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Preface

The theories described in the first part of this book summarize the research
work that in past 30-40 years, from different roots and with different aims,
has tried to overcome the boundaries of the classical theory of probability,
both in its objectivist interpretation (relative frequencies of expected
events) and in its subjective, Bayesian or behavioral view. Many compel-
ling and competitive mathematical objects have been proposed in different
areas (robust statistical methods, mathematical logic, artificial intelligence,
generalized information theory). For example, fuzzy sets, bodies of evi-
dence, Choquet capacities, imprecise previsions, possibility distributions,
and sets of desirable gambles.

Many of these new ideas have been tentatively applied in different dis-
ciplines to model the inherent uncertainty in predicting a system’s behavior
or in back analyzing or identifying a system’s behavior in order to obtain
parameters of interest (econometric measures, medical diagnosis, ...). In
the early to mid-1990s, the authors turned to random sets as a way to for-
malize uncertainty in civil engineering.

It is far from the intended mission of this book to be an all comprehen-
sive presentation of the subject. For an updated and clear synthesis, the in-
terested reader could for example refer to (Klir 2005). The particular point
of view of the authors is centered on the applications to civil engineering
problems and essentially on the mathematical theories that can be referred
to the general idea of a convex set of probability distributions describing
the input data and/or the final response of systems. In this respect, the the-
ory of random sets has been adopted as the most appropriate and relatively
simple model in many typical problems. However, the authors have tried
to elucidate its connections to the more general theory of imprecise prob-
abilities. If choosing the theory of random sets may lead to some loss of
generality, it will, on the other hand, allow for a self-contained selection of
the arguments and a more unified presentation of the theoretical contents
and algorithms.
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Finally, it will be shown that in some (or all) cases the final engineering
decisions should be guided by some subjective judgment in order to obtain
a reasonable compromise between different contrasting objectives (for ex-
ample safety and economy) or to take into account qualitative factors.
Therefore, some formal rules of approximate reasoning or multi-valued
logic will be described and implemented in the applications. These rules
cannot be confined within the boundaries of a probabilistic theory, albeit
extended as indicated above.

Subjects Covered: Within the context of civil engineering, the first chap-
ter provides motivation for the introduction of more general theories of un-
certainty than the classical theory of probability, whose basic definitions
and concepts (a la Kolmogorov) are recalled in the second chapter that also
establishes the nomenclature and notation for the remainder of the book.
Chapter 3 is the main point of departure for this book, and presents the
theory of random sets for one uncertain variable together with its links to
the theory of fuzzy sets, evidence theory, theory of capacities, and impre-
cise probabilities. Chapter 4 expands the treatment to two or more vari-
ables (random relations), whereas the inclusion between random sets (or
relations) is covered in Chapter 5 together with mappings of random sets
and monotonicity of operations on random sets. The book concludes with
Chapter 6, which deals with approximate reasoning techniques. Chapters 3
through 5 should be read sequentially. Chapter 6 may be read after reading
Chapter 3.

Level and Background: The book is written at the beginning graduate
level with the engineering student and practitioner in mind. As a conse-
quence, each definition, concept or algorithm is followed by examples
solved in detail, and cross-references have been introduced to link different
sections of the book. Mathematicians will find excellent presentations in
the books by Molchanov (2005), and Nguyen (2006) where links to the ini-
tial stochastic geometry pathway of Matheron (1975) is recalled and ran-
dom sets are studied as stochastic models.
The authors have equally contributed to the book.
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Chapter 1
Motivation

Before embarking on studying the following chapters, motivations are pro-
vided as to why random sets are useful to formalize uncertainty in civil en-
gineering. Pros and cons in using the theory of random sets are contrasted to
more familiar theories such as, for example, the theory of random variables.

1.1 Why Use Random Sets?

1.1.1 Histograms

Consider the case where statistical information on a quantity of interest is pre-
sented in histogram form. For example, Figure 1.1 shows the annual rainfall
intensity at a certain location. It tells us that the frequency that an annual rain-
fall intensity be in the range between 38 and 42 inches is about 10%. One can
also calculate the frequency that an annual rainfall intensity be in the range be-
tween 38 and 46 inches: this is done by summing up the frequencies relevant
to the [38, 42] in. (m;) and [42, 46] in. (m,) intervals, i.e. m; + my = 10 + 24 =
34%. But, what if one wants to know the frequency in the 40 to 48 in. range?

A histogram gives the frequency that an event be anywhere in a chosen
bin, even if one does not know exactly where in that bin. Call m; the fre-
quency in [46, 50] in.. Given the available information, one may just con-
sider two extreme cases. In the first extreme case, one might think that
events were actually recorded only in the [38, 40] in. range for the first bin,
and in the [48, 50] in. range for the third bin. As for the second bin, one
does not care where the events were recorded because the [42, 46] in.
range falls entirely within the [40, 48] range. In this case, the frequency in
the [40, 48] in. range is equal to my, i.e. 24%.

In the second extreme case, one might think that events were actually
recorded only in the [40, 42] in. range for the first bin, and in [46, 48] in.
for the third bin. The frequency in the [40, 48] in. range is thus equal to m
+my+m; =10+ 24 + 18 = 52 %. As a result, one can only say that the
frequency of the [40, 48] in. range is between 24% and 52%.
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The reader has just encountered the first example of a random set, i.e. a
collection of intervals (histogram bins) with weights (frequencies) attached
to them. The reader has also performed the first example of calculation of
upper and lower bounds on the frequency of an event of interest.

Fig. 1.1 Histogram of rainfall L
intensity (Esopus Creek Water- 20l
shed, NY, 1918-1946), (modi-
fied after Ang and Tang (1975), g
with permission) S 20k
3
]
© of-
&
Y38 a2 46 50 54 58 62 66 70

Annual Rainfall Intensity, in.

1.1.2 Empirical Limitations in Data Gathering

1.1.2.1 Measurements

Limitations in time and funds available for data gathering may lead to im-
precise or incomplete measurements. Consider, for example, the measure-
ment of the uniaxial compressive strength (UCS) of an intact rock speci-
men using the Schmidt hammer. The two quantities are correlated by the
chart in Figure 1.2 presented in the Suggested Methods of the International
Society of Rock Mechanics (ISRM 1978) and by Harrison and Hudson
(1997). Since a single hammer reading yields an interval of UCS values, a
set of readings yields a set of intervals, each with its own frequency. This
set of intervals, each with its own frequency, is a random set.

With a large enough budget and timeframe, laboratory tests may be car-
ried out that do not exhibit this imprecision. However, the low cost and
short duration of Schmidt hammer measurements allow one to take many
more readings than lab tests and thus obtain a more representative sample.

Additionally, in the presence of inhomogeneous intact rock, repeated
Schmidt hammer readings are invaluable to determine the extents of a
homogeneous zone. Finally, regardless of the available budget and time-
frame, the Schmidt hammer is the only piece of equipment that allows
one to measure the joint compression strength (JCS) in discontinuities,
especially if weathered. The JCS is then used to evaluate the shear
strength of rock discontinuities (Barton 1976).
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Examples of correlations are replete in geotechnical engineering practice,
especially when using the results of in situ tests. Figure 1.3 and Figure 1.4
show two examples: one for deformation parameters to be used in consoli-
dation settlement calculations, and one for friction angle to be used in sta-
bility calculations, respectively. Even in this case, laboratory tests may
yield more precise results, but one needs to account for disturbance of lab
specimens. Additionally, as occurred in rock, the number of lab tests is al-
ways small when compared to the large number of data points obtainable

Why Use Random Sets?

using correlations.
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Fig. 1.2. Correlation between Schmidt hammer rebound number (r) and uniaxial
compressive strength for different rock densities, (after Hudson and Harrison (1997),

Schmidt hammer (type L) rebound number

with permission)
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Compression index, C,

Comments

Source/Reference

C. = 0.009(w, — 10) (*=30% error)
C, = 0.37(e, + 0.003w, + 0.0004wy — 0.34)

24
C. = 01416:(““)
Ydry
C —
C. = ~0.0997 + 0.009w, + 0.00141, +
0.0036wy + 0.1165¢, + 0.0025C»
C. = 0.329[wxG;, — 0.027wp +
0.013315(1.192 + Cp/l5)
. = 0.046 + 0.0104/,
"+ = 0.00234w,G,

o
:
Z

an

1.15(e, — 0.35)
= 0.009wy + 0.005w,
—0.156 + 0.411e, + 0.00058w,

S¥o¥
It

-

Clays of moderate S,
678 data points

All clays
109 data points

109 data points

All inorganic clays
Best for Ip < 50%
All inorganic clays

All clays
All clays
72 data points

Terzaghi and Peck (1967)

Azzouz et al. (1976)

Rendon-Herrero (1983)

Koppula (1981)
Koppula (1981)

Carrier (1985)
Nakase et al. (1988)

Nagaraj and Srinivasa Murthy

(19835, 1986)
Nishida (1956)
Koppula (1986)

Al-Khafaji and Andersland

(1992)

Recompression index, C,

C, = 0.000463w, G,

C, = 0.00194(, — 4.6)
= 0.05100.1C,

Best for Ip < 50%
In desperation

Nagaraj and Srinivasa Murthy

(1985)
Nakase et al. (1988)

Secondary compression index, C,

C, = 0.00168 + 0.00033/,
= 0.0001wy

C, = 0.032C.
= 0.06 10 0.07C,
= 0.015 t0 0.03C,

0.025 < C, < 0.1
Peats and organic soil
Sandy clays

Nakase et al. (1988)

NAFAC DM7.1 p. 7.1-237
Mesri and Godlewski (1977)

Mesri (1986)
Mesti et al. (1990)

Notes: 1. Use wy, wp, wy, Ip as percent, not decimal.

2. One may compute the in situ void ratio as e, = wxG; if § — 100 percent.

3. C, = percent clay (usually material finer than 0.002 mm).
4. Equations that use e,, wy, and wy, are for both normally and overconsolidated soils.

Fig. 1.3 Correlation equations for the compression and recompression index of
soils, (after Bowles (1996), with permission)
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Fig. 1.4 Correlations between cone penetrometer data and friction angle of soils.
V’y = q'/p’o, Where q’. = (cone resistance — pore water pressure); p’o = initial
vertical effective stress, (after Bowles (1996), with permission)

1.1.2.2 Experts

Another empirical limitation occurs when eliciting information from ex-
perts. In typical risk assessment procedures (e.g., those adopted by the US
Bureau of Reclamation and by the International Tunneling Association),
experts convey their information on an event of interest (e.g., failure of a
dam component) through linguistic terms, which are then converted into
numerical probability intervals as per Figure 1.5. Notice, however, the very
large discrepancy between the values in the two tables in Figure 1.5; this
discrepancy may be explained by considering that the values in Figure Sa
refer to the construction period, whereas the values in Figure 5b are not
referred to a time interval. By polling a group of experts, a set of probabil-
ity intervals will be collected. This information can be converted into a
random set.
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Expression Single-number probability Specified range, %
equivalent, % {median upper and lower
(median of responses) bounds)
Almost impossible 2 O0to5
Very improbable 5 1to 15
Very unlikely 10 2t0 15
Very low chance 10 5t015
Improbable 15 5t020
Unlikely 15 100 25
Low chance 20 10 to 20
Possible 40 40 to 70
Medium chance 50 40 to 60
Even chance 50 45t0 55
Probable 70 60 to 75
Likely 70 65 to 85
Very possible 80 70 to 87.5
Very probable 80 75t0 92
High chance 80 801092
Very likely 85 75090
Very high chance 90 8510 99
Almost certain 90 90 to 99.5
; a)

Frequency Interval Central Descriptive

class value frequency class

5 >0.3 1 Very likely

4 0.03 t0 0.3 0.1 Likely

3 0.003 to 0.03 0.01 Occasional

2 0.0003 to 0.003 0.001 Unlikely

1 <0.0003 0.0001 Very unlikely

The central value represents the logarithmic mean value of the
given interval.
b)
Fig. 1.5 a) Numerical responses and ranges for 18 probability expressions (after
Vick (1999), and Reagan et al. (1989)); b) frequency of occurrence during a
tunnel’s construction period, (after Eskesen et al. (2004), with permission)

1.1.3 Modeling

1.1.3.1 Different Competing Models

In order to gain confidence in their predictive ability, engineers instinctively
use two or more models of the same engineering system. In the simplest
case, these models may simply be two different analytical formulations, but
in the more complex cases they can be completely independent studies.

As a first example, consider the calculation of the bearing capacity for a
footing. Several bearing capacity models have been proposed in the litera-
ture, and Figure 1—6 shows the comparison between the set of values cal-
culated using a set of five different models and relevant test results. When
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a set of models are used, a set of results (bearing capacity values) is ob-
tained for any vector of input values (e.g., qu € {9.4,8.2,7.2,8.1,14.0}

kg/cm® for Test 1 in Figure 1.6). If the vector of input values, v*, is not de-
terministic, but has a probability of occurrence equal to, say, 30%, then the
set of bearing capacity values obtained using v* has probability equal to
30%. Proceeding in this fashion for all possible input vectors, one obtains
sets of bearing capacity values with a probability mass attached to each set
of bearing capacity values, i.e., a random set.

Test

Bearing-capacity

method 1 2 3 4 5 6 7 8
D=00m 05 0.5 0.5 0.4 05 0.0 03
B=05m 05 0.5 1.0 0.71 071 0.71 0.71
L=20m 2.0 2.0 1.0 0.71 071 071 0.71
y = 15.69 kN/m® 16.38 17.06 17.06 17.65 17.65 17.06 17.06
¢ = 37°(38.5%) 35.5(36.25) 38.5(40.75) 385 22 25 20 20
¢ = 6.37kPa 3.92 78 7.8 12.75 14.7 9.8 9.8
Milovié (tests) gun, kgfem? = 4.1 55 2.2 2.6
Muhs (tests) qui = 10.8 kg/om? 122 242 33.0
Terzaghi g = 9.4* 9.2 229 19.7 4.3* 6.5* 2.5 2.9*
Meyerhof 8.2* 10.3 264 28.4 4.8 76 23 30
Hansen 72 9.8 23.7* 234 50 8.0 2.2* 3.1
Vesié 8.1 10.4* 25.1 24.7 5.1 82 2.3 32
Balla 14.0 15.3 35.8 33.0* 6.0 92 26 38

*After Milovic (1965) but all methods recomputed by author and Vesi¢ added.

Notes:

1. ¢ = triaxial value () = value adjusted as ¢p; = 1.5¢y — 17 (Eq. 2-57).
Values to nearest 0.1.

All values computed using computer program B-31 with subroutines for each method. Values all use ¢y for L/B > 1.

2.

3. v, c converted from given units to above values.

4.

5. * = best — Terzaghi = 4; Hansen = 2; Vesi¢ and Balla = 1 each.

Fig. 1.6 Comparison of bearing capacities computed using different methods with
experimental values, (after Bowles (1996), with permission)

1.1.3.2 Upper and Lower Bounds in Plastic Limit Analysis

For elasto-perfectly plastic solids with no dilatancy, limit analysis yields
static (lower) and kinematic (upper) load multipliers. Greenberg-Prager
theorem then assures us that the load multiplier that causes failure is the
largest static multiplier and the smallest kinematic multiplier. Oftentimes, it
is not possible to calculate the largest static multiplier and the smallest ki-
nematic multiplier, and thus the engineer is left with upper and lower bounds
on the load multiplier. Consider, for example, the pressure g that must be
exerted on a tunnel’s face to ensure its stability. In an elasto-perfectly plastic
ground with Mohr-Coulomb failure criterion (cohesion = ¢, and friction
angle = @), one has:

q=Q7,-}/-a+QS-qs+(QS—l)-c-ctg(¢) (1.1)
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Fig. 1.7 Coefficients Q, obtained using ~ * — , . T
limit analysis, (after Ribacchi (1993), 7 MUHLHAUS ° z’?i:g&
with permission) 1.4 L _
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where: Q, = coefficient from limit analysis, y= unit weight of the ground,
a = tunnel radius, Q; = (a/H)N_l ,N= (l+sing)/(1-sing), H = tunnel
cover, ¢, = pressure on ground surface.

Figure 1.7 shows coefficients Q, obtained using kinematic analysis
(Q,), and coefficients Q, obtained using static analysis (Q,) versus the
friction angle. The different solutions for Q, originate from different as-
sumptions on the equilibrated stress distribution at failure.

If the friction angle is not known deterministically, but one knows that
the probability of ¢* is, say, 60%, then one can calculate upper and lower
bounds (i.e., an interval) on the face pressure g*. This pressure will have
probability equal to 60%. By calculating the face pressure intervals for all
possible values of the friction angle, one obtains a collection of intervals,
each one with its own probability, i.e. a random set.

1.1.3.3 Discretization Errors

One of the first uses of digital computers was to approximately simulate
physical systems by numerically solving differential equations. This ap-
proach leads to numerical computation that is at least three levels removed
from the physical world represented by those differential equations:
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1) One models a physical phenomenon using a differential equation (or a
system of differential equations) or a variational principle.

2) Then, one obtains the algebraic forms of the differential equation(s) or
variational principle by forcing them into the mold of discrete time and
space; and

3) Finally, in order to commit those algebraic forms to algorithms, one
projects real-valued variables onto finite computer words, thus intro-
ducing round-off during computation and truncation.

Errors included in Steps 1 through 3 are to be addressed during verification
and validation of numerical models (Oberkampf et al., 2003). A large body
of literature has been devoted to estimating the discretization errors intro-
duced in Step 2. For example, Dow (1998), Babuska and Strouboulis
(2001), Oden et al. (2005), and an issue of the journal Computer Methods
in Applied Mechanics and Engineering (2006) give an overview of results
in the finite element discretization method. Peraire and coworkers have
developed algorithms for calculating guaranteed bounds on these errors
(Sauer-Budge et al., 2004; Xuan et al., 2006); however, their calculations
are performed in floating-point arithmetic. Figure 1.8 illustrates the discre-
tization error bounds for the Laplace equation in an L-shaped domain: the
finite element solution is comprised in the error interval, whose width de-
creases quadratically with the mesh size.

Figure 1.9 shows bounds on displacements and tractions for a notched
specimen: although convergence is not quadratic, it is still superlinear.

Consider the displacement in Figure 1.9c and fix the mesh size, h: if the
vector of input values, v*, is not deterministic, but has a probability of oc-
currence equal to, say, 70%, then the interval of displacement values ob-
tained using v* has probability equal to 70%. Proceeding in this fashion
for all possible input vectors, one obtains a collection of displacement in-
tervals with a probability mass attached to each displacement interval, i.e.,
a random set.

Errors involved in Step 3 have been vigorously attacked by the “reliable
computing” community using interval analysis started by Warmus (1956)
and Moore (1966); the reader is referred to the journal Reliable Computing
(formerly Interval Computations) and to the web site (www.cs.utep.edu/
interval-comp/main.html) for up-to-date information. One can repeat the
same reasoning above to obtain a random set for any quantity of interest.
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Fig. 1.8 Error bounds on the discretized solution of the Laplace equation, (after
Sauer-Budge et al. (2004)). Copyright ©2004 Society for Industrial and Applied
Mathematics. Reprinted with permission. All rights reserved
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Fig. 1.9 a) Model problem and initial mesh; b) average normal displacement over
the boundary T'y; ¢) integrated normal component of the traction in I'y, (after Pares
et al. (2006), with permission). Copyright ©2004 Society for Industrial and Ap-
plied Mathematics. Reprinted with permission. All rights reserved
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1.2 Imprecise Information Cannot Give Precise Conclusions

The most attractive advantage in using the theories described in this book is
the possibility of taking into account the available information about the en-
gineering systems to be evaluated, without any other unjustified hypothesis.

For example, if some data obtained through imprecise instruments are
given (and in fact really every measurement has a bounded precision), it is
not reasonable to force the interval of confidence to a single central value;
or in the case of a sample of measurements, it is not reasonable to force the
statistics of intervals to a conventional histogram or finally to a precise
probability distribution.

In other cases, the available information could consist of a very poor es-
timation of some parameters of the unknown probabilistic distribution: for
example the mean value or an interval containing the mean value. Some-
times this information derives from subjective judgment or from opinions
of experts, and is therefore characterized by the unavoidable uncertainty
inherent in every human assessment.

Forcing these opinions to a particular probabilistic distribution (for ex-
ample, a lognormal distribution) with precise parameters seems to be un-
justified; but, on the contrary, it is unreasonable to disregard all sources of
information that cannot be forced to a precise probabilistic distribution in
the analysis or in decision-making.

Even if one assumes that precise distributions can be attached to each
random variable in the probabilistic approach to engineering problems,
frequently very little evidence is available about the correlation between
these random variables. Without any well-grounded motivation, inde-
pendence is oftentimes assumed in order to calculate the joint distribu-
tion. But in many cases this hypothesis seems to be unrealistic, or at
least not justified. This assumption, however, in many cases strongly in-
fluences the final conclusions of the analysis, and sometimes it is not on
the safe side. For example, consider the load, L, on a ground-floor col-
umn of a multistory building (Ang and Tang 1975, page 195). The load
contribution from each floor to L is an increasing function of the corre-
lation among floor loads; therefore, the assumption of statistical inde-
pendence would yield results on the unsafe side with respect to any
other hypothesis of positive correlation.

The unrealistic character of many assumptions supporting most applica-
tions of the classical probabilistic methods to civil engineering systems is
particularly evident when one then considers the computational effort re-
quired to evaluate the performance or the safety of these systems in com-
plex real-world applications. Closed-form solutions for propagating the
probabilistic information from the input random variables to the system re-
sponse are rarely available. Only numerical solutions (e.g., Monte Carlo
simulations of large-scale finite element models) can then be used: the
computational time and effort necessary to obtain such an approximation
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could be dramatically large, but at the end the conclusion may be of ques-
tionable validity because of the initial (unwittinly added) assumptions on
the probabilistic information.

A further limitation of the probabilistic approach sometimes appears
when model uncertainties are combined with a precise joint distribution
for the random variables of the considered engineering system. Recall, for
example, the bounding intervals in the evaluation of collapse loading of
elastic-perfectly plastic structures using limit analysis (Figure 1.7), or the
unavoidable errors when a continuous model is forced to a discrete one in
finite element procedures (Figure 1.8).

These problems appear when the deterministic modeling of a system’s
behavior yields a multi-valued mapping from the space of the input vari-
ables to the space of the response output variables. Validation of the ob-
tained results and calibration of a reasonable compromise between com-
petitive models of different complexity cannot be performed without
taking into account all the available information and the actual evidence
required to support design choices or decision-making in the management
of civil infrastructures.
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1.3 Describing Void Information

The power of the approach considered in this book is also apparent when
considering cases of total lack of information. In this context, the probabil-
istic approach seems to require or suggest the selection of a particular pre-
cise probabilistic distribution, for example based on the so called “Princi-
ple of Indifference” or “Maximum Entropy”.

The literature on the paradoxical conclusions that can derive from this
choice is very rich. Here, we discuss a simple way to gain money using the
“Principle of Indifference” (Ben Haim 2004).

Two envelopes containing a positive amount of money are offered for
your choice and you know only that one envelope contains twice as much
money as the other envelope. You choose one envelope and find $ 100 in-
side. Now, you are given the option to exchange the envelope for the other,
which could contain either $ 50 or $ 200. On the basis of the “Principle of
Indifference”, you could assign equal probabilities (1/2) to both possible
results and try to make the best decision by evaluating the expected reward:

E(Reward)=50-%+200~%=125$ (1.2)

The expected percentage increase of the reward (25%) does not depend on
the value ($ 100) that you have found in the first envelope: therefore, with-
out opening the first envelope, you could decide to exchange it for the sec-
ond, and so augment on average the reward by 25%. You can also try to
gain more money exchanging the envelopes again, again and again...

Considering the same story within the optics of random sets, you can
only admit that, on the basis of the available information, the overall prob-
ability of the two alternative rewards ($ 200 or $ 50) is exactly equal to 1.
Therefore, you have a histogram with one bin covering the two rewards,
and the probability of each reward is between O and 1. The lower and
upper bounds of the expected reward are:

E(Reward) =50-1+200-0=50$ (1.3)

E(Reward) =50-0+200-1= 2003 (1.4)

The bounds contain the previous result, but now the situation is clear: the
choice is in your hands!
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1.4 Bounding Uncertainty

Recalling Hamlet’s words, a wise engineer, and perhaps any reasonable
person, should be suspicious of a perfectly precise proposition about future
events:

“There are more things in heaven and hearth, Horatio, than are dreamt
of in your philosophy”

The authors do not think that random sets or imprecise probabilities could
help in solving this dramatic philosophical question. However, they sug-
gest that the frue solution does not exist, or, if it does, it can only be
bounded by incomplete or imprecise information through uncertain ma-
thematical and physical models.

Additionally, by knowing these bounds, the engineer may ascertain if
what he/she knows about the expected behavior of the system is enough to
make final decisions about the design, safety assessment or management of
the system. When the reply is affirmative, any further investigation is not
justified, or is only motivated by personal curiosity or higher engineering
fees!

On the contrary, when the reply is negative, new or more precise infor-
mation is necessary, or more sophisticated models should be employed to
narrow the bounds of the final evaluations.



Chapter 2
Review of Theory of Probability and Notation

The basic definitions of a probability space are briefly reviewed, thus in-
troducing the notation useful for the theoretical developments presented in
the book. Particular attention is given to continuous and discrete random
variables and to the concept of expectation of a random variable, defined
through both Lebesque and Stieltjes integrals. The theory is extended to
joint probability spaces and random vectors.

2.1 Probability Measures

The following is mainly taken from (Burrill 1972, Cariolaro and Pierobon
1992, Fetz and Oberguggenberger 2004, Papoulis and Pilai 2002); for ad-
ditional details, the reader is referred to (Halmos 1950, Kolmogorov 1956,
Logve 1977 and 1994,). Let S be any set, and let A indicate the comple-
ment of set A. A c-algebra S on S is a nonempty collection of subsets of X
such that the following conditions hold:

1. Se s.
2. Ae = A%€e S,
3. If {A'} is a sequence of elements of S, then Ul_Ai € S

If Cis any collection of subsets of S, then one can always find a ¢-algebra
containing C, namely the power set (set of all subsets) of S. By taking the
intersection of all c-algebras containing C, we obtain the smallest such o-
algebra. We call the smallest G-algebra containing C the o-algebra gener-
ated by C. On the set of real numbers, R, the G-algebra generated by C =
{(- oo, a]: a € R } is called the Borel oc-algebra, B, and contains all inter-
vals of R. If S is finite and IS is the cardinality, the G-algebra generated
by S is the power set of S, with cardinality 2.

A measurable space is a pair (S, ). Given a measurable space (S, S), a
probability measure, P, on §is a mapping S — [0, 1] such that:
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P(2)=0, P(s)=1, P(Ui A") =3, p(A)) @2.1)

whenever subsets A’ € § are disjoint.

A probability space is a triple (S, S, P). If S = {sl,. .., 8"} is finite, or more
generally {s',..., 5"} is a finite partition of S through the “singletons” or
“elementary events” s' (s’ " s’ =@ and U; s' = S), P on the c-algebra gener-
ated by C= {s',..., 5"} can be assigned by using the probability of elemen-
tary events, {s'}, P(s"):=P({s'}), which has to satisfy the two conditions:

P(5)>0, Z;P(s" ) =1 2.2)

Since elementary events are disjoint, the probability of 7' < S is calculated
using Eq. (2.1):

P(T) - P(UsfeT{si}) - ZSiETP({Si}) - zsieTP(si) (2.3)

A Borel measure is a probability measure on R such that its G-algebra con-
tains the Borel c-algebra, B. A point mass or Dirac measure at s° € S is the
measure, &, concentrated at s°, i.e. such that §(A) = 1 if s" € A and &(A) =
0ifs"¢ A, Ae &.

Let T* € S, and P(T *)>0. The conditional probability of T 'e§ condi-
tioned on 7? is defined as

P(T'1T? := P(T' n T*/P(T? (2.4)

Let P(T*>0 and P(T")>0. From Eq. 2.4): P(T' n T? = P(T'IT*) P(T*) =
P(TAT" P(T).
Thus (Bayes’ Theorem):

P(T''T?» =P(TAT" P(T" P(T? (2.5)

If the occurrence of 7' does not affect the probability of occurrence of 72,
the two sets (events) are said statistically independent.

Therefore: P(T '\”T* = P(T'") and P(T AT ") = P(T %); moreover from
eq. (2.4):

P(T' nT?=P(T" P(T? (2.6)

Note that alternatively Eq. (2.6) could be assumed as defining statistical in-
dependence, from which identities of conditional to unconconditional prob-
abilities follow.



2.1 Probability Measures 17

If subsets {Ti} are a partition of S, then for any subset 7, T=U;TN T,
and Eqgs. (2.1) and (2.4) give (Total Probability Theorem):

PN =%, PINT)=%,P(TIT) P(T 2.7

Egs. (2.5) and (2.7) define the Bayes’ rule for updating a probability space
(for example the probability of any singleton {s'}) observing the occurrence
of an event B, when the conditional probability P(BI{s'}) are known

)
> P(B1s7}) Porion (57) (2.8)

More generally the posterior updated probabilities can be calculated when
a likelihood function L(s") proportional to P(BI{s'}) is known for the ob-
served event B or also for the observation x on a sampling space X where
likelihood values proportional to conditional probabilities P(xls’) are
known:

Prosrerior (si)= P({si}lB) =

L(Si)PPRIOR(Si)

ZjL(sj)PPRIOR(Sj)

PPOSTERIOR(Si)ZP({si}lL)z (2.9)
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2.2 Random Variable

Given two measurable spaces (S}, S;) and (S,, S-), a function g : S; =5, is
measurable if, for every T € S5, A = g‘l(T) € 8. The particular case (S5, $>),
= (R, B) is of great relevance. Let (S, S, P) be a probability space; a real
function x : § — R, defined on S is a random variable on (S, S, P) if x(s)
is Borel-measurable, i.e. if, for every ae R, {s: x(s) < a}e S.

The (cumulative) distribution (CDF) of a random variable on (S, S, P) is the
function F,: R = [0, 1], at—> P({s:x(s) Sa}) ; the CDF allows one to cal-

culate the dependent probability P, that x be in any Borel set. A random vari-
able, x, is continuous if F, is continuous; its probability density (pdf) of x is

— dFX
" da
Otherwise, let B be the set of discontinuity points of x (they are either finite
or infinitely numerable) and let p.(a) := P({s: x(s) = a}) = F(a) - F\(a) >0
be the discontinuity jump at a€ B; if

2 pela)=1 @.11)

acB

Jx (2.10)

then x is a discrete random variable and p, is called the mass distribution;
P 1s not a probability measure, in fact it is not even defined on a G-algebra.
x is finite if B is finite: in this case, p, allows one to calculate the probabil-
ity of any subset of B using Eq. (2.1) in a way similar to the probability of
elementary events (Eq. (2.2)).

In many numerical engineering applications the space S could be a subset
or a partition of the real numbers R, and the probability P is defined through
the probability of elementary events (or singletons, P(s'):=P({s'}); hence, for
the discrete random variable defined by the identity x(s) = s, the mass distri-
bution equals the probabilities of the ordered elementary events. In many ex-
amples presented in the book this hypothesis is implicitly assumed.

In order to understand the concept of expectation E[x] of a random vari-
able x, one needs to introduce some more notions. For a continuous ran-
dom variable the expectation is defined by means a (Riemann) integral,
supposed absolutely convergent, of x multiplied by the density function f;:

Elx)=["af.(a)da 2.12)

This definition can be extended to discrete random variable by summation,
supposed absolutely convergent if |IBl = o, of x multiplied the mass
distribution p,:
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E[x]= Zapx (a) (2.13)
acB
In more general terms, the definition of expectation should be given
through the Lebesque integral on the original probability space (S, S, P) or,
alternatively, by the Stieltjes integral on the dependent probability space
(R,B, P),).

Let A € S. The characteristic function (or “indicator” 1) of the set A,
Xa(s): S — {0, 1} is defined as ya(s) = 1 if s € A, yu(s) =0if s ¢ A. Observe
that y, is a discrete random variable with B = {0, 1} and Eq. (2.13) demon-
strates that E[ y4] = P(A).

Let c={A',..., A"} be a finite partition of S: a simple function is a finite
linear combination of characteristic functions of the form x(s) =
Zl_a ji X, Where a'eR, Ale . A simple function is a discrete random

variable with finite set B = {a',..., a"}; the expectation is given by:
Elx]=Y" d P(Ai) (2.14)

Given a probability space (S, S, P), a function 2 § — R is said to be
P-measurable (or $-measurable) if f is pointwise the limit of a monotonic
not decreasing sequence of simple functions x;. It is possible to demon-
strate that any non negative measurable function x is pointwise the limit
of a monotonic not decreasing sequence of simple functions x;, i.e. it is
P-measurable (e.g., (Hunter and Bruno 2001), page 343, Theorem 12.26).
Hence E[x;] is a monotonic not decreasing sequence of real numbers
converging to the Lebesque integral of x with respect to P defined as

J.x(s)dP(s):=s1;p{zia]_iP(Ai)} (2.15)

S

For a general x, the positive and negative parts are considered separately: the
Lebesque integral equals the difference between the two Lebesque integrals
of the positive and negative parts, supposing that they are not both converg-
ing to +oo (otherwise the function does not admit Lebesque integral).

On the other hand, in the dependent probability space (R ,B, F,), it is
possible to demonstrate that the expectation can be evaluated through the
the Stieltjes integral of x with weight function F, on the interval [ao, a,]:

Ay . n-1 i+ i
Iao a dF, (a)= ll_r)%zzeoa (Fx(a h- F.(a )) (2.16)
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where a’< a'<...< a'<...< d" defines a partition of [ay, a,], a'€( d’, a™']
and £ is the maximum amplitude of the partition. The integral can be ex-
tended to the entire R by considering the limits @y —-c0, a, —>+oo. When
F, is continuous and hence the probability density function is defined by
Eq. (2.10), the Stiltjes integral is equivalent to the Rieman integral.

The result can be extended to a function g of the random variable x. Let
x a random variable on (S, §, P) and g: R — R a real measurable function
(generally a Borel measurable function). Then y = g(x(s)) is a random vari-
able and its CDF F), can be alternatively calculated by using:

- The original space : Fy(b) = P(x' (g (y<b)))
- The dependent space (R ,B, P,): Fyb)= Px(g"(ySb)).

Additionally, if x is a continuous random variable:
Fb)=[ ., f@ da (2.17)
The expectation of y can for example be evaluated by the Stieltjes integral:
oo
Ely=g(0]1=|_ g(a) dF (a) (2.18)

When the probability density of x exists, the expectation can be more di-
rectly given, according to the Fundamental Theorem of the expectation, by
the absolutely convergent Rieman Integral:

Ely=gl=[" g(a)f,(a)da (2.19)

Assuming g = x*, Eq. (2.19) gives the Moments of order k of the random
variable x. The Moment of order 1 equals the expectation: it measures a
weighted average or the mean value |, of x; the Moments of higher order
describe the dispersion of x around the mean value: therefore central Mo-
ments of order k>1 are better defined relative to the mean value. Particu-
larly important is the Variance of x, 6°:

o) =Ely=(-p)*1=[ (a-p,)* f.(a)da=
= E[x"]- 1’

(2.20)

The square root of the variance is the standard deviation .
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2.3 Joint Probability Spaces

Given two probability spaces, (S, S, P:), i = 1, 2, the product (or joint)
probability space, (S, S, P), is such that:

() §:={S1xS8}; (2.21)
(i) S is the o-algebra generated by C :={A; X Ay: A€ S}; (2.22)
(i) P(A1 X 82) = P1(A1) 5 P(51XA2) = Py(Ay) (2.23)

Condition (2.23) is called marginal (or addition) rule, and does not uniquely
determine P. Spaces (S;, S;, P;) are called marginal probability spaces.

Let P; be a probability of elementary events on S; = { sj :j=1,...,m}, and

let p; be a n—column vector whose j-th entry is P; (s/ ). Let P be a known
probability of joint elementary events on S;x S, = S, and let P be a n,xn, ma-
trix with (j, k)-th entry P(sl )85 ) Eqg. (2.23) entails (marginal rule)

) . i ko
P](S]-]): Z P(S]J,SZ) 5 PZ(SZI)_ Z P(S] ,s2]) (2.24)

s’z‘eS2 S{(ES]
Thus, Pl(slj) is given by the sum of j-th row of P (p, =P- 1 ) and
P, (s{) is given by the sum of j-th column of P (p, = =p7 1 ) where a

superscript “T” denotes transposition, and 1 is a vector of unit components
of proper length.

Provided P, (slk ) >0, the probability of s/ in S; conditioned on elements
slk in §; can be easily calculated using Eq. (2.4):
Puz(slj|s§)=P(slj,s]2<)/P2 (slzc) (2.25)
For a given element s§ , B, is thus obtained by dividing the k-th column
of P by P, (s'z‘ ) Likewise, for a given element slk , Py is obtained by di-
viding the k-row of P by B (slk ) . Eq. (2.24) yields

G\

Zﬂu (Slj |512<) ZP(SI ’32) (2.26)

J= by (Sz ) J=
and thus B, is a probability distribution of elementary events on S;. Like-

wise for Py, . Let Py, be the n,xn, matrix with (j, k)-th entry B, (slj Is]2< ) s

and let P, be the n;xn, matrix with (j, k)-th entry Py, (s§ | slj ) .
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Given the joint probability distribution P, one can calculate: two
marginal probabilities, p; , by using Eq. (2.24); and then two conditional
probabilities, Py, and Py, by using Eq. (2.25).

On the other hand, given one marginal probability, say p,, and the con-
ditional probabilities, Py, then one can determine P by using the definition
of conditional probability (2.5):

P =P, Diag(p>) (2.27)

where Diag(.) is a diagonal matrix whose i-th diagonal element is the
i-th element of the argument vector. The marginal probabilities p; can be
either calculated using Eq. (2.24) or directly using the theorem of Total
Probability (2.7):

pi=Ppp: (2.28)
Likewise, given p;, and the conditional probabilities, P,y:
P = Diag(p:) P (2.29)
and:
P2 =pi Py (2.30)

The marginal probability spaces (S;, S;, P;) are called independent if the
joint P is the product measure of P, and P, i.e. it satisfies
P=P®P,:C={U,xU,:U;e s} —[0,1] with:

B®P, (U xU,) =P (U)) P (U,) (2.31)

and Carathéodory Extension Theorem then allows one to extend P to any
subset in the G-algebra § generated by C.

This definition is coherent with Eq. (2.6) because, if we let T} = U;xS,
and T, = S;xU,, then T\NT,= U;xU, and:

P(Tl) = P1®P2(U1XS2) = PI(UI)'Pz(Sz) — P](Ul)l — PI(UI) (232)
P(Ty) = P\®P(S;xUs) = Pi(S1)-Px(Us) = 1- Py(Us) = Po(Us) (2.33)
(2.34)

P(T\NT>) = Pi®Py(UxU,) = Pi(Uy)-P»(Us)

Eq. (2.6) follows by putting Egs. (2.32) and (2.33) into (2.34).
For the probability distribution of the joint elementary events the hy-
pothesis of independence gives:

P(si,5) = B(s))- B(s3); P=pips’ (2.35)
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2.4 Random Vectors

In the two-dimensional space, the set of pairs a of real numbers, R? , the
c-algebra generated by C={(- o, a]: a € R*} is again called the Borel o-
algebra, B, and contains all two-dimensional intervals of R>.

Let (S, S, P) be a probability space and x a Borel-measurable real func-
tion x : § — R?, defined on S: x(s) is a random vector on (S, S, P). It

means that, for every ae R2, {s: x(s) < a}e S, where inequalities are
meant to hold component-wise.

In the dependent two-dimensional probability space (R?, B, , Py) again
P(T)= P(x"1(T)) is given by the CDF of the random vector x: Fy(a) =
Py({x: x<a})=P({s: x(s) < a}).

When Fy(a) is absolutely continuous, it can be expressed as integral of
the joint probability density fy(a) of the random vector x:

0°F,(a)
da,da,

x@=(aq,ay)) = (2.36)

Otherwise, let B R? the subset (finite or infinitely numerable) of discon-
tinuity points of x and let py the discontinuity jump at a€ B. If:

2. Px(a)=1 (2.37)

acB
then x is a discrete random vector and py is the joint mass distribution.

If B is finite, p; allows one to calculate the probability of any subset of
B in a way similar to the probability of elementary events.

The notions of marginal and conditional mass distributions are related to the
joint mass distributions by means of matrix operations equivalent to the opera-
tions defined for the joint elementary events of product spaces in Section 2.3.

For an absolutely continuous random vector x = (x;, x,) analogous defi-
nitions and relations could be given in terms of probability density (pdfs).
For example the conditional pdf of x| given x; is:

fx(%,%,)

2.38
fx2 (x2) ( )

fxllxz (xpxz):

from which we also have:

fx (xl’xz) = fxllxz (xl’x2)fx2 (xz) (2.39)
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Moreover the marginal pdfs can be derived by an integral extension of the
Theorem of total probability:

j Fo(,%, ) dx, = j Faw, (%1.33) £, (3)dx, (2.40)

When the probability density of x exists, the expectation can be given by
the extension of the Fundamental Theorem of the expectation, through the
absolutely convergent Riemann Integral:

Ely=g)]=|" g(@) f, (@)da (241)

while for a discrete random vector:

Ely=gX)]= Z g(@)p,(a) (2.42)
acB

Assuming g = x* x, eq. (2.41) or (2.42) give the Moments of type (k, j)
and order k+j of the random vector x. The Moments of order 1 (type (1,0)
and (0,1)) equal the mean values (L, , \L,») of the single random variables
in the vector, the central Moments of order 2 define the matrix of Covari-
ance of X Oy the diagonal of the matrix ( types (2,0): o, and (0,2): szz)
contain the Variance of the single random variables, while the other coeffi-
cients of the symmetrical squared matrix gives the Covariance of the cou-
ple of random variables (Type (1,1): G,1.0):

E[(q = )% ElOq = )06 = 44,
o (X, %)) = R (2.43)
Sym E[(xz - #xz ) ]

Since the determinant of the matrix cannot be negative, the coefficient of
correlation Py o = Oy1,x/(Cy Ox) must be in the interval [-1, 1]. This coef-
ficient synthetically measures the sign and the weight of a linear correla-
tion between the two random variables. When Ip,; .| = 1 the variables are
totally (positively or negatively) correlated; when p,; ., = O the variables
are uncorrelated.

Uncorrelation does not mean statistical independence of the single random
variables of a random vector. The latter refers to the relations between joint,
conditional and marginal pdfs or mass distributions, as specified in § 2.3.
Considering for example absolutely continuous random vectors the joint pdf
in (2.39) is directly determined by the product of the marginals.

Statistical independence implies uncorrelation, but uncorrelation does
not imply independence, because a non linear statistical (or also determi-
nistic) dependence between the two random variables could be present.



Chapter 3
Random Sets and Imprecise Probabilities

The idea of random sets is introduced by showing that three different ex-
tensions to the classical probabilistic information lead to an equivalent
mathematical structure. A formal definition is then given, followed by dif-
ferent ways to describe the same information.

A random set gives upper and lower bounds on the probability of subsets
in a space of events. These non-additive and monotone (with respect to in-
clusion) set functions can be described within a more general framework by
resorting to the theory of imprecise probabilities, Choquet capacities, and
convex sets of probability distributions. The chapter highlights specific
properties, advantages and limitations of random sets with special emphasis
on evaluating function expectation bounds and on updating the available
information when new information is acquired. To avoid mathematical
complications, sets and spaces of finite cardinality are generally considered.

3.1 Extension of Probabilistic Information

3.1.1 Multi-valued Mapping from a Probability Space

This extension was proposed in (Dempster 1967) and is summarized in
Figure 3.1. Let (X , X, P,) be a probability space (for example a random vari-
able with cumulative distribution function F\(x)) and let G: X — S be a multi-
valued mapping to a measurable space (S, §) (for example G(x) is the interval
in the grey area in Figure 3.1). For aset T € S, let

T"={xe X1G(x)NT #D}; T.={xe X1G(x)cT} 3.1)

S* = S. is the domain of G, here assumed to be equal to X; hence PX(S*) =
P(S:)=1.

G is a strongly measurable function if for any set Te S, T € X (and
consequently 7= € X (Miranda 2003)). The exact value of the probability
of T (in the probability space (S, S, P)) cannot be computed, but it can be
bounded by the probabilities of T and of the inclusive set T":

P(L) _ . :PX(T*)

P(T.) < P(T) < P.(T")

3.2
P.(S.) P.(S") G2
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Fig. 3.1 Probability § A
bounds from a
multi-valued mapping

B e b ST (SIS TR
{ \

B &b T .

Example 3.1. The characteristic compressive strength of a masonry wall (f;) can
be derived through a function of the unit (f,) and mortar (f,,) strengths. According
to (CEN 2005) for plain solid (one head) masonry made with clay, group 1 units
and general purpose mortar f; = 0.55 27 1.2 =g (fy , fo). Assume that only an in-
terval of possible values is known for the mortar strength, while a precise prob-
ability distribution has been derived for the units by testing. The upper and lower
bounds of probability for each interval T of values of masonry strength can then be
computed as follows.

Assuming: f,,= [20, 30] MPa and the Normal cumulative distribution function
N(40 MPa, 8 MPa) for the random variable x = f,, G(x) = [g (x, 20), g (x, 30)], the
probability of T = [25, o) (i.e. the probability that the masonry strength could be
above 25 MPa) is bounded by:

P(T: = {x>g"(25,20)}) = 1- F,(g"(25, 20)) = 0.0010
P(T " ={x>g"(25,30)}) = 1- F, (g7 (25, 30)) = 0.0368.

3.1.2 Theory of Evidence

In the finite space S (a “body of evidence” (Shafer 1976)), a “probabilistic
assignment” m is given on the power set of S (P (S): the set of all subsets of
S; if ISl is the cardinality of S, then 1?7 (S)I = 28! including & and S). The
probabilistic assignment is given according to the axioms of probability
theory, and therefore m(J) =0, X m= 1.

Example 3.2. An expert is asked to define the cause of a structural deficiency in a

building by choosing among a given list of options c listed in Table 3.1 (S = {c', ¢,

¢, ¢'}). Based on his past experience and current observations, the expert could

measure the different causes ¢ (first column), and attach subjective probabilities m
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(second column) not only to single causes, but to sets of causes. In his opinion, some
observed symptoms point to single causes, but other symptoms are compatible with
more causes, or with all listed causes.

The probability of the single causes or of a set of causes can easily be calcu-
lated: for example, the probability of ¢ is at least m” (10%), but could increase to
m*+m’+m® (30%); the probability of (c' or ¢* ¢' U ¢?) is at least m'+m” (70%) but
could be higher, and up to m'+m’*+ m*+m® (90%).

Table 3.1 Expert’s subjective probabilities in a structural diagnosis

¢' - Failure of soil m' =m(c") = 60%

¢” - Overloading m* =m(c’) = 10%

¢* - Temperature variations m =m(c’)= 5%

¢*- Other m' =m(c)= 5%
m’ = m(cz, c3, c4) =10%
m® = m(cl, cz, c3, c4) =10%
Total : = 100%

The original information is described by a family ¥ of pairs of n nonempty
subsets A’ (“focal elements”) and attached m' = m(A") >0,ie I={1,2, ...n},
with the condition that the sum of ' is equal to 1. The (total) probability of
any subset 7" of S can therefore be bounded by means of the additivity rule.
Shafer suggested the words Belief (Bel) and Plausibility (Pla) for the lower
and upper bound, respectively. Formally:

F=F{ (A,m"),ie 11> m' =1}
iel
Pla(T)=> m' | A'nT =@, VT cS;
i (3.3)
Bel(T) = Zmi lA" T, VT cS;

Bel(T) < P(T) < Pla(T)

3.1.3 Inner/Outer Extension of a Probability Space

It is well known that a probability measure can be given only for a measur-
able space: i.e. the probability can be attached only to particular families of
subsets on a space S (an algebra on finite spaces; a G-algebra on infinite
spaces). The key property is the closure of the family with respect to
complementation and (numerable) union (and therefore the (numerable) in-
tersection). For example, the ¢-algebra could be generated by a finite parti-
tion of S. But given a precise probability measure, it is legitimate to ask
about bounds of the probability of any other subset 7 of S (Halpern and
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Fagin 1992). The reply can be obtained searching for the best members
of the c-algebra that give an inner approximation (7;, < T), and an outer
approximation (7' < T,,,) to T.

Fig. 3.2 Partition of the Cartesian y 0 Sek ® R,
product space S = R, X R
0.05x0.05 0.95x0.05
S
0.05x0.95 0.95x0.95
oo
R.\'

Example 3.3. Let us suppose the characteristic (reliable at 95%) value of the
strength of concrete (R, = f; = 30 MPa) and steel (R, = f; = 400 MPa) is known in
a reinforced concrete (r. c.) frame structure. A partition of 4 elementary events is
therefore defined on the Cartesian product space S = R. x R, = RXIR ; moreover,
supposing stochastic independence between R. and R;, the probability of the ele-
mentary events and 16 members of the algebra generated by the partition (the un-
ion of any subsets of elementary events plus the empty set) can easily be derived
(Figure 3.2). We now wish to bound the probability of the event T = {( R., R, )| R,
<40 MPa; R, < fi;}, clearly not included in the algebra.

The inner approximation is 7;, = {( R., Ry )| R. < f.;, = 30 MPa; R; < f;;}, with
P(T;,)= 0.05x0.05 = 0.0025, while the outer approximation also includes the ele-
mentary event {( R., R, )l R. > f., = 30 MPa; R, < f,;}. Therefore P(T,,,) = 0.0025
+ 0.95x0.05 = 0.0500. If additional information is received that R. is a Gaussian
random variable with mean equal to 45 MPa, the exact value of P(T) can be calcu-
lated because the standard deviation of R, is equal to:

(45-30)/ N''(0, 1,0.95) = 15/1.644 = 9.12 MPa,
and hence P(T)=0.05 x N(45, 9.12, 40) = 0.05 x 0.2917 = 0.01459.
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3.2 Random Sets
3.2.1 Formal Definition of Random Sets

The strong formal and substantial analogy between the three formulations
given above is self-evident.

In this book priority is given to a direct reference to the second formula-
tion, originally proposed by Shafer within the so-called Evidence Theory,
and therefore particularly connected to a subjective view of the probability
concept. However, we prefer the term “Random Sets”, following an idea
originally developed within stochastic geometry (Robbins 1944; Robbins
1945; Matheron 1975), to underline that the formulation is compatible with
both objective and subjective uncertainty.

Formally, a random set on the space S is a family ¥ of n focal elements
A" ¢ S and attached weights of the basic probabilistic assignment m(A")
that satisfies the conditions: m(@) = 0; Z;m(A") = 1. See Eq. (3.3).

The weight m(A’) expresses the extent to which all available and relevant
evidence supports the claim that a particular element of S belongs to the set
A’ alone (i.e. exactly to set A") and does not imply any additional claims re-
garding subsets of A’; if there is any additional evidence supporting the claim
that the element belongs to a subset B of A’, it must be explicitly expressed
by another value m(B). The main difference between a probability distribu-
tion function and a basic assignment is that the former is defined on S,
whereas the latter is defined on the power set of S, 2(S).

As a consequence, the following properties hold:

1) itis not required that m(S) = 1;

2) itis not required that m(A) < m(B) when A C B;

3) no relationship between m(A) and m(A°) is required (A€ is the com-
plementary set of A).

Each focal element A must be treated as an object “per se”’; m(A) < m(B)
means that object A is less probable than object B. It should be noted that:

a) If m(S) = 1, there is a unique focal element and this is S itself
(maximum ignorance).

b) Conversely, if there is a unique focal element A — S, then m(A) = 1 and
m(S) = 0. If moreover |Al = 1 all uncertainty disappears.

c) If there are two or more focal elements, then m(S) < 1.

It should be stressed that the definition of random set refers to distinct non-
empty subsets of S. If these distinct non-empty subsets are singletons (single
elements, thus non-overlapping, of §) and each one has a probability as-
signment, then we have a probability distribution on S. Note that when proc-
essing real world information, the non-empty subsets may be overlapping
(see Chapter 1).
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Example 3.4 (Reservoirs-bathtub analogy). As depicted in Figure 3.3, consider a
set of reservoirs (focal sets) A’, whose outward flow rate (basic probability as-
signment) is m(A’). This outward flow can only be vertical down (positive); as for
the i-th reservoir, any number of vertical pipes can be located anywhere and ar-
ranged in any fashion on the footprint of the reservoir, but their total flow rate is
always equal to m(A"). Pipes are not allowed to discharge into other reservoirs, and
the total flow rate from all reservoirs is normalized to 1. No water may come from
a source different than a reservoir (m(&)=0).

One can calculate the maximum possible flow rate enjoyed by a bather in a bathtub
T (call it Pla(T)) by arranging single pipes so that all reservoirs whose vertical projec-
tion hits the bathtub actually discharge into it. In Figure 3.3a, the maximum flow rate
is 0.8. The minimum flow rate (call it Bel(T)) is obtained by placing single pipes out-
side of the bathtub projection unless a reservoir projects completely into the bathtub, in
which case there is no choice but to discharge into 7. In Figure 3.3b, the minimum
flow rate is 0.3. Notice that there may be more than one pipe arrangement that yields
the maximum or minimum flow rate into the bathtub. Any other arrangement of the
pipes will yield a flow rate into 7 (Probability of 7) that will be comprised between
these Bel(T) and Pla(T) (Eq. (3.3d)). In precise probability theory, reservoirs are re-
stricted to a single point in space, and thus only one pipe carrying the entire flow m(A’)
can be attached to the i-th reservoir, and only one pipe arrangement is possible.

As a consequence, each possible single pipe arrangement that fits in the reser-
voirs of a random set corresponds to a probability distribution (called Selector, see
Section 3.2.3.2 on page 35).

On the other hand, several pipes may be attached to the i-th reservoir. Without
loss of generality, the pipes attached to the i-th reservoir may have a unit total flow
rate and may be fitted with flow rate reducers; a flow rate reducer will reduce the
flow rate in each single pipe by a factor equal to m(A"). Each set of pipes of unit flow
rate attached to the i-th reservoir may be interpreted as a probability distribution on
A'. These pipe arrangements over the entire set of reservoirs make up the probability
distributions compatible with the random set (Section 3.2.3 on page 34).
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Fig. 3.3 Reservoir-bathtub analo