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Preface  

The theories described in the first part of this book summarize the research 
work that in past 30-40 years, from different roots and with different aims, 
has tried to overcome the boundaries of the classical theory of probability, 
both in its objectivist interpretation (relative frequencies of expected 
events) and in its subjective, Bayesian or behavioral view. Many compel-
ling and competitive mathematical objects have been proposed in different 
areas (robust statistical methods, mathematical logic, artificial intelligence, 
generalized information theory). For example, fuzzy sets, bodies of evi-
dence, Choquet capacities, imprecise previsions, possibility distributions, 
and sets of desirable gambles.  

Many of these new ideas have been tentatively applied in different dis-
ciplines to model the inherent uncertainty in predicting a system’s behavior 
or in back analyzing or identifying a system’s behavior in order to obtain 
parameters of interest (econometric measures, medical diagnosis, …). In 
the early to mid-1990s, the authors turned to random sets as a way to for-
malize uncertainty in civil engineering. 

It is far from the intended mission of this book to be an all comprehen-
sive presentation of the subject. For an updated and clear synthesis, the in-
terested reader could for example refer to (Klir 2005). The particular point 
of view of the authors is centered on the applications to civil engineering 
problems and essentially on the mathematical theories that can be referred 
to the general idea of a convex set of probability distributions describing 
the input data and/or the final response of systems. In this respect, the the-
ory of random sets has been adopted as the most appropriate and relatively 
simple model in many typical problems. However, the authors have tried 
to elucidate its connections to the more general theory of imprecise prob-
abilities. If choosing the theory of random sets may lead to some loss of 
generality, it will, on the other hand, allow for a self-contained selection of 
the arguments and a more unified presentation of the theoretical contents 
and algorithms. 
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Finally, it will be shown that in some (or all) cases the final engineering 
decisions should be guided by some subjective judgment in order to obtain 
a reasonable compromise between different contrasting objectives (for ex-
ample safety and economy) or to take into account qualitative factors. 
Therefore, some formal rules of approximate reasoning or multi-valued 
logic will be described and implemented in the applications. These rules 
cannot be confined within the boundaries of a probabilistic theory, albeit 
extended as indicated above.  

Subjects Covered: Within the context of civil engineering, the first chap-
ter provides motivation for the introduction of more general theories of un-
certainty than the classical theory of probability, whose basic definitions 
and concepts (à la Kolmogorov) are recalled in the second chapter that also 
establishes the nomenclature and notation for the remainder of the book. 
Chapter 3 is the main point of departure for this book, and presents the 
theory of random sets for one uncertain variable together with its links to 
the theory of fuzzy sets, evidence theory, theory of capacities, and impre-
cise probabilities. Chapter 4 expands the treatment to two or more vari-
ables (random relations), whereas the inclusion between random sets (or 
relations) is covered in Chapter 5 together with mappings of random sets 
and monotonicity of operations on random sets. The book concludes with 
Chapter 6, which deals with approximate reasoning techniques. Chapters 3 
through 5 should be read sequentially. Chapter 6 may be read after reading 
Chapter 3.  

Level and Background: The book is written at the beginning graduate 
level with the engineering student and practitioner in mind. As a conse-
quence, each definition, concept or algorithm is followed by examples 
solved in detail, and cross-references have been introduced to link different 
sections of the book. Mathematicians will find excellent presentations in 
the books by Molchanov (2005), and Nguyen (2006) where links to the ini-
tial stochastic geometry pathway of Matheron (1975) is recalled and ran-
dom sets are studied as stochastic models.  

The authors have equally contributed to the book.
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Chapter 1 
Motivation 

Before embarking on studying the following chapters, motivations are pro-
vided as to why random sets are useful to formalize uncertainty in civil en-
gineering. Pros and cons in using the theory of random sets are contrasted to 
more familiar theories such as, for example, the theory of random variables. 

1.1   Why Use Random Sets? 

1.1.1   Histograms 

Consider the case where statistical information on a quantity of interest is pre-
sented in histogram form. For example, Figure 1.1 shows the annual rainfall 
intensity at a certain location. It tells us that the frequency that an annual rain-
fall intensity be in the range between 38 and 42 inches is about 10%. One can 
also calculate the frequency that an annual rainfall intensity be in the range be-
tween 38 and 46 inches: this is done by summing up the frequencies relevant 
to the [38, 42] in. (m1) and [42, 46] in. (m2) intervals, i.e. m1 + m2 = 10 + 24 = 
34%. But, what if one wants to know the frequency in the 40 to 48 in. range? 

A histogram gives the frequency that an event be anywhere in a chosen 
bin, even if one does not know exactly where in that bin. Call m3 the fre-
quency in [46, 50] in.. Given the available information, one may just con-
sider two extreme cases. In the first extreme case, one might think that 
events were actually recorded only in the [38, 40] in. range for the first bin, 
and in the [48, 50] in. range for the third bin. As for the second bin, one 
does not care where the events were recorded because the [42, 46] in. 
range falls entirely within the [40, 48] range. In this case, the frequency in 
the [40, 48] in. range is equal to m2, i.e. 24%. 

In the second extreme case, one might think that events were actually 
recorded only in the [40, 42] in. range for the first bin, and in [46, 48] in. 
for the third bin. The frequency in the [40, 48] in. range is thus equal to m1 
+ m2 + m3 = 10 + 24 + 18 = 52 %. As a result, one can only say that the 
frequency of the [40, 48] in. range is between 24% and 52%. 
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The reader has just encountered the first example of a random set, i.e. a 
collection of intervals (histogram bins) with weights (frequencies) attached 
to them. The reader has also performed the first example of calculation of 
upper and lower bounds on the frequency of an event of interest. 

 
Fig. 1.1 Histogram of rainfall 
intensity (Esopus Creek Water-
shed, NY, 1918-1946), (modi-
fied after Ang and Tang (1975), 
with permission) 

 

1.1.2   Empirical Limitations in Data Gathering 

1.1.2.1   Measurements 

Limitations in time and funds available for data gathering may lead to im-
precise or incomplete measurements. Consider, for example, the measure-
ment of the uniaxial compressive strength (UCS) of an intact rock speci-
men using the Schmidt hammer. The two quantities are correlated by the 
chart in Figure 1.2 presented in the Suggested Methods of the International 
Society of Rock Mechanics (ISRM 1978) and by Harrison and Hudson 
(1997). Since a single hammer reading yields an interval of UCS values, a 
set of readings yields a set of intervals, each with its own frequency. This 
set of intervals, each with its own frequency, is a random set. 

With a large enough budget and timeframe, laboratory tests may be car-
ried out that do not exhibit this imprecision. However, the low cost and 
short duration of Schmidt hammer measurements allow one to take many 
more readings than lab tests and thus obtain a more representative sample. 

Additionally, in the presence of inhomogeneous intact rock, repeated 
Schmidt hammer readings are invaluable to determine the extents of a 
homogeneous zone. Finally, regardless of the available budget and time-
frame, the Schmidt hammer is the only piece of equipment that allows 
one to measure the joint compression strength (JCS) in discontinuities, 
especially if weathered. The JCS is then used to evaluate the shear 
strength of rock discontinuities (Barton 1976). 
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Examples of correlations are replete in geotechnical engineering practice, 
especially when using the results of in situ tests. Figure 1.3 and Figure 1.4 
show two examples: one for deformation parameters to be used in consoli-
dation settlement calculations, and one for friction angle to be used in sta-
bility calculations, respectively. Even in this case, laboratory tests may 
yield more precise results, but one needs to account for disturbance of lab 
specimens. Additionally, as occurred in rock, the number of lab tests is al-
ways small when compared to the large number of data points obtainable 
using correlations. 
 
 

 

Fig. 1.2. Correlation between Schmidt hammer rebound number (r) and uniaxial 
compressive strength for different rock densities, (after Hudson and Harrison (1997), 
with permission) 
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Fig. 1.3 Correlation equations for the compression and recompression index of 
soils, (after Bowles (1996), with permission) 
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Fig. 1.4 Correlations between cone penetrometer data and friction angle of soils. 
V’b = q’c/p’0, where q’c = (cone resistance – pore water pressure); p’0 = initial  
vertical effective stress, (after Bowles (1996), with permission) 

1.1.2.2   Experts 

Another empirical limitation occurs when eliciting information from ex-
perts. In typical risk assessment procedures (e.g., those adopted by the US 
Bureau of Reclamation and by the International Tunneling Association), 
experts convey their information on an event of interest (e.g., failure of a 
dam component) through linguistic terms, which are then converted into 
numerical probability intervals as per Figure 1.5. Notice, however, the very 
large discrepancy between the values in the two tables in Figure 1.5; this 
discrepancy may be explained by considering that the values in Figure 5a 
refer to the construction period, whereas the values in Figure 5b are not  
referred to a time interval. By polling a group of experts, a set of probabil-
ity intervals will be collected. This information can be converted into a 
random set. 
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a) 

 
b) 

Fig. 1.5 a) Numerical responses and ranges for 18 probability expressions (after  
Vick (1999), and Reagan et al. (1989)); b) frequency of occurrence during a  
tunnel’s construction period, (after Eskesen et al. (2004), with permission) 

1.1.3   Modeling 

1.1.3.1   Different Competing Models 

In order to gain confidence in their predictive ability, engineers instinctively 
use two or more models of the same engineering system. In the simplest 
case, these models may simply be two different analytical formulations, but 
in the more complex cases they can be completely independent studies. 

As a first example, consider the calculation of the bearing capacity for a 
footing. Several bearing capacity models have been proposed in the litera-
ture, and Figure 1—6 shows the comparison between the set of values cal-
culated using a set of five different models and relevant test results. When 
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a set of models are used, a set of results (bearing capacity values) is ob-
tained for any vector of input values (e.g., qult ∈ {9.4, 8.2, 7.2, 8.1, 14.0}  
kg/cm2 for Test 1 in Figure 1.6). If the vector of input values, v*, is not de-
terministic, but has a probability of occurrence equal to, say, 30%, then the 
set of bearing capacity values obtained using v* has probability equal to 
30%. Proceeding in this fashion for all possible input vectors, one obtains 
sets of bearing capacity values with a probability mass attached to each set 
of bearing capacity values, i.e., a random set. 

 

Fig. 1.6 Comparison of bearing capacities computed using different methods with  
experimental values, (after Bowles (1996), with permission) 

1.1.3.2   Upper and Lower Bounds in Plastic Limit Analysis 

For elasto-perfectly plastic solids with no dilatancy, limit analysis yields 
static (lower) and kinematic (upper) load multipliers. Greenberg-Prager 
theorem then assures us that the load multiplier that causes failure is the 
largest static multiplier and the smallest kinematic multiplier. Oftentimes, it 
is not possible to calculate the largest static multiplier and the smallest ki-
nematic multiplier, and thus the engineer is left with upper and lower bounds 
on the load multiplier. Consider, for example, the pressure q that must be 
exerted on a tunnel’s face to ensure its stability. In an elasto-perfectly plastic 
ground with Mohr-Coulomb failure criterion (cohesion = c, and friction  
angle = ϕ), one has: 

( ) ( )1s s sq Q a Q q Q c ctgγ γ ϕ= ⋅ ⋅ + ⋅ + − ⋅ ⋅  (1.1) 
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Fig. 1.7 Coefficients Qγ obtained using 
limit analysis, (after Ribacchi (1993), 
with permission) 

 

 
where: Qγ = coefficient from limit analysis, γ = unit weight of the ground, 

a = tunnel radius, Qs = ( ) 1
/

N
a H

−
, N = ( )1 sin / (1 sin )ϕ ϕ+ − , H = tunnel 

cover, qs = pressure on ground surface. 
Figure 1.7 shows coefficients Qγ obtained using kinematic analysis 

(Qγ
+), and coefficients Qγ obtained using static analysis (Qγ

-) versus the 
friction angle. The different solutions for Qγ

- originate from different as-
sumptions on the equilibrated stress distribution at failure. 

If the friction angle is not known deterministically, but one knows that 
the probability of ϕ* is, say, 60%, then one can calculate upper and lower 
bounds (i.e., an interval) on the face pressure q*. This pressure will have 
probability equal to 60%. By calculating the face pressure intervals for all 
possible values of the friction angle, one obtains a collection of intervals, 
each one with its own probability, i.e. a random set. 

1.1.3.3   Discretization Errors 

One of the first uses of digital computers was to approximately simulate 
physical systems by numerically solving differential equations. This ap-
proach leads to numerical computation that is at least three levels removed 
from the physical world represented by those differential equations: 
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1) One models a physical phenomenon using a differential equation (or a 
system of differential equations) or a variational principle. 

2) Then, one obtains the algebraic forms of the differential equation(s) or 
variational principle by forcing them into the mold of discrete time and 
space; and 

3) Finally, in order to commit those algebraic forms to algorithms, one 
projects real-valued variables onto finite computer words, thus intro-
ducing round-off during computation and truncation. 

 
Errors included in Steps 1 through 3 are to be addressed during verification 
and validation of numerical models (Oberkampf et al., 2003). A large body 
of literature has been devoted to estimating the discretization errors intro-
duced in Step 2. For example, Dow (1998), Babuska and Strouboulis 
(2001), Oden et al. (2005), and an issue of the journal Computer Methods 
in Applied Mechanics and Engineering (2006) give an overview of results 
in the finite element discretization method. Peraire and coworkers have 
developed algorithms for calculating guaranteed bounds on these errors 
(Sauer-Budge et al., 2004; Xuan et al., 2006); however, their calculations 
are performed in floating-point arithmetic. Figure 1.8 illustrates the discre-
tization error bounds for the Laplace equation in an L-shaped domain: the 
finite element solution is comprised in the error interval, whose width de-
creases quadratically with the mesh size. 

Figure 1.9 shows bounds on displacements and tractions for a notched 
specimen: although convergence is not quadratic, it is still superlinear. 

Consider the displacement in Figure 1.9c and fix the mesh size, h: if the 
vector of input values,  v*, is not deterministic, but has a probability of oc-
currence equal to, say, 70%, then the interval of displacement values ob-
tained using v* has probability equal to 70%. Proceeding in this fashion 
for all possible input vectors, one obtains a collection of displacement in-
tervals with a probability mass attached to each displacement interval, i.e., 
a random set. 

Errors involved in Step 3 have been vigorously attacked by the “reliable 
computing” community using interval analysis started by Warmus (1956) 
and Moore (1966); the reader is referred to the journal Reliable Computing 
(formerly Interval Computations) and to the web site (www.cs.utep.edu/ 
interval-comp/main.html) for up-to-date information. One can repeat the 
same reasoning above to obtain a random set for any quantity of interest. 
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Fig. 1.8 Error bounds on the discretized solution of the Laplace equation, (after 
Sauer-Budge et al. (2004)). Copyright ©2004 Society for Industrial and Applied 
Mathematics. Reprinted with permission. All rights reserved 

 

 

a) 

 

b)     c) 

Fig. 1.9 a) Model problem and initial mesh; b) average normal displacement over 
the boundary Γ0; c) integrated normal component of the traction in Γ1, (after Parès 
et al. (2006), with permission). Copyright ©2004 Society for Industrial and Ap-
plied Mathematics. Reprinted with permission. All rights reserved 
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1.2   Imprecise Information Cannot Give Precise Conclusions 

The most attractive advantage in using the theories described in this book is 
the possibility of taking into account the available information about the en-
gineering systems to be evaluated, without any other unjustified hypothesis. 

For example, if some data obtained through imprecise instruments are 
given (and in fact really every measurement has a bounded precision), it is 
not reasonable to force the interval of confidence to a single central value; 
or in the case of a sample of measurements, it is not reasonable to force the 
statistics of intervals to a conventional histogram or finally to a precise 
probability distribution. 

In other cases, the available information could consist of a very poor es-
timation of some parameters of the unknown probabilistic distribution: for 
example the mean value or an interval containing the mean value. Some-
times this information derives from subjective judgment or from opinions 
of experts, and is therefore characterized by the unavoidable uncertainty 
inherent in every human assessment. 

Forcing these opinions to a particular probabilistic distribution (for ex-
ample, a lognormal distribution) with precise parameters seems to be un-
justified; but, on the contrary, it is unreasonable to disregard all sources of 
information that cannot be forced to a precise probabilistic distribution in 
the analysis or in decision-making. 

Even if one assumes that precise distributions can be attached to each 
random variable in the probabilistic approach to engineering problems, 
frequently very little evidence is available about the correlation between 
these random variables. Without any well-grounded motivation, inde-
pendence is oftentimes assumed in order to calculate the joint distribu-
tion. But in many cases this hypothesis seems to be unrealistic, or at 
least not justified. This assumption, however, in many cases strongly in-
fluences the final conclusions of the analysis, and sometimes it is not on 
the safe side. For example, consider the load, L, on a ground-floor col-
umn of a multistory building (Ang and Tang 1975, page 195). The load 
contribution from each floor to L is an increasing function of the corre-
lation among floor loads; therefore, the assumption of statistical inde-
pendence would yield results on the unsafe side with respect to any 
other hypothesis of positive correlation.  

The unrealistic character of many assumptions supporting most applica-
tions of the classical probabilistic methods to civil engineering systems is 
particularly evident when one then considers the computational effort re-
quired to evaluate the performance or the safety of these systems in com-
plex real-world applications. Closed-form solutions for propagating the 
probabilistic information from the input random variables to the system re-
sponse are rarely available. Only numerical solutions (e.g., Monte Carlo 
simulations of large-scale finite element models) can then be used: the 
computational time and effort necessary to obtain such an approximation 
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could be dramatically large, but at the end the conclusion may be of ques-
tionable validity because of the initial (unwittinly added) assumptions on 
the probabilistic information. 

A further limitation of the probabilistic approach sometimes appears 
when model uncertainties are combined with a precise joint distribution 
for the random variables of the considered engineering system. Recall, for 
example, the bounding intervals in the evaluation of collapse loading of 
elastic-perfectly plastic structures using limit analysis (Figure 1.7), or the 
unavoidable errors when a continuous model is forced to a discrete one in 
finite element procedures (Figure 1.8). 

These problems appear when the deterministic modeling of a system’s 
behavior yields a multi-valued mapping from the space of the input vari-
ables to the space of the response output variables. Validation of the ob-
tained results and calibration of a reasonable compromise between com-
petitive models of different complexity cannot be performed without 
taking into account all the available information and the actual evidence 
required to support design choices or decision-making in the management 
of civil infrastructures. 
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1.3   Describing Void Information 

The power of the approach considered in this book is also apparent when 
considering cases of total lack of information. In this context, the probabil-
istic approach seems to require or suggest the selection of a particular pre-
cise probabilistic distribution, for example based on the so called “Princi-
ple of Indifference” or “Maximum Entropy”. 

The literature on the paradoxical conclusions that can derive from this 
choice is very rich. Here, we discuss a simple way to gain money using the 
“Principle of Indifference” (Ben Haim 2004). 

Two envelopes containing a positive amount of money are offered for 
your choice and you know only that one envelope contains twice as much 
money as the other envelope. You choose one envelope and find $ 100 in-
side. Now, you are given the option to exchange the envelope for the other, 
which could contain either $ 50 or $ 200. On the basis of the “Principle of 
Indifference”, you could assign equal probabilities (1/2) to both possible  
results and try to make the best decision by evaluating the expected reward: 

( ) 1 1
Reward 50 200 125$

2 2
E = ⋅ + ⋅ =  (1.2)

The expected percentage increase of the reward (25%) does not depend on 
the value ($ 100) that you have found in the first envelope: therefore, with-
out opening the first envelope, you could decide to exchange it for the sec-
ond, and so augment on average the reward by 25%. You can also try to 
gain more money exchanging the envelopes again, again and again… 

Considering the same story within the optics of random sets, you can 
only admit that, on the basis of the available information, the overall prob-
ability of the two alternative rewards ($ 200 or $ 50) is exactly equal to 1. 
Therefore, you have a histogram with one bin covering the two rewards, 
and the probability of each reward is between 0 and 1. The lower and  
upper bounds of the expected reward are: 

( )Reward 50 1 200 0 50$E = ⋅ + ⋅ =  (1.3)

( )Reward 50 0 200 1 200$E = ⋅ + ⋅ =  (1.4)

The bounds contain the previous result, but now the situation is clear: the 
choice is in your hands! 
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1.4   Bounding Uncertainty 

Recalling Hamlet’s words, a wise engineer, and perhaps any reasonable 
person, should be suspicious of a perfectly precise proposition about future 
events: 

 
“There are more things in heaven and hearth, Horatio, than are dreamt 

of in your philosophy” 
 

The authors do not think that random sets or imprecise probabilities could 
help in solving this dramatic philosophical question. However, they sug-
gest that the true solution does not exist, or, if it does, it can only be 
bounded by incomplete or imprecise information through uncertain ma-
thematical and physical models. 

Additionally, by knowing these bounds, the engineer may ascertain if 
what he/she knows about the expected behavior of the system is enough to 
make final decisions about the design, safety assessment or management of 
the system. When the reply is affirmative, any further investigation is not 
justified, or is only motivated by personal curiosity or higher engineering 
fees! 

On the contrary, when the reply is negative, new or more precise infor-
mation is necessary, or more sophisticated models should be employed to 
narrow the bounds of the final evaluations. 



Chapter 2 
Review of Theory of Probability and Notation 

The basic definitions of a probability space are briefly reviewed, thus in-
troducing the notation useful for the theoretical developments presented in 
the book. Particular attention is given to continuous and discrete random 
variables and to the concept of expectation of a random variable, defined 
through both Lebesque and Stieltjes integrals. The theory is extended to 
joint probability spaces and random vectors. 

2.1   Probability Measures 

The following is mainly taken from (Burrill 1972, Cariolaro and Pierobon 
1992, Fetz and Oberguggenberger 2004, Papoulis and Pilai 2002); for ad-
ditional details, the reader is referred to (Halmos 1950, Kolmogorov 1956, 
Loève 1977 and 1994,). Let S be any set, and let AC indicate the comple-
ment of set A. A σ-algebra S on S is a nonempty collection of subsets of X 
such that the following conditions hold:  

1. S ∈ S.  
2. A∈ S ⇒ AC∈ S. 

3. If {Ai} is a sequence of elements of S, then i
i
A ∈∪  S. 

If C is any collection of subsets of S, then one can always find a σ-algebra 
containing C, namely the power set (set of all subsets) of S. By taking the 
intersection of all σ-algebras containing C, we obtain the smallest such σ-
algebra. We call the smallest σ-algebra containing C the σ-algebra gener-
ated by C. On the set of real numbers, \ , the σ-algebra generated by C = 
{(- ∞, a]: a ∈\ } is called the Borel σ-algebra, B, and contains all inter-
vals of \ . If S is finite and |S| is the cardinality, the σ-algebra generated 
by S is the power set of S, with cardinality 2|S|.  

A measurable space is a pair (S, S). Given a measurable space (S, S), a 
probability measure, P, on S is a mapping S → [0, 1] such that: 
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P(∅)=0,  P(S)=1, ( ) ( )i i
ii

P A P A=∑∪    (2.1)
 

whenever subsets Ai ∈ S are disjoint.  
A probability space is a triple (S, S, P). If S = {s1,…, sn} is finite, or more 

generally {s1,…, sn} is a finite partition of S through the “singletons” or 
“elementary events” si (si ∩ s 

j =∅ and ∪i s
i = S), P on the σ-algebra gener-

ated by C = {s1,…, sn} can be assigned by using the probability of elemen-
tary events, {si}, P(si):=P({si}), which has to satisfy the two conditions: 

P(si)≥0,  ( )1
1

n i
i

P s= =∑    (2.2)

Since elementary events are disjoint, the probability of T ⊆ S is calculated 
using Eq. (2.1): 

 ( ) ( ) { }( ) ( ){ } i ii
i i i

s T s Ts T
P T P s P s P s∈ ∈∈

= = =∑ ∑∪    (2.3)

A Borel measure is a probability measure on \  such that its σ-algebra con-
tains the Borel σ-algebra, B. A point mass or Dirac measure at s0 ∈ S is the 
measure, δ0, concentrated at s0, i.e. such that δ0(A) = 1 if s0 ∈ A and δ0(A) = 
0 if s0 ∉ A, A∈ S.  

Let T 
2 ∈ S, and P(T 

2)>0. The conditional probability of T 
1∈S condi-

tioned on T 
2 is defined as  

P(T 
1| T 

2) := P(T1 ∩ T 
2)/P(T 

2) (2.4)

Let P(T 
2)>0 and P(T 

1)>0.   From Eq. (2.4): P(T 
1 ∩ T 

2) = P(T 
1|T 

2) P(T 
2) = 

P(T 
2|T 

1) P(T 
1).  

Thus (Bayes’ Theorem):  

P(T 
1| T 

2) = P(T 
2| T 

1) P(T 
1)/ P(T 

2) (2.5)

If the occurrence of T 
1 does not affect the probability of occurrence of  T 

2, 
the two sets (events) are said statistically independent.  

Therefore: P(T 
1|T 

2) = P(T 
1) and  P(T 

2|T 
1) = P(T 

2); moreover from  
eq. (2.4): 

P(T 
1 ∩ T 

2)= P(T 
1) P(T 

2) (2.6)

Note that alternatively Eq. (2.6) could be assumed as defining statistical in-
dependence, from which identities of conditional to unconconditional prob-
abilities follow. 
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If subsets {T 
i} are a partition of S, then for any subset T, T=∪iT∩ T 

i, 
and Eqs. (2.1) and (2.4) give (Total Probability Theorem): 

P(T) = ∑i P(T∩ T 
i) = ∑i P(T | T 

i) P(T 
i)    (2.7)

Eqs. (2.5) and (2.7) define the Bayes’ rule for updating a probability space  
(for example the probability of any singleton  {si}) observing the occurrence 
of  an event B, when  the conditional probability  P(B|{si}) are known 
 

( ) ( ) { }( )
{ }( ) ( ) ( )

|
{ }|

|

i

i i i
POSTERIOR PRIORj j

PRIORj

P B s
P s P s B P s

P B s P s
= =

∑
 

(2.8)

More generally the posterior updated probabilities can be calculated when 
a likelihood function  L(si) proportional to P(B|{si}) is known for the ob-
served event B or also for the  observation  x  on a sampling space X where 
likelihood values proportional to conditional probabilities P(x|si) are 
known: 

( ) ( ) ( ) ( )
( ) ( )

{ }|

i i
PRIORi i

POSTERIOR j j
PRIORj

L s P s
P s P s L

L s P s
= =

∑
   (2.9)
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2.2   Random Variable 

Given two measurable spaces (S1, S1) and (S2, S2), a function g : S1 →S2 is 
measurable if, for every T ∈ S2, A = g-1(T) ∈ S1. The particular case (S2, S2), 
= (\ , B) is of great relevance. Let (S, S, P) be a probability space; a real 
function x : S → \ , defined on S is a random variable on (S, S, P) if x(s) 
is Borel-measurable, i.e. if, for every a∈\ , {s: x(s) ≤ a}∈ S.  

The (cumulative) distribution (CDF) of a random variable on (S, S, P) is the 

function Fx : \  → [0, 1], ( ){ }( ):a P s x s a≤6 ; the CDF allows one to cal-

culate the dependent probability Px that x be in any Borel set. A random vari-
able, x, is continuous if Fx is continuous; its probability density (pdf) of x is  

x
x

dF
f

da
=  (2.10) 

Otherwise, let B be the set of discontinuity points of x (they are either finite 
or infinitely numerable) and let px(a) := P({s: x(s) = a}) = Fx(a) - Fx(a

-) > 0  
be the discontinuity jump at a∈B; if  

( ) 1x
a B

p a
∈

=∑   (2.11) 

then x is a discrete random variable and px is called the mass distribution; 
px is not a probability measure, in fact it is not even defined on a σ-algebra. 
x is finite if B is finite: in this case, px allows one to calculate the probabil-
ity of any subset of B using Eq. (2.1) in a way similar to the probability of 
elementary events (Eq. (2.2)). 

In many numerical engineering applications the space S could be a subset 
or a partition of the real numbers \ , and the probability P is defined through 
the probability of elementary events (or singletons, P(si):=P({si}); hence, for 
the discrete random variable defined by the identity x(s) = s, the mass distri-
bution equals the probabilities of the ordered elementary events. In many ex-
amples presented in the book this hypothesis is implicitly assumed.  

In order to understand the concept of expectation E[x] of a random vari-
able x, one needs to introduce some more notions. For a continuous ran-
dom variable the expectation is defined by means a (Riemann) integral, 
supposed absolutely convergent, of x multiplied by the density function fx: 

( )[ ]  xE x a f a da
+∞

−∞
= ∫  (2.12) 

This definition can be extended to discrete random variable by summation, 
supposed absolutely convergent if |B| = ∞, of x multiplied the mass  
distribution px: 
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( )[ ]  x
a B

E x a p a
∈

= ∑   (2.13) 

In more general terms, the definition of expectation should be given 
through the Lebesque integral on the original probability space (S, S, P) or, 
alternatively, by the Stieltjes integral on the dependent probability space 
(\ ,B, Px).  

Let A ∈ S. The characteristic function (or “indicator” IA) of the set A, 
χA(s): S → {0, 1} is defined as χA(s) = 1 if s ∈ A, χA(s) = 0 if s ∉ A. Observe 
that χA is a discrete random variable with B = {0, 1} and Eq. (2.13) demon-
strates that E[χA] = P(A). 

 Let C = {A1,…, An} be a finite partition of S: a simple function is a finite 
linear combination of characteristic functions of the form  xj(s) = 

i
i

j Ai
a χ∑  where ia ∈\ , Ai∈ S. A simple function is a discrete random 

variable with finite set B = {a1,…, an}; the expectation is given by:  

( )1
[ ]  

n i i
i

E x a P A==∑   (2.14) 

Given a probability space (S, S, P), a function f: S → \  is said to be  
P-measurable (or S-measurable) if f is pointwise the limit of a monotonic 
not decreasing sequence of simple functions xj. It is possible to demon-
strate that any non negative measurable function x is pointwise the limit  
of a monotonic not decreasing sequence of simple functions xj, i.e. it is  
P-measurable (e.g., (Hunter and Bruno 2001), page 343, Theorem 12.26). 
Hence E[xj] is a monotonic not decreasing sequence of real numbers  
converging to the Lebesque integral of x with respect to P defined as  

( ) ( ) ( ){ }: sup i i
ji

jS

x s dP s a P A= ∑∫   (2.15) 

For a general x, the positive and negative parts are considered separately: the 
Lebesque integral equals the difference between the two Lebesque integrals 
of the positive and negative parts, supposing that they are not both converg-
ing to +∞ (otherwise the function does not admit Lebesque integral).  

On the other hand, in the dependent probability space (\ ,B, Fx), it is 
possible to demonstrate that the expectation can be evaluated through the 
the Stieltjes integral of x with weight function Fx on the interval [a0, an]: 

( )
0

1 ' 1
00

 ( ) lim ( ) ( )na n i i i
x x xia

a dF a a F a F a
ε

− +
=→

= −∑∫   (2.16) 
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where a0< a1<…< ai<…< an defines a partition of [a0, an],  a
i’∈( ai, ai+1] 

and ε is the maximum amplitude of the partition. The integral can be ex-
tended to the entire \  by considering the limits a0 →-∞,  an →+∞. When 
Fx is continuous and hence the probability density function is defined by 
Eq. (2.10), the Stiltjes integral is equivalent to the Rieman integral.  
   The result can be extended to a function g of the random variable x. Let  
x a random variable on (S, S, P) and g: \→\  a real measurable function 
(generally a Borel measurable function). Then y = g(x(s)) is a random vari-
able and its CDF Fy can be alternatively calculated by using: 

- The original space  : Fy(b) = P(x-1(g-1(y≤b))) 
- The dependent space (\ ,B, Px):  Fy(b) = Px(g

-1(y≤b)).  

Additionally, if x is a continuous random variable: 

1( )
( ) ( ) y xg y b

F b f a da− ≤
= ∫   (2.17) 

The expectation of y can for example be evaluated by the Stieltjes integral: 

[ ( )] ( ) ( )xE y g x g a dF a
+∞

−∞
= = ∫   (2.18) 

When the probability density of x exists, the expectation can be more di-
rectly given, according to the Fundamental Theorem of the expectation, by 
the absolutely convergent Rieman Integral: 

[ ( )] ( ) ( )xE y g x g a f a da
+∞

−∞
= = ∫   (2.19) 

Assuming g = xk, Eq. (2.19) gives the Moments of order k of the random 
variable x. The Moment of order 1 equals the expectation: it measures a 
weighted average or the mean value μx of x; the Moments of higher order 
describe the dispersion of x around the mean value: therefore central Mo-
ments of order k>1 are better defined relative to the mean value. Particu-
larly important is the Variance of x, σ2

x: 

2 2 2

2 2

( ) [ ( ) ] ( )  ( )

[ ]

x x x

x

x E y x a f a da

E x

σ μ μ

μ

+∞

−∞
= = − = − =

= −

∫   (2.20) 

The square root of the variance is the standard deviation σx. 
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2.3   Joint Probability Spaces 

Given two probability spaces, (Si, Si, Pi), i = 1, 2, the product (or joint) 
probability space, (S, S, P), is such that: 
 

 (i) S := {S1 × S2};  
(ii) S  is the σ-algebra generated by C :={A1 × A2: Ai∈ Si}; 
(iii) P(A1 × S2) = P1(A1) ;  P(S1×A2) = P2(A2) 

(2.21) 
(2.22) 
(2.23) 

 

Condition (2.23) is called marginal (or addition) rule, and does not uniquely 
determine P. Spaces (Si, Si, Pi) are called marginal probability spaces. 

Let Pi be a probability of elementary events on Si = { j
is : j = 1,…, ni}, and 

let pi be a ni–column vector whose j-th entry is Pi (
j

is ). Let P be a known 

probability of joint elementary events on S1× S2 = S, and let P be a n1×n2 ma-

trix with (j, k)-th entry ( )21 ,j kP s s . Eq. (2.23) entails (marginal rule) 

( ) ( )
2 2

1 21 1 ,
k

j j k

s S

P s P s s
∈

= ∑   ; ( ) ( )
1 1

2 12 2,
k

j jk

s S

P s P s s
∈

= ∑              (2.24) 

Thus, ( )1 1
jP s  is given by the sum of j-th row of P ( ( )21 n= ⋅p P 1 ), and 

( )2 2
jP s  is given by the sum of j-th column of P ( ( )1

T
2  n= ⋅p P 1 ), where a 

superscript “T” denotes transposition, and 1 is a vector of unit components 
of proper length. 

Provided ( )k
l lP s >0, the probability of j

is  in Si conditioned on elements 

k
ls  in Sl can be easily calculated using Eq. (2.4): 

 ( ) ( ) ( )1|2 2 2 2 21 1| , /j jk k kP s s P s s P s=                (2.25) 

For a given element 2
ks , 1|2P  is thus obtained by dividing the k-th column 

of P by ( )2 2
kP s . Likewise, for a given element 1

ks , 2|1P  is obtained by di-

viding the k-row of P by ( )1 1
kP s . Eq. (2.24) yields  

( ) ( ) ( )1 1

1|2 2 21 1
1 12 2

1
| , 1

n n
j jk k

k
j j

P s s P s s
P s= =

= =∑ ∑                (2.26) 

and thus 1|2P  is a probability distribution of elementary events on S1. Like-

wise for 2|1P . Let P1|2 be the n1×n2 matrix with (j, k)-th entry ( )1|2 21 |j kP s s , 

and let P2|1 be the n1×n2 matrix with (j, k)-th entry ( )2|1 2 1| jkP s s . 
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Given the joint probability distribution P, one can calculate: two  
marginal probabilities, pj , by using Eq. (2.24); and then two conditional 
probabilities, P1|2 and  P2|1, by using Eq. (2.25).  

On the other hand, given one marginal probability, say p2, and the con-
ditional probabilities, P1|2, then one can determine P by using the definition 
of conditional probability (2.5): 

 

P = P1|2 Diag(p2) (2.27) 

where Diag(.) is a diagonal matrix whose i-th diagonal element is the  
i-th element of the argument vector. The marginal probabilities p1 can be 
either calculated using Eq. (2.24) or directly using the theorem of Total 
Probability (2.7):  

p1 = P1|2 p2 (2.28) 

Likewise, given p1, and the conditional probabilities, P2|1: 

P = Diag(p1) P2|1  (2.29) 

and: 

p2
T = p1 P2|1 (2.30) 

The marginal probability spaces (Si, Si, Pi) are called independent if the 
joint P is the product measure of P1 and P2, i.e. it satisfies  

{ }1 2 1 2: : [0,1]i iP P P U U U= ⊗ = × ∈ →C S   with:  

( ) ( ) ( )1 2 1 2 1 1 2 2:P P U U P U P U⊗ × = ⋅  (2.31) 

and Carathéodory Extension Theorem then allows one to extend P to any 
subset in the σ-algebra S generated by C. 

This definition is coherent with Eq. (2.6) because, if we let T1 = U1×S2 
and T2 = S1×U2, then T1∩T2 = U1×U2 and: 

P(T1) = P1⊗P2(U1×S2) = P1(U1)⋅P2(S2) = P1(U1)⋅1 = P1(U1) 
(2.32) 

 

P(T2) = P1⊗P2(S1×U2) = P1(S 1)⋅P2(U2) = 1⋅ P2(U2) = P2(U2) 
(2.33) 

 

P(T1∩T2) = P1⊗P2(U1×U2) = P1(U1)⋅P2(U2)  
(2.34) 

 
Eq. (2.6) follows by putting Eqs. (2.32) and (2.33) into (2.34).  

For the probability distribution of the joint elementary events the hy-
pothesis of independence gives: 

 1 2 1 1 2 2( , ) ( ) ( )i k i kP s s P s P s= ⋅ ; P = p1p2
T (2.35) 
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2.4   Random Vectors 

In the two-dimensional space, the set of pairs a of real numbers, 2\ , the 

σ-algebra generated by C={(- ∞, a]: a ∈ 2\ } is again called the Borel σ-

algebra, B2 and contains all two-dimensional intervals of 2\ . 
Let (S, S, P) be a probability space and x a Borel-measurable real func-

tion x : S → 2\ , defined on S: x(s) is a random vector on (S, S, P). It 

means that, for every a∈ 2\ , {s: x(s) ≤ a}∈ S, where inequalities are 
meant to hold component-wise.  

In the dependent two-dimensional probability space ( 2\ , B2 , Px) again 

Px(T)= P(x-1(T)) is given by the CDF of the random vector x: Fx(a) = 

Px({x: x ≤ a}) = P({s: x(s) ≤ a}). 
When Fx(a) is absolutely continuous, it can be expressed as integral of 

the joint probability density fx(a) of the random vector x: 

2

1 2
1 2

( )
( ( , )) xF

f a a
a a

∂= =
∂ ∂x

a
a  (2.36) 

Otherwise, let B ⊂ 2\  the subset (finite or infinitely numerable) of discon-
tinuity points of x and let px the discontinuity jump at a∈B. If:  

( ) 1
B

p
∈

=∑ x
a

a  (2.37) 

then x is a discrete random vector and px is the joint mass distribution.   
If B is finite, px allows one to calculate the probability of any subset of 

B in a way similar to the probability of elementary events. 
The notions of marginal and conditional mass distributions are related to the 

joint mass distributions by means of matrix operations equivalent to the opera-
tions defined for the joint elementary events of product spaces in Section 2.3. 

For an absolutely continuous random vector x = (x1, x2) analogous defi-
nitions and relations could be given in terms of probability density (pdfs). 
For example the conditional pdf of x1 given x2 is: 

( ) ( )
( )1 2

2

1 2
| 1 2

2

,
,x x

x

f x x
f x x

f x
= x  (2.38) 

from which we also have: 

( ) ( ) ( )
1 2 21 2 | 1 2 2, ,x x xf x x f x x f x=x  (2.39) 
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Moreover the marginal pdfs can be derived by an integral extension of the 
Theorem of total probability: 

( ) ( ) ( ) ( )
1 1 2 21 1 2 2 | 1 2 2 2, ,x x x xf x f x x dx f x x f x dx

+∞ +∞

−∞ −∞
= =∫ ∫x  (2.40) 

When the probability density of x exists, the expectation can be given by 
the extension of the Fundamental Theorem of the expectation, through the 
absolutely convergent Riemann Integral: 

[ ( )] ( ) ( )xE y g g f d
+∞

−∞
= = ∫x a a a  (2.41) 

while for a discrete random vector: 
 

[ ( )] ( ) ( )x
B

E y g g p
∈

= = ∑
a

x a a  (2.42) 

Assuming g = x1
k x2

j, eq. (2.41) or (2.42) give the Moments of type (k, j) 
and order k+j of the random vector x. The Moments of order 1 (type (1,0) 
and (0,1)) equal the mean values  (μx1 , μx2) of the single random variables 
in the vector; the central Moments of order 2 define the matrix of Covari-
ance of x σx: the diagonal of the matrix ( types (2,0): σ2

x1 and (0,2): σ2
x2) 

contain the Variance of the single random variables, while the other coeffi-
cients of the symmetrical squared matrix gives the Covariance of the cou-
ple of random variables  (Type (1,1): σx1,x2): 

1 1 2

2

2
1 1 2

1 1 2
2

[( ) ] [( )( )]
( , )

[( ) ]

x x x

x

E x E x x
x x

Sym E x

μ μ μ
σ

μ

− − −
=

−
x     (2.43) 

Since the determinant of the matrix cannot be negative, the coefficient of 
correlation ρx1,x2 = σx1,x2/(σx1 σx2) must be in the interval [-1, 1]. This coef-
ficient synthetically measures the sign and the weight of a linear correla-
tion between the two random variables. When |ρx1,x2| = 1 the variables are 
totally (positively or negatively) correlated; when ρx1,x2 = 0 the variables 
are uncorrelated. 

Uncorrelation does not mean statistical independence of the single random 
variables of a random vector. The latter refers to the relations between joint, 
conditional and marginal pdfs or mass distributions, as specified in § 2.3. 
Considering for example absolutely continuous random vectors the joint pdf 
in (2.39) is directly determined by the product of the marginals. 

Statistical independence implies uncorrelation, but uncorrelation does 
not imply independence, because a non linear statistical (or also determi-
nistic) dependence between the two random variables could be present. 



Chapter 3 
Random Sets and Imprecise Probabilities 

The idea of random sets is introduced by showing that three different ex-
tensions to the classical probabilistic information lead to an equivalent 
mathematical structure. A formal definition is then given, followed by dif-
ferent ways to describe the same information.  

A random set gives upper and lower bounds on the probability of subsets 
in a space of events. These non-additive and monotone (with respect to in-
clusion) set functions can be described within a more general framework by 
resorting to the theory of imprecise probabilities, Choquet capacities, and 
convex sets of probability distributions. The chapter highlights specific 
properties, advantages and limitations of random sets with special emphasis 
on evaluating function expectation bounds and on updating the available  
information when new information is acquired. To avoid mathematical  
complications, sets and spaces of finite cardinality are generally considered. 

3.1   Extension of Probabilistic Information 

3.1.1   Multi-valued Mapping from a Probability Space 

This extension was proposed in (Dempster 1967) and is summarized in  
Figure 3.1. Let (X , X, Px) be a probability space (for example a random vari-
able with cumulative distribution function Fx(x)) and let G: X → S be a multi-
valued mapping to a measurable space (S, S) (for example G(x) is the interval 
in the grey area in Figure 3.1). For a set T ∈ S, let 

{ } { }*
*| ( ) ;   | ( )T x X G x T T x X G x T= ∈ ∩ ≠ ∅ = ∈ ⊆  (3.1)

S* = S* is the domain of G, here assumed to be equal to X; hence Px(S
*) = 

Px(S*) = 1.  
G is a strongly measurable function if for any set T ∈ S, T* ∈ X  (and 

consequently T* ∈ X  (Miranda 2003)). The exact value of the probability 
of T (in the probability space (S, S , P)) cannot be computed, but it can be 
bounded by the probabilities of T* and of the inclusive set T*:  

*
**

* *
*

( ) ( )
( )  ( )  ( )

( ) ( )
x x

x x
x x

P T P T
P T P T P T

P S P S
= ≤ ≤ =  (3.2)
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Fig. 3.1 Probability 
bounds from a  
multi-valued mapping 

 

 
 

 
Example 3.1. The characteristic compressive strength of a masonry wall (fk) can 
be derived through a function of the unit (fb) and mortar (fm) strengths. According 
to (CEN 2005) for plain solid (one head) masonry made with clay, group 1 units 
and general purpose mortar fk  = 0.55 fb

0.7 fm
0.3 = g (fb , fm). Assume that only an in-

terval of possible values is known for the mortar strength, while a precise prob-
ability distribution has been derived for the units by testing. The upper and lower 
bounds of probability for each interval T of values of masonry strength can then be 
computed as follows.  

Assuming: fm= [20, 30] MPa and the Normal cumulative distribution function 
N(40 MPa, 8 MPa) for the random variable x = fb, G(x) = [g (x, 20), g (x, 30)], the 
probability of  T = [25, ∞) (i.e. the probability that the masonry strength could be 
above 25 MPa) is bounded by: 

 

Px(T* = {x > g-1(25, 20)}) = 1- Fx (g
-1(25, 20)) = 0.0010  

Px(T * = {x > g-1(25, 30)}) = 1- Fx (g
-1(25, 30)) = 0.0368. 

3.1.2   Theory of Evidence 

In the finite space S (a “body of evidence” (Shafer 1976)), a “probabilistic 
assignment” m is given on the power set of S (P (S): the set of all subsets of 
S; if |S| is the cardinality of S, then |P (S)| = 2|S|, including ∅ and S). The 
probabilistic assignment is given according to the axioms of probability 
theory, and therefore m(∅) = 0, Σ m = 1. 

 
Example 3.2. An expert is asked to define the cause of a structural deficiency in a 
building by choosing among a given list of  options c listed in Table 3.1 (S = {c1, c2, 
c3, c4}). Based on his past experience and current observations, the expert could 
measure the different causes c (first column), and attach subjective probabilities m 
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(second column) not only to single causes, but to sets of causes. In his opinion, some 
observed symptoms point to single causes, but other symptoms are compatible with 
more causes, or with all listed causes.  

The probability of the single causes or of a set of causes can easily be calcu-
lated: for example, the probability of c2 is at least m2 (10%), but could increase to 
m2+m5+m6 (30%); the probability of (c1 or c2: c1 ∪ c2) is at least m1+m2 (70%) but 
could be higher, and up to m1+m2+ m5+m6 (90%). 

Table 3.1 Expert’s subjective probabilities in a structural diagnosis 

c1 - Failure of soil m1 = m(c1) = 60% 
c2 - Overloading m2 = m(c2) = 10% 
c3 - Temperature variations m3 = m(c3) =   5% 
c4- Other m4 = m(c4) =   5% 
 m5 = m(c2, c3, c4)      = 10% 
 m6 = m(c1, c2, c3, c4) = 10% 
 Total :                       = 100% 

 
The original information is described by a family F of pairs of n nonempty 
subsets Ai (“focal elements”) and attached mi = m(Ai) > 0, i ∈ I = {1, 2, …n}, 
with the condition that the sum of mi is equal to 1. The (total) probability of 
any subset T of S can therefore be bounded by means of the additivity rule. 
Shafer suggested the words Belief (Bel) and Plausibility  (Pla) for the lower 
and upper bound, respectively. Formally: 

{ }( , ),   | 1

( ) | ,   ;

( ) | ,           ;

( )  ( )  ( )

i i i

i I

i i

i

i i

i

A m i I m

Pla T m A T T S

Bel T m A T T S

Bel T P T Pla T

∈
= ∈ =

= ∩ ≠ ∅ ∀ ⊂

= ⊆ ∀ ⊂

≤ ≤

∑

∑

∑

F F

 (3.3)

3.1.3   Inner/Outer Extension of a Probability Space 

It is well known that a probability measure can be given only for a measur-
able space: i.e. the probability can be attached only to particular families of 
subsets on a space S (an algebra on finite spaces; a σ-algebra on infinite 
spaces). The key property is the closure of the family with respect to  
complementation and (numerable) union (and therefore the (numerable) in-
tersection). For example, the σ-algebra could be generated by a finite parti-
tion of S. But given a precise probability measure, it is legitimate to ask 
about bounds of the probability of any other subset T of S (Halpern and 
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Fagin 1992). The reply can be obtained searching for the best members  
of the σ-algebra that give an inner approximation (Tin ⊆ T), and an outer 
approximation (T ⊆ Tout) to T. 

 
Fig. 3.2 Partition of the Cartesian  
product space S = Rc × Rs 

 

 
 
 

Example 3.3. Let us suppose the characteristic (reliable at 95%) value of the 
strength of concrete (Rc = fck = 30 MPa) and steel (Rs = fsk = 400 MPa) is known in 
a reinforced concrete (r. c.) frame structure. A partition of 4 elementary events is 
therefore defined on the Cartesian product space S = Rc × Rs = ×\ \ ; moreover, 
supposing stochastic independence between Rc and Rs, the probability of the ele-
mentary events and 16 members of the algebra generated by the partition (the un-
ion of any subsets of elementary events plus the empty set) can easily be derived 
(Figure 3.2). We now wish to bound the probability of the event T = {( Rc, Rs )| Rc  
≤ 40 MPa; Rs ≤  fsk}, clearly not included in the algebra.  

The inner approximation is Tin = {( Rc, Rs )| Rc ≤ fck = 30 MPa; Rs ≤  fsk}, with 
P(Tin)= 0.05x0.05 = 0.0025, while the outer approximation also includes the ele-
mentary event {( Rc, Rs )| Rc > fck = 30 MPa; Rs ≤  fsk}. Therefore P(Tout) = 0.0025 
+ 0.95x0.05 = 0.0500. If additional information is received that Rc is a Gaussian 
random variable with mean equal to 45 MPa, the exact value of P(T) can be calcu-
lated because the standard deviation of Rc is equal to: 

  
                       (45 – 30)/ N-1( 0, 1, 0.95) = 15/1.644 = 9.12 MPa,  
 

and hence   P(T) = 0.05 x N(45, 9.12, 40) = 0.05 x 0.2917 = 0.01459. 
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3.2   Random Sets 

3.2.1   Formal Definition of Random Sets 

The strong formal and substantial analogy between the three formulations 
given above is self-evident. 

In this book priority is given to a direct reference to the second formula-
tion, originally proposed by Shafer within the so-called Evidence Theory, 
and therefore particularly connected to a subjective view of the probability 
concept. However, we prefer the term “Random Sets”, following an idea 
originally developed within stochastic geometry (Robbins 1944; Robbins 
1945; Matheron 1975), to underline that the formulation is compatible with 
both objective and subjective uncertainty. 

Formally, a random set on the space S is a family F of n focal elements 
Ai ⊆ S and attached weights of the basic probabilistic assignment m(Ai) 
that satisfies the conditions: m(∅) = 0; Σi m(Ai) = 1. See Eq. (3.3). 

The weight m(Ai) expresses the extent to which all available and relevant 
evidence supports the claim that a particular element of S belongs to the set 
Ai alone (i.e. exactly to set Ai) and does not imply any additional claims re-
garding subsets of Ai; if there is any additional evidence supporting the claim 
that the element belongs to a subset B of Ai, it must be explicitly expressed 
by another value m(B). The main difference between a probability distribu-
tion function and a basic assignment is that the former is defined on S, 
whereas the latter is defined on the power set of S, P (S).  

As a consequence, the following properties hold: 

1) it is not required that m(S) = 1; 
2) it is not required that m(A) ≤ m(B) when A ⊂ B; 
3) no relationship between m(A) and m(AC) is required (AC is the com-

plementary set of A). 
 

Each focal element A must be treated as an object “per se”; m(A) ≤ m(B) 
means that object A is less probable than object B. It should be noted that: 

a) If m(S) = 1, there is a unique focal element and this is S itself 
(maximum ignorance). 

b) Conversely, if there is a unique focal element A ⊂ S, then m(A) = 1 and 
m(S) = 0. If moreover |A| = 1 all uncertainty disappears. 

c) If there are two or more focal elements, then m(S) < 1.  
 

It should be stressed that the definition of random set refers to distinct non-
empty subsets of S. If these distinct non-empty subsets are singletons (single 
elements, thus non-overlapping, of S) and each one has a probability as-
signment, then we have a probability distribution on S. Note that when proc-
essing real world information, the non-empty subsets may be overlapping 
(see Chapter 1). 
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Example 3.4 (Reservoirs-bathtub analogy). As depicted in Figure 3.3, consider a 
set of reservoirs (focal sets) Ai, whose outward flow rate (basic probability as-
signment) is m(Ai). This outward flow can only be vertical down (positive); as for 
the i-th reservoir, any number of vertical pipes can be located anywhere and ar-
ranged in any fashion on the footprint of the reservoir, but their total flow rate is 
always equal to m(Ai). Pipes are not allowed to discharge into other reservoirs, and 
the total flow rate from all reservoirs is normalized to 1. No water may come from 
a source different than a reservoir (m(∅)=0).  

One can calculate the maximum possible flow rate enjoyed by a bather in a bathtub 
T (call it Pla(T)) by arranging single pipes so that all reservoirs whose vertical projec-
tion hits the bathtub actually discharge into it. In Figure 3.3a, the maximum flow rate 
is 0.8. The minimum flow rate (call it Bel(T)) is obtained by placing single pipes out-
side of the bathtub projection unless a reservoir projects completely into the bathtub, in 
which case there is no choice but to discharge into T. In Figure 3.3b, the minimum 
flow rate is 0.3. Notice that there may be more than one pipe arrangement that yields 
the maximum or minimum flow rate into the bathtub. Any other arrangement of the 
pipes will yield a flow rate into T (Probability of T) that will be comprised between 
these Bel(T) and Pla(T) (Eq. (3.3d)). In precise probability theory, reservoirs are re-
stricted to a single point in space, and thus only one pipe carrying the entire flow m(Ai) 
can be attached to the i-th reservoir, and only one pipe arrangement is possible.  

As a consequence, each possible single pipe arrangement that fits in the reser-
voirs of a random set corresponds to a probability distribution (called Selector, see 
Section 3.2.3.2 on  page 35).  

On the other hand, several pipes may be attached to the i-th reservoir. Without 
loss of generality, the pipes attached to the i-th reservoir may have a unit total flow 
rate and may be fitted with flow rate reducers; a flow rate reducer will reduce the 
flow rate in each single pipe by a factor equal to m(Ai). Each set of pipes of unit flow 
rate attached to the i-th reservoir may be interpreted as a probability distribution on 
Ai. These pipe arrangements over the entire set of reservoirs make up the probability 
distributions compatible with the random set (Section 3.2.3 on page 34).    

 

  
(a) (b) 

 

Fig. 3.3 Reservoir-bathtub analogy: (a) plausible flow rate gives an optimistic out-
look; (b) believed flow rate gives a pessimistic outlook  
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3.2.2   Equivalent Representations of Random Sets 

When a random set is given on the space S, Eq. (3.3) shows how upper/lower 

probability bounds can be attached to each subset T ⊂ S. In this book, the 
words Belief and Plausibility suggested by Shafer will be used for upper/lower 
probability bounds, but without any particular reference to the meaning of 
these words in normal language. 

For the entire space S, Bel(S) = P(S) = Pla(S) = 1. However, when two 
complementary sets T and T 

C are considered, the sums of their Beliefs or 
Plausibilities are not required to be equal to 1, but they are related by the 
following weaker conditions: 

C C

C C

C C
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 (3.4)

It is easy to check the first formula: consider that some focal elements may 
not be included in either T or T 

C. In the second formula, some focal elements 
may intersect both T and T 

C, and are therefore counted twice: once in 
Pla(T), and once in Pla(T 

C). 
More generally, given two sets T 

1 and T 
2 and considering that: 

 

– Some focal elements included in T 
1∪ T 

2 may not be included in T1, T 
2 

and T 
1∩ T 

2; 

– Some focal elements may not intersect T 
1∩ T 

2
 but may intersect both 

T 
1, T 

2 (and therefore T 
1∪ T 

2), 
 
one obtains: 

 
1 2 1 2 1 2
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Even more generally, given k sets T 
1, T 

2… T k: 
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(3.6)

Bel and Pla satisfy Eq. (3.6) for any k > 2. Formulas (3.4), (3.5) and (3.6) 
generalize stronger relations of equality that must be satisfied by a prob-
ability set function P, as a consequence of the additivity axiom for the 
probability of the union of disjoint sets (Eq. (2.1)). 

It is easy to demonstrate that a duality relation intimately connects the 
set functions Bel(T) and Pla(T): indeed, the condition (Ai ⊆ T) implies the 
negation of condition (Ai ∩ T C≠ ∅), and therefore: 

 

( ) ( )
C( ) ( )

| | 1i i i i i

i i i

Bel T Pla T

m A T m A T m

+ =

⊆ + ⊄ = =∑ ∑ ∑  (3.7)

 

When the set function Bel (or Pla): P (S) → [0, 1] has been evaluated for 
every T ⊂ S, Eq. (3.7) gives Pla (or Bel, respectively). Additionally, the 
original set function m(A) can be reconstructed through the Möbius trans-
form of the set function Bel(T): 

( )( ) 1 ( ) |
A TBelm A Bel T T A

−= − ⊆∑  (3.8)

The Möbius transform of a set function μ is a one-to-one invertible set 
function μm:  P (S) →\ , which is defined by replacing μ for Bel in Eq. 
(3.8). Its inverse is: 

(T) ( ) | ,         m m A A T T Sμ = ⊆ ∀ ⊂∑  (3.9)
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When Eq. (3.8) is applied to a Belief function, m(A) ∈ [0,1] and Σ m(A) = 
1, i.e. m(A) is a probabilistic assignment. Conversely, when m(A) is a 
probabilistic assignment, Eq. (3.9) gives the corresponding Belief function 
(in fact mμ  in (3.9) is equal to Bel in (3.3)). 

Therefore, the information given by a random set on the space S is com-
pletely described by a Belief set function; but not every set function mμ is 
equivalent to a random set. The following Section 3.3.3 on page 69 gives the 
conditions for the set function mμ to be a Belief function, and therefore to be 
equivalent to a random set. 

 
Fig. 3.4 Graphical representation of the 
random set in Example 3.5 

 

 
 
Example 3.5. Let S={s1, s2, s3}, and let F ={({s1, s2}, 0.5), ({s1, s2, s3}, 0.4), ({s2}, 
0.1)} be a random set on S. A graphical representation of the random set is dis-
played in Figure 3.4 as a pile of boxes. The width of each box covers a  focal ele-
ment, and the box height is equal to the relevant probabilistic assignment. The 
power set P (S) contains the 23= 8 subsets Ai listed in Table 3.2 and identified by 
the indicator function IAi = {χ(s1), χ(s2), χ(s3)}. The set functions m(Ai), Bel(Ai), 
Pla(Ai), Pla(Ai,C) are displayed in the same table; it is therefore possible to check 
that formulas (3.5) are always satisfied. The reader can also check that formulas 
(3.4) are satisfied as well. Finally, Eq. (3.8) was used to calculate Belm through Bel, 
and Belm is found to be identical to m. For example: 

 

 
3 33 | | 3( ) ( 1) ( )Bel A Am A Bel A−= −   = (-1)0 0.1  = 0.1 

5 3 5 55 | | 3 | | 5( ) ( 1) ( ) ( 1) ( )Bel A A A Am A Bel A Bel A− −= − + −  = (-1)1 0.1+(-1)0 0.6 = 0.5 
7 3 7 77 | | 3 | | 7( ) ( 1) ( ) ( 1) ( )Bel A A A Am A Bel A Bel A− −= − + − = (-1)1 0.1+(-1)0 0.1 = 0 
8 3 8 7 8 88 | | 3 | | 7 | | 8( ) ( 1) ( ) ( 1) ( ) ( 1) ( )Bel A A A A A Am A Bel A Bel A Bel A− − −= − + − + −  =  

=   (-1)2 0.1 + (-1)1 0.6 + (-1)1 0.1 + (-1)0 1.0 = 0.1- 0.6 - 0.1 + 1.0 = 0.4 
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Table 3.2 Set functions in Example 3.5 

i  χ(s1) χ(s2) χ(s3) m(Ai) Bel(Ai) Pla(Ai) Pla(Ai,C) Bel(Ai)+ 
Pla(Ai,C) 

Belm(Ai) 

1  0 0 0 0 0 0 1.0 1 0 
2  1 0 0 0 0 0.9 1.0 1 0 
3  0 1 0 0.1 0.1 1.0 0.9 1 0.1 
4 0 0 1 0 0 0.4 1.0 1 0 
5 1 1 0 0.5 0.6 1.0 0.4 1 0.5 
6 1 0 1 0 0 0.9 1.0 1 0 
7 0 1 1 0 0.1 1.0 0.9 1 0 
8 1 1 1 0.4 1.0 1.0 0 1 0.4 

 

3.2.3   Probability Distributions Compatible with a Random Set 

Consider the measurable space (S, S ). It is possible to consider a random set 
as a class Ψ of probability measures P(T) for the sets T ∈ S. For S finite, 
with cardinality |S|, S could be the maximum algebra on S, i.e. the power set 
of S: the class of the 2|S| subsets of S (containing S and the empty set ∅). In a 
more general way, let S be the algebra generated by a finite partition of S 
that contains only elementary events, in the following named “singletons”, s 

j. For all T ∈ S , P(T) = Σ (P(s j)= P({s j })| s 
j ∈T), and P(s j) is the probability 

distribution attached to the singletons s j. 
Class Ψ can be defined in two different ways: 
 

1. Class ΨE of probability distributions P such that for all T ∈ S P(T) is 
bounded by Bel(T) and Pla(T) (see for example (Dempster 1967)): 

( ){ }| : ( ) ( )E P T Bel T P T Pla TΨ = ∀ ∈ ≤ ≤S  (3.10)

 

2. Recall that the probability assignment mi of any focal element Ai is at-
tached to Ai without any other specification about its distribution on 
the singletons s 

j contained in Ai. Then, one may consider the class ΨRS 
of the probability distributions P(s 

j) that correspond to the infinite 
ways whereby mi may be selected to be distributed on Ai (Fetz and 
Oberguggenberger 2004). Formally, indicating with I 

i  the set of the 
indexes of the singletons in Ai and with Ψi the set of all probability 
distributions on the sub-space Ai = {s j | j ∈ I i}: 
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In the case of finite spaces, the equivalence of the two definitions (i.e. Ψ = 
ΨE = ΨRS) has been demonstrated in (Dempster 1967). In the following, we 
focus on the second definition, which suggests constructive procedures to 
evaluate class Ψ. Each member P of Ψ takes on values as follows: 
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and depends on k = Σ| I i | values Pi, j, subject to the conditions: 
 

,: 1
i

i j
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i P
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Sets Ψi are convex because the convex combination of any pair of prob-
ability distributions in Ψi is a probability distribution on Ai, and hence it is 
in Ψi. Convexity of the sets Ψi and Eq. (3.12)  imply that the set Ψ is con-
vex. Let us now underline the special meaning of some members of Ψ. 

3.2.3.1   White Distribution 

If the Principle of Indifference is applied to each focal element, a uniform 
distribution is obtained along each focal element: 
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(3.14)

In the following, this particular distribution will be termed “white” (Bernar-
dini 1995) to underline some analogy with the concept of spectral uniformity 
(“white noise”, “white light”). The same notion was previously suggested by 
Dubois and Prade (Dubois and Prade 1982; Dubois and Prade 1990). 

3.2.3.2   Selectors 

In the following, we assume that S is a finite set of real numbers, so that 
the mass distribution of the simple real function y = Σj s 

j χ(s 
j) coincides 

with the probability distribution of the singletons P(s  
j) (see Chapter 2.2). 

According to (Yager 1991; Miranda, Couso et al. 2002) a random set is 
a strongly measurable multi-valued function (see §3.1.1), and it can be 
considered as generated by a random variable on (X , X, Px) whose point-
wise realizations on S cannot be precisely observed, so we can only say 
that each realization is a particular but unknown singleton of the focal ele-
ment. The mass distributions corresponding to the different point-valued 
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mapping, compatible with the multi-valued mapping that generate focal 
elements, are called “selectors” of the random set: when focal element Ai 

is observed, the realization is an unknown but specific singleton { }iks  of 

the focal element (see Figure 3.5). Therefore:  
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i i
i j

i
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 (3.15)

 
 

 

Fig. 3.5 Selector from a random set 

The set of selectors SCT is a subset of Ψ because, with reference to Eq. 
(3.11), SCT is generated by considering all Dirac delta probability distribu-
tions (measures) in Ψi (Section 2.1 on page 15), i.e. probability distribu-
tions concentrated at one point in A 

i. The number of selectors, |SCT|, is 
thus at most equal to the product of the cardinalities |I 

i| (some selectors 
could coincide). If X and S are finite, the number of focal elements and 
cardinalities |I 

i| are finite: therefore SCT is a finite (and hence non-convex) 
set strongly included in the convex set Ψ.N 3-1 
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3.2.3.3   Upper and Lower Distributions 

Recall that I 
i is the set of indices of the singletons in A 

i. Let us order each 
set I 

i according to the increasing real values of the singletons. Two particu-
lar selectors can be generated by taking ki equal to the upper bound of I 

i (ki 
= max(I 

i)), and equal to the lower bound of I 
i (ki = min(I 

i)). The corre-
sponding (discrete) cumulative distribution functions (CDF) of s, or, 
equivalently, of the simple function ys = Σj s 

j χ(s 
j) are, respectively: 

 

( ) { }( )
( ) { }( )

min( )

max( )

( )  |

( )  |

iI
s

iI
s

i j j
UPP s s

s y

i j j
LOW s s

s y

F y m A Pla s s y

F y m A Bel s s y

≤

≤

= = ≤

= = ≤

∑

∑
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They bound the CDF F(ys) given by any other probability distribution in 
Ψ. Figure 3.6 shows the upper and lower distributions of the random set 
considered in Example 3.5 and displayed in Figure 3.4.  

 
 

Fig. 3.6 Upper and lower distri-
butions of the random set in 
Example 3.5 

 

 
 
 

 
More generally, if f is a point-valued monotonically increasing or de-

creasing mapping on S to Y = \ , the same upper and lower distribution 
functions extended to Y can be used to bound the CDF F(y) (Figure 3.7) 
and the expectation E[y]. 
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Fig. 3.7 Extension of upper and lower distributions by a monotonic point-valued 
function 

Hence: 
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3.2.3.4   Extreme Distributions 

Section 3.2.3.3 identified the two selectors that generate upper and lower 
CDFs for s, the simple function ys = Σj s

 
 
j χ(s 

 
j), or monotonic functions of 

s. These two selectors can also be interpreted as the selectors that, for a 
given s*, give upper and lower probabilities of the event (set) {s : s ≤ s*}.  
Given any set T ⊆ S, one may wonder if Ψ contains a distribution P* that 
maximizes (or minimizes) the probability of T, i.e. such that P*(T) = 
max{P(T) | P ∈ Ψ} (or P*(T) = min{P(T) | P ∈ Ψ}), and, if it exists, how 



3.2   Random Sets 39
 

one can determine it. Such a distribution is called extreme distribution. 
One may then ask the same question for all sets T ⊆ S, i.e. determine all 
the distributions in Ψ that minimize or maximize the probability of some 
event T ⊆ S. This is the set of the extreme distributions, EXT.  

Likewise, for a general function y = f(s), one may wonder if there is a 
distribution in Ψ that gives the upper (or lower) CDF of y, and, if so, how 
to determine it. One may then ask the same question for all possible func-
tions, and one may want to determine all of the distributions that give up-
per (or lower) CDFs of y for some function y = f(s). Are these distributions 
the same as in EXT? Let us start from examining the exteme distributions. 

 
 

 

Fig. 3.8 Extreme distributions and extension by a non monotonic point-valued 
function 

Taking into account Eq. (3.12) subjected to the conditions in Eq. (3.13), 
more general extreme distributions can be constructed by considering per-
mutations π(j), j = 1 to |S| of the indexes j, and progressively assigning the 
quantities Pi,π(j) in such a way as to obtain an extreme (maximum or mini-
mum) of each Pπ(j)

 = Σi mi Pi,π(j). Selecting for example the minimum, the  
criterion corresponds to selecting systematically Pi,π(j)

 = 0 until, to satisfy 
conditions Eq. (3.13), Pi,π(j)

 = 1 must be assumed. By applying the maximum 



40 3   Random Sets and Imprecise Probabilities
 

condition to the same permutation or, in an equivalent way, the minimum 
condition to the reversed permutation (i.e. the permutation πR(j) = |S| + 1- 
π(j) ), a dual extreme distribution is obtained. 

Formally, dual extreme cumulative distributions can be associated to 
any permutation π(j), j = 1 to |S| of the indexes j, by extending Eq. (3.16) 
through the following formulas (Ii

π = {π(j)| j∈Ii}): 
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( ) { }
min( )

max( )

( ) ( )
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,
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Each extreme distribution PEXT (s 
j) can finally be derived from each cumu-

lative Fπ (upper and lower respectively): 
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This constructive definition shows that: 
 

− extreme distributions are selectors:  EXT ⊆  SCT; 
− upper and lower distributions are particular extreme dual distribu-

tions corresponding to the pair of reversed permutations π(j) = j 
and π(j) = |S|+1-j; 

− the number |EXT| of extreme distributions is at most equal to the 
number of permutations, i.e. |S|!; however the number can be low-
er because some permutations could give the same extreme; 

− if the cardinalities |I 
i| reduce to 1 (the focal elements reduce to sin-

gletons), then |EXT| = |Ψ|=1, corresponding to a precise probability 
distribution; 

− let yj =f(s 
j) be a point-valued mapping on S to Y and πLOW(j), πUPP(j) 

a pair of reversed permutations so that f(s
π

LOW
(j)

) and f(s
π

UPP
(j)

) are 
an ordered list of monotonically increasing and decreasing values, 
respectively (Figure 3.8): the corresponding extension to Y of the 
dual extreme distributions, obtained by formulae (3.19), can be used 
to bound the CDF F(y) and the expectation E[y]; 
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− given that the probability of any event A is equal to the expecta-
tions of its indicator function IA, Bel(A) and Pla(A) are lower and 
upper bounds of E[y = IA] calculated with the corresponding dual 
extreme distributions; the same dual extreme distributions give 
bounds of E[y = IAC] for the complementary event AC, respectively 
upper Pla(AC) and lower Bel(AC); 

− We already noticed that Eqs. (3.11) and (3.12) imply that Ψ is a 
convex set. Since probabilities and expectations are linear functions 
of probabilities in Ψ, probabilities and expectations attain their 
maximum and minimum values at the vertices of  Ψ. Therefore, 
EXT is the set of vertices of Ψ.   

− Ψ is equal to the convex hull of EXT, ΨEXT, i.e. the set of all con-
vex combinations of extreme distributions (all extreme distribu-
tions are selectors of the random set and hence belong to Ψ). 

 

Example 3.6. Let  S={s1, s2, s3}, and F ={({ s1, s2}, 0.5), ({ s2}, 0.3), ({s3}, 0.2)}. 
Therefore: |S| = 3, n = 3, I 

1 = {1,2}, I 
2 = {2}, I 

3 = {3},  | I 
1|⋅| I 

2|⋅| I 
3| = 2⋅1⋅1 = 2. 

The set SCT contains two selectors: 
 
k1 = 1 gives:  P1(s1) = 0.5, P1(s2) = 0.3, P1(s3) = 0.2; 
k1 = 2 gives:  P2(s1) = 0, P2(s2) = 0.3 + 0.5 = 0.8, P2(s3) = 0.2. 
 

The set Ψ is the one-dimensional interval between the selectors. Of course they are 
also extreme points, corresponding to the upper and lower distributions (to the 
identity permutation and its reversal) respectively. The centre of the interval gives 
the white distributions: 

 
PWHITE(s1)= (0 + 0.5) /2 = 0.25, PWHITE(s2)= (0.3 + 0.8) /2 = 0.55, PWHITE(s3)= 0.2 0. 

 

Example 3.7. Let S={ s1, s2, s3}, and F ={({ s1, s2}, 0.5), ({s1, s2, s3}, 0.4), ({s2}, 
0.1)} the random set considered in Example 3.5. Therefore: |S| = 3, n = 3, I 

1 = 
{1,2}, I 

2 = {1,2,3}, I 
3 = {2}, I = | I 

1|⋅| I 
2|⋅| I 

3|=2⋅3⋅1=6. 
The white distribution can be calculated as follows: 
 
PWHITE(s1) = 0.5 /2 + 0.4/3            = 0.3833 
PWHITE(s2) = 0.5 /2 + 0.4/3 +0.1/1 = 0.4833 
PWHITE(s3) =              0.4 /3           = 0.1333 
 

The six selectors are listed in Table 3.3. For example, considering r = 6, k1 = 2, k2 

= 3, k3 = 2: 
 

        P6(s
1) = 0 ,      P6(s

2) = m1 + m3 = 0.6,          P6(s
3) = m2 = 0.4 
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Table 3.3 Selectors in Example 2.5 

r k1 k2 k3 Pr(s1) Pr(s2) Pr(s3) Total 
1 1 1 2 0.9 0.1 0 1 
2 1 2 2 0.5 0.5 0 1 
3 1 3 2 0.5 0.1 0.4 1 
4 2 1 2 0.4 0.6 0 1 
5 2 2 2 0 1 0 1 
6 2 3 2 0 0.6 0.4 1 
 

Table 3.4 Extreme distributions in Example 3.7 

j 1 2 3  

π(j) 1 2 3 mi
 

i=1 0 1 0 0.5 

i=2 0 0 1 0.4 

i=3 0 1 0 0.1 

P1(sπ(j)) 0 0.6 0.4  

P1
EXT (s 

j) 0 0.6 0.4  
 

j 1 2 3  

π(j) 3 2 1 mi
 

i=1 0 0 1 0.5 

i=2 0 0 1 0.4 

i=3 0 1 0 0.1 

P2(sπ(j)) 0 0.1 0.9  

P2
EXT (s 

j) 0.9 0.1 0  
 

j 1 2 3  

π(j) 2 1 3 mi
 

i=1 0 1 0 0.5 

i=2 0 0 1 0.4 

i=3 1 0 0 0.1 

P3(sπ(j))    0.1 0.5 0.4  

P3
EXT (s 

j) 0.5 0.1 0.4  
 

j 1 2 3  

π(j) 3 1 2 mi
 

i=1 0 0 1 0.5 

i=2 0 0 1 0.4 

i=3 0 0 1 0.1 

P4(sπ(j)) 0 0 1  

P4
EXT (s 

j) 0 1 0  
 

j 1 2 3  

π(j) 2 3 1 mi
 

i=1 0 0 1 0.5 

i=2 0 0 1 0.4 

i=3 1 0 0 0.1 

P5(sπ(j))    0.1 0 0.9  

P5
EXT (s 

j) 0.9 0.1 0  
 

j 1 2 3  

π(j) 1 3 2 mi
 

i=1 0 0 1 0.5 

i=2 0 0 1 0.4 

i=3 0 0 1 0.1 
P6(sπ(j)) 0 0 1  

P6
EXT (s 

j) 0 1 0  
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In Table 3.4, rows 3 through 5 and columns 2 through 4 give values Pi,π(j) used 
to construct extreme distributions; each row corresponds to a focal element. 
Framed cells identify focal elements where Pi,π(j) can be selected between 0 and 1 
when i = 1 or 2; in all cases, P3,π(j)=2 = 1, because | I 3| = 1, and outside the framed 
cells Pi,π(j) = 0. In each row, the assignment of Pi,π(j) values starts from the first 
column and continues on the second and third columns by inserting  0  in the 
framed cells until the last framed column is encountered, and 1 is assigned to this 
column.  

The six sub-tables given in Table 3.4 show how at the most 3! = 6 extreme dis-
tributions Pr

EXT are calculated by starting from the 3 possible pairs of reversed 
permutations. Four extreme points are identified, which correspond to selectors 
P1, P3, P5, and P6 in Table 3.3. P1 = P1

EXT  and P6 = P2
EXT are the upper and lower 

distributions. 
The set Ψ is the |S|-1 = 2-dimensional shaded polyhedron shown in Figure 3.9a) 

in the |S| = 3 dimensional space of the probabilities P(s 
j),  j = 1 to |S| = 3. Figure 

3.9b) depicts the projection of Ψ in the |S|-1 = 2 dimensional space of the probabili-
ties P(s 

j),  j = 1 to |S|-1 = 2 (at every point, P(s|S|) = 1 - Σj P(s 
j)). Ψ is a quadrangle 

whose vertexes are the four extreme distributions. Since the selectors P2 and P4 are 
not extreme distributions, they lie on the boundary of Ψ, and more precisely on the 
edge that connects extreme distributions P1 and P5. Therefore, selectors P2 and P4 
may be obtained as convex combinations of the two extreme distributions P1 and  
P5. N 3-2 

 

 

 

(a) (b) 

Fig. 3.9 Set of probability distributions, selectors, extreme and white distributions in 
Example 3.7: in the 3-dimensional space (a) and its projection in the 2-dimensional 
sub-space (b) 
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The reader is encouraged to check that the white distribution is equal to the mean 
value of all selectors (extreme distributions) in SCT (EXT) weighted by the multiplic-
ities of the coincident selectors (extreme distributions).  

Let us now consider the following function that maps S to Y: (y1 = f(s1) = 80; y2 

= f(s2) = 160; y3 = f(s3) = 140). Bounds on E[y] can easily be evaluated through the 
permutation: π(j=1) =1, π(j=2) =3, π(j=3) =2, and the reversed one, which lead to 
monotonically increasing and decreasing functions, respectively. Therefore, the 
expectation bounds are the expectations obtained through the probability distribu-
tions P6

EXT = P5
 and P5

EXT = P1: 
 
ELOW[y] = 0.9 x 80+ 0.1 x 160 + 0 x 140 =   88 
EUPP [y] = 0    x 80+ 1    x 160 + 0 x 140 = 160 
 

By considering the indicator function of any subset T ⊆ S as a particular mapping, 
one can check that Bel and Pla are probability bounds. For example, let T={s1, s2}, 
TC={s3} and therefore IT: (y1= χ(s1) = 1; y2 = χ(s2) = 1; y3 = χ(s3) = 0), ITC: (y1 = 
χ(s1) = 0; y2= χ(s2) = 0; y3= χ(s3) = 1). Observe that: 

 

ELOW[y=IT]  = EP= P1EXT [y=IA] = 0 x 1+0.6 x 1+ 0.4 x 0  =  0.6 = Bel(T) 
 
EUPP [y=IT]  = EP= P1EXT [y=IA] = 0.9 x 1+0.1 x 1+ 0 x 0  =  1.0 = Pla(T) 
 
ELOW[y=ITC]= EP=P2EXT[y=IAC] = 0.9 x 0+0.1 x 0+ 0 x 1 =  0  = Bel(TC) 
 
EUPP [y=ITC]= EP= P1EXT [y=IAC] = 0 x 0+0.6 x 0+ 0.4 x 1 =  0.4 = Pla(TC) 

3.2.3.5   Algorithm to Calculate Extreme Distributions 

Let: s = |S|; n = |F |; Bs×n matrix with entries: Bj,i = 1 if s j ∈ Ai, 0 otherwise; 
mn×1 = column vector with i-th component equal to m(Ai); pr = r-th prob-
ability distribution column vector; Pπ(j) = row permutation matrix (identity 
matrix with rows rearranged according to permutation π(j)). Since permu-
tation matrices are orthogonal, Pπ(j)Pπ(j)

T= I, and the reverse permutation is 
effected by Pπ(j)

T. Example 3.7 leads us to the following algorithm: 
 

Algorithm 1 
DO r = 1 to s! 

C = Pπ(j) B 
C ←Set columns of C equal to zero, except for their last non-zero  
        component 
pr = Pπ(j)

T C m 
END DO 
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The extreme distributions are the vertices of the convex hull (Conv(p)) 
in the space of all possible probability distribution vectors  pr so calcu-
lated. Computational Geometry (O'Rourke 1998; de Berg, van Kreveld  
et al. 2000; Sack and Urrutia 2000; Goodman and O'Rourke 2004) has de-
vised very efficient algorithms for calculating convex hulls (e.g., Qhull 
(The Geometry Center 2007), and libraries LEDA (Algorithmic Solutions 
2007) and CGAL (Pion 2007)).  

Before adopting any of these algorithms, the following must be borne in 
mind: if a focal element contains only one element, say sk, which is not in 
any other focal element, then the probability of sk is precise and equal to 

{ }( )km s . As a consequence, along the precise direction on the space of 

probability distributions P(sk), Conv(p) degenerates onto a single point of 

coordinate { }( )km s  and there is no need to include sk in the permutations 

of Algorithm 1.  
Let us re-order the numbering of elements in S so that the first simp ele-

ments generate imprecise probability directions, and let us restrict our-
selves to the reduced space of probability distributions Simp = {s j, j=1,.., 
simp} ⊆ S. Let mimp= ( )1,...,

imp

i
i s

m A=∑  be the total probability weight in Simp. 

Since all points of coordinates pr lie on plane ( )1,..., imp

j
j s

P s=∑ = mimp, 

Conv(p) is a subset of this plane, and is thus degenerate in the simp-
dimensional space. For example, Figure 3.9a depicts Conv(p) as the poly-
gon P1P5P6P3 in the three-dimensional space (P(s1), P(s2), P(s3)).  

Under these circumstances, convex hull algorithms may fail. It is thus nec-
essary to: 

• Work in the reduced possibility space Simp.  
• Project points pr orthogonal to any direction (e.g., pr ≡ (pr,1,…, 

, impr sp ) → (pr,1,…, , 1impr sp − ). Since the plane ( )1,..., imp

j
j s

P s=∑ = 

mimp makes the same angle with all directions, there is no preferred 
projection direction. The remaining coordinates project Ψ in a 
space that will be termed the projected imprecise space of prob-
ability distributions  as exemplified by (P(s1), P(s2)) in Figure 
3.9b. 

• Calculate Conv(p) in the projected imprecise space of probability 
distributions. 
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The general algorithm is as follows: 
 
DO i= 1 to s 

IF row i of B contains only one 1 at location j, AND column j  
contains only one 1, THEN 
Drop row i and column j of B 
Store i and j array “index” 
Drop i-th element from m 
n←n-1 
s←s-1 

IF i==s, EXIT 
END DO 
DO r= 1 to s! 

C = Pπ(j)B 
C ←Set columns of C equal to zero, except for their last non-zero  
         component 
pr = Pπ(j)

TCm 
Drop last component from pr 

END DO 
Calculate Conv(p) 
Reconstruct vertices of Conv(p) in the initial  space using array “index” 

  
An alternative algorithm to calculate the set of the extereme distributions 
will be presented in the next Chapter 4.2 (page 114).  

 
Example 3.8. Let  S={s1, s2, s3, s4}, and F = {({s1, s3}, 0.25), ({s3, s4}, 0.30), ({s2}, 
0.10), ({s1, s3, s4}, 0.15), ({s4}, 0.20)}. The original matrix B is as follows: 

1 0 0 1 0

0 0 1 0 0

1 1 0 1 0

0 1 0 1 1

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

B  

 

Row 2 contains only one 1 at location 3, and column 3 contains only one 1; row 2 
and column 3 are dropped. No other row contains only one 1 and the search is 
over (column 5 contains only one 1 at location 4, but row 4 contains 3 1s). Permu-
tations in the projected imprecise space are given in Table 3.5. Vertices of 
Conv(p) are permutations 1 through 4 and 6, and are given in Table 3.6.  
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Table 3.5 Example 3.8: Distributions in the projected imprecise space of probability 
distributions  

No.      Permutation 
         π(1)  π(2)  π(3) 

Distribution 

1        1       2      3 {0., 0.25, 0.65} 
2        1       3      2 {0., 0.7, 0.2} 
3        2       1      3 {0.25, 0., 0.65} 
4        2       3      1 {0.4, 0., 0.5} 
5        3       1      2 {0., 0.7, 0.2} 
6        3       2      3 {0.4, 0.3, 0.2} 

Table 3.6 Example 3.8: Extreme distributions in the original space of probability 
distributions  

No. Permutation Distribution 
1 1 {0.00, 0.10, 0.25, 0.65} 
2 2 {0.00, 0.10, 0.70, 0.20} 

3 3 {0.25, 0.10, 0.00, 0.65} 
4 4 {0.40, 0.10, 0.00, 0.50} 

5 6 {0.40, 0.10, 0.30, 0.20} 

3.2.4   Consonant Random Sets 

Let us consider the particular case of a random set whose n focal elements 
are nested, i.e. can be ordered in such a way that: 

 
1 2 .... nA A A⊆ ⊆ ⊆  (3.20)

 
A random set satisfying (3.20) is called consonant, according to a definition 
introduced by Shafer (Shafer 1976). This definition highlights that the given 
information is clearly centered around A1, at least with probability Bel(A1) = 
m(A1) and possibly with probability Pla(A1) = 1, and surely contained in An 
(Bel(An) = Pla(An) = 1). Every focal element Ai does not conflict (i.e. in-
cludes and therefore strengthens) with the information given by A1, A2,… Ai-

1. Of course every random set with only one focal element (n=1) is conso-
nant, and describes a fully non-probabilistic set uncertainty about a variable 
in the space S.  

Given a set T ⊂ S it is possible to find k such that: for i = 1 to k: T∩ Ai = 
∅, Ai ⊂ TC ; for i= k+1 to n: T∩ Ai≠ ∅, Ai⊄TC (Figure 3.10). Therefore: 
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Fig. 3.10  Pla and Bel of a set T by a 
consonant random set 

 

 
 
 

It follows that, given two sets, T 
1 and T 

2, both ⊂ S, consonant random sets 
satisfy the fundamental properties (Figure 3.11): 
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(3.22)

 
 

 

 

 

 

 

Fig. 3.11  Pla and Bel of the union 
or intersection of two sets T 

1 and T 
2 by a consonant random set 
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Of course the second equation in (3.22) implies that, for any pair of sets T 
1 

and T 
2, both ⊂ S: 

 

( ) ( )1 2 1 2min ( ), ( ) ;  Bel T T Bel T Bel T∩ =  (3.23) 

 
The first equation in (3.22) demonstrates that Plausibility measures of con-
sonant random sets satisfy, as well as classical Probability measures, the 
“decomposability property”: the measure of uncertainty of the union of any 
pair of disjointed sets is dependent solely on the measures of uncertainty of 
the individual sets. Therefore, in the case of a consonant random set, the 
point-valued contour function (Shafer 1976) μ: S → [0, 1]: 

 

{ }( ) ( )  j js Pla sμ =  (3.24) 

 

completely defines the information on the measures of any subset T ⊂ S, 
exactly how the probability distribution P(s 

j) = P({s 
j}) defines, although 

through a different rule (the additivity rule), the probability of every subset 
T in the algebra generated by the singletons. In fact: 

 

( ) ( ) ( ) ( )max ;       e 1 max  
cj j

j j

s T s T
Pla T s B l T sμ μ

∈ ∈
= = −  (3.25) 

 

Moreover the Möbius inversion (3.8) of the set function Bel allows the 
(nested) family of focal elements to be recognised through the m set function. 

More directly, let us assume: 
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 (3.26) 

 
The family of the focal elements and related probabilistic assignments 
(summing up to 1) are given by: 

 

( ) ( ) ( ){ }1 1

1

|  ;

 = -       

i j j k i k i

i i i

A s S s s s
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α α

+ +

+

= ∈ ≥ = > =
 (3.27) 
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The number of focal elements, n, related to the n α-levels αi, is therefore 
equal to the cardinality of the image of S through μ; of course ≤ |S|, con-
sidering that some singletons could map to the same value of plausibility. 
Hence the set M of the α-levels is given by: 

( )1 1

:

1,  ... ,  ,  ... ,          
j i

i j j i n n

j A A

M m A mα α α α+

⊇

⎧ ⎫⎪ ⎪= = = > =⎨ ⎬
⎪ ⎪⎩ ⎭

∑  (3.28) 

 

Example 3.9. Let S = {s1, s2, s3}, and F = {({s1, s2}, 0.5), ({s1, s2, s3}, 0.4), ({s2}, 
0.1)} the random set considered in Example 3.5 and Example 3.7. The focal ele-
ments can be reordered as follows: 

 
A1= {s2} ⊂ A2 = {s1, s2} ⊂ A3 = {s1, s2, s3} 
 

demonstrating that the random set is consonant, with contour function: 
 

μ(s2) = m(A1)+m(A2)+m(A3) = 1 > μ(s1) = m(A2)+m(A3) = 0.9 > μ(s3) = m(A3) = 0.4 
 

Starting from the contour function the random sets can be reconstructed assuming: 
α1 = 1;   α2 = 0.9 , α3 = 0.4; therefore, according to Eq. (3.27): 

 
A1 = {s j| μ(s j) ≥ α1} = {s2},             m(A1)  = α1 - α2 = 1 – 0.9    = 0.1 
 
A2 = {s j| μ(s j) ≥ α2} = {s1, s2},         m(A2) = α2 - α3 = 0.9 – 0.4 = 0.5 
 
A3 = {s j| μ(s j) ≥ α3} = {s1, s2, s3},    m(A3) = α3 = 0.4 
 

For example, compare with values in Table 3.2 that: 
 
Pla({s1, s3} = max (μ(s1), μ(s3)) = 0.9 
 
Bel({s1, s3} = 1 - max (μ(s2)) = 1 – 1 = 0 
 

There is a narrow correspondence between consonant random sets and other 
decomposable measures of uncertainty: fuzzy sets and theory of possibility. 

In a context totally separate from the research of Dempster and Shafer, 
the idea of fuzzy set was developed by L. Zadeh in the 1960s (Zadeh 1965) 
as an extension of classical set theory. He suggested that the membership 
to a subset A of a universal set S (finite or infinite, for example the real 
numbers \ ) could not always be a crisp property, absolutely verified or 
non-verified, but also, in some cases, partially verified. So the boundaries 
between A and AC should be considered as separated by a fuzzy zone, 
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where the Law of excluded middle is no more valid and the singleton {s} 
partly belongs both to A and AC. 

Formally the extension was obtained through the generalization of the 
indicator function of a classical crisp subset A ⊆ S, χ: S → {0, 1}, to the 
membership function: μ: S → [0, 1]. 

We are thus facing a logic (fuzzy logic) in which propositions exist with 
a degree of truth that goes from 0 (false) to 1 (true), every gradation being 
permitted in between. This logic seems to closely match human thinking 
when a true-false judgment has to be given about complex propositions 
relative to the real world, as will be seen in the following Chapter 6. 

The height of a fuzzy subset A is the largest membership grade obtained 
by any singleton: h(A) =  max μ(s) | s∈ S. A fuzzy set is called normal 
when its height is equal to 1, or else subnormal. 

But here, on the contrary, interest is focused on the connection between  
concept of fuzzy set and concept of random set, as uncertain measures of a 
family of subsets. 

This connection can be clearly envisaged using the dual representation 
of a fuzzy set through their α-cuts αA. They are classical subsets of S  
defined, for any selected value α of membership, by the formula: 

 

( ){ }|  ;      A s S s= ∈ ≥α μ α  (3.29) 
 

When a fuzzy set is implicitly given through the (finite or infinite) nested 
sequence of its α-cuts αA for some α-levels α, its membership function can 
be reconstructed through the following equation (decomposition theorem): 

 

( ) ( )( )max    min ,   j j
A

s sα
α

μ α χ=  (3.30) 
 

where ( )A
sαχ is the indicator function of the classical subset αA. 

 

Example 3.10. Let S = {1, 2, 3, 4, 5} and A be a fuzzy subset of S defined by the 
membership grades: μA (1) = μA (5) = 0;   μA (2) = μA (4) = 0.5;  μA (3) =  1. 
 

Then:  0A = S = {1, 2, 3, 4, 5};  0.5
A = {2, 3, 4};  1A =  {3} 

From (3.30) we obtain, for example: 
 

  μT (1) = max ( min (0, 1), min (0.5, 0), min (1, 0) ) = 0 
  μT (2) = max ( min (0, 1), min (0.5, 1), min (1, 0) ) = 0.5 
  μT (3) = max ( min (0, 1), min (0.5, 1), min (1, 1) ) = 1 
 

So it is clear that the α-cuts αA give the non-specificity of uncertainty, as do 
the focal elements of a random set, while the associated values of α are re-
lated to the strife between the different α-cuts. Moreover, comparing formula 
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(3.29) with  (3.27), it is clear that the α-cuts αA of any given normal fuzzy set 
are a nested sequence of subsets of set S, and therefore the family of focal 
elements of an associated consonant random set: the membership function of 
normal fuzzy sets gives the contour function of the corresponding random 
sets, and the basic probabilistic assignment (for a finite sequence of α-cuts) is 

given by ( ) 1ii i im A Aα α α += = − . 

Considering Eq. (3.25) from this point of view, the membership func-
tion of a fuzzy subset A allows measures of Plausibility and Belief to be at-
tached to every classical subset T ⊆ S; this very different interpretation of 
fuzzy sets was recognized by Zadeh himself in 1978 (Zadeh 1978), as the 
basis of a theory of Possibilities, defined by a possibility distribution 

  
π(s) = μA(s) (3.31) 

 
later extensively developed by other authors, in particular Dubois and 
Prade (Dubois and Prade 1988). In a comparison between Evidence The-
ory and Possibility Theory, Necessity (Nec(T)) and Possibility (Pos(T)) 
measures of any classical subset T ⊆ S coincide respectively with Belief 
(Bel(T)) and Plausibility (Pla(T)) deriving from the associated consonant 
random set through Eq. (3.25). 

This comparison suggests a probabilistic (objective or subjective) con-
tent of information summarized by a fuzzy set, as we will see in section 
6.4. Of course white distribution, selectors, upper and lower distributions, 
and extreme distributions can also be evaluated  for any consonant random 
set or the corresponding fuzzy set. 

 

Example 3.11. Let S={s1, s2, s3}, and F ={( A1={s2}, 0.8), (A2={s1, s2}, 0.1), 
(A3={s1, s2, s3},  0.1)}.     Table 3.7  lists 5 selectors (one with double multiplicity). 
Original matrixes B and m defined in §3.2.3.5 are as follows: 

0 1 1 0.8

1 1 1 ;     0.1

0 0 1 0.1

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

B m

 

 

They cannot be reduced; the procedure allows the four extreme distributions listed 
in Table 3.8 to be derived (two with double multiplicity). The selector  P4 is not 
extreme: in fact it is the mean between P1 and P5. The mean value of the columns 
in Table 3.7 and Table 3.8 are coincident and equal to the white distribution, con-
firming the property given in §3.2.3.4, Example 3.7. 
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Table 3.7 Selectors in Example 3.11 

r  k1 k2 k3 Pr(s1) Pr(s2) Pr(s3) 
1  2 1 1 0.2 0.8 0 
2  2 1 2 0.1 0.9 0 
3  2 1 3 0.1 0.8 0.1 
4 2 2 1 0.1 0.9 0 
5 2 2 2 0 1 0 
6 2 2 3 0 0.9 0.1 
Mean    0.0833 0.8833 0.0333

Table 3.8 Extreme distributions in Example 3.11 

No.  π(1) π(2) π(3) PEXT(s1) PEXT (s2) PEXT(s3)
1  1 2 3 0.2 0.8 0 
2  1 3 2 0.2 0.8 0 
3  2 1 3 0 1 0 
4 2 3 1 0 1 0 
5 3 1 2 0.1 0.8 0.1 
6 3 2 1 0 0.9 0.1 
Mean    0.0833 0.8833 0.0333 

3.2.5   Conditioning 

According to Bayes’ Theorem, when an event B with a priori positive 
probability P(B) is observed, the posterior probability changes to: 

 

( ) ( )
( )

( )
( ) ( )/

C

P A B P A B
P A B

P B P A B P A B

∩ ∩
= =

∩ + ∩
 (3.32) 

 
It is quite natural for a random set to assume: 

 
( ) ( ) ( ) ( )/ inf / ;       / sup /  

P P
Bel A B P A B Pla A B P A B

∈Ψ ∈Ψ
= =  (3.33) 

 
For a random set in a finite space and therefore with a finite number of ex-
treme distributions EXT: 

 
( ) ( ) ( ) ( )/ min / ;    / max /  

P EXT P EXT
Bel A B P A B Pla A B P A B

∈ ∈
= =  (3.34) 

 



54 3   Random Sets and Imprecise Probabilities
 

An explicit solution can easily be derived observing that the same extreme 
distribution gives the lower bound of P(A∩ B) and the upper bound of 
P(AC∩ B) in the numerators and denominators appearing in Eq. (3.32); 
moreover the dual extreme distribution gives the corresponding upper 
bound of P(A∩ B) and lower bound of P(AC∩ B). Therefore: 

 

( )

( )

( )
/  

( ) ( )

( )
/

( ) ( )

C

C

Bel A B
Bel A B

Bel A B Pla A B

Pla A B
Pla A B

Pla A B Bel A B

∩=
∩ + ∩

∩=
∩ + ∩

 
 
 

(3.35) 

 
 

Fig. 3.12 Conditioning a 
probability distribution 
P/B = {s1, s2} 

 

 
 
 

Conditioning can also be defined by a rule to derive the posterior set Ψ/B 
from the set Ψ of the probability distributions compatible with the a priori 
random set. For the probabilities of the singleton, Bayes’ Theorem gives 
directly, for any P∈Ψ (Figure 3.12): 

 

{ }( ) ( ) ( )
0  if        (projection)

/        
/   (normalization)

j
j

j

s B
P s B

P s P B

∉
=  (3.36) 

 
Example 3.12. Let S={s1, s2, s3}, and F ={({s1, s2}, 0.5), ({s1, s2, s3}, 0.4), ({s2}, 
0.1)} the random set considered in Example 3.5 and Example 3.7. Suppose that 
the event B = {s1, s2} has been observed (event {s3} must be excluded). We are in-
terested in evaluating bounds of the posterior probability of the event T = {s1}: 
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T∩ B = {s1}∩{s1, s2} = { s1} ;      TC∩ B = {s2, s3}∩{s1, s2} = {s2}; 
 

Bel(T∩ B)   = Bel({s1}) = 0   ;     Pla(T∩ B)  = Pla({s1}) = 0.9 
 

Bel(TC∩ B) = Bel({s2}) = 0.1;     Pla(TC∩ B) = Pla({s2}) = 1.0 
 

Therefore: 
 

Bel({s1}/{s1, s2}) = 0/(0+1)  = 0;   Pla({s1}/{s1, s2}) = 0.9/(0.9+0.1) = 0.9  
 

The same results can be obtained applying Bayes’ Theorem respectively to the ex-
treme distributions  P6

EXT and P5
EXT: 

  
P6

EXT ({s1}/B) = P6
EXT ({s1}∩ B)/ P6

EXT (B) = 0 / 1    = 0 
 
P5

EXT ({s1}/B) = P5
EXT({s1}∩ B)/ P5

EXT(B) = 0.9 / 1 = 0.9 
In a similar way: 

 

Bel({s2}/{s1, s2}) = 0.1/(0.1+0.9) = 0.1; Pla({s2}/{s1, s2}) = 1/(1+0) = 1 
 

and of course: 
 

Bel (T={s1, s2}/B = {s1, s2}) = Pla(T={s1, s2}/B = {s1, s2}) = 1 

 
Fig. 3.13 Conditioning  
random set in Example 
3.7 and Example 3.12 
with respect to  
B = {s1, s2} 

 

 
 

Conditional Bel and Pla define a random set on the space B={s1, s2}, whose prob-
abilistic assignment can evaluated through the Möbius inversion (Eq. (3.8)). In the 
considered example: 

 
m({s2}/B) = 0.1 = m({s2}); m({s1, s2}/B) = 0.9 = m({s1, s2}) + m({s1, s2, s3}). 
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Figure 3.13 shows how the conditional set Ψ/B can be derived by simple geomet-
ric rules normalizing the extremes of Ψ projected on the sub-space (P(s1), P(s2)): 
the posterior bounds to P(s1) and P(s2) can therefore be easily checked. 

In the simple case given in Example 3.12 the probabilistic assignment of 
each focal element A of the a priori random set is transferred to the focal 
element A∩ B of the posterior random set conditional to B. But a general 
closed rule giving the posterior probabilistic assignment corresponding di-
rectly to Eq. (3.35) cannot be given. For example: A∩ B could be an empty 
set ∅, and an empty set cannot be a focal element for the posterior random 
set. This question will be considered later in the book, and an approximate 
rule to solve the problem will be given (Section 6.3.1). 

Moreover the coincidence between the set Ψ/B obtained by  the Bayes’ 
Rule (or procedure (3.36) ) and the set of the probability distributions   
ΨBel/B compatible with the random set defined by the belief function (3.35) 
is not in any case guaranteed. The set Ψ/B could be not coinciding but in-
cluded by ΨBel/B. The reasons will be justified by the discussion about the 
more general theory of imprecise probabilities in the next Section 3.5 and 
later in the Section 6.2 (see Example 6.6).  
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3.3   Imprecise Probabilities and Monotone Non-additive 
Measures 

3.3.1   Introduction 

In the previous sections we have seen that a random set F = (Ai ⊆ S, m(Ai)), 
i = 1 to n, determines in a unique way the set functions Bel(T) and Pla(T) 
bounding P(T) for any T⊆ S and the set Ψ of the compatible probability 
distributions. Following the ideas and terms given in (Walley 1991) the 
bounds Bel(T) and Pla(T) and set Ψ are the natural extension of the infor-
mation supplied by the random set. 

To better appreciate the simplicity and related computational advantages 
of random sets it is important to observe that when the available informa-
tion is directly given through upper (μUPP) and lower (μLOW) bounds of the 
probability of an algebra of events on the space S, it cannot in any case be 
described by an equivalent random set. For example a probabilistic as-
signment cannot be reconstructed by the lower bounds through the Möbius 
transform Eq. (3.8), and hence μLOW is not a Belief set function, as shown 
in the following Example 3.14 and Example 3.15. 

 
Example 3.13 (Dempster 1967). Let S={s1, s2, s3}; μLOW({s1}) = μLOW({s2}) = 
μLOW({ s3}) = 0; μLOW({s1, s2}) = μLOW({ s2, s3}) = μLOW({s1, s3}) = 0.5.  

Observe that Eq. (3.6) is not satisfied for k = 3 : T1 = {s1, s2}, T2 = {s2, s3}, T3 = 
{s1, s3}. In fact: 

 
μLOW(T 1 ∪T 2 ∪T 3 ) = μLOW(S) = 1  not ≥  
 
 μLOW(T 1)+ μLOW(T 2)+ μLOW(T 3) – μLOW(T 1∩T 2  = {s2}) – μLOW(T 2∩T 3 = {s3}) – 

μLOW(T 3∩T 1 = {s1}) + μLOW(T 1∩T 2∩T 3 = ∅)   =  
  
=    0.5 + 0.5 + 0.5 – 0 – 0 – 0 + 0 = 1.5  
 

Every bound is respected in a half space of the 3-dimensional space (P(s1), P(s2), 
P(s3)) defined by the plane where it is respected as equality. The intersection of 
this plane with the equilateral triangle (P(s1) + P(s2) + P(s3) = 1) determines a line 
giving a bound for the set Ψ of compatible probability distributions on the trian-
gle. 

In this example the set Ψ is the equilateral triangle displayed in Figure 3.14, 
with three extreme points P1

EXT = (0.5, 0, 0.5), P2
EXT = (0, 0.5, 0.5), P3

EXT = (0.5, 
0.5, 0). 
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Fig. 3.14 Set Ψ in  
Example 3.13 

 

 
 
 

Möbius transform (3.8) of the set function μLOW (T ) gives:  
 

m({s1}) = m({s2}) = m({s3}) = 0; m({s1, s2}) = m({s2, s3}) = m({s1, s3}) = 0.5 
 

m(S={s1, s2, s3}) = 0 + 0 + 0 – 0.5 – 0.5 – 0.5 + 1 = - 0.5 < 0. 
 

The sum of the weights is 1 but one of the weights is negative: so the probabilistic 
model cannot be a random set. 

 

In some other applications the available information could explicitly sug-
gest a set Ψ of probability distributions for a variable, or implicitly define 
a set Ψ  through a finite set of extreme distributions (see Example 3.15), or 
some more general restrictions to the values of the probabilities  P(s j) of 
the singletons s j, not corresponding to bounds of events on the space S, as 
displayed in the following Example 3.15).  

This set Ψ univocally determines upper and lower bounds of the  
probability of any event (subset) T on S: 

 

( ) ( )
( ) ( )

min

max  

j

j

j
LOW

P
s T

j
UPP

P
s T

T P s

T P s

μ

μ

∈Ψ ∈

∈Ψ ∈

=

=

∑

∑
 (3.37) 

 

But the set function  μLOW is not necessarily a Belief  function.  
Moreover it is possible to show that the set ΨE of probability distribu-

tions compatible with (the natural extension of) the bounds: 
 

( ) ( ) ( ){ }: ,  E
LOW UPPP T P T T T SΨ = ≤ ≤ ∀ ⊆μ μ  (3.38) 
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does not necessarily coincide with the set Ψ (which the bounds μUPP and 
μLOW have been determined from), as displayed in Example 3.14). 

 

Example 3.14 (modified from (Walley 2000)). The simply-supported beam shown 
in Figure 3.15 is loaded by a concentrated force in the middle of the span. The in-
tensity of the force can assume the values {s1, s2, s3}, depending on the combina-
tion of the permanent load W and two non-compatible accidental loads L1 and L2:  

 
s1 = W= 100 kN;   s2 = W+ L1 = 500 kN;  s3 = W+ L2 .= 200 kN. 
 

The probability of observing these values is not exactly known, but described, ac-
cording to expert opinions, by the following judgments: 

 
P(s1) ≤ 0.5,   P(s2) ≤ P(s1);   P(s3) ≤ P(s2). 
 

Taking into account that the sum of probabilities is equal to 1, the third judgement 
implies: 

  2 P(s2) ≥ 1- P(s1) 
 

The projection of set Ψ on plane (P(s1), P(s2)) in Figure 3.15 shows a triangle with 
three extreme distributions P1

EXT  = (1/2, 1/2, 0), P2
EXT  = (1/3, 1/3, 1/3), P3

EXT = 
(0.5, ¼, ¼); Table 3.9 summarizes the lower/upper probabilities of the subsets and 
in the last column the Möbius transform of the lower bound. The negative values 
for the set S = {s1, s2, s3} demonstrates that the given information is not modelled 
by a random set. 

Observe that Eq. (3.6) is again not satisfied for k = 3 : T 
1 = {s1, s2}, T 

2 = {s2, 
s3},  T 

3  = {s1, s3}. In fact: 
 
μLOW(T 

1 ∪ T 
2 ∪ T 

3 ) = μLOW(S) = 1  not ≥  
 
 μLOW(T 

1)+ μLOW(T 
2)+ μLOW(T 

3) – μLOW(T 
1∩ T 

2  = {s2}) – μLOW(T 
2∩ T 

3 = {s3}) – 
μLOW(T 

3∩ T 
1 = {s1}) + μLOW(T 

1∩ T 
2∩ T 

3 = ∅)   =  
  
=  2/3 + 0.5 + 0.5 – 1/3 – 1/4 – 0 + 0 = 1.  
 

The set ΨE  of probability distributions compatible with the lower/upper probabili-
ties is displayed in Figure 3.16, and clearly does not coincide with Ψ;  there are 
five extreme distributions: the 3 extremes of the set Ψ and two new extremes. 
Hence Ψ ⊂ ΨE. The set ΨE is defined by the probability bounds on each singleton 
in Table 3.9, rows i = 2, 3, 4 (or by the bounds of the complementary sets, rows i 
= 5, 6, 7). On the projected plane, these bounds generate pairs of parallel lines 
with normal vectors (1,0), (0,1) and (1,1). 
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Fig. 3.15 Set Ψ,and extreme joint probability distributions in Example 3.14 

Table 3.9 Set functions in Example 3.14 

i  χ(s1) χ(s2) χ(s3) μLOW (Ai) μUPP (Ai) m(Ai) 
1  0 0 0 0 0 0 
2  1 0 0 1/3 1/2 1/3 
3  0 1 0 1/4 1/2 1/4 
4 0 0 1 0 1/3 0 
5 1 1 0 1-1/3=2/3 1-0=1 1/12 
6 1 0 1 1-1/2=1/2 1-1/4=3/4 2/12 
7 0 1 1 1-1/2=1/2 1-1/3=2/3 3/12 
8 1 1 1 1.0 1.0 -1/12 

 

 
Fig. 3.16 Set ΨE in  
Example 3.14 
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Example 3.15 (modified from (Walley 2000)). The simply-supported beam shown 
in Figure 3.17 is loaded by two concentrated accidental forces F1 and F2, both of 
precisely-known intensity F. It is also known that loading and unloading are 
equally likely ( P(Fi = F) = P(Fi = 0) = 0.5) for each of the loads (i =1 and 2), but 
we have no information about their dependence or independence. Let  

 
S = {s1 = (F1 = F) ∩ (F2 = F),    s2 = (F1 = F) ∩ (F2 = 0),  
        s3 = (F1 = 0) ∩ (F2 = F),     s4 = (F1 = 0) ∩ (F2 = 0)}  
 

be the space of the possible joint outcomes. Of course, for example, P(F1=F)=0.5 is 
the marginal value equal to P({s1})+ P({s2}). The available information is given by 
precise marginal distributions, but set Ψ of the compatible joint distributions P(s 

j) is 
not precisely determined. If independence is assumed, we obtain P(s 

j)≡0.25, but 
cannot exclude two opposite extreme distributions P1

EXT = (1, 0, 0, 1) and P2
EXT = (0, 

1, 1, 0). In the first case some hidden mechanism constrains the loads to the same 
value, in the second the loading of one force implies unloading of the other. The two 
extreme joint distributions and projection of set Ψ (a one-dimensional interval) on 
the sub-space (P(s1), P(s2), P(s3)) are shown in Figure 3.17. 

 
 

 

Fig. 3.17 Set Ψ, and extreme joint probability distributions in Example 3.15 

The lower/upper bounds of every subset or prevision can be evaluated by Eq. 
(3.37), simply considering minimum and maximum on the two extremes.  
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Observe that Eq. (3.6) is not satisfied for k = 2 : T 
1 = {s1, s2}, T 

2 = {s1, s3}. In fact: 
 

μLOW(T 
1 ∪ T 

2 ) = μLOW({s1, s2, s3}) = 0.5  not ≥  
 μLOW(T 

1)+ μLOW(T 
2) – μLOW(T 

1∩ T 
2   = {s2})  =   0.5 +  0.5 –  0  = 1.  

 

Möbius transform (3.8) of the set function μLOW(T) gives negative values for all 
subsets with cardinality equal to 3. For example: 

 

m({s1, s2, s3} = μLOW({s1, s2, s3}) – μLOW({s1, s2}) – μLOW({s1, s3}) –  
μLOW({s2, s3}) + μLOW({s1}) + μLOW({s2}) + μLOW({s3}) =  
 
= 0.5 – 0.5 – 0.5 – 0 + 0 + 0 + 0 =  – 0.5  
 

Summation of all m(T) again gives 1. 
 

These examples show that random sets are particular cases of a more general 
theoretical model of imprecise probabilities, covering a more extensive list 
of modes to describe the uncertainty of variables or parameters in engineer-
ing problems. Although this conclusion apparently reduces the attraction of 
random sets in applications, it does highlight the profit when the problem of 
interest can be modeled, at least with some approximation, by random sets, 
as will be seen in the next chapters.  

Some aspects of this extended theory will be briefly summarized in the 
following sections. 

3.3.2   Coherent Upper and Lower Previsions 

The foundation of a theory of imprecise probabilities is mainly due to the 
pioneering work of P. Walley in the 1980s/90s on a new theory of prob-
abilistic reasoning, statistical inference and decision, in conditions of un-
certainty, partial information or ignorance. In recent years growing interest 
in the subject has been demonstrated by applications in many scientific 
fields, the foundation of an international “Society for Imprecise Probabil-
ity: Theories and Applications” (SIPTA) and the related biannual ISIPTA 
Conferences. 

In Walley’s theory (Walley 1991), and for a concise introduction 
(Walley 2000), the idea of upper/lower probabilities μLOW(T), μUPP(T)) for 
a family S of events Ti on the space S is enlarged to the more general con-
cept of upper/lower previsions for a family K  of bounded and point-valued 
functions fi: S→Y=ℜ. For a specific precise probability distribution P(s 

j) 
the prevision is equivalent to the linear expectation: 

[ ] ( ) ( )     
j

j j
i i

s S

E f f s P s
∈

= ∑  (3.39)  
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Taking into account that the probability of an event T 
i  ⊂ S is equal to the 

expectation of its indicator function ITi: 
 

( ) ( ) ( )    i

j i j

i j j
T

s T s S

P T P s I P s
∈ ∈

= = ⋅∑ ∑  
(3.40) 

upper/lower previsions generalize and hold as particular case upper/lower 
probabilities. 

Assigning an upper bound to the prevision of a function fi is equivalent to 
assigning the opposite value as lower bound of the function –fi: this property 
extends the duality relation for the upper/lower probabilities of the comple-
mentary events T 

i  and T 
i,C to the previsions. In fact: –ITi = ITi,C – 1. 

 
Example 3.16. Let us again consider the simply-supported beam loaded by one 
concentrated live load of uncertain intensity F discussed in Example 3.14. Taking 
into account that the probability of events coincides with the expectation of the in-
dicator function, the original information about intensity F can be equivalently 
given as follows: 

 
EUPP [f 1 = I{s1} - 0.5 = (1,0,0) – 0.5 = (0.5, -0.5, -0.5)] = 0  or : 
 
ELOW [-f 1 =(-0.5, 0.5, 0.5)] = 0 
 
ELOW [f 2 = I{s1} - I{s2} = (1, -1, 0)] = 0 
 
ELOW [f 3 = I{s2} - I{s3} = (0, 1, -1)] = 0 
 

Considering that E[f] = f(s1) P(s1) + f(s2) P(s2) + f(s3) P(s3), clearly the 3 equations 
for the lower previsions are exactly equivalent to the constraints generating the set 
Ψ displayed in Figure 3.15. The corresponding lower probabilities however gener-
ate the set ΨE ⊃ Ψ in Figure 3.16. It is easy to check that the new extreme distribu-
tions appearing in ΨE satisfy the lower bounds of the probabilities, but not all 
given lower previsions.  

For example in  P = (P(s1) = 1/3, P(s2) = 1/2, P(s3) = 1 – 1/3 – 1/2 =1/6): 
   

E[f2 ] = 1 x 1/3 – 1 x 1/2 + 0 x 1/6 = -1/6 < 0. 
 

Let us now focus on the information about the space of events on S given 
by upper and/or lower previsions, ELOW[fi], EUPP[fi], of a family K of 
bounded and point-valued functions fi.    This is accomplished by the set, 
ΨE, of compatible probability distributions P(s 

j): 
 

[ ] [ ] [ ]{ }| :E
i LOW i P i LOW iP f E f E f E fΨ = ∀ ∈ ≤ ≤K  (3.41) 
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We are interested in checking two basic conditions of the suggested 
bounds.  

A preliminary strong condition (§ 3.3.2.1) requires that set ΨE should be 
non-empty. If set ΨE is empty, it means there is something basically irra-
tional in the suggested bounds.  

A weaker but reasonable condition (§ 3.3.2.2) requires that the given 
bounds should be coherent with the bounds that can be derived from ΨE. If 
the given bounds are not envelopes of the set of values derived by means 
of each probability distribution in ΨE, it means they can be restricted with-
out changing the probabilistic content (set ΨE) of the original information. 

3.3.2.1   Non-empty ΨE 

Let us consider first that only lower bounds ELOW[fi], i = 1 to n are given.  
Set ΨE is non-empty if and only if the following formulae for the un-

known compatible distributions P(sj) admit some solutions: 
 

( ) ( ) [ ]

( )

,  1,2,  ....                                (a)

= 1                                                                             (b)  

j j
i LOW i

j

j

j

f s P s E f i n

P s

≥ =∑

∑
 (3.42) 

 
Multiply the right sides of constraints (3.42)a by the left side of (3.42)b 
(identically equal to 1) and add the n relations, each  considered ki times: 

 

( ) [ ] ( )( ( )) 0     j j
i i LOW i

j i

k f s E f P s− ≥∑ ∑  
(3.43) 

 
Taking into account that every P(s 

j) cannot be negative, set Ψ is non-
empty only if (and only if) at least one (of course the maximum, or the su-
premum if fi takes infinitely many values) of the coefficients multiplying 
P(s  

j) is not negative, whenever n ≥1 and ki are positive integersN 3-3: 
 

( ) [ ]
1

sup ( ) 0     
n

j
i i LOW i

j i

k f s E f
=

− ≥∑  (3.44) 

 
In the same way we can consider that only upper bounds μUPP(T 

i), or more 
generally EUPP[fi], i = 1 to n  could be given, obtaining: 

 

( ) [ ]
1

sup ( ) 0     
n

j
i i UPP i

j i

k f s E f
=

− + ≥∑  (3.45) 
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Assigning an upper bound to the prevision of a function fi is equivalent to 
assigning the opposite value as lower bound of the function –fi : therefore 
upper and lower bounds can be considered together through Eq. (3.44). 

Many interesting consequences can be derived for particular cases. 

 –  Eq. (3.44) and (3.45) give, for n = 1: 
 

[ ] ( ) [ ] ( )sup ;     inf      j j
LOW UPP

jj
E f f s E f f s≤ ≥  (3.46) 

 
For the probabilities of a set T Eq. (3.46) simply requires that the lower 
bound is ≤ 1 and the upper ≥ 0. 

 –  When lower and upper bounds are given for the prevision of the same 
function f (or for the probability of a set T), Eq. (3.44) and (3.45) imply 
that: 
 

( ) [ ] ( ) [ ] [ ] [ ] 0     j j
LOW UPP UPP LOWf s E f f s E f E f E f− − + ≡ − ≥  (3.47) 

  
 i.e. the upper bound must be greater than the lower bound. 

–  When lower (upper) bounds are given for a family of disjoint sets T 
i of a 

partition of space S (T 
1 ∪ T 

2…∪ T 
n =S), in every point s 

j the sum of 
the indicator functions ITi (respectively – (– ITi)) is equal to 1 (each point 
belongs to only one set of the family of disjoint sets); hence Eq. (3.44) 
and (3.45) imply that: 

 
1 0   1

1 0  1  

i i
LOW LOW

i i

i i
UPP UPP

i i

T T

T T

μ μ

μ μ

⎡ ⎤ ⎡ ⎤− ≥ ⇒ ≤⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− + ≥ ⇒ ≥⎣ ⎦ ⎣ ⎦

∑ ∑

∑ ∑
 (3.48) 

 
Formulas (3.4) are a particular case of (3.48), when considering Bel and 
Pla set functions of complementary (of course disjoint) sets T, T 

C. 
–   When lower (upper) bounds are given for all subsets of space S ( ∀T i ∈ 

P (S) ), in each point s j the sum of the indicator functions ITi (respec-
tively – (– ITi)) is identically equal to 2|S|-1 (each point can belong to 
every subset on the sub-space given by the complementary sets, with 
cardinality |S| – 1); therefore: 

 
| | 1 | | 1

| | 1 | | 1

2 0   2

2 0  2   

S i i S
LOW LOW

i i

S i i S
UPP UPP

i i

T T

T T

μ μ

μ μ

− −

− −

⎡ ⎤ ⎡ ⎤− ≥ ⇒ ≤⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− + ≥ ⇒ ≥⎣ ⎦ ⎣ ⎦

∑ ∑

∑ ∑
 (3.49) 
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Example 3.17. Let us again consider the simply-supported beam loaded by one 
concentrated live load of uncertain intensity F discussed in Example 3.14 and Ex-
ample 3.16, but the statistical information about loads is now described, according 
to expert opinions, by the following judgments: 

 

P(s1) ≤ 0.5,   P(s2) ≤ P(s1)/10;   P(s3) ≤ P(s2). 
 

or equivalently: 
 
E [f 1 = (-1, 0, 0)] ≥ -0.5 ;  E [f 2 = (0.1, -1, 0)] ≥  0; E [f 3 =  (0, 1, -1)] ≥  0 
 

Assuming for example: k1 = 1, k2 = 3, k3 = 1 Eq. (3.44) gives: 
 
max ( 1x(-1 + 0.5) + 3x0.1 + 0, 1x(0.5) + 3x(-1)+1x1, 1x0.5 + 0 + 1x(-1)) 
= max (-0.2, -1.5, -0.5) = -0.2 < 0. 

Clearly the constraints imply that P(s1) +P(s2) + P(s3) ≤  0.5 +  0.05 + 0.05 = 0.6: 
hence the set ΨE is empty. See also Figure 3.15, reducing from 1 to 1/10 the incli-
nation of the second constraint (the line through the origin of the Cartesian axes). 

3.3.2.2   Coherence 

When Eq. (3.44) is satisfied, the natural extension of the bounds is a non-
empty set ΨE; from it upper and lower bounds of the probability of any set 
T or more generally of the prevision of any function f can be evaluated: 

 

[ ] [ ]
[ ] [ ]

,

,

min

max   

E

E

LOW c P
P

UPP c P
P

E f E f

E f E f
∈Ψ

∈Ψ

=

=
 (3.50) 

 
It is easy to check that, when Eq. (3.50) is applied to evaluate again the 
original bounds of the sets or the previsions ELOW[fi], EUPP[fi] of functions 
used to derive Ψ, the resulting effective bounds ELOW,c[fi], EUPP,c[fi] could be 
generally different: of course the updated bounds do not contradict the origi-
nal ones, but could be more restrictive. In fact, taking into account that, ac-
cording to Eq. (3.50), the bounds are lower or upper envelopes of probability 
measures, they must satisfy further conditions of coherence (Walley 1991) 
that can be derived from the properties of probability measuresN 3-4. 

 

Example 3.18. Let S={s1, s2, s3}, μUPP(T 
1 ={s1}) = 0.7, μUPP(T 

2 = {s1, s2}) = 0.3. 
The projection of set  ΨE in the plane (P(s1), P(s2)) is shown in Figure 3.18a). 

The effective bound μUPP(T 
1 ={s1}) = 0.3, implied by μUPP({s1, s2}) = 0.3 is 

lower than the assigned value of  0.7. In fact the assigned value is not coherent be-
cause monotonicity was not respected with respect to the inclusion (T 

1 ⊂ T 
2). 
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(a) (b) 

Fig. 3.18 Set ΨE as a natural extension of incoherent bounds given in Example 3.18 
(a) and Example 3.19 (b). The arrows display the direction of given constraints 

 
Example 3.19. Let S={ s1, s2, s3}, μLOW(T 

1 = { s1, s2}) = 0.6, μUPP(T 
2
 = {s3}) = 0.3  

The projection of set Ψ in the plane (P(s1), P(s2)) is shown in Figure 3.18b. 
The effective bounds μLOW(T 

1 = { s1, s2}) = 0.7 are higher than the assigned 
value of 0.6. In fact the assigned value is not coherent because duality of comple-
mentary sets (T 

1= T 
2,C ) is not respected (see formulae (3.7) for random sets). 

Coherent upper/lower bounds of probabilities must satisfy the following 
(non-exhaustiveN 3-5) list of necessary conditions: 

 

− 0≤ μLOW(T) ≤ μUPP(T) ≤ 1 
− Monotonicity with respect to inclusion:      T 

1
 ⊆ T 

2     ⇒              
μLOW(T 

1) ≤ μLOW(T 
2) 

− Super-additivity N 3-6  of μLOW for disjoint sets (T 
1∩T2 = ∅)  :       

μLOW(T 
1 ∪ T 

2) ≥ μLOW(T 
1) + μLOW(T 

2) 
− Sub-additivity N 3-7  of μUPP for any pair of sets T 

1, T 
2   :                

μUPP(T 
1∪ T 

2) ≤  μUPP(T 
1) + μUPP(T 

2) 
− Duality of μLOW, μUPP, for complementary sets (T∪ T 

C = S):  
μLOW(T) + μUPP(T 

C) = 1 
 

Information given by a random set (through the probabilistic assignment 
m(Ai) or one of the dual, monotonic with respect to inclusion, set functions 
Bel or Pla) is coherent (because ΨE = Ψ, as shown in § 3.2.3). 

However coherent, upper/lower set functions cannot necessarily be as-
sumed as Bel/Pla set functions of an associated random set. In fact formu-
las (3.5) and (3.6) imply super-additivity of Bel and sub-additivity of Pla, 
but are stronger relations not required by coherence. 
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The crucial point is the observation that, when upper/lower probabilities 
μLOW(T), μUPP(T)) for a family  of events T 

i in space S are widened to the 
more general concept of upper/lower previsions for a family of bounded 
and point-valued functions fi: S→Y, there is a one-to-one correspondence 
between coherent lower (or upper) previsions and set Ψ = ΨE (or the ex-
treme distributions EXTΨ = EXT∩Ψ of set Ψ) of compatible probability 
distributions. 

A simple geometrical interpretation of this property can be obtained by 
observing that a lower bound, μLOW(T), for the probability of an event T de-
fines a half space of compatible probability distributions (points P of the |S|-
dimensional space  (P(s1), P(s2), … P(s|S|)), bounded by the hyper-plane:  

  

( ) ( ) ( ) ( )1 | |
1 | |.... .... 0

1  if 

0  if 

j S
j S LOW

j

j j

a P s a P s a P s T

s T
a

s T

μ+ + − =

⎧ ∈
= ⎨

∉⎩

  (3.51) 

 
The normal vector to this hyper-plane is aT = (a1,…, a|S|)

T and its 0-1 com-
ponents are the values of the characteristic function for T. As a conse-
quence, this set of hyper-planes (with normal components either 0 or the 
same value) is not rich enough to describe the boundary of a general poly-
hedron, i.e. the convex hull of a general set of extreme points. For instance, 
set Ψ in Figure 3.15 is not bounded by lines whose normals are (1,0)T, 
(0,1)T, and (1,1)T. Hence many (infinite) polyhedrons, with different faces 
and extreme points, could be compatible with probability bounds assigned 
on a family of events and the correspondence between probability bounds 
and polyhedrons is not one-to-one. The natural extension of the bounds, 
ΨE, (Eq. (3.41)) is uniquely determined because it is defined as the largest 
of this set of polyhedrons. Set ΨE in Figure 3.16 is indeed bounded by 
lines whose normals are (1,0)T, (0,1)T, and (1,1)T, and is the largest set that 
yields the probability bounds listed in Table 3.9. The extreme distributions 
for ΨE will be derived in Example 3.21. 

When |S| = 3, a probability bound on an event T, P(T) ≥ ( )LOW Tμ , is 

always equivalent to a probability bound on a singleton. If T is composed 
of a singleton, there is nothing to show. If |T| = 2, then |TC| =1 and P(TC) ≥ 

1- ( )LOW Tμ . As a consequence, when |S| = 3, one can assume that all 

bounding planes have normals (1,0,0), (0,1,0) or (0,0,1), i.e. they are paral-
lel to coordinate planes. This property also holds for |S| = 2, but it is not 
true for any other dimension because in general |TC| ≠1. 
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Now, suppose that the normal components aj in Eq. (3.51a) are not just 
0-1, but may be selected from the set of the real numbers, \ , and that 
each non-zero component may be different from one another. In this case, 
the family of indicator functions must be enlarged to all bounded real func-
tions f, probability of events become expectations (Eq. (3.39)), probability 
bounds become expectation bounds, [ ]LOWE f , and Eq. (3.51a) becomes: 

 

[ ] [ ] ( ) ( ) [ ]
| |

1

0 0
S

j j
LOW LOW

j

E f E f f s P s E f
=

− = ⇒ − =∑   
(3.52) 

 
For any given polyhedron face F, one can always find at least one function 
f such that plane (3.52) contains F, i.e. such that the j-th normal component 
is f(s 

j) and such that its known term is [ ]LOWE f . On the other hand, given 

a plane (3.52), there is a polyhedron whose face is contained in plane 
(3.52). Therefore, there is a one-to-one correspondence between coherent 
expectation bounds of generic functions (upper/lower previsions) and 
polyhedrons. A rigorous proof is contained in Walley (1991, Theorem 
3.6.1, page 145). 

 

3.3.3   Choquet and Alternating Choquet Capacities of Order k 

An important criterion for classifying monotonic (with respect to inclusion) 
measures was introduced in the 1950s, by Choquet in his theory of capacities 
(Choquet 1954).  

 
Given a finite space S, a Capacity of order k, integer > 1, is a set function  
 

C[k] : P (S) → [0, 1] 
 

that satisfies requirements: C[k](∅) = 0, C[k](S)= 1, and moreover formulas 
similar to the first of Eq. (3.6) (first of Eq. (3.5) when k = 2), when C[k] is 
substituted for Bel. Capacity of order k satisfies formulas similar to Eq. 
(3.6)a for any other k’ < k, but not generally for any other k’ > k. Hence a 
capacity of order 2 is the most general. 

Bel set function of a random set and P (probability measure on the alge-
bra of the power set of space S) are Choquet capacities for all k ≥ 2, and 
are therefore termed Choquet capacities of infinite order (although k can-
not surpass 2|S|). Probability measures P satisfy Eqs. (3.6)a and b as equali-
ties, due to additive axiom, while generally a weaker property of super-
additivity is implied for all other Choquet capacities. For every k, Choquet 
capacities are monotone with respect to inclusion: 
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         T1
 ⊆ T2 ⇒ C[k]( T 

1) ≤ C[k]( T 
2) 

 
Monotone set functions not satisfying Eq. (3.5)a are termed Choquet  
capacities of order 1. 

The duality property for complementary sets allows to define, for any 
Choquet capacity of order k, a dual, monotone and sub-additive set func-
tion A[k]  termed Alternating Choquet capacity of order k satisfying relation    
(3.6)b ((3.5)b when k = 2), when A[k] is substituted for Pla. 

Pla set function of a random set and P are Alternating Choquet capaci-
ties of infinite order  (for P the dual functions coincide). 

Choquet and dual Alternating Choquet capacities of order k > 1 are co-
herent lower and upper probabilities respectively (Walley, 1991). However 
coherent super-additive lower probabilities are not necessarily Choquet ca-
pacities of order k > 1, as will be shown in Example 3.20. 

There is a strong relation between the order k and the properties of the 
set function m that can be obtained from C[k] or A[k]  through the Möbius 
transform (3.8). See for example (Chateauneuf and Jaffray 1989; Klir 
2005). The more interesting properties are the following: 

 

1. a set function μ is monotone (k  ≥ 1) if and only if:  

( )

( ) 0;        ( ) 1;

( ) : ( ) 0

T S

A T

m m T

T S m A

μ

μ

∈

⊆

∅ = =

∀ ∈ ≥

∑

∑
P

P
 (3.53) 

and, therefore, ∀ j:  μm({sj}) ≥ 0. 
2. If μ(T) = C[k](T) and |T| ≤ k then μm(T) ≥ 0 
3. μ(T) = C[∞](T) if and only if: ∀ T ∈ P (S) : μm(T) ≥ 0 and therefore it 

is the Bel set function of a random set 
 
Properties 1 and 2 confirm the results reported in Example 3.13, Example 
3.14 (in both cases μLOW is a Choquet capacity of the order k = 2;  μm(T) < 
0 for |T| = 3; μm(T)  ≥  0 for |T| = 1 or 2)  and Example 3.15 (in this case 
μLOW is simple monotone (k = 1): again μm(T) < 0 for all subsets with |T| 
=3). Summation of all m(T) gives 1 in all cases. 

The procedure described in § 3.2.3.4 for random sets can be extended to 
evaluate the set of extreme distributions EXT, when a monotone measure 
(a Choquet capacity of the order k ≥ 1) is assumed as lower bound of im-
precise probabilities: having assigned or calculated μLOW (or μUPP) of any 
T∈P (S), and chosen one of the |S|! permutations π(j) of the indexes, the 
corresponding extreme distribution is given by: 
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( ) { }( )
( ) { }( ) { }( )
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P s

P s s s s

π π

π π π

μ

μ μ

=

= > −

=

= −
 (3.54) 

 
Recall that, for Bel set functions of a random set, the convex hull of EXT 
(ΨEXT) coincides with set Ψ of the probability distributions compatible 
with the probabilistic assignment (Eq. (3.11)), and also with the set ΨE of 
probability distributions “dominating” Bel(T) for every T ⊆ S, (Eq. (3.10)). 
However, when μLOW is used, ΨEXT is the convex hull of EXT generated by 
Eq. (3.54) and ΨE is given by Eq. (3.38), the three sets could be more gen-
erally different. Precisely: 

 
– for coherent measures with k = 1 the procedure (3.54) could gener-

ate probability distributions in EXT not satisfying the assigned μLOW 

or μUPP  bounds; ΨEXT is larger than the set of probability distribu-
tions satisfying the bounds and hence ΨE could be strongly included 
in ΨEXT (see Example 3.20 );  

– for Choquet capacities (k > 1) all probability distributions in EXT 
(and in ΨEXT) satisfy the assigned bounds (and thus ΨEXT = ΨE); EXT 
coincides with the set of the extreme points (or the profile) of the 
closed convex set ΨE (Klir, 2005, pp. 118-9); but ΨE could be larger 
than the original set Ψ describing the information used to evaluate 
the bounds (see Example 3.21). 

 

In in the next Chapter 4.2 ( page 114 )  an alternative procedure will be 
given to evaluate in any case (hence for k = 1 also) the set of the extreme 
distributions. 

 
Example 3.20. Let us consider set Ψ in Example 3.15 from which lower prob-
abilities μLOW  were calculated. These lower probabilities are coherent lower prob-
abilities because calculated using Eq. (3.50). However Eq. (3.5) (or Eq. (3.6) for k 
= 2) is not respected and thus they are  simple monotone measures (k  = 1).   

The (at most 4!=24) members of EXT can be found through Eq. (3.54). For ex-
ample the identity π(j) = j gives: 

 
μLOW({s1}) = 0; μLOW({s1, s2}) = 0.5; μLOW({s1, s2, s3}) = 0.5; μLOW(S) = 1 
 
μUPP({s1}) = 0.5; μ UPP({s1, s2}) = 0.5; μ UPP ({s1, s2, s3}) = 1; μ UPP(S) = 1 
 

and therefore the extremes P3
EXT = (0, 0.5, 0, 0.5) and P4

EXT = (0.5, 0, 0.5, 0) are 
identified.  
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Fig. 3.19 Set Ψ in Example 
3.15 and extremes from the 
lower probabilities identified 
in Example 3.20 

 

 
 

 

In the same way, the following 6 extreme distributions (each one with multiplicity 
equal to 2) displayed in Figure 3.19 can be calculated: 

 

P1
EXT = (0.5, 0, 0, 0.5) ; P2

EXT = (0, 0.5, 0.5, 0) ; P3
EXT = (0, 0.5, 0, 0.5)  

 

P4
EXT = (0.5, 0, 0.5, 0) ; P5

EXT = (0.5, 0.5, 0, 0) ; P6
EXT = (0, 0, 0.5, 0.5) 

 

Clearly the four new points that do not coincide with extremes of Ψ (PEXT,1  and 
PEXT,2 ) satisfy the bounds of the singletons {s 

j} but not the marginals of the joint 
distributions, which are equal to the precise value 0.5. The precise marginals de-
rive from the hypothesis in Example 3.15 that loading and unloading are equally 
likely (P(Fi = F)=P(Fi =0) =0.5) for i =1 and 2). Hence: ΨEXT  ⊃  ΨE  =  Ψ. 

 
Example 3.21. Let us again consider the problem in Example 3.14. Table 3.10 
demonstrates that the procedure (3.54) through the 3!=6 permutations of the in-
dexes identifies that P1

EXT has multiplicity 2 and, above all, that two new extreme 
distributions PEXT,4=(1/3, 1/2, 1/6), PEXT,5=(5/12, 1/4, 1/3) are compatible with the 
bounds μLOW  and μUPP , as previously discussed in Example 3.14 and displayed in 
Figure 3.16: the natural extension of the bounds is a set ΨE larger than Ψ. In fact 
every set Ψ′ included by ΨE and including Ψ is compatible with the bounds. 

Table 3.10 Extreme distributions from μLOW (Ai)  in  Example 3.14 

π(1) π(2) π(3) P(s1) P(s2) P(s3) Pr
EXT 

1  2 3   1/3 2/3-1/3=1/3 1-2/3=1/3 P2
 

3  2 1 1-1/2=1/2 1/2- 0 = 1/2 0 P1 
1  3 2 1/3 1-1/2 =1/2 1/2-1/3=1/6 P4 (new) 
2 3 1 1-1/2=1/2 1/4 1/2-1/4=1/4 P3 
2 1 3 2/3-1/4=5/12 1/4 1-2/3=1/3 P5

 (new) 
3 1 2 1/2-0=1/2 1-1/2=1/2 0 P1 
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Fig. 3.20 Set ΨEXT = ΨE  
and extreme joint prob-
ability distributions in 
Example 3.14. Set Ψ is 
the triangle with extremes 
P1

EXT , P2
EXT, P3

EXT 

 

 
 

3.3.4   Expectation Bounds and Choquet Integral for Real Valued 
Functions 

Imprecise probabilities imply that the expectation of a function f : S→Y of 
a discrete or continuous variable is imprecise: each member of set ΨE 
gives a specific value, so obtaining a convex interval bounded by the lower 
and upper prevision, according to Walley’s theory. A search for mini-
mum/maximum values must be solved to evaluate the bounds.  

Choquet Integral is a mathematical procedure that in some cases al-
lows the bounds to be directly and exactly evaluated through integration 
(summation for discrete variables) of the function multiplied by 
lower/upper probabilities of subsets of the measurable space (S, S). In 
other cases the Choquet Integral does not give exact values, however it 
identifies bounds of a wider interval including the effective lower/upper 
previsions. 
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Fig. 3.21 α-cuts  αT  of point-valued function f 

Let us first observe that the expectation of a point-valued function f: S→ 
Y=[yL, yR] ⊂ \  can be calculated, indicating with F(y) the CDF of the de-
pendant variable y, through the Stieltjes Integral (Eq. (2.18)) and equivalent 
expressions: 
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 (3.55) 

The second equality can be found for example in (Kolmogorov and Fomin, 
1975; example 2, p. 364)). The geometrical meaning of set αT is shown in 
Figure 3.21. 

Choquet Integral is the direct extension of the last functional expression 
to a monotonic measure μ given on an appropriate family C of subsets of S: 

 

( , ) ( ) ( )
R

L

y

L

y

C f f d y T dαμ μ μ α= ⋅ = +∫ ∫C  (3.56) 
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When S is a finite space {s 
j, j = 1 to |S|} and the single function  f  obtains 

values:  α1 = yR  > α2 >…..> αn =  yL , Eq. (3.56) becomes: 
 

( )( )
1

1

1

( , )
i

n
i i

L
i

C f y Tαμ μ α α
−

+

=

= + −∑  (3.57) 

 
Eq. (3.57) is equivalent to reordering the space S through a permutation p 
= π(j) of the indexes j in such a way that the function f changes to a mono-
tonically decreasing function: f(sπ(j)=1) = yR ≥ f(sπ(j)=2) ≥ … f(s 

p) …  ≥ 

f(sπ(j)=|S|) = yL, and ( ){ }1 1 1,.....,
i iT s fα α− +=  in Eq. (3.57).           

Comparing the calculation with the procedures introduced in §3.2.3.4 to 
evaluate extreme distributions of random sets and extended in §3.3.3 to 
more general imprecise probabilities (see Eq. (3.54)), it is clear that the 
Choquet Integral evaluated for μ = μLOW and μ = μUPP is coincident with 
the expectation of the function f using the particular extreme distribution in 
the set EXT corresponding to the selected permutation. 

Moreover: 
 

− For random sets Bel = μLOW is a Choquet capacity of the order ∞: EXT 
contains the extremes of the set Ψ = ΨE: therefore the Choquet Inte-
gral gives exactly the lower/upper previsions of any point-valued 
bounded function; 

− When μLOW is a Choquet capacity of order k = 2, EXT ∈ΨE, but Ψ 
could be a subset of ΨE for specific problems. The Choquet Inte-
gral could give values not contained in the interval of the effective 
lower/upper previsions, but the values are in any case coherent 
with the upper/lower probabilities corresponding to Ψ. 

− When μLOW is simply a monotone measure the convex hull ΨEXT of 
set EXT contains probability distributions that could not be con-
tained both in Ψ and ΨE. Although the inclusion Ψ ⊆ ΨE ⊆ ΨEXT is 
in any case respected, strict inclusion could appear in specific 
cases. The Choquet Integral could give values not contained in the 
interval of the effective lower/upper previsions, and not coherent 
with the upper/lower probabilities corresponding to Ψ. 

 
Example 3.22. Let us consider set Ψ = ΨE and the coherent monotone lower 
probabilities (k = 1) describing the problem considered in Example 3.15 and Ex-
ample 3.20. 

The lower/upper bounds of the prevision of the bending moment in the middle 
section of the beam (M = F1l/8 + F2l/4) are given by the expectations of M evalu-
ated by the two extreme distributions P1

EXT and P2
EXT shown in Figure 3.17: 
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ELOW[M] = min ((F l/8 + F l/4) x 0.5 + 0 x 0.5, F l/8 x 0.5 + F l/4 x 0.5) =  
              = min (3F l/16, 3F l/16) = 3F l/16 
EUPP[M] = max (3F l/16, 3F l/16) = 3F l/16. 

 

In this particular case a precise prevision is therefore obtained.  
Table 3.11 summarizes the calculation of the bounds through the Choquet Inte-

gral. It is easy to check that the obtained values coincide with the expectation of M 
according to the probability distributions PEXT,5 and PEXT,6 shown in Figure 3.19; 
moreover the lower/upper bounds of the expectation in the set EXT are obtained 
by the probability distributions PEXT,3 (E[M] = F l/16) and PEXT,4 (E[M] = 5 F l/16). 
However, as specified in Example 3.20, these four extreme distributions do not re-
spect the original information that loading or unloading of the forces F1 and F2 are 
equally likely and consequently the precise marginals of the joint distribution. 

Table 3.11 Choquet Integrals of the bending moment M  in Example 3.15 

j M(j) p = π(j)       f(sp)- f(sp+1) αT μLOW(αT) μUPP(αT) 

1  3 Fl/8 1 Fl/8 {s1} 0 1/2 

2  Fl/8 3 Fl/8 {s1, s2, s3} 1/2 1 
3  2 Fl/8 2 Fl/8 {s1, s2} 1/2 1/2 
4 0 4             

 
C(M, μLOW)= 0 + 0 x Fl/8 + 1/2 x Fl/8 + 1/2 x Fl/8 =       Fl/8 = 2 x Fl/16 
 
C(M, μUPP)= 0 + 1/2 x Fl/8 + 1/2 x Fl/8 + 1 x Fl/8 = 2 x Fl/8 = 4 x Fl/16 

 
Example 3.23. Let us consider set Ψ describing the problem considered in Exam-
ple 3.14 and Example 3.21. We are interested in evaluating the expectation of the 
safety margin with respect to the limit state of flexural yielding of the middle sec-
tion of the beam:  

 
                                      z(s 

j) = My – F(s 
j) l /4  

 
Assuming My = 300 kNm and l = 4 m, the calculation of the bounds through the 
Choquet Integral is summarized in Table 3.12. The lower bound (-50/3 kNm) 
equals the expectation according to the probability distributions P4

EXT: therefore 
this value respects the lower probabilities (2-monotone Choquet capacities) de-
rived from the original information (P4

EXT ∈ ΨE) but is not congruent with the 
probabilistic content of the original information (P4

EXT ∉ Ψ). The effective lower 
bound of the expectation  is positive and equals the expectation according to the 
probability distributions P2

EXT: 
 

ELOW (z)=  1/3 x 200 + 1/3 x (-200) + 1/3 x 100 =  100/3 kNm 
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On the other hand the upper bound (75 kNm) is exactly evaluated by the Choquet 
Integral and equals the expectation according to PEXT,3. 

Table 3.12 Choquet Integrals of the safety margin z in Example 3.14 and Example 
3.21. See Table 3.9 for values of μLOW and μUPP 

j z(j) (kNm) p= π(j) f(s 
p)- f(s 

p+1) αT μLOW(αT) μUPP(αT) 

1   200 1 100 {s1} 1/3 ½ 

2  -200 3     
3   100 2 300 {s1, s3} 1/2 3/4 

 
C(z, μLOW)= -200 + 1/3 x 100 + 1/2 x 300 =   - 50/3 kNm 
C(z, μUPP)= -200 + 1/2 x 100 + 3/4 x 300 =       75    kNm 

 

3.3.5   The Generalized Bayes’ Rule 

The numerical examples presented in the previous sections show that 
lower probabilities (even when coherent) are not sufficiently informative 
to determine unique lower expectations (lower prevision, according to 
Walley) of a dependent function. Problems arise mainly from the lack of 
one-to-one correspondence between lower probabilities and the set Ψ of 
compatible probability distributions.  

The same inadequacy appears when evaluating lower/upper bounds of 
conditional probabilities or conditional expectation of dependent functions. 

Taking into account that:  
 

− the probability of any event (a subset B) is equal to the expectation 
(prevision) of its indicator function;  

− the indicator of the intersection of two events (subsets T, B) is 
equal to the product of their indicator function,  

 

Bayes Theorem (Eq. (3.32)) can be written as: 
 

( ) [ ] [ ]
[ ]

[ ]
[ ] C
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 (3.58) 

 

More generally, supposing that additional information allows a likelihood 
function L(s 

j) to be specified: 
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(Wasserman and Kadane 1990) demonstrated that, when lower/upper 
probabilities on the measurable space S are given by monotone set func-
tions μLOW (T) and μUPP (T) the following inequalities hold: 

 
[ ]

[ ] ( )

( ) [ ]
[ ]

C C

CC

( , )
/

( , ) ( , )

( , )
/

( , ) ( , )

LOW TT LOW
LOW

T LOW UPP LOW T UPPT T

UPP T T UPP
UPP

T UPP LOWUPP T LOW TT

E I LC I L
T L

C I L C I L E I L E I L

E I L C I L
T L

C I L C I LE I L E I L

μ μ
μ μ

μμ
μ μ

⋅⋅ ≤ ≤
⋅ + ⋅ ⎡ ⎤⋅ + ⋅⎣ ⎦

⋅ ⋅≤ ≤
⋅ + ⋅⎡ ⎤⋅ + ⋅⎣ ⎦

 
(3.60) 

 
When μLOW (T) and μUPP (T) are 2-monotone Choquet capacities and  
2-alternating Choquet capacities respectively, and Ψ = ΨE (i.e. set Ψ is the 
larger set compatible with the lower/upper probabilities ΨE, as it is natural 
to assume when the original information is effectively given through lower 
or upper probabilities) the inequalities are respected as equalities. 

Equations (3.35) for random sets are particular cases of inequalities 
(3.60), when conditioning with respect to an event B (L= IB). 

 
Example 3.24 (modified from (Wasserman and Kadane 1990)). Let us again con-
sider the simply-supported beam loaded by two concentrated accidental forces F1 

and F2, both of precisely-known intensity F, discussed in Example 3.15. However, 
although loading and unloading are equally likely for load F2 ( P(F2 = F) = P(F2 = 
0) = 0.5), no information is given about the probabilities of load F1: it can possibly 
assume the intensity F in any case, or alternatively it can assume the value 0 in 
any case. However we only know that the mechanisms generating the actual val-
ues of forces F1 and F2 are stochastically (strongly: see Chapter 4) independent, 
i.e. P(F1 ∩ F2) = P(F1) P(F2).  Let again  

 
S = {s1 = (F1 = F) ∩ (F2 = F), s2 = (F1 = F) ∩ (F2 = 0),  
       s3 = (F1 = 0) ∩ (F2 = F),  s4 = (F1 = 0) ∩ (F2 = 0)}  
 

be the space of the possible joint outcomes. The available information is given by 
imprecise marginal distributions for F1, and determines two opposite extreme dis-
tributions P5

EXT = (1/2, 1/2, 0, 0) and P6
EXT = (0, 0, 1/2, 1/2) (see Figure 3.19). The 

two extreme joint distributions and projection of  set Ψ (a one-dimensional inter-
val) on sub-space (P(s1), P(s2), P(s3)) are shown in Figure 3.22. 

The lower/upper bounds of every subset or prevision can be evaluated by Eqs. 
(3.50), simply considering minimum and maximum on the two extremes. Again 
the Möbius transform (3.8) of the set function μLOW(T) gives negative values for 
all subsets with cardinality equal to 3 and is not 2-monotone. 

Supposing that additional information suggests values of the likelihood func-
tion L(s 

j) proportional to (15, 10, 3, 2), the posterior upper bound of the subset T = 
{s1} can be evaluated through Eq. (3.60)b:  
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IT L= (15, 0, 0, 0)   ;               ITC L = (0, 10, 3, 2)   

μUPP (T/L) = max ( 15 (1/ 2) 15 (0)
,

15 (1/ 2) 10 (1/ 2) 3 (1/ 2) 2 (1/ 2)

× ×
× + × × + ×

) = 15/25 

 
EUPP [IT L]   = max(15x 1/2, 15 x 0)                  = 15/2 
ELOW [ITC L] = min(10 x 1/2, 3 x 1/2 + 2 x 1/2)  =  5/2 
 
CUPP [IT L]   = 0 + 15 x 1/2 + 0 x 1/2  + 0 x 1    = 15/2 
 
CLOW [ITC L] = 0 +  7  x 0  + 1 x 1/2  + 2 x 1/2    =  3/2 
 

 

 

Fig. 3.22 Set Ψ,and extreme joint probability distributions in Example 3.24 

Therefore: 
 

μUPP (T/L) = 15/25 <  (15 / 2)

(15 / 2) (5 / 2)+
= 15/20 <   (15 / 2)

(15 / 2) (3 / 2)+
= 15/18 

 
Example 3.25. Let us again consider the simply-supported beam loaded by one 
concentrated accidental force of uncertain intensity F discussed in Example 3.14. 
The set Ψ of probability distributions for the possible values of the intensity gen-
erates 2-monotone lower probabilities, but is strictly included by the set ΨE = 
ΨEXT displayed in Figure 3.20. Let us consider the conditional event T/B = 
{s1}/{s1, s2}. Therefore L= IB = (1, 1, 0):  
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IT L= (1, 0, 0 )   ;               ITC L = (0, 1, 0)   

μUPP (T/L) = max ( 1 (1/ 2) 1 (1/ 3) 1 (1/ 2)
, ,

1 (1/ 2) 1 (1/ 2) 1 (1/ 3) 1 (1/ 3) 1 (1/ 2) 1 (1/ 4)

× × ×
× + × × + × × + ×

) 

                    =  max (1/2, 1/2, 2/3)   = 2/3 = 20/30 
μLOW (T/L) =  min (1/2, 1/2, 2/3)   = 1/2 = 15/30 
 
EUPP [IT L]   = max(1x 1/2, 1 x 1/2, 1 x 1/3))     = 1/2   = 15/30 
 
ELOW [IT L]  = min(1x 1/2, 1 x 1/2, 1 x 1/3))      = 1/3   = 10/30 
 
EUPP [ITC L]  = max(1 x 1/2, 1 x 1/4, + 1 x 1/3)  =  1/2  = 15/30 
 
ELOW [ITC L] = min(1 x 1/2, 1 x 1/4, + 1 x 1/3)   =  1/4  = 15/60 
 
CUPP [IT L]   = 0 +  1x 1/2   = 1/2   = 15/30 
 
CLOW [IT L]  = 0 + 1x 1/3    = 1/3   = 10/30 
 
CUPP [ITC L]  = 0 + 1x 1/2    =  1/2  = 15/30 
 
CLOW [ITC L] = 0 + 1x 1/4    =  1/4  = 15/60 
 

Relations (3.60) are therefore respected: 
 
12/30 = 12/30 < μLOW (T/L) = 15/30 < μUPP (T/L) = 20/30 = 20/30 = 20/30 
 

If, given the lower and upper probabilities, it is assumed that Ψ = ΨE, all strict 
inequalities change to equalities. The actual maximum and minimum must be 
searched on the five extreme distributions EXT of Ψ = ΨE ; therefore: 

 

μUPP (T/L) = max (1/2, 1/2, 2/3, 1 (5 /12) 1 (1/ 3)
,

1 (5 /12) 1 (1/ 4) 1 (1/ 3) 1 (1/ 2)

× ×
× + × × + ×

) = 

               = max (1/2, 1/2, 2/3, 5/8, 2/5) = 2/3 = 20/30 
 
μLOW (T/L) = min (1/2, 1/2, 2/3, 5/8, 2/5) = 2/5 = 12/30 
 

We will now introduce a more general formulation for Bayes rule, that in 
any case directly gives the exact result, overcoming the above-discussed 
limitations. This formulation was proposed by Walley in his theory of  
coherent lower/upper previsions (see § 3.3.2 in this Chapter).  

For a particular precise probability distribution, the conditional previ-
sion of a function f with respect to a likelihood function L can be expressed 
generalizing Eq. (3.59) to the following: 
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[ ] [ ] [ ] [ ]( )/ / 0E f L E f L E L E L f E f L⎡ ⎤⋅ − ⋅ = − =⎣ ⎦  (3.61) 

 
The unknown conditional prevision α = E[f/L], conditional to the likeli-
hood L of positive prior expectation E[L], can be derived by solving the 
equation: 

 

( ) 0E L f α⎡ ⎤⋅ − =⎣ ⎦  (3.62) 

 
Equation (3.62) has a unique solution α because the left side is strictly de-
creasing in α if E[L] >0. When E[L] = 0, α is undetermined. 

 
Example 3.26. Let us consider the particular extreme distribution P5

EXT = (1/2, 
1/2, 0,0) in Example 3.24 and again suppose that additional information suggests 
values of the likelihood function  L(s 

j) proportional to (15, 10, 3, 2). The expecta-
tion E[L] = 15x1/2 + 10x1/2 = 25/2 is positive. We want to calculate the condi-
tional expectation of the function f  = (10, 8, 7, -3). The prior expectation E[f] is 
equal to 10x1/2 + 8 x 1/2 = 9. Eq. (3.62) gives: 

 
15 x(10 - α) x 1/2 + 10 x (8 - α) x 1/2 + 3 x (7 - α) x 0 +2 x (-3 - α) x 0 = 0 
 
α = E[f/L] = (230/2) / (25/2) = 230/25 = 9.2 
 

If alternatively the likelihood function L(s 
j) is proportional to (0, 0, 3, 2), E[L] = 0 

and Eq. (3.62) is satisfied for any value of α ∈ (-∞, ∞). 

The extension to imprecise coherent lower/upper previsions is quite natu-
ral: assuming that ELOW[L] > 0N 3-8 , α = ELOW [f/L] is the unique solution of 
the following Generalized Bayes’ Rule: 

 

( ) 0LOWE L f α⎡ ⎤⋅ − =⎣ ⎦  (3.63) 
 

In the calculation of the ELOW operator for the function L·(f − α), Eq. 
(3.50)a should be solved, or more easily, when the set of the extreme dis-
tributions EXTΨ is known or has been evaluated by the available informa-
tion, the minimum of the expectation can be searched on this finite set of 
probability distributions. 

 
Example 3.27. Let us consider the lower probabilities (Choquet capacity of order 2) 
discussed in Example 3.13, generating the set Ψ =ΨE =ΨEXT shown in Figure 3.14. 
EXT = EXTΨ = {(0.5, 0, 0.5), (0, 0.5, 0.5), (0.5, 0.5, 0)}. For any bounded point val-
ued function f = (f1, f2, f3) the lower prevision is given by: 

 

ELOW [f]= min (f1/2 + f3/2,  f2/2 + f3/2,  f1/2 + f2/2) 
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Let  f = (1, 0, 1), and therefore ELOW [f] = min (1, 0.5, 0.5) = 0.5; additional infor-
mation suggests that the likelihood function L(s 

j) is proportional to (4, 1, 2), and 
hence ELOW [L] = min (3, 1.5, 2.5) = 1.5 > 0. Eq. (3.63) gives: 

 
    min (4 x (1 - α) x 0.5 + 2 x (1 - α) x 0.5,   
            1 x (0 - α) x 0.5 + 2 x (1 - α) x 0.5,   
            4 x (1 - α) x 0.5 + 1 x (0 - α) x 0.5  )  =  0 
 
α = E[f/L] = min (3/3, 1/1.5, 2/2.5) = 0.667 

 
Of course the same result can be obtained applying Bayes’ Theorem separately 
with the 3 extreme distributions and searching for the minimum. Moreover, ob-
serve that  f = (1, 0, 1) is the indicator IT of the set T = {s1, s3}; therefore the same 
result can be exactly obtained through Eq. (3.60), taking into account that lower 
probabilities are Choquet capacities of order k = 2 and set Ψ coincides with ΨE: 

 
IT ⋅ L = (4, 0, 2);   ELOW [IT ⋅ L] = min (3,    1,    2)  = 1 
 
ITC ⋅ L= (0, 1, 0);  EUPP [ITC ⋅ L] = max (0, 0.5, 0.5) = 0.5  
 

E[f/L] = E[IT /L] =  (1)

(1) (0.5)+
 =  0.667 

 
Example 3.28. Let us again consider Example 3.24, where the extreme distributions 
EXTΨ = {(0.5, 0,5, 0, 0), (0, 0, 0.5, 0.5)} generate 1-monotone lower probabilities. 
Let us again evaluate through the Generalized Bayes’ Theorem the upper bound of 
the probability of subset T = {s1} conditional to additional information suggesting 
values of the likelihood function L(s 

j) proportional to (15, 10, 3, 2). For any 
bounded point valued function f = (f1, f2, f3, f4) the upper prevision is given by: 

 
EUPP [ f ] = max(f1/2 + f2/2,  f3/2 + f4/2) = min(-f1/2 – f2/2,  -f3/2 - f4/2) 
 

The prior upper bound is equal to EUPP [f = IT = (1, 0, 0, 0) ] = max (0.5, 0) = 0.5. 
ELOW [L] = min (12.5, 2.5) = 5/2 > 0. The posterior is solution α of the equation: 

 
max (15 x(1 - α) x 0.5 + 10 x (0 - α) x 0.5 , 3 x (0 - α) x 0.5+2 x (0 - α) x 0.5) = 0 

 
Hence: α = max (7.5/12.5, 0/2.5) = 15/25. 

Observe that assuming L(s 
j) is proportional to (15, 10, 0, 0), ELOW [L] = min 

(12.5, 0) = 0, although the upper bound is positive. Therefore, taking into account 
that in this case α is a probability: 

 
α = max (7.5/12.5, [0,1]) = [15/25, 1] 
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3.4   Credal Sets 

The term “credal set” is frequently used when the information is assessed 
giving upper and lower bounds to the probability of the singletons {s 

j} or 
cumulative probabilities of the sets {s1, s2, … s 

j } (i.e. upper/lower bounds 
of the CDF). In the former case the terms “Interval valued Probabilities” 
or “Interval Probabilities” are used in the literature. In the latter (Ferson, 
Kreinovich et al. 2003) suggested the term “Probability boxes”, or more 
simply “P-boxes”. 

In both cases the bounds must respect Eq. (3.46) (the lower bound is ≥ 
0; the upper is ≤ 1) and Eq. (3.47) (the upper bound must be greater than 
the lower one). 

Finally a convex set Ψ of the probability distributions can be implicitly 
defined by a set of parametric probability distributions when a convex set 
of values of the parameters is assumed or inferred from statistical data. 

3.4.1   Interval Valued Probabilities 

Given a finite space S, or a finite partition of a space S, the interval valued 
probabilities are a set of intervals attached to the singletons, defining a set 
Ψ = ΨE of the probability distributions on the algebra generated by the 
singletons: 

 

{ }
[ , ], 1  to | |

: ( ) , 1  to | |

j j j

j
j j

I l u j S

P l P s u j S

= =

Ψ = ≤ ≤ =
 (3.64) 

 
According to Eq. (3.48) the set Ψ is non-empty if and only if the bounds 
satisfy the condition: 

 
| | | |

1 1

1   ;    1
S S

j j
j j

l u
= =

≤ ≥∑ ∑  (3.65) 

 
However stronger further conditions are required for coherence: relation 
(3.50) requires that each upper or lower bound should be “reachable”: i.e. 
for every bound, set Ψ should contain a particular distribution P equally 
satisfying the bounds in the second formula in Eq. (3.64). 

 
Example 3.29. The macro-seismic scale EMS98 (Grünthal 1998) defines 6 vul-
nerability classes (from the most vulnerable A to F) of ordinary multi-storey build-
ings, and for each class and each macro-seismic intensity suggests implicit interval 
probabilities for 6 qualitative damage levels d (from 0 (= no damage) to 5 (total 
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collapse) as a function of a parameter α of credibility (from 0 (minimum) to 1 
(maximum) (Bernardini 2005). For  α = 1, class B and macro-seismic intensity VI 
only 2 damage levels (1(negligible) and 2 (moderate)) are possibly expected, and 
the interval percentages of buildings are specified as follows: 

 
Id=0 = [23, 100] ; Id=1 = [20, 50] ; Id=2 = [0, 10] 
 

But clearly the bounds of intervals Id=0 = [23, 100] cannot be reached. In fact at 
least 20% of buildings suffer damage > 0, and so the percentage of undamaged 
buildings cannot be more than 80%. Moreover no more than 10+50 = 60% of 
buildings suffer damage > 0, and therefore the percentage of undamaged buildings 
cannot be lower than 40%. 

The generalization of the procedure used in Example 3.29 leads to the fol-
lowing conditions  to assure that the bounds (lj , uj) are reachable: 

 

: 1   ;    1i j i j
i j i j

j l u u l
≠ ≠

∀ + ≤ + ≥∑ ∑  (3.66) 

 
or equivalently: 
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When non-reachable interval valued probabilities are given, the reachable 
counterpart, i.e. a set of coherent interval valued probabilities can be de-
rived with the formulas: 
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The reachable interval valued probabilities can be used to evaluate the 
bounds of the probability of any other set T in the algebra generated by the 
singletons: 
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It is possible to show that lower and upper probabilities given by Eq. 
(3.70) are 2-monotone and 2-alternating Choquet capacities respectively 
(Campos, Huete et al. 1994). The set Ψ of compatible probability distribu-
tions is directly defined by the intersection of pairs of parallel hyper-planes 
with the unit hyper-triangle in the |S|-dimensional space of the probabili-
ties of singletons. The set EXT of extreme distributions can be derived by 
index permutations (Eq. (3.54)). However a more efficient recursive algo-
rithm suggested in (Campos, Huete et al. 1994) can be used. 

 
Example 3.30. Let us again consider Example 3.29. Table 3.13 shows the reach-
able bounds and cumulative extreme distributions evaluated through Eq. (3.70), 
corresponding to extreme distributions P1

EXT = (0.4, 0.5, 0.1) and P2
EXT = (0.8, 0.2, 

0) respectively. However 2 other extreme distributions ((0.5, 0.5, 0) and (0.7, 0.2, 
0.1)) can be discovered by permutation of the indexes or directly by intersection of 
pairs of parallel planes with the unit triangle in the 3-dimensional space, or by its 
projection on the 2-dimensional plane (p(s1), p(s2)) shown in Figure 3.23. It can be 
checked that the lower probabilities are 2-monotone Choquet capacities (in this 
particular case ∞-monotone Choquet capacities) and Ψ = ΨE: i.e. no other distri-
bution is contained in the set EXT. 

Table 3.13 Reachable bounds and lower/upper CDF in Example 3.29 

d l (%) u (%) l’ (%) u’ (%) μLOW({s1,… s 
j}) μUPP({s1,… s 

j}) 

s1(d= 0)  23 100 40 80 40 80 

s2(d= 1)  20 50 20 50 90 100 
s3(d= 2)  0 10 0 10 100 100 

 
Fig. 3.23 Set Ψ = ΨE and 
extreme distributions EXT 
in Example 3.30 
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3.4.2   P-Boxes 

Given a finite space S, a set Ψ = ΨE of probability distributions is implic-
itly defined by lower and upper bounds, FLOW(s 

j) and FUPP(s 
j), of the cumu-

lative distribution functions F(s 
j): 

 

{ }( ){ }1: ( ) ( ) ,..., ( ), 1  to | |j j j j
LOW UPPP F s F s P s s F s j SΨ = ≤ = ≤ =  (3.71) 

 

The set Ψ is non-empty if Eq. (3.44) is respected considering the upper 
bound FUPP (s 

j) of the probability of set {s1, s2, … s 
j} and the lower bound 

of any other subset {s1, s2, … sk} with k ≤ j: 
  

1− FLOW (s
k) − 1+ FUPP (s 

j) ≥ 0;    and therefore:    FLOW (s
k) ≤ FUPP (s 

j) 
 

However coherence clearly requires stronger conditions: the bounds FLOW 

(s 
j) and FUPP (s 

j) should be non-negative, non-decreasing in j, both equat-
ing 1 for j = |S| ((Walley 1991), § 4.6.6). 

Explicit evaluation of set Ψ can be obtained solving the constraints 
(3.71) for the probabilities of the singletons P(s 

j): 
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(3.72) 

 
A simple iterative procedure can be used to solve this equation. For exam-
ple, the explicit solution of the first two constraints is shown in Figure 
3.24: observe that the p-box defines 4 or 5 extreme points of the projection 
of set Ψ on the two-dimensional space (P(s1), P(s2)): 

 

– case a): FLOW (s
2) -FUPP(s1) ≥ 0: 

  

 P1 = (FUPP(s1), FLOW (s
2) -FUPP (s

1)),  
P2 = (FUPP (s

1), FUPP (s
2) -FUPP (s

1)),  
P3 = (FLOW (s

1), FUPP (s
2) –FLOW (s

1)),  
P4 = (FLOW (s

1), FLOW (s
2) –FLOW (s

1)); 
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– case b): FLOW (s
2) -FUPP (s

1) < 0: 
  

P1
’ = (FUPP (s

1), 0)),  
P1

’’ = (FLOW (s
1), 0))  ( ≡ P4 if FLOW (s

2) = FLOW 

(s1)). 
 

Moreover the reachable interval bounds for the probability of the single-
tons are given by the intervals: 

 

[l1, u1] = [FLOW (s
1), FUPP (s

1)],  
[l2, u2] = [max(0, FLOW (s

2) –FUPP (s
1)), FUPP (s

2) –FLOW (s
1)], 

 

but the set generated by the same (non-interacting) interval probabilities 
should be much greater (the extreme points U=( u1, u2) and L=( l1, l2) could 
appear, if reachable (the last equation in (3.72) must be respected)). 

More generally the interval probabilities for singleton {s 
j} are given by 

the intervals: 
 

( ) ( )( ) ( ) ( )1 1[ , ] max 0, ,j j j j
j j LOW UPP UPP LOWl u F s F s F s F s− −⎡ ⎤= − −⎣ ⎦ (3.73) 

 

However the extreme distributions obtained by such intervals using the 
procedure described in §3.4.1 could generally give cumulative distribu-
tions functions not contained in the p-box. 

The extreme points of the projection of set Ψ on the j-dimensional space 
(P(s1), …, P(s 

j)) can therefore be derived from each extreme point on the 
j–1-dimensional space, of course considering that the sum P(s1)+ …+P(s 

j) 
must be bounded by FLOW (s 

j) and FUPP (s 
j). 

 

 

Case a 

 

Fig. 3.24  Explicit solution of the first  2 constraints in  Eq. (3.72). Projection of set  
Ψ is shown hatched. Case a: FLOW (s

2) - FUPP (s
1) > 0;  case b: FLOW (s

2) - FUPP (s
1) < 0 
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Case b 

 

Fig. 3.24 (continued) 

 

A constructive procedure to evaluate the effective extreme distributions 
compatible with the information given by a p-box could be obtained by 
selecting the set EXT corresponding to the cumulative (non-decreasing) 
distribution functions F jumping, at some points s 

j,  from  FLOW (s 
j) to  

FUPP   (s 
j+1) and, at other points s 

k,  from FUPP (s 
k) to FLOW (s 

k+1) (or, if 
FUPP (s 

k) > FLOW (s 
k+1) assuming F(s 

k+1) = FUPP (s 
k) (case b) in Figure 3.24 

at point s1). 
Of course the set EXT contains the distribution functions corresponding 

to the bounds of the p-box: 
 
PEXT,LOW (s  j) = FLOW (s  j) –FLOW (s  j-1); PEXT,UPP (s  j) = FUPP (s  j) –FUPP (s  j-1). 
 

The same set EXT (and therefore the same set Ψ of probability distribu-
tions) can be given by an equivalent random set, with focal elements  
and probabilistic assignment derived by the p-box through a rule quite 
similar to the procedure for deriving an equivalent random set from a 
normal fuzzy set (considering the membership function as a possibility 
distribution; see § 3.2.4). The procedure is as follows (with the aid of 
Figure 3.25): 
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(3.74) 

and assume: 
 

( ) ( ){ } 1| ; ; ( )i j j i j i i i i
UPP LOWA s S F s F s m Aα α α α− += ∈ ≥ < = −  (3.75) 

 
 

 

Fig. 3.25 Random set from a p-box 
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Consequently: 
 

− the lower/upper probabilities for subsets T ⊆ S are Choquet capacities 
and Alternate Choquet capacities of infinite order respectively (or Be-
lief and Plausibility set functions respectively); 

− the probabilistic assignment of the equivalent random set can alterna-
tively be derived from the Belief function through the Möbius trans-
form; 

− the upper bounds uj of the singletons (Eq. (3.73)) give the contour 
function of the equivalent random set. 

 
In (Alvarez 2006) the procedure is extended to p-boxes on infinite spaces 
with general FUPP and FLOW, thus deriving equivalent random sets with in-
finite focal elements given by the α-cuts of the upper/lower CDFs. Tonon 
(Tonon 2008) deals with inclusion properties for discretizations of up-
per/lower CDFs. 

 
Example 3.31. Let us consider S ={s1, s2, s3, s4} and the p-box defined in the first 
three columns of Table 3.14. The five extreme points in the two-dimensional 
space (P(s1), P(s2)) (case b)) determine 10 extreme points shown in Figure 3.26a 
for the projection in the three-dimensional space (P(s1), P(s2), P(s3)). For example 
the extreme P2 = (0.2, 0.1) determines the extremes (0.2, 0.1, l3 = 0.4) and (0.2, 
0.1, min (u3 = 0.9, 1 – 0.2 – 0.1) = 0.7) (P2

EXT in Figure 3.26a).  
Of course in the four-dimensional space (P(s1), P(s2), P(s3), P(s4)) 10 extreme dis-

tributions are obtained by taking P(s4)=1– P(s1) –P(s2) –P(s3). For example the above 
indicated pair of extremes determined by P2 = (0.2, 0.1) give the pair (0.2, 0.1, 0.4, 
0.3), (0.2, 0.1, 0.7, 0.0). The extreme points P1

EXT and P2
EXT correspond to the cumu-

lative distribution functions FLOW (s 
j) and FUPP (s 

j) respectively. Table 3.15 presents 
the lower probabilities for all the subsets of space S and their Möbius transform m, 
confirming the rules given by Eqs. (3.73) and (3.74) and shown in Figure 3.26b). 

Table 3.14 Reachable bounds and lower/upper CDF in Example 3.31 

s  
j FLOW (s 

j) FUPP (s  
j) lj = Bel({s  

j})  uj =Pla({s  
j})=μ(s  

j)   
s1 0 0.2 0 0.2 
s2 0.1 0.3 max(0, 0.1 – 0.2) = 0 0.3 – 0 = 0.3 
s3 0.7 1.0 max(0, 0.7 – 0.3) = 0.4 1.0 – 0.1 = 0.9 
s4 1.0 1.0 max(0, 1 – 1) = 0 1.0 – 0.7 = 0.3 
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Table 3.15 Set functions in Example 3.31 

i χi(s1) χi(s2) χi(s3) χi(s4) μLOW (Ai) mi= m(Ai) 
1  1 0 0 0 0 0 
2  0 1 0 0 0 0 
3  0 0 1 0 0.4 0.4 
4 0 0 0 1 0 0 
5 1 1 0 0 0.1 0.1 
6 0 1 1 0 0.5 0.5-0.4=0.1 
7 0 0 1 1 0.7 0.7-0.4=0.3 
8 1 0 1 0 0.4 0.4-0.4=0 
9 0 1 0 1 0 0 
10 1 0 0 1 0 0 
11 1 1 1 0 0.7 0.7-1+0.4=0.1 
12 0 1 1 1 0.8 0.8-1.2+0.4=0 
13 1 0 1 1 0.7 0.7-1.1+0.4=0 
14 1 1 0 1 0.1 0.1-0.1+0=0 
15 1 1 1 1 1.0 1-2.3+1.7-0.4=0 

 

 

(a) (b) 

Fig. 3.26 Example 3.31: (a) extreme points in the 3-dimensional space; (b) equiva-
lent random set 

It is easy to show that the random set determined by Eqs. (3.74) and (3.75) 
is not the only random set compatible with the p-box: indeed, each com-
patible probability distribution is a particular random set compatible with 
the bounds of the p-box (with focal elements given by singletons). How-
ever it must be considered as the natural extension of the information given 
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by the p-box: the set ΨE determined by Eqs. (3.74), (3.75) and (3.10) (or 
equivalently (3.11)) includes all probability distributions compatible with 
the p-box and also the set Ψ of any other random set compatible with the 
p-box. 

For example, when the maximum of the contour function μ(s j) = u(s j)  
defined, through Eq. (3.73), by the p-box is equal to 1, the procedure pre-
sented in § 3.2.4) can be used to derive a consonant random set compatible 
with the p-box: the focal elements are now the α-cuts of the contour func-
tion and the probabilistic assignment is again defined by the increment of 
α. In other words: the information given by the p-box and additional in-
formation suggesting that the structure of the underlying random set is 
consonant determine a consonant random set and a corresponding set Ψc of 
probability distributions, and of course Ψc ⊆ ΨE. 

 
Example 3.32. Let us consider the slowly enlarged p-box with respect to the p-
box discussed in Example 3.31, defined by Table 3.16. The 8 extreme points EXTΨ 
of set Ψ = ΨE (the projection in the two-dimensional space (P(s1), P(s2)) contains 
4 extreme points because FLOW(s1) = FLOW(s2)) and the underlying non-consonant 
random set are shown in Figure 3.27 a) and b) respectively. Of course this set Ψ 
strongly includes the set of probability distributions in Example 3.31, displayed in 
Figure 3.26. Now u(s3) = 1, so the contour function can be assumed as a possibil-
ity distribution determining the consonant random set and corresponding set Ψc of 

compatible distributions shown in Figure 3.28. The set cΨEXT , derived using the 
procedures presented in § 3.2.3.4, contains only 5 (the extremes of a  pyramid with 
vertex in P1

EXT and quadrangular base on the equilateral triangle P(s4)= 1 - P(s1)- 

P(s2) - P(s3) = 0) of the 8 extremes in set EXT Ψ ; of course both cΨEXT  and  
EXT Ψ contain the extreme points P1

EXT and P2
EXT corresponding to the cumulative 

distribution functions FLOW(s j) and FUPP(s j) respectively. The same procedure can-
not be applied to the p-box discussed in Example 3.31 because the contour func-
tion maximum is 0.9 (Table 3.14, last column).  Observe that the random set 
shown in Figure 3.28b gives upper and lower CDFs corresponding to the bounds 
of the p-box in Example 3.32, and hence outer approximations of the bounds of 
the p-box in Example 3.31; however the set Ψc does not include the set ΨE in  
Example 3.31. 

Table 3.16 Reachable bounds and lower/upper CDF in Example 3.32 

sj FLOW(sj) FUPP(sj) l= Bel({sj})  u=Pla({sj})=μ(sj)   
s1 0 0.2 0 0.2 
s2 0 0.3 max(0, 0 – 0.2) = 0 0.3 - 0 = 0.3 
s3 0.7 1.0 max(0, 0.7 – 0.3) = 0.4 1.0 – 0 = 1 
s4 1.0 1.0 max(0, 1 – 1) = 0 1.0 – 0.7 = 0.3 
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(a) (b) 

Fig. 3.27 Example 3.32: (a) extreme points in the 3-dimensional space; (b) equivalent 
random set 

 

 
(a) (b) 

Fig. 3.28 Consonant random set in Example 3.32: (a) extreme points in the 3-
dimensional space; (b) focal elements and probabilistic assignment 

Consonant approximations of non consonant random sets measuring variables 
(for example input variables of engineering systems) are very attractive, as will be 
shown in Chapter  5.1.3. However, as shown in the above examples, consonant 
approximations that yield the same (or even outer approximations of ) upper/lower 
CDFs may not guarantee inclusion of the overall convex sets of compatible prob-
ability distributions. Hence, when the reliability of a system is described by non 
linear function, using such consonant approximations may lead to unsafe predic-
tions of the expected reliability. 
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Example 3.33. Let  S ={s1, s2, s3, s4}, and consider the point-valued function f(s j) 
defined by the mapping: {s1, s2, s3, s4} → {5, 20, 10, 0}.  The permutation leading 
to a monotonic decreasing ordering of the function f(s j) is the following: 
 

π(s2) = 1, π(s3) = 2, π(s1) = 3, π(s4) = 4).  
 

Table 3.17 shows the corresponding dual extreme distributions giving bounds of 
the expectation, by the dual set functions Pla and Bel derived by the p-boxes (and 
corresponding random sets) considered in Example 3.31 and Example 3.32. Rela-
tions (3.18) and (3.19) in these examples give the same extremes, and therefore 
the same bounds of the expectation: 
 

EUPP[f]  =   5 × 0.0 + 20 × 0.3 + 10 × 0.7 + 0 × 0.0 = 13.0 ;    
ELOW[f]  = 20 × 0.0 +  10 × 0.5 +  5 × 0.2 + 0 × 0.3 = 6.0 
 

On the other hand, considering the information on the space S  given by the  con-
sonant random set compatible with the p-box in Example 3.32, Table 3.18 shows 
the extreme distributions that give the expectation bounds of the same function f. 
By comparing with Table 3.17 , PEXT,UPP(s 

j) remains unchanged, but PEXT,LOW(s j) is 
now different and coincides with P1

EXT, hence, again: EUPP[f]  = 13.0 ; while the 
lower bound increases to:  ELOW[f]  = 20 × 0.0 + 10 × 0.7 + 5 × 0.0+ 0 × 0.3 = 7.0. 

Table 3.17 Dual extreme distributions for function in Example 3.33 and p-boxes in Exam-
ple 3.31 and Example 3.32 

T Pla(T) PEXT,UPP (s) Bel(T)  PEXT,LOW (s) 

{ }1 2T s=   0.3 P(s2) = Pla(T 1)  
= 0.3 

0.0. P(s2)= Bel(T 1)  
= 0.0 

{ }2 2 3,T s s=  1.0 P(s3) =Pla(T 2) - Pla(T 1)  
 = 0.7 

0.5 P(s3)= Bel(T 2) - Bel(T 1)  
= 0.5 

{ }3 2 3 1, ,T s s s=  1.0 P(s1) =Pla(T 3) - Pla(T 2)  
= 0.0 

0.7 P(s1)=Bel(T 3) - Bel(T 2) 
 = 0.2 

T 4 = S 1.0 P(s4) = Pla(T 4)- Pla(T 3)  
=  0.0 

1.0 P(s4)=Bel(T 4) - Bel(T 3)  
= 0.3 

 

Table 3.18 Dual extreme distributions for function in Example 3.33 and the  
consonant random set included in the p-box considered in Example 3.32 

T Pla(T) PEXT,UPP (s) Bel(T)  PEXT,LOW (s) 

{ }1 2T s=   0.3 P(s2) = Pla(T 1)  
= 0.3 

0.0. P(s2)= Bel(T 1)  
= 0.0 

{ }2 2 3,T s s=  1.0 P(s3) =Pla(T 2) - Pla(T 1)  
 = 0.7 

0.7 P(s3)= Bel(T 2) - Bel(T 1)  
= 0.5 

{ }3 2 3 1, ,T s s s= 1.0 P(s1) =Pla(T 3) - Pla(T 2)   
= 0.0 

0.0 P(s1)=Bel(T 3) - Bel(T 2) 
 = 0.2 

T 4 = S 1.0 P(s4) = Pla(T 4)- Pla(T 3) =  
0.0 

0.3 P(s4)=Bel(T 4) - Bel(T 3)  
= 0.3 
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3.4.3   Convex Sets of Parametric Probability Distributions 

In many applications the available information suggests that a special type 
of probability distribution can be assumed in modeling a variable, but pre-
cise value of parameters p1, p2, …on which the distribution depends (e.g. 
mean value, variance etc.) are not known: for example a set of values for 
each parameter (a subset of the space of possible values) is given, or more 
generally a joint subset Ψp1, p2,… (perhaps convex) of the Cartesian product 
of the spaces of possible values. The information therefore defines a set Ψ 
of probability distributions and consequently upper/lower bounds of any 
event (Eq. (3.37)) or previsions (Eq. (3.50)). However the bounds gener-
ally do not correspond to upper/lower bounds (Bel / Pla set-functions) of 
an equivalent random set or to 2-monotone Choquet and alternate Choquet 
capacities. 
 

 
Example 3.34. The damage to residential buildings observed after earthquakes is 
generally well described by binomial distributions on a finite integer scale  d rang-
ing from 0 (no damage) to 5 (total collapse). A binomial distribution is completely 
defined by its mean value μ, or by the binomial coefficient p in the range between 
0 to 1 (equal in this case to μ/5), depending on the seismic intensity and the build-
ing structural type.  

 

( ) ( ) { }55!
, 1 | 0, 1,...,5    

! (5 )!

−= − ∈
⋅ −

jj dj d j
j j

Bin d p p p d
d d

 (3.76) 

 
Supposing that p is not precisely known, but restricted by the set  Ψp = [0.1, 0.4], 
the bounds of each subset of the damage space D = {d 

1 = 0, d 
2 = 1, d 

3 = 2, … d 
6 = 

5} can be evaluated. It is easy to check that the Bin function is non-monotonic 
with respect to p: for any value d 

j an extreme maximum value is obtained for p = d 
j /5.  
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(a) (b) 

Fig. 3.29 (a) Probability distributions in Example 3.34 for the 2 extremes and 2 in-
ternal points of set Ψp = [0.1, 0.4]. (b) Dual extreme distributions (PLOW and PUPP) 
for the permutations (π(0)=3, π(1)=2, π(2)=1, π(3)=0, π(4)=5, π(5)=4) of the in-
dexes, and binomial distributions with the same mean value (BINLOW and BINUPP) 

Therefore for d 
2 = 1, this extreme value (p = 1/5 = 0.2) is within the interval Ψp 

= [0.1, 0.4] (see Figure 3.29 a): the upper bound of the probability of subset { d 
2} 

is not the maximum of the values given by the binomial distribution function de-
fined by two extremes of the convex interval Ψp.  

By checking permutations of the indexes, Eqs. (3.18) (3.19) could be used to 
derive dual members of the set EXT of the extreme distributions. Figure 3.29 b) 
shows the numerical results for a particular permutation (π(0)=3, π(1)=2, π(2)=1, 
π(3)=0, π(4)=5, π(5)=4) compared with binomial distributions with the same mean 
value: the extreme distributions are clearly not binomial distributions. Therefore 
they do not belong on set Ψ of the probability distributions describing the avail-
able information. This conclusion implies that the (coherent) lower probabilities 
which can be derived by the set Ψ by means of  Eq. (3.37)a  are not 2-monotone 
Choquet capacities: the corresponding set EXT contains distributions which do not 
belong on Ψ (= ΨE) and hence the lower probabilities are simply 1-monotone set 
functions. 

 
Example 3.35 (Example 3 in (Hall and Lawry 2004)). A set of log-normal prob-
ability distributions is defined on the infinite space S = {s∈ (0, +∞)} by imposing 
that ln s  is normal with mean μ ∈ [0.1, 1] and standard deviation σ ∈ [0.1, 0.5]. 
Observe that the four extremes of set Ψμ×σ = [0.1, 1]×[0.1, 0.5] define a p-box 
containing the CDFs of the assumed probability distributions, but the extreme 
FLOW ( ln s) and FUPP ( ln s) are not normal distributions: for example FLOW ( ln s)  
= :  N (μ = 1, σ = 0.1) for ln s < μ = 1; N (μ = 1, σ = 0.5) for ln s > μ. A finite  
approximation of the problem was developed in the same paper through a finite 
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partition of space S (or equivalently of space SN = { ln s∈ (-∞, +∞)}) given by the 
5 singletons s 

j (the intervals listed in Table 3.19, second column).  The same table 
gives the upper and lower values of the CDFs on the space of the singletons, and 
also the upper and lower values of the probability of the singletons, searching for 
the pair (μ,σ) giving the maximum and  minimum respectively. For example 
μUPP({s3}) ∼ 1 is given by (μ = (0.1+1)/2 = 0.55, σ = 0.1); note that it is not an ex-
treme point of Ψμ×σ. In a similar way the paper gives upper and lower probabilities 
of each member of the algebra generated by the partition, demonstrating through 
the Möbius transform m that they are simply 1-monotone set functions.  

Table 3.19 Lower/upper CDFs and probability of the singletons in Example 3.35 

s 
j
  s  FLOW(s 

j) FUPP(s 
j) μLOW({s 

j}) μUPP({s 
j}) 

s1 (   0,    0.891)  ∼0 1/3 ∼0 1/3 
s2  [0.891, 1.154)  ∼0 2/3 ∼0 0.651 
s3 [1.154, 2.604)  1/3 ∼1 1/3 ∼1 
s4 [2.604, 3.372)  2/3 ∼1 ∼0 0.651 
s5  [3.372,   +∞  )  1 1 ∼0 1/3 

 
If alternatively the p-box shown in the first 4 columns of Table 3.19 is assumed 

as the relevant basic information, the above procedure described in § 3.4.2 can be 
used. Different lower and upper probabilities of the singletons, derived according 
to Eq. (3.73), are listed in Table 3.20; the focal element and probabilistic assign-
ment of an equivalent non-consonant random set are shown in Figure 3.30a); this 
random set determines different lower and upper probabilities of each member of 
the algebra generated by the partition (Choquet and Alternate Choquet capacities 
of order ∞).  

Also observe that the contour function shown in Table 3.20 can be assumed as 
a possibility distribution, determining the consonant random set shown in Figure 
3.30 b), again compatible with the bounds of the p-box. This consonant random 
set gives upper and lower probabilities not very different from the values directly 
derived from set Ψμ×σ: for example Bel({s3}) is exactly equal to 1/3, while 
Pla({s2}) = Pla({s4}) increases from 0.651 to 2/3 = 0.667.  

This consonant random set is not very different from the nearly-consonant ran-
dom set obtained in (Hall and Lawry 2004) through a specific procedure proposed 
by the authors and called Iterative Rescaling Method (IRM). However it is important 
to underline that the random set obtained by IRM (or its consonant approximation 
shown in Figure 3.30 b) and the non-consonant random set in Figure 3.30 a), al-
though giving the same upper/lower CDFs, are not comparable: they are not differ-
ent discrete approximations of the same information, but discrete approximations of 
different original information (the set of log-normal distributions in the former case, 
the bounds of the corresponding p-box in the latter). 
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Table 3.20 Lower/upper probabilities of the singletons from the p-box in Table 3.19  

s 
j
 FLOW(s 

j) FUPP(s 
j) μLOW({s 

j}) μUPP({s 
j}) 

s1 ∼0 1/3  ∼0 1/3 
s2  ∼0 2/3 max (0,∼0-1/3) = 0 2/3 - ∼0 =0.667 
s3 1/3 ∼1 max (0,1/3-2/3) = 0 ∼1 - ∼0 = ∼1 
s4 2/3 ∼1 max (0,2/3- ∼1) = 0 ∼1 – 1/3 = 0.667 
s5  1 1 max (0,1- ∼1) = ∼0 1 – 2/3 = 1/3 
 
 

 

(a) 

 

(b) 

 

Fig. 3.30 Random sets in Example 3.35: (a) non-consonant random set by the p-
box; (b) consonant random set 
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3.5   Conclusions 

The concept of random set has been introduced in this chapter, demonstrat-
ing that in many cases, but not all, it can be useful to model the actual un-
certainty about variables; in particular, in view of the applications to be 
discussed in the following chapters, the variables of interest to engineering 
problems. This model appears to be a powerful generalization of the clas-
sical probability theory, but it is a particular case of a more general theory 
of measures, related to classes of events through monotone non-additive 
functions. 

It has been shown that the theory of random sets contains as particular 
cases, in addition to the probability measures, both the models of uncer-
tainty based on the classical set theory (convex modelling, interval analy-
sis) and the so-called possibility theory, which, on the other hand, can be 
considered as a particular interpretation of the general fuzzy sets theory. 

In the following chapters the theory of random sets will be developed 
considering multivariate problems and therefore analyzing the reciprocal 
interaction (dependence, independence, correlation) between different 
variables and its influence on the estimation of dependent functions. 
Within this broader ambit the extension principle will be introduced, with 
reference both to point-valued functions and to more general set-valued 
functions, and the very important rule of inclusion of random sets, which 
appears to be of particular interest in applications for reliability and risk 
evaluations of engineering systems. 

It will be shown that in many applications, uncertain data, which would 
require rigorous but complex procedures within the ambits of imprecise 
probabilities or monotone set measures, can be modelled with good approxi-
mation by means of random sets, so obtaining remarkable computational  
advantages. 
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Notes 

N 3-1 Evaluation of the selectors requires precise knowledge of multi-
valued mapping, which generates focal elements not necessarily distinct. 
In computing Bel(T), Pla(T) and Ψ , coincident focal elements can be 
grouped in a unique focal element with probabilistic assignment equal to 
the sum. However the cardinality of the set of selectors will be decreased 
by the grouping. In (Miranda, Couso et al. 2002) the case of infinite coin-
cident focal elements over a finite space S is considered; they are gener-
ated, through multi-valued mapping, by a probability measure on X infinite 
but “atomic”: SCT  is non-convex (it shows fractal properties) and does not 
coincide with Ψ. The coincidence requires, for finite S, conditions of con-
tinuity for the functions, satisfied if (but not only if) the measurable space 
on X is “non-atomic”. More complex conditions are required when S is  
infinite (Miranda, Couso et al. 2003). 

 
N 3-2. For example observe that, subdividing the first focal element  
({s1, s2},0.5) in two coincident focal elements and probabilistic assign-
ments summing to the first ({s1, s2},0.4), ({s1, s2},0.1), the number of  
selectors increases to 12 (although not all different), in any case on the  
border, while the 4 extremes, and therefore the set Ψ do not change. 
 
N 3-3. Within the ambits of a behavioral interpretation of the probability 
assumed by Walley, the functions f can be considered as “gambles” and 
the “prevision” ELOW[f] the “supremum buying price” for the gamble f. Eq. 
(3.44) must be respected for “avoiding sure loss” (see Walley 1991), § 
2.4.1 for definition of avoiding sure loss; § 3.8.5 for equivalence to the 
condition of non-empty set Ψ). When condition (3.44) is not respected, ac-
cepting a group, each one individually desirable, of gambles produces sure 
loss. 
 
N 3-4. According to Walley “a probability model is incoherent if calculat-
ing the implications of the model would lead to its modification”. In § 2.5 
of his book, Walley gives a formal definition of coherence and also a gen-
eral condition to uncertain a priori, using the original bounds, coherence of 
the available information. Of course coherence implies avoiding sure loss, 
i.e. Eq. (3.44), but not vice versa. 
 
N 3-5. For a more extended list see (Walley, 1991; § 2.7.4). A simple  
example in § 2.7.5 shows that lower probabilities satisfying all listed  
necessary conditions would be not coherent or directly incur sure loss. 
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N 3-6. This follows from the fact that the infimum for the union of disjoint 
sets is equal to the sum of the probabilities of the two sets evaluated 
through a probability distribution in the set Ψ, not necessarily coinciding 
with the probability distributions giving separately the infima for the  
probability of the two sets. 
 
N 3-7. This follows from the fact that the supremum for the union of dis-
joint sets is lower or equal to the sum of the probabilities of the two sets 
evaluated through a probability distribution in the set Ψ, not necessarily 
coinciding with the probability distributions giving separately the suprema 
for the probability of the two sets. 
 
N 3-8. This condition appears in some cases stronger than the corresponding 
condition Pro(B)>0 when conditioning precise prior probabilities with re-
spect to B. In fact it is more common for an event to have lower probability 
zero than precise probability zero. In his book, Walley presents an alternative 
model (coherent sets of desirable gambles) equivalent to lower previsions or 
sets of compatible distributions, but feasible to conditioning with respect to 
an event or likelihood function with zero lower prevision. See for example 
simple numerical examples in (Walley 2000).  

 
 



Chapter 4 
Random Relations 

In this chapter, the notions introduced in Chapter 3 are extended to the case 
in which the uncertain information is assigned by means of marginal ran-
dom sets on several different spaces, Si, or by means of a random relation 
on the Cartesian product S = ×Si. The multifold concept of independence is 
firstly introduced within the general framework of imprecise probabilities, 
and then specialized to random relations. A definition for correlation be-
tween variables constrained by random sets/relations is proposed. 

4.1   Random Relations and Marginals  

In Chapter 3, we focused our attention on uncertainty affecting one vari-
able. We now want to extend the definitions of random set to multi-
dimensional spaces, where several uncertain variables can be described. 

More precisely, let S be the Cartesian product of sets Si, i=1,…,ν where the 

i-th uncertain variable takes values on Si. A random relation is a random 
set on 1 ...= ×S S Sν , i.e. it is a family of n focal elements, Ai ⊆ S, and the 
basic probabilistic assignment, m(Ai), that satisfies the conditions: 
m(∅)=0; Σi m(Ai)=1. In the following, reference will be made to the two-
dimensional case, its extension to the multidimensional case being 
straightforward. Figure 4.1a exemplifies a case in which the random rela-
tion is composed of three focal elements. 

For any subset  T ⊆ S,  it is possible to evaluate the values of the set-
valued functions Bel(T) and Pla(T) and the probability bounds on T by us-
ing Eq. (3.3); therefore: 

P(T)  ∈  [ Bel(T), Pla(T)] (4.1) 

For example, in Figure 4.1a: P(T)  ∈  [ m(A2), m(A1) + m(A2)].               
Figure 4.1b illustrates that a focal set, Ai, projects onto the s1-axis as the 

set (interval if Ai is simply connected, multiple intervals if Ai is not simply 
connected) 
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 ( ){ }1 1 1 1 2 2 2| , for somei iA s S s s A s S= ∈ ∈ ∈  (4.2) 

 
and onto the s2-axis as the set 
  

( ){ }2 2 2 1 2 1 1| , for somei iA s S s s A s S= ∈ ∈ ∈  (4.3) 

 
As in the case of random variables (Eqs. (2.23) and (2.24)), the marginal 
probability assignment, mj, on the sj-axis is defined by using the marginal 
(or additivity) rule (if projections of different focal sets coincide)  

 

( ) ( )
': '

'
i

j j

i
j j

A A A

m A m A
=

= ∑  (4.4) 

 

Random sets ( ){ }1 1,i iA m and ( ){ }2 2,i iA m are called marginal random sets. 

 

 
 

a) b) 

Fig. 4.1 a) Random relation with three focal elements; b) marginals of focal ele-

ment Ai and contours of one possible probability distribution iP ∈ Ψi 

 

From Eq. (3.11), recall that a random set can be defined by using con-
vex linear combinations of all probability measures defined over the focal 
elements (and equal to zero elsewhere). The coefficients of the linear com-
binations are fixed, and they are equal to the probability assignments (mi in 

Eq. (3.11)). Formally, let iP  be a probability measure in the set of prob-
ability measures, iΨ , which are zero outside the focal set Ai. Figure 4.1b 
illustrates the contour of a distribution induced by iP ∈ iΨ . A random  
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relation is the set, Ψ, of probability measures, PRS, obtained as convex 

combinations of iP  
 

( )
1

:
n

i i
RS RS

i

P P m A P
=

⎧ ⎫Ψ = =⎨ ⎬
⎩ ⎭

∑  (4.5) 

 

Let Fk = (Ak, mk) be a marginal random set, where the focal elements are Ak 

{ }1 ,..., kn
k kA A= , and the probability assignment is mk { }1 ,...,= kn

k km m  Accord-

ing to Eq. (4.5), the set of probability measures, Ψk, associated to the k-th 
marginal is 

    

( )( )
1

|
kn

i i i i
k k k k k k

i

m A P P
=

⎧ ⎫⎪ ⎪Ψ = ⋅ ∈ Ψ⎨ ⎬
⎪ ⎪⎩ ⎭
∑ , (4.6) 

 

where i
kΨ is the set of all probability measures defined over the focal ele-

ment i
kA  (and equal to zero elsewhere). Let us now investigate the rela-

tionship between the elements in Ψ1 and those in Ψ by taking the marginal 
of PRS ∈ Ψ onto S1:   
 

( ) ( ) ( )
1

1 1

2 2 2
1 1 : ji

nn
i i i i

RS
i j i A A

P S m P S m P S
= = =

⋅× = ⋅× = ⋅×∑ ∑ ∑  (4.7) 

 

By equating the last expression in Eq. (4.7) to Eq. (4.6), one has: 
 

( ) ( )
1 1

21 1
: ji

j j i i

i A A

m P m P S
=

⋅ = ⋅×∑ , (4.8) 

 

and by remembering Eq. (4.4), one obtains the final expression for an element 

of 1
iΨ : 

 

( )
( )

1 1

1 1

2
:

1

:

ji

ji

i i

i A Aj
i

i A A

m P S

P
m

=

=

⋅×

⋅ =
∑

∑
 (4.9) 

 

Eq. (4.9) can be interpreted as follows. Attach a mass equal to probabilistic 
assignment mi to each projection of a joint probability measure iP ∈ iΨ  

over a joint focal element Ai whose projection is 1
jA . A marginal probabil-

ity measure in 1
jΨ  is the centroid of this system of masses, which will  

“resemble” the projection of joint probability measure(s) with the larger 
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probabilistic assignment(s). On the other hand, since iΨ contains all joint 

measures that are zero outside Ai, each probability measure in 1
jΨ  can be 

generated by means of Eq. (4.9).  
Similar to the one-dimensional case dealt with in Section 3.2.3.2  

(page 35), a selector of a random relation {(Ai, mi)} is a random vector,  
V = {(vi, mi)} (Section 2.4 page 23), whose values vi are included in the focal 
elements Ai. Call SCT the class of selectors; marginal selectors are  
marginals of V∈ SCT. 

If the focal elements of a random relation {(Ai, mi)} can be ordered in a 
nested sequence, such that Ai ⊆ Ai+1, i = 1, 2, ...n-1, the random relation is 
termed consonant, and properties similar to the one-dimensional case hold  
(see  Section 3.2.4). In particular, information given by the random relation 
is equivalent to the point-valued contour function, i.e. the possibility val-
ues, π(s1, s2), of the singletons {(s1, s2)}, which is the membership function 
μF(s1, s2) = π(s1, s2) of a fuzzy relation F with (see Eq. (3.24)): 

 

( ) { }( ) ( )
( )1 2

1 2 1 2
: ,

, ,
i i

i
F

A s s A

s s Pla s s m Aμ
∈

= = ∑  (4.10) 

  
 

 

Fig. 4.2 Consonant random relation with three focal elements and its marginal 
consonant random sets 
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The focal elements are the α-cuts of the fuzzy relation for the finite se-

quence α1 = 1, α2 < α1 , ..., αn+1 < αn , αn+1 = 0, with probabilistic as-

signment m(
αiA) = αi - αi+1 (Eq. (3.27)). Figure 4.2 illustrates a case in 

which n =3. 
For a consonant random relation, the marginals are consonant random 

sets that are fuzzy sets, F1 and F2, whose membership functions are simply 
defined by the following equations (S1 and S2 are finite sets; for infinite 
sets, the “sup” operator should be substituted for “max”): 

 

( ) ( )
2

1 1 1 2max ,
S

s s sμ μ= ;                ( ) ( )
1

2 2 1 2max ,
S

s s sμ μ=  (4.11) 

 
i.e. they are the projections (Klir and Yuan 1995) of the fuzzy relation onto 
the space of the single variables, see Figure 4.2.  

When all focal elements Ai are nested Cartesian products, the random re-
lation F = {(Ai, mi)} is termed consonant random Cartesian product or fuzzy 
Cartesian product (Figure 4.3). Section 4.3.5 (page 174) deals with the case 
in which the marginals are given and the fuzzy Cartesian product is derived.  

 

 

Fig. 4.3 Consonant random Cartesian product with three focal elements and its 
marginal consonant random sets 
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Once a random relation is assigned, its marginal random sets are always 
uniquely determined by Eqs. (4.2) through (4.4). However, if only mar-
ginal random sets are given on S1 and S2, the available information does 
not uniquely define the information on the joint space S = S1×S2 for two 
distinct reasons: 

 

a) Unless a rule is known or assumed a priori, the marginal focal elements 
do not uniquely determine the focal elements for the random relation. 

The Cartesian product is just an example of such a rule: 1 2
ij jiA A A= × . 

b) Per the additivity rule (Eq. (4.4)), a marginal focal element, say 1
iA , 

could be the projection of more than one focal element, say 1
iA  and 1

jA , 

among which it is thus necessary to apportion the marginal basic prob-

abilistic assignment m1( 1
iA ) . 

 

In the theory of precise probability, it is the second reason that brings 
about the indeterminateness of the joint probability distribution when only 
the marginal distributions are given. On the contrary, the first reason does 
not apply because the marginal focal elements are singletons (say 

{ }1 1
i iA s= ; { }22

j jA s= ), and thus the focal element is always uniquely de-

termined ( { },
1 2,i j i jA s s= ).  

In order to understand the implications of combining two marginal ran-
dom sets on a joint space, it is necessary to make an excursion into the 
wider context of imprecise probabilities, similar to the approach taken in 
Section 3.3. Section 4.2 explains that in the theory of imprecise probabili-
ties the concept of independence is not unique. In Section 4.3, the first is-
sue is solved by using the Cartesian product of marginal focal elements, 
and the concepts of independence in the theory of imprecise probabilities 
are used to overcome the second source of indeterminateness. In Section 
4.4, the hypothesis of Cartesian product will be relaxed in the investigation 
of correlation. 
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4.2   Stochastic Independence in the Theory of Imprecise 
Probabilities 

Let us recall two notions from the theory of precise probability: 

a) Let P(T2)>0. The conditional probability of T1 conditioned on T2 is  
defined as (Eqs. (2.4)):   

 
P(T1|T2) := P(T1 ∩ T2)/ P(T2) (4.12) 

 
b) Two events, T1 and T2, are said to be independent if (Eq. (2.6)): 
  

P(T1 ∩ T2) := P(T1) P(T2) (4.13) 
 

In the case of two marginal variables, let Pi be the probability measure on 
the σ-algebra of Si. Coherent with Eq. (4.13), the joint probability measure 
on the joint measurable space  (S, S) (Section 2.3) for independent vari-
ables is defined as the product measure  

{ }1 2 1 2: : [0,1]i iP P P U U U= ⊗ = × ∈ →C S  given by (Eqs. (2.31)-(2.35)): 

 

( ) ( ) ( )1 2 1 2 1 1 2 2:P P U U P U P U⊗ × =  (4.14) 
 
and P can be extended to any subset in the σ-algebra S generated by C. 

Eq. (4.14) and the definition of conditional probability (4.12) establish 
that the conditional probability measures for independent variables yield 
the marginal probability measures 

 
{ }( ) { }( ) { }( )

( ) { }( ) ( ) { }( )( ) ( ) { }( )
2 1 2 2 1 2

1 2 2 1 1 2 2 1 2 2 2

| /

/ : 0;

P S S s P s P S s

P P s P S P s P s P s

⋅× × = ⋅× × =

= ⋅ ⋅ ⋅ = ⋅ ∀ >
    

{ }( ) ( ) { }( )1 1 2 2 1 1 1| : 0P S s S P s P s×⋅ × = ⋅ ∀ >  

(4.15) 

 
This means that: if we learn that the actual value of the second variable is 
s2, then our knowledge about the probability measure for the first variable 
does not change. Likewise for the second variable. Let us now consider the 
extension to the case in which a generic convex set of probability meas-
ures, Ψi, is assigned to the i-th variable, i.e. Ψi does not have to satisfy Eq. 
(4.6). Definitions in this section are taken from (Walley 1991; Couso, Mo-
ral et al. 1999; Vicig 1999; Ferson, Nelsen et al. 2004).  
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To exemplify, if sets Si are finite, as in Section 2.3, let Pi be a probabil-

ity distribution on Si = { j
is : j = 1,…, ni}, and let pi be an ni–column vector 

whose j-th component is Pi(
j

is ). Let fi
k : Si →\ , k= 1,…,ki be a set of 

bounded functions on Si (gambles according to Walley’s nomenclature), 
whose expectations (previsions according to Walley’s nomenclature) are 
(Section 3.3.2 on page 62 and Eq. (3.39)):   

 

( ) ( ) ( )T

1

in
k k j j k

i i i i i i i
j

E f f s P s
=

⎡ ⎤ = =⎣ ⎦ ∑ f p  (4.16) 

 

where k
if  is an ni–column vector whose j-th entry is fi

k( j
is ). Set Ψi may be 

assigned as the set of distributions pi bounded by hyperplanes (4.16) (Eq. 
(3.41)): 
 

( ){ }T
:E k k k

i i LOW i i i UPP iE f E f⎡ ⎤ ⎡ ⎤Ψ = ≤ ≤⎣ ⎦ ⎣ ⎦p f p  (4.17) 

 
In Eq. (4.17), if no constraint is assigned to the lower or upper expectation 

bound, then k
LOW iE f⎡ ⎤

⎣ ⎦  and k
UPP iE f⎡ ⎤

⎣ ⎦  are assigned values equal to -∞ 

and +∞, respectively.  
Alternatively, and in an equivalent way, let ETXi (of cardinality ξi = 

|ETXi |) indicate the set of extreme distributions (vertices) of Ψi, 
iEXT

ξp , ξ = 

1,…, ξi. Ψi is the set of convex combinations of 
iEXT

ξp : 

 

1 1

: , 1, 0
i i

ii i i i i iEXTc c c
ξ ξ

ξ ξ ξ ξ

ξ ξ= =

⎧ ⎫⎪ ⎪Ψ = = = ≥⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑p p p  (4.18) 

 
If sets Ψi

E and Ψi are empty (see Section 3.3.2.1), then the set of joint 
probability measures is also empty. In the following, it is therefore as-
sumed that sets Ψi

E and Ψi are not empty. If the bounds in (4.17) are not 
coherent (Section 3.3.2.2), all optimization problems that follow will yield 
coherent solutions because the solutions pi will be in Ψi

E, and thus the so-
lutions will satisfy the following coherent bounds (Eq. (3.50)): 
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, ,min ; max   
E E

i i

k k k k
LOW c i i UPP c i iE f E f E f E f

∈Ψ ∈Ψ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦p p

p p
 

(4.19) 

This will be exemplified in Example 4.5. In order to unclutter the notation, 
in the following the superscript “E” for “natural extension” will be 
dropped from Ψi

E. 
In finite spaces, let P be a probability of the joint elementary events on 

S, and let P be an n1×n2 matrix with (i, j)-th entry pi,j := ( )1 2, jiP s s . Con-

sider now a linear function of the probability mass: 1 2; , ,

1; 1

i n j n i j i j

i j
a p

= =

= =∑ ; the 

probability of an event (subset) T⊆S is obtained by setting ai,j = 1 if 

( )1 2, jis s T∈ , ai,j = 0 otherwise. Likewise, the expectation of a function g on 

S (prevision of gamble g, according to Walley’s nomenclature) is obtained 

by setting ai,j = ( )1 2, jig s s . When expectation bounds are given on the mar-

ginals, constraints (4.17) may be expressed in terms of the joint probability 
P by using Eq. (2.24), i.e.: 

 

( )21 n= ⋅p P 1 ;    ( )1

T
2  n= ⋅p P 1 , (4.20) 

 
where ( )in1  is a column vector of unit components of length ni: 

 

( ) ( )
T

 ; 1,..., ; , (1,2),(2,1)
j

k k k
LOW i i UPP i in

E f E f k k i j⎡ ⎤ ⎡ ⎤≤ ⋅ ≤ = =⎣ ⎦ ⎣ ⎦f P 1  (4.21) 

 
In the following sections, we will be concerned with the problem of find-
ing the maximum or minimum of a function on the joint distribution (e.g., 
finding bounds on the probability or on the expectation of an event T⊆S) 
subject to constraints, e.g., of the kind in Eq. (4.21). There are two options 
to find the extreme values of functions on the joint distribution: 

 
1) Using global optimization to find the point(s) at which the minimum 

or maximum value of the objective function is achieved. This option 
directly focuses on the optimal solution, which is apparently more 
efficient if only one maximum or minimum must be calculated.  
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2) First finding all extreme points for Ψ (the set of joint probability 
measures/distributions that satisfies the chosen definition of inde-
pendence), and then restricting the search to the extreme points of 
Ψ. This second option can be used only if the objective function 
and constraints are linear (e.g., probability of an event or expecta-
tion of a function). Theorem 4.1 below ensures that even the 
maximum and the minimum of conditional probabilities are 
achieved at the extreme points of Ψ.  

 
Theorem 4.1. The minimum and maximum values of a conditional prob-
ability in the joint distribution are achieved at the extreme points of the 
convex set of the joint distributions Ψ. 

Proof: By inserting the marginal expression for ( )2 2
jp s  (Eq. (2.24)) into 

the expression for the conditional probability ( )1|2 1 2| jip s s  (Eq. (2.25)), one 

obtains: 
 

( ) ( )
1

,

1 1|2 12 2
,

1

, : |
i j

j ji i
n

i j

i

p
s s S p s s

p
=

∀ ∈ =

∑
 

(4.22) 

Let 
*P ∈Ψ and

**P ∈Ψ. The conditional probability p1|2(s1
i|s2

j) on each joint 

distribution is ( ) 1
, ,

1|2,* 1 2 * *
1

| /
n

j i j i ji

i

p s s p p
=

= ∑ , and ( ) 1
, ,

1|2,** 1 2 ** **
1

| /
n

j i j i ji

i

p s s p p
=

= ∑ , 

respectively. Assume ( ) ( )1|2,* 1 1|2,** 12 2| |j ji ip s s p s s≥ , then any interior point 

( )newP  between 
*P  and 

**P  may be written as ( )* **1λ λ+ −P P , 0 1λ≤ ≤ , 

i.e., ( )
( ) * **

, , ,1
new

i j i j i jp p pλ λ= + − . Consequently, the conditional probability 

based on the new joint distribution 
( )newP  is: 

 

( ) ( )

( )

( )

( )
1 1 1

, , ,
* **

1|2, 1 2
, , ,

* **
1 1 1

1
|

1

i j i j i j
newji

new n n n
i j i j i j
new

i i i

p p p
p s s

p p p

λ λ

λ λ
= = =

+ −
= =

+ −∑ ∑ ∑
 

(4.23) 
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By subtracting Eq. (4.23) from (4.22), one obtains: 
 

( ) ( ) ( )

( )
1 1 1

, , ,
* ** *

1|2, 1 1|2,* 12 2
, , ,

* ** *
1 1 1

1
| |

1

i j i j i j
j ji i

new n n n
i j i j i j

i i i

p p p
p s s p s s

p p p

λ λ

λ λ
= = =

+ −
− = −

+ −∑ ∑ ∑
 

( ) ( )

( )

1 1 1

1 1 1

, , , , , ,
* ** * * ** *

1 1 1

, , ,
* ** *

1 1 1

1 1

1

n n n
i j i j i j i j i j i j

i i i

n n n
i j i j i j

i i i

p p p p p p

p p p

λ λ λ λ

λ λ

= = =

= = =

⎡ ⎤
⎡ ⎤+ − − + −⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦=

⎡ ⎤
+ −⎢ ⎥

⎢ ⎥⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑
 

( )

( )

1 1

1 1 1

, , , ,
** * * **

1 1

, , ,
* ** *

1 1 1

1

1

n n
i j i j i j i j

i i

n n n
i j i j i j

i i i

p p p p

p p p

λ

λ λ

= =

= = =

⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠=
⎡ ⎤

+ −⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑ ∑
 

( )

( )

1 1 1 1

1 1 1 1 1

, , , , , ,
** * * ** * **

1 1 1 1

, , , , ,
* ** * * **

1 1 1 1 1

1 /

1 /

n n n n
i j i j i j i j i j i j

i i i i

n n n n n
i j i j i j i j i j

i i i i i

p p p p p p

p p p p p

λ

λ λ

= = = =

= = = = =

⎛ ⎞ ⎛ ⎞
− − ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠=
⎡ ⎤ ⎛ ⎞

+ − ⋅⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑
 

( )

( ) ( )

1 1

1 1 1

, , , ,
** ** * *

1 1, , ,
* ** **

1 1 1

1|2,** 1 1|2,* 12 2

1
/ /

1 /

| | ,

n n
i j i j i j i j

n n n
i ii j i j i j

i i i

j ji i

p p p p

p p p

A p s s p s s

λ

λ λ = =

= = =

⎛ ⎞−= −⎜ ⎟⎜ ⎟⎡ ⎤ ⎝ ⎠+ −⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤= ⋅ −⎢ ⎥⎣ ⎦

∑ ∑
∑ ∑ ∑  

 

(4.24) 

where 
( )

( )

1

1 1

,
**

1

, ,
* **

1 1

1

0

1

n
i j

i
n n

i j i j

i i

p

A

p p

λ

λ λ

=

= =

−
= ≥

+ −

∑

∑ ∑
. 

  

Since ( ) ( )1|2,* 1 1|2,** 12 2| |j ji ip s s p s s≥ , ( ) ( )1|2, 1 1|2,* 12 2| | 0j ji i
newp s s p s s− ≤ , i.e. 

p1|2,*(s1
i|s2

j) ≥  p1|2,new(s1
i|s2

j). Likewise, p1|2,new(s1
i|s2

j). ≥  p1|2,**(s1
i|s2

j) 
 
In conclusion, given two extreme points on the convex set of joint dis-

tribution, 
*P  and 

**P , and p1|2,*(s1
i|s2

j) ≥  p1|2,**(s1
i|s2

j), any interior point 

( )newP  between them satisfies the inequality p1|2,*(s1
i|s2

j) ≥  p1|2,new(s1
i|s2

j) ≥  
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p1|2,**(s1
i|s2

j). The minimum and maximum values of conditional probabil-
ity are thus achieved at the extreme points of the convex set of joint distri-
butions.  

Therefore, regardless of the type of independence introduced next, the 
conditional upper and lower probabilities are reached at an extreme point 
of Ψ.                                                                                                          à 

 
When constraints are linear and the second option is used, the general al-
gorithm for finding the extreme points of Ψ is based on the interpretation 
of Ψ as a polytope in the s-dimensional space of the singleton’s probabili-
ties (s = n1 x n2 for joint probabilities) given by the intersection of half-
spaces, whose equations are the prevision bounds in Eq. (4.17). The algo-
rithm is as follows (modified after Walley 1991, page 511): 

 
1. In the s-dimensional space, Ψ is bounded by n linear inequalities 

(e.g., Eq. (4.21)) and s nonnegative constraints on singletons si, 
P(si) ≥ 0. Consider (s-1) constraints at a time in addition to the 
constraint that the sum of probabilities of the singletons is 1.  

2. Write the (s-1) inequality constraints as equalities. If the system of 
equations is singular, then either there is no solution (e.g., upper 
and lower bounds on the same prevision have been used) or there 
are infinite solutions (e.g., an entire face of the polytope Ψ); in ei-
ther case, go back to point 1. If the system is not singular, compute 
the unique solution P.  

3. If P satisfies all the remaining (n+s+1) – s = n + 1 constraints, P is 
an extreme point of the joint distribution set Ψ, otherwise it is not. 

4. Repeat Step 1 to Step 3 until all combinations of constraints are  
considered.  

4.2.1   Unknown Interaction 

If nothing is known about dependence or independence between s1 and s2, 
and if it is not known which probability measure in Ψ1 and Ψ2 must be 
combined, then unknown interaction should be used. The set, ΨU, of prob-
ability measures on a sigma algebra of S is the set of all joint probability 
measures, P, that respect the marginal rule (2.23), i.e. whose marginals are 
in Ψ1 and Ψ2, i.e.: 

 

( )2 1P S⋅× ∈ Ψ   ; ( )1 2P S ×⋅ ∈ Ψ  (4.25) 
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In finite spaces, upper and lower bounds for any linear function of the 

probability masses 1 2; , ,

1; 1

i n j n i j i j

i j
a p

= =

= =∑  (and thus upper and lower probabili-

ties of events or upper and lower expectations) are determined by solving 
two linear optimization problems in the pi,j. Indeed, when expectation 
bounds are given on the marginals, constraints (4.25) are linear constraints 
obtained by expressing the marginals in Eq. (4.17) in terms of the joint 
probability P by using Eq. (4.20) as in Eq. (4.21). The complete optimiza-
tion problem in the n1×n2 components pi,j reads: 

 

minimize 1 2; , ,

1; 1

i n j n i j i j

i j
a p

= =

= =∑  1 2; , ,

1; 1

i n j n i j i j

i j
a p

= =

= =
⎛ ⎞−⎜ ⎟
⎝ ⎠∑  

subject to 
 

( ) ( )

( ) ( )1 2

T

T

,
1 2

 ; 1,..., ; 1,2

1

0; 1,..., ; 1,...,

i

k k k
LOW i i UPP i in

n n

i j

E f E f k k i

p i n j n

⎡ ⎤ ⎡ ⎤≤ ⋅ ≤ = =⎣ ⎦ ⎣ ⎦

⋅ ⋅ =

≥ = =

f P 1

1 P 1  

(4.26) 

 
Besides solving the optimization problem in Eq. (4.26), one may first use the 
algorithm on page 114 to calculate the extreme points of Ψ defined by the 
constraints in (4.26), and then calculate the objective function on the ex-
treme points. Example 4.1 exemplifies both ways of finding upper and lower 
previsions; in particular, Table 4.2 lists all extreme points of Ψ for that  
specific problem. 

When extreme distributions are given on the marginals, constraints 
(4.25) are linear constraints obtained by expressing the marginals in  
Eq. (4.18) in terms of the joint probability P by using Eq. (4.20), i.e.: 

 

( )

( )

1

2 1

2

1 2

1 1
1

T
2 2

1

1

  

 

1, 0; 1,2
i

n EXT

n EXT

i i

c

c

c c i

ξ
ξ ξ

ξ
ξ

ξ ξ

ξ
ξ

ξ ξ

ξ

=

=

=

= ⋅ =

= ⋅ =

= ≥ =

∑

∑

∑

p P 1 p

p P 1 p  (4.27) 

 
The complete optimization problem in the n1×n2 components pi,j and in the 

ξ1+ξ2 components icξ  then reads: 
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minimize 1 2; , ,

1; 1

i n j n i j i j

i j
a p

= =

= =∑  1 2; , ,

1; 1

i n j n i j i j

i j
a p

= =

= =
⎛ ⎞−⎜ ⎟
⎝ ⎠∑  

 
subject to 

( )

( )

1

2 1

2

1 2

1
1

T
2

1

1

,
1 2

0

0

1, 0; 1,2

0; 1,..., ; 1,...,

i

n EXT

n EXT

i i

i j

c

c

c c i

p i n j n

ξ
ξ ξ

ξ
ξ

ξ ξ

ξ
ξ

ξ ξ

ξ

=

=

=

⋅ − =

⋅ − =

= ≥ =

≥ = =

∑

∑

∑

P 1 p

P 1 p
 

(4.28) 

 
 

In the optimization problem (4.28), it is not necessary to add the constraint 

( ) ( )1 2

T 1n n⋅ ⋅ =1 P 1  because, if the first and third constraints are satisfied, 

then by pre-multiplying by ( )1

T
n1  one obtains: 

 

( ) ( ) ( )
1

1 2 1 1

1

T T
1

1

1
1

1

n n n EXTc

c

ξ
ξ ξ

ξ
ξ

ξ

ξ

=

=

⋅ =

= =

∑

∑

1 P 1 1 p

 (4.29) 

 
Example 4.1. Consider the case in which a two-component resin has to be applied 
at a construction site to anchor steel bars. Cartridges of resins A and B should be 
contained in two different 10-cartridge boxes. Unfortunately, the manufacturer 
mixed up the boxes’ contents, and only some of the cartridges were counted when 
the boxes were opened in the field. Box 1 contains 5 A’s, 2 B’s, and 3 unknown 
component cartridges; Box 2 contains 3 A’s, 3 B’s, and 4 unknown component 
cartridges. A worker in the field takes one cartridge from Box 1 and then one car-
tridge from Box 2; we are interested in the joint probability of the selected car-
tridges. As we are just given the marginal probabilities, all we know is that the 
joint probability measure must satisfy Eq. (4.25). One cartridge is selected from 
each of the boxes, but we cannot assume stochastic independence, and it is possi-
ble that a correlated joint procedure is used to select the two cartridges. For exam-
ple, it may be that cartridges are numbered from 1 to 10, and when the worker 
picks the i-th cartridge from either box, he picks the i-th cartridge from the other 
box. In the present case, “independence” is just our lack of information about the 
interaction between the two selections.  
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As depicted in Figure 4.4, Si = {A, B}, S = {(A, A), (A, B), (B, A), (B, B)}; the 
marginal probabilities of elementary events are listed in Table 4.1 (where gray 
hatches indicate the extreme points of the sets Ψi, Section 2.2.3.4), and are de-
picted in Figure 4.5. Under the unknown interaction assumption, ΨU contains all 
joint probabilities of elementary events on S whose marginals are in Ψ1 and Ψ2. 

  
Fig. 4.4 Example 4.1: marginal dis-
tributions and joint events. In mar-
ginal distributions, numbers next to 
each event indicate minimum prob-
ability masses, and numbers outside 
the box indicate free probability 
mass that gives rise to several possi-
ble marginal distributions in Ψi 
(Table 4.1). Dashed lines indicate 
the joint events whose joint prob-
abilities are constrained by the first 
two constraints of Eq. (4.31). Hatch-
ing indicates event T={(A, A), (B, 
B)} 

 

 

 

 

a) 

 

 

b) 

Fig. 4.5 Example 4.1: marginal distributions and sets Ψ1(a) and Ψ2 (b) (Table 4.1) 
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Table 4.1 Example 4.1: Probabilities of elementary events for: (a) Box 1; and (b) 
Box 2 

                      (a)                                                                      (b) 

11
jp ∈ Ψ  A B  

22
jp ∈Ψ  A B 

1
1p  0.5 0.5  1

2p  0.3 0.7 

2
1p  0.6 0.4  2

2p  0.4 0.6 

3
1p  0.7 0.3  3

2p  0.5 0.5 

4
1p  0.8 0.2  4

2p  0.6 0.4 

    5
2p  0.7 0.3 

                                                                                      
 

The two linear optimization problems (4.28) read as follows: 
 

minimize 1,1 1,1 1,2 1,2 2,1 2,1 2,2 2,2a p a p a p a p+ + +    

                ( )1,1 1,1 1,2 1,2 2,1 2,1 2,2 2,2a p a p a p a p− + + +  

subject to 
 

1,1 1,2 1 2
1 1

2,1 2,2 1 2
1 1

1,1 2,1 1 2
2 2

1,2 2,2 1 2
2 2

1 2
1 1

1 2
2 2

,

0.5 0.8 0

0.5 0.2 0

0.3 0.7 0

0.7 0.3 0

1

1

0

0

i

i j

p p c c

p p c c

p p c c

p p c c

c c

c c

c

p

ξ

+ − − =

+ − − =

+ − − =

+ − − =

+ =

+ =

≥

≥

, 

(4.30) 

 
The attentive reader may have noticed that the assigned information on the mar-
ginals in fact corresponds to two random sets: {({A}, 0.5), ({B}, 0.2), ({A, B}, 
0.3)} on S1, and {({A}, 0.3), ({B}, 0.3), ({A, B}, 0.4)} on S2. From Section 3.2.2, 
page 67, and Section 3.3.3: 
 

• Since random sets are Choquet capacities of ∞-order, they constrain 
probabilities of events (i.e. they do not constrain expectations, or pre-
visions), and therefore their sets Ψi are bounded by hyper-planes with 
normals whose components are either 0 or 1.  
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• When |Si| is either 2 or 3, assigning bounds to the probability of events 
yields the same Ψi as assigning appropriate bounds to the probability 
of the singletons, i.e. the hyper-planes bounding Ψi are parallel to the 
coordinate axes.  

 
Since in this example |S|=2, constraints in Eq. (4.26) can be written in terms of 

probabilities of the singletons (of the marginals). In fact, ( ) ( )
T1

1 1,0=f  and 

( ) ( )T1
2 0,1=f  so that: 

 

minimize 
1,1 1,1 1,2 1,2 2,1 2,1 2,2 2,2a p a p a p a p+ + +    

                ( )1,1 1,1 1,2 1,2 2,1 2,1 2,2 2,2a p a p a p a p− + + +  

subject to 
1,1 1,2

1,1 2,1

1,1 1,2 2,1 2,2

0.5 0.8

0.3 0.7

1

p p

p p

p p p p

≤ + ≤

≤ + ≤

+ + + =

 

, 0i jp ≥  

(4.31) 

 
Consider the case in which the resin is not activated because the same resin type is 
selected: T={(A, A), (B, B)} (hatched in Figure 4.4), and a1,1 = a2,2 = 1; a1,2 = a2,1 
= 0. In this simple example, problems (4.31) can be solved “by hand”, and they 
have multiple solutions. For example, the minimizing solutions can be found by 
assigning zero to the objective function, which entails that both p(A, A)=0 and 
p(B, B)=0. The other constraints are satisfied, for example, for p(A, B)=p(B, 
A)=0.5; for p(A, B)= 0.6 and p(B, A)=0.4; and for p(A, B)= 0.7 and p(B, A)=0.3. 
All of these solutions yield ( ) 0lowP T = . The maximizing solutions that yield 

( ) 1uppP T =  are more numerous. One set of solutions is obtained by taking p(A, 

B)= p(B, A)=0, and then p(A, A)=0.5 and p(B, B)=0.5; p(A, A)=0.6 and p(B, 
B)=0.4; p(A, A)=0.7 and p(B, B)=0.3. 

Under the unknown interaction assumption, the probability that the resin is not 
activated is vacuous, i.e. it is in the [0, 1] range. The concepts of independence in-
troduced in the following sub-sections will provide narrower probability intervals. 
Notice that ΨU is larger than the set of product probabilities because, for example, 

( ) 0lowP T = < 0.15 = { }( ) { }( ) ( ) ( )1 1
1, 2, 1 2low lowP A P A p A p A= . The unknown inter-

action model violates the factorization condition (4.14) because condition (4.14) 
requires knowledge in addition to that available. 

Another option is to find all extreme distributions on the joint space using the 
algorithm on page 114, and then check all the extreme distributions to find the ex-
treme value of the objective function. All 12 extreme distributions generated by 
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constraints (4.31) are listed in Table 4.2, and the reader can easily check that the 
results are the same as those obtained by solving problem (4.31). 

Table 4.2 Example 4.1: Extreme joint probability distributions on S 

U
i
EXTp ∈Ψ A,A

EXTp A,B
EXTp B,A

EXTp B,B
EXTp p(T)=p(A, A)+p(B,B)

1
EXTp  0.5 0 0 0.5 1 

2
EXTp  0 0.5 0.5 0 0 

3
EXTp  0 0.7 0.3 0 0 

4
EXTp  0.7 0 0 0.3 1 

5
EXTp  0 0.5 0.3 0.2 0.2 

6
EXTp  0.3 0.2 0 0.5 0.8 

7
EXTp  0.3 0.5 0 0.2 0.5 

8
EXTp  0.1 0.7 0.2 0 0.1 

9
EXTp  0.5 0 0.2 0.3 0.8 

10
EXTp  0.2 0.3 0.5 0 0.2 

11
EXTp  0.7 0.1 0 0.2 0.9 

12
EXTp  0.5 0.3 0.2 0 0.5 

 
Example 4.2. In order to appreciate the difference between marginals assigned as 
random sets and marginals assigned as a more general set of probability measures, 
let us move to a three-dimensional space. In particular, let us now consider the two 
random sets in Example 3-6 and Example 3-11, i.e.: in S1: {({s1

1, s1
2}, 0.1), ({s1

2}, 
0.6), ({s1

3}, 0.3), whose set Ψ1 is depicted in Figure 4.6a, and has two vertices 

identified by vectors: 
1

1
EXTp  = (0, 0.7, 0.3)T and 

1

2
EXTp = (0.1, 0.6, 0.3)T. In S2: 

{({s2
1, s2

2), 0.1), ({s2
1, s2

2, s2
3}, 0.1), ({s2

2}, 0.8)}, whose set Ψ2 is depicted in Fig-

ure 4.6b, and has four vertices identified by vectors 
2

1
EXTp = (0, 0.9, 0.1)T, 

2

2
EXTp = 

(0, 1, 0)T, 
2

3
EXTp = (0.1, 0.8, 0.1)T, and 

2

4
EXTp  = (0.2, 0.8, 0)T.  

Since the marginals are random sets with |Si|=3, in Figure 4.6 sets Ψi are 
bounded by planes parallel to the coordinate planes, i.e. Ψi is uniquely defined by 
bounds on the probabilities of the singletons (Section 4.3.2). As a consequence, ki 
= ni = 3, and Table 4.3 gives the upper and lower probabilities calculated as Belief 
and Plausibility of the singletons, respectively; these values coincide with the 
bounds that can be calculated with the extreme joint distributions.  
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Constraints (4.26) are thus equal to the following constraints: 
 

Subject to 
1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

1,1 2,1 3,1

1,2 2,2 3,2

1,3 2,3 3,3

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

0.0 0.1

0.6 0.7

0.3 0.3

0.0 0.2

0.8 1.0

0.0 0.1

1

p p p

p p p

p p p

p p p

p p p

p p p

p p p p p p p p p

≤ + + ≤

≤ + + ≤

≤ + + ≤

≤ + + ≤

≤ + + ≤

≤ + + ≤

+ + + + + + + + =

 

, 0i jp ≥  

(4.32) 

 
On the other hand, the constraints in problems (4.28) read  

 
Subject to 

1,1 1,2 1,3 1 2
1 1

2,1 2,2 2,3 1 2
1 1

3,1 3,2 3,3 1 2
1 1

1,1 2,1 3,1 1 2 3 4
2 2 2 2

1,2 2,2 3,2 1 2 3 4
2 2 2 2

1,3 2,3 3,3 1
2

0.0 0.1 0

0.7 0.6 0

0.3 0.3 0

0.0 0.0 0.1 0.2 0

0.9 1.0 0.8 0.8 0

0.1

p p p c c

p p p c c

p p p c c

p p p c c c c

p p p c c c c

p p p c

+ + − − =

+ + − − =

+ + − − =

+ + − − − − =

+ + − − − − =

+ + − − 2 3 4
2 2 2

1 2
1 1

1 2 3 4
2 2 2 2

,

0.0 0.1 0.0 0

1

1

0

0

i

i j

c c c

c c

c c c c

c

p

ξ

− − =

+ =

+ + + =

≥

≥

 (4.33) 

 

Let us now consider the event ( ) ( ) ( ){ }1 1 2 2 3 3
1 2 1 2 1 2, , , , ,T s s s s s s= , i.e. ai,j = 1 if i=j, 0 

otherwise. The lower and upper probabilities for T, which are equal to 0.4 and 0.8, 
respectively, are obtained at multiple solution points, some of which are given in 
Table 4.4. When the interior point method is used (Mehrotra 1992), these solu-
tions are not necessarily extreme points in either Ψ1 or Ψ2. 
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Table 4.3 Example 4.2: Upper and lower probabilities of the singletons  

Marginal Si Singleton 
si

j ( )Tj
if  ( )j j

LOW i iE f Bel s⎡ ⎤ =⎣ ⎦
 ( )j j

UPP i iE f Pla s⎡ ⎤ =⎣ ⎦
 

s1
1 (1, 0, 0) 0.0 0.1

s1
2 (0, 1, 0) 0.6 0.6+0.1=0.7

 
S1 

s1
3 (0, 0, 1) 0.3 0.3

s2
1 (1, 0, 0) 0.0 0.2

s2
2 (0, 1, 0) 0.8 0.8+0.1+0.1=1.0

 
S2 

s2
3 (0, 0, 1) 0.0 0.1

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
                                                    
a) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         
b) 

 
                                                        

  

Fig. 4.6 Example 4.2: a) set Ψ1 and extremes PEXT1 b) set Ψ2 and extremes PEXT2 
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Table 4.4 Example 4.2: Solutions of the linear programming problems for the 
lower and upper probabilities for T. 1 = simplex method; 2 = interior point method  

Solution 
for 

      Joint P ( )1 2
1 1,c c  Marginal 

 on S1 
( )1 2 3 4

2 2 2 2, , ,c c c c  Marginal 
 on S2 

Min1 0 0.1 0

0.2 0.4 0

0.3 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
(0, 1) 

1

2
EXTp =  

(0.1, 0.6, 0.3) T 

(0,0,0,1) 
2

4
EXTp  =  

(0.2, 0.8, 0)T 

Min2 0 0.1 0

0.1388 0.4 0.0612

0 0.3 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (0, 1) 
1

2
EXTp =  

(0.1, 0.6, 0.3) T 

(0, 0, 0.612, 0.388) (0.1388, 0.8, 
0.0612) 

Max1 0 0 0

0 0.7 0

0 0.2 0.1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (1, 0) 
1

1
EXTp =  

(0, 0.7, 0.3)T 

(1,0,0,0) 
2

1
EXTp  =  

(0, 0.9, 0.1)T 

Max2 0.0250 0 0

0 0.6750 0

0.0391 0.1608 0.1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (0.75, 
0.25) 

(0.025, 0.675, 
0.3) T 

(0.358, 0, 0.642, 0) (0.064,  
0.836, 0.1) 

 
Example 4.3. Let us now slightly modify Example 4.2. In particular, let us keep 
the information on S2 the same, but assume that the following information is avail-
able on S1: P(s1

1) + 4/3P(s1
2) ≤ 14/15; P(s1

1) + 7/5P(s1
2) ≥ 47/50; P(s1

3) ≤ 0.3. Ta-
ble 4.5 summarizes the complete information. Since bounds on expectations of 
general functions are now given on S1, planes bounding Ψ1 are not parallel to any 
coordinate plane (Figure 4.7), and Ψ1 cannot be generated by bounds on probabili-
ties of events, let alone on the probability of singletons. Constraints (4.26) are thus 
equal to: 

 
Subject to 

( ) ( ) ( )
( ) ( ) ( )

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

3,1 3,2 3,3

1,1 2,1 3,1

1,2 2,2 3,2

1,3 2,3 3,3

1 4 /3 0 14 /15

47 / 50 1 7 / 5 0

0.3

0.0 0.2

0.8 1.0

0.0 0.1

p p p p p p p p p

p p p p p p p p p

p p p

p p p

p p p

p p p

⋅ + + + ⋅ + + + ⋅ + + ≤

≤ ⋅ + + + ⋅ + + + ⋅ + +

+ + ≤

≤ + + ≤

≤ + + ≤

≤ + + ≤
1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 1p p p p p p p p p+ + + + + + + + =

 

, 0i jp ≥  

(4.34) 
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As shown in Figure 4.7, the assigned previsions on S1 augment the extreme points 

of Ψ1 by adding 
1

3
EXTp = (0.8, 0.1, 0.1)T (intersection of the first two previsions) to 

the two extreme points in Example 4.2. The constraints in problems (4.28) now 
read as follows: 
 

Subject to 
1,1 1,2 1,3 1 2 3

1 1 1

2,1 2,2 2,3 1 2 3
1 1 1

3,1 3,2 3,3 1 2 3
1 1 1

1,1 2,1 3,1 1 2 3 4
2 2 2 2

1,2 2,2 3,2 1 2 3 4
2 2 2 2

0.0 0.1 0.8 0

0.7 0.6 0.1 0

0.3 0.3 0.1 0

0.0 0.0 0.1 0.2 0

0.9 1.0 0.8 0.8 0

p p p c c c

p p p c c c

p p p c c c

p p p c c c c

p p p c c c c

p

+ + − − − =

+ + − − − =

+ + − − − =

+ + − − − − =

+ + − − − − =
1,3 2,3 3,3 1 2 3 4

2 2 2 2

1 2 3
1 1 1

1 2 3 4
2 2 2 2

,

0.1 0.0 0.1 0.0 0

1

1

0

0

i

i j

p p c c c c

c c c

c c c c

c

p

ξ

+ + − − − − =

+ + =

+ + + =

≥

≥

 (4.35) 

Table 4.5 Example 4.3: Upper and lower previsions  

Marginal Si k ( )Tk
if  

k
LOW iE f⎡ ⎤

⎣ ⎦
k

UPP iE f⎡ ⎤
⎣ ⎦

1 (1, 4/3, 0) -∞ 14/15
2 (1, 7/5, 0) 47/50 ∞ 

 
S1 

3 (0, 0, 1) 0.3 0.3
1 (1, 0, 0) 0.0 0.2
2 (0, 1, 0) 0.8 1.0

 
S2 

3 (0, 0, 1) 0.0 0.1

 
The lower and upper probabilities for the same event T as in Example 4.2 are now 
equal to 0 and 0.825, respectively; solutions are detailed in Table 4.6. The mini-
mizing solution found by the simplex method is achieved at the same extreme 
points as in Example 4.2, whereas the maximizing solution is the same with both 
methods and is not achieved at an extreme point of Ψ1.   
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Table 4.6 Example 4.3: Solutions of the linear programming problems for the 
lower and upper probabilities for T. 1 = simplex method; 2 = interior point method  

Solution 
for 

Joint P ( )1 2
1 1,c c  Marginal 

 on S1 
( )1 2 3 4

2 2 2 2, , ,c c c c  Marginal 
 on S2 

Min1 0 0.8 0

0.1 0 0

0.1 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (0, 0, 1) 
1

2
EXTp =  

(0.1, 0.6, 0.3) T 

(0, 0, 0, 1) 
2

4
EXTp  =  

(0.2, 0.8, 0)T 

Min2 0 0.7221 0.0009

0.1021 0 0.0543

0.0022 0.1184 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (0.05, 0.05, 
0.90) 

(0.723, 0.157,  
0.120) 

(0.186, 0.110,  
0.366, 0.338) 

(0.104, 0.841, 
0.055) 

Max1,2 0.1 0 0

0 0.625 0

0 0.175 0.1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (0.875, 0,  
0.125) 

(0.1, 0.625,  
0.275) 

(0, 0, 1, 0) 
2

3
EXTp =  

(0.1, 0.8, 0.1)T 

 
If bounds on the probabilities of the singletons are considered, a much wider set 

Ψ1
* is obtained, which has vertices 

1

1
EXTp , p1* = (0.2, 0.7, 0.1)T, 

1

3
EXTp , and p1** 

= (0.6, 0.1, 0.3)T (Figure 4.7). The lower probability for event T remains un-
changed, but its upper probability increases to 0.9, and the maximizing solution is: 

0.2 0 0

0 0.7 0

0 0.1 0

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

p , (4.36) 

which yields the marginals: p1* = (0.2, 0.7, 0.1)T (vertex of Ψ1) and 
2

4
EXTp (same 

vertex as in Example 4.2).  

 
 

 

 

 

 

 

 

Fig. 4.7 Example 4.3: 
sets Ψ1 and Ψ1

* 
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This example shows that, in a general case of assigned bounds on expectations 
of the marginals, using bounds on event probabilities would give larger outer 
bounds on the probability of events or expectations on the joint space.  

 
Example 4.4. Let us move to a four-dimensional space, and assume that the fol-
lowing information (random set) be available on S1: ({s1

1, s1
3}, 0.2), ({s1

2, s1
3}, 

0.3), ({s1
2, s1

3, s1
4}, 0.3), and ({s1

3, s1
4}, 0.1), which is equivalent to P(s1

1)≤0.2, 
P(s1

2)≤0.7, P(s1
4)≤0.5, P(s1

1) + P(s1
2)≤0.9, 0.2≤P(s1

1) + P(s1
3), and 0.4≤P(s1

2) + 
P(s1

3), shown in Figure 4.8 and Table 4.7.  
Since S1 is four-dimensional, the information contained in a random set cannot 

be completely written in terms of bounds on the probability of the singletons, as it 
could in the three-dimensional spaces introduced in Example 4.2 and Example 4.3 
(Section 4.3.2). As a consequence, the boundaries of Ψ1 in Figure 4.8 are not all 
parallel to the coordinate axes.  

The information available on S2 is: P(s2
3) + 7/5P(s2

4) ≥ 47/50; P(s2
4) ≤ 0.3  

(Figure 4.9 and Table 4.7). Constraints (4.26) are equal to: 
 

 
Subject to 

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

4,1 4,2 4,3 4,4

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4

1,1 1,2 1,3 1,4 3,1 3,2 3,3 3,4

2,1 2,2 2,3 2,4 3,

0.0 0.2

0.0 0.7

0.0 0.5

0.0 0.9

0.2 1

0.4

p p p p

p p p p

p p p p

p p p p p p p p

p p p p p p p p

p p p p p

≤ + + + ≤

≤ + + + ≤

≤ + + + ≤

≤ + + + + + + + ≤

≤ + + + + + + + ≤

≤ + + + +

( ) ( )
1 3,2 3,3 3,4

1,3 2,3 3,3 4,3 1,4 2,4 3,4 4,4

1,4 2,4 3,4 4,4

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4 4,1 4,2 4,3 4,4

1

47 / 50 1 7 / 5

0.0 0.3

1

p p p

p p p p p p p p

p p p p

p p p p p p p p

p p p p p p p p

+ + + ≤

≤ ⋅ + + + + ⋅ + + +

≤ + + + ≤

+ + + + + + +

+ + + + + + + + =

 

, 0i jp ≥  

(4.37) 

 
As shown in Figure 4.8, constraint 0 ≤ P(s1

1)+ P(s1
2) ≤ 0.9 does not intersect the 

convex set Ψ1 , i.e. the given bounds are not coherent. Since the optimization 
problem is defined by all constraints in Eq. (4.37), the solution on the joint space 
is coherent because it satisfies the bounds in Eq. (4.19). Constraints (4.37) can be 
directly applied to find the optimal solution by linear programming or can be used 
to determine the extreme joint distributions. 
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a) 

 
 

b) 

Fig. 4.8 Example 4.4: Projection of set Ψ1 onto the three-dimensional space P(s1
1), 

P(s1
2), and P(s1

3). Coordinates of extreme distributions are given in Table 4.7 

Table 4.7 Example 4.4: Extreme distributions for: (a) Ψ1; and (b) Ψ2 

1 1
i
EXTp ∈ Ψ  (s1

1, s1
2, s1

3, s1
4)  

2 2
i
EXTp ∈ Ψ  (s2

1, s2
2, s2

3, s2
4) 

1

1
EXTp  (0, 0, 1, 0 )  

2

1
EXTp  (0.18, 0, 0.52, 0.3) 

1

2
EXTp  (0.2, 0, 0.8, 0)  

2

2
EXTp  (0, 0.18, 0.52, 0.3) 

1

3
EXTp  (0, 0.7, 0.3, 0)  

2

3
EXTp  (0, 0, 0.7, 0.3) 

1

4
EXTp  (0, 0, 0.5, 0.5)  

2

4
EXTp  (0.06, 0, 0.94, 0) 

1

5
EXTp  (0.2, 0.7, 0, 0.1)  

2

5
EXTp  (0, 0.06, 0.94, 0) 

1

6
EXTp  (0.2, 0.7, 0.1, 0)  

2

6
EXTp  (0, 0, 1, 0) 

1

7
EXTp  (0, 0.7, 0.2, 0.1)    

1

8
EXTp  (0, 0.3, 0.2, 0.5)    

1

9
EXTp  (0.2, 0, 0.4, 0.4)    

1

10
EXTp  (0.2, 0.4, 0, 0.4)    

1

11
EXTp  (0.1, 0, 0.4, 0.5)    

1

12
EXTp  (0.1, 0.3, 0.1, 0.5)    
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a)                                      b) 

Fig. 4.9 Example 4.4: set Ψ2. Coordinates of extreme distributions are given in 
Table 4.7 

 
The constraints in problems (4.28) now read as follows: 

 
Subject to 

( )

1,1 1,2 1,3 1,4

4,1 4,2 4,3 4,4

1
1

2
1 2 12 1
1 1 1

12
1

1,1 2,1 3,1 4,1 1 4
2 2

1,2 2,2 3,2 4,2 2 5
2 2

1,3 2,3 3,3

1

1
, ,...,

1

1

0.18 0.06

0.18 0.06

EXT

EXT

EXT

p p p p

p p p p

P

P
c c c

P

p p p p c c

p p p p c c

p p p p

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

+ + + = +

+ + + = +

+ + +

P

P =

# #

#

4,3 1 2 3 4 5 6
2 2 2 2 2 2

1,4 2,4 3,4 4,4 1 2 3
2 2 2

1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6
2 2 2 2 2 2

,

0.52 0.52 0.7 0.94 0.94 1

0.3 0.3 0.3

1

1

0

0

i

i j

c c c c c c

p p p p c c c

c c c c c c c c c c c c

c c c c c c

c

p

ξ

= + + + + + ⋅

+ + + = + +

+ + + + + + + + + + + =

+ + + + + =

≥

≥

 (4.38) 

Let us now consider the event ( ) ( ) ( ) ( ){ }1 1 2 2 3 3 4 4
1 2 1 2 1 2 1 2, , , , , , ,T s s s s s s s s= . The lower 

and upper probabilities for the event T in Example 4.4 are 0 and 1, respectively; 
solutions are detailed in Table 4.8. The different min/max solutions from different 
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methods show that the optimal solutions are not necessarily achieved at the same 
point although they achieve the same probability for event T, indicating multiple 
min/max solutions. 

Table 4.8 Example 4.4: Solutions of the linear programming problems for the 
lower and upper probabilities for T. 1 = simplex method; 2 = interior point method; 
3 = exhaustive search over all extreme joint distributions 

Solution 
for 

Joint P 

1 2 3 4
1 1 1 1

5 6 7 8
1 1 1 1

9 10 11 12
1 1 1 1

, , , ,

, , , ,

, , ,

c c c c

c c c c

c c c c

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 Marginal 
 on S1 

1 2 3
2 2 2

4 5 6
2 2 2

, , ,

, ,

c c c

c c c

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 
Marginal 

 on S2 

Min1 

0 0.1 0

0.08 0 0.02 0.2

0 0 0 0.1

0 0 0.5 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  
 

— 
(0.1, 0.3, 0.1, 

0.5) T 

 
 

— 
(0.08, 0.1, 0.52, 

0.3) T 

Min2 

0 0 0.2 0

0 0 0.16 0

0 0.18 0 0.3

0 0 0.16 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 0.6, 0, 0, 0,

0, 0, 0, 0,

0, 0, 0, 0,

0, 0.4, 0, 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
(0.2, 0.16, 0.48, 

0.16) T 

 
1, 0, 0,

0, 0, 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (0, 0.18, 0.52, 
0.3) T 

Min3 

0 0 0 0

0 0 0.7 0

0 0 0 0.2

0 0 0.1 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  
 

— (0, 0.7, 0.2, 0.1) 

T 

 
 

— (0, 0, 0.8, 0.2) T 

Max1,3 

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
 
 

— (0, 0, 1, 0) T 

 
 

— (0, 0, 1, 0)) T 

Max2 

0.04 0 0 0

0 0.14 0 0

0 0 0.52 0

0 0 0 0.3

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 0.2, 0, 0, 0.6,

0, 0.2, 0, 0,

0, 0, 0, 0,

0, 0, 0, 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

(0.04, 0.14, 0.52, 
0.3) T 

 
0.22, 0.78, 0,

0, 0, 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (0.04, 0.14, 0.52, 
0.3) T 

 

4.2.2   Epistemic Independence and Irrelevance 

Let S1 and S2 be finite sets. In epistemic independence, if we learn that the 
actual value of s2 is s2*, then the probability measure for s1 is again one of 
the probability measures in Ψ1 (but in general not always the same for dif-
ferent values s2*), and vice versa. As a consequence, the definition of epis-
temic independence uses the concept of conditional probability, and the set 
of joint probability measures, ΨE, is just the largest set of joint measures 
that are extensions to Eq. (4.15):  
 

{ }( ) { }( )2 1 2 1 2 2 2 2 2. | : : 0P S S s s P P s× × ∈ Ψ ∀ ∃ ∈ Ψ > ;  

{ }( ) { }( )1 1 2 2 1 1 1 1 1. | : : 0P S s S s P P s× × ∈Ψ ∀ ∃ ∈Ψ >  
(4.39) 
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Epistemic independence is the appropriate model when we are given two 
marginal sets of probability measures (or the corresponding sets of coherent 
desirable gambles, or coherent upper or lower previsions, Section 3.3.2), to-
gether with a judgment that the experiments are epistemically independent 
(our uncertainty about either of the two outcomes does not change when we 
obtain some information about the other outcome). However, we are unwill-
ing to make stronger assumptions, e.g., that there are underlying stochastic 
mechanisms that are stochastically independent, which could justify the  
concept of strong independence defined in the next Section 4.2.3. 

Let us now derive a useful characterization of epistemic independence. 
In the equations that follow, expressions will be given in terms of both 
probability measures and vectors and matrices (Section 2.3). If T1 = U1 × 
S2, T2 = S1 × {s2}, definition (4.12) can be used to derive an expression for 
the joint measure, P, by noticing that T1∩T2 = U1×{s2} (see also Eq. (2.27): 

 

 

{ }( ) { }( ) { }( )1 2 1 2 1 2 2 2|P U s P U S S s P s× = × × ; P = P1|2 Diag(p2) (4.40) 
 

 

Likewise (see also Eq. (2.29)): 
 
 

{ }( ) { }( ) { }( )1 2 1 2 1 2 1 1|P s U P S U s S P s× = × × ; P = Diag(p1) P2|1. (4.41) 
 

 

Thus, two variables are epistemically independent if ∀(s1, s2) ∈ S1 × S2: 
 
 

{ }( ) ( ) { }( )
{ }( ) ( ) { }( )

2 2

1 1

| |
1 1 1 2 1 1 2 2

| |
2 2 1 2 2 2 1 1

:

:

s s

s s

P P U s P U P s AND

P P s U P U P s

∃ ∈Ψ × =

∃ ∈Ψ × =
 (4.42) 

 

In matrix terms: two variables are epistemically independent if each col-
umn of P1|2 is a vector in Ψ1 (and this vector may be different for each col-
umn) and if each row in P2|1 is the transpose of a vector in Ψ2 (and this 
vector may be different for each row), i.e. ∀P: 
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Notice that, if the probabilities are precise, then Ψ1 and Ψ2 contain only 
one element each (say, Pi), and thus for s1: 

•  ( ) { }( ) ( )2|
1 1 1 2 1 2 1 1|sP U P U S S s P U= × × = , and Eq. (4.40) be-

comes Eq. (4.14). 
• The columns of P1|2 are all equal, and Eq. (4.40) becomes Eq. 

(2.35). 
 
Likewise for s2. 

When only the two marginal convex sets Ψ1 and Ψ2 are given, ΨE is the 
convex set: 
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(4.44) 

 

where 2|
E

sΨ  is called the “irrelevant natural extension” (Couso, Moral et 
al. 1999) of the two marginals when the second experiment is epistemically 
irrelevant to the first” (i.e. the set of desirable gambles concerning the first 
experiment does not change when we learn the outcome of the second ex-

periment). 1|
E

sΨ  is called the “irrelevant natural extension of the two mar-
ginals when the first experiment is epistemically irrelevant to the second” 
(i.e. the set of acceptable gambles concerning the second experiment does 
not change when we learn the outcome of the first experiment); in this 
case, s1 is selected according to some marginal distribution in Ψ1, and then 
s2 is selected according to a distribution from Ψ2 that may depend on s1. It 
is important to notice that s2 may be selected by a different procedure for 
different values of s1.   
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Therefore, in imprecise probabilities, irrelevance of one experiment with 
respect to another is a directional or asymmetric relation. Such a lack of 
symmetry vanishes: 

• Always in precise probability because both Ψ1 and Ψ2 contain 
only one element each. 

• In imprecise probabilities when irrelevance applies in both di-
rections, i.e. when each experiment is epistemically irrelevant to 
the other experiment: this is the case of epistemic independence. 

 

The calculation of the upper and lower expectations (and thus probabili-
ties) on the joint space S is no longer a linear optimization problem be-
cause matrix P in Eq. (4.44) is the result of the multiplication of two ma-
trices, each containing a marginal’s entries. This makes the constraints 
non-convex because they are of the kind: pi,j = P1(s1

i) P2(s2
j). Optimization 

problems that involve non-convex constraints are known to be NP-
complete in the strong sense (or NP-hard) (e.g., (Horst, Pardalos et al. 
2000)), i.e. there is no fully polynomial-time approximation scheme to 
solve them. Later in this section (page 142), a different algorithm to avoid 
this problem will be discussed. 

 For the case of epistemic independence, let us write down the optimiza-
tion problem in the (quadratic) constraints when marginals are constrained 
by upper and lower previsions (Eq. (4.17)):  
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Optimization problems (4.45) involve (n1+1)×n2 + (n2+1)×n1 variables 

( )( )j
i iP s and n1×n2  variables pi,j. The constraints T 1; 0⋅ ⋅ = ≥1 P 1 P  are 

satisfied automatically because the entries of matrix P are products of 
probability distributions. 

When marginals are assigned through their extreme distributions (Eq. 
(4.18)), the optimization problems become: 
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 (4.46) 

 

where there are ( )( ) ( )( )1 2 2 11 1n nξ ξ× + + × +  variables , j
icξ  and n1×n2  

variables pi,j. The constraints T 1; 0⋅ ⋅ = ≥1 P 1 P  are satisfied automatically 
because the entries of matrix P are products of convex sets of distributions. 

If expectation bounds are given on one marginal and extreme distribu-
tions are assigned on the other marginal, then constraints are properly se-
lected from Eqs. (4.45) and (4.46). In Eqs. (4.45) and (4.46), if the second 
experiment is epistemically irrelevant to the first, then n2 = 0; if the first 
experiment is epistemically irrelevant to the second, then n1 = 0. 

Condition (4.42) on probability measures can be generalized to infinite 
sets Si with σ-algebra S i as follows (Fetz and Oberguggenberger 2004). Let 
S  be the σ-algebra generated by S 1 × S 2; given T∈S, let 

( ){ }
1 2 1 2: ,sT s s s T= ∈ . ΨE is the set of probability measures on S such that 

there are families of probability measures { }|
;js

i i j jP s S∈ Ψ ∈  on S i that 

satisfy the following conditions for all T∈S: 
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1) The mapping ( )| j

j

s
j i ss P T6  is Pj–measurable: see (Section 2.2). 

2) ( ) ( ) ( ) ( ) ( )1 2

1 2
1 2

| |
1 1 2 22 1

s s
s sS S

P T P T dP s P T dP s= =∫ ∫  
 

Example 4.5. Consider again the situation and knowledge available in Example 4.1, 
where a two-component resin has to be applied at a construction site to anchor steel 
bars. Suppose now that three boxes are delivered to the construction site. The first 
box has the same content as in Example 4.1. Our knowledge about the other two 
boxes is the same as the second box in Example 4.1, but the four cartriges of un-
known type may be different in the second and third box. This time, the worker in 
the field picks his first cartridge from box 1: 
 

• If it is Type A, then he picks the second cartridge from box 2.  
• Otherwise, he picks the second cartridge from box 3. 

 

We want to write down the optimization problems for finding upper and lower ex-
pectations on the joint space and then calculate the upper and lower probabilities 
for the case in which the resin is not activated because the same resin type is se-
lected, i.e. event T={(A, A), (B, B)}. Finally, calculate the conditional upper and 
lower probabilities that the first resin is Type A given the type of the second resin, 
and contrast this with the conditional upper and lower probabilities that the second 
resin is Type A given the type of the first resin. 

In this example, the first experiment is epistemically irrelevant to the second 
experiment because:  

1) The set of acceptable gambles concerning the second experiment does 
not change when we learn the outcome of the first experiment.  

2) s1 is selected according to some marginal distribution in Ψ1, and then s2 
is selected according to a distribution from Ψ2 that depends on s1.  

3) s2 is selected by a different procedure for different values of s1 
 

 

As a consequence, n2 = 0 and constraints in Eq. (4.45) become:  
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(4.47) 

Based on the extreme distributions given in Table 4.1, Eq. (4.46) gives the follow-
ing constraints: 
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i.e.: 
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The upper and lower probabilities for the event T={(A, A), (B, B)} are equal to 
3/10 and 7/10, respectively. The solutions summarized in Table 4.9 indicate that 
the minimizing p2

(1) ≠ p2
(2), i.e. they do not satisfy stochastic independence (Eq. 

(2.25)). Likewise for the maximizing solution. Notice that both the marginal on S1 
and the marginal on S2 must be calculated by using the marginal rule (Eq. (2.24)).  

 

We started from, and based our solution on, the observation that the first experi-
ment is epistemically irrelevant to the second experiment. As a consequence, the 
conditional upper and lower probabilities that the second resin is Type A given the 
type of the first resin are equal to the marginal ones, i.e. 0.7 and 0.3, respectively. 
In order to check that epistemic irrelevance is a directional, asymmetric property, 
let us calculate the conditional upper and lower probabilities that the first resin is 
Type A given the type of the second resin. According to Eq. (2.25), the (non-
linear) function to minimize and maximize is p1,1/( p1,1+ p2,1), where, by the mar-
ginal rule (Eq. (2.24)), p1,1+ p2,1 is the first component of the marginal on S2.  

 

Table 4.9 Example 4.5: Solutions of the optimization problems for the lower and 
upper probabilities for T  

Solution 
for 

Joint P ( )1,1 2,1
1 1,c c

 
(p1

(1))T 

Marginal 
 on S1 ( )1,1 2,1

2 2,c c  

(p2
(1))T 

( )1,2 2,2
2 2,c c  

(p2
(2))T 

Marginal 
 on S2 

Min 
 

39 91
/ 200

49 21

⎛ ⎞
⎟

⎝ ⎠

 (1/2, 1/2) 
(13, 7)/20 

(13/20, 7/20)T (1, 0) 
(0.3, 0.7) 

(0, 1) 
(0.7, 0.3) 

(0.44, 0.56)T 

Max 91 39
/ 200

21 49

⎛ ⎞
⎜ ⎟
⎝ ⎠

(1/2, 1/2) 
(13, 7)/20 

(13/20, 7/20)T (0, 1) 
(0.7, 0.3) 

(1, 0) 
(0.3, 0.7) 

(0.56, 0.44)T 
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Table 4.10 Example 4.5: Solutions of the optimization problems for the condi-
tional upper and lower probabilities that the first resin is Type A given the type of 
the second resin  

Solution 
for 

Joint P ( )1,1 2,1
1 1,c c  

(p1
(1))T 

Marginal 
 on S1 ( )1,1 2,1

2 2,c c  

(p2
(1))T 

( )1,2 2,2
2 2,c c  

(p2
(2))T 

Marginal 
 on S2 

Min 
 

3 7
/ 20

7 3

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (1, 0) 
(0.5, 0.5) 

(0.5, 0.5)T (1, 0) 
(0.7, 0.3) 

(0, 1) 
(0.3, 0.7) 

(0.5, 0.5)T 

Max 28 12
/ 50

3 7

⎛ ⎞
⎜ ⎟
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 (0, 1) 
(0.8, 0.2) 

(0.8, 0.2)T (0, 1) 
(0.3, 0.7) 

(1, 0) 
(0.7, 0.3) 

(31, 19)/50T 

 
The constraints are still given by Eq. (4.47) or (4.49). The conditional upper 

and lower probabilities are equal to 28/31=0.903 and 0.3, which are larger bounds 
than the marginal bounds, i.e. 0.8 and 0.5. This means that the second experiment 
is epistemically relevant to the first one. The results summarized in Table 4.10 in-
dicate that the minimizing and maximizing solutions again violate stochastic inde-
pendence (Eq. (2.25)) because p2

(1) ≠ p2
(2). 

 

Example 4.6. Consider again the situation and knowledge available in Example 4.1, 
where a two-component resin has to be applied at a construction site to anchor 
steel bars. In addition to the knowledge available in Example 4.1, all we now 
know about the stochastic mechanism for picking the two cartridges, i.e. the joint 
probability measure P is that: (a) whatever the resin type of the first cartridge, the 
conditional probability that the second cartridge is A lies between 0.3 and 0.7; and 
(b) whatever the resin type of the second cartridge, the conditional probability that 
the first cartridge is A lies between 0.5 and 0.8.  

We want to write down the optimization problems for finding upper and lower 
expectations on the joint space and then calculate the upper and lower probabili-
ties for the case in which the resin is not activated because the same resin type is 
selected, i.e. event T={(A, A), (B, B)}. Finally, we calculate the conditional upper 
and lower probabilities that the first resin is Type A given the type of the second 
resin, and contrast to the conditional upper and lower probabilities that the second 
resin is Type A given the type of the first resin. 

This is a case of epistemic independence, where each experiment is epistemi-
cally irrelevant to the other. As a consequence, this example is the symmetric 
counterpart of Example 4.5 above, where only the first experiment was epistemi-
cally irrelevant to the other. Constraints in Eqs. (4.45) and (4.46) become: 
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Based on the extreme distributions given in Table 4.1, Eq. (4.46) gives the follow-
ing constraints: 
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i.e.: 
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0.5 0.2 0.3 0.7 0.5 0.2 0.7 0.3

0.5 0.8 0.3 0.7 0.5 0.8

c c c c c c c c

c c c c c c c c

c c c c c c

⎛ ⎞+ + + +
⎜ ⎟= ⎜ ⎟⎜ ⎟+ + + +⎝ ⎠

+ + +
=

P

P
( )( )

( )( ) ( )( )
3 1,1 2,1

2 2

1,3 2,3 1,2 2,2 1,3 2,3 1,2 2,2
1 1 2 2 1 1 2 2

1,1 2,1 1,2 2,2 1,3 2,3
1 1 1 1 1 1

1,1 2,1 1,2 2,2 1,3 2,3
2 2 2 2 2 2

1,1 2,1 1,
1 1 1

0.7 0.3

0.5 0.2 0.3 0.7 0.5 0.2 0.7 0.3

1; 1; 1;

1; 1; 1;

0; 0;

c c

c c c c c c c c

c c c c c c

c c c c c c

c c c

⎛ ⎞+
⎜ ⎟
⎜ ⎟⎜ ⎟+ + + +⎝ ⎠

+ = + = + =

+ = + = + =

≥ ≥ 2 2,2 1,3 2,3
1 1 1

1,1 2,1 1,2 2,2 1,3 2,3
2 2 2 2 2 2

0; 0; 0; 0;

0; 0; 0; 0; 0; 0

c c c

c c c c c c

≥ ≥ ≥ ≥

≥ ≥ ≥ ≥ ≥ ≥

 
(4.52) 

 
The upper and lower probabilities for the event T={(A, A), (B, B)} are equal to 
19/59 and 40/59, respectively. These bounds are tighter than those in Example 4.5 
because now additional contraints on p have been added, reflecting the fact that 
the second experiment is epistemically irrelevant to the first one. This differs from 
the results in Example 3-1 (unknown interaction) where learning the resin type of 
either cartridge made our probabilities (of the resin type of the other cartridge) 
vacuous. 

The solutions summarized in Table 4.11 indicate that the minimizing p1
(i) all 

differ from one another and that the p2
(i) all differ from one another as well, i.e. 

they do not satisfy stochastic independence (Eq. (2.25)). Likewise for the maxi-
mizing solution.  
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Table 4.11 Example 4.6: Solutions of the optimization problems for the lower and 
upper probabilities for T  

Solution for Joint P ( )1,1 2,1
1 1,c c  

(p1
(1))T 

( )1,2 2,2
1 1,c c  

(p1
(2))T 

( )1,3 2,3
1 1,c c  

(p1
(3))T 

Marginal 
 on S1 

Min 
 

12 28
/59

12 7

⎛ ⎞
⎜ ⎟
⎝ ⎠

(1, 0) 
(0.5, 0.5) 

(0, 1) 
(0.8, 0.2) 

(24, 35)/59 
(40, 19)/59 

(40/59, 19/59)T 

Max 28 12
/ 59

7 12

⎛ ⎞
⎜ ⎟
⎝ ⎠

(0, 1) 
(0.8, 0.2) 

(1, 0) 
(0.5, 0.5) 

(24, 35)/59 
(40, 19)/59 

 

(40/59, 19/59)T 

 
Solution for ( )1,1 2,1

2 2,c c  

(p2
(1))T 

( )1,2 2,2
2 2,c c  

(p2
(2))T 

( )1,3 2,3
2 2,c c   

(p2
(3))T 

Marginal 
 on S2 

Min 
 

(173, 63)/236 
(24, 35)/59 

(1, 0) 
(0.3, 0.7) 

(13, 63)/76 
(12, 7)19 

(24/59, 35/24)T 

Max (63, 173)/263 
(35, 24)/59 

(0, 1) 
(0.3, 0.7) 

(63, 13)/79 
(7, 12)/19 

(35/59, 24/59)T 

 
Indeed in epistemic independence, if we learn that the actual value of s2 is s2*, 

then the probability measure for s1 is again one of the probability measures in Ψ1, 
but in general not always the same for different values s2*; and vice versa. Strong 
independence (dealt with in the next section) imposes that the probability meas-
ures be the same.  

As in the case of epistemic irrelevance in Example 4.5: 
 

• Both the marginal on S1 and the marginal on S2 must be calculated by 
using the marginal rule (Eq. (2.24))  

• It may happen that the marginal on S1 (S2) is different from p1
(i) (p2

(i)).  
 
In contrast to Example 4.5, each experiment is epistemically irrelevant to the other 
experiment. As a consequence, the conditional upper and lower probabilities that 
the first (second) resin is Type A given the type of the second (first) resin are 
equal to the marginal ones, i.e. 0.8 and 0.5 (0.7 and 0.3), respectively. The condi-
tional upper and lower probabilities that the first (second) resin is Type A given 
the type of the second (first) resin are obtained by minimizing and maximizing 
p1,1/( p1,1+ p2,1) (p1,1/( p1,1+ p1,2)). The constraints are still given by Eq. (4.52). The 
results are summarized in Table 4.12 for the conditional upper and lower prob-
abilities that the first resin is Type A given the type of the second resin. They indi-
cate that the minimizing and maximizing solutions again violate stochastic inde-
pendence (Eq. (2.35)) because minimizing p1

(i) are all different from one another 
and that the p2

(i) also all differ from one another. Likewise for the maximizing  
solution. 
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Table 4.12 Example 4.6: Solutions of the optimization problems for the lower and 
upper probabilities that the first resin is Type A given the type of the second resin  

Solution for Joint P ( )1,1 2,1
1 1,c c

(p1
(1))T 

( )1,2 2,2
1 1,c c  

(p1
(2))T 

( )1,3 2,3
1 1,c c  

(p1
(3))T 

Marginal 
 on S1 

Min 
 

5777 2943
/ 17200

5777 2703

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (1, 0) 
(0.5, 0.5) 

(2623, 200) /2823
(981, 901) /1882

(42, 1)/43 
(109, 106) /215 

(8720, 
8480)T/17200 

Max 428 212
/ 854

107 107

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (0, 1) 
(0.8, 0.2) 

(144, 175) /319 
(212, 107) /319 

(72, 35) /427 
(320, 107) /427 

 

(640, 214)T/854 

 

 

Solution for ( )1,1 2,1
2 2,c c   

(p2
(1))T 

( )1,2 2,2
2 2,c c   

(p2
(2))T 

( )1,3 2,3
2 2,c c  

(p2
(3))T 

Marginal 
 on S2 

Min 
 

(243, 3197)/ 3440 
(5777, 2823) /8600 

(3, 29)/32 
(27, 53) /80 

(3, 61)/64 
(109, 51) /160 

(11554, 5646)T/17200 

Max (157, 697/854 
(535, 319) /854 

(5, 59) /64 
(107, 53) /160 

(0.5, 0.5) 
(0.5, 0.5) 

(535, 319)T/854 

 

 

Example 4.7. Consider again the situation and knowledge available in the four-
dimensional case of  Example 4.4. Our knowledge about S1 and S2 is the same as 
in Example 4.4, but assume now the experiment of picking an element in S2 is 
epistemically irrelevant to the experiment of picking an element in S1. We want to 
write down the optimization problems for finding upper and lower expectations on 
the joint space and then calculate the upper and lower probabilities for the event 

( ) ( ) ( ) ( ){ }1 1 2 2 3 3 4 4
1 2 1 2 1 2 1 2, , , , , , ,T s s s s s s s s= . Finally, we calculate the conditional up-

per and lower probabilities P(s2
1| s1

1), and contrast to the conditional upper and 
lower probabilities P(s1

1| s2
1). 

 

Constraints in Eq. (4.45) become:  
 

    Subject to 

( )

( )
( )
( )
( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

T(1)
2

T(2)
2(1)

1 T(3)
2

T(4)
2

(1) (1) (1)
1 1 1

(1) (1) (1)
1 1 1

(1) (2
2 2

1,0,0,0  0.2;  0,1,0,0  0.7;  0,0,0,1  0.5

1,1,0,0  0.9;  0.2 1,0,1,0  ;  0.4 0,1,1,0  

0 0,0,0,1  0.3;  0 0,0,0,1  

Diag

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

≤ ≤ ≤

≤ ≤ ≤

≤ ≤ ≤

p

p
P p

p

p

p p p

p p p

p p

( ) ( )
( ) ( )
( ) ( )

)

(3) (4)
2 2

(1) (2)
2 2

(3) (4)
2 2

T (1) T (1) T (2) T (3) T (4)
1 2 2 2 2

(1) (1
1 2

0.3

0 0,0,0,1  0.3;  0 0,0,0,1  0.3

47 / 50 0,0,1,7 / 5  ;  47 / 50 0,0,1,7 / 5  

47 / 50 0,0,1,7 / 5  ;  47 / 50 0,0,1,7 / 5  

1; 1; 1; ; 1; 1

0;

≤

≤ ≤ ≤ ≤

≤ ≤

≤ ≤

⋅ = ⋅ = ⋅ = ⋅ = ⋅ =

≥

p p

p p

p p

1 p 1 p 1 p 1 p 1 p

p p ) (2) (3) (4)
2 2 20; 0 ; 0; 0≥ ≥ ≥ ≥p p p

 

(4.53) 
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The upper and lower probabilities for the event 

                                    ( ) ( ) ( ) ( ){ }1 1 2 2 3 3 4 4
1 2 1 2 1 2 1 2, , , , , , ,T s s s s s s s s=   

are equal to 0 and 1, respectively. The solutions summarized in Table 4.13 indi-
cate that, for the minimizing solution, p2

(1) ≠ p2
(2) ≠ p2

(3) ≠ p2
(4), i.e. stochastic in-

dependence is not satisfied (Eq. 2.35). Likewise for the maximizing solution. No-
tice that both the marginal on S1 and the marginal on S2 must be calculated by 
using the marginal rule (Eq. (2.24)). 

 

Table 4.13 Example 4.7: Solutions of the nonlinear programming problems for 
the lower and upper probabilities for T  

Solution for Joint P 
Marginal 

 on S1 

Marginal 
 on S2 

Min 

0 0.108 0.312 0.18

0.033 0 0.26 0.107

0 0 0 0

0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
(0.6, 0.4, 0, 0) T 

T
0.033

0.108

0.572

0.287

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Max 

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
(0, 0, 1, 0) T (0, 0, 1, 0)) T 

 
The conditional upper and lower probabilities P(s2

1| s1
1) are equal to the mar-

ginal ones, i.e. 0.18 and 0, respectively, while the conditional upper and lower 
probabilities P(s1

1| s2
1) are equal to 1 and 0, which are larger bounds than the mar-

ginal bounds, i.e. 0.2 and 0. This means that the first experiment is epistemically 
relevant to the second one. The results summarized in Table 4.14 indicate that the 
minimizing and maximizing solutions again violate stochastic independence (Eq. 
(2.35)) because p2

(1) ≠ p2
(2) ≠ p2

(3) ≠ p2
(4). 

 

Table 4.14  Example 4.7: Solutions of the optimization problems for the condi-
tional upper and lower probabilities ( )1 1

1 2|p s s   

Solution for Joint P 
Marginal 

 on S1 

Marginal 
 on S2 

Min 

0 0 0 0

0.085 0 0.373 0.124

0.024 0.005 0.127 0.044

0.024 0.015 0.114 0.066

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
(0, 0.581, 0.2, 0.219) T 

T
0.133

0.020

0.613

0.234

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Max 

0.036 0 0.104 0.06

0 0.077 0.398 0.106

0 0 0 0

0 0.038 0.120 0.061

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
(0.2, 0.581, 0, 0.219) T 

T
0.036

0.115

0.622

0.227

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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Example 4.8. Consider again the situation and knowledge available in Example 4.4. 
In addition to the knowledge available in Example 4.4, all we now know about the 
stochastic mechanism between S1 and S2, indicating epistemic independence. We 
want to write down the optimization problems for finding upper and lower expec-
tations on the joint space and then calculate the upper and lower probabilities for 

the event ( ) ( ) ( ) ( ){ }1 1 2 2 3 3 4 4
1 2 1 2 1 2 1 2, , , , , , ,T s s s s s s s s= . Finally, we calculate the con-

ditional upper and lower probabilities P(s2
1| s1

1) and P(s1
1| s2

1). 
Since this is a case of epistemic independence, where each experiment is epis-

temically irrelevant to the other, this example is the symmetric counterpart to Ex-
ample 4.7 above, where only the first experiment was epistemically irrelevant to 
the other. Constraints in Eqs. (4.45) and (4.46) become:  

 
Subject to 

( )

( )
( )
( )
( )

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

T(1)
2

T(2)
2(1) (2) (3) (4) (5) (5)

1 2 2 2 2 2T(3)
2

T(4)
2

( ) ( ) ( )
1 1 1

( ) ( ) ( )
1 1 1

;  

1,0,0,0  0.2;  0,1,0,0  0.7;  0,0,0,1  0.5

1,1,0,0  0.9;  0.2 1,0,1,0  ;  0.4 0,1,1,0  ;  

i i i

i i i

Diag Diag

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

≤ ≤ ≤

≤ ≤ ≤

p

p
P p P p p p p p

p

p

p p p

p p p

( ) ( )( ) ( )
2 2

T ( ) T ( )
1 2

( ) ( )
1 2

1,...5

0 0,0,0,1  0.3;  47 / 50 0,0,1,7 / 5  ;  j 1,...5

1; 1

0; 0

j j

i j

i j

i =

≤ ≤ ≤ =

⋅ = ⋅ =

≥ ≥

p p

1 p 1 p

p p

 
(4.54) 

 
 

Table 4.15 Example 4.7: Solutions of the nonlinear programming problems for 
the lower and upper probabilities for T  

Solution for Joint P 
Marginal 

 on S1 

Marginal 
 on S2 

Min 

0 0 0.2 0

0 0 0.4 0

0 0 0 0

0 0 0.4 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
(0.2, 0.4, 0, 0.4) T 

T
0

0

1

0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Max 

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
(0, 0, 1, 0) T (0, 0, 1, 0)) T 
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In this example of epistemic independence, the upper and lower probabilities for 
the event ( ) ( ) ( ) ( ){ }1 1 2 2 3 3 4 4

1 2 1 2 1 2 1 2, , , , , , ,T s s s s s s s s=  are equal to 0 and 1, respectively. 

The solutions summarized in Table 4.13 still indicate that the joint distribution 
does not satisfy stochastic independence (Eq. (2.35)). Likewise for the maximiz-
ing solution.  

The conditional upper and lower probabilities P(s2
1| s1

1) are equal to the mar-
ginal ones, i.e. 0.18 and 0, respectively, and the conditional upper and lower prob-
abilities P(s1

1| s2
1) are equal to 0.2 and 0, which means that the first experiment is 

epistemically relevant to the second one and vice versa. It should be noted that the 
minimizing and maximizing solutions in the case of epistemic independence again 
violate stochastic independence (Eq. (2.35)) because pi

(1) ≠ pi
(2) ≠ pi

(3) ≠ pi
(4) ≠ 

pi
(5), i = 1, 2. 

Since the optimization problems contained in the previous examples are 
NP-hard, regardless of the numerical method applied, finding the optimal 
solution is time-consuming even when the problems are 4-dimensional. 
When marginals’ expectations are bounded (Eq. (4.17)), these non-linear 
optimization problems may be turned into linear ones by starting from the 
joint distribution matrix P. 

Given P = Diag(p1) P2|1 (Eq. (4.17), the marginal on S1, ( )2n⋅P 1 , is  
 

( )
( ) ( )

( ) ( )( ) ( ) ( )

22

2 2

1 2|1

1 2|1 1 1

n n

n n

Diag

Diag Diag

⋅ = ⋅

= ⋅ = ⋅ =

P 1 p P 1

p P 1 p 1 p
 (4.55) 

 

i.e., the marginal on S1 is the same as p1. Consequently, by substituting 

( )2n⋅P 1  for p1 one obtains: 
 

( ) ( )( )21 2|1 2|1nDiag Diag= ⋅ = ⋅ ⋅P p P P 1 P  (4.56) 

i.e., ( )
2 T, , ( )

2 1
1

; 1,...,
n

j j m j

m

p j n⋅

=

⎛ ⎞
= =⎜ ⎟
⎝ ⎠
∑P p  (4.57) 

 

where ,j ⋅P  is the jth row of matrix P. 

Therefore, the constraints on p1, i.e. ( )T

1 1 1 1 k k k
LOW UPPE f E f⎡ ⎤ ⎡ ⎤≤ ≤⎣ ⎦ ⎣ ⎦f p , 

can be rewritten as ( ) ( )2

T

1 1 1 
n

k k k
LOW UPPE f E f⎡ ⎤ ⎡ ⎤≤ ⋅ ≤⎣ ⎦ ⎣ ⎦f P 1 . As for con-

straints on p2, i.e.: 
 

( )T ( )
2 2 2 2 k k j k

LOW UPPE f E f⎡ ⎤ ⎡ ⎤≤ ≤⎣ ⎦ ⎣ ⎦f p  (4.58) 
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notice that ( )2 T( ) , ,
2

1

n
j j m j

m

p ⋅

=

⎛ ⎞
⋅ =⎜ ⎟⎜ ⎟
⎝ ⎠
∑p P . Therefore, by multiplying Eq. 

(4.58) by 
2

,

1

n
j m

m

p
=
∑ , constraints on p2 are rewritten as: 

 

2 2
, , ,

2 2 2
1 1

n n
k j m j k k j m

LOW UPP
m m

E f p E f p⋅

= =

⎛ ⎞ ⎛ ⎞
⎡ ⎤ ⎡ ⎤⋅ ≤ ⋅ ≤ ⋅⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑P f  (4.59) 

 

To summarize, given the epistemic irrelevance of the first experiment with 
respect to the second experiment, P = Diag(p1) P2|1, the optimization prob-
lem may be written in the linear form:  

 
 

minimize 1 2; , ,

1; 1

i n j n i j i j

i j
a p

= =

= =∑  1 2; , ,

1; 1

i n j n i j i j

i j
a p

= =

= =
⎛ ⎞−⎜ ⎟
⎝ ⎠∑  

subject to 

( ) ( )2

2 2

T

1 1 1 1

, , ,
2 2 2

1 1

2 1

T

 ; 1,..., ;

;

1,..., ; 1,..., ;

1; 0

n

k k k
LOW UPP

n n
k j m j k k j m

LOW UPP
m m

E f E f k k

E f p E f p

k k j n

⋅

= =

⎡ ⎤ ⎡ ⎤≤ ⋅ ≤ =⎣ ⎦ ⎣ ⎦

⎛ ⎞ ⎛ ⎞
⎡ ⎤ ⎡ ⎤⋅ ≤ ⋅ ≤ ⋅⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= =

⋅ ⋅ = ≥

∑ ∑

f P 1

P f

1 P 1 P

 

 

 

(4.60) 

where ,j ⋅P  is the jth row of matrix P. 
Constraints in Eq. (4.60) are equivalent to the constraints on Ψ1 (Eq. 

(4.17)). If the set of extreme distributions on the marginals (Eq. (4.18)) is 
given, constraints remain quadratic even if they are rewritten as in Eq. (4.60):  

 

( )
1

2 1

2 2

2

1

2

1
1

,, ,
2

1 1

1 1
1

, ,
12 2

1

;

1, 0;

1, 0,  1,..., ;

n EXT

n
jj j m

EXT
m

j j

c

c p

c c

c c j n

ξ
ξ ξ

ξ

ξ
ξ ξ

ξ

ξ
ξ ξ

ξ
ξ

ξ ξ

ξ

=

⋅

= =

=

=

⋅ =

⎛ ⎞ ⎛ ⎞
= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

= ≥

= ≥ =

∑

∑ ∑

∑

∑

P 1 p

P p  

 

 

 

(4.61) 

where ,j ⋅P  is the jth row of matrix P. 
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Therefore, constraints in Eq. (4.61) have no computational advantage 
over constraints in Eq. (4.46). 

Likewise, when the second experiment is epistemically irrelevant to the 

first, P = P1|2Diag(p2) (i.e.), and ( )1

T
2n =1 P p , i.e., the marginal on S2 is 

equal to p2. The linear optimization problem is  
 

Minimize 
1 2; , ,

1; 1

i n j n i j i j

i j
a p

= =

= =∑  
1 2; , ,

1; 1

i n j n i j i j

i j
a p

= =

= =
⎛ ⎞−⎜ ⎟
⎝ ⎠∑  

Subject to 

( )1 2

1

T, , ,
1 1 1

1 1

1 2

T
2 ( ) 2 2 2

T

;

1,..., ; 1,..., ;

 ; 1,..., ;

1; 0

n n
k m j k j k m j

LOW UPP
m m

k k k
LOW n UPP

E f p E f p

k k j n

E f E f k k

⋅

= =

⎛ ⎞ ⎛ ⎞
⎡ ⎤ ⎡ ⎤⋅ ≤ ≤ ⋅⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= =

⎡ ⎤ ⎡ ⎤≤ ⋅ ≤ =⎣ ⎦ ⎣ ⎦

⋅ ⋅ = ≥

∑ ∑f P

1 P f

1 P 1 P

 

 

 

(4.62) 

where , j⋅P  is the jth column of matrix P. 
For the case of epistemic independence, let us write down the optimiza-

tion problem in the (linear) constraints when marginals are constrained by 
upper and lower previsions (Eq. (4.18)):  

 

Minimize 
1 2; , ,

1; 1

i n j n i j i j

i j
a p

= =

= =∑  
1 2; , ,

1; 1

i n j n i j i j

i j
a p

= =

= =
⎛ ⎞−⎜ ⎟
⎝ ⎠∑  

Subject to 

( ) ( )

( )( )
( )

2

1

1 2

T

1 1 1 1

T

2 2 2 2
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1 1 1
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1 2
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;
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n
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k k k
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n n
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m m

k j
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E f E f k k

E f E f k k

E f p E f p

k k j n

E f p

⋅

= =

⎡ ⎤ ⎡ ⎤≤ ⋅ ≤ =⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤≤ ⋅ ≤ =⎣ ⎦ ⎣ ⎦

⎛ ⎞ ⎛ ⎞
⎡ ⎤ ⎡ ⎤⋅ ≤ ≤ ⋅⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= =

⎡ ⎤ ⋅⎣ ⎦

∑ ∑

f P 1

1 P f

f P

2 2
, ,

2 2
1 1

2 1

T

;

1,..., ; 1,..., ;

1; 0

n n
m j k k j m

UPP
m m

E f p

k k j n

⋅

= =

⎛ ⎞ ⎛ ⎞
⎡ ⎤≤ ⋅ ≤ ⋅⎜ ⎟ ⎜ ⎟⎣ ⎦⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= =

⋅ ⋅ = ≥

∑ ∑P f

1 P 1 P

 

(4.63) 

 
When marginals are bounded by extreme distributions (Eq. (4.46)), the 
constraints are rewritten as: 



4.2   Stochastic Independence in the Theory of Imprecise Probabilities 145
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=
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(4.64) 

Similar to the case of epistemic irrelevance, these quadratic constraints 
make the epistemic independence problem non-linear, and there is no 
computational advantage with respect to Eq. (4.46)  

Both P = Diag(p1) P2|1 and P = P1|2Diag(p2) ensure that the constraints 
on the marginal distributions are satisfied automatically. In the case of P = 
Diag(p1) P2|1, we already know that the marginal on S1, ( )2n⋅P 1 , is equal to 

p1; now let us check the marginal on S2, i.e. ( )1

T
n1 P .  

 
 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )
( )( )

11 1

1

T
1TT

21 2|1 1 2|1 1 1 1

T

2

...T
nn n

n

Diag p s p s
⎛ ⎞

= = = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

p1 P 1 p P p P

p

#  (4.65) 

 

 

This is a linear combination of vectors p2
(i) with coefficients p1(si). Since 

( )1 10 1,  1,...,ip s i n≤ ≤ = , and ( )
1

1
1

1
n

i
i

p s
=

=∑ , the marginal on S2 ( )1

T
n1 P  is a 

convex combination of elements p2∈Ψ2. Since Ψ2 is convex, the marginal 
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on S2 is in Ψ2. Therefore, the constraints on marginal probabilities on joint 
space will be automatically satisfied for the epistemic irrelevance problem. 

Now, let us go back to the definition of epistemic irrelevance to intro-
duce an effective algorithm for calculating the extreme joint distributions, 
which is addressed by the following two theorems: 

 
 

Theorem 4.2. Let the extreme points of the convex sets of marginal prob-

ability distributions on S1 and S2 be 
1 1,  1,...EXT

ξ ξ ξ=p , and 

2 2,  1,...EXT
ξ ξ ξ=p , respectively. If the first experiment is epistemically ir-

relevant to the second, the set of extreme points of the joint distributions, 
1|s

EΨ , is: 

 

( ){ }( )

1 2|1 1 1 2|1 2 1= : , ; 1,...
i

EXT Diag EXT EXT i n= ⋅ ∈ ∈ =P p P p P , i.e. 

( )
( )
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1

2

1 1 2

1

2
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1 2
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: , ;
=

1,...

i
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m m
EXT EXT EXT EXT
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η

η

η

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

= ∈ ∈⎪ ⎪⎜ ⎟
⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎝ ⎠
⎪ ⎪=⎩ ⎭

p

P p p p

p

#  (4.66)  

 
Proof : Any p1∈Ψ1 and p2∈Ψ2 can be written as a linear combination of 
extreme points in Ψ1 and Ψ2, respectively:  
 

( )( )1 1

1 1 1

T
1 1

1 1 1 1... ... ... ...EXT EXT EXT
ξ ξξ ξλ λ λ=p p p p  (4.67) 
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∑
 

(4.68) 
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By inserting Eqs. (4.67) and (4.68) into ( )1 2|1Diag= ⋅P p P , one obtains: 
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(4.69) 

 

Extreme points of P are achieved if and only if 1

1,  

0,  

m

m
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= ⎨ ≠⎩
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,
2
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0,  
ii

i

ξ ξ η
λ

ξ η
=⎧

= ⎨ ≠⎩
, 11,...,m ξ= , 21,...,iη ξ= . 

Therefore, ( )
( )

( )

1

2

1

1

2

T

T
n

EXT

m
EXT EXT

EXT

Diag

η

η

⎛ ⎞
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

p

P p

p

#                                                 à 

 

Theorem 4.3. If the second experiment is epistemically irrelevant to the 
first, the set of extreme points of the joint distributions is  
 

( ){ }( )

1|2 2 1|2 1 2 2 2= : , ; 1,...
i

EXT Diag EXT EXT i n= ⋅ ∈ ∈ =P P p P p , i.e. (4.70) 

( ) ( )1 2

21 1

21 1 2 2

P :
=

, ; 1,...

n

i

m
EXT EXTEXT EXT

m
EXTEXT

Diag
EXT

EXT EXT i n

ηη

η

⎧ ⎫=⎪ ⎪
⎨ ⎬
⎪ ⎪∈ ∈ =⎩ ⎭

p p p

p p

…  (4.71) 

 
Theorem 4.2 enables us to efficiently find the extreme joint distributions 
given the extreme distributions on the marginals, and the upper limit for the 

number of extreme joint distribution is 1
1 2

nξ ξ× . Likewise, when the second 
experiment is epistemically irrelevant to the first, Theorem 4.3 yields an up-

per limit equal to 2
1 2
nξ ξ× . However, the algorithms in Theorem 4.2 and 

Theorem 4.3 cannot be used in the case of epistemic independence because 
the convex set of joint distributions is the intersection of the two convex sets 
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for the epistemic irrelevance cases, i.e. ΨE= 1|
E
SΨ ∩ 2|

E
SΨ ; as illustrated in 

Figure 4.10, the extreme points of ΨE may not be the extreme points of 1|
E
SΨ  

and 2|
E
SΨ . The only way to determine the extreme points for ΨE is to use the 

linear constraints in Eq.(4.63).  
 
Fig. 4.10  Set of extreme 
points for the case of epis-
temic independence 

 

 
 

 

 
Now let us rework Example 4.5 and Example 4.6 with the new linear algorithm 

(Eqs.(4.60), (4.62) and (4.63)), in which constraints are written in terms of the 
joint distribution. Since the problem is now linear, it may be solved with two dif-
ferent methods. One is a linear optimization problem, and the other consists of 
first finding all extreme joint distributions and then checking which extreme dis-
tribution maximizes or minimizes the objective function. We want to first calcu-
late the probability for the event T = ({A, A}, {B, B}), and then determine the up-
per and lower conditional probabilities that the first resin is Type A given the type 
of the second resin, defined by ( )1,1 1,1 2,1/p p p+ . 

 

Example 4.9. Let us redo Example 4.5 by rewriting the constraints as: 
 

Subject to 

( ) ( )
( ) ( )

1,1 1,2

1,1 1,2 1,1 1,1 1,2

2,1 2,2 2,1 2,1 2,2

T

0.5 0.8

0.3 0.7

0.3 0.7

1;

0

p p

p p p p p

p p p p p

≤ + ≤

+ ≤ ≤ +

+ ≤ ≤ +

⋅ ⋅ =
≥

1 P 1

P

 (4.72) 

 
Table 4.16 gives the results obtained by using linear optimization. Both the upper 
and lower probabilities of T and the conditional upper and lower probabilities  
(Table 4.17) achieve the same upper and lower values as in our previous calcula-
tions in Example 4.5 but the computational effort is now greatly reduced.  
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Table 4.16 Example 4.5: lower and upper probabilities for T by the simplex method  

Solution for Joint P Marginal
 on S1 

Marginal
 on S2 

Min 
P (T) = 0.3 

15 35
/100

35 15

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (1/2, 1/2)T (1/2, 1/2)T

Max 
P (T) = 0.7 

35 15
/100

15 35

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (1/2, 1/2)T (1/2, 1/2)T

Table 4.17 Example 4.5: lower and upper probabilities for conditional probability 

( )1|2 1 2|P S A S A= = by the simplex method 

Solution for Joint P Marginal 
 on S1 

Marginal 
 on S2 

Min 

( )1|2 1 2|P S A S A= = = 0.3 
15 35

/100
35 15

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (1/2, 1/2)T (1/2, 1/2)T 

Max 

( )1|2 1 2|P S A S A= = = 0.903 
0.56 0.24

0.06 0.14

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (0.8, 0.2)T (0.62, 0.38)T 

 
Let us now redo Example 4.5 by first calculating all joint extreme distributions 

using Theorem 4.2. The extreme points on p1 are (0.5, 0.5)T and (0.8, 0.2)T, and 
the extreme points on p2 are (0.3, 0.7)T  and (0.7, 0.3)T. Table 4.18 gives the 8 ex-
treme points of 1|

E
SΨ  calculated by using Theorem 4.2. As in all previous calcula-

tions, the lower and upper probabilities for T are 0.3 and 0.7, respectively, while 
the conditional probability that the first resin is Type A given the type of the sec-
ond resin ranges between 0.3 and 0.903. Notice that the upper and lower probabil-
ity of T might be achieved at different extreme points of 1|

E
SΨ . 

Table 4.18 Example 4.5 Extreme joint distributions 

i 1,1

iEXTP  

1,2

iEXTP  

2,1

iEXTP  

2,2

iEXTP  ( )P T  ( )1|2 1 2|P S A S A= =  

1 0.15 0.35 0.15 0.35 0.5 0.500 

2 0.15 0.35 0.35 0.15 0.3 0.300 

3 0.35 0.15 0.15 0.35 0.7 0.700 

4 0.35 0.15 0.35 0.15 0.5 0.500 

5 0.24 0.56 0.06 0.14 0.38 0.800 

6 0.24 0.56 0.14 0.06 0.3 0.632 

7 0.56 0.24 0.06 0.14 0.7 0.903 

8 0.56 0.24 0.14 0.06 0.62 0.800 
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Finally, let us rework Example 4.6 by rewriting the constraints in a linear form: 
 

Subject to 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1,1 1,2

1,1 2,1

1,1 1,2 1,1 1,1 1,2

2,1 2,2 2,1 2,1 2,2

1,1 2,1 1,1 1,1 2,1

1,2 2,2 2,1 1,2 2,2

T

0.5 0.8

0.3 0.7

0.3 0.7

0.3 0.7

0.5 0.8

0.5 0.8

1;

0

P P

P P

P P P P P

P P P P P

P P P P P

P P P P P

≤ + ≤

≤ + ≤

+ ≤ ≤ +

+ ≤ ≤ +

+ ≤ ≤ +

+ ≤ ≤ +

⋅ ⋅ =
≥

1 P 1

P

 
(4.73) 

 
The results obtained by using linear optimization are given in Table 4.19 and Table 
4.20. Since epistemic independence is assumed, extreme points of joint probability 
distributions are calculated by using the algorithm on page 114 and are listed in Ta-
ble 4.21. Although the upper and lower probabilities are the same as in Example 4.6, 
they are achieved at different extreme points. 

 
 

Table 4.19 Example 4.6 Lower and upper probabilities for T by the simplex method 

Solution for Joint P Marginal 
 on S1 

Marginal 
 on S2 

Min 
P (T) = 0.322 

0.203 0.475

0.203 0.119

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (0.678, 0.322)T (0.407, 0.593)T 

Max 
P (T) = 0.678 

0.475 0.203

0.119 0.203

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (0.678, 0.322)T (0.593, 0.407)T 

 
 
Table 4.20 Example 4.6 Lower and upper probabilities for conditional probability 

( )1|2 1 2|P S A S A= = by the simplex method 

Solution for Joint P Marginal 
 on S1 

Marginal 
 on S2 

Min 

( )1|2 1 2|P s A s A= = = 0.5 
0.15 0.35

0.15 0.35

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (0.5, 0.5)T (0.3, 0.7)T 

Max 

( )1|2 1 2|P s A s A= =  = 0.8 
0.24 0.56

0.06 0.14

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
(0.8, 0.2)T (0.62, 0.38)T 
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Table 4.21 Example 4.6 Lower and upper probabilities for T and lower and  
upper conditional probability ( )1|2 1 2|P S A S A= = by checking all extreme joint 

distributions 

i 1,1

iEXTP  

1,2

iEXTP  

2,1

iEXTP  

2,2

iEXTP  ( )P T  ( )1|2 1 2|P S A S A= =  

1 0.15 0.35 0.15 0.35 0.5 0.500 

2 0.24 0.56 0.06 0.14 0.38 0.800 

3 0.35 0.15 0.35 0.15 0.5 0.500 

4 0.56 0.24 0.14 0.06 0.62 0.800 

5 0.475 0.203 0.119 0.203 0.678 0.800 

6 0.414 0.241 0.103 0.241 0.655 0.800 

7 0.203 0.475 0.203 0.119 0.322 0.500 

8 0.241 0.414 0.241 0.103 0.344 0.500 
 

4.2.3   Strong Independence 

In strong independence (or type-1 extension), the set of probability meas-
ures, ΨS, is composed of all product measures, i.e. 

  

{ }S 1 2 1 1 2 2: ,P P P P PΨ = = ⊗ ∈Ψ ∈ Ψ   ; (4.74) 
 

By comparing Eq. (4.42) with Eq. (4.74), one realizes that strong inde-

pendence is obtained by imposing that any 2|
1 1

sP ∈ Ψ  and any 1|
2 2

sP ∈Ψ  
and these measures are the same for all values s2 and s1, respectively. i.e. 
by adding the following conditions to epistemic independence: 

 
2|

2 2 1 1: ss S P P∀ ∈ =   and  1|
1 1 2 2: ss S P P∀ ∈ =  (4.75) 

 
Since we added a constraint to epistemic independence, the previous inde-
pendence properties are kept. In particular, learning the outcome of one 
experiment does not change our uncertainty about the outcome of the other 
experiment, in accordance with the intuitive notion of independence. 
Strong independence is an appropriate model when the following assump-
tions are satisfied: 
 

• The outcomes for s2 and s1 result from random experiments, 
each governed by a unique (but unknown) probability measure, 
or distribution. 

• We know that the probability measures, or distributions, belong 
to sets Ψ1 and Ψ2, respectively. 
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• The random experiments are stochastically independent  
(Eqs. (4.13) (4.14)). 

• We do not know of any relationship between the two marginal 
probability measures (or distributions) that would enable us to 
rule out some of the possible combinations of marginal measures 
(or distributions).  

 
Theorem 4.4 addresses the calculation of the extreme joint distributions and 
measures of the set of joint distributions, SΨ . Sets of joint distributions un-
der assumptions of unknown interaction, epistemic irrelevance and epis-
temic independence are convex. However, when strong independence is as-
sumed, SΨ  is not a convex set, as explained in the following Theorem 4.5. 

Although SΨ  is not convex, maxima and minima of linear functions are al-

ways achieved at extreme points of SΨ .  
 

Theorem 4.4. Under the assumption of strong independence, the set of ex-
treme joint distributions (measures), EXT, is the set of product distribu-
tions (measures), each taken from the extreme distributions (measures) of 
the marginals, ETXi: 

 

{ }1 2 1 1 2 2= : ,EXT P P P P EXT P EXT= ⊗ ∈ ∈ , i.e. per Eq. (2.35): 

( )
1 2 1 2

T,
1 2= : ,EXT EXT EXT EXT EXTEXT EXT EXTξ η ξ η ξ η⎧ ⎫= ∈ ∈⎨ ⎬

⎩ ⎭
P p p p p  

(4.76) 

 
Proof : Let the extreme points of the convex set of probability distributions 

on S1 and S2 be 
1 1,  1,...EXT

ξ ξ ξ=p , and 
2 2,  1,...EXT

ξ ξ ξ=p , respectively. Any 

p1 and p2 can be written as a linear combination of extreme points: 
  

( )( )1 1

1 1 1

T
1 1

1 1 1 1... ... ... ...EXT EXT EXT
ξ ξξ ξλ λ λ=p p p p ; 

( )( )2 2

2 2 2

T
1 1

2 2 2 2... ... ... ...EXT EXT EXT
ξ ξξ ξλ λ λ=p p p p  

1

2

11 1
1

22 2
1

0 1,  1,..., ;  1

0 1,  1,..., ;  1

ξ
ξ ξ

ξ
ξ

ξ ξ

ξ

λ ξ ξ λ

λ ξ ξ λ

=

=

≤ ≤ = =

≤ ≤ = =

∑

∑
 

(4.77) 
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Since 1 2= ⊗P p p , any joint probability distribution may be written as  
follows: 

 

( ) ( )

( )

( )

( )

2

1 2 2
1 1 1

1

2

2

T1
1
1

T

1 11
2 2 2

T
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 ... ... ... ...

EXT

EXT
EXT EXT EXT

EXT

ξ ξ
ξ ξξ ξ
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λ λ λ λ
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⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟
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##

# #

 
(4.78) 

 

Extreme points of P are achieved if and only if: 
 

1 2
1 1 2 21 2

1 2

1,  1,  
and ; 1,..., ; 1,...,

0,  0,  

m m
m m

m m
ξ ξξ ξ

λ λ ξ ξ
ξ ξ

= =⎧ ⎧
= = = =⎨ ⎨≠ ≠⎩ ⎩

  (4.79) 

 

Therefore, ( )
1 2 1 2

T
,

1 2= P : ,EXT EXT EXT EXT EXTEXT EXT EXTξ η ξ η ξ η⎧ ⎫= ∈ ∈⎨ ⎬
⎩ ⎭

p p p p .  à 

 

Theorem 4.5. Under strong independence, the set of joint distributions 
(measures), SΨ , is not convex. 
 

Proof : Consider a counterexample with 1 3ξ = , 2 2ξ =  in Eq. (4.77) and 

let us proceed by contradiction by assuming that SΨ  is a convex set. 

Let 1P  and 2P  be two joint distributions in SΨ  such that 1P  is generated 

by taking ( )11
1 1 1... ... ξξλ λ λ = ( )1,0,0 , ( )21

2 2 2... ... ξξλ λ λ = ( )0,1 , and thus  

( ) ( )1 2
T

1 1
1 21 1 2 2... ... ... ...ξ ξξ ξλ λ λ λ λ λ =

0 1

0 0

0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

,  and 2P  is generated by taking 

( )11
1 1 1... ... ξξλ λ λ = ( )0,0,1 , ( )21

2 2 2... ... ξξλ λ λ = ( )1,0 , and thus 

( ) ( )1 2
T

1 1
1 21 1 2 2... ... ... ...ξ ξξ ξλ λ λ λ λ λ =

0 0

0 0

1 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

.  
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The mid point, mP , between 1P  and 2P  is ( )1 21 / 2 +P P . Consequently, 

( ) ( )1 2
T

1 1
1 21 1 2 2... ... ... ...ξ ξξ ξλ λ λ λ λ λ  for mP  is equal to 

 0 1/2

0  0

1/2 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, which could 

be written in the form ( ) ( )T1 2 3 1 2
1 1 1 2 2, , ,λ λ λ λ λ  based on the assumption that 

mP  is in the convex set SΨ . 

Thus, ( ) ( )T1 2 3 1 2
1 1 1 2 2, , ,λ λ λ λ λ = 

1 1 1 2
1 2 1 2

2 1 2 2
1 2 1 2

3 1 3 2
1 2 1 2

,

,

,

λ λ λ λ

λ λ λ λ

λ λ λ λ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

=
 0 1/2

0  0

1/2 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, subject to 

0j
iλ ≥ , 1j

i
j

λ =∑ . Since 1 2
1 2λ λ =1/2 and 3 1

1 2λ λ =1/2, 1 2 3 1
1 2 1 2λ λ λ λ =1/4.  

However, we also have 1 1
1 2λ λ =0 and 3 2

1 2λ λ =0, so 1 1 3 2
1 2 1 2λ λ λ λ = 1 2 3 1

1 2 1 2λ λ λ λ =0, 

which contradicts the previous result 1 2 3 1
1 2 1 2λ λ λ λ =1/4. Therefore, there are no 

j
iλ  that satisfy all requirements, i.e., 1 2m ≠ ⊗P P P . Therefore, SΨ  is not  

convex.                                                                                                     à 
 

There are several options for carrying out calculations on the joint space: 
 

1. If extreme distributions are available for the marginals (Eq. 
(4.18)), first calculate all ξ1×ξ2 extreme joint distributions pEXT 
as indicated in Eq. (4.76). If the objective function is linear 
(e.g., prevision or probability), then the solution is simply found 
by evaluating the objective function on all vertices pEXT. i. e: 

 
Subject to: 
 

{ },
EXTEXT ξ η∈ =P p  

 (4.80) 

 
This problem  is much easier to solve than the non-convex and 
NP-hard optimization problems that follow. 

2. If extreme distributions are available for the marginals (Eq. 
(4.18)), use directly constraints in Eqs. (4.14) and (4.74), thus 
obtaining quadratic constraints in the n1×n2 components pi,j, n1 + 

n2 components pi
k and in the ξ1+ξ2 components icξ : 
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Subject to: 

( )T
1 2

1

1

0

0; 1,2

1 0, 0; 1,2

i

i

i

i i EXT

i i

c i

c c i

ξ
ξ ξ

ξ
ξ

ξ ξ

ξ

=

=

− =

− = =

− = ≥ =

∑

∑

P p p

p p  

 

 

(4.81) 

3. If expectation (prevision) bounds are given on the marginals 
(Eq. (4.17)), use directly constraints in Eqs. (4.74) and  (4.76), 
thus obtaining quadratic constraints in the n1×n2 components pi,j 
and n1 + n2 components Pi(si): 

 
Subject to: 

( )

( )
T

1 2

T

0

; 1,..., ; 1,2k k k
LOW i i i UPP i iE f E f k k i

− =

⎡ ⎤ ⎡ ⎤≤ ≤ = =⎣ ⎦ ⎣ ⎦

P p p

f p
 (4.82) 

 
Example 4.10. Consider again the situation and knowledge available in Example 
4.1, but now suppose that a cartridge is picked from each box in a stochastically in-
dependent way. We want to write down the entire set of joint distributions in ΨS and 
then calculate the upper and lower probabilities for the case in which the resin is not 
activated because the same resin type is selected, i.e. event T={(A, A), (B, B)}. 

The possible distributions for Type A and Type B resins in each box are given 
in Table 4.1. Since the two picks are stochastically independent, the probability of 
picking, say, two Type B cartridges is the product of the two relative frequencies 
listed in the third columns of Table 4.1a and Table 4.1b, which can take any of 
4⋅5=20 possible values ranging from 0.2⋅0.3 = 0.06 to 0.5⋅0.7 = 0.35. The interval 
[0.06, 0.35] represents the convex hull of the possible probabilities of picking two 
Type B cartridges, and it represents our uncertainty about this event. 

The physical meaning of this example makes ΨS finite. ΨS has 4⋅5=20 probabil-
ity measures (given in Table 4.22), of which 4 are extreme points pEXT (at least one 
P(s2, s1) attains a maximum or a minimum at one of the extreme points). The 4 ex-
treme points are the products of the gray-hatched probabilities in Table 4.1, and 
are hatched gray in Table 4.22.  
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Table 4.22 Example 4.10: joint probabilities of elementary events (gray hatch de-
notes extreme points pEXT) 

(P(A, A), P(A, B), P(B, A), P(B, B))  (P(A, A), P(A, B), P(B, A), P(B, B)) 
(0.15, 0.35, 0.15, 0.35)  (0.21, 0.49, 0.09, 0.21) 

(0.2, 0.3, 0.2, 0.3)  (0.28, 0.42, 0.12, 0.18) 
(0.25, 0.25, 0.25, 0.25)  (0.35, 0.35, 0.15, 0.15) 

(0.3, 0.2, 0.3, 0.2)  (0.42, 0.28, 0.18, 0.12) 
(0.35, 0.15, 0.35, 0.15)  (0.49, 0.21, 0.21, 0.09) 
(0.18, 0.42, 0.12, 0.28)  (0.24, 0.56, 0.06, 0.14) 
(0.24, 0.36, 0.16, 0.24)  (0.32, 0.48, 0.08, 0.12) 

(0.3, 0.3, 0.2, 0.2)  (0.4, 0.4, 0.1, 0.1) 
(0.36, 0.24, 0.24, 0.16)  (0.48, 0.32, 0.12, 0.08) 
(0.42, 0.18, 0.28, 0.12)  (0.56, 0.24, 0.14, 0.06) 

 
 
Consider again the case in which the resin is not activated because the same 

resin type is selected: T={(A, A), (B, B)}. The solution is to be searched through 
the extreme distributions pEXT. The lower probability of this event is given by the 
seventh row, second column in Table 4.22, i.e. 0.24+0.14 = 0.38; the upper prob-
ability is given by the last row in Table 4.22, i.e. 0.56+0.06 = 0.62. The upper and 
lower conditional probabilities that the first resin is Type A given the type of the 
second resin, defined by ( )1,1 1,1 2,1/p p p+ , are equal to 0.8 and 0.5, and are 

achieved at the two extreme distributions in the second column, and in the first 
column of Table 4.22, respectively. 

 
Example 4.11. Consider again the situation and knowledge available in Example 4.4, 
but now suppose that experiments are conducted in a stochastically independent 
way. We want to write down the entire set of joint distribution in ΨS and then cal-
culate the upper and lower probabilities for the event 

( ) ( ) ( ) ( ){ }1 1 2 2 3 3 4 4
1 2 1 2 1 2 1 2, , , , , , ,T s s s s s s s s= .  

The extreme distributions in S1 and S2 are listed in Table 4.7. The product of 
marginal extreme distributions generates an extreme joint distribution in ΨS. 

When the probability distribution in Ψ1 is 1
1EXTp = (0.2, 0.7, 0, 0.1), and the distri-

bution in Ψ2 is 6
2EXTp = (0, 0, 1, 0), the joint probability distribution is  

 
0 0 0 0

0 0 0 0

0.2 0.7 0 0.1

0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

P , 
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and the probability of event T achieves its minimum value, i.e., P(T) = 0. When 
5

1EXTp = (0, 0, 1, 0) in Ψ1 and 6
2EXTp = (0, 0, 1, 0) in Ψ2, the joint probability dis-

tribution is  
 

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

P , 

 
 

 
and the probability of event T achieves its maximum value, i.e., P(T) = 1. 

4.2.4   Relationships between the Four Types of Independence 

The constraints that define the three sets of probability measures are  
summarized as follows: 
 
• Unknown interaction: ΨU: (4.25) 

• Epistemic irrelevance: |
E

isΨ : (4.25) + (one of (4.42)) 

• Epistemic independence: ΨE: (4.25) + (4.42) 
• Strong independence: ΨS: (4.25) + (4.42) + (4.75) 

 
Since constraints are consecutively added, the sets of probability measures 

are nested, i.e. ΨS ⊆ ΨE ⊆ |
E

isΨ ⊆ ΨU. As a consequence, the upper and 

lower probability bounds are also nested: 
 

| |
U, E, E, S, S, E, E, U,

i is s
LOW LOW LOW LOW UPP UPP UPP UPPP P P P P P P P≤ ≤ ≤ ≤ ≤ ≤ ≤   (4.83) 

 
This is exemplified by the probability of set T={(A, A), (B, B)} in  
Example 4.1, Example 4.5, Example 4.6, and Example 4.10: 

 
• Unknown interaction:                U, U,0.00; 1.00LOW UPPP P= =  

• Epistemic irrelevance:               1 1| |
E, E,0.30; 0.70s s

LOW UPPP P= =  

• Epistemic independence: 
E, E,19 / 59 0.322; 40 / 59 0.678LOW UPPP P= = = =  

• Strong independence:                S, S,0.38; 0.62LOW UPPP P= =  
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4.3   Independence When Marginals Are Random Sets 

When two marginal random sets, F1={(A1, m1)} and F2={(A2, m2)}, are assigned 
on S1 and S2, respectively, two lines of thought can be pursued in order to  
combine the information on the Cartesian product S=S1 × S2: 
 

1) Consider each marginal random set as a convex set of probability 
distributions/measures, Ψi defined either by 

a. The Belief (lower probability bound) of each subset of Si 
(Section 3.2.2); or, alternatively, the Plausibility (upper 
probability bound) of each subset of Si. In this case, Ψi is 
defined as in Eq. (4.17).  

b. Its extreme distributions (Section 3.2.3.4); in this case, Ψi 
is defined as in Eq. (4.18).  

According to this line of thought, one would proceed as described 
in the previous Section 4.2 within the theory of imprecise prob-
abilities and without any attempt to obtain a random relation on  
S. This approach will not be expanded on further because it has  
already been dealt with. 

2) Consider a random relation defined (similarly to Eq. (4.5)) as the 
set of probability distributions/measures:  

 

( )( )1 2
, , ,

1 2
1 1

|
n n

j i j i j i ji

i j

m A A P P
= =

⎧ ⎫⎪ ⎪Ψ = × ⋅ ∈ Ψ⎨ ⎬
⎪ ⎪⎩ ⎭
∑∑  (4.84) 

 

where Ψi,
 
j is the set of all probability measures defined over the fo-

cal element 1 2
jiA A×  (and equal to zero elsewhere). The only un-

known in Eq. (4.84) is thus the basic probability assignment 

( )1 2
jim A A× . Since this is a precise probability, the problem of as-

signing m is similar to the reconstruction of a joint probability from 
precise marginal distributions. Rows 2 and 3 in Table 4.23 indicate 
two possible choices, namely stochastic independence and unknown 
interaction. The question now arises as to whether and how the defi-
nitions of independence given in Section 4.2 can be recast in the 
form (4.84). Sections 4.3.1 and 4.3.2 address this question. 

3) If one sets constraints on distribution sets Ψi,
 
j in Eq. (4.84), then the 

resulting set Ψ is no longer a random relation. In Sections 4.3.3 and 
4.3.4, additional constraints will be introduced in order to recover 
epistemic independence and strong independence, respectivelyN 4-1.  
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In Eq. (4.84), the focal elements for the random relation are taken as the 

Cartesian products 1 2
jiA A×  because any other subset 1 2

jiA A A⊂ ×  would 

indicate some type of dependence between the two variables, s1 and s2, and 

is therefore ruled out in this section on independence. Subsets 1 2
jiA A A⊂ ×  

will be introduced in Section 4.4, which deals with correlation. 

Table 4.23 Types of independence when the marginals are random sets 

Name of  
independence for 
the joint set of  
probability  
measures 

Indep. for m Indep. for Pi,j Unique 
m? 

Generate 
Random  
Relation? 

Random set  
independence 

Stochastic  
Indep. 

Unknown  
Interaction 

Yes Yes, only one 

Unknown  
Interaction 

Unknown  
Interaction 

Unknown  
Interaction 

No Yes, infinite ones 

Epistemic  
independence 

Stochastic  
Indep. 

Epistemic  
Indep. 

Yes No 

Strong  
Independence 

Stochastic  
Indep. 

Stochastic  
Indep. 

Yes No 

 
Finally, Section 4.3.5 covers the special case of a fuzzy Cartesian prod-

uct, in which only some Cartesian products 1 2
jiA A×  are used as opposed to 

all Cartesian products in Eq. (4.84). The basic definitions introduced in 
this section are mainly taken from references ((Fetz 2001; Fetz 2003; Fetz 
2004; Fetz and Oberguggenberger 2004)). 

4.3.1   Random Set Independence 

Given the choices in Table 4.23 (second row), there is random set inde-
pendence when the set of joint probability measures is: 

 

( ) ( )( )1 2
, , ,

R,R 1 1 2 2
1 1

|
n n

j i j i j i ji

i j

m A m A P P
= =

⎧ ⎫⎪ ⎪Ψ = ⋅ ∈ Ψ⎨ ⎬
⎪ ⎪⎩ ⎭
∑∑  (4.85) 

 
where Ψi,

 
j

 is the set of all probability measures defined over the focal ele-

ment 1 2
jiA A×  (and zero elsewhere). ΨR,R corresponds to the set of distribu-

tions/measures obtained by assigning mass ( ) ( )1 1 2 2
jim A m A  arbitrarily to 
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elements of 1 2
jiA A× , and is thus the unique random relation whose focal 

elements are all Cartesian products 1
iA  × 2

jA   and whose basic probability 

assignment is  m( jiA A× ) := m1( 1
iA )m2( 2

jA ).  Upper and lower probabili-

ties on a set, T, are then calculated using Eqs. (3.3) and (4.1). Alterna-
tively, since Ψi, j contains all probability measures, it also contains the 
Dirac measure (Section 2.1), and thus upper and lower probabilities are ob-
tained by appropriately collocating the Dirac measures in their focal ele-
ments; this is illustrated in Example 4.12 below. 

Random set independence is an appropriate model for outcomes s1 and 
s2 under the following assumptions:  

 

1) There are two random experiments with possibility spaces X1 and X2, 
where known probability of elementary events m1* and m2* are as-
signed, respectively. 

2) Each space, Xi, is related to Si through a multi-valued mapping Gi, 
meaning that if xi is the outcome of random experiment i, then we 
only learn that the true state of Si belongs to the subset Gi(xi) ⊆ Si. 
(Section 2.1.1). 

3) The probability distribution mi* on Xi induces the probability as-
signment mi(Gi(xi)) = mi*( xi) on Si. 

4) The probabilities of elementary events m1* and m2* are stochastically 
independent.  

5) Nothing is known about the interaction between the two mechanisms 
for selecting outcomes s1 and s2 from the sets G1(x1) and G2(x2). 

 
Example 4.12. Let us consider the two boxes of resin as in Example 4.1 (page 
116). In the current example, if a cartridge of unknown type is picked from one 
box, it is replaced with another cartridge by a completely unknown procedure. If 
two cartridges of unknown types are picked, then there can be arbitrary correlation 
between the types of the replacement cartridges. In addition, the operations of 
picking cartridges from the two boxes are stochastically independent. The mar-
ginal probability assignments are: 
 

a) First box: m1({A})=0.5, m1({B})=0.2, m1({A, B})=0.3. 
b) Second box: m2({A})=0.3, m2({B})=0.3, m2({A, B})=0.4. 
 

Figure 4.11 illustrates the stochastic independent random relation together with the 
two marginal random sets, whereas Table 4.24 gives the composition of the focal 
elements. The probability of the event T that the two cartridges are of the same type, 
T= {(A, A), (B, B)}, is comprised between the Belief and Plausibility of T (Eq. 2.3). 
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Fig. 4.11 Example 4.12: marginal 
random sets and stochastic  
independent random relation. 
Numbers indicate probability  
assignment; dashed lines envelop 
focal elements for the stochastic 
independent random relation 
 

 
 

Table 4.24 Example 4.12: Stochastic independent random relation 

Focal element no. Focal element Probability assignment 
1 {( A, A)} m1,1 = 0.15 
3 {( A, B)} m1,2  = 0.15 
5 {( A, A), (A, B)} m1,3 = 0.2 
2 {( B, A)} m2,1 = 0.06 
4 {( B, B)} m2,2 = 0.06 
6 {( B, A), (B, B)} m2,3 = 0.08 
7 {( A, A), (B, A)} m3,1 = 0.09 
8 {( A, B), (B, B)} m3,2 = 0.09 
9 {( A, A), (B, B), (A, B), (B, A)} m3,3 = 0.12 

 
1,1 2,2 1,3 2,3 3,1 3,2 3,3

C

2 3

1,1 2,2

( ) |

0.15 0.06 0.2 0.08 0.09 0.09 0.12 0.79 1 ( )

1 ( ) 1 (0.15 0.06) 0.79

( ) | 0.15 0.06 0.21

0.21  ( )  0.79

i i

i

i i

i

Pla T m A T m m m m m m m

Bel T

m m

Bel T m A T m m

P T

= ∩ ≠ ∅ = + + + + + + =

+ + + + + + = = − =

= − + = − + =

= ⊆ = + = + =

≤ ≤

∑

∑

 
(4.86) 

 
Alternatively, the upper probability is achieved by collocating the Dirac measures on 
(A, A) for focal elements that contain (A, A) but not (B, B), namely, 1, 5 and 7; on 
(B, B) for focal elements that contain (B, B) but not (A, A), namely 4, 6 and 8; and 
on either (A, A) or (B, B) for focal element  9. This yields the joint distributions: 

1

0.44 0.15

0.06 0.35

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

p  2

0.56 0.15

0.06 0.23

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

p  
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Likewise, the lower probability is achieved by collocating the Dirac measure on 
(A, B) for focal elements 5 and 8, (B, A) for focal elements 6 and 7, and either (A, 
B) or (B, A) for focal element 9. This yields the probabilities of elementary events 
(AA, AB, BA, BB): (0.15, 0.44, 0.35, 0.06) or (0.15, 0.56, 0.23, 0.06).  

 

3

0.15 0.44

0.35 0.06

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

p  4

0.15 0.56

0.23 0.06

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

p  

 
Notice that the marginals (Eq. (2.24)) of 1p through 4p are in the sets of distribu-
tions defined by the marginal random sets a) and b) above.  The four joint prob-
abilities distributions 1p through 4p are also extreme points of Ψ; a complete cal-
culation by means of the permutation algorithm, Sections 3.2.3.4 and 3.2.3.5, 
shows that Ψ has 16 extreme points (8 of which have multiplicity equal to 2). 

Distributions 1p through 4p yield the upper and lower probabilities that the sec-
ond cartridge is Type A, given that the first cartridge is Type A, which can also be 
calculated using Eqs. (3.35) (Let D = {(A, A), (B,A)} and E = {(A,A), (A,B)}): 

( )

( )
( )

( )

C

4

4 4

( ) ({(A,A)})
/  =

({(A,A)}) ({(A,B)})( ) ( )

0.15 0.15
0.211

0.15 (0.15 0.2 0.09 0.12) 0.71

(A,A) 0.15
min 0.211

(A,A) (A,B) 0.15 0.56

( )
/

( )

P

Bel D E Bel
Bel D E

Bel PlaBel D E Pla D E

P D E p

P E p p

Pla D E
Pla D E

Pla D E Bel

∈Ψ

∩=
+∩ + ∩

= = =
+ + + +

∩
= = = =

+ +
∩=

∩ +

( )
( )

C

2

2 2

({(A,A)})

({(A,A)}) ({(A,B)})( )

0.56 0.56
0.789

0.56 0.15 0.71

(A,A) 0.56
max 0.789

(A,A) (A,B) 0.56 0.15P

Pla

Pla BelD E

P D E p

P E p p∈Ψ

=
+∩

= = =
+

∩
= = = =

+ +

 

 
Notice that these probabilities may also be obtained as Belief and Plausibility, re-
spectively, of the conditional event T|E, where E = {(A,A), (A,B)} (the first car-
tridge is A) because the posterior event {(B, B)} is impossible. When compared 
with the upper and lower probabilites of T ([0.21, 0.79]) the posterior probability 
interval is slightly reduced. However, when compared with the interval [0.3, 0.7] 
of marginal probabilities that the cartridge picked from the second box is of type 
A, the posterior probability interval is larger. Once again, we find that learning the 
type of cartridge changes our uncertainty about the type of the other cartridge, 
contrary to the intuitive notion of independence. 
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4.3.2   Unknown Interaction 

Given the choices in Table 4.23 (third row), there is unknown interaction 
when the set of joint probability measures is: 

 

( )( )1 2
, , ,

R,U 1 2
1 1

|
n n

j i j i j i ji

i j

m A A P P
= =

⎧ ⎫⎪ ⎪Ψ = × ⋅ ∈Ψ⎨ ⎬
⎪ ⎪⎩ ⎭
∑∑  (4.87) 

 

where ( )1 2
jim A A×  satisfies the marginals rules (4.4), and Ψi,

 
j is the set of 

all probability measures defined over the focal element 1 2
jiA A×  (and zero 

elsewhere). Fetz (Fetz 2001) showed that this is also the set of probability 
measures obtained by applying the definition of unknown interaction  
(Section 4.2.1) to the marginal random sets, i.e. ΨU = ΨR,U .  

Set R,UΨ  defines an infinite number of random relations, namely all ran-

dom relations, such that ( )1 2
jim A A×  satisfies the marginal rules (4.4). Since 

Ψi,
 
j contains all probability measures, it also contains the Dirac measure 

(Section 2.1), and thus upper and lower probabilities are obtained by appro-
priately collocating the Dirac measures δi, j in their focal elements, as was 
done in Section 4.3.1, and by optimizing the probability assignments. More 
precisely, the upper probability on a set, T is: 

 

( ) ( ){ }

( )( )1 2

,

, , ,
1 2

1 1

max :

max |

upp R U

n n
j i j i j i ji

i j

P T P T P

m A A δ δ
= =

= ∈ Ψ =

⎧ ⎫⎪ ⎪= × ⋅ ∈ Ψ⎨ ⎬
⎪ ⎪⎩ ⎭
∑∑

, (4.88) 

 

where the maximum is achieved by collocating δi, j in T ∩ ( 1 2
jiA A× ), i.e. 

 

( ) ( )
( )1 2

1 2
, :

max
ji

ji
upp

i j T A A

P T m A A
∩ × ≠∅

= ×∑  (4.89) 

 
The function to maximize is just the Plausibility of T. Therefore, by letting 

( ),
1 2: ji j im m A A= × , the probability assignment that yields the upper prob-

ability on a set, T, is found by solving the linear optimization problem: 
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( )1 2

,

, :

maximize
ji

i j

i j T A A

m
∩ × ≠∅
∑   

subject to: 

( )

( )

2

1

,
1 1 1

1

,
2 22

1

,

1,...,

1,...,

0

n
i i j

j

n
j i j

i

i j

m A m i n

m A m j n

m

=

=

= =

= =

≥

∑

∑  

(4.90) 

 
This problem can be easily programmed in the standard form: 

 

 
Tminimize − c x   

subject to: 
 ,    ≥Mx = b x 0  

(4.91) 

 
where: 
 

( )1 2

,

2 1 2

1 if

0 otherwise

( 1)    for  1,..., ; 1,...,

ji

h

i j
h

T A A
c

x m

h j i n i n j n

⎧ ∩ × ≠ ∅⎪= ⎨
⎪⎩

=
= + − ⋅ = =

 

( )
( )

1 2 2

, 1 1 2 1 1 1 2

1 1 1

2 1 1 22

1 1 1 2

1 if 1,..., ; ( 1) 1,...,

1 if 1,..., ; ,..., ( ) ( 1)

0 otherwise

   if 1,...,

  if 1,...,

1,..., , 1,...,

k h

i

k j

k n h i n i n

M k n n n h i n i n n n

m A k n
b

m A k n n n

k n n n n

= = − ⋅ + ⋅⎧
⎪= = + + = − − + −⎨
⎪
⎩

⎧ =⎪= ⎨
= + +⎪⎩

= + +

 

 

(4.92) 

 

The lower probability on a set T is obtained by collocating δi,j in 

( ) C
1 2

jiA A T× ∩   whenever ( 1 2
jiA A× )⊄T and ( 1 2

jiA A× )∩T≠∅, i.e. 

 

( ) ( )
( )1 2

1 2
, :

min
ji

ji
low

i j A A T

P T m A A
× ⊆

= ×∑  (4.93) 
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The function to minimize is just the Belief of T. Therefore, the probability 
assignment that yields the lower probability on a set, T, is found by solving 
the linear optimization problem: 

 

( )1 2

,

, :

minimize
ji

i j

i j A A T

m
× ⊆
∑   

subject to: 

( )

( )

2

1

,
1 1 1

1

,
2 22

1

,

1,...,

1,...,

0

n
i i j

j

n
j i j

i

i j

m A m i n

m A m j n

m

=

=

= =

= =

≥

∑

∑  

(4.94) 

 

This problem can be easily programmed in the standard form: 
 

 
Tminimize − c x   

subject to: 
  ,   ≥Mx = b x 0  

(4.95) 

where: 
 

( )1 2

,

2 1 2

1 if

0 otherwise

( 1)    for  1,..., ; 1,...,

ji

h

i j
h

A A T
c

x m

h j i n i n j n

⎧ × ⊆⎪= ⎨
⎪⎩

=
= + − ⋅ = =

  
(4.96) 

 

Unknown interaction is an appropriate model for outcomes s1 and s2 under 
the following assumptions:  

1) There are two random experiments with possibility spaces X1 and X2, 
where known probability of elementary events m1* and m2* are as-
signed, respectively. 

2) Each space, Xi, is related to Si through a multi-valued mapping Gi, 
meaning that if xi is the outcome of random experiment i, then we 
only learn that the true state of Si belongs to the subset Gi(xi) ⊆ Si. 
(Section 2.1). 

3) The probability distribution mi* on Xi induces the probability as-
signment mi(Gi(xi)) = mi*( xi) on Si. 
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4) Nothing is known about the interaction between the two mechanisms 
for selecting outcomes x1 and x2 from the sets X1 and X2, respectively, 
i.e., the probabilities of elementary events m1* and m2* are linked by 
unknown interaction.  

5) Nothing is known about the interaction between the two mechanisms 
for selecting outcomes s1 and s2 from the sets G1(x1) and G2(x2),  
respectively.  

 
Example 4.13. Let us consider the two boxes of resin as in Example 4.12 (page 
160). In the current example, however, nothing is known about the relationship 
between picking a cartridge from the first box and picking one from the second 
box. The focal elements for the set of random relations along with the numbering 
of the probability assignment are still as in Table 4.24. For T= {(A, A), (B, B)}, 
problem (4.90) is written as: 

 

( )1 2

, 1,1 1,3 2,2 2,3 3,1 3,2 3,3

, :

maximize
ji

i j

i j T A A

m m m m m m m m
∩ × ≠∅

= + + + + + +∑

     subject to: 

( )
( )
( )
( )
( )
( )

1,1 1,2 1,3 1
1 1

2,1 2,2 2,3 2
1 1

3,1 3,2 3,3 3
1 1

1,1 2,1 3,1 1
2 2

1,2 2,2 3,2 3
2 2

1,3 2,3 3,3 3
2 2

0.5

0.2

0.3

0.3

0.3

0.4

m m m m A

m m m m A

m m m m A

m m m m A

m m m m A

m m m m A

+ + = =

+ + = =

+ + = =

+ + = =

+ + = =

+ + = =

 
(4.97) 

 

 
Vector c and matrix M take the values: 
 

(1, 0, 1, 0, 1, 1, 1, 1, 1)=c T  
1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

M
 (4.98) 
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a) 

 
b) 

Fig. 4.12 Example 4.13: marginal random sets and random relations that: a) 
maximize the Plausibility; b) minimize the Belief. Numbers indicate values of 
probability assignment; dashed lines envelop focal elements for random relation 

 

By using the simplex method, the maximizing solution is found to be equal to 
(0.1, 0.0, 0.4, 0.0, 0.2, 0.0, 0.2, 0.1, 0.0); the solution that minimizes the Belief is 
(0.0, 0.3, 0.2, 0.2, 0.0, 0.0, 0.1, 0.0, 0.2), as shown in Figure 4.12. The Plausibility 
and the Belief of T calculated with the maximizing and minimizing solutions, re-
spectively, are as follows: 

 
1,1 1,3 2,2 2,3 3,1 3,2 3,3

1,1 2,2

( )

0.1 0.4 0.2 0.0 0.2 0.1 0.0 1

( ) 0.0 0.0 0

Pla T m m m m m m m

Bel T m m

= + + + + + +
= + + + + + + =

= + = + =

 (4.99) 

 
These random relations also yield the upper and lower probabilities that the sec-
ond cartridge is A, given that the first cartridge is A (event E = {(A,A), (A,B)}), 
which can be calculated using Eqs. (3.32): 

 

( )

( )

({(A,A)})
{(A,A),(B,A)} /{(A,A),(A,B)}

({(A,A)}) ({(A,B)})

0.0
0

0.0 0.5
({(A,A)})

{(A,A),(B,A)} / {(A,A),(A,B)}
({(A,A)}) ({(A,B)})

0.7
1

0.7 0.0

Bel
Bel

Bel Pla

Pla
Pla

Pla Bel

= =
+

= =
+

= =
+

= =
+

 
(4.100) 

 

This interval is larger than [0.3, 0.7], the interval of marginal probabilities that the 
cartridge picked from the second box is of type A. Once again, we find that learn-
ing the type of cartridge changes our uncertainty about the type of the other car-
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tridge, contrary to the intuitive notion of independence. On the other hand, if event 
E occurs, the upper and lower posterior probabilities for the event T={(A,A), 
(B,B)}, are calculated as follows: 

 

( )

( )

( ) ({(A,A)})
| =

({(A,A)}) ({(A,B)})( ) ( )

0 0
0

0 (0.3 0.2 0.2) 0.7

({(A,A)}) 0.7 0.7
| 1

({(A,A)}) ({(A,B)}) 0.7 0 0.7

c

Bel T E Bel
Bel T E

Bel PlaBel T E Pla T E

Pla
Pla T E

Pla Bel

∩= =
+∩ + ∩

= = =
+ + +

= = = =
+ +

 
(4.101) 

 

This interval is the same as the prior interval because the information obtained 
does not reduce uncertainty, which remains the maximum possible. Since the pos-
terior event {(B, B)} is impossible (because prior information is that the first car-
tridge is A), the calculated interval is the same as in Eq. (4.100). 

 

Example 4.14. Let us consider the two random sets introduced in Example 4.2 
(page 120). Table 4.25 gives the focal elements for the set of random relations 

along with the probability assignment. For ( ) ( ) ( ){ }1 1 2 2 3 3
1 2 1 2 1 2, , , , ,T s s s s s s= ,  

problems (4.90) are written as: 
 

( )1 2

, 1,1 1,2 1,3 2,1 2,2 2,3 3,2

, :

maximize
ji

i j

i j T A A

m m m m m m m m
∩ × ≠∅

= + + + + + +∑   

 

subject to: 
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( )
( )
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( )

1,1 1,2 1,3 1
1 1

2,1 2,2 2,3 2
1 1

3,1 3,2 3,3 3
1 1

1,1 2,1 3,1 1
2 2

1,2 2,2 3,2 3
2 2

1,3 2,3 3,3 3
2 2

0.1

0.6

0.3

0.1

0.1

0.8

m m m m A

m m m m A

m m m m A

m m m m A

m m m m A

m m m m A

+ + = =
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+ + = =

 
(4.102) 

Vector c and matrix M take the values: 
 

(1, 1, 1, 1, 1, 1, 0, 1, 0)=c T  

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

M
 (4.103) 
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Notice that matrix M is the same as in Eq.(4.98) because matrix M only depends 
on the number of focal elements in each marginal (Eq. (4.96)), and both Example 
4.13 and Example 4.14 have 3 focal elements per marginal. 

By using the simplex method, the maximizing solution is found to be equal to 
(0.0, 0.0, 0.1, 0.0, 0.0, 0.6, 0.1, 0.1, 0.1). The minimum Bel(T) is achieved by setting 
c= (0, 0, 0, 0, 0, 1, 0, 0, 0)T, and yields the joint basic probability assignment (0.0, 
0.0, 0.1, 0.1, 0.1, 0.4, 0.0, 0.0, 0.3). The Plausibility and the Belief of T calculated 
with the maximizing and minimizing solutions, respectively, are as follows: 

 
1,1 1,2 1,3 2,1 2,2 2,3 3,2

2,3

( )

0.0 0.0 0.1 0.0 0.0 0.6 0.1 0.8

( ) 0.4

Pla T m m m m m m m

Bel T m

= + + + + + +
= + + + + + + =

= =

 (4.104) 

 
and coincide with the values of the upper and lower probabilities, respectively, 
found in Example 4.2.  

On the other hand, the minimization of Pla(T) (i.e. minimization of Eq. (4.102)) 
yields the joint basic probability assignment (0.0, 0.1, 0.0, 0.0, 0.0, 0.6, 0.1, 0.0, 
0.2), which gives Bel(T) = m2,3 = 0.6 > 0.4. Therefore, it is necessary to minimize 
Bel(T) as explained in Eqs. (4.94) and (4.95), instead of first minimizing the Plau-
sibility and then calculating the Belief as suggested in the literature (e.g., (Fetz 
2001)).  

Table 4.25 Example 4.14: Unknown interaction random relations 

Focal element no. Focal element Probability assignment 
1 { } { }1 2 1 2

1 1 2 2, ,s s s s×  m1,1 

2 { } { }1 2 1 2 3
1 1 2 2 2, , ,s s s s s×  m1,2  

3 { } { }1 2 2
1 1 2,s s s×  m1,3  

4 { } { }2 1 2
1 2 2,s s s×  m2,1 

5 { } { }2 1 2 3
1 2 2 2, ,s s s s×  m2,2  

6 { } { }2 2
1 2s s×  m2,3  

7 { } { }3 1 2
1 2 2,s s s×  m3,1  

8 { } { }3 1 2 3
1 2 2 2, ,s s s s×  m3,2  

9 { } { }3 2
1 2s s×  m3,3  
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4.3.3   Epistemic  Independence 

First of all, let us show that the definition of epistemic independence (Eq. 
(4.42)) applied to two marginal random sets yields the set of probability 
distributions/measures identified in Table 4.23 (fourth row), i.e. ΨE = ΨR,E. 
Indeed, let the set of probabilities for the k-th marginal, Ψk, be as in Eq. 
(4.6). For all s1 ∈ S1, the second condition (4.42) is satisfied with marginal 

P1 ∈ Ψ1, and arbitrary probability measure 1|
2

sP ∈ Ψ2, which can be de-
composed using Eq. (4.6): 

 

( )( )1

1 1 1 1
1

n
i i

i

P m A P
=

= ⋅∑ ; ( )( )2
1 1| |

2 2 2 2
1

n
s si i

i

P m A P
=

= ⋅∑ . (4.105) 

 
By inserting Eq. (4.105) into the second Equation (4.42), one obtains the 
sought joint probability for any (s1, s2)∈ S1 × S2: 

 

( ) { }( ) { }( )

( ) { }( )( ) ( ) { }( )( )
( ) ( ) { }( ) { }( )

1

1 2
1

1 2
1

|
1 2 1 1 2 2

|
1 1 1 1 2 2 2 2

1 1

|
1 1 2 1 1 22 2

1 1

, s

n n
si i i i

i i

n n
sj ji i

i j

P s s P s P s

m A P s m A P s

m A m A P s P s

= =

= =

= =

= ⋅ ⋅ =

= ⋅ ⋅

∑ ∑

∑∑

 
(4.106) 

 
One may repeat the same reasoning for the first condition in Eq. (4.42), to 
obtain: 
 

( ) ( ) ( ) { }( ) { }( )
1 2

2|
1 2 1 1 2 1 22 1 2

1 1

,
n n

i sj ji

i j

P s s m A m A P s P s
= =

= ⋅ ⋅∑∑  (4.107) 

  
By comparing Eq. (4.106) with Eq. (4.84), it is evident that the probability 
assignment and the focal set probabilities are, respectively: 
 

 ( ) ( ) ( ),
1 1 2 2

i j jim A m A m A= ⋅ ;  

( ) 21

21

||
1 2 1 12 2 2 1

||,
1 2 1 2

, , :

                                  

i ssj j ji i

i ssj ji j i

s s A A P AND P

P P P P P

∀ ∈ × ∃ ∈Ψ ∈Ψ

= ⋅ =
, 

(4.108) 

 
which are exactly the conditions given in Table 4.23 (fourth row). 
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The set of joint probability distributions/measures is: 
 

( ) ( )( )1 2

21

,
1 1 2 2

R,E
||,1 1

1 2 1 2

  :

            

ji i jn n

i ssj ji j ii j

m A m A P

P P P P P= =

⎧ ⎫
⎪ ⎪Ψ = ⎨ ⎬
⎪ ⎪= ⋅ =⎩ ⎭
∑∑  (4.109) 

 
,i jP  is a probability distribution on Ai,j because it is the product of marginal 

probabilities on 1
iA  and 2

jA , respectively. However, it is a special probability 

distribution because not all joint probability distributions on Ai,j can be writ-
ten as in (4.108b). Therefore, the set of probability measures in Eq. (4.109) 
does not define a random relation. Compare Eq. (4.109) with the set of prob-
ability measures obtained using random set independence, Eq. (4.85). Since 

1|
1 2

sjiP P⋅ ∈ ,i jP , R,E R,RΨ ⊆ Ψ  (Fetz and Oberguggenberger 2004). 

As for numerical implementation, Eq. (4.109) does not suggest a more ef-
ficient algorithm than those introduced in Section 4.2.2. The reader is referred 
to Example 4.6, which already dealt with marginal random sets. 

4.3.4   Strong Independence 

Let us construct the set R,SΨ  of joint probability measures obtained with 

the choices given in Table 4.23 (fifth row), and the additional constraint 
that, for a fixed index i, the measure ,i jP  on the Cartesian product 

,
1 2

ji j iA A A= ×  has the same marginal, 1
iP , on focal set 1

iA   for all j = 
1,…,n2, i.e.:  
 

2,,1
1 1 1,..., i ni iP P P= = =  (4.110) 

 
Likewise, for a fixed index j, ,i jP  is forced to have the same marginal, 

2
jP , on focal set 1

iA  for all i =1,…,n1, i.e.: 

 
1,1,

2 2 2,..., n jj jP P P= = =  (4.111) 

 
One obtains:  

( ) ( )( )1 2

R,S 1 1 2 12 2
1 1

n n
j ji i

i j

m A m A P P
= =

⎧ ⎫⎪ ⎪Ψ = ⋅ ⊗⎨ ⎬
⎪ ⎪⎩ ⎭
∑∑  (4.112) 
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In Section 4.2.3, strong independence was characterized by the fact that the 
set of probability measures, ΨS, was composed of all product measures 
(Eq. (4.74)). Since, for the j-th marginal random set: 

( )1
jn i i

j j j ji
P m A P==∑ , the set ΨS may be written as: 

 

{ } ( ) ( )

( ) ( )( )

1 2

1 2

S 1 2 1 1 1 2 2 2
1 1

1 1 2 1 R,S2 2
1 1

n n
j ji i

i j

n n
j ji i

i j

P P m A P m A P

m A m A P P

= =

= =

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪Ψ = ⊗ = ⊗ ⋅⎜ ⎟⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎪ ⎪= ⋅ ⊗ = Ψ⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑

∑∑
 (4.113) 

 

Hence, S R,SΨ = Ψ . Since ,
1 2

ji j iP P P= ⊗  and since not all probability 

measures on ,i jA  may be written as such, R,SΨ  does not define a random 

relation with focal elements ,
1 2

ji j iA A A= × . 

Fetz and Oberguggenberger showed that the upper (lower, resp.) prob-
ability of an event, T, can be determined by solving the following optimi-
zation problem that is written in terms of basic probability assignments and 
focal elements of the marginals (Fetz and Oberguggenberger 2004): 

 

( )1 2

1 12 2
1 1

maximize (minimize) ,
n n

j ji i
T

i j

m m I s s
= =

⋅∑∑   

subject to: 

1 1 1

22 2

1,...,

1,...,

i i

j j

s A i n

s A j n

∈ =

∈ =
 

(4.114) 

 
where TI  is the indicator (or characteristic function, see Section 2.2) of the 
set T.  Typically, this is a hard problem to solve because there may be 
many local minima and because the objective function is not continuous. 
Such a difficulty in solving the problem in terms of marginal random sets 
is the counterpart to the non-convexity of ΨS demonstrated in Section 
4.2.3, where it was also shown that upper and lower previsions (and thus 
probabilities) are in any case achieved at the extreme points of ΨS. Alter-
natively to solving problem (4.114), it may thus be advantageous to first 
find the extreme points of the marginal distribution sets Ψi and then  
proceed as described in Section 4.2.3.   
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Constraints 1 1 1, 1,...,i is A i n∈ =  in Eq. (4.114) correspond to constraint 
(4.110)  on the marginal probability measures. As shown in Figure 4.13a, 
they highlight that, given two Cartesian products Ai,j and Ai,k generated by 

the same marginal focal set 1
iA , s1 must assume the same value on Ai,j and 

Ai,k. In other words, the joint probabilities are particular selectors of a ran-

dom relation with focal elements  ,
1 2

ji j iA A A= ×  and probabilistic as-

signement ,
1 2

ji j im m m= ⋅ , i.e. of ΨR,R (Eq. (4.85)). In this case, we speak 

of consistent selectors with consistent marginals. As a consequence, the set 
of consistent selectors is not convex because ΨS is not convex.  

Alternatively, for the selectors of a general random relation, when s1 
may assume different values on Ai,j and Ai,k, as shown in Figure 4.13b, 
marginals will be called non-consistent.  Likewise for s2. Consistent and 
non-consistent marginals will be used extensively when dealing with cor-
relation in Section 4.4 N 4-2. 

 

 
 

a) 
 

 

b) 

Fig. 4.13 a) s1 assumes the same value, s1*, on Ai,j and Ai,k (consistent marginals); 
b) s1 assumes two different values, s1* and s1**, on Ai,j and Ai,k, respectively (non-
consistent marginals) 

 

Example 4.15. Let us consider the two boxes of resin as in Example 4.12 (page 
160). In the current example, however, the relationship between picking a car-
tridge from the first box and picking one from the second box is still considered as 
stochastically independent. In addition, if two cartridges of unknown types are 
picked, then the types of the replacement cartridges are stochastically independent. 
Since the set of marginal probabilities generated by the marginal random sets are 
the same as those considered in Section 4.2.3, the results are exactly the same as in 
Section 4.2.3. 
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4.3.5   Fuzzy Cartesian Product or Consonant Random Cartesian 
Product 

When marginal random sets F1={(A1, m1)} and F2={(A2, m2)} are consonant, 
they can be expressed as fuzzy sets Fj, with membership function 

( ) ( ):k k
j j j j

k
F j j jA s A

s m Aμ ∈=∑  (Eq. (3.24)). Focal element 1
iA  is then the  

α-cut for the α-level ( ):k k i
j j j

k
j jA A A

m A⊇∑ . The fuzzy Cartesian product or 

consonant random Cartesian product of F1 and F2, F := F1×F2, is then  
defined as a fuzzy set on S=S1×S2 with membership function  

 

( ) ( ) ( ) ( ){ }1 2F F 1 2 1 2, min ,F Fs s s s sμ μ μ μ= =  (4.115) 
 

It is easy to see that the α-cut, 
α

A, of F is the Cartesian product of the   

α-cuts 
α

A1 and 
α

A2: 
α

A=
α

A1 × 
α

A2. If S1 and S2 are sets of real numbers, 

than 
α

A is a two-dimensional box. Figure 4.14 presents an example of 
fuzzy Cartesian product: notice that the set, M = {α1,…, α6}, of α-levels is 

equal to the union of the α-levels of F1 , { }1

1 3 5 6, , ,FM α α α α= , and F2, 

{ }2

1 2 4 6, , ,FM α α α α= . 

A Fuzzy Cartesian product, F, defines a consonant random Cartesian 

product { }( ),iA m  on S by (Eq. (3.25b))  

 

( ) ( )( )
( )

1
1 2 1,...,

0 otherwise

i i i im F F i M

m A

α α α α +× = − ∀ =

=
 (4.116) 

 
with α|M|+1 = 0. 

Eq. (4.116) points out that, in a consonant random Cartesian product, 
the focal sets are not all Cartesian products that can be formed with mar-
ginal focal elements. Indeed, the focal elements are only the Cartesian 
products of α-cuts having the same α-level, αi. For example, in Figure 
4.14 the consonant random Cartesian product contains six focal elements, 
whereas there are 4⋅4=16 possible Cartesian products. Each of these six fo-
cal elements is given by a rectangle of uniform gray color and the darker 
gray rectangles included in it.  
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Fig. 4.14 Fuzzy Cartesian product 

 
This differs from all the other cases of independence introduced in  

Sections 4.3.1 through 4.3.4 above, where each possible Cartesian product 
of marginal focal sets was a focal element for the random relation. In this 
latter case, the obtained Cartesian products are not nested (in general); for 
example, 3 1

1 2A Aα α×  is neither a subset nor a superset of 2 2
1 2A Aα α× . Be-

cause of this special choice of the joint focal elements, ΨR,U ⊇ ΨR,F (ΨR,F is 
the set of probability measures/distributions compatible with F) but no 
general inclusion may be stated between ΨR,F and ΨR,R, ΨR,U, ΨR,E, ΨR,S.  

Since the focal elements for the random relation are only the Cartesian 
products of α-cuts having the same α-level, a fuzzy Cartesian product (or 
consonant random Cartesian product) is an appropriate model when 
s1∈F1(αi) is always observed at the same time as s2∈F2(α 

i), i.e. when the 
total observational dependence says that intervals of variables s1 and s2 are 
always jointly observed with the same degree of Possibility. 
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4.3.6   Relationships between the Five Types of Independence 

Let us summarize the relationships between the different types of sets of 
probability measures/distributions introduced in this section for random 
sets: 

 
*

R,U R,R R,E R,S

R,U R,F

Ψ ⊇ Ψ ⊇ Ψ ⊇ Ψ

Ψ ⊇ Ψ
  

* = proven only for S of finite cardinality 

(4.117) 

 
These relationships establish corresponding inclusions for upper and lower 
probability values calculated by using the different types of independence. 
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4.4   Correlation 

In this section, subscripts 1 and 2 indicate two different marginal random 
sets or variables on two different real lines, S1 and S2. The concept of (lin-
ear) correlation plays an important role in probability, statistics, and their 
applications to systems. In reliability engineering, for example, correlation 
can have either a positive or a negative effect, leading to either an underes-
timation or an overestimation, respectively, of the reliability of a system. 

To illustrate, consider the reliability of a simple series system composed 
of two elements, each having a probability of failure equal to 5% ((Ang 
and Tang 1975), page 48). If the failure events of the two elements are 
considered to be perfectly correlated (e.g., a chain whose two links are fab-
ricated from the same steel bar by the same manufacturer), then the  
probability of failure of the chain is pf1 = 0.05. However, if the two events 
are independent (e.g., a chain whose two links are randomly selected from 
two suppliers), then the probability of failure of the chain is pf2 = 0.05 + 
0.05 - 0.052 =  0.0975 ≈ 2 pf1.   

On the other hand, consider the load, L, on a ground-floor column of a 
multistory building ((Ang and Tang 1975), page 195). The load contribu-
tion from each floor to L is an increasing function of the correlation among 
floor loads; therefore, the influence of the load correlation on the failure 
probability is the opposite to that of the series elements. 

From Section 2.4, recall that probability theory provides a clear defini-
tion for the correlation coefficient between two random variables x1 and x2 

 

1 2

1 2

1 2

,
,

x x
x x

x x

σ
ρ

σ σ
=  (4.118) 

 
where 

1 2,x xσ  is the covariance of x1 and x2, and 
1xσ  (resp. 

2xσ ) is the stan-

dard deviation of x1 (resp. x2) (Eq. (2.43)). Lack of correlation does not im-
ply independence, whereas independence always implies lack of correlation. 

However, when dealing with random relations, the concept of correla-
tion is not well understood because focal sets are not singletons. In the fol-
lowing, we will try to shed some light by interpreting a random relation as 
multivalued mapping (Section 3.1.1) and as a convex set of probability 
measures (Section 3.2.3). In this section, we restrict ourselves to finite 
support random relations because topological difficulties would obscure 
the meaning of the concepts introduced belowN 4-3. 

Let us start from two finite discrete random variables x1 and x2, with a 
joint probability distribution px(a) and with correlation coefficient 
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1 2,x xρ calculated with Eq. (4.118). In order to specify that 
1 2,x xρ was ob-

tained with precise mass distribution px(a), the symbol 
1 2

( )
,

p
x xρ  will be 

used when needed. As shown in Figure 4.15, following (Dempster 1967) 
imprecision is introduced through a multi-valued mapping G: (a1, a2) 6  A 
that maps a pair a≡(a1, a2) ∈ 2\  to a set A ⊆ 2

1 2S S× = \ ( 1 2,a aA ≠ ∅ iff 

px(a1, a2) ≠ 0).  
For simplicity, in this section A is assumed to be compact and simply 

connected (i.e., any closed curve contained in A can collapse to a point 
while remaining within A); these assumptions are similar to those of Kruse 
(Kruse 1987). Likewise, G maps the joint probability mass function px(a1, 
a2) to the joint basic probability assignment m(A) such that ( ) 1m A =∑  

and ( ) 0m ∅ = . 

Call P(G) the set of probability measures induced by the selectors  
V ∈ SCT (Section 3.2.3.2). Call P(G)(p) the class of measures included in 
P(G), and whose correlation is 

1 2

( )
,

p
x xρ . In particular, given our assump-

tions above, the selectors collocate the entire probability measure on one 
point of each focal set, and thus they correspond to Dirac measures on 

Ai: iP = iδ . As a consequence, Ψ ⊇ P(G) ⊇ P(G)(p).  
 
 

 

Fig. 4.15 Multivalued mapping G introduces imprecision 

Correlation between two random variables, x1 and x2, is a simple meas-
ure of the global orientation of their joint density function. On the other 
hand, imprecision in s1 and s2 introduced by the multi-valued mapping re-
flects one’s lack of knowledge about their exact values but does not change 
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the underlying cause of this correlation. This suggests that correlation of 
set-valued random variables should be defined as a set-valued quantity that 
reflects the orientation of the joint basic probability assignment in {A}. As 
a natural extension to the definition of coefficient of correlation, 

1 2,x xρ in 

Eq. (4.118), it is thus proposed to calculate the coefficient of correlation for 
the random relation F={(A, m)} as the set of values of 

1 2,s sρ  obtained for all 

possible selections in SCT or Dirac measures in iΨ . This is equivalent to 
calculating the coefficient of correlation for all possible realizations of 
points (a1, a2), each constrained to lie in its focal set Ai with joint mass  
distribution p(a1, a2) = m(Ai) 

 

1 2

1 2

1 2

,
, :s s

s s
s s

V SCT
σ

σ σ
⎧ ⎫⎪ ⎪= ∈⎨ ⎬
⎪ ⎪⎩ ⎭

ρ  (4.119) 

 

A comparison of 
1 2

( )
,

p
x xρ  with 

1 2,s sρ  yields the importance of imprecision 

introduced by the multi-valued mapping. Since in this section the mar-
ginals are compact and simply connected intervals, the random set correla-

tion given by
 
 Eq. (4.119) is the interval ( ) ( )

1 2 1 2 1 2, , ,,
L U

s s s s s sρ ρ⎡ ⎤= ⎢ ⎥⎣ ⎦
ρ . Since 

the random set correlation is an interval, the correlation matrix for n vari-
ables is a symmetric interval n×n matrix with the additional constraint that 
its realizations must be positive definite.  

Notice that one could define the coefficient of correlation for the ran-
dom relation F={(A, m)} as the set of values of 

1 2,s sρ obtained for all pos-

sible measures in Ψ  instead of restricting the search to the selectors. Since 
the selectors maximize the linear correlation (in the positive and negative 
directions), the proposed restriction to the selectors does not affect the in-
terval bounds and makes calculations much simpler. A restriction to EXT, 
the set of extreme points of Ψ , may not yield the actual correlation 
bounds because correlation is a non-linear expression of the probability 
distributions. The random set correlation 

1 2,s sρ can be calculated through 

the optimization problems described below.  

4.4.1   The Entire Random Relation Is Given 

Let hi(s1, s2) = 0 be the implicit representation of the boundary to joint fo-
cal set Ai, and let nf be the number of joint focal sets. Recall that in a ran-
dom relation the probability distributions (and hence Dirac measures, i.e. 
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selectors) over one joint focal element may be chosen independently from 
the distributions in another focal element. As a consequence, the optimiza-
tion problem has 2nf  variables and reads: 

 

Find:     ( ) ( )
1 2

1 1
, 1 1 2 2min ,..., , ,...,f f

L n n

s s g a a a a=ρ  

             ( ) ( )
1 2

1 1
, 1 1 2 2max ,..., , ,...,f f

U n n

s s g a a a a=ρ  

such that:  ( )1 2, 0 1,...,i i
i fh a a i n≤ =       

(4.120) 

 

where 
 

( )
( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 1
1 1 2 2

1 1 2 21 1
1

2 2

1 1 2 21 1
1 1

,..., , ,...,f f

f
f f

f f
f f

n n

n
n ni i i i i i i

i i
i

n n
n ni i i i i i i i

i i
i i

g a a a a

m A a m A a a m A a

m A a m A a m A a m A a

= =
=

= =
= =

=

− −
=

− −

∑ ∑ ∑

∑ ∑ ∑ ∑

 
(4.121) 

 
If some of the projections of sets Ai coincide and available evidence sug-
gests that marginals should be consistent, then the resulting information is 
no longer a random relation because selectors in different sets Ai are now 
constrained to have the same projection. Consider the case in which pro-

jections i
jA  coincide for i in an index set Ij. The optimization problem is 

(there are 2nf variables) 
 

Find:     ( ) ( )
1 2

1 1
, 1 1 2 2min ,..., , ,...,f f

L n n

s s g a a a a=ρ  

             ( ) ( )
1 2

1 1
, 1 1 2 2max ,..., , ,...,f f

U n n

s s g a a a a=ρ  

such that:  
( )1 2, 0 1,...,

,

i i
i f

i k
j j j

h a a i n

a a i k I

⎧ ≤ =⎪
⎨

= ∈⎪⎩
      

(4.122) 

 

where ( )1 1
1 1 2 2,..., , ,...,f fn ng a a a a  is given in Eq. (4.121). Likewise for other 

common projections. 

4.4.2   Only the Marginals Are Given 

In all of the cases below, the joint probabilistic assignment is unknown. 
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4.4.2.1   The Joint Mass Correlation, 
1 2

( )
,

p
x xρ ,  Is Known 

If only the marginal focal sets 1A  and A2 are known, then the actual shape of 
the joint focal sets A is left unspecified, and further information must be in-
troduced to completely define the random relation. For example, one could 
use the largest set consistent with the marginals: A = A1 × A2 (Figure 4.16a).  
 
 

 
a) 

 
b)  

c) 

Fig. 4.16 Focal set A constructed from its marginals A1 and A2 for: a) 
1 2

( )
,

p
x xρ = 0; 

b) 
1 2

( )
,

p
x xρ = 1; and 

1 2

( )
,

p
x xρ = -1; c) 0 < 

1 2

( )
,

p
x xρ  < 1 

 

Let us now consider the case of uncorrelated variables. Recall that the 
class of uncorrelated variables is a superset of the class of independent 
variables (e.g., Section 2.4 and (Ferson, Nelsen et al. 2004) Figure 10 on 
page 43) and that all definitions of independence for random sets (Section 
4.2) use focal sets A = A1 × A2 because joint focal sets that are subsets of A1 
× A2 “would describe specific types of dependence and thus will not enter 
[an] investigation of independence” ((Fetz 2005) page 85). Thus, if A = A1 
× A2 for independent variables, the case for uncorrelated variables should 
be even more so. For correlated variables, the fact that focal sets are not 
singletons opens the way for two possible interpretations 

 
1) No focal set correlation 
2) Focal set correlation 

 
According to the first interpretation, each joint focal set, A, represents an 
imprecise observation of a point in 2\ , and thus correlation should be 
measured among different focal sets, and not within a particular joint focal 
set. Under the no focal set correlation interpretation, a joint focal set, i

ncA  

is just the Cartesian product of two marginal focal sets. Let i
ncΨ  indicate 
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the set of probability measures, 
i
ncAP , which are zero outside the focal set 

i
ncA , and let ncΨ  be the convex set 
 

( ), ,
1

:
i
nc

n
Ai

nc RS nc RS nc nc
i

P P m A P
=

⎧ ⎫Ψ = =⎨ ⎬
⎩ ⎭

∑  (4.123) 

 
The second interpretation (focal set correlation)N 4-5 hinges on the interpre-
tation of a random set as a set of probability measures (Eq. (4.5)). This 

leads to a local interpretation of correlation, whereby each 
iAP ∈ iΨ  must 

also display correlation between s1 and s2 (focal set correlation). In the ex-
treme case of perfect correlation, focal set A should reduce to a segment. 
Since this segment must project as segments A1 and A2, the segment will 
join the following points (Figure 4.16b) 
 

• (l1, l2) and (u1, u2) if variables are perfectly positively correlated; 
or 

• (l1, u2) and (u1, l2)  if variables are perfectly negatively correlated. 
 

In the intermediate cases, it is proposed to linearly interpolate in a general-
ized manner between these extremesN 4-4. To illustrate, consider the case 0 < 

1 2

( )
,

p
x xρ < 1 depicted in Figure 4.16c. Points (l1, l2) and (u1, u2) are in A both 

in the case of uncorrelated variables and in the case of perfectly positively 
correlated variables; therefore, they should belong to A in any intermediate 
case. In order to preserve symmetry with respect to these two points and in 
order to interpolate linearly, it is proposed to use the convex hull of these 
two points and the two points B and C on the diagonal ' 'B C  as illustrated 

in Figure 4.16c, in which ( )1 2

( )
,1 'p

x xBD B Dρ= −  and 

( )1 2

( )
,1 'p

x xCD C Dρ= − N 4-6. Let i
cΨ  indicate the set of probability 

measures, which are zero outside the focal set i
cA  constructed this way, 

and let cΨ  be the set 
 

( ), ,
1

:
i
c

n
Ai

c RS c RS c c
i

P P m A P
=

⎧ ⎫Ψ = =⎨ ⎬
⎩ ⎭

∑  (4.124) 
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a) 

 
b) 

Fig. 4.17 a) Random relation made up of three focal sets for 
1 2

( )
,

p
x xρ = 1; light 

dashed lines indicate the widths of the marginals; b) Coherent focal sets 

For  
1 2

( )
,

p
x xρ

 
= 1, Figure 4.17a illustrates the case of a random relation with 

three focal sets. The straight solid lines represent the focal sets, i
cA , con-

structed according to focal set correlation. The hatched focal sets indicate 
all points that can be covered by selectors with 

1 2

( )
,

p
x xρ =1. Since the 

straight solid lines are not completely in the hatched areas, cΨ ⊄  P(G)(p), 

and since the solid lines do not include all hatched areas, P(G)(p)
c⊄ Ψ . 

This situation arises because the marginal focal sets for 2A  are not coher-

ent with the hypothesis that 
1 2

( )
,

p
x xρ =1. Marginal focal sets for 2A  have 

been corrected in Figure 4.17b by reducing 2
2A , and thus P(G)(p)

c⊇ Ψ . 
The optimization problems that follow will enforce such reductions by 
considering only the distributions in SCT that satisfy the assigned correla-
tion value 

1 2

( )
,

p
x xρ .  

Let 
1 2, ,x x ncρ  and 

1 2, ,x x cρ  be the correlation intervals calculated using  

Eq. (4.119) under the hypotheses of no focal set correlation and focal set 
correlation, respectively. Since, for a common joint probabilistic assign-
ment,  Ψnc  ⊇ P(G) ⊇ P(G)(p) ⊇ Ψc, then 

1 2, ,x x ncρ ⊇
1 2, ,x x cρ . 

From a computational viewpoint, firstly, consider the case in which 

1 2

( )
,

p
x xρ  = 0, or the case of no focal set correlation. Let 

1 2

( )
,

m
s sρ  be the cor-

relation coefficient calculated at the midpoints of the focal sets using Eq. 
(4.118). Let n1 and n2 be the number of marginal focal sets for s1 and s2, re-
spectively. Then, the nf = n1⋅n2 focal sets Ai,j, with unknown probabilistic 
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assignements mi,j = m(Ai,j), are the Cartesian products of marginals 1
iA  and 

2
jA , and one can distinguish the two following cases 
 

• Consistent marginals (the optimization problem has n1 + n2 + 
n1⋅n2 unknown variables) 

 

Find:     ( ) ( )1 2 1 2

1 2

,1 1 1,1
, 1 1 2 2min ,..., , ,..., , ,...,

L n n n n
s s cg a a a a m m=ρ  

             ( ) ( )1 2 1 2

1 2

,1 1 1,1
, 1 1 2 2max ,..., , ,..., , ,...,

U n n n n
s s cg a a a a m m=ρ  

such that:  ( )

( )
( )

2

1

1 2

1 2 1 2

1 1, 1 1

2 2, 2
,

1 2

,
1 1 1

1

,
2 2 2

1

,( ) 1,1 ( )
, ,

, 1,...,

, 1,...,

0 , 1,..., , 1,...,

, 1,...,

, 1,...,

 ,...,

i i
i

j j
j j

i j

n
i j i

j

n
i j j

i

n nm p
s s x x

l a u i n

l a u j n

m i n j n

m m A i n

m m A j n

m mρ ρ

=

=

⎧ ≤ ≤ =
⎪ ≤ ≤ =⎪
⎪ ≥ = =
⎪
⎪ = =⎨
⎪
⎪

= =⎪
⎪
⎪ =⎩

∑

∑

  

 

    

(4.125) 

• Non-consistent marginals (the optimization problem has 3(nf = 
n1⋅n2) variables 

 
Find:  
  

( ) ( )1 2 1 2 1 2

1 2

, , ,1,1 1,1 1,1
, 1 1 2 2min ,..., , ,..., , ,...,

L n n n n n n
s s ncg a a a a m m=ρ     

( ) ( )1 2 1 2 1 2

1 2

, , ,1,1 1,1 1,1
, 1 1 2 2max ,..., , ,..., , ,...,

U n n n n n n
s s ncg a a a a m m=ρ  

such that:  ( )

( )
( )

2

1

1 2

1 2 1 2

,
1 1 1 1 2

,
2 2 2 2 1

,
1 2

,
1 1 1

1

,
2 2 2

1

,( ) 1,1 ( )
, ,

, 1,..., ; 1,...,

, 1,..., ; 1,...,

0 , 1,..., , 1,...,

, 1,...,

, 1,...,

 ,...,

i i j i

j i j j

i j

n
i j i

j

n
i j j

i

n nm p
s s x x

l a u i n j n

l a u j n i n

m i n j n

m m A i n

m m A j n

m mρ ρ

=

=

⎧ ≤ ≤ = =
⎪ ≤ ≤ = =⎪
⎪ ≥ = =
⎪
⎪ = =⎨
⎪
⎪

= =⎪
⎪
⎪ =⎩

∑

∑

      

(4.126) 
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where 
 

( )
( )( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 2 1 2

2 1
1 2

1 2
1 2

,1 1 1,1
1 1 2 2

,
1 1 1 1 2 2 2 21 1

1 1

2 2

1 1 1 1 1 1 2 2 2 2 2 21 1
1 1

,..., , ,..., , ,...,n n n n
c

n n
n ni j i i i j j j

i j
j i

n n
n ni i i i j j j j

i j
i j

g a a a a m m

m a m A a a m A a

m A a m A a m A a m A a

= =
= =

= =
= =

=

− −
=

− −

∑∑ ∑ ∑

∑ ∑ ∑ ∑

 

 

(4.127) 

( )
( )( )

( )

1 2 1 2 1 2

2 1
2 1 2 1

2 1
2 1 2 1

, , ,1,1 1,1 1,1
1 1 2 2

, , , , , , ,
1 1 2 21 1 1 1

1 1

2
, , , , , , , ,

1 1 2 21 1 1 1
1 1

,..., , ,..., , ,...,n n n n n n
nc

n n
n n n ni j i j i j i j i j i j i j

j i j i
j i

n n
n n n ni j i j i j i j i j i j i j i j

j i j i
j i

g a a a a m m

m a m a a m a

m a m a m a m a

= = = =
= =

= = = =
= =

=

− −
=

− −
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∑∑ ∑ ∑ ∑( )2 1 2

1 1

n n

j i= =
∑∑ ∑

 
(4.128) 

 
Secondly, consider the case of focal set correlation shown in Figure 4.18, 
in which 0 < 

1 2

( )
,

p
x xρ ≤ 1. Then, it is possible to recover formulations  

similar to Eqs. (4.125) and (4.126) by using an affine transformation of 

planes that maps a distorted rectangle Ai,j into a rectangle ,i jA , and that 

preserves the lengths of the edges , ,O Bi j i j  and , ,O Ci j i j . Let us show this in 

the case of Eqs. (4.126). Let ( ), ,,
1 2O , ,i j i ji j a a  be a reference system as in 

Figure 4.18 with unit vectors ,
1
i ja

v  and ,
2
i ja

v , and let Ti,j be the transforma-

tion matrix whose columns are the components of ,
1
i ja

v  and ,
2
i ja

v  written 

in the bases of the reference system (O, s1, s2). Then coordinates 

( ), ,
1 2,i j i ja a  of a point in Ai,j can be obtained as functions ( ), , ,

1 1 2,i j i j i jh a a  

and ( ), , ,
2 1 2,i j i j i jh a a , respectively, of coordinates ( ), ,

1 2,i j i ja a  

 

( )
( )

, , ,, ,
1 1 21 1, ,

, , , , ,
2 2 2 1 2

,
OO :

,

i j i j i ji j i j
i j i j

i j i j i j i j i j

h a aa a

a a h a a

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟= + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

T  (4.129) 

 
Let spr A1

i = (u1
i - l1

i)/2 be the spread of the projection and A1
i and let mid 

A1
i = (u1

i + l1
i)/2 be its midpoint, with similar definitions valid for A2

j. The 
components of the following vectors in the base of (O, s1, s2) can be easily 
determined from Figure 4.18 
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Fig. 4.18 Affine transformation of focal set Ai,j with , , , ,O B O Bi j i j i j i j=  and 

, , , ,O C O Ci j i j i j i j=  

( ) ( )T T,
1 1 12 2 2OO , / 2, / 2j j ji j i i il l mid A spr A mid A spr A= = − −  (4.130) 

( ) ( )( )1 2 1 2

, ( ) ( )
1 , 1 ,2 2OB 1 / 2, 1 / 2

T
j ji j i p i p

x x x xmid A spr A mid A spr Aρ ρ= + − − −  
(4.131) 

( ) ( )( )1 2 1 2

, ( ) ( )
1 , 1 ,2 2OC 1 / 2, 1 / 2

T
j ji j i p i p

x x x xmid A spr A mid A spr Aρ ρ= − − + −  
(4.132) 

from which one obtains 
 

( )( )1 2 1 2

T
, , , , ( ) ( )

, 1 , 2O B OB OO 2 / 2, / 2ji j i j i j i j p i p
x x x xspr A spr Aρ ρ= − = − ⋅  

 (4.133) 

( )( )1 2 1 2

T
, , , , ( ) ( )

, 1 , 2O C OC OO / 2, 2 / 2ji j i j i j i j p i p
x x x xspr A spr Aρ ρ= − = ⋅ − ⋅   (4.134) 

 

The unit vectors ,
1
i ja

v and ,
2
i ja

v  (written in the basis of O, s1, s2) are simply 

 

,
1

, ,

, ,

O B

O B
i j

i j i j

a i j i j
=v ;   ,

2

, ,

, ,

O C

O C
i j

i j i j

a i j i j
=v  (4.135) 
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As a result, Eqs. (4.126) become 

 
Find:   

  ( ) ( ) ( )( )1 2

, , , , , , ,
, 1 1 2 2 1 2 1 2min , , , , : 1,..., ; 1,...,

L i j i j i j i j i j i j i j
s s ncg h a a h a a m i n j n= = =ρ  

 ( ) ( ) ( )( )1 2

, , , , , , ,
, 1 1 2 2 1 2 1 2max , , , , : 1,..., ; 1,...,

U i j i j i j i j i j i j i j
s s ncg h a a h a a m i n j n= = =ρ  

such that:  ( )

( )
( )

2

1

1 2

1 2 1 2

, , ,
1 1 2

, , ,
2 2 1

,
1 2

,
1 1 1

1

,
2 2 2

1

,( ) 1,1 ( )
, ,

0 O B , 1,..., ; 1,...,

0 O C , 1,..., ; 1,...,

0 , 1,..., , 1,...,

, 1,...,

, 1,...,

 ,...,

i j i j i j

i j i j i j

i j

n
i j i

j

n
i j j

i

n nm p
s s x x

a i n j n

a j n i n

m i n j n

m m A i n

m m A j n

m mρ ρ

=

=

⎧ ≤ ≤ = =
⎪
⎪ ≤ ≤ = =
⎪

≥ = =⎪
⎪
⎨ = =

= =

=

∑

∑

⎪

⎪
⎪
⎪
⎪
⎪
⎪⎩

      

(4.136) 

 
Problems (4.125), (4.126), and (4.136) are similar to the problem tackled 
by Ferson et al. (Ferson, Ginzburg et al. 2002; Ferson, Ginzburg et al. 
2002; Ferson, Ginzburg et al. 2005), namely determining exact bounds for 
the correlation of interval data. Therefore, one can easily reproduce the 
steps of their proof to demonstrate that problems (4.125), (4.126), and 
(4.136) are NP-hard; moreover, currently there are no available algorithms 
that may work in many practical situations. Thus, the authors resorted to 
branch and bound techniquesN 4-7.  

4.4.2.2   The Joint Mass Correlation, 
1 2

( )
,

p
x xρ ,  Is Unknown 

When starting from two marginal random sets F1={(A1, m1)} and F2={(A2, m2)} 
and when the precise joint mass correlation coefficient, 

1 2

( )
,

p
x xρ , is unknown,  

it is proposed to consider again two hypotheses: 
 

1) No focal set correlation: A =  A1 × A2. 

2) Focal set correlation: by symmetry, it is proposed to estimate 

1 2

( )
,

p
x xρ  based on the two sets of midpoints of the marginal inter-

vals; 
1 2

( )
,

p
x xρ is thus a measure of the correlation between the mid-

points of the focal sets A, and of the correlation within each focal  
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set A. Focal sets A are then constructed as specified above and  
illustrated in Figure 4.16. The proposed estimation of 

1 2

( )
,

p
x xρ may 

be based on information-theoretic arguments as follows. Given the 
total ignorance on each marginal focal set, upper and lower prob-
abilities are vacuous over each marginal focal set. According to 
Nguyen’s interpretation of a membership function (Nguyen 1979), a 
unit rectangular membership function, say μ(s) = 1, is superimposed 

on each focal set, say 1
iA . This leads to vacuous upper and lower 

probabilities on 1
iA . Choosing one element in 1

iA  is equivalent to 
the defuzzyfication process explained by Klir and Yuan (Klir and 
Yuan 1995). The following, most general, parametrized family of 
defuzzyfication methods is considered (Klir and Yuan 1995)  

 

( )( )( )
( )

( )( )( )
( )

1

1

1

1

( )

Ui

Li

Ui

Li

A

A

A

A

s sds
d

s ds

α

α
α

μ
μ

μ
=
∫

∫
 

 
The choice of parameter α should conform to general principles of 
uncertainty (Klir 2005); for example, the application of the invari-
ance principle of uncertainty (Klir 2005) yields a unique value for α. 
However, regardless of the value of α, ( )dα μ is always the interval 

midpoint when μ(x) = 1. 
 

When the joint correlation is unknown, the following modifications must 
be made to optimization problems in Section 4.4.2.1 

• Under the no focal set correlation assumption, the problems 
are the same as in Eqs. (4.125) and (4.126), where the last 
constraint is removed. 

• Under the focal set correlation assumption, the optimization 
problem can be divided into two uncoupled non-linear opti-
mization problems. In the first problem, the range for 

1 2

( )
,

m
s sρ  

is determined using the n1⋅n2 probability assignment values 
mi,j as the design variables:   
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Find:  min
1 2
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,

m
s sρ , max 

1 2

( )
,

m
s sρ  
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1 2
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      (4.137) 

 

If min
1 2

( )
,

m
s sρ ⋅ max

1 2

( )
,

m
s sρ ≤ 0, 

1 2,s sρ  can be equal to zero, 

and the second optimization problem is thus the same as for 
the no focal set correlation case above, i.e. Eqs. (4.125) and 
(4.126), where the last constraint is removed. 

If  min
1 2

( )
,

m
s sρ ⋅ max

1 2

( )
,

m
s sρ > 0, then the interval 

1 2,s sρ  is 

calculated by solving Problem (4.136) for 
1 2

( )
,

p
s sρ  = 

SIGN(min
1 2

( )
,

m
s sρ ) min(|min

1 2

( )
,

m
s sρ |, |max

1 2

( )
,

m
s sρ |). 

 

Example 4.16. In order to gain insight into the correlation coefficient for random 
sets in the spirit of Figure 4.15, different multi-valued mappings were applied to a 

precise probability mass function whose correlation coefficient, 
1 2

( )
,

p
x xρ , was then 

changed to investigate its effect on the derived random relation.  
A continuous bivariate normal distribution with means μ1

(c) = 4 and μ2
(c) = 3, 

standard deviations σ1
(c) = 0.8 and σ2

(c) = 0.3, and correlation coefficient 
1 2

( )
,

c
x xρ  

was integrated in a 4 by 1.5 rectangle centered at (μ1
(c), μ2

(c)). This rectangle was 
divided into 8⋅10 = 80 equal sub-rectangles with edges 0.5 by 0.15. The normal-
ized integral of the bivariate normal distribution over a sub-rectangle centered at 
(a1, a2) in the original space was used as discrete mass, px(a1, a2).  Table 4.26 
gives the statistics of the discrete distribution mass function px(a1, a2).  

Two sets of examples were run: in Set 1, the random relation was assigned; in 
Set 2, only the marginal random sets were assigned, with no information on the 
correlation; marginal random sets were the same as the marginal random sets ob-
tained from the random relation in Set 1. In order to exemplify the consequences 
of focal set correlation, in Set 1 the multivalued mapping was constructed using 
both focal set correlation and no focal set correlation. 

Table 4.26 Example 4.16: Parameters for the continuous bivariate normal distribution 
(superscript “c”) and for the discrete distribution obtained from it (superscript “p”) 

1 2

( )
,

c
x xρ  μ1

(p) μ2
(p) σ1

(p) σ2
(p) 

1 2

( )
,

p
x xρ  

0.8 4 3 0.775 0.289 0.723 
0.0 4 3 0.786 0.293 0.000 
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Example Set 1: assigned random relation 
 

Let spr Aj
i be the half-length of interval Aj

i. As for the multivalued mapping G, 
three cases were considered with spr A1

i = 0.5 σ1
(c) (spr A2

j = 0.5 σ2
(c)), spr A1

i = 
σ1

(c) (spr A2
j = σ2

(c)), and spr A1
i = 2 σ1

(c) (spr A2
j = 2 σ2

(c)), respectively, in such a 
way that point (a1, a2) in the original space was the midpoint of A=G(a1, a2). As a 

consequence, 
1 2

( )
,

m
s sρ  calculated at the focal sets’ mid points (focal set correla-

tion) is the same as 
1 2

( )
,

p
x xρ .  The marginal intervals so obtained indicate suffi-

ciently accurate measurements (e.g., (Dantsin, Kreinovich et al. 2006)) because 
their “narrowed intervals” (mid A1

i - spr A1
i/8, mid A1

i + spr A1
i/8) do not overlap, 

likewise for the s2-axis. 
To illustrate, Figure 4.19 portrays points (a1, a2) in the original space together 

with focal sets A derived from them through the multivalued mapping G for focal 
set correlation.  

In the calculation of 
1 2,s sρ , both no focal set correlation and focal set correla-

tion assumptions were used, as well as consistent marginals and non-consistent 
marginals assumptions. 

 
 

 
a) 

 
b) 
 

 
c) 

Fig. 4.19 Points (a1, a2) together with focal sets A derived from them through the 

multivalued mapping G for 
1 2

( )
,

p
x xρ = 0.723 when: a) spr A1

i = 0.5 σ1
(c) (spr A2

j = 

0.5 σ2
(c)); b) spr A1

i = σ1
(c) (spr A2

j = σ2
(c)); c) spr A1

i = 2 σ1
(c) (spr A2

j = 2 σ2
(c)) 
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A branch-and-bound method (Hammer, Hocks et al. 1995; Kearfott 1996) was 
used to carry out the calculations, whose results are collected in Table 4.27 
through Table 4.29. As expected, the interval 

1 2,x xρ  obtained with the no focal set 

correlation assumption always includes 
1 2,s sρ  obtained when focal set correlation 

is taken into account. For example, compare columns 2 and 3, and 4 and 5 in row 
3 of Table 4.27 through Table 4.29. However, by comparing the columns obtained 
by using consistent marginals with the relevant columns obtained using non-
consistent marginals, one notices that the marginal consistency hypothesis has a 
far greater effect on 

1 2,s sρ  than the effect exerted by focal set correlation.  

This is especially evident when 
1 2

( )
,

p
x xρ  = 0; for example, in Table 4.27 

1 2,s sρ  

bounds increased by four orders of magnitude when the hypothesis of consistent 
marginals was dropped.  

Such a hierarchy between the correlation coefficient intervals obtained with 
non-consistent and consistent marginals parallels the hierarchy between probabil-
ity bounds for unknown interaction and strong independence, respectively, which 
was proved by Fetz and Oberguggenberger (Fetz and Oberguggenberger 2004) 
and Fetz (Fetz 2005). 

By analyzing the columns for 
1 2

( )
,

p
x xρ  = 0.723 in Table 4.27 through Table 

4.29, one notices that, even though 
1 2

( )
,

p
x xρ  was calculated at the midpoints of the 

focal sets, the interval 
1 2,s sρ  is not symmetric about 

1 2

( )
,

p
x xρ ; 

1 2

( )
,

p
x xρ  is always 

much closer to ( )
1 2,

U

s sρ  than to ( )
1 2,

L

s sρ  regardless of the assumption on focal 

set correlation. This means that, in the cases examined, imprecision allows for a 
dispersed or non-linear configuration of the information much more than it allows 
for a linear interrelationship between the two variables. On the other hand, the in-

tervals 
1 2,s sρ  for uncorrelated variables (

1 2

( )
,

p
x xρ =0) are always symmetric about 

1 2

( )
,

p
x xρ = 0. 

Table 4.27 Example 4.16: Correlation intervals for focal sets with spr A1
i = 0.5 

σ1
(c) and spr A2

j = 0.5 σ2
(c) 

1 2

( )
,

p
x xρ  Non-consistent marginals Consistent marginals 

 No focal set  
correlation 

Focal set  
correlation 

No focal set 
correlation 

Focal set  
correlation 

0.723 [0.3713368, 
0.9163020] 

[0.5563581, 
0.8269218] 

[0.6603782, 
0.7273850] 

[0.7155356, 
0.7255974] 

0 [-0.3994516, 0.3994516] [-0.0005418034, 0.0005418034] 
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Table 4.28 Example 4.16: Correlation intervals for focal sets with spr A1
i =  σ1

(c) 
and spr A2

j = σ2
(c) 

1 2

( )
,

p
x xρ  Non-consistent marginals Consistent marginals 

 No focal set 
correlation 

Focal set  
correlation 

No focal set 
correlation 

Focal set  
correlation 

0.723 [-0.074549, 
0.979133] 

[0.2965469, 
0.8925333] 

[0.4727766, 
0.7273850] 

[0.6970032, 
0.7270029] 

0 [-0.712030, 0.712030] [-0.002046394, 0.002046394] 

Table 4.29 Example 4.16: Correlation intervals for focal sets with spr A1
i = 2 σ1

(c) 
and spr A2

j = 2 σ2
(c) 

1 2

( )
,

p
x xρ  Non-consistent marginals Consistent marginals 

 No focal set 
correlation 

Focal set  
correlation 

No focal set 
correlation 

Focal set  
correlation 

0.723 [-0.7897353, 
0.9977801] 

[-0.4679445, 
0.9604998] 

[-0.02518543, 
0.7273850] 

[0.6316610, 
0.7273850] 

0 [-0.9681857, 0.9681857] [-0.007500380, 0.007500380] 

 
 

Example Set 2: Only the marginals are given, the joint mass correlation is unknown 

When only the marginals are given and the joint mass correlation is unknown, 
there is a loss of information with respect to the case in which the entire random 
relation is given. In order to appreciate this loss, the marginal random sets induced 
by the random relations of Example Set 1 were used. These random sets are de-
tailed in Table 4.30 and Table 4.31. 

As for focal set correlation, it is found that min
1 2

( )
,

m
s sρ ⋅ max

1 2

( )
,

m
s sρ ≤ 0, and 

therefore the Cartesian product of the marginal focal elements was used; as a con-
sequence, there is no difference between focal set correlation and non-focal set 
correlation. The results given in Table 4.32 - Table 4.34 reveal that the correlation 
interval is nearly vacuous or vacuous (i.e. [-1, 1]) even for the smallest impreci-
sion, when spr A1

i = 0.5 σ1
(c) (spr A2

j = 0.5 σ2
(c)). When compared to the relevant 

results for Set 1 in Table 4.27 through Table 4.29, the results for Set 2 indicate 
that there is a complete loss of knowledge in the correlation when only marginals 
are available. It is notable that these results were obtained even if the marginal in-
tervals were sufficiently accurate measurements because their “narrowed inter-
vals” do not intersect.  

We conclude that the large uncertainty in the correlation coefficient is not 
caused by the imprecision (focal sets are not singletons), but by the diffi-
culty to reconstruct the joint probability assignment, which is a common 
problem to the theory of precise probability. 
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Table 4.30 Example 4.16: Marginal random sets for 
1 2

( )
,

p
x xρ  = 0.723 

mid 1
iA  2.25 2.75 3.25 3.75 4.25 4.75 5.25 5.75   

m1( 1
iA ) 0.0244 0.0764 0.1626 0.2365 0.2365 0.1626 0.0764 0.0244   

mid 2
iA  2.325 2.475 2.625 2.775 2.925 3.075 3.225 3.375 3.525 3.675 

m2( 2
iA ) 0.0167 0.0447 0.0933 0.1518 0.1935 0.1935 0.1518 0.0933 0.0447 0.0167 

 

 

Table 4.31 Example 4.16: Marginal random sets for 
1 2

( )
,

p
x xρ  = 0 

mid 1
iA  2.25 2.75 3.25 3.75 4.25 4.75 5.25 5.75   

m1( 1
iA ) 0.0270 0.0774 0.1614 0.2342 0.2342 0.1614 0.0774 0.0270   

mid 2
iA  2.325 2.475 2.625 2.775 2.925 3.075 3.225 3.375 3.525 3.675 

m2( 2
iA ) 0.0188 0.0460 0.0932 0.1505 0.1915 0.1915 0.1505 0.0932 0.0460 0.0188 

 

Table 4.32 Example 4.16: Marginals only: correlation intervals for focal sets with 
spr A1

i = 0.5 σ1
(c) and spr A2

j = 0.5 σ2
(c) 

1 2

( )
,

p
x xρ  Non-consistent marginals Consistent marginals 

 No focal set  
correlation 

Focal set  
correlation 

No focal set 
correlation 

Focal set  
correlation 

0.723 [-1, 1] [-1, 1] 
[-0.987349, 
0.987349] 

[-0.987349, 0.987349] 

0 [-1, 1] [-0.987542, 0.987542] 

 

Table 4.33 Example 4.16: Marginals only: correlation intervals for focal sets with 
spr A1

i = σ1
(c) and spr A2

j = σ2
(c) 

1 2

( )
,

p
x xρ  Non-consistent marginals Consistent marginals 

 No focal set 
correlation 

Focal set  
correlation 

No focal set 
correlation 

Focal set  
correlation 

0.723 [-1, 1] [-1, 1] 
[-0.995956, 
0.995956] 

[-0.995956, 
0.995956] 

0 [-1, 1] [-0.995906, 0.995906] 
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Table 4.34 Example 4.16: Marginals only: correlation intervals for focal sets with 
spr A1

i = 2 σ1
(c) and spr A2

j = 2 σ2
(c) 

1 2

( )
,

p
x xρ  Non-consistent marginals Consistent marginals 

 No focal set 
correlation 

Focal set  
correlation 

No focal set 
correlation 

Focal set  
correlation 

0.723 [-1, 1] [-1, 1] [-1, 1] [-1, 1] 

0 [-1, 1] [-1, 1] 

 
Figure 4.20a and  Figure 4.20d show array plots of the basic probability 

assignment, m, for the complete random relations used in Example Set 1; 
Figure 4.20a refers to the case in which 

1 2

( )
,

p
x xρ  = 0.723, and Figure 4.20b 

refers to the case in which 
1 2

( )
,

p
x xρ  = 0.  In an array plot, the values in the 

array m are shown in a discrete array of squares generated in grayscale 
output, in which zero values are shown white, and the maximum value is 
shown black. 

Figure 4.20b and Figure 4.20c show m calculated by solving the optimi-
zation problems for Example Set 2 using the marginals for the random re-
lation with 

1 2

( )
,

p
x xρ  = 0.723 in Example Set 1. Likewise,  Figure 4.20e and 

Figure 4.20f show m calculated by solving the optimization problems for 
Example Set 2 using the marginals for the random relation with 

1 2

( )
,

p
x xρ = 0  

in Example Set 1. It is notable that the obtained basic probability assign-
ment was the same for both consistent and non-consistent marginals, and 
for all levels of imprecision considered. 

By comparing Figure 4.20b with Figure 4.20e (and Figure 4.20c with 
Figure 4.20f) it appears that the distributions of the basic probability assign-
ments are very similar even if the marginal random sets were different.  
Indeed, zero values of the basic probability assignment occur for the same 
focal elements. Regardless of the consistent or non-consistent marginals as-
sumptions and regardless of the level of imprecision considered, the basic 
probability assignment that maximizes the correlation is denser around a 
straight line with positive slope; vice versa, the basic probability assignment 
that minimizes the correlation is denser around a straight line with negative 
slope. 

Comparison of Figure 4.20a with Figure 4.20b and Figure 4.20c  
(Figure 4.20d with Figure 4.20e and Figure 4.20f) reveals that the mere 
knowledge of marginals leads to a wide range of possible distributions of the 
basic probability assignment, and that reconstructing the basic probability 
assignment of the original random relation is impossible. 
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1 2

( )
,

p
x xρ = 0.723 

a) 

1 2

( )
,

p
x xρ = 0 

d)

b) e)

c) f)

Fig. 4.20 Array plots of the probability assignments, m. (a) (and (d)): m for the 
complete random relation used in Example Set 1; (b) and (c) (and (e) and (f)): 
maximizing and minimizing m, respectively, for the optimization problems in  
Example Set 2 
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4.5   Conclusions 

Within the theory of imprecise probability, the definitions for unknown in-
teraction, epistemic irrelevance, epistemic independence, and strong inde-
pendence have been investigated. Two approaches have been proposed to 
calculate upper and lower probabilities and expectations on the joint distri-
bution: the choice between the two approaches mainly depends on the 
number of upper and lower probabilities and expectations to be calculated. 
All algorithms were designed to accommodate two types of constraints 
over marginal distributions: prevision bounds or convex hulls of extreme 
distributions. In all cases, linear optimization algorithms were derived: for 
epistemic irrelevance/independence this was achieved by rewriting the al-
gorithm in terms of the joint distribution. Upper and lower conditional 
probabilities are always achieved at the extreme points of the set of joint 
distributions even though the objective function is not linear, when it is a 
conditional probability. Strong independence generates non-convex sets of 
joint distributions.  

When marginals are random sets, it was explained how these definitions of 
independence may be recast to generate random relations as sets of convex 
combinations of probability measures centered at the focal sets and zero out-
side the focal sets. However, only random set independence yields a unique 
random relation on the joint space; unknown interaction generates infinite 
random relations, and epistemic independence and stochastic independence 
do not generate random relations. 

The concept of correlation for two variables constrained by a random re-
lation needs to take into account the imprecision conveyed by the focal sets 
and is therefore an interval. As a consequence, the correlation matrix for n 
variables is a symmetric interval n×n matrix with the additional constraint 
that its realizations must be positive definite.  

When a random relation on the joint space is available, information is 
affected by imprecision and marginals are intervals rather than singletons. 
As a consequence, the concepts of consistent and non-consistent marginals 
were introduced. In the first case, a variable assumes the same value when 
it belongs to a marginal generated by two or more focal sets; this parallels 
the situation encountered in strong independence for random sets. In the 
second case, a variable may assume different values when it belongs to a 
marginal generated by two or more focal sets; this parallels the situation 
encountered in unknown interaction and epistemic independence for ran-
dom sets. Conversely, when only marginals are available as random sets, 
information on the marginals is affected by imprecision, and marginals do 
not uniquely define focal sets on the joint space because many focal sets 
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may have the same projection on a given axis. The chapter presented a 
natural definition of focal sets starting from the marginals.  

The calculation of random set correlation was reduced to solving two 
NP-hard optimization problems, which, however, proved very easy to 
solve with branch-and-bound algorithms in the numerical experiments car-
ried out. When the entire random relation is available, the numerical ex-
amples presented showed that the hypothesis of non-consistent marginals 
leads to correlation bounds that are much larger (four orders of magnitude 
in some cases) than those obtained under the hypothesis of consistent mar-
ginals. This result parallels the hierarchy between strong independence and 
epistemic independence. When imprecision is generated through a multi-
valued mapping with domain on joint random variables, the random set 
correlation bounds are not symmetric with respect to the correlation coeffi-
cient of the initial random variables. When only the marginals are avail-
able, there is a complete loss of correlation knowledge, and the correlation 
interval is nearly vacuous or vacuous (i.e. [-1, 1]) even if the measure-
ments are sufficiently accurate in that their narrowed intervals do not over-
lap. Solutions to the optimization problems were found at the extremes of 
their feasible intervals 50% or less of the times. 
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Notes 

N 4-1. Within this context external to random relations, one may think of 
creating all possible combinations between definitions of independence for 

distribution sets ,i jΨ  (unknown interaction, epistemic irrelevance, epistemic 

independence and strong independence) and all possible choices of the basic 
probability assignment m. Except for the combinations lited in Table 4.23, 
the resulting bewildering number of combinations has not received specific 
names in the literature, but inclusion relationships between distribution sets 
may be found in (Fetz and Oberguggenberger 2004). 

 
N 4-2. Constraints (4.110) and (4.111) may be used with any of the combina-
tions mentioned in Note N 4-1 to generate additional combinations (Fetz and 
Oberguggenberger 2004). 
  
N 4-3. In the literature, Diamond (Diamond 1990) addressed the problem 
of fitting an affine function of the kind 

 
Y = aX+B (4.138) 

for interval-valued random data by extending the least-squares optimality 
criterion for two variables X and Y, and gave a sufficient condition for non-
degenerate elements to admit a unique optimal solution. In Eq. (4.138), a is a 
real number, B is an interval, aX is the product of the interval X by the scalar 
a, and + denotes the Minkowski addition on the set of real intervals, i.e. 
aX+B = {z + w, z ∈ aX, w ∈ B }. More recently, Gil et al. (Gil, Lubiano et 
al. 2002) generalized Diamond’s study by extending the least-squares 
method to a generalized metric on the space of nonempty compact inter-
vals, and by finding the optimal solutions a* and B* in Eq. (4.138) for the 
general case of nondegenerate interval-valued random sets (i.e. random 
sets whose focal sets are all intervals) with necessary and sufficient condi-
tions for the non-uniqueness of the solution. An extended determination 
coefficient was also defined by Gil et al. for the affine function in Eq. 
(4.138) as a real number between 0 and 1; it is equal to 0  if and only if 
(iff) a* = 0 (affine independence) and is equal to 1 if the distance between 
Y and a*X+B* is zero for the chosen metric. Kruse (Kruse 1987) inter-
preted a random set as a measurable map, G, defined on a probability 
space (Ω, B, P) and taking values in the set of non-empty, compact sub-
sets of \ . A selection is a random variable, V, on the same probability 
space, and such that V(ω) ∈ G(ω).  He defined the variance of a random 
set as the set of variance values for all possible selectors, V. 
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In the fuzzy set literature, Chaudhuri and Bhattacharya (Chaudhuri and 
Bhattacharya 2001) proposed a definition for the correlation coefficient be-
tween two fuzzy sets defined on the same universal support. Chaudhuri and 
Bhattacharya compared this definition to an earlier different definition by 
Murthy et al. (Murthy, Pal et al. 1985); both definitions yield a real number. 
Feng et al. (Feng, Hu et al. 2001) defined the variance and covariance  
of fuzzy random variables (i.e. fuzzy numbers whose α-cut extremes are 
random variables) as two crisp numbers and then applied them to fuzzy sto-
chastic processes. Finally, Liu and Kao (Liu and Kao 2002) used Zadeh’s 
min-max extension principle to extend the definition in Eq. (4.118) to a 

sample of n pairs of fuzzy numbers ( ),i iX Y� �  as follows 
 

( )( )
( ) ( )

1 1
1

2 2

1 1
1

/ /

/ /

n
n n

i i i ii i
i

XY n
n n

i i i ii i
i

X X n Y Y n

X X n Y Y n

ρ
= =

=

= =
=

− −
=

− −

∑ ∑ ∑

∑ ∑ ∑

� � � �
�

� � � �
 (4.139) 

 

Fuzzy set XYρ�  is approximated by Liu and Kao by calculating a finite 

number of its α-cuts, [ ( )L

XY αρ� , ( )U

XY αρ� ], whose extremes are obtained by 

solving the following two global optimization problems 
 

   Find: ( )L

XY αρ�  = min f(x1, …, xn, y1,…, yn);  

            ( )U

XY αρ�  = max f(x1, …, xn, y1,…, yn) 

such that:  ( ) ( )L U

i i iX x X iα α≤ ≤ ∀  AND ( ) ( )L U

i i iY y Y iα α≤ ≤ ∀  

(4.140) 

where 

f(x1, …, xn, y1,…, yn)= 
( )( )
( ) ( )
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 (4.141) 

 

The two global optimization problems (4.140) were solved using mathe-
matical programming techniques and software Lingo (LINDO 1999). 

In the fuzzy-random literature, Meyer and Kruse (Meyer and Kruse 
1990) defined the covariance for two fuzzy-random variables in a similar 
way, i.e. by applying the min-max extension principle of Zadeh, and thus  
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obtaining a fuzzy set. The authors gave a set representation of the covari-
ance, but found it extremely difficult to calculate. Finally, Meyer and 
Kruse proved a limit theorem for the estimation of the covariance. 

In the interval analysis literature (see the website “http://cs.utep.edu/ 
interval-comp/main.html” for an up-to-date bibliography), Ferson et al. 
(Ferson, Ginzburg et al. 2002; Ferson, Ginzburg et al. 2002; Ferson, 
Ginzburg et al. 2005) showed that calculating exact bounds for the correla-
tion of two sets of interval data is NP-hard, i.e. there is no feasible algo-
rithm that would always compute the desired bounds for the correlation in 
polynomial time. Although Ferson et al. (Ferson, Ginzburg et al. 2002; 
Ferson, Ginzburg et al. 2002; Ferson, Ginzburg et al. 2005), Xiang (Xiang 
2006), and Dantsin et al. (Dantsin, Kreinovich et al. 2006) were able to 
present  quadratic-time or O(n⋅log(n)) algorithms for calculating the upper 
bound of the variance of interval data (also an NP-hard problem) that 
works in many practical cases, at present there are no similar algorithms 
for calculating correlation bounds. 

 
N 4-4. This proposal was put forward by the authors in (Tonon and Pettit 
2004; Tonon and Pettit 2005; Tonon and Pettit 2005); as this book was be-
ing prepared, Ferson and Kreinovich (Ferson and Kreinovich 2006) gave 
an extensive taxonomy of one-parameter models of correlation within in-
tervals. 
 
N 4-5. Focal set correlation is conceptually coherent with the methods pro-
posed by Chatillon (Chatillon 1984) and Schilling (Schilling 1984) for cal-
culating the coefficient of correlation for singletons. In these methods, the  
cluster of data points is enclosed by an ellipse, rather than a quadrilateral 
as proposed here. When the coefficient of correlation tends to zero, Chatil-
lon’s and Schilling’s methods retrieve a circle, whereas the method pro-
posed here retrieves a box with edges parallel to the axes (see justification 
above for uncorrelated variables). When the coefficient of correlation is 
equal to one, both Chatillon’s and Schilling’s methods and the method 
proposed here retrieve a straight line. 
 
N 4-6. There is another interesting analogy with the coefficient of correla-
tion between two (linearized) failure modes in the normalized space intro-
duced by Hasofer and Lind (Hasofer and Lind 1974) for reliability analy-
sis. This coefficient of correlation is in fact equal to the scalar product of 
the two unit normals to the hyperplanes defining the two limit states 
(Ditlevsen 1979). Therefore, the correlation coefficient is equal to zero 
when the two normals are orthogonal, and equal to one when they are par-
allel to one another. Likewise, in the proposed method, unit vectors 
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AC / AC  and AB / AB  (Figure 4.16c) are orthogonal if 
1 2

( )
,

p
x xρ  = 0 

and they are parallel if 
1 2

( )
,

p
x xρ =1. It is easy to show that the scalar prod-

uct between AC / AC  and AB / AB  is equal to 
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It can be shown that the scalar product AC / AC AB / AB⋅  is always 

greater than 
1 2

( )
,

p
x xρ  and that this is even more so when the ratio 1 2/A A  

increases. 
 

N 4-7. It is interesting to compare the formulations developed in this  
section with Liu and Kao’s (2002) formulation for the correlation coeffi-

cient of a sample of n pairs of fuzzy numbers ( ),i iX Y� �  (Eqs. (4.140) and 

(4.141)). If all fuzzy sets have a rectangular membership function, so that 

they collapse to intervals (i.e., ( ) ( ) ,1 0i i X iX X A= =� � ), and one assumes 

mXY(Aij) = 1/n, then Liu and Kao’s formulation yields the same result as 
the non-consistent marginal formulation (Eqs. (4.126)) if one additionally 
assumes that the variables are non-interactive. This is because Liu and Kao 
implicitly use a cylindric extension (e.g., Klir and Yuan, 1995, page 123) 
to determine a fuzzy relation on 2\  starting from a pair of fuzzy numbers 

( ),i iX Y� � defined on the X and Y axes, respectively. Cylindric extension 

maximizes the nonspecificity (e.g., Klir and Yuan, 1995, page 123 and 
Chapter 9) in deriving a fuzzy relation starting from one of its projections, 
which is consistent with the derivations and discussion presented above in 
Section  4.4; that is, maximizing the nonspecificity is consistent with the 
goal of not imposing unjustified assumptions on the available information. 
In a generalized sense, this is analogous with the philosophy of maximum 
entropy in probability. 

 
 



Chapter 5 
Inclusion and Mapping of Random 
Sets/Relations  

This chapter investigates the concepts of weak and strong inclusion  
between random sets or relations. Approximations to random sets and rela-
tions are constructed by including given random sets or relations into ran-
dom sets and relations that are easier to deal with from a computational 
viewpoint: these approximations yield validated outer bounds on the prob-
ability of events. Finally, mappings of random sets are investigated along 
with the monotonicity of inclusions. 

5.1   Inclusion of Random Sets 

5.1.1   Weak Inclusion 

The idea of including one random set in another plays a significant role in the 
ensuing theory and applications of random sets and relations. Let F  and F  
be two random sets or relations. Since a set of probability distributions and 
measures, Ψ, can be associated to a random set (Section 3.2.3), it is natural to 

define weak⊆F F  if and only if Ψ ⊆ Ψ . From the basic definitions (Eqs. 

(3.3), (3.10) and (3.11)), it is clear that this condition is equivalent to the in-
clusion of Belief-Plausibility bounds, i.e.: 

   

( ) ( ) ( ) ( ), ,Bel T Pl T Bel T Pl T T S⎡ ⎤⎡ ⎤Ψ ⊆ Ψ ⇔ ⊆ ∀ ⊆⎣ ⎦ ⎣ ⎦  (5.1) 
 

Using the reservoir-bathtub analogy introduced in Example 3-4, if Ψ ⊆ Ψ , 

there are more pipe arrangements in F  than in F , and thus the bounds on the 
possible flow rates into the bathtub are larger, regardless of the size and posi-
tion of the bathtub. On the other hand, if, for all possible sizes and positions of 
the bathtub, the bounds on the flow rates are larger, then there are more pipe 
arrangements in F  than in F . 
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This definition of inclusion is called weak because it does not keep  
track of which focal sets jA  include focal sets iA , and of how their basic 
probability assignments are related. From an operative viewpoint, checking 
that two random sets are weakly included entails checking either the right-
hand-side of Eq. (5.1) for all possible subsets T S⊆  or the left-hand-side 
of Eq. (5.1). While the first check is straightforward (one only needs to 
calculate the Belief, and can then use Eq. (3.7) to calculate the Plausibil-
ity), let us expand on the second check.  

Since Ψ and Ψ  are convex, the left-hand-side of Eq. (5.1) is equivalent 

to checking that all extreme points of Ψ are in Ψ . Let vi i=1,.., q ( iv  

i=1,.., q , resp.) be the vertices of Ψ ( Ψ , resp.) found by using the algo-
rithm in Section 3.2.3.5. The reader is invited to read again the initial dis-
cussion in Section 3.2.3.5 on the need for a reduced probability space of 
dimension simp and for projecting vertices onto a  p-dimensional projected 
imprecise probability space, where p = simp – 1. 

Two different algorithms are now introduced: the first algorithm may be 
adopted when only the vertices of Ψ and Ψ  are known; the second algo-

rithm may be used when the entire convex hulls Ψ and Ψ  (including fac-
ets) are known.  

5.1.1.1   First Weak Inclusion Algorithm 

If only the vertices of Ψ and Ψ  are known, in order to decide whether 

iv ∈ Ψ , one has to check whether vi is a convex combination of the iv  or 

not ((Grötschel, Lovász et al. 1988), page 49), i.e.  
 

1

q

i j j
j

v vλ
=

=∑  with 
1

1
q

j
j

λ
=

=∑  and 0jλ ≥  (5.2) 

 

Figure 5.1a illustrates a 2-D example (p = 2), where Ψ  is a pentagon  

( q  = 5). Notice that Ψ  is the union of all triangles whose vertices are in 

EXT = { 1v  ,…, 5v }; there are 
1

q

p

⎛ ⎞
⎜ ⎟+⎝ ⎠

=10 such triangles, each of which 

is a convex combination of its vertices. Thus, iv ∈ Ψ  if and only if it is in 

at least one such triangle. In Figure 5.1a, vi is in triangles 2 3 5v v v  and  

 



5.1   Inclusion of Random Sets 205
 

2 3 4v v v , and thus there are non-negative triples {λ2, λ3, λ5}* and {λ2, λ3, 

λ4}**, which are also the solutions to the following systems of equations 
(5.3) when Ik = {2, 3, 5} and Ik ={2, 3, 4}, respectively: 
 

1
k

k

i j j
j I

j
j I

v vλ

λ
∈

∈

⎧ =
⎪
⎨ =⎪
⎩

∑

∑
 (5.3) 

 

In general, iv ∈ Ψ  if and only if a non-negative solution exists to a system 

(5.3) of p+1 maximal equations in p+1 coefficients λi  for at least one of 

the 
1

q

p

⎛ ⎞
⎜ ⎟+⎝ ⎠

 sets Ik of p+1 indexes that can be formed from elements of the 

set {1,.., q }.  

 

 
(a) 

 
(b) 

Fig. 5.1 Point in polygon check: (a) vertex numbering for Algorithm 1; (b) vertex 
numbering for Algorithm 2  

 

The system (5.3) is singular if and only if vectors in { jv : j∈Ik} are line-

arly dependent, i.e. they all lie on the same facet, f, of Ψ . Two cases may 
arise: 

1) When vi ∈ f, there are infinite solutions. Figure 5.2a shows a 3-
D example in which Ik is any 4-combination of {1, 2, 3, 4, 5},  
i.e. any degenerate tetrahedron with vertices in the polygon 

1v ,…, 5v . 
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a) 

 
b) 

Fig. 5.2 a) Vertex vi lies on facet 1 5...v v ; b) Vertex vi does not lie on facet 1 5...v v  

2) When vi ∉ f, there are no solutions. Figure 5.2b shows a 3-D 
example in which, when Ik is any 4-combination of {1, 2, 3, 4, 
5}, the corresponding degenerate tetrahedron with vertices in 
the polygon 1v ,…, 5v  cannot include vi. 

 

Singularity may be detected with no overhead during the LU factorization 
of non-symmetric system (5.3). Once detected, combination Ik is discarded.  

Since the LU factorization of (5.3) accounts for most of the computa-
tional cost, it is advisable to first cycle on the combinations Ik, and have an 
inner loop on the vertices of Ψ. Let p = simp-1. The general algorithm is 
thus: 

Calculate vertices of Ψ and Ψ  using the algorithm in Section 3.2.3.5. 
Project vertices onto the p-dimensional projected imprecise probability 

space  

nk ←
1

q

p

⎛ ⎞
⎜ ⎟+⎝ ⎠

 

Calculate combinations Ik 
presence(1:q)=0 
outer: DO k = 1 to nk; 

LU-factor (5.3) and store L and U  
IF (5.3) is singular, CYCLE outer 

inner: DO i = 1 to q; 
IF presence(i)==0 THEN 

Solve (5.3) by LU backsubstitution 
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IF 0,j kj Iλ ≥ ∈   

THEN 

iv ∈ Ψ   

presence(i) ←1 
CYCLE inner 

END IF 
END IF 

  END DO inner 
END DO outer 

IF 
1

presence( )
q

i

i
=

∏ ==1 THEN 

Ψ ⊆ Ψ  
ELSE 

Ψ ⊄ Ψ  
END IF 
 

In case 1) above, vi is detected as belonging to the first 4-combination Ik 
corresponding to a non-degenerate tetrahedron with base 2 3 5v v v  or 2 3 4v v v  

and vertex in { 6v ,…, 10v }. In case 2), vi is detected as belonging to the first 
4-combination Ik corresponding to a non-degenerate tetrahedron that  
contains vi. 

Let c be a non-zero q -dimensional column vector, and let λ 

= ( )T

1,..., qλ λ . The problem of minimizing cT λ subject to constraints (5.2) 

is a standard linear programming problem. The simplex method searches 
for a basic solution by solving a problem such as (5.3), and then attempts 
to improve on it (if it is not an optimal solution and the solution is not un-
bounded) or it solves a new system of equations (5.3) if the previous basic 
solution contains some negative components. Thus, the computational 
complexity of the algorithm above is the same as the simplex algorithm, 

i.e. exponential in the size of the problem: for q =300 and  p = 100, the 
number of sets Ik is in the order of 1081. However, the actual cost of the 
simplex method is much less, and interior point methods (Nemirovsky and 
Yudin 1994) such as Karmarkar’s (Karmarkar 1984) or Mehotra’s (Mehro-
tra 1992) that run in polynomial time become superior only when the 
number of vertices reaches 15,000 or more ((Kinkaid and Cheney 2002), 
page 709). The following example shows the effectiveness of the above  
algorithm. 

  



208 5   Inclusion and Mapping of Random Sets/Relations
 

Example 5.1. Let S = {a, b, c, d, e}, and consider the two random sets: F  = { ({a, b}, 

0.3), ({a, c}, 0.3), ({c, d}, 0.3), ({e}, 0.1) }, F  = { ({a, b, c}, 0.4), ({a, b, d}, 0.3), 
({a, c, d}, 0.2), ({c, d, e}, 0.1) }; these two random sets were also considered in  
(Dubois and Prade 1986).  Table 5.1 gives the calculated Belief values for all possible 
subsets of S; by using Eq. (3.7) to calculate the relevant Plausibility values, they show 
that the right-hand-side of Eq. (5.1) is satisfied. Let us now check the left-hand-side  
of Eq. (5.1). 

In this example, |S|=5. Since A4 = {e} and {e} is not in any other focal set, the 
projection of Ψ onto the 5-th dimension degenerates to a point (the upper and 
lower probabilities of singleton “e” are equal to 0.1). Thus, the imprecise possibil-
ity space Simp is given by the first 4 elements of S, and the projected imprecise 
probability space is given by the projection onto 3 of the first 4 dimensions. By  
using Algorithm 3.2.3.5, one finds 8 distinct points in Ψ,  which are the extreme 
distributions, i.e. the vertices of the convex hull of Ψ (listed in Table 5.2). 

As for Ψ ,  S = Simp because all focal sets contain more than one singleton,  
and thus p= 4. Algorithm 3.2.3.5 finds 22 distinct points in Ψ , which are vertices 
of its convex hull, i.e. extreme distributions (listed on the left-hand-side of  
Table 5.3). The right-hand-side of Table 5.3 gives the vertices of the convex hull 
obtained by projecting onto the first 3 dimensions: notice that only 12 vertices 
were obtained because several vertices overlapped on the 3-D projection. 

Vertices in the left-hand-side of Table 5.3 were projected onto the first 4 di-
mensions, and the first inclusion algorithm above yielded the results in Table 5.4. 

As expected, Ψ ⊂ Ψ  because all vertices of Ψ are a linear combination of vertices 

in Ψ (given in the third column of Table 5.4) with coefficients given in the right-
most column of Table 5.4. Notice that: 

 
• Of the 26,334 possible combinations Ik, very few (from 13 to 691) 

were used before finding a non-negative solution to Eq. (5.3). This 
confirms the comment that the practical cost of the algorithm is 
much less than the worst case scenario. 

• Some of these used combinations yielded a singular system (5.3). In-
deed, about one third of the first 300 combinations were singular. Once 
detected as singular, these systems are not solved, and are not considered 
in the next cycle through vi. This further reduces the computational time. 

• The algorithm correctly finds that v2≡ 8v  and v4≡ 17v  (rows 3 and 5 in 
Table 5.4). 

 

Figure 5.3a and b show the projection of Ψ and Ψ , respectively, onto the first three 

dimensions: Pi = P({i}), i = a, b, c. Notice that Ψ  has many more faces than Ψ be-

cause Ψ  has 22 vertices, whereas Ψ is defined by 8 vertices. This is due to the fact 

that Ψ  is not degenerate and that focal sets are composed of 3 elements instead of 2, 
which makes matrix B, and thus vector pj, less sparse in Algorithm 3.2.3.5.    
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Table 5.1 Example 5.1: Belief values for F  and F   

 
 

Table 5.2 Example 5.1: Convex hull vertices for polytope Ψ  

No. Perm. Distribution No. Perm. Distribution 
1 1 {0., 0.3, 0.3, 0.3, 0.1} 5 9 {0.6, 0., 0., 0.3, 0.1} 
2 2 {0., 0.3, 0.6, 0., 0.1} 6 12 {0.6, 0., 0.3, 0., 0.1} 
3 7 {0.3, 0., 0.3, 0.3, 0.1} 7 13 {0.3, 0.3, 0., 0.3, 0.1} 
4 8 {0.3, 0., 0.6, 0., 0.1} 8 23 {0.3, 0.3, 0.3, 0., 0.1} 
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Table 5.3 Example 5.1: Convex hull vertices for polytope Ψ   

Vertices found by projecting on  
4 dimensions 

Vertices found by projecting on  
3 dimensions 

No. Perm. Distribution No. Perm. Distribution 
1 1 {0., 0., 0.4, 0.5, 0.1} 1 1 {0., 0., 0.4, 0.5, 0.1} 
2 4 {0., 0., 0.7, 0.3, 0.} 2 4 {0., 0., 0.7, 0.3, 0.} 
3 5 {0., 0., 0.4, 0.6, 0.} 3 8 {0., 0.4, 0., 0.6, 0.} 
4 7 {0., 0.4, 0., 0.5, 0.1} 4 9 {0., 0.7, 0., 0.2, 0.1} 
5 9 {0., 0.7, 0., 0.2, 0.1} 5 14 {0., 0.3, 0.7, 0., 0.} 
6 11 {0., 0.4, 0., 0.6, 0.} 6 18 {0., 0.7, 0.3, 0., 0.} 
7 12 {0., 0.7, 0., 0.3, 0.} 7 31 {0.4, 0., 0., 0.5, 0.1} 
8 13 {0., 0.3, 0.6, 0., 0.1} 8 33 {0.9, 0., 0., 0., 0.1} 
9 16 {0., 0.7, 0.2, 0., 0.1} 9 38 {0.3, 0., 0.7, 0., 0.} 
10 18 {0., 0.7, 0.3, 0., 0.} 10 48 {0.9, 0., 0.1, 0., 0.} 
11 23 {0., 0.3, 0.7, 0., 0.} 11 61 {0.2, 0.7, 0., 0., 0.1} 
12 27 {0., 0., 0.6, 0.3, 0.1} 12 95 {0.2, 0.7, 0.1, 0., 0.} 
13 31 {0.4, 0., 0., 0.5, 0.1}    
14 32 {0.4, 0., 0., 0.6, 0.}    
15 33 {0.9, 0., 0., 0., 0.1}    
16 36 {0.9, 0., 0., 0.1, 0.}    
17 37 {0.3, 0., 0.6, 0., 0.1}    
18 47 {0.3, 0., 0.7, 0., 0.}    
19 48 {0.9, 0., 0.1, 0., 0.}    
20 61 {0.2, 0.7, 0., 0., 0.1}    
21 71 {0.2, 0.7, 0., 0.1, 0.}    
22 95 {0.2, 0.7, 0.1, 0., 0.}    

 

Table 5.4 Example 5.1: Results of first inclusion algorithm for Ψ and Ψ   

vi No. of 
singular 
systems 

(5.3) 

Combination 
number, k 

Combination of 
vertices iv , Ik 

Convex Combination  
Coefficients {

,1 , 1
,...,

k k pI Iλ λ
+

} 

1 102 224 {1, 2, 4, 8, 13} {0.15, 0, 0.45, 0.4, 0} 
2 30 71 {1, 2, 3, 8, 13} {0, 0, 0, 1., 0} 
3 108 

272 {1, 2, 4, 12, 15} 
{0.5, 0, 0, 0.166667, 
0.333333} 

4 8 13 {1, 2, 3, 4, 17} {0, 0, 0, 0, 1.} 
5 108 281 {1, 2, 4, 13, 15} {0, 0, 0, 0.6, 0.4} 
6 108 298 {1, 2, 4, 15, 17} {0, 0, 0, 0.5, 0.5} 
7 77 

181 {1, 2, 4, 5, 15} 
{0, 0, 0.555556, 0.111111, 
0.333333} 

8 171 
691 {1, 2, 8, 9, 15} 

{0, 0, 0.416667, 0.25, 
0.333333} 
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a) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 

Figure 5.3 Example 5.1: Convex hulls projected onto the first 3 coordinate space: 

(a) Ψ ; (b) Ψ . s1 = a, s2 = b, s3 = c. Vertex numbering in (b) refers to the number-
ing in the left-hand side of Table 5.3 

5.1.1.2   Second Weak Inclusion Algorithm 

If the full convex hull (including facets and counterclockwise, from outside, 
triangulation of non-simplicial facets (see (O’Rourke 1998)) is known for 

polytope Ψ , more efficient algorithms exist in computational geometry.  
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These algorithms are typically sub-algorithms to convex hull algorithms  
(e.g., incremental algorithm (O'Rourke 1998)). In the example of Figure 5.1b, 

iv ∈ Ψ  if and only if vi is to the left of each simplex making up the boundary 

of Ψ  (in this case directed edges ( ),k lv v , k< l = k+1). This condition is 

equivalent to requiring that the signs of the determinants k l iξ ξ ξ  must all 

be positive, where ξ  (ξ , resp.) is the column vector of v (v, resp.) in the 

projected imprecise probability space S�  with 1 appended as last coordinate. 
Likewise, in the p-dimensional case, the signs of the determinants 

...k l iξ ξ ξ  must all be positive, where ( ),...,k lv v  is the counterclockwise 

list of vertices for a simplicial facet, and where 1 has been appended to the 
column vectors of the vertices’ coordinates. Very efficient algorithms have 
been devised for calculating the sign of a determinant e.g., (Clarkson 1992). 

5.1.2   Strong Inclusion 

The weak-inclusion definition is awkward to use because it is not defined 
in terms of the probability assignment. Additionally, finding an including 
random set is not trivial, especially if additional constraints, e.g., conso-
nance, must be satisfied because the definition of weak inclusion is not 
constructive. A stronger, more versatile notion of inclusion may easily be 
introduced by using the reservoir-bathtub analogy (Example 3-4).   

Recall that, in this analogy, water can just flow downwards through ver-
tical pipes. Think of the focal sets in F  as a set of reservoirs underlying 
the focal sets in F .  The basic idea is that if F  contains F , then each fo-
cal set iA  should discharge into at least one focal set jA  regardless of 

where the pipe is located in iA , i.e. there must be at least one jA  such that 
i jA A⊆ . Call wij the flow rate from iA  to jA . Since the flow can only be 

downward, wij ≥ 0, and since iA  discharges only into reservoirs that  

contain iA , if iA  is not contained in jA , then wij = 0. As exemplified in 

Figure 5.4a, by conservation of mass, the outgoing flow rate from iA , 

( )im A , must be equal to the sum of the flow rates from iA  into reservoirs 

jA  that contain iA , i.e.,  ( )im A =
: ji ijj A A

w
⊆∑ .  
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On the other hand, if we focus our attention on reservoir jA  as in  

Figure 5.4b, jA  must receive water from all reservoirs iA  contained in it. 

If no reservoir iA  is contained in it, then jA  is dry, and it cannot be con-

sidered as a reservoir (focal set). Therefore, there must be at least one iA  

such that i jA A⊆ . Again, by mass conservation, the outgoing flow rate 

from jA , ( )jm A , must be equal to the flow rates from  all reservoirs iA  

contained in it, i.e., ( )jm A =
: ji iji A A

w
⊆∑ . 

 

 
(a) 

 
 
 
 

 
 

(b) 

Fig. 5.4 Example of strong random set inclusion:  (a) water from A3 flows only 

into reservoirs jA  that contain A3; (b) water flowing into 2A  only comes from 

reservoirs Ai that are contained in 2A  

We can summarize the above discussion in the following definition of 
inclusion (in order not to burden the notation, from now on we will drop 
the adjective “strong”) (Dubois and Prade 1986; Yager 1986; Delgado and  
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Moral 1987; Dubois and Prade 1991): F  ⊆ F  if and only if the three  
following conditions hold: 

 
( ) :i j i ji A A A A∀ ∃ ⊆  

( ) :j i i jii A A A A∀ ∃ ⊆  

:

:

( ) : 0 and

, ( )

, ( )

0

ji

ji

ij

i i
ij

j A A

j j
ij

i A A

i j
ij

iii n n matrix w

A m A w

A m A w

A A w

⊆

⊆

∃ × ≥

∀ =

∀ =

⊄ ⇒ =

∑

∑

w

 

(5.4) 

 
In  words, the weights ( )im A  can only be shared among the supersets of 

iA  that are focal sets in F , and the weight ( )jm A  is the sum of the shares 

allocated to the focal sets in F  that are subsets of jA . Zadeh’s definition 
of inclusion for fuzzy sets is a special case of Eq. (5.4) and (5.1) because if 
F1 and F2 are fuzzy sets equivalent to consonant random set F  and F ,  
respectively, then 

 
F  ⊆ F  and Ψ ⊆ Ψ if and only if 

1 2F Fμ μ≤  (5.5) 

 
Example 5.2. Let S = \ . Consider random sets F : (([0.5, 0.6], 0.5), ([0.3, 0.9], 

0.5)); and F : (([0.3, 0.7], 0.1), ([0.4, 0.9], 0.1), ([0.3, 1], 0.8)). Focal set inclu-
sions and a matrix w are given in Table 5.5; notice that w21 = w22 = 0 because A2 is 

only a subset of 3A . Figure 5.5 shows the relevant reservoir-bathtub analogy: no-

tice that no pipes connect A2 to either 1A  or 2A . 
 

 

Table 5.5 Example 5.2: Matrix w (entries are not italicized) and probability  
assignments (italicized)  

 1A  2A  3A  Total m(Ai)  

A1⊆ ( 1A , 2A , 3A ) 0.1 0.1 0.3 0.5 

A2 ⊆ 3A  0.0 0.0 0.5 0.5 

Total ( )im A  0.1 0.1 0.8 1 
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Fig. 5.5 Example 5.2: Reservoir-bathtub analogy  

One may now wonder what the relationship is between weak inclusion and 
inclusion. Consider again the example in Figure 5.4a, which shows the 
reservoirs jA  that contain reservoir A3, and the relevant flow rates w3j>0. 
With reference to Figure 5.6a, the maximum flow rate provided by A3 into 
bathtub T1 is equal to m(A3). The reservoirs jA  that contain reservoir A3 
also provide a flow rate at least equal to m(A3) because they may also re-
ceive flow rate from other reservoirs Ai, i≠3, and all water flow rates w3j>0 
can be diverted into T1. 

On the other hand, since bathtub T2 does not intersect the footprint of A3, 
it receives no water flow from A3. However, T2 intersects the footprint of 

6A , which contains A3. Thus, the maximum flow rate from the reservoirs 
jA  that contain A3 into T2 is at least m(A3) because all water flow rates 

w3j>0 can be diverted into T2 through jA . By repeating this reasoning for 
all reservoirs Ai, one obtains that the maximum flow rate into any bathtub 
in F  is always lower than or equal to the maximum flow rate provided by 
F , i.e. ( ) ( )Pla T Pla T T≤ ∀ . 
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As for the minimum flow rate into a bathtub, consider again the exam-
ple in Figure 5.4b, which shows the reservoirs Ai contained in reservoir 

2A , and the relevant flow rates wi2>0. Figure 5.6b shows that any bathtub 

T (whose footprint is in 2A ) may receive no water from 2A , and thus flow 
rates wi2>0 may not go into bathtub T. Additionally, reservoirs Ai contained 
in reservoir 2A  may give flow rate to other reservoirs jA , j≠2.  However, 

T has to receive water from all reservoirs Ai contained in reservoir 2A  be-
cause they are contained in T. By repeating this reasoning for all reservoirs 

jA , one obtains that the minimum flow rate into any bathtub T in F  is al-
ways lower than or equal to the minimum flow rate provided by F , i.e. 

( ) ( )Bel T Bel T T≤ ∀ .  As a consequence, (strong) inclusion always implies 

weak inclusion; however, the reverse is not true.  
In order to understand why the reverse is not true, consider a set, U, of 

reservoirs Ai. Let U  be the set of reservoirs jA  onto which all Ai ∈ U dis-

charge, i.e. { }: 0,= > ∈U U
j i

ijA w A . In the example of Figure 5.6a, let us 

assume that A3 is in U, then 1A , 4A , and 6A are in U . Recall that the res-

ervoirs jA  that contain reservoir A3 may also receive flow rate from other 

reservoirs Ai, i≠3. As a consequence: 

 
( ) ( )

: :
i j

ji

i A j A

m A m A
∈ ∈

≤ ∀∑ ∑
U U

U  (5.6) 

 
On the other hand, consider a set, Z , of reservoirs jA . Let Z  be the set of 

reservoirs Ai that discharge into jA ∈ Z , i.e. { }: 0,
ji

ijA w A= > ∈Z Z . In 

the example of Figure 5.6b, let us assume that 2A  is in Z , then 1A , 4A , 

and 5A  are in Z. Recall that the reservoirs Ai contained in reservoir 2A  

may discharge into other reservoirs jA ∉ Z . As a consequence: 
 
 

( ) ( )
::

j i

j i

i Aj A

m A m A
∈∈

≤ ∀∑ ∑
ZZ

Z  

 

(5.7) 
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a) 

 

b) 

Fig. 5.6 Relationship between weak inclusion and (strong) inclusion: a) plausible 
flow rate for bathtubs T1 and T2; b) believed flow rate for bathtub T  

Eqs. (5.6) and (5.7) are necessary and sufficient for mass conservation. 

Notice that Eq. (5.7) for { }j
A=Z  (a single reservoir) gives 

( ) ( )j jBel A Bel A≤  and that, for every bathtub T, there is a Z  such that  

( ) ( )
:

j

j

j A

Bel T m A
∈

= ∑
Z

 (5.8) 

 
This entails that, for every bathtub T, the minimum and maximum flows 
are constrained as in Eq. (5.1). However, mass conservation is much more 
stringent, and requires Eqs. (5.6) and (5.7) to be simultaneously satisfied 
for all combinations of reservoirs. Therefore, even though Eq. (5.1) is sat-
isfied, in general, one may find a combination of reservoirs Z  such that 
there is no bathtub T whose minimum inward flow rate is given by  
Eq. (5.8). This is why weak inclusion does not imply (strong) inclusion. 
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Let us now formally summarize the results obtained so far in a theorem.  
 

Theorem 5.1. Let F  and F  be two random sets or relations defined on S 
with compatible sets of probability measures Ψ  and Ψ , respectively. 
Then: 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) , ,

( ) , ,

( )

( ) , ,

i Bel T Pl T Bel T Pl T T S

ii Bel T Pl T Bel T Pl T T S

iii

iv Bel T Pl T Bel T Pl T

⎡ ⎤⎡ ⎤Ψ ⊆ Ψ ⇔ ⊆ ∀ ⊆⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤⊆ ⇒ ⊆ ∀ ⊆⎣ ⎦ ⎣ ⎦

⊆ ⇒ Ψ ⊆ Ψ

⎡ ⎤⎡ ⎤ ⊄ ⇒ ⊄⎣ ⎦ ⎣ ⎦

F F

F F

F F

 (5.9) 

 
but the reverse of (ii) and (iii) is not necessarily true, i.e.: 
 

( ) ( ) ( ) ( )( ) , ,v Bel T Pla T Bel T Pla T T S⎡ ⎤⎡ ⎤ ⊆ ∀ ⊆ ⇒ ⊆⎣ ⎦ ⎣ ⎦ F F  (5.10) 

 
Proof. (i) Immediate from the definitions (3.10) and (3.11) on page 34. 

(ii) (Dubois and Prade 1986) Let us use Eq. ((5.4) (iii)) within the defini-
tion (3.3) of Plausibility for T ⊆ S: 

 

( ) ( ) { }
,:

: ,
j j ji

j j ji
ij ij

i jT A T A i A A

Pla T m A w w A A T A
∩ ≠∅ ∩ ≠∅ ⊆

= = = ⊆ ∩ ≠ ∅∑ ∑ ∑ ∑   (5.11) 

 
By Eq. (5.4) (ii)): 
 

{ } { }( , ) : , ( , ) : ,
j j ji i ii j A A T A i j A A T A⊆ ∩ ≠ ∅ ⊇ ⊆ ∩ ≠ ∅  (5.12) 

 
Hence: 
 

( ) { } ( ) ( )
,

: ,
i

ji i i
ij

i j T A

Pla T w A A T A m A Pla T
∩ ≠∅

≥ ⊆ ∩ ≠ ∅ = =∑ ∑  (5.13) 

 

Likewise, one can show that ( ) ( )Bel T Bel T≤  by using Eq. (3.7). 

(iii) Immediate from (ii) using (i). However, it is a good exercise to 
prove it independently. Let iA iP ∈ Ψ . From ((5.4) (ii) and (iii)), for any 

jA , one can form a probability measure on jA  by defining: 
 

( ):j i

i
j

jAA
jij

i:A A

P* w P / m A
⊆

⎛ ⎞
⎜ ⎟= ∈ Ψ
⎜ ⎟
⎝ ⎠
∑  (5.14) 
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Let { }: j iAj A i* P* : PΨ = ∈ Ψ . Since 
: i

j

i
j

i A A
A A

⊆
⊆∪ , 

jj*Ψ ⊆ Ψ , and 

hence Ψ ⊆ Ψ .  
(iv) Immediate from (ii) 
(v) (Dubois and Prade 1986).  Consider the following counterexample. 

As in Example 5.1, let S = {a, b, c, d, e}, and consider the two random 
sets: ( ){ },i iA m = { ({a, b}, 0.3), ({a, c}, 0.3), ({c, d}, 0.3), ({e}, 0.1) }, 

( ){ },j jA m  = { ({a, b, c}, 0.4), ({a, b, d}, 0.3), ({a, c, d}, 0.2), ({c, d, e}, 

0.1) }. Table 5.1 gives the calculated Belief values for all possible sub-
sets of S; by using Eq. (3.7) to calculate the relevant Plausibility values, 
they show that the first inclusion in Eq. (5.10) is satisfied. Eq. ((5.4) (iii)) 
yields the following system of 8 linear equations in 7 of the entries of 
matrix w: 

 

11 12

21 23

33 34

44

11 21

12

23 33

34 44

0.3

0.3

0.3

0.1

0.4

0.3

0.2

0.1

w w

w w

w w

w

w w

w

w w

w w

+ =⎧
⎪ + =⎪
⎪ + =
⎪ =⎪
⎨ + =⎪
⎪ =
⎪

+ =⎪
⎪ + =⎩

 (5.15) 

 

to be solved in [0, 1] with the additional equation 
,

1iji j
w =∑ . Eqs. (5.15) 

are inconsistent because they yield the following solutions: (8)→w34 = 0; 
(3)→w33 = 0.3; (1)→w11 = 0.0; (5)→w21 = 0.4; (2)→w23 = -0.1; (7)→w23 = 
0.0. Figure 5.7 shows the reservoir-bathtub analogy; notice that conserva-

tion of mass (5.7) is violated when taking, for example, { }1 2
,A A=Z  be-

cause ( ) ( )1 2
0.7m A m A+ = >  ( ) ( )1 2 0.6m A m A+ = . As a consequence, the 

mass balance equation for reservoir A2 (second equation in (5.15)) would 

give a negative flow rate of -0.1 from A2 to 
3

A  (which violates our defini-
tion of flow direction). This result is incompatible with mass equation  

for 
3

A  (seventh equation in (5.15)), which requires a zero flow rate from 

A2 to 
3

A .                                                                                 à 
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Fig. 5.7 Reservoir representation for the counterexample in Theorem 5.1. (v) 
 

Let F  be the random set corresponding to the actual data. If random set 
F , such that F  ⊇ F , is easier to elicit or to compute with, then it is possi-
ble to calculate (on the safe side) upper and lower bounds on the probabil-
ity of every subset (event) in the same space of interest. In particular, if F  
is consonant (i.e. a fuzzy set or relation with membership function μ(x)), 
then the probability interval for set T is very easy to compute by making 
use of Eq. (3.25) (for infinite sets, the “sup” operator should be used) 

 

( ) ( ) ( ) ( ) ( ) ( ), , 1 max ,max
c x Tx T

Bel T Pl T Nec T Pos T x x Tμ μ
∈∈

⎡ ⎤⎡ ⎤ ⎡ ⎤= = − ∀⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦
 (5.16) 

 
The remainder of this section will introduce algorithms to include a ran-
dom set in a consonant random set, and investigate inclusion and 
monotonicity relationships under the hypothesis of random set independ-
ence and non-interactivity. Section 5.2.2 will explore how monotonicity 
properties are preserved through mappings.  
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5.1.3   Including a Random Set in a Consonant Random Set 

Consider a variable, s, constrained by a non-consonant random set defined 
on a completely ordered set S (e.g., S = \ , so that focal sets are real inter-
vals). At present, there seems to be no preferred algorithm capable of per-
forming this inclusion without any loss of information (Joslyn and Klir 
1992; Klir 1995). We may distinguish four cases: 

a) The minimum values of s yield worst-case scenarios in design situa-
tions: for example this is often the case for resistances, rock mass clas-
sifications (RMR, Q, or GSI), cohesion, and the friction angle of a 
fracture or a soil. In this case, FUPP should be preserved.  

b) The maximum values of s are of interest: for example, the water  
pressure in the ground, and load effects. In this case, FLOW should be 
preserved. 

c) No indication is available on which values of s are crucial, and equal 
weight should be given to preserving FUPP and FLOW. 

d) No indication is available on which values of s are crucial, and one 
wants to minimize the cardinality of the consonant inclusion (applicable 
if S is finite). 

 

In order not to be too conservative, in the first (second) case we will try to 
minimize the difference between the information relative to the left (right) 
extremes of the focal sets. 

5.1.3.1   Case (a) 

Let Ai = [li , ui]. The following is the procedure proposed in (Tonon, Ber-
nardini et al. 2000): 
 

1) Intervals Ai i=1,…, n, are ordered starting from the interval whose 
left extreme is maximum: 

 

{ }1 1: max i

i
A l l=  (5.17) 

{ }: max 2,...,k k i

i k
A l l k n

≥
= =  (5.18) 

 

If two or more intervals are encountered that have the same value of the 
left extreme, then they are ordered starting from the interval having the 
minimum value of the right extreme; this allows the loss of information 
regarding the right extremes to be minimized as well, whenever possible. 

2) Set: 
1 11 1, :A l u A⎡ ⎤= =⎢ ⎥⎣ ⎦

 (5.19) 
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3) For each interval Ai with i ≥ 2, check if: 
1

2
iiu u i
−

≥ ≥  (5.20) 

• IF Eq. (5.20) is true, THEN set : 2
i iu u i= ≥ , case (1) in Figure 5.8.  

• ELSE, set 1: 2
i iu u i−= ≥ , case (2) in Figure 5.8. 

In this way, the focal elements of F  are all nested. Now it is straight-
forward to construct the matrix w introduced in Eq. (5.4)). 

4) For each interval Ai, i=1,...,n let ki be the number of intervals 
j

A  

that include Ai, i.e. 
j

A : 
j iA A⊇ ; it turns out that ki = n-i. 

5) Set : 

( ) ( ) ( )i i
ii iw m A k m A n i= − ⋅β= − − ⋅β  (5.21) 

. .,

0 . .,

j i

ij j i

if A A i e if i j
w

if A A i e if i j

⎧β ⊃ <⎪= ⎨
⎪ ⊆ >⎩

 (5.22) 

where β is a non-negative real number. The smaller β, the better the ap-
proximation of F  to F , with best approximation achieved when β = 0. 

Notice that w so defined is upper tridiagonal when β > 0, and di-
agonal when β = 0. 

6) The basic probability assignment m  is calculated as: 

( )
1

nj

ij
i

m A w
=

=∑  (5.23) 

 
 

 
Fig. 5.8 Two different cases in the inclusion of a non-consonant random set in a 
consonant random set 

Example 5.3. Let S = \ . Consider random set F : {([3, 7], 0.5), ([5, 8], 0.2), 
([2, 4], 0.3)} depicted in Figure 5.9a together with its upper/lower CDFs. Let 
us re-order the focal elements per Eqs. (5.17) and (5.18) so that the random 
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set is {([5, 8], 0.2), ([3, 7], 0.5), ([2, 4], 0.3)}. After applying Step 3, the focal 
sets are {[5, 8], [3, 8], [2, 8]}. Table 5.6 gives matrix w. Figure 5.9b shows 
the upper/lower CDFs  of the including random set F ; when β = 0, the upper 
CDF coincides with the upper CDF of F .   

Table 5.6  Example 5.3: Matrix w (entries are not italicized) and probability as-
signments (italicized) 

 1A  2A  3A  Total m(Ai)  

A1⊆ ( 1A , 2A , 3A ) 0.2-2β β β 0.2 

A2 ⊆ ( 2A , 3A ) 0 0.5- β β 0.5 

A3 ⊆ 3A  0 0 0.3 0.3 

Total ( )im A  0.2-2 β 0.5 0.3+2 β 1 

 

 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 5.9 Example 5.3: (a) Original focal elements and upper/lower CDFs; (b) con-
sonant approximation, case (a); (c) consonant approximation, case (b); (d) contour 
functions of the original included random set (μ) and of the inclusive consonant 
random sets for cases a) and b) 
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Table 5.7 Example 5.4: Matrix w 

 1A  2A  3A  Total m(Ai)  

A1⊆ ( 1A , 2A , 3A ) 0.3-2β β β 0.3 

A2 ⊆ ( 2A , 3A ) 0 0.5- β β 0.5 

A3 ⊆ 3A  0 0 0.2 0.2 

Total ( )im A  0.3-2 β 0.5 0.2+2 β 1 

5.1.3.2   Case (b) 

The same procedure as in case (a) can be used, provided upper and lower 
extremes (“u” and “l”) are interchanged and the words “right” and “left” 
are also interchanged. 
 
Example 5.4. Consider again the same random sets as in Example 5.3,  
F : {([3, 7], 0.5), ([5, 8], 0.2), ([2, 4], 0.3)}. Re-order the focal elements F : 
{([2, 4], 0.3), ([3, 7], 0.5), ([5, 8], 0.2)}. By applying Step 3 with apexes “u” 
and “l” interchanged, the focal sets are {[2, 4], [2, 7], [2, 8]}. Table 5.7 gives 
matrix w. Figure 5.9c shows upper and lower CDFs of F ; when β=0, the 
lower CDF coincides with the lower CDF of F . Figure 5.22d displays the 
contour function μ of F  and the contour functions of the inclusive consonant 
random sets for the cases a) and b), which closely match the contour function 
of F  to the left and right, respectively, of its maximum value, i.e. 0.8. 

5.1.3.3   Case (c) 

To preserve symmetry, consider the consonant projection produced by 
the contour function of F . With slight modifications, the algorithm be-
low was suggested by Dubois and Prade (1986): 
 

1. Let M be the set containing the values of the contour function 
(Plausibility of the singletons, Eqs. (3.24)) of F =(A, m): M = {α = 
Pla({s}): s∈S}. Order M in decreasing order: α1>…>αp

. 
2. Define a nested set A* of focal elements *

iA  as the family of α–cuts 

(Eq.(3.27)) induced by M so that 1
* *
i iA A +⊂ :  

A* = { *
iA ={s: Pl({s})≥αi}:αi∈M} (5.24) 

3. Define the candidate focal sets by using a mapping  f: A → A*  

f(A) = *
iA :    1

* *,i iA A A A −⊆ ⊄  (5.25) 
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4. Let the including random set ( ),m= AF  be defined as: 

( )f=A A ;                 ( ) ( )
( ): i

i

A A f A

m A m A
=

= ∑  
(5.26) 

The inclusion matrix has entries wij=m(Ai) if jA = f(Ai), wij=0 otherwise. 

Table 5.8 Example 5.5: Matrix w  

 1A  2A  3A  Total m(Ai)  

A1⊆ ( 1A , 2A , 3A ) 0.5 0 0 0.5 

A2 ⊆ 3A  0 0 0.2 0.2 

A3 ⊆ ( 2A , 3A ) 0 0.3 0 0.3 

Total ( )im A  0.5 0.3 0.2 1 

 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 5.10 Example 5.5: (a) Included random set F and family of sets A*; (b) F and 
contour function for the consonant approximation for case c); (c) F and contour 
function for the consonant approximation in case d) 
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Example 5.5. Consider again the random set in Example 5.3: F: {([3, 7], 
0.5), ([5, 8], 0.2), ([2, 4], 0.3)}. Figure 5.10a shows the random set F, its con-

tour function and the sets in family A*  generated by the α-cuts. The mapping 

in Eq. (5.25) is as follows: 1 3
*A A6 ; 2 5

*A A6 ; 3 4
*A A6 . Consequently, 

{ }1 3 2 4 3 5
* * *, ,A A A A A A= = = =A ; m={0.5, 0.3, 0.2} as displayed in Figure 5.10b. 

Table 5.8 gives matrix w. Figure 5.10b demonstrates that  Case (c) treats the 
entire support of the included random set equally.  

5.1.3.4   Case (d) 

When S is finite, a different optimality criterion proposed by Dubois  
and Prade (1990) consists of minimizing the cardinality of the including 
consonant random set F , which is defined as: 
 

( ) ( ): :i

i i
FA s S

m A A s Fμ
∈ ∈

= = =∑ ∑F
F  (5.27) 

 
where F  is the cardinality of the fuzzy set F  (De Luca and Termini 1972) 
equivalent to F  through Eq. (3.24). The equality can easily be verified using 
Eqs. (3.26) and (3.27). 

The candidate focal sets are now made up of unions of focal sets in F. 
In order to calculate the cardinality generated by all such possible unions, 
let π be a permutation of the indexes {1,…, n = |A |}. For each permutation 
π, the following including consonant random set is generated: 

 

( )

1

:
i

ji i

j

A A Aπ

=

⎧ ⎫⎪ ⎪= =⎨ ⎬
⎪ ⎪⎩ ⎭

∪A ;      ( ) ( )( )iim A m Aπ=  
 

i=1,…,n (5.28) 

 

Strong inclusion is ensured because ( )1 iiA Aπ −

⊆ , and thus ( ) ( )1

i

i i
w m Aπ − = ; 0 

otherwise. The optimum random set is the one that minimizes F . Dubois 

and Prade (1990, page 436) give a heuristic algorithm to carry out this 
minimization, which, however, is not guaranteed to converge to the opti-
mal solution. 

A possible extension to S = \  when the number of focal elements is fi-
nite and no focal set degenerates to a point is to consider the (Lebesgue) 

measure :
i

i

A
A ds= ∫ . 

 

Example 5.6. Consider again the random set in Example 5.3 and Example 5.5:  
F: {([5, 8], 0.2), ([3, 7], 0.5), ([2, 4], 0.3)} with |A1|=4; |A2|=5; |A3|=3. Table 5.9  
gives all possible including random sets, from which the last permutation yields the 
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minimum cardinality. This is the random set F : {([2, 4], 0.3), ([2, 7], 0.5), ([2, 8], 
0.2)}, which coincides with the including random set found in Case (b). Figure 5.10c 
shows its contour function (Case d).  

Table 5.9  Example 5.6: Enumeration of all possible including random sets  

π(1) π(2) π(3) 1A  2A  
3A  1A  2A 3A 1m  2m 3m  F  

1 2 3 1 1∪2 1∪2∪3 4  6   7 0.2 0.5 0.3 5.9 
1 3 2 1 1∪3 1∪3∪2 4 7   7 0.2 0.3 0.5 6.4 
2 1 3 2 2∪1 2∪1∪3 5 6   7 0.5 0.2 0.3 5.8 
2 3 1 2 2∪3 2∪3∪1 5 6   7 0.5 0.3 0.2 5.7 
3 1 2 3 3∪1 3∪1∪2 3 7   7 0.3 0.2 0.5 5.8 
3 2 1 3 3∪2 3∪2∪1 3 6   7 0.3 0.5 0.2 5.3 

Table 5.10 Example 5.6: Matrix w  

 1A = A3 2A = A3∪ A2 3A = A3∪ A2∪ A1 Total m(Ai)   

A1⊆ 3A   0 0 0.2 0.2 

A2 ⊆ ( 2A , 3A ) 0 0.5 0 0.5 

A3 ⊆ ( 1A , 2A , 3A )  0.3 0 0 0.3 

Total ( )im A  0.3 0.5 0.2 1 

 

5.1.4   Inclusion Properties for Random Relations under the 
Hypotheses of Random Set Independence and  
Non-interactivity 

In Section 4.3 (page 158), several notions of independence were introduced 
for random sets; in particular, Section 4.3.1 (page 159) introduced the defini-
tion of random set independence, whereas Section 4.3.5 (page 174) intro-
duced the definition of fuzzy Cartesian product. In this section, we bring  
together these two notions of independence and the notion of inclusion to 
study the following problem. 

Let F1 and F2 be two random sets on S1 and S2, respectively, and let 1F  

and 2F  be two consonant inclusions of theirs, i.e. Fi ⊆  iF  (i = 1, 2). As il-
lustrated in Figure 5.11, let (Z1, z1) be the random relation on S1×S2 ob-
tained from F1 and F2 under the hypothesis of random set independence, let 
(Z2, z2) be the fuzzy Cartesian product on S1×S2 obtained from 1F  and 2F , 

and let (Z3, z3) be the random relation on S1×S2 obtained from 1F  and 2F  
under the hypothesis of random set independence. The purpose of this Sec-
tion is to investigate whether: 
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1) (Z1, z1) ⊆  (Z2, z2). In this case, we will say that fuzzy Cartesian 
product preserves inclusion. 

2) (Z1, z1) ⊆  (Z3, z3). In this case, we will say that random set inde-
pendence preserves inclusion. 

 

The practical consequence of this study (Tonon and Chen 2005) is as fol-
lows: if the inclusions are true, then the Belief-Plausibility intervals calcu-
lated with (Z2, z2) and (Z3, z3) include the Belief-Plausibility intervals cal-
culated with (Z1, z1) (Theorem 5.1 (ii), page 218). If these bounds are 
interpreted as upper and lower probabilities, then probability bounds calcu-
lated with (Z2, z2) and (Z3, z3) include the probability bounds calculated 
with (Z1, z1). For example, the authors used the hypothesis of fuzzy Carte-
sian product to constrain parameters in the formulation of single and multi-
objective optimizations of engineering systems (Tonon and Bernardini 
1998; Tonon and Bernardini 1999). 

 

 

 
Fig. 5.11 Schematic of the random sets used in the section: ≈ Fi indicates equivalent 
fuzzy set Fi  

5.1.4.1   Fuzzy Cartesian Product 

We will use a counterexample to show that the hypotheses above do not 
necessarily imply that (Z1, z1) ⊆  (Z2, z2). In this example, S = S1×S2 where 
S1 = S2 = \  as illustrated in Table 5.11, which gives the marginal random 
sets F1 and F2 defined on S1 and S2, respectively. Following the procedure 
for inclusion of 1-D random sets described in Section 5.1.3.1 (page 221), 
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one obtains consonant random sets 1F  and 2F , which include F1 and F2, re-

spectively. This is detailed in Table 5.12, which gives matrices w for F1 
and F2, respectively, and in Table 5.13. Notice that F1 and 1F  are the ran-
dom set and consonant random set, respectively, in Example 5.3. In order 
to understand the effect of the parameter β introduced in Section 5.1.3 
(page 221), let β = 10-6. As explained in Sections 3.2.4, 4.1, and 4.3.5, con-
sonant random set Fi is equivalent to a fuzzy set, Fi. Hence, in Table 5.13 

focal elements A  are also considered as α-cuts with α-levels ( )k

i
F kAμ  for 

Fk. For example: ( )1

1
1F Aμ  = ( )3

1 11

i

i
m A

=∑  = 1, ( ) ( )1

32
1 1 12

i
F i

A m Aμ ==∑ = 

0.800002, ( ) ( )1

3 3
1 1 1F A m Aμ = =  0.300002. 

Table 5.11 Marginal random sets  

F1 = { }( )1 1,iA m  F 2 = { }( )2 2,iA m  

1
iA  m1( 1

iA ) 2
iA  m2( 2

iA ) 
1
1A  =[5, 8] 0.2 1

2A  =[3, 7] 0.7 

2
1A  =[3, 7] 0.5 2

2A  =[2, 5] 0.1 

3
1A  =[2, 4] 0.3 3

2A  =[1, 8] 0.2 

Table 5.12 Matrices w and consonant marginal random sets  

 1
1A  2

1A  3
1A  

Total  

m( 1
iA )  

  1
2A  2

2A  3
2A  

Total  

m( 2
iA )   

1 1 2 3
1 1 1 1, ,A A A A⊆ 0.2-2β β β 0.2  1 1 2 3

2 2 2 2, ,A A A A⊆ 0.7-2β β β 0.7 

2
1A  ⊆ 2

1A , 3
1A  0 0.5- β β 0.5  2

2A  ⊆ 2
2A , 3

2A  0 0.1- β β 0.1 

3
1A  ⊆ 3

1A  0 0 0.3 0.3  3
2A  ⊆ 3

2A  0 0 0.2 0.2 

Total ( )1
im A  

0.2-2 β 0.5 0.3+2 β 1  
Total ( )2

im A  
0.7-2 β 0.1 0.2+2 β 1 

 
 

Table 5.13 Consonant marginal random sets and relevant α-levels  

1
iA  ( )1

im A  ( )1 1
i

F Aμ  2
iA  ( )2

im A  ( )2 2
i

F Aμ  

1
1A =[5, 8] 0.199998 1 1

2A =[3, 7] 0.699998 1 

2
1A =[3, 8] 0.5 0.800002 2

2A  =[2, 7] 0.1 0.300002 

3
1A =[2, 8] 0.300002 0.300002 3

2A  =[1, 8] 0.200002 0.200002 
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Now, as depicted in Figure 5.11, let us calculate random relation (Z1, z1) 
from the marginals using the hypothesis of random-set independence  
(Table 5.14). Consonant random relation (Z2, z2) was calculated in two 
steps: 

 

1) The α-levels for the decomposable fuzzy relationship F equivalent 
to (Z2, z2) were calculated using Eq. (4.115) and were reported in 
Table 5.15. 

2) Notice that some α-cuts in Table 5.15 have the same α-level; for ex-

ample α-cuts ( )1 3
1 2A A× , ( )2 3

1 2A A×  and ( )3 3
1 2A A×  all have α-level 

0.200002. They can be grouped into one α-cut as shown in Table 
5.16, and the non-interactive random Cartesian product (Z2, z2) 
equivalent to the decomposable fuzzy relationship F can eventually 
be calculated using Eq. (4.116) (fourth column in Table 5.16). 

 

Table 5.14 Random-set independent random relation (Z1, z1) with focal elements 
Ci obtained from marginals F1 and F2 given in Table 5.11 

Ci  
1 2
i jA A×  z1(Ci) = m1( 1

iA )  m2( 2
jA ) 

C1 1×1; [5,8]×[3,7] 0.14 
C2 1×2; [5,8]×[2,5] 0.02 
C3 1×3; [5,8]×[1,8] 0.04 
C4 2×1; [3,7]×[3,7] 0.35 
C5 2×2; [3,7]×[2,5] 0.05 
C6 2×3; [3,7]×[1,8] 0.10 
C7 3×1; [2,4]×[3,7] 0.21 
C8 3×2; [2,4]×[2,5] 0.03 
C9 3×3; [2,4]×[1,8] 0.06 

Table 5.15 Fuzzy Cartesian product F obtained from fuzzy sets F1 and F2 given in 
Table 5.13 

Di  
1 2
i jA A×  μF(Di) = min{(μ( 1

iA ), μ( 2
jA )} 

D1 1×1; [5,8]×[3,7] 1 
D2 1×2; [5,8]×[2,7] 0.300002 
D3 1×3; [5,8]×[1,8] 0.200002 
D4 2×1; [3,8]×[3,7] 0.800002 
D5 2×2; [3,8]×[2,7] 0.300002 
D6 2×3; [3,8]×[1,8] 0.200002 
D7 3×1; [2,8]×[3,7] 0.300002 
D8 3×2; [2,8]×[2,7] 0.300002 
D9 3×3; [2,8]×[1,8] 0.200002 
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Table 5.16 Fuzzy Cartesian product F obtained from fuzzy sets F1 and F2 given in 
Table 5.13 and its equivalent consonant random Cartesian product (Z2, z2) with 
focal elements Di 

Di  
1 2
i jA A×  μF(Di)  z2(Di) 

D1 1 1
1 2A A×  = [5,8]×[3,7] 1 0.199998 

D2 2 1
1 2A A× = [3,8]×[3,7] 0.800002 0.5 

D3 ( )1 2
1 2A A× ∪ ( )2 2

1 2A A× ∪  

( )3 1
1 2A A× ∪ ( )3 2

1 2A A× = [2,8]×[2,7]  

0.300002 0.1 

D4 ( )1 3
1 2A A× ∪ ( )2 3

1 2A A× ∪  

( )3 3
1 2A A× = [2,8]×[1,8] 

0.200002 0.200002 

Table 5.17 Focal elements for the calculation of Belief and Plausibility of C1 = D1 

Random relation (Z1, z1), Table 5.14 
 

 Random relation (Z2, z2), Table 5.16 

Ci : Ci ⊆  C1 Ci : Ci ∩  C1 ≠ ∅  Di : Di ⊆  C1 = D1 Di : Di ∩  C1 ≠ ∅ 
C1 C1, C2, C3, C4, C5, C6, 

C7, C8, C9 
 D1 D1, D2, D3, D4 

 
 

For C1 = D1, Table 5.17 gives the focal elements needed to calculate Be-
lief and Plausibility using (Z1, z1) and (Z2, z2), and one obtains [

1ZBel (C1), 

1ZPl (C 1)] = [0.14, 1] and [
2ZBel (C 1), 

2ZPl (C 1)] = [0.19998, 1]. Since 

2ZBel (C 1) > 
1ZBel (C 1), then [

1ZBel (C 1), 
1ZPl (C 1)] ⊄  [

2ZBel (C 1), 

2ZPl (C 1)], and from Theorem 5.1(iv), one concludes that (Z1, z1) ⊄  (Z2, z2). 

Thus, this counterexample shows that non-interactivity does not necessarily 
preserve inclusion. 

5.1.4.2   Random Set Independence 

When random set independence is used on 1F  and 2F  (Figure 5.11), inclu-
sion is preserved, i.e. (Z1, z1) ⊆  (Z3, z3). In order to show this property, let 
us consider each of the three conditions in Eq. (5.4)): 
 

(i) ( )1 2 1
i jA A∀ × ∈ Z , ∃ 1 2 1 1 2 2, : ;k l i k j lA A A A A A⊆ ⊆  because F1 ⊆ 1F  and  

F2 ⊆ 2F , hence  ( ) ( )1 2 1 2
i j k lA A A A× ⊆ × ; 
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(ii) Similar to (i) 
(iii) Let w1, w2 be the inclusion matrixes for the marginals. Consider 

matrix w: w( 1 2
i jA A× , 1 2

k lA A× )= w1,ik ⋅ w2,jl. Now, ( )1 2
i jA A∀ × : 

 

( )
( ) ( )

1 2 1 1 2 1 2 1 1 22 2

1 1 1 2 22

1 2 1 2 1, 2,
: :

1, 2, 1 1 2 2
: :

,
j jk l i k l k l i k l

k i k jl l

i j k l
ik jl

A A A A A A A A A A A A

i j
ik jl

A A A A A A

w A A A A w w

w w m A m A

× × ⊆ × × × ⊆ ×

⊆ ⊆

× × = ⋅

= ⋅ = ⋅

∑ ∑

∑ ∑
 (5.29) 

 

Likewise for 1 2
k lA A× . 

Although (Z1, z1) ⊆  (Z3, z3), (Z3, z3) is not necessarily consonant. As a 
counterexample, consider the consonant marginal inclusions in Table 5.13: 
Z3 includes the focal elements A1= [5, 8]×[3, 7]; A2= [5, 8]×[2, 7]; A3 = [3, 
8]×[3, 7]. Although A1⊆ A2 and, A1⊆ A3, A2 and A3 satisfy no inclusion rela-
tionship. An optimal consonant inclusion (i.e a consonant outer approxima-
tion; see Dubois and Prade 1990 p. 425 for the definitions of optimal inner 
and outer approximations of a random set) to (Z3, z3) can nevertheless be 
uniquely determined as specified in the following theorem.  

 

Theorem 5.2 (Dubois and Prade 1990). Let F1 and F2 be the fuzzy sets 
equivalent to consonant random sets 1F ⊇F1 and 2F ⊇F2, respectively. Let 

L(F1×F2) be the set of α-cuts of the fuzzy Cartesian product F1×F2. The 
minimal outer approximation, H, to (Z3, z3) whose focal sets are in 
L(F1×F2) has membership function: 

 

( ) ( ) ( )( ) ( ) ( )( ){ }1 1 2 21 2 1 1 2 2, min 2 , 2H F F F Fs s s s s sμ μ μ μ μ= ⋅ − ⋅ −  (5.30) 
 

Proof : Let MH = 
1 2F FM M∪ = {α1,…, αn+1} with α1=1>α2 > …>αn+1=0 be 

the union of the α-values attained by F1 , 
1FM , and F2, 

2FM . Let ii
j jA Aα= , j 

= 1, 2, so that L(F1×F2)={ 1 2
i i iB A A= × , i =1,…,n}. Let mi=αi-αi+1 , i =1,…,n. 

Z3 is composed of n2 focal sets of the kind ( )1
1 2

i j n i jB A A+ − ⋅ = × , i,j =1,…,n, with 

assignment mi⋅ mj. Therefore, some focal sets are not in L(F1×F2) (Section 
4.3.5); in particular, the focal sets included in 1 2

i iA A×  but not in 1 1
1 2
i iA A− −×  

are { 1 2
i jA A× : j<i}∪{ 1 2

j iA A× : j<i}. Let k (mod n) be the remainder of k/n. 

Since Bk is generated by 1 2
i jA A×  where 

 

( ) ( )mod mod 0k n if k n
i

n otherwise

⎧ >
= ⎨
⎩

;   ( ) ( )/ 1 mod 0

/

INT k n if k n
j

k n otherwise

⎧ + >
= ⎨
⎩

, (5.31) 
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the inclusion is ensured by matrix w with entries wki = mi⋅ mj if i,j ≤i; 0 
otherwise. This entails that the probability assignment of the including 
random set is: 

 

( ) ( )21 1 1 1
1 2m B A A m= × =  

( ) ( )2

1 2 2i i i i i j

j i

m B A A m m m
<

= × = + ∑    , i=2, ..n 
(5.32) 

 

Let ( ) ( ) ( )1 1
1 2 1 2 1 2, i i i is s A A A A− −∈ × − × , that is, ( ) ( ){ }

1 21 2min , i
F Fs sμ μ α= . Then, 

 

( ) ( )1 2 1 2, j j
H

j i

s s m A Aμ
≥

= ×∑                      Eqs. (3.23) and (3.20)

( )2
2j j k

j i k j

m m m
≥ <

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑ ∑                             Eq. (5.32) 

( )2
2 1j j k

j i k j

m m m
≥ ≥

⎡ ⎤⎛ ⎞
= + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑                   Eq. (3.3) 

( )2
2 2j j j k

j i j i k j i

m m m m
≥ ≥ ≥ ≥

= + −∑ ∑ ∑  

( )2
2 2i j j k

j i k j i

m m mα
≥ > ≥

= − −∑ ∑  

( ) ( )
2

2
2 2i j i i

j i

mα α α
≥

⎡ ⎤
= − = −⎢ ⎥

⎣ ⎦
∑  

( ) ( ) ( ){ }( )1 21 2min ,i
F Fh h s sα μ μ= =

 

where ( ) ( )2
: 2h x x x= −  

(5.33) 

Eq. (5.30) follows because h(x) is strictly increasing in [0, 1], i.e. 

1 2* *H F F= ×  where 
 

( ) ( )( )* *i iF i F is h sμ μ=  (5.34) 

  à 
 

A weak inner consonant inclusion, L ⊆weak (Z3, z3) can also be easily calcu-
lated as detailed in the following Theorem 5.4. Before proving Theorem 
5.4, we need the result in Theorem 5.3. 

 
Theorem 5.3 ((Dubois and Prade 1986), page 214; (Dubois and Prade 
1990), page 427)  
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(i) Call a consistent random set (relation) F=(A, m)  a random set such 
that  

A
A

∈
≠ ∅∩ A . The weak optimal inner consonant approximation 

of a consistent random set (relation) F is the fuzzy set (relation) F* 
whose membership function is the contour function of F.  

(ii) If F is not consistent, then F* yields an inner approximation to the 
Plausibility of F. 

 
Proof : (i) Notice that Plausibility can also be written as:  

 
( ) ( ) ( ), sup  A

s TA S

T Pla T m A I s
∈⊆

∀ = ⋅∑F  (5.35) 

 
where IA is the characteristic function of A. Let F* be the random set 
equivalent to F*.The weak inclusion is ensured by the inequality: 
 

( ) ( ) ( ) { }( )

( ) ( )
* *

( .(3.24)) ( .(3.25))

sup sup

sup

A
s T s TA S

Eq Eq

F
s T

Pla T m A I s Pla s

s Pla Tμ

∈ ∈⊆

∈

≥ ⋅ =

= =

∑F F

F

 (5.36) 

 
As for Belief, since the random set is consistent, { }( )

*
sup 1
s S

Pla s
∈

=F , Eqs. 

(3.4) and (3.7) hold, and thus 
 

( ) ( ) ( ) ( )
* *

.(3.7) .(5.36) .(3.7)

1 1
Eq Eq Eq

C CBel T Pla T Pla T Bel T= − ≥ − =F F F F  (5.37) 

 
Let Pla be the Plausibility (or Possibility) measure of any consonant ran-
dom set such that Pla ≤ PlaF, and let μ be the membership function of its 
equivalent fuzzy set. Then ∀s∈S, μ(s) ≤ PlaF (s)= ( )

*F sμ .    

(ii) If F is not consistent, Eqs. (3.4) and (3.7), and thus (5.37) are no longer 
valid because m(∅)>0. As a result, an inner bound on the Belief cannot be 
ensured.                                                                                             à 

 

 

Theorem 5.4 (Dubois and Prade 1990). Let F1 and F2 be the fuzzy sets 
equivalent to consonant random sets (relations) 1F ⊇F1 and 2F ⊇F2, respec-

tively. The best weak inner consonant approximation, L⊆weak(Z3, z3) has 
membership function: 

 

( ) ( ) ( )
1 21 2 1 2,L F Fs s s sμ μ μ= ⋅  (5.38) 
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Proof : Notice that (Z3, z3) is consistent, i.e. k

k

B
B

∈
≠ ∅∩ Z , because 

1 1 1
1 2

kA A B B k× = ⊆ ∀ . In order to show that the contour function of (Z3, z3)  

is given by Eq. (5.38), let MH = 
1 2F FM M∪ = {α1,…, αn+1} with α1=1>α2 > 

…>αn+1=0 being the union of the α-values attained by F1 , 
1FM , and F2, 

2FM . Let mi=αi-αi+1, i =1,…,n. Z3 is composed of focal sets of the kind 

1 2
i jA A× , i,j =1,…,n, with assignment  
 

( ) ( )1 1

1 1 1 1

i j i i j j

i j i j i j i j

m m + +

+ + + +

= − − =

⋅ − ⋅ − ⋅ + ⋅

α α α α

α α α α α α α α
 (5.39) 

 

Let p≥1, q≥1 be the smallest indexes such that ( )1 2 1 2, p qs s A A∈ ×  (i.e. 

( ) 1
1 2 1 2, p qs s A A+∉ ×  and ( ) 1

1 2 1 2, p qs s A A +∉ × ), then 
 

( ) { }( )1 2 1 2
;

1 1 1 1

;

, , i j
L

i p j q

i j i j i j i j p q

i p j q

s s Pla s s m mμ

α α α α α α α α α α
≥ ≥

+ + + +

≥ ≥

= = =

= ⋅ − ⋅ − ⋅ + ⋅ = ⋅

∑

∑
 (5.40) 

 
The theorem follows by using the contour function given by Eq. (5.38) 
within Theorem 5.3(i).        à 
 

It is important to notice that the α-cuts of L are not necessarily Cartesian 
products. Also, from Theorem 5.3(ii), one obtains that, if (Z1, z1) is not 
consistent, then the random relation defined by its contour function only 
defines an inner bound on the Plausibility of (Z1, z1). 

In summary, under the hypothesis of random set independence, the fol-
lowing inclusions hold (refer also to Figure 5.11): 

 

(Z1, z1) ⊆ (Z3, z3) ⊆ H 
L ⊆weak (Z3, z3) ⊆ H 

(5.41) 

 

However, in general, L ⊄weak (Z1, z1) because L is constructed by using F1 
and F2, which include the original marginals F1 and F2. The Plausibility of 
(Z1, z1) is bounded from below by its contour function. 

 
Example 5.7. Consider the random sets in the counterexample of Section 
5.1.4.1 (Table 5.11), whose consonant inclusions are given in Table 5.13, and 
repeated here in Table 5.18 together with the membership functions of the 
transformed fuzzy sets Fi* calculated using Eq. (5.34) (columns 1 and 4, and 
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5 and 8). The set of α-values is MH = 
1 2F FM M∪ = {1, 0.800002, 0.300002, 

0.200002}, and {m1, m2, m3, m4}={0.199998, 0.5, 0.1, 0.200002} The set  
of focal elements for the including consonant random set is L(F1×F2) =  
{ 1B  = [5, 8]×[3, 7], 2B = [3, 8]×[3, 7], 3B  =[2, 8]×[2, 7], 4B = [2, 8]×  
[1, 8]}. Table 5.19 gives the marginal focal elements together with the com-
bined focal sets Bk: notice that several Bks are not in L(F1×F2) (e.g., B3), and  
several Bks coincide because 

1F HM M⊂  and 
2F HM M⊂ . Table 5.20 gives the 

coefficients i, j calculated with Eq. (5.31) for non-zero entries wki = mi⋅mj, 
from which Eq. (5.32) can be checked. Also given in Table 5.20 (rightmost 
column) are the probability assignment of the included random relation (Z3, 
z3), and the probability assignment for the including consonant random rela-
tion (bottom row); both assignments have been calculated using Eq. (5.4)).  

Table 5.21 reports the including fuzzy relation H calculated using Eq. (5.30), 
or, equivalently, as 1 2* *H F F= × , where fuzzy sets Fi* are given in Table 5.18 

(columns 1 and 4, and 5 and 8). The rightmost column in Table 5.21 reports 
the probability assignment for the including consonant random set equivalent 
to 1 2* *H F F= × , which is the same as the bottom row in Table 5.20, as is to 

be expected by the derivation in Eq. (5.33). 
As for inner approximation, Theorem 5.4 applied to point (s1, s2)=(3, 2) yields 
( ) ( ) ( )

1 2
3,2 3 2 0.800002 0.300002=0.2400022L F Fμ μ μ= ⋅ = ⋅ . On the other hand, the 

smallest indexes p, q such that ( ) 1 22,3 p qA A∈ ×  are p = 3 and q = 2, and thus: 
 

( ) { }( )

{ }
1 2

2; 3

3

2,3 ,

: 7,8,11,12,15,16 0.2400022

i j
L

i j

k

Pla s s m m

z k

≥ ≥

= = =

= = =

∑

∑

μ
 (5.42) 

 

In order to appreciate outer and inner approximations, let us calculate the bounds 
on Plausibility and Belief for set T=[1, 4]×[2, 6] (Table 5.20). Plausibility and Be-
lief for the original random relation (Z1, z1) (Table 5.14) are equal to: 

 
Bel(T) = z1(C8) = 0.03 

Pla(T) = ( )
9

1
4

i
i

z C
=
∑  = 0.35+0.05+0.1+0.21+0.03+0.06=0.8, (5.43) 

 

 

whereas (Z3, z3) yields (Table 5.19 and Table 5.20): 
 

Bel(T) = 0.00  

Pla(T) = ( )
16

3
5

k

i

z B
=
∑  = 0.800002 (5.44) 
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The outer approximation H (Theorem 5.2) gives: 
 

BelH(T)  ( )
.(3.25)

1 max
c

Eq

H
s T

sμ
∈

= − = 1-1=0.00  

PlaH(T) ( )
.(3.25)

max
Eq

H
s T

sμ
∈

=  = 0.9600008 

(5.45) 

 
The inner approximation L (Theorem 5.4) gives: 

 

BelL(T) ( )
.(3.25)

1 max 1 1 0.00
c

Eq

L
s T

sμ
∈

= − = − =  

PlaL(T) ( ) ( ) ( )
1 2

1 2

.(3.25)

1 2
[1,4] [2,6]

max max max
Eq

L F F
s T s s

s s sμ μ μ
∈ ∈ ∈

= = ⋅  

0.800002 1=0.800002= ⋅  

(5.46) 

 
These results exemplify the inclusions in Eq. (5.41); inner approximation L 
turned out to yield the same values for Belief and Probability as (Z3, z3), 
whereas H yielded a higher value for the Plausibility. L is not an inner inclu-
sion for (Z1, z1) because the Belief value calculated by using L (Eq. (5.46)) is 
smaller than the relevant value calculated by using (Z1, z1) (Eq. (5.43)). 

 

Table 5.18 Example 5.7: Marginal consonant random sets, equivalent fuzzy sets, 
and transformed fuzzy sets  

1
iA  ( )1 1

im A  ( )1 1
i

F Aμ  ( )1 * 1
i

F Aμ  2
iA  ( )2 2

im A  ( )2 2
i

F Aμ  ( )2 * 2
i

F Aμ  

1
1A = [5, 8] 0.199998 1 1 1

2A = [3, 7] 0.699998 1 1 

2
1A = [3, 8] 0.5 0.800002 0.9600008 2

2A  = [2, 7] 0.1 0.300002 0.5100028 

3
1A = [2, 8] 0.300002 0.300002 0.5100028 3

2A  = [1, 8] 0.200002 0.200002 0.3600032 

Table 5.19 Example 5.7: Marginal focal elements and combined focal sets Bk 

 1
2A = [3, 7] 2

1A = [3, 7] 3
1A = [2, 7] 4

1A = [1, 8] 

1
1A = [5, 8] B1=[5, 8] ×[3, 7] B2=[5, 8] ×[3, 7] B3=[5, 8] ×[2, 7] B4=[5, 8] ×[1, 8] 

2
1A = [3, 8] B5=[3, 8] ×[3, 7] B6=[3, 8] ×[3, 7] B7=[3, 8] ×[2, 7] B8=[3, 8] ×[1, 8] 

3
1A = [2, 8] B9=[2, 8] ×[3, 7] B10=[2, 8] ×[3, 7] B11=[2, 8] ×[2, 7] B12=[2, 8] ×[1, 8] 

4
1A = [2, 8] B13=[2, 8] ×[3, 7] B14=[2, 8] ×[3, 7] B15=[2, 8] ×[2, 7] B16=[2, 8] ×[1, 8] 
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Table 5.20 Example 5.7: matrix w. Each non-zero entry gives the coefficients i, j 
of product mi⋅ mj  

 1 2 3 4 z3
k 

1 1, 1    0.0399992 
2  1, 2   0.099999 
3   1, 3  0.0199998 
4    1, 4 0.04 
5  2, 1   0.099999 
6  2, 2   0.25 
7   2, 3  0.05 
8    2, 4 0.100001 
9   3, 1  0.0199998 

10   3, 2  0.05 
11   3, 3  0.01 
12    3, 4 0.0200002 
13    4, 1 0.04 
14    4, 2 0.100001 
15    4, 3 0.0200002 
16    4, 4 0.0400008 

( )im B  0.0399992 0.449998 0.1499996 0.3600032 1 

Table 5.21 Example 5.7: Including consonant random relation H (Eq. (5.30))  

i α-level 
1 2

i i iB A A= ×  ( )im B = αi-αi+1 

1 1.0000000 [5, 8]×[3, 7] 0.0399992 
2 0.9600008 [3, 8]×[3, 7] 0.4499980 
3 0.5100028 [2, 8]×[2, 7] 0.1499996 
4 0.3600032 [2, 8]×[1, 8] 0.3600032 

kB
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5.2   Mappings of Sets/Relations  

5.2.1   Extension Principle 

Let F = {(Ai, m) be a random set on S, and let G: S → Z be a single- or multi-
valued mapping (e.g., a mathematical model of an engineering system). The 
information available on S is extended to Z by mapping each focal set  
(together with its probability assignment) to Z, so that a new random set,  
R = ( ){ },iR ρ , is defined on Z. In formulas, the extension principle is: 

 

( )
( )

( )
( )

:

:

: ,
i j

i i

i j

j R G A

R G A

R m A
=

=

ρ = ∑  (5.47) 

 
which takes into account the possibility that more than one focal set Aj be 
mapped on the same set Ri. 

 
Example 5.8. Consider the random set {([1, 3], 0.1), ( [3, 6], 0.3), ([-3, -1], 0.6)}, 

on S =\ , and the function G: →\ \ , 2a a6 . The new random set ( ){ },iR ρ  

is {([1, 9], 0.1), ([9, 36], 0.3), ([1, 9], 0.6)}. Since A1 and A3 both map into [1, 9], 
the final range is {{[1, 9], 0.7), ([9, 36], 0.3). 

 
Since the extension principle generates a random set on Z, one of the 
strengths of random set theory lies in the fact that the extension principle 
(5.47) holds for both single-valued mappings and multi-valued mappings. 
The reason being that a focal set in the range Z can be generated by: 

• A focal set mapped by a single-valued mapping. 
• A singleton mapped by a multi-valued mapping. 
• A focal set mapped by a multi-valued mapping. 

 
Depending on the structure of the focal sets, the extension principle in  
Eq. (5.47) has several important specializations, which will be explored  
in the next sections. The following theorems, although originally proven 
for single-valued mappings (f in the following) are valid for multi-valued 
mappings (G). 
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Fig. 5.12 Example 5.9: Contour function of the random set induced on Z 

 

Example 5.9. Let us assume: S1 = S2 = {1, 2, 3};       Z = ` ;     G: S1 × S2 → ` , 

( ) ( ) ( )2 2

1 2 1 2 1 2, 1, 1a a a a a a⎡ ⎤⋅ − ⋅ +⎣ ⎦6 .  

The random set on S1 × S2 is assigned as:  

{(A1 = {1, 2, 3} x {1}, m(A1) = 0.6);    (A2 = {2}×{1, 2},  m(A2) = 0.4)}. 

The random set R  on Z is obtained as:  

{(R1  =  [0, 2]∪[3, 5]∪[8, 10], ρ(R1) = 0.6);  (R2  =  [3, 5]∪[15, 17],  ρ(R2) = 0.4)}.  

Figure 5.12 shows the contour function of R..  

5.2.1.1   Consonant Random Relation 

Consonant random relations were introduced in Section 4.1, Figure 4.2, 
page 106. The following theorem gives a quick way to calculate the image 
of consonant random relations, and clarifies that only one version of fuzzy 
extension principles is compatible with random set theory. 

 
Theorem 5.5. Given a consonant random relation F equivalent to a fuzzy 
relation F, its extension R  obtained by using Eq. (5.47) is consonant and 
is equivalent to the fuzzy set R defined by: 
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( ) ( ) ( ) ( ){ }
( )

1
1 2 1 2

1

sup , : ,
,

0

F

R

s s s s f z
z z

if f z

μ
μ

−

−

⎧ ∈⎪∀ = ⎨
= ∅⎪⎩

 

 

(5.48) 

 

 

Fig. 5.13 Mapping of a consonant random relation 

Proof. To prove Eq. (5.48) in a general setting (Dubois and Prade 1991), 
let X= ( )1f z− ≠ ∅  (Figure 5.13). Let us consider consonance first. Since 

A1⊂ A2⊂...⊂An and ( ) ( )i j i jA A f A f A⊂ ⇒ ⊆ , f(A1) ⊆ f(A2) ⊆...⊆ f(An), 

hence the range of focal elements is nested. Now, let R be the fuzzy rela-
tion equivalent to R per Eq. (4.10). The membership function of any point 
z is: 

 

( ) ( ) ( )
( )

( ) ( ){ }.(4.10) .(5.47)

1 2
: :

: ,
i i i i

Eq Eq
i i i i

R
R z R A z f A

z R m A m A s s A Xμ ρ
∈ ∈

= = = ∃ ∈ ∩∑ ∑ ∑  
(5.49) 

In the last passage, the membership calculation has been “pulled back” 

onto the initial S1×S2 space. Because { }iA  is consonant, let 

( ){ }1 2min : *, * ij i s s A X= ∃ ∈ ∩ , then  ( )1 2*, * is s A i j∈ ∀ ≥ , and 

 
( ) ( )

( )
( )

1 2

1 2
: *, *

*, *
i i

i
R F

A s s A

z m A s sμ μ
∈

= =∑  (5.50) 

 

with the convention ( ) 0R zμ =  if ( ){ }1 2: *, * ii s s A X∃ ∈ ∩ = ∅ . Clearly 

( )1 2*, *s s  maximizes Fμ over X.                   à 
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Fig. 5.14 1-D example of extension principle for consonant random relation  
defined on the real line 

Figure 5.14 shows an example where S = \ : the starting point is a value 
z* ∈ Z = \ , whose inverse through f is {s*, s**}. Finally, 

( ) ( ) ( ){ } ( )* max * , ** *R F F Fz s s sμ μ μ μ= = . The proof of Theorem 5.5 also 

shows the following Nguyen’s theorem (Nguyen 1978; Klir and Yuan 
1995):  

 

Theorem 5.6. If the supremum in (5.48) is attained for a pair ( )1 2*, *s s , 

then 

( ) ( )f F f Fα α=  (5.51) 

otherwise: 

( ) ( )f F f Fα α+ +=  (5.52) 

where ( ){ }: FF s S sα μ α= ∈ ≥  is the α-cut of F (Eq. (3.27)) and 

( ){ }: FF s S sα μ α+ = ∈ >  is the strong α-cut of F. 
 

By virtue of this theorem, the range of a fuzzy set F is obtained by first map-
ping the α-cuts of F into Z, and then by applying the decomposition theorem 
(Eq. (3.30)). In Figure 5.14, the starting point is now α-cut αF , which is 
mapped through f onto αR using a path exactly opposite to the one indicated 
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in Theorem 5.5. When compared to Eq. (5.48), this method is computation-
ally very efficient because it does not require inversion of function f; compu-
tational savings are especially evident when the entire membership function 
of R is required, as shown in the following examples. When the consonant 
random relation has an infinite number of focal sets, one can either: 
 

•     Perform simulations by following the algorithms given by Alva-
rez (2006). 

•     Include the actual random relations by using a random relation 
with a finite number of α-cuts (Tonon 2004, Hall 2004, Tonon 
2008).  

 
Example 5.10. Consider the 1-D consonant random set {([1, 1.5], 0.1), ([0, 2], 
0.3), ([-1, 2], 0.2), ([-3, 3], 0.4)} on S =\ , and the function f: Z→ =\ \ , 

2a a6 . Suppose that one is interested in the membership value of z = 3.5. By us-

ing Eq. (5.47), its range random set, ( ){ },i iR ρ , is {([1, 2.25], 0.1),([0, 4], 0.3), 

([0, 4], 0.2), ([0, 9], 0.4)}. Since A2 and A3 both map into [0, 4], the final range is 
{([1, 2.25], 0.1), ([0, 4], 0.5), ([0, 9], 0.4)}. Then, by using Eq. (3.24):  

 

{ }( ) ( ) ( )2 3(3.5) 3.5 = + 0.5 0.4 0.9R Pla R Rμ = ρ ρ = + =  (5.53) 
 

This is equivalent to using Nguyen’s theorem because the α-cuts of F are: 0.4F = 
A4; 0.6F = A3;  0.9F = A2;  1.0F = A1. Once these sets have been mapped onto Z as 
above, the result is obtained by using Eq. (3.30): 

 

( )( ){ }
( ) ( ) ( ) ( ){ }

 (3.5) max min , 3.5

max min 0.4,1 , min 0.6,1 , min 0.9,1 ,min 1.0,0 0.9

R Aα
α

μ α χ=

= =
 (5.54) 

 
Compare now with the direct application of Eq. (5.48). One has to calculate the 

inverse of f: 3.5 1.871± ±� , and then the superior of the membership functions 
for these values: 

 
( ) ( ){ }

{ }( ) { }( ){ } { }
 (3.5) sup 0.1871 , 0.1871

sup 0.1871 , 0.1871 sup 0.4,0.9 0.9

R F F

Pla Pla

μ μ μ= −

= − = =
 (5.55) 

 
Example 5.11. Let us consider a “consonant version” of the random set used in 

Example 5.9. Let us assume: S1 = S2 = {1, 2, 3};  Z = ` ;  G: S1 × S2 → ` , 



244 5   Inclusion and Mapping of Random Sets/Relations
 

( ) ( ) ( )2 2

1 2 1 2 1 2, 1, 1a a INT a a INT a a⎡ ⎤⋅ − ⋅ +⎣ ⎦6 . The consonant random set on S1 

× S2 is given as: 
  

{(A1 = {1, 2, 3} x {1, 2}, m(A1)= 0.6),    (A2 = {2} x {1, 2},  m(A2) = 0.4) }.  
 

One can immediately calculate the membership function of the normalized fuzzy 

relation on S1 × S2 corresponding to the consonant random set: 
 
  

μ(1,1)= m(A1)= 0.6;  
μ(1,2)= m(A1)= 0.6;  
μ(2,1) = m(A1) + m(A2) = 0.6 + 0.4 = 1;  
μ(2,2) = m(A1) + m(A2) = 0.6 + 0.4 = 1;  
μ(3,1) = m(A1) = 0.6;  
μ(3,2) = m(A1) = 0.6.  
 

The α-cuts coincide with the focal sets of the consonant random set: 1.0
F = A2, 

0.6
F = A1. The fuzzy set induced by f onto Z is defined by its α-cuts (Eq. (5.51)): 
 
 1.0R = f(1F) = [3,5]∪[15,17]; 
0.6R = f(0.6F) = [0,2]∪[3,5]∪[3,5]∪[15,17]∪[8,10]∪[35,37]=    
                        [0,2]∪[3,5]∪[8,10]∪[15,17]∪[35,37] 

(5.56) 

 
Again, this result coincides with (but is much more efficient than) the one obtain-
able by applying (5.48). For example, for z = 10, we have:  
 

μR(10) = max{μF(3,1), μF(1,3)} = max{0.6,0} = 0.6; indeed, z = 10 ∈ 0.6R.   
 

For z = 5:  
 

μR(5)  = max{μF(1,2), μF(2,1)} = max{0.6,1} = 1; indeed, z = 5 ∈ 1.0R.  

5.2.1.2   Consonant Random Cartesian Product 

Consonant random Cartesian products were introduced in Section 4.1,  
Figure 4.3. 

 
Theorem 5.7. If F is a consonant random Cartesian product (Section 
4.3.5) equivalent to a decomposable fuzzy relation F = F1× F2×…× Fr, by 
taking into account Eq. (4.115),  Eq. (5.48)  can be written as follows: 

 

( ) ( ) ( ) ( ){ } ( ) ( ){ }
( )

1
1 2 1 2

1

sup min , ,..., : , .,...,
,

0

F F F r r

R

s s s s s s f z
z z

if f z

μ μ μ
μ

−

−

⎧ ∈⎪∀ = ⎨
= ∅⎪⎩

 (5.57) 
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This is Zadeh’s original extension principle (Zadeh 1975): among several 
extension principles put forward in fuzzy set theory, (5.57) is thus the only 
one that is consistent with random set theory. This conclusion is particu-
larly important for establishing a framework for a coherent treatment of 
uncertainty in the analysis of engineering systems as propounded in this 
book.  In Chapter 6, this issue will be furtherly discussed in the context of 
a theory of approximate reasoning. 

Nguyen’s theorem now specializes as follows. 
 

Theorem 5.8. If the supremum in Eq. (5.57) is attained for at least an r-
tuple ( )1 2*, *,..., *rs s s , then 

( ) ( )1 2, ,..., rf F f F F Fα α α α=  (5.58) 

otherwise: 

( ) ( )1 2, ,..., rf F f F F Fα α α α+ + + +=  (5.59) 

 
When Si = \ , αFi are real intervals and 1 2 ... rF F F Fα α α α= × × × , an  

r-dimensional box in r\  with 2r vertices. In this case, Eqs. (5.58) and 
(5.59) are interval analysis problems for which very powerful algorithms 
have been (and are being) developed (Moore 1966; Moore 1979; Alefeld 
and Herzberger 1983; Ratschek and Rokne 1984; Ratschek and Rokne 
1988; Neumaier 1990; Corliss 1999; Jaulin, Kieffer et al. 2001; Hansen 
and Walster 2003; Berz 2007; Kreinovich, Berleant et al. 2007; Mulhanna 
and Mullen 2007; Nesterov 2007; Neumaier 2007). These algorithms sig-
nificantly improve on the exponential number of function calls entailed by 
the Vertex Method (Theorem 5.9  below). 

 
Theorem 5.9 (Dong, Chiang et al. 1987; Dong and Shah 1987; Dong and 
Wong 1987). If the maximum and minimum of f in Eq. (4.140) is not 
reached in the interior of 1 2 ... rF F Fα α α× × ×  nor at  its edges, then 

 

 ( ) ( ) ( ){ } ( ){ }1 2, ,..., [min , max ]r j jf F f F F F f c f cα α α α+ + + += =  (5.60) 
 

where cj , j=1,…,2r are the vertices of 1 2 ... rF F F Fα α α α= × × × . 
 

Theorem 5.10 (Tonon and Bernardini 1998). If f(s1,…, sr) ( )1 rC∈ \  and is 

strictly monotone with respect to each variable si, then 
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( ){ }
( ){ }

! * : ( *) max  

! **: ( **) min

j j j

j j j

c f c f c

c f c f c

∃ =

∃ =
 (5.61) 

 
where cj , j=1,…,2r are the vertices of 1 2 ... rF F F Fα α α α= × × × . 

 
Proof. It stems from monotonicity assumption that either hypothesis a) or 
b) is true: 

a)   
( )

1 20   ... r
i

f
F F F F

s
α α α α∂

∂
> ∀ ∈ = × × ×

s

s , 

b)  
( )

1 20   ... r
i

f
F F F F

s
α α α α∂

∂
< ∀ ∈ = × × ×

s

s  

 

(5.62) 

Let s  be a maximizer for f in Fα . Then, if Eq. (5.62.a) is true, we have: 

( )U

i is Fα= , otherwise ( )L

i is Fα= .                  à 
 

Theorem 5.10 and its proof indicate that: 
 

1) Vertex *jc  that maximizes f in 1 2 ... rF F F Fα α α α= × × ×  is the com-

bination of the right (left, resp.) extremes of the variables with re-
spect to which f is increasing (decreasing, resp.). 

2) Vertex **jc  that minimizes f in 1 2 ... rF F F Fα α α α= × × ×  is the 

combination of the left (right, resp.) extremes of the variables with 
respect to which f is increasing (decreasing, resp.).  

3) When a new α-level is chosen, *jc  and  **jc  are given by the 

same combination of parameters as in points (1) and (2). 
4) If (in points (1) and (2)) the increasing or decreasing variables are  

not known or difficult to determine, evaluate f at all vertices  cj , 
j=1,…,2r, and determine the unique combinations that minimize 
and maximize f. Use point (3) for all other α-levels. 

 
This algorithm allows one to identify the critical vertices either a priori 
(points (1) and (2)) or with just one application of the vertex method. Each 
α-cut is then evaluated by using just two function calls, whereas the vertex 
method requires 2r function calls, which increases significantly with the 
number of variables (for r = 10, 210 = 1,064). Indeed, when several α-cuts  
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must be computed, computational savings are significant: e.g., for 11  
α-cuts, 22 vs. 11,264 function calls are necessary. When the function f is 
the output of a complex model (e.g., BEM, FEM, FDM, DEM) that takes 
one day to run, the above algorithm may make computations feasible.  

Additionally, the above algorithm allows one to use existing numerical 
codes as “black boxes” that simply calculate function f without need to 
modify them; these concepts are illustrated in the next example.  

 
Example 5.12. Let us consider the non-linear elastic system shown in Figure 5.15 
composed of a two-span linearly elastic beam, with Young modulus E, restrained 
by two rigid supports and a non-linear elastic spring whose stiffness monotoni-
cally increases with the displacements. The load intensities P and q are restricted 
by the fuzzy sets shown in Figure 5.16, and we want to determine the displace-
ment of the supporting spring. 

The displacement, δC, is related to the external forces P and q and to the spring 
reaction Y by means of a linear deterministic relation, whose coefficients depend 
on the elastic and geometrical properties of the beams ( l1 = 5.2 m , l2 = 4.3 m ;   
E = 27 GPa ;  J1 = 0.73 ⋅ 0.4 /12 m4 ; J2 = 0.43 ⋅ 0.4 /12 m4):  

 

( )1 2 3 3,C D P D q D Y h P q D Y= − ⋅ + ⋅ − ⋅ = − ⋅ =δ  

 
        = -(0.02354 mm/kN)⋅P + (0.9651 mm/(kN/m))⋅q  - 
            - (0.5639  mm/kN)⋅Y   (mm) 

(5.63) 

 

where: 
 

2
1 2

1
116

l l
D

E J

⋅
=

⋅ ⋅
;   

4 3
2 1 2

2
2 18 6

l l l
D

E J E J

⋅
= +

⋅ ⋅ ⋅ ⋅
;   

3 2
2 1 2

3
2 13 3

l l l
D

E J E J

⋅
= +

⋅ ⋅ ⋅ ⋅
  (5.64) 

 

 

Fig. 5.15 Example 5.12: A two-span linearly elastic beam restrained by two rigid 
supports and a non-linear elastic spring 
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Fig. 5.16 Example 5.12: Fuzzy sets of the concentrated load and of the uniformly 
distributed load q 

The condition of compatibility between the deformations of the beam and the 
spring gives the solution, which is the sought function of P and q: 

( ) ( )

( ) ( )
3

3

   1 -   1  2 /     if      0

   -  1   1 -  2 /     if      0

b h b h b D h
Y

b h b h b D h

⎧ ⋅ + + ⋅ ⋅ ⋅ ≥⎪= ⎨
⋅ + ⋅ ⋅ ⋅ <⎪⎩

;  b=2 k⋅ 3D  (5.65) 

 

Table 5.22 Interval analysis of the reaction Y for α = 0 

Index j q P f(q, P) Y Critical Indexes 
1 - 5 - 5 -4.708   
2 50 - 5 48.375 82.900 Maximizing 
3 - 5 100 - 7.180 - 11.651 Minimizing 
4 50 100 45.903   

 

Table 5.23 α-cuts of the reaction Y 

α-cut Min(Y) Max(Y) 
0  - 11.651  82.900 

0.1  - 11.448  82.055 
0.2  - 11.245  81.210 
0.3  - 11.041  80.365 
0.4  - 10.838  79.520 
0.5  - 10.635  78.675 
0.6  - 10.432  77.830 
0.7  - 10.229  76.986 
0.8  - 10.027  76.141 
0.9  - 9.824  75.296 
1 -9.621  74.452 
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The expression for Y is simple enough that one can take partial derivatives. Notice 
that Y is a monotonically increasing function of h, which is decreasing with P and 
increasing with q. Therefore, the maximizing interval extremes are the left ex-
treme for P and the right extreme for q; the minimizing interval extremes are the 
right extreme for P and the left extreme for q. 

For completeness, Table 5.22 gives the values of h corresponding to the 22 = 4 
vertices for α = 0 (with k = 31.4 kN / mm2), which confirm the above result on the 
critical vertices. The fuzzy set of Y reconstructed by its α-cuts is displayed in  
Table 5.23. 

5.2.2   Monotonicity of Operations on Random Relations 

In Section 5.1, the concept of weak inclusion was introduced. The good 
news is that the inclusion is preserved by mappings; more precisely: 

 
Theorem 5.11. Let F  and F  be two random relations defined on S with 

compatible sets of probability measures Ψ  and Ψ , respectively, such that 

Ψ ⊆ Ψ . Let f: S → Z, and let R  and R  be the ranges of F  and F , re-
spectively, calculated using Eq. (5.47). Then 

  

( ) ( ) ( ) ( )( ) , , ,

( )

weak Z Z Z Z

f f

i Bel U Pla U Bel U Pla U U Z

ii

⎡ ⎤⎡ ⎤⊆ ⇒ ⊆ ∀ ⊆⎣ ⎦ ⎣ ⎦

Ψ ⊆ Ψ⇒ Ψ ⊆ Ψ

F F
(5.66) 

 

where fΨ  and fΨ  are the sets of probability measures compatible with R  

and R , respectively;  subscript Z denotes the underlying set where Belief 
and Plausibility are defined. 

 
Proof  

(i) Since ( ) ( )B C f B f C⊆ ⇒ ⊆ : 
 

( )
( )

( )
( )( )

.(3.3) .(5.47)

: : :

.(3.3)
1

:

i i i i j i j

j j

Eq Eq
i j

Z
R R U R R U A R f A

Eq
j

A f A U

Bel U m

m Bel f U

⊆ ⊆ =

−

⊆

= ρ =

= =

∑ ∑ ∑

∑
 (5.67) 

 
From Eq. (5.1),  ( )( ) ( )( )1 1Bel f U Bel f U− −≥ . Likewise for the Plausibility. 

(ii) Use (i) and apply Eq. (5.1) from right to left to BelZ and PlaZ.  à 
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Likewise, strong inclusion is preserved by mappings, and the proof of the 
following theorem also says how to determine the inclusion matrix: 

 
Theorem 5.12 (Dubois and Prade 1991). Let  F ⊆F  be two random rela-
tions defined on S, and let f: S → Z. Let R  and R  be the ranges of F  and 

F , respectively, calculated using Eq. (5.47). Then 
 

⊆ ⇒ ⊆F F R R  (5.68) 
 

Proof. (i) By point (i) in Eq. (5.4)), :i j i jA A A A∀ ∃ ⊆ . By Eq. (5.47a), 
each focal set Rk is the image of at least one focal set Ai. Let Ai : Rk = f(Ai); 

since ( ) ( )i j i jA A f A f A⊆ ⇒ ⊆ , ( ):k j k jR A R f A∀ ∃ ⊆ . 
 

(ii) Similar to (i). 
Let us define the following inclusion matrix: 
 

( ) ( ): { : , , }k i l j i j
kl ijw R f A R f A A Aω = = = ⊆∑ . (5.69) 

 
Recall that 

 

0i j ijA A w⊃ ⇒ = . (5.70) 

 
One has: 

 

( ) ( )
( ) ( )

( )

( ) ( )
( )

( )
( )

( )
( )

.(5.4)

: :

: :

::

.(5.4) .(5.47 )

:: :

{ : , , }

{ : , , }

{ : , , }

k l k l

k l i k i

k li k i

i ji k i i k i

Eq
k i l j i j

kl ij
l R R l R R

k i l j i j
ij

l R R A R f A

k i l j i j
ij

l R RA R f A

Eq Eq b
i k

ij
j A AA R f A A R f A

w R f A R f A A A

w R f A R f A A A

w R f A R f A A A

w m A R

⊆ ⊆

⊆ =

⊆=

⊆= =

ω = = = ⊆

= = = ⊆

= = = ⊆

= = = ρ

∑ ∑ ∑

∑ ∑

∑ ∑

∑ ∑ ∑

(5.71) 

 

Likewise for ( )kRρ .         à 
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Since inclusion is a special case of weak inclusion, Theorem 5.11 special-
izes as follows:  
 

Theorem 5.13 (Dubois and Prade 1991). Let F ⊆F be two random rela-
tions defined on S, and let f: S → Z. Let R  and R  be the ranges of F  and 

F , respectively, calculated using Eq. (5.47). Then 
 

( ) ( ) ( ) ( ), ,Bel U Pla U Bel U Pla U U Z⎡ ⎤⎡ ⎤ ⊆ ∀ ⊆⎣ ⎦ ⎣ ⎦  (5.72) 

 
In other words, one may find a random relation F  that includes another 
random relation F  by using the algorithms in Section 5.1.3. By mapping 
F , one calculates probability bounds that contain the probability bounds 
that can be calculated by using F . Major computational savings are 
achieved if computations performed on F  are much easier and/or faster 
and the including bounds are tight enough to make a decision.  

 
Example 5.13. Consider again the random sets on S = \  as in Example 5.3:  

 
F = {([5, 8], 0.2), ([3, 7], 0.5), ([2, 4], 0.3)}; 

F ={([5, 8], 0.200002), ([3, 8], 0.5), ([2, 8], 0.288888)},  
 
where β = 10-6. Let f: 1/ xx x e⋅6 . Focal sets are mapped by making use of  
Theorem 5.10: 
 

 R  = {([6.10702, 9.06520], 0.2), ([4.18685, 8.07496], 0.5), ([3.29745, 
5.13620], 0.3)},   

R    =  {([6.10701, 9.06520], 0.188888), ([4.18685, 8.07496], 0.5), ([3.29745, 
5.136120], 0.300002)},  
 
where outer rounding has been applied to the focal sets in order to ensure contain-
ment when using floating-point numbers. The probability bounds of U = [3.2, 5.6] 
are:    

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 2 3

2 3

0.3; 0.8

0; 0.800002

Bel U R Pla U R R

Bel U Pla U R R

= ρ = = ρ + ρ =

= = ρ + ρ =
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5.3   Conclusions 

The notion of weak inclusions between two random sets relies on the in-
clusions of the sets of compatible distributions, and it is equivalent to the 
inclusion of Belief and Plausibility bounds for all subsets in S. The notion 
of strong inclusion was introduced in order to: determine if two random 
sets are included one into the other by directly operating on the focal ele-
ments and probability assignements; find an including random set when a 
random set is assigned. By resorting to the reservoir-bathtub analogy, it 
has been shown that strong inclusion implies weak inclusion, but not vice 
versa.  

Since computations with consonant random sets (and associated fuzzy 
sets) are very fast, four different strategies have been introduced to include 
a general random set into a consonant one. For ordered sets S, one may ei-
ther choose to minimize the discrepancy in FUPP or FLOW; the remaining 
two strategies are applicable if equal weight should be given to preserving 
FUPP or FLOW, and if one wants to minimize the cardinality of the consonant 
inclusion, respectively. 

When F1 and F2 are assigned on S1 and S2, respectively, one may deter-
mine two consonant inclusions of theirs: 1F  and 2F . The random relation 
obtained from F1 and F2 under the hypothesis of random set independence 
is not included in the fuzzy Cartesian product on S1×S2 obtained from 1F  

and 2F , but it is included in the random relation on S1×S2 obtained from 1F  

and 2F  under the hypothesis of random set independence. The later ran-
dom relation, however, is not necessarily consonant, but there is a minimal 
outer approximation to it, and a weak inner approximation to it.   

The information conveyed by random set or relation on S may be ex-
tended to the range of a mapping defined on S. This mapping may be the 
mathematical model of an engineering system. Since the extension is valid 
for both single-valued and multi-valued mappings, the principle allows one 
to extend through a multi-valued mapping information given as a probability 
distribution on S, which is an unresolved problem in the theory of probabil-
ity. The extension principle for random sets has two main specializations: 

 

1) When the random relation on S is consonant (fuzzy relation), its im-
age is obtained by first mapping the α-cuts of the fuzzy relation into 
Z, and then by applying the decomposition theorem This method is 
computationally very efficient because it does not require mapping 
inversion. 
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2) When the random relation on S is a consonant random Cartesian 
product, the specialization of the principle coincides with Zadeh’s 
original extension principle, which is the only one (among several ex-
tension principles put forward in fuzzy set theory) that is consistent 
with random set theory, and thus with a generalization of probability 
theory to accommodate imprecise information.  

 
Both weak inclusion and strong inclusion are preserved by mappings 
(monotonicity), which has major practical consequences. Indeed, one may 
first find a random relation F  that includes another random relation F  by 
using the algorithms described above. By mapping F , one may calculate 
probability bounds that contain the probability bounds that can be calcu-
lated by using F . Major computational savings are achieved if computa-
tions performed on F  are much easier and/or faster and the including 
bounds are tight enough to make a decision. 

 
 



 

Chapter 6 
Approximate Reasoning  

The theory of probability provides no straightforward answer to the prob-
lem of combining two probability measures on the same space, because it 
is not a problem of mathematics, but of judgment. As a consequence, ran-
dom set theory too does not provide any prescriptive method for combin-
ing two random sets. In Section 6.1, some possible ways of combining or 
updating information on the same space are reviewed, distinguishing be-
tween models that stress the agreement among given bodies of informa-
tion, and those which stress the conflict. We highlight and discuss their 
applicability limits (Section 6.2) and introduce the available answers 
within evidence theory (Section 6.3) and fuzzy set theory (Section 6.4). 
Analogies and extensions are underlined with both probabilistic procedures 
and fuzzy set operations. 

Finally it will be shown in Section 6.5 that fuzzy logic gives powerful, 
simple and robust procedures in the field of pattern recognition, clustering 
and optimal choices in decision making. 

6.1   The Basic Problem 

The following is a basic problem in any theoretical model of uncertainty 
and in any consistent theory of information. Suppose:  
 

(i) a certain level of information be known or assumed about a system 
(premise A) AND  

(ii)  further information be obtained independently (i.e. without utilizing 
previous information) (premise B) ;  

 

how can we combine the two bodies of knowledge in order to  achieve an 
updated, a posteriori description C A B= D  embracing all available infor-
mation?  

The solution to this problem is an essential one if for example we want 
to:  
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(i) construct rule-based expert systems, i.e. expert systems based on de-
ductive logic;  

(ii) extend classic deductive reasoning rules (Woods and Gabbay 2004) 
such as modus ponens, modus tollens and hypothetical syllogism to 
uncertain information;  

(iii) to construct mathematical models of approximate reasoning. 
 

The solutions to date pertaining to the classical set theory of uncertainty 
are examined in Section 6.1.1 and those pertaining to the probability the-
ory in Section 6.1.2 and 6.1.3.  

6.1.1   Combination and Updating within Set Theory 

The answer to the posed problem is quite simple if sought in the field clas-
sical set theory. See for example (Lipschutz 1964).  

Consider the case in which two sources of information are available 
about the same variable (in, say, space S). One source (the a priori  infor-
mation) says that the variable is restricted by a set A, whereas another  
source says that the variable is restricted by a set B. Let s ∈ S, and let  
χA(s) , χB(s) be the characteristic functions (or the indicators IA , IB) of A 
and B (i.e. χA(s) = IA(s) = 1 if s ∈ A, χA(s) =  IA(s) = 0  if s ∉ A). 

6.1.1.1   Intersection 

If A AND B  provide conditions which necessarily are to be satisfied by their 
combination, a posteriori uncertainty is described by their intersection (see 
Figure 6.1), or equivalent combination of their characteristic functionsN 6-1: 

 ( )( ) min ( ), ( )C A B

C A B

s s s

= ∩
χ = χ χ

             (6.1) 

 
 
 
 
 
 
 
 
 
 
Fig. 6.1 Combination by 
intersection  
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The combination of the two bodies of knowledge therefore reduces uncer-
tainty, whenever A and B do not coincide, and this combination leads to a 
total loss of information when A, B are totally conflicting (i.e. A∩B = ∅). 
When the conflict is partial (A∩B ≠ ∅), the rule works very well, and de-
creases the uncertainty for the decision-maker; but this decrease could be 
unjustified and unrealistic if the sources of information are not reliable.  

Intersection can be used to combine information on spaces of different 
orders. For example a subset of a two-dimensional space S = S1 x S2 is a 
deterministic  relation  R, i.e. a pair of point-valued or more generally  set 
valued relations G, G-1 between points s1 on S1 (r. s2 on S2) and set G(s1) (r. 
G-1 (s2)) on S2 (r. S1 ).  

We consider here finite spaces with singletons (s1
1, … s1

i, …. s1
n) and 

(s2
1, … s2

j, …. s2
m) respectively.  The relation R is  completely defined by 

the n x m matrix  of the values of the characteristic function: 

 ( ) ( ) ( )1
1,2 1 2 2 1 1 2

1 2

1   if  , ; ;
( , )

0    otherwise

i j j i i j
i j

R

P s s R s G s s G s
s s

−∈ ∈ ∈
χ =    (6.2) 

Let A be a subset on S1 and let 1( )i
A sχ be its characteristic function and 

assume B = R on S = S1 x S2 . The set C A B= D  results from the application 
of the classic modus ponens according to the scheme: 

 

i) First premise:     if  s1 = s1
i, then  s2 ( )1 , 1,...,iG s i n∈ ∀ =  

ii) Second premise:  s1 A∈  
iii) Conclusion:         s2 C∈  

C is a subset of  S2 containing singletons s2
j such that 1

2( )jG s A− ∩ ≠ ∅ . 

Formally: let 

 1 2 1( , ) ( )i j i
A As s sχ = χ              (6.3) 

be the cylindrical extension of A on the product space S = S1 x S2;  on this 
space, the characteristic function of C is given by 

 ( )1 2 1 2 1 2( , ) min ( , ), ( , )i j i j i j
C A B Rs s s s s s=χ = χ χ              (6.4) 

and hence, on the space S2, the characteristic function of C  is given by its 
shadow or projection: 

 ( )2 1 2( ) max ( , )j i j
C C

i
s s sχ = χ              (6.5) 
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or, in an equivalent manner, that is more appropriate when an analytical 
expression is available for the mappings: 

 ( ) ( )
( )

1
1 2

1

2
1

2

max ( )
( )

 0   if   

ji

i
A

s G sj
C

j

s
s

G s

−∈

−

χ
χ =

= ∅
             (6.6) 

Symmetrically, if A is a subset on S2 and 2( )j
A sχ is its characteristic function: 

 ( )1 1 2 2 1 2( ) max min ( , ) ( ), ( , )i i j j i j
C A A B R

j
s s s s s s=χ = χ = χ χ        (6.7) 

 
or, in an equivalent manner: 

 ( ) ( )
( )

2 1

2

1

1

max ( )
( )

 0   if   

i i

i
A

s G si
C

i

s
s

G s

∈
χ

χ =
= ∅

             (6.8) 

For infinite spaces the max operator in Eq. (6.5) and (6.7) should be substi-
tuted by the sup operator. 

 
Example 6.1. Let  n = 4 and  m = 3.  Let the relation R  be defined by the point-
valued function: 

 

f(s1
1) = s2

2 ;   f(s1
2) = ∅ ;   f(s1

3) = s2
2 ;   f(s1

4) = s2
1 

 

or by the matrix  1 2( , )i j
R s sχ  in  Table 6.1.  The sums of rows and columns show 

that G is a point-valued function while G-1 is multi-valued. 

Table 6.1 Characteristic function 1 2( , )i j
R s sχ  

      s2
1    s2

2  s2
3 Tot 

s1
1 0 1 0 1 

s1
2 0 0 0 0 

s1
3 0 1 0 1 

s1
4 1 0 0 1 
Tot 1 2 0 3 
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Let  A = { }2 3
1 1,s s , and hence 1( ) (0,  1,  1,  0)A sχ = . Eq. (6.4) gives: 

( )1 2

0 0 0 0 1 0 0 0 0

1 1 1 0 0 0 0 0 0
, m in ,

1 1 1 0 1 0 0 1 0

0 0 0 1 0 0 0 0 0

C s s

⎛ ⎞
⎜ ⎟
⎜ ⎟χ = =⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

and finally Eq. (6.5): 

2( ) (max(0,0,0,0) 0,  max(0,0,1,0) 1,  max(0,0,0,0) 0))C s = = = =χ  

For example in an equivalent manner  Eq. (6.6)  for  j = 2  gives: 

{ }
2
2 11 3,1 1 1

( )   max   ( ( )) max  (0,  1) 1i
C Ais s s

s sχ χ
∈

= = =  

 

If  A = { }2 3
2 2,s s  , 2( ) (0,1,1)A s =χ , Eq. (6.4) gives: 

 ( )1 2

0 1 1 0 1 0 0 1 0

0 1 1 0 0 0 0 0 0
, m in ,

0 1 1 0 1 0 0 1 0

0 1 1 1 0 0 0 0 0

C s s

⎛ ⎞
⎜ ⎟
⎜ ⎟χ = =⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

and finally Eq. (6.7): 

 1( ) (max(0,1,0) 1,  max(0,0,0) 0,  max(0,1,0) 1),  max(0,0,0) 0)C s = = = = =χ  

The rule of intersection can be directly applied to combine 3 or more sets. 
For example let R  be a subset of a three-dimensional product space S = S1 
x S2 x Z, defining  a deterministic  relation, i.e. a pair of point-valued  or 
more generally set valued relations G, G-1 between points P on S1 x S2 and 
set G(P) on Z (r. between  point P on Z and set G-1 (P) on S1 x S2). 

Let A and B be two subsets, on S1 and S2 respectively, and let 

( ) ( ) ( ) ( )1 2 1 1 2 2, , ; , ,A A B Bs s z s s s z sχ = χ χ = χ be the cylindrical extension 

of their characteristic functions onto S1 x S2 x Z.  The characteristic function 
of the subset C  on Z  is given by: 

 ( )
1 2

1 2 1 2 1 2( ) sup min ( , , ), ( , , ), ( , , )C A B R
S S

z s s z s s z s s z
×

χ = χ χ χ      (6.9) 
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or, in an equivalent manner: 

 ( )
( )( )

( )
1

1 2

1 2
( , )

1

sup min ( ), ( )
( )

0   if   

A B
s s G z

C

s s
z

G z

−∈

−

χ χ
χ =

= ∅
             (6.10) 

6.1.1.2   Union 

If, on the other hand, A AND B are weaker conditions, i.e. they are just 
indications of possibility which exclude that the true solution necessarily 
belongs to the complementary sets, then the uncertainty of the combina-
tion of non-coincident sets grows. In fact, based on the second De Mor-
gan's Law, we have (see Figure 6.2)N 6-2:    

 ( )
( )

CC C

( ) 1 min(1 ( ),1 ( )) max ( ), ( )C A B A B

C A B A B

s s s s s

= ∩ = ∪

χ = − − χ − χ = χ χ
   (6.11) 

 
 

Fig. 6.2 Combination by 
union 

 

 
In this case, unlike the previous one, the resulting uncertainty for the deci-

sion-maker increases and the rule works with every pair of subsets (even if 
they are totally conflicting); it is hence strongly recommended when the 
sources of information are not entirely reliable. 

6.1.1.3   Convolutive Averaging 

When a total or partial ordering is recognised or assigned on the space S, 
the decision-maker could employ a third rule based on the operation of aver-
aging, well-suited to the natural logic of the human brain. For example, if a 
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distance d  between points or subsets is defined in S, the decision-maker (for 
example an archer or marksman aiming at a target) could focus his attention 
on the set of points: 

C(A, B) := {P∈ S |  d(PA, P) = d(PB, B), PA∈ A, PB∈ B } (6.12) 

Example 6.2. Let  S = { }1 2 3 4 5 6 7 8 9, , , , , , , ,P P P P P P P P P , A ={ }1 2,P P , B = 

{ }7 8 9, ,P P P   and assume d (Pi, Pj) = |i-j|. Hence  C = { }4 5,P P  because d (P1, P4) = 

d (P7, P4) = 3;  d (P2, P5) = d (P8, P5)  = 3 and d (P1, P5) = d (P9, P5) = 4. 
 

Let As  and Bs  be elements of sets, on the space of the real numbers (for ex-

ample intervals), A and B, respectively. One obtains, according to the rules 
of interval arithmetic, the interval C = (A + B) / 2, or more generally on an  
n-dimensional Euclidean space (see Figure 6.3 in a two-dimensional space) 
the set defined, according to Eq. (6.10), by the characteristic function: 

     ( )
( , ): ; ;

2

( ) sup min ( ), ( )C A A B B
s s n nA Bs s s s sA B B

s s sχ χ χ
+ = ∈ ∈

=
\ \

    (6.13) 

 
 
Fig. 6.3 Combination by 
convolutive averaging 

 

 
Example 6.3. Let A = [-1, 1], B = [7, 10]; the interval arithmetic rule for summing 

gives C = [7-1, 1+10]/2 = [3, 5.5]. Observe that  Eq. (6.13) gives 1Cχ = for any 

point s of C, 0Cχ =  for any  s outside of the interval C. 
 

This rule (known as Convolutive Averaging (or c-Averaging), considering 
the analogy with the definition of “expectation” or “mean”) works with 
every pair of subsets and drastically reduces the uncertainty presented to 
the decision-maker; in the case of partial or total conflict between A and B, 
the rule hides the conflict. 
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6.1.1.4   Discussion 

The 3 basic rules presented above satisfy the requirements of: 
 

Commutativity:  C(A, B) = C(B, A);   
Associativity:     C(A, C(B, D)) = C(C(A,B), D)  
Idempotence:      C(A, A) = A.  
 

In the following, we will distinguish between combining and updating. 
Updating  entails the presence of an existing piece of information, which 

must be changed in the light of newly acquired information, and order may 
or may not matter. For example, knowledge is the result of a process of 
updating, rather than combining, and the order in which information has 
been received and processed by the brain may make a difference to one’s 
knowledge at a given time t.  

The ability to optimally and quickly combine pieces of information ac-
quired successively is a fundamental property of the human brain that has 
evolved over the millennia, thus assuring a definite advantage to mankind 
over all other species. Likewise, at a higher level, a civilization’s knowl-
edge nearly always depends on its history. Therefore, we argue that tempo-
ral indifference may or may not be a desirable attribute in the epistemic in-
terpretation of a basic theory modeling logical and psychological degrees 
of partial belief of a person or intentional system.   

Commutativity is justified considering that when combining two pieces 
of information A and B, A and B must be treated symmetrically, i.e. com-
bining A with B must yield the same result as combining B with A, because 
there is no information on which of the two pieces of information was prior. 
Similarly, Associativity is reasonable if temporal indifference is necessary 
in the treatment of the combination. 

On the other hand, the third requirement (Idempotence) does not appear 
to be well justified: indeed, our confidence in A grows if the same informa-
tion is observed repeatedly, and this increase in confidence justifies the 
rules of statistical combination and subjective/objective probability theory.  

6.1.2   Statistical Combination and Updating 

Let ni be the number of observations of singleton si in a finite space of 
events, let n be the total number of observations, and let jχ be the charac-

teristic function of the singleton s j observed at the j-th observation. As-
suming that our confidence grows linearly with the number of repetitions 
of events, one estimates confidence through the relative frequency: 
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( ) ( )
1

in
ji i

j

s sn
fr s

n n=

χ =
= =∑  (6.14) 

It is interesting to observe that relative frequencies fr are obtained mixing 
(p-averaging) characteristic functions; moreover, in the case of conflicting 
events, Case 2 (union) is applied, thus completely preserving the conflict 
for the attention of the decision-maker.  

On the other hand, when the expectation of a random variable or  
the mean value of a list of numerical values are evaluated, Case 3  
(c-averaging) is applied, and the conflict disappears. 

Eq. (6.14) can be generalized to the case of  observations of not neces-
sarily disjoint events A j, i.e. to the statistical collection of sets or focal 
elements of a random set:  

( ) ( )
1

j

in
Ai

j

s
fr s

n=

χ
=∑  (6.15) 

The relative frequencies of the singletons given by this equation can be 
compared with the white distributions defined in Section 3.2.3.1. 

Therefore, Case 2 is a natural candidate for combining probabilistic as-
signments both in the case of the frequentist and subjectivist view of  
probability.  

Let {(Ai, m1)} and {(Ai, m2)} be two random sets on the same set S with 
m1 and m2 two assigned relative frequencies of events (focal elements) Ai: 

          ( ) ( )1 1, 1 2 2, 2/    ;    /   i i
i im A n n m A n n= =   (6.16) 

 

The statistical combination of the random sets is given by: 

( ) 1, 2,
12

1 2

   i ii n n
m A

n n

+
=

+
 (6.17) 

For an infinite number of realisations, the combination of two random sets 
is obtained by a simple averaging operation: 

( ) ( ) ( )1 2

12    
2

i i

i
m A m A

m A
+

=  (6.18) 

which treats the two random sets in a symmetric fashion: i.e. the operation 
is commutative.        
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6.1.3   Bayesian Combining and Updating in Probability Theory 

Within the context of probabilistic modeling of uncertainty, updating fol-
lows on from the Bayesian techniques, i.e. from the axiomatic definition of 
conditioned probability of two events A and B in a probability space: 

 ( ) ( ) ( ) ( )/ / ( ) / / ( )P A B P A B P B P B A P A P B= ∩ =       (6.19) 

or the equivalent relation between conditional, joint and marginal prob-
abilities on joint spaces (see Chapter 2). A simple example can clarify how 
these techniques operate. 
 

Example 6.4. Let us consider the population composed of different batches of 
concrete used for structural purposes. For this population of objects, conditional 
probability distributions are assumed to be known: 
 

a) between a variable relative to mechanical resistance r ∈ R (e.g. the cubic 
characteristic compressive strength after 28 days) and a variable relative to the 
mixture composition c ∈ C (e.g. the water/cement ratio, in weight); 

b) between the resistance r and the result s ∈  S from a non-destructive test (e.g. 
a sclerometric test). 

 

For the sake of simplicity, let: 

R = { r1 , r2
 , r3 , r4 } ;  C  = {c1 , c2 , c3

 , c4 }  ;   S = { s1
 , s2 , s3 , s4 } 

and assume  the  conditional probabilities  shown in Table 6.2  for  the relation be-
tween c and r, and Table 6.3 for the relation between s and r. 

 
Table 6.2 Conditional probabilities P(c/r) 

 P(c/r1) P(c/r2) P(c/r3) P(c/r4) 

c1 0.72 0.12 0.04 0 

c2 0.24 0.60 0.24 0.04 

c3 0.04 0.24 0.60 0.24 

c4 0 0.04 0.12 0.72 

 1.00 1.00 1.00 1.00 

Table 6.3 Conditional probabilities P(s/r) 

 P(s/r1) P(s/r2) P(r/r3) P(s/r4) 

s1 0.80 0.20 0 0 

s2 0.2 0.60 0.20 0 

s3 0 0.20 0.60 0.20 

s4 0 0 0.20 0.80 

 1.00 1.00 1.00 1.00 
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Suppose marginal distribution P(r) is specified or assumed a priori:  for example, 
lacking any specific information, let us assume (according to the Principle of In-
difference) uniform marginal distribution for the variable r,  i.e.  P(r i) = 0.25, for  
i = 1, 2, 3, 4 . 

The joint probability distributions P(s j, r i ) = P(s j / r i ) P(r i ),  P(ck
 , r

 i )  =   
P(ck / r i ) P(r i ) and the marginals P(s j) = Σi P(s j , r

 i ) , P(ck ) = Σi P(ck , r i ) can be 
calculated as shown in Table 6.4. 

Table 6.4 Joint probability distributions P(s j, r i ), P(ck
 , r

 i ) and the marginals  
P(s j ), P(ck ) 

P(c,r)    r1 r2 r3 r4 P(c)  P(c,r)   r1 r2 r3 r4 P(s) 

   c1 0.18 0.03 0.01 0 0.22       s1 0.2 0.05 0 0 0.25 

   c2 0.06 0.15 0.06 0.01 0.28       s2 0.05 0.15 0.05 0 0.25 

   c3 0.01 0.06 0.15 0.06 0.28       s3 0 0.05 0.15 0.05 0.25 

   c4 0 0.01 0.03 0.18 0.22      s4 0 0 0.05 0.2 0.25 

 0.25 0.25 0.25 0.25 1 0.25 0.25 0.25 0.25 1 

Table 6.5 Joint probability distributions P(s j, r i, c
k = c2

 ) and updated conditionals 
P(s j, r i

 / c
k = c2

 ),  P(r i
 / c

k = c2, s j = s3
 )   

P(r,s,c2) r1 r2 r3 r4 P(s)

      s1 0.048 0.03 0 0 0.078

      s2 0.012 0.09 0.012 0 0.114

      s3 0 0.03 0.036 0.002 0.068

     s4 0 0 0.012 0.008 0.02
      0.06      0.15 0.06 0.01 0.28

 

 
P(r,s/c2) r1 r2 r3 r4 P(s/c2) 

      s1 0.171429 0.107143 0 0 0.278571429 

      s2 0.042857 0.321429 0.04286 0 0.407142857 

      s3 0 0.107143 0.12857 0.00714 0.242857143 

     s4 0 0 0.04286 0.02857 0.071428571 
 0.214286  0.535714 0.21429 0.03571 0.28 

   
 r1 r2 r3 r4 

P(r/s3,c2)      0 0.441176 0.52941 0.02941 1
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In their turn, these distributions P(r, c) and P(r, s) can be seen as marginal distri-
butions on the plane (C x R) and (S x R), respectively, of a joint probability distri-
bution on the space (C x R x S) defined by the equations: 

 
  P (r, s, c) = P (r, s) P(c/r) = P (r, c) P(s/r) = P(r, s) P(r, c) / P(r)           
 

Let us now suppose that we obtain new deterministic information about the exact 
value of one of the variables, e.g.  c = c*. We immediately conclude that: 

 
                    P (r, s /c = c*) =  P(r, s, c* ) / P( c*)                                 
 

and moreover, the updated distributions for r and s are the new marginal ones. 
Suppose that we now obtain the deterministic information that  c = c2 ; the mar-

ginal distributions, relative to r and s respectively, are modified as indicated by the 
sums of  rows and columns of the matrix P(r, s / c

2
 ) in Table 6.5.  

If we get further information  s = s3
 , we obtain:  P(r /s3, c2 ) =  P(r, s3

 / c
2 ) / 

P(s3 / c2
 ), as shown finally in Table 6.5, last row. 

 

Bayes Theorem clearly derives from the application of Case 1 (intersec-
tion).  Combining  a probabilistic distribution m1(si) for singletons si and a 
deterministic event B (m2(B) = 1), the resulting updated distribution m12 is 
given by the ratio of the probability of intersections to a normalization  
factor K equal to m1(B) (supposed positive): 

   ( ) ( ) ( )
( )

1
12

1

    
i

i i
m A B

m A P A B
m B

∩
= =         (6.20) 

Of course the normalisation allows to obtain: 

( ) ( )
( )

( )

1

12
1

 |  =1  
i

i

s B

m s

m B P B B
m B

∈= =
∑

 

When the normalization factor K (i.e. the prior probability of the observed 
event) is  much smaller than 1, posterior probabilities increase dramatically. 

Eq. (6.20) can be recursively applied for updating, when two or more suc-
cessive deterministic events B1, B2,… are given or observed.  It is easy to 
check that the resulting distribution is independent from the order (temporal 
indifference, as previously discussed in § 6.1.1.4) and it is equivalent to evalu-

ating conditional probabilities with respect to the event  1 2....B B B= ∩ . 
This result is coherent with the meaning of Case 1: when all the successively 
obtained sets are reliable, attention should be restricted to their intersection.  
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Therefore, in a probabilistic setting, there is no difference between combining 
and updating. 

The extension of a probabilistic measure through a point-valued deter-
ministic mapping,  f , can be considered as a particular application of the 
Bayes theorem: in both cases, we have to combine probabilistic a priori in-
formation with deterministic information. 

In fact, let a joint probability distribution P(s) = P(s1, s2…sn) of the vari-
ables  s1, s2 , ...sn be given on the space defined by the Cartesian product S 
= S1 x S2 x...Sn. The mapping z = f(s), whose range is Z, extends to the 
space S x Z the joint probability distribution: 

( ) ( ) ( )
( )

1

1

  if  s  
,

0        if  

P s f z
P s z

f z

−

−

∈
=

= ∅
             (6.21) 

and then the marginal probability on Z  reads: 

 ( ) ( , )
S

P z P s z=∑              (6.22) 

On a finite space, let ( , )R i js zχ  be the characteristic function of the 

equivalent (to the pair of the point-valued mapping  f  and the multi-valued 
mapping G-1=f  -1) deterministic relation   

 | : ( , ) 1
j

i i j

z Z

R S Z s s z
∈

⊆ × ∀ χ ≤∑              (6.23) 

Eqs. (6.21) and (6.22) can be given by the following equation: 

 ( ) ( ) ( , )
i

j i i j
R

s S

P z P s s z
∈

= ⋅χ∑              (6.24) 

or, equivalently and underlining the analogy with Eq. (6.5) when sup op-
erator is substituted by summation (see Note 6.1): 

 ( )( ) min ( ), ( , )
i

j i i j
R

s S

P z P s s z
∈

= χ∑              
(6.25) 

Example 6.5. Let us again consider the updated probability distribution of the 
concrete strength r (on which the safety of a structure depends) obtained in Exam-
ple 6.4 and the point-valued relation between  r and a finite list of values of a 
measure  z  of  the safety of the structure. Let relation  f  be given by the matrix of  
the joint characteristic function   χ(ri, z 

j
 ) displayed in Table 6.6. 
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Table 6.6 Deterministic relation between r and y in Example 6.5 

 χ(ri, z 
1) χ(ri, z 

2) χ(ri, z 
3) χ(ri, z 

4) Tot 
r1 1 0 0 0 1 
r2 0 1 0 0 1 
r3 0 1 0 0 1 
r4 0 0 0 1 1 
Tot 1 2 0 1  

 
The totals of rows demonstrate that the monotonically increasing f  is single-
valued (while on the contrary the totals of the columns show that  f -1 is multi-
valued.  Eqs. (6.21) and (6.22) give the matrix of joint probabilities  P (ri, z 

j) and 
marginals P (z 

j) respectively in Table 6.7. 

Table 6.7 Joint distribution and marginals in Example 6.5 

 P(ri, z 
1) P(ri, z 

2) P(ri, z 
3) P(ri, z 

4) P(ri) 
r1 0 0 0 0 0 

r2 0 0.44118 0 0 0.44118 

r3 0 0.52941 0 0 0.52941 

r4 0 0 0 0.02941 0.02941 

P(z 
j)   0 0.97059 0 0.02941 1 
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6.2   Limits Entailed by the Probabilistic Solution 

The above discussion on the probabilistic solution and Bayes theorem, to-
gether with the results shown in the previous chapters, highlights some 
limitations  and possible extensions of the Bayesian approach. 

6.2.1   Set-Valued Mapping 

Let the function extending the probability measures from S to Z  be given 
through a set-valued mapping G (or a general deterministic relation R  
without the constraint given in Eq. (6.23)) to the power set of Z (P (Z), G : 
S → P {Z}; G associates every s ∈ S with a subset A=G(s) ⊆ Z.  

In this case, a (generally non-consonant) random set measure is induced 
on Z  

( )( ){ }, ( ) ( )i i i iA G s m A P sℑ = = =              (6.26) 

and it is consequently possible to calculate the interval [Bel (B), Pla(B)] 
containing P(B) for each B ⊆ Z (see Section 3.2.3). 

6.2.2   Variables Linked by a Joint Random Relation 

Let the variables (s1, s2..) be linked by a joint random relation 

{ }, ( )i iA m Aℑ =  (Chapter 4, § 4.1). The extension principle (Section 5.2.1), 

allows the corresponding random set measure on Z 

{ }( ), ( ) ( )i i i i iR G A m R m Aρℜ = = = = to be determined and then again, 

for each B ⊆ Y,  the interval [Bel (B), Pl(B)] containing P(B) can be calculated.  
For finite spaces let R ⊆ S x Z be a deterministic relation and let χR be its 

characteristic function. The characteristic function of the focal elements  Ri 
can be computed by Eq. (6.9): 

   ( ) ( ) ( )( ): sup  min , ,i i RR A
S

i z s s z∀ χ = χ χ       (6.27) 

Some particular cases are of interest, summarizing the results given in  
Section 5.2.1. 

Suppose that the random relation ℑ  is consonant.  Hence ℑ  is com-
pletely defined by its contour function (plausibility of the singletons s) μ(s) 
or the associated possibility distribution  π(s) =μ(s) (see Eq. (3.31)). Hence 
the random set induced on Z is also consonant  and its possibility distribu-
tion π(z) = μ(z) is defined by Eq. (5.48), or equivalently:    
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   ( ) ( ) ( )( )sup  min , ,R
S

z s s zμ = μ χ              (6.28) 

Eq. (6.28) can be derived in a form quite similar to the Bayesian proce-
dure: we can write the cylindrical extension of  μ(s) on the space S x Z : 

 ( ) ( ),s z sμ = μ           (6.29) 

The combination in this space is expressed by the rule: 

   ( ) ( ) ( )( ),  min , , ,C Rs z s z s zμ = μ χ              (6.30) 

and then μ(z) is nothing else but the projection of μC (s, z) on Z (analogous 
to the Bayesian case of marginal distribution on Z): 

   ( ) ( )sup  ,C
S

z s zμ = μ  (6.31) 

Suppose further that the random relation on S is a fuzzy Cartesian random 
product (see § 4.3.5) (i.e. the focal elements are a nested sequence of Car-
tesian products of intervals, each of which pertains to one variable only): 
the variables are non-interactive (see § 5.2.1.2) and their extension is given 
by Eq. (5.57). Again on finite spaces this equation can be equivalently 
given by the following: 

( ) ( ) ( ) ( ) ( )( )
1 2

1 2

1 2 1 2
...

sup  min , ,..., , , ,..., ,
n

n

F F F n R n
S S S

z s s s s s s z
× × ×

μ = μ μ μ χ  (6.32) 

6.2.3   Conditioning a Random Set to an Event B 

Let Bel be a belief function corresponding to a random set defined on S, 
and let Ψ  be the set of all probability functions consistent with Bel. As in 
Section 3.2.5, conditional belief and plausibility functions (valid only if 
Bel(B) > 0) are given by: 

  
( ) ( )
( ) ( )

| inf |

| sup |
P

P

Bel A B P A B

Pla A B P A B

∈Ψ

∈Ψ

=

=
 (6.33) 

Moreover, in finite spaces the search can be restricted to the finite set EXT 
of the extremes of the convex set Ψ. 

In the same way that conditional probability functions are probability 
functions, conditional belief functions are belief functions and can be cal-
culated by Eq. (3.35), which also gives the corresponding plausibility func-
tions. Hence conditioning a random set to an event B gives a conditional 
posterior random set. 

However two limits of this formulation must be underlined. 
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Firstly, as discussed at the end of Example 3.12, a closed rule directly 
giving the probabilistic assignment of the posterior random set from the 
probabilistic assignment of the prior random set cannot be given. Mobius 
inversion (Eq. (3.8)) of the conditional belief function must be applied.   

Secondly, when updating belief function recursively applying Eq. 
(3.35), given or observed two or more successive deterministic events B1, 
B2,…  the order in which the updating events are observed does matter. In 
other words, imprecision entails the loss of commutativity. It seems that 
temporal indifference (as previously discussed in § 6.1.1.4) could be not 
respected and the final result is not equivalent to conditioning the prior  

belief function with respect to the event 1 2....B B B= ∩ . 
 
Example 6.6. (Modified after (Fagin and Halpern 1991). Let R = {r1 , r2

 , r3 , r4} 
be a finite space for the characteristic strength of  a concrete, measured according 
to the prior information by the random set 

{ }1 1 1 2 2 2 3 3 4 31 1 1
, , , , , ,

4 4 2
A r m A r m A r r m

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = = = =⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 

The focal elements are disjoint sets and hence: 

Bel({r1}) =  Pla({r1}) =  m1 = 0.25 

Bel({r2}) =  Pla({r2}) =  m2 = 0.25 

Bel({r3, r4}) =  Pla({r3, r4}) =  m3 = 0.5 
 
while probabilities of the singletons r3 , r4 are bounded by: 
 
Bel({r3}) = Bel({r4}) =  0 ;  Pla({r3}) = Pla({r4}) = 0.5  
 
Further information provides evidence that event {r4} is impossible: i.e. event B1 

={r1, r2
 , r3}, with P(B1| B1) = 1 is the updated space of  possible events. Notice 

that Bel (B1) = m1 + m2 = 0.5 > 0, while Pla(B1) = m1 + m2 + m3 = 0.5. 
Let us evaluate, through Eq. (3.34), the updated bounds of the probability of the 

event A = { r1}.  Taking into account that AC = {r2, r3, r4}, A ∩ B1= {r1}, AC ∩ B1= 

{r2, r3}: 

{ }( ) { }( )( )
{ }( )( )

{ }( ) { }( )( )
{ }( )( )

1

1 1

2 3

1

1 1

2 3

0.25
/ 0.25;

0.25 , 0.25 0.5

0.25
/ 0.5

0.25 , 0.25

Bel r
Bel r B

Pla r r

Pla r
Pla r B

Bel r r

=
= =

+ = +

=
= =

+ =
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Further information again provides evidence that event {r3} is impossible: i.e. event 

B2 = {r1, r2}, with P(B2| B1, B2) = 1 is the final updated space of  possible events. 

Observe that Bel (B2 /B1) = (Bel({r1, r2}) = 0.5)/(0.5 + (Pla({r3})= 0.5)) = 0.5 > 0, 
while Pla(B2 /B1) = 1. 

Let us evaluate again, through Eq. (3.35), the updated bounds of the probability 
of the event A = {r1}.  Taking into account that AC = {r2, r3, r4}, A ∩ B2= {r1},  

AC ∩ B2= {r2}: 

{ }( ) { }( )( )
{ }( )( )

{ }( ) { }( )( )
{ }( )( )

1 1

1 1 2

2 1

1 1

1 1 2

2 1

/ 0.25
/ , 0.333;

0.25 / 0.25 0.5

/ 0.25
/ , 0.667

0.25 / 0.25

Bel r B
Bel r B B

Pla r B

Pla r B
Pla r B B

Bel r B

=
= =

+ = +

=
= =

+ =

 

Changing the order of the observed events gives very different results. In fact, ob-
serving B2  ={r1, r2}:  Bel (B2) = Pla (B2) = P (B2) = 0.5, and hence Bayes formula 

directly gives P({r1}/ B2) = P({r1})/ P(B2) = 0.25/0.5 = 0.5. Of course observing 

now  B1 ={r1 , r2
 , r3} does not change the probabilities, because B2 is included in 

B1. This conclusion can be checked through Eq. (3.35): 

{ }( ) { }( )( )
{ }( )( )

{ }( ) { }( )( )
{ }( )( )

1 2

1 1 2

2 2

1 2

1 1 2

2 2

/ 0.5
/ , 0.5;

0.5 / 0.5 0.5

/ 0.5
/ , 0.5

0.5 / 0.5

Bel r B
Bel r B B

Pla r B

Pla r B
Pla r B B

Bel r B

=
= =

+ = +

=
= =

+ =

 

These results seem paradoxical, because Eq. (6.33) shows that the final result can 
be obtained applying Bayes’ rule of conditioning to the set EXT of the extreme 
distribution of the random set, and this commutative rule directly gives the final 
result conditioning to the intersection of the observed events. 

Clearly in this example the extreme distributions coincide with the two selectors:  
 

P1
EXT = (0.25, 0.25, 0.5, 0), P1

EXT = (0.25, 0.25, 0, 0.5). Moreover B1 ∩ B2 = B2 = 
{r1, r2}, and hence  

{ }( ) ( )
( )

( )
( )

{ }( ) ( )
( )

( )
( )

1 1 2 1

1 1 2

1 2 2 2

1 1 2 1

1 1 2

1 2 2 2

0.25 0.25
/ , min , 0.5;

0.5 0.5

0.25 0.25
/ , max , 0.5

0.5 0.5

EXT EXT

EXT EXT

EXT EXT

EXT EXT

P r P r
Bel r B B

P B P B

P r P r
Pla r B B

P B P B

⎛ ⎞= =
⎜ ⎟= =
⎜ ⎟= =⎝ ⎠
⎛ ⎞= =
⎜ ⎟= =
⎜ ⎟= =⎝ ⎠
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The problem originates from  Eq. (3.35): it gives exact results at any step of condi-
tioning, but the set Ψ of probability distributions compatible with the conditional be-
lief  function (whose probabilistic assignment can be calculated through the Mobius 
inversion) not necessarily coincides (but generally only includes) the set of condi-
tional probability distributions derived through the Bayes’ rule. This conclusion con-
firms and enlarges the criticism about any uncertain model based on upper/lower 
probabilities discussed in Section 3.3. Some other numerical examples are reported 
in (Walley 2000), demonstrating incorrect results obtained conditioning Choquet ca-
pacities of different order. 
 
In Example 6.6, by using Mobius inversion it is easy to calculate that the random 
set obtained by conditioning to B1, is the following: 

{ } { }1 1 1 2 2 2 3 1 3 3 4 2 3 41 1 1 1
, , , , , , , , ,

4 4 4 4
A r m A r m A r r m A r r m

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = = = = = =⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 

The extreme distributions coincide with the four selectors:  
 
P1

EXT/B1 = (0.25, 0.25, 0.5, 0), P2
EXT/B1 = (0.5, 0.5, 0, 0), P3

EXT/B1 = (0.5, 0.25, 0.25, 0), 
P4

EXT/B1 = (0.25, 0.5, 0.25, 0).  
 
Conditioning to B2, Bayes’ rule gives for example: 

{ }( )
( )
( )

( )
( )

( )
( )

( )
( )

( )

1 1

1 1

1 1

1 1

1 1 2 1

/ /

1 2 2 2

/ /1 1 2

3 1 4 1

/ /

3 2 4 2

/ /

0.25 0.5
, ,

0.5 1
/ , min

0.5 0.25
,

0.75 0.75

min 0.5,0.5,0.667,0.333 0.333

EXT B EXT B

EXT B EXT B

EXT B EXT B

EXT B EXT B

P r P r

P B P B
Bel r B B

P r P r

P B P B

⎛ ⎞= =
⎜ ⎟

= =⎜ ⎟
= =⎜ ⎟

= =⎜ ⎟
⎜ ⎟⎜ ⎟= =⎝ ⎠

= =

 

6.2.4   Not Deterministic Mapping 

The situation is rather more complex when function G or f is not determi-
nistic, because the problem goes well beyond Bayesian formulation. Now 
we are facing the combination of two kinds of information, both being un-
certain and derived from two distinct bodies of evidence: one relative to 
the independent variables and the other to the function which relates inde-
pendent variables to a dependent variable.  

More generally, in probabilistic terms, we have to combine information 
which yields two distinct probability distributions on the same space. This 
topic leads us to the core of the problems from which both Shafer's Evi-
dence Theory and Zadeh's Fuzzy Set Theory originated. Both theories may 
be seen as attempts to solve this problem. 



274 6   Approximate Reasoning
 

The critical point about the limits of Bayes’rule for updating is well de-
scribed in this quotation in the initial chapters  of Shafer’s book: 

 
"In the Bayesian theory, the task of telling how our degrees of belief 

ought to change as new evidence is obtained falls to Bayes’ rule of condi-
tioning: we represent the new evidence as a proposition and condition our 
prior Bayesian belief function on that proposition. Here we find no obvious 
symmetry in the treatment of new and old evidence. And more importantly, 
we find that the assimilation of new evidence depends on an astonishing as-
sumption: we must assume that the exact and full effect of that new evi-
dence is to establish a single proposition with certainty. In contrast to 
Dempster’s rule of combination, which can accommodate new evidence 
that justifies only partial beliefs, Bayes’ rule of conditioning requires that 
the new evidence be expressible as a certainty” (Shafer 1976, pp. 25-26). 

On the another hand, alternative models of uncertainty (particularly 
fuzzy models) have been explicitly conceived as antitheses to the probabil-
istic paradigm and to classical Boolean logic and Set Theory.   

The theory of fuzzy sets embodies Zadeh’s original idea of “vagueness”  
(Zadeh 1965) i.e. “the lack of precise or sharp distinction or boundaries” 
(Klir 1995)N 6-3.  
     In the following Sections 6.3 and 6.4 the above-mentioned attempts will 
be reviewed, underlining their connections to the theory of random sets.  In 
fact in Evidence Theory the formal descriptions of the available uncertain 
information to be combined together is given through belief functions or 
equivalent probabilistic assignment of random sets, while the information 
conveyed by fuzzy sets are equivalently described by associated consonant 
random sets or by  possibility distributions of the singletons, as discussed 
in Section 3.2.4. 

6.2.5   Probability Kinematics and Nets of Italian Flags 

An independent but converging criticism about the limits of Bayes rule 
was expressed by Jeffrey, in his book on the Logic of Decisions (Jeffrey 
1983), the first edition of which dated to 1965 (the same year as Zadeh’s 
first paper on fuzzy sets and 2 years before Dempster’s paper on upper/ 
lower probabilities). 

 
“One day Bayesian robots may be built; but at present there are not 

such creatures, and in particular human beings are not de facto Bayesians. 
Bayesian decision theory provides a set of norms for human decision mak-
ing; but it is far from being a true description of our behavior”(Jeffrey 
1983, pp. 166-167) 
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Jeffrey notes that conditionalization performed via Bayes’ rule repeat-
edly applied to events B1,…, Bk is independent of the order but irreversible. 
There is no observed event or proposition B2, such that for an event A: 

 

P(A | B1, B2) = P(A) 
 

except the trivial case P(B1) = 1,  in which case the agent was sure of the 
truth of the event B1 even before the first observation. 

Consider now an agent observing an event B in a probability space (S, S, 
P) with prior positive probability and attributing to this event a posterior 
probability a < 1. Jeffrey suggests that the probabilities of any other meas-
urable event A could be updated, when supposing that the conditional 
probabilities P(A | B) and P(A | BC) do not change. In fact the theorem of 
total probability (see Eq. (2.7) gives: 

  PPOSTERIOR(A| B) = a⋅P(A| B) + (1-a)⋅P(A| BC) (6.34) 

 
Example 6.7. (Modified after (Jeffrey 1983), the mudrunner example). A concrete 
mix is supposed to perform much better in a humid environment than in a dry  
environment. 

The judgment of the engineer about the probability of good performance of a 
particular structure built using this concrete mix should be updated by the infor-
mation that the probability of  B = “local dry environment” is high (and hence 
probability of BC = “local humid environment” is low). However the forecast 
should have no effect on the proposition that the concrete should have a good per-
formance in the humid environment (high conditional probability of the state A of 
good performance) and on the contrary bad performance in the dry environment. 

For example, let P(A| B) = 0.6, P(A| BC) = 0.99 and a = 0.8. Eq. (6.34) gives: 
 

PPOSTERIOR(A| B) = 0.8 x 0.6 + (1 – 0.8) x 0.99 = 0.678 
 
When no information is available about the environment the Principle of Indiffer-
ence (see Section 1.3) could suggest a = 0.5 and hence PPOSTERIOR(A| B) = (.8 +  
0.99) x 0.5 = 0.895. 

Clearly any conclusion obtained via Eq. (6.34) is reversible: i.e. mistakes 
can be erased by successive more reliable information. However the final 
conclusion is order dependent, because strictly related to the last observa-
tion of event B and its final probability. 

Jeffrey’s rule (Jeffrey 1983) can be extended to a collection of observed 
events, when precise probabilities can be attached to the σ-algebra gener-
ated by the collection (see section 2.1).  Suppose for example a prior P is 
available, and that one makes an observation Ob of k mutually exclusive 
events B1,…, Bk (measurable with respect to P) with probability ai, i = 
1,…,k, with a1+…+ ai =1. The probability of an event A (again measurable 
with respect to P) is denoted as P(A| Ob), and is defined as:  
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  P(A| Ob) := a1⋅P(A| B1) +…+ ak⋅P(A| Bk) (6.35) 

Now, if either A or any of the sets Bi is non-measurable with respect to P, 
i.e. if we start from a random set, then one can define a lower envelope as 
done before for the belief function. Indicating with µ the extension of P 
such that the A, B1, …, Bk are measurable with respect to µ: 

  µLOW(A|Ob) = inf { µ (A|Ob)}        (6.36) 

Although Fagin and Halpern (Fagin and Halpern 1991) conjecture that 
µLOW(A|Ob) is a belief function, this has not yet been proved. Moreover, no 
closed-form solution such as Eq. (3.35) is available for its calculation.  

In an independent manner Blockley and his research team in Bristol have 
developed a model to evaluate the final state of truth of a proposition (for 
example about the safety of an engineering system) depending on a net of 
different levels of compound propositions (Cui and Blockley 1991). For 
every proposition the state of truth is measured by an interval probability 
and the mechanism transferring the measure from a lower level to a higher 
one is again based on the theorem of total probability (Hall, Blockley and 
Davis 1998). A proposition E on the space (the universe of discourse)  
defines a partition (E, EC) of S. The interval probability: 

  IP(E) = [l(E), u(E)]         (6.37) 

gives an Italian flag for the proposition, i.e. a partition of the interval [0, 1] 
in the sub-intervals green [0, l(E)], white [l(E), u(E)] and red [u(E), 1].                                     

It is equivalent to a random set on the power set of the set { E, EC}, that 
is the set of the focal elements { E, EC, S}, with the probabilistic assign-
ment (derived for example by incomplete information given by experts on 
the true-value of the proposition E): 

  m(E) = l(E) ;  m(EC) = 1 - u(E)  ;     m(S) = u(E) - l(E)        (6.38) 

All results obtained through IP can therefore be obtained by using ran-
dom sets and on the other hand  random sets theory can provide insight  
into the rules of IP (Bernardini 2000). 
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6.3   Combination of Random Sets 

6.3.1   Evidence Theory: Dempster’s Rule of Combination 

Bayes theorem can be considered as a particular case of a more general 
rule of combination suggested by Dempster (Dempster 1967). Let 

( ){ }1 1 1 1,i iA m A=F     and ( ){ }2 2 2 2,F i iA m A=   be two random sets on the 

same space S. Dempster’s rule defines the combined random set as: 

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2 2

12 1 2 12

1 1 2 2 1 1 2 21

F    ; 

i , j i , j

i j

i , j i j i , j

i j i j

C C

m A m A
C A A ;m C

K

K m A m A m A m A
≠∅ =∅

⎛ ⎞×
⎜ ⎟= = ∩ =
⎜ ⎟
⎝ ⎠

= × = − ×∑ ∑
    (6.39) 

Hence the result is a third random set, whose focal elements (according to 
Eq. (6.1)) are the intersections of the initial focal elements and whose 
probability assignment is obtained as the product of the corresponding 
probabilities (following the hypothesis of independence by which they 
were initially evaluated), normalized in order to take into account that a 
part of the initial evidence (non null products of probabilities) may focus 
on empty intersections.  

Of course if some focal elements C 
i,j are coincident, their probabilistic 

assignments m12(C 
i,j) can be added together. 

 

Example 6.8. Let us return to Example 6.4 and suppose that both sclerometric and 
mix composition tests, performed independently (i.e. in a non-joint way), yield 
evidence about concrete resistance r in the form of the following (non-consonant) 
focal elements and probability assignments:  

  
A :     m(A1 = {r1, r2}) = 0.2 ; m(A2 = {r1, r2, r3}) = 0.7 ; m(A3= {r2, r3}) = 0.1  
B :     m(B1 = {r1}) = 0.05    ; m(B2 = {r1, r2}) = 0.1   ; m(B3= {r2, r3, r4}) = 0.85  
 

What conclusions can be drawn about the probability P(C) of any subset C ⊆ R ? 
Or what conclusions can be drawn, at least, as far as the interval [Bel (C), Pla(C)] 
containing P(C) is concerned? 

Shafer proposed to utilize the rule summarized in Eq. (6.39), obtaining in this 
numerical example:  

 

  m(A1 ∩ B1 ) =  m({r1})   =  0.2 x 0.05  = 0.01 
  m(A1 ∩ B2 ) =  m({r1, r2}) =  0.2 x 0.1    = 0.02 
  m(A1 ∩ B3 ) =  m({r2})      =  0.2 x 0.85    = 0.17 
  m(A2 ∩ B1 ) =  m({r1})      =  0.7 x 0.05    = 0.035 
  m(A2 ∩ B2 ) =  m({r1, r2})  =  0.7 x 0.1     = 0.07 
  m(A2 ∩ B3 ) =  m({r2, r3})  =  0.7 x 0.85   = 0.595 
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  m(A3 ∩ B1 ) =  m(∅)        =  0.1 x 0.05     = 0.005 
  m(A3 ∩ B2 ) =  m({r2})      =  0.1 x 0.1       = 0.01 
  m(A3 ∩ B3 ) =  m({r2, r3}) =  0.1 x 0.85     = 0.085 
 

and then :    K = 1 - 0.005 = 0.995 
 

     m( C1 = {r1})       =  (0.01 + 0.035) / 0.995  =  0.0452 
     m( C2 = {r1, r2}) =  (0.02 + 0.07)   / 0.995   =  0.0905 
     m( C3 = {r2})       =  (0.17 + 0.01)  / 0.995   =  0.1810 
                  m( C4 = {r2, r3})  =  (0.595 + 0.085) / 0.995 =  0.6832 

 
Fig. 6.4 Plausibility and 
Belief of the singletons  
{r i} 

 
 
 

Figure 6.4 and Figure 6.5 portray the corresponding intervals in which the prob-
abilities of the singletons and the cumulative probabilities are included. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.5 Upper and lower 
cumulative distribution 
functions  
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Dempster's rule coincides exactly with Bayes' rule when the first body of 
evidence is probabilistic (the focal elements are all singletons and hence 
their intersections are empty) and the information conveyed by the second 
body of evidence is deterministic (an event B has been observed with  
complete certainty). In this case Eq.(6.39) gives: 

( ) ( )( ) ( )( )

( ) ( )

( ) ( ) ( ) ( )
( )

( )

1 2

12 12

12 12

1

1

F    ; 
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i i

i

i i i

i

C

i i

C A C A

m P s m B
C s B ;m C

K

K P s P B

Bel A / B Pla A / B m C m C

P A / B

P B

≠∅

⊆ ∩ ≠∅

⎧ ⎫= ⋅ =⎪ ⎪= = ∩ =⎨ ⎬
⎪ ⎪⎩ ⎭

= ⋅ =

= = = =

=

∑

∑ ∑

    
(6.40) 

Example 6.9.  We can verify this fact in Example 6.5, by assuming that the initial 
body of evidence is given by the joint probability distribution p(c, r, s). The focal 
elements are nothing else but the 64 singletons with probability assignment   m(Aijk 
= {(ri, sj, ck) }) =  p (ri, sj, ck) ; while deterministic information is defined by the 
unique focal element: 

m ( B =  {r1, r2, r3, r4 } x  {s3 } x  {c2 })  = 1 

The non-empty intersections are just the four focal elements, with joint probability 
(Table 6.5, row 4): 

m (Ci  = {(ri, s3, c2) } ∩ B  = {(ri, s3, c2)} ) =  p(ri, s3, c2) 

The empty intersections are the remaining 60 focal elements, whose probability 
summation is obtained as 1 minus the sum of the probabilities of the previous four 
focal elements. Therefore it yields simply: 

K =  1 -  ( 1 -  0.0680) = 0.0680 

Thus, after a posteriori information, the probability assignment of the 4 focal ele-
ments assumes the values  m(Ci ) = p (ri / s3, c2) of Table 6.8, exactly coinciding 
with those of Table 6.5, last row. 

Table 6.8 Joint distribution and marginals in Example 6.9 

 m (Ci) = p(r /s3 , c2) 

r1 0 

r2 0.030 / 0.068 = 0.441 

r3 0.036 / 0.068 = 0.530 

r4 0.002 / 0.068 = 0.029 

Total 0.068 / 0.068 = 1.000 
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However, when Dempster’ rule is applied to combine a body of evidence 
measured by a random set and an observed deterministic event B, the  
resulting belief functions do not coincide with the exact results given by 
Eq. (3.35). In this case Eq.(6.39) gives: 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )
( )

( )
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(6.41) 

On the other hand Dempster’s rule is commutative when successively con-
ditioning a random set to a list of observed deterministic events B1, B2, … 
and the final result can be again obtained conditioning the random sets to 
their intersection B1∩B2∩… .  

 
Example 6.10. Let us consider again Example 6.6 and calculate the random set 
conditional to B1 ={ r1, r2

 , r3}. 
    

A1 ∩ B1  =  {r1} ;  m(A1) x m(B1) =  0.25 x 1  = 0.25 
A2 ∩ B1  =  {r2} ;  m(A2) x m(B1) =  0.25 x 1  = 0.25 
A3 ∩ B1  =  {r3} ;  m(A2) x m(B1) =  0.5  x 1    = 0.5 
 

Hence K = 1 and the obtained random set is a probability distribution on the sin-
gletons of the event B1. 

Conditioning the prior random set to B2 ={ r1, r2
 } gives:  

   
A1 ∩ B2  =  {r1} ;  m(A1) x m(B2) =  0.25 x 1  = 0.25 
A2 ∩ B2  =  {r2} ;  m(A2) x m(B2) =  0.25 x 1  = 0.25 
A3 ∩ B2  =  ∅    ;  m(A2) x m(B2) =  0.5  x 1    = 0.5 
 

Hence K = 0.5 and the obtained random set is again a probability distribution (the 
white distributions on the singletons of the event B2. 

Of course the same results could be obtained conditioning to B2 the above cal-
culated random sets conditional to B1, because B2 is included by B1. 

Comparison with Example 6.6 shows that in this particular case the final results 
(in both cases obtained conditioning to B2) coincide. However the reduction of un-
certainty obtained through Dempster’s rule is generally much stronger: for  
example, in the case here considered, conditioning to B1 the exact Eq. (3.33)  
gives P(r1) = P(r2)=[0.25, 0.5] while Dempster’s rule gives P(r1) = P(r2)=0.25. 
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The hypothesis of independence of the combined bodies of evidence implicit in 
Dempster’s rule is a further constraint that is generally unjustified. 

More generally, Dempster’s rule is commutative when combining a list 
1 2, ,....F F Fk  of random sets on the same space S. The property derives di-

rectly from the commutativity of set intersection and product of numbers. 
The final result is: 

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1 2 12

12
1 1 2 2

1 1 2 2

1 1 2 21
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k ...k
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k k

i j m
k k
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C A A ...A ;m C

m A m A ... m A
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K m A m A ... m A

m A m A ... m A
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⎛ ⎞= ∩ =
⎜ ⎟

= ⎜ ⎟× × ×
⎜ ⎟
⎝ ⎠

= × × × =

= − × × ×

∑

∑

   
(6.42) 

As a comment about Dempster's rule, it can be observed that its first pro-
posal dates back to the 18th century and precisely to Lambert's speculation 
about the Theory of Chances. In an independent way, it was propounded 
by Dempster in 1967 and since then posed as a basis for Shafer's Theory of 
Evidence. 

However this rule has not been free of criticism deriving especially from 
the observation that independence of bodies of knowledge does not neces-
sarily imply stochastic independence.  

Some paradoxes have been worked out by applying Dempster's rule, as 
reported in the next section, and alternative solutions have been proposed, 
even if frequently less simple and effective.     

6.3.2   A Critical Discussion of Dempster’s Rule: Yager’s Rule of 
Combination 

Dempster’s rule maximizes the “points in common” between the two 
sources of information because it is based on the rule of intersection (Case 
1  in Section 6.1.1.1; AND operator), and therefore it breaks down when 
all the intersections of the assigned focal elements are empty. As a conse-
quence, applications in which intersections are nearly empty (K <<1) are 
outside its intended use, and it is no surprise that conclusions could appear 
questionable or paradoxical.  

 
Example 6.11.  Let us consider the combination of two independent diagnoses for 
neurological symptoms in a patient proposed by Zadeh in 1984 (Zadeh 1984):  
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F1 = {(A1 ={meningitis},  m1(A
1)  = 0.99),  (A2 ={brain tumor}, m1(A

2) = 0.01) )} 
F 2 = {(B1 ={concussion},  m2(B

1) = 0.99),   (B2 ={brain tumor}, m2(B
2) = 0.01) )}  

 
Dempster’s rule combines the diagnosis giving:  

F12 = { } ( )2,2 2 2 2,2
12

0.01 0.01
brain tumor ;    C A B m C

K

×⎧ ⎫= ∩ = =⎨ ⎬
⎩ ⎭

 

K = 1 – 0.99x0.99 – 2 x (0.99 x 0.01) = 0.01 x 0.01 
Therefore we obtain the paradoxical certain conclusion: m12({brain tumor}) = 
Bel({brain tumor}) = Pla({brain tumor}) = 1. 

Yager (Yager 1987) modified Dempster’s rule, by observing that the prob-
abilities of the empty intersections should be used to increase the probabil-
istic assignment of the space S, instead of normalizing the probabilities of 
the non-empty intersections: 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

,

, ,
1 2 12 1 1 2 2

12
12 1 2 1 1 2 2

, ;
F    

 , 
i j

i j i j i j i j

i j

C

C A A m C m A m A

S m S m S m S m A m A
=∅

⎧ ⎫= ∩ = ×
⎪ ⎪= ⎨ ⎬= × + ×⎪ ⎪⎩ ⎭

∑
  (6.43) 

 

Example 6.12.  Let us reconsider the above-mentioned example: 
 

F12 =
{ } ( )

{ } ( )

2,2 2 2 2,2 4
12

4
12

brain tumor ; 0.01 0.01 1 10
    

meningitis,brain tumor, concussion ; 1 1 10

C A B m C

S m S

−

−

⎛ ⎞= ∩ = = × = ⋅
⎜ ⎟
⎜ ⎟= = − ⋅⎝ ⎠

 

 
Hence the much more uncertain forecasting is obtained:  

 

Bel({brain tumor}) = 10-4  <  P({brain tumor})  <  Pla({brain tumor}) = 1 

Bel({meningitis})  = 0          <  P({meningitis})     <  Pla({meningitis})  = 1- 10-4  
= 0.9999 

Bel({concussion}) = 0          < P({concussion})     <  Pla({concussion}) = 1- 10-4  

=  0.9999 
 

Dubois and Prade (Dubois and Prade 1987 ) observed that the combination 
of strongly conflicting information requires some hypothesis to explain why 
the conflict occurs (e.g. the sources of information are not reliable; the con-
sidered reference set is not exhaustive; the sources do not speak about the 
same event). If the sources of information are not reliable, Yager’s rule (to-
tally conflicting information is unreliable) or some application of Case 2  
in Section 6.1.1.2 (totally conflicting information support the union of the 
disjoint subsets) could be more adequate.  

A reasonable trade-off could be to assume that the sources of information 
are reliable when they are not in conflict (i.e. when a non-empty intersection 
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exists): this is Case 1 in Section 6.1.1.1.  Likewise, it is a reasonable trade-
off to assume that one of the sources of information is right when they are 
totally conflicting (i.e. when the intersection is empty): this is Case 2 in Sec-
tion 6.1.1.2.  Hence: 

F12 =

( ) ( ) ( )

, 1 2 1 2

1 2 1 2

,
12 1 1 2 2

 if  

  if  

i j i j
i j

i j i j

i j i j

A A A A
C

A A A A

m C m A m A

⎧ ⎫∩ ∩ ≠ ∅
=⎪ ⎪∪ ∩ = ∅⎨ ⎬

⎪ ⎪= ×⎩ ⎭

 (6.44) 

 
Example 6.13.  Let us consider again the above mentioned example and combine 
the diagnoses according to the above suggested criterion: 

F12 =
{ } ( )( )

{ } ( )( )
{ } ( )( )

2,2 2 2 2,2 4
12

1,2 1,2 2
12

2,3 2,3 2
12

brain tumor , 0.01 0.01 1 10 ,

meningitis,brain tumor , 0.99 0.01 0.99 10 ,   

brain tumor, concussion , 0.99 0.01 0.99 10

C A B m C

C m C

C m C

−

−

−

⎧ ⎫= ∩ = = × = ⋅
⎪ ⎪
⎪ ⎪= = × = ⋅⎨ ⎬
⎪ ⎪
⎪ ⎪= = × = ⋅⎩ ⎭

 

Therefore:  
 

Bel({brain tumor})= 10-4 < P({brain tumor}) < Pla({brain tumor})= 0.0199 
Bel({meningitis})  = 0     < P({meningitis})   < Pla({meningitis})  = 0.9900  
Bel({concussion}) = 0     < P({concussion})  < Pla({concussion}) = 0.9900 

 
The highest probabilistic assignment to the union {meningitis, concussion} 
strongly reduces the plausibility of  {brain tumor} with respect to both Dempster’s 
and Yager’s rule. 
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6.4   Fuzzy Logic and Fuzzy Composition Rule 

6.4.1   Introduction 

Dempster's rule holds even in the case of consonant structures, i.e. when 
random sets or random relations can be completely defined by means of 
membership functions (possibility distributions) of fuzzy sets or fuzzy rela-
tions. However, the result of the combination of consonant structures is 
generally a non-consonant structure.   

 
Example 6.14.  With reference to  Example 6.8, let us consider the combination of 
the following consonant structures of data relative to the concrete  resistance r, de-
rived from information about mix composition and sclerometric tests respectively: 

 
A  :   m(A1 = {r1, r2, r3, r4 }) = 0.4  ;    m(A2 ={r2 ,r3}) = 0.6   
B  :   m(B1={r2, r3, r4}) = 0.2          ;    m(B2 ={r3, r4 }) = 0.8 

 
They correspond to fuzzy sets whose membership functions (possibility distribu-
tions) are displayed in Figure 6.6. 

 
Fig. 6.6 Membership 
functions of consonant 
random sets A and B 

 

 
By using Dempster’s rule, the combination is defined by the following focal ele-
ments and relative probability assignments, which clearly do not represent a con-
sonant structure; in this case, it is simply K =1. 

 
 A1 ∩ B1 =  B1,    m(A1) x  m(B1)   =   0.4 x 0.2   =  0.08 
  A1 ∩ B2  = B2,    m(A1) x  m(B2)   =   0.4 x 0.8   =  0.32 
  A2 ∩ B1  = A2,    m(A2) x  m(B1)   =   0.6 x 0.2   =  0.12 
  A2 ∩ B2  = {r3},  m(A2) x  m (B2)  =  0.6 x 0.8   =  0.48 
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a)                                                           b)  

Fig. 6.7 Example 6.14: a) Plausibility and Belief of the singletons  r 
i ;  b) Upper 

and lower cumulative distribution functions 

In Figure 6.7a and b the values of Plausibility and Belief of the single values and, 
respectively, the upper and lower bounds of cumulative distributions are plotted. 

Certainly, a solution is preferable that maintains consonance and allows 
the development of a theory of approximate reasoning completely within 
fuzzy set theory; this is even more valuable if one remembers that any  
non-consonant structure can be enclosed in an approximate consonant 
structure. 

6.4.2   Fuzzy Extension of Set Operations  

From a historical point of view, the problem of the combination of uncertain 
information conveyed by fuzzy sets has been developed by Zadeh since  
the origins of fuzzy set theory. This has been performed in an autonomous 
way with respect to Bayesian procedures or procedures developed within 
evidence theory, as pointed out in Section 3.2.4. 

Within fuzzy logic, the fundamental problem of combining  information 
pertaining to two distinct bodies of evidence has been frequently inter-
preted as the application of the union and complementation operations as 
extended to fuzzy sets, thus extending Eq. (6.1) and (6.11) when A and B 
are two fuzzy sets. The rules of classical logic can be naturally extended to 
fuzzy sets when the membership function of a fuzzy set is substituted for 
the characteristic function of a classical crisp set. 

These operations, when applied to crisp sets, can be performed through 
different operators applied to their characteristic functions (see Notes N 
6-1 and N 6-2), obtaining the same results. On the contrary when applied 
to the membership functions of  fuzzy sets (even when they are chosen in a 
dual way, i.e. respecting De Morgan's Laws) they give different results. 
Hence important difficulties arise over their interpretation.  
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For this reason, fuzzy logic has sometimes been charged with incoher-
ence, explicitly by scholars educated within the probabilistic paradigm.  

A vast array of t-norms and t-conorms have been proposed for modeling 
the AND and OR operators (e.g., see (Zimmermann 1991), (Klir and Yuan, 
1995)).  However, in the following, reference is maintained to the so-called 
standard operators (min for intersection and max for union) employed for 
the basic approaches defined in Section 6.1.1. The operators are coherent 
with De Morgan’s Laws when the rule for the complementation of fuzzy 
sets is the direct extension of the rule for the characteristic functions of 
complementary crisp sets:  

   ( ) ( ) 1-C AA
s sμ = μ              (6.45) 

Indeed, only these operators are coherent within the general theory of un-
certainty described in this book, which unifies probability and fuzziness 
through the concept of non consonant and consonant random sets. As dis-
cussed in Section 5.2.1, this choice of the operators for the dual operations 
of union/intersection of fuzzy sets is the only one compatible with the ex-
tension principle of random sets when applied to consonant random sets. 

Hence the extension for the 3 cases discussed in Section 6.1.1 follows  
immediately. 

 
Case 1: The AND operator leads to the intersection C of sets A and B.  The 
natural extension of  Eq. (6.1) to fuzzy sets is obtained by substituting its 
membership functions (or the associated possibility distributions)  for the 
characteristic functions: 

   ( ) ( ) ( )( ) min ,C A Bs s sμ = μ μ     (6.46) 

Again this combination leads to a total loss of information when A, B are 
totally conflicting (i.e. the fuzzy intersection A∩B = ∅). When the conflict 
is partial  (A∩B ≠ ∅), the rule decreases the uncertainty for the decision-
maker; but again this decrease could be unjustified and unrealistic if the 
sources of information are not very reliable.  

 
Case 2: The OR operator leads to the union  C of the fuzzy sets A and B  . 
Therefore Eq. (6.11) becomes: 

   ( )( ) max ( ), ( )C A Bs s sμ μ μ=  (6.47) 

The resulting uncertainty for the decision-maker increases, but the rule 
works with every pair of subsets (even if they are totally conflicting). 
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Case 3: CONVOLUTIVE AVERAGING  (c-Averaging): a total or partial 
ordering is recognized or assigned in the space S. In a Euclidean space, let 

Ax  and Bx  be elements of the fuzzy sets A and B, respectively. One ob-

tains, for fuzzy sets, the fuzzy extension of  Eq. (6.13), in a coherent man-
ner with the extension principle for consonant not-interactive random sets. 
Considering for example the one-dimensional real space S: 

   ( )
2

( ) sup min ( ), ( )C A A B B
s sA Bs

s s sμ μ μ
+=

=  (6.48) 

6.4.3   Fuzzy Composition Rule 

It seems more natural to derive the composition rule for consonant struc-
tures as an "extension of the extension principle", i.e. as an extension of the 
rule of composition for information constrained by consonant structures (in-
formation A) with deterministic information (information B) conveyed by a 
point-valued or a set-valued function. 

When information B is expressed by means of a consonant structure (a 
fuzzy relation, i.e. a fuzzy subset of the space S x Z, the natural extension 
of both Eq. (6.4) and Eq. (6.30) is given again by the intersection operator, 
i.e. by the following  fuzzy composition rule: 

   ( ) ( ) ( )( ),  min , , ,C A Bs z s z s zμ = μ μ  (6.49) 

The marginal fuzzy set on Z  can finally be evaluated with the max (Eq. 
(6.5) or  sup (Eq. (6.31) operator. 

 
Example 6.15.  Let us suppose that information about a concrete mix is given by 
means of a fuzzy set whose values μA(c) are listed in Table 6.9.  

Table 6.9 Fuzzy set measuring the mix composition c in Example 6.15 

μ A (c1)      μ A (c2)      μ A (c3)      μ A (c4)      
0.1 1 0.4 0 

 
The relation between concrete resistance r and mix composition c is given by 

the fuzzy relation whose values  μB (r, c) can be found in Table 6.10, demonstrat-
ing a strong monotone relation between the variables (membership equal to 1 on 
the main diagonal of the matrix, with decreasing, nearly symmetric membership 
out of the diagonal cells).  
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By combining the two pieces of information, A and B, we obtain the consonant 
structure (fuzzy set) defined by  the values μC (r) =  max  min (μA (c),  μB (r, c ) ), 
as shown in Table 6.11. 

Table 6.10 Fuzzy relation between concrete resistance r and mix composition c 
in Example 6.15 

 μ B (r, c1)     μ B (r, c2) μ B (r, c3) μ B (r, c4) 
r1 1 0.5 0 0 
r2 0.4 1 0.5 0.1 
r3 0.1 0.4 1 0.6 
r4 0 0 0.4 1 

 
Table 6.11 Marginal fuzzy set measuring concrete resistance r  in Example 6.15  

 μ (r i) 
r1 max( min(1, 0.1), min (0.5,1), min(0,0.4), min (0,0)) = 0.5 
r2 1 
r3 0.4 
r4 0.4 

 
In the case of two fuzzy sets that induce the possibility distributions πA(s) = 
µA(s) and πB (s) = µB(s), gained in an independent way, on the same space 
S, the fuzzy composition rule is simply expressed by the equation: 

( ) ( ) ( )( ) min ,C A Bs s sμ = μ μ , (6.50) 

which coincides with the standard definition of intersection  C = A ∩ B of 
two fuzzy sets A and B (Eq. (6.46)) and therefore it is the extension of  
Eq. (6.1).  Moreover, with the standard definition of complementation the 
extension of (6.11) is as follows 

( ) ( ) ( )( ) ( ) ( )( )1  min 1 ,1 max ,C A B A Bs s s s sμ = − − μ − μ = μ μ  (6.51) 

which coincides with the standard definition of union  C = A ∩ B of two 
fuzzy sets A and B (Eq. (6.47)) and therefore it is the extension of  
Eq. (6.11). 
 
Example 6.16. With reference to Example 6.14 previously solved by means of  
Dempster's  rule, equation (6.50) gives the result  depicted in Figure 6.8. 
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Fig. 6.8  Membership function 
of the combination of conso-
nant random sets plotted in 
Figure 6.6, obtained by means 
of the fuzzy composition rule. 
The resulting fuzzy set is the 
intersection of the fuzzy sets 
displayed in Figure 6.6 

 
 
 

This combination has the following consonant structure: 
 

m(C1 = {r2, r3, r4})          = 0.2 ;      
m(C2 = {r3 ,r4})              = 0.2 ;  
m(C3 = {r3 })                   = 0.6 
 

whose probabilistic content is shown in Figure 6.9 and is therefore different from that 
of Figure 6.7. Although upper/lower cumulative distribution functions (Figure 6.7b 
and  Figure 6.9b) and contour functions (plausibility of the singletons in Figure 6.7a 
and Figure 6.9a) coincide, the belief of the singleton  {r3 } increases from 0.48  in 
Figure 6.7a to 0.6  in Figure 6.9a: a considerable reduction of the uncertainty about its 
probability. 
 
 

  
a)                                                             b) 

Fig. 6.9 Example 6.16: a) Plausibility and Belief of the singletons  r i ; b)  Upper 
and lower cumulative distribution functions 

It is worth noting that both the result obtained by means of  Dempster's 
rule and the result yielded by the fuzzy composition have to be considered 
reasonable representations of the evidence combined on the basis of the 
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available information, but not actual frequentistic forecasts of objectively 
observable occurrences, even when the basic data are such, for example 
separately given by random sets. 

The fuzzy composition rule can also be expressed through a rule for 
combining consonant random sets. 

Let F1 = ( ){ }1 1 1,i iA m A   and F2 = ( ){ }2 2 2,i iA m A   be  two consonant ran-

dom sets on the same finite set S and F1, F2 their associated normal fuzzy  
sets, whose membership functions take values in the common finite set 
{α1<…αij ...< αm < αm+1= 0 }. As explained in Section  3.2.4, the connec-
tion between the two representations is obtained through the common fi-
nite set of α−cuts αF (not necessarily distinct for each k) as follows: 

 Fk =  ( ){ }1, , 1, 2
ijij ij ij ij

k k k kA F m A kα α α += = − =  (6.52) 

 
Fig. 6.10 Intersection of two 
normal fuzzy sets with a finite 
number of α-cuts 

 
 
 

The rule is as follows (see Figure 6.10) 

F12 = 
( ) ( ) ( )

1 2

1
12 1 1 1 1

for 1, 2,..., :     ,

;

ij ijij

ij ijij ij ij

ij m C F F

m C m F m F

α α

α α α α +

⎧ ⎫= = ∩⎪ ⎪
⎨ ⎬

= == = −⎪ ⎪⎩ ⎭

  (6.53) 

Hence the focal elements of the combined random set are again, as in 
Dempster’s rule, obtained by intersection, but the intersection is performed 
only by the α−cuts of the same level α. Moreover the probabilistic  
assignment of the intersected focal elements is preservedN 6-4. 
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                                                      a)                                                      b) 

Fig. 6.11 a) – Dempster’s normalization of a fuzzy intersection.  b) – Yager’s 
normalization of a fuzzy intersection 
 

It can be observed that the rule in Eq. (6.53) uses Case 1 (intersection); 
therefore, if A1

m ∩ A2
m = ∅ , intersections are void  ∀ ij and hence the rule 

does not work. Moreover, if A1
1 ∩ A2

1 = ∅,  the resulting fuzzy set C is sub-
normal, i.e. its height h(C) < 1, and K=1-h(C) is the probability assignment 
of the empty set ∅.  

The problem of a normalization of the resulting fuzzy set appears in ex-
actly same manner as discussed in the application of  Dempster’s rule. 
Hence alternative rules can again be used for normalization, following  
the Bayes/Dempster/Shafer criterion (Figure 6.11a)) or the modification 
proposed by Yager according to Eq. (6.43) (Figure 6.11b)). 
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6.5   Fuzzy Approximate Reasoning 

6.5.1   Introduction  

Although the theory of random sets and the connected interpretation of a 
fuzzy set as a consonant random set can be very useful in applications (as 
an extension of the classical probability theory to the case of incomplete or 
set-valued data), the most important applications of  fuzzy set theory have 
been based, since its foundation in the 1960s, on the powerful extension of 
the classical logic and of the classical set theory, to give a numerical de-
scription of vague and qualitative information, and also to combine in a 
very simple and expressive manner uncertain information  independently 
given on the same space.  

The main problem is to make decisions, on the basis of the forecast of 
future events, to design a new system or to operate the control of an exist-
ing system, in situations of uncertainty, i.e. when  two or more alternatives 
are possible, and a list of objectives or constraints (safety, financial cost, 
serviceability) is defined. 

The basic instruments are firstly the rule of fuzzy composition discussed 
in Section 6.4, to extend the classical rules of inference, and secondly the 
definition of an optimal choice when many, generally contrasting, objectives 
or constraints should be taken into account. The first instrument can be used 
to develop fuzzy rule based expert systems and fuzzy on line controller of 
dynamic systems (this may be the most popular application of the theory). 
The second instrument suggests powerful, simple and robust procedures in 
the fields of pattern recognition, clustering and multi-objective optimization. 

Many thousands of papers and books and many hundreds of alternative 
procedures have been written or proposed in the last 40 years. So in the 
following sections just some introductory ideas are given, trying to clarify 
the most relevant conceptual aspects, without discussing or classifying the 
different algorithms and operators proposed to extend the classical logic 
and set theory.  

It is important here to underline once again that in these applications,  the 
obtained results cannot be interpreted in the sense of expected frequencies  
of objective phenomena, even in the case when the data to be combined  
derived from statistics, although incomplete or set-valued, of objective  
phenomena.  

In comparison with fuzzy logic, Dempster’s rule (Section 6.3.1) has 
very rarely been used in real applications, despite its more extended valid-
ity to consonant and non-consonant data; perhaps the reason depends on 
the computational difficulties arising from the necessity  to operate on each 
focal element, while fuzzy logic allows a point-valued representation.  
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6.5.2   Inference from Conditional Fuzzy Propositions 

The implementation of expert systems and online computer-aided system 
controllers require the development of quick procedures of automatic deci-
sion reproducing in any manner the capacity of the human brain to recog-
nize, in a largely uncertain environment, the most relevant information, to 
compare objects, to evaluate rules of general (but not absolutely universal) 
validity to be used in the approximate reasoning. When applied to very 
complex systems the required techniques should be simple and computa-
tionally robust, to directly evaluate the main structures and regularity of the 
data, without passing through an accurate analysis of any particular bit of 
information. 

From this point of view the theory of fuzzy sets seems a particularly 
powerful instrument, because it enables one to demonstrate, in a very  
condensed manner, the informative content subtended by a population of 
individually distinct objects or measures.  

As an example a fuzzy relation can summarize a vague or qualitative 
monotonically increasing dependency between two variables (x, y), ex-
pressed in a linguistic manner by the propositions: 

 
 IF  x is SMALL (a fuzzy set A1 on X)   THEN   

y is  MEDIUM  (a fuzzy set B1 on 
Y) 

         .............. 
 IF  x is LARGE (a fuzzy set Aj on X)  THEN   

y is VERY LARGE  (a fuzzy set Bj on Y) 
         .............. 
 

and numerically: 

( )( , ) max min ( ), ( )
j jR A B

j
x y x yμ = μ μ        (6.54) 

This rule can be justified observing that the min operator combines, ac-
cording to the fuzzy composition rule (6.49), the cylindrical extensions of 
μAj

(x) and μBj
(y) from X to X x Y and from Y to Y x X respectively, while 

the max operator gives the standard union of the obtained Rj fuzzy rela-
tions on X x Y = Y x X (according to (6.51)). 

The rule of fuzzy composition (symbol ° in the following) discussed in 
Section 6.4.3 builds up the basis for a model of approximate reasoning, ex-
tending the rules that in classical logic are given to infer the “truth value” 
of a dependent proposition. This is performed by combining one or more 
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propositions of universal validity (a deterministic relation) and the evi-
dence of a particular property.   

 
1. The extended Modus Ponens: 
 
                 Premise 1:   R   ⊆ X x Y 
                    Premise 2:   A*  ⊆ X       

        Then:    

 ( )* * *( ) sup min ( ), ( , )B A R A R
x X

y x x y=
∈

μ = μ μD              (6.55) 

2. The extended Modus Tollens: 
 

  Premise 1:  R  ⊆  X x Y 
  Premise 2:   B* ⊆ Y        
 
           Then:  

 ( )* * *( ) sup min ( ), ( , )A R B B R
y Y

x y x y=
∈

μ = μ μD              (6.56) 

3. The extended Hypothetical syllogism: 

  Premise 1:  R1 ⊆  X x Y 
  Premise 2:  R2 ⊆  Y x Z                                    

   Then: 

 ( )
1 2 1 2

( , ) sup min ( , ), ( , )R R R R R
y Y

x z x y y z=
∈

μ = μ μD              (6.57) 

 

Example 6.17.  Let  X = Y = {1, 2, 3, 4 }, and assume that on X and Y the linguis-
tic judgments SMALL and LARGE correspond to the fuzzy subsets (μ / x means 
that μ is membership of x to a set): 

 
 SMALL    = S  =          {1 / 1,  0.9 / 2,  0.1 / 3,  0 /4 } 

          LARGE    = L  = SC  =  {0 / 1,  0.1 / 2,  0.9 / 3,  1 /4 } 
 

In X x Y a relation is defined as follows: 
 

R1 ∪ R2  =    (IF x IS S THEN y is L) ∪ (IF x IS  L THEN y is S) 
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Numerical results for  R1  and  R2  are displayed in Table 6.12 a) and b) respec-
tively, while Table 6.13 displays the relation R = R1 ∪ R2. 

   

Table 6.12 a)  Relation R1  ;   b)  Relation R2 

 
  y 1 2 3 4    y 1 2 3 4 
   μB1 0 0.1 0.9 1    μB 2 1 0.9 0.1 0 

x μA1 μR1      x μA 2 μR2   
1 1  0 0.1 0.9 1  1 0  0 0 0 0 
2 0.9  0 0.1 0.9 0.9  2 0.1  0.1 0.1 0.1 0 
3 0.1  0 0.1 0.1 0.1  3 0.9  0.9 0.9 0.1 0 
4 0  0 0 0 0  4 1  1 0.9 0.1 0 

 
 
 

Table 6.13  Relation R = R1 ∪ R2      Table 6.14  Modus Ponens    
 

 y 1 2 3 4    y 1 2 3 4 
x μR          x μA* min(μR , μA* )   
1  0 0.1 0.9 1  1 0  0 0 0 0 
2  0.1 0.1 0.9 0.9  2 0.1  0.1 0.1 0.9 0.9 
3  0.9 0.9 0.1 0.1  3 0.9  0.5 0.5 0.1 0.1 
4  1 0.9 0.1 0  4 1  0 0 0 0 
         μB*= sup 0.5 0.5 0.9 0.9 

 
Let’s suppose to obtain the fuzzy measure on X: A* = {0 / 1,  1 / 2,  0.5 / 3,  0 /4 }. 
Then the rule of the Modus Ponens works as shown in Table 6.14. The result is the 
sub-normal fuzzy subset of Y : B* = {0.5 / 1,  0.5 / 2,  0.9 / 3,  0.9 /4 }. 

6.5.3   Pattern Recognition and Clustering 

Classical pattern recognition is generally based on the subdivision of a 
space X, where some variables s assume values, in a standard partition: i.e. 
a group of disjoint subsets B 

j
  ( j=1,2..c) whose union is X;  if the actual 

pattern x* is observed, it can be classified according to the standard subsets 
or patterns. Formally its membership to the standard patterns is given by 

 ( )( *, ) *j
jS x B x= χ              (6.58) 

indicating with χj(x) the characteristic function on X of the subset B 
j
  

(standard pattern j).  
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a) 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
b) 

Fig. 6.12 Pattern recognition of a crisp measure x*: a) fuzzy pseudo-partition; b) 
fuzzy classifier 

 
A group of c fuzzy relations Rj (j = 1,2..c) on the same space X can be 

assumed to define a list of c standard patterns; the patterns are frequently 
given as a fuzzy pseudo-partition of X (Klir and Yuan 1995, p. 359), if the 
following condition is respected: 

( ) :    1jj
x X X∀ ∈ μ =∑                                    (6.59) 

If the actual pattern x* is crisp, i.e. observed without uncertainty, it can be 
classified according to the standards by means of a fuzzy classifier, a fuzzy 
subset of the set C = {1, 2, ...c} whose membership function is given by the 
extension of Eq. (6.58): 
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( )( *, ) *j jS x R x= μ              (6.60) 

If a crisp classification is required, the pattern (or patterns) j* with maxi-
mum of S can be selected by the decision-maker (Klir and Yuan 1995,  
pp. 367-369).  

On the contrary, if  the actual observed pattern is uncertain, i.e. meas-
ured by a random or fuzzy relation ℜ  on X, a criterion of comparison of 
actual and standard pattern is required. The comparison of fuzzy set can be 
based on the idea of  degree of sub-sethood (DoS) of fuzzy subsets of the 
space X: 

DoS (A, B) =  | A ∩ B | / | A |         (6.61) 

where the cardinality |A| of a fuzzy subset A on a finite space X is the exten-
sion of the cardinality of a crisp set, measured by the sum of the membership 
values over X.  

In another context the operator for the comparison can be considered a 
filtering of A through the filter B (Bignoli 1991). As an example in struc-
tural engineering, the fuzzy set B on the space of a limit state function z 
could define the class of  safe structures, extending the deterministic defi-
nition generally assumed in Codes ( z > 0 ) to a more reasonable transition 
from safety to unsafety, as shown in Figure 6.13. 

 
Fig. 6.13 Filtering the fuzzy 
measure A of the safety mar-
gin z through the fuzzy filter 
B (defining safety) 

 
 

It is possible to observe that, assuming the standard max and min opera-
tors (dual with respect to the complementation rule given by (6.45) for union  
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and intersection, the Law of the excluded middle is not respected: if A is a 
not trivial (i.e. not classic) fuzzy subset of the universal set X (Figure 6.14) 

A ∪ AC  ⊂  X                  (6.62) 

and therefore, for any pair of not trivial fuzzy sets: 

DoS (A, B) + DoS (AC, B )  < 1                         (6.63) 

That is: the judgment on safety and unsafety cannot be derived from one 
another, as in probability theory. In some applications this asymmetry  is 
not reasonable or is computationally heavy; so it can be eliminated assum-
ing the following symmetric operator (normalized from 0 to 1; (Bignoli 
1991)) in the comparison of fuzzy sets: 

K(A, B) = (1 + DoS (A, B) - DoS (Ac, B ) ) / 2             (6.64) 

 

 

Fig. 6.14  Standard complementation and union violate the Law of the excluded 
middle 

 
The same operators (6.61) or (6.64) can be used to compare a fuzzy set or 

relation A (the actual observed pattern) with a list of fuzzy sets or relations 
(the standard patterns B1, B2, ... Bc) of the universal set S, by assuming the 
values of DoS or K as membership of the fuzzy classifier. 

 
Example 6.18.  The fuzzy sets measuring SMALL and LARGE in Example 6.17 
give a fuzzy partition of the space X = {1, 2, 3, 4 }. Many applications of fuzzy 
pattern recognition are based on a fuzzy partition, for example of the space X = {1, 
2, 3, 4, 5, 6, 7, 8, 9, 10} by three patterns corresponding to the linguistic judgment 
SMALL , MEDIUM and LARGE:   

 
 
 



6.5   Fuzzy Approximate Reasoning 299
 

 SMALL    = S   =  {1 / 0,  0.8 / 1,  0.6 / 2,  0.4 / 3, 0.2 / 4, 0 / 5 } 
MEDIUM = M  =   {1 / 0,  0.2 / 1,  0.4 / 2,  0.6 / 3, 0.8 / 4, 1 / 5,  
                                    0.8 / 6,  0.6 / 7,  0.4 / 8,  0.2 / 9,  0 / 10 } 

          LARGE    = L   =    {0 / 5,  0.2 / 6,  0.4 / 7,  0.6 / 8, 0.8 / 9, 1 / 10 } 
 

Having observed the fuzzy pattern A* = {0.6 / 5,  1 / 6,  0.4 / 7,  0.4 / 3, 0.2 / 4}, with 
cardinality | A*| = 2, and using DoS operator, the fuzzy classifier is the fuzzy set: 
 
CDoS(A*) =  {(0/2)  / SMALL,  ((0.6+0.8+0.4)/2 = 0.9) / MEDIUM,  ((0.2+0.4)/2 = 
0.3) / LARGE} 
 
Usink K operator SoD should also be calculated for the complementary fuzzy set 
A*C = {1 / 0,  1 / 1,  1 / 2,  1 / 3, 1 / 4, 0.4 / 5,   0  / 6,  0.6 / 7,  1 / 8,  1 / 9,  1 / 10}, 
with | A*C | = 9.  

The fuzzy classifier is the fuzzy set: 
 

CK(A*) = {((1+0-0.333)/2 = 0.333) / SMALL,  ((1+0.9-0.4)/2 = 0.75) / MEDIUM,  
((1+0.3-0.311)/2 = 0.494) / LARGE} 
 
With both operators the preferred deterministic classification is MEDIUM. 

Other applications refine the classification through 5 patterns, assuming: 
 

              VERY SMALL =  VS = SMALL2 =  
                                          = {1 / 0,  0.64 / 1,  0.36 / 2, 0.16 / 3, 0.04 / 4, 0 / 5 } 
              VERY LARGE =  VL = LARGE2 =  
                                            = {0 / 5,  0.04 / 6,  0.16 / 7,  0.36 / 8, 0.64 / 9, 1 / 10 } 
But in this case the patterns are not a fuzzy partition of  X. 
 

Fuzzy clustering can be considered the dual problem to the pattern recogni-

tion. Here a list of crisp or fuzzy data (x1 , x2 , ... xq ) is given and a fuzzy par-
tition is required, according to a criterion of optimality of the number c of 
clusters, or, if c is selected, of the membership functions of the clusters (Klir 
and Yuan 1995; pp. 358-365). 

6.5.4   Fuzzy Model of Multi-objective Decision Making    

In the space of the variables X any objective or any constraint gives a re-
striction to the values to be chosen by the decision-maker. If the restriction 
is given by two classical subsets A and B (Figure 6.15), their intersection 
gives the range of the values s satisfying both the objectives and con-
straints, i.e. it gives the subset D of the decisions through the characteristic 
function: 

( ) ( ) ( ) ( )( )min ,D A B A Bx x x xχ χ χ χ∩= =   (6.65) 
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Fig. 6.15  Classical Decision set 

 
 

All the decisions in D are completely equivalent for the decision-maker, 
so he or she could be like the donkey described by Giovanni Buridano, 
which died of hunger having two lots of hay at exactly the same distance to 
the left and to the right. 

 

  
                                                            a)                                                         b) 
  

Fig. 6.16  a) Probabilistic Decision Set ; b) crisp decision combining the objectives  
 
Alternatively the restriction could be according to a probabilistic model, 

i.e. through the conditional probabilities to satisfy the objectives (or con-
straint) A and B with respect to any choice x ∈ X. 

Even in this case we can derive a range D of the choices with positive 
probability of satisfying both A and B (Figure 6.16a), but not a univocal 
criterion for a crisp choice; for this purpose the multi-objective problem 
should be reduced to a mono-objective problem, selecting a priority or 
combining the objectives. 
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For example let A  be the cost of construction of a structure to be mini-
mized and B the safety with respect to a limit-state to be maximized; we 
could make the choice to minimize the expectation of the total cost in the 
life of the structure: cost of construction plus cost of the insurance of the 
expected damages due to exceeding the limit-state (Figure 6.16b). 

If the restrictions are given by two fuzzy sets or relations, the decision 
subset is the fuzzy set or relation D, with membership function given by 
the extension of  Eq. (6.65): 

μ (x) =    min (μA(x) , μ B(x) )              (6.66) 

i.e. D is the intersection of the fuzzy sets A and B, when the standard op-
erator min is selected for intersection. Moreover it is quite reasonable for 
the decision-maker to select the crisp decision x* such that (Figure 6.17a): 

 μ (x
 *) =    max   min (μA(x) , μ B(x) )                 

                          x ∈ X             
(6.67) 

 

According to De Morgan’s Law, with the standard definition of union and 
complementation, such a decision also minimizes the membership of the 
union of the complementary fuzzy sets (Figure 6.17b): 

 

 μ (x
 *) =     min  max (1 - μ A(x) , 1 - μ B(x) )         

      x ∈X 
(6.68) 

 

     
                         a)                      b) 

Fig. 6.17  Optimal decision in the decision space:  a) maximizing the advantage ;  
b) minimizing the disadvantage 

 
A geometric interpretation of the solution can be given in the space of 

the membership functions (Figure 6.18a) or of their complements to 1 
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(Figure 6.18b), i.e. the multi-dimensional Cartesian product of their inter-
vals of variation [0, 1] (the unit square with two objectives or constraints 
as in Figure 6.18). In these spaces the point (1, 1,..1) and point (0, 0, ..0) 
are the ideal points respectively, and the point corresponding to x* should 
be the point closest to the ideal points. 

 

 
                        a)                                                                  b) 

Fig. 6.18 Optimal decision in the membership space: a) maximizing the advantage; 
b) minimizing the disadvantage 

 
Of course a metric should be chosen in these spaces to measure the dis-

tance, and there is no reason for preferring a Euclidean metric to any other. 
A large class of possible metrics is the lp class, defined by the formula:   

( ) ( ) ( )
1

1 2 1 2d P , P | P P |
p

p
j j

j

μ μ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠
∑    (6.69) 

The Euclidean metric belongs to this class with p = 2. Equations (6.67) and 
(6.68) can be derived by measuring the distances in the membership spaces 
through a metric l∞, i.e. if the distance between points P1 (μ11, μ21,.. μj1...) 
and P2 (μ12, μ22,.. μj2...) is defined by: 

( ) ( ) ( )1 2 1 2d , max | |j j
j

P P P Pμ μ= −             (6.70) 

Using this metric, the points at equal distance from the ideal point are on the 
perimeter of a square (with two objectives; a multidimensional square with 
more objectives) centered on the ideal point, with each side orthogonal to one 
axis (Figure 6.19). As a comparison, in the same Figure the points at equal dis-
tance from the ideal point are displayed for p = 1 and p = 2 (Euclidean metric). 
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Fig. 6.19  Points at equal dis-
tance from the ideal point 
P(1, 1) according to different 
lp metrics 

 
 
 

 
                                                a)                               b) 

Fig. 6.20  Not unique decision with:  a)  p = 1 ;   b)  p = 2 

 

It is possible to demonstrate (Tonon and Bernardini 1999) that with the 
choice p = ∞, if the functions μj are strictly monotone continuous functions 
(increasing or decreasing) on X, the optimal decision is unique. If we use 
different metrics  the optimal decision could be not unique (Figure 6.20), 
even in the case of strictly monotone membership functions. 

The above solution can be extended to the case of many variables x = (x1, 
x2, ... xn) and more than two objectives or constraints, when each objective or 
constraint is measured by a fuzzy relation Rj with joint membership function 
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μj (x), j = 1, 2, ... m (see Figure 6.21 for n = 2 and m = 2, and Figure 6.22 for 
n = 1,  m = 3).  

 
 

Fig. 6.21  Optimal decision on  
the space X1 x X2 as a compro-
mise between one objective 
and one constraint 

 
 

When  m - n > 1 the optimal solution is generally determined by some 
active objectives or constraints, while the others are satisfied with a mem-
bership greater than the membership obtained for the active ones (Figure 
6.22). As a general procedure, we must search for the maximum value of 
membership, α, such that all the objectives or constraints are satisfied at 
least with membership α . That is: 

 
       Maximize  α                                            

           Subject to:                     μj (x) - α ≥ 0 ; j = 1, 2,...m  
                                                α∈ (0, 1]     ;   x ∈ X     

(6.71) 

   

 

Fig. 6.22  Optimal decision on X1 with m = 3 
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When the membership function μj(x),  j = 1, 2, ... m are linear functions of 
the variables (x1, x2, ... xn) for  0 <  α < 1 (as shown in Fig. 6.22), formulae 
(6.71) define a standard linear programming problem with respect to the 
variables x1, x2, ... xn, α.  
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6.6   Conclusions  

When information is affected by both randomness and imprecision, ran-
dom sets allow the whole spectrum of uncertainty experienced in data col-
lection to be taken into account. In this case, imprecision leads to upper 
and lower bounds on the probability of an event of interest. This result is 
particularly useful in the reliability evaluation of engineering systems. In-
deed, imprecision on input variables has strong repercussions on the pre-
diction of a system’s behavior, so that probabilistic analyses that ignore 
imprecision are meaningless, especially when very low probabilities of 
failure are calculated or required. 

Three alternative basic rules have been identified for the combination of 
imprecise data. The subjective choice of the decision-maker must depend 
on the reliability of the available information and the aim of the analysis. 

In the application of the “Intersection” rules, attention should be given 
to the normalization of the obtained probabilistic assignment, especially 
when strongly conflicting sources of information should be combined. 
Yager’s or Dubois and Prade’s modifications of  Dempster’s rule appear to 
be reasonable depending on the reliability of the sources. 

When imprecision affects the available information, a clear distinction 
must be made between combining two pieces of information and updating 
one piece of information with another,  because the rules for combining in-
formation are different from the rules for updating information. Accord-
ingly, it is necessary to distinguish between belief functions as generalized 
probabilities and belief functions as representations of evidence. 
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Notes 

N 6-1.  The choice of operators to combine characteristic functions of sets 
to obtain the characteristic function of their intersection or union is not 
unique. For example, for intersection the equivalent product rule 

( ) ( ) ( )C A Bs s sχ = χ ⋅χ  could be used. The class of equivalent operators to 

be used to obtain the characteristic function of the intersection from the 
characteristic function of the combined sets is known as triangular norms 
(or t-norms). See for example (Klir and Yuan 1995). 

This question is discussed in Section 6.4 with reference to the extended 
operations in fuzzy logic. The choice of the min for intersection (and max 
for union) is justified in this discussion, mainly.    
 

N 6-2.  The choice of operator giving the characteristic function of the 
complementary set from the characteristic function of a set  is not unique. 
Here the rule ( ) 1 ( )C AA

s sχ = − χ  is assumed. De Morgan’s Law and a rule 

for complementation define a class of dual operators for union, in the class 
known as triangular conorms  (t-conorms). For example assuming the 
product rule suggested in N 6-1 as the operator of intersection one obtains: 

  
( ) 1 (1 ( )) (1 ( )) ( ) ( ) ( )C A B A B A Bs s s s s sχ = − − χ ⋅ − χ = χ + χ − χ ⋅χ  

 

N 6-3. These alternative models of uncertainty have demonstrated their 
usefulness especially in the field of control device design and the formal-
ization of approximate reasoning for the development of expert systems 
and decision-making procedures (performed either by computer-aided hu-
man brains or totally autonomous machines (Artificial Intelligence)).   

However, in recent years, even the most inveterate supporters of these al-
ternative models have expressed a willingness to compare their results with 
the relevant conclusions obtained using probabilistic methods, particularly 
when their conclusions and recommendations to a decision-maker need to be 
justified in terms of reliability, robustness and cost/benefit comparisons. 
This comparison seems to be imperative in the field of Structural Engineer-
ing (structural safety, seismic vulnerability and risk assessment of buildings 
and infrastructures). 

 
An interesting example of this wider cultural climate is the recent identi-

fication of theoretical problems (proposed as Challenge Problems to the in-
ternational scientific community (Oberkamp, Helton et al. 2001), which 
can only be solved with great difficulty using classical probabilistic meth-
ods. These problems involve uncertainty propagation through mathemati-
cal models in a decision-support context, when the basic variables are  
differently measured by intervals, multiple intervals, precise probability 
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distributions or a probability distribution with imprecise parameters. More-
over in some cases some parameters are given by n independent, equally 
credible, sources of information, highlighting an additional topic: how can 
one combine different, perhaps independent, sources of uncertain informa-
tion in the same variable? The same problem is at the core of fuzzy set 
theory (Fagin 1999; Fagin 2002).  

Interesting reviews of the state-of-the-art on the subject have been pre-
sented by Genest and Zidek (Genest and Zidek 1986), Dubois and Prade 
(Dubois and Prade 1988), Levefre et al. (Lefevre, Colot et al. 2002), and 
Sentz and Ferson (Sentz and Ferson 2002).  

 

N 6-4. In a very interesting paper, Yager (1991) attempts to overcome the 
same problem: he starts by observing that the application of Dempster’s 
rule of two consonant random sets (or belief structures) gives a generally 
non consonant random set; i. e. this operation is not closed on the set of 
consonant belief structures.  

In order to obtain a closed operation, Yager proposed again the fuzzy 
composition, i.e. the fuzzy intersection by means of the min operator ap-
plied to the membership functions of the two associated fuzzy sets (or,  
alternatively, their union by the max operator). His justification for this op-
erator as an alternative to Dempster’s rule is very interesting because it pro-
vides a deep insight into the relationship between the information described 
by probabilitiy and fuzziness, respectively.   

Firstly, he notices that two fuzzy sets (hence two consonant random 
sets) can assume a commensurate representation: i.e they can be described 
by two sets of nested α-cuts (focal elements of the equivalent random sets) 
taken at the same α-levels. Since the α-levels are the same for the two 
fuzzy sets, the probabilistic assignements for the two associated consonant 
random sets will be identical (recall that probabilistic assignements are ob-
tained as differences between consecutive α-values; see Eq.  (6.52) and 
(6.53) in this book).  

Demspter’s rule of combination applied to these commensurate random 
sets assumes stochastic independence for the joint probabilistic assigne-
ments of intersections of any pair of α-cuts, whose marginals are the two 
identical probabilistic assignements indicated above.  

On the other hand, Yager’s rule of fuzzy composition (see Eq. (6.50) is 
justified by assuming perfect correlation: in the matrix of the joint distribu-
tion, the main diagonal contains the marginal values, and all off-diagonal 
terms are equal to zero (synonyminity property according toYager). 

This property suggests that the information conveyed by fuzzy sets is 
completely described by the nested ordered family of their α-cuts, while 
their probabilistic assignement is invariant (and hence completely corre-
lated when distinct fuzzy sets are considered). 
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