases of the number density and reaction rate with time from the initial 
stationary values are described by the following expressions: 

• = w,-(^V'/T« nR(t) = wt • r%e-t/TZ9 v^(t) = w,-( ̂  K ' / T " = w,- • v • e~t/T« 
'p. 

e) Branched chain reactions (wp ^ 0, s > 0, s - a> I) 

dnR 8 — 1 1 
— = wt H nR nR = w/ + ^ R - g«R = wt + <p • nR 

dt TP rt 
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Here / = (e — \)/rp is the generalized (characteristic) chain branching rate 
constant, q = \/rt is the generalized (characteristic) chain termination rate 
constant, and <p = / — g is the Semenov factor of chain branching. 

f) Stationary regime of branched chain reactions [(e — 1) < Tp/rt] 

When the factor of chain branching is negative (<p < 0), establishment of the 
stationary number density of active centers and of the rate of chain reaction, 
proportional to it, are described by the expressions: 

nR(t) = ^ L ( l - *-<*-/>), wp(t) = ^ ( 1 - «-<*-/>) 
g-f g-f 

g) Nonstationary regime of branched chain reactions [(e — I) > Tp/rt] 

When the factor of chain branching is positive (cp > 0), the unlimited growth 
of number density of active centers is described by the Semenov equation: 

WR(0 = - ^ ( ^ - ^ - l ) = ^ ( ^ - l ) 
f-g <p 

An avalanche autocatalytic acceleration of the branched chain reaction takes 
place: 

- / A wiwp(s~ ! ) / cpt n 

wP{i) = (e* - 1) 
<P 

During a finite time (induction period) tind, the rate of the branched chain reaction 
reaches the minimal experimentally observable value, Wmin. Because for the 
majority of the chain reactions w, is much lower than Wmin, then at t > tind, the 
rate can be approximated with adequate accuracy as wp(t) ^ wtwp(s — 1) • e^/cp, 
and the induction time can be described by the expression 

tind^—m-
cp (e - l)wiWp 

10. Example 

For the reaction of hydrogen with oxygen, the rate of production of chain 
carriers (hydrogen atoms) is described by the equation d[H]/d£ = wt• -{• cp • [H], 
where <p = — &2IP2] — k$ — ^[02] • [M], k2 is the rate constant of elementary 
chain branching reaction H + O2 k\ HO + O, k* is the rate constant of 
chain termination on a wall H-\-wallk_^ I/2H2, and 5̂ is the rate constant 
of chain termination in the bulk H + O2 + M \ HO2 + M. The Semenov's 
equation previously given describes satisfactorily the first and second limits of 
explosion of hydrogen-oxygen mixtures (see Refs. 6, 7 and 51 and Fig. 6.1). 

11. Comments 

a) The model demonstrates qualitatively different behavior of active centers 
in nonbranched and branched chain reactions, and gives the definition of a 
characteristic lifetime of active centers. 

b) Pressure dependence of the explosion limit of hydrogen-oxygen mixture 
has a particular Z shape with three alternating branches, where the ignition 
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temperature decreases, increases, and decreases again with increasing 
pressure (see Fig. 6.1). Similar Z-shaped ignition curve have been obtained 
in premixed flames, in diffusion flames Ref. 52, and in the continuously 
stirred tank reactors Ref. 53. In all those chemical systems, the first (low 
pressures) and second (intermediate pressures) ignition branches have been 
shown to be controlled by kinetic factors, that is, by chain carrier generation 
and loss. The third ignition branch (high pressures) is determined by thermal 
factors. Ignition behavior of hydrogen is relatively well studied. Ignition 
behavior of other widespread fuels, such as methane, butane, and other 
hydrocarbons that are used as reactants for both chemical synthesis and 
energy production, is more complex (Refs. 4 and 36). 
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Fig. 6.1 

Relevant material can be found in Refs. 5-9 and 51. 

XII. Combustion Reactions 

Combustion reactions (auto-accelerating exothermic reactions) are complex 
chemical reactions, for which, at certain values of parameters such as 
temperature, concentration, pressure, dimensions of a vessel, etc., transition to 
nonstationary auto-accelerating regime (explosion) is characterized by the time 
(period) of induction, and the reaction proceeds in space as propagating or 
standing wave(s) of chemical reactions. 

The main specific feature of combustion reactions is the existence of critical 
conditions in a chemical system, when the reaction rate and concentrations of 
active intermediate particles sharply change from a situation of slow process 
(when the reaction cannot be detected by measuring instruments), to a situation 
where the formation of noticeable concentrations of reaction products and heat 
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release occur practically instantaneously. During the course of an exothermic 
combustion reaction, chemical critical phenomena and the time of induction are 
coupled with heating of the reaction mixture because of chemical reaction heat 
released in the course of chemical transformation. 

Chemical critical phenomena are caused by sharp variation of the reaction rate 
with minor changes of any of the parameters of a chemical system (mixture 
composition, temperature, pressure, and parameters of mass or heat transfer). 
Chemical critical phenomena are specific features of branched-chain, 
autocatalytic, and combustion reactions (see Refs. 5-7, 51 and 54). 

Induction time (induction period) of a combustion reaction is a period of latent 
(for a spectator that operates measuring instruments of fixed resolution) 
proceeding of the reaction between the moment of the beginning of reaction 
(typically upon heating or mixing of the reactants) and the moment of appearance 
of visible manifestations (such as flashes and sound effects). The length of the 
induction period is sensitive to the state of the chemical system (elemental 
composition of reactive mixture, thermodynamic parameters such as pressure and 
temperature, and heat and mass transfer parameters) and is determined by the 
nature of processes taking place in the reacting mixture during the induction 
period. The notion of induction period is applied most often to the two main types 
of chemical critical phenomena—chain explosions and thermal explosions. 

Explosion is a regime of very rapid proceeding of a combustion reaction 
upon achievement by a chemical system of critical conditions. The following 
types of explosions are distinguished: chain explosions, thermal explosions, and 
chain-thermal explosions. An explosive regime is determined by the kinetic 
mechanism of chemical reactions and by the nature of processes that are 
responsible for transition to explosion. 

Propagating waves of explosive chemical reactions is a process of suc­
cessive ignition of the adjacent layers in a reaction mixture due to the transport 
of active particles and/or heat. Depending on the velocity of propagating wave 
of explosive reactions, waves of combustion (deflagration), or flames, and 
detonation waves are distinguished. 

Flame (wave of combustion or deflagration) is a wave of propagation of 
explosive reactions in space as a result of heat conduction and/or diffusion of 
active centers with velocity lower than the speed of sound. 

Detonation wave is a wave of propagation of explosive reactions in space as a 
result of ignition by a shock wave with velocity higher than the speed of sound. 

Ignition is a transition from normal (quasistationary) to explosive chemical 
transformation of a reaction mixture under critical conditions. 

Chain (isothermal) explosion is a transition to an auto-accelerating regime of a 
branched chain reaction at constant temperature. The auto-acceleration is coupled 
with accumulation of the active centers. Isothermal explosion is a type of chain 
reactions with kinetic chain branching. Chain ignition usually happens at low 
pressures and temperatures. An example of chain explosion is the combustion of a 
stoichiometric mixture of hydrogen and oxygen (detonating gas) at temperature 
T < 800 K and pressure p « 1 Torr (see Refs. 6 and 51 and Fig. 6.1). 

Thermal explosion is a regime of ignition of auto-accelerating combustion 
reactions, the rate of which is determined by thermal heating of the mixture because 
of chemical heat production. The necessary conditions for a chain reaction with 
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thermal branching are exothermicity of the process and high sensitivity of the 
reaction rate constant to temperature variations. An example of thermal explosion 
is the combustion reaction of hydrogen with oxygen at pressures higher than 
400 Torr (above the third limit of ignition, see Fig. 6.1) and temperatures above 
approximately 900 K. The following types of thermal explosion are distin­
guished—spontaneous combustion, ignition, adiabatic thermal explosion, and 
dynamic thermal explosion. The type of thermal explosion is determined by the 
conditions of heat exchange between the reaction mixture and the vessel walls. 

Spontaneous ignition {or self-ignition) is a regime of ignition as a result of 
heating, when the heat is supplied to the chemical system so slowly that the 
whole system warms up uniformly, and the ignition starts in the core of reactive 
mixture practically simultaneously throughout the vessel volume. 

Forced ignition (or external ignition) is a regime of ignition, when heat is 
supplied to the system so rapidly that the layer of a reacting mixture near the wall 
is heated stronger than in the bulk. The ignition starts near the boundary surface 
(wall), and propagates to the middle of the vessel as deflagration wave. 

Adiabatic explosion is a regime of combustion, when heat exchange of the 
reacting mixture with environment is small, and all the heat produced during the 
reaction is used for heating of the system. 

Dynamic thermal explosion is a regime of combustion under conditions of 
continuous heating of the reacting system by an external power source. 

Explosion initiation is the creation of conditions at which a slow reaction turns 
into explosion. Initiation of chain explosions can be carried out by heating and 
light. Initiation of thermal explosions can be done by varying parameters of heat 
exchange of reacting mixture with the vessel walls or by abrupt change of 
thermodynamic parameters (temperature and/or pressure) of the mixture, as 
occurs, for example, in shock waves. 

Comment 

In engineering practice, chemical composition of combustible mixtures is 
characterized by: 

• fuel/oxidizer ratio F/O is the ratio of fuel mass to the oxidizer mass in 1 
kilogram of the mixture; 

• equivalence ratio <j) = (F/0)/(F/0)st (or fuel excess ratio) is the ratio of a 
fuel/oxidizer ratio in the mixture under consideration to the fuel/oxidizer 
ratio under stoichiometric conditions. The case 0 < 0 < 1 corresponds to 
lean mixtures (oxidizer is in excess), the case 0 = 1 corresponds to 
stoichiometric mixtures, and the case 1 < <j> < oo corresponds to rich 
mixtures (fuel is in excess). 

Under stoichiometric conditions, all the initial reactants are spent completely during 
the reaction, and all products are in their most thermodynamically stable form. For 
example, in oxidation of methane by oxygen under stoichiometric conditions, 
complete oxidation CH4 + 2O2 -> CO2 4- 2H2O is realized when at the initial 
instant of time two molecules of oxygen are present in a mixture per one molecule 
of methane (fuel/oxidizer ratio (F/0)st = 1 • (1 • 12 + 4 • l)/[2 • (2 • 16)] = 
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16/64 = 1/4). The reactants (methane and oxygen) are transformed completely to 
products (carbon dioxide and water) that cannot be further oxidized. If at an initial 
time instant three molecules of oxygen are present per two molecules of methane 
(fuel/oxidizer ratio (F/O) = 1 • (1 • 12 + 4 • l)/[(3/2) • (2 • 16)] = 32/96 = 1/3), 
the reaction of partial oxidation of methane by oxygen CH4 + 3/202 —> 
CO + 2H2O will take place under non-stoichiometric conditions ($ = (32/96)/ 
(16/64) = 4/3 > 1, fuel-rich mixture). Here, generated carbon monoxide is 
thermodynamically unstable and can react further with oxygen forming carbon 
dioxide that is a thermodynamically stable reaction product. 

Relevant material can be found in Refs. 2 and 55-58. 

XIII. Models of Chemical Reactors 

Reactors, as devices in which the chemical processes occur, are classified 
according to the way the process takes place. Batch reactors work periodically in 
time. Before chemical process, the reactants are supplied into the reactor. During 
the reaction course, no substances are fed into or removed from batch reactor. 
After reaction is finished, the products are extracted from batch reactor. 
Continuous (or flow) reactors provide a simultaneous and continuous feeding of 
reactants and extraction of the reaction products. Reactors are also classified 
according to their design features (such as tank, tubular, tower, fluidized-bed, and 
slurry-phase reactor, Refs. 1, 16, 59 and 60). 

Batch reactors represent, in most cases, closed chemically reacting systems. 
Models of chemical reactions widely used for description of chemical reaction 
kinetics in batch reactors are shown below (see models C.7-C.9). Most of the 
basic kinetic data for reactor design, process safety, and autoignition 
characteristics are obtained in reactors of this type. In such studies, a calorimetric 
bomb (constant volume) reactor is used along with a batch reactor. 

Continuous reactors represent a particular type of open reactive systems. 
Realization of a chemical process in a continuous reactor provides the process 
continuity and high efficiency in reactor volume utilization, and facilitates a 
process control. A major feature of processes occurring in continuous reactors at 
constant flow rate of reacting mixture is the establishment of steady conditions, 
for which the reactive mixture component concentrations cease to change. 
Continuous reactors, and their subcategory (semicontinuous reactors, Refs. 16 
and 59), have extensive applications in large scale plants. 

Continuous reactors are classified according to the modes, or regimes, in 
which the chemical reaction proceeds. The modes differ from each other by the 
structure of reactive flows. In the models of chemical reactors described below, it 
is assumed that the chemical process results in a change of chemical composition 
of the system, but does not affect fluid dynamics. The limiting regimes in the 
continuous reactors are the following: 

• plug flow regime is a one-dimensional steady reacting fluid flow with 
fluid velocity u(x) in x axis direction, where transverse mixing of 
reacting components is perfect, and longitudinal mixing is absent (see 
model CIO); 
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• well-stirred (or back-mix, or perfectly stirred) flow regime is a chemically 
reactive, open system, where the incoming flow of initial reactants 
immediately reaches its final composition because of perfect mixing. The 
concentrations of reactants and the reaction rate do not vary in time and 
have the same magnitudes in each internal point of the reactor volume (see 
model C. 11). 

In all the models described, the fluids are treated as ideal gases (see Chapter 9, 
Equations of State, in this volume, and also the description of model C.7). 

In practical reactors, deviations from the aforementioned ideal flow 
patterns often occur. Models for cases where chemical reactions substantially 
affect fluid dynamics, or where coupling between kinetics and mass and heat 
transfer processes is high, will be described in the subsequent volumes of this 
series. 

The numerical examples below use stoichiometric hydrogen-oxygen gas 
mixture as a model chemical kinetics system. 

A. Model of Isothermal Reaction at Constant Density (C.7) 

1. Purpose of the Model 

The model aims at the determination of the concentrations of chemical 
components and pressure as functions of time in a closed, isothermal system at 
constant density (constant volume of the reactor). 

2. Assumptions 

a) The chemical system is assumed to be closed, single-phase, uniform, and 
homogeneous (isothermal batch reactor). 

b) Temperature T and density p (or volume) of the system are constant. 
c) See the description of model C.3 for other assumptions. 

3. Restrictions 

See the appropriate section in the description of model C.l. 

dci x~̂ \ 
p-— = Ri, T = const, p = const, p = pRT > a 

at *—f 

4. Set of Equations of the Model 

dci 
= Kt, i = consi, p = consi, p = pxi ? 

=i 

S N N Rt=E ^ - 4 M > w>=^ n (pcrf* - k»i n <p°^ 
5. Nomenclature 

p mass density of gas mixture 
ct molar-mass concentration of component i 
p pressure 
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R universal gas constant 
Ri rate of change of concentration of component / 
v+, VjJ stoichiometric coefficients for reagents (+) and products (—) of 

stage j of chemical reaction 
kfj rate constant of stage j of chemical reaction in forward (/) 

direction 
ley rate constant of stage j of chemical reaction in backward (b) 

direction 
N number of chemical components in reacting system 
S number of elementary stages in complex chemical reaction 

6. Description of Coefficients and Parameters 

Reaction rate constants kfj and ky depend, in general, on temperature and 
pressure. Experimental data, as well as semi-empirical and theoretical models for 
calculation of rate constants are shown in descriptions of models in Chapter 6 of 
the first volume of this series, and also in other handbooks, reviews, and 
monographs (Refs. 20-25). Also see the bibliographic references in the 
description of model C.l. See models I-C.15-I-C.16 in the first volume of this 
series and also Refs. 26 and 27 for the description of rate constant dependence on 
pressure for unimolecular reactions. 

7. Features of the Model 

In this model, gas pressure p is the only gas dynamic variable. A decrease or 
increase of the sum of concentrations of components c = J2t ci lea^ s t o decrease 
or increase of the magnitude of/? during the course of reaction. 

8. Example 

The model of isothermal reaction at constant density is used for simulation of 
chain ignition of stoichiometric mixture of hydrogen with oxygen (the so-called 
detonating gas mixture) at initial temperature T = 800 K and initial pressure 
p = 2 Torr. In the vicinity of the first explosion limit (see Fig. 6.1), the rate of 
homogeneous exothermal reaction in the volume of gas mixture is low, and the 
overall thermal heating is negligible. The main channel of radical recombination 
is heterogeneous recombination at the walls of the reactor. Reaction starts under 
practically isothermal conditions, if the reactor walls have a good thermal 
conductance, and the reactor is placed in a thermal bath (reservoir). Because the 
system is closed (mass exchange with the environment is absent, and the total 
mass of reactants in the gas mixture is conserved) and its volume is constant, then 
reaction proceeds under constant density of the mixture. Kinetic curves for 
concentrations of reactants (H2, 02), chain carriers (H, O, OH), and the reaction 
product (H20) are shown in Fig. 6.2. 
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Fig. 6.2 

9. Comments 

The model is convenient for simulation of kinetic processes during isothermal 
chain ignition in a closed vessel with fixed volume. If the vessel walls conduct 
heat well, and the vessel is placed in a thermostat (heat bath), then temperature 
inside the reactor remains constant. These conditions are close to those in 
experiments on chain ignition, when a mixture is injected into the vessel, quickly 
heats up to the temperature T of the vessel walls, and develops a self-accelerating 
chain or chain-branched reaction (Refs. 6 and 51). Effects of inhibitors or 
promoters on flame behavior and on polymerization processes at constant 
temperature and constant density are considered in Ref. 50. 

Relevant material can be found in Refs. 6 and 51. 

B. Model of Adiabatic Reaction at Constant Density (C.8) 

1. Purpose of the Model 

The model aims at the determination of time evolution of the concentrations of 
chemical components, temperature, and pressure in a closed, thermally insulated 
reactor at constant density. 

2. Assumptions 
a) The chemical system is assumed to be closed, adiabatic, single-phase, 

uniform, and homogeneous (adiabatic batch reactor). 
b) Density p of the system (or the reactor volume) is constant. 
c) See the description of model C.3 for other assumptions. 

3. Restrictions 

See the appropriate section in the description of model C.l. 
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4. Set of Equations of the Model 

pdct 

dt 
- = Rj, p = const, p = pRT Y ^ c, 

i=\ 
N 

(pcpT-p) • ^ = RT2 £ > ~ TYs^Ri 
i—\ i=\ 

S N N 

Ri=E<vu -vPwh WJ=kfjU(p°^tj-k»jn(p**?" 
j=l k=\ k=l 

_dHf(T) _" 
Cpi — £T » CP — 2^, CpiCi 

5. Nomenclature 

cp specific heat at constant pressure 
Cpi specific heat of component / at constant pressure 

H? enthalpy of component i 

Other symbols are defined in the description of model C.7. 

6. Description of Coefficients and Parameters 

See the description of model C.7 and cited references. 
The enthalpies of components Hf depend only on gas temperature, T. For 

numerical simulation, two basic methods of representation of thermodynamic 
data are used: 1) tables [see, for example, thermodynamic tables of Gurvich et al. 
(Ref. 61) or JANAF tables (Ref. 62)] or 2) polynomial interpolation formulas 
[see, for example Refs. 63 and 64]. 

7. Features of the Model 

Chemical reaction is assumed to run in a closed system (system mass 
M = const) at constant volume; thus, the reaction occurs at constant density 
p = M/V. Heat generated in the course of reaction under adiabatic conditions 
results in temperature increase. 

8. Example 

The model of adiabatic reaction at constant density can be used for simulation 
of thermal ignition of stoichiometric mixture of hydrogen with oxygen at the 
initial temperature T = 1200 K, and the initial pressure/? = 1 atm. In the vicinity 
of the third explosion limit (see Fig. 6.1), self-heating of the gaseous mixture is 
determined by the rates of exothermal reactions of chain propagation 

H0 2 + H = OH + OH + 37 kcal/mol, H0 2 + H = H20 + O + 54 kcal/mol 
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and of homogeneous reactions of recombination in the gas volume 

161 

H + H = H2 + 103 kcal/mol, O + O = 0 2 + 54 kcal/mol, 

H + OH = H20 + 32 kcal/mol 

Ignition of the mixture occurs in non-isothermal conditions. The kinetic curves, 
that is, the concentrations of reactants (H2, 02), chain carriers (H, O, OH), and the 
reaction product (H20), as functions of time, are shown in Fig. 6.3. 
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- -*- - OH 
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Fig. 6.3 

9. Comments 

a) The model is well suited for a chemical system contained in a closed 
vessel with thermally insulated walls. Such a system, referred to as 
calorimetric bomb, is a widespread tool for thermochemical and kinetic 
research. 

b) During the induction period, ignition of fuel-air mixtures in internal 
combustion engines (ICE) corresponds to idealized model of adiabatic 
reaction at constant density (constant volume). In Ref. 65 the model of 
adiabatic reaction (Shell model of gasoline combustion) is used for 
simulation of self-ignition of hydrocarbon fuels at constant density for 
initial temperature range 800-1200 K and for initial pressures 10-
30 atm. The model of adiabatic reaction with detailed kinetic scheme of 
gasoline-air gas mixtures was applied to investigation of "knocking" 
phenomenon in ICE (Ref. 66). 

Relevant material can be found in Refs. 6 and 51. 
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C. Model of Adiabatic Reaction at Constant Pressure (C.9) 

1. Purpose of the Model 

The model aims at the determination of chemical components concentrations, 
temperature, and pressure, as functions of time in a closed, adiabatic system at 
constant pressure. 

2. Assumptions 

a) The chemical system is assumed to be closed, thermally insulated, single-
phase, uniform, and homogeneous (adiabatic batch reactor). 

b) Pressure p in the system is constant. 
c) See other assumptions in the description of model C.3. 

3. Restrictions 

See the appropriate section in the description of model C.l. 

4. Set of Equations of the Model 

— = Rh p = const, p = pRT^ch cpi = J , cp = 2^ 
i=i *" ;=i 

dT N 

/=i 

y=l k=l k=l 

5. Nomenclature 

See the appropriate sections in the description of models C.7 and C.8. 

6. Description of Coefficients and Parameters 

See the description of models C.7 and C.8. 

7. Features of the Model 

The rate of change for concentration of ith component in closed system with 
variable volume V is defined as an increment of the amount of this component Nt 
(in mol) per time dt in unit volume: 

= dNt = d(yjV) 
1 Vdt Vdt 

If molar-mass concentrations c, are used instead of Nt, then the expression for 
Ri for chemical reactions in a closed system with variable volume V is written as: 

= dipgV) = d{aM) = pdg 
1 Vdt Vdt dt 
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This expression does not contain the variable V. Here, M = const is the mass of 
the system. 

8. Example 

The model of adiabatic reaction at constant pressure is used here for 
simulation of hydrogen combustion in stoichiometric gas mixture with oxygen at 
the initial temperature T= 1200 K, and the initial pressure p = latm. The 
concentrations of reactants (H2, 02), chain carriers (H, O, OH), and the reaction 
product (H20) as functions of time are shown in Fig. 6.4. 
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9. Comments 

The model is intended for the simulation of chemical systems where pressure 
is constant and volume is changed because of the reaction. Combustion of 
nonpremixed gas mixtures in diffusion flames, and premixed fuel-air combustion 
process (except the ignition stage) in internal combustion engines, are practical 
examples of adiabatic reactions at constant pressure (see Refs. 34 and 67). In 
these cases, temperature increase is smaller in comparison with that in reactions 
running at constant volume because of volume expansion of the mixture. 

Relevant material can be found in Refs. 6 and 34. 

D. Models of Plug Flow Reactor (CIO) 

1. Purpose of the Model 

The model aims at the the determination of the spatial profiles of the 
concentrations of chemical components, temperature, and pressure in a steady 
flow of chemically reacting gas, where transverse mixing of components is 
perfect, and longitudinal mixing is absent. 
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2. Assumptions 

a) One-dimensional, stationary gas flow in a straight channel with constant 
cross section and adiabatic walls is considered. 

b) Effects of molecular transport in the direction of gas flow are not taken 
into account. 

c) Low-speed flows, where kinetic energy of the gas is small in comparison 
with the total energy, u2/2 <£ J^ H?ct> a r e considered. 

d) See other assumptions in the description of model C.3. 

3. Restrictions 

The model is applicable for flows in channels with negligible longitudinal 
mixing: Dd(yi/y)/dx <& u, where D is the diffusion coefficient (see the third 
volume of this series). 

4. Set of Equations of the Model 

p u . - = Ri, p.Cp.u.- = -]rRrH? 

do N N N 

(p-p.u2)u£ = pRc;1 J > , £#?/?, - pRTj^Ri 

1=1 /=1 /=1 

pu0 = const, pu2 +p = const, cpi = l , cp = ^ cpiC( 

S N N 

Ri = E <VV ~ 4 M> Wy = kg [ I (mf" " hi PI (P0*)"" 
; = 1 k=l k=l 

5. Nomenclature 
x coordinate along the flow direction 
u gas velocity 

See the definitions of other symbols in the descriptions of models C.7 and C.8. 

6. Description of Coefficients and Parameters 

See the description of models C.7 and C.8. 

7. Features of the Model 

a) The rate of change of concentration of ith component, /?,-, in a steady open 
system operating in plug flow regime is: 

R _ d/* =
d(Umyi) 

Fdx 6x 

where /,- is the molar flux of component i, F is the area of cross section of 
the reactor, and v; is the molar-volume concentration of ith component. 
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Dependence of Rt on concentrations of components is determined by the 
Guldberg-Waage law (see the description of model C.l). If molar-mass 
concentrations c,- are used instead of y,-, then the expression for R( for 
chemical reactions in plug flow reactor is written as: 

Rt 
d(puc() pudct 

cbc dx 
since pu = const 

b) In a sufficiently long plug flow reactor, a spatially uniform state is 
established, where the first derivatives of the gas dynamic variables with 
respect to x become zero. 

8. Example 

The plug flow reactor model is used here for the simulation of combustion of 
stoichiometric hydrogen-air gas mixture. At the inlet cross section, the reacting gas 
mixture is characterizing by the molar ratio H2 : O2 : N2 = 2 : 1 : 4, the initial 
temperature T = 1200 K, the initial pressure p = 1 atm, the gas mixture velocity 
w0 = 1, m/s. The profiles of concentrations of reactants (H2, 02), chain carriers 
(H, O, OH), and the reaction product (H20) along the gas flow are shown in Fig. 6.5. 
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Fig. 6.5 

9. Comments 

a) Assumption 3 is not critical, and was introduced for simplicity of the 
model equations in cases when influence of heat generation on gas 
dynamics of reactive mixtures can be neglected. In the general case, when 
the magnitude of heat released during reaction is comparable with the 
kinetic energy of gas flow, it is necessary to use a complete energy 
equation. The complete energy equation has the following integral form: 
J2t Hfci + w2/2 = const. With the chemical heat release, so-called 
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thermal crisis of flow is possible (see Ref. 68). Detailed description of 
thermal crisis of flow requires a joint solution of equations of chemical 
kinetics and gas dynamics. 

b) If a gas flow passes through a reaction chamber where conditions 
necessary for the reaction (for example, high temperature or presence of a 
catalyst) are created, then, in the absence of longitudinal mixing, each 
volume of the reactive mixture can be regarded as a closed system shifted 
in space. Plug flow regime of reactions is widely used in research work 
and in the industry (see Refs. 6 and 16). 

c) Tubular ovens in which a chemical process takes place in long tubes with 
small cross section, embedded in a combustion chamber, are examples of 
plug flow reactors. Fuel burning in the combustion chamber provides the 
necessary temperature regime for the chemical reaction in the tubes. 
Tubular reactors are widely used for hydrocarbon cracking for olephines 
or gasoline production (Ref. 59). 

Relevant material can be found in Refs. 1 and 16. 

E. Model of Well-Stirred Reactor 

1. Purpose of the Model 

Model aims at the determination of the parameters (density, temperature, and 
reactant concentrations) of reactive medium in a reactor where the initial 
reactants are supplied at a given flow rate, and the reaction products are removed 
simultaneously with the same mass flow rate. 

2. Assumptions 

a) In a well-stirred (also referred to as a perfectly mixed, back-mix, or 
stirred-tank) reactor, the chemical reaction runs in a constant volume V at 
constant pressure p. The reactants entering the reactor instantaneously 
assume a final, uniform throughout the reactor, chemical composition 
because of perfect mixing. Thus, the outlet stream has the same chemical 
composition as that within the reactor. 

b) The initial reactive mixture is supplied into reactor with constant mass 
flow rate G, temperature To, and mole-mass concentrations of the 
components QO-

c) Heat losses through the reactor walls are constant. 
d) See other assumptions in the description of model C.3. 

3. Restrictions 
Applicability of the model is restricted to reactors where uniformity of 

chemical composition of the reactive mixture throughout the reactor volume is 
provided by intensive mixing. 
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4. Set of Equations of the Model 

pdQ p(Ci-ci0) pV 
—r- = h Ri, ^ = — 
at r G 

dT_ " H?(T0)-H?(T) E t i HfRiQ ill ^ — V 

p 

cm- T/ 

V = const, p = const, p = 
RTTOLIG 

7=1 k=l k=l 

_ dHf(T) _ ^ 
CPi — AJ ' CP — 2^f CPiCi 

i = l 

5. Nomenclature 

G mass flow rate of reactants 
V reactor volume 
r residence time in the reactor 
Q heat lost in the reactor to the walls per unit time 

See the definitions of other symbols and description of coefficients in the 
descriptions of models C.7 and C.8. 

6. Features of the Model 

The main feature of the processes occurring in a well-stirred reactor at 
constant flow rate is the establishment of a steady-state regime under which a 
chemical reaction rate Rt is determined by the expression: 

/,- — Zio ct — cto 

where /,- is the molar flow rate of component i. 

7. Example 

The model of well-stirred reactor is used for simulation of stoichiometric 
hydrogen-oxygen combustion. At the inlet of a well-stirred reactor, the gas 
mixture has the initial temperature T = 1200 K and the initial pressure p = 1 atm. 
The average residence time of the mixture in the reactor is r = 1 s. The stationary 
values of concentrations of reactants (H2, 02), chain carriers (H, O, OH), and the 
reaction product (H20) are shown in Fig. 6.6. 
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Fig. 6.6 

8. Comments 

a) For sufficiently complex chemical processes that include simple chemical 
reactions of the second and higher orders, a set of algebraic equations 
obtained by equating the derivatives of gas dynamic variables to zero can 
have multiple solutions. This means that for given model parameters, 
different stationary regimes exist. In such a case, one or the other regime 
will be realized depending on the initial values of gas dynamic variables. 
Each stationary regime has a corresponding range of initial values of gas 
dynamic variables for which the stationary regime can be attained. 

b) Well-stirred reactors are used in both industry and research studies. For 
example, in Ref. 69, a well-stirred reactor is used for the investigation of 
mechanism of nitrogen oxide formation during methane combustion in 
air. The necessary degree of mixing was achieved by using a special jet 
injection of reactants into reactor. The main reason for the use of this type 
of reactor is the need to exclude the influence of diffusion processes on 
chemical reaction kinetics. 

Relevant material can be found in Refs. 1 and 16. 

XIV. Mathematical Modeling in Chemical Kinetics 

Mathematical models are used in chemical kinetics for solution of the 
following basic kinetics problems: 

1. direct kinetic problem: to calculate time dependencies of component 
concentrations (kinetic curves) and thermochemical parameters of a 
chemical system with a given mechanism of complex chemical reaction, 
known reaction rate constants, and defined initial conditions; 
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2. inverse kinetic problem: to determine rate constants of separate stages of 
reaction mechanism on the basis of comparison of simulation results and 
experimental data; 

3. problem of analysis of complex chemical reaction mechanism: to 
determine the sensitivity of kinetic curves to the parameters of separate 
stages of the process, and to build an hierarchy of separate stages 
according to some criteria. 

Solution of chemical kinetics problems is carried out with both analytical 
(mainly asymptotic) and numerical methods. 

A. Direct Kinetic Problem 

Direct kinetic problem in formal representation is a system of ordinary 
differential equations (ODEs) of first order with specified initial conditions 
(Cauchy mathematical problem) 

$ = 7 K y i , . . . , y n ) , y/(0) = y/0, i = l , . . . , t f 
at 

where 0 < t < rmax, and F/o are the initial conditions for reactant concentrations. 
The peculiarity of solution of the chemical kinetics equations is that the time 
scales of different variables (concentrations of reactants, intermediates, and 
products) have substantially different magnitudes. In a typical reacting system, 
fast and slow changing variables exist simultaneously. The values of fast 
variables adjust practically instantly to the changes in the values of slow 
variables. This peculiarity permits application of asymptotic analytical methods 
such as the method of quasi-stationary concentrations and the method of quasi-
equilibrium concentrations to solution of chemical kinetics problems (Refs. 1,5, 
9, 11, 12, 23 and 49). 

Stiff ordinary differential equations are differential equations that describe 
behavior of chemical processes with vastly different time scales. The stiffness of 
a problem is revealed during investigation of local (in the sense of small deviation 
from the actual solution) behavior of a set of chemical kinetic equations. The 
original set of chemical kinetics equations is linearized, i.e., is transformed into a 
set of linear equations with a Jacobi matrix Ay(y,-, y;, 0 = {dft/dyj). The locally 
linear system approximates the original non-linear system, if the Jacobi's matrix 
varies only slightly in some vicinity of the solution. In mathematical formulation, 
the Cauchy problem is stiff if the problem is stable (the real parts of the 
eigenvalues A;(A; G [Amin, Amax]) of Jacobian Ay- are negative (Re(A, < 0)), and 
the strong inequality Re(—Amin)/Re(—Amax) ^ 1 is satisfied in the local domain. 

The existence of fast (with the time scale Tfast oc l/Re(Amax)) and slow (with 
the time scale TSIOW OC l/Re(Amjn)) subsystems determines the obstacles encoun­
tered in numerical solution of the direct kinetic problem. In chemical kinetic 
problems, the magnitude of local stiffness, or stiffness parameter Re(-Amin)/ 
Re(-Amax), can reach the values of the order 106-109. Large value of stiffness 
parameter substantially restricts the integration time step h. For a converging and 
stable numerical solution of kinetic problem, it is necessary to select a small 
value of integration step h & 1/Re(—Amax). Because of the stiffness of kinetic 
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equations, the minimal number of integration steps is comparable with 
|Re(-Amin)/Re(—Amax)|, which in most cases limits the rate of numerical 
integration of the equations. 

Widely used algorithms for numerical solution of direct kinetic problems 
include methods of Gear, Rosenbrock, and others (Refs. 11 and 70-78). 

B. Inverse Kinetic Problem 

Solution of inverse kinetic problem for a chemically reacting system implies 
creation of a model of the chemical process, which describes the experimental 
data. In a broad statement of the problem, creation of a model means specifying 
the right-hand sides (kinetic functions) of the set of differential equations for the 
direct kinetic problem. In the narrow statement of the problem, an inverse 
problem consists in evaluation of rate constants for some elementary stages of the 
mechanism of complex chemical reaction on the basis of comparison of 
simulation results and experimental data. 

Inverse kinetic problem belongs to a class of incorrectly defined problems 
(Ref. 76). A problem is correctly defined if a solution exists, is unique, and is 
stable with respect to variation of initial data. In practice, most inverse kinetic 
problems have solutions, but the solutions can be non-unique and unstable, when 
small uncertainties of experimental data sharply affect the evaluated parameters. 
The basic reasons for nonuniqueness of solution of inverse kinetic problems are 
finite time of experiments and insufficient time resolution of the experimental 
techniques. The time duration of experimental study can be insufficiently long for 
evaluation of the rate constants of slow reactions, and the time resolution of 
experimental measurements can be insufficient for evaluation of rate constant of 
fast reactions. The sufficient condition for existence of a unique solution of 
inverse kinetic problem is a possibility of experimental measurement of the 
concentration of any component at any moment of time with arbitrarily high 
accuracy. 

The main stages of solution of an inverse kinetic problem: 

1. Formation of the model includes 
a) definition of a set of components participating in the reaction, 
b) selection of a type of governing kinetic law (e.g., the law of mass 

action, the law of surface action, non-equilibrium kinetics, etc.), 
c) selection of a hypothetical reaction mechanism or a few 

alternative kinetic schemes, 
d) selection of a proper functional Q(K) (K symbolically represents 

the model parameters) for quantitative evaluation of discrepancy 
between experimental data and simulation results, 

e) search for the minimum of the functional <&(K) in the appropriate 
domain of variation of the model parameters; 

2. Evaluation of model parameters consists in fitting the calculated values of 
kinetic parameters to experimental data via selection of optimal values of 
model parameters; 
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3. Validation of hypothesis involves quantitative or qualitative estimation of 
the accuracy of the model, selection of the best variant among alternative 
models, and possibly formulation of a new hypothesis. 

C. Analysis of Mechanisms of Complex Chemical Reactions 

Because of the limited time allocated to research work and the limited 
accuracy of available experimental techniques, analyses of mechanisms of 
complex chemical reactions are carried out with various approximate kinetic 
schemes. Because the description of physico-chemical kinetics is often only a 
part of overall modeling of gas dynamic or thermophysical processes, reduced 
(compact) kinetic schemes are frequently used in practical applications. 

Different approaches to analysis of mechanisms of complex reactions include 
at least two basic steps: sensitivity analysis and rate-of-production analysis. 
Sensitivity analysis investigates the influence of parameters, (such as the rates of 
the elementary reactions) on the output of the model (such as on the ignition 
delay time for combustion reactions). The goal of sensitivity analysis is 
identification of the rate-limiting stages. These stages are the key reactions in the 
main reaction pathways. The competition between different pathways and the 
relationship between the main reactants is studied with rate-of-production 
analysis. Rate-of-production analysis determines the contribution of various 
elementary reactions to the production of species. 

The methods of sensitivity theory (Ref. 79) are used for quantitative estimation of 
importance of different stages of complex chemical reaction and for construction of 
reduced kinetic schemes. A hierarchy of stages of chemical reaction is based on 
comparison of the rates of different stages. Further reduction of the kinetic scheme is 
performed using stoichiometric relations. Sensitivity theory studies an extent of 
influence that variation of parameters of the model has on system behavior. 
Application of sensitivity theory to determination of the most important stages of 
chemical reaction mechanism is based on the principle that the more important the 
stage is the stronger is the influence of variation of its rate constant on the calculation 
result. This principle defines the statement of problem for chemical kinetics 
sensitivity analysis: determine how strongly a variation of each model parameter 
(i.e., the rate constants kt of elementary stages) affects the concentrations yt. 

Local sensitivity analysis consists in solution of the sensitivity analysis 
problem for a single point in the parameter space. 

Global sensitivity analysis consists in solution of the sensitivity analysis 
problem for a finite domain of the parameter space. 

Sensitivity coefficients are the partial derivatives of the solution vector with 
respect to components of the vector of parameters, ptj = dyt/dkj. 

Matrix of sensitivity coefficients B(t) = (Pij(t)) is a matrix composed of the 
sensitivity coefficients. Analysis of sensitivity matrix shows how strongly 
variation of rate constants affects component concentrations, and which 
elementary stages determine the overall chemical kinetics of the process. 

Various aspects of sensitivity theory in application to chemical kinetics are 
described in Refs. 80 and 81. Reviews of the basic methods of sensitivity analysis 
and their applications to reduction of chemical kinetic schemes are given in 
Refs. 82-84. 
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Chapter 7 

Low Temperature Plasma Kinetics (P Models) 

I. Main Nomenclature 

Arguments 

e energy of relative motion of colliding particles 
p gas pressure 
p gas density 
£ electric field 

Quantities determined in the models 

Te 

T 

Tx 

T* 
Ti 
Tm 

Tr 
Tv 

^a» ^e> ^m» ^ i 

nA or NA, nx or Nx 

electron temperature, that is, temperature of the 
electron gas in a plasma 
gas temperature, temperature of translation motion of 
gas particles 
temperature of heavy particles X 
temperature of atoms 
ion temperature 
temperature of molecules 
rotational temperature of molecules 
vibrational temperature of molecules 
number densities of atoms, electrons, molecules, 
and ions 
number densities of particles A and X, respectively 

Kinetic quantities 

ve total frequency of elastic collisions of an electron with other 
particles 

vee electron-electron collision frequency 
vea frequency of elastic electron-atom collisions 
vem frequency of elastic electron-molecule collisions 
vei frequency of elastic electron-ions collisions 
vex frequency of elastic electron-heavy particle X collisions 
ve£ frequency of inelastic electron-heavy particle collisions with 

excitation (deactivation) of electronic states of atoms (molecules) 
RQX total energy exchange rate between electron and heavy particles 
#ei energy exchange rate in elastic collisions of electrons with ions 

177 
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/? e a energy exchange rate in elastic collisions of electrons with atoms 
(molecules) 

Rer energy exchange rate in collisions of electrons with molecules 
with excitation (deactivation) of molecular rotations 

Rev energy exchange rate in collisions of electrons with molecules 
with excitation (deactivation) of molecular vibrations 

RQE energy exchange rate in collisions of electrons with molecules 
with excitation (deactivation) of electronic states of atoms, 
molecules , or ions 

Rei energy exchange rate in collisions of electrons with molecules 
with ionization of a toms (molecules) 

<7ea,m(e) electron - a t o m , e l ec t ron -mo lecu l e elastic collision cross section 
[in models I - T . 5 - I - T . 8 , these quantities are denoted a Qo(s)] 

kQr rate constant of rotational excitation of molecules by electron 
impact 

&ev rate constant of vibrational excitation of molecules by electron 
impact 

q\n(s) cross section for excitation of atoms from ground state 1 -> n, by 
electron impact, where n is the quantum number of the excited 
state (see models I-E.2,1-E.3) 

qi(e) cross section of ionization of atom (molecule) by electron impact 
[in the models I-P.l 1,1-P.12, these quantities are denoted as ay(e), 

a electrical conductivity 

Particle characteristics 

m, mx mass of a particle, mass of particle X 
ma, mm, mass of an atom, a molecule, an ion, an electron, 

mu me respectively 
/, IP ionization energy 
In energy of ionization from nth excited level 
EA electron affinity 
coo fundamental vibrational frequency of diatomic molecule 
6V characteristic vibrational temperature of a molecule 
B rotational constant of a molecule 
Q quadrupole m o m e n t u m of a molecule 
Z?2 excitation energy of the first excited state of a tom (molecule) 
ao Bohr radius 
rPn equilibrium value of number density n of particles 

(population) of nth excited state 
Z ion charge number 
e electron charge 
A Coulomb logarithm (see model I-T.13) 
Ai Coulomb logarithm for inelastic collisions (see model I-E.4) 
Qt partition function of translation motion 
gm multiplicity (degeneracy) of state with principal quantum 

number m 
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II. Definitions and Criteria 

Plasma is an ionized gaseous medium which is electrically neutral in every 
physically small volume (quasi-neutral plasma). Partially ionized plasma 
includes both electrons, ions, and neutral atoms and molecules. 

Criterion of plasma quasi-neutrality is: 

- For plasmas containing only positive ions: 

\ni-ne\<^n{ (1) 

- For plasmas containing both positive and negative ions 

\n-y -nQ-n~\ « nf (2) 

Electron temperature, or temperature of the electron gas in plasma Te is the 
module of the canonical distribution of electrons in their energy [see Eq. (6)]. 

Gas temperature, or temperature of translational motion of gas particles T is 
the module of the canonical distribution of heavy particles (atoms, molecules) in 
their translational energy [see Eq. (6)]. 

Ion temperature Tx is the module of the canonical distribution of ions in their 
translational energy. 

Debye shielding: Because of Coulomb interaction and thermal motion, local 
charge separation takes place in plasmas. A test charge is surrounded by a sphere 
containing charges of the opposite sign. This sphere is called the Debye sphere, 
and its radius is called the Debye radius R& (Refs. 1 and 2): 

*D = V wiSw- r.) (3) 

Ideal plasma is a plasma in which Coulomb interaction is weak, so that the 
mean interaction energy among particles is small compared with their kinetic 
energy. Plasma temperature is the characteristic of mean kinetic energy. 

Criterion of ideal plasma is: 

- For interaction between charged particles 

| - « kT (4) 

where T — TQT[/(Te + 7i). This criterion means that a large number of 
charged particles should be in the Debye sphere. Example: in a hydrogen 
plasma with electron number density ne = 1015 cm - 3 and temperature 
TQ = 1 eV, there are 40 charged particles in the Debye sphere. Such plasma 
can be considered ideal. 
- For interaction between charged and neutral particles: 

27rae2nx 

Ro 
« k T (5) 

where a is the polarizability of the neutral particle, and R0 is the gas kinetic 
radius of collision. 
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Equilibrium plasma: Thermodynamically equilibrium plasma is the limiting 
case of the plasma state. In such plasma, there are no gradients and fluxes. All the 
characteristics of such plasma are constant in time. The following requirements 
must be satisfied in equilibrium: 

1. The plasma state is completely defined by the chemical composition and 
two thermodynamic parameters (for example, temperature and pressure). 

2. Plasma particle distribution functions in their translational energy must be 
Maxwellian with the temperature common to all types of the particles: 

/(e) = 2r- , „ e x p ( - ^-) (6) 

3. The equation of state takes into account the decrease in plasma pressure 
A/? = e2/3Rv caused by the Coulomb interaction between charged 
particles: 

P = ("a + «m + ni + nt)kT - A/? (7) 

4. Distributions of particle among excited states (populations of excited 
states) are described by the Boltzmann formula 

nk gk ( ek-ei\ 
— = — exp ( ——) (8) 
ni gi \ kT / 

5. Each forward elementary process is balanced by the corresponding 
reverse process. Relations between particle number densities is estab­
lished by the Saha equations: 

{2<irmekT\3/2 ( / - A A 

\-sr-) - » ( H H ** = M P™'trY%, | _ ̂ _p | (9) 
^a,m <?a,n 

where A/ is the decrease in ionization energy because of the Coulomb 
interaction, 

A/ = 2^re3M (10) 

6. The radiation field is in thermodynamic equilibrium with plasma, so that 
emission is compensated by absorption. 

Nonequilibrium plasma is a plasma for which one or more of the six 
requirements previously listed are not satisfied. 

If plasma is nonequilibrium in its entire volume, but one can select a small 
volume in which the six requirements are satisfied, the state of plasma in this 
volume is referred to as local thermodynamic equilibrium (LTE). 

Partial local thermodynamic equilibrium state of plasma is a nonequilibrium 
state of plasma consisting of physically small plasma volumes, so that each of 
these volumes is approximately in thermodynamic equilibrium and is char­
acterized by its own set of macroscopic parameters that may depend on time. 

file:///-sr
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Unsteady nonequilibrium plasma is a nonequilibrium plasma the parameters 
of which (for example, temperature or particle number densities) depend on time. 

Steady nonequilibrium plasma is a nonequilibrium plasma, the parameters of 
which do not depend on time. Plasma in the positive column of glow discharge is 
an example of quasi-steady nonequilibrium plasma. Electron temperature in such 
plasma may differ from temperature of heavy particles, Te ^ T, but neither 
temperature depends on time. The heating of electrons by electric field is 
compensated by their energy loss in collisions with heavy particles. The gas 
temperature is sustained at constant value, because the rate at which the heavy 
particles receive energy from electrons is equal to the rate at which they lose 
energy to the surroundings. Electron and ion number densities are maintained 
constant because the rates of ionization and recombination reactions are equal to 
each other. 

Criteria for existing of various plasma states and the times of their relaxation 
from nonequilibrium to equilibrium are described in this chapter. 

Single-temperature plasma is plasma in which the temperatures of electrons, 
ions, and neutral particles are equal to each other: Te = T{ = Tx = T. 

Criterion for existence of single-temperature plasma in the presence of Joule 
heating, that is, under the influence of electric field, is: 

- For interaction of electron with any heavy particles: 

Te - T 2e2E2 

T 3meveReX(T) 

Rates of energy exchange in collisions between electrons and various 
particles in plasmas, and the respective collision frequencies are described 
in model P.l. For collision frequencies, see Refs. 1, 3, and 4 and models in 
Vol. I, Chapters 2, 5, and 7, of this series. An estimate for ve£(re) 
transitions between electronic level of heavy particles k O n in collisions 
with electrons is: 

vQE(TQ) = qknj8kTc/7rme exp(-Ekn/kTc) (12) 

Here, q^n is the average cross section for electronic transition k -> n, and 
Ekn is the energy of the transition k —> n (see models I-E.2-I-E.4). 

- For plasmas in monatomic gases, Rea(T) = AT5(vea -+• vei), where 8 = 
Im^/m^ is the factor of energy transfer (the average portion of electron 
energy transferred in a single collision), so 

re - T 2e2E2 

T 3kTom&vj 

where E is in V/cm, T is in K, and vea is in s_1. For values of collision 
frequencies v e =v e a + vei, see models I-T.7, I-T.10, and I-T.13. For 
example, in cold weakly ionized helium (T = 300 K, vea ^> vei), electrons 
become hot in relatively weak electric field E/«a ^ 2 x 10~22 V • cm2, 
where na is the number density of helium atoms. 
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For plasmas in molecular gases, the value (Te — T)/T is calculated using 
Eq. (11). The rate of energy exchange taking into account rotational and 
vibrational excitation of molecules can be written as: 

»,™ ,~.* ISkT SirQ2al 
R(T) = kT8v + TT^nm + hcookv(T)nm (14) 

V 7rme 15 
where + vei; 8 = 2me/mm; mm is the mass of gas molecule; kv(T) is 
the rate constant for excitation of molecular vibrations by electron 
impact; and h CJQ is the vibrational quantum of gas molecule. Values B, Q, 
hcoo are presented in Refs. 3 and 4. Estimation for kv(T) gives 
kv{T) = 10~10-10-8cm3/s, see also models I-R.6, I-R.7 and Chapter 4 in 
volume I of this series. 

Relaxation of electron temperature is a process in which the electron 
temperature, Te, approaches the gas temperature, T. This process is caused by 
energy exchange between electrons and heavy particles, if the plasma was 
initially brought into a nonequilibrium state by an external action (for example, 
by a pulse of electric or electromagnetic field). 

Electron temperature relaxation time Tje is: 

JcT 
TT°=RJ7) (15) 

Re%(Te) is the energy exchange rate (see Eq. (14) and model P.l). At high Te, RQ% 
includes electron energy losses in excitation of electronic states and ionization. 
For atomic plasma: 

R(T) = kTe8v(Te) + EnveE(Te) (16) 

where v(Te) and ve£(re) are elastic and inelastic collision frequencies that depend 
on electron temperature. For methods of calculation of VCE(T&), see I-E.2,1-E.3, 
and Refs. 1, 4-6 . Estimation for ve£ can be done as follows: 

VeE(Te) = o-kny/SkTe/7rme Qxp(-E2/kTe) (17) 

where the average cross section for inelastic collision o^(e) = 10"17-10~15 cm2, 
and £2 is the excitation energy of the first excited state of a molecule (or atom). 
For values of E2 for various atoms and molecules, see Ref. 3. The ionization 
frequency V[ is calculated in a similar way. 

Two temperature plasma is characterized by two Maxwellian distributions, 
one with temperature Te for electrons, and another with temperature T for heavy 
particles. 

Criterion of existence of two temperature plasma (Te differs from T) in an 
external electric field is the opposite to (13): 

Te-T_ 2eW 

~^~ws^vi-1 (18) 
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Criteria for preservation of Maxwellian electron energy distribution because 
of the energy exchange between electrons in collisions are: 

1. Electron-electron energy exchange rate exceeds the rate of electron 
heating in the external electric field: 

WeVce > 3e 2E 2 /m eVee (19) 

This criterion can be written as a constraint on the electric field: 

„ 1 mekTe ^^ 
E < < 2 V e e V 3 ^ ( } 

where vee is in s_1, and Te is in K. For the values vee = vee(re), see model 
I-T.13. 
Electron-electron energy exchange rate exceeds the rate of energy 
exchange between electrons and atoms (or molecules): 

In atomic plasmas: 

V " » 1 (22) 
Vee 

8veL 

Collision frequencies vee and vea are presented in models I-T.7,1-T.8, and 
I-T.13. 

Unsteady two-temperature plasma can be realized under a pulse action on 
plasma during time 

t<rTt 

where TJC is the electron temperature relaxation time, see Eq. (5). For example, 
behind a front of a strong shock wave, the temperature of heavy particles 
increases, and the electron temperature stays close to its initial value during the 
time shorter than Tre. Unsteady two-temperature plasmas can also exist during a 
short period of time in the afterglow of glow, RF, or microwave discharges. 

Plasma with nonequilibrium distribution of hot electrons is a plasma with non-
Maxwellian electron energy distribution, and with high average electron energy 
e » 7 \ 

Criterion for non-Maxwellian distribution of electrons in an external electric 
field is the opposite to Eq. (19): 

kTevee < 3e2E2/mevee (23) 

where Te = (2/3)(e/k). 
Generally, the particle distribution functions in plasmas are not Maxwellian. 

Some non-Maxwellian distribution functions, such as Davydov, Druyvestein, and 
Margenau distribution functions, are discussed in plasma models presented 
below. 

Relevant material can be found in Refs. 1, 2, 5, 7, and 8. 
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III. Models of Low-Temperature Plasma Kinetics 

The models of low-temperature plasma kinetics presented in this book 
comprise four groups. The first group describes thermal processes that mainly 
affect electron temperature. Electron gas is the plasma component most responsive 
to external action. Model P.l can be used to determine the electron temperature 
when both elastic and inelastic collisions, as well as heating by an external electric 
field, are included in the balance of electron energy. Model P.2 evaluates the 
relaxation time for the temperature of electron gas brought out of equilibrium by an 
external action. Model P.3 deals with electron temperature variation in 
recombining plasmas, when the electron heating because of recombination can 
arrest the decrease in the degree of ionization with time (so that ionization freezes). 
Model P.4 describes atom and ion heating through collisions with electrons, which 
may result in an instability of a spatially homogeneous plasma. 

The second group of models is focused on ionization and recombination. 
Model P.5 can be used to calculate a nonequilibrium degree of ionization, both 
time-dependent and under steady-state conditions, by taking into account 
ionization-recombination processes, radiation emission, and ambipolar diffusion 
of charged particles to the boundaries of plasma volume. Model P.6 is a special 
case of the preceding model, in which steady nonequilibrium regimes are 
analyzed in more detail. Model P.7 describes the decrease in electron 
concentration with time in recombining plasmas with ambipolar diffusion. 
Model P. 8 predicts distributions of concentrations for charged particles (electrons 
and positive and negative ions) in substantially nonequilibrium, weakly ionized 
plasmas. 

The third group of models deals with population densities of atomic levels. 
Model P.9 is based on a set of balance equations for excited states. It can be used 
to evaluate relaxation times of various excited states. Model P. 10 describes the 
distribution of atomic excited states in the diffusion approximation in energy 
space. This model offers a qualitative analysis that is quantitatively correct at low 
temperatures. Model P.l 1 supplements the preceding model with a description of 
processes that occur at high temperatures. Model P. 12 also describes the 
distribution of atomic excited states in the diffusion approximation in energy 
space. The model supplements models P. 10 and P.ll , taking into account the 
formation of atoms in highly excited states in recombination processes, and also 
deactivation of these excited states by gas atoms. 

The fourth group of models is devoted to electron energy distribution functions 
(EEDFs). With model P. 13, one can calculate the electron energy distribution 
function (EEDF) for a steady, weakly ionized, atomic plasma in an external 
electric field with elastic electron-atom collisions. The predicted EEDF differs 
from the Maxwellian distribution at all energies. Model P. 14 deals with the EEDF 
for a highly ionized plasma with inelastic collisions that can substantially deplete 
the high-energy tail of the electron energy distribution. Model P. 15 can be used to 
calculate the EEDF for a molecular plasma in an external field, with energy 
transfer between electrons and vibrational degrees of freedom, which can 
substantially modify the form of the EEDF. Model P. 16 evaluates the EEDF 
relaxation time after a strong external disturbance and describes transition to a 
steady (equilibrium or nonequilibrium) state. Model P. 17 calculates the EEDF for 
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a weakly ionized plasma in an external electric field with inelastic collisions that 
are so intense that the form of the EEDF is affected at all energies. 

References to models presented in Volume I of this series begin with I, which 
is followed by the model index, for example, I-T.7,1-T.13, and I-E.2. 

A. Model of Local Electron Energy Balance (P.l) 

L Purpose of the Model 

The model aims at the calculation of electron temperature in atomic and 
molecular plasmas, when the electron energy balance is controlled by processes 
taking place in plasma volume: elastic and inelastic collisions, and Ohmic heating. 

2. Assumptions 

a) Temperatures of electrons and heavy particles are different from each other. 
b) Electron energy distribution function is Maxwellian. 
c) External electric field can be applied to the plasma. 
d) Plasma is neither in ionization equilibrium nor in electronic-state 

equilibrium. 
e) The atomic plasma can contain molecules whose concentration is much 

lower than the atom concentration. The vibrational and rotational states of 
molecules are in Boltzmann equilibria characterized by distinct 
vibrational and rotational temperatures. 

f) Both elastic and inelastic collisions of electrons with atoms and 
molecules, as well as Ohmic heating by external field, are taken into 
account in the analysis of energy transfer. 

3. Model Equations 
n~R-x = crE2 

(i) 
neReX = crE 

R&Z = ^ e i "I" 7?ea "+" Rer + Rev + RG£ + Rel 

*ei = — ( r e - 7 > e i ( r e ) (2) 
mx 

vei = 2V2^Z2e4Am/^m~e(kTe)
3/2 (3) 

*ea =—(r e -r)v e a (r e ) (4) 
ma 

/ 93/2 \ COO 

vea = - 7 = Wim-5'2 e-e'kT<qea(e)e2 da (5) 
\y/7rmj Jo 
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SB 
Rer = —(TQ-Tr)nmkQr (6) 

Ver = qQnmy/SkTe/7rme, qQ = \Tc)7rQal (7) 

#ev = -=- (Tc - Tv)nmkev (8) 

ReE = naf-f^L)(kTe)~3 '2 T (I - /„) f e-e'kT°qln(e)s de (9) 

tfe/ = " a ( - = = )(H;)" 3 / 2 / ^"eAre y ) * ( c ) e d e (10) 

For collisions of electron with molecules, the subscript "ea" should be 
changed by index "em." 

4. Nomenclature 

a) Quantities calculated with the model: 

Te electron temperature 
Tv, Tr vibrational and rotational temperatures 
«a» "e> «m> «i atom, electron, molecule, and ion number densities 

b) Kinetic coefficients: 
Quantities contained in R%: 

RCi rate of energy transfer in elastic collisions of electrons with 
ions 

/?ea rate of energy transfer in elastic collisions of electrons with 
atoms and molecules 

Rer rate of energy transfer in electrons collision with molecules 
with rotational excitation of molecules 

Rev rate of energy transfer in electrons collision with molecules 
with vibrational excitation of molecules 

RQE rate of energy transfer in electrons collision with atoms 
and molecules with electronic excitation of atoms and 
molecules 

ReI rate of energy transfer in electrons collision with atoms and 
molecules with ionization of atoms and molecules 

vei electron-ion elastic collision frequency (see I-T.13) 
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#ea(£) 

KQV 

a 
qt(e) 

electron-atom and electron-molecule elastic collision 
frequencies (see I-T.7-I-T.10) 
electron-atom or electron-molecule elastic collision 
cross section (see I-T.7-I-T.9) (qea(s) = Qo(s) in the 
other chapters of this volume and in the first volume of this 
series) 
rate constant for vibrational excitation of molecules by 
electron impact 
cross section for atom excitation 1 —> n from the ground 
state 1 to level n by electron impact (see I-E.2, I-E.3) 
(#i«(e) — o-\n(e) in the other chapters of this volume and in 
the first volume of this series) 
electrical conductivity 
cross section for atom ionization by electron impact (see I-
P l l , I-P.12) [qi(s) = ads) in the other chapters of this 
volume and in the first volume of this series] 

c) Other quantities: 

E 

ho)o 

Q 
E2 

s 
ao 
ma, mm, mi? me 

z 
e 
A 
B 

electric field 
characteristic molecular vibrational temperature 
magnitude of vibrational quantum of diatomic 
molecule 
quadrupole moment of a molecule 
excitation energy for the lowest excited state of 
an atom or molecule 
ionization energy from the ground state of atom 
or molecule (/ = I\, / = IP in the other chapters 
of this volume and in the first volume of this 
series) 
ionization energy from the level with principal 
quantum number n 
electron energy 
Bohr radius 
masses of atom, molecule, ion, and electron 
equilibrium value of the population density in 
level n 
charge number of ion 
electron charge 
Coulomb logarithm (see I-T.13) 
rotational constant of a molecule 

5. Model Description 

The governing equation is an expression for the energy conservation law. 
The expressions for Re\, Rea, RQr, RQV satisfy detailed balance relations, 

vanishing at Te = T,Te = Tr, Te = Tv, respectively. 
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a) In a weakly ionized atomic plasma, when the energy lost in elastic 
electron-ion collisions and inelastic collisions is negligible, 

3mek ~> 
—^-(Te-T)ve!ine = oE2 (11) 

ma 

a = e2ne/mevea (12) 

b) In a weakly ionized atomic plasma seeded with molecules, when energy 
transfer is controlled by elastic electron-atom collisions and vibrational 
excitation, 

^ (re - 7> e a + £ (re - Tv)nmkev = 0 (13) 

c) In an atomic plasma in strong electric field, Ohmic heating is balanced by 
energy loss in excitation processes: 

oE2 = ReE (14) 

At moderate temperatures, when Te < 0.2 • I/k9 excitation cross sections can 
be treated approximately (Refs. 1 and 9), Yln Q^n = C(s ~ ^i), where C is a 
constant. Then, 

/8£ 2 E2\
l/2 [-E2\ RQE = niE2CT^-J exp|—J 

where n\ is the number density of atoms in the ground state. 

6. General and Particular Solutions 

There is no general solution. 

a) Particular solutions 

1. In a high-frequency electric field E(t) = Eocos cot, if 00 > 10(me/ma)Vea, 
then E2 in Eq. (11) can be replaced by 

1 
E2

eff=-E2v2
eii(vl + a>2) 

(see Ref. 1). Under these conditions, when the frequency is very high, 
(o > 3vea, the solution to Eq. (11) is 

re = T + e2E2mJ6mloj2k. (15) 

2. If an elastic collision cross section can be approximately expressed 
as #ea(£) = C/E3/2, where c is a constant, then the corresponding 
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collision frequency is vea = n^c(kTe)
 3^2^/2kTe/m. The solution of 

Eq. (11) is then 

Te = T+Tvnj,^c_^ ( 1 6 ) 

3. When E2 ^> kTe, an approximate solution to Eq. (14) can be obtained by 
using the fact that the dependence of Te on plasma parameters is primarily 
determined by the exponential in the expression ReE ~ exp(— E2/kTe).Then 

E2 

kTe = 2 . „ (17) 
\n[&E2/(niE2cTe^/SEl/7r mkTe)] 

7. Restrictions 

a) Gradients of Te are sufficiently weak for heat fluxes to be neglected. 
Conductive heat loss is negligible compared to the energy loss through 
elastic electron-ion collisions if 

3m e Ke 
V e i -12 

where Ke is the electron thermal conductivity and / is the characteristic 
length of substantial variation of Te. 

b) Electric field is too week to perturb the core of electron energy 
distribution function: 

kTe > e2E2mJmlvee (18) 

where the electron-electron collision frequency vee(e) = 3ire4neA/ 
V5m^e3/2 is calculated for s = kTt (see I-T.13). 

c) The atomic excited levels are characterized by a strongly nonequilibrium 
distribution. Deactivation processes play a negligible role, so that the 
energy lost in any act of excitation equals the excitation energy. For this to 
be the case, the population densities nn of excited states must be low as 
compared to the corresponding Boltzmann equilibrium values, rPn: 

nn<0A.n°n(Te) 

d) The electron energy distribution function has a Maxwellian tail at s > E2. 
This requires that l2n2/ne)(kTc/E2)A~l < 1. 

8. Example of Application 

Across a shock wave, the gas velocity drops and gas temperature increases 
while ionization lags behind. In the course of ionization, which proceeds at a 
quasi-steady, Te, electrons lose energy through excitation and subsequent 
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ionization and gain energy through elastic collisions with "warmer" ions at 
T > Tt. The equation Re{ = Re£ + Rei can be used to calculate Te. For a shock 
wave propagating in air at a velocity of 14km/s, with pressure p\ = 10~3 atm 
behind the front, the degree of ionization ne/(ne + «a) reaches 0.1 when the gas 
temperature is T = 35 x 103 K. As a result, Tc = 15.2 x 103 K (Ref. 1). 

9. Comments 

a) In intense electric fields, condition Eq. (18) is violated and the distribution 
function is far from Maxwellian, so that the form of the quantities 
contained in R& is substantially modified (Ref. 4). Formulas of the 
present model can be used to evaluate the average electron energy e 
(see comments to model P.2). 

b) The complete formulation, which includes not only electron energy lost 
through excitation and ionization, but also energy gained through 
deactivation and recombination, is presented in Ref. 1. 

c) A more general expression for Rev (including resonances in scattering) can 
be found in Ref. 1. 

Relevant material can be found in Refs. 1, 3, and 4. 

B. Model of Electron Temperature Relaxation (P.2) 

1. Purpose of the Model 

The model aims at the calculation of electron temperature in atomic and 
molecular plasmas as a function of time when electron energy changes through 
electron-atom and electron-molecule elastic collisions and vibrational 
excitation of molecules. 

2. Assumptions 

a) Different electron, atom, ion, and vibrational temperatures. 
b) Maxwellian distribution of thermal electrons. 
c) Boltzmann distribution in vibrational degrees of freedom. 
d) Energy transfer is controlled by elastic collisions and vibrational 

excitation. 

3. Model Equations 

d_ 
dt 

( j TQne j = «e —
£ (Tc - T)[vei(Te) + vea(7;)] 

+ ne -^ (7; - Tv)nmkevf(Te, Tv) (1) 
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2N/2^?4AZ2 

Ve i = x-pr nx 

V^(^e)3/2 

vea = f - ^ W r e ) - 5 / 2 f e-e'kT<qeii(e)e2ds 
yjTrmJ Jo 

where f(Te, Tv) = 1 at Te > Tv for molecules that are not involved in resonant 
electron scattering. 

Initial and boundary conditions 
Initial conditions are set at t = 0: re(0), ne(0), Wi(0), nm(0), na(0). 
The functions rce(0> «a(0> «i(0? "m(0 must be either prescribed in explicit 

form or determined by other models to be employed in conjunction with this 
model. 

The temperatures T and Tv are either prescribed as functions T(t), Tv(t), or 
determined by other models. 

4. Nomenclature 

a) Quantities calculated with the model: 

r e electron temperature 

b) Kinetic coefficients: 

vei electron-ion elastic collision frequency (see I-T.13) 
vea, vem electron-atom and electron-molecule elastic col­

lision frequencies (see I-T.7-I-T.10) 
^ea(e) electron-atom or electron-molecule elastic collision 

cross section (see I-T.7-I-T.10) 
kcv rate constant for molecule excitation by electron 

impact 
f(Tc, Tv) correction factor allowing for vibrational energy 

transfer in resonant scattering 

c) Other quantities: 

me, ma, m\ electron, atomic, and ion masses 
Tv, T vibrational and translational temperatures 
na, ne, nm, nx atom, electron, molecule, and ion number densities 
Z charge number of ion 
e electron charge 
A Coulomb logarithm (see I-T.13) 
£2 excitation energy for the lowest excited state of an 

atom or molecule 
0 V characteristic vibrational temperature of molecule 
e electron energy 
hcoo vibrational quantum of diatomic molecule 
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5. Model Description 

The model equation is an expression for the energy conservation law. 

Specific model representations 

a) If ne» «a, n{, nm are quasi-steady quantities, i.e., if they effectively remain 
constant during the electron relaxation time, then Eq. (1) becomes 

] ~ = — (rc - r)[vei(re) + vea(re)] + evnmkevf(Te, rv) (2) 
2 at mx 

b) In a highly ionized atomic plasma, when vei » vea, 

^ = ^ ( r e - 7 > e i ( r e ) (3) 
at m\ 

c) In a weakly ionized atomic plasma, when vei Ĉ vea, 

3dr e 2me 

^ - T - = — (rc - 7>ea(re) (4) 
2 dr ma 

6. General and Particular Solutions 

There is no general solution. 

Particular solutions 

1. Equation (2) is solved to determine the time At required for electron 
temperature to change from re(0) to TQ{t): 

F*{t) f2m 
At = dre — (re - r)[vei(re) + vea(re)] 

Jre(o) l^i 
+ | ^ (7; - Tv)nmkevf(Tc, Tv) J (5) 

2. The solution to Eq. (3) is 

A r = — Vei(r) - , X = ^ (6) 
Lmi J Jre(0)/r * - 1 T 

When the difference between T and Te is large, i.e., Te(t) > 7\ the solution is 
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7. Restrictions 

a) In the absence of strong electric fields, when the Ohmic heating rate 
Qj = oE2 (a is the electrical conductivity and E is the electric field) is 
low as compared to energy losses in elastic collisions: 

Te-T 2e2E2 2me 

r e 3kT8mev
2' ma 

where v = vei + vea is the total frequency of elastic electron collisions 
with ions and atoms (see I-T.8,1-T.ll, and I-T.13). 

b) Energy lost to inelastic collisions is negligible: kT& < O.IE2, where £2 is 
the excitation energy. The value £2 ^ 10 eV is frequently used for 
estimates, but £2 is considerably lower for atoms of some metals (the 
minimal value is £2 = 1.6 eV in the case of cesium atoms). 

c) Gradients of Te are sufficiently small for electron thermal conductivity 
to be negligible: ne(t)At~l > /Q(A/)~2 , where Ke is the electron 
thermal conductivity and A/ is the characteristic length of substantial 
variation of Tc. 

d) Boltzmann distribution of vibrational states at a temperature Tv is 
realized. 

8. Example 

With the cross section #ea = 0.6 x 10~15 cm2, the gas just behind a strong 
shock in helium has a high temperature, T = 3 x 104 K, while the electron 
temperature is close to that of cold gas ahead of the front; the atom concentration 
is high, na = 1017 cm -3 , and the degree of ionization is very low. As a result of 
electron-atom energy transfer, 7e increases to Teff = 104 K during the time 
interval 

- 1 

= 10"7 s 

9. Comment 

The formula of this model can be used as an estimate in cases of non-
Maxwellian distributions. Then, the value of Te would characterize the average 
electron energy, e = J0 e3/2/,(e) de, where/(e) is the electron energy distribution 
function. In this case, Te = 2e/3&. 

Relevant material can be found in Refs. 1, 10, and 11. 

C. Model of Electron Heating Because of Recombination (P.3) 

7. Purpose of the Model 

The model aims at the calculation of electron temperature and number density 
as functions of time for a decaying recombination-controlled atomic plasma. 

At: fcHV qe3iy/$kTejf/7rme 
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2. Assumptions 

a) Electron number density is higher than its equilibrium value at temp­
erature Te. As a consequence, recombination prevails over ionization, 
which leads to plasma decay. 

b) Electron temperature is substantially higher than the gas temperature. 
c) Heat conduction is negligible. 
d) The system is spatially uniform. 
e) Recombination, ionization, and elastic electron-ion collisions are taken 

into account. 
f) Recombination is controlled by the Thomson (electron-electron-ion) 

collisional mechanism. 
g) Radiation effects are negligible. 

3. Model Equations 

- p = nantki — n\nxkr (1) 

d /3 \ dne 

5 ( . H ^ ) = ^ - / ^ (2) 

Rei=^^(Te_T)nikei(Te) ( 3 ) 

kei = ijl^e*A/\/m~(kTe)
3/2 (4) 

Initial conditions are set at t = 0: ne(0), Te(0). 
4. Nomenclature 

a) Quantities calculated with the model: 

ne electron number density 
Te electron temperature 

b) Kinetic coefficients: 

ki(Te), kr(Te) ionization rate coefficient for electron-atom colli-sions 
and recombination rate coefficient for electron-
electron-ion collisions (see models I-P.14,1-P.15) 

^ei(^e) electron-ion elastic collision rate constant (see model 
I-T.13) 

c) Other quantities: 

na, n[ atom and ion number densities 
T gas temperature 
/ ionization energy 
8 = 2me/ma energy transfer factor for elastic collisions 
me, raa, mi masses of electron, atom, and ion 
e electron charge 
A Coulomb logarithm (see model I-T.13) 
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5. Model Description 

The model equations are derived from energy and species conservation laws. 
The expression for energy exchange because of elastic electron-ion collisions 
satisfies detailed balance relations, vanishing at Te = T. 

The expression for ionization-recombination rate vanishes in Saha 
equilibrium. Quasi-neutrality is obeyed: |ne — n\\ <£ nQ. 

Specific Model Representation 

Recombination-controlled decay of a highly nonequilibrium plasma is 
governed by the equations 

d«A i 

-£=-n3MTe) (5) 

kr(Te) = -A{m-9'2 

The factor A depends on the ion type and on electron number density (Ref. 2). 
Calculation with model I-P.15 gives A = 5.4 x 10~27 cm6/s • eV9/2. 

6. General and Particular Solutions 

There is no general solution. 

Particular solutions 

When / ^> (3/2) ATe, a particular solution of Eqs. (5) and (6) has the form 

Te{t) = TM + W ^ l ^ (7) 
3 k 

m 
(2//3)9/2 

The integral is calculated numerically. 

7. Restrictions 

a) The model can be applied to a decaying atomic plasma that can be treated 
as spatially uniform and optically thick. 

b) Conductive heat loss is negligible as compared to energy loss through 
electron-ion collisions: 

3me Ke 
Vei > - r 

m\ 
^ei ^L P 

where /ce is the electron thermal conductivity and / is the characteristic 
length of substantial variation of Te. 
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c) Radiation emission can be neglected in the case of optically thin plasma 
when the electron number density is sufficiently high: 

V h L h J 
- 3 

cm 

where I\ and h are the ionization energies for the ground state and for the 
lowest excited level that can be depopulated by radiation emission, 
respectively. 

8. Example 

With kTe(0) = 2eV and / = 15 eV, temperature increases by a factor of 12.5 
by the moment t\ when the electron number density drops by a factor of 10, that 
is, ne(ti)/ne(0) = 10, which results in electron heating owing to recombination. 
The rate of recombination is proportional to T~9/2; therefore, it additionally drops 
by a factor of (12.5)9/2 & 8600. The electron heating because of recombination 
increases the plasma lifetime by orders of magnitude without any external 
ionization source (so that ionization freezing occurs). 

9. Comments 

a) In equilibrium state, the electron, ion, and neutral number densities are 
related to the electron temperature by the Sana equation: 

n°n? 20 a /2<7rmkTG\3/2 

< ft (^M-^-§«M-i0 
Here, equilibrium species densities are denoted by superscript 0, B = 
4.85 x 1015 cm"3 • K3/2 = 6.06 x 1021 cm"3 • eV"3/2; and & and ft are 
the atom and ion partition functions, respectively. They are temperature-
dependent quantities, but the dependence on Te is weak over wide 
ranges of electron temperature. The value of Te characteristic of 
plasmas is on the order of electron-volt. For alkaline metals, ft « 2 and 
ft & 1; for nitrogen, ft « 4 and Q\ ^ 9; for oxygen, ft = 9 and 
Q\ « 4; and for inert gases, Qa ^ 1 and (2i ^ 6. For an electrically 
neutral, uniformly ionized plasma, n® = n®. When the degree of 
ionization is low, n® <£ n®, then 

1/2 

( * f t " a ) re / 4exp(- / /2*r e ) 

If / ^> kTe, then ne(Xe) is dominated by the exponential dependence. 
b) See comment in the description of model P.7. 

Relevant material can be found in Refs. 1, 2, and 9. 
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D. Model of Gas Heating in a Plasma (P.4) 

L Purpose of the Model 

The model aims at the calculation of the atomic gas temperature controlled by 
Ohmic heating owing to atom-electron collisions and conductive heat loss in 
atomic plasmas. 

2. Assumptions 

a) Different temperatures of electrons and heavy particles. 
b) External electric field E is applied. 
c) The gas is weakly ionized. The plasma is in ionizational equilibrium. 
d) Gas pressure is constant (that is, an isobaric system is considered). 
e) Analysis of energy transfer processes includes elastic electron-atom 

collisions, Ohmic heating by an external electric field, and conductive 
heat flux to plasma boundaries. 

3. Model Equations 

0E2 - nc(Rci + Rci) +-— \TKC -^-\ = 0 (1) 

ne(Rei + J ^ ) + - - ( r/ce — j = 0 (2) 

/? e i = i^(r e-7>ei(re) (3) 
m{ 

vei = 2V277ZV • ni/y/kme(kTe)3/2 (4) 

23/2 \ 

*ea = ^ ( r e - r ) v e a ( r e ) (5) 
ma 

vea = (-^=)na(kTeyV2 f e-e'kT*qeSL(s)e2ds 
WTTmJ Jo 

(6) 

cr = (7) 
^ e v e a 

Boundary conditions 

T(R) = TR (gas temperature at the plasma boundary) 
dT 
— (0) = 0 (symmetry condition) 
or 

4. Nomenclature 

a) Argument: 

r distance from the plasma column axis 

b) Quantities calculated with the model: 

T(r) gas temperature 
ne electron number density 
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c) Kinetic coefficients: 

Rei, ^ea rates of energy transfer through elastic collisions with ions 
and atoms 

Vea(Te) electron-atom elastic collision frequency (see models 
I-T.7-I-T.9) 

vei, vee electron-electron and electron-ion collision cross sections 
(seeI-T.13) 

#ea(Te) electron-atom elastic collision cross section [see models 
I-T.7-I-T.9, where these quantities were denoted as Qo(e)] 

Ke, K electron and gas thermal conductivities 
a plasma electrical conductivity 

d) Other quantities: 

Te electron temperature 
na atom number density 
E electric field 
p pressure 
ma, me atom/ion and electron masses 
e electron charge 
A Coulomb logarithm (see model I-T.13) 
R plasma length scale (the column radius) 
/ ionization energy 

5. Model Description 

The model equations express energy conservation laws. 
The expressions for Rei and Re3i satisfy detailed balance relations, vanishing at 

Te = T. 
Electron number density obeys the Saha equation. Because the degree of 

ionization is low, then 
ne = ne(Te)e-I/2kT< (8) 

where ne(Te) weakly depends on Te. At low degree of ionization, the condition for 
isobaric state has the form 

p = nQkTe + (m + nJkT « nJJT (9) 

Specific model representation 

In a weakly ionized plasma, when the contributions of energy losses due to 
electron-ion elastic collisions and heat conduction can be neglected in the 
electron energy balance, 

OE2 = rce#ea (10) 

1 3 / dkT\ 
n*R- = -rB-r{rKl») ( U ) 

6. General and Particular Solutions 

There is no general solution. 
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Particular solutions 

The particular solution can be found for Tc that is low as compared to I/k, but 
high as compared to T: 

T J T » 1 , T e » r (12) 
kTe 

Assuming that qea is independent of e, solution to Eq. (10) is calculated as 

,_ 24<&me ! 
(^e)" 1 = / V*°2p{*Trl (13) 

When gas heating is not significant, Eq. (10) yields 

1 [i/kTQ(R)](l-^\ AT = T(r)-TR, AT«TR (14) 
kTe e 

Substituting Eq. (14) into Eq. (11) and retaining only the exponential arising 
from Eq. (8), 

—ne(re)/?ei 
K 

,eI/kTe(R)(AT/TR) _ I_̂ _ (r^D\ (15) 
Te(R) r d r \ dr J 

the desired dimensionless gas temperature 6 is obtained as a function of the 
dimensionless coordinate x = r/R, 

e I d / d0\ „ I AT 
ee = I JC— 1, 0 = (16) 

x 6x\ dxj' kTe(R) TR
 V } 

with the following boundary conditions: 6(xR) = 0 at the plasma boundary, 
d0/dx(O) = 0 on the column axis. The solution is 

*/%a 
a2 + x-

where a is calculated as the root of a quadratic equation: 

* = 2 1 n TO (17> 

01,2 = V2± ^ 2 - 4 (18) 

where 

-1/2 
_[ K I kTR • kTe(R) 

XR=R\~B~\ T 
LneKe&\Te(R) I 

and Te(R) is the electron temperature at the plasma boundary. 
According to Eq. (18), if x\ < 2, there are two solutions: 

(19) 

0 i « 2 V 2 , * 2 = ^ | (20) 
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The first one corresponds to a plasma with temperature and degree of 
ionization weakly varying across its volume. The second solution corresponds to 
a highly nonuniform plasma with degree of ionization steeply increasing toward 
the center of the plasma volume (see Comments). 

7. Restrictions 

a) Gradients of Te are sufficiently weak for heat conduction to be negligible. 
Conductive heat loss is negligible as compared to elastic electron-ion 
collisions if 

3rae Ke 

where Ke is the electron thermal conductivity and / is the characteristic 
length of substantial variation of Te. 

b) Electric field is insufficiently strong to perturb the core of electron energy 
distribution function: 

kTe > e2E2mJmlvee (21) 

where the electron-electron collision frequency vee(e) = 37re4neA/ 
V2m^e3/2 is calculated at e = kTe (see I-T.13). 

c) At ionization equilibrium, radiation emission that would cause deviations 
from the equilibrium can be neglected when ne > 1014cm~3 [see Eq. 
(10)]. Another mechanism that violates the equilibrium, electron diffusion 
to plasma boundaries, is negligible if nQki(Te) > 3ne/Td, where kt is the 
ionization rate coefficient (see P.7), and rd is the time required for 
electrons to diffuse to plasma boundary. 

8. Example 

Consider a helium plasma column of radius R at a constant pressure of 
p = lOTorr across the volume. The gas temperature at the column boundaries 
is maintained at T(R) = 2000 K, and E = 3 V/cm. The value of JC* in (19) 
determines the thermal regime of the plasma. 

The electron temperature at the boundary is TG(R) « 11,600 K according to 
Eq. (13), where qea ^ 4 x 10~16 cm2, and the electron number density is nQ(R) & 
1014 cm - 3 according to Eq. (7). These parameters are typical for a weakly ionized 
plasma. Thermal conductivity is K = 1.3 x 1020cm_1 s_1 for helium at 
7 = 2000 K. If # = 5 cm, then xR = 1.3. This regime corresponds to two 
solutions of Eq. (18). The stable state corresponds to the lower value of a, in 
which case the gas temperature is more nonuniform (Ref. 12). 

If /?=10cm, then *# = 2.6. This value is higher than xR = >/2 that 
corresponds to the critical conditions for existence of a solution. 
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9. Comments 

When x\<2 [see Eq. (19)], one solution describes an almost uniform state of 
the plasma, and the other corresponds to a stable state with electron number 
density rapidly increasing toward the column axis. 

When x# > 2, there are no steady solutions, and a "thermal explosion" regime 
is observed, with electron number density rapidly increasing with time as a result 
of Ohmic heating. This thermal instability brings the plasma into a highly ionized 
steady state that is intractable in terms of the present model. 

Relevant material can be found in Refs. 1, 12, and 13. 

£. Model of Nonequilibrium Ionization (P.5) 

1. Purpose of the Model 

The model aims at the calculation of electron number density, ne, both as a 
function of time and under steady-state conditions for a radiating atomic plasma 
with ambipolar diffusion. 

2. Assumptions 

a) A non-Maxwellian high-energy tail is assumed to be superimposed on a 
Maxwellian energy distribution of thermal (low-energy) electrons. The 
non-Maxwellian high-energy tail may be caused by lack of balance 
between collisional excitation and deactivation of atoms by electrons. 

b) Radiation can leave the plasma volume, and electrons can leave the 
plasma volume via ambipolar diffusion. 

c) Ionization may be sustained by external sources. External ionization 
sources may include intense ionizing radiation or electron beams. 

d) Ionization and excitation processes are determined by inelastic atom-
electron collisions, and recombination is determined by three-body 
electron - electron - ion collisions. 

e) Radiation effects on nonequilibrium ionization are determined by spectral 
line emission. 

f) Electron temperature is prescribed. 

3. Model Equation 

dwe ^ 
— = nanQki - %n{kr + div(Dagrad we) + S(t) (1) 

Kl=Kil+^l^ix(^j (2) 

k;1 = (kniixr1 + {kr2y
lxUf) (3) 
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n'=.l.(1+slt> " k - J ^ *-*••*• <4) 

where ne is in cm3, and Te is in K. 
Initial conditions are set at t = 0: ne(0). 
If Te and na are time-dependent functions, they must be either prescribed or 

determined by invoking appropriate models. 

4. Nomenclature 

a) Quantities calculated with the model: 

ne electron number density 
Tt electron temperature 
wa atom concentration 
nx ion concentration 

b) Kinetic coefficients: 

kt, kr ionization and recombination rate constants involving radiative 
contributions 

j8, j8*, collisional contributions to kt and kr due to electron impact (see 
ft, p* models I-P. 14 and I-P. 15) 
kn+iyn effective rate constant in the single-quantum approximation 

(see model I-E.4) 
Akn Einstein coefficient for spontaneous transition k -+ n (see Refs. 

14-16) 
$kn probability for the photon emitted in transition k ->• n to escape 

from the plasma volume 
Da ambipolar diffusion coefficient (see Refs. 4, 10, and 17) 

c) Other quantities: 

S intensity of external ionization sources 
h ionization energy from the lowest excited state 
IR ionization energy for excited states coupled through radiative 

transitions 
n quantum number of an atomic state (n = 1 for the ground state 

and n > 2 for excited states) 
X(x) function involved in the modified diffusion approximation 
111 factor accounting for radiative transitions to the ground state 

5. Model Description 

a) For a steady state plasma dne/dt = 0; plasma is spatially homogeneous if 
div(Z)agradne) = 0. 
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b) Detailed-balance relation is: 

n°n°fc,=(n°)2n°fcr 

where kt and kr are rate constants in the absence of radiative processes 
(111 = 1,1 = h)- Here, n®, n®, nf are local equilibrium number densities 
related by the Saha equation for ionization equilibrium 

n°nl/nl=K(Te) 

where K(Te) is the ionization equilibrium constant. 
c) Quasi-neutrality is obeyed: \nQ(t) — tii(t)\ <& ne. 
d) In an isochoric process, the total number density of heavy particles is 

n{(t) + n&(t) = n{(0) + na(0) = /i(0). 
e) The initial electron number density in the process of developing 

ionization is lower than the local thermodynamic equilibrium (LTE) 
value: ne(0) < n®. 

Specific model representation 

• Balance equation in the case of nonequilibrium ionization with 
diffusive charged particle loss described in the "diffusion time" 
approximation is 

dwe 9 nc 
—— = nanekt — njiikr (5) 
dt Td 

where Td is the diffusion time, Td « L2/bDa, L is the reference length, and 
b is a constant. For diffusion of species to the wall of a tube of radius R, 
Td « R2/(2A)2Da (see model P.7). 

• Balance equation in the case of recombination-controlled plasma 
decay: 

dwe 9 
— = -n^riikr + div(Dagrad nt) (6) 

Balance equation at the initial ionization stage: 

dwe —- = nanekt + S (7) 
at 

Equations (5) and (6) are considered in models P.6 and P.7, which 
supplement the present model. 
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6. General and Particular Solutions 

There is no general solution. 

Particular solutions 

• Development of an electron avalanche 
When both ionization source intensity S and kt are time-independent, the 

solution to Eq. (7) subject to the initial condition ne(0) = 0 is 

S 
«e(0 = —r [exp(na*,-0 - 1] (8) 

naKi 

Att^> (naki)~l the electron number density grows exponentially. 

• Explosive ionization development 
At low initial electron number density ne(0), the high-energy tail of the 

electron energy distribution is non-Maxwellian (see model P. 13), and the 
ionization rate constant kt = kn is proportional to nQ. Calculated with the 
electron energy distribution predicted by model P. 13 for these conditions, it is 
expressed as 

kil=2V^(pi2MA(^) (9) 
\kTeJ V rnt \nj 

where A is the Coulomb logarithm (see I-T.13). 
In the absence of an external ionization source, the solution to (7) for Te = 

const is 

- l 

(10) 

The electron number density grows infinitely as t -> r ; i.e., ionization develops 
in an explosive manner. 

• Ionization instability 
Instability means that random fluctuations of ne grow rather than decay with 

time. As a result of instability, plasma volume can develop into a new, sub­
stantially inhomogeneous (e.g., constricted) state (Ref. 10). 

The instability develops when ionization rate increases with ne faster than 
does recombination rate. For example, if the recombination rate is proportional to 
n\ (i.e., 6nG/6t\rec = —n\kr, where kr is independent of ne)> then the instability 
develops when kt ~ «*, where k > 2. This situation is characterized by a low ne, 
when the value of kt is affected not only by the non-Maxwellian distribution (as in 
(9)), but also by intense radiative losses. 

nc(0 = *e(0)[l - (J)] \ T= 2 V ^ Q 0 V?A W e ( 0 ) 
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• Thermal ionization 
If ionization kinetics is controlled by collisions, then the principle of detailed 

balance dictates that 
2 

d/ie 2 
— = n^ricki — n&riikr = nanek( 

_ fey a nl (ID 

In the case of a slowly developing ionization, the quantity in brackets in Eq. (11) 
is close to zero. This means that the ionization rate is controlled by electron 
heating rather than collisional kinetics: 

dne = d ^ = *£«; oJ_ dlnT; 
dt dt dre dt ~ e 2kTc dt y } 

This approximate equation is valid at low temperatures, Te < 0.1 Ilk (I is the 
ionization energy), and low degrees of ionization, ne < 0.1na (see P.3). 

7. Restrictions 

The balance equation (1) governing the development of ionization processes is 
universally applicable to low-temperature, singly ionized plasmas. Certain 
restrictions may arise when the values of fc,, kr, and S are specified. 

8. Example 

In the case of ionization developing behind a shock wave (Ref. 9), the electron 
temperature varies weakly during the final ionization stage. For example, in an argon 
plasma with Te = 1.8 x 104K and na = 1018cm3, electron number density 
increases through ionization by electron impact (kt = 0.8 x 10-11 cm3/s) from 
7ie(0) = 1014 cm - 3 to ne = 0.2 x 1018 cm - 3 during the interval t determined by 
Eq. (7): 

1 nJt) 

nakt ne(0) 

In this case, the ionization due to atom-atom collisions plays the role of a source, S. 

9. Comments 

a) Equation (1) can be derived from the balance equation for electrons 
streaming through a gas flow with relative velocity u: 

d(neu) 

dx £5" 
where the right-hand side is the same as in (1), but is written as the sum of 
terms representing local processes and diffusion. 

b) When the time dependence of Te is related to nG(t), the balance equation in 
the case of nonequilibrium ionization should be solved simultaneously 
with the balance equation for electron energy (see models P.l and P.2). 

c) In a highly nonequilibrium plasma, when the ionization coefficient behaves 
as a large power of ne, the solution to the steady-state equation may be 
nonunique, and the time-dependent equation may have an unstable solution. 

Relevant material can be found in Refs. 1, 9, and 10. 
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F. Model of Nonequilibrium Steady Ionization (P.6) 

1. Purpose of the Model 

The model aims at calculation of electron number density nQ in a steady-state 
atomic plasma when the nonequilibrium is because of radiative losses and 
ambipolar diffusion to the walls. 

2. Assumptions 

See items a-b in the corresponding section of model P.5. 

3. Model Equation 

n^n^ki — n\nxkr + div(Da grad ne) = 0 (1) 

Kl=kn+tfnix(j^ (2) 

k;1 = (knU,)-1 + (k*rl
X(Jjr) (3) 

ni = 5 i f i r ^ ) ' A*+i = £ A** A*=Akndkn (4) 

Escape probability for radiation emitted at a point on the axis of a plasma cylinder 
of radius R: 

&kn = 

f (2^/(ko)knR) l for a collisionally broadened line k -> n 

[ y/^{A{kQ)knR^\n[{ko)knR]}~1 for a Doppler-broadened line k -* n 

(5) 

Escape probability for radiation emitted at a distance x from the boundary of a 
plasma slab: 

0fcnz 

O*jir{ko)knx) l for a collisionally broadened line k ̂  n 

(6) 

I {^(^o^^V^rTn^o))^} -1 for a Doppler-broadened line k-> n 

I = min(/2, IR) (7) 
1/8 

x 104 
r =r_^£_]1 / 4r Ts_ 
R L4.5 x 1013J |_1.16 x 

(8) 

where ne is in cm 3, and Te is in K. 
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Nomenclature 

a) Quantities calculated with the model: 

ne electron number density 
TG electron temperature 
na, n\ atom and ion number density 

b) Kinetic coefficients: 

kt, kr ionization and recombination rate constants (coefficients) 
involving radiative contributions 

fi, j8*, collisional contributions to kt and kr because of electron impact 
j8r, P*r (see models I-P.14 and I-P.15) 
Jcn+ifn effective rate constant in the single-quantum approximation 

(see model I-E.4) 
Akn Einstein coefficient for spontaneous transition k -> n (see Ref. 

14) 
Okn probability for a photon emitted in the line k - • n to leave a 

given plasma volume 
(ko)nk absorption coefficient at the center of line k -* n (Ref. 15) 
Da ambipolar diffusion coefficient (Ref. 10) 

c) Other quantities: 

h ionization energy from the lowest excited state (see Ref. 16) 
IR ionization energy for excited states coupled through radiative 

transitions 
n quantum number of an atomic state (n = 1 for the ground state, 

and n > 2 for excited states) 
X(x) function involved in the modified diffusion approximation (see 

models I-P.14 and I-P.15) 
III factor accounting for radiative transitions to the ground state 
Wg electron number density predicted by the Saha equation at 

electron temperature TQ (see model P.3) 
K(Te) ionization equilibrium constant (see model P.3) 

Model Description 

a) See items 2-5 of the corresponding section of model P.5. 
b) The electron concentration is lower than the equilibrium one: ne < n®. 

Specific Model Representation 

a) Balance equation with diffusive charged particle losses described in the 
"diffusion time" approximation: 

2 K{TC) K(TC) 
n +«e 

ra), , X 1 1 , K(TC) fl\_n 
nx U, ("a + ^ L 1 (n. + nOrjknJ + rdki2

 X\kTc) ~ ° 
(9) 
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where the diffusion time (Refs. 10 and 17) is 

(R/2A)2 

Td = 
{L/TT)2 

Da 

(R/TT)2 

Da 

for a cylindrical plasma column of radius R 

for a plasma slab of thickness L (10) 

for a ball of radius R 

b) When ne is large, radiation effects can be neglected (II i = 1,7 = /2), and 
Eq. (9) reduces to the equation 

n\ + K(TQ)ne - K(Te)(na + n{)[\ - (kiTd(na + nO)"1] = 0 (11) 

c) In large plasma volumes, diffusion plays a negligible role (if ktTd 
(wa + rii) > 10), and the nonequilibrium state of the plasma is because of 
radiation emission only: 

2 K(Te) K(Tt) 
n; + ne - = Tr~(n* + "i) = ° (12> 

111 Hi 
d) When the electron number density is such that radiative transitions are 

essential for the lowest three states only, then: 

n, = (i±MVI±^ (13) 
\ nek2\ ) \ nek32 ) 

For example, this is the case with helium when ne > 1014cm~3, and in 
cesium when ne > 1011 cm -3 . Nonequilibrium ionization is described by 
the balance equation 

/AR AR\ ARAR 

"e + * (? - + P ) " n,K{Tt) + p^ = 0 (14) 
\ f e l ^32/ ^21^32 

7. General and Particular Solutions 
There is no general solution. 
Particular solutions to the balance equation in the case of steady 

nonequilibrium ionization are: 

1. Radial electron density distribution for a glow discharge plasma column 
in the case when ionization rate is higher than recombination rate in the 
plasma volume (ne < 0.1«°). Electrons diffuse to the boundaries of the 
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column of radius R and disappear there. The quantities na, Te, Da are 
supposed to be constant. The governing equation is written as 

1 d2(me) nanQka + Da —r— = 0 (15) 
r arl 

Boundary conditions are: dnQ/dr\r=0 = 0, 
^elr=/? — 0. The solution is: 

ne(r) = ne(0)J0(^) (16) 

where Jo(x) is the Bessel function of the zeroth order whose first root is 
x = 2.4. 

2. Electron number density on the axis of arc discharge in the case of 
diffusion-controlled nonequilibrium is governed by Eq. (15). It has the 
following solution when ^r^(na + n\) > 1: 

^ . r « ! ^ + T O ) f c + l 0 ( 1 _ _ ' )]w_si) „„ 
[ 4 V *ifrf(Wa + Wi)/J 2 

3. Electron number density in the plasma volume in the case when diffusion 
plays a negligible role (kiTd(na + n{) > 10), and only radiative transitions 
to the ground state are taken into account (Af/ne^32 < 0.1), is given by 
the following solution to Eq. (14): 

8. Restrictions 

a) The model described by Eq. (1) can be applied to a steady-state, singly 
ionized plasma when the nonequilibrium condition is determined by 
radiation and diffusion. 

b) Formulas (5) and (6) can be applied to an optically thick plasma, i.e., 
when (ko)nkR ^> 1 or (ko)nkx » 1. If the opposite inequalities are satisfied, 
i.e., the plasma is optically thin, then 0 ,̂ « 1. At an intermediate case, 
interpolation is recommended (Ref. 1). 

9. Examples 

a) In argon plasma in an atmospheric pressure arc-discharge column, 
nonequilibrium ionization is determined by diffusive loss of electrons. For 
n = 2.2x 1018 cm -3 , Te = 9.3 x 103 K, and R = 0.15 cm, the solution to 
Eq. (13) is ne = 2.8 x 1015 cm'3 . 
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b) In an optically thin helium plasma (#*„ = 1) at temperatures ranging 
from 2 x 103 to 2 x 104K and n& > 1014cm~3, the radiation-escape 
factor IIi has the form 

iii = (i +1.6 x io3re
1/18«e-

1)(i + 2.6re-1 /\-1) 

where ne is measured in 1015cm~3, and Te in eV. For example, 
IIi = 3.4 x 104, when ne = 1014 cm"3 and Te = 1 eV. 

10. Comments 

The model equation is a special case of the balance equation for non-
equilibrium ionization (see model P.5). 

Relevant material can be found in Refs. 1, 2, and 10. 

G. Model of Recombination- and Diffusion-Controlled Plasma Decay (P.7) 

1. Purpose of the Model 

The model aims at the calculation of electron number density as a function of 
time in a decaying atomic plasma with ambipolar diffusion. 

2. Assumptions 

a) Electron number density is higher than the equilibrium value at the 
temperature, Te, and, therefore, the recombination rate is higher than the 
ionization rate. 

b) Electrons and ions can leave the plasma volume via ambipolar diffusion. 
c) The effect of radiation on recombination rate is negligible. 
d) See item 1 in the corresponding section of model P.5. 

3. Model Equation 

dne y 
— — naneki - n^n[kr + div(Z)agrad ne) 

Kl=Fl + (PTlxLh/*T*) (1) 

Initial and boundary conditions 

Initial condition is set at t = 0: ne(0). 
Boundary condition for electron number density is set equal to zero at the 

plasma boundary: nt = 0. 
If na and Te depend on time, then they must be either prescribed or determined 

by invoking other models. 
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4. Nomenclature 

a) Quantity calculated with the model: 

ne electron number density 

b) Kinetic coefficients: 

ki(Te), ionization and recombination rate constant, see models 
kr(Te) I-P.14andl-P.15 
j8, j8*, components of kt and kr (see models I-P.14 and I-P.15) 

Da ambipolar diffusion coefficient (Refs. 4 and 10) 

c) Other quantities: 

Te electron temperature 
n® electron number density corresponding to equilibrium 

ionization at Te 

na atom number density 
h ionization energy from the lowest excited state 
K{TQ) ionization equilibrium constant (see Comments to models 

P.3 and P.5) 
Xix) function involved in the modified diffusion approximation 

(see model I-P.14) 

5. Model Description 

a) See items b - e of the corresponding section of model P.5. 
b) The initial electron concentration in the recombination-controlled regime 

is higher than that in local equilibrium: ne(0) > n®. 

Specific model representation 

a) Recombination-controlled decay of a spatially inhomogeneous plasma is 
described by the equation 

^ = -krnM\ ~ K(Te)ne - tf(re)(na - "i)] (2) 

b) Diffusion-controlled decay is described by the equation 

dwe 

— = div(Z)agrad ne) (3) 

In the diffusion time approximation, ne(r, t) = N(f)exp(-t/r), and (3) 
reduces to 

-T^Nir) = div[Dagrad N(r)] (4) 

where r is the diffusion-controlled plasma decay time. 

http://I-P.14andl-P.15
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c) Recombination and diffusion controlled decay is described by the 
equation 

— = - M e - -
at TC 

The diffusion time is specified in Eq. (10) of model P.6. 

— = -krn% (5) 
dt Td 

6. General and Particular Solutions 

There is no general solution. 
Particular solutions for plasma decay: 

a) Recombination-controlled plasma decay. The solution to Eq. (2) is 

I f«e(0 __]_ p w dn, 
~~ kr Le(0) ncH ~ K(Tc)nc ~ K(Tc)(na + n{)]

 ( 6 ) 

When Te and (na + nx) are constant, it reduces to a tabulated integral. 
Moreover, if ne(0) <& na, then the solution has a simple form: 

(7) --^H'-fr"" 
where rr = 2kiK(Tc)na « 2kr(n®)2 is the characteristic recombination time. 

b) Diffusion-controlled plasma decay in the diffusion time approximation. In 
the case of a constant diffusivity, Eq. (4) has the form 

&N(r)+N(r)(DaT)-l=0 (8) 

where A is the Laplace operator (Ref. 27). The solution of Eq. (8) with 
zero conditions at the plasma boundaries depends on the plasma volume 
geometry: 

1) Plasma slab of thickness L in the x direction: 

ne(x, t) = Y]Akcos( J exp( ) (9) 
f-{ \y/DaTrkJ \ TrkJ 

If L/2^D^ = (2k - 1)TT/2, then ne(0, 0) = £~ = 1 Ak. Here, Ak are 
the series-expansion coefficients defined by boundary conditions and 
normalization. The asymptotic (t - • oo) decay of ne(x, t) is determined 
by the largest time scale r^. 

2) For a sphere of radius R: 
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where R/^Darrk = km Here Bk are the series-expansion coefficients 
defined by boundary conditions. 
Solutions for parallelepiped and cylinder can be found in Ref. 18. 

c) Recombination and diffusion controlled plasma decay. Solution to 
Eq. (5) is 

I f«e(0 

kr L(0) nc[nj 
1 p ( 0 dtte 

(11) 

When kr and T</ are constant, the solution is 

•*»-£ ( l+ * V T ' - l l (12) 

7. Restrictions 

The model described by Eq. (1) can be applied to decaying plasmas when 
radiation effects are negligible. 

8. Example 

Suppose that the initial electron number density in a cesium plasma at pres­
sure /?=10~2Torr, gas temperature T = 300K, and electron temperature 
re = 2 x 103K, is rce(0) = 1014cm~3. The corresponding recombination co­
efficient is kr = 6.5 x 10~24cm6/s (see model I-P.15), the ambipolar diffusion 
coefficient is Da = 1.7 x 103 cm2/s, and the diffusion time across a tube of radius 
R = 2.4 cm is TJ = 6 x 10~4s. According to (1), the electron number density 
will drop by a factor of 13 in t = 10~3 s as a result of recombination and diffusion 
controlled decay. 

9. Comments 

a) Ionization freezing (Ref. 9): 
When a plasma heated to Te ~ 10,000 K expands into vacuum, recombi­

nation may be incomplete; i.e., the degree of ionization tends to a finite value. 
This effect is known as ionization freezing and is explained by decrease in the 
density of expanding plasma, which inhibits recombination. The freezing is 
enhanced by electron heating through recombination (see model P.3). 

b) Alternative recombination mechanisms: 
When decay is determined by dissociative rather than three-body 

recombination, the rate of recombination is a quadratic function of charged-
particle number density: (dne/dt)p — —^nQnu where j8 is the dissociative 
recombination coefficient (see model I-P.17). This case is described by the 
solutions for Eqs. (6), (7), (11) and (12). 

Relevant material can be found in Refs. 4 and 18. 
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H. Model of Kinetics for Electrons and Positive and Negative Ions (P.8) 

1. Purpose of the Model 

The model aims at calculation of the charged-particle number density in 
atomic and molecular plasmas as a function of time determined by charge 
production and neutralization taking place in the plasma volume. 

2. Assumptions 

a) The plasma is substantially nonequilibrium. Electron number density is 
higher than the equilibrium value at a temperature Te. 

b) The dimensions of the plasma volume are sufficiently large for the 
ionization-recombination balance to be controlled by bulk processes. 

c) The following bulk processes are taken into account: electrons are 
produced by ionization of atoms and associative detachment from 
negative ions, and disappear in recombination and dissociative 
attachment. Negative ions can also recombine in encounters with positive 
ions. Bulk processes dominate—their frequency is higher than the 
frequency associated with particle diffusion to the boundaries of the 
plasma volume. 

d) The number densities of atoms and molecules and electron temperature do 
not vary. The variations of na and nm can be neglected because the degree 
of ionization is much lower than unity. 

e) When the electron temperature TQ varies, it is determined by a model of 
electron energy balance to be used in conjunction with the present model. 

3. Model Equations 

dne i A- — 
— = ktnena - krnin{ + kdn^n{ - kanenm (1) 

dn* 
-—i- = kinena — krn\n^ — k"n^n^~ (2) 

—*- = kanQnm - kdfi^ — kll
rn^n\ (3) 

Initial and boundary conditions 

Initial conditions are set at t = 0: ne(0), nf(0), n~(0). 

4. Nomenclature 

a) Quantities calculated with the model: 

nCi n+, ri[ electron and positive/negative ion number densities 

b) Kinetic coefficients: 

kt(Te) rate constant for ionization of atoms by electron impact (see 
models I-P.ll and I-P.12) 
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kr(Te) rate constant for recombination in three-body i o n -
electron-electron encounters (see model I-P.16) 

ka(TQ) rate constant for dissociative attachment in electron-
molecule encounters (see Refs. 19 and 20) 

kd(T) rate constant for associative detachment in ion-atom 
encounters (see Refs. 19 and 20) 

k?(T) rate constant for ion-ion recombination (see models I-P.9 
andI-P.10) 

c) Other quantities: 

Te, T electron and gas temperatures 
na, nm atom and molecule number densities 

5. Model Description 

a) In a steady nonequilibrium state, number densities of all components are 
time independent: 

dn* dri*~ dn~ 
- 7 1 = 0, - r - = 0, ~ r - = 0 
dt dt dt 

b) The plasma neutrality condition is nc(t) + ri[(i) = n^{t). Therefore, only 
two differential equations are independent; e.g., (1) and (3). 

Specific model representation 

a) Recombination-controlled regime 
In view of the high rate constant for associative detachment, at times longer 

than (kdti&)~1, the number density wj~ can be treated as a quasi-steady quantity: 

fkanm\ ni = \i^:r=ne* <4) 

Then, Eq. (1) reduces to the following equation: 

.„ a „ e _ (kr + #»)^ (5) 
d " e h /f_ , , 2 

dt 1 + f 

b) Attachment-controlled regime 
When thfc rate of dissociative attachment is higher than the rates of associative 

detachment and electron-ion recombination (kanm ^> kdna, krnxn^), the rate of 
ion-ion recombination is high. Then, the negative ions can be assumed to 
disappear instantly in ion-ion recombination. Under these conditions, Eq. (3) has 
the following time-independent form: 

kanenm - k"nfn^~nm = 0 (6) 
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Then, Eq. (1) reduces to 

dn{ H A . nm nfne\ — = n^nJ kt -ka kr-±— (7) 
at \ na na / 

6. General and Particular Solutions 

There is no general solution. 

Particular solutions 

1. Recombination-controlled regime. The solution to Eq. (5) is 

rn<(t) <*' kin, 

( i + $ ( k r + m 
1 f"eW At K.-FI 

t = - nst = f 8) 
kp + fr»)ne(0)ne(n?-ney

 e r ' — ' ™- K) 

where nf is the electron number density in a steady-state nonequilibrium 
regime. When TG and na are constant, the solution has the form: 

, = i±iln 'ne(t)(n?-nQ(t)yl~ 
ne(0)\nf-nc(0)J (9) 

Criterion for the recombination-controlled regime: 

^ > 3 (1U) 

M e 

2. Attachment-controlled regime. The solution of Eq. (7) is 

*f = kanm/k^, rir < ^ , we « n ^ (11) 

t = -k;lT(t) ^ — — , « ) 2
 = na^"^m / W a (12) 

where ri£ is previously specified. 
When r e and wa are constant, the solution has the form 

W ) 2 L«e(0) V(w?)2-^(0)/ J 

Criterion for the attachment-controlled regime: 

fcd>3(fc'~fcaWm/Wa)*" (14) 
fcr«e 
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7. Restrictions 

The criterion for a regime controlled by processes taking place in the plasma 
volume is that collisional frequency is higher than the frequency associated with 
losses to walls. An example is j3rca ^> f j 1 , where T^ is the diffusion time (see 
model P.7). This condition limits the plasma pressure to several Torr if the gas 
temperature is close to normal conditions. 

8. Example 

In certain plasma chemical processes (such as dissociation of C0 2 and H20, 
and synthesis of nitrogen oxides in a N2—02 mixture), associative detachment of 
electrons from negative ions (e.g., 0~ + CO - • C0 2 + e, 0~ + NO -> N0 2 + e, 
0~ + H2 -> H20 + e) is very fast. When the number density of molecules is 
1017 cm -3 , the time scale of associative detachment is 10~7s. 

9. Comments 

Models of this type are applied to describe plasma chemical processes in 
multicomponent gas-discharge plasmas. This model is one of the simplest models 
of this type, well suited for conditions when the gas temperature is close to room 
temperature, and Te ^> T. 

In this model, only one of several mechanisms of negative ion production, 
dissociative attachment, and only one mechanism of electron detachment from 
negative ions, associative detachment, are considered. Other mechanisms of 
negative ion production and loss are discussed in Refs. 19 and 20. 

Relevant material can be found in Refs. 10, 21, and 22. 

I. System of Balance Equations for Excited Atoms: Relaxation of Excited 
States (P.9) 

1. Purpose of the Model 

The model aims at the calculation of nonequilibrium populations of atomic 
excited states and their relaxation times in atomic plasmas. 

2. Assumptions 

a) Nonequilibrium populations of atomic excited states are considered. 
b) The medium is optically thick. Radiation effects are negligible. 
c) Inelastic collisions of excited atoms with electrons and atoms in ground 

states and diffusion of excited atoms are taken into account. 
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3. Model Equations 

~JT ~ 2s ^nmn^mk - nknekkm) + (nenikrk - nenkkik) 

k 

+ ^ (nmniKmk - nkniKkm) + {nGnin{Krk - nkniKik) - div Jk (1) 

Initial conditions are set at t = 0, rik(0). 
Prescribed functions include n&(t) and na(t) (na is the total atom number 

density, which is close to the number density of atoms in the ground state, n\). If 
electron temperature, Te, and temperature, T, of the gas of heavy particles are 
time-dependent, then the kinetic coefficients, kmk and Kmk, are also functions of 
time, and this model should be used in conjunction with model P.2. 

4. Nomenclature 

a) Quantities calculated with the model: 

nk population of atomic level k 
n\,nQ,n\ number densities of atoms in ground state, electrons, and ions 

b) Kinetic coefficients: 

kmk rate constant for atomic excitation to level m, if m < k, or 
deactivation rate constant, if m > k, by electron impact (see 
models I-E.2,1-E.3,1-E.4, and I-E.16) 

Kmk similar rate constant for collisions with atoms in the ground 
state 

krk rate constant for recombination to level k in electron-
electron-ion encounters (see model I-P.16) 

Krk similar rate constant for electron-ion-atom encounters 
ktk rate constant for ionization in encounters of electrons with 

atoms in level k (see models I-P.ll-I-P.13 and I-P.16) 
Ktk similar rate constant for encounters with atoms in the ground 

state 
Dk diffusion coefficient for atoms in level k 

c) Other quantities: 

k quantum number of an atomic state 
k — 1 _ ground state 
k = 2 ,3 , . . . , k excited states 
k quantum number of the highest excited state taken 

into account in the system of governing equations 
Jfc diffusive flux of atoms in level k 
Ry = 13.6 eV Rydberg constant 

http://I-P.ll-I-P.13
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Ai mean value of the Coulomb logarithm for inelastic 
processes 

4 energy of ionization from level k 

Model Description 

a) At steady state, 6nk/dt — 0. 
b) For spatially homogeneous systems, div Jk = 0. 
c) Equations of detailed balance: 

• n°mnekmk = nkn°A a n d inlfn0A = nln°A f o r equilibria determined by 
electron temperature Te. In this case, n°m, n®, and n? are locally equilibrium 
number densities related to Je; fc°m, k^k, and k% are the rate coefficients 
calculated for the Maxwellian electron energy distribution. 

• nmn\Kmk = nkn°A a n d n\nQAKk = " i " M f o r equilibria determined 
by the atom temperature T. All quantities contained in these equations are 
determined by this temperature in a similar manner. 

d) Quasi-neutrality is obeyed: \ne(t)—n^(t)\<^ ne(t). 
e) In an isochoric process, «i(0+ J2k=\ nk(t) — n(®) *s t n e total number 

density of heavy particles. 

Specific model representation 

a) The time-independent system of balance equations in the case when 
collisions of excited atoms with atoms and diffusion are negligible: 

k 

Yy<nmnQkmk - nknQkkm) + (n\nxkrk - nenkkik)] = 0 (2) 

Equation (2) is analyzed in the context of models P. 10 and P. 11 that 
supplement this model. 

b) The model of a "two-level" atom, in which kinetics is determined by 
electrons and by transport of excited atoms in the first excited state: 

dVz2 o 
—— = (n\neki2 - n2nek2i) + 0c«i&r2 — nen2ki2) — div J2 (3) 
at 

c) A time rk is required for the fcth excited state to evolve into a quasi-steady 
state through the process described by the system of Eq. (1). The time Tk is 
referred to as the time of relaxation of the kih state and is determined by 
the expression: 

k k 

Tkl = "e Yl kkm + n*kik + Wl 5Z Kkm + niKfk (4) 
k=\ fc=l 
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If the kinetics is determined by collisions with electrons, then rk can be 
evaluated (Ref. 1) as: 

Vl7rAnee
4 

?2 = (*21 + *23K, Tk£2 = n _ — — (5) 
Ry^/mkT€ 

where fc2i and k23 are the 2->3 and 3->2 excitation and deactivation rate 
coefficients, respectively (see models I-E.4 and I-E.6). 

After a time interval ifc has elapsed, there is no explicit time 
dependence of rik, and only an implicit dependence remains, which 
manifests itself in ne(t\ TQ(t). These slowly varying quantities are 
followed by rik(t). Under these conditions, Eq. (1) reduces to Eq. (2). 

d) Effective cross sections for inelastic collisions with electrons increase 
with decreasing ionization energy 4 , that is, with the number k of the 
excited state. As a result, highly excited states are in relative equilibrium 
with free electrons: 

yu = yl k>k* (6) 

Here: 

yk = nk/n®(Te) is the relative population in level k, 
ye = ne/n®(TQ) is the relative electron number density, 
4* « (3/2)ATe, 4* ^ Ry/(k*)2 is the energy of ionization from level k*. 

6. General and Particular Solutions 

There is no general solution. 

Particular solutions to Eq. (3) 

When diffusive loss of excited atoms is taken into account in the "diffusion 
time" approximation, Eq. (3) has the form 

d«2 «2 
— = ninekn - n2nek2\ (7) 
dt r2d 

where T^ is the diffusion time, T2d « L2/bD2, L is the reference length, b is a 
constant, and D2 is the diffusivity of excited atoms. The loss of atoms through 
diffusion to the wall of a tube of radius R is characterized by T^ ^ R2/5.16D2, 
(see model P.7). The solution is: 

n2(t) = n2(0)e~m + em f mnJme-W-W (8) 
Jo 

where F(t) = JQ (nek2\ + r^J) dt. 
The "two-level" approximation is applicable when the coupling of the second 

level with higher levels (through collisions with electrons) is weakened, for 
example, as a result of a more intense loss of excited atoms to the walls. 
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7. Restrictions 
Equations (1) can be applied to a low-temperature, optically thick, singly 

ionized plasma. 

8. Example 

The times of relaxation to quasi-steady excited states in a hydrogen plasma at 
re = 16 x 103 K and ne = 1018 cm"3, calculated by Eq. (5) are: 

T2 = 0.7 x 1(T12 s, T3 = 4.5 x 1(T13 s, r5 = 7.2 x 1(T16 s 

The relaxation times, 7>, rapidly decrease with increasing k. 

9. Comments 

a) In a wide range of low-temperature plasma conditions, an important role 
is played by radiation. When ne is low, the values of nk tend to decrease 
because of radiative deactivation. Electron number densities for which 
radiative deactivation is negligible in an optically thin plasma are higher 
than a certain value: 

ne > 9.2 x 10 i7 ftr*[h -
V /i L h 

_3 

cm 

where I\ and h are, respectively, the ionization energies for the ground 
state and the first excited state from which a radiative transition is 
possible. Kinetics determined by radiation effects are discussed in 
Refs. 1-3, and 24. 

b) In the presence of sources of excited atoms (such as external radiation 
sources), the source intensity Sk(t) is added to the right-hand side of the 
corresponding balance equation. 

c) In the literature, balance equation for number densities of neutral, 
charged, and excited particles are also called rate equations or master 
equations. 

Relevant material can be found in Refs. 1, 2, 6, and 23. 

J. Atomic Excited State Populations in Steady or Quasi-steady 
Plasmas: Single-Quantum Approximation (P.10) 

1. Purpose of the Model 

The model aims at the calculation of nonequilibrium populations of atomic 
excited states in a steady or quasi-steady spatially homogeneous atomic plasma. 

2. Assumptions 

a) Nonequilibrium populations of atomic excited states in the absence of 
ionization equilibrium are considered. 

b) The plasma is optically thick. 
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c) The plasma is spatially homogeneous. 
d) Free electron kinetics is substantially affected by electron-electron 

collisions. 
e) Inelastic collisions of atoms with electrons are taken into account. 

3. Model Equations 

The model is described by balance equations for the populations of excited 
atoms, which can be derived from those of model P.9 as a special case. The 
balance equation for the population of level k has the form: 

^2 (nmwmk - nkwkm) + (nQwek - nkwke) = 0 (1) 
m 

The sum extends over all levels m with which the current level k is coupled 
through transitions induced by collisions with free electrons, characterized by 
probabilities wmk = nekmk, where kmk is the rate constant for excitation m —>• k, if 
m < k, or deactivation, if m> k. The ionization and recombination prob­
abilities are 

wke - nekik, wek = nlkrk (2) 

Initial conditions 

To solve the governing equations, the probabilities wmk and atom number 
densities na must be prescribed. 

4. Nomenclature 

a) Quantities calculated with the model: 

nk population in atomic level k 

b) Kinetic coefficients: 

wkm probabilities of excitation of atoms to level m, if k < m, or 
deactivation, if k > m. 

wke probabilities of ionization from level k. 
wek probabilities of recombination to level k. 
k(k rate constant for ionization from level k 
krk rate constant for recombination to level k 

5. Model Description 

a) Detailed balance relations are: 

n°mWn*(Tt) = n°kwkm(Te)9 ( ^ ) 3 ^ (7 e ) = n°kn%k(TQ) (3) 

where 
nm> n2> we a r e equilibrium number densities related through the 

Boltzmann distribution and Saha equation at Te (see 
model P.3), 
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wmic(TQ) are transition probabilities in the case of Maxwellian 
electron energy distribution at Tt. 

b) Quasi-neutrality is obeyed: |ne — «i| <3C ne. 
c) In an isochoric process, na + nx = const, where na = Ylk=\ nk *s m e 

total number density of atoms, and k is the highest excited level. Most 
often, the approximation na & n\ can be used, and the number density 
of excited atoms is much lower than the number density of nonexcited 
atoms. 

6. Specific Model Representation 

a) When the distribution of electrons over energy is a Maxwellian one, 
Eq. (1) becomes 

Y^ niwkm(yk - ym) + n°ewke(yk -y
2
e) = 0 (4) 

m 

with kinetic coefficients kkm(Te) and ktk(T&) treated as functions of electron 
temperature only, and relative number densities of atoms and electrons 
defined as 

nk "e , ~ 

b) In the single-quantum approximation, only transitions between adjacent 
levels (k O k + 1) are taken into account, because they are characterized 
by the highest probabilities. Then Eq. (4) reduces to 

nlwk*+\(yk ~ yk+i) + n°kwktk-i(yk - y*_i) = 0 (6) 

7. General and Particular Solutions 

There is no general solution to Eq. (1). 
The general solution to Eq. (4) has the form 

yk = yirik+y2
er0k (7) 

where r\k and rok are functions of temperature. Because yk —> y\ as k increases 
(see the preceding model), the coefficient r§k tends to unity with increasing k, 
whereas r\k decreases to a negligible value. Conversely, as k -> 1, the coefficient 
rok decreases to a negligible value, whereas r\k increases. General expressions for 
To* and r\k can be found in Ref. 1. 

The solution to Eq. (6) has a simple form in the single-quantum approximation 
(see model I-E.4): 

» - ^ i (8) 
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where 

m-l 

Km = J^/fcjk+i, Rk,k+i = (n°kwkfk+i)~l (9) 
k=n 

Highly excited states are close to equilibrium with electrons. This is particularly 
true for the highest level, y~k = y\. The probabilities Wkjk+\ are proportional to the 
corresponding excitation rate coefficients, vt^+i = nekkfk+i(TQ)9 defined by the 
formulas of model I-E.4. 

The solution to Eq. (1) can be obtained numerically. An approximate 
analytical solution that goes beyond the single-quantum approximation is 
obtained in the modified diffusion approximation (see Ref. 1). 

8. Restrictions 

The model can be applied to a steady, singly ionized plasma controlled by 
electron collisions. 

9. Example 

Formulas for A*+i (TQ) (see model I-E.4) can be used to determine the point of 
minimum for n^w^+i as a function of k. The resulting value k* corresponds to a 
binding energy Ek* & (3/2)kTe that divides the set of excited levels into two 
groups. Highly excited states (with k > k*) are near equilibrium with electrons 
(yk « Vg). The lower levels k < k* are almost in equilibrium with the ground state 
(yic ^yi)> This scheme works better for lower temperatures (TQ <&I\/k). In 
Refs. 1 and 6, the single-quantum approximation is developed with allowance for 
radiative transitions. 

10. Comment 

The solution to Eq. (8) remains valid when the electron energy distribution has 
a non-Maxwellian tail in the range of high energies comparable to the first-level 
excitation energy e = I\ —12, where I\ and h are the ionization energies for the 
ground state and the first excited state, respectively. Under these conditions, the 
value of k\2 is determined by using the fact that 1—>2 inelastic collisions deplete 
the high-energy tail of the electron energy distribution /(e). In the first 
approximation, k\2 = A:?2(l + 2nikTQh\/nJikY1, where A is the Coulomb 
logarithm (see model I-T.13) and Ai is the Coulomb logarithm for inelastic 
collisions (see models I-E.3 and I-E.4). 

Relevant material can be found in Refs. 1, 2, and 6. 
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K. Atomic Excited-State Distribution in Steady or Quasi-steady 
Plasmas: Diffusion Approximation (P. 11) 

1. Purpose of the Model 

The model aims at the calculation of a nonequilibrium atomic excited-state 
distribution in a steady or quasi-steady spatially homogeneous atomic plasma. 

2. Assumptions 

a) See items 1 -5 in the corresponding section of model P. 10. 
b) The model is based on analogy between transitions of a bound electron 

induced by free-electron impact and the diffusive random walk of a 
Brownian particle. The set of discrete excited atomic states is modeled 
by a continuous distribution of level populations in the energy space. 
The model equation describes diffusion with divy = 0, where j is the 
ionization- or recombination-induced electron flux in the level energy 
space. 

3. Model Equation 

A[^)^ ) + w^]=o (i) 
D(E) = 2j2^e*neEhx (E)[3y/mekTe]-1 (2) 

Boundary conditions 

where 

y\E=h=yu y\E=o=yl (3) 

nu(E) 

0 _ 0 2 WRyW exp (We) 

" (E) ~ ( " e ) E^l^kT^ <*> 

4. Nomenclature 

a) Argument: 

E electron binding energy (i.e., the minimum energy that has to 
be given to electron to bring it from a given bound state into a 
free state) 

b) Quantity calculated with the model: 

n(E) = y(E)n°(E) energy distribution for bound electrons 

c) Kinetic coefficients: 

D(E) coefficient of diffusion (diffusivity) in the energy 
space 

B(E) dynamic friction coefficient in the energy space 
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Ai (E) Coulomb logarithm for inelastic processes (see model 
I-E.4) 

d) Other quantities: 

y(E) normalized energy distribution for bound electrons 
Te electron temperature 
n® electron number density in a Saha equilibrium (see 

model P.3) 
I\ ionization energy from the ground state 
yi, ve relative values of the ground-state populations and 

electron number density determined by known values 
of n\, ne, and Te 

Ry = 13.6eV Rydberg constant 

5. Model Description 

a) Detailed balance relation: 

1 dn°(E) 
B(E) = -D(E)^—-—^ (6) 

«U(F) dE 

b) If yl < j i , then y(E) decreases as a function of E from y\ to v^. If yl > y\, 
then y(E) increases from vi to y%. 

6. General and Particular Solutions 

An approximate solution can be written by using the fact that A\(E) is a slowly 
varying function in the energy domain where y(E) varies substantially: 

,pv yiX(E/kTe) + yg[*(/i/*T.) - XJE/kTe)] y(E)= mm) (7) 

where 

At jc> 1, 

Atjc<£ 1, 

^ ) = 3^I d ? e _ ( f 3 / 2 ' x = k 

^=(ji^y/2 

(8) 
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If h » kTc, then 

XE)=„,(»|)+^[l-^)] <9) 
If E «; « ; , then (9) yields: 

y(£) = ?e 1 - 7 ^ ( 7 ^ ) l + y i T T ^ l T ^ ) (10) 

If E » itre, then (9) yields: 

**>=»+^-"KGlf a., 
The qualitative behavior of y(E) is similar to that predicted by model P. 10. The 

most substantial variation of this function is localized around E* & (3/2)ATe. 

7. Restrictions 

a) The model can be applied to a steady-state, singly ionized plasma 
determined by electron collisions. 

b) The model can be applied to hydrogen and hydrogen-like atoms. 

8. Example 

Consider an optically thick cesium plasma at T& = 3000 K, where the number 
densities of electrons and atoms are assumed to be equal: ne = 5 x 1012cm~3, 
na = 5 x 1014 cm - 3 . Under these conditions, the deviations of number densities 
of excited atoms from their equilibrium values at Te can be analyzed. 

The relative populations in the ground state and at the bound-continuum 
boundary are calculated with the Saha equation. Using Eqs. (3)-(5), one obtains: 
yi ^ 1 and ^ = 1.0 x 10~4. Therefore, this regime should be interpreted as a 
regime of subequilibrium ionization: y{E) is a decreasing function. 

Suppose that l\/kTt = 15 ^> 1. The first excited state of a Cs atom is 
characterized by the binding energy £2 = 2.47 eV. Since £2 A^e ^> l,andEq.(ll) 
is valid, the population at this level is close to its equilibrium value: ̂ 2(^2) ^ 1. A 
deviation from equilibrium should be expected to occur when E < kTe. The 
binding energy E « 0.46 eV is characteristic of excited levels with the principal 
quantum number n = 6. Since E/kT = 1.78, Eq. (8) yields xiP/kT) = 0.36, and 
Eq. (9) can be used to show that this state is well underpopulated: y(E) = 0.36. 
With a further decrease in E, y(E) decreases to y2

Q. Values of y(E), close to yl, are 
characteristic of excited states very close to continuum. 

9. Comments 

a) See Comments to model P. 1. 
b) The modified diffusion approximation has also been developed to allow 

for discrete excited states (particularly at the lowest excited levels) and 
radiative transitions, see Ref. 1. 
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c) The electron binding energy is E = Ry/k2, here k is the principal quantum 
number. 

Relevant material can be found in Refs. 1 and 6. 

L. Model of Recombination and Relaxation of Highly Excited Atoms 
Induced by Collisions with Electrons and by Resonant Deactivation by 
Neutral Particles (P.12) 

1. Purpose of the Model 

The model aims at determination of nonequilibrium distribution function for 
highly excited atomic states and of the flux of three-body recombination of electrons 
with atomic ions A+ in a quasi-steady plasma of binary rare gas mixture A + B. 

2. Assumptions 

a) Electron number density in a recombining plasma of the rare gas mixture 
A + B (e.g. Xe + He, Xe + Ar, Xe + Kr) is much greater than its 
equilibrium value at temperature Te. Thus, a decrease of electron number 
density is determined by the recombination process, while the ionization 
of atoms can be neglected. 

b) The number density of the buffer rare gas atoms B is much greater than 
that of heavy rare gas atoms A. The number density of homonuclear ions 
Aj is very small, and their dissociative recombination is not significant. 

c) The ionization degree is at > 10"8, so that the diffusion flux over the 
energy levels with high principal quantum numbers is primarily 
determined by collisions with free electrons. 

d) The mean electron energy in a low-temperature plasma is much lower 
than the ionization energy / of an atom A. 

e) In the range E ~ &re, which is the most critical energy range for 
recombination induced by electron impact, inelastic collisions with the 
buffer gas atoms B lead mainly to deactivation of the Rydberg atom A(k). 
This is certainly justified when Te » T. 

3. Model Equations 

In the case of a quasi-steady regime of recombination, the basic equation has 
the form 

- \D(E) ^ + B(E)n(e)] + WB(E)n(E) = T (1) 

D(E) = 2v /2^^4£Aine(3v /m^7;)"1 

d£ 
dk 

B(E) = -D(E)(±--^, WB(E) = Wfa— (2) 

TI/B / %kT rnAmB 
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Equivalent equation for the normalized distribution function is 

Boundary conditions 

a) The Rydberg electrons with binding energy E < kTe are in equilibrium 
with electrons in the continuum, i.e., n(E) = n^°\E) near the ionization 
limit (E = 0) of the atom A. This yields v(0) = 1. 

b) At large binding energies, the distribution function n{E) is not perturbed 
by free electrons and is independent of them. It is determined by the 
equilibrium value of number density nf\ Since nf^ <$C «e» one can set 
y(E) = 0,E~ /A. 

4. Nomenclature 

a) Argument: 

E electron binding energy (i.e., the minimum energy that has to be 

given to electron to bring it from a given bound state into a free state) 

b) Quantity calculated with the model: 

n(E) energy distribution for bound electrons 

c) Kinetic coefficients: 
j8r coefficient of three-body recombination 
ar effective binary recombination coefficient 
D(E) coefficient of diffusion (diffusivity) in the energy space [see 

Eq. (2) of model P. 11] 
B(E) dynamic friction coefficient in the energy space [see Eq. (6) of 

model P. 11] 
Ai (E) Coulomb logarithm for inelastic processes (see model I-E.4) 

d) Other quantities: 

T recombination flux 
A(k), A(n) atoms in excited states with principal quantum 

number k, n 
EB energy at which deactivation mechanism is changed 
y(E) normalized electron distribution for bound electrons 
Te electron temperature 
n® electron number density in Saha equilibrium (see 

model P.3) 
I A ionization energy from ground state of atom A, I A = E\ 
at ionization degree (fraction) 
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WB(E) total probability of deactivation of Rydberg electron 
in the quasi-continuous spectrum 

Wf total rate of resonant deactivation of Rydberg atom 
A(k) by the ground state atom B of the buffer gas 

me , rriA, m^ electron, atom A and B masses 
M A B reduced mass of particles A and B 
K coefficient in the exponent dependence for energy 

splitting 
r distance between atoms B+ and A 
v exponent in the expression for energy splitting 
Ry = 13.6 eV Rydberg constant 

5. Model Description 

a) In the model (Refs. 25 and 26), the capture of electron by an atomic ion 
A+ and its relaxation over the highly excited levels of atom A(n) initially 
occurs as diffusion over energy states, prompted by collisions with 
electrons. However, starting from certain levels En > EB, the relaxation of 
electron energy is primarily determined by an efficient deactivation 
mechanism, associated with scattering of the buffer gas atom B on the 
parent core A+ of the Rydberg A(n) atom. 

b) Simple expression for the probability WB(E) of resonant deactivation of 
Rydberg electron can be obtained for a power law approximation of the 
energy splitting AL^(r) = K(ao/r)v of the lower terms U( and Uf of the 
heteronuclear rare gas ion B + — A temporarily formed during collision of 
the B - A+ particles (Ref. 25): 

/ E \8 v"9/2 v 

WB(E) = C^T)l— J nB (7) 

Here, £(z) is the Riemann function (see Ref. 27; the coupling constant y and the 
factor A(T) are described in Ref. 28). 

6. General and Particular Solutions 

a) The general solution to (3), taking into account condition Eq. (11) (see 
below), is 

where P(E) is the solution on the homogeneous equation (3): 
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b) For the specific form Eq. (7) of the probability WB(E\ the P{E) function 
can be written as 

P(£) = exp{o.2(|) ,?J ) „ = ! ^ (11) 

EB =Ry 

T , , n 2v/8v-9 

5(8v - 9)ajA (2Ry\3/v flRy 
6(27r)^2yA(T)^l + 3/v) \K ) VkTe 

at=^ (12) 
" B 

The value of EB is a function of Te, T, and a, of the plasma. 

Specific model representation 

a) At E < EB> one can set P(E) « 1, so that the solution (9) for y(£) 
corresponds to the result (Refs. 29 and 30): 

Pfnlni r(5/2) 

Here, T (5 /2 , JC) is the incomplete gamma function of the argument 
x = E/kTe. Thus, in the range of E < EB the resonant quenching by 
neutral atoms B is negligible. 

b) At E > EB, we have from the Eq. (10): P(E) > 1, that is, collisions with 
free electrons can be neglected. 

c) Because the transition from the diffusion region E < EB to the predominant 
"sink" region E > EB occurs in a narrow vicinity of the point EB, one can 
set P(E) & 1 for all energy levels with E <EB. Then, imposing a second 
boundary condition y(EB) = 0, one can determine Eqs. (9), (11) and (12), 
and also the recombination flux T and the recombination coefficient 
(̂e,B) _ Yln\nx involving collisions with electrons and neutral particles B. 

Approximate solution for the recombination flux 

The resulting formula for T can be written in terms of the standard three-body 
recombination coefficient 0f Eq. (14) associated with electron-ion-electron 
collisions and some quantity x(EB/kTe), which is a function of Te and the 
ionization degree aj = ne/nB: 

r = -/3(
r
e'B)(re, a ^ e V # e 3 ) = tf\Te)X-1 ( j [ | ) (15) 

*W = 3^72 T <5 A x), (0 < X < 1) (16) 

The factor x~l(EB/kTQ) describes the increase of recombination coefficient 
(̂e,B) b e c a u s e of the resonant deactivation of Rydberg levels of A(n) atoms by the 

buffer rare gas B atoms. 
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7. Restrictions 

a) As is apparent from Eqs. (15) and (16), at kTe ~ EB the recombination 
regime switches from a steep decrease | r | oc T~9/2 with Te at kT& < £B to 
a much slower decrease with temperature and anomalously large values of 
^ e 3 ) » ^ e ) a t / : r e » ^ B . 

b) The model can be applied to hydrogen and hydrogen-like atoms. 

8. Example 

Experimental studies (Refs. 25 and 26) of this type of recombination 
were performed for afterglow plasma of a pulsed discharge in Xe + He 
mixture (nHe = 2.6 x 1017-4.4 x 1018cm"3, nXe = 1014-1016cnr3 , and T = 
300-600 K). The dependence of the recombination coefficients /3^He(re, ne) of 
electrons with Xe+ ions, and of the emission intensities J\(Te, ne) for a number of 
Xe atom spectral lines on Tc and ne were obtained in the ranges of TG = 
400-2500 K and ne = 2x 1010-3 x 1012cm"3. A characteristic feature of the 
obtained functions is a steep decrease (close to oc T~9/1) in the region 
Te < 800 K, and anomalously high recombination rates at Te > 800 K. It was also 
established that the recombination flux T = j8^.eHe)n3 depends considerably on the 
ionization degree and on the He density. 

This behavior is quantitatively explained by the present model. Calculations 
(Refs. 25 and 26) lead to the following scaling of the recombination flux: 

ir |ocn3 .r-9 /2 fcre«£He 
(17) 

irioc^s^.r-1/6 fcre»£He 
Because of the efficient resonant deactivation of the Rydberg Xe(n) levels by 

He atoms, the recombination coefficient j6|.e'He) is higher than the value ffi 
obtained within the framework of the "diffusion" recombination with free 
electrons. In particular, for Te & 0.2 eV and af = «e/«He = 10~5,10-6,10~7, and 
10~8, an increase in recombination rate j8^.e'He)//^e) turns out to be equal to 4, 10, 
57, and 325 times, respectively. 

9. Comment 

References 25 and 26 indicate the efficiency of the resonant deactivation 
mechanism of Rydberg atomic levels by neutral particles in electron-ion 
recombination of low-temperature plasma of rare gas mixtures at degrees of 
ionization up to ~ 10~5-10 -4. 

Relevant material can be found in Refs. 25, 26, and 28-30. 

M. Model for Electron Energy Distribution Function (EEDF) in Weakly 
Ionized Atomic Plasmas (P.13) 

1. Purpose of the Model 

The model aims at calculation of EEDFs for steady plasmas in external 
electric field, taking into account elastic collisions of electrons with atoms. 
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2. Assumptions 
a) The distribution of atoms over energy is an equilibrium one at gas 

temperature, T. 
b) The plasma is weakly ionized, so that collisions between charged particles 

play a negligible role. 
c) Electric field E is applied. 
d) Energy exchange in collisions of electrons with atoms and electron 

heating by the external field are taken into account in calculating the 
EEDF. 

3. Model Equation 

2e2E2 

3me ts>g=~>('+^) 
Boundary conditions 

Boundary condition: /(e) ->• 0 at e -> oo. 
Normalization: J~ /(e) V^ de = 1. 
The number densities of electrons (ne) and atoms (wa) must be prescribed. 

4. Nomenclature 

a) Argument: 

e electron energy 

b) Quantity calculated with the model: 

/(e) electron energy distribution function (EEDF) 

c) Kinetic coefficients: 

Vea(e) = «aV2e/me^ea(e) collision frequency of electron with 
energy e with atoms 

#ea(c) elastic collision cross section (in models 
I-T.l, I-T.7, and I-T.8, this quantity is 
denoted as Qo(e)) 

d) Other quantities: 

T atom temperature 
e, me electron charge and mass 
ma atomic mass 
E electric field 
8 = 2me/ma energy transfer factor 
a) frequency of alternating electric field 

5. Model Description 

The model equation describes the balance of electrons with energy e. 
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6. General and Particular Solutions 

The general solution is given by Davydov's formula (Ref. 31): 

/ (e) = CexpL Le'[kT + 2*2E2 /Sn^S^e')]'1 J (2) 

where C is a normalization constant. 

Particular solutions 
a) The Druyvesteyn distribution is obtained when qe2i(s) is independent of e, 

and in the limit of strong heating by the field, when the mean electron 
energy e > kT (see Comment to model P.2). This requires 

kT < 2e2E2/3mev
2

aS 

i.e., - > 4.6 x 10-22rtfea"C1/2, V • cm2 

na 

where T is in K, qe& in A , and ma in amu. 
The Druyvesteyn distribution is: 

where T(3/4 ^ 1.23 is the value of gamma function. 
b) If the collision frequency vea is independent of e, then /(e) is a 

Maxwellian function,/°(e) = (2/y/Jr)(kTey
3/2exp(-s/kTe), where 

re = r+(e2E2/3meto2
a8) (4) 

c) When the electric E = E0 cos cot field has a very high frequency, 
(o» 5vea(e), it can be replaced with a constant effective field 
E2

eff = \EQV\JO?. Then, the Margenau distribution is obtained as a 
Maxwellian/°(e) one with the temperature 

Te = T+(e2E2
0/3mek(o28) (5) 

7. Restriction 
The ionization fraction should be sufficiently low, so that electron-electron 

collision could be neglected: v^ <£ 6vea. 

8. Example 
In a helium plasma, qca « 6 A2 = const; at T = 103 K, the distribution is 

close to the Druyvesteyn form if E/na > 1.4 x 10~18 V cm2. If E/na = 
1.4 x 10~18 V c m , then the mean electron energy is e/k= V2eE/ 
V%8n&qe2i = 104 K. Then, electron-electron collisions can be neglected if the 
degree of ionization ne/n& < 10~6. 
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9. Comments 
a) The model is based on the Boltzmann kinetic equation for EEDF, with 

electron-atom elastic collision integral written in the Fokker-Planck 
form. 

b) The Maxwellian EEDF is symmetric. In an external electric field, the 
EEDF is asymmetric in the field direction. In weak fields, the asymmetric 
EEDF component is small as compared to the symmetric one. The 
symmetric component of the EEDF determines the energy characteristics 
of a plasma, including e. 

Relevant material can be found in Refs. 8, 31, and 32. 

N. Model for Electron Energy Distribution Function (EEDF) in 
a Highly Ionized Atomic Plasma (P.14) 

1. Purpose of the Model 

The model aims at the calculation of EEDFs for steady atomic plasmas, taking 
into account inelastic collisions. 

2. Assumptions 

a) The plasma is highly ionized, so that collisions between thermal charged 
particles are important in its kinetics. 

b) Excitation and ionization of atoms lead to energy losses of free electrons. 
c) Electron-electron collisions and excitation and ionization of atoms or 

molecules by electron impact are taken into account in calculating the EEDF. 

3. Model Equation: 

(1) 
va(e) = ] P vuk(e) + Vi(e), veeO) = m4nc Ay/2m&/s3/2 

k>2 

Initial and boundary conditions 

Boundary condition: /(e) as e -> oo. 
Normalization: ^f(e)^/ede = 1. 
The number densities of electrons, ne, atoms, na, must be prescribed. 

4. Nomenclature 

a) Argument: 

e electron energy 

b) Quantity calculated with the model: 

/(e) electron energy distribution function (EEDF) 
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c) Kinetic coefficients: 

Vee(e) electron-electron collision frequency at 
energy £ 

vis = Jlk vik(s) total frequency of 1 -> k excitation of 
atoms from the ground state by electron 
impact, where k is the number of an 
excited state 

viit(e) = na^/2e/meqik(s) 
qik(s) cross section for excitation to atomic level 

k by electron impact (in models I-E.2-
I-E.4, this quantity is denoted as o*u) 

Vi(e) = nay/2s/m^qi(e) frequency of ionizing collisions of an 
electron (with energy e) with atoms 

qt(s) cross section for ionization of atoms by 
electron impact (see models I-P.ll and I-
P.12, values 07) 

d) Other quantities: 

re electron temperature 
A Coulomb logarithm (see model I-T.13) 
e electron charge 
me, ma electron and atomic masses 

5. Model Description 

The governing equation describes the balance of the number of electrons of 
energy s. 

6. General and Particular Solutions 

There is no general solution. Integrating Eq. (1) once, one obtains: 

2s3/2vee(e)[/(s) + W e £ l = j f(e')^vlX(e')de' (2) 

which is solved by numerical iteration. A particular solution is obtained for 
vxx(e) modeled as vix(e) ~ l/^/e: 

f°(e. 
) 2 f fl-le-£2l ^ ., 

Ul^expf^), s<*2 (4) 
5) a + 1 \ kTe J f°(e 

where /°(e) = (2/^rf)(kTc)
3/2 exp(-s/kTe) is the Maxwellian EEDF, £2 is the 

excitation energy for the first excited level with k = 2, and 
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If a(Te) > 1, then inelastic collisions substantially deplete the high-energy tail 
of the EEDF: 

/ ( e ) ^ e x p ( - ^ ) , . > * (6) 

If a(TQ) < 1, the EEDF is close to Maxwellian form: /(e) ^f(s). 

7. Restriction 

a) The plasma can be treated as highly ionized if the electron-electron 
collision frequency is higher than the electron-atom collision frequency, 
vea, multiplied by the energy exchange factor 8 = 2me/ma: 

V e e ( T e ) » l (7) 
Svea(re) 

Here, vea(e) = na^2e/meqeSi(e), and qQ&(e) is the electron-atom collision 
cross section (see models I-T.5 and I-T.6). The left-hand side of criterion 
Eq. (7) can be expressed as 

^ ^ = 6 x l 0 7 - (8) 
Svea n,(kTe)

2qeSL8 

where kTc is in eV, qea in A2, and 8 in 10 -4 . 
b) The atomic excited state distribution is substantially nonequilibrium: 

nk «C n°k 

where n® is the number density of excited atoms corresponding to the 
Boltzmann distribution at the temperature, Te. 

8. Example 

According to the model of excitation and ionization kinetics (see model 
I-P.15), 

a(Te) = J— ^ ^ - + 1, where A! ^ 0.02-0.05 
Y ne E2A 

Hence, when Te = 0AE2/k, the distribution has the Maxwellian form if 
ne/na > 10~4. At lower degrees of ionization, the tail of the EEDF corresponding 
to 8 > £2 is substantially depleted. 

9. Comment 

The EEDF tail is always depleted during the initial stage of ionization by 
electron impact. At degrees of ionization lower than 10~5, this leads to a sharp 
decrease in ionization rate, that is, to a deceleration of the process. The 
corresponding EEDF can be treated as time-independent, and the present model 
can be applied. The EEDF relaxation time is estimated by invoking model P. 16. 

Relevant material can be found in Refs. 1, 8, 31, and 32. 
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0 . Model for Electron Energy Distribution Function (EEDF) in 
an Atomic and Molecular Plasma (P.15) 

1. Purpose of the Model 

The model aims at the calculation of EEDFs for steady atomic and molecular 
plasmas in external electric fields allowing for vibrationally excited molecular 
states. 

2. Assumptions 

a) Electric field E is applied. 
b) The plasma is weakly ionized, so that collisions between charged particles 

play a negligible role. 
c) Excitation and deactivation of molecular vibrational states play an 

essential role in the balance of electron energy. 
d) The atomic and molecular gas is cold: T <̂C Teff. 
e) Energy exchange in collisions of electrons with molecules and heating by 

the external field of intensity E are taken into account. 

3. Model Equation 

d \2e2E2 £3/2 df %n 1 
- T 1 T\T + 3vea(e)s3/2/(s) + Iv(e) = 0 (1) 

de L 3me vea(e) ds J 

Iv(s) = — ̂ 2 [vvv(e)/(s)Ve — Vvv(e + Ev» — Ev>)^/e-\-Ev» — 2v 
v'<v" 

x f(e + Ev» -Ev>)- vvv(£)/(e)Ve (2) 

+ vvv(e — Ev> + Ev)y/e — Zv + E^f{e — £> + £v0] 

Boundary conditions 

Boundary condition: /(e) as s -> oo. 
Normalization: J0°°/(e)>v/edfi = 1. 
The number densities of electrons ne, atoms na, and molecules nm must 
be prescribed. 

4. Nomenclature 

a) Argument: 

e electron energy 

b) Quantity calculated with the model: 

/(e) electron energy distribution function (EEDF) 
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c) Kinetic coefficients: 

collisional frequency of electron (at 
energy e) with atoms 
elastic collision cross section (in models 
I-T.7 and I-T.8, this quantity is denoted as 
Go(e)) 

The values qe& and vea are replaced by qem and vem for collisions of electrons 
with molecules. 

d) Other quantities: 

e,me 

ma, mm 

8 = 2me/ma 

E 
/v(e) 

v',v" 

iSy/, £LV" 

nv> 
Vvv'(e) 

K,ev 

Teff 
Tv 

ha>o 

electron charge and mass 
atomic and molecular masses 
energy transfer factor 
electric field 
collision integral for inelastic collisions of electrons with 
molecules 
vibrational quantum numbers of the ground electronic 
state of a molecule, V < v" 
vibrational energy of molecules at levels v', v" 
number density of molecules at level V 
frequency of electron-molecule inelastic collisions 
leading to transition V -> v" 
rate coefficient for vibrational excitation by electron 
impact 
effective electron temperature 
vibrational temperature 
vibrational energy quantum 

5. Model Description 

The governing equation describes the balance of electrons of energy e. 

6. General and Particular Solutions 

There is no general solution. 

Particular solutions 

a) When a molecule is completely de-excited vibrationally by collision with 
an atom, only the transition 0 —> 1 is taken into account in the integral 
/v(e): 

Iv = -voi(e)f(e)Ve + v0i(e 4- h afiy/e + h(Oof(e + hoo) (3) 

Vea(e) = « a V 2 e / m e ^ e a ( e ) 

4ea(£) 



240 G. G. CHERNYI, S. A. LOSEV, S. O. MACHERET, B. V. POTAPKIN 

At high energies, when e > fto>o, 

/v » h<oo — [Vevoi (fi)/(e)] (4) 
de 

the solution has the form 

The effective electron temperature is calculated as 

Teff [ 2e2E2 1 
3 ^ ^ j [ l + ^ v 0 1 / H - (6) 

where C is a normalization constant. 
b) If the role of electron-atom collisions in the energy exchange is 

neglected, the solution has the form 

V2e2E2 Jo e' Jo 

where Q is a normalization constant. 

The resulting EEDF can be obtained by numerical iteration. 
If the analysis is restricted to transitions 0 -* 1 and 1 -* 0, and the Boltzmann 

population at the vibrational temperature Tv is assumed to hold for the level with 
v" = 1, then the inelastic collision integral at high energies, e >̂ h(oo, is 

The corresponding solution has the form 

/(e) = Cexpf- f „ , d e - | (9) 
F l Jofcrv + [2^2E28/3^vem(e)voi(e)]j 

In weak fields, electrons are in equilibrium with molecular vibrations, and 
Teff -> Tv. 

7. Restrictions 
a) The plasma can be treated as weakly ionized if the ratio of energy transfer 

rates in encounters with ions and atoms is small: 

vei(re#) < g l 
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b) Energy transfer is controlled by vibrational excitation if energy transfer in 
elastic encounters is relatively slow: 

$Vem(Teff) „ l 

0\icevnm 

where 8\ = ho)o/kTe (h coo is the vibrational quantum) and kev = 
10- 1 0 - l ( r 8 cm 3 / s . 

c) The electron momentum distribution is controlled by electron-atom 
collisions if the frequency vea is much higher than the frequency of 
inelastic collisions with molecules: 

W 7 ^ ) > > 1 

d) Inelastic atom-molecule collisions quench vibrational excitation if 

nmkio 
"e^e1 

» 1 

where k\o and &ev are the rate constants for the transition 1 —> 0 in 
encounters with atoms and electrons, respectively (see Chapter 4 in the 
first volume of this series). 

& Example 

In a weakly ionized nitrogen plasma with E/nm = 6 x 10~16 V • cm2 and 
nm = 1016 cm - 3 , electron energy is primarily lost in vibrational excitations of N2 

characterized by the rate constant kev = 4 x 10~9 cm3/s. The energy is then 
irreversibly transferred to the translational and rotational degrees of freedom of 
the gas, so that the EEDF is substantially decreasing at e > 1.7 eV. Electrons are 
heated by the electric field, and their mean energy is 

3 1 e2E2 1 
-e = -kTeff = - - « 1 . 3 e V (10) 

2 2 ftfilo»m 401 tfea 

9. Comment 

Energy transfer between free electrons and vibrationally excited molecules 
determines the EEDF and the mean electron energy in gas-discharge plasmas 
employed as active media in molecular lasers. 

Relevant material can be found in Refs. 1, 7, 8, and 31. 

P. Model of Relaxation of Electron Energy Distribution Function (EEDF) 
(P.16) 

1. Purpose of the Model 

The model aims at calculation of the EEDF relaxation time in atomic and 
molecular plasmas. 
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2. Assumptions 

a) At the initial moment t = 0, the plasma starts to evolve from a state 
characterized by an EEDF/(e, t) that does not correspond to any steady, 
equilibrium or nonequilibrium, distribution to such a distribution. 

b) Electric field of finite or zero intensity E is applied. 
c) The EEDF relaxation time is calculated by taking into account elastic and 

inelastic collisions and heating of electrons in electric field of intensity E. 

3. Model Equation 

3f(e, t) = 1_ 
dt 7{e) [/(*, 0 -/(e)] CD 

where 7(e) is the EEDF relaxation time calculated in terms of the frequencies 
of electron-electron and elastic and inelastic electron-atom and electron-
molecule collisions. 

Initial conditions 
Initial condition / (e , 0) is prescribed. 
The EEDF/(e) in the state approached by/(e, i) as t -> oo is also known. 

4. Nomenclature 

a) Argument: 

e electron energy 

b) Quantity calculated with the model: 

7(e) relaxation time of the electron energy distribution function 
(EEDF) in the vicinity of e 

c) Kinetic coefficients: 

vee(e) electron-electron collision frequency (see model 
I-T.13) 

vea(e) collision frequency of electron (at energy e) with 
atoms (see model P. 13) for molecular plasmas, vea 

is replaced by vem 

vix = J ]* vi*(e) t o t a l frequency of excitations of atoms from the 
ground state to level k by electron impact 

d) Other quantities: 

/ electron mean free path 
Le length scale of electron number density spatial nonuniformity 
LT length scale of the nonuniformity of mean electron energy 
s/eE length over which an electron accelerated by an electric field of 

intensity E gains an amount of energy comparable to its mean 
energy e 

A Coulomb logarithm (see model I-T.13) 
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5. Model Description 

The model equation describes the balance of electrons with energy, e 

6. General and Particular Solutions 

General solution 

f(e, t) = / (e , 0)e~^ +/(e)( l - e~t/T) (2) 

Particular solutions 

a) For a highly ionized plasma (model P. 14), the time of relaxation to/(e) 
predicted by the model is 

7{e) = [ V e e ( s ) r \ if E < E2 

r(e) = [vee(e) + vix(e)]"1, if e > E2 

where E2 is the energy of the first excited level. 
b) For a weakly ionized plasma (model P.13), the time of relaxation to/°(e) 

at a temperature T after the field E is switched off is 

Tie) = [5vea(e)]-1 (3) 

The time of relaxation to Davydov's distribution function/(e) after the 
field is switched on is 

e2E2 , i 

(4) rie) = 
mcev(e J 

To calculate Tie) for a molecular plasma, collisional frequency vea is 
replaced by the frequency of collisions with molecules vem(e). 

7. Restrictions 

The criteria for plasma homogeneity are given by the inequalities 

/ « L e , / « L r , / « e / e E (5) 

where the electron mean free path is calculated as 

(6) 

The value of / must be small as compared to the lengths Le and LT of substantial 
variation of the electron number density and energy and to the length e/eE over 
which an electron accelerated by the electric field E gains an amount of energy 
comparable to e. 

8. Example 

Suppose that a fully ionized argon plasma characterized by ne = 1012 cm - 3 and 
mean electron energy e = 2 eV is injected into neutral argon of number density 
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n& = 1012cm~3 heated to the temperature T = 1.5 x 104K. The Maxwellian 
EEDF core develops in the time interval 

r(e) = [vce(e)] = ^ -^2 J (7) 

calculated at e = 2eV. Numerically, r(e) = 1.5 x 10~7 s. The distribution tail 
develops during the interval 

T(C) = [vlX(8 = E2 + e)]"1 = 1.0 x 10"9 s (8) 

Therefore, the initial EEDF tail is depleted much faster than the EEDF core 
develops. 

9. Comment 

The linear approximation is applicable when the deviation of the distribution 
function from equilibrium is small. However, correct values of relaxation times 
are predicted even for large deviations. 

Relevant material can be found in Refs. 8, 31, and 32. 

Q. Model for Electron Energy Distribution Function (EEDF) in Weakly 
Ionized Plasmas with Inelastic Collisions (P.17) 

1. Purpose of the Model 

The model aims at calculation of the EEDF for a steady atomic and molecular 
plasma in external electric field, taking into account intense inelastic collisions. 

2. Assumptions 

a) The plasma is weakly ionized, so that collisions between charged particles 
can be neglected. 

b) The atomic and molecular energy distribution corresponds to equilibrium 
at gas temperature T. 

c) Electric field of intensity E is applied. 
d) Excitation and ionization of atoms lead to losses of energy of fast 

electrons. 
e) The processes taken into account include energy transfer in electron-

atom and electron-molecule encounters, heating by the external field, and 
excitation and ionization of atoms and molecules by electron impact. 

3. Model Equation 

vis(e) = £ v u ( s ) + v,(e) (2) 
*>2 
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4. Boundary Conditions 

Boundary condition: /(e) -» 0 as e -
Normalization: JJ/(e)x /ede = 1. 
The number densities of electrons ne 

be prescribed. 
atoms na, and molecules nm must 

5. Nomenclature 

a) Argument: 

e electron energy 

b) Quantity calculated with the model: 

/(e) electron energy distribution function (EEDF) 

c) Kinetic coefficients: 

Vea(e) = naV2e/me4ea(e) 

tfea(e) 

v/(e) 

qik(s) 

#(e) 

d) Other quantities: 

T 
e,mG 

E 
8 = 2me/ma, 8 = 2mc/mn 

ma, mm 
wa» ^m 

E2 

collision frequency of electron (at 
energy e) with atoms 
electron-atom elastic collision cross 
section (in models I-T.6 and I-T.7, this 
quantity is denoted as Qo(e)) for 
molecular plasmas, vea and #ea are 
replaced by vem and qcm 

frequency of ionizing electron-atom 
collisions at electron energy e 
total frequency of 1 -> k excitations of 
atoms from the ground state by electron 
impact, where k is the number of an 
excited state 
excitation cross section (in models I-E.2-
I-E.4, this quantity is denoted as aw) 
ionization cross section (see models I-
P.llandl-P.12) 

gas temperature 
electron charge and mass 
electric field 
energy exchange factor 
mass of atom and molecule 
number densities of atoms and 
molecules 
energy threshold for inelastic 
collisions, specifically, the excitation 
energy of the first excited level 
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6. Model description 

The model equation describes the balance of electrons with energy e. 

7. General and Particular Solutions 

There is no general solution. The integrated equation should be solved by 
numerical iteration: 

'"^'{f+(tT+SSIM) f] = J>')V?,"*')d8' <3) 

Particular solutions for /(e) with a high-energy tail (e > E2) substantially 
depleted by inelastic collisions are: 

a) The method of infinitely intense sink can be used to predict/(e) ats < E2 

in the limiting case when the value of/(e) at e > £2 is negligible: 

(5) 

(2e2E2/3me8vl(s))j 

-exp[-r 2 f 2 11 (4) 
FL Jo kT + (2e^E2/3meSvl(e'))}\ 

where C is a normalization constant. 
If vea(s) is independent of energy, then (4) becomes 

/<£> = ^ n » [ , x p ( - i ) - e x p ( - J | ) 

where the electron temperature is calculated as 

k 

The mean electron energy is e ^ (3/2)kTe. 
Under these conditions, the total frequency of inelastic collisions is 

vis = f vlS(e)/(e)Ve"de = 8vea(E2)E
3
2
/2f(E2) (7) 

JE2 

where f(E2) is the EEDF value at e = £2, calculated without the 
contribution of inelastic collisions (see P. 12). 

b) The "quasi-classical" method can be used to determine/(e) at e > E2, as 
complementary to solution (4) for e < E2: 

/ (e) = f(E2) exp[5(e)], S(e) = - I -y= ^ ^ ^ } (8) 
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where e > E2, and f(E2) is the value of EEDF obtained as a result 
of matching f(E2) and EEDF at e > E2, so that the resulting EEDF 
satisfies Eq. (1), and based on inelastic collisions only. 

If vea is independent of e, and v^O) is proportional to e, then Eq. (8) 
reduces to 

^T^ 'TH^- I } (9) 

see values of K below. 
The following approximate relation holds irrespective of the 

assumption that vea is constant: 

fm =f^ do) 

where f(E2) is the EEDF calculated without the contribution of inelastic 
collisions. 

8. Restrictions 

a) The plasma can be treated as weakly ionized if vee <& vea, which is 
opposite to the condition adopted in model P. 14. 

b) The mean electron energy is much lower than the inelastic collision 
threshold: 

e « £ 2 (11) 

c) The parameter K, equal to the ratio of the rate of energy loss in inelastic 
collisions to the rate of energy transfer in elastic collisions, is large: 

ovea(E2)E2 

9. Example 

Consider a neon plasma in the positive column of a glow discharge 
characterized by the ratio of electric field to atom number density E/na = 1.4 x 
10~17 V- cm2. The cross section for elastic scattering of electrons by neon atoms 
is approximated as qea(e) = ael/6

9 where a = 1.6 x 10~16cm2(eV)~1/6. The 
threshold energy for inelastic processes here is E2 = 16.6 eV. 

The EEDF is calculated with Eq. (4), where the term kT in the denominator 
can be neglected at the gas temperature T = 300 K: f(E2) = 4 x 10~4 eV"3/2. 
The inelastic collision frequency determined by Eq. (7) is v ^ = 2.2 x 
10~13na s

_1, where na is measured in cm3. 
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10. Comment 

In very intense electric fields, the mean electron energy may be higher than the 
threshold energy. The EEDF corresponding to the conditions when the inequality 
opposite to Eq. (11) is true is discussed in Ref. 1. 

Relevant material can be found in Refs. 8 and 31. 
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Chapter 8 

Thermodynamics of Gases and Plasmas 

I. Nomenclature 
T 
V 
P 
Q 
w 
u 
H 
F 
$ 
il 
S 
M 
Nt 

nt 

Mi 
N = 
n = 
m 

= EM-
Z>; 

temperature 
volume 
pressure 
heat 
work done on a system 
internal energy 
enthalpy 
free energy 
Gibbs thermodynamic potential 
thermodynamic potential of an open system 
entropy 
mass of a system 
number of particles of the rth component 
number of moles of the ith component 
chemical potential of the ith component 
total number of particles 
total number of moles 
mass of particles 

Other symbols are explained in the text. 

II. Basic Concepts 
A. Definitions 

Thermodynamics deals with general properties of macroscopic systems in equili­
brium and also with general behavior of the systems in attaining the equilibrium. 

Thermodynamic system (statistical system is an equivalent term) is a totality of 
macroscopic bodies that can interact with each other and with other bodies (with 
surroundings) and can exchange energy and matter with those bodies. 

The mandatory features of thermodynamic systems are the following: 

1. Presence of a large number of particles interacting with each other and 
with external fields; the corresponding scale is defined by the Avogadro 
number AfA = 6.02 x 1023, which is equal to the number of particles 
(atoms, molecules, or ions) per mole of a substance. 

251 
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2. The existence of thermodynamic-equilibrium state to which a system 
tends spontaneously in the course of time when the system is isolated 
from the surrounding medium. 

Thermodynamic equilibrium (an equivalent term is statistical equilibrium) is a 
state of thermodynamic system in which the system's macroscopic parameters 
(that is, the parameters measured with macroscopic instruments) are constant 
with time, and there are no fluxes of any type in the system. 

Thermodynamic state is the state of thermodynamic equilibrium. In a more 
general sense, a thermodynamic state is a state in which various components of 
the system are in their equilibrium states, whereas the system as a whole can be in 
a state different from thermodynamic equilibrium. 

Nonequilibrium state of a system is a state of a system disturbed from the 
thermodynamic (statistical) equilibrium. 

Local thermodynamic equilibrium is a nonequilibrium state of a system for 
which a thermodynamic equilibrium approximately exists in each physically 
infinitesimal volume, although the system macroscopic parameters depend on 
spatial coordinates and time. 

Partial {incomplete) thermodynamic equilibrium is a nonequilibrium state of a 
system composed of spatially coexisting subsystems, each of which is in 
approximate thermodynamic equilibrium and is described by specific set of time-
dependent macroscopic parameters. 

Homogeneous medium is a medium in which the gradients of macroscopic 
quantities are equal to zero. 

Inhomogeneous medium is a medium in which the gradients of macroscopic 
quantities are nonzero. 

B. Processes 

Thermodynamic process is a sequence of changes in the state of a 
thermodynamic system. 

Thermodynamic processes are classified according to the following features: 

1. The degree of deviation of a system from the equilibrium state 
According to this criterion, we identify the reversible and irreversible 

processes. 
Reversible process is a process that can occur in reverse direction in such a 

way that the system passes through the same states as in the direct process, but in 
the reverse order. 

Irreversible process is a process that cannot be reversed so that the system 
would pass through the same sequence of states as in the direct process without 
changes in the surroundings. 

Quasi-static process is an infinitely slow process consisting of a sequence of 
equilibrium states. A quasi-static process is invariably reversible. 

Thermodynamics in the narrow sense is confined to consideration of reversible 
processes. The special case of irreversible processes in the vicinity of state of 
thermodynamic equilibrium is considered in the context of nonequilibrium 
thermodynamics (see Thermodynamics of Irreversible Processes in this chapter). 
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Examples 
The quasi-static compression of gas is a reversible process. Compression of 

gas by a shock wave is an irreversible process. All transport processes related to 
equalization of differences in temperatures, pressures, and concentrations are 
irreversible. Such processes cannot be conducted in the reverse direction without 
inducing changes in the states of surrounding bodies. 

2. Specific physical conditions 
Under which the certain process occurs; thus, we distinguish isothermal, 

isochoric, isobaric, isentropic, adiabatic, and polytropic processes. 
Isothermal process is a thermodynamic process that takes place at constant 

temperature (T = const). 
Isochoric process is a thermodynamic process occurring under the conditions 

of constant volume (V = const). 
Isobaric process is a thermodynamic process that takes place under constant 

pressure (p = const). 
Isentropic process is a thermodynamic process occurring under the conditions 

of constant entropy (S = const). 
Adiabatic process is a thermodynamic process that occurs without heat 

exchange with surroundings. 
Polytropic process is a thermodynamic process that takes place under the 

conditions of constant heat capacity. 

3. According to the final state 
We distinguish cyclic processes (cycles) among all possible processes. 
Cyclic process (thermodynamic cycle) is a thermodynamic process in 

which a system passes a number of successive states and returns to the initial 
state. The Carnot cycle is an example of reversible cyclic process (Refs. 4). 

C. Quantities 

The thermodynamic principle of additivity is valid for thermodynamic 
systems: all the quantities describing the thermodynamic properties can belong to 
either of two classes of additivity. If the value of a thermodynamic quantity for a 
partitioned system is equal to the sum of its values for separate parts of the 
system, that is, <p = £ <ph such a quantity is referred to as additive or extensive. If 
the value of thermodynamic quantity is preserved for each part of the partitioned 
system, 

such a quantity is referred to as nonadditive or intensive. 
The examples of extensive quantities include total number of particles in a 

system, volume, mass, internal energy, and entropy. Temperature and pressure 
are intensive quantities. The class of intensive quantities also includes specific 
and molar quantities (the extensive quantities per unit mass or a mole). 
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D. Systems 

Thermodynamic systems are differentiated according to the following criteria: 

1. The degree of isolation from the surrounding medium 
Thus, Isolated thermodynamic system is a system that is not involved in an 

exchange of either matter or energy with the surroundings. 
Closed thermodynamic system is a system that is not involved in exchange of 

matter, but may exchange energy with the surroundings. 
Open thermodynamic system is a system that can exchange both matter and 

energy with the surroundings. 

2. Composition 
Thus, we distinguish single-component, two-component (binary), and multi-

component systems. 

3. Homogeneity 
We distinguish homogeneous and heterogeneous systems. 
Homogeneous systems are thermodynamic systems in which the macroscopic 

parameters vary continuously in space (the spatially nonuniform homogeneous 
systems) or are constant (spatially uniform homogeneous systems). 

Heterogeneous systems are thermodynamic systems composed of parts 
(phases) which differ in physical or chemical properties and are separated from 
each other by interfaces. 

4. Phase composition 
Here, we distinguish single-phase, two-phase, and multiphase systems. Phase 

in thermodynamics is a thermodynamically equilibrium state of matter; this state 
differs in physical properties from other possible equilibrium states (other phases) 
of the same substance. 

Each homogeneous system is a single-phase system; that is, there are no internal 
interfaces in such a system. A heterogeneous system contains at least two phases. 

E. Functions of State 

A physical quantity whose value is independent of the system history and is 
completely defined by the state of the system at a given point in time is referred to 
as a function of state. 

Temperature, entropy, internal energy, and other such quantities are the 
examples of functions of state. 

III. Laws of Thermodynamics 

The zeroth, first, second, and third laws of thermodynamics are valid for 
thermodynamic systems. 

A. Zeroth Law of Thermodynamics 

Temperature is a state function. Equality of temperatures in all points 
represents the condition for thermal equilibrium between two systems or between 
two parts of the same system (the Sommerfeld statement, see Ref. 5). 
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In such a formulation, the zeroth law thermodynamics is equivalent to the law 
of thermodynamic transitivity: if a thermodynamic system A is separately in 
equilibrium with thermodynamic systems B and C, then B and C are also in 
thermodynamic equilibrium with each other. The fact that there exists a 
temperature as a characteristic of the above equilibrium state follows from the 
law of transitivity. 

B. First Law of Thermodynamics 

Each thermodynamic system possesses a characteristic function of state: 
internal energy U. This state function is increased by the amount of heat 8Q 
transferred to the system and is decreased by the amount equivalent to the work 
8W performed by the system. For a closed system, the law of conservation of 
energy is valid (the Sommerfeld formulation, see Ref. 5). 

The first law of thermodynamics is essentially equivalent to the law of 
conservation and conversion of energy. For a system with varying mass Af, 
we have 

dU=8Q-8W + iJLdM (1) 

where /I is the chemical potential per unit mass; this potential is defined as a 
quantity corresponding to a change in the internal energy of the system if the unit 
mass is added to the system in such a way that the system does not perform work 
(8W = 0) and does not acquire heat (8Q = 0). 

Eq. (1) may be also rewritten as 

dU=8Q-8W + fjLdn (2) 

dU = 8Q - 8W + /ixW (3) 

where Af is the number of particles comprising the mass M, n = N/N& is the 
number of moles in the mass M, NA is the Avogadro number, /i, = /I • m, 
ji = JLL/A/A, and m is the particle mass expressed in the same units as M. 

The work 8W performed by a system and the amount of heat 8Q transferred to 
the system are the characteristics of the process of heat transfer from one body to 
another. These quantities depend on the path of transition of a system from one 
state to another; therefore, in general, the quantities 8W and 8Q are not exact 
differentials (in contrast to dU). 

Examples 
1. If a gas is expanded in a cylinder with piston, we have 8W = pdV, where 

p is pressure and V is the gas volume. 
2. If a gas is heated at constant volume, V = const, we have 8Q = cvdT, 

where cv is the heat capacity of gas at constant volume. If a gas is heated 
under the conditions of p = const, then 8Q = cpdT, where cp is the heat 
capacity at constant pressure. Note that cp # cv. 

C. Second Law of Thermodynamics 

Entropy S is a function of state of thermodynamic system and is calculated in 
the following way. The system is transferred from an arbitrarily chosen initial 
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state to the final state for which S needs to be found through a sequence of 
equilibrium states; all the portions of heat 8Q supplied to the system are first 
determined; each portion SQ is then divided by the corresponding absolute 
temperature T\ finally, all the obtained values are summed (the first part of 
the Second Law). The thermodynamic process described in the previous sentence 
must be internally reversible (that is, only irreversibilities in the surroundings are 
allowed). For irreversible processes, the entropy of an isolated system increases 
(the second part of the Second Law in the Sommerfeld formulation, see Ref. 5). 

There are other, equivalent formulations of the Second Law; namely, 

1. Heat cannot pass on its own (that is, without changes in the surroundings) 
from a lower-temperature body to a higher-temperature body (the 
Clausius statement). 

2. It is impossible to devise a perpetuum mobile (eternal engine) of the 
second kind, i.e., a continuously cycling engine, which would perform 
work while only taking heat from a heat reservoir (the Thomson 
statement, see Ref. 1). 

In the context of this terminology, the first law of thermodynamics prohibits 
the existence of a perpetuum mobile of the first kind as an engine whose operation 
is inconsistent with the law of conservation of energy (Refs. 1-4). 

D. Third Law of Thermodynamics 

At absolute zero of temperature, the entropy of system attains the value of 
So = 0 (the Planck statement, see Ref. 1). 

The Third Law (in contrast to the Zeroth, First, and Second Laws) does not 
introduce a new state function; rather, it defines the absolute reference point of 
state functions. 

IV. Thermodynamic Potentials 

Thermodynamic potentials (or characteristic functions) are state functions 
whose partial derivatives define completely the properties of a thermodynamic 
system. 

Thermodynamic potentials can be derived from the Gibbs equation that is 
equivalent to a generalized representation of the first and second laws of 
thermodynamics. The Maxwell reciprocity relations are a consequence of the 
equality of mixed second derivatives of potentials with respect to the variables on 
which the potential depends. 

Each thermodynamic potential depends on a specific set of independent 
variables, at. These variables are referred to as natural. The full differential of 
thermodynamic potential with respect to natural variables is the sum of terms 
written as X/da,, for example, pdV, TdS, and so on. The quantities X and a are 
referred to as conjugated quantities (parameters). In a pair of conjugated 
quantities X, and at, one of the parameters is extensive (for example, V), whereas 
the other is intensive (for example, p). If a thermodynamic potential is defined as 
a function of its natural variables, thermodynamic properties of the system are 
specified completely. However, if the potential is specified as a function of 
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another set of variables, this is found to be insufficient for determining all the 
thermodynamic properties (see an example in the section Internal Energy). 
Derivatives of thermodynamic potential with respect to natural variables are 
conjugated parameters. 

Explicit expressions for thermodynamic potentials are not introduced in 
classical thermodynamics. These expressions are either derived from analysis of 
experimental data or are calculated by the methods of statistical physics. 

A. Internal Energy U 

Natural variables (parameters) here are S, V, and n. 
Conjugated parameters are T, p, and //,. 

1. Formula 
According to the first and the second laws of thermodynamics, 

dU = TdS — pdV + fidn (the Gibbs equation) 

This equation defines the function U = U(S, V, n). For a multicomponent 
system, ^ j = 1 M/dn, should be introduced instead of /idn; therefore, 

U = U(S, V, nu n2i..., m) = U(S, V, n) 

Henceforth, n designates the total set of numbers of moles of all components 
comprising a system; that is, n = {n\, n2,..., «/}. 

2. Comments 

a) Internal energy is a physical system energy dependent on its internal state. 
This energy includes the energy of thermal motion of all microscopic 
particles (molecules, atoms, ions, and so on) in the system and the energy 
of their interaction with each other and with external fields. The kinetic 
and potential energy of a system as a whole is not included in the internal 
energy. 

b) In general, an expression for work performed by the system is written as 
8W =pdV + ^Afda/, where the terms A/dflj describe the work of 
electric fields, magnetic fields, and so on. 

c) The internal energy U is defined to within an arbitrary constant UQ. In 
thermodynamics, the choice of a specific value of UQ is of no importance. 

d) Internal energy expressed in natural variables (S, V, and n) is sufficient for 
a complete description of a system in these variables. 

e) For an ideal gas (see Chapter 9, Equations of State) that obeys classical 
statistics, we have U = cvnT, where cv is the specific heat per mole at 
constant volume. The energy of ideal gas is independent of volume only if 
the mean de Broglie wavelength of particles (atoms and molecules) is 
much shorter than the average interparticle distance, 

•\v) 
*2 / w \ 2 / 3 

km 

where N is the number of particles in the volume V. 
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3. Thermodynamic relations 

• If the function U = U(S, V, n) is specified explicitly, the first derivatives 
of U determine the values of conjugated parameters, i.e., 

fdU\ „ (W\ (dU\ 
P = ~\WS; T=\Ts)v; "-UrJ*v 

the second derivatives define the specific heat and compressibility 

T _ (#U\ _ (dp\ _ (&U\ 

cv-\dv)v; \w)s-W)s„ 

The coefficient of adiabatic compressibility is given by 

The Maxwell reciprocity relation is written as 

-(dA =(-) 
All quantities are defined as the functions of 5, V, and n. Transformation to 
other variables can be performed using the above formulas. In order to 
express pressure in terms of 7\ V, and n, one should use the expression for 
temperature 

T - ( i ) , J 1 - T O V -" ) 

Using this expression, one can determine S(T9 V, n) and/? = p[S(T, V, n), 
V,n]=p(T,V,n). 

• If internal energy is specified as a function of a set of independent 
variables different from the set of natural variables (5, V, n), not all 
thermodynamic characteristics can be defined; it is necessary to have an 
explicit expression for another characteristic function. Thus, for a function 
U(T, V), we have 

*tf-™-^-r(Dvdr + [r(!)r-,]dK 
To describe the thermodynamic properties, characterized, for example, in 
terms of T and p, it is insufficient to know the derivatives (dU/dT)v and 
(dU/dV)T; it is necessary to also know the function S = S(T, V). If internal 
energy is specified as a function of 7\ p9 and n, the specific heat at constant 
volume is equal to cv = {dU/dT)Vn. 
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B. Enthalpy H 

Natural variables (parameters) are S, p, and n (n = {n\, ri2,.. .,«/})• 
Conjugated parameters are T, V, and /x. 

1. Formulas 

H =U+pV 
i 

dH = TdS+ Vdp + J^ ^M 
1=1 

2. Comments 

a) Enthalpy corresponds to the energy of an extended system, and includes 
the potential energy pV in addition to the internal energy U. 

b) For slow adiabatic flow, the specific enthalpy H/M (where M is the mass 
of fluid) is constant along the entire streamline. 

c) A change in the enthalpy AH is equal to the amount of heat that is supplied 
to or removed from a system at constant pressure (and for unchanged 
numbers of moles n); therefore, the values of Ai/ specify thermal effects 
of phase transitions (melting, boiling, and so on), chemical reactions, and 
other processes that take place at constant pressure. 

3. Thermodynamic relations 

• If enthalpy H is specified as a function of the natural variables S, P, and 
n, then 

~Wv ~U/v,; M~UA„ ^~WVL 
(— ) = (— } (the Maxwell reciprocity relation). 
\dSJp,n \dPJs,n 

All quantities are expressed here as functions of 5, p, and n. Transformation to 
other variables can be performed according to the scheme outlined in the section 
"Internal Energy". 

• If enthalpy is specified as a function of 7\ p, and n, then the heat capacity at 
constant pressure is given by 

c'=(i)„ 
C. Free Energy (Helmholtz Free Energy) F 

Natural variables (parameters) are T, V, and n (n = {«i, ri2,..., n/}). 
Conjugated parameters are S, p, and /x. 
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1. Formulas 

F = U - TS 
i 

dF = -SdT - pdV + ]T nM 

2. Comments 

a) In statistical physics, free energy is expressed as F = — JcTlnQ, where 
Q = Qc is the statistical integral in classical systems, and Q = Qq is 
the partition function for quantum states in quantum-mechanical 
systems. 

b) The work performed by a system in the course of a reversible isothermal 
process is equal to the decrement of free energy. The difference in free 
energies AF represents the part of a decrease in the internal energy AU 
that can be converted to work. The quantity TS that, added to the free 
energy F, gives the internal energy of a system (U = F + TS) is not 
converted to work in the course of a reversible process, and is sometimes 
referred to as the bound energy. 

c) In endothermic processes at T = const, a decrease in AF may exceed A£/; 
in this case, the work is performed by a system partially at the expense of a 
heat reservoir that supplies, rather than removes, heat. 

3. Thermodynamic relations 

• The free energy, F, is related to the internal energy U and enthalpy H by 
the formulas 

referred to as the Gibbs-Helmholtz equations. In this case, the potentials 
U and H are functions of T, V, and n. 

• If the free energy, F, is defined as a function of its natural variables T, V, 
and n9 we have 

5 = "©v,; P=-(^)T; M=Or.v 
The second derivatives of F with respect to T and V define the following 
quantities: heat capacity at constant volume cV9 

— = ( 
T~\ 

isothermal pressure coefficient, 

1L\ 
3T2

 Vn 
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isothermal compressibility coefficient /37, 

l- = -v(dA = v(—\ 

thermal (isochoric) pressure coefficient, 

7v~ p\9r)v-p[dT\dv)T^_ 

I —-) = (—- J (the Maxwell reciprocity relation) 
\dT/v,n \dVJT,n 

__TfdV\2 I (W\ (W\ _SP(W p c°- TW)PJ W)T; WA/^-W. /T,n 

D. Gibbs Thermodynamic Potential <E> 

Natural variables (parameters) are T, p, and n (n= {n\, ni,..., m}). 
Conjugated parameters are S, V, and JJL. 

1. Formulas 
® = U+pV-TS 

i i 

d<5 = -SdT + Vdp + ]T fi.dm ® = ^2 Wt 
i=\ 1=1 

2. Comments 

a) Chemical potentials fit are related by the Gibbs-Duhem equation 

-SdT + Vdp = ] T mdHi 
i=l 

b) The Gibbs thermodynamic potential expressed in terms of the natural 
variables T, p, and n is most convenient for description of an equili­
brium heterogeneous system (because, in this case, the pressure p and 
temperature T are identical in all phases of the system), and also for 
description of chemical equilibrium at constant p and T. 

3. Thermodynamic relations 

• Gibbs thermodynamic potential <£> is related to enthalpy H and free energy 
F by the Gibbs-Helmholtz equations 
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• If the Gibbs thermodynamic potential <I> is specified as a function of its 
natural variables T, p, and n, we have 

'--©„• "-©„• *=C 
The second derivatives of the potential 4> with respect to T and p 
determine the heat capacity at constant pressure cp and the coefficient of 
isothermal compressibility /3 r ; that is, 

T " W)P; PT~V \dp)T; \Bp)T- W)T„ 

The thermal expansion coefficient ap = (\/V)(dV/dT)pn, the coefficients 
of isothermal PT and adiabatic ps compressibility, and thermal coefficient 
of pressure yv (see above) are related by the formulas: 

1 ap = 1 

P PT7V 

We also have 

VTa2
p 

cp cv — , 
PT 

Cp^Pr 
Cv PS 

(— J = — (—- J (the Maxwell reciprocity relation) 
\dT/p,n \dP/T,n 

E. Thermodynamic Potential ft of an Open System 

Natural variables (parameters) are T, V, and fi (/A = {ixx, JJL2, . . . , M/}). 
Conjugated parameters are 5, /?, and n(n= {n\, n2,..., «/}). 

1. Formulas 

a = F - <& = -pV 

dfl = -SdT - pdV + ]T) fiidrn 

2. Thermodynamic relations 

• If the potential is specified in terms of its natural variables T, V, and JJL, 
we have 

/am /am /am 
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We also have the Maxwell reciprocity relation 

\dv)Tjl \dT)v^ 

• Replacement of natural variables T, V, and jx by the variables T, V, and n, 
which are more convenient for applications, is performed according to the 
procedure outlined in the section Internal Energy. The expression for the 
number of moles 

/am 

is solved for the chemical potential fi = IUL(T, V, n) which is then 
substituted into the relevant formula. For example, 

P = ~ (^) = P(T, V, fi) = p[T, V, /x<r, V, n)] 

F. Entropy S 

Natural variables (parameters) are U, V, and n or H, p, and n(n — 
{ n i , n 2 , . . .,ni}). 

Conjugated parameters are l/T,p/T, —fi/T, and l /7\ —V/T, —fx/T. 

1. Formulas 
Differentially, the entropy is defined as 

T T T T 

where 8Qrev is the amount of heat supplied to a system when its state is changed 
infinitesimally and quasi-statically, and T is the absolute temperature at which 
heat is absorbed by the system. 

Integrally, entropy is defined as the difference of entropies of a system in 
arbitrary equilibrium states A and B; namely, 

* - * - i ^ 
\B8Qrev 

\A T 

where the integral is taken along any reversible path connecting the above states. 

2. Comments 

a) In quasi-static adiabatic processes (8Qrev = 0), the entropy of a system 
remains unchanged (those are isentropic processes, with S — const). 

b) In statistical physics, entropy is defined in terms of logarithm of statistical 
weight T for a given equilibrium state 

S = HnT 
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where T(U, n) is the number of quantum-mechanical energy levels in 
a narrow range AU in the vicinity of the energy U of a particle 
system composed of n moles. In classical statistical physics, T is 
understood as a volume in the phase space of a system for the 
specified V and n. 

c) Entropy of an isolated system increases in irreversible processes. 
However, the entropy of individual bodies (or subsystems) incorporated 
in the whole system should not necessarily increase; only the total entropy 
increases. 

3. Thermodynamic relations 

• If the entropy, S, is specified as a function of the corresponding natural 
variables U, V, and n, we have 

L-(®L\ P-(®L\ £_-Y*5!\ 

• For the natural variables H, p, and n, we obtain 

j__/as\ Z-_/^T\ ^ - - / ^ 
T~\SH)P; T-~\dp)H; f~ \dn)Hp 

In addition, we have the Maxwell reciprocity relation as 

3(1/7-) 

dv 
%p/r> 

u w 

If the independent parameters V and T are used, we have 

\dv)T
= \&r)v \dv)T

= f[p+ \w)T\ 
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If the independent parameters p and T are used, we have 

\dpJT \dTJv \BpJT l\vrjp W / i 

(a/jr
 rlar2;p 

~ y = ( a y ) / ( a y ) (adiabatic exponent). 

4. Comment 
The previously described relations are widely used to determine thermal 

characteristics of substances. For example, using the relation (dcp/dp)T = 
—TicPV/dT2^ and the results of measurements of the quantity cp, one can derive 
the dependence of V on T and vice versa. 

V. Conditions for Thermodynamic Equilibrium and for 
Thermodynamic Stability of Systems (Refs. 1, 2 and 6) 

In a state of thermodynamic equilibrium, we have 

- at constant internal energy and volume, the entropy of a closed system has 
the largest value, (8S)VU < 0; 

- internal energy of a closed system whose entropy and volume remain 
unchanged has the smallest value, (8U)s,v > 0; 

- enthalpy of a closed system, in which the entropy and pressure remain 
unchanged, has the smallest value, (8H)Sp > 0; 

- the free energy of closed system whose volume and temperature remain 
unchanged has the smallest value, (8F)V T > 0; 

- the Gibbs thermodynamic potential of a closed system in which 
pressure and temperature remain unchanged has the smallest value, 
(**> V,n > 0. 

In all the previously mentioned cases, the total number of particles (or the 
number of moles) in a system was considered constant (n = const). The symbol 8 
corresponds to the variations in state such that the varying system parameters are 
those that can take nonequilibrium values for the specified fixed conditions. Such 
quantities, for example, are n/V and T in separate parts of the system, the amount 
of matter in different phases, and so on. 
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The following thermodynamic inequalities arise as a consequence of the 
condition for stability of equilibrium: 

(*) <0 , (*) < 0 

/an /an 

\avJT \dvj; \\dvjs\ \\dvJT\ 

Mechanical, Thermal, and Chemical Equilibrium 

If systems A and B are in contact, the conditions for equilibrium are written as 

PA = PB (mechanical equilibrium), 

TA = TB (thermal equilibrium), 

[if = fif (chemical equilibrium). 

If the boundary between the systems is not planar, and if there is a nonzero 
surface tension, the pressures in systems A and B are not identical. 

The mass action law in chemical thermodynamics is a law that establishes a 
relation between equilibrium concentrations of the products and reactants in 
chemical reactions. 

For a chemically reacting system, the equation of reaction is written as 

£ > X , = 0 , 

where Xf are the symbols of substances and v,- are the stoichiometric coefficients 
(v,- < 0 for reactants and v,- > 0 for products of reaction, see Chapter 6, Chemical 
Kinetics, in this volume). For reacting ideal gases in equilibrium, the mass action 
law is given by 

• TliP? = Kp(D f° r partial pressures pt of reaction components 
• FL £T = Kp(T)/pv for molar concentrations (molar fractions) £, of 

reaction components f, = ni/n v = £ v„ Kp is the 
chemical equilibrium constant. 
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The chemical equilibrium constant cannot be determined in the context of 
thermodynamics; it has to be found by the methods of statistical physics. The 
explicit expressions of constant Kp are presented in Refs. 1, 4, and 7; calculation 
methods and table data are presented in Refs. 8-10. 

Example 

For the reaction 2H2 + O2—2H20 = 0, we have vi = 2, v2 = 1, v3 = —2, 
and 5^v,- = 1; therefore, 

&2_KP(T) 

% " P 

The extension of mass action law for two-temperature gases can be found in 
Refs. 11 and 12 and the literature cited there. 

Comments 

In chemical kinetics, the mass action law establishes the relation between the rate 
of chemical reaction and the concentrations of products and reactants (the kinetic 
mass action law, see Chapter 6, Chemical Kinetics, model C.l, in this volume). 

VI. Gibbs Distributions and Their Relations to 
Thermodynamic Quantities 

A quantum-mechanical statistical system in thermodynamic equilibrium is 
characterized by the distribution function for microstates o>/; this function 
governs the probability of observing the microscopic state with an energy E\ in 
the quantum-mechanical system. The distribution function for o>/ satisfies the 
following condition: the mean values calculated using this function correspond to 
the observed experimental quantities that appear in thermodynamic relations. 

A classical statistical system in thermodynamic equilibrium is characterized 
by the distribution function oj(p9 q) that specifies the probability of observing the 
microscopic state of the system in an infinitesimal 6Af-dimensional volume of the 
phase space dpdq = d?i , . . . , dir^dpi,..., dp# in the vicinity of the point (p, q). 

The specific form of the distribution functions coi and <o(p, q) depends on 
the system under consideration and is defined by one of the Gibbs distributions 
(Ref. 13). 

Gibbs distributions are the equilibrium distributions of probabilities of states 
in a statistical system under various conditions (see the following sections 
concerning the domain of applicability). 

1. The microcanonical distribution 
A quantum-mechanical system: 
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where 

4 H i !l!a>£}«-l,'-«v-w| 

T(U9 V, N) = J2t &[U - Ei(v>N)] i s t h e statistical weight, that is, the total 
number of microscopic states through which the specified macroscopic state with 
the preassigned values of U, V, and N can be realized; and Ei(V, N) is the energy 
of a system composed of N particles in the volume V and found in the /th state. 

The microcanonical distribution is related to thermodynamic functions 
through the entropy defined as 

S(U, V9N) = k\nT 

A classical system: 

oKp,q)^J^8m/N'q)-U]dUdPdq 

F H F H (2TTh)3NT(U9 V, N)N\ 
where 8{x] is the Dirac function, H(p, q) is the Hamiltonian function in the 
phase space of coordinates q and momenta p of all particles involved in the 
system, and 

The statistical weight F(U, V, N) is equal to the volume of a layer in a 6Af-
dimensional phase space (p, q); this layer is confined by the energy surfaces 
H(p, q) = U-8U and H(p, q) = U; the volume is divided by N\ and (2<nfi)3N. 

The domain of applicability 
The Gibbs microcanonical distribution is applicable to systems with a given total 
energy at constant volume and with a constant number of particles; the system 
must be isolated from a surrounding medium (an isolated system). 

2. Canonical distribution 
A quantum-mechanical system: 

wKT,v,N) = - ^ — j 

where Qq(T, V,N) = J2 exp[-£/(V, N)/kT\ is the partition function (see below). 
The canonical distribution and thermodynamic functions are related through 

free energy defined as 

F(7\ V, N) = -kT In Qq 

A classical system: 

. i r H(P, 4f\ 
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where Qc = \/N\ Jexp[-//(/?, q)/kT]dq dp/(27Th)3N is a statistical integral 
(see below). 

The domain of applicability 
The Gibbs canonical distribution is applicable to systems with a given number of 
particles and constant volume; these systems must be in thermodynamic 
equilibrium with the surrounding medium and can exchange energy with that 
medium (that is, to systems in a thermostat, or a thermal reservoir). 

3. The Gibbs grand canonical distribution 
A quantum-mechanical system: 

o)lN{T, V, //,) = — exp — 

where ^ (7 \ V, N) = ^ / exp[-(£/(V, AO - t*N)/kT] is the grand partition 
function. 

The grand canonical distribution is related to thermodynamic functions via the 
grand potential ft defined as 

n (7 \V, / i ) = - * r i n £ 

A classical system; we have 

1 [ HN(p, q) - M-AT| 

^ ' * ) = r x p l — H = — J 
where & = J2Ncxp(^N/kT)/N\ $exp[-HN(p, *)/*?] d^dp/P i*) 3 " . 

The domain of applicability 
The Gibbs grand canonical distribution is applicable to systems with constant 
volume, which are in thermodynamic equilibrium with surrounding medium and 
can exchange energy and particles with that medium (that is, to equilibrium open 
systems with variable number of particles). 

4. Gibbs isobaric distribution 
Systems that are in thermal and mechanical contact with surrounding medium 

(that is, systems with varying energy and volume but with constant pressure equal 
to the pressure of the surrounding medium) and are in thermodynamic equi­
librium can be described by the following Gibbs isobaric distribution: 

«T.p9N) = -*p[ - J 

Q^(T, p,N) = 2^ exp — 

where Q$ is the Gibbs partition function (Ref. 1). 
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The isobaric distribution is related to thermodynamic functions via the Gibbs 
potential <&: 

®(T,p,n) = -kTlnQ<t> 

Comments 

To calculate thermodynamic potentials, one can use any Gibbs distribution. In 
classical theory, the Gibbs canonical distribution o)(py q) and the statistical 
integral QC(T, V, N) are primarily used. The grand canonical distribution co^ and 
the grand partition function £(7\ V, /JL) are usually used in quantum mechanics. 
Generally, transformation to more convenient variables (T, V, N) is performed. 

VII. Partition Functions and Statistical Integrals 

1. Ideal gas consisting of N structureless particles of mass m in the volume V: 
The statistical integral is written as 

2c~N\{^) 
where A = h/(2mnkT)l/2 is the de Broglie wavelength, JV! = (N/ef for 
Af» 1 (the Stirling formula), and e = 2.71828... is henceforth the 
Napierian base of natural logarithms. The expression for Qc is valid if 
N/V <& (27imkT)3/2/h3 and if the interaction of particles may be ignored. 
For a single particle, we then have 

„ , ^ eV {27rmkT\3/2 

2. Ideal gas consisting of N particles with internal degrees of freedom (also 
see section V in Chapter 1 of the first volume of this series). 
The partition function is given by 

Qq = QdQjf 

Here, Qc is the statistical integral per particle for an ideal gas consisting of 
N structureless particles, and Qj is the partition function corresponding to 
the jth internal degree of freedom of a particle 

< & = ! > « * ( • # ) 

where E, is the particle energy in the ith quantum state (with translational 
motion of the particles disregarded), and gi is the degeneracy (the 
statistical weight) of the state i. 

Rotational partition functions for a gas consisting of rigid rotators (with 
vibrations of molecules and the centrifugal stretching disregarded): 
=> for linear molecules at high temperatures (T » h /2/flfc), 

_ 2IBkT _ kT 
Qr " 8sh

2 ~ 8SB 
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for H2 and D2 molecules in the quantum-mechanical (low temp­
erature) limit, for T <£ h2/2IBK the partition functions Qr can be 
broken into two terms that correspond to summation over even and 
odd values of the orbital quantum number with the statistical weights 
dependent on the spin of nuclei. 
=> for nonlinear molecules at high temperatures, T » h/2lAk (and 
the same inequality for IB and /c), 

where /A, /#, and IQ are the principal moments of inertia of the 
molecule (expressed in units g-cm), i.e., 

IA~2A' IB~2B' IC~2C 

A, B, and C are the rotational constants of a molecule (in ergs); in other 
units, 

A = — — , £ = ——, C = —— (ins ') 
47T/A 37T/i5 ATTIC 

ATTIAC ATTIBC ATTIQC 

8S is the symmetry number equal to the number of identical 
configurations arising in molecular rotations (examples: 8S = 1 for 
diatomic heteronuclear molecules, Ss = 2 for homonuclear diatomic 
molecules, and 8S = 3 for NH3). 

Vibrational partition functions for a gas consisting of harmonic oscillators 
with circular vibrational frequency co: 
=$> for diatomic molecules: 
- taking into account the zero-point vibrational energy Ez = h o>/2, 

e r ( r ) = .exp(-W2*r) 
1 —exp(—h<o/kT) 

when the vibrational energy is measured from the zero level, then 

e,(D = [l-exp(^)]-

- for truncated harmonic oscillators, 

o m _ l - e x p ( - P o / f c p 
UvK ' l-exp(-fta)/JfcD 

where DQ is the dissociation energy. 



272 G. G. CHERNYI, S. A. LOSEV, S. O. MACHERET, B. V. POTAPKIN 

=$> for polyatomic molecules with t-fold degenerate modes, 

en-f\[i-«&&]-
1=1 

where 
t 

m = 3Na — 5 — V^ (gt — 1) for linear molecules 

t 

m = ?>Na — 6 — ^ (# — 1) for nonlinear molecules. 
1=1 

Here, Na is the number of atoms in a molecule. 
Electronic partition functions: 

Qe<X) = Y,g«***(Jr) 
where n numbers individual electron states of atoms, molecules, and ions, 
and gn is the statistical weight of the state, n. 
Description of specific electronic states of atoms, molecules, and ions can 
be found in some handbooks (see, for example Ref. 8). 
- For the majority of diatomic molecules, the ground electron state is 

nondegenerate, and the energy spacing AE\ between the ground state 
and the first excited state far exceeds kT, so that gn=o = 1 and qe — \. 
The exception is provided by certain molecules, for example, 

0 2 ( & = 3 + 2 e x p ( - ^ Y bJZx = 0.974 e v ) 

NOM2, = 2 + 2 e x p ( - ^ \ A£! = 0.0153 e v ) 

The total partition function is written as 

= f Qt • Qe 
1 Qt • Qr • Qv • -

n(T\ — ) ^l ^e f° r a t o m s anc* atomic ions 
"~ ' ^ ^ ^ Qe (for molecules and molecular ions. 

The assumptions used in derivation of the above formulas are mentioned in 
section VIII.C in Volume I of this series. When calculating the partition 
functions, one should take into account the degeneracy caused by the nuclear spin 
(Ref. 2). 

Formulas for the partition functions that were derived with allowance for realistic 
interaction potentials and other characteristics of particles can be found in Ref. 8. 

VIII. Summary of Basic Thermodynamic Quantities 

1. Ideal gas consisting of N structureless particles with mass m in volume V. 
• Internal energy U 

U = ^NkT s ut 
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Enthalpy H 

• Free energy F 

H = ^-NkT 
2 

—<°N^]— 
• Gibbs thermodynamic potential $ 

<D = NkTlnl ^ - ^ • -£-1 

• Entropy S 

• Specific heat ratio, y = cp/cv 

y = ? = 1.667 
' 3 

2. Ideal gas consisting of N molecules that behave as rigid rotators 
(disregarding vibrations of molecules and the effect of centrifugal 
stretching) in the high-temperature approximation (T >̂ h /2IAK and 
similarly for IB, and /<;, where IA, h, and IQ are the principal moments 
of inertia for molecules; see the previous section Partition Functions and 
Statistical Integrals): 

5 7 7 
U = - NkT, H = - M r , y = - = 1.4 for linear molecules; 

2 2 5 

4 
U = 3NkT, H = 4MT, y = - = 1.333 for nonlinear molecules. 

Other quantities have to be determined from thermodynamic relations 
given in the section Thermodynamic Potentials, using the expressions for 
U and H. 

3. Ideal gas consisting of N nonrotating harmonic oscillators (cu is the cir­
cular frequency of oscillations); for vibrational degrees of freedom, we have 

• in the high-temperature approximation (T >̂ ho/k), 

Uv = NkT 
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Ideal gas consisting of N nonrotating vibrating molecules considered as an 
ensemble of harmonic oscillators (co, is the circular frequency of ith 
vibrational mode); for vibrational degrees of freedom, we have 

* . -»£M«P©-I ]} . 

where 

m — 3Na — 5 — y ^ (gi — 1) for linear molecules 
1=1 

t 

= 3Na — 6 - Y^ (gt• — 1) for nonlinear molecules 
i=\ 

gi is the degeneracy of /th vibrational mode; t is the number of degenerate 
modes; and Na is the number of atoms in a molecule. 
Other quantities are determined from thermodynamic relations given in the 
section "Thermodynamic Potentials," using the above expressions for the 
partition functions and statistical integrals. 

4. Ideal gas consisting of N particles with electronic degrees of freedom; we have 

X dT 

Summary of quantities: 

U = Ut + Ue for atoms and atomic ions and for structureless particles; 

u = ut + ur + uv + ue 
for molecules and molecular ions; 

H=Ut + Ur + Uv + Ue+pV 

7 W , / \3Tjy 

IX. Calculation of Thermodynamic Parameters in 
Chemically Reacting Media* 

Purpose of the Section 

This section describes calculations of thermodynamic characteristics of 
individual substances and their mixtures, including condensed phase, and 
calculation of equilibrium chemical composition. 

Assumptions 

1. The gas phase of the system obeys the ideal gas equation of state. 
Chemical composition and particle energy distribution correspond to 
equilibrium states, but change with temperature. 

This section was written by M. A. Deminsky. 

file:///3Tjy
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2. Equilibrium analysis is carried out for multiphase mixtures that consist of 
a gas phase and condensed phase. 

3. It is assumed that the boundary between gas and condensed phases is a flat 
surface. Surface tension forces are not taken into consideration. Different 
phases are regarded as immiscible. Condensed phase is an ideal solution, 
that is, the volume and internal energy of the condensed phase is assumed 
to be additive (namely, the sum of volumes and internal energies of the 
constituents); this implies no interaction between the components. 

4. The pressure in a system is determined by its gas-phase components, and 
the volume of condensed phase is neglected. 

5. The system as a whole is electrically neutral, although it can consist of 
neutral and charged components. 

6. Complex substances (compounds) are considered as made of atoms and 
molecules whose enthalpy of formation at standard conditions is zero. 
Ions are considered as made of the corresponding neutral molecules and 
electrons. 

7. Thermodynamic equilibrium of the system corresponds to the minimum 
of Gibbs thermodynamic potential. 

8. For "chemically frozen" specific heat, chemical composition is considered 
not to change in infinitesimally small variation of thermodynamic 
parameters (p, T), so that (dn/dp)T = (dn/dT)p = 0, while particle 
distributions in their internal degrees of freedom can change with 
temperature. 

9. The calculations of thermodynamic characteristics are based on the 
Chemical Workbench code (Ref. 14). 

Applied Data 

Critical review of thermodynamic databases is presented in Refs. 8, 10, 15, 
and 16. Chemical Workbench database us^d in this volume contains the 
following information on substances: 

• Molecular weight of substances 
• Enthalpies of formation of substances in reference state minus the 

differences between substance enthalpies in reference state and at 0 K: 

A^(298.15) - [#(298.15) - H(0)]. 

• Seven coefficients (<pt) of polynomial approximation of reduced Gibbs 

thermodynamic potential <j>(T) = cpx + <p2 hi* + <P3*~2 + <PAX~1 + <Psx + 
cp^x2 + (jvc3, where x = T/104 (Ref. 11). 

• Temperature range of approximation. 

Nomenclature 

p pressure, atm 
T temperature, K 
U internal energy, J/mole 
H enthalpy, J/mole 
AH formation enthalpy, J/mole 
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F free energy, J /mole 
O Gibbs thermodynamic potential, J /mole 
<f> specific Gibbs thermodynamic potential, J / g 
<j) reduced Gibbs thermodynamic potential, J/(mole K) 
S entropy, J/(mole • K) 
Qi partition function of /th gas-phase component 
lLgi molar mass (molecular weight) of rth gas-phase component, 

g/mole 
fici molar mass (molecular weight) of ith condensed-phase 

component, g /mole 
cp molar specific heat at constant pressure, J / ( m o l e K ) 
c'p specific heat at constant pressure, J / (gK) 
c* "chemically frozen" molar specific heat at constant 

pressure, J/(moleK) 
cv molar specific heat at constant volume, J / (mole • K) 
c'v specific heat at constant volume, J / ( g K ) 
c* "chemically frozen" molar specific heat at constant volume, 

J/(moleK) 
y specific heat ratio for a system 
y* "chemically frozen" specific heat ratio for a system 
a speed of sound, m/s 
a* "chemically frozen" speed of sound, m/s 
R universal gas constant 8.3145 J/mole K 

Subscripts 
g gas-phase component 
c condensed-phase component 
298.15 room temperature state 
0 OK temperature state 
T state at temperature T 
i number of component (substance) in the list of substances 

Superscripts 
0 value at standard temperature and pressure: 7 = 298.15, p = 

1 atm 

Thermodynamic Characteristics of Individual Substances 

1. H.l. Gibbs thermodynamic potential of substance i relative to that at 
OK,inJ/(moleK) 

<$>Ti = H0i - $TiT 

2. H.2. Gibbs thermodynamic potential of substance i relative to that at 
298.15 K, in J/(mole>K) 

®Ti = #298.15* — <t>TiT 
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3. H.3. Enthalpy of substance i relative to that at 0 K, in J/mole 

HTi —H0i = T • — 0 r 

4. H.4. Enthalpy of substance i relative to that at 298.15 K, in J/mole 

HTi — #298.15/ T • — </)T — (#298.15 — HQ) 

5. H.5. Entropy of substance i, J/(moleK) 

6. H.6. Molar specific heat of substance i at constant pressure, in J/(mole • K) 

-p7Y -u 
dTl dT <l>Ti\ 

7. H.7. Partition function of gas-phase substance i 

-a &=a*(wfi) 
8. H.8. Formation enthalpy of substance i, J/mole (see Ref. 11) 

A//£. = H%t (individual substance) - Y^^j 

Example 
Calculated molar specific heat of water vapor as a function of temperature: 

80i 

RfX. 
0\T 

J/(Kmole)40" 

0 

^ 

0 1000 2000 3000 4000 5000 

Temperature, K 

Fig. 8.1 
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Thermodynamic Characteristic of Mixtures 

Calculation of thermodynamic characteristics of mixtures is carried out based 
on thermodynamic functions of substances and following combinations of molar 
mass and number of moles: 

ng = Y^i ngi number of moles of gas-phase components 
nc = J2i nd number of moles of condensed components 
n = ng + nc total number of moles 
xgi = ngi/ng relative molar fraction of substance in gas phase 
xci = nci/nc relative molar fraction of substance in condensed phase 
l±g = J2t xgi^gi molar mass (molecular weight) of gas phase 
fxc = Ylixa^ci molar mass (molecular weight) of condensed phase 
fi = figxg + /JLCXC average molar mass (molecular weight) 

Gibbs Thermodynamic Potential (H.9) 

1. Specific Gibbs thermodynamic potential of gas phase, J/g 

2. Specific Gibbs thermodynamic potential of condensed phase, J/g 

JL E / * r ; * d + # r £,.*„• In 
xci 

3. Specific Gibbs thermodynamic potential of heterogeneous mixture, J/g 

figng$g + ficnc®c 

fin 

Enthalpy (H.10) 

1. Specific enthalpy of gas phase, J/g 

hg = E t "TiXgi 

P* 

2. Specific enthalpy of condensed phase, J/g 

h — E i HTJXCJ 

3. Specific enthalpy of heterogeneous mixture, J/g 

Vgnghg + ficnchc 

fin 
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Internal Energy (H.ll) 

1. Specific internal energy of gas phase, J/g 

_J2iHTiXgi ~ RT 

P* 

2. Specific internal energy of condensed phase, J/g 

Ur =• 
V>c 

Example 
Calculated specific internal energy and specific enthalpy of air (at fixed 

chemical composition) versus temperature: 

8UU 

bUU 

400 

200 

0 

-200" 

/ Enthalpy, 
kJ/kg 

Internal 
energy, 
kJ/kg 

400 600 800 1000 

Fig. 8.2 

Entropy (H.12) 

• Specific entropy of gas phase, J / (gK) 

_ J2i ̂ TiXgi + R l n (P/PO) ~ R T,i xgi lnxgi 

Pi 

• Specific entropy of condensed phase, J / (gK) 

Z—ti ^TiXci ~~ R 2^/ Xci ^ n xci 
^ c = " 

Mc 
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• Specific entropy of heterogeneous mixture, J / (gK) 

lAgngsg + ficncsc 
s = • 

jxn 

Example 
Calculated specific entropy of air vs temperature (at fixed chemical 

composition): 

8.5-

O.Kr 

f.cr 

fAT 

6.0 

y 

J 

200 400 600 800 

Temperature, K 

Fig. 8.3 

Entropy, 
, kJ/(kgK) 

1000 

Specific Heat at Constant Pressure (H.13) 

1. Specific heat of gas phase at constant pressure, J / (gK) 

d/z, 
PS &T 

2. Specific heat of condensed phase at constant pressure, J / (gK) 

, dhc 
Cpc=~dT 

3. "Chemically frozen" specific heat of mixture at constant pressure, J/(g • K) 

Cp = 2^, CPiXi 
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4. Specific heat of heterogeneous mixture at constant pressure, J/(g • K) 

C~C~pC 

Example 
Calculated specific heat of air at constant pressure p = 1 atm (at fixed 

chemical composition) vs temperature: 

1.2a 

200 400 600 800 

Temperature (K) 

Fig. 8.4 

Heat capacity, 
' kJ/(kgK) 

1000 

Specific Heat at Constant Volume (H.14) 

1. Specific heat of gas phase at constant volume, J/g-K 

d =c' 
i?\[l-01n^/ainD„]2 

\lLg) [Oln/yainDr + 1] 

2. Specific heat of condensed phase at constant volume, J/g • K 

, = , (R\[l-(d\nyic/dlnT)pf 
Cvc Cpc W[01n/tc/31nDr + l] 

3. Specific heat of heterogeneous mixture at constant volume, J/g-K 

c'v = V-gngc'vg + VcncC'vc 
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4. "Chemically frozen" specific heat of mixture at constant volume, J/g-K 

Cv ~ cpc 
M 

Specific Heat Ratio (H.15) 

• Specific heat ratio 

7 = 7 
• "Chemically frozen" specific heat ratio 

Example 
Calculated specific heat ratio for air vs temperature: 

1 40-

1 36-

1 32-

1 28-
i m m 

• 

w 

-

1 1 

— "frozen" specific 
heat ratio 

— specific heat ratio 

500 750 1000 1250 1500 1750 

Temperature, K 

Fig. 8.5 

Density (H.16) 

1. Gas phase density, g/cm3 or kg/m3 
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Example 
Calculated density of air (fixed composition) vs temperature: 

1.3-

1.1-

0.9-

0.7-

0.& 

0.3 

\ 

\ 

\ ^ 

density, 
kg/m3 

200 400 600 800 1000 
Temperature, K 

Fig. 8.6 

Speed of Sound in Chemically Reacting Gas (H.17) 

1. Speed of sound in gas phase, m/s 

(7* / /0 
j[l-(dlnng/d\np)T] 

2. "Frozen" speed of sound in gas phase, m/s 

' • ( ^ ) 

1/2 

Example 
Calculated speed of sound in air vs temperature: 

a, m/s 

fOU" 

600* 

4 u U " 

300-

/ 
/ 

'/ 

. 
s 

s 

s 

• I 

'frozen" speed 
ofsound 

speed of sound 

500 750 1000 1250 1500 1750 

Temperature, K 

Fig. 8.7 
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Equilibrium Composition of Multicomponent Mixture 

To calculate equilibrium composition, the following set of parameters should 
be given: 

1. initial elemental or substantive composition, i.e., initial values of relative 
volume or mass fraction for atoms or substances in the mixture 

2. list of substances in equilibrium 
3. values of two thermodynamic parameters from the list of thermodynamic 

variables: /?, V, U, 5, //, T. 

The following quantities are calculated: 

Molar Fraction of Substance (H.18) 

Xi = 

£«** 

Mass Fraction of Substance (H.19) 

Xmi — 

Example 

Calculated equilibrium molar fractions of nitrogen oxides at atmospheric 
pressure in air versus temperature: 

A N20 

NO 

• N02 
1000 T500 2000 2500 

Temperature, K 

Fig. 8.8 

3000 
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Chemical Equilibrium Constant of Reaction (H.20) 

1. Kp = exp[(rA5° - Mi°)/RT] AS0, AH0 are the entropy and enthalpy of. 
reaction. 

Example 

Calculated equilibrium constant of reaction NO2 = NO + 1/2(02) versus 
temperature: 

3 

2 

log(*P) 

0 

-1 

-2 

-3 
1 000 2 000 3000 4000 5 000 6 000 

Temperature, K 

Fig. 8.9 

X. Thermodynamics of Irreversible Processes 

A. Definition 

Thermodynamics of irreversible processes, also called nonequilibrium ther­
modynamics, is a phenomenological theory that provides macroscopic 
description of nonequilibrium processes. 

The main task of thermodynamics of irreversible processes consists in 
providing a quantitative description of nonequilibrium processes in systems in 
which each local region is characterized by certain values of thermodynamic 
parameters (Refs. 13, 17-23). 

Thermodynamics of irreversible processes originated from a combination of 
methods of the theory of transport phenomena with classical thermodynamics, 
and it is intended primarily for description of transport phenomena (see the third 
volume in this series). 
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B. Postulates of Thermodynamics of Irreversible Processes 

1. Principle of local equilibrium 
Thermodynamics of irreversible processes treats statistical systems that can be 

described with the local values of thermodynamic parameters (the state of local 
equilibrium). 

Local equilibrium exists in those macroscopically nonequilibrium systems 
where the rates of change in the macroscopic state are much lower than the rates 
of processes that restore the equilibrium. 

A quantitative criterion for the existence of local thermodynamic equilibrium 
is determined from the condition for the validity of the Gibbs equation dU = 
TdS — pdV + J2 Pi dni m e a c n specific nonequilibrium system (see Thermo­
dynamic Potentials). 

Practical significance of the local-equilibrium principle is that it makes it 
possible to use the laws of thermodynamics to describe nonequilibrium 
processes. 

2. Comments 
a. Gas flow is in a state of local equilibrium if the variation of velocity or 

temperature across the mean free path is small compared to the local 
values of these quantities; namely 

/|gradv| « |v| or /|gradr| « T 

where / is the mean free path. 
b. Gas in the field of sonic wave is in a local-equilibrium state if COT <& 1, 

where co is the acoustic frequency, and r is the relaxation time for the 
energy of internal degrees of freedom. 

c. Gas at the front of strong shock wave is not locally equilibrium because 
the temperature jump across the front whose width is on the order of the 
mean free path is larger or much larger than the temperature ahead of the 
front. In weak shock waves, where the thickness of the front is much 
larger than the mean free path, local equilibrium takes place. 

3. The postulate of linear relation among fluxes and thermodynamic 
forces 

Fluxes of macroscopic quantities / , and thermodynamic forces Xt giving rise 
to these fluxes are linked by linear relations 

n 

Ji = y^LjjXj, i = 1, 2 , . . . , n 
7=1 

where LtJ are the kinetic coefficients. Examples illustrating this postulate are 
given later in the subsection Fluxes and Thermodynamic Forces. 

In contrast to mechanics, where forces are vectors, thermodynamic forces may 
be scalars, vectors, or tensors. 

The matrix of kinetic coefficients Ly is independent of // and Xt, but may 
depend on temperature and other parameters of the system. 
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The fluxes and thermodynamic forces are chosen from the condition 

where a is the entropy production that represents the entropy generation rate 
because of internal dissipative processes. Specific choice of Jt and Xt is not 
unique and depends on the problem to be solved; any choice of Jt and Xt must 
satisfy the equality a= JV/X, = JVP^> where J\ and X\ represent a set of 
fluxes and thermodynamic forces linearly related to Jt and Xt (Ref. 17). 

In thermodynamics of irreversible processes, the Curie principle states that the 
linear relation Jt = Ylj=\ LijXj is invariant with respect to orthogonal trans­
formations of spatial coordinates allowed by the system; in isotropic media, 
inversion and rotation are such transformations. In view of symmetry properties 
of the system under consideration, the flux components can depend only on some 
of the thermodynamic force components. According to the Curie principle, in an 
isotropic system, the fluxes and thermodynamic forces having different tensor 
dimension cannot be related to each other. Thus, in an isotropic system, heat flux 
(a vector quantity) cannot depend on chemical affinity (a scalar quantity), 
namely, on the chemical reaction rate. 

The assumption about linear relation between fluxes and thermodynamic 
forces is a hypothesis, which is beyond the scope of equilibrium thermodynamics. 
This assumption is well justified in the theory of transport phenomena, where the 
Fourier (Jq = —Agradr), Fick's (JM = -Z)gradC, where C is the local particle 
number density), and other empirical laws are known and are valid in a fairly 
wide range of temperature and concentration gradients (see the third volume in 
this series). In chemically reacting systems, the domain of applicability of linear 
relations between the chemical reaction rates and chemical affinity is restricted to 
the states that are close to chemical equilibrium and exist in the final stage of the 
reaction. 

4. Example 

In chemical kinetics, the rate of the reaction N2 + O2 *=* 2NO is written as 

Jw = k+nNlno2 - k-n^o = w 

where A = fiN2 + /xQ2 — 2/%0 *
s m e chemical affinity, and w — k+nNlno2. 

In thermodynamics of irreversible processes, a linear relation between the 
fluxes and thermodynamic forces Jw = LA is postulated; this relationship holds 
(according to the above formula) only for \A/kT\ <3C 1 (Ref. 18). 
5. Principle of symmetry of kinetic coefficients (the Onsager symmetry 

relations) 
The matrix of kinetic coefficients Ly is symmetric under the condition that 

or = ^r/jX,-; that is, Ltj = Ljt. 
Practically, the significance of the Onsager relations consists in the estab­

lishment of a link between seemingly different phenomena that correspond 
to the direct and reverse effects. Thus, for example, the relationship of symmetry 
in a binary system results in equality between the kinetic coefficients 

'-^{-Vr) 
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corresponding to thermal diffusion (mass flux caused by gradr) and to the Dufour 
diffusion thermoeffect (energy flux caused by concentration gradient). 

6. Generalized symmetry relations (the Onsager-Casimir relations) 

L>ij = BiSjLiji 

where 

. | 1 if the thermodynamic forces Xk are even functions 
"""" ,J J — 1 if these forces are odd functions 

with respect to the time reversal. For example, temperature gradient is an even 
function of time, whereas velocity gradient is an odd function of time. 

The Onsager symmetry relations combined with the Curie principle restrict 
the number of independent kinetic coefficients Ly, since L# = L7I according to the 
Onsager relation, whereas L,y = 0 according to the Curie principle if the indices i 
andy refer to the fluxes Jt and thermodynamic forces Xj (or their components) that 
have different vector dimensions (Ref. 17). 

7. The Prigogine theorem 
In the state of thermodynamic equilibrium, the entropy of a system attains a 

minimum, whereas the entropy production is a = 0. An analogue of this 
statement for nonequilibrium systems described in terms of linear nonequi-
librium thermodynamics is the statement that the production of entropy is 
minimal in stationary states. This statement is a corollary of the Prigogine 
theorem: 

If there are n thermodynamic forces in a system, of which the first p forces 
are fixed (Xj = const, j < p), then the fluxes corresponding to forces that 
are not constant vanish (Jj = 0, j > p) in a state with the minimal 
production of entropy (a = min). The states with minimal production of 
entropy are stationary and stable. 

Applicability of the Prigogine theorem is restricted by the following 
conditions: 

a) Linear relations between the fluxes and thermodynamic forces are valid; 
b) The Onsager-Casimir relations are valid; 
c) Kinetic coefficients are assumed to be constant; 
d) Variations in nonequilibrium parameters atj(Jj = dctj/dt, j > p) are equal 

to zero owing to interaction with surroundings. 

In a planar gas layer bounded by walls with different temperatures, the state 
with minimal production of entropy corresponds to the steady state. 

The Prigogine theorem specifies the direction of system evolution. If a system 
cannot reach the equilibrium state (in view of conditions Xj = const, j < p), then 
this system will tend to the stationary state with the lowest dissipation (cr = min). 
This tendency manifests itself monotonically, namely, da/dt < 0; therefore, 
there is no oscillatory mode in the changes in the parameters during approach to 
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equilibrium in linear thermodynamics. To describe possible oscillatory modes, 
methods of nonlinear thermodynamics are required. 

C. Nonlinear Thermodynamics of Irreversible Processes 

Nonlinear thermodynamics of irreversible processes, like the linear one, deals 
with systems in states of local thermodynamic equilibrium; that is, it is assumed 
that the Gibbs equation dU = TdS — pdV + ^ /^da; is valid. 

The fluxes Jt and thermodynamic forces Xt are chosen (as in the linear 
thermodynamics of irreversible processes) from the condition 

However, in contrast to linear thermodynamics, the fluxes here are not linear 
functions of thermodynamic forces. 

Example 
The rate of reaction N2 + O2 ^ 2NO is written as (see the previous example): 

Jw = w 
~ e x p ( " ^ ) . 

In the vicinity of equilibrium, if \A/kT\ <^ 1, we have 

_ WooA 
Jw — 

kT 

which is consistent with the laws of linear nonequilibrium thermodynamics (woo 
is the equilibrium value of w). 

In the opposite limiting case of \A/kT\ ^> 1, which corresponds to the initial 
stage of the reaction in a closed system, we have 

Jw = wo 

(wo is the value of w at the initial point in time). 
In this saturation limit, the flux is independent of thermodynamic force 

(affinity), and the entropy production becomes a linear function of affinity (Ref. 18). 
In general, the steady state in nonlinear thermodynamics of irreversible 

processes does not correspond to a minimum in the entropy production and can 
be unstable. The process of reaching the steady state obeys the Glansdorff-
Prigogine evolution criterion, according to which a change in the entropy 
production with time at fixed fluxes is a negative quantity; namely 

da\ 
d7 7,=const £'•£*• 

Example 
For a single-component isotropic system in a finite volume whose walls are 

maintained at different constant temperatures, we have 

aL = J q grad-
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The total entropy production is equal to a = J crLdV, and the rate of entropy 
production at a constant heat flux Jq is given by 

= \JqlgTaAdv^.\^E\2
dVs0 

J qdtB T J T2 \dt\ 

where p is the density, and cv is the specific heat at constant volume. 
The Glansdorff-Prigogine criterion demonstrates that a change in the 

thermodynamic forces, X;, in the course of evolution reduces the entropy 
production. This criterion does not provide information about the sign and 
magnitude of da/dt\x.=comi = ^2lXi{dJi/di)\ in general, the sign of the full 
derivative 

da _ ^ dXt , v ^ v dJi 

d7-^"d7 + ^ x , d r 
is undetermined in nonlinear thermodynamics of irreversible processes. 

In linear thermodynamics of irreversible processes, we have ]PJx-,—}• = 

J2xilt> therefore, the Glansdorff-Prigogine criterion is reduced to ^ < 0 (Ref. 

18). 

D. Dissipative Structures 

In open systems, where matter and energy can be exchanged with the sur­
roundings, ordered structures stabilized by external fluxes can be sponta­
neously formed. 

Examples (see Ref. 23) 

1. Formation of Benard hexagonal cells in a horizontal plane liquid layer, 
when the bottom surface is heated. 

2. Laminar-turbulent transition. 
3. The onset of laser generation when pumping rate exceeds a certain 

threshold value. 
4. Oscillatory chemical reaction of the Belousov-Zhabotinskii type (see 

Chapter 6 in this volume). 

Special features of formation of dissipative structures 
Formation of dissipative structures is a threshold process. Thus, the Benard 

cells are formed during convective motion in a liquid only if the difference in 
temperatures between the bottom and top surfaces in the horizontal layer exceeds 
a critical value. 

Dissipative structures may form only in open systems; the ordered state is 
sustained owing to transfer of entropy produced in the system to the surrounding 
medium. 

Dissipative structures arise only in macroscopic systems whose behavior is 
described by nonlinear equations. 

Three types of dissipative structures are observed: temporal, spatial, and 
spatial-temporal. Description of each type of structure is based on nonlinear 
macroscopic equations that characterize the specific phenomenon; for example, 

do; 
dt\ 
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the formation and structure of Benard cells are described in terms of 
hydrodynamics of viscous and heat-conducting liquid (Refs. 13 and 23). 

E. Fluxes and Thermodynamic Forces in Thermodynamics of 
Irreversible Processes 
1. Case 1 

An individual chemical reaction X!/=i V A = 0-

a. Fluxes 
The rate of chemical reaction is given by Jw = {p/ViiniNh)(dCi/di), or 

Jw = p(d£/dt), where 3f/3f = (l/vimiNA)(dCi/to). 

b. Thermodynamic forces 
—A/T, where A = £ . = 1 v,-//,,- is the chemical affinity. 

c. Linear relations 

d. Entropy production 

A A2 

T T 
e. Nomenclature 

X; symbols of substances involved in the reaction 
vi stoichiometric coefficients (v,- < 0 for reactants, V[ > 0 for 

reaction products) 
p gas density 
p( density of the fth gas component 
d = p./p mass concentration of the ith component 
A chemical affinity 
Hi chemical potential per mole of the ith component 
£ degree of development (or completeness) of chemical reaction 
L kinetic coefficient 
rrii mass of a particle of the ith component 
iVA Avogadro ' s number 

f. Comment 
Sometimes, chemical affinity is defined as A = — Yll=i vilJLi instead of 

A = YH=i vilJbi u s e ( i above. The sign reversal of A results in the sign 
reversal of the corresponding thermodynamic force; A/T should be then 
used instead of —A/T. 

2. Case 2 
Several chemical reactions proceeding simultaneously; n substances, of which 

/ (i = 1, 2 , . . . , n) are involved in j (j = 1, 2 , . . . , r) chemical reactions, are 
considered. Thus, we have 

J2vijXi = 0, ( ;=1 ,2 , . . . , r ) 
i = i 
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a. Fluxes 
The rate of the 7th chemical reaction is given by 

Jwj = p—- (see Case 1), so that p—-̂  = }VijiniN^JWj 
at ot ~f 

7=1 

b. Thermodynamic forces 
n 

-Aj/T, where A, = ^ v ^ is the chemical affinity of yth reaction. 

c. 

d. 

e. 

f. 

/=i 

Linear relations 

Jwi === 

The entropy production 

0- = 

Nomenclature 
See Case 1. 

Comment 

7=1 

Z*,JwJ T 
7=1 

1. In chemical reactions, the fluxes and thermodynamic forces are scalar 
quantities. 

2. It is assumed that r < n — 1, and that all r reactions are independent. 
3. For r chemical reactions, the values of £, are determined from the 

equations 

7=1 

Integration of these equations yields 

dct Y - M
 a 9 • 1 o 

- = ^VijmiNA-, * = l , 2 , . . . , n 

ct(t) - c,(0) = J^VijrmNAtjit) 

3. Case 3 
Energy transfer in a two-temperature system with constant volume. 

a. Fluxes 
The energy transfer rate: 

cvidTi dUi ( dU2\ _ Cyid7 
dt \ dt / dt 
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b. Thermodynamic forces 
The difference in reciprocal temperatures between the subsystems: 

T~X~T2 

c. Linear relations 

dt \Ti T2) ° r dt cvi Tir2 

d. The entropy production 

dt \T{ T2J \ji r2y 
e. Nomenclature 

£// energy per unit mass of the ith component 
Cyi specific heat of the first subsystem at constant volume 
L kinetic coefficient 

f. Comment 

For Ti ^ T2 ^ 7\ we have 

d 7 j _ _ ^ T2-Ti 
dt ~ cvi r 2 

The phenomena of transport of mass (diffusion), energy (heat conduction), 
and momentum (viscosity), as described by thermodynamics of irreversible 
processes, are considered in the third volume of this series. 
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Chapter 9 

Equations of State 

I. Nomenclature 

See nomenclature in the beginning of Chapter 8. 

II. Thermal and Caloric Equations of State 

Thermal equation of state is an equation that relates the pressure/?, volume V, 
and temperature T of a homogeneous system in a state of thermodynamic 
equilibrium: f(p, V,T) = 0orp= p(V, T). 

Caloric equation of state is an equation that determines the internal energy U 
of a system in a state of thermodynamic equilibrium as a function of any two of 
the three parameters p, V, or T. The dependence of specific heat at constant 
volume on temperature and volume cv = cv(T, V) is also referred to as caloric 
equation of state. 

The existence of thermal equation of state follows from the zeroth law of 
thermodynamics, in particular, from the transitivity property. The existence of 
caloric equation of state follows from the first law of thermodynamics. The 
formula 

\w)T
=T{sr)v~

p 

relating thermal and caloric equations of state follows from the second law of 
thermodynamics. 

Equations of state cannot be derived solely from the laws of thermodynamics; 
they are determined experimentally or are derived by the methods of statistical 
physics. To derive the equation of state, it is sufficient to know any one of 
thermodynamic potentials as a function of the relevant natural variables. For 
example, if the free energy F(V, T) is known, then 

P \dVjT' ST\Tjv 

An explicit form of equation of state makes it possible to describe the 
properties of a thermodynamic system using thermodynamic equalities (see 
Thermodynamic Potentials in Chapter 8). 

295 
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Henceforth, we consider a gas that obeys classical statistics, so that 
where N is the number of particles in unit volume. 

III. Equation of State for an Ideal Gas 

An ideal gas is a gas in which the mean kinetic energy of particles (atoms, 
molecules, ions, and electrons) is much larger than the mean potential energy of 
particle-particle interactions; the interactions occur only during short-duration 
collisions (Refs. 1-3). 

The criterion for a gas consisting of neutral particles to be ideal: \B(T)/v\ <3C 1, 
where v is the molar volume of the gas, and B(T) is the second virial coefficient 
(see Real Gases, Refs. 4 and 5). 

The criterion for a plasma to be ideal: 

1. In the case of interaction between charged particles: e2/R^ <^ kT, where e 
is the elementary charge, and RD is the Debye shielding radius (see 
Chapter G in the first volume of this series, and Chapter 7 of this volume; 
Ref. 6). 

2. In the case of interaction between charged and neutral particles: 
27rae2N/Ro <$C kT, where a is the polarizability of neutral particles, and 
Ro is the gas-kinetic radius (see the description of model I-T.l; Ref. 6). 

A perfect gas is a term often used (see Refs. 3, 12 and 13) for an ideal gas 
whose specific heats are constant and independent of temperature, even though 
the gas may contain particles with internal degrees of freedom. Also, in many 
scientific publications and textbooks devoted to gas dynamics (see Refs. 7-10), 
a perfect gas is the term used for a gas that is called an ideal gas in this volume. 
In those publications (see also Ref. 11), a gas where viscosity and heat conduction 
are absent is called an ideal gas. 

Thermal equation of state of an ideal gas (Clapeyron equation) 

- for a single-component system: 

p = NkT 

pRT 
p = ——- p = mN M = mN^ 

M 

pV = nRT 

- for a gas mixture composed of / components of the ith type: 

M TLiN, 
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-M RT pi = niiNi, Mt = rrnNA 

pV=(5>W 
, 1=1 

The following laws are valid for an ideal gas: 

1. Gay-Lussac law 

V 
- = const, or VT = V0[l + ap(T - T0)]9 for p = const and M = const 

where V0 and VT are the gas volumes at a reference temperature T0 and at 
the temperature T, and ap is the coefficient of thermal expansion at 
constant pressure of the gas equal to (1/273.16) K_1. 

2. Boyle-Mariotte law 

pV = const for T = const and M = const 

3. Charles's law 

p 
— = const, or pT = /?o[l + Jv(T ~ ^b)]» for ^ = const and M = const 

where /?o and pr are the pressures at a reference temperature 7b and 
at the temperature T, yv is the thermal-pressure coefficient equal to 
(1/273.16) K_1, and M is the gas mass. 

Caloric equation of state for an ideal gas 
The internal energy U of an ideal gas depends only on temperature, U = U(T) 

(Joule law), whereas the internal energy of nonreacting gas mixture is the sum of 
contributions of each component Ut(T) and their heats of formation U^, so that 
we have the following expression for the energy per mole: 

i 

Here, £ is the mole fraction of ith component, and lf^ is the heat of formation 
of ith component from chemical elements in the standard reference state 
(T = 298.15 K and/? = 1 atm) (see Refs. 14 and 15). The relations and formulas 
for caloric equation of state are given in Chapter 8, Thermodynamics of Gases 
and Plasmas. 

Energy and enthalpy of reacting mixtures of ideal gases depend not only on 
temperature, but also on pressure; the latter, in addition to temperature, governs 
the chemical composition of a mixture (for example, see Ref. 16). 
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IV. Real Gases 

A. Virial Equation of State for a Nonideal Gas 

A single-component system 
Expansion in power series of 1/v: 

pv B(T) C(T) 
RT v v2 ' 

Expansion in power series of p: 

^=l+B'p + C'p2 + ... 

Relation to the virial coefficients: 

B = RTB\ C = (RT)2(C + Ba) 

Virial coefficients determine the deviation of a gas from the ideal gas model 
due to intermolecular forces [4]. 

1. Nomenclature 

v = V/n 
B(T\ C(T) 

2. Parameters 

molar volume 
second and third virial coefficients; their values are deter­
mined by binary and ternary collisions 

For the model of hard spheres with diameter a [see the model I-T.l and 
(Ref. 4)], we have 

B = -irNAo3=b0,
 C = lbl 

Recommended values of virial coefficients for various models of inter­
molecular interaction can be found in Refs. 4, 5, 15 and 17-19. 

3. Domain of applicability 
The domain of applicability of the virial equation is limited by the 

convergence of series. The series diverges for densities that correspond to the 
liquid state. Accuracy of a virial equation depends on the number of retained 
terms. 

4. Example 
For nitrogen at 0°C, the virial expansion is written as 

^- = 1 - 0.00023 + 0.0000025 + • • • at 1 atm 
RT 
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| ^ = 1 - 0.0023 + 0.00025 + • • • at lOatm 

| ^ = 1 - 0.023 + 0.025 + • • • at 100 atm 

An example of thermodynamic analysis of combustion products at high 
temperature and pressure, using virial equation of state for a nonideal gas, can be 
found in Ref. 20. 

5. Comments 
If the terms on the order of v - 1 (for \B(T)/v\ <£ 1) are ignored, the virial 

equation of state is transformed into the Clapeyron equation of state for an ideal gas. 
The virial equation of state is considered in detail in Refs. 5 and 16-18). 

A multicomponent system 

pv _ -. Bmix(T) Cmix(T) 
RT~ + v + v2 + " " 

/ / 

Bmix{T) = Y,Y,B^T)^ 
a=l j 8= l 

/ / / 

cmix(T) = J2HY, CathcnupSy 
a=\ j8=l 7=1 

1. Nomenc la tu re 

/ number of componen t s in the mixture 
v mola r vo lume 
£ja molar fraction of the ath component in the mixture 
Bmix, CmiX second and third virial coefficients in mixtures 
Baa(T) second virial coefficient for component a in a single-

component gas 
Bap{T) second virial coefficient calculated for intermolecular 

potential that describes the interaction between molecules 
of the components a and /3 

Capy(T) third virial coefficient determined by pairwise interactions 
in a system composed of three particles that belong to the 
components a, /§, and y (Refs. 4 and 5) 

2. Parameters and the domain of applicability 
Collections of data and recommended values of second virial coefficients for 

neutral gases and their mixtures can be found in Refs. 15, 18, and 19. 

B. Empirical Equations of State 

The van der Waals equation for a single-component system consisting of n 
moles is 

/p + a\ f$>-»-«r. 
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Nomenclature 

a, b are constants that depend on the gas and account for the effect of attractive 
forces between molecules and for finite volume occupied by the molecules, 
respectively. 
The reduced van der Waals equation of state is written as 

8T 3 

^ ^ 3 0 1 - 1 co2' 

where 

p v T 
7 7 = — , CD = — , r = — . 

Pc vc Tc 

Parameters 
pc = (l/21)(a/b2), vc = 3b, and Tc = ($/27)(a/bR) are the values of 

pressure, specific volume, and temperature at the critical point (critical 
parameters) that are determined from the van der Waals equation at the 
conditions (dp/dv)T - 0 and (d2p/dv2)T = 0 (see Ref. 4). If the critical 
parameters are known, then 

a Jll (RTC)2
 b=

lRTc 
64 pc ' 8/?cvc 

The values of parameters a and b are given in Ref. 19. 

Domain of applicability 
For/? ^> a/v2 and v^> b, van der Waals equation transforms into the equation 

of state for an ideal gas. Van der Waals equation works at relatively high 
temperatures and low pressures. Qualitatively, it also describes the behavior of 
gases at high pressures, condensation of gases, and the critical state. 
A binary mixture; in this case, van der Waals equation is 

a = ani\ + 2ani\Xi + a2iil,
 b = *nf I + 2fei2£i*2 4- ^22^2 

Nomenclature 
ixl are the mole fractions of components (£• = nil J2 nd-
an, a22, b\\, b22 are the van der Waals constants of individual components. 

Parameters 
The quantities an and bn characterize the interaction of dissimilar molecules. 

If experimental data on the quantities an and bn are lacking, they can be 
estimated with empirical relations 
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The Berthelot equation (Ref. 4) is written as 

(p + £)(v-b) = RT 

Parameters 
The constants a and b are determined from the critical parameters pc, vc, and 

Tc\ specifically, a = (9/S)RT2vc or a = (24/R)p2
cv

2, and b = vc/3. 
The values of critical parameters are given in Ref. 19. 
The Dieterici equation (Ref. 4): 

[pM£r)]<r-b) = RT 

where 

a = 2RTcvc or a = 139pcv
2
c, and b = y . 

The critical parameters are given in Ref. 17. 

Domain of applicability 
Berthelot and Dieterici equations are applicable to binary mixtures (see the 

van der Waals equation) in addition to single-component systems. 
The domain of applicability of empirical equations of state is determined by 

the approximation accuracy, is different for each gas, and depends on the range of 
variation of variables. The Dieterici equation describes adequately the (p, v, T) 
behavior of a gas in the vicinity of the critical point, giving pcvc/RTc = 0.2706, 
which is consistent with the mean value of this quantity for nonpolar gases 
(0.272). Van der Waals and Berthelot equations of state predict pcvc/RTc = 0.375. 

Redlich-Qwong equation (Ref. 4): 

RT a 
P ~ v - b V7V(v + b) 

Parameters 

0A27SR2T5
C/2 

a — ^ _ . b — o.26vc 
Pc 

Beattie-Bridgeman equation (Ref. 4): 

The values of parameters Ao, Bo, a, b, and c are given in Ref. 4. 

Domain of applicability 
The Beattie-Bridgeman equation contains five parameters; therefore, it 

yields, in a number of cases, more accurate results than the two-parameter van der 
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Waals, Dieterici, and other such equations do; for example, in calculations of the 
internal energy of C 0 2 . 

The Beattie-Bridgeman equation is one of the most accurate empirical 
representations of the relation between p, v, and T for gases at pressures up to 
250 atm. 

At higher pressures (1000 atm and above), Haldorff-Kistyakovskii-Wilson 
equation of state and the gunpowder-combustion gas equation of state can be 
used (see Ref. 4). A summary of 150 principal equations of state can be found in 
Ref. 5. 
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assumptions 104 
comments 106 
description of coefficients and 

parameters 105 
error of the model 106 
kinetic equations for oxygen-iodine 

medium 104-5 
master kinetic equation 104 
nomenclature 105 
purpose of the model 103 
restrictions 104 
typical values and examples 106 

electronic excitation exchange see model of 
electronic excitation exchange (E.2) 

electronic kinetics 97 
electronic partition functions 272 
electronic relaxation 3 
electronic relaxation (E models) 97-110 

adiabatic approximation 97-8 
nonadiabatic approximation for vibronic 

interactions 98 
nonadiabatic semiempirical 

approximation 98-9 
element matrix 118 
elementary process, definition 3 

empirical equations of state 299-302 
endoergic process (reaction), definition 4 
endothermic process (reaction), definition 4 
enthalpy 259, 273, 277-8 
entropy 263-4, 273, 277, 279-80 
equation of kinetic curve 123 
equations of mode kinetics 7 
equations of state 295-302 

for ideal gas 296-7 
equations of state-specific kinetics 7 
equilibrium composition of 

multicomponent mixture 284 
equilibrium constant for reversible reaction 

129 
equilibrium distributions of particles 5 
equilibrium state of medium 1 
excited atoms, balance equations for (P.9) 

217-21 
exhaust gases, electron-beam cleaning of 

142 
exoergic process (reaction), definition 4 
exothermic process (reaction), definition 4 
explosion 154-5 

flame 154 
fluxes in thermodynamics of irreversible 

processes 291-3 
formation enthalpy 277 
free energy 259-61, 273 

gas dynamics, medium in 1-5 
gas heating in a plasma see model of gas 

heating in a plasma (P.4) 
gas temperature 179 
gases 

chemically equilibrium or 
nonequilibrium 1 

chemically reacting 67-75, 88-93 
definition 1 
relaxation processes 5-7 
thermally equilibrium or nonequilibrium 

1 
thermodynamics of see thermodynamics 
translational relaxation in 9-12 

Gay-Lussac law 297 
Gershell-Draper law 136 
Gibbs distributions and thermodynamic 

quantities 267-70 
Gibbs grand canonical distribution 269 

applicability 269 
Gibbs-Helmholtz equations 261 
Gibbs isobaric distribution 269-70 
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Gibbs microcanonical distribution, 
applicability 268-9 

Gibbs partition function 269 
Gibbs thermodynamic potential 261-2, 

270, 273, 276, 278 
Glansdorff-Prigogine criterion 290 
Green's function 28 
Guldberg and Waage law 123 
gunpowder-combustion gas equation of 

state 302 

Haldorff-Kistyakovskii-Wilson equation 
of state 302 

heat of process (reaction) 4 
Heaviside function 72 
Helmholtz free energy 259-61 
hydrogen peroxide, photodissociation of 

139 

ideal gas, equation of state for 296-7 
ignition 154 
induction factor 136 
induction time 154 
inhibition reaction 147 
inhibitor 147 
internal energy 257-8, 272, 279 
inverse kinetic problem 170-1 
ion temperature 179 
irreversible chemical reaction see kinetic 

model of simple irreversible chemical 
reaction 

irreversible processes 
definition 252 
fluxes and thermodynamic forces in 

thermodynamics of 291-3 
nonlinear thermodynamics of 289-90 
postulates of thermodynamics of 

286-9 
thermodynamics 285-93 

isentropic process 263 
definition 253 

isobaric process, definition 253 
isochoric process, definition 253 
isothermal process, definition 253 
isothermal reaction see model of isothermal 

reaction at constant density (C.7) 
isothermal reactors 157-9 

kinetic curve 123 
kinetic equation of reaction 122 
kinetic equations 134-5 

in description of relaxation processes 7 

Lorentz gas 13, 15 
Rayleigh gas 13 

kinetic function 122 
kinetic model of complex chemical 

reactions (C.3) 130-2 
assumptions 130 
comment 132 
description of coefficients and 

parameters 131 
example 131-2 
features of the model 131 
nomenclature 131 
purpose of the model 130 
rate of change of rth component 

concentration because of complex 
chemical reaction 131 

restrictions 130 
kinetic model of radiative-chemical 

reactions (C.5) 141-2 
assumptions 141 
description of coefficients and 

parameters 142 
example 142 
features of the model 142 
kinetic equation of radiative-chemical 

reaction 141 
nomenclature 141 
purpose of the model 141 
restrictions 141 

kinetic model of simple irreversible 
chemical reaction (mass action law) 
(C.l) 123-7 

assumptions 123 
comments 126-7 
description of coefficients and 

parameters 124-5 
example 126 
features of the model 126 
nomenclature 124 
purpose of the model 123 
rate of simple irreversible chemical 

reaction 124 
restrictions 124 

kinetic model of simple reversible chemical 
reaction (C.2) 127-9 

assumptions 127 
comment 129 
description of coefficients and 

parameters 128 
example 129 
features of the model 128 
nomenclature 128 
purpose of the model 127 
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rate of a simple reversible chemical 
reaction 127 

restrictions 127 
kinetic order of reaction 122 

Macheret formulas 72 
Margenau distribution 234 
Marrone-Treanor model 91, 93 
mass action law in chemical 

thermodynamics 266 
mass fraction 284 
mathematical model 4, 168-9 

variables in 5 
Maxwell reciprocity relation 259, 

262-3 
Maxwellian distribution 9, 12, 182 
Maxwellian distribution function 11 
Maxwellian electron energy distributions 

183 
Maxwellian molecules 12 
Maxwellian velocity distribution 16 
mechanical equilibrium 266 
medium 

composition 2-4 
definition 1 
equilibrium state of 1 
in gas dynamics 1-5 
homogeneous 252 
inhomogeneous 252 
kinetic level of description 5 
levels of description 4-5 
macroscopic level of description 5 
microscopic (molecular) level of 

description 4-5 
models of 4 

processes in 2 
steady (stationary) nonequilibrium state 

of 1 
see also atomic-molecular kinetics 

microcanonical distribution 267-8 
mode kinetics 6 
model of adiabatic reaction at constant 

density (C.8) 159-61 
assumptions 159 
comments 161 
description of coefficients and 

parameters 160 
example 160-1 
features of the model 160 
nomenclature 160 
purpose of the model 159 
restrictions 159 
set of equations of the model 160 

model of adiabatic reaction at constant 
pressure (C.9) 162-3 

assumptions 162 
comments 163 
description of coefficients and 

parameters 162 
example 163 
features of the model 162 
nomenclature 162 
purpose of the model 162 
restrictions 162 
set of equations of the model 162 

model of electron energy distribution 
function (EEDF) (P. 16) 2A\-A 

assumptions 242 
comment 244 
example 243-4 
model description 243 
model equation 242 
nomenclature 242 
particular solutions 243 
purpose of the model 241 
restrictions 243 

model of electron energy distribution 
function (EEDF) in atomic and 
molecular plasma (P. 15) 238-41 

assumptions 238 
comment 241 
example 241 
model description 239 
model equation 238 
nomenclature 238-9 
particular solutions 239-40 
purpose of the model 238 
restrictions 240-1 

Laguerre polynomial 28 
Lambert's law 137 
law of mass action 123 
local electron energy balance see model of 

local electron energy balance (P.l) 
local thermodynamic equilibrium, 

definition 252 
Lorentz gas 14, 25, 28 

kinetic equations 13, 15 
restrictions (T.2) 13 
translational relaxation in (T.2) 12-16 

low temperature plasma kinetics (P 
Models) 177-249 

definitions and criteria 179-83 
main nomenclature 177-8 
models of low-temperature plasma 

kinetics 184-5 
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model of electron energy distribution 
function (EEDF) in highly ionized 
atomic plasma (P. 14) 235-7 

assumptions 235 
comment 237 
example 237 
model description 236 
model equation 235 
nomenclature 235-6 
particular solutions 236-7 
purpose of the model 235 
restriction 237 

model of electron energy distribution 
function (EEDF) in weakly ionized 
atomic plasmas (P. 13) 232-5 

assumptions 233 
comments 235 
example 234 
general and particular solutions 234 
model description 233 
model equation 233 
nomenclature 233 
purpose of the model 232 
restriction 234 

model of electron energy distribution 
function (EEDF) in weakly ionized 
plasmas with inelastic collisions (P. 17) 
244-8 

assumptions 244 
boundary conditions 245 
comment 248 
example 247 
model description 246 
model equation 244 
nomenclature 245 
particular solutions 246-7 
purpose of the model 244 
restrictions 247 

model of electron heating because of 
recombination (P.3) 193-7 

assumptions 194 
comments 196 
example 196 
model description 195 
model equations 194 
nomenclature 194 
particular solutions 195 
purpose of the model 193 
restrictions 195 

model of electron temperature relaxation 
(P.2) 190-3 

assumptions 190 
comment 193 

example 193 
model description 192 
model equations 190-1 
nomenclature 191 
particular solutions 192 
purpose of the model 190 
restrictions 193 

model of electronic excitation exchange 
(E.2) 101-3 

assumptions 102 
comments 103 
description of coefficients and 

parameters 102 
error of the model 103 
kinetic equations 102 
nomenclature 102 
purpose of the model 101 
restrictions 102 
typical values and examples 103 

model of gas heating in a plasma (P4) 197— 
201 

assumptions 197 
comments 201 
example 200 
model description 198 
model equations 197 
nomenclature 197-8 
particular solutions 199 
purpose of model 197 
restrictions 200 

model of isothermal reaction at constant 
density (C.7) 157-9 

assumptions 157 
comments 159 
description of coefficients and 

parameters 158 
example 158 
features of the model 158 
nomenclature 157 
purpose of the model 157 
restrictions 157 
set of equations of the model 157 

model of kinetics for electrons and positive 
and negative ions (P. 8) 214—17 

assumptions 214 
comments 217 
example 217 
model description 215 
model equations 214 
nomenclature 214-15 
particular solutions 216 
purpose of the model 214 
restrictions 217 
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specific model representation 215-16 
model of local electron energy balance (P.l) 

185-90 
assumptions 185 
comments 190 
example 189-90 
model description 187-8 
model equations 185 
nomenclature 186 
particular solutions 188-9 
purpose of the model 185 
restrictions 189 

model of medium 4 
model of nonequilibrium ionization (R5) 

201-5 
assumptions 201 
comments 205 
example 205 
model description 202-3 
model equation 201-2 
nomenclature 202 
particular solutions 204-5 
purpose of the model 201 
restrictions 205 
specific model representation 203 

model of nonequilibrium steady ionization 
(P.6) 206-10 

assumptions 206 
comments 210 
examples 209-10 
model description 207 
model equation 206 
nomenclature 207 
particular solutions 208-9 
purpose of the model 206 
restrictions 209 
specific model representation 207-8 

model of photochemical polymerization 
wave (E.4) 106-8 

assumptions 107 
comments 108 
description of coefficients and 

parameters 108 
error of the model 108 
kinetic equations 107 
nomenclature 107 
purpose of model 106 
restrictions 107 
typical values and examples 108 

model of plug flow reactor (CIO) 163-6 
assumptions 164 
comments 165-6 
description of coefficients and 

parameters 164 
example 165 
features of the model 164-5 
nomenclature 164 
purpose of the model 163 
restrictions 164 
set of equations of the model 164 

model of recombination and relaxation of 
highly excited atoms induced by 
collisions with electrons and by 
resonant deactivation by neutral 
particles (P. 11) 228-32 

approximate solution for the 
recombination flux 231 

assumptions 228 
comment 232 
example 232 
general and particular solutions 230-1 
model description 230 
model equations 228 
nomenclature 229-30 
purpose of the model 228 
restrictions 232 
specific model representation 231 

model of recombination-controlled and 
diffusion-controlled plasma decay 
(P.7) 210-13 

assumptions 210 
comments 213 
example 213 
model description 211-12 
model equation 210 
nomenclature 211 
particular solutions 212 
purpose of the model 210 
restrictions 213 
specific model representation 211-12 

molar fraction 284 
molar-mass concentration of components 

127 
molar specific heat 277 
molar-volume concentration of 

components 127, 141 
Monte-Carlo method 5, 72 
multicomponent system, virial equation of 

state 299 

nonequilibrium ionization (P.5) 201-5 
nonequilibrium state, definition 252 
nonequilibrium steady ionization (P.6) 206-

10 
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nonlinear thermodynamics of irreversible 
processes 289-90 

nonMaxwellian distribution 183 
normalized velocity distribution 12 

Onsager-Casimir relations 288 
oscillatory chemical reactions 142 
oxygen-iodine medium 103-6 

parallel reactions 133-4 
partial (incomplete) thermodynamic 

equilibrium, definition 252 
particles 

composition 2-4 
equilibrium distributions of 5 
structureless 2 
temperature of different degrees of 

freedom of 6 
partition function 270-2, 277 
perpetuum mobile 256 
photochemical equivalence law 136 
photochemical polymerization wave see 

model of photochemical 
polymerization wave (E.4) 

photochemical reactions 136-7 
photochemical smog 140 
photodissociation of hydrogen peroxide 

139 
photolysis 137 
physical model 4 
plasma 

definitions and criteria 1, 179-83 
gas heating in see model of gas heating 

in a plasma (P.4) 
relaxation processes 5-7 
thermally equilibrium or nonequilibrium 

1 
thermodynamics of see thermodynamics 
two-temperature 182-3 

plasmachemical reactions 3 
plug flow reactor (CIO) 163-6 
plug flow regime 156 
Polanyi-Woodall model 24 
polyatomic molecules see Vibrational 

(energy) relaxation 
polytropic process, definition 253 
Prigogine theorem 288-9 
principle of additivity 253 

quantum photochemical yield 137 
quasi-static process, definition 252 

radiation yield 140 
radiative-chemical reactions see kinetic 

model of radiative-chemical reactions 
(C.5) 

rate-of-production analysis 171 
Rayleigh gas 14, 25, 27, 32-3 

kinetic equations 13 
relaxation equations 15 
restrictions (T.2) 13 
translational relaxation in (T.2) 12-16 

reactors 156-7 
Redlich-Qwong equation 301 
relaxation equations, Rayleigh gas 15 
relaxation process 

definition 5 
kinetic equations in description of 7 
population density distribution 24 
simplified methods for description of 6 
see also electronic relaxation; rotational 

energy relaxation model; rotational 
relaxation; translational relaxation; 
vibrational energy relaxation; 
vibrational relaxation 

relaxation time 6 
hierarchy of 6 

reversible process, definition 252 
reversible reaction, equilibrium constant for 

129 
Riemann function 230 
rotational energy relaxation model (R.4) 

30-4 
assumptions 30 
comments 34 
description of coefficients and 

parameters 32-3 
example 33 
general and particular solutions 33 
kinetic equation 31 
model features 33 
nomenclature 31 
purpose of the model 30 
restrictions 31 

rotational partition functions 270-1 
rotational relaxation 2 

diffusion approximation for (R.2) 25-9 
R models 21-35 
state-to-state kinetic model (R.1) 22-5 

assumptions 22 
comments 25 
description of coefficients and 

parameters 23 
example 24 
general and particular solutions 24 
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kinetic equations 23 
model features 24 
nomenclature 23 
purpose of the model 22 
restrictions 22 

Rydberg electrons 229 

secondary photochemical processes 137 
Semenov's kinetic model of chain reactions 

(C.6) 148-53 
assumptions 148-9 
behavior of active centers 

in chain reactions 151 
in nonchain reactions 150-1 

branched chain reactions 151-2 
comments 152 
decay of active centers 151 
description of coefficients and 

parameters 149-50 
example 152 
features of the model 150 
increase in number of active centers 151 
nomenclature 149 
nonstationary regime of branched chain 

reactions 152 
purpose of the model 148 
restrictions 149-50 
stationary regime of branched chain 

reactions 152 
three-stage scheme and kinetic equations 

149 
sensitivity analysis 171 
simple process, definition 3 
specific heat 280-2 
specific heat ratio 273, 282 
speed of sound in chemically reacting gas 

283 
spontaneous ignition 155 
state-specific kinetics 6 
state-to-state kinetics 6 
statistical integrals 270-2 
steady (stationary) nonequilibrium state of 

medium 1 
stoichiometric coefficients 117 
stoichiometric conservation laws 120 
stoichiometric equation 117 

of complex reaction 119 
stoichiometric matrix 118 
stoichiometric mixture 120 
strong-collision model (R.3) 29-30 

assumptions 29 
comments 30 

description of coefficients and 
parameters 30 

example 30 
general and particular solutions 30 
kinetic equations 29 
model features 30 
nomenclature 29-30 
purpose of the model 29 
restrictions 29 

strong-collision model (T.3) 16-18 
assumptions 16 
comments 17 
description of coefficients and 

parameters 17 
example 17 
general and particular solutions 17 
kinetic equation 16 
model features 17 
nomenclature 17 
purpose of the model 16 
restrictions 16 

structureless particles 2 
system of balance equations for excited 

atoms: relaxation of excited states 
(R9) 217-21 

assumptions 217 
comments 221 
example 221 
model description 219 
model equations 218 
nomenclature 218-19 
particular solutions 220 
purpose of the model 217 
restrictions 221 
specific model representation 219-20 

temperature of different degrees of freedom 
of particles 6 

thermal equation of state 295 
thermal equilibrium 266 
thermodynamic equilibrium 265-7 

definition 252 
thermodynamic forces in thermodynamics 

of irreversible processes 291-3 
thermodynamic parameters in chemically 

reacting media 274-85 
thermodynamic potential 256-65 

open system 262-3 
thermodynamic processes 

classification 252-3 
definition 252 
specific physical conditions 253 
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thermodynamic quantities 253 
and Gibbs distributions 267-70 
summary 272-4 

thermodynamic relations 258-62, 264 
thermodynamic stability 265-7 
thermodynamic state, definition 252 
thermodynamic systems 

definition 251 
features 251-2 
types 254 

thermodynamics 251-94 
basic concepts 251-4 
definition 251 
First law of 255 
irreversible processes 285-93 

fluxes and thermodynamic forces in 
291-3 

postulates of 286-9 
laws of 254-6 
nonequilibrium 285 
Second law of 255-6 
Third law of 256 
Zeroth law of 254-5 

total partition function 272 
translational energy distribution function 

14 
translational relaxation 2 

in Lorentz and Rayleigh gases (T.2) 12-
16 

assumptions 13 
comments 16 
description of coefficients and 

parameters 14 
example 16 
general and particular solutions 15 
model features 14 
nomenclature 14 
purpose of the model 12 
restrictions 13 

in single- and two-component gases (T.l) 
9-12 

assumptions 9 
comments 12 
description of coefficients and 

parameters 11 
example 12 
general and particular solutions 11 
model features 11 
nomenclature 10 
purpose of the model 9 
restrictions 9 

T models 9-19 
Treanor distribution 47 

two-temperature plasma 182-3 

van der Waals equation of state 299-300 
variables in mathematical model 5 
vector of charges of components 119 
vector of chemical components 118 
vector of molar masses of components 118 
vibrational energy relaxation in diatomic 

molecules: mode kinetics model (V7) 
75-81 

assumptions 76 
comments 81 
description of coefficients and 

parameters 78-9 
example 80-1 
features of the model 97-80 
general and particular solutions 80 
nomenclature 77-8 
purpose of the model 75 
relaxation equations 76 
restrictions 76 

Vibrational energy relaxation in polyatomic 
molecules: mode kinetics model (V8) 
81-8 

assumptions 82 
comments 88 
description of coefficients and 

parameters 85 
example 85-6 
features of the model 85-6 
nomenclature 84-5 
purpose of the model 81 
relaxation equations 82-4 
restrictions 82 

vibrational partition functions 271 
vibrational relaxation 2 

V models 37-96 
vibrational relaxation in binary mixture of 

diatomic molecules: state-specific 
kinetic model (V3) 49-58 

assumptions 49 
basic kinetic equations 50 
comments 57 
description of coefficients and 

parameters 52-3 
example 57 
features of the model 53 
general and particular solutions 54-6 
kinetic equations for molecules as 

harmonic oscillators 50-1 
nomenclature 51-2 
purpose of the model 49 
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restrictions 49 
Vibrational relaxation in chemically 

reacting gas: mode kinetics model 
(V9) 88-93 

assumptions 88 
comments 93 
description of coefficients and 

parameters 90-1 
example 92 
features of the model 91-2 
general and particular solutions 92 
nomenclature 89-90 
purpose of the model 88 
relaxation equations 89 
restrictions 89 

vibrational relaxation in chemically 
reacting gas: state-specific kinetic 
model (V6) 67-75 

assumptions 67 
basic kinetic equations 68 
coefficients and parameters 71 
comments 75 
example 74-5 
features of the model 73-4 
general and particular solutions 74 
kinetic equations for particular types of 

reactions 68-9 
nomenclature 69-71 
purpose of the model 67 
restrictions 68 

vibrational relaxation in diatomic 
molecules: as a low-concentration 
impurity in a gas of structureless 
particles: state-specific kinetic model 
(VI) 38-43 

assumptions 38 
basic kinetic equations 39 
comments 42-3 
description of coefficients and 

parameters 39 
example 42 
general and particular solutions 41 
kinetic equations for molecules as 

harmonic oscillators 39 
model features 40 
nomenclature 39 
purpose of the model 38 
restrictions 38 

vibrational relaxation in diatomic 
molecules: diffusion approximation 
(V4) 58-61 

assumptions 58 
basic kinetic equations 58-9 
comments 61 
description of coefficients and 

parameters 59 
example 60-1 
features of the model 59-60 
general and particular solutions 60 
nomenclature 59 
purpose of the model 58 
restrictions 58 

Vibrational relaxation in gas of polyatomic 
molecules: state-specific kinetic model 
(V5) 61-7 

assumptions 61-2 
basic kinetic equations 62 
comments 67 
description of coefficients and 

parameters 64-5 
example 65-7 
features of the model 65 
general and particular solutions 65 
nomenclature 63^4 
purpose of the model 61 
restrictions 62 

vibrational relaxation in single-component 
gas of diatomic molecules: state-
specific kinetic model (V2) 43-9 

assumptions 43 
basic kinetic equations 43 
comments 48-9 
description of coefficients and 

parameters 44 
example 48 
features of the model 45 
general and particular solutions 45-8 
kinetic equations for molecules as 

harmonic oscillators 44 
nomenclature 44 
purpose of the model 43 
restrictions 43 

virial coefficients 298 
virial equation of state 

for multicomponent system 299 
for nonideal gas 298-302 

well-stirred reactor 166-8 

Zel'dovich mechanism 132 
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