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Foreword

What is the use of bifurcation analysis in petroleum engineering rock mechanics?
This question no doubt will be asked by engineers working in this area with generally

rather practical and application oriented portfolios.

Is there any use at all, is it not just an academic subject, at best useful for well-
controlled conditions such as those dealt with in structural engineering of surface
facilities?

Are subsurface rock conditions with inherent heterogeneity, anisotropy and
layering not so uncertain that highly sophisticated numerical techniques with very
precise determination of failure are out of balance?

Many sceptics, amongst whom I have found myself for some time, look upon bifurcation
analysis in that way. Until recently there was definitely no strong business pull from
petroleum engineering to develop bifurcation analysis in geomechanics because no
operating company was really asking for improved production performance. Application
of bifurcation analysis to petroleum engineering was clearly a technology push; a
technique that was available and was (and is) waiting for people seeing opportunities to
apply it.

Once these opportunities were found, this fine technology appears to be a lot more
beneficial for our ‘rough’ business than initially anticipated. For instance, it allows us to
solve the very important question of scale dependency of our rock mechanical tests,
such as whether a hollow cylinder with a 8 mm hole can be representative for an 8½′′
wellbore. Transition between different borehole failure and stabilisation mechanisms can
now be understood, which significantly increases the scope for barefoot completions and
exclusion or postponement of sand control.

Suddenly a technology that was initially regarded as rather academic contributes to
millions of dollars savings.

This book gives an excellent overview and in-depth treatment of all aspects of
bifurcation analysis in geomechanics. This is sophisticated and powerful technology,
which can be exploited not only in petroleum engineering rock conditions but in many
other geomechanical applications.

Cor Kenter



Head Rock Mechanics
Shell Research 
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Preface

This book by Vardoulakis and Sulem is an outstanding contribution to the important
field of geomechanics and will also be useful to the many branches of engineering and
applied science, particularly those dealing with mechanical behavior.

Following a self-contained Introduction, chapter 2 introduces the basic concepts from
continuum mechanics and thermodynamics before the incremental formulation of
standard continuum mechanics, particularly useful for stability and bifurcation
problems, is presented in chapter 3. This formalism is employed in chapter 4 to analyze
in detail buckling and interface instabilities, including multilayered and cracked media
which offer a natural stimulus for introducing the concept of Crosserat continuum.

Chapter 5 provides an updated contribution to the mechanics of water-saturated
media. It takes Biot’s original contribution to a new level of understanding, including
important physical phenomena such as grain crushing and non-Darcean flow. It uses
the essentials of mixture formalism but achieves a great economy of postulates and
mathematical generalizations with no direct physical interpretation.

In the same spirit, chapters 6 to 8 provide self-contained reviews of the current
plasticity theories and discuss in a systematic and thorough manner the problems of
bifurcation and shear-band formation. The effects of non-coaxiality, confining pressure
and grain characteristics are explained. The benchmark problems of the triaxial
compression test, the biaxial compression test and the cavity inflation test are analyzed
in detail as examples of loss of material stability and progressive failure.

The stage has now been set for the introduction of higher order continuum models to
describe correctly bifurcation and periodic phenomena in granular materials. Standard
theories of soil plasticity do not contain an internal length scale, and thus features such
as thickness and spacing of shear bands, as well as the stress-strain response in the
softening regime, cannot be addressed. As a result, finite element calculations do not
converge and related boundary value problems are ill-posed. The authors were among
the first to show that Cosserat and higher order gradient plasticity models can resolve
these difficulties.

Self-contained accounts of Cosserat plasticity and second-grade plasticity are given in
chapters 9 and 10, respectively. Bifurcation and shear-band analyses are performed and
the necessity of higher order terms in removing ill-posedeness in the softening regime



with simultaneous determination of shear-band characteristics (not captured by
standard continuum theory) is documented.

The book concludes with an account of stability of undrained deformations. This
problem is complex and very little understood despite its practical importance. The
authors demonstrate that fundamental work can intelligibly be applied to solve
outstanding geomechanics problems with extended engineering implications. Careful
laboratory tests are used to calibrate the theoretical models.

This well-organized volume is a substantial and valuable reference for civil engineers
and geologists, as well as mechanical engineers and metal physicists. It should be of
value to any junior or senior researcher with a keen interest in the stability of
deformation.

Elias C.Aifantis
Center for Mechanics of Materials and Instabilities

Michigan Technological University
and Aristotle University of Thessaloniki 
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1
Introduction

1.1
A historical note

In the year 1900 Otto Mohr published his milestone paper with the title “Welche
Umstände bedingen die Elastizitäsgrenze und den Bruch eines Materials?” (“Which
conditions determine the elasticity limit and failure of a material?”). Mohr realized that his
question cannot be answered without resorting to experiments performed carefully and
systematically. However, he realized also that experiments do not give definite answers,
since they are always subject to interpretation. In order to arrive at some conclusion one
needs a solid theoretical framework within which the experiment is performed. Thus,
Mohr developed his fundamental geometrical theory of stress analysis and allowed
himself some answers to the original question he posed.

Figures 1.1.1 and 1.1.2 are taken from Mohr’s (1900) paper. The former figure is very
familiar to any geotechnical engineer and is usually referred to as the (graphical
representation of the) ‘Mohr-Coulomb’ failure criterion, although in Mohr’s original
paper no explicit reference to Coulomb’s (1773) work is made. Accordingly, Mohr’s work
contains the seeds of Prager’s geometrical approach to plasticity theory (Drucker and
Prager, 1952). The second figure from Mohr’s paper was taken, as he acknowledges, from
the Handbuch der Materialkunde of Martens. It shows nearly perfect patterns of slip
lines (Fliessfiguren). Mohr is convinced that this regularity of the failure  patterns, as it
is characterized by almost constant relative inclination angles, can only be a result of
material properties, which prior to ‘failure’ are the same everywhere in the tested
material specimen. In more ductile metals, these ‘yield lines’ are more or less
perpendicular to each other (upper plate), whereas for more brittle metals they form a
rhombic pattern (lower plates). Similar regular rhombic patterns of ‘shear bands’ we
encounter in clay specimens, as shown in Figure 11.4.2, in the last chapter of this book.
In today’s terminology Mohr’s ‘Fliessfiguren’ would be called patterns of ‘localized
deformation’. 

Mohr summarizes his observations by pointing to the following general property of
‘localized’ deformation:



…The deformations observed in a homogeneous body after the elasticity limit [is or
less in the fact that parts of the body of finite dimensions, displace with respect
reached] are not confined in the smallest domains of the body. They consist more to
each other on two sets of slip bands…

Indeed, as we will see in the following sections one basic property of localization
phenomena is some degree of discontinuity of the deformation.

There is no doubt that 100 years later, Mohr’s original question is still challenging.
More important, however, is Mohr’s scientific method, which consists of the following
steps: (a) Formulation of the mathematical framework; (b) formulation of the (mechanical)
theory; (c) performance and interpretation of (critical) experiments according to the
needs of the theory; (d) falsification or corroboration of the theory; and (e) possible
return to steps (c), (b) or (a) for further iterations.

It is in this context that the title and structure of the book might find its justification.
In trying to contribute towards some better description of the concept of ‘failure’ in
solids, we use the term equilibrium bifurcation analysis as the name of the basic
theoretical tool to be used in our analysis. Geomechanics, on the other hand, signifies the
material of interest and our confinement to purely mechanical processes. Thus
geomechanics is understood here as the mechanics of geomaterials, which in turn could
be called ‘Coulomb’ materials, since these are materials with predominant internal
friction in the sense of Mohr.

1.2
Observational background

Failure of many engineering structures is characterized by the formation and
propagation of zones of localized shear deformation. In particular, failure and post-
failure analyses are important in soil mechanics as well as in earthquake, mining and
petroleum engineering design problems, where one is typically interested in ultimate and

Figure 1.1.1 Mohr’s original failure criterion for a frictional or Coulomb material (Mohr, 1900).

2 BIFURCATION ANALYSIS IN GEOMECHANICS



residual bearing capacities of the various analyzed structures. There is also interest in
structural geology, where shear bands appear as faults (Figure 1.2.1) which, among
other things, give clues to the history, the magnitude and the orientation of tectonic
stresses.

For most materials encountered in geomechanics, non-reversible deformation
processes are involved in the course of loading history. Inelastic deformation in
geomaterials is an inherently non-uniform process; i.e. whenever deformation occurs
due to relative motions between grains or due to microcracking, there is a size scale
below which the deformation is discontinuous. On size scales which encompass groups
of grains or cracks, plastic deformation often appears uniform in specimens which are
themselves subject to macroscopically uniform loading conditions. But even on this

Figure 1.1.2 Marten’s ‘Fliessfiguren’ for metals (Mohr, 1900).
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larger, macroscopic scale, a critical configuration of the deformed body may exist, where
the homogeneous deformation breaks down into bands of localized shearing.

In granular, cohesionless solids, shear localization induces intense intergranular slip,
which in turn leads to strong dilation of the material inside the localized zone.
Figure 1.2.2(a) shows an X-ray radiography of a sand specimen prior to deviatoric
loading, at a state of isotropic compression. In the middle of the specimen, a small lens
of loose sand was placed to serve as a site of localized deformation. Figure 1.2.2(b)
shows the same sand specimen at a later stage of deformation, at peak deviator, with a
faint trace of localization of porosity crossing the soft-sand lens. With continued
deformation, this localized zone is extending outwards to eventually reach the
boundaries of the specimen; Figure 1.2.2(c). On the other hand, in coherent, brittle
solids localization instabilities are the result of microcrack opening and slip,
intergranular slip and rotation, and occasionally grain crashing (Figure 1.2.3  from Ord
et al., 1991), which all coalesce in the course of the post-critical deformation into
macrofractures as shown in Figure 1.2.4.

Strong localized material dilatancy either due to grain rearrangement or due to
microcracking leads to ‘material softening’ inside the localized zone, whereas outside

Figure 1.2.1 Shear zone in Wyangala gneiss, Australia (courtesy of Dr. Hobbs).
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this zone elastic unloading is taking place. Thus, as a general observation, one may say
that localization phenomena in geomaterials are characterized by material softening. On
the other hand, in granular cohesionless solids, localization is mostly due to intense
intergranular slip, which leads macroscopically to additional mismatch between internal
friction and dilatancy of the granular medium (non-associativeness).

Shear-band formation is a typical example of a ‘spontaneous’ change of the
deformation mode of a body whereas the boundary conditions of the considered
structure are kept unchanged. Other examples may be observed at various scales and
are usually related to buckling phenomena: buckling of pre-existing microcracks in a
solid under uniaxial compression leading to axial splitting type of failure (Figure 1.2.5),
barreling or necking of a specimen in a conventional axisymmetric compression or
extension test (see Figure 7.1.3 in chapter 7), surface exfoliation and flaking at the wall
of a borehole or a tunnel as observed in brittle rocks (Figure 1.2.6), folding or jointing
with dominant wavelength spacing as observed in geological structures (Figure 1.2.7).

1.3
The frame of geomaterials constitutive modeling

Geomaterials usually exhibit predominant irreversible deformations and they are
relatively rate insensitive. Thus geomaterials, in general, are good examples of ‘plastic’

Figure 1.2.2 Evolution of a dilatancy localization in a sand specimen under biaxial compression.
For explanation of parts (a) to (c) see text.
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materials. However, the property which differentiates geomaterials from other ‘plastic’
solids like metals, is their pronounced pressure sensitivity: For pressure-sensitive
materials under continued loading the stress deviator T is proportional to the mean
normal stress p,

(1.3.1)

where in turn the coefficient f is a function of internal friction, fo, and cohesion c

(1.3.2)

Thus under sufficiently high stresses, all geomaterials are behaving as purely frictional
solids. Since sand is the ideal representative of purely frictional material, dry sand is
usually selected as a model material to study the basic properties of geomaterials.

Geomaterials are also characterized by plastic or Reynolds’ dilatancy, which is
understood as a simple internal constraint between plastic volumetric strain increments
dvp and plastic shear increments dgp

(1.3.3)

where d is the so-called dilatancy coefficient (Reynolds, 1885).
In frictional and dilatant material the (first-order) plastic work of the stressof the

plastic strains is

(1.3.4)

Thus from the point of view of energy dissipation, a frictional and dilatant material
behaves like a purely frictional or Coulomb material with equivalent internal friction
(Taylor, 1948)

(1.3.5)

Figure 1.2.3 Micrographs of shear zone in Gosford sandstone under biaxial compression (from
Ord et al., 1991).
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The above basic assumptions constitute the frame of constitutive modeling of
geomaterials. The cohesive-frictional and dilatant character of geomaterials is quite
satisfactorily modeled within the frame of elastoplasticity theory with strain hardening/
softening yield surface and non-associate flow rule as exposed, for example, in the
comprehensive paper of Mróz (1963). Thus the particular problem of interest, that of
localized deformation in geomaterials, must be treated within this theoretical
framework.

The problem of modeling localized deformation in geomaterials is quite a challenging
task, due to the difficulties which are encountered while dealing with softening materials
and moving elastoplastic boundaries. It is, however, one of the most interesting
bifurcation problems: Asking the question of possible spontaneous change of the
deformation mode for a given loading history and subsequent evolution of this
secondary deformation mode, one may search for the conditions of uniqueness and
stability of the corresponding boundary value problem. Thus as first presented by

Figure 1.2.4 Macrofractures in a limestone under triaxial compression (courtesy of Dr. J.Labuz).
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Mandel (1964, 1966) questions of uniqueness and stability of solutions arise naturally
within the context of shear-band analysis. It turns out that the result of such analyses
dealing with geomaterials depends primarily on the assumed physical non-linearities
which are inherent to the underlying constitutive description and is, in a lesser degree,
influenced by geometrical non-linearities.

The various drawbacks and shortcomings of the classical continuum theory in
connection with strain localization or, more generally, for the problem where a loss of
ellipticity of the governing equations is taking place, have been discussed extensively in
many recent papers; cf. Benallal et al. (1988, 1989). The origin of this undesirable
situation can be traced back to the fact that conventional constitutive models do not
contain material parameters with dimension of length, so that the shear-band thickness
(i.e. the extent of the plastically softening region) is not determined. For example, for
granular materials the observed shear-band thickness is of the order of 10 to 20 grain
diameters (Roscoe, 1970). We can say that localization of deformation leads to a change
in scale of the problem so that phenomena occurring at the scale of the grain cannot be
ignored anymore in the modeling of the macroscopic behavior of the material. Then it
appears necessary to resort to continuum models with microstructure to describe
correctly localization phenomena. These generalized continua usually contain additional

Figure 1.2.5 Failure by axial splitting of a Berea sandstone specimen loaded in uniaxial
compression (courtesy of Dr. E.Papamichos).
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kinematical degrees of freedom (Cosserat continuum) and/or higher deformation
gradients (higher-grade continuum). Cosserat continua and higher-grade continua
belong to a general class of constitutive models which account for the materials
microstructure.

Professor G.I.Barenblatt in the closing lecture of the 18th IUTAM Congress (Haifa,
Israel, 1992) stated that: “Micromechanics is the branch of mechanics studying the
phenomena for which the variations of microstructure are of governing influence for the
macroscopic behavior of bodies”. The description of statics and kinematics of continuous
media with microstructure has been studied in a systematic way by Germain (1973a,b)
through the application of the virtual work principle. In a classical description, a
continuum is a continuous distribution of particles, each of them being represented
geometrically by a point X and characterized kinematically by a velocity v. In a theory
which takes into account the microstructure of the material, each particle is viewed as a
continuum C(X) of small extent around the point X. Consequently, the deformation of
the volume C(X) of the particle is called the microdeformation. For example, a Cosserat
continuum is a ‘micropolar’ medium obtained by assuming that the particle C(X) moves
as a rigid body, characterized by a velocity vector v and a particle rotation vector ωc. The
corresponding kinematical qualities, velocity and rotation gradient (curvature),  and

, are associated through the principle of virtual work with a non-symmetric stress
tensor and couple stress tensor, respectively. Similarly, in a second gradient continuum
trough, the principle of virtual work a symmetric second-order stress tensor and a third-
order (double) stress tensor are defined which are dual in energy to  and 
respectively.

Rotation gradients and higher velocity gradients introduce a material length scale into
the problem, which as already mentioned is necessary for the correct modeling of

Figure 1.2.6 Failure of a hollow cylinder (courtesy of Dr. A.Guenot, Elf Aquitaine).
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localization phenomena. In this case, the underlying mathematical problem describing
localization phenomena is ‘regularized’ and the governing equations remain elliptic.
Moreover, this technique allows robust computations to follow the evolution of the
considered system in the post-bifurcation regime and to extract additional information
such as the shear-band thickness or to assess the effect of scale.

1.4
Considered topics

Although it is not possible to include in a single book a comprehensive analysis of
bifurcation phenomena in geomechanics, it is our intention to present here the
necessary theoretical tools and experimental facts which we believe are necessary for a
rigorous and realistic description of ‘failure’ of soils and rocks.

Chapter 2 summarizes some of the basic concepts from classical continuum
mechanics; this includes geometric non-linearity and large deformation analysis. This
chapter, as all the others, is self-contained, and the reader can find at the end of each
chapter references to additional literature. Chapter 3 deals with incremental continuum

Figure 1.2.7 Folding and jointing.
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mechanics in the frame of updated Lagrangian formulation. The emphasis lies here in
the formulation of the linear bifurcation problem. Incremental continuum mechanics was
first introduced in geomechanics by Biot (1965), in his pioneering work, which was mostly
devoted to structural geology problems. As an application of the theoretical tools
presented in chapter 3, we examine in chapter 4 buckling phenomena in elastic media
as a typical bifurcation problem. The influence of microstructure of such media, like the
existence of a periodic stratification or a double periodic crack array, on the buckling
load and the dominant wavelength of the buckling mode is discussed as well.

Chapter 5 deals with the continuum mechanics of water-saturated granular materials
where a mixture theory approach to modeling is followed. There one can find the
derivation of pertinent balance laws, the discussion of Terzaghi’s effective stress
principle and its modifications as well as Darcy’s law and its extension to the cases of
turbulent and viscous dissipative flows.

Chapter 6 summarizes the basic concepts from plasticity theory as applied to granular
soils and rocks. Starting from the basic concepts of classical flow theory of plasticity
with a yield criterion and a plastic potential, we present, in a hierarchical manner, the
possible extensions of isotropic hardening plasticity. We believe that an integral part of
constitutive modeling is the calibration procedure. Since there is no unique strategy for
calibration, examples given in chapter 6 should be understood as a suggestion which
proved itself appropriate in number of applications.

Constitutive models are calibrated on ‘element’ tests performed in the laboratory by
applying uniform loading to homogeneous specimens. However, experiments with
‘perfect’ boundary conditions and ‘perfectly’ homogeneous material do not generally
secure homogeneous deformation. Spontaneous loss of homogeneity is possible and
typically observed. This possibility is investigated in chapters 7 and 8 by asking for
diffuse or localized modes under ideal boundary conditions. If solutions of the
corresponding equilibrium bifurcation exist, it is reasonable to assume that
imperfections only intensify this tendency. The reader will also find in chapter 8
additional information on the state of the art on shear banding in granular media with
reference to open questions and its suggestions for possible modification of classical
models.

Chapters 9 and 10 deal with higher order theories such as Cosserat continuum model
and second-gradient model. The concepts discussed therein are applied to the problems
of shear-band thickness and interface layers. The regularization of the original
mathematically ill-posed boundary value problem with strain softening material is also
demonstrated.

Finally, in the last chapter and as an application of the concepts presented in chapter
3 and 5–10, the coupled stability analysis of undrained deformations in water-saturated
sand is discussed. The analysis uses an experimental database and seeks to shed some
light in the phenomenon of soil ‘liquefaction’ and shear-banding under globally
undrained conditions.
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2
Basic concepts from continuum mechanics

2.1
Kinematic and static considerations

2.1.1
Lagrangian description of the deformation

Let a body B in an initial configuration C(0) be subjected to a given deformation which
results in a configuration C, where the body B occupies the volume V and is surrounded
by the boundary ∂V (Figure 2.1.1). Relative to a fixed-in-space Cartesian coordinate
system a particle X has the coordinates ξi and xi in C(0) and C, respectively. Let ui denote
the components of the displacement vector of the material point X with respect to its
initial position in C(0)

(2.1.1)

In the Lagrangian description of the deformation the coordinates xi of point X in C are
functions of the coordinates ξi of this point X in the reference configuration C(0) and of
time t

(2.1.2)

The field xi(ξk, t) is called the deformation and its (material) spatial derivative is called the
deformation gradient

(2.1.3)

which gives the change of the distance dξi between two neighboring material points X(ξi)
and Y(ξi+dξi)

(2.1.4)

With equation 2.1.1, the deformation gradient can be expressed in terms of the
displacement gradient



(2.1.5)

where δij is the Kronecker delta.
The right-polar decomposition of the deformation gradient Fij results in an orthogonal

part Rij and into a symmetric part Uij

(2.1.6)

with

(2.1.7)

The orthogonal part of Fij corresponds to a rigid-body rotation, i.e. , whereas
its symmetric part corresponds to pure stretching (Figure 2.1.2). Accordingly, Rij is
called the rotation tensor and Uij the right-stretching tensor.

As already mentioned, the deformation gradient gives the change of the metric of the
deformed body. Let X(ξi) and  be two neighboring material points in C(0), which
in C were to occupy the positions X(xi) and  respectively. The distance of these
two points in C(0) is

(2.1.8)

which during the considered deformation C(0)→C changes to

(2.1.9)

Since, according to equation 2.1.4, point differences transform like tensors we obtain 

Figure 2.1.1 Initial and current configuration of a deforming solid.

Figure 2.1.2 Schematic representation of the polar decompositions of Fij (equations 2.1.6 and 2.1.
25).
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(2.1.10)

Cij is called the right Cauchy-Green strain tensor

(2.1.11)

We notice that Uij is not very convenient strain measure since its evaluation involves
principal axes transformation of the tensor . Furthermore, the eigenvalues of Uij
are the square roots of the eigenvalues of Cij. Instead of Cij the Green strain tensor Gij
may be used

(2.1.12)

If the deformation gradient tensor maps C(0) onto itself then the right Cauchy-Green
tensor is the identity tensor and Green’s tensor is zero; i.e. if

(2.1.13)

From equations 2.1.5 and 2.1.12 follows the well-known representation of Green’s strain
tensor in terms of the displacement gradient

(2.1.14)

If the second-order terms in the right-hand side of equation 2.1.14 are negligible as
compared to the first-order terms, then

(2.1.15)

where

(2.1.16)

is the infinitesimal Lagrangian strain tensor.
Another commonly used measure of finite strain is the logarithmic, right Hencky

strain tensor, . In order to evaluate the logarithmic strain one has first to find the
principal axes of the right Cauchy-Green strain tensor and change coordinates into this
system. Let

with
be the right Cauchy-Green strain, transformed into principal axes. Then we define
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and 

(2.1.17)

We must state here that the Lagrangian description of the deformation is mostly applied
in the theory of finite elasticity. Here the Lagrangian formulation will not be exploited
further since the emphasis lies on constitutive theories of the rate type among which the
central place is occupied by the theory of plasticity as applied to geomaterials.

2.1.2
Eulerian description of the deformation

Here we will briefly review the Eulerian description of the deformation. Within this
formulation, all fields are assumed to be functions of time and of the spatial coordinates
xi of a point X in C through the inverse mapping of equation 2.1.2

(2.1.18)

This results in the inverse deformation gradient

(2.1.19)

with

(2.1.20)

With equations 2.1.1 and 2.1.18, the displacement vector can be expressed in terms of
the Eulerian coordinates

(2.1.21)

and the inverse deformation gradient becomes

(2.1.22)

where the notation , for the differentiation with respect to the spatial
coordinates xi of X in C is used throughout and the superimposed (ˆ) is deleted. With

(2.1.23)

the metric in C and C(0) is given by

(2.1.24)

On the other hand the left-polar decomposition of the deformation gradient Fij results in
Figure 2.1.2.
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(2.1.25)

where Rij is the same orthogonal tensor as in the right polar decomposition, equation 2.
1.6. The symmetric tensor Vij is called the left-stretching tensor which describes the
relation between the metric in C(0) and the line elements in C

where Bij is the left Cauchy-Green strain tensor

(2.1.26)

Alternatively, one may use the so-called Almansi strain tensor Aij

(2.1.27)

If the deformation is a pure rigid-body rotation, then the Cauchy-Green strain tensor
maps C onto itself and Almansi’s strain tensor is null

(2.1.28)

From equations 2.1.22 and 2.1.28 follows finally the well-known representation of
Almansi’s strain tensor in terms of the displacement gradient

(2.1.29)

Again, if second-order terms are neglected, then Aij coincides with the Eulerian
infinitesimal strain

(2.1.30)

in which case Lagrangian and Eulerian infinitesimal strains coincide, i.e.

Similar to the definition 2.1.17, we may introduce the logarithmic left Hencky strain
tensor,

(2.1.31)

In the particular case of a rectilinear deformation, which is characterized by non-
rotating principal strain directions, the left and right Hencky tensors coincide,

. As indicated in Figure 2.1.3 a cuboidal specimen undergoing a rectilinear
deformation keeps its shape and only its sides are elongated or shortened. With initial
and final dimensions of the specimen , in C(0) and C
respectively, the principal logarithmic strains are
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(2.1.32)

and

(2.1.33)

are the principal stretches of the considered rectilinear deformation.

2.1.3
Deformation of surface and volume elements

Let  be a surface element vector in C(0) that is defined by the vector product of two
line-element vectors dξi, dψi

(2.1.34)

where eijk is the Levi-Civita permutation tensor, i.e. the complete third-order
antisymmetric tensor

(2.1.35)

The line elements dξi and dψi are deformed to the line elements dxi and dyi, respectively,
and the surface element dS(0) is deformed into the surface element dS

(2.1.36)

From

it follows that

Figure 2.1.3 Rectilinear stretching of a cuboidal specimen.
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and accordingly surface-element vectors are related to each other as

(2.1.37)

where ad(F)ij is the adjoint of Fij

Finally, let dV(0) and dV be volume elements in C(0) and C, respectively,

(2.1.38)

The deformation rule for volume elements is then given by
(2.1.39)

where the Jacobian of the deformation

(2.1.40)

2.1.4
Static considerations

Let dti be the stress vector acting on a surface-element vector dSi in C. The true or
Cauchy stress tensor in C is defined through the mapping (Figure 2.1.4)

(2.1.41)

In addition to the Cauchy stress tensor there are many other stress tensors which can
be defined for describing the state of stress in the current configuration. The choice as to
which one should be used mainly reflects convenience in the mathematical description of
balance and/or constitutive equations. In addition to the Cauchy stress tensor we will
discuss here another Eulerian stress tensor which is suitable for easy description of the
behavior of materials undergoing large volumetric deformations. This stress tensor is
called the Kirchhoff stress tensor and is related to the Cauchy stress σij as follows

(2.1.42)

If the deformation is isochoric, then , and the Kirchhoff and Cauchy
stress tensors coincide.

In order to illustrate the usefulness of the Kirchhoff stress, we briefly comment here
on the behavior of highly compressible geomaterials, like clays, and to the
representation of corresponding experimental results. As it is common in the soil
mechanics literature, the experimental data are plotted in terms of Cauchy stress and
the infinitesimal strain resulting to non-linear stress-strain curves. Due to the highly
non-linear character of the compression curves Terzaghi suggested representing the
experimental results in a semi-logarithmic plot of engineering strain |ε| versus the
logarithm of the Cauchy stress |σ|. The engineering strain in uniaxial compression is
defined as
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(2.1.43)

where ℓ(0) and ∆ℓ are the initial thickness of the specimen and its change, respectively.
For a great variety of clays, the primary compression curve, the unloading (or swelling)
curves and the recompression curves are then fairly approximated by straight lines. In a
semi-logarithmic plot, these straight-line fits are characterized by their slopes, the so-
called Terzaghi ‘compression’ and ‘swelling’ indices Cc and Cs, respectively. In most
cases, straight-line fits are also generated if, instead of the ambiguous logarithmic stress
and the inappropriate for large deformations engineering strain, one resorts to conjugate
Eulerian measures like the Kirchhoff stress Tij and the logarithmic strain λ. For example,
a uniaxial or oedometric primary compression curve is shown for a typical clay in a
conventional (log|σ|, e) plot in Figure 2.1.5 (San Francisco Bay mud: initial voids ratio

, initial stress |σ0|=40kPa,  primary compression index ; Holtz and
Kovacs, 1981). If this result is transformed into the mechanically more meaningful

Figure 2.1.4 The components of the Cauchy and Kirchhoff stress tensors in two dimensions.

Figure 2.1.5 Conventional uniaxial compression curve of clay.
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Eulerian stress and strain measures we obtain the graph shown in Figure 2.1.6. We see
then that the primary compression data are best fit by a straight line in terms of the
logarithmic strain and the Kirchhoff stress, i.e.

(2.1.44)

with , where

(2.1.45)

(2.1.46)

In the same figure, the non-linear (σ, λ) curve is also plotted for comparison.

2.2
Time derivatives and rates

2.2.1
Material time derivative and velocity

The velocity field gives the ‘new’ position  of a particle X(ξk) at ime  relative to
its ‘old’ position xi at time t,

(2.2.1)

Accordingly, the following notations for the velocity are used

Figure 2.1.6 Uniaxial compression curve of clay in Eulerian description.
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(2.2.2)

Since the time differentiation is done in reference to a fixed material point X(ξk), it is
commonly called the material time derivative, and the velocity becomes the material time
derivative of the displacement

(2.2.3)

As already mentioned, with the inverse mapping (equation 2.1.18), we end up with the
Eulerian description of the deformation. Accordingly, the velocity field υi can be seen as a
function of the current coordinates of X in C, i.e. . The material time
derivative of an arbitrary field  in spatial coordinates is denoted as

(2.2.4)

where

(2.2.5)

With

(2.2.6)

(2.2.7)

and equation 2.2.2 we obtain the following expression for the Eulerian material time
derivative of the considered field (xk, t)

(2.2.8)

This means that the material time derivative in Eulerian description is a mixed
differential operator  with  and . The first term of
equation 2.2.8, called the ‘local’ variation, corresponds to the change of the field  at a
fixed-in-space position xk. The second term, called the ‘convective’ term, is a correction,
which accounts for the change of position of the considered material point in time. The
convective term, being the inner product of the velocity and the spatial gradient of , is a
‘non-linear’ term and occasionally may be neglected. Indeed, if the velocity field and the
gradient of  are infinitesimal quantities, then the material time-derivative is
approximated by the partial time derivative

(2.2.9)

As a first example let us consider the displacement field ui(xk, t). In this case equation 2.
2.9 provides the following expression for the velocity
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(2.2.10)

or

(2.2.11)

Finally, the acceleration vector is computed as the material time derivative of the velocity

(2.2.12)

2.2.2
Relative deformation gradient and its rate

The coordinates  of a point X in a configuration  at time  can be seen as
functions of the coordinates xi of X in C at time t

(2.2.13)

Accordingly, the deformation gradient, , may be decomposed into the
deformation gradient at time t,  and the relative deformation gradient

, which describes the deformation  with respect to the ‘current’
configuration C(t) (Figure 2.2.1)

or

(2.2.14)

where

(2.2.15)

Figure 2.2.1 Relative deformation with respect to current configuration C(t).
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We observe that the velocity of the material point X, which at time t occupies the
position xk, is given by

(2.2.16)

We consider now two neighboring points in C X(xi) and Y(yi), such that .
These points move instantaneously to new positions: and  such that

The relative velocity of these points becomes

where

(2.2.17)

The tensor

(2.2.18)

is called the spatial gradient of the velocity. From the right-polar decomposition of the
relative deformation gradient

(2.2.19)

we obtain that

(2.2.20)

with

(2.2.21)

 is an antisymmetric tensor and is called the spin or vorticity tensor;  is symmetric
and is called the rate of deformation tensor

(2.2.22)

(2.2.23)

Sometimes the rate of deformation tensor Dij is confused with the material time
derivative of the infinitesimal strain tensor. With

(2.2.24)

and
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we obtain that

(2.2.25)

The two tensors coincide of course when the displacements and the displacement
gradients are infinitesimal. The rate of deformation tensor should be used whenever the
displacements or their gradients are large.

2.2.3
Rigid-body or Jaumann derivative

Constitutive equations usually assume the form of evolution equations, i.e. equations
for the rates of the various mechanical properties. In order to achieve objectivity in the
material description one has to eliminate the rigid-body motion of the continuum from
the material time derivative. For this purpose one introduces a ‘corotating coordinate
system’ , which is attached to the considered material point X and follows the rigid-
body rotation of its neighborhood, described by the relative rotation tensor (Figure 2.2.2) 

(2.2.26)

and accordingly a vector bi will have the following components with respect to the
corotating coordinate system

(2.2.27)

The material time derivative of this vector in the corotating system is

(2.2.28)

Figure 2.2.2 Corotating coordinate system (Qij=−Wij) and visualization of rigid body derivative of a
vector field.
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If we transform this vector back to the ‘fixed’ coordinate system (xi) we get

(2.2.29)

since

The rigid-body or Jaumann derivative of the vector bi is now defined as the value of the
above expression 2.2.29 evaluated at time t, i.e.

(2.2.30)

Finally, since

the rigid-body derivative of the vector field bi is the objective derivative defined through
the following expression,

(2.2.31)

Similarly, the rigid-body or Jaumann derivative of a second-order tensor is defined
through the material time derivative of this tensor with respect to the corotating
coordinate system  and its backwards transformation in the original ‘fixed-in-space’
coordinate system (xi)

(2.2.32)

2.2.4
Convective time derivative

We consider two Cartesian coordinate systems  and . The xi
system is called ‘fixed-in-space’ and the  system is called the ‘moving’ system. In
particular we assume that the  system is rotating with respect to the fixed one, e.g.
with the third axis coinciding with the axis of relative rotation and for a coordinate
system rotating with the angular velocity  we get the following coordinate
transformation

(2.2.33)

In general, the coordinate transformation will be given by an orthogonal matrix
corresponding to a rotation, i.e. by a proper orthogonal transformation

(2.2.34)
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We observe that at any time

(2.2.35)

During such a transformation the distance between two points does not change,

(2.2.36)

A vector field bi is called objective or frame indifferent if it does transform like a point
difference

(2.2.37)

Similarly, a second-order tensor Sij is called objective if its property to map an objective
vector onto an objective vector remains valid also for the assumed coordinate
transformation. In this case,

(2.2.38)

With

(2.2.39)

we observe that the velocity is not an objective vector field. Similarly, it can be shown
that neither the acceleration at nor the velocity gradient Lij are objective tensors.
However, with

(2.2.40)

we obtain that the rate of deformation tensor is objective,

(2.2.41)

The physical meaning of this observation is appreciated by the fact that Dij gives the
change in the metric of the deformation

(2.2.42)

and accordingly

(2.2.43)

From this property Dij derives its characterization as the ‘rate of the deformation’.
Obviously the spin tensor Wij is not objective. Finally, note that higher objective time
derivatives of the stretching tensor can be derived through higher material time
differentiation of the metric dl2, e.g. the second material time derivative of dl2 leads to
the convective time derivative of the stretching tensor
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(2.2.44)

with

(2.2.45)

We observe that  differs from the Jaumann derivative of the Dij (cf. equation 2.2.32),

(2.2.46)

only by an objective part,

(2.2.47)

This result is typical, meaning that there is no unique definition of an objective time
derivative of a tensor Sij. However all possible definitions differ from each other in terms
of objective tensors, like the above indicated products SkjDik and SikDkj. Of course, some
authors prefer one definition over the other since some definitions of objective time
derivatives have more meaning than others, i.e. they can be easily associated to a simple
physical context. For example, the convective time derivative  describes the change in
time of the metric, whereas  is less plausible. Moreover, further time differentiation of
the metric dl2 leads easily to objective higher time derivatives of the rate of deformation.

2.2.5
Material derivative of volume integrals

Let us consider an arbitrary scalar field (xi, t) defined over a volume V in the current
configuration C and let ψ(t) be its volume integral over V in C

(2.2.48)

The material time derivative of ψ can be computed by changing the domain of integration
from V in C to V(0) in C(0) that is mapped onto V via the considered deformation. With
equation 2.1.38 we obtain 

(2.2.49)

In order to evaluate this integral we consider first the material time derivative of the
Jacobian of the deformation

(2.2.50)

where

(2.2.51)
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Making use of the identity

(2.2.52)

and the fact that the adjoint of Fik does not contain any of the Fim

(2.2.53)

the above expression 2.2.49 for the  becomes

(2.2.54)

This result is usually referred as Reynolds’ transport theorem. Since the material time
derivative of  consists of both local and convective terms, equation 2.2.54 can be
further transformed

(2.2.55)

By using the divergence theorem equation 2.2.55 becomes

(2.2.56)

where ni is the outwards unit normal along the boundary ∂V. This means that the
material time derivative of the integral quantity ψ consists also of local and convective
terms, i.e. of a term that is due to changes of its density  in V, and a term due to flux
υi across the boundary ∂V of V.
Making use of the above general material time-differentiation formulae of volume

integrals, the expression for conservation of mass, linear, and angular momenta, energy
and entropy can be easily derived. 

2.3
Balance equations

2.3.1
Mass balance

Let  be the mass of material within the volume dV in C with ρ being the
mass density. The total mass included in a finite volume V in C at time t is

(2.3.1)
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We observe that from equations 2.3.1 and 2.1.39 we obtain a useful expression or the
Jacobian of the deformation in terms of the density in C(0) and C, respectively

(2.3.2)

Mass balance in C is expressed by the condition
(2.3.3)

On the other hand from equations 2.2.54 or 2.2.56 and 2.3.1 we obtain

(2.3.4)

If this integral vanishes for arbitrary volume V and the integrand is continuous
everywhere in V we obtain

(2.3.5)

or

(2.3.6)

which are the local forms of the mass balance law.
If the deformation is isochoric, then , and from the mass-balance equation 2.3.

5 follows that the density remains constant

(2.3.7)

As an application of the above mass balance law (equation 2.3.5) we consider a field 
which is originally defined per unit mass of the solid

(2.3.8)

(xk, t) is the specific value of the integral quantity ψ. By using Reynolds’ transport
theorem, equation 2.2.54, we obtain that 

(2.3.9)

or due to the mass balance equation 2.3.5

(2.3.10)
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2.3.2
Balance of linear momentum

The total force Fi acting on a given body B is due to the contribution of all external
forces, which are either volume forces, ρgidV, like gravity forces and/or contact forces dti
acting on the boundary ∂V of V (Figure 2.3.1)

(2.3.11)

The stress vector dti acting in C on a surface element dS with unit outward normal ni is
related to the true or Cauchy stress tensor σij as follows

(2.3.12)

From these equations and the divergence theorem one obtains 

(2.3.13)

On the other hand, the total momentum Ii of B in C is computed by summing up the
momenta of all material points in V

(2.3.14)

Balance of linear momentum is expressed by the following equation

Figure 2.3.1 Mass forces, inertial forces and boundary tractions acting on the body B in C.
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(2.3.15)

According to Reynolds’ transport theorem the right-hand side of the above equation
becomes

Due to the mass balance equation 2.3.6 the first term of the integrand vanishes
identically, and thus

(2.3.16)

By combining equations 2.3.15, 2.3.13 and 2.3.16 we finally obtain the local form of
balance of linear momentum

(2.3.17)

2.3.3
Balance of angular momentum

In the absence of body couples and couple stresses, the total moment Mi acting on a
given body B is the result of the contribution of the volume forces ρgidV acting on V, and
of the sum of all boundary tractions dti actingon ∂V

(2.3.18)

On the other hand, the total angular momentum Li of B in C is computed by summing
up the angular momenta of all material points in V

(2.3.19)

Balance of linear momentum is expressed by the following equation

(2.3.20)

Considering that  the right-hand side of equation 2.3.20 becomes
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On the other hand, the contribution of the boundary tractions yields

and with this equation 2.3.20 becomes

which in connection with the balance of linear momentum, equation 2.3.17, finally
results in the symmetry of the Cauchy stress tensor

(2.3.21)

Due to the axiomatic nature of the symmetry of the Cauchy stress tensor, the continuum
for which the symmetry condition 2.3.21 is holding is called a Boltzmann continuum. As
opposed to a Boltzmann continuum, in a Cosserat continuum the Cauchy stress tensor
is non-symmetric either due to the existence of couple boundary stresses and/or due to
the existence of body couples, which in turn might be only due to inertia, stemming from
the spinning of the unit cells (grains) of the material; cf. Schaeffer (1967).
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2.3.4
Energy balance

The first law of thermodynamics requires that the change of the total energy E of a
deforming solid body B with volume V and boundary ∂V in a configuration C consists of
two contributions: (a) the power  of all external forces acting on B in C; and (b) of the
energy  which is supplied at any time to B from the exterior domain, i.e.

(2.3.22)

The total energy of the body B in C consists in turn of two terms: (a) its kinetic energy K;
and (b) its internal energy U, which does not depend on the relative motion of the
observer with respect to the considered body, i.e.

(2.3.23)

where e(xk, t) is the specific internal energy of the body. Utilizing Reynolds’ transport
theorem, the time variation of the body’s kinetic and internal energy become

(2.3.24)

cf. equations 2.3.8 to 2.3.10. On the other hand, the power of external forces acting in
the volume V and on its boundary ∂V is

(2.3.25)

where σij is the Cauchy stress tensor in C and ni is the unit outward normal vector on ∂V
in C. Accordingly, the energy balance equation 2.3.22 becomes

(2.3.26)

In order to evaluate the energy balance law (equation 2.3.26), we observe that the power
of external and inertial forces is equal to the so-called stress power, i.e. 

(2.3.27)

This can be shown as follows: We consider the balance of linear momentum equation 2.
3.17, we contract it with υi and integrate the resulting identity over the domain V

and with
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we obtain equation 2.3.27. With the definition of the stress power

(2.3.28)

the equation of the power of internal and external forces including inertial forces
(d’Alembert’s principle) becomes

(2.3.27bis)

The quantity, ρ−1P, is called the specific stress power (Elementarleistung). Accordingly,
the Cauchy stress tensor σij and the rate of deformation tensor Dij are called dual in
energy (Macvean, 1968). It should be noticed also that if in a continuum the stress power
depends only on the rate of deformation tensor, then this continuum will be called a
first-grade continuum. In chapter 10 a second-grade continuum will be discussed,
where the stress power depends also on the gradient of the rate of deformation, ∂κDij
(Mindlin, 1964; Germain, 1973a,b).

Coming back to the energy balance equation 2.3.26, we observe that the total energy
flux into V across ∂V can be expressed by the energy flux vector qk, which is set positive
whenever it is opposite to the unit outward normal vector nk,

(2.3.29)

For example, if non-mechanical energy transfer is only due to heat conduction, then qk
(x1, t) becomes the heatfluxvector measured per unit surface dS in C.

Summarizing the above results we obtain the following global form

(2.3.30)

and local form
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(2.3.31)

of the energy balance law.
If heat transfer is insignificant and all of the work done by the stresses is assumed to

be converted into internal energy, then from equation 2.3.31 we obtain

(2.3.32)

i.e. that the rate of specific internal energy is equal to the specific stress power.

2.3.5
Entropy inequalities and balance

Let Г be the total entropy in a volume V in C

(2.3.33)

where s is the specific entropy. Let also qk be the heat flux vector, and Θ>0 be the
absolute temperature. The total entropy flux across the boundary ∂V of the volume V in
C due to conduction is

The second law of thermodynamics is the assertion that the rate of change of entropy
cannot be less than the total entropy flux across ∂V due to conduction

(2.3.34)

Accordingly a local form of the second law of thermodynamics is proposed, the so-called
Gibbs-Clausius-Duhem Inequality stating that the internal entropy production rate η per
unit mass is non-decreasing, i.e.

(2.3.35)

Due to the energy balance law (equation 2.3.31) the above entropy inequality is
transformed to

(2.3.36)

Introducing the so-called Helmholtz free energy function ƒ, i.e. the portion of the
internal energy available for doing work at constant temperature

(2.3.37)

we obtain from equation 2.3.36 that
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(2.3.38)

If one considers stationary (states  and rigid-body motions  then
from this inequality follows, in particular, that heat must flow opposite to the
temperature gradient, i.e. that the entropy production by heat conduction is non-
decreasing

(2.3.39)

This result is reflected for example in Fourier’s law of isotropic heat conduction

(2.3.40)

where K>0 is the thermal conductivity of an isotropic solid. In this case the entropy
production by heat conduction is quadratic in the temperature gradient, and

(2.3.41)

If in turn we consider isothermal processes , then inequality equation 2.3.38
yields that the local entropy production is also non-decreasing

(2.3.42)

It should be emphasized that the Gibbs-Clausius-Duhem inequality equation 2.3.35 for
the internal entropy production as well as the inequalities and equations 2.3.39 and 2.3.
42 for the entropy production by heat conduction and the local entropy production have
independent axiomatic character within continuum thermodynamics; cf. Truesdell and
Noll (1965). In such a framework the local dissipation due to irreversibility of the
deformation process becomes 

(2.3.43)

The form of the restriction imposed by inequalities equation 2.3.42 or 2.3.43 depends
mainly on the type of physical quantities which are assumed as thermodynamic state
parameters. These usually are the stress, σij, and the absolute temperature, Θ, but also a
number of non-observables, the so-called hidden or internal parameters.

Finally from the energy balance equation 2.3.31 and the definitions of the free energy
and local dissipation, equations 2.3.37 and 2.3.43 one obtains the following balance law
for local entropy production

(2.3.44)
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2.4
Discontinuous fields and wave fronts

2.4.1
Geometric compatibility conditions

Let  be a function defined over a domain B− in the (x1, x2) plane and let D be
a smooth curve which subdivides B into B+ and B−, and over which the values of z are
prescribed. The curve D is represented by the function  and the function

(2.4.1)

is assumed to be known. Such a restriction for the function z has some consequences
on the possibility of restricting the function z in the neighborhood of D; namely, from
equation 2.4.1 we have

(2.4.2)

It is always possible to choose the coordinate system in such a manner that the x1-axis
coincides with the tangent on a considered point A of D and the x2-axis with the normal
on D at point A of the considered curve. According to Figure 2.4.1 we then have  

(2.4.3)

and from equation 2.4.2 it follows that

(2.4.4)

Figure 2.4.1 Compatibility of a field defined along D.

Figure 2.4.2 Domains of continuity.
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Equation 2.4.4 is called Hadamard’s lemma and means that prescribing the function z
on D, by a condition like equation 2.4.1, restricts only the tangential derivative of z
along D. Above results hold, of course, in three dimensions as well. Accordingly, we
consider z as a function of xi with i=1, 2, 3 and D as surface in three-dimensional space.
By using the notation (Figure 2.4.2)

(2.4.5)

we can define the jump, [z] of z along D as the difference of its one-side lines

(2.4.6)

and applying equation 2.4.1 on both sides of D results in z being continuous along D

(2.4.7)

Equation 2.4.4, on the other hand, implies that only the normal derivative of z along D
may be discontinuous, the latter being expressed by the conditions

(2.4.8)

where ni is the unit normal at a point A of D and ζ is the jump of the normal derivative
of z with respect to D. With 

(2.4.9)

The above derivations can be summarized by the following, 
Theorem of Maxwell: If a function z is continuous across a surface D, then only the

normal derivative of z across D may be discontinuous, if

(2.4.10)

where the jump ζ of the normal derivative is unrestricted.
Equations 2.4.10 are called the geometric compatibility conditions for a weak

discontinuity of the field z(xi). Theterm ‘geometric’ is used in order to express the fact
that the corresponding compatibility conditions do not depend on the actual motion of
the discontinuity surface. Conditions of the type of equation 2.4.10 hold for both
stationary and moving discontinuity surfaces which are called also wave fronts.

Let D be for example a weak discontinuity surface of the displacement gradient field.
Then according to Maxwell’s theorem we have the following geometric compatibility
conditions, if

(2.4.11)

For example, in plane strain all spatial derivatives of the displacement vector along a
given direction, say the x3-direction, vanish and thus if there is to be discontinuity of
displacement gradient at all, then not all ζi can vanish, and the discontinuity surface of
the displacement gradient is a cylindrical surface which is normal to the plane of
deformation, i.e.
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(2.4.12)

2.4.2
Kinematic compatibility conditions

According to Figure 2.4.3 we consider a point A(xi) on a wavefront D(t). At time , the
wave surface is at position . A point  on  is considered with

, where ∆s is the normal distance of the surfaces D and  at point A and ni is
the unit normal on D(t) at point A. The propagation velocity of the wavefront D is defined
as 

(2.4.13)

Notice that a discontinuity surface is called stationary if 
Let  and  be the jumps of a function z across D and  at times t and

, and at the points A and , respectively. We define the δ time derivatives
(Thomas, 1961)

and

Figure 2.4.3 Propagating discontinuity surface.
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From these definitions we obtain that

(2.4.14)

Moreover, from the above definitions we derive that

(2.4.15)

For the considered moving discontinuity surface the following first-order approximations
hold

and consequently

From these equations, we finally derive an expression for the jump of the δ time
derivative of a function z

(2.4.16)

or due to equation 2.4.14

(2.4.17)

In the special case, when a function z(xi, t) is at all times continuous across a wavefront
D(t), we summarize the following compatibility conditions

(2.4.18)
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As already mentioned, equation 2.2.11, if convective terms are neglected, the velocity is
approximately equal to the time derivative of the displacement field, υi≈∂tui(xk, t).
Forcontinuous displacementfield the above compatibility conditions yield

(2.4.19)

From these conditions it follows that, if

(2.4.20)

i.e. across a stationary discontinuity surface the velocity is continuous.

2.4.3
Dynamic compatibility conditions

Suppose that a volume V, whose motion is determined by the deformation of the material
body B, is divided by a moving surface D(t) into two volumes, V+ and V−. Denote by ∂V+

and ∂V− the portions of the surface ∂V which form parts of the boundaries of V+ and V−,
respectively; the remaining part of the boundary of V+ and V− will be furnished by the
surface D(t) (Figure 2.4.4). The normal component of the velocity of V at points of its
surface ∂V is , since the variation of the volume V is produced by the moving
particles of the medium. Let D(t) be considered as part of the boundary of V−. For an
observer in V+, D(t) is moving with the normal velocity −c. Accordingly equation 2.2.37 is
modified by considering the flux of  across D 

or

(2.4.21)

Figure 2.4.4 Domains of continuity.
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The above generalization of Reynolds’ transport theorem to discontinuous fields can be
combined with the conservation laws of mechanics in order to derive useful
compatibility conditions for the various fields. In particular, let  be the density ρ of the
solid, then from 2.4.21 and 2.3.4 we obtain

and consequently,

(2.4.22)

Now let V approach zero at a fixed time in such a way that it will pass, in the limit, into
a part Do of the surface D. The volume integral in the above equation will approach zero,
and

where  and  denote the normal components of the particle velocities on the (+) and
(−) sides of D along the normal direction from the (−) to the (+) side of it. Hence we obtain
the dynamic compatibility condition for the density

or

(2.4.23)

By neglecting volume forces, balance of linear momentum is expressed by the conditions

(2.4.24)

Allowing again the volume V to approach zero, we obtain

(2.4.25)

If we put  in equation 2.4.21, we see that the left side of equation 2.4.24 becomes
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and passing to the limit, the above sum of integrals reduces to

(2.4.26)

From equations 2.4.25 and 2.4.26, and the dynamic compatibility condition for the
density, equation 2.4.23, we are led to the following dynamic compatibility conditions for
the stress σij:

(2.4.27)

A material discontinuity surface is at all times moving as the underlying continuum, i.e.
for a material discontinuity surface D(t) and for xi on D, . For a material discontinuity
surface compatibility, conditions 2.4.27 reduce to continuity of tractions across D

(2.4.28)

which simply express the fact that across a material discontinuity surface the tractions
must be in equilibrium.

2.4.4
Weak discontinuities

Let us consider a wavefront D(t) across which the velocity is continuous and
consequently all first-order derivatives of the displacement must be also continuous.
This means that across D(t) only second-order derivatives of the displacement vector
may be discontinuous, and D(t) is called an acceleration wavefront

(2.4.29)

With equations 2.2.10 and 2.2.12 the jump of the acceleration can be computed

(2.4.30)

Assuming that across D(t) density and stress are also continuous, the following
geometrical and kinematical compatibility conditions hold

(2.4.31)

(2.4.32)

On both sides of the wave front D the balance equations of mass and linear momentum,
equations 2.3.6 and 2.3.17 must hold

(2.4.33)
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(2.4.34)

and thus we can derive the following dynamical compatibility conditions

(2.4.35)

(2.4.36)

These conditions are restricting the jumps of the various fields across acceleration
wavefronts.

Acceleration waves in isotropic linear elastic solids. For small strains, the constitutive
equations for a linear, isotropic elastic solid are

where G and v are the elastic shear modulus and Poisson’s ratio, and εij the infinitesimal
strain tensor. Utilizing the above compatibility conditions 2.4.35 and 2.4.36 one can
determine the propagation velocity of acceleration waves in elastic solids. Thus the
dynamic compatibility conditions 2.4.36 yield the following condition for the jump vector
di

Let us assume that the coordinate system is selected in such a way that the x1-axis
coincides with the normal on the propagating front at a considered point, pointing in the
direction of its propagation, i.e. . Furthermore, we assume that the
propagation velocity of the wave is significantly larger than the normal velocity of the
particles (c»|vn|). Theabove equations provide, then, two types of acceleration waves: (a)
waves which show a jump in longitudinal direction; ; and (b) waves which
show a jump in the transverse direction;  or . Longitudinal waves
propagate with velocity cp and transversal waves with velocity cs, given by

The dynamical compatibility condition 2.4.35, which was derived directly from mass
balance, yields

This means that only across longitudinal wavefronts does the density gradient jump.
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3
Incremental continuum mechanics

3.1
Updated Lagrangian description

3.1.1
Kinematical considerations

Let a solid body B be at time t deformed to a given configuration C. In the so-called
updated Lagrangian description of the motion, the current configuration (i.e. the
configuration C at time t) of the considered solid body B with material points occupying
positions with known spatial coordinates xi is used as reference configuration. Let  be
the configuration of B at time  (Figure 3.1.1). The coordinates of a particle X in C
and , relative to a fixed-in-space Cartesian coordinate system are denoted by xi and in
C and , respectively. For small time increments, , the infinitesimal
displacement vector of the material point X for the considered transition  is

(3.1.1)

Moreover, from equation 2.2.18 we obtain the following relationship between the relative
deformation gradient and the infinitesimal displacement gradient

or

(3.1.2)

where , i.e. the gradient with respect to the coordinates in C(t).
Within a linearized continuum theory we assume that the displacement gradient ∂j∆ui

is infinitesimal everywhere in C so that all terms of an order higher than one in ∂j∆ui can
be neglected in comparison to non-vanishing first order terms. Moreover, from equation
3.1.2 it follows that within a linearized theory, the relative deformation gradient can be
additively decomposed into a part corresponding to rigid-body rotation and into a part
corresponding to pure deformation



(3.1.3)

where ∆ωij and ∆εij are the infinitesimal spin tensor and strain tensor, respectively

(3.1.4)

(3.1.5)

3.1.2
Plane-strain deformations

In order to illustrate the decomposition 3.1.3 of the infintesimal relative deformation
gradient, we consider the special case of plane-strain deformations. Plane strain is
defined by the conditions that both the displacement vector and its derivatives in the x3-
direction vanish

(3.1.6)

For a line element (AB) (Figure 3.1.2a), the displacement field at point B can be
expressed in terms of the displacement at point A as follows

where

(3.1.7)

and dl is the length of the line element (AB). We introduce the displacement derivative
vector

Figure 3.1.1 The updated Lagrangian description uses the current configuration as reference
configuration.
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(3.1.8)

with

(3.1.9)

 
In Figure 3.1.2(b) the geometrical meaning of the components of the displacement

derivative vector is illustrated along line elements that are parallel to the coordinate
axes.

Figure 3.1.2  (a) Displacement of a line element; (b) the displacement derivative vectors; (c)
incremental rigid-body rotation; (d) incremental strain.
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Within an infinitesimal theory, strain and spin are defined as follows

(3.1.10)

or in matrix representation

(3.1.10a)

(3.1.10b)

For the particular case where the deformation consists locally of a pure infinitesimal
rigid-body rotation we have

This is illustrated in Figure 3.1.2(c).

Figure 3.1.2 (e) Mohr’s circle with pole of incremental strains.
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For the special case where the deformation is free of rigid-body rotations we have

the deformation corresponds to pure stretching and distortion, Figure 3.1.2(d).

Remark on coordinate transformations. For reference purposes we summarize here in
explicit form the simple transformation rules of a two-dimensional tensor like the above-
discussed infinitesimal strain and spin tensors. Let us consider a coordinate
transformation which corresponds to a counterclockwise rotation at an angle 

The components of the infinitesimal strain tensor in the x′i-coordinate system become

or
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Let Θ be the angle between the x1-axis and the (I) principal direction of ∆εij. From the
condition ∆ε1′2′=0 we obtain,

and the principal strains are computed from

Figure 3.1.2(e) depicts the corresponding Mohr circle of infinitesimal strains, where we
notice the sign convention.

Finally we remark that coordinate rotations do not affect the components of the spin
tensor, i.e. the spin tensor is invariant towards coordinate rotations

3.1.3
Deformation of line, surface and volume elements

A line element in C and  is described by the following line-element vectors
(Figure 3.1.3a):

(3.1.11)

With

and

(3.1.12)
the deformation rule for line elements can be derived

i.e. within a linearized theory we obtain

(3.1.13)

Similarly, the line-element unit vector deforms

(3.1.14)

where

(3.1.15)
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A surface-element vector in C and  is given by the following expression (Figure 3.1.3b)

(3.1.16)

By replacing Fij by  in equation 2.1.36 we get

(3.1.17)

In order to linearize the above expression we consider the explicit form of ad(Ft)ij:

or more generally

(3.1.18)

From equations 3.1.17 and 3.1.18 we obtain finally the deformation rule for surface
elements

Figure 3.1.3 (a) Deformation of line element; (b) deformation of surface element; (c) deformation of
volume element.
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(3.1.19)

where

(3.1.20)

Similarly we obtain the transformation rule for the unit normal

(3.1.21)

where

(3.1.22)

Finally, let dV and  be volume elements in C and  respectively (Figure 3.1.3c)

(3.1.23)

The deformation rule for volume elements is then given by
(3.1.24)

where for a linear theory we find that the Jacobian of the deformation is

(3.1.25)

and consequently

(3.1.26)

3.1.4
Stresses and stress increments

The state of stress in C and  is primarily described by the true or Cauchy stress
tensors σij and , respectively. These stress tensors are defined as follows: Let dti,  be
the stress vectors acting on surface elements  and  in C and ,
respectively (Figure 3.1.4), then

(3.1.27)

In finite strain analysis the nominal or first Piola-Kirchhoff (1. P.-K.) stress tensor TRij is
defined by mapping the stress vector in the current configuration C onto the
corresponding surface element in the initial configuration C(0). In an updated Lagrangian
analysis however the relative nominal or 1. P.-K. stress tensor in  is introduced,
denoted as , by mapping the stress vector in  onto the corresponding surface
element in C

(3.1.28)

where dSi is related to  through the transformation 3.1.19 to 3.1.21. Accordingly we
obtain the relation between the 1. P.-K. stress tensor and the corresponding Cauchy
stress tensor 
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(3.1.29)

By considering moment equilibrium of the tractions that act on the boundary of an
arbitrary volume of material in C or  we find that the Cauchy stress tensor in a
Boltzmann continuum is symmetric, cf. section 2.3.3,

(3.1.30)

However, according to equation 3.1.29, this is not true for the 1. P.-K. stress tensor, i.e.
for , . 

For infinitesimal transitions the Cauchy stress increment is given by

Figure 3.1.4 (a) Stress vectors in C and ; (b) the components of the Cauchy stress tensor
describing the state of stress in C; (c) the components of the 1. P.-K. stress tensor describing the
state of stress in
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(3.1.31)

where  is the material time derivative of the Cauchy stress. The corresponding
increment of the 1. P.-K. stress tensor is

(3.1.32)

By using the definition 3.1.29 and the approximation for the adjoint of the deformation
gradient, equations 3.1.18, the following expression is obtained

(3.1.33)

The stress increment ∆σij is directly related to the material time derivative of the Cauchy
stress tensor, as indicated in equation 3.1.31, which according to equation 2.2.32
consists in turn of the rigid-body time derivative of the Cauchy stress and corrotational
terms. Accordingly, the Jaumann stress increment of the Cauchy stress is introduced

(3.1.34)

From the above definitions we find that

(3.1.35)

Substitution from equation 3.1.35 into equation 3.1.33 yields a decomposition of the
increment ∆πij of the 1. P.-K. stress tensor in objective part and in a geometric correction
term

(3.1.36)

The Kirchhoff stress tensor Tij in C and  are defined as follows

(3.1.37)

where J and  are the corresponding Jacobians of the deformation with respect to the
initial configuration C(0),

(3.1.38)

and thus

(3.1.39)

(3.1.40)

In an updated Lagrangian analysis, however, the current configuration C is used as
reference configuration. Accordingly, we define a relative Kirchhoff stress tensor, ,
such that 
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(3.3.41)

and

(3.1.42)

Accordingly, the Cauchy/Jaumann stress increment in equation 3.1.36 can be replaced
by the relative Kirchhoff/Jaumann stress increment

(3.1.43)

Summarizing the above derivations we have

(3.1.35)

(3.1.36)

(3.1.43)

(3.1.44)

(3.1.45)

(3.1.46)

(3.1.47)

Thus we obtain a useful expression for the nominal stress increment in terms of the
Kirchhoff stress and its Jaumann increment,

(3.1.47bis)

We notice that for isochoric deformations (J=Jt=1) there is no difference between Cauchy
and Kirchhoff stresses and their increments. For a comprehensive discussion of the
various stress tensors and their increments which can be used in an updated
Lagrangian analysis we refer to Bazant (1971).

Geometric correction terms for plane-strain deformations. First we recall that for
isotropic material and plane-strain deformations the Cauchy shear stress on the x3-
plane is vanishing

The principal stress, σ33, is of course not necessarily zero.
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With the current configuration being the reference configuration, and the notation 

for plane-strain analysis we obtain the following expressions for the corotational terms
 (cf. Vardoulakis, 1978)

where

is the only significant component of the incremental spin tensor. Similarly for the
geometric correction terms of the nominal stress increment we obtain

The remaining components of  and  are zero.
In the coordinate system of principal axes of the Cauchy stress, σij, the above

equations become

We observe that for in-plane isotropic states the Cauchy corotational terms vanish.
Second-order continuum approximations. We consider the right-polar decomposition of

the relative deformation gradient

where  is the proper orthogonal rotation tensor and  is the relative right-stretching
tensor. Under plane-strain conditions we restrict the 

demonstrations to the components in the plane of deformation
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Let, again, ∆εij be the symmetric part of the displacement gradient and ∆ω the only non-
zero component of its antisymmetric part, equations 3.1.10,

The rotation angle ωt and the components of the right stretching tensor  are given
within a second-order theory by the following expressions (see Figure 3.1.5)

Similarly, expressions for the increment of the (relative) 1. P.-K. stress in  can be
derived. The increment, ∆πij of the 1. P.-K. stress can then be written as

where  are linear correction terms, defined through equations 3.1.36, and 

Figure 3.1.5 Polar decomposition of
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are second-order geometric terms. Notice that the expressions for the remaining two
components, , , can be obtained by interchanging above the indices 1 and 2.
(For further reading see Novozhilov, 1961 and Biot, 1965.)

3.2
Infinitesimal strain superimposed upon finite strain

3.2.1
Plane rectilinear deformations

In this section we will outline the structure of constitutive equations of elastic materials
which remain isotropic in finite strain (see Biot, 1965). We consider a rectangular block
of elastic material in an undeformed configuration C(0) subjected to a rectilinear
deformation C(0)→C

(3.2.1)

where the principal stretches give the ratios of current to initial block dimensions
(Figure 3.2.1)

Figure 3.2.1 Rectilinear deformation C(0)→C.
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(3.2.2)

A class of elastic materials is defined for which the specific strain (internal) energy is a
function of the principal logarithmic strains

(3.2.3)

where

(3.2.4)

describe the finite strain of the considered rectilinear deformation . It should be
remembered that for rectilinear deformations there is no distinction between left
(Eulerian) and right (Lagrangian) logarithmic (Hencky) strain tensors.

3.2.2
Superposition of rectilinear deformations

We consider an infinitesimal continuation  of the considered rectilinear
deformation. During such a transition the principal axes of strain remain fixed, and the
change of the logarithmic strain  coincides with the infinitesimal strain,

(3.2.5)

cf. equation 3.1.13 and Figure 3.2.1. In elastic materials it is assumed that all the work
done by the stresses is entirely stored in the form of recoverable internal energy. Then
from local energy balance, equation 2.3.31, we obtain

(3.2.6)

where σi and ∆εi are the principal values of the Cauchy stress σij and of the infinitesimal
strain . From this energy balance equation we obtain the expression of the
principal Cauchy stresses in C in terms of the strain energy function

(3.2.7)

Let C(0) be the reference configuration of the considered finite deformation. This means
that C(0) is the unstrained configuration, characterized by . For an elastic
material, which is defined by the strain energy function , it is assumed that the
unstrained configuration is also stress-free. Due to the definition 2.1.41 and equation 2.
3.2 for the Jacobian of the deformation, the above equation results in an expression for
the Kirchhoff stresses 

(3.2.8)
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where ρ(0) is the density of the elastic material in the initial configuration C(0). Since
, from the expression 3.2.8, the increments of the Kirchhoff stress can be

computed through formal differentiation

(3.2.9)

The considered rectilinear continuations of the deformations are spinless and thus the
increment of the Kirchhoff stress and its Jaumann increment coincide, and thus

(3.2.9bis)

where the components of the material stiffness tensor Rijkl which relate the normal
Kirchhoff/Jaumann stress increments to the normal components of the infinitesimal
strain are given in terms of the strain energy function,

(3.2.10)

3.2.3
Superposition of pure shear

In order to compute the shear stiffness, we consider a pure shear deformation, 
(Figure 3.2.2)

(3.2.11)

superimposed upon the finite rectilinear stretching 3.2.1, resulting in

(3.2.12)

The corresponding deformation gradient  is decomposed according to 2.1.25
into left stretching tensor and spin tensor  (Figure 3.2.3) 
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Figure 3.2.2 Pure shear

(3.2.13)

resulting in

Figure 3.2.3 Polar decomposition of 
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(3.2.14)

and

(3.2.15)

Assuming that the superimposed shear strain is infinitesimal, |∆γ|«1, then from
equations 3.2.14 and 3.2.15 we obtain that

(3.2.16)

(3.2.17)

(3.2.18)

Accordingly the principal strains are

(3.2.19)

where Θv is the orientation angle of the (I)-principal direction of the left stretching tensor
Vij,

(3.2.20)

resulting in

(3.2.21)

and

(3.2.22)

Assuming that the material is isotropic under finite strain, then the constitutive
equations 3.2.9 hold for the principal directions, as indicated in Figure 3.2.4,

(3.2.23)

We may resolve these principal stresses which are oriented along the principal directions
(I) and (II) into x1 and x2 components. Since , 

we find that

(3.2.24)
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According to equation 3.1.45, the Jaumann increment of the Kirchhoff shear
stress is

(3.2.25)

We observe from equation 3.2.11 that for the considered infinitesimal transition ,
the infinitesimal rigid body rotation , and thus the Kirchhoff stress increment and
its Jaumann increment coincide, and

(3.2.26)

where

(3.2.27)

and the Ti(i) are given by equations 3.2.8 (see also Hill, 1978). Equations 3.2.26 and 3.2.
27 can be readily generalized by considering simple shears in the (x1, x3)-plane andthe
(x2, x3)-plane as well.

3.2.4
Hypoelastic constitutive equations

According to the above derivations, the Jaumann increment of the Kirchhoff stress is
found to depend linearly on the incremental strain

(3.2.28)

where the components of the stiffness tensor are given according to equations 3.2.10
and 3.2.27 in terms of the strain energy function and the principal stretches, and obey
the major symmetry conditions

Figure 3.2.4 Principal stresses in
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(3.2.29)

We remark that due to equation 3.1.43 the Cauchy/Jaumann stress increment is given
by a constitutive equation of the form

(3.2.30)

where the stiifness tensor

(3.2.31)

does only obey minor symmetry conditions

(3.2.32)

This means that for large strain analysis, hypoelasticity laws should be expressed in
terms of the Kirchhoff/Jaumann stress increment stress rather than in terms of the
Cauchy/Jaumann one.

As an example, we refer here to a simple constitutive equation for compressible,
isotropic elastic materials in finite deformations, which was discussed by Tvergaard et
al. (1981) in connection with localization analyses. In this example, and for rectilinear
deformations along the common principal directions of Kirchhoff stress and logarithmic
strain, the following constitutive relations are established

(3.2.33)

where vs and Gs are the ‘effective’ Poisson’s ratio and shear modulus, respectively, which
evolve during the deformation

(3.2.34)

E is Young’s modulus, v is Poisson’s ratio and Es is the ratio of stress and strain for
uniaxial Kirchhoff stress versus logarithmic strain curve. For large strains, the
considered material becomes gradually less compressible  since the secant
Young’s modulus diminishes . For this model we obtain the following normal
components of the stiffness tensor

(3.2.35)

for  and  (no sum). In this expression

(3.2.36)

is the Kirchhoff stress deviator, Et is the tangent Young’s modulus, i.e. the slope of the
uniaxial Kirchhoff stress/logarithmic strain curve, and

(3.2.37)
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is the effective Kirchhoff-Mises stress. We observe that the normalized deviators of the
Kirchhoff and Cauchy stresses coincide,

(3.2.38)

where sij and T are the corresponding Cauchy stress measures

(3.2.39)

(3.2.40)

On the other hand, from equations 3.2.27 and 3.2.33 we obtain the following expressions
for the shear moduli

(3.2.41)

We observe that if the underlying uniaxial stress-strain curve is a straight line

(3.2.42)

then the normal stiffnesses

(3.2.43)

An elastic material which is isotropic under finite strain develops a strain-induced
anisotropy for shearing in axes parallel to the initial stretch (Biot, 1965). If in addition
we assume that the normal stiifness of the Kirchhoff/Jaumann stress increments are
constant, equations 3.2.42, then both the normal and shear stiffnesses for the relative
Kirchhoff/Jaumann stress increment evolve as follows

(3.2.44)

where

(3.2.45)

(3.2.46)

(3.2.47)

It should be mentioned that in several publications we find, instead of the above
anisotropic hypoelastic constitutive equations 3.2.44 to 3.2.47, isotropic ones, which
relate the relative Kirchhoff/Jaumann stress to the infinitesimal strain,
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(3.2.48)

with G and v constant.
The constitutive equation 3.2.44 for the Jaumann increment of the relative Kirchhoff

stress with a stiffness tensor given by Hooke’s law 3.2.48 is not truly elastic, i.e.
hyperelastic; cf. the remark below, and the papers by Hutchinson (1973) and
McMeeking and Rice (1975). This is generally not considered as a major deficiency of
such a theory, and in large strain analyses equation 3.2.44 with equation 3.2.48 are
used; cf. Dorris and Nemat-Nasser (1980). It should be noticed also that Christoffersen
(1991) discussed a simple class of hyperelastic relations with isotropic rate forms. These
rate equations do not involve the Jaumann derivative of the Kirchhoff stress but other
suitably chosen objective stress rates.

Example: oedometric initial strain. Let us consider the example of oedometric
compression

(3.2.49)

We assume that the oedometric stress-strain curve is described by a power law for the
Kirchhoff stress (cf. equation 2.1.44)

(3.2.50)

where TK is given by equation 3.2.37 and Г is the corresponding measure for the
shearing strain intensity, , where  are the principal
deviatoric logarithmic strains. For oedometric compressions,

(3.2.51)

Moreover, we define the secant and tangent moduli by

(3.2.52)

For the considered initial state of strain we define plane-strain continuations in the (x1,
x2)-plane. The incremental stress-strain relations for the Kirchhoff stress and for the
constitutive law (3.2.33) of Tvergaard et al. (1981) are given by equation 3.2.28 with the
following stiffness tensor

(3.2.53)

In the above expressions Ks and λs are the secant compression modulus and Lamé moduli,
respectively. Notice that the quantity q is a measure of strain-induced anisotropy. Its
evolution with λ is depicted in Figure 3.2.5.

68 BIFURCATION ANALYSIS IN GEOMECHANICS



Remark on hyperelasticity, elasticity and hypoelasticity. We remark here on a few
definitions and basic properties of elastic, hyper- and hypoelastic constitutive equations.
A material is called elastic (a) if it possesses only one ground state C(0), i.e. a state that is
undeformed and is also stress free, and (b) if the stress is a function of the deformation
gradient. An elastic material is called isotropic if the stress is an isotropic tensor
function of the deformation. This assumption results in a general constitutive equation
of the form

(El)

where the  are isotropic scalar functions of the invariants of Bij, say the left
Cauchy-Green tensor. Bij in this equation can be replaced  by any other convenient
Eulerian deformation measure, for example the left Hencky (logarithmic) strain tensor.

More restrictive is the definition of the hyperelastic materials. In hyperelasticity, the
Helmholtz free energy of the material is assumed to be a function of the corresponding
measure of deformation, e.g.

In hyperelastic materials the local entropy production at constant temperature is zero,
and thus from equation 2.3.43 we obtain that the specific stress power is a Pfaffian form,
since with  and  from

we obtain that

Figure 3.2.5 Large strain-induced anisotropy, equation 3.2.53.iv.
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Accordingly in hyperelasticity the Helmholtz free energy is the potential function of the
Kirchhoff stress

(Hpr)

(Hpr) is a slight generalization of equation 3.2.8. Using the representation theorem of
isotropic tensor functions and the Cayley-Hamilton theorem, the form (El) for isotropic
elastic materials follows from the form (Hpr), for hyperelastic materials. The converse is
not generally true. If the material is hyperelastic, along a closed strain path, the total
specific work done by the stresses is zero

This is not generally true for elastic materials. However in closed stress paths in stress
space both elastic materials and hyperelastic materials are characterized by zero
residual strain.

We observe that both the constitutive equations of isotropic elastic materials (El) and
for isotropic hyperelastic materials (Hpr) lead through formal rigid-body time
differentiation to equations of the rate form

(HpoK)

or

(HpoKr)

(Hpo)

Truesdell and Noll (1965) define a class of materials, which they call hypoelastic
materials, and obey a rate constitutive equation like the ones above which are linear in
Dij, with the additional restriction that the corresponding fourth-order constitutive
tensor is an isotropic tensor function of the Eulerian stress.

With equations 3.2.9 and 3.2.26 we have demonstrated a simple example, where
hypoelasticity equations are derived from hyperelasticity. In general, however,
hypoelastic constitutive equations are neither integrable to a finite form (El) nor
connected to a free energy function through a constitutive equation of the form of (Hpr).
Thus, hypoelastic equations will lead in general to residual strain, if integrated along
closed stress paths and to violations of the second law of thermodynamics if integrated
along closed strain paths (see Loret, 1985).

Finally, we want to refer to Kolymbas’ (1978) generalizations of hypoelasticity equations
in order to describe the behavior of granular materials. Kolymbas defines a class of
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materials which he calls hypoplastic and which obey rate-type constitutive equations of
the form

(Hpl)

where the tensorial function Hij is non-linear with respect to Dij. If Hij is linear in Dij, then
(Hpl) reduces to (Hpo). For example, starting from the representation theorem of
isotropic tensor-valued functions of two symmetric tensorial arguments (Wang, 1970),
Kolymbas’ (1991) hypoplasticity of sand is a particular choice of (Hpl) which, in symbolic
representation, reads as follows

where cα(α=1,…,4) are material constants, determined from the experiment.

3.3
Equilibrium bifurcation

3.3.1
The principle of virtual work

For any change of the volume forces and/or of the boundary conditions of a solid body B
in its current configuration C body B deforms and assumes a new configuration . Let

 be a virtual displacement of B in  and let C* be the resulting virtual configuration
(Figure 3.3.1). The virtual displacement field, , must be piecewise differentiable and it
must obey boundary constraints which will be specified below. The principle of virtual
work in  is expressed by an equation of the form

(3.3.1)
where  and  denote the virtual work done by the internal forces and external
forces respectively. Let 

Figure 3.3.1 The definition of virtual configuration.
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(3.3.2)

where in a Boltzmann first-grade continuum the virtual work of the internal forces
depends only on the Cauchy stress in , and

(3.3.3)

with

(3.3.4)

The virtual work of the external forces

(3.3.5)

In these equations  are the boundary tractions acting on the boundary  and  the
body forces acting in . From the above virtual work equation 3.3.1 and Gauss’ theorem,
equilibrium conditions in  can be derived, i.e. on 

(3.3.6)
and in 

(3.3.7)

With the definition 3.1.29 of the relative 1. P.-K. stress tensor, πij, the expression for the
virtual work of internal forces, equation 3.3.2, becomes

(3.3.8)

By defining nominal surface tractions and volume forces

(3.3.9)

from the virtual work equation 3.3.1 and Gauss’ theorem we derive equilibrium
equations in terms of the nominal stress tensor, i.e. on ∂V

(3.3.10)
and in V

(3.3.11)

The change of the tractions on ∂V and of the volume forces in V is defined by referring
these changes to surface and volume elements in C

(3.3.12)
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By using the above decompositions and equation 3.1.32, equations 3.3.8 and 3.3.5
become

(3.3.13)

(3.3.14)

We assume that pi and fi are in equilibrium with the Cauchy stress σij in C, i.e. on ∂V
(3.3.15)

and in V

(3.3.16)

Then from the virtual work equation 3.3.1 and the expressions 3.3.13 and 3.3.14 we
obtain the following second-order virtual work equation,

(3.3.17)

where

(3.3.18)

(3.3.19)

For deriving a useful form of the principle of virtual work for continued equilibrium,
equation 3.3.17, we introduce the following notations: Let zi be the coordinates of a
material point X in the virtual configuration C*

(3.3.20)

A virtual displacement field, δui, is then introduced, which gives the virtual displacement
of C* with reference to C

(3.3.21)

and within a linearized theory

(3.3.22)
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(3.3.23)

With these derivations, the principle of virtual work for continued equilibrium, equation
3.2.17, finally becomes (Vardoulakis, 1975)

(3.3.24)

For the evaluation of the above integrals, the virtual displacement field is imposed to the
additional constraint that it obeys the kinematic constraints on that part ∂Vu of the
boundary ∂V on which displacements are prescribed, i.e. on ∂Vu

(3.3.25)

which in turn means that the original virtual displacement  of  must vanish on ∂Vu,
sequations 3.3.21 and 3.3.25 we obtain

(3.3.26)

for x on ∂Vu.
From the complete variation of the virtual displacement field the local conditions for

continued equilibrium can be derived, namely on ∂Vσ

(3.3.27)

and in V

(3.3.28)

Conditions for continued equilibrium in plane-strain deformations. As an example let us
assume that , , and that the initial stress σij in C is constant. In the
coordinate system of principal axes of initial stress σij in the plane of the deformation,
the conditions for continued equilibrium 3.3.28 can be written either in terms of the
Cauchy/Jaumann stress increment

or of the relative Kirchhoff/Jaumann stress increment
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where ∆ω and ∆ε are the only non-vanishing components of the infinitesimal rotation
tensor and the infinitesimal volumetric strain, respectively

We remark that: (a) For isochoric deformations  e.g. for incompressible materials)
the two formulations are identical; (b) for in-plane isotropic states of initial stress 
 the conditions for continued equilibrium in terms of the Cauchy/Jaumann stress
increment do not introduce the effect of initial stress; in this case the second
formulation in terms of the relative Kirchhoff/Jaumann stress increment is preferable.

3.3.2
The zero moment condition

In the virtual work equation 3.3.24, the virtual displacement field δui must be consistent
with the displacement boundary conditions on ∂Vu, equation 3.3.25, but otherwise
arbitrary. Beatty (1966), in his treatise on elastic stability, indicated that a general
theory of uniqueness and stability can yield dubious results when the virtual
displacements are considered entirely arbitrary. For example, a rod under constant
compressive load is unstable for any load as soon as rigid body rotations of the rod in a
plane containing its axis are allowed (Figure 3.3.2) (cf. Truesdell and Noll1965, Sect. 68
bis). In this section we briefly adapt into the present framework Beatty’s main results,
which in turn derive from global moment equilibrium.

In analogy to equations 3.3.13 and 3.3.14 we require that the resultant moment of all
external forces acting on the considered body in the virtual configuration C* is zero

(3.3.29)

or more explicitly

Figure 3.3.2 Trivial rotational instability of a rod in compression.
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(3.3.30)

We observe that

and that due to equation 3.1.33

With these observations, the zero moment condition 3.3.30 becomes

(3.3.31)

Above zero moment condition for the virtual displacement field, , can be written in
the following alternative forms (Beatty, 1966):

(3.3.31a)

or

(3.3.31b)

The above conditions are not very useful for deriving restrictions for the virtual
displacement field. Due to equation 3.3.21, however, we may only consider the leading
term of condition 3.3.3 la

76 BIFURCATION ANALYSIS IN GEOMECHANICS



(3.3.32)

We consider now a virtual displacement field

(3.3.33)

where Ωij is a uniform finite rigid rotation tensor, describing a rotation of an angle α
(0≤α≤π) about a fixed-in-space axis whose unit vector is hi (Figure 3.3.3), i.e.

(3.3.34)

(3.3.35)

With the notation

(3.3.36)

(3.3.37)

the leading term of the zero moment condition becomes

(3.3.38)

For non-trivial solutions for a virtual rigid rotation, equation 3.3.33, ai from equation 3.
3.38 must be non-zero, i.e. the volume average stress Sij must satisfy the condition

(3.3.39)

In particular ai is an arbitrary vector if . This is true for the stress-free state and
for cases when the volume-average stress vanishes (for example, in any problem where
body forces and surface tractions vanish). If on the other hand, the system of loads
acting on the considered body in C does not exhibit an axis of equilibrium, then
condition 3.3.39 does not hold, and  follows from equation 3.3.39. This means that
in general the zero moment condition 3.3.32 will prohibit rigid-body rotations.

Figure 3.3.3 The definition of virtual rigid rotation.
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3.3.3
Configuration-dependent loading

Let us consider a body B in a given configuration C of it. By using the notation
introduced above, we remark first that the body force increment ∆bi will consist of a
Jaumann part and geometric correction terms

(3.3.40)

Conservative body forces like self-weight do not change, and

(3.3.41)

For  and by applying d’Alembert’s principle, inertial body forces are given in terms
of the acceleration and the density ρ of the solid in C

(3.3.42)

In order to properly define the linear bifurcation problem we must further clarify the
type of contact forces which are acting on the boundary of the solid body B (Nemat-
Nasser, 1972). Accordingly, a system of boundary tractions is called configuration-
dependent if, for any point xi on ∂Vσ, boundary tractions can be computed from assigned
functions of the infinitesimal displacement and its gradient.

In the current configuration C, the surface element dS of the boundary ∂Vσ, with the
exterior normal ni is subjected to a surface load dti

(3.3.43)

In this expression, αi is the outwards pointing unit vector, in the direction of the applied
boundary traction and p is the intensity of the boundary traction. According to the
above definition p is positive as soon as the boundary traction is pointing outwards, i.e.
p>0 if pini>0. Let mi denote the unit vector tangent to the surface element dS and in the
plane which contains ni and αi. According to the derivations of section 3.1 the vectors mi
and ni and the surface element transform according to the following rules:

(3.3.44)

Nominal surface transactions πi in  are defined through

(3.3.45)

with

(3.3.46)

We remark that due to equation 3.3.27 ∆πi is in equilibrium with the increment of the
nominal ∆πij.
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Dead loads. A system of boundary loads is called a system of dead loads if these loads
keep their magnitude and orientation in space unchanged during the deformation, 
 (Figure 3.3.4a):

(3.3.47)

Follower loads. A system of boundary tractions is called a system of follower loads if
these boundary loads follow the orientation of the surface upon which they are acting

(3.3.48)
If , then the system is said to constitute a system of follower tractions whereas if

 then a system of follower loads is considered. Of particular interest to
applications are loads normal and tangential to the boundary. For normal loads αi
coincides with ni whereas for tangential loads αi is identical to mi.

(i) Normal tractions of constant intensity −p. In this case, the boundary tractions act
always perpendicular to the boundary of the solid and have a constant intensity −p
(Figure 3.3.4b). This case can be understood as the load produced on the boundary of a
solid by hydrostatic fluid pressure:

(3.3.49)

(ii) Normal loads of constant magnitude: 

(3.3.50)

Figure 3.3.4 Examples of configuration-dependent loading: (a) dead loads; (b) hydrostatic
pressure.
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(iii) Tangential tractions of constant intensity τ.

(3.3.51)

(iv) Tangential loads of constant magnitude: 

(3.3.52)

3.3.4
The linear bifurcation problem

Following the above considerations, we can formulate the general incremental boundary
value problem and proceed to the formulation of the linear bifurcation problem: It is
assumed that a solid body B has been already deformed to a given equilibrium
configuration C. C is called the current configuration and is used as a reference
configuration for subsequent continuations of the deformation of the body B. The
boundary ∂V of B in C is divided into two complementary parts ∂Vσ and ∂Vu, suchthat on
∂Vσ tractions and on ∂Vu displacements are prescribed. In the volume V of B in C, volume
forces are acting which could be understood as being for example gravitational or
seepage forces. For any change of the boundary conditions and/or of the volume forces
acting on B in C, there is a new configuration  of it. Assuming that the kinematic
constraints preclude any rigid-body motion of B, the incremental boundary value
problem consists of determining the incremental displacement and stress fields which
describe the transition . Summarizing the theoretical results of the previous
sections, we collect first the local equilibrium conditions which govern the considered
incremental boundary value problem:

(3.3.28)

with

(3.3.27)

and

(3.3.25)

We may assume that boundary tractions and volume forces are either dead loads or
configuration-dependent,

(3.3.53)

with known tensors πijk and bijk as demonstrated in the previous section. The 1. P.-K.
stress increment is related to the infinitesimal displacement gradient

(3.3.54)
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where according to equation 3.1.36 or 3.1.47 and for example equations 3.2.45 to 3.2.
47, the stiffness tensor Cijkl is expressed in terms of the initial stress and a constitutive
tensor

(3.3.55)

For investigating the uniqueness of solution for the considered incremental boundary-
value problem, the displacement field is assumed to consist of two parts

(3.3.56)

such that the ‘trivial’ solution , satisfies the kinematic constraints, i.e. on ∂Vu

(3.3.57)

and produces a stress field that satisfies equilibrium in V and on ∂Vσ. Consequently, the
‘non-trivial’ solution, satisfies homogeneous boundary conditions on ∂Vu

(3.3.58)

Under these conditions the virtual work, equation 3.3.24, yields the weak formulation of
the linear bifurcation problem

(3.3.59)

where δui is an admissible virtual displacement field. This means that δui is piecewise
sufficiently differentiable, and satisfies (a) homogeneous displacement boundary
condition on ∂Vu,

(3.3.60)

(b) the zero-moment condition 3.3.32 in V. As already indicated in section 3.3.2, δui
cannot be a rigid-body rotation.

A finite-element discretization of equations 3.3.59 with 3.3.58 would result in a
homogeneous linear algebraic system of equations for the nodal displacements
corresponding to the non-trivial field , say of the form

(3.3.61)

where [K] is the stiffness matrix and { }is the vector of nodal displacements
corresponding to the non-trivial displacement field (Vardoulakis, 1975). In the case of a
regular stiffness matrix

(3.3.62)

and {∆ů} is the unique solution of the problem. However, in the case of a singular system
matrix

(3.3.63)

at least a non-zero eigenvector field { } exists. In this case, the displacement field
corresponding to the infinitesimal transition  is not uniquely determined and we
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are dealing with an equilibrium bifurcation at state C, since more than one possible
continuation of the considered deformation exist.

3.3.5
Uniqueness theorems under dead loading

Under dead loading the virtual work equation 3.3.24 becomes

(3.3.64)

with . Let {∆πij, ∆ui}(1) and {∆πij, ∆ui}(2) be two solutions of the above
incremental boundary value problem. Then their difference

(3.3.65)

satisfies equation 3.3.64 with the constraint 3.3.58, i.e.

(3.3.66)

(3.3.67)

The integrand of the volume integral 3.3.66, is denoted here by the symbol

(3.3.68)

and it is called the second-order work of stress. Global uniqueness of the incremental
boundary value problem is guaranteed if 3.3.66 and 3.3.67 hold only for the trivial
solution  everywhere in V and on ∂V. In particular, a sufficient condition for
global uniqueness is that for any admissible displacement field, the global second-order
work of stresses is non-negative

(3.3.69)

with the equal sign holding only for the trivial solution . In the considered case,
admissible is any field which satisfies the constraint 3.3.67 and which does not
correspond to a rigid-body rotation. For hyperelastic materials, condition 3.3.69 is
known as Hadamard’s linearized, dead-load stability criterion (Beatty, 1966). Thus non-
uniqueness implies (in the case of hyperelastic materials) instability in the sense of
Hadamard. Of course, the converse does not hold, i.e. uniqueness does not imply
Hadamard stability. A counterexample follows from the observation that
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(3.3.69bis)

implies uniqueness.
With

(3.3.70)

Hadamard (1903) has shown that for an equilibrium configuration C of a hyperelastic
body under dead loads to satisfy the stability criterion 3.3.69, it is necessary that for all
vectors gi, ni, thecondition

(3.3.71)

hold at any point xk of the considered body. For a rigorous proof of Hadamard’s theorem
see Truesdell and Noll (1965).

The above sufficient uniqueness condition (3.3.69) is satisfied if we impose the
stronger condition, that the second-order work of stresses is positive everywhere in V for
every non-zero displacement gradient field,

(3.3.72)

The positiveness of the second-order work of stresses is a stronger requirement than the
so-called strong-ellipticity condition for the stiffness tensor

(3.3.73)

which ensures that the differential equations governing the incremental boundary value
problem are elliptic; cf. equations 3.3.28.

The increment ∆πij of the nominal stress is related to the Cauchy stress increment ∆σij
through equation 3.1.33. If the influence of initial stress is neglected, then ,
and the above sufficient local condition for uniqueness becomes

(3.3.74)

where the symmetry of the Cauchy stress was utilized. Accordingly, the inequality 3.3.74
means that positiveness of the second-order work of the Cauchy stresses implies
uniqueness within a small strain theory. Obviously, from 3.3.72 similar restrictions for
the Cauchy/Jaumann or relative Kirchhoff/Jaumann increments follow,

(3.3.75)

Inequality 3.3.75 is encountered in the literature as ‘postulate for material stability’,
since it restricts the constitutive stress increment, so that within a small strain theory
local uniqueness is guaranteed. However, it should be emphasized that positiveness of
second-order work has no connection to the basic laws of continuum thermodynamics
since, as already pointed out in section 2.3.5, the dissipation inequality is connecting
the entropy production to the first-order work of the Cauchy stress, . Thus
material stability does not follow from the Second Law of Thermodynamics and its
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violation does not contradict this law. Materials which satisfy the postulate for material
stability (3.3.75) are called stable materials. If, on the other hand, the second-order work
of stresses is negative then the material is called unstable. Figure 3.3.5 shows the
uniaxial stress-strain curve of a material, which shows a stable pre-peak branch
(∆σ∆ε>0) and an unstable post-peak branch (∆σ∆ε<0). Within the terminology of plasticity
theory, in the stable branch it is said that the material is hardening and in the unstable
branch that it is softening.

According to equation 3.1.47 the second-order work of stress can be also expressed
approximately in terms of the relative Kirchhoff/Jaumann stress increment,

(3.3.76)

In isotropic elasticity, for example, the Kirchhoff/Jaumann stress increment is given
through constitutive equations of the form 3.2.44 with a constitutive  tensor which
obeys major symmetry conditions. Thus, sufficient for small strain local uniqueness is
that the requirement for positive definiteness of the constitutive tensor

(3.3.77)

is holding for arbitrary, non-zero symmetric tensors gij. For elastic materials, inequality
3.3.77 implies in turn a convexity condition for the material strain energy function e(λi),

(3.3.78)

Thus, stable hyperelastic materials are characterized by a convex strain energy
function. A non-convex strain energy function resulting in an unstable stress-strain
curve is shown in Figure 3.3.6.

Figure 3.3.5 The stress-strain curve of a material violating the material stability postulate.
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3.4
Acceleration waves and stationary discontinuities

We consider here a solid body B at an equilibrium configuration C and study the
propagation of acceleration waves, with C serving as reference configuration.
Acceleration waves are weak discontinuities of the various mechanical fields across
wavefronts D(t) which propagate with the speed c; cf. section 2.4.4. Across such
wavefronts D(t) the following compatibility conditions hold for the displacement ∆ui, the
density ρ and the nominal stress πij 

(3.4.1)

(3.4.2)

(3.4.3)

Figure 3.3.6 Non-convex strain energy function.

Figure 3.4.1 Acceleration wavefront.
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where ni is the unit normal on the wavefront, r, di and gij are the jumps of the density,
velocity gradient and stress gradient respectively. Figure 3.4.1 illustrates the wave
propagation and the velocity gradient discontinuity.

On both sides of the wavefront D(t) the balance equations of mass and linear
momentum must hold

(3.4.4)

(3.4.5)

where

(3.4.6)

are the velocity and acceleration vectors, respectively.
For conservative body forces and due to the fact that C is an equilibrium configuration,

the dynamic equations 3.4.5

(3.4.7)

From the above balance equations we derive the following dynamic compatibility
conditions

(3.4.8)

(3.4.9)

For moving wavefronts, from the above mass-balance relation 3.4.8 we derive the
following compatibility condition, which is restricting the jump r of the density gradient
such that across acceleration wavefronts

(3.4.10)

On the other hand, in order to evaluate equation 3.4.9 we assume that the nominal
stress increment is related to the incremental displacement gradient through a set of
equations of the form

(3.4.11)

cf. equations 3.3.70. We assume in addition that the stiffness tensor Cijkl is continuous
across D(t)

(3.4.12)

and notice that this assumption is true for elastic materials. From the above relations
the following dynamical compatibility conditions are derived

(3.4.13)

where
(3.4.14)

is the material wave propagation velocity, and  is the normal particle velocity,
and
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(3.4.15)

is the so-called acoustic tensor.
Equation 3.4.13 is the eigenvalue problem for the determination of the speed and

jump properties (cm, di) of acceleration waves which may propagate along the direction
ni. We notice that Hadamard’s stability criterion (equation 3.3.71) guarantees that all
material speeds cm of acceleration waves are real. When all waves are able to propagate
with real material speed, the material is stable in a dynamic sense. In the contrary, if
one or more material wave speeds is not real, then the body is inherently unstable, i.e.
unstable in the sense that a certain displacement may build up exponentially with time.
This means that the eigenvalues of the acoustic tensor determine whether or not the
considered body is locally dynamically stable or unstable.

If the material propagation velocity of the wavefront D(t) vanishes,

(3.4.16)

then the wavefront is called material discontinuity surface. Existence of weak material
discontinuities is guaranteed if

(3.4.17)

According to equations 3.4.13 and 3.4.17, weak material discontinuity surfaces are
characterized by the fact that the velocity gradient discontinuity vector di is the
eigenvector of the acoustic tensor Гik, which, for a given characteristic direction ni that
satisfies condition 3.4.17, corresponds to a zero eigenvalue of Гik.

Hill (1962) in his famous paper on ‘Acceleration waves in solids’ suggested interpreting
the condition for vanishing speed of acceleration waves along real characteristic
directions ni as the condition for shear-band formation. The discussion of Hill’s
proposition will be furthered in chapter 8 within the context of elastoplastic materials.
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4
Buckling of layered elastic media

4.1
Folding of elastic and viscoelastic media as a bifurcation problem

According to Hadamard (1903), a mathematical problem is called well-posed if it has (a)
a solution, (b) not more than one solution and (c) a solution that changes only slightly
with a slight change of data. These three conditions are known as conditions of
existence, uniqueness and continuity (or stability). Within the theory of linear elliptic
operators, Benallal et al. (1990) gave a precise mathematical definition for a well-posed
mathematical problem. Such a definition does not only refer to the type of the governing
differential equations but also makes use of boundary conditions and interfacial
compatibility conditions. In this section we will simply address the problem of
uniqueness of the incrementally linear boundary value problem which was treated in
general terms in section 3.3.4. In particular, the constitutive equations of large strain
elasticity theory will be utilized to study buckling of elastic layered media. These buckling
modes can explain the occurrence of various periodic structures in geology such as folds
and joints. Questions of uniqueness which relate to strain localization in the form of
shear bands will be treated separately in chapter 8 within the context of elastoplasticity
theory.

The analysis of the behavior of stratified elastic or viscoelastic media under
compression is of great interest to the geologist. Biot has presented an analysis of
folding of stratified sedimentary rock in a series of pioneering papers (1957, 1959a,b,c,
1961, 1965a, 1967) and in his reference book (1965b). The particular type of folding
mechanism considered in Biot’s theory is the spontaneous folding caused by instability
under a compressive load acting in a direction parallel with the layers. The stability of
an elastic layer embedded in an elastic medium has been studied by a number of
authors in connection with the properties of sandwich panels (Gough et al., 1940;
Bijlaard, 1947). However, from the viewpoint of geology, a purely elastic theory is not
sufficient to explain folding. Time-dependent phenomena such as viscous behavior must
be taken into account. Biot (1957) developed a general theory of folding of a compressed
viscoelastic layer embedded in an infinite medium of another viscoelastic material. He
showed that, in general, there exists a lower and a higher critical load between which



folding occurs at a finite rate with a dominant wavelength. This is the wavelength whose
amplitude increases at the fastest rate. The problem of interfacial adherence between
the layer and the surrounding medium has been investigated in another paper (Biot,
1959b). It was shown that the influence of gravity in the case of a single layer is not
significant and can be neglected. The influence of gravity on folding is important in certain
situations with density contrasts and for a layer situated at the surface (Biot, 1959c). An
experimental verification of Biot’s theory of folding of stratified viscoelastic media in
compression is presented in a paper by Biot et al. (1961).

Biot’s theory of folding of layered media has provided the point of departure for many
important studies on the modeling of rock folding (Ramberg, 1963, 1964; Ramberg and
Stephansson, 1964; Ramsay, 1962, 1967; Chapple, 1968; Cobbold et  al., 1971; Dorris
and Nemat-Nasser, 1980; Papamichos et al., 1990; Martinod and Davy, 1992;
Triantafyllidis and Lehner, 1993).

4.2
Surface and interfacial instabilities in elastic media

4.2.1
Buckling of a single layer under initial stress

4.2.1.1
Formulation of the eigenvalue problem.

The problem considered here is the non-homogeneous, plane-strain deformation of a
layer of thickness 2h, due to constant horizontal and vertical compressions σ1 and σ2,
respectively, as shown in Figure 4.2.1. The theory used in this analysis is based on
incremental plane-strain deformations superimposed on the large strain uniform
compression. The problem is formulated in terms of the relative first Piola-Kirchhoff (1.
P.-K.) stress πij with ∆πij being its increment referred to the deformed initially stressed
state. In the case of constant body forces, the equations of equilibrium for the
incremental problem take the form (see equations 3.3.27 and 3.3.28):

(4.2.1)

The incremental stress boundary conditions are

(4.2.2)

where ∆πi are the components of prescribed traction increments referred to the initial
stressed state and nj are the components of the outward unit normal of the boundary.

Let ∆ui(x, y) be the instantaneous incremental displacement components of typical
material point in the current configuration. Then the incremental strain and spin are
defined as
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(4.2.3)

The stress increment ∆πij is related to the Jaumann increments of the relative Kirchhoff
stress, the initial stress field σij and the incremental strain ∆εij and spin ∆ωij as follows
(see equation 3.1.47):

(4.2.4)

Using the equation 4.2.4, the equations of equilibrium (4.2.1) can be written as follows:

where

(4.2.6)

The Jaumann stress increments  of the relative Kirchhoff stress are related directly
to the strain increments through constitutive relations for hyperelastic materials (see
equations 3.2.44–3.2.47)

(4.2.7)

with

(4.2.8)

and the shear moduli G* and Gt are expressed in terms of the logarithmic strains λ1 and
λ2 by

(4.2.9)

By using the constitutive equations 4.2.7, the equilibrium equations 4.2.5 are written

Figure 4.2.1 A single layer under initial stress σ1 and σ2.
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(4.2.10)

For the considered non-homogeneous deformation mode, the displacement field is
assumed to be given in terms of two unknown amplitude functions of the dimensionless
coordinate y,

(4.2.11)

where , , , l is a reference length and β is a dimensionless wave
number. The wavelength W of the definition mode can then be written as . By
substituting the displacement field (4.2.11) in the differential equations 4.2.10, and
letting , we obtain a system of two linear homogeneous algebraic equations with
respect to the integration constants A and B.

(4.2.12)

For non-trivial solution in terms of A and B, the determinant of the system of equations
4.2.12 must vanish. This leads to the following biquadratic equation for Z

(4.2.13)

where

(4.2.14)

The four roots of equation 4.2.14 correspond to four solutions ∆uk(y) and ∆vk(y)
 for the displacement field amplitudes. The complete solution for U(y) and V(y)

is then given as a linear combination of the functions base

(4.2.15)

where Ak are integration constants.

4.2.1.2
Classification of regimes and functions base.

Depending upon the values of the coefficients a, b and c, the biquadratic equation 4.2.13
has different types of solution in Z which correspond to different regimes of the system
of differential equations 4.2.10: 
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1. (EC) elliptic complex regime when it has four complex roots, i.e. when

(4.2.16)
with  and  we define the following quantities

(4.2.17)

The functions base is

(4.2.18)

and

(4.2.19)

with

(4.2.20)

2. (EI) elliptic imaginary regime when it has four imaginary roots, i.e. when

(4.2.21)

with  and  we define the following quantities

(4.2.22)

The functions base is

(4.2.23)

and
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(4.2.24)

with

(4.2.25)

3. (P) parabolic regime when it has two real and two purely imaginary roots, i.e. when

(4.2.26)

with  and  we define the following quantities

(4.2.27)

The functions base is

(4.2.28)

and

(4.2.29)

with

(4.2.30)

4. (H) hyperbolic when it has four real roots, i.e. when

(4.2.31)

(4.2.32)

with  and  we define the following quantities

(4.2.33)

The functions base is
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(4.2.34)

and

(4.2.35)

with

(4.2.36)

4.2.1.3
Eigendisplacements and tractions at layer boundaries.

The incremental displacement amplitudes at the upper and lower boundaries of the
layer are obtained directly from equations 4.2.15:

(4.2.37)

where the superscripts 1 and 2 denote the upper and lower faces of the layer,
respectively. In this and following sections, superscripts should not be confused with
exponents.

The boundary tractions  and  are written through expressions 4.2.2,
4.2.4, 4.2.7 and 4.2.11 as follows:

(4.2.38)

with

(4.2.39)
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The stress amplitudes ∆S and ∆T at the upper and lower faces of the layer are written, in
accordance with expression 4.2.16, as

(4.2.40)

In matrix form the general solution for the upper (i=1) or lower (i=2) boundary
displacement and traction amplitudes is written

(4.2.41)

4.2.2
Buckling of a system of layers—the transfer matrix technique

In this section, we analyze the buckling of a system of layers and solve numerically the
corresponding linear bifurcation problem by using the transfer matrix technique (Bufler,
1965). A system of n layers of different materials and different initial stresses on the
layer axis, is considered. Such a medium is obtained by superposition of adhering
layers, each of which can be viewed individually as a single layer. A global coordinate
system is introduced, as shown in Figure 4.2.2. The layers are numbered from 1 to n
starting at the top. By assuming perfect adherence at the interfaces, the incremental
stresses and displacements have to be continuous all along the interfaces. Under these
conditions, the equations for the buckling of the system of layers are derived
immediately from the result obtained in section 4.2.1, provided that all local coordinates
are expressed in the global coordinate system. In accordance with expression 4.2.20, the
amplitude of the incremental stresses and displacements for the ith interface of the jth
layer can be assembled in matrix form as follows:

(4.2.42)

or

(4.2.43)
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By requiring continuity of the incremental displacements and tractions at all interfaces,
the integration constants of every layer are linked to the integration constants of the top
layer as follows

(4.2.44)

In order to formulate the eigenvalue problem we have to consider boundary conditions
only at the upper and lower boundary surfaces of the layered medium. As an example,
the case of zero tractions at the upper boundary surface (i=1, j=1) and zero
displacements at the lower boundary surface (i=n+1, j=n) is considered. These boundary
conditions can be written in matrix form as

(4.2.45)

where the [Y1] matrix contains the last two rows of the matrix [F11], and the matrix [Yn]
the first two rows of the matrix [Fn+1, n]. By taking into account expression 4.2.44, the
matrix equations 4.2.45 can be assembled in a homogeneous algebraic system of
equations for the integration constants [A1],

(4.2.46)

The resulting homogeneous system of equations has non-trivial solutions in terms of the
integration constants involved only if the determinant of the system matrix is singular,
i.e.

(4.2.47)

This provides an equation whose roots gives the corresponding eigenvalues. In this
equation, we fix the wave number β and we consider it as an equation for the load. When
monotonic loading is assumed, then the lowest loading level associated with the least
eigenvalue provides the critical buckling load.

Figure 4.2.2 Arbitrary multilayered medium under compressive initial stress.
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4.2.3
Surface instability of a homogeneous half-space

For the case of a homogeneous compressible half-space (Figure 4.2.3a), the analytical
solution is easily calculated by requiring that the incremental displacement field decays
with depth, vanishing at infinite distance from the free surface.

The eigenvalue problem is formulated in the same manner as in the case of the single
layer discussed in section 4.2.1 and leads to the biquadratic equation 4.2.13. Let z1 and
z2 correspond to the roots with positive imaginary part. The general solution for the
incremental displacement field can be written as follows

(4.2.48)

where (∆Ui, ∆Vi, (i=1,2)) is the functions base

(4.2.49)

(4.2.50)

and Ai (i=1,2) are integration constants.
The boundary conditions at the surface require that

(4.2.51)

where

(4 2 52)

Using the equation 4.2.42 for the incremental displacement field, the
boundary conditions 4.2.52 lead to a homogeneous system of equations for the
integration constants A1 and A2

(4.2.53)

Asking for non-trivial solutions ( ), we obtain the following buckling
condition for the half-space

(4.2.54)

As shown on Figure 4.2.3(b) the critical buckling stress of an elastic half-space
increases with the Poisson ratio of the medium.

Problem: Axisymmetric surface instabilities. Local instabilities are defined here as
axisymmetric surface instabilities of a half-space subjected to a uniform radial initial
stress, σ (Figure 4.2.4). Stresses and strains are measured with  respect to a fixed-in-
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space polar coordinate system (r, θ, z), the z-axis being chosen normal to the free surface
of the half-space and pointing to the exterior of it.

Let

(4.2.55)

be the physical components of the considered incremental displacement field. The
corresponding physical non-zero components of the incremental strain and spin tensors
in polar coordinates are:

Figure 4.2.3 Surface instability of a homogeneous elastic half-space. (a) Geometric configuration;
(b) normalized buckling load as a function of the Poisson ratio.
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(4.2.56)

Continued equilibrium is expressed in terms of the increment  of the relative 1. P.-K.
stress tensor

(4.2.57)

where (.)|i denotes covariant differentiation.
For the considered state of prestress, the equations of equilibrium (equations 4.2.57)

are given by

(4.2.58)

Figure 4.2.4 Half-space under constant radial stress.
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where

(4.2.59)

cf. Vardoulakis (1983).
The incremental constitutive equations for axisymmetric initial state of stress are

(4.2.60)

By using the constitutive equations 4.2.60, the equilibrium equations 4.2.57 are written

(4.2.61)

where Lr is the Bessel function operator 

(4.2.62)

For axisymmetric surface instability we search for solution of the form

(4.2.63)

where J1 (respectively J0) is the Bessel function of first kind and first order (respectively
zero-th order) and A, B are integrations constants.

The eigenvalue problem is then reduced to the one studied in section 4.2.1 and leads
to the biquadratic equation 4.2.13. Let z1 and z2 correspond to the roots with positive
imaginary part. The general solution for the incremental displacement field can be
written as follows

(4.2.64)

where (∆Ui, ∆Vi, ( ))is the functions base

(4.2.65)

and Ki are given by equation 4.2.50.
Using the boundary conditions (4.2.51) the same buckling condition (4.2.55) as for the

half-space is obtained.

4.2.4
The problem of wavelength selection

We have seen in section 4.2.3 that the buckling condition for a homogeneous half-space
is independent of the wavelength of the considered mode. This is due to the fact that no
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length appears in this problem and consequently the various modes corresponding to
different wavelengths cannot be differentiated. We shall see in the next section various
examples of problems with introduction of length that leads to the selection of a
particular buckling mode.

4.2.4.1
Buckling of a layer on top of a half-space.

The problem considered is the buckling of a half-space covered by a layer due to a
horizontal homogeneous strain field as shown in Figure 4.2.5. Both media are assumed
isotropic and compressible with elastic parameters G, v, and Gl, vl for the half-space and
the layer respectively. Application of this problem corresponds to the folding of
geological formation and crustal buckling under tectonic stresses.

Notice that a similar problem has been studied by Dorris and Nemat-Nasser (1980).
However they consider in their paper a homogeneous stress field in the layer and the
half-space. As pointed out by Dr. Bigoni, the problem solved by Dorris and Nemat-Nasser
is kinematically ill-posed since homogeneous stress field implies discontinuous strain
field at the boundary between the layer and the half-space. If we assume a continuous
displacement field then according to the theorem of Maxwell (see section 2.4.1) ε11 must
be continuous.

The results are presented in Figure 4.2.6. The wave number β is given by the
expression  where h is the thickness of the layer and W the wavelength of the
deformation field. For the two limiting cases of vanishingly short wavelength ( ) and
infinitely large wavelength ( ) the buckling stress corresponds to the one of a
homogeneous half-space. In the first case for short wavelengths the layer behaves like a
half-space whereas in the second case large wavelengths cannot ‘see’ the layer. If the
layer is stiffer  than the half-space then there is a dominant buckling mode, the
wavelength of which depends upon the stiffness contrast Gl/G.

Figure 4.2.5 Layer lying on top of a half-space.

102 BUCKLING OF LAYERED ELASTIC MEDIA



4.2.4.2
Buckling of a homogeneous half-space under geostatic compression.

Surface instability in a homogeneous half-space under geostatic compression can be
studied using the numerical method described in section 4.2.1.3. The results are shown
on Figure 4.2.7 (curve B). The half-space buckles at the large wavelength limit. However,
if we consider a single layer of finite thickness on a rigid base under constant horizontal
stress, it buckles first at the short wavelength limit (curve A). Combination of these two
competing factors is yielding to an intermediate critical wavelength (curve C). The
selection of a dominant wavelength arises from the existence of two competing length
scales.

4.2.4.3
Problem: Buckling of an incompressible Gibson half-space.

In a Gibson half-space the stiifness G of the medium increases linearly with depth
according to the relation (Figure 4.2.8)

(4.2.66)

The analytical solution for the buckling of an incompressible isotropic Gibson half-space
under a horizontal compressive stress field  is presented  here (Papamichos et al.,
1990). For an incompressible material, the Cauchy and the Kirchhoff stress tensors are
identical. We use the incremental displacement field

Figure 4.2.6 Buckling stress for the layer for indicated values of Gl/G.

BIFURCATION ANALYSIS IN GEOMECHANICS 103



(4.2.67)

where and . Then . The stress-strain relations
for elastic incompressible materials expressed in terms of the Jaumann stress  are
written

(4.2.68)

where

Figure 4.2.7 Buckling of a layer and a half-space under geostatic compression. (A) Buckling of a
layer under constant horizontal load. (B) Buckling of a half-space under horizontal load increasing
with depth. (C) Buckling of a layer under horizontal load increasing with depth.

Figure 4.2.8 Gibson half-space under horizontal compression σ.
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(4.2.69)

For the displacement field (4.2.67), equations 4.2.68 yield

(4.2.70)

where  and . Such a representation of  is consistent with
the displacement field (4.2.67) that was introduced above.

The equations for continued equilibrium of the incremental stresses are written

(4.2.71)

By substituting equations 4.2.70 in the equations 4.2.71 and eliminating the term ∆p, we
end up with the following differential equation for the amplitude ∆V(y) of the vertical
displacement:

(4.2.72)

where . The solution of this differential equation has to satisfy boundedness
conditions, which require that the displacement field is vanishing at infinity. Taking this
into account, the complete solution for ∆V reads (Vardoulakis, 1981)

(4.2.73)

where U [a, b, z] is a logarithmic confluent hypergeometric function (Abramowitz and
Stegun, 1965) and C1 and C2 are integration constants.

The boundary conditions indicating that the half-space ( ) is stress-free are as
follows:

(4.2.74)

By using equations 4.2.4 and 4.2.70 the above boundary conditions read

(4.2.75)

for , where . The implementation of the solution 4.2.73 for V in
equations 4.2.75 yields a linear, homogeneous system of equations in terms of the
integration constants C1 and C2, which has a non-trivial solution if the determinant
vanishes. This gives the following buckling condition:

(4.2.76)

where
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(4.2.77)

and

(4.2.78)

4.2.5
Interfacial instability

In the previous sections we have emphasized the effect of the existence of a free surface.
Here we consider the problem of a stiff layer embedded between two softer half-spaces
emphasizing the effect of an interface and of the contrast of behavior between the layer
and the surrounding medium (Figure 4.2.9). The considered system is submitted to a
homogeneous horizontal strain field. The solution is based on the analysis of the
buckling of single layer under initial stress as presented in section 4.2.1 and we

Figure 4.2.9 Interfacial instability. Geometric configuration. (a) Symmetric mode, (b)
antisymmetric mode.
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discriminate in the eigendisplacements field between the symmetric mode corresponding
to  (folding) and the antisymmetric mode corresponding to

 (boudinage). For the surrounding medium we impose in both cases
continuity of eigenstresses and eigendisplacements at the layer boundaries and
vanishing eigendisplacements at infinite distance from the interface. We have obtained
that in compression  only the symmetric mode is possible (see also Martinod
and Davy, 1992). As shown on Figure 4.2.10 there is a dominant buckling mode, the
wavelength of which depends upon the stiffness contrast between the layer and the
surrounding medium. We plot on Figure 4.2.11 the dominant wavelength Wd as a
function of the ratio G1/G. The computed results follow the well-known expression given
by Biot:

(4.2.79)

4.3
Periodic elastic multilayered media

The mechanics of periodic media have been widely investigated because many
engineering materials consist of alternating volumes of compounds with different

Figure 4.2.10 Buckling loads of a layer embedded between two half-spaces for indicated values of
G1/G.
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properties (composite materials, layered rocks). Averaging processes have been
developed in order to describe the mechanical behavior of such materials by an
equivalent homogeneous medium with averaged (effective) characteristics (Bakhvalov
and Panasenko, 1989). The question of calculation of effective characteristics of
inhomogeneous media with periodic structures was already raised in the classical works
of Poisson, Maxwell, Rayleigh, Voigt and Reuss. Voigt suggested calculation of effective
characteristics by averaging the components of the stiffness tensor over the volume.
Reuss on the other hand used averaging of the components of the reverse tensor
(compliance). It is shown that Voigt’s method gives the upper bound of effective
parameters, whereas the method proposed by Reuss gives the lower bound. However the
‘fork’ between these approximations (Hill’s fork) can be quite wide.

If the characteristic size of the recurrent cell of the periodic medium is small as
compared to the size of the specimen or the characteristic size of the problem (e.g. the
wavelength of the deformation field), a mathematically rigorous averaging method based
on the asymptotic expansion of the solution can be developed.

Figure 4.2.11 Selected wavelength as a function of the stiffness ratio.
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4.3.1
The asymptotic averaging method

Let us assume that for a laminated material, the constitutive coefficients Cij and G* in
equation 4.2.7 are periodic functions of the spatial coordinate x2 (Figure 4.3.1). The
equilibrium equations (4.2.1)

(4.3.1)

where σ1 and σ2 are the components of the initial stress tensor and σ and τare given by equation 4.2.6.
To investigate the solutions of equation 4.3.1, we use the method of many scales.

Solution is sought in the form of series in power of a small parameter ε with coefficients
depending both on the variables ( ), usually referred to as macroscopic
variables, and  (microscopic variable). ε is, for example, the ratio between the
thickness of the recurrent cell and the wavelength of the deformation field. The
macroscopic variables (X, Y) correspond to the global structure of the fields and the
microscopic variable y to their local structure.

Figure 4.3.1 Periodic laminated half-space.
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(4.3.2)

The coefficients Cij, G* and the initial stresses σ1 are periodic functions of the
microscopic variable y. We do not restrict the problem by assuming that the period is 1
and ε«1.

Spatial derivatives are calculated with the following rule

(4.3.3)

The asymptotic expansion of the incremental displacement fields (4.3.2) are substituted
in the equations 4.3.1. By equating the terms of order ε−2, ε−1, ε−1, ε0, to zero we obtain
the following differential system for the functions Uk and Vk(k=0,1,2)

(4.3.4.1)

(4.3.4.2)

(4.3.4.3)

(4.3.4.4)

(4.3.4.5)
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(4.2.4.6)

By formally assuming X, Y and y to be independent variables, we consider the relations
4.3.4.i for i=1,6 as a recurrent chain of differential equations in y with unknown
functions Uk and Vk(k=0,2) and two parameters X and Y.

It follows from 4.3.4.1 that  is independent of y, i.e.

(4.3.5)

We adopt the following notation for the average over period:

(4.3.6)

Since U0 is periodic function of y, then

(4.3.7)

If we assume (G*−τ)>0 which is natural for the applications, this implies  and
consequently U0 is independent of y, i.e.

(4.3.8)

Similarly from equation 4.3.4.4 we obtain that V0 is independent of y.
Considering 4.3.8 we write 4.3.4.2 as

(4.3.9)

This implies that

(4.3.10)

By applying the averaging operator <.> we get
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(4.3.11)

where

(4.3.12)

and  is the harmonic mean of 

(4.3.13)

Notice that for , the Reuss model for the averaged shear modulus  is
recovered.

Consequently

(4.3.14)

hence,

(4.3.15)

where

(4.3.16)

In the same manner we obtain from equation 4.3.4.5

(4.3.17)

where

(4.3.18)

and

(4.1.19)

Integrating 4.3.4.3 and 4.3.4.6 with respect to y over [0,1] and considering the
periodicity of U1, V1 and of the constitutive coefficients, we obtain
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(4.3.20)

with

(4.3.21)

Equations 4.3.20 are the system of averaged equations and ƒj(j=1,6) are the effective
coefficients. These equations are called the solvability conditions as it is necessary for U0
and V0 to satisfy equations 4.3.20 in order that the problem 4.3.4.3 (respectively 4.3.4.
6) is solvable in U2 (respectively V2) in the class of periodic functions of y.

U0 and V0 which depend only on the macroscopic variables can be viewed as the
average value of the displacement field. The solvability conditions (4.3.19) are the
governing differential equations for this averaged displacement field and the coefficients
fi combine the effect of material properties and of initial stress. In general, this
differential system cannot be derived from direct application of equilibrium equation on
some equivalent stress-strain relationships.

As an example we consider here a layered medium with zero initial stress. We obtain
as a result the following constitutive coefficients for the equivalent homogeneous
continuum (Biot, 1965b):

(4.3.22)

where superscripts (1) and (2) relate to the two different layers. The thicknesses of the
layers are denoted by h(i), (i=1,2) as shown in Figure 4.3.1. Each of the materials
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occupies a fraction  of the total thickness. The value of G for the
homogeneous medium is then given by

(4.3.23)

4.3.2
Example: Surface instabilities in a multilayered periodic half-space

As an example we study here the problem of surface instabilities in a multilayered
periodic half-space. Let us consider a half-space composed of two types of isotropic
hyperelastic materials which alternate and are repeated periodically. In particular, we
use the following values for the material parameters of the layers:

(4.3.24)

In regard to fractions of the total thickness occupied by each layer, we assume that

(4.3.25)
Another parameter to also be considered is the influence of the upper layer. There are
two possibilities:

(a) the hard layer is the upper layer of the half-space, or
(b) the soft layer is the upper layer of the half-space.

In the numerical solution we assume that the prescribed strain is homogeneous in the
half-space, and consequently the corresponding initial stress  is different in each layer.
An average initial stress is defined by . Notice that the case of
prescribed homogeneous stress is kinematically ill-posed since continuity of strains is
violated at layer boundaries.

For the multilayered half-space, the buckling load is computed using the transfer
matrix technique as presented in section 4.2.2 for the two possibilities (a) and (b) of the
upper layer. The numerical results are presented in Figure 4.3.2 where the buckling
load is plotted versus the modal number of the  considered mode. They show that the
predicted buckling loads are lower when the stiff layer is on top. If the top layer of the
half-space is a soft layer then it behaves as a confining medium for the stiff layer and
therefore higher loads are required for the buckling of the half-space. In the other case,
the stiff layer buckles without any restriction and therefore a lower buckling load is
expected. In the large wavelength limit (small wave number) the deformation mode
cannot ‘see’ the lamination and therefore the medium behaves as a homogeneous
continuum without any differentiation between stiff or soft layer on top. In the short
wavelength limit (large wave number) the buckling is restricted to a narrow zone close to
the free surface. In that case, the top layer behaves as a half-space and therefore the
same buckling loads are expected in cases (a) and (b).
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The considered half-space can be represented by an equivalent homogeneous classical
continuum as presented above. For the homogenized half-space the buckling condition
is given by equation 4.2.6 which is already the same for all wavelengths. As we see in
Figure 4.3.3 the representation of the laminated half-space is only valid for large
wavelength deformation modes, i.e. when the layer thicknesses are sufficiently small
with respect to the wavelength of the deformation mode. For small wavelength, the
buckling load is  underestimated. As we will see in the next section, the approximation
can be refined by introducing higher order terms.

4.3.3
Limitations of the asymptotic averaging method

As noted above, the validity of the approximation of a laminated medium by a classical
anisotropic continuum is restricted to cases where the rigidity contrasts between the
layers are not too large and the layer thicknesses remain sufficiently small with respect
to the wavelength dominating in the deformation field. In order to overcome these
limitations, Biot (1967), Herrmann and Achenbach (1968), Mühlhaus (1985) and
Mühlhaus and Vardoulakis (1986) proposed an alternative approach by representing a
laminated half-space as a Cosserat medium.

Figure 4.3.2 Buckling load of a layered half-space under homogeneous initial strain. (—) hard
layer on top; (- -) soft layer on top.
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It is worth noting that by a mere mathematical averaging technique, no
microstructural feature can be obtained unless it is already introduced at the
microscopic level.

4.4
Elastic anisotropic Cosserat continuum

4.4.1
Basic concepts

Biot (1967) has extended his theory of folding of elastic or viscoelastic anisotropic solids
under initial stress to the case of materials with bending stiffness. Bending stiffness
gives rise to couple stresses, i.e. moment per unit area. As it is noted in Biot’s paper, the
use of couple stresses acting internally in an elastic continuum is found in implicit form
in a paper by Cauchy as long ago as 1851. In that paper, the energy density is assumed
to be a function of gradients of the displacements of any order. The idea of couple stress
can also be traced to Voigt (1887, 1894). E. and F.Cosserat (1909) introduced explicitly
the couple stresses in the analysis of a system with microelements undergoing rotations
which may be different from the local rotation of the continuum.

Figure 4.3.3 Buckling load of a layered half-space: layered solution and homogenization. G(1)/G(2)

=2; v(1)/v(2)=0.3. (∆) soft top layer; (◊) hard top layer; (□) Cosserat equivalent medium; (—) classical
equivalent medium.
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In a Cosserat medium, each material point has three additional rotational degrees of
freedom besides the three translational degrees of freedom which are considered in the
classical continuum. In the present case, we will use the rotational degrees of freedom to
describe the effect of bending of individual layers. Notice that the Cosserat rotations are
treated here at the constitutive level as independent degrees of freedom, which are not
directly related to the spin vector of the classical continuum. The structure of the
resulting equations is quite similar to the equations of Reissner’s theory of thick plates.
Finally, it should be noted that the paper by Biot relates to a constraint Cosserat theory
where the additional degree of rotation coincides with the macrorotation, that is, the
antisymmetric part of the displacement gradient (Cosserat ‘trièdre caché’).

As mentioned in section 4.2.4, the critical buckling stress of a classical elastic half-
space is independent of the wave number of the buckling mode. The Cosserat continuum
theory has the advantage of allowing for an internal length to be considered in the
constitutive relationships through the ratio of bending stiffness and elastic stiffness. As
will be shown, incorporation of this internal length into the constitutive model results in
a dependency of the critical buckling stress on the wave number.

In this section, an anisotropic elastic Cosserat continuum model for periodic layered
media will be developed along the lines of a series of papers by Mühlhaus (1985, 1993)
and Papamichos et al. (1990). In chapter 8, a Cosserat theory for elastoplastic materials
will be discussed in relation to localized bifurcation in granular media.

4.4.2
The Cosserat model of a multilayered medium

In order to write constitutive relationships for a Cosserat material, we define the
incremental (relative) strain tensor ∆εij. as

(4.4.1)

where ∆εij and ∆ωij are the classical infinitesimal strain and spin tensors given by
equation 4.2.3. The tensor  is the infinitesimal Cosserat spin tensor whose
components in 2D are calculated from the relation , where eijk is the
permutation symbol. The difference  can be interpreted as the infinitesimal
relative rotation between an individual material point and its vicinity. Note that if this
difference is zero then the incremental strain tensor ∆εij. coincides with the classical
infinitesimal strain tensor ∆εij.

Generalizing the constitutive equations given by Schaefer (1962) (see also Mühlhaus,
1985; Mühlhaus and Vardoulakis, 1986; Mühlhaus and Triantafyllidis 1987;
Papamichos et al., 1990) we write

(4.4.2)
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(4.4.3)

where δmi denotes the Jaumann increment of the moment stress vector. The moduli Cij
and G in equation 4.4.2 have the same significance as in a classical continuum.
However, the present model also includes an additional shearing modulus Gc. The
parameters d1 and d2 in equations 4.4.3 represent characteristic internal lengths of the
layered material in the x1 and x2 directions, respectively, so that the moduli  and 
have dimensions of stress. The internal length adds in the constitutive model
information about the structure of the medium under consideration. Its order of
magnitude has to be considered in every case of application with reference to an
important length in the structure of the medium. In the material under consideration, δ2
is of the order of magnitude of the layer thickness, whereas d1→0 since there is no
‘structure’ in the horizontal direction. In the following we replace  with Tcdc. Then
relations 4.4.3 read

(4.4.4)

In the papers of Mühlhaus and co-authors (1985, 1986, 1987, 1990) the following
relations have been derived between the moduli G(1) and G(2) of the individual layers and
the Cosserat moduli Gc and Tc

(4.4.5)

(4.4.6)

where G is given by equation 4.3.23 and

(4.4.7)

As we see Gc is simply the difference between the Reuss and Voigt moduli.

4.4.3
Example: Buckling of an homogeneous Cosserat half-space

The solution of this eigenvalue problem follows exactly the same methodology used in
the solution for a classical material (section 4.2.2). However, since the Cosserat model
includes couple stresses, we have to include the conditions for moment equilibrium:

(4.4.8)

Substituting the constitutive equations 4.4.3, 4.4.4 into the equilibrium equations 4.4.
8, we obtain
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(4.4.9)

Substituting the displacement field (4.2.11) in the third of equations 4.4.9 we obtain
that 

(4.4.10)

From this equation ∆ωc can be expressed in terms of the function V(y)

(4.4.11)

Considering the above expression of ∆ωc and substituting the displacement field (4.2.11)
in the two first equations (4.4.8) we obtain the following linear homogeneous system of
equations with respect to the integration constants A and B.

(4.4.12)

where

(4.4.13)

For non-trivial solution in terms of A and B, the determinant of the system must vanish.
This leads to the following biquadratic equation with respect to Z

(4.4.14)
where

(4.4.15)

Thus the equations derived from the classical continuum can be readily applied for the
Cosserat continuum provided that the parameters b and c in equation 4.2.14 are
replaced by b′ and c′ given by equations 4.4.15.
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If we go back to the example of the buckling of a multilayered half-space as presented
in section 4.3.2, we can compare the results obtained with the approximated Cosserat
continuum to the ones obtained with the transfer matrix technique. In a Cosserat
continuum, due to the existence of an internal length in the model, the buckling load
depends upon the wave number of the considered mode (Figure 4.3.3). The
approximated Cosserrat provides an exact solution in the large wavelength limit whereas
in the short wavelength limit it provides an upper bound solution.

4.5
The effect of surface parallel Griffith cracks

In this section, a micromechanically motivated mechanism is presented, that views axial
splitting and spalling in brittle materials like rock and concrete, as the result of a
coupling effect between surface instabilities and surface parallel Griffith cracks.
According to this mechanism, surface instabilities in a uniformly stressed half-space,
produce secondary tensile stresses which, for material points close to the free surface,
remain unbalanced in the direction normal to the surface. These tensile stresses cause
latent, surface parallel cracks to open, and thus magnify the effect of diffuse bifurcation
(see chapter 7). Tensile stress concentrations develop at the crack tips resulting in
unstable crack growth and finally axial splitting and spalling of the material.

Unstable crack growth and axial splitting correspond to some critical crack surface
density (distributed material damage) which manifests itself in the mean spacing of
forming spalls. The fractured material becomes much weaker than the intact one due to
the lower buckling stress of individual columns. Keeping this model in mind, we may
consider that rock bursting, as well as borehole breakouts, are the result of buckling of
flaked rock surfaces, the flaking itself being triggered by surface instabilities.

In order to investigate this mechanism, the buckling problem under plane-strain
conditions due to a uniform compression of a semi-infinite medium containing surface
parallel Griffith cracks is considered. Analytical solutions for these kind of problems
have been presented by Keer et al. (1982), who solved the buckling problem in solids
containing a periodic array of coplanar cracks and by Nazarenko, who considered the
axisymmetric (1985) and plane-strain problem (1986). Vardoulakis and Papamichos
(1991) have developed a numerical solution for solving the problems of an arbitrary
number and/or geometry of surface parallel cracks in elastic, anisotropic media.

The analytical and numerical results summarized in this section are taken from
Papamichos (1992). In particular, we present here an analytical solution for the single-
crack problem. Furthermore, weakening of the medium due to the presence of
additional periodic crack arrays is investigated and a Cosserat continuum
representation of a semi-infinite medium containing periodic surface parallel crack
arrays is presented. Finally, the influence of the initial stress field on crack propagation
is discussed.
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4.5.1
Analytical solution for a single crack

The problem specifically considered is shown in Figure 4.5.1, where a half-space
containing a surface-parallel crack is compressed in the direction of the crack by a large
uniform compression . For simplicity, the symmetric problem over the y-axis is
considered and therefore only values 0≤x<∞ are taken. The boundary conditions of the
problem have the form

(4.5.1)

The half-space is subdivided into two regions. The half-space (y≥0) is labeled (1) and the
layer (−h≤y≤0) is labeled (2). On the interface of the regions outside the crack, the
following continuity conditions must be satisfied:

(4.5.2)

(4.5.3)

Continuity of the displacement ux outside the crack requires that the derivative ux,x
must also be continuous, that is

(4.5.4)

where [.] denotes the jump of the quantity across a discontinuity line. Equation 4.5.3 is
valid through Maxwell’s theorem which states that if a function is continuous across a
geometrical discontinuity, then only the normal derivative of this function may be
discontinuous across the discontinuity (see section 2.4).

Using the equilibrium equations 4.2.1, the constitutive equations 4.2.7 and the
relations 4.2.4, the components of the incremental displacement vector ∆ux, ∆uy, can be
written in terms of two potential functions 1 and 2 as follows

Figure 4.5.1 A half-space with a single surface parallel crack compressed by a uniform horizontal
stress.
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(4.5.5)

where

(4.5.6)

and γ2 are the two roots of the following characteristic quadratic equation in γ2

with

(4.5.8)

The potential functions i(x,y), i=1,2, satisfy the relations

(4.5.9)

By making the following substitution for the independent variable y

(4.5.10)

expression 4.5.9 is written

(4.5.11)

and the general solution for the displacement increments (4.5.5) becomes

(4.5.12)

and for the first Piola-Kirchhoff stress increments ∆πij
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(4.5.13)

where

(4.5.14)

By taking into account the boundary conditions (4.5.1) and expression 4.5.11, the
continuity conditions 4.5.2 and 4.5.3 are written in terms of the potential functions 1,

2 as follows

(4.5.15)

(4.5.16)

Accordingly, condition 4.5.4 is written

(4.5.17)

This condition yields an additional requirement. By differentiating and integrating
expression 4.5.12 with respect to x and using equation 4.5.11, the displacement
increment , , at  can be written in the form

(4.5.18)

Then the jump [∆ux(x, 0)] can be written as
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(4.5.19)

For x>α the second of conditions 4.5.3 requires that  while the second
integral in equation 4.5.19 is equal to zero by virtue of condition 4.5.17. With this,
equation 4.5.19 yields the following additional requirement for the functions [ 1], [ 2] at

(4.5.20)

By representing the harmonic functions 1, 2 in the form of Fourier integral cosine
expansions in the x-coordinate and changing to a dimensionless form, the system of
equations 4.5.15, 4.5.16 and 4.5.20 is transformed to the following system of singular
integral equations 

where f (τ), g(τ) are unknown functions continuous along with their derivatives in the
closed interval [0, 1]. The derivation of the above system of integral equations, together
with expressions for kernels M1, M2 and N1, N2 are presented in the paper of Vardoulakis
and Papamichos (1991).

Thus, the problem reduces to the investigation of eigenvalues of the system of
equations 4.5.21 relative to the dimensionless initial stress parameter . The
parameter ξ appears implicitly in the kernels M1, M2, N1, N2. These equations contain
expressions with the logarithmic singularity In|η2 − τ2| in the domain of interest. This
singularity is overcome by approximating the unknown functions f(τ), g(τ) by power
series of the form

(4.5.22)

By using these expressions, the singular integrals in 4.3.21 can be computed
analytically.

Because of the complexity of the kernels M1, M2 and Nl, N2 the integral equations are
treated numerically by reducing them to a system of homogeneous algebraic equations
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in terms of the power series constants aN, bN and the integration constant appearing in
the second of equation 4.5.21, using Gauss formulae of numerical integration. The
collocation points used in computing the integral equations with respect to η are taken
to be the same as the Gaussian points used in the integration scheme. In this system of
equations, if the unknowns are to represent a non-trivial solution, then the matrix
formed by the coefficients must have a vanishing determinant. This is achieved by fixing
the material parameters and the geometry and varying the initial stress parameter ξ
until the determinant becomes zero.

This analysis is used to calculate the critical buckling stress in an isotropic
compressible material with shear modulus G and Poisson’s ratio v. The results are
presented in Figure 4.5.2, where the dimensionless critical buckling stress ξ is plotted
as a function of the geometric parameter , for three values of Poisson’s ratio. For

, the value of the buckling stress approaches asymptotically the buckling stress of
the uncracked half-space (see section 4.2.3), which is also marked in the diagram. This
diagram shows that the buckling stress is an increasing function of the parameter β and
the Poisson’s ratio v.

4.5.2
Buckling of a half-space with a periodic array of coplanar cracks

We consider here the buckling problem of a half-space containing a periodic array of
coplanar cracks and compare it with the analytical solution of Keer et al. (1982). A
numerical solution for the eigendisplacements of the two crack faces and the free
surface can be computed for the problem under consideration. The deformed shape of

Figure 4.5.2 Critical buckling stress of the half-space with a single crack (analytical solution, v=0.
3).
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the crack and the free surface for three values of the parameter β, is shown in
Figure 4.5.3. At each point along the crack, the relative displacements between the two
faces are the eigendisplacement discontinuities of the crack. It is shown that the two
sides of the crack deform by different amounts and, as expected, the disturbed region of
the free surface localizes with the crack approaching the free surface.

For the problem of the periodic crack array (Figure 4.5.4), the infinitely extended crack
array is approximated here with ten 25-element cracks. Such an approximation is
considered satisfactory since it was found that an increase in the number of cracks does
not affect significantly the results. The results are presented in Figure 4.5.5, where the
critical buckling stress parameter ξ is plotted as a function of the dimensionless depth
with respect to the spacing between the cracks h/L, and the dimensionless crack length
with respect to the spacing α/L. Poisson’s ratio has the value of 0.3 in all calculations.
This  is the solution for the first bifurcation mode which is antisymmetric and corresponds
to cracks tending to open and close alternately, as shown in Figure 4.5.5(a). The
numerical results of the advanced solution for the symmetric mode of all open cracks
are shown in Figure 4.5.5(b).

In order to investigate the differences between the first alternate mode and the
advanced all open mode, the critical buckling stress parameter ξ is replotted in
Figure 4.5.6 as a function of the dimensionless depth with respect to the spacing h/L,
and the dimensionless depth with respect to the crack length h/α. Figure 4.5.6(a) shows
that the critical stress is an increasing function of the spacing between the cracks and
therefore, for the alternate mode, lower stress is required to buckle the medium when
the spacing between the cracks diminishes. However, in Figure 4.5.6(b), an opposite
behavior is predicted. The critical stress is a decreasing function of the spacing,
meaning that higher stress is required to open all the cracks when the spacing
diminishes.

Once the periodic crack array problem is solved, additional crack arrays are placed in
the half-space, in the sense shown in Figure 4.5.7(a), in order to investigate the
weakening of the medium due to the presence of the additional crack arrays. The crack
arrays were approximated with ten 20-element cracks. In the results shown in
Table 4.5.1, the ratio α/L is kept equal to 0.5, while the parameter β takes values from 0.
5 to 5. They correspond to the lowest buckling mode. It is found that the second crack
array reduces the critical buckling stress by approximately 6 per cent, while the third
array reduces it by an additional 1.5 per cent. This means that the buckling load is
mainly determined by the cracks closer to the free surface. Furthermore, the
eigendisplacements at the critical state show that the buckling of the half-space affects
primarily the crack array closer to the free surface, suggesting a progressive spalling
behavior that starts close to the free surface and subsequently progresses deeper into the
material. This spalling advancement was observed experimentally for example in Berea
sandstone specimens tested in the surface instability detection apparatus, as discussed
by Papamichos (1992).
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4.5.3
A Cosserat continuum representation

In an attempt to combine micromechanical processes with continuum modeling, the

Figure 4.5.3 Deformed shape of the crack and the free surface due to buckling of the half-space,
for (a) β=0.5, (b) β=1.0, and (c) β=3.0 (boundary element solution, v=0.3).
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effect of microcracks in the medium is viewed as a degradation of the elastic moduli.
Based on this hypothesis, a Cosserat continuum model is constructed, using
appropriate homogenization techniques (see section 4.4) and the critical buckling stress
is compared with the numerical solution for a half-space containing periodic surface-
parallel crack arrays.

The Cosserat continuum approach is based on the supposition that the generation of
axial microcracks will markedly reduce the shear modulus of the rock, so that it
behaves much as a multilayer of interbedded stiff and soft layers. Figure 4.5.7 depicts
the original medium with the surface-parallel crack arrays and the corresponding
periodic multilayered medium. Superscripts (1) and (2) denote quantities referred to the
stiff and soft layer, respectively. The stiff layers are assumed to have the shear modulus
of the intact material, G(1)=G, while the soft layers have a reduced shear modulus G(2)=λG,
depending on the extent of the damage, that is, the crack density in the medium. The
crack density is expressed through the damage parameter λ, taken equal to ,
with h being the distance between the crack arrays and 2α being the crack length.
Furthermore, it is assumed that the stiff layer occupies a fraction  of the total
thickness, while the soft layer occupies a fraction , such that .

In the limiting case where the crack arrays approach the free surface (h/α→0), the
stiff layer vanishes (a(1)→0), while the shear modulus of the soft layer reduces to zero (G
(2)→0). Such a medium has a zero buckling stress (Figure 4.5.5) satisfying the model’s
requirement at this limit. In the other limiting case where the crack arrays are far away
from the surface (h/α→∞), the soft layer vanishes (a(2)→0), and the medium has the
buckling stress of the half-space, satisfying the requirement at this limit as well.

The above-constructed multilayered medium is subsequently represented as a
continuum with Cosserat structure. Using the Cosserat continuum, the critical buckling
stress parameter  is calculated as a function of the distance h between the
crack arrays, and the crack length α, where all of lengths are non-dimensionalized with
the crack spacing L. The crack spacing in the Cosserat continuum is introduced by
considering velocity fields with wavelength 2L, such that the velocity fields have the

Figure 4.5.4 Half-space with periodic array of colinear cracks compressed by uniform horizontal
stress.
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same wavelength in both media. Poisson’s ratio has the value v=0.3 in all calculations.
The results from the numerical model and Cosserat continuum representation are
presented in Figure 4.5.8. It is shown that the critical buckling stress decreases as the
crack arrays approach the free surface (h/L→0) and as the crack spacing diminishes (α/
L→1). There is good agreement between the micromechanical and continuum results,
especially when the crack length approaches the crack spacing ( ).

In conclusion, this analysis showed that continua with internal structure, such as the
Cosserat continuum, in conjunction with appropriate homogenization techniques, are
capable of capturing microstructural damage in the material. 

Figure 4.5.5 Critical buckling stress of a half-space with a periodic array of colinear cracks, for
the (a) alternate open mode, (b) all open mode (boundary element solution, v=0.3).
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4.5.4
Influence of the initial stress field on crack propagation

An aspect of great significance in this micromechanical study is the investigation of
crack propagation at the critical buckling state. In that respect, Biot (1972) indicated
that in an infinite medium, the resistance to crack propagation is diminished when the
condition corresponding to surface instability is approached. Papamichos and
Vardoulakis (1989) have developed a numerical procedure that enables the analysis of
crack propagation in anisotropic semi-infinite media by taking into account the non-
linear influence of the initial stress field. In particular, effective stress intensity factors
are calculated by applying a virtual internal pressure inside the cracks and calculating
the energy release when a crack of length 2α is extended to a length 2(α+∆α).

Figure 4.5.6 Critical buckling stress of a half-space with a periodic array of colinear cracks, for
the (a) alternate open mode, (b) all open mode (boundary element solution, v=0.3).

130 BUCKLING OF LAYERED ELASTIC MEDIA



The theory of linear elastic fracture mechanics is based, in part, upon the fact that the
magnitude of stresses anywhere near the end of a Griffith crack are approximately
proportional to the stress intensity factors (Kanninen and Popelar, 1985). The stress
intensity factors are a function of the crack length and the distribution and magnitude of
the boundary loads. The contention is that a fracture will propagate when the stress
intensity equals a material property called the fracture toughness KIC. The fracture
toughness in general will be a function of the initial stress field. However, it is assumed
that it remains always finite.

In order to investigate the influence of the initial stress field on crack propagation, a
half-space containing a single coplanar crack of length 2α at depth  beneath the

Figure 4.5.7 (a) Half-space with multiple periodic arrays of surface-parallel cracks; (b)
corresponding periodic multilayered medium.

Table 4.5.1 Critical buckling stress of a half-space with multiple periodic arrays of colinear cracks
(boundary element solution, , )
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surface, is considered. The half-space is compressed by an initial uniform horizontal
stress , and the crack is pressurized by a uniform internal pressure −p(p>0).

A boundary element method for solution of crack problems in semi-infinite anisotropic
media under initial horizontal stress is presented in the paper of Vardoulakis and
Papamichos (1991). It is used to estimate the stress intensity factors at the crack tips. In
this problem, the boundary conditions along the crack are written as

The numerical solution is represented as follows

(4.5.24)

The above system of 2N simultaneous, linear equations is then solved for the unknown
displacement discontinuities  and . 

A way of estimating stress intensity factors derives from the strain energy associated
with the crack. For the pressurized crack problem, the strain energy for one-half crack
is

(4.5.25)

Figure 4.5.8 Critical buckling stress for a half-space with periodic arrays of colinear cracks. The
solid line represents the numerical solution and the dashed line the Cosserat continuum solution.
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where ûy is the relative normal displacement between the crack surfaces, and bj is one-
half the width of jth boundary segment.

Linear elastic fracture mechanics solutions which do not usually take into account the
initial stress field give a standard relationship between the strain energy rate ∂W/∂α and
the stress intensity factor K. A derivation of this relationship is given, for example, by
Kanninen and Popelar (1985). For the initially stressed media under consideration, the
corresponding relationship can be derived by following the same procedure

(4.5.26)

where qi (i=1, 2) is given by equation 4.5.6 and

(4.5.27)

For the case of an isotropic material and zero initial stress ( ), the term (q1−q2)/(δ1
−δ2) in expression 4.5.26 reduces to (1−v) (Rice, 1968; Kanninen and Popelar, 1985). By
computing W for slightly different crack lengths, ∂W/∂α can be estimated numerically as

(4.5.28)

and equation 4.5.26 can be solved for the stress intensity factor K. The stress intensity
factor K in expression 4.5.26 has to be interpreted as an effective stress intensity factor
combining the magnitudes of both KI, the mode I factor related to opening of the crack
facets, and KII, the mode II factor related to shear in the plane of the crack, 
. In the results presented in the following, the factor K∞ is used to normalize all stress
intensity factors. K∞ is the stress intensity factor corresponding to the case of
pressurized crack in an infinite medium. In that case

(4.5.29)

Results obtained from this analysis are presented in Figure 4.5.9, where the normalized
stress intensity factor K/K∞ is plotted as a function of the initial stress parameter

, for three . For , the analytical value of  (Erdogan
et al., 1973) is marked in the diagram, together with the critical initial stress values
for buckling of the half-space as predicted in section 4.2. The influence of the relative to
the crack length depth, h/α, has been investigated by Pollard and Holzhausen (1979) for
half-spaces without initial stress field ( ). Similar results are predicted for the
initially stressed media.

Figure 4.5.9 shows that the resistance to crack propagation is diminished as the
critical stress for surface instability is approached. The effective stress intensity factor
increases rapidly near the surface instability condition. Furthermore, as has been shown
by Pollard and Holzhausen, the effective factor K contains a non-zero mode II stress
intensity factor KII, which increases sharply as the crack approaches the free surface.
This suggests that the propagation of a shallow crack will occur out of the original plane
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of the crack and towards the free surface forming the echelon patterns observed by Ewy
and Cook (1990a,b).

4.6
Concluding remarks and discussion

The present analysis shows that in elastic, semi-infinite media containing surface
parallel Griffith cracks, the resistance to crack propagation is diminished as the critical
stress for surface instability is approached. In particular, the effective stress intensity
factor increases rapidly near the surface instability condition and therefore we may
assume that any crack at this stress level will propagate. Furthermore, it is shown that
the critical buckling stress of the media under consideration decreases rapidly with
increases relative to the depth and length of the cracks. This suggests that in the case of
a constant far-field stress (e.g. load control conditions in a laboratory setting), cracks
close to the free surface will tend to become unstable once they begin to grow, leading to
spalling of the surface. For a stable crack growth, a reduction in the value of the far-field
stress will be necessary (e.g. displacement control conditions). Thus, a material with
surface parallel cracks could be modeled as a softening material with respect to the
crack length and spacing.

Figure 4.5.9 Stress intensity factor at the tips of a pressurized crack in a half-space under
uniform horizontal compression.
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5
Mechanics of water-saturated granular materials

5.1
Definitions

A water-infiltrated granular material is considered as a mixture of a solid, an aqueous
and a gaseous phase. The elementary volume dV of this material has a total mass dm
and consists of the volume dVs with mass dms of the solids of the volume dVv of the
voids. The void space is assumed to be partially occupied by water with mass dmw and
partially by air with mass dmg (dmg/dm«1) (Figure 5.1.1)

(5.1.1)

The densities of the constituents are denoted by ρs and ρw

(5.1.2)

and the relative density of the solids is called in soil mechanics the specific gravity
denoted by,

(5.1.3)

For most soils the specific gravity Gs varies between 2.6 and 2.8.
The degree of water saturation of the voids is denoted by S, whereas the ratio of

masses of the aqueous phase to the solid phase is called the water content and is
denoted by w

(5.1.4)

For a dry granular medium S=0, and for a fully saturated one S=1, in which case all the
interconnected void space is occupied by water. The volume fraction of voids is usually
expressed by the porosity n; however, in soil mechanics the void ratio e is also used

(5.1.5)



In reservoir engineering, the symbol  is used for the porosity; however, we will use this
symbol for denoting the friction angle of a granular material, and thus we follow for the
most part soil mechanics common notation. Porosity and void ratio are interrelated as
follows

(5.1.6)

Between the water content, the degree of saturation and the void ratio the following
condition holds

(5.1.7)

For a fully saturated medium, the total density and the relative densities

(5.1.8)

are related to the densities of the constituents according to the following expressions

(5.1.9)

(5.1.10)

The partial density for the solid phase is usually termed as the density of the dry soil (
), whereas the total density of the ‘mixture’ is called the density of the saturated

soil ( ).
Volume discharges  and velocities  are defined for each constituent, with the

index  indicating the solid and  indicating the fluid (Figure 5.1.2)

(5.1.11)

dSi,  are the spatial and material surface element vectors, respectively, which are
directed parallel to the xi-Cartesian coordinate and dt is the time increment. Mass
discharges  are defined as follows

(5.1.12)

For a statistically isotropic porous medium, the ratio of void area to solid area is the
same for all cross-sections. Hence the volume of the fluid in a thin slab of thickness dx
is always a fraction n of the total volume. This means that the surface porosity equals

Figure 5.1.1 Phase diagram of a biphasic material.
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the volume porosity. With this assumption, volume and mass discharges are easily
expressed in terms of velocities

(5.1.13)

(5.1.14)

(5.1.15)

In some continuum formulations of the fluid-infiltrated solid, the so-called barycentric
velocity of the mixture, is used

(5.1.16)

and relative motions of the two constituents are measured with respect to it. Here we
follow instead Gersevanov’s proposition (Verruijt, 1969) according to which fluid flow is
described by means of the relative specific discharge vector qi, which reduces to the fluid
discharge vector  for a rigid solid skeleton

(5.1.17)

Moreover, the velocity of the solid is denoted simply, as

(5.1.18)

so that the notation introduced in section 2.2.1 with respect to the relative deformation
gradient, the spatial gradient of the velocity, the rate of deformation tensor and the spin
tensor can be used invariantly for the solid phase.

With  denoting the displacement of the solid, its velocity is computed from its
material time derivative

(5.1.19)

where, in general, D(α)/Dt is the material time derivative with respect to the αth
constituent

Figure 5.1.2 On the definition of the mass discharge vector.
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(5.1.20)

We note that if the two species move in phase, then the two material time derivatives
coincide, since

(5.1.21)

For the solid phase, where convection is inappreciable, one can neglect the convective
term in the material time differentiation (i.e. D(1)/Dt≈∂/∂t) and then

(5.1.22)

5.2
Mass balance equations

Mass balance equations are derived for a fully fluid-saturated porous medium (S=1),
since the mechanics of partially saturated porous media (0≤ S<1) are much more
complex and somehow ambiguous (see Alonso et al., 1989). Moreover, we assume here
that in a given material body the masses of the two constituents (solid and fluid) are
constant in time. This means that phenomena such as internal solids erosion (suffosion)
or filtration of solids existing in suspension (colmatation or sluicing) are not considered
here (cf. Sakthivadivel and Irmay, 1966; Vardoulakis et al., 1995).

In the absence of mass generation terms, the mass of a given species (solid or fluid)
contained in a volume V with boundary ∂V is

(5.2.1)

Thus in the considered class of deformations, mass balance is expressed by the
conditions

(5.2.2)

which according to the derivations presented in chapter 2, section 2.3 result in

(5.2.3)

or

(5.2.4)
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Sometimes the following alternative form is used, that derives from equation 5.2.4 with
5.1.12

(5.2.5)

where ni is the unit outward normal to the boundary ∂V. This means that in absence of
mass generation terms, changes in partial density within V are balanced by in- or
outflux of mass across ∂V; see Figure 5.2.1.

By assuming that the balance equations 5.2.4 hold for arbitrary volumes V we derive
their local form

(5.2.6)

or

(5.2.6bis)

By adding these equations by parts we obtain that mass balance of the total mixture is
expressed in terms of the barycentric velocity

(5.2.7)

Considering the expressions of the partial densities, equations 5.1.9, and combining
above balance equations 5.2.6 results in 

(5.2.8)

(5.2.9)

where

Figure 5.2.1 Mass balance in a finite volume.
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(5.2.10)

is the rate of deformation tensor of the solid.
The first simplification that can be introduced in the above mass balance equations 5.

2.8 and 5.2.9 results from neglecting convective terms in the material time derivations,
i.e. by setting

(5.2.11)

we obtain the following mass balance equations

(5.2.12)

(5.2.13)

We note that in these equations Dkk is the rate of volumetric deformation of the solid
phase. Equation 5.2.13 is usually called the storage equation.

The mass balance equations can be further simplified if the constituents of the solid
phase (grains) are assumed to be incompressible, i.e. for ρs=const. these equations

(5.2.14)

(5.2.15)

Equation 5.2.14 is expressing the fact that for incompressible grains, volume changes in
a porous granular medium are due only to changes in porosity. Using equation 5.1.6,
the volume changes can be alternatively expressed in terms of the void ratio

(5.2.16)

In soil mechanics literature the use of the void ratio is preferred over the use of porosity,
because due to the assumed incompressibility of the grains, changes in void ratio
directly reflect changes in void space. Besides, the void ratio of a fully-saturated
specimen can be easily determined experimentally by simply determining its water
content; cf. equation 5.1.7.

On the other hand, the storage equation (5.2.15) is further simplified if the pore fluid
is assumed to be incompressible (ρw=const.), which then reduces to the well-known
continuity equation,

(5.2.17)

5.3
Static considerations: partial and ‘effective’ stresses

Let dti be the total stress vector acting on a surface element dSi in the current
configuration of the porous, fluid-saturated medium. This medium is treated as a two-
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phase mixture, which is equipped by a total (Cauchy) stress tensor σij and by partial
stress  assigned to the two phases. The total stress tensor is defined through the
mapping

(5.3.1)

The traction dti is decomposed into two parts

(5.3.2)

with  being the part of the total traction which is acting on the αth phase ( ).
Based on this decomposition, partial stresses  are defined such that

(5.3.3)

The total stress is then the sum of the partial stresses

(5.3.4)

The partial stress for the aqueous phase  is directly related to the water pressure pw.
This can be shown by considering the definition of pw

(5.3.5)

where dSv is the part of the surface element which corresponds to the voids. For
statistically isotropic granular medium, the surface porosity is equal to the volume
porosity, and consequently

(5.3.6)

From equations 5.3.3 and 5.3.6 we obtain the relation between the partial fluid stress
and the pore-water pressure

(5.3.7)

Notice that Biot’s (1941) poro-elasticity is based on the above definition of partial fluid
stress.

A granular medium is considered that consists of loose particles in contact with each
other at isolated contact points. In these points, contact forces can be transmitted from
one particle to another. One of the basic principles of the mechanics of granular media
is the notion that the deformations of the granular assembly are not so much
determined by a summation of the deformation of the individual particles (i.e. by the
elasticity of the grains), but rather by rearrangement of the particles, loss or gain of new
grain contacts (dilatancy/contactancy) and due to sliding and rolling in the contact
points (i.e. by the plasticity of the assembly). When the pores of the granular medium
are filled with water of low compressibility, it is assumed that the particles are
completely surrounded by water, so that an equal change of the total stress and of the
pore-water pressure would entail an equal change of the stress in each particle, without
any change of the forces transmitted in the isolated contact points. Along this line of
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thought, Terzaghi (1936) proposed decomposing the total stress into an ‘effective’ stress,
assigned to the soil skeleton, and into a pore-water pressure pw

(5.3.8)

Terzaghi’s definition of effective stress, , is heuristic. Both the total stress σij and the
pore-water pressure pw are measurable quantities, and thus equation 5.3.8 can be
understood as an operational definition of effective stress. Terzaghi’s effective stress
principle was originally introduced for the description of limiting soil properties, such as
classical Mohr-Coulomb type failure criteria for frictional materials. The usefulness of
Terzaghi’s effective-stress principle was demonstrated in numerous experimental
investigations. Among those one could single out the most comprehensive study by
Bishop and Skinner (1977) who performed drained tests with back pressure on a variety
of water-saturated granular materials and for stress levels corresponding to the ones
encountered in soil mechanics problems. The concept of Terzaghi’s effective stress
principle is generalized so as to describe the constitutive behavior of the soil skeleton as
well. In other words, it is assumed that constitutive equations for the skeleton are
expressed in terms of effective stresses. For example, for the description of soil
consolidation phenomena, Verruijt (1969) related the effective stress to the strains of the
skeleton via the equations of elasticity. In other applications, dealing with elastoplastic
soils for example, rate-type equations for the skeleton are similarly described in terms of
effective stresses.

Finally, from equations 5.3.4, 5.3.7 and 5.3.8 the relation between the partial stress
for the solid  and Terzaghi’s effective stress can be derived

(5.3.9)

From this equation the difference between Terzaghi’s effective stress and the mixture’s
theory partial stress for the solid is obvious. As we will see in following sections, balance
of momentum is primarily described in terms of partial stresses. With equations 5.3.7
and 5.3.9, however, partial stresses may be replaced by the pore-water pressure and
Terzaghi’s effective stress. 

5.4
The influence of grain and fluid compressibility

Terzaghi’s effective stress must be distinguished from Taylor’s (1948) intergranular
stress (Figure 5.4.1), where he states (p. 126):

In concepts of stress…the surface that must be considered is one containing the
points of grain-to-grain contact, in order to include the points of action of the forces
which make up intergranular stress. Thus the unit area should be visualized as a
wavy surface which is tangent to but does not cut through soil grains, and which at
all points is as close as possible to a flat surface.
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Based on this simple micromechanical argument Taylor is suggesting the definition of
an intergranular stress

(5.4.1)

where n* denotes the contact area of soil particles per unit area of the probing surface
(and projected onto the surface). Taylor gives an estimate for n*≈0.03. It is agreed that
the correction term n*pw is small in cohesionless soils and probably in clays, at the
stress levels commonly encountered in soil engineering practice. However, in situations
encountered in reservoir engineering, pw may be very large as compared to the
hydrostatic part of the effective stress, and Taylor’s correction term may significant; cf.
Garg and Nur (1973).

Bishop (1953, private comm.; see Bishop and Skenner, 1974) and later Verruijt
(1982), modified Taylor’s intergranular stress definition replacing n* by the
compressibility ratio

(5.4.2)

where cs is the particle compressibility and c the bulk compressibility, resulting in

(5.4.3)

For soils in the low effective stress range the bulk compressibility c is very large
compared to the grain compressibility cs. For the limiting case of incompressible grains

, Bishop’s intergranular stress and Terzaghi’s effective stress coincide. Skempton
(1960) has tabulated data (Table 5.4.1) showing that for soils ranging from normally
consolidated clay to dense sand c* lies in the range of 3.0×10−5 to 1.5×10−3 for an
effective consolidation pressure of approximately l00 kPa. For clays and very high
consolidation pressures of 20–60 MPa, Skempton (1960) and Bishop and Skinner (1977)
suggested that c* may rise to 0.4.

Verruijt (1982) proposed that for a fluid-saturated soil the density of solid constituent
will be affected by both changes in the ambient pore-fluid pressure and the mean
intergranular stress,

Figure 5.4.1 Taylor’s definition of intergranular stress.
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(5.4.4)

where according to equation 5.4.3 p(i) is the intergranular pressure,

(5.4.5)

and cp is the compressibility of the solids due to concentrated forces

(5.4.6)

with .
When, according to equation 5.2.11, convective terms are neglected one does not

distinguish between material and time derivatives, and accordingly the notation (�)≡∂t
may be used unambiguously. In this case the mass balance equation 5.2.12 for the solid
phase becomes (Vardoulakis and Beskos, 1986)

(5.4.7)

On the other hand, changes in water density are directly related to changes in pore-
water pressure pw

(5.4.8)

where cw is the compressibility of water. At relatively low levels of pore-water pressure,
soils are usually not perfectly saturated. Using mixtures theory, Verruijt (1982)
demonstrated that a nearly saturated porous medium (0<1−S«1), can be replaced by a
fully saturated one, whose fluid compressibility depends on the degree of saturation (see
also Vardoulakis and Beskos, 1986), and accordingly

(5.4.9)

where cwo is the compressibility of de-aired water; .
For compressible fluid and solid constituent, the storage equation 5.2.13 becomes

(5.4.10)

Table 5.4.1 Compressibilities of 100 kPa consolidation pressure (after Skempton, 1960)

* Approximate values.
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where

(5.4.11)

For c*«1 and , the storage equation 5.4.10 becomes

(5.4.12)

where cm is the compressibility of the mixture,

(5.4.13)

As an application of the above discussed concepts, we will discuss here the special case
of undrained deformation: In undrained deformations, zero fluid flux across the
specimen’s boundaries is holding, which together with the assumption of homogeneity
results in . Mass balance, as expressed in equations 5.4.12 and 5.4.7 for c*«1,
results in the prediction of small volumetric strains

(5.4.14)

(5.4.15)

where , is the incremental volumetric strain.
Let

(5.4.16)

be the constitutive relation which is describing the drained behavior of the soil material
in isotropic compressions. From equation 5.4.14 we obtain an equation for the
determination of the pore-water pressure increment 

(5.4.17)

and thus the total pressure increment can be also computed

(5.4.18)

We note that the degree of saturation S of a soil specimen is checked by means of the so-
called B-test. After Skempton (1954) the ratio of excess pore-water pressure to the
increment of isotropic total stress in undrained conditions is denoted by B. From the
above expressions, Skempton’s pore-pressure parameter B can be derived, resulting in
the following expression

(5.4.19)

Figure 5.4.2 demonstrates the well-known dependency of B on S for a medium dense
sand ( ), which in turn reflects the dependency of the water
compressibility cw on S; cf. equation 5.4.9.
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A direct application of the above concepts can be found in the papers by Fragaszy and
Voss (1984) and Vardoulakis (1987), who studied the phenomenon of compression-
induced liquefaction of water-saturated, granular soils as a result of the different soil
compressibility in (elastoplastic) loading and (elastic) unloading-reloading. 

5.5
Balance of linear momentum

First we formulate the equations of balance of linear momentum in terms of partial
stresses: the total force acting on the αth constituent is

(5.5.1)

where  is the partial surface traction vector, pαgi is the partial unit weight, gi is the
acceleration due to gravity in the ith direction, and

(5.5.2)

is the interaction force exerted by the flowing fluid on the solid phase, whose nature
depends on the fluid-flow characteristics and will be discussed in the following section.
The partial momenta of the solid and aqueous phase can be written as follows

Figure 5.4.2 Skempton’s pore-pressure parameter B for a medium dense sand; (n0=0.4, c=3.
80×10−5kPa−1, pwo=294.4 kPa).
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(5.5.3)

where inertial mass coupling between the solid and fluid phase is disregarded; see below.
Balance of linear momentum for the αth constituent is expressed by the condition

(5.5.4)

According to Reynold’s transport theorem (2.2.56) and definition 5.1.20 the right-hand
side of equation 5.5.4 becomes

Due to the mass balance equation 5.2.6 the first term of the integrand vanishes
identically, and thus

(5.5.5)

According to equation 5.5.4, balance of linear momentum is thus expressed by

or in local form

(5.5.6)

By adding the above equations for  and , and using the expressions of the total
Cauchy stress tensor σij

 and the total density ρ in terms of the corresponding partial
quantities, equations 5.3.4 and 5.1.10, we derive the dynamic equation of the mixture

(5.5.7)

The right-hand side of equation 5.5.7 can be written also in terms of the barycentric
velocity, defined through equation 5.1.16, resulting in the following form

(5.5.8)
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where  is the so-called stress tensor of the mixture, which consists of an ‘inner’ part
and a part due to diffusion,

The inner part is identical with the total stress, defined through equation 5.3.4 and the
diffusion term,

(5.5.9)

is the so-called Reynold’s stress.
For α=2, the dynamic equation 5.5.6 can be combined with equation 5.3.7 which defines

the partial fluid stress in terms of the pore-water pressure. This results in a dynamic
equation for the aqueous phase in terms of the pore-water pressure

(5.5.10)

The above momentum equations can be further simplified if one can neglect the
convective terms in the material time derivatives. Moreover, for small spatial porosity
changes the non-linear term pw∂i ln(n) in equation 5.5.10can also be ignored.
Accordingly, the dynamic equations are expressed in terms of the total stress, the
effective stress and the pore-water pressure as follows

(5.5.11)

(5.5.12)

(5.5.13)

where ρb is the buoyant density of the soil skeleton

(5.5.14)

and

Figure 5.5.1 The seepage volume force.
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(5.5.15)

is identified as the seepage volume force (Figure 5.5.1).
Finally, if inertial terms are also disregarded, we obtain the following well-known

equilibrium equations

(5.5.16)

(5.5.17)

(5.5.18)

5.6
Laws governing fluid flow in porous media

5.6.1
Darcy’s law

One-dimensional steady flow of a viscous, incompressible fluid through the
interconnected pore space of a saturated homogeneous isotropic and rigid porous
medium is described by Darcy’s law which relates the specific discharge vector qi to the
gradient of the piezometric head Φ. Darcy’s law can be used to identify the seepage force

 which appears in the above equilibrium equations 5.5.17 and 5.5.18. With the x3-axis
vertical pointing upwards, gravity body forces are expressed as follows

Figure 5.6.1 Definition of the hydraulic head Φ.
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(5.6.1)

and accordingly the hydraulic head Φ is defined (Figure 5.6.1)

(5.6.2)

Darcy’s law becomes then

(5.6.3)

In this expression kw is the hydraulic conductivity (dimensions LT−1), which measures
the permeability of the soil skeleton with respect to water. From equations 5.6.1 to 5.6.3
we derive the following form of Darcy’s law

(5.6.4)

Combining this equation with the equilibrium equation 5.5.18 for the aqueous phase we
finally obtain the underlying constitutive law for the seepage force

(5.6.5)

where

(5.6.6)

The constitutive equation 5.6.5 for the seepage force can be interpreted as follows: The
drag exerted from the flowing fluid onto the skeleton grains is proportional to the relative
motion of the fluid with respect to the grains and the proportionality coefficient f is
inversely proportional to the permeability of the soil. Thus, from the continuum
mechanics point of view it is preferable to introduce Darcy’s law, equation 5.6.4
indirectly, by combining the equilibrium condition 5.5.18 for the aqueous phase and the
constitutive law 5.6.5 for the drag force.

The permeability coefficient kw in equation 5.6.6 is related to the Muskat or physical
permeability k of the medium according to the following relation (Taylor, 1948)

(5.6.7)

and thus

(5.6.8)

In these expressions ηk the kinematic viscosity of water (  ),
and accordingly f is called the viscous drag coefficient.

The physical permeability k in equation 5.6.8 has the dimensions of surface, which
means that k stands as a measure of the cross-sectional area of the microscopic
channels in the interconnected void space. The physical permeability k is usually
measured in millidarcy ( ). As far as the permeability coefficient kw
is concerned, for sands Hazen’s empirical rule is found to give a good estimate (Taylor,
1948)
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(5.6.9)

where D10% is the hydraulically (Hazen’s) effective grain diameter in cm and kw in cm/
sec.

For example, for a fine sand D10%=0.0125 cm and kw=156×104 cm/sec. From
equations 5.6.7 and 5.6.8 we obtain then the following typical values: for the physical
permeability , and the viscous drag coefficient

. 
If the gradient of elevation head s unimportant then Darcy’s law, equation 5.6.4,

becomes

(5.6.10)

Finally, equation 5.6.10 can be combined with the storage equation 5.2.15 with 5.4.8,
resulting for f=const., in

(5.6.11)

where , is the Laplacian operator.
In soil mechanics one usually considers the incompressible pore-fluid limit, and

equation 5.6.10 reduces to

(5.6.11a)

on which the theory of soil consolidation is based. For example, with , and
, one obtains the consolidation equation

(5.6.11b)

where cv is the consolidation coefficient. In contrast, in reservoir engineering fluid
compressibility dominates over skeleton compressibility, and equation 5.6.11 reduces
into a pore-pressure diffusion equation

(5.6.11c)

For the above exemplary value of , and for ,
the pore-pressure diffusivity coefficient results in . Notice
that the diffusivity coefficient for the pore pressure is inversely proportional to the fluid
compressibility cw, whereas the consolidation coefficient cv is inversely proportional to the
bulk (drained-skeleton) compressibility c.

Remarks on wave propagation. In soil mechanics one considers usually the limiting
case of a water-saturated soil consisting of incompressible grains and fluid, obeying
Terzaghi’s effective stress principle and Darcy’s law. The dynamic problem can then be
formulated by using the corresponding balance and constitutive equations:
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where

This problem is complete, if, for example, one assumes for the effective stress the
validity of the small strain equations of linear, isotropic elasticity

where  and λ are the Lamé moduli.
In particular, waves for the dilatation, , obey the telegraphy equation

where

is a reference p-wave propagation velocity, and

with cv a consolidation coefficient.
It turns out that this theory produces only waves of the second kind in the terminology

of Biot (1956a), i.e. slow, dispersive, attenuating p-waves:

5.6.2
Biot’s modification of viscous and inertial drag

Biot (1956a,b) in a series of papers proposed a simple phenomenological theory of
acoustic wave propagation in porous, fluid saturated media which can be easily
embedded into the present framework, as a modification of the governing dynamic
equations 5.5.11 and 5.5.12. First we consider here Biot’s (1956a; cf. also Beskos, 1989
and Beskos et al., 1989) modification of the viscous drag coefficient f, which in the
present framework is given through equation 5.6.8. Poiseuille flow in the interconnected
porosity network breaks down for frequencies higher than a cut-off frequency,

(5.6.12)
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RH is the hydraulic radius of the pores, which according to Taylor (1948) may be given in
terms of the mean grain diameter D50% and the void ratio by the Kozeny formula

(5.6.13)

Biot (1956b) also proved that, while for the low frequency range, i.e. for s≤sp, the
dynamic viscosity  is constant, for the high-frequency range, s>sp, η has to be
replaced by a frequency-dependent viscosity ηF(Θ), where

(5.6.14)

(5.6.15)

where , berΘ and beiΘ denote Bessel-Kelvin functions of the first kind and
order zero, a prime indicates differentiation with respect to the argument Θ, which in
turn is related to the frequency through

(5.6.16)

F(Θ) allows for the fact that the effective damping changes when the viscous skin depth
 becomes smaller than the pore size as the frequency s increases. It should be

noted that there is also an upper bound for the frequency  beyond which the
continuum approach breaks down, since the wavelength becomes of the order of the
pore size

(5.6.17)

where c is the phase velocity of the wave.
The second significant modification of the governing dynamic equations introduced by

Biot concerns the inertial drag, as follows

(5.6.18)

where the coefficients pαβ are mass coefficients which take into account the fact that the
relative fluid flow through the pores is not uniform, and describe the inertial drag that
the fluid exerts on the solid as the latter is accelerated relative to the former and vice
versa. The mass coupling coefficients are taken equal,  and are assumed to
represent the inertial coupling between fluid and solid even for a non-viscous pore fluid
( ). By adding the dynamic equations we obtain the momentum equation in
terms of the total stress

(5.6.19)

By comparing this expression with the dynamic equation 5.5.11 of the whole mixture we
obtain the relations between the mass coefficients and the partial densities
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(5.6.20)

In order to obtain some constitutive inequalities for the mass coefficients ραβ Biot is
considering two special cases of motion of the mixture:

(a) If there is no relative motion between solid and fluid, i.e. if

(5.6.21)

then the total local kinetic energy of the mixture is:

For the kinetic energy to be positive we require that

(5.6.22)

(b) If the fluid in some way is restrained so that

then from the above dynamic equations we obtain the following expressions for the
corresponding inertial forces

The second equation shows that when the solid is accelerated a force  must be
exerted on the fluid to prevent it from moving. This effect is measured by the coupling
coefficient ρ21. The force  necessary to prevent the fluid motion is in a direction
opposite to the acceleration of the solid; hence, we must always have

(5.6.23)

The same conclusion is reached by considering the first of the above equations, in which
ρ11 represents the total effective mass of the solid moving in the fluid. This total mass
must be equal to the mass proper of the solid ρ1 plus an additional mass ρ1 due to the
fluid. Thus

(5.6.24)
Similarly we obtain that,

(5.6.25)

If moreover we choose, ; i.e.

(5.6.26)

then the above restriction for the positiveness of the total, local kinetic energy of the
synchronous moving phases is always satisfied as soon as also

(5.6.27)
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Plona and Johnson (1984) considered a simple model of porous medium to demonstrate
the inertial mass coupling. In this model the pore space is a set of parallel cylindrical
tubes. If the motion of the fluid is in a direction parallel to the tubes no coupling exists.
If, however, the fluid is accelerated in a direction perpendicular to the tubes’ axes, then
there is an appreciable effect on the solid. Following this line of thought they finally
derive an expression for the inertial mass coupling term,

(5.6.28)

where α is a coefficient measuring the tortuosity of the pore-canal system. In the case of
isolated spherical solid particles the tortuosity coefficient of the pore space a is given by
the Berryman formula

(5.6.29)

Johnson et al. (1987) have combined the two effects of inertial and viscous drag in the
high frequency range and provided experimental backing of Biot’s modification. It should
be noted, however, that Biot’s inertial drag correction is heuristic, since

, and a mixtures theory approach through the linear momentum
conservation principle is not possible. In section 5.6.4 another approach for including an
inertial drag on the basis of mixtures theory will be discussed.

5.6.3
Forchheimer’s extension of Darcy’s law

In pore-fluid flow, there is a slow transition from purely laminar flow to a mildly
turbulent condition. A rough criterion of the limit of applicability of Darcy’s law is
expressed in terms of the Reynold’s number of the flow referred to the mean grain
diameter D50% (Taylor, 1948)

(5.6.30)

For higher Reynold’s numbers the relation between head-loss and discharge velocity is
non-linear. For one-dimensional flow with the discharge velocity q and hydraulic
gradient , Forchheimer suggested the following polynomial expression for the
hydraulic gradient:

(5.6.31)

where the first coefficient is identified with the hydraulic resistivity of the porous
medium for laminar flow conditions

(5.6.32)
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Considering the Navier-Stokes equations for the fluid and flow passing through a
periodic array of spherical grains, Irmay (1958) justified a more general form of
Forchheimer’s law, which included inertial effects as well

(5.6.33)

where the various coefficients were given by the following expressions

(5.6.34)

(5.6.35)

(5.6.36)

c1 and c2 are shape factors. As pointed out by Irmay (1958), the coefficient b depends on
the porosity as (1−n)/n3, and linearly on the inverse of the average grain diameter D50%.
This means that the effect of the quadratic term in q in equation 5.6.33 will be more
pronounced in the case of coarse-grained material, whereas for fine-grained material the
linear term q should dominate. Irmay’s law can be rewritten in terms of pore-water
pressure gradient as follows

(5.6.37)

where

(5.6.38)

(5.6.39)

By neglecting the quadratic term and comparing Irmay’s law with the dynamic equation
5.5.13, we identify both dissipative and dynamic terms. Using equation 5.6.5 and 
, the physical permeability of the soil is found to be proportional to the mean grain
diameter

(5.6.40)

cf. Hazen’s rule (5.6.9). Equation 5.6.40 is known as the Karman-Kozeny equation
(Dullien, 1979), with the constant c1 given by

(5.6.41)
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where  is the specific surface of the pores, defined as the ratio between pore
surface and pore volume; cf. equation 5.6.13. c0 is the so-called Kozeny constant, which
was assigned by Karman the value, . Bear (1972) indicates that Irmay adopted the
values  and . Finally, we remark that Whitney and Evans (1989) give for
f2 empirical relationships distilled from a great number of tests on limestones and
sandstones.

Irmay generalized Forchheimer’s law in a similar fashion as the original Darcy law so
as to describe two- or three-dimensional flow as well. In that sense equation 5.6.5 is
extended to the non-linear flow regime as follows

(5.6.42)

where

(5.6.43)

Table 5.6.1 from Wittmann (1980) gives some typical results for the coefficients a and b
for uniform sands. In this table the experimental value of b/a and its theoretical value
f*, predicted from Irmay’s equation (5.6.43) are also listed.

5.6.4
Brinkman’s and Aifantis modification of Darcy’s law

On several occasions, the permeability of a granular medium is relatively high and
grains are detached from the solid matrix and part of the pore fluid (fluidized bed). Also,
fluid flow past permeable surfaces cannot be matched with Darcian flow within the
porous medium. In these cases, the validity of Darcy’s law is questionable and some
modified form of it seems to be more appropriate. One possibility is to adopt Brinkman’s
(1947) generalization of Darcy’s law, which allows for energy dissipation not only due to
friction of fluid flowing around grains but also due to the viscous shearing stress which
is acting within the fluid phase itself. This modification was done by adding to Darcy’s
law the corresponding viscous-stress term that is appearing in the Navier-Stokes
equations. In our terminology, Brinkman’s generalization of Darcy’s law can be written
in the following form

Table 5.6.1 Typical values of a and b for uniform granular soils after Wittmann (1980)
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(5.6.44)

For rigid solid , and equation 5.6.44 reduces to Navier-Stokes’ equation as 
 and to Darcy’s law if kL2«1, where L denotes a spatial length scale.

On the other hand, for stability analyses of deformations in porous, fluid-saturated
media, Aifantis (1984) proposed the following gradient modification of Darcy’s law

(5.6.45)

where the constant kA has the dimension of length square. Using dimensional analysis
argument similar to the one applied for deriving Brinkman’s law (5.6.44), we observe that
here the only significant material property is the physical permeability and due to lack
of other information we set .

Brinkman’s and Aifantis’ modifications can be included in the mixtures theory
formalism as follows (Vardoulakis and Aifantis, 1994): Starting from momentum balance
for each phase separately, equation 5.5.1 is modified by considering volume as well as
surface interaction terms

(5.6.46)

where

(5.6.47)

is the interaction traction exerted by the flowing fluid on the solid phase at the boundary
∂V of the considered volume V. These surface tractions can be related to a solid-fluid
interaction stress tensor, as

(5.6.48)

which then leads to the following modification of the corresponding dynamic equations

(5.6.49)

Under the same set of simplifying assumptions which have led to equation 5.5.13,
equation 5.6.49 if applied for the fluid phase (α=2), leads to the following dynamic
equation

(5.6.50)

where

(5.6.51)

is the fluid acceleration, and
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(5.6.52)

is Brinkman’s viscous stress tensor.
We saw above, equation 5.6.5, that Darcy’s law results in a constitutive equation for

the seepage force, according to which the volume solid-fluid interaction force is
proportional to the relative specific discharge

(5.6.53)

Brinkman’s modification (5.6.44) suggests on the other hand that the solid-fluid
interaction stress is proportional to the gradient of qi

(5.6.54)

In this sense Brinkman’s law is a gradient modification of Darcy’s law, such that solid-
fluid interaction at a small distance from the boundaries of a porous, water-saturated
medium is considered in addition to their interaction in the interior domain. Brinkman’s
modification plays a role whenever one is interested in surface-parallel flows, where
strong fluid velocity gradients are localized close to the boundary of the porous medium
(Figure 5.6.2(a); Neale and Nader, 1974).

With the above constitutive assumptions 5.6.50 and 5.6.51 and within a linearized
theory, the dynamic equation 5.6.49 becomes

(5.6.55)

On the other hand, Aifantis’ modification 5.6.45 suggests that the solid-fluid interaction
stress is obeying a balance law of the form

(5.6.56)

where  are double stresses in the sense of Mindlin (1964). Thus, similar to
Brinkman’s law, Aifantis’ modification is reinterpreted as applying only at small
distances from the boundaries of a porous medium. Aifantis’ rule (5.6.45) in particular

Figure 5.6.2 (a) Pore-fluid velocity variation for surface parallel flow; (b) pore-fluid pressure
variation for surface normal flow.
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follows from the more general balance equation 5.6.56, if the double stresses are set
proportional to the pressure gradient

(5.6.57)

and thus

(5.6.58)

i.e. Aifantis’ modification must play a role whenever one is interested in surface-normal
flows where pore-pressure gradients are localized close to the boundary of the porous
medium (Figure 5.6.2b). With these assumptions the dynamic equation 5.6.50 becomes

(5.6.59)

We observe that both Aifantis’ and Brinkman’s modifications fall within the context of
balance equations for the intrinsic equilibrated body force Ŝij, like the one discussed by
Cowin and Nunziato (1983) in their paper on linear elasticity of materials with voids, i.e.

(5.6.60)

accompanied by special constitutive assumptions for the double stresses

(5.6.51bis)

and the extrinsic equilibrated body force

(5.6.54bis)

For the equilibrated inertia one could try for example to include an effect similar to
Biot’s inertial drag in an objective manner

(5.6.61)

As in the work of Cowin and Nunziato, the inertial drag  may be related to the second
material time derivative of the porosity

(5.6.62)

where the mass balance equation, equation 5.2.6 for , and the constitutive law of
equation 5.4.8 for the fluid phase were used. For incompressible fluid ( ) the inertial
drag is given only by the divergency of the fluid acceleration

(5.6.63)

Accordingly, the complete extension of Darcy’s law so as to include gradient effects
follows
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(5.6.64)

where ,  and . It should be noted, however, that such gradient
extensions of Darcy’s law necessitate the study and formulation of extra boundary
conditions which are in essence additional constitutive equations describing, for
example, if a solid particle can move in or out of the solid matrix.

5.7
The incremental initial, boundary value problem

5.7.1
Governing equations

Let a fluid saturated soil body B at time t=0, be in a given configuration C. B is
subjected to an infinitesimal deformation, and C is used as reference configuration. It is
assumed that during this deformation process the various mechanical properties of the
body change but little, e.g. the porosity changes from its value n(xk,0) in C to

 in , with  and |∆n|/n«1. The incremental displacement of
the solid for the considered transition  is ∆ui and the relative specific discharge
vector of the fluid in  is . Since convective terms will be neglected for both
the fluid and the solid phase, material time derivatives coincide with partial time
derivatives, and

(5.7.1)

(5.7.2)

For any time t>0 infinitesimal strain and spin of the solid are then given by

(5.7.3)

Mass balance is expressed here by equations 5.2.15 and 5.2.16, where one should bear
in mind the underlying assumptions which have led to these forms

(5.7.4)

(5.7.5)

The partial stress of the fluid phase in C and  is given through the 
following mappings which involve the pore-water pressure pw and the porosity n,

(5.7.6)

(5.7.7)

The nominal fluid stress in  is given as
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(5.7.8)

and thus from equations 5.7.6 to 5.7.8 we obtain

or with equation 5.7.4

(5.7.9)

(5.7.10)

Similarly the definition of the partial stress for the solid phase in C and  involves the
effective stress  and the porosity n through the following mappings,

(5.7.11)

(5.7.12)

where

(5.7.13)

(5.7.14)

The dynamic equations in  are then expressed as follows

(5.7.15)

(5.7.16)

or

(5.7.17)

(5.7.18)

where

(5.7.19)

is the nominal fluid-solid interaction force, which is computed as follows: The total fluid-
solid interaction force in  is

(5.7.20)

cf. equation 3.3.12. With

(5.7.21)
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(5.7.22)

we obtain

or

(5.7.23)

By adding the above partial dynamic equations by parts, we obtain the dynamic
equation in terms of the total stress

(5.7.24)

where

(5.7.25)

cf. equation 3.1.33.
If one neglects the influence of initial stress, the dynamic equations 5.7.24 in terms of

the total stress increment

(5.7.26)

whereas in terms of effective stress and pore-water pressure increment, equations 5.7.
17 and 5.7.18 yield,

(5.7.27)

(5.7.28)

where according to equation 5.7.23 Darcy’s law is recovered,

(5.7.29)

and the effective stress increment is given by a set constitutive equations for the
‘drained’ porous medium, of the form

(5.7.30)

where Cijkl is the appropriate stiffness tensor.

5.7.2
The incremental problem

The incremental initial, boundary value problem is governed by an appropriate set of
balance and constitutive equations as outlined above. Time enters into the problem
through the storage terms, equation 5.7.5, and the inertia terms in the dynamic
equations. On some occasions one may emphasize the importance of one factor over the
other. For demonstration purposes we will consider here the particular case which
results from the following set of simplifying assumptions:
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(1) The solid constituent is incompressible
(2) The fluid constituent is incompressible
(3) The effect of initial stress is negligible
(4) The effect of inertia is negligible
(5) Pore-fluid flow is governed by Darcy’s law
(6) Deformation of the solid skeleton is governed by an incrementally linear constitutive

equation for the effective Cauchy stress, as in equation 5.7.30 with constant
stiffness tensor.

Accordingly, the set of governing equations becomes,

(5.7.31)

(5.7.32)

(5.7.33)

(5.7.34)

The initial value problem is defined by specifying non-zero initial values

(5.7.35)

Boundary conditions are usually expressed in terms of the total stress increment and
the solid-phase displacement

(5.7.36)

and in terms either of the pore-pressure increment or the discharge vector for the fluid
phase. For example, on a permeable boundary one may assume that the pore pressure
is constant

(5.7.37)

Across an impermeable boundary on the other hand no fluid flows,

(5.7.38)

5.7.3
Linear stability analysis

In a fluid-saturated medium, local, short-term stability is studied with the so-called
undrained deformation mode as the ground mode. Undrained deformations are
characterized by remote boundary conditions which preclude in- or outflow of water. For
incompressible fluid and solid such a type of boundary condition implies that under
normal conditions the fluid flux vector is zero everywhere in the considered domain, i.e.
the ground deformation mode is characterized by the condition,

(5.7.39)
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Thus from this condition and the continuity equation 5.7.32 it will follow that the
ground deformation mode is volume preserving (isochoric)

(5.7.40)

The stability problem is now defined as follows: at any given state of an undrained
deformation, small perturbations ,  and  of the displacements of the skeleton,
the pore-water pressure and the relative specific discharge vector are considered and
their evolution in time is studied; cf. Rice (1975) and Vardoulakis (1985, 1986). The
total displacement, pore-water pressure and discharge are then the sum of the ground
mode and the perturbation mode,

(5.7.41)

We want to emphasize that the definition of stability discussed in this section refers to
small perturbations around a ground state of undrained deformation. During such
small perturbations, the ‘drained’ material behavior is assumed to be described by the
constitutive tensor Cijkl which in turn is assumed to be the same for all possible
deformation continuations.

The considered stability problem is governed by the equilibrium equations 5.7.33 and
5.7.34 for both soil skeleton and fluid, the continuity equation 5.7.32 for the fluid flow,
and the constitutive equations for the soil skeleton and the fluid flow. In particular, fluid
flow in a porous medium is assumed here to be governed by Darcy’s law. Finally the
mass balance equation 5.7.31 permeability of the soil; cf. equation 5.6.40. Elimination
of the relative specific discharge vector from the set of governing partial differential
equations leads serves for the updating of the porosity, which in turn affects mostly the
to the following governing equations for the perturbation mode

(5.7.42)

(5.7.43)

A simple class of perturbation modes corresponds to deformations which satisfy the zero
drainage condition (5.7.39) and the incompressibility condition (5.7.40) in an average
sense. Such modes correspond to spatially periodic patterns like the array of layers, the
so-called roller bifurcation mode, which is shown in Figure 5.7.1. In this figure dark
strips contract and expel water, whereas light strips dilate by an equal amount and suck
water. The pore-water pressure in the contracting strips is increasing and the effective
pressure is decreasing by an equal amount. The opposite is true for the dilating
strips. The layer pattern is the simplest plane-strain perturbation of the isochoric
motion and it is given by the following equations

(5.7.44)
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where  is the normal to the direction of the layers, S is called the
growth coefficient, Q the wavenumber of the instability and Ci are constants. Thus,
according to equation 5.7.44 we are searching for spatially periodic solutions which are
evolving exponentially in time.

It should be noted that besides the layer pattern other patterns are also possible; see
Settinger (1979). The checkerboard pattern for example is defined as follows

(5.7.45)

where the wavenumbers Qi are related to wavelengths Li of the instability,

(5.7.46)

This mode is identical with Biot’s (1965) internal buckling mode. The simplest case of
square pattern corresponds to ; see Figure 5.7.2. Another volume-preserving
pattern is Benard’s hexagonal pattern. It seems, however, that in most soil mechanics
applications the strip pattern is the dominant one. In this case from equations 5.7.32
and 5.7.33 and the decomposition (5.7.41) we obtain the following homogeneous system
for the determination of the constants Ci,

Figure 5.7.1 Layer pattern of dilating and contacting strips in water-saturated granular medium.
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(5.7.47)

where

(5.7.48)

is identified with the ‘acoustic’ tensor, since it appears also in the acceleration waves
propagation analysis.

The existence of non-trivial solutions of the homogeneous algebraic system of
equations 5.7.47 requires the satisfaction of the following first-order ‘dispersion’
equation for the considered instability mode:

(5.7.49)

holding for Q>0. The coefficients ∆ and Г are biquadratic forms in the direction cosines ni

(5.7.50)

Figure 5.7.2 Checkerboard pattern of dilating and contacting cells in water-saturated granular
medium.
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(5.7.51)

The ground state (of undrained deformation) is called stable if for all directions and all
wave numbers the considered perturbation of the isochoric motion decays exponentially
with time, i.e. if (ƒS)<0. If ∆>0 the sign of the growth coefficient is determined by the
sign of Г, the determinant of the acoustic tensor, i.e.

(5.7.52)

As we will discuss in chapter 8, the condition

(5.7.53)

is the classical shear-band bifurcation condition, i.e. a necessary condition for the
existence of a particular type of non-uniqueness in the form of stationary discontinuities
in the displacement gradients ∂j∆ui. If ∆>0, the state (B) with  marks the first
instability. Past this state the ground state becomes unstable, since exponential growth
of an arbitrary small perturbation is predicted, i.e.

(5.7.54)

In this case, the dispersion equation (5.7.49) predicts that instabilities with infinitesimal
wavelength ( ) grow with infinite pace. This shortcoming of classical continuum
theory, which breaks down at the infinitesimal wavelength limit, can be remedied, for
example, by resorting to Aifantis’ (1984) gradient modification of Darcy’s law.

The linear stability analysis becomes questionable, if for some directions ni the
coefficient ∆ in equation 5.7.49 becomes zero. In this case, the algebraic dispersion
equation 5.7.49 is meaningless, and the corresponding linear stability problem is called
mathematically ill-posed. 

5.8
Compaction instabilities

5.8.1
Grain crushing

Spacial instabilities under compression can only be explained by Biot’s (1965) theory of
internal buckling, if (a) significant deviators are applied, and (b) if the material possesses
an adequate degree of anisotropy; cf. chapter 4. In particular, internal buckling theory
cannot explain instabilities under isotropic compression. In other words, compaction
instabilities are not explained by considering geometric non-linearities. They seem to be
caused primarily by physical non-linearities, like material softening due to grain
crushing or void collapse. (A typical value for grain crushing initiation in quartzitic
sands is about 10 MPa; cf. Terzaghi and Peck, 1948.)

Compaction layering is observed in geomaterials at many scales, but it is more
pronounced in porous geomaterials consisting of uniform particles and pores. It is
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related mainly to sharp permeability variations in granular rock (sandstone; cf.
Papamichos et al., 1993) and to anomalous subsidence in porous rocks (chalks).

Garbrecht (1973) performed experiments with uniform glass beads and showed that
under isotropic compression, non-uniform compaction can occur in association with
sudden, spatially localized grain crushing. The externally applied pressure leads to
interparticle stresses, which upon reaching a critical value, cause massive grain
crushing. Spatially non-uniform grain crushing is accompanied by a catastrophic drop
in bulk stiffness of the assembly, which after continued loading starts rising again only
after substantial compaction has occurred. Figure 5.8.1 shows the experimental results
of Garbrecht (1973). At the turning point of the stress-strain curve, considerable grain
crushing was observed. This is shown in Figure 5.8.2 where the percentage F of broken
glass spheres (original diameter 5 mm) is plotted as a function of the applied hydrostatic
pressure. It is observed, however, that grain crushing reaches saturation, and stresses
start to peak up again. This mechanism can be explained as follows: Initially a great
population of intact grains exists, which is capable of load carrying, resulting in a net
stress increase (strain hardening). In due course of loading grain crushing occurs, which
results in further loading of the intact spheres, whereas broken spheres are in a more or
less stress-free state. When the intergranular forces on the intact spheres reach a critical
value, a catastrophic grain collapse occurs, which has as the result of annihilating (at
least locally) the population of intact material. After that, broken material is reloaded,
and thus an initial softening is followed by a restiffening. It should be noted that in the
course of this process, irreversible compaction of the assembly takes place.

Following the above conceptual model, the simplest mechanism which can account for
grain crushing is based on the assumption that the compaction curve of the material is
S-shaped as shown in Figure 5.8.3. During the experiment the descending branch BC
cannot be followed quasistatically, and thus there is a dynamic snap-through from A to
D, resulting in the coexistence of broken and unbroken material and thus in compaction
layering.

Figure 5.8.4 shows qualitatively the stiffness variation with volumetric strain.
Accordingly, volumetric strain increments are related to the stress increments through a
law similar to equation 5.4.10, where the stiffness  at the stage of grain-crushing
drops significantly and it may also negative.  

5.8.2
Stability of non-uniform compaction

As an application of the theory developed in section 5.7, we consider here the
persistence of non-uniform compaction of a layer of collapsible, porous material which is
saturated with fluid. The problem at hand is that of one-dimensional compaction and is
formulated as follows: At any given state of stress σxx, a small increment of axial stress ∆σxx
is added and consolidation of the layer is awaited. This type of loading may simulate a
slow process of compaction due to sedimentation or a more rapid process of compaction
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due to pore-fluid pressure reduction in oil or earth-gas depletion processes. If the
background behavior of the solid skeleton is strain hardening, then compaction is
characterized by a slow consolidation process governed by the drainage conditions at
remote boundaries. However, this is not the only possible mechanism, since, as shown
in Figure 5.8.5, one may imagine, under continued loading conditions, the formation of
a periodic pattern of layers of thickness d, which alternatively compact and expand by
expelling or sucking pore fluid.

Starting from an equilibrium state (t=0) the linear stability problem is defined in terms
of the increment of effective stress and excessive pore-fluid pressure for small initial
values

(5.8.1)

Figure 5.8.1 Isotropic compression of glass beads (Garbrecht, 1973).
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The corresponding kinematic variables for the solid skeleton and the pore fluid are the
incremental strain and the relative specific discharge of the fluid

(5.8.2)

The problem is governed by the equilibrium equations for both the solid skeleton and
the fluid, and the continuity equation for fluid flow

Figure 5.8.2 Grain breakage percentage as a function of applied pressure, during. hydrostatic
compression of glass sphere assembly (Garbrecht, 1973).

Figure 5.8.3 Stress variation of unstable material with volumetric strain.

174 MECHANICS OF WATER-SATURATED GRANULAR MATERIALS



(5.8.3)

The behavior of solid skeleton is described in terms of Terzaghi’s effective stress
increment through the constitutive equations of deformation theory of plasticity,
equation 5.8.1

(5.8.4)

Within the frame of linear stability analysis, starting from a homogeneous state of
deformation, the coefficient Kt is kept constant both in space and time. Combining the
above governing equations yields the following governing differential equation for the
excess pore-fluid pressure

Figure 5.8.4 Stiffness variation of unstable material with volumetric strain.

Figure 5.8.5 Periodic pattern of non-uniform compaction in fluid saturated porous medium.
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(5.8.5)

where cvp is the coefficient of consolidation under continued plastic loading

(5.8.6)

We observe that the standard continuum formulation of the considered linear stability
leads to a consolidation (heat-conduction) equation for the excess pore-fluid pressure. In
order to assess the stability of the incipient compaction process within such a layer of
water-saturated material, we search for harmonic solutions in space which vary
exponentially in time according to

(5.8.7)

∆po>0 is an arbitrary small initial value of the perturbation; Q is the wave number and S
is the growth coefficient of the instability. From these equations we obtain the following
dispersion law for the growth coefficient,

(5.8.8)

Within the range of validity of the linear stability analysis, the state of first instability is
identical with the state of maximum intergranular stress (Kt=0). In the softening regime
of the background drained behavior (Kt<0) the incipient non-uniform compaction of the
material layer is highly unstable, since then S>0, and, consequently, any small
perturbation of the pore-fluid pressure deviating from its initial uniform value will grow
exponentially with time. Notice that for cvp<0, equation 5.8.5 can be seen as an ordinary
heat conduction equation (i.e. with positive diffusivity) but with time running backwards.
The initial, boundary-value problem which is governed by the so-called backwards heat-
conduction equation is mathematically ill-posed, because the growth coefficient S
becomes infinite for infinite Q, meaning that the growth of infinitesimal instabilities is
unbounded. As can be seen from equation 5.8.8, classical continuum theory cannot
produce a statement about the extent of the individual strips. As explained in
chapter 10, in the case of a non-classical continuum a material length ℓ is present in the
constitutive description, and instead of the backwards heat-conduction equation 5.8.5,
one obtains a higher-order diffusion equation which allows for wave-number selection,
i.e. the determination of that particular ‘wavelength’ 1/Q, which corresponds to the
instability with maximum growth, .
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6
Plasticity theory for granular materials

6.1
Micromechanical considerations

Granular media are among the best examples of ‘plastic’ materials, i.e. materials with
vanishing elasticity and predominantly irreversible deformations. Thus, a discussion of
the kinematics and statics of a simplified micromechanical model of granular media may
facilitate the appreciation of mechanisms involved in plastic (irreversible) deformations of
real frictional materials.

6.1.1
Kinematics

A two-dimensional random assembly of rods packed together as shown in Figure 6.1.1 is
called Schneebelli material. The concepts developed for the Schneebelli material model
can be readily generalized for three-dimensional assemblies. In general, the individual
grains (rods) will slip and rotate with respect to each other and they will also deform
and/or break. A macroscopic material element of the considered granular medium is
assumed to be an assembly of a small number of grains (in two dimensions, we assume
typically  that a ‘unit cell’ of grains consists of 10×10 rods). These unit cells occupy a
volume V* with representative radius R*. During a deformation process the motion of
each individual rigid grain is given by the velocity Vα(α=1,2) of its centroid and its spin 
. The kinematic degrees of freedom of the individual grains are represented in the
continuum description by their averages υα and , respectively, taken over the
representative unit cell V*

(6.1.1)

In the following we will explore the properties of such a continuum by studying first
various special cases of the general model. For example, in this chapter we will ignore the
rotational degree of freedom of the grains and we will study a granular medium which is
characterized only by particle displacement and particle deformation. In other words the
granular medium is approximated here by a Boltzmann continuum. Moreover, we focus



our attention on the particle displacement field and suppress particle deformation. This
is the so-called ‘rigid-granular’ or ‘psammic’ limit which was proposed by Dietrich (1976)
and Vardoulakis (1981a,b) in order to study problems with free boundaries where
relatively low intergranular stresses develop and particle deformation is inappreciable.
The study of the psammic limit is essential for establishing a micromechanically
meaningful plasticity theory for granular media. Plastic deformation in granular media
has its origin in two major microscopic mechanisms: (a) changes of the number of
contacts per typical grain, i.e. changes of the coordination number k of the assembly of
grains, and (b) interparticle slip which takes place at frictional particle contacts. The
first mechanism is responsible for the phenomenon of irreversible volume change, which
after Reynolds is called dilatancy, and the second mechanism is responsible for the
frictional character of the strength of the granular assembly.

By assuming that the grains are embedded in a Boltzmann continuum let vα(xβ, t)
denote the velocity field at the center of a grain with global coordinates xα (α,β=1,2) and 
time t. We employ a local coordinate system ( ) which is rotating together with the
neighborhood of the considered grain, i.e. the coordinate system rotates with the spin

, where , and thus we may set

(6.1.2)

where  is a symmetric tensor. In the following, for simplicity, we will refrain from
repeating the ( )′, since all computations are meant to take place in the corotating
coordinate system ( ). The relative velocity field which is characteristic for two grains at
their periphery is given by

(6.1.3)

Figure 6.1.1 Shear band in direct shear of Schneebelli material. Test performed by Mr E.
Dawson, University of Minnesota.
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where Rg is the radius of the grain and  is a unit vector originating
at the center of the particle (Figure 6.1.2). The normal and tangential component of the
relative velocity at the contact point are given by the following expressions

(6.1.4)

In order to define average measures of the relative normal and tangential velocity at a
contact between two grains the weighted average of the first and higher moments of the
contact normal nα must be computed, e.g.

(6.1.5)

For simplicity, the direction nα of the contact normal is assumed to be completely
random with a uniform probability distribution  over the whole angle 0≤Θ≤2π.
This may be a crude approximation of the real picture, since it is a well-established fact
that the probability distribution of contact normals in a granular assembly under shear
and normal stress is non-uniform (see for example Matsuoka, 1974; Kanatani, 1984;
Mehrabadi et al., 1982). By using definitions similar to equation 6.1.5, for the higher
moments of the contact normal, the following identities are obtained

(6.1.6)

The continuum interpretation of the quantity ∆vn is the following: ∆vn>0 means that a
grain contact is lost and that the two considered grains are moving apart from each
other. If, on the other hand, ∆vn<0, then a new contact is generated and that the two
grains are coming closer together (see Figure 6.1.3). The mean amplitude of the normal

Figure 6.1.2 The kinematics of two non-rotating discs.
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component of the relative velocity vector defines an average measure of the change of the
distance of two grains in close proximity to each other, since

(6.1.7)

The mean amplitude of the tangential component of the relative velocity vector defines
an average measure of the relative slip of two grains in contact

In equation 6.1.7  denotes the 2D deviator of Dαβ

(6.1.9)

From 6.1.5 and 6.1.7 it follows that the first invariant of Dαβ

(6.1.10)

is a measure for the change of contact points along the periphery of a grain and that its
second deviatoric invariant

(6.1.11)

is measure of average slip along the periphery of a grain.
As already mentioned, the number of contacts per typical grain is the coordination

number k of the assembly of grains. For example, assemblies of equal spheres show
coordination numbers which vary between 6 and 12. In this context Rumpf (1958) found
that k is inversely proportional to the porosity n of the assembly. As shown in
section 5.2 changes in porosity are directly related to changes in volumetric strain. Thus
for the rigid-particle limit,  in equation 6.1.10 is a measure of irreversible (plastic)
volume changes.

Figure 6.1.3 The gain or loss of contacts and its relation to dilatancy.
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From equations 6.1.10 and 6.1.11, it follows that the most important microstructural
changes in granular media are plastic dilatancy (or contractancy) and interparticle slip.
A fundamental assumption is now introduced that sets the foundation for the
microkinematics of granular media: In a deforming granular medium, plastic volume
changes are predominantly linked to interparticle slip. In mathematical terms this
assumption puts a constraint between  and 

(6.1.12)

This kinematic constraint is an essential part of the flow rule of a granular medium and
is called the dilatancy constraint; the proportionality factor β in equation 6.1.12 is called
the dilatancy coefficient of the granular material.

6.1.2
Statics

In order to define stresses in the granular assembly, the following procedure is
envisioned: Let ∑αβ be the intergranular stress tensor defined over assemblies of grains
that occupy domains with a radius r<R*, where R* represents the continuum particle.
This stress tensor ∑αβ is defined via the intergranular forces  at αth contact between
microelements with unit normal 

(6.1.13)

where N is the number of the contacts intersected by a closed surface that engulfs the
considered microelement and n is the porosity of the medium. In general, this stress
tensor will be varying over the range 2Ru of the considered macroelement. Accordingly,
macroscopic stresses σαβ can be defined that have the same effect as ∑αβ over the
considered distance of the macroelement. Figure 6.1.4 shows an example of such a
definition of the macroscopic stresses: The stress tensor σαβ is the average of ∑αβ over the
considered dimension 2R*, i.e.

(6.1.14)

The continuum is now equipped with a stress tensor. Going back to the interaction
among macroelements, intercellular contact tractions can be defined as follows:

(6.1.15)

With

(6.1.16)
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being the normal and tangential components of the intercellular tractions, invariant
measures of average normal and shear contact tractions over the periphery of a macrocell
result in the following definitions of mean normal and shear stress, respectively

(6.1.17)

(6.1.18)

where sαβ is the 2D-deviator of σαβ
(6.1.19)

Accordingly, σ is interpreted as a measure for the intergranular normal forces and τ is
understood as a measure for the intergranular shear forces (Gudehus, 1972). At isolated
contact points of rigid grains, however, only normal and frictional tangential forces can
develop. This leads to another fundamental assumption for the behavior of granular
media: It is assumed that the shear stress intensity which is carried by the granular
assembly cannot exceed a limiting value which is proportional to the normal
stress intensity following a simple low of internal friction of the Coulomb type:

(6.1.20)

This inequality is called the yield condition of a granular medium and the coefficient µ>0
is the friction coefficient of the granular medium.

Figure 6.1.4 (a) The concept of intergranular force (b) First-order averaging procedure.
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6.2
Flow theory of plasticity

6.2.1
The Mróz-Mandel non-associative elastoplasticity

In this section we discuss a simple elastoplastic constitutive model for cohesive-frictional,
dilatant materials such as soils and rocks. This constitutive theory is known as the
elastoplastic, isotropic-hardening, pressure-sensitive model with non-associate flow rule
(Mróz, 1963, 1966). We notice that this model was discussed in the context of material
stability and shear-band formation first by Mandel (1964).

According to the previous introductory remarks we focus our attention here on
granular media. Thus σij (i,j=1,2,3) is used here invariably as an appropriate measure of
intergranular stress. Moreover, granular media are porous and their void space may be
filled by a fluid. For a fully saturated granular medium, in the presence of fluid pressure
pf<0 the intergranular stress is approximated by Terzaghi’s effective stress,

, as discussed in section 5.3. Accordingly the behavior of the solid
skeleton, usually termed ‘drained behavior’, is described here in terms of the effective
Cauchy stress tensor . Since this section is devoted to the behavior of the solid
skeleton only, stresses will be assumed to be always effective, and consequently the
suffix ( )′ will be avoided.

The stress tensor and its rate are decomposed into a deviatoric part and into a
spherical part

(6.2.1)

(6.2.2)

On the other hand, for an elastoplastic continuum, the strain-rate tensor is decomposed
into an elastic and a plastic part

(6.2.3)

which, in turn, are also split into spherical and deviatoric parts

(6.2.4)

For simplicity, it is assumed that the elastic strain rate is related to the stress rate
through the equations of linear, isotropic elasticity

(6.2.5)

where  is the isotropic elasticity tensor
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(6.2.6)

G and v are the elastic shear modulus and the Poisson ratio, respectively. Alternatively,
the elastic shear and compression moduli may be introduced, which relate the spherical
and deviatoric parts of the corresponding tensors,

(6.2.7)

Plastic strains are usually associated with a plastic potential function in stress space
(Figure 6.2.1)

(6.2.8)

which is assumed to be an isotropic function of the stress tensor. In the argument list of
Q, ψ is a hardening parameter, i.e. a measure of plastic deformation. The flow rule of
flow theory of plasticity becomes then

(6.2.9)

The above flow rule is called the co-axial flow rule, to denote that the principal axes of
the plastic strain rate coincide with the principal axes of the stress. Notice also that the
inequality 6.2.9 is essential for elastoplasticity, and defines the irreversible character of
plastic deformations. 
The material behavior is assumed to be ‘local’ and ‘rate-independent’. The first
assumption means that for a fixed-in-space material point (xk), ψ is only a function of
time. Rate independence, on the other hand, implies that the plastic hardening
parameter ψ and the time t are simply two equivalent members of a class of parameters
which may be used to identify the state of plastic deformation. Although real time flows
continuously the intrinsic (endochronic) time of plasticity theory flows only whenever
additional plastic deformation is taking place; Figure 6.2.2 shows that the variation of ψ

Figure 6.2.1 The concept of yield surface F(σij, ψ)=0, and plastic potential surface Q(σij, ψ)=0, in
stress space.
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with real time may be discontinuous but never decreasing. Under these restrictions we
identify ψ as a cumulative measure of plastic deformation,

(6.2.10)

Let

(6.2.11)

(6.2.12)

be the first invariant and the second deviatoric invariant of the plastic strain rate,
respectively. According to the demonstrations in the previous section,  and  are
interpreted as isotropic measures of irreversible dilatancy and of interparticle slip,
respectively. According to the flow rule 6.2.9, they are directly related to ,

(6.2.13)

(6.2.14)

The state of plastic deformation can be measured either by ψ or its equivalent plastic-
deformation measures 

(6.2.15)

(6.2.16)

i.e. the accumulated plastic volumetric or shearing strain intensity, respectively. We
note that the choice of the appropriate hardening parameter is a matter of judgement.
For example, some combinations of isotropic stress and porosity of a granular medium
lead to the so-called critical packing which deforms isochorically under continued shear,
i.e. . In such a case vp is not a useful measure of plastic deformation. On the other

Figure 6.2.2 Endochronictime versus real time.
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hand, under isotropic compressions  and gp as a hardening parameter is useless.
Along these lines of thought sometimes we see that the arc length of the plastic strain
path in strain space or the total plastic work is used as a measure for plastic
deformation.

We notice that  in the flow rule 6.2.9 plays the role of the plastic multiplier of flow
theory of plasticity, i.e. the flow rule 6.2.9 makes the plasticity problem 1D, since only
the direction of the plastic strain rate and not its magnitude is determined. This
indeterminacy is removed by resorting to the concept of yield surface in stress space,

(6.2.17)

It is assumed that plastic strain rates are generated when (a) the state of stress lies on
the yield surface and (b) if loading of that yield surface is taking place, i.e. if

(6.2.18)

These restrictions must be consistent with the flow rule 6.2.9. This consistency
requirement leads to the so-called Prager consistency condition of flow theory of
plasticity

(6.2.19)

Prager’s consistency results in an algebraic equation for the plastic multiplier

(6.2.20)

where

(6.2.21)

In equation 6.2.20 H is the plastic modulus

(6.2.22)

with

(6.2.23)

(6.2.24)

Ht is called the hardening (softening) modulus. In case of hardening Ht>0, while for Ht<0
softening is said to take place. In order to exclude locking behavior we assume that the
plastic modulus H is strictly positive, i.e. in case of softening it is assumed that Ht never
falls below its snap-back threshold value (−Ho<Ht; cf. Nguyen et al., 1974).

In equation 6.2.20, the McAuley brackets, which, with H>0, are defined as follows
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(6.2.25)

Inserting the expression 6.2.20 into the flow rule 6.2.9, and utilizing the elasticity
relationships 6.2.6 for the stress rate finally yields the well-known stress-strain relations
of elastoplasticity (cf. Mróz, 1966)

(6.2.26)

(6.2.27)

(6.2.28)

Due to the McAuley brackets in the definition 6.2.28 of the plastic stiffness tensor, the
elastoplastic stiffness tensor  is a quasilinear operator. Whenever the yield surface is
used as a plastic potential surface ( ), then the flow rule 6.2.9 is called an associate
one. In this case the plastic strain rates are normal to the yield surface in stress space.
The latter is also known as the normality condition of plasticity theory. From equation 6.
2.28 we see directly that in case of associate plasticity the elastoplastic stiffness tensor
is satisfying the major symmetry conditions,

(6.2.29)

For granular media, non-associativity of the flow rule is usually restricted only for the
volumetric component of the plastic strain rate. At the same time the deviatoric plastic
strain rates are assumed to follow the normality rule. This property is called deviatoric
normality (Gudehus, 1972; Lade and Duncan, 1973; Baker and Desai, 1982), and is
expressed by the simple condition

(6.2.30)

where λ is a scalar. The ramifications of the non-linearity and non-symmetry of the
elastoplastic stiffness tensor on equilibrium bifurcation will be addressed, in sections
6.4 and 6.5 below.

6.2.2
Stress-dependent elasticity

The elasticity of granular materials is found to be stress-dependent, and in the literature
we encounter several proposals for modelling stress-dependent elastic behavior of
geomaterials (cf. Loret, 1985; Lade and Nelson, 1987; Molenkamp, 1988). Accordingly,
an elastic parameter, say the shear modulus G is assumed to depend, on both the mean
stress p and the deviatoric stress T

(6.2.31)
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In rocks, for example, this type of stress dependence of the shear modulus can account
for an initially convex upward stress-strain curve which is attributed to closing of
cracks.

In order to account for stress dependence of elastic parameters, we assume that the
underlying elasticity is a hyperelasticity, which is described by the corresponding
complementary energy density function (Figure 6.2.3)

(6.2.32)

Accordingly wc is a stress potential function for the elastic strains

(6.2.33)

The existence of a complementary energy density function guarantees that in arbitrary,
closed elastic stress cycles (i.e. stress cycles in the elastic domain) no energy is produced
or dissipated.

For isotropic elasticity, the complementary energy density is a function of any three
independent invariants of the stress tensor. Let

(6.2.34)

which together with equation 6.2.33 result according to the Cayley-Hamilton theorem in
the general non-linear elasticity equation

(6.2.35)

Figure 6.2.3 Definition of complementary energy density function wc.
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where the coefficients ai are functions of the stress invariants,

(6.2.36)

Since the elastic strain is a unique function of stress, relationship 6.2.36 guarantees
elastic strain reversibility.

Due to the lack of sufficient experimental data usually it is not possible to determine
the influence of the third stress invariant, and thus the following identification is made

(6.2.37)

where

(6.2.38)

are the (secant) elastic compression and shear modulus, respectively.
By decomposing the elastic strain in spherical and in deviatoric part the elasticity

equation 6.2.35 with 6.2.37 yields

(6.2.39)

and with that

(6.2.40)

where  and . 
Usually due to the scatter of the experimental data, one is forced to assume a

constant Poisson’s ratio, v=const. (Lade and Nelson, 1987), and

(6.2.41)

In this case, equation 6.2.40 suggests defining the following stress measure which
combines the effect of normal and shear stress and which may be called the ‘elastic-
equivalent’ stress,

(6.2.42)

With

(6.2.43)

where Es is Young’s secant modulus, we notice that for elastic-incompressible material,
, the elastic-equivalent stress is proportional to the shearing stress

intensity, . If, on the other hand, the material is elastic shear rigid 
, then . In granular soils this is a common assumption, which is reflected in a
pressure-dependent compression modulus (Terzaghi, 1925).

In general, from equations 6.2.40–6.2.42 we obtain
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(6.2.44)

The simplest non-trivial model corresponds to the assumption that Es is a linear
function of σe

(6.2.45)

With this representation for the secant shear modulus we obtain the following
expression for the complementary energy density function

(6.2.46)

where  is a dimensionless equivalent stress

(6.2.47)

For small stresses wc is quadratic and for large stresses linear in σe (Figure 6.2.4)

(6.2.48)

With  at finite stress, wc is a strictly convex function of σe and thus the
underlying hyperelasticity is stable in the sense of Hadamard.

Starting from the finite elasticity equations 6.2.39, rate equations between the stress
and elastic strain tensors can be derived by formal time differentiation

Figure 6.2.4 Complementary energy density for a sandstone as function of the elastic-equivalent
stress σe.
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(6.2.49)

(6.2.50)

With , , and the stress dependence of Es, and

(6.2.51)

(6.2.52)

the rate elasticity equations can be evaluated explicitly, resulting in the following
equations

(6.2.53)

(6.2.54)

with

(6.2.55)

6.2.3
Finite strain formulations

In rigorous formulations, rate-constitutive equations are expressed in terms of an
appropriate objective stress rate, say the Jaumann derivative of the Cauchy stress, ,
and the rate of deformation tensor Dij. However, in granular media, physical non-
linearities dominate over geometric non-linearities. Elastic strains are very small
whereas plastic strains may considerable. Thus within a small strain theory we do not
distinguish between Jaumann and material time derivative of the Cauchy stress tensor
and between the rate of deformation tensor and the rate of the infinitesimal Eulerian
strain tensor,

(6.2.56)

On the other hand, within a finite strain theory this distinction must be made. Within this
context Dij is decomposed additively into an elastic and plastic part,

(6.2.57)

In any case, the constitutive equations of elastoplasticity must be expressed in terms of
an objective stress rate, and the selection of the appropriate stress rate is based on the
argument that the underlying elasticity must be flawless. We note that in the case of
isotropic elasticity in elastoplasticity, the underlying elasticity is a hypoelasticity, which
in general does not derive from a hyperelasticity.
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If one can justify that the overall elastic volumetric strains remain small then it is
immaterial if one uses, say, the Jaumann derivative of the Kirchhoff stress or that of
relative Kirchhoff stress. Moreover, for small elastic strains, one may assume that

(6.2.58)

where according to equation 3.2.48  is the fourth-order isotropic elastic tensor

(6.2.59)

with constant G and v.
Moreover, according to equation 3.1.43 the Jaumann derivatives of relative Kirchhoff

and Cauchy stress differ only by the contribution of initial stress times the elastic volume
deformation rate

(6.2.60)

Following the above remarks we consider here elastoplastic constitutive laws which are
formulated on the basis of a Hooke-type hypoelasticity which relates the Jaumann
derivative of the Cauchy stress to the rate of elastic deformation,

(6.2.61)

where

(6.2.62)

The Jaumann derivative, , differs from the material time derivative  by a
corotational part which takes into account the initial stress (cf. sections 2.2.3 and
3.1.4),

(6.2.63)

We observe that the consideration of corotational terms, , does not alter the essential
structure of the constitutive equations of elastoplasticity. This can be shown as follows:
The stress rate enters the constitutive description through the consistency condition 6.2.
19, and in particular through the term

(6.2.64)

Using the representation theorem of isotropic tensor functions and the Cayley-Hamilton
theorem, it can be shown that any symmetric second-order tensor Fij(σkl), which is an
invariant of some other symmetric second-order tensor σkl, under a group of proper
orthogonal transformations, is expressible in polynomial form, and accordingly

(6.2.65)

where the coefficients Fi (i=0,1,2) are scalar invariants of the tensor σij. Then it can be
easily seen by inspection that,

PLASTICITY THEORY FOR GRANULAR MATERIALS 195



(6.2.66)

and thus

(6.2.67)

Consequently consideration of initial stress leads to the following simple modification of
the constitutive equations 6.2.26 of elastoplasticity

(6.2.68)

where the elastoplastic stiffness tensor is given by equations 6.2.27 and 6.2.28.
Moreover the various definitions given through equations 6.2.20 and 6.2.25 hold by
replacing if necessary  by Dkl.

It should be noted, finally, that if for some reason one chooses to formulate the
elasticity law (6.2.58) in terms of an objective time derivative of stress, different from the
rigid body derivative of an appropriate stress tensor, then, in general, through the
consistency condition, additional terms will enter into the constitutive description.

6.2.4
The equation of thermoelastoplasticity

In the theory of rate-independent thermoelastoplastic materials it is assumed that the
rate of deformation tensor is decomposed into a thermoelastic-elastic and a plastic part
according to equation 6.2.57. If the underlying thermoelasticity is linear, then the local
entropy production is linearly related to the rate of temperature change and to the
thermoelastic strains (cf. Carlson, 1972)

(6.2.69)

where c is the specific heat of the material and  is the (isotropic) stress-
temperature tensor. Moreover, elastic deformations are linked to changes of the free
energy through the Cauchy stress tensor

(6.2.70)

For an isotropically hardening elastoplastic material, and according to section 2.3.5,
equation 2.3.43, the local entropy inequality for stationary states yields a restriction for
the local dissipation due to plastic deformation, which could be called plastic stress
power,

(6.2.71)
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i.e. the whole plastic stress power is converted to heat. Within an incremental plasticity
theory, the above dissipation inequality will reduce to a restriction for the so-called first-
order plastic work

(6.2.72)

In flow theory of plasticity, the rate of plastic deformation is given through the flow rule
6.2.9

(6.2.73)

With , from equation 6.2.71 we obtain the following constitutive inequality

(6.2.74)

Finally from equation 6.2.69, the balance law for local entropy production, equation 2.3.
44 and Fourier’s law (equation 2.3.40) for heat conduction, we obtain the following heat
conduction equation in thermoelastoplastic solids

(6.2.75)

If, in particular, thermoelastic strains are disregarded, then the differential equation of
heat conduction in a thermoplastic solid becomes

(6.2.76)

i.e. the plastic stress power is a source of heat supplied per unit time and per unit
volume at any point of a deforming thermoplastic solid and can be independently
determined experimentally. This is done on the basis of the theory of heat conduction
for solids with internal heat sources (cf. Carslaw and Jaeger, 1946).

The classical experiments of Taylor and Farren (1925) (see for example Bell, 1973) on
metals revealed that when the energy dissipated was calculated from the measured rise
in temperature and was compared with the local dissipation due to deformation
(obtained from the quasistatic stress versus strain curve) there is still an approximately
10% discrepancy which cannot be accounted for by the elastic strains, i.e.
approximately 90% of the input energy appeared as measured thermal energy. This
observation resulted in the so-called Taylor heat conduction equation of thermoplasticity
where the source term was modified from Pp to 0.9Pp.

6.2.5
Drucker’s postulate

In section 3.3.4, we formulated the general equilibrium bifurcation problem emphasizing
global and local sufficient conditions for uniqueness under dead loading conditions. The
discussion was restricted to well-established theoretical results pertaining to the role of
second-order work for hyperelastic materials. For elastoplastic solids, in the literature
we encounter a constitutive inequality, which refers to the second-order stress power due
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to plastic deformations, and is known as Drucker’s stability postulate (Drucker, 1951,
1959)

(6.2.77)

Since the elastic stiffness tensor is positive definite, the second-order elastic stress power
is

(6.2.78)

with the equal sign holding for . Thus Drucker’s postulate (6.2.77) implies that
the second-order stress power is non-negative, i.e.

(6.2.79)

Of course, Drucker’s postulate is not connected to the Second Law of Thermodynamics,
which as we saw above, produces a statement for the positiveness of the first-order
plastic work. Petryk (1991) examined the path dependence of second-order work in
incrementally non-linear elastoplastic solids (in particular, yield vertex plasticity
models). Based on the idea of thermodynamic potential and maximum dissipation
principle, such an inequality may be derived and used to restrict the class of
admissible incrementally non-linear models. Of course, both these thermodynamic
postulates do not apply for frictional solids.

Within an incremental plasticity theory where the influence of initial stress is
negligible, Drucker’s postulate takes the following form

(6.2.80)

We saw in section 3.3.4, that this inequality is a local sufficient condition for
uniqueness of the incremental boundary-value problem under dead loading. Thus
Drucker’s stability postulate is a sufficient local criterion for uniqueness under dead
loading.

Finally, we observe that in case of strain hardening material obeying an associate flow
rule, Drucker’s postulate is satisfied, as indicated in Figure 6.2.5(a). However, Drucker’s
postulate is violated if material strain softening is taking place, since for continued
plastic loading, the stress-rate vector is pointing into the interior domain of the yield
surface (Figure 6.2.5b). 

6.2.6
Uniqueness theorems for elastoplastic solids

Having in mind the formulation of the linear bifurcation problem discussed in
section 3.3.4, and following the observations made in section 6.2.3, the constitutive
equations of elastoplasticity may be expressed in terms of the Cauchy/Jaumann stress
increment,

(6.2.81)
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where

(6.2.82)

(6.2.83)

(6.2.84)

We recall at this point that the irreversibility of plastic deformation, originally expressed
by the non-negativeness of the plastic multiplier (∆ψ≥0), is reflected in the above
constitutive equations by the switch function which makes the elastoplastic operator
quasilinear. On the other hand, due to the non-associativeness of the flow rule (Fij≠Qij),
the stiffness tensor does not possess major symmetry, which makes the formulation of
variational principles impossible even if a linearization of the problem is undertaken.

The 1. P.-K. stress increment is related to the Jaumann stress increment through
equation 3.1.36, resulting in the following incremental stress-strain relationship

Figure 6.2.5 Drucker’s postulate. (a) Hardening material obeying associative flow rule (∆2wp≥0); (b)
softening material (∆2wp≤0).

 

PLASTICITY THEORY FOR GRANULAR MATERIALS 199



(6.2.85)

where

(6.2.86)

(6.2.87)

In section 3.3.5 we formulated a sufficient condition for global uniqueness for a solid
body under dead loads

(6.2.88)

holding for any kinematically admissible virtual displacement field, with the equals sign
holding only for the trivial solution . Although Hadamard’s theorem, presented in
section 3.3.5, does not apply directly to elastoplastic solids, Ryzhak (1987) has shown
that necessary for condition 6.2.88 to hold is that for every non-zero gi and ni,

(6.2.89)

However Ryzhak’s extension of Hadamard’s theorem is not very practical.
In dealing with the linear bifurcation problem Raniecki and Bruhns (1981),

generalized Hill’s (1958) theory of uniqueness for elastoplastic solids obeying the
normality flow rule so as to consider non-associative behavior as well. Within this
theory, one can define a one-parameter family of linear comparison solids that has the
following property: If uniqueness is certain for the comparison solid then bifurcation is
precluded for the underlying elastic-plastic solid. The stiffness tensor for this linear
comparison solid

(6.2.90)

is symmetric and it may be viewed as a one-parameter linearization of the underlying
elastic-plastic stiffness tensor. The uniqueness criterion 6.2.88 in connection with the
Raniecki solid (6.2.90) is shown to yield lower bounds to the magnitudes of primary
bifurcation stresses. The parameter (0≤r≤1) is varied so as to optimize the estimate for
the bifurcation stresses, resulting in the following optimal value

(6.2.91)

In this context the following sufficient condition for uniqueness has been derived from
Raniecki and Bruhns (1981)

200 BIFURCATION ANALYSIS IN GEOMECHANICS



(6.2.92)

for admissible non-zero displacement fields, satisfying homogeneous boundary
constraints. Bigoni and Zaccaria (1992) observe that, based on Hadamard’s theorem, a
local necessary condition for condition 6.2.92 to hold is

(6.2.93)

It should be noticed that in the original Raniecki and Bruhns paper a sufficient
uniqueness condition was derived for a general class of follower-type loading. Moreover,
Hill’s bifurcation criterion is deduced from the former one as a limiting case when
normality holds.

The hypoelastic comparison solid that can be defined by a stiffness tensor always
corresponding to loading has been proven to yield an upper bound to the true bifurcation
stresses. Indeed, the first eigenstate of this solid may be identified with some bifurcation
state of the underlying elastoplastic solid. This result is first utilized in Shanley’s (1947)
solution for plastic buckling of a column, who examined bifurcations which correspond
to continued plastic loading through the column. In this case the comparison solid is
defined by the following constitutive tensor

(6.2.94)

If one assumes an associative flow rule, then the two linear comparison solids coincide
(for r=1), and the bifurcation stress obtained from a linear bifurcation analysis coincides
with the true bifurcation stress.

6.3
Simple constitutive models for frictional materials

6.3.1
Stress invariants

For the formulation of constitutive relations for frictional (Coulomb-type) materials use
will be made of the following stress invariants (Figure 6.3.1):

(a) The first stress invariant or the mean stress

(6.3.1)

where σi (i=1,2,3) are principal stresses. We remark that granular materials exist only in
the compressive regime, p<0. More precisely, granular materials exist only for max {σi}
<0. 

It can be easily shown that p is the mean value of the normal stress over an
elementary spherical surface
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(6.3.2)

where

(6.3.3)

is the normal component of the stress vector acting on the surface element nidS of the
elementary sphere (cf. section 6.1.2). Note that in spherical coordinates (r, Θ, ) the
direction cosines of a normal to the sphere at an arbitrary point on its surface are given

and that

(b) The second deviatoric stress invariant or shearing stress intensity

(6.3.4)

where si are principal deviatoric stresses. We observe that the mean tangential stress
over  an elementary spherical surface is directly proportional to T; i.e.

(6.3.5)

where

(6.3.6)

Figure 6.3.1 The Haigh-Westergaard principal stress space and the geometric meaning of the
first- and second-stress invariants.

 

202 BIFURCATION ANALYSIS IN GEOMECHANICS



is the tangential component of the stress vector acting on the surface element nidS of
the elementary sphere.

The above definitions of average normal and shear stress, equations 6.3.2 and 6.3.5,
depend on the shape of the elementary volume as well as on the orientation of its
bounding surface relative to the principal axes of stress. If we take for example an
elementary volume in the form of a rectangular parallelepiped, the result of the
integration in equation 6.3.5 will be different for different directions of the edges of this
parallelepided. In particular, if its edges coincide with the principal directions of stress
tensor then the computed value of  becomes zero.

In soil mechanics the stress ratio

(6.3.7)

is used as a measure of average shear to normal stress over a spherical domain of
integration; it is a measure of the so-called ‘mobilized friction’ at grain contacts. The
minus sign in equation 6.3.7 is used in order to compute a positive stress obliquity σ
for p<0. Granular materials are the limiting case of cohesive-frictional materials with
vanishing cohesion. However, cohesive forces among the grains may exist either due to
slight cementation, capillary effects or, at the very low confining pressures, due to
electrostatic intergranular attractions. In order to allow for cohesion, we have simply to
replace in the above definition (equation 6.3.7) the intergranular pressure (−p) by a
quantity (q−p), where q is related to the cohesion of the material, and thus

(6.3.7bis)

(c) The third deviatoric stress invariant

(6.3.8)

The principal deviatoric stresses are roots of the characteristic equation

(6.3.9)

The three (real) solutions of equation 6.3.9 are given by

(6.3.10)

where αs is the polar angle in the deviatoric plane, measured clockwise (Figure 6.3.2)
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(6.3.11)

and αs0 is the stress invariant angle of similarity

Figure 6.3.2 The definition of αs in the principal deviatoric plane, and its relation to the principal
deviatoric stresses.
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(6.3.12)

Notice that αs is directly related to the Lode parameter Lσ,

(6.3.13)

We observe also that according to equation 6.3.5, the angle αs relates the maximum to
the mean deviatoric stress; for example, for

In other words αs is a measure of the deviation of the maximum from the mean shear
stress (Novozhilov, 1961). 
Stress invariants as statistical moments. According to Cauchy’s fundamentaltheorem the traction vector at

an elementary plane dS with unit normalvector ni is a linear function of the vector ni

where σij is the stress tensor. We assume that for a given microfabric of a granular
material, the distribution of the tractions ti is known for ni taking all positions of the
unit normal on a unit sphere.

In order to compute physically meaningful invariants of the stress tensor we consider
the statistical properties of the traction vector ti. For this reason we define the following:

scalar: 
vector: 
tensor: 
The problem then reduces in the computation of the following statistical moments:

(a) The mean value of the normal traction,

(b) The mean value of the intensity of the tangential traction,

(c) The ‘standard deviation’ from this mean,

In order to proceed with this computation we first note the following identities:
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etc. All odd products are zero and contraction lowers the rank, since . From the
discussion in section 6.3.1 we already know that: 

(a) The first invariant of the stress tensor σij is proportional to the mean normal
traction:

(b) The second deviatoric invariant of σij is proportional to the mean intensity of the
tangential traction:

(c) The interpretation of the third stress invariant is not straightforward. In order to
arrive at such a statistical interpretation we define the dyad

Then with

we observe that

and with that

Thus a ‘standard deviation’ σ can be introduced such that

From the considered averaging procedure over a unit sphere it turns out that this
standard deviation from the mean tangential traction intensity is linked to all three
stress tensor invariants, since:
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where

Thus invariant σ2, produces essentially a ‘statistical’ measure for the third invariant J3s. 

6.3.2
The Drucker-Prager and Mohr-Coulomb models

In the low-pressure regime friction and cohesion of a geomaterial may be assumed to be
pressure insensitive. Moreover, under conditions of continuous plastic loading the so-
called (secant) mobilized friction coefficient f, and mobilized cohesion c are evaluated
directly from the stress ratio

(6.3.14)

From these equations, we obtain the following expression for the yield surface in
invariant stress space

(6.3.15)

In general, both internal friction and cohesion coefficient are functions of the plastic
hardening parameter, ψ. If f or c are monotonously increasing functions of the hardening
parameter, then friction or cohesion hardening is said to be taking place, else softening
is occurring.

For example, in sands, cohesion is vanishing, and isotropic friction hardening/
softening is the rule (Figure 6.3.3a)

(6.3.16)

The variables no (porosity) and gp (accumulated plastic shear strain) in the argument list
of f indicate its dependency on the coordination number and on the average slip at grain
boundaries, respectively.

Sandy rocks  on the other hand are characterized
by friction hardening and cohesion hardening/softening, which due to equation 6.3.15
is of the kinematic type (Figure 6.3.3b); for example

(6.3.17)
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(6.3.18)

In this case gp is identified as a measure for microslip, which is occurring at grain
boundaries and microcracks.

In general the friction coefficient will depend also on the stress invariant angle of
similarity αs0 (i.e. the third stress invariant)

(6.3.19)

In particular, for a Drucker-Prager (D.-P.) model, no dependency of f on αs0 is assumed.
This assumption results in conical surfaces in stress space with circular trace in the
deviatoric plane (Figure 6.3.4). On the other hand for the Mohr-Coulomb (M.-C.) model,
the dependence on αs0 is such that F=0 does not depend on the intermediate principal
stress. This assumption together with the linear pressure dependence, results in
surfaces in stress space which are hexagonal pyramids, whose trace in deviatoric plane

Figure 6.3.3 Coulomb models with linear material pressure sensitivity. (a) Isotropic or friction-
hardening model for sand; (b) mixed isotropic/kinematic or friction hardening cohesion hardening/
softening model for sandy rock.
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is a distorted hexagon. This means that for a M.-C. model f is given by the following
expressions,

(6.3.20)

where, as will be shown below, a and b are interrelated functions of gp.
In particular, the expressions for the yield and the plastic potential surface for the two

above models are (see also Chen and Han, 1988):
(a) Drucker-Prager yield surface:

(6.3.21)

In this case we have 

(6.3.22)

(b) Mohr-Coulomb yield surface:

(6.3.23)

where m denotes the mobilized Mohr-Coulomb friction angle. In this case we have

(6.3.24)

with

(6.3.25a)

Figure 6.3.4 Drucker-Prager and Mohr-Coulomb models matched along the compression
meridian in (a) principal stress space, and (b) in the deviatoric plane.
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(6.3.25b)

(6.3.25c)

(c) Drucker-Prager Potential Function:

(6.3.26)

where d is mobilized-dilatancy coefficient. In this case the plastic strain-rate gradient
becomes

whereas the conversion factors defined through equations 6.2.13 and 6.2.14 are

(6.3.28)

(d) Mohr-Coulomb Potential Function:

(6.3.29)

where ψm denotes the mobilized Mohr dilatancy angle. The plastic strain-rate gradient is
computed by expressions analogous to 6.3.24 to 6.3.25, where sin m is replaced by
sinψm; for example,

(6.3.30)

Notice that between the dilatancy functions d and sinψm, the following relation holds

(6.3.31)
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6.3.3
Data reduction and model calibration

Between the mobilized Mohr-Coulomb friction angle m and the stress obliquity angle σ
defined above through equations 6.3.23 and 6.3.7, respectively, the following
relationship holds

(6.3.32)

In geomechanics the experimental data which are used to calibrate a constitutive model
are obtained in most cases from triaxial compression tests. Sometimes data from triaxial
extension tests are also included. We notice that according to Figure 6.3.2 and the
formulae 6.3.11 these two tests correspond to the following configurations:

(6.3.33)

With (*) we mark above the common notations in soil and rock mechanics. Accordingly,
from equation 6.3.32 we obtain the following relations between the angular invariants σ
and m

(6.3.34)

with the upper sign holding for triaxial compression and the lower sign for triaxial
extension. As indicated in Figure 6.3.5, these expressions provide some restrictions for
σ  and m. If we assume the validity of D.-P. model, then tanфσ assumes the same

values in triaxial compression and triaxial extension. Then from equation 6.3.34 we
obtain that for

(6.3.35)

i.e. a D.-P. model is applicable as soon as

(6.3.36)

This is a considerable restriction as far as the applicability of the D.-P. model is
concerned. For example, for medium-grained, uniform dense sands, the typical
maximum (peak) value of the mobilized friction angle in triaxial compression is about 40°.
Moreover, it is found that the mobilized friction angle shows a minor dependency on αs0
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and thus a M.-C. model is a good selection for a yield condition for granular materials
(Goldscheider, 1976). 

The M.-C. yield function 6.3.20 is defined through two material functions a(no; gp) and
b(no; gp), which are interrelated as follows

(6.3.37)

where the M.-C. friction coefficient

(6.3.38)

evaluated under full plastic loading conditions, is the assumed unique material function.
Thus from equations 6.3.20, 6.3.37 and 6.3.38 we obtain,

(6.3.39)

Example: Calibration of a M.-C. model for sand. A calibration procedure is sketched here
using as example data from a triaxial compression test on dry sand. The material tested
was a medium-grained, dense Karlsruhe sand of initial porosity . More
information about the properties of this sand, tested under triaxial compression

Figure 6.3.5 Traces of the D.-P. and M.-C. yield surfaces in the deviatoric plane for m=30°.

 

212 BIFURCATION ANALYSIS IN GEOMECHANICS



conditions, can be found in the paper by Hettler and Vardoulakis (1984). In the
experiment reported here the specimen was rather stout (initial height  and
initial diameter ), to suppress diffuse bifurcations, and precautions were
taken so as to minimize end platen friction. Let  be the
lateral and hoop Cauchy stresses (logarithmic strains) and  ( ) the axial
stress (logarithmic strain) in the considered triaxial compression test. Under
axisymmetric conditions the first and second stress and strain invariants

(6.3.40)

(6.3.41)

The corresponding experimental data are summarized in Table 6.3.1. The confining
pressure during the first loading-unloading loop was , and was doubled for
the subsequent reloading process. Figure 6.3.6 shows the variation of the shearing
stress intensity T as a function of the shearing strain intensity g. Figure 6.3.7, on the
other hand, shows the corresponding variation of the volumetric strain v with g.

From the unloading, reloading loops and the assumption of constant elastic moduli, it
was estimated that the shear modulus and Poisson’s ratio of the tested sand are: 
 MPa, .

For selecting a mobilized friction function, data points corresponding to loading have
been used and the stress ratio

(6.3.42)

was plotted versus the cumulative plastic shear strain

(6.3.43)

In the hardening regime, the test results were then fitted by a ‘hyperbolic’ law (Duncan
and Chang, 1970)

(6.3.44)

which provides continuous hardening and a maximum mobilized friction coefficient at
infinite plastic strain . A first estimate of the constants can be obtained by
linear regression in a (1/f, 1/gp) diagram. A non-linear curve-fitting procedure has
yielded: ; . The corresponding  curve and
data points are depicted in Figure 6.3.8(a).

  
According to the volumetric flow rule of flow theory of plasticity, equations 6.2.13 to 6.

2.16, plastic volumetric strain increments

(6.3.45)
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are directly related to the plastic shear strain increments through a dilatancy function

(6.3.46)

For the selection of an appropriate dilatancy function d(gp) we resort here to the realm of
the so-called stress-dilatancy theories of soil mechanics (Taylor, 1948; Rowe, 1972),

Table 6.3.1 Triaxial test data for Karlsruhe medium dense sand (initial porosity n0=0.350) initial
height Ho=58.1 mm; initial diameter Do=69.4mm

Note: E=exponential; E−01 =×10–1 etc.
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which can be reformulated in a more rational way as follows: For isotropically hardening,
elasto-plastic materials the (first-order) plastic work of the stress on the plastic strains
is dissipated into heat (see section 6.2.4). Accordingly, the Second Law of
Thermodynamics requires that the first-order plastic work must be non-negative

Figure 6.3.6 Triaxial compression of Karlsruhe sand (n0=0.350). Deviatoric stress-strain curve.
First loading at σc=100 kPa, second loading at σc=200 kPa.

Figure 6.3.7 Triaxial compression of Karlsruhe sand (n0=0.350). Volumetric stress-strain curve.
First loading at σc=100 kPa, second loading at σc=200 kPa.

PLASTICITY THEORY FOR GRANULAR MATERIALS 215



(6.3.47)

Since during plastic loading dgp>0 this results in a well-known constitutive inequality
for the dilatancy coefficient

(6.3.48)

In Figure 6.3.9 the stress vector  and the plastic strain increment vector
 are plotted for a typically dilatant soil. Inequality 6.3.48 determines the

ultimate position of the plastic strain increment vector in stress space, which is that of

Figure 6.3.8 Mobilized friction and dilatancy coefficients: (a) f and d; (b) µ and β as functions of
gp.
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the normal n to the current yield surface. The so-called normality condition results here
in the condition, d=f, i.e. requires the coincidence of the plastic potential function with
the yield surface (Q≡F). (It is customary but rather misleading to call the corresponding
behavior ‘associative’.) We observe that for purely frictional materials the normality
condition results in zero dissipation ( ). This is of course counter intuitive and
has motivated the adoption of ‘non-associative’ plasticity models in soil mechanics.

In order to arrive at a simple mathematical description of the evolution of the
mobilized dilatancy coefficient for the general non-associative case, d<f, we may
generalize the above property of zero dissipation, holding for associative material
behavior. We assume that from the point of view of energy dissipation a frictional and
dilatant granular medium behaves like a purely frictional material with constant but
reduced friction

(6.3.49)

where the corresponding ‘effective’ friction coefficient  assumed to be constant. This is
known in the literature as Taylor’s stress-ratio dilatancy theory (Taylor, 1948). From
equations 6.3.47 to 6.3.49 then follows the simplest generalization of the normality
condition of classical flow theory, which is included in it for the degenerate case of zero
effective friction. It is customary, however, to call the corresponding flow-rule ‘non-
associated’, although Taylor’s rule provides a simple way to relate Q to F (the normals to
the plastic potential and yield surface always produce the same angle, not necessarily
zero).

For the evaluation of the effective friction coefficient we proceed with the observation
that this constant can be identified with the stress ratio at which the soil behavior turns
from contractant to dilatant. We may call this state also a state of isochoric plastic
volumetric strain, and denote it by the abbreviation (cv)

Figure 6.3.9 Geometric representation of a stress state at plastic yielding and of the
corresponding plastic strain rate in invariant stress space for the visualization of the flow rule and
of the first-order plastic work.
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(6.3.50)

Combining equations 6.3.47 to 6.3.50 we obtain the following simple ‘stress-ratio
dilatancy’ formula

(6.3.51)

In Figure 6.3.8 the data points d(gp) are fitted by the corresponding shifted ‘hyperbola’,
with . We notice finally that the M.-C. yield condition and flow rule are making
use of the mobilized friction and dilatancy angular functions

(6.3.52)

respectively, which are related to the functions f and d as follows:

(6.3.53)

In Figure 6.3.8(b) the measured and fitted M.-C. friction and dilatancy functions, µ and
β, are plotted against the total plastic shear strain gp. We notice that the maximum
friction angle is , and that the mobilized friction angle at cv is .

Remark on Drucker’s postulate for geomaterials. We saw above that the thermodynamic
requirement, that the local dissipation due to plastic deformation is strictly positive
under fully loading conditions, restricts only the volumetric part of the flow rule, leading
for frictional materials to a non-associative flow rule; cf. equation 6.3.48. Accordingly,
within the framework of elastoplasticity theory, geomaterials are described by the
constitutive equations for cohesive/frictional and dilatant media with non-associated
flow rule. In this case, Drucker’s postulate 6.2.54 is violated even in the hardening
regime of the material behavior. As shown in Figure 6.3.10, for continued plastic loading
the stress-rate vector is pointing into the exterior domain of the yield surface. Due to the

Figure 6.3.10 Stress probing in the various domains of positive or negative second-order plastic
work for Coulomb material.
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conical form of the yield surface there are then two distinct domains of material
behavior: (a) a domain with ∆2wp≥0, and (b) a domain with ∆2wp<0.

The existence of a set of stress probes with negative second-order plastic work in
frictional materials was first pointed out by Mandel (1964) who clearly stated that
Drucker’s postulate is not a necessary condition for stability. We notice that Mandel’s
idea of stability is the one of linear, local stability analysis of the elastoplastic-dynamic
initial value problem, i.e. it refers to the search for conditions for monotonic exponential
growth of small perturbations out of a given equilibrium state. After the lecture of Jean
Mandel (1964), Professor Drucker remarked however that “…the distinction between
stability in the large and in the small is important. Professor Mandel’s treatment of wave
propagation and the friction example are based on stability in the small…”.

6.3.4
Lade’s yield surface model

Experiments show that the peak friction angle of a granular material in triaxial
extension is typically a few degrees higher than that corresponding in triaxial
compression (cf. Green, 1972). A simple one-parameter model of yield surface that
accounts for such a behavior and does not deviate too much from the M.-C. model is a
one-parameter model, originally proposed by Lade (1977). In case of cohesive-frictional
material, Lade’s model (L.) can be written as follows

(6.3.54)

where I1τ and I3τ are the first and third invariant of a reduced stress tensor,

(6.3.55)

(6.3.56)

(6.3.57)

In equation 6.3.57 q is the parameter related to the cohesion of the material; cf. equation
6.3.1bis and Figure 6.3.3(b).

In terms of invariant angles, Lade’s yield condition, , can be written as

(6.3.58)

which, for given , can be seen as an equation for determining σ as a function of
αs0. Figure 6.3.11 depicts the typical trace of corresponding yield surface in the
deviatoric plane. In particular for triaxial compression ( ) and extension ( )
we have

(6.3.59)
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We notice that implementation of a M.-C. yield surface may lead to numerical difficulties
due to the existence of sharp corners. This is not the case with the L. model which, as
can be seen from Figure 6.3.11, provides a smooth yield surface. Taking into account
definition 6.3.1bis for tan σ, the gradient of the yield surface and the hardening
modulus are computed as follows

(6.3.60)

where ad(τ)ij is the adjoint of τij,

(6.3.62)

6.4
Extensions of isotropic hardening plasticity

6.4.1
Non-potential flow rules

The flow rule of flow theory of plasticity, equation 6.2.9, is ‘coaxial’, i.e. the plastic strain
rate tensor has the same principal axes as the Cauchy stress tensor. A co-axial flow rule

Figure 6.3.11 Deviatoric trace of the Lade (1977) yield surface.
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may be represented graphically in the three-dimensional principal stress or any other
stress-invariant space. For the models discussed above the flow rule derives from a
potential function Q(σij). For example, for a D.-P. model

(6.4.1)

Accordingly, the flow rule is split into a volumetric and a deviatoric part. The volumetric
part of the flow rule is represented in the (p, T) stress-invariant space, as already
discussed in the previous section, cf. Figure 6.3.9. The qualitative difference between a
D.-P., a M.-C. or a L. model is not seen in the (T, p) plane. For this we need to represent
the flow rule in the principal-deviatoric plane, where the vector  is attached to
the deviatoric trace of the corresponding plastic potential surface. As already mentioned,
in the case of a D.-P. model this is a circle, whereas in the case of a M.-C. model it is a
distorted hexagon (see Figure 6.4.1). In the latter case, of course, the potential function
has corners and, accordingly, in the definition 6.2.9 of the flow rule, one must exclude
these singular points, where separate values for the direction of the plastic strain rate
must be prescribed; cf. equations 6.3.30. In order to avoid this peculiarity of the M.-C.
model, several proposals exist like the above-discussed L. model, which interpolate
between the circle and the hexagon (cf. Kim and Lade, 1988).

Historically, associative plasticity preceded non-asssociative plasticity, since for
metals, the normality condition follows from pressure insensitivity and plastic strain-
rate incompressibility. If one decides, however, to abandon 

the concept of a flow rule associated to the yield surface F=0, through for example the
simple normality condition, then one realizes that besides convenience, there is no

Figure 6.4.1 Geometric representation of the deviatoric flow rule.
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physical reason to assume that plastic strain rates are related to a potential function Q
(σkl). Thus, one may generalize the flow rule 6.2.9, by assuming that the plastic strain
rate is given by an isotropic tensor function of the stress tensor, which does not
necessarily possess a potential function

(6.4.2)

Since Qij is an isotropic function of the stress tensor only, it follows that equation 6.4.2
is a co-axial flow rule as well. Dependence of the plastic strain rate on other tensors, like
for example an objective stress rate may lead to non-linear or non-co-axial flow rules.
Such non-potential flow rules will be discussed in chapter 8.

In order to discuss some interesting properties of the generalized linear and co-axial
flow rule 6.4.2 we first observe that the invariant tensor-valued function Qij of the stress
tensor σk1 is expressible in polynomial form

(6.4.3)

where

(6.4.4)

and the coefficients Qi ( ) are scalar invariants of the tensor σij. In view of
representation 6.4.3, the simplest one-parameter realization of Qij is (cf. Vardoulakis,
1981a)

(6.4.5.)

Notice that for , this flow rule coincides with the D.-P. rule. The deviatoric part of
the flow rule 6.4.5 is rewritten as follows

(6.4.6)

where

(6.4.7)

By using the notation

(6.4.8)

and the identities (cf. Thomas, 1961, p. 74)

(6.4.9)
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from the definitions

(6.4.10)

we obtain the following relation between the two angles of similarity

(6.4.11)

The D.-P. model corresponds to  and it is represented by the condition

(D.-P.)

which in the corresponding graph, Figure 6.4.2, is a straight line inclined at 45°, or a
circle in the deviatoric plane, Figure 6.4.3. For increasing values of the parameter C, the
corresponding integral curve in the deviatoric plane interpolates between the trace of a
D.-P. and the M.-C. model or beyond towards a Rankine-type triangle with circular sides.
For , cusps  develop at . Notice that for (cf. equation 6.2.14)

(6.4.12)

(6.4.13)

For the generalized D.-P. flow rule

(6.4.14)

Figure 6.4.2 Relation between cos 3αe-p0 and cos 3αs0 for D.-P. flow rule (C=0) and generalized D.-
P. flow rule C=0.686.
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which restricts C further

(6.4.15)

Within the frame of hardening plasticity theory, the parameter C is assumed to be a
function of plastic state, i.e. . The experimental calibration of C necessitates
the performance of experiments different than the triaxial compression or triaxial
extension tests. For example one could perform plane-strain experiments with
measurement of the (intermediate) principal stress, which is acting normal to the plane
of deformation. Goldscheider (1976) studied experimentally the deviation from the D.-P.
flow rule by using a true triaxial testing machine. Goldscheider’s experiments can be
seen as the soil mechanics counterpart of the classical Taylor and Quinney (1931)
experiments on metals. Similar experimental results on sands are also reported by Kim
and Lade (1988). Typically for sands, , and C reaches a maximum value at peak
strain. Figure 6.4.2 shows the above relationship 6.4.11 between cos3αs0 and cos3αe-p0
for  and  which corresponds to the best fit of Goldscheider’s experimental
data (Vardoulakis, 1981a). In Figure 6.4.3 the corresponding integral lines in deviatoric
plane are plotted. The integration was carried for 0≤αs0≤π/3, and symmetry relations
were used.

Figure 6.4.3 Integral curves for the non-potential flow rule (6.3.58) in deviatoric plane. (a) D.-P
model, C=0; (b) best fit of Goldsheider’s (1976) experimental results, C=0.686.
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6.4.2
Yield surface modifications

In the low stress limit, granular media are described by the so-called rigid-granular
(psammic) material model, for which there is no material property with dimension of
stress, and the behavior is given in terms of a set of non-dimensional properties, like the
mobilized friction and dilatancy coefficients. In this limit the angles m and ψm do not
depend on the mean (intergranular) stress, and the corresponding yield and plastic
potential surfaces are straight in a (p, T) stress space; Figure 6.4.4(a). However, there is
experimental evidence suggesting that the friction and dilatancy characteristics of a soil
are pressure sensitive, which in turn leads to modifications of the original linear Mohr-
Coulomb model (Lade, 1977) (Figure 6.4.4(b)). It is important to note also, that within
these non-linear Mohr-Coulomb models, even in the case of the non-associate flow rule,
plastic volume changes are related to the yield surface indirectly through the common
hardening parameter, namely a continuum isotropic measure of the average
interparticle slip. Plastic volume changes in granular media are also caused by the
increase of the mean intergranular stress due to compaction and grain crushing. This

Figure 6.4.4 (a) Linear Mohr-Coulomb Model; (b) non-linear Mohr-Coulomb model.
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effect is usually accounted for in the so-called ‘cap’ models by the introduction of a
second yield surface and a corresponding hardening parameter, which in turn is a
measure of the compactive (inelastic) strain. If one wants to account for both dilation
due to shear and compaction due to compression, one may resort to the so-called
double-hardening elasto-plastic models (Koiter, 1953) with straight or curved yield
surfaces (Vermeer, 1984); Figure 6.4.5(a). However, if plastic work is used as a
hardening parameter one may simplify the model by choosing a single yield surface,
which interpolates between the Mohr-Coulomb surface and the cap (Lade, 1988);
Figure 6.4.5(b).

6.4.3
Modeling of strain softening

The model calibration discussed in section 6.3.3 is valid in the small strain regime
which coincides with the strain hardening regime of the material behavior. As we will see
in chapter 8, at some given state with small hardening rates, the deformation ceases to

Figure 6.4.5 (a) The double hardening model with curved yield surfaces; (b) the work hardening
model.
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be homogeneous turning ‘spontaneously’ into a localized one. In other words, prior to
this equilibrium bifurcation the strains are moderate and the behavior is characterized
in most cases by continuous strain hardening of a homogeneously deforming specimen
(this is always true under plane-strain conditions). In the post-bifurcation regime the
deformation localizes into one or more shear bands and usually leads to global softening.
Accordingly, there is no direct way to measure the various material properties, like
mobilized friction and dilatancy, in the softening regime. In order to overcome this
difficulty, we discuss here a simple conceptual model of strain softening granular media
that was motivated from the work of Frantziskonis and Desai (1987) and was discussed
by Vardoulakis (1989), in relation to post-localization computations. It should be noted
that a similar model was suggested later by Bardet (1992).

According to Dietrich (1976) we distinguish in a granular medium among two
populations of grains: (i) the weak or frail fraction (f) with small coordination number,
and (ii) the strong or competent fraction (c) with large  coordination number. These two
fractions can be easily identified in representations of granular assemblies with
apparent intergranular forces; see for example Figure 6.4.6 from Cundall (1988). The
granular medium is accordingly perceived as a mixture of these two fractions, such that
during monotonous deformation processes of an ‘overcritically’ dense sand the average
coordination number is decreasing which would mean here that competent granular
fraction is irreversibly transformed into frail fraction.

As is usually the case in non-diffusing mixtures, the two fractions are assumed to
share common strains but to have different stresses. In other words, we assign different
partial stresses to the two phases, say  and , whereas the partial strain rates are
set equal, .

By introducing the volume fraction ratios

(6.4.16)

and by assuming statistical isotropy, the total equilibrium stress becomes

(6.4.17)

Changes in nf are assumed to be inversely proportional to changes in the average
coordination number which in turn are related to changes of the porosity. In particular
we assume here that the fraction ratio coincides with the relative porosity

(6.4.18)

where nmax and nmin are the maximum and minimum porosity of the sand (here: nmax=0.
45; nmin=0.35).

In granular media under shear elastic volumetric strains are small and thus changes
of the porosity are mostly irreversible. From mass-balance considerations, equation 5.2.
14, we then obtain that porosity changes are practically only due to plastic volume
changes,
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Figure 6.4.6 Distribution of contact forces in a 2D computer experiment by Cundall (1988).
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(6.4.19)

with the initial value . In triaxial compression the plastic
volumetric strains are linked to the plastic shear strains through the constraint 6.3.46
and Taylor’s rule 6.3.51

(6.4.20)

The total equilibrium stress is decomposed into a deviatoric and into a spherical part.
The behavior of the mixture is further specified by assuming that the mean pressure in
both fractions is the same (Frantziskonis and Desai, 1987), resulting in

(6.4.21)

Furthermore we assume that the frail fraction is at ‘critical state’, which mathematically
is described by the following conditions

(6.4.22)

where the critical friction coefficient is identified with fcv from Taylor’s rule

(6.4.23)

. From these assumptions we obtain the following expression for the mobilized
friction coefficient

(6.4.24)

With fc and fcv given, equations 6.4.19 and 6.4.20 can be integrated yielding the
following expression for the porosity

(6.4.25)

(6.4.26)

In the small strain regime we assume that the behavior is dominated by the response of
the competent fraction, i.e. in a first approximation step, we may assume that 
 and . Within an iterative scheme it was found

(6.4.27)

with ; . From this point of view, the competent fraction is
always hardening with a maximum mobilized friction angle=45.9°. Figure 6.4.7 shows
the evolution of f and fc in the small strain regime.

As already mentioned, in the post-bifurcation regime the deformation localizes into a
shear band, which leads to strain softening inside the band. Strain softening is modeled
here according to the above two-fractions conceptual model. From equations 6.4.24 to 6.
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4.27 we observe that for large values of  and . Figure 6.4.8 displays
the large-strain evolution of the material functions f and d and n. Thus, the above
presented material softening model contains implicitly the assumption that the critical
state is reached asymptotically for strains of several hundred percent. 

Figure 6.4.7 Small strain evolution of the friction functions f and fc.

Figure 6.4.8 Large strain extrapolation of the experimental data for the mobilized friction and
dilatancy coefficients in the softening regime.

 

230 BIFURCATION ANALYSIS IN GEOMECHANICS



6.5
2D-constitutive model for sand

6.5.1
Model justification

In many geo-engineering applications ‘long’ structures are studied (e.g. embankments,
earth dams, tunnels, etc.) which suggests investigating the material behavior under
plane-strain conditions. Accordingly, the behavior of the granular material in plane-
strain deformations is of certain interest, and the following sections will focus on this
subject. Ideally, for the analysis of plane-strain problems one should use data from
plane-strain tests as well. However, such data are usually not readily available, and the
behavior of the considered material under plane-strain conditions must be inferred
theoretically from provided triaxial test data. In the previous sections we saw that we
may have to select between competing models, e.g. the M.-C./D.-P. model (M.-C. yield
surface and D.-P. plastic potential surface), and the M.-C./M.-C. model. The M.-C./M.-C.
model is more attractive from the engineering application point of view, since in this
case the concepts of friction and dilatancy are the same for all values of the intermediate
principal stress and we do not have to distinguish, for example, between friction angle in
compression, in extension and plane strain. In other words, within the M.-C./M.-C.
model m and ψm depend only on the initial porosity, and the accumulated plastic strain
gp, and not on the value of the intermediate principal stress σ3.

Experimental results by Cornforth (1964) on sands tested under plane-strain
conditions indicated that for the most part of the deformation the out-of-plane principal
stress σ3 is approximately in constant proportion to the sum of the other two

(6.5.1)

cf. Figure 6.5.1. This result is very useful in terms of defining a consistent  and relatively
simple way of describing plane-strain deformations: It suggests the application of a 2D-

Figure 6.5.1 Rectangular specimen tested in plane-strain rectilinear compression.
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flow theory of plasticity, whose material constants and functions are easily derived from
or related to the ones of the corresponding 3D M.-C./M.-C. model. In order to
demonstrate this assertion, let us consider plane-strain deformations, and let the xα
(α=1,2) be the Cartesian coordinates in the plane of deformation; then

(6.5.2)

if we assume the validity of a 3D elastoplastic M.-C./M.-C. constitutive model, then the
plastic strain rates are given by the flow rule

(M.-C.)

where the potential Q does not depend on the intermediate principal stress. If in
addition we assume that the intermediate principal stress coincides with the stress
normal to the plane of deformation, i.e. if

(6.5.3)

then according to the M.-C. flow rule we obtain that

(6.5.4)

Finally, this equation together with 6.5.2.2 results in

(6.5.5)

From the elasticity equations

(6.5.6)

and equation 6.5.5 we obtain

(6.5.7)

Under these conditions, one may ignore the intermediate stress and study the behavior
of the material within a 2D constitutive model. Such a model is also suitable for direct
calibration on the basis of plane-strain (biaxial) test data, avoiding thus the
complications and uncertainties concerning the influence of the third stress invariant.

Figures 6.5.2 to 6.5.4 show the computational results from plane-strain test
simulations using the 3D constitutive laws discussed above in section 6.3 and for an
assumed constant lateral stress . From Figure 6.5.2 we discriminate the D.-
P./D.-P. model which in most applications is yielding unacceptably high deviatoric
stresses. As shown in Figures 6.5.3 and 6.5.4 for a M.-C.-type model condition (6.5.3) is
met after some small initial strain (in our example for |ε2−ε1|>1.25%). Finally we note
that a M.-C.  

model with a generalized D.-P. flow rule as discussed in section 6.4 provides smooth
response.
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6.5.2
Formulation

Considering only the components of the stress tensor σαβ in the plane of deformation, we
introduce a 2D stress tensor, whose components are again decomposed into spherical
part and deviatoric part

(6.5.8)

Figure 6.5.2 Computed stress-strain curve in the plane of deformation (σc=196.2 kPa): Models
with a M.-C. yield condition collapse together whereas the model with a D.-P. yield condition
shows higher strength.

Figure 6.5.3 Evolution of the angle αs for aM.-C./M.-C. and a M.-C./Gen.D.-P. (C=0.686) model.
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Furthermore, we introduce the so-called Roscoe stress measures, i.e. the mean stress σ
and the shearing stress intensity τ in the plane of deformation are defined as follows

(6.5.9)

Let also

(6.5.10)

(6.5.11)

be the corresponding 2D stress rate and 2D strain rate. The strain rate is decomposed
again into an elastic and a plastic part, i.e.

(6.5.12)

which, in turn, are also split into spherical and deviatoric parts

(6.5.13)

From 6.5.6 and 6.5.7, it follows that the 2D elastic shear and compression moduli are

(6.5.14)

and their ratio

(6.5.15)

Elastic strain rates are related to the stress rates through the equations of linear
isotropic elasticity

(6.5.16)

Figure 6.5.4 Stress paths in deviatoric plane for the M-C/M.-C. and the M.-C./Gen. D.-P. (C=0.
686) model.
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The yield function and plastic strain rate potential functions are of the Coulomb type
(Figure 6.5.5a),

(6.5.17)

(6.5.18)

where µ(ψ) and β(ψ) are the corresponding friction and dilatancy coefficients,which are both assumed to be
functions of an appropriate hardeningparameter ψ. From these particular representations we derive the

followingexpressions for the gradients of F and Q in stress space

(6.5.19)

where mαβ is the unit vector in deviatoric stress space co-axial to the stress

(6.5.20)

From the flow rule

(6.5.21)

Figure 6.5.5 (a) Mohr-Coulomb yield surface and plastic strain-rate vector. (b) Mobilized friction
function. (c) Mobilized dilatancy function.
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and equation 6.5.19.2 it follows that in particular the deviatoric plastic strain rates are
given by

(6.5.22)

From equations 6.5.20 and 6.5.22, it follows that the plastic .hardening parameter is the
second deviatoric invariant of the plastic strain rate

(6.5.23)

and thus

(6.5.24a)

or

(6.5.24b)

It is worth noting that there is a formal difference between the 3D and 2D measures of
plastic plane-strain hardening: If  and  ( ) are the corresponding
principal plastic deviatoric strain rates, we have

(6.5.25a)

(6.5.25b)

The friction and dilatancy coefficients are expressed in terms of the so-called mobilized
angles of friction m and dilatancy ψm. The term ‘mobilized’ is used to signify that m
and ψm are unique functions of the 2D measure for plastic shearing strain, 
(Figure 6.5.5b,c)

(6.5.26)

From the consistency condition

(6.5.27)

follows

(6.5.21bis)

where ht is the tangent modulus

(6.5.28)

With
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(6.5.29)

we obtain an expression for  which is consistent with the flow rule 6.5.21, and the
definition of the yield function 6.5.17

(6.5.30)

 in equation 6.5.30 is derived from the gradient of the yield surface in stress space as
follows

(6.5.31)

where Le is the 2D-elasticity tensor,

(6.5.32)

The plastic-, hardening- and snap-back moduli are expressed in terms of appropriate
non-dimensional quantities

(6.5.33)

(6.5.34)

where hT is the value of the hardening modulus at maximum deviator in isochoric
(constrained) motions. According to equation 6.5.34.1 h is a dimensionless hardening
modulus. In the consistency condition 6.5.30, <·> are the McAuley brackets. Since G»|
σ|, the hardening modulus |h|<<1. Moreover, for dilatant soils ψm>0 and thus hT<0.
From equation (6.5.23) it follows that indeed the plastic modulus H>0 and thus the
switch function can be defined as follows

(6.5.35)

The plastic strain rates can be thus written in the following alternative form:

(6.5.36)

where the plastic compliances are given by the expression

(6.5.37)

From the consistency condition 6.5.27bis and  we obtain the following alternative
form for the plastic hardening parameter
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(6.5.38)

or, with equation 6.5.34.1 and the condition ,

With this expression for  we obtain finally a simple generalization of the well-known
Prandtl-Reuss equations in 2D:

(6.5.40)

In these expressions we recognize a 2D manifestation of the small strain version of the
Rudnicki and Rice (1975) flow theory of plasticity for pressure sensitive and dilatant
materials, which in their original paper was discussed in connection with localization of
the deformation along a shear band.

Finally, by combining the expressions for the elastic and plastic part of the strain rate,
equations 6.5.16 and 6.5.24 with 6.5.30, we obtain the following rate equations for the
considered 2D flow theory of plasticity

(6.5.42)

where the elastoplastic stiffness tensor is given by

(6.5.43)

(6.5.44)

The tensor  is defined, in analogy to , equation 6.5.31, in terms of the mobilized
dilatancy function

(6.5.45)

and is related to the normal in stress space on the plastic potential surface passing
through the considered stress point. If we assume that the mobilized dilatancy angle
coincides with the mobilized friction angle ( ), then (i) , the plastic strain
rates are normal to the yield surface (normality condition), and the material obeys an
associate flow rule, and (ii) since  the elastoplastic stiffness tensor is symmetric.
Otherwise the material obeys a non-associate flow rule and the stiffness tensor does not
satisfy the major symmetry condition.
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6.5.3
Example of model calibration

Let a homogeneous, cuboidal soil specimen in an undisturbed initial configuration Co,
be subjected to a monotonous, quasi-static homogeneous rectilinear deformation 
, Figure 6.5.6(a). Stress and strain at C are given by the Cauchy stress tensor σαβ and the
logarithmic strain λαβ, measured with respect to the isotropic configuration Co. In the
Cartesian coordinate system (x1, x2) ofthe fixed-in-space principal axes of these tensors
the following representations hold:

(6.5.46)

(6.5.47)

where  with ℓα0 and ℓα (α=1,2) being the dimensions of the specimen in Co
and C, respectively. In the considered case, we obtain the following expressions for the
mean stress, and the shearing stress intensity in the plane of deformation

(6.5.48)

Similarly, we define the total volumetric strain and shearing strain:

(6.5.49)

During loading and at a state C, the mobilized-friction coefficient becomes
(Figure 6.5.6b):

(6.5.50)

where m is called the mobilized Mohr-Coulomb friction angle. 

For the considered rectilinear deformations,

(6.5.51)

and thus for the mobilized dilatancy angle ψm after Hansen and Lundgren
(Figure 6.5.6c) we obtain the following expression

(6.5.52)

Example: In the following, the experimental results are presented from a biaxial test on a
dry specimen of a fine-grained Dutch dune sand, the so-called Ostershelde sand (see
Figure 6.5.7 and Table 6.5.1; Vardoulakis et al., 1985; Vardoulakis, 1988). For the
description of the biaxial experiment and its evaluation we refer to Vardoulakis and
Goldscheider (1981) as well as to Drescher et al (1990). The initial porosity of the sand
was  (  and ). During this test the confining
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pressure was kept constant, . In Figures 6.5.8(a,b) the measured mobilized
friction coefficient sin m and volumetric strain ε for loading are plotted versus the shear
strain γ and are approximated by the following functions

Figure 6.5.6 (a) Initial (Co) and current (C) configuration of a rectangular specimen; Mohr circles
(b) of stresses and (c) of plastic strain rates, with definition of mobilized friction angle m and
mobilized dilatancy angle ψm.
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(6.5.53)

with d1=6.9980E−3, d2=1.3083E0, and

(6.5.54)

with d3=4.5684−1, d4=−1.6273E−2, d5=8.9074E+1.
Data from first unloading-reloading loops were used to determine the elastic constants

of the soil, resulting in a shear modulus,  and a Poisson’s ratio .
The mobilized friction and dilatancy functions,

(6.5.55)

can be determined by using this database from loading and unloading stress paths. This
procedure results in the following curve fits (Figure 6.5.9)

(6.5.56)

(6.5.57)

with , , and ( ). We notice that
the data support again Taylor’s stress-dilatancyrule (cf. section 6.3.3).

Table 6.5.1 Biaxial test data for Dutch dune sand dense sand (initial porosity no=0.383) initial
height 120=40.93mm; initial width 120=41.03mm

Note: E=exponential; E−01=×10−1 etc.
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7
Bifurcation analysis of element tests

7.1
Observational background

Constitutive laws on soils and rocks are classically calibrated on element tests
performed in the laboratory. Among them, the axisymmetric compression and extension
tests and the plane-strain compression tests are the most commonly used. For example,
Roscoe et al. (1963) have presented the results of so-called ‘special’ triaxial compression
and extension tests, where very precise records of the failure patterns have been taken.
These tests have shown that it is difficult to interpret the experimental data, due to
appreciable bulging or necking of the samples. Kirkpatrick and Belshaw (1968) and
Deman (1975) used an X-ray technique to investigate the strain field in cylindrical
specimens on dry sand in triaxial compression with and without lubrication of the end
platens. These experiments have shown that rough end platens support the
development of rigid cones at the ends. Lubrication prevents formation of these cones
(Figure 7.1.1 after Deman, 1975). The  deformation is uniform for moderate strains,
although bulging occurs at large strains. Bishop and Green (1965) studied the influence
of the slenderness of the specimens and the end friction and arrived at similar
conclusions. Non-uniform stress state in the specimen associated with non-uniform
deformation causes geometric softening in addition to the material softening caused by
the dilatancy of the material. Dresher and Vardoulakis (1982) have proposed an analysis
of geometric softening in triaxial tests on a cohesionless material in order to evaluate the
mobilized apparent friction angle. Their main conclusion is that non-lubricated end
platens yield unsafe values of friction angle and give an erroneous indication of the
extent of material softening.

As an improvement of the standard triaxial test, lubrication at the end platens has
been used. The experimental evidence corroborated, however, the assertion that it is not
possible to prevent inhomogeneous strain fields by refinements of the boundaries.
Figure 7.1.2 from Hettler and Vardoulakis (1984) shows that diffuse bulging in triaxial
compression tests on dry sand specimens. These tests were performed with lubricated,
enlarged end platens and deformations were monitored optically with a theodolite. The
initial dimensions of the specimens were  and  resulting in an



initial slenderness  (notice that conventional triaxial testing for soils and
rocks is done with ). These figures show the results for a dense specimen (

) and a medium dense one ( ). One observes that dense specimens are
very sensitive and that from the constitutive point of view, volumetric strain
measurements are difficult to interpret. Figure 7.1.3 shows pictures from an
undeformed and a deformed specimen with clear indication of diffuse bulging and (post-
peak) shear banding. These and other experiments on sand specimens with lubricated
ends showed also a sensitivity of slender specimens towards diffuse bifurcations: the
more slender a specimen is, the more it tends to bulge. For that purpose, Hettler and
Vardoulakis (1984) performed a unique series of experiments with very large and stout
specimens ( , ) with lubricated ends, and proved that
in this extreme setting diffuse bifurcations can be suppressed.

These results are forcing us to assume that spontaneous loss of homogeneity is
possible. This possibility can be investigated by asking for bifurcation modes under
ideal boundary conditions. If solutions of the corresponding equilibrium bifurcation
problem exist, it is reasonable to assume that imperfections only intensify this
tendency.

Theoretically bifurcation phenomena in axisymmetric conditions were first studied by
Cheng et al. (1971) in an analysis of the tension and compression test of elastic-plastic
cylinders. Hutchinson and Miles (1974) extended the analysis of necking bifurcation of
an incompressible cylinder under uniaxial tension to include transverse anisotropy.
Miles and Nuwayhid (1985) included compressibility. Axisymmetric bifurcations in
frictional materials were studied in a series of paper by Vardoulakis (1979, 1981, 1983)
and more recently by Chau and Rudnicki (1990). Chau (1992) extended the analysis to

Figure 7.1.1 Internal deformation field for dense sand. (a) Non-lubricated end platens; (b)
lubricated end platens (after Deman, 1975).
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non-axisymmetric bifurcations of cylindrical specimens, whereas Sulem and
Vardoulakis (1990) analyzed axisymmetric bifurcations in materials with
microrotational degree of freedom (Cosserat continuum) (see chapter 9). 

On the other hand, diffuse bifurcation modes of plane rectilinear deformations on dry
samples have been discussed by Vardoulakis (1981). This bifurcation problem is the soil
mechanics counterpart of the metal plasticity problems analyzed by Hill and Hutchinson
(1975), Young (1976) and Needleman (1979). Complete analytical solutions for

Figure 7.1.2 Optically recorded bulging in a specimen of (a) dense sand (n0=0.362).
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compressible materials have been recently presented by Chau and Rudnicki (1990) and
Bardet (1991).

Figure 7.1.2 (continued) (b) Medium dense sand (n=0.411) (from Hettler and Vardoulakis, 1984).
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7.2
Bifurcation analysis of the triaxial compression and extension tests

7.2.1
Problem statement

Let a homogeneous cylindrical rock specimen in an undistorted initial configuration Co
be subjected to a monotonic axisymmetric deformation  (Figure 7.2.1). An
equilibrium bifurcation mode is said to be taking place as soon as in addition to the
fundamental homogeneous axisymmetric motion of compression or extension, another
inhomogeneous perturbation solution exists that fulfils the same boundary conditions.
The assumption is made here that the two end platens are perfectly lubricated so that
the build up of frictional constraints is prevented. Stresses and strains at C are given by
the Cauchy stress tensor σij and the logarithmic strain λij, measured with respect to the

Figure 7.1.3 Initial and final shape of triaxial test sample with lubricated end surfaces (from
Hettler and Vardoulakis, 1984).
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isotropic configuration C0. In a cylindrical coordinate system (r, θ, z) of the fixed-in-space
principal axes of these tensors the following representations hold:

(7.2.1)

(7.2.2)

where index 1 (index 3) is related to the radial (vertical) direction,  and λ3=ln
(H/H0), with R (R0) and H (H0) being the radius and the height of the sample in C (C0). In
the considered case we obtain the following expressions for the mean pressure and the
shearing stress intensity: 

(7.2.3)

(7.2.4)

In the above expression, the upper sign is holding for triaxial compression and the lower
sign for triaxial extension.

Figure 7.2.1 Geometry of a sample subjected axisymmetric triaxial compression.
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7.2.2
A deformation theory of plasticity

Predictions of bifurcation phenomena depend strongly on the assumed constitutive
model. As it is pointed out in several papers (Vardoulakis, 1983; Sulem and Vardoulakis,
1990), a classical flow theory of plasticity with a unique hardening modulus leads
generally to unrealistic predictions for bifurcation phenomena in the axisymmetric
compression test. Rudnicki and Rice (1975) have discussed a yield vertex plasticity
model which leads to the introduction of a second hardening modulus in the incremental
constitutive equations. We present in the following a similar constitutive model based on
a small strain deformation theory of plasticity for elastoplastic, cohesive, frictional and
dilatant materials (see also Vermeer and Schotman, 1986). The present theory could be
viewed as a compromise between flow and damage (Krajcinovic, 1989) theories, that is, a
flow theory of plasticity with elastic properties depending on plastic strain.

Deviatoric strain are related to deviatoric stresses through the following expression

(7.2.5)

where

(7.2.6)

In this expression G is the elastic shear modulus, and Gs is another variable modulus
which is defined as follows. As in chapter 6 for classical flow theory of plasticity, we
introduce the concept of yield surface. For simplicity we adopt here a linear Drucker—
Prager one:

(7.2.7)

Gs is defined as a secant-type modulus, and its non-dimensional value  is
identified as the secant modulus to the assumed stress-ratio strain curve 

(7.2.8)

Similarly, an expression for the total volumetric strain is defined

(7.2.9)

where K is the elastic compression modulus. 
Rate constitutive equations can be derived through formal time differentiation of the

above finite strain-stress relations 7.2.5 and 7.2.9. For the deviatoric strain rates we
obtain

(7.2.10)

which, when contracted with sij, yields

(7.2.11)

If we introduce this expression for  into the consistency condition.
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(7.2.12)

We end up with (see also equation 6.2.20)

(7.2.13)

where

(7.2.14)

Similarly, through formal time differentiation of 7.2.9 we get

(7.2.15)

Inversion of equations 7.2.10 and 7.2.15 with 7.2.13 leads finally to the following form
of the constitutive equations of a coupled flow-damage theory (or deformation theory) for
an elastoplastic frictional and dilatant material:

(7.2.16)

where

(7.2.17)

(7.2.18)

with

(7.2.19)

From these derivations it follows that a deformation theory of an elastoplastic material
can be seen as a coupled elastoplastic flow theory. In such a theory the plastic stiffness
tensor is the same with the one of classical flow theory (see equation 6.2.28 with 6.3.22
and 6.3.27), whereas the elastic stiffness tensor depends also on the total plastic shear
strain. The elastoplastic coupling is introduced in 7.2.17 through the coefficient 1/
h0=gp/ge. For small plastic strains, i.e. in the close proximity of initial yielding ,
and the deformation theory coincides with the flow theory. For larger plastic strains,
however, the elastoplastic coupling is significant and, as far as stability and uniqueness
questions are concerned, it cannot be neglected.

For an initial state of axisymmetric, homogeneous deformation (triaxial test conditions),
we can derive the corresponding incremental constitutive equations. Let (°) denote the
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Jaumann time derivative and (r, θ, z) be the polar coordinates with the z-axis coinciding
with the axis of symmetry, we obtain:

(7.2.20)

with:

(7.2.21)

In the above equations h1, h2, h3 are given by:

(7.2.22)

7.2.3
Governing equations

To study the possibility for existence of a non-homogeneous deformation mode under
the boundary conditions presented above we consider the following fields

(7.2.23)

where ρ and ζ are dimensionless radial and axial coordinates:

(7.2.24)

R and H are the current radius and height of the cylindrical specimen, m is a modal
number and Km is a shape number:

(7.2.25)

The equilibrium conditions, expressed in terms of the Jaumann derivatives of the
Cauchy stresses read as follows (see section 3.1.4, equation 3.1.35):

(7.2.26)
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where t is the stress difference

(7.2.27)

Using the constitutive equations 7.2.20 and considering equations 7.2.23 equilibrium
equations 7.2.26 become:

(7.2.28)

where Lρ is the Bessel operator:

(7.2.29)

and

(7.2.30)

The general form of the solution of the system of differential equation 7.2.28 is:

(7.2.31)

where J1 (respectively J0) is the Bessel function of first kind and first order (respectively
zeroth order), A and B are integration constants. From equations 7.2.28 and 7.2.31 we
derive the following homogeneous system of equations.

(7.2.32)

The characteristic equation for β is derived from the requirement that non-trivial
solutions for the integration constants A and B exist, resulting in:

(7.2.33)

with:

(7.2.34)

Let Z1, Z2 be the roots of the characteristic equation 7.2.33; we distinguish among the
following cases:

(I) Elliptic complex regime (EC). Equation 7.2.33 has two complex conjugate roots (
). Let

(7.2.35)

(7.2.36)

The functions base is then:
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(7.2.37)

(7.2.38)

and the proportionality factors w1/2 are given by:

(7.2.39)

(II) Elliptic imaginary regime (EI). Equation 7.2.33 has two real negative roots (
). With:

(7.2.40)

the function base is:

(7.2.41)

where the coefficients wi are given by:

(7.2.42)

and

(7.2.43)

(III) Hyperbolic regime (H). Equation 7.2.33 has two real positive roots (Z1>0, Z2>0). With:

(7.2.44)

the functions base Ui Wi and the coefficients wi are given by equations 7.2.37, 7.2.38
and 7.2.39, respectively.

7.2.4
Bifurcation condition

In the considered case, the boundary conditions express the assumption that along the
cylindrical surface of the specimen, a constant confining pressure σ3 is acting.
Mathematically, these conditions read

(7.2.45)

where ni is the unit outward normal on the cylindrical boundary of the specimen. In
terms of amplitude functions U, W these conditions become:

(7.2.46)

The general solution for the diflferential system 7.2.28 has the following form:
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(7.2.47)

The bifurcation condition is derived from the requirement of non-trivial solutions Ai,
resulting in the following eigenvalue equation:

(7.2.48)

where:

(7.2.49)

7.2.5
Example of triaxial compression test on medium dense Karlsruhe sand

We refer here to experimental data of triaxial compression tests on medium dense
Karlsruhe sand and to the calibration presented in section 6.3.3. Under axisymmetric
loading conditions, diffuse bifurcation may be observed in the softening regime. We thus
consider here the porosity softening theory discussed in section 6.4.3.

On Figure 7.2.2 we plot the plastic shear strain at bifurcation corresponding to the
mode m=1 versus the slenderness H/R of the sample for a confining pressure of 98.1
MPa. For slender specimens, diffuse bifurcation in the form of bulging is obtained for
smaller accumulated plastic strains than for less slender ones which is in good
accordance with the experimental observations. Bifurcation is obtained in the hardening
regime close to the peak (see Figure 6.4.7), i.e. for small positive values of the hardening
modulus. As shown in Figure 7.1.2, diffuse bulging was indeed observed at the peak of
the stress—strain curve for medium dense Karlsruhe sand.

7.3
Bifurcation analysis of the biaxial test

Let a homogeneous, cuboidal sample in an undistorted initial configuration C0 be
subjected to a smooth, quasi-static, homogeneous rectilinear deformation (Figure 7.3.1).
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We call the resultant configuration C. The boundaries of the sample in C are parallel to
the principal axes of the Cauchy stress tensor σi in C. The boundary conditions are such
that homogeneous deformation is possible. However, alternative solutions corresponding
to non-uniform deformation are also possible and we investigate in this section the
circumstances for which diffuse bifurcation modes such as bulging (symmetric
bifurcation mode) or buckling (antisymmetric bifurcation) can appear (Figure 7.3.2). 

Figure 7.2.2 Effect of the slenderness of the sample on the computed plastic shear strain at
bifurcation (m=1).

Figure 7 3.1 Geometry and boundary conditions of a sample subjected to plane strain
compression.
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7.3.1
Formulation of the diffuse bifurcation problem

In the case of plane strain loading, the equilibrium conditions expressed in terms of the
Jaumann derivatives of the Cauchy stresses read as follows:

(7.3.1)

where t is the stress difference

(7.3.2)

The boundary conditions express that on the top and at the bottom edges ( ), the
velocity is prescribed in the x2-direction without causing shear traction and that a
constant stress σ11 is applied on the lateral surfaces ( ) with lα (α=1,2) being the
dimensions of the specimen. Let  be the rate of the first Piola-Kirchhoff stress tensor,
the boundary conditions read:

(7.3.3)

We consider here a classical flow theory of plasticity as presented in section 6.5. The
rate constitutive equations for the ‘upper bound’ linear comparison solid, corresponding
to loading, are derived from equations 6.5.42 to 6.5.44. In the coordinate system of
principal axes of initial stress we obtain

Figure 7.3.2 Biaxial test: (a) symmetric bifurcation mode (bulging); (b) antisymmetric bifurcation
mode (buckling).
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(7.3.4)

where for the considered 2D-continuum model

(7.3.5)

The trivial solution of the above boundary value problem is a homogeneous stress and
displacement field. In order to investigate the possibility of existence of a bifurcated
velocity field corresponding to a non-homogeneous bifurcation mode we consider the
following fields:

(7.3.6)

where x and y are dimensionless coordinates:

(7.3.7)

The perturbation fields 7.3.6 automatically fulfil the boundary conditions 7.3.3 for
.

Using the constitutive equations 7.3.5 and 7.3.6, the boundary value problem defined
by equations 7.3.1, 7.3.3 and 7.3.4 becomes

(7.3.8)

with boundary conditions:

(7.3.9)

In the above equations the coefficients ai (i=1,8)  are given by

(7.3.10)

The general solution of the differential system 7.3.8 is

(7.3.11)

where A and B are integration constants. From equations 7.3.8 and 7.3.11 we derive the
following homogeneous system of equations.
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(7.3.12)

where

(7.3.13)

The characteristic equation for Z is derived from the requirement that non-trivial
solutions for the integration constants A and B exist, resulting to:

(7.3.14)

with:

(7.3.15)

7.3.2
Classification of regimes and bifurcation condition

As we have seen in section 7.2.3 in the bifurcation analysis of the triaxial test,
depending on the values of a, b, and c, equation 7.3.14 has four different types of
solution in Z:

EI elliptic imaginary when it has four imaginary roots,
EC elliptic complex when it has four complex roots,
P parabolic when it has two real and two purely imaginary roots,
H hyperbolic when it has four real roots.

In the following we shall distinguish between symmetric and antisymmetric solutions in
x1 and give the bifurcation condition for the various regimes of the solutions.

Elliptic imaginary regime (EI). This is the case when

(7.3.16)

The general form of the symmetric bifurcation velocity field is:

(7.3.17)

with

(7.3.18)

From the boundary conditions 7.3.9 we deduce the following bifurcation condition for
symmetric velocity in the EI regime:
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(7.3.19)

The general form of the antisymmetric bifurcation velocity field is:

(7. 3.20)

with

(7.3.21)

The same analysis as for the symmetric modes leads to the following bifurcation
condition for antisymmetric velocity in the EI regime:

(7.3.22)

Remark: For the short wave length limit ( ) we obtain the following bifurcation
condition:

(7.3.23)

Elliptic complex regime (EC) This case emerges when
(7.3.24)

The characteristic equation 7.3.14has two complex conjugate roots Z1=P+iQ, Z2=P−iQ. Let

(7.3.25)

The functions base of the solutions is then

(7.3.26)

with

(7.3.27)

The general form of the symmetric bifurcation velocity field is:

(7.3.28)
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From the boundary conditions 7.3.9 we deduce the following bifurcation condition for
symmetric velocity in the EC regime:

(7.3.29)

with

(7.3.30)

The general form of the antisymmetric bifurcation velocity field is:

(7.3.31)

From the boundary conditions 7.3.9 we deduce the following bifurcation condition for
antisymmetric velocity in the EC regime:

(7.3.32)

Parabolic regime (P): This case emerges when

(7.3.33)

Let

(7.3.34)

The functions base of the solutions is then

(7.3.35)

with

(7.3.36)

The general form of the symmetric bifurcation velocity field is:

(7.3.37)

From the boundary conditions 7.3.9 we deduce the following bifurcation condition for
symmetric velocity in the P regime:
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(7.3.38)

The general form of the antisymmetric bifurcation velocity field is:

(7.3.39)

From the boundary conditions 7.3.9 we deduce the following bifurcation condition for
antisymmetric velocity in the P regime:

(7.3.40)

Hyperbolic regime (H). This is the case when

(7.3.41)

Let

(7.3.42)

The general form of the symmetric bifurcation velocity field is:

(7.3.43)

with

(7.3.44)

From the boundary conditions 7.3.9 we deduce the following bifurcation condition for
symmetric velocity in the H regime:

(7.3.45)

The general form of the antisymmetric bifurcation velocity field is:

(7.3.46)

with

(7.3.47)

The same analysis as for the symmetric modes leads to the following bifurcation
condition for antisymmetric velocity in the H regime:
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(7.3.48)

7.3.3
Example: Biaxial compression test on a Dutch sand

For numerical examples we refer here to experimental data of biaxial test on a Dutch
sand as described in section 6.5. The constitutive equations of 2D flow theory of
plasticity were calibrated on the basis of pre-failure data from the considered biaxial
tests. The corresponding material constants and functions are summarized below (see
section 6.5.3):

For this example, the parabolic regime is never met. The boundary between the elliptic
complex regime and the hyperbolic regime is shown on Figure 7.3.3 as a function of the
confining pressure. This boundary corresponds to shear band formation as we shall see
in chapter 8. This figure shows that the critical plastic shear strain corresponding to
shear banding increases with confining pressure which corroborates experimental
observation (see Figure 8.3.3). For a given value of the confining pressure (

), the  critical plastic shear strain for the occurrence of symmetric and
antisymmetric modes with  is shown on Figure 7.3.4 as a function of the
slenderness l2/l1. This function has a quasi-periodic shape related to the periodic form of
the bifurcation condition in the hyperbolic regime (equations 7.3.45 and 7.3.48). The
diffuse bifurcation modes occur always in the hyperbolic regime except for large values
of the slenderness where antisymmetric mode is possible. Consequently shear band
formation which occurs at the transition between the elliptic complex and the hyperbolic
regime (see chapter 8) precedes diffuse bifurcation. We can thus conclude like
Vardoulakis (1981) and Bardet (1991) that the sand specimens may deform under plane
strain rectilinear deformation without occurrence of diffuse bifurcation.
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8
Shear-band bifurcation in granular media

8.1
Equilibrium bifurcation and stability

8.1.1
The Thomas-Hill-Mandel shear-band model

Localization of deformation into shear bands is one of the most interesting bifurcation
problems in solid mechanics. In this section the so-called Thomas-Hill-Mandel shear-
band model is presented, based on the assumption that shear banding may be described
as an equilibrium bifurcation from a homogeneous deformation. According to Rice (1976),
this approach investigates whether the constitutive description of homogeneous
deformation can admit a solution which is compatible with boundary conditions for
further homogeneous deformation, but which corresponds to non-uniform deformation
in a plane shear-band (see also Vardoulakis, 1976). In other words, we examine the
existence of discontinuous deformation modes as possible continuations of
homogeneous deformations and we examine their relation to particular constitutive
assumptions within the frame of elastoplasticity.

According to the definition proposed by Hill (1962), a shear band is viewed as a thin
layer that is bounded by two parallel material discontinuity surfaces of the incremental
displacement gradient (Figure 8.1.1). These material discontinuity surfaces D(1) and D(2)

are called shear-band boundaries and their distance, 2dB, is the thickness of the shear
band. Within the frame of constitutive theories without material length, the shear-band
thickness dB is indetermined. The solutions obtained from such constitutive theories are
 assumed to correspond to the limit  of a corresponding higher grade extension of
the underlying classical constitutive theory, which is equipped with a material length
scale. Such continuum theories are discussed in chapters 9 and 10.

The incremental displacement field outside the band, , and that inside the shear
band, , differ drastically, since inside the band a rapid change is assumed to take
place. Accordingly, in the vicinity of the shear band the exterior displacement field is
varying slowly, and thus, as the shear-band thickness tends to zero,  is only a



function of distance across the band. The displacement field in the domain of interest is
thus seen as a superposition of the two fields,

(8.1.1)

Let ±δi be the incremental displacements at the shear-band boundaries (Figure 8.1.1).
With , we do not imply separation but dilatancy of the material inside the band.
Under these conditions, the inhomogeneous displacement gradient field  is given by
the following expressions

(8.1.2)

where ni is the unit vector normal to the shear-band axis. With

(8.1.3)

across the shear-band boundaries the displacement field is continuous and only the
displacement gradient jumps. Accordingly, on D(v) (v=1,2) the following kinematic
compatibility conditions hold (cf. section 2.4)

(8.1.4)

Finally from equations 8.1.2 and 8.1.4 follows that

(8.1.5)

For a material discontinuity surface D the tractions across it must be in equilibrium. By
assuming equilibrium across a material discontinuity surface in the reference
configuration C, and by requiring equilibrium in the adjacent configuration , we have
(Figure 8.1.1)

(8.1.6)

or by using the definition 3.1.28 of the 1. P.-K. stress tensor

Figure 8.1.1 Linear approximation of the shear-band kinematic field 
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(8.1.7)

we have

(8.1.8)

By assuming that the initial stress, σij, is continuous across D in C,

(8.1.9)

from the above equations derive the following static compatibility conditions for the
increment of the 1. P.-K. stress tensor,

(8.1.10)

The increment of the 1. P.-K. stress tensor can be expressed, for example, in terms of
the increment of the Jaumann stress increment of the Cauchy stress tensor , cf.
equation 3.1.36. It is assumed now that the constitutive behavior is expressed by the
constitutive equations 6.2.59 of elastoplastic materials with smooth yield and plastic
potential surfaces and in terms of the Jaumann increment of the Cauchy stress tensor,
and thus

(8.1.11)

where

(8.1.12)

and Aijkl is given by equation 6.2.61.
We observe that there are two possibilities, namely that the constitutive behavior

across the shear band boundaries is either continuous or discontinuous. Concerning
continuous bifurcations a lower bound is obtained by identifying the stiffness tensor 
 of the ‘lower bound’ linear comparison solid of Raniecki, given here by equation 6.2.90,
cf. Vardoulakis (1988). Concerning discontinuous bifurcations one has to examine the
possibility that elastic unloading occurs outside the shear band while continued elastic-
plastic loading occurs within the band. If the elastoplastic constitutive law admits a single
smooth yield surface and plastic potential, Rice and Rudnicki (1980) have shown that
continuous bifurcation analyses on the basis of the ‘upper bound’ linear comparison
solid, described by the stiffness tensor  equation 6.2.94, provide the lower limit to
the range of deformations for which discontinuous bifurcations can occur. Accordingly,
we restrict ourselves here to the first possibility of continuous constitutive behavior

(8.1.13)

with

(8.1.14)
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From the above assumption that the stiffness tensor Cijkl is continuous across D(v), the
static compatibility conditions 8.1.10

(8.1.15)

By combining the above compatibility conditions with geometric compatibility conditions
for the incremental displacement gradient, equations 8.1.4, we finally obtain

(8.1.16)

where Гik is the acoustic tensor

(8.1.17)

In accordance with the general result obtained in section 3.4 concerning acceleration
waves, from the static compatibility conditions 8.1.16 it follows that weak stationary
discontinuities for the incremental displacement exist only if the acoustic tensor is
singular

(8.1.18)

Equation 8.1.18 is the characteristic equation in terms of the direction cosines ni of a
statically, kinematically and materially admissible discontinuity surface. If the
characteristic equation provides real solutions for the direction cosines ni, discontinuity
surfaces for the incremental displacement gradient exist and may also develop in due
course of the deformation. In the contrary the condition

(8.1.19)

is sufficient for the exclusion of discontinuous solutions for the incremental
displacement field (Hill, 1962).

For elastoplastic solids, the threshold to the bifurcation stress which satisfies the
characteristic equation 8.1.18 is usually expressed in terms of hardening modulus Ht;
cf. section 6.2.1. Because Ht is a decreasing function of the cumulative plastic strain, as
indicated in Figure 8.1.2, we seek the orientation (given by the direction cosines ni of the
discontinuity surface D(v)) for which the value of Ht is maximum (Rudnicki and Rice,
1975). For example, if geometric terms Aijkl are neglected, and if linear isotropic
elasticity, characterized by a shear modulus G and Poisson’s ratio v, is assumed, then
the critical hardening modulus for shear-band bifurcation is computed as the solution
of the following constrained maximization problem (Rice, 1976)

(8.1.20)

(8.1.21)

where
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(8.1.22)

Computational results for the critical hardening modulus and the corresponding critical
orientation angles of shear bands for various constitutive models for non-associative,
frictional elastoplastic materials are given by Molenkamp (1985). Ortiz et al. (1987)
provided numerical procedures for evaluating the above constrained maximization
problem, whereas analytic solutions of it are given by Bardet (1990) and Bigoni and
Hueckel (1990,1991).

Remark on rigid-plastic laws. Rigid plastic models for granular materials have been
studied extensively in connection with shear band formation and equilibrium bifurcation
by Vardoulakis (1980, 1981, 1983). In these models the constitutive equation which
relates the (plastic) volume change to the (plastic) shear strain increment is postulated as
an internal constraint, which is called the dilatancy constraint

The dilatancy constraint is in general a non-linear differential form. Vardoulakis (1981)
has demonstrated, however, that the non-linear dilatancy constraint can be linearized
for deformations which deviate only slightly from a straight ahead continuation of a
previous loading history. These linearized forms of the dilatancy constraint belong to the
class of internal constraints which are Pfaffian forms of the strain increment

For example, with , one recovers the well-known incompressibility constraint

Figure 8.1.2 The constrained maximization problem for the determination of the critical
hardening rate Ht (Rudnicki and Rice, 1975).
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In case of incompressibility, it is also well known that the spherical stress (1/3)σkkδij is in
determinate. In general, from the principle of determinism for simple materials subject
to internal constraint, it follows that the stress σij at any time is determined by the
deformation history only within a stress  that does not work in any motion satisfying
the constraints; cf. Truesdell and Noll (1965, section 30). In case of a linear differential
constraint form, this is expressed by an equation of the form

where λ is an indeterminate scalar; see also Kanatani (1982).
In the special case of ‘psammic’ material behavior, absence of an elastic domain, a

linear Mohr-Coulomb yield surface, and the dilatancy constraint restrict only the
direction of the stress vector in stress space. In other words, in this limit one cannot
distinguish between two stress states which only differ by a scalar multiplier. Thus for a
convenient formulation of rate-constitutive equations the mean stress  can be
used instead of the constraining (workless) stress  as the indeterminate quantity. This
is illustrated in Figure 8.1.3 in invariant stress space for the case of rigid-plastic
frictional/dilatant granular material.

In the aforementioned publications of Vardoulakis, it was demonstrated that shear
banding in the rigid-plastic model occurs earlier than in the  corresponding elastoplastic
model corroborating the stabilizing effect that has on the constitutive description the
existence of an elastic domain.

Following a remark by Professor Lippmann, Rice and Rudnicki (1980) examined also
the rigid-plastic limit of the elastoplastic shear-band analysis. If normality is not
satisfied, localization in the rigid-plastic limit appears to be possible at values of the
hardening modulus which are not admitted by the direct rigid-plastic analysis. Rice and

Figure 8.1.3 Use of mean stress as the indeterminate quantity.
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Rudnicki demonstrated, however, that modes which appear to be possible in the rigid-
plastic limit of the elastoplastic model involve rigid components and are in fact
inadmissible. Thus a rigid-plastic model for frictional materials is not a good
approximation of the corresponding elastoplastic model with high values for the
elasticity constants.

8.1.2
Mandel’s dynamic stability analysis

Linear dynamic stability analysis for elastoplastic solids obeying non-associative flow
rule was discussed first by Mandel (1964). Within the present framework, Mandel’s
stability analysis reads as follows: Starting from a state C of a solid body, an
infinitesimal transition  is considered which is described by the displacement field
∆ui(xk, t). This displacement field is assumed to be a linear combination of a ‘trivial’
mode, (xk), and of another, yet to be determined, ‘non-trivial’ mode, (xk, t),

(8.1.23)

It is assumed that the trivial mode produces an incremental stress field which causes
loading everywhere in the considered body. On the other hand, the amplitude of the non-
trivial mode is assumed to be small as compared to that of the trivial mode. This
assumption permits the use of the same constitutive description for both modes and is
met in order to overcome the difficulties arising from the non-linearity of an elastoplastic
constitutive model. This construction is analogous to Shanley’s (1947) solution for
elastoplastic buckling of a rod, and corresponds here to the use of the constitutive
equations 6.2.94 of the ‘upper-bound’ linear comparison solid.

Since the trivial mode satisfies equilibrium, the dynamic linear stability problem is
formulated in terms of the non-trivial mode

(8.1.24)

A simple class of perturbation modes corresponds to the so-called roller bifurcation mode
of a periodic pattern of layers under shear (cf. section 5.7.3)

(8.1.25)

where ni is the normal to the direction of the layers, S is the growth coefficient, Q the
wavenumber of the instability and Ci are constants. Thus, according to 8.1.25 we are
searching for spatially periodic solutions which are evolving exponentially in time. By
inserting 8.1.25 into 8.1.24 we obtain

(8.1.26)

First we notice the affinity between the dynamic stability problem and of the problem of
acceleration wave propagation. By comparing equation 8.1.26 and 3.4.13, we obtain

(8.1.27)
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where cm is the material wave propagation velocity. From equation 8.1.27 we observe
that if acceleration waves propagate with real speed (cm>0), then the underlying
continuum is locally, dynamically stable. In general, however, the acoustic tensor Гik
will be non-symmetric and real eigenvalues will not be guaranteed. This is because, even
in the case when the geometric terms Aijkl are neglected, due to non-associativity, the
stiffness tensor  wiSll not possess major symmetry property. Thus, in general, the
eigenvalue (−ρS2) from 8.1.26 may turn out complex (Rice, 1976). In any case, the sign
of the real part of the growth coefficient, S, will determine whether or not the considered
equilibrium state C is inherently stable or not. That is if Re(S)≤0 then C will be stable,
whereas if Re(S)>0, C will be unstable. Since in the latter case  for ,
Schaeffer (1990) has called the underlying perturbation problem mathematically ill-
posed.

Complex growth coefficient with positive real part, corresponds to a ‘flatter-type’
instability. Loret et al. (1990) have shown, however, that for a great class of materials,
obeying deviatoric normality (cf. equation 6.2.30), flatter instability is excluded.
Consequently Mandel’s stability analysis for non-associative elastoplastic solids obeying
deviatoric normality provides a neccessary condition for stability. This is the
requirement that all eigenvalues of every acoustic tensor are real and positive. In this
context, shear-band (continuous) bifurcation, characterized by the nullity of the
determinant of the acoustic tensor, equation 8.1.18, marks the end of the stable regime.
Past the shear-band bifurcation point, equilibrium of the ground state is unstable.

It is worth noticing that the theory of acceleration waves in elastoplastic solids was
first developed in the two milestone papers by Hill (1962) and Mandel (1962). The first
reference of Mandel’s (1964) stability analysis in relation to soil mechanics applications
is due to Professor Serrano (1972) in a panel discussion of the 5th European Conference
on Soil Mechanics and Foundation Engineering in Madrid, Spain. The research in the
mathematical foundations of bifurcation analysis in elastoplastic materials is ongoing.
For a detailed discussion of localization, uniqueness and stability in associative and non-
associative plasticity, the reader is referred to the research papers by Bigoni and
Hueckel (1991) and Bigoni and Zaccaria (1992a,b). 

8.2
Shear-band formation in element tests

8.2.1
Shear-band analysis in plane strain rectilinear deformations

As an application we restrict our demonstrations here to the 2D-constitutive model for
sands discussed in section 6.5. Assuming that the initial stress σαβ is continuous in C, in
the coordinate system of principal axes of initial stress, the statical compatibility
conditions are given here in terms of the Cauchy/Jaumann stress increment and the
jump of incremental spin
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(8.2.1)

where  is theonly significant component of the incremental spin
tensor.

The incremental constitutive equations for the ‘upper-bound’ linear comparison solid,
corresponding to loading, are derived frorn equations 6.5.42. In the coordinate system of
principal axes of initial stress we obtain

(8.2.2)

where for the considered 2D-continuum model

(8.2.3)

By using these constitutive equations, the compatibility conditions 8.2.1 together with
conditions 8.1.4

(8.2.4)

The influence of initial stress is given by the normalized stress difference

(8.2.5)

which in most cases turns out to be negligible (|ξ|«1).
For non-trivial solutions for the jumps of the incremental displacement gradient, from

equation 8.2.4 we obtain the following characteristic equation for the shear-band
inclination angle θ

(8.2.6)

where θ is measured with respect to the minor principal stress direction (Figure 8.1.2)

(8.2.7)

and

(8.2.8)
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The condition for shear-band bifurcation is derived from the requirement that the above
characteristic equation 8.2.6 has real solutions. This condition is firstly met at a state
CB (B for bifurcation) for which

(8.2.9)

For any state beyond CB, there are four solutions for the shear-band orientation.
According to the experimental evidence, however, the observed shear bands usually
belong to a single family of symmetric solutions. This observation justifies the selection
of 8.2.9 as the shear-band bifurcation condition. At CB only two symmetric shear-band
directions exist, given by

(8.2.10)

For the considered linear comparison solid, equation 8.2.2 can be solved in terms of the
critical hardening rate hB at the bifurcation point, resulting in (Mandel, 1964):

(8.2.11)

Similarly, from equation (8.2.10) we obtain

(8.2.12)

As already pointed out in chapter 6, in granular materials µ>β (cf. equation 6.5.57),
which suggests that shear banding in plane-strain deformations always takes place in
the hardening regime (hB>0). As first observed by Vardoulakis (1980), the dimensionless
hardening modulus at bifurcation is a relatively small number (hB«1). This observation,
considerably simplifies equation 8.2.12 for the shear-band orientation resulting in

(8.2.13)

where

(8.2.14)

Usually, , and the denominator in equation 8.2.14 can be approximately
equalized to unity: . This second approximation step
yields a simple formula for the shear-band orientation

(8.2.15)

that was first proposed by Arthur et al. (1977) on the basis of experimental observations
and was subsequently proven theoretically and supported experimentally by
Vardoulakis (1980).
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Let CC (C for Coulomb) be the state of maximum stress obliquity. In this state the
mobilized friction is maximum ( ). The experimental observation suggests that
also the dilatancy angle is maximum at CC. Let

(8.2.16)

It can be easily shown that at CC, two symmetric solutions for the shear-band
orientations exist, namely (Vardoulakis, 1978):

(8.2.17)

(8.2.18)

The first solution is the classical Coulomb solution whereas the second one is called the
Roscoe solution. In case of associative plasticity, according to equation 8.2.11 CB
coincides with CC, i.e. if  then

(8.2.19)

This means that for associated flow rule, Coulomb′s failure criterion is derived from a
bifurcation analysis. Coulomb’s criterion states that shear banding occurs at the state
of maximum stress obliquity and that the orientation of the shear bands coincides with
the planes across which the ratio of shear to normal stress is maximum.

The bifurcation analysis presented above applies to a full-space domain under uniform
state of stress, like the one shown in Figure 8.2.1(a). In the case, however, of a half-
space domain under uniform stress, a shear band will intersect in general the free
boundary, as shown in Figure 8.2.1(b). As pointed out by Benallal et al. (1990), the
effect of pressure-like boundary conditions at the free boundary can be accounted for in
the analysis by requiring that the same tractions exist at both sides of the shear-band
boundaries. This gives the additional condition

(8.2.20)

where mi is the exterior unit normal vector on the half-space boundary, and ∆πi is
defined according to a follower-load type law, equations 3.3.49 or 3.3.50. If one neglects
the influence of initial stress, then instead of condition 8.2.20 one has

(8.2.20bis)

With , the considered problem results in the following condition

(8.2.21)

For non-trivial solutions for the jumps , the determinant of the algebraic system 8.2.
21 must vanish, resulting in the characteristic equation

(8.2.22)
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which for small values of the hardening modulus yields the Roscoe solution,

(8.2.23)

Remark on non-associate perfect-plastic laws. Starting with Hill (1950), non-associated
flow rules in frictional materials have been widely discussed in the context of rigid,
perfectly-plastic, or elastic, perfectly-plastic material behavior (cf. Shield, 1953). The
idea was to approximate true material behavior with the relatively simple constitutive
law of perfect plasticity. All these models lead to two sets of distinct characteristics, the
so-called statical and kinematical characteristics; cf. equations 8.2.17 and 8.2.18.
Accordingly, the domains of solution for stresses and velocities do not coincide. The
existence of two sets of characteristics triggered extensive experimental investigations
aiming at determination as whether or not the zero-extension lines in soils coincide with
the static characteristics of the perfectly plastic solid; cf. Bransby and Milligan (1975).

A simple shear-band analysis for a hardening material obeying a non-associate flow
rule, proves that shear banding in plane strain occurs at positive hardening rates.
Perfect plasticity presumes, however, that plastic deformation and formation of slip lines
occurs at zero hardening rate. Thus, the perfectly plastic non-associate model cannot be
a good approximation of the hardening non-associate plastic model. This point has been

Figure 8.2.1 Shear banding in domains under uniform state of stress. (a) Full-space solution; (b)
half-space solution.
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overlooked in the literature, where perfect plasticity was adopted regardless of the flow
rule. Apparently, the adoption of perfect plasticity for soils has been borrowed from
metal plasticity, where the associative flow rule satisfactorily describes plastic
deformation; it results directly from incompressibility, pressure insensitivity and
coaxiallity. In all other materials, perfect plasticity is justified only if the flow rule is
associative.

8.2.2
Analysis of a biaxial compression test on sand

Figure 8.2.2 shows the ‘raw’ experimental data from a biaxial compression test, on fine
Dutch dune sand (cf. section 6.5.3), namely the variation of the axial force P and of the
lateral displacement, , with the axial displacement u2. The initial
dimensions of the tubular shaped specimen were: l10=41.03mm, l20=140.93mm, l30=79.
10mm. The specimen was loaded in plane strain under constant confining pressure,

. The force-displacement curve consists of one major loading path with two
unloading loops. Before first loading and after each unloading, X-ray radiographs were
taken in order to investigate the homogeneity of the specimen. The specimen contained
a small density imperfection of loose sand; (Figure 8.2.3a). At the state of maximum axial
load, a shear band was seen to emerge from the density disturbance (Figure 8.2.3b). The
evaluation of a series of X-ray plates from experiments with the same sand (Vardoulakis
and Graf, 1985; Vardoulakis et al., 1985) prompted the suggestion that homogeneous
deformations are disrupted at a shearing strain intensity which is bounded as follows,

(8.2.24)

The lower bound of the bifurcation strain, ( ) corresponded to that value of the
overall shear strain for which a first indication for shear-band formation could be seen
in the X-ray plate. Eventually the growing density in homogeneity reached the specimen
faces, leading to separation by a fully formed shear band. The upper bound for the overall
strain that corresponded to separation was estimated as, . 

We remark that X-ray detection of shear banding is an observation of porosity
localization. As explained in section 6.4.3, strong porosity changes must be
accompanied with local strain softening, i.e. with states of stress which lie past the
bifurcation limit of continuous bifurcations, which for plane strain and according to
equation 8.2.11 is in the hardening regime. This means that shear-band formation is a
post-bifurcation phenomenon within the frame of a classical non-associative plasticity
theory and that the theoretical shear-band bifurcation strain must be always less than
any estimate that stems from direct porosity localization observations.

In section 6.5.3, the constitutive equations of 2D flow theory of plasticity were
calibrated on the basis of pre-failure data from the considered here biaxial tests. The
corresponding material constants and functions are summarized below:
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Using these data, computationally the bifurcation strain γB, the corresponding critical
hardening rate hB and shear-band inclination angle θB can be found using the formulae
in the previous section. Experimental and computational results are summarized in
Table 8.2.1.

  
First, this table demonstrates a typical result of flow theory as applied to granular

media: the theoretical estimate for the shear-band bifurcation strain is significantly less
than a lower bound for the shear strain at which shear-band formation is observed

Figure 8.2.2 Data from biaxial tests: u2 (mm) axial displacement; u1 (mm) lateral displacement
stress; P (kN) axial load (Vardoulakis et al., 1985).
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experimentally (here a relative error of 33% in bifurcation strain). What is not seen
directly from this table, but can be easily demonstrated by parameter analysis, is that
the theoretical prediction for γB depends sensitively on the assumed value for the elastic
shear modulus (see for example Vardoulakis, 1988). All these observations mean that
non-associative flow theory of granular media underestimates the shear-band
bifurcation strain, and in that sense non-associativity severely destabilizes the
constitutive response. This defect of standard flow theory for granular media is
undesirable, as far as realistic constitutive modeling is concerned, and suggests
searching for further modifications of the standard plasticity model, which have to
counterbalance the destabilizing effect of non-associativity; see section 8.4.

Secondly, we observe from Table 8.2.1 that the prediction in the shear band
orientation angle is significantly better (with a relative error of 5%). Finally, we remark

Figure 8.2.3 X-ray plates showing the evolution of the porosity localizations (Vardoulakis et al.,
1985).

Table 8.2.1 Experimental and theoretical results on shear-band formation in a biaxial
compression test on fine grained Dutch dune sand (σc=294.3 kPa)
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that the approximate formulae 8.2.11 and 8.2.15 give fairly good approximations of the
exact theoretical results. This last observation leads usually to the statement that in
bifurcation analyses for granular materials the effect of initial stress is negligible.

8.2.3
Imperfection sensitivity of the biaxial test

Shear bands may emerge out of (a) various disturbances like density imperfections, (b)
surface anomalies and (c) hard or soft inclusions, i.e. out of interfaces between soft and
hard material. As already mentioned, shear bands are seen in X-ray radiographs as
localized zones of higher porosity and may be partially or fully formed. A partially formed
shear band does not separate the soil body into two parts and resembles very much a
‘crack’ (cf. Palmer and Rice, 1973). However, the classical Griffith crack of elasticity
theory is a ‘cut’, and its two faces are stress-free. The partially developed shear band on
the other hand carries both normal and shear stresses at its boundaries and is filled
with softer material.

Vardoulakis and Graf (1982) performed a series of biaxial experiments on dry sand
specimens which contained a small cylindrical wooden inclusion (diameter 8 mm),
placed perpendicular to the plane of deformation at the center of the specimen
(Figure 8.2.4a). The cylindrical surface of the inclusion is understood as the envelope of
the set of possible slip planes, as indicated in Figure 8.2.4(b). Figure 8.2.5 shows the test
data from the aforementioned biaxial experiment on dry, medium-grained, dense
Karlsruhe sand (Test BSE-7: n0=0.36, ). Figure 8.2.6 reveals in
successive X-ray radiographs (taken at various stages of the experiment) at least
qualitatively, any change in the porosity distribution in space. From these pictures we
observe that between states III and IV the horizontal displacement of the moving bottom
plate commences, indicating the complete development of a shear band, separating the

Figure 8.2.4 (a) The biaxial apparatus, (b) hard inclusion as an envelope of possible shear planes.
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specimen into two distinct blocks sliding relative to each other. The radiographs also
show that from the two evolving symmetric porosity localizations one finally dominates
and becomes a shear band.

Figure 8.2.7(a) shows a partially formed shear band in a biaxial test emerging out of
an interior density imperfection. This band, like the ones shown in Figure 8.2.6, is
straight as opposed to the one shown in Figure 8.2.7(b), which is emerging out of
surface imperfection, a notch. The latter is curved and flatter towards the free
boundaries (cf. Vardoulakis and Graf, 1985). These observations are in qualitative
agreement with the theoretical solutions summarized above in equations 8.2.15 and 8.2.
23, respectively. 

8.2.4
Spontaneous versus progressive localization

As described above, localization of the deformation in elastoplastic materials is
mathematically described by the Thomas-Hill-Mandel theory of equilibrium bifurcation,
which gives essentially the shear-band orientation angle θB and an estimate for the

Figure 8.2.5 Test data from a dry, medium-grained dense sand BSE-7 (Vardoulakis and Graf,
1982).
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critical hardening modulus hB, equations 8.2.15 and 8.2.11, respectively. The theory
considers localized deformation in an initially homogeneously deforming infinite domain
and constitutes therefore a local bifurcation analysis. Complementary experiments are
limited to initially homogeneous stress and strain fields and failure may be termed as
spontaneous, meaning that it may occur at any point, most probably out of subliminal
imperfections.

Notwithstanding the significance of this theory, one could address its appropriateness
in a more general case: that is, in the case of shear bands developing in a non-
homogeneous stress and strain field. The prevailing concept in this context is that of
progressive failure. According to this concept, a structure fails by increasing loads with
the gradual (progressive) formation of a shear band. Progressive shear band failure may
be linked to the local criterion as follows: It may be assumed that a shear band starts
from a given point at a surface or inside the body where the stress field first satisfies the
local bifurcation condition. Continued loading leads then further points of the body to
satisfy the local bifurcation condition. It is assumed that whenever this happens the
shear band is progressing through these points at an angle given by the characteristic
equation (Leroy and Ortiz, 1989). In section 8.5 we will return to the problem of
progressive failure by discussing a few cases as examples.

8.3
Shear banding in sands: experiment versus theory

Shear band formation in granular media has been investigated extensively in a series of
experimental studies by Arthur et al. (1977), Vardoulakis and co-workers (1977, 1980,
1982, 1985), Desrues and co-workers (1984, 1985, 1987, 1989, 1991), Tatsuoka et al.
(1990), and Han et al. (1991, 1993). This body of work refers mainly to element tests on
sands and focusses on the documentation of a shear-band ‘failure criterion’ that is a
statement on the strain γB, at shear-band formation, and on the shear-band orientation
angle θB with respect to principal stress axes. In granular media, shear banding is
influenced by one or more of the following factors: 

(a) porosity of the medium;
(b) confining pressure during the test, i.e. the level of effective isotropic stress at

bifurcation;
(c) stress-induced or inherent anisotropy of the medium;
(d) size and shape of the grains.

8.3.1
Influence of porosity

As demonstrated in chapter 6, in ordinary flow theory of plasticity the influence of
porosity is directly accounted for by selecting appropriately the various material
constants and functions:
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(8.3.1)

Theoretical predictions on shear-band formation, based on flow theory of plasticity are
very sensitive to the selection of the elastic shear modulus. Table 8.2.1 demonstrates
that it was possible to predict the experimentally measured shear-band orientation only
approximately with a larger error in the prediction of γB and a lesser error in the
prediction of θB. With constant elastic shear modulus, the procedure can be repeated for

Figure 8.2.6 X-ray radiographs showing the evolution of dilatancy localizations (Vardoulakis and
Graf, 1982).
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various values of the confining pressure σc of a biaxial test and the theoretical
predictions are usually not satisfactory. Bardet (1991) summarized the theoretical and
out to the limitations of the elastoplastic Mohr-Coulomb model. Figure experimental
work on shear-band orientation in frictional soils and pointed 8.3.1 from Bardet (1991)
compares the inclination angle  of shear bands that are measured
experimentally in a series of plane strain  experiments by Arthur et al. (1977),
Vardoulakis (1980) and Desrues (1984) to Vardoulakis’ theoretical solution,

.

8.3.2
Influence of confining pressure

The influence of the confining pressure on shear banding in biaxial compression tests on
sands has been investigated systematically in two doctoral theses by Hammad (1991)
and Han (1991). Figure 8.3.2 from Hammad (1991) (see also Desrues and Hammad,
1989) shows the measured dependency of (a) the axial strain ε2B at shear band
formation, and (b) the inclination angle , on the confining pressure σc in biaxial tests
on Hostun sand. The general trend is that ε2B and  (θB) increase (decreases) with σc. In
the same figure, Hammad has indicated the lines which correspond to the theoretical

Figure 8.2.7 Shear band emerging out of (a) an interior density imperfection; (b) a surface
imperfection.
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solutions of Coulomb, , Roscoe , and Vardoulakis
. From these plots we deduce that the experiments on Hostun sand

yield inclination angles between  and .

Figure 8.3.1 Shear-band inclination  versus ( B+ψB). , Arthur et al. (1977); , Vardoulakis
(1980); ∆, Desrues (1984); , Desrues (1984) local;——, theory. Data after Arthur et al. (1977),
Vardoulakis (1977), Desrues (1984) and Bardet (1991).

Figure 8.3.2 Influence of confining pressure for dense Hostun sand. (a) Axial strain ε2B, (b) shear-
band inclination  (Hammad, 1991). , ; +, π/4− /2; ×, π/4−ψ/2; *, π/4−( +ψ)/4.
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Similar results are reported by Han (1991), who tested a poorly-graded Ottawa sand.
The analysis of Han has shown that the significant difference between the theoretical
predictions, based on flow theory of plasticity, and experimental results cannot be
remedied by considering only the stress-level dependence of the elastic shear modulus,
i.e. by resorting to a flow theory of plasticity, with underlying elasticity a hyperelasticity
having stress-dependent elastic parameters. Han confirmed also that consideration of
geometric non-linearities which account for the state of initial stress, modify only
slightly the theoretical prediction. Moreover, Han found that consideration of a curved
yield surface in stress space has little bearing.

In Figure 8.3.3 the experimental results of Han and Drescher (1993) are compared
against the theoretical predictions for an elastoplastic model with constant values for
the elastic constants, taken as averages over the whole range of tested confining
pressures. In Figure 8.3.4, computational results for a rigid-plastic model are plotted
against the experimental findings. One  can see that the rigid-plastic model provides a
better fit than the elastoplastic model; cf. Vardoulakis (1980).

Figure 8.3.3 Influence of confining pressure for dense Ottawa sand. Experiment versus
elastoplastic model (flow theory): (a) shear strain intensity at shear banding γB, (b) shear-band
inclination angle θB (Han, 1991).
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The above results point at a major deficiency of flow theory. In the following we sketch
some ideas which have been proposed to modify the flow theory and to provide a better
model for the description of the experimental results. It turns out that the flow rule of
ordinary plasticity is very restrictive and needs to be modified drastically. For simplicity
we restrict ourselves here to 2D considerations, and we start our discussion by recalling
the expression of the plastic deviatoric strain rate in the 2D-plasticity model, which is
discussed in some length in section 6.5.2. In accordance with the Prandtl-Reuss
equations 6.5.40, the deviator of the plastic deformation rate,  can be written in the
following form, 

(8.3.2)

where h is the hardening modulus, A is a mixed invariant function of the stress and its
(objective) rate

Figure 8.3.4 Influence of confining pressure for dense Ottawa sand. Experiment versus rigid-
plastic model: (a) shear strain intensity at shear banding γB, (b) shear-band inclination angle θB
(Han, 1991).
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(8.3.3)

and mαβ is a unit vector in stress space which is parallel to the deviator sαβ,
(Figure 8.3.5a),

(8.3.4)

Equation 8.3.2 illustrates the fact that in ordinary flow theory of plasticity the plastic
deformation rate  possesses the same principal axes (it is ‘coaxial’) as the stress σαβ
tensor. The simplest modification of 8.3.2 is to consider additional terms, which will
account for the influence of the stress-rate itself on the direction of the plastic deviatoric
deformation rate. The resulting plasticity theory may be called after Kolymbas (1991) a
hypoplasticity (see Remark after section 3.2.4, page 73).
In the simplest hypoplastic flow rule in addition to the coaxial term there is a non-
coaxial term as well

(8.3.5)

where h1 is a new modulus controlling the deviation from coaxiality, and nαβ is a vector
in stress space which is normal to mαβ

Figure 8.3.5 Deviatoric stress space: (a) definitions of the mαβ and nαβ; (b) smooth yield function
and coaxial flow rule and yield vertex and freedom for non-coaxial flow rule.
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(8.3.6)

(8.3.7)

and  is the intensity of the deviatoric stress rate

(8.3.8)

In equation 8.3.7, α is the invariant angle in deviatoric stress space which measures the
deviation from proportional loading (Budiansky, 1959)

(8.3.9)

Note that for proportional loading,

(8.3.10)

and the contribution of the non-coaxial term in equation 8.3.5 is zero. The above
modification of the flow theory has been initially suggested by Rudnicki and Rice (1975)
and has been motivated by an argument in favor of a ‘yield vertex’ plasticity model;
Figure 8.3.5(b). As pointed out by Stören and Rice (1975), equation 8.3.5 is highly non-
linear and it is not clear how to describe the changes in the hardening moduli h and h1
under continued plastic flow. Moreover, the definition of loading and unloading is not
straightforward, although we find in the literature a number of works which deal with
these questions; see for example Christoffersen and Hutchinson (1979). Finally we
remark that Vardoulakis and Graf (1985) proposed such a modification of the flow rule
for a rigid-plastic model on the basis of ‘deformation theory’ of plasticity (cf.
section 7.2.2). In a recent study, Papamichos et al. (1992, 1995) have abandoned the
concept of yield vertex plasticity and developed a consistent, non-coaxial plasticity
model which we will discuss in section 8.4.

The above modifications of the plasticity flow rule result in significant changes in
material response for non-proportional loading paths. For example, if one considers
shear-band bifurcation out of a plane-strain rectilinear compression, both shear strain
at bifurcation and shear-band inclination depend sensitively on the shear modulus G* for
loading to the side,

(8.3.11)

where, as in section 8.2.1 (x1, x2) is the Cartesian coordinate system of principle
directions of initial stress. In flow theory plasticity with smooth yield surface and coaxial
flow rule, the shear modulus for loading to the side coincides with the elastic shear
modulus

(8.3.12)
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and plastic strain increments are coaxial to the stress vector in stress space, as shown
in the deviatoric plane representation of Figure 8.3.5(b). A slightly smaller value of G* is
given by the deformation theory (Vermeer and Schotman, 1986)

(8.3.13)

where Gs is the secant modulus. However, the magnitude of G* can be substantially
reduced if the yield surface possesses a vertex. As discussed by Christoffersen and
Hutchinson (1979), the sensitivity of the effect of the yield vertex can be examined by
introducing an additional material parameter C such that

(8.3.14)

C(α) in equation 8.3.14 is assumed to be a function of the Budiansky angle α, defined
through equation 8.3.9. In Figure 8.3.6 from Han (1991), the influence of C(α) on γB and
θB is shown.

8.3.3
Influence of anisotropy

Anisotropic plasticity models can be constructed by the consideration of additional
directors and tensors describing inherent anisotropy. The influence of differences in the
bedding plane of deposition of the sand in the specimen on shear band orientation was
studied experimentally by Tatsuoka et al. (1990) within an extended testing program on
Toyoura sand. The influence of inherent anisotropy formed during deposition process or
sample preparation is very well reproduced theoretically by the micromechanically
motivated constitutive model of ‘spatial mobilized plane’ by Nakai and Matsuoka (1983).

Stress-induced anisotropy of granular assemblies is reflected in the spatial
distribution of interparticle contact force orientation. Anisotropy in the fabric of grain
contacts and contact forces influences the flow characteristics of the assembly. In its
simplest manifestation stress-induced anisotropy is accounted for if one considers the
following hypoplastic modification of the Rudnicki and Rice rule (8.3.5). We recall first
that the flow rule of classical flow theory of plasticity is coaxial, . We
observe that in this case the plastic multiplier is inversely proportional to the
dimensionless hardening modulus, , and equation 8.3.2 is recovered. For
deviatoric stress probes which lie perpendicular to the stress vector, the nominator A
vanishes, since according to equation 8.3.3, A is proportional to the inner product
of deviatoric stress and stress-rate tensors. More important is the fact that classical
theory is described by a singular flow rule in terms of the hardening modulus h, which
simply is describing the physical observation that plastic strains increase with
decreasing hardening rate. Thus classical theory is virtually correct as h→0. If for some
reason we expect deviations from proportional loading far in advance of the state of full
plastification (e.g. equilibrium bifurcations at relatively small strains), then the classical
description may not be accurate enough. These remarks allow the reinterpretation of the
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deviatoric part of the flow rule of classical flow theory as the leading term of a more general
asymptotic power series of the form

(8.3.15)

where the coefficients ai are isotropic scalar functions of the mixed invariants of the
stress and stress-rate tensors. Thus a modification of the coaxial flow rule is at hand, so
that in the flow rule a regular term a0 appears, which reflects the effect of the deviation
from non-proportional loading on the magnitude of the plastic rate of deformation. In
view of the above observations we modify only the deviatoric part of the flow rule as
follows,

(8.3.16)

Figure 8.3.6 Influence of confining pressure for dense Ottawa sand. Experiment versus yield-
vertex model; (a) shear strain intensity at shear banding γB; (b) shear-band inclination angle θB
(Han, 1991).
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where f(α) is an appropriate invariant function of the angular function α, measuring the
deviation from proportional loading, equation 8.3.9. The flow rule 8.3.16 results together
with the consistency condition of flow theory in an expression like 8.3.15 with,

 and . A simple selection for f(α) in equation 8.3.16 is the non-
negative, bounded function

(8.3.17)

which can be used as a measure for the ‘direction’ of the stress-rate vector in deviatoric
stress space; cf. equation 8.3.7.

Considering, for example, a rectilinear deformation, in the coordinate system of
principal axes of initial stress the principal axes orientation angle of the stress-rate
tensor is

(8.3.18)

Thus we obtain that

(8.3.19)

For small deviations from proportional loading (0<|α|<<1) it is

(8.3.20)

This modification of the flow rule introduces an anisotropic effect which is seen more
clearly if we write down the rate constitutive equations in the coordinate system of the
principal axes of initial stress. Within a small strain incremental formulation, instead of
equations 8.2.2 we obtain

(8.3.21)

where the additional components of the stiffness tensor are

(8.3.22)

(8.3.23)

In this case the characteristic equation 8.2.6 results in (Vardoulakis and Graf, 1985;
Sulem et al., 1993),

(8.3.24)

where the upper sign holds for Θ>0 and the lower sign holds for Θ<0.
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(8.3.25)

As pointed out earlier by Vardoulakis and Graf (1985), perturbations of rectilinear
deformations, which correspond to a small deviation angle α, produce additional volume
changes which are proportional to the shear stress increment

(8.3.26)

Note that undrained torsional tests with saturated sand on hollow cylinder specimens
(Ishihara and Towhata, 1983) indicated that axes rotations produce an incipient
contraction; this would mean that DR<0. The influence of shear-stress increment on the
plastic volume dilation or contraction could be called Reiner dilatancy. (Reiner (1960)
and Vardoulakis and Graf (1985) called this phenomenon Reynolds’ dilatancy; however,
we prefer here to call Reynolds’ dilatancy the kinematic constraint that relates volume
changes of a granular assembly to the magnitude of average slip in that assembly.) For
1/DR=0, one recovers the classical dilatancy constraint of flow theory, which holds for
isotropic granular assemblies.

Appropriate choice of a measure of anisotropy (like Reiner’s dilatancy coefficient DR)
generally allows a better description of the experimental results on shear-band
formation in soil specimens which show inherent anisotropy due to the influence of the
orientation of the bedding plane of sand deposition. Yatomi et al. (1989), for example,
analyzed shear banding in clay soil and derived a complete fourth-order characteristic
equation, similar to equation 8.3.24. The considered structure of the flow rule, equation
8.3.16, explains the preferred orientation of shear bands in simple shear as indicated in
Figures 8.3.7 and 8.3.8 from Annin et al. (1987).

8.3.4
Influence of grain size and shape

In Table 8.3.1 and Figure 8.3.9 some typical experimental results are summarized
indicating the influence of grain size and shape and shear-band inclination angle θE
(Vardoulakis, 1977). As follows from this table, generally, the shear-band inclination
angle, θE, in biaxial tests increases with decreasing grain size and angularity. A
theoretical explanation of this finding is given by Vermeer (1990), who performed semi-
inversely post-bifurcation computations, taking into account the effect of boundary
conditions in the biaxial test and concluded that the Coulomb solution, ,
appears to be moreprobable for fine-grained sand. Although Vermeer’s analysis could not
becorroborated either in element tests or in more complicated boundary-value tests, for
example the deformation localization in cavity inflation experiments by Alsiny et al.
(1992), it now constitutes the only comprehensivestudy of the influence grain size on
shear band inclination.
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8.4
Non-coaxial plasticity model

As already mentioned, in order to arrive at better predictions for the bifurcation strain
one has to abandon the concept of classical coaxial plasticity flow rule and resort to
hypoplasticity flow rules, which consider one way or the other the effect of stress rate.
Following Papamichos et al. (1992, 1995) one can formulate a consistent non-coaxial,
elastoplastic model, with well-defined loading-unloading conditions. This is a mixed
hardening model, where the isotropic part of hardening is based on the coaxial flow theory
of plasticity, while the kinematic part is based on a modified Prager’s hardening rule.

Figure 8.3.7 The dominant shear band in simple shear.

Figure 8.3.8 Dominant (asymmetric) shear banding in simple shear. Echelon and reversed
echelon pattern upon shear stress reversal. After Annin et al. (1987), courtesy of Academician J.
Shemyakin. 
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For simplicity, a 2D model is presented here since 3D models can be easily constructed
following standard definitions of yield and potential functions which include the effect of
the third stress invariant; cf. section 6.3.

In accordance with the kinematic hardening rule suggested by Prager (1956), the
coaxial plastic deformation is associated with a yield function of the form

(8.4.1)

where ψ is the hardening parameter and ταβ is a ‘materially effective’ or ‘reduced’ stress.
The difference between the reduced stress, ταβ, and the true (equilibrium) stress, σαβ,
which shifts the position of the yield surface in stress space is called ‘relative’ stress,

(8.4.2)
For the reduced stress ταβ the deviatoric stress tαβ and its intensity  are defined,
respectively

(8.4.3)

The rate of deformation tensor is decomposed into an elastic and a plastic part

Table 8.3.1 Influence of grain size on shear-band inclination angle (Vardoulakis, 1977)

Figure 8.3.9 Experimental results on fine-grained sands by Vardoulakis (1977) and their relation
to Coulomb’s solution.
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(8.4.4)

The elastic part is related to the Jaumann stress rate of the Cauchy stress by a Hooke
type elasticity law

(8.4.5)

(8.4.6)

The plastic rate of deformation is further split into two parts, a part coaxial to the
reduced stress ταβ and another normal to it

(8.4.7)

In accordance with ordinary flow theory, the coaxial part of the plastic deformation is
expressed by a (non-associated) flow rule as

(8.4.8)

where  is the plastic potential function and the scalar function  is the rate
of the hardening parameter ψ The normal plastic rate of deformation is expressed by a
non-coaxial flow rule in the form

(8.4.9)

where h1 is the rate of hardening in the normal to the ταβ direction. The tensor  is
assumed to be purely deviatoric

(8.4.10)

The non-coaxial plasticity model is made complete by consideration of an evolution law
for the relative stress,

(8.4.11)

These assumptions define a kinematic-type hypoplastic model. According to Mróz (1973)
in kinematic plasticity the local dissipation is given in terms of the materially effective
stress, which in turn is called dissipative or active stress, and of the plastic deformation
rate:

(8.4.12)

(cf. section 2.3.5). Accordingly, only the plastic-parallel deformation rate contributes to
the local dissipation, whereas the plastic-normal deformation rate is neutral. It is
emphasized that the normal (neutral) deformation rate  is irreversible as in the
original theory of Rudnicki and Rice (1975) in contrast with the deformation theory of
Vardoulakis and Sulem (1993), where  is part of the elastic deformation rate.
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For a Mohr-Coulomb, friction isotropic hardening model, the yield function and plastic
potential are written as

(8.4.13)

where , is the mean (in plane) normal stress. From the yield and plastic
potential functions 8.4.13, , are identified as the mobilized friction
and dilatancy functions, respectively. Moreover,  is equal to the deviatoric intensity of
the coaxial plastic deformation rate,

(8.4.14)

This formulation allows the resolution of the scalar function , from Prager’s
consistency condition, , or (cf. section 6.2.1)

(8.4.15)

Noting that  and , because  and  are both
orthogonal to ταβ, , can be solved from equation 8.4.15 as

(8.4.16)

where

(5.4.17)

and the following definition of the switch function <1>, expressing the loading criterion
for the coaxial plastic deformation rate:

(8.4.18)

The plastic coaxial deformation rate can now be determined from the flow rule 8.4.8 as

(8.4.19)

From equation 8.4.9 and with the help of equations 8.4.2 and 8.4.11, the normal
deformation rate can be written as

(8.4.20)

where

(8.4.21)
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From equations 8.4.4 to 8.4.8 and 8.4.20,  can be expressed in terms of the total
deformation rate Dαβ as,

(8.4.22)

resulting finally in the following expression for the total plastic deformation rate

(8.4.23)

The stress rate can then be determined from equation 8.4.5 using equations 8.4.4 and 8.
4.23

(8.4.24)

(8.4.25)

(8.4.26)

It can be seen from equation 8.4.26 that the non-coaxial modification of ordinary coaxial
flow theory of plasticity results in an additional term in the plastic stiffness tensor,
which expresses the non-coaxial character of the model.

In summary, we remark that such a model is a mixed-hardening material model that
incorporates an isotropic hardening rule for the coaxial plastic deformation rate and a
kinematic hardening rule for the non-coaxial plastic deformation rate. As a consequence
of the non-coaxial flow rule 8.4.9, normal plastic deformation is generated only during
principal stress rotations. For loading paths without principal stress rotations, only
coaxial plastic deformation is generated and the model’s response reduces to the
response of the isotropic hardening model of ordinary coaxial flow theory. Such a
response is in accord with the experimental evidence on non-coaxiality in sands
(Gutierez et al., 1991).

This constitutive model requires the specification of the material parameters and
functions associated with the isotropic and the kinematic part of hardening. The fact
that the model’s response reduces to the response of the coaxial flow theory, allows the

Table 8.4.1 Experimental and theoretical results on shear-band formation in a biaxial
compression test on fine grained Dutch dune sand. Coaxial versus non-coaxial modeling (σc = 294.
3 kPa)
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determination of the isotropic hardening functions  and , from biaxial
plane-strain test data or indirectly from triaxial test data. The kinematic part involves the
hardening rate h1 and parameter c, whose identification requires tests where principal
stress axes rotate, e.g. the hollow-cylinder torsion test (cf. Ishihara and Towhata, 1983).
Alternatively, such a model may be applied in shear-band predictions and the non-
observable (in ordinary tests) parameters may be back-calibrated for a best fit. Such a
procedure was first suggested by Vardoulakis (1980) and later by Hammad (1991).

As already mentioned above in section 8.3.2, the result of a shear-band bifurcation
analysis depends sensitively on the shear modulus  for shearing parallel to the
principal axes of initial stress; cf. equation 8.3.11. With

(8.4.27)

the result depends on the non-coaxiality parameter

Figure 8.4.1 Influence of confining pressure for dense Ottawa sand. Experiment versus non-
coaxial model: (a) shear strain intensity at shear banding γB; (b) shear-band inclination angle θB
(Papamichos et al., 1992).
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(8.4.28)

By an appropriate selection of the non-coaxiality parameter  the error in predicting
shear banding can be optimized (for example, it can be the same for both γB and tanθB).
For example, for the experiment discussed in section 8.2.2, Table 8.4.1 summarizes some
results of such a parameter study, which clearly the stabilizing effect of non-coaxiality.
The non-coaxiality parameter  is found to depend on the confining pressure, reflecting
the pressure sensitivity of the non-coaxial model. Figure 8.4.1 from Papamichos et al.
(1992) shows that Han’s experimental results concerning both γB and θB over a range of
confining pressures are reproduced for appropriate selection of .

As already mentioned, the above non-coaxial plasticity model as well as a more general
plasticity model based on a flow rule for  of the type of equation 8.3.5, fall in the
category of incrementally non-linear plasticity models or hypoplasticity models.
Bifurcation analyses on the basis of such rate-independent, non-linear rate-type
constitutive equations have been mostly carried out by two research groups in Germany
and France, led by Kolymbas and Desrues, respectively. For further reading in this area
of research the reader should refer to the papers by Kolymbas (1981) and his treatise of
1988, and to the papers by Desrues and Chambon (1989) and Loret (1987).

Remark on hypoplastic flow rules. The hypoplastic flow rules 8.3.5 and 8.3.16 can be
combined into a single one, which combines both stress-induced anisotropy and non-
coaxiality

The effect of non-coaxiality is given by the parameter  defined above through equation
8.4.28, whereas the effect of anisotropy by the parameter,

For  and , flow theory is retrieved. Parameter studies have shown
the following influence of  and  on shear banding: As  decreases from 1 to 0, 

while θB first increases and then decreases. The direct effect of decreasing  on θB is
decrease, but since at the same time  also increases one has as result non-monotonous
variation of θB. Increase of the anisotropy parameter , on the other hand, in a decrease
in  and an increase in θB. The combined effect of  and  can be used to match exactly
experimental results on both  and θB (Vardoulakis and Graf, 1985).
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8.5
Localization in inhomogeneous stress field

8.5.1
The cavity inflation test

In this section we discuss a simple test problem for investigating equilibrium bifurcation
in non-uniform stress and strain conditions. This is the thick-walled cylinder inflation
experiment, where a thick-walled cylinder is inflated in plane strain, with cavity volume
control under constant external pressure and lubricated ends (Figure 8.5.1; Alsiny,
1992; Alsiny et al., 1992). A series of tests was performed on sand specimens of aspect
ratio 1/10. The tested material was a dense, poorly graded, coarse and fine Ottawa sand
(Figure 8.5.2). From biaxial tests the material constants and functions were determined
independently and the results are depicted in Figure 8.5.3 (Han, 1991). The shear
modulus and Poisson ratio for the coarse (fine) sand were estimated to

 and  respectively. Finally, Figure 8.5.4
summarizes the measured dependence of the shear-band orientation angle θB on the
confining pressure in biaxial compression tests.

In the thick-walled cylinder inflation experiments and prior to bifurcation,  the stress
and strain non-homogeneity is one-dimensional. Figure 8.5.5 shows the measured

Figure 8.5.1 Principle of the thick-walled cylinder inflation test in plane strain; σc, σ0 internal and
external confining pressure.
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cavity pressure versus cavity volume change curve, demonstrating, at large strains, the
global softening behavior of the thick-walled cylinder under inflation. These tests have
shown that both diffuse and localized deformation modes occur. The diffuse deformation
mode manifests itself as a cavity surface rumpling, with a dominant wave number of

. The localized deformation mode is seen as a curvilinear shear band extending
from the cavity to the outer surface of the specimen (Figure 8.5.6). The measurement
techniques used in the tests did not allow accurately detecting either the onset or
growth of the deformation modes. It seems, however, that shear banding takes place
slightly beyond the peak in the cavity pressure versus cavity volume curve, and is
preceded by a diffuse surface rumpling deformation mode.

The plane strain inflation of the thick-walled cylinder is analyzed in an (r, θ) natural
polar coordinate system, as shown in Figure 8.5.7. Prior to bifurcation, the thick-walled
cylinder under internal and external pressure undergoes a uniform expansion in radial
direction which is determined by  the amount of displacement at the cavity wall
(Figure 8.5.8a), i.e. at any time stem ∆t the deformation of the material surrounding the
cavity is described by an incremental radial displacement field , which in turn
constitutes the trivial deformation mode. For the determination of the trivial solution,
and for a given set of incremental constitutive equations, one must first integrate the
equilibrium equation

(8.5.1)

In general, this has to be done numerically, utilizing for example the ring model of
Figure 8.5.9 and the transfer matrix technique (see section 4.2.2 and Vardoulakis and
Sulem, 1993). In this case, the space surrounding the cavity is discretized in N rings,
and for the ith ring, continued equilibrium leads to an Euler differential for the trivial
deformation mode

Figure 8.5.2 Grain-size distribution for coarse and fine Ottawa sand.
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(8.5.2)

where the coefficients cαβ are corresponding non-dimensional principal components of
the stiffness tensor of, say, the 2D upper-bound linear comparison solid, given by
equations 8.2.2 and 8.2.3, i.e.

(8.5.3)

Equation 8.5.2 can be integrated in each ring and the matrix transfer technique leads to
elimination of the intermediate integration constants and to the evaluation of the initial
stress field at any loading step. Figure 8.5.10 shows the computed distribution of the
radial and circumferential stresses as well as the corresponding stress path which is
followed by the material points along the radius: a point at the cavity surface follows the
entire stress path whereas points deeper inside the cylinder follow only a smaller part of
it.

If we want to apply Ortiz’s model of progressive failure, the thick-walled cylinder is again
regarded as a collection of separate rings, with the stresses known from the

Figure 8.5.3 Mobilized friction coefficient versus plastic shear strain for (a) coarse sand, and (b)
fine sand (σ0=200 kPa; Han, 1991).
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axisymmetric solution. It is then possible to determine the local shear-band inclination
angle in each ring. The dashed lines in Figure 8.5.6 show the predicted shape of the
shear bands at the peak differential cavity pressure recorded in tests. For all the
confining pressure applied, the shape of the predicted shear bands differs markedly from
that measured in the tests. Finally, a comparison may be done between the recorded
shear-band shapes with those resulting from the classical formulae of Coulomb and
Roscoe; equations 8.2.17 and 8.2.18. The results, shown in Figure 8.5.6, as solid lines,
validate Coulomb’s prediction.

According to the local shear-band criterion of bifurcation theory, a shear band has to
develop in the region between (SB)1 and (SB)0 points of Figure 8.5.5, so that if the
experiment is terminated between these two points one should observe a partial shear
band. Since a shear band was observed through X-rays only in the softening regime in
the differential cavity pressure versus cavity volume curve, this means that a
progressive failure model based on local bifurcation criterion cannot be applied in this
non-homogeneous boundary-value problem. It must be remembered, however, that local
bifurcation conditions only define the onset of shear banding, and strains must localize
significantly before the shear band becomes visible. In order to explain this discrepancy,

Figure 8.5.3 (continued) Mobilized dilatancy coefficient versus plastic shear strain for (c) coarse
sand and (d) fine sand (σ0=200 kPa; Han, 1991).
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we resort to the numerical bifurcation and post bifurcation analysis of Papanastasiou
and Vardoulakis (1992). In this work, the shear band in a cavity closure problem
emerges naturally from a symmetry-breaking solution in the post-peak regime, when the
global stiffness matrix becomes singular (see section 3.3.4).

8.5.2
Global bifurcation analysis of the cavity inflation test

Diffuse bifurcation of the thick-walled cylinder is analyzed by investigating the
possibility of warping of the cavity surface (Figure 8.5.8b). The components of the non-
trivial displacement field for warping deformation mode are given in terms of two
unknown amplitude functions of the dimensionless radius .

(8.5.4)

where m is the wave number of the bifurcation mode (m=1,2,…). With increasing m the
wavelength of the corresponding warping modes decreases.

We recall that for non-axisymmetric bifurcations, the physical components of the
infinitesimal displacement gradient in cylindrical coordinates are:

(8.5.5)

The equations of continued equilibrium for the considered infinitesimal transition can be
written as 

Figure 8.5.4 Shear-band inclination angle θB versus confining pressure from biaxial tests; after
Han (1991).
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(8.5.6)

The components of the incremental strains and accordingly the incremental stresses can
be expressed in terms of the amplitude functions U(ρ) and V(ρ). Substituting these
expressions into the continued equilibrium equations 8.5.6, we get the following system
of differential equations

where , and the coefficients ai and bi are known functions of the constitutive
parameters and of the modal number m

Figure 8.5.5 Measured cavity pressure versus cavity volume-change curves for: (a) coarse and (b)
fine sand (σ0=200 kPa; Alsiny et al., 1992).
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(8.5.8)

Figure 8.5.6 Experimentally observed and theoretically predicted shear bands in coarse sand with
σ0=200 kPa (Alsiny et al., 1992).

Figure 8.5.7 Transverse section of a thick-walled cylinder subjected to cavity and external
confining pressures.
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The general solution of the above system of Euler differential equations 8.5.7 is

(8.5.9)

where Ai are the integration constants, and

Figure 8.5.8 Cavity deformation modes: (a) uniform cavity expansion (trivial deformation mode);
(b) warping of cavity wall (bifurcation mode).

Figure 8.5.9 Discretization of domain—the ring model.
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(8.5.10)

are the basis functions. The exponents βi are roots of the characteristic equation

(8.5.11)

where

(8.5.12)

and the proportionality factor is given by the following equation:

(8.5.13)

The transfer matrix technique is utilized to formulate the bifurcation condition as
explained in section 4.2.2, resulting in a singularity condition for the global system
matrix

Figure 8.5.10 (a) Radial distribution of radial and circumferential stresses; (b) stress path
(σ0=200 kPa; Alsiny, 1992).
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(8.5.14)

Global bifurcation is detected by monitoring the sign, and the magnitude of the
determinant of the system matrix, [Y], during continued loading along the primary
solution branch, as shown in Figure 8.5.1 l(a) from Alsiny (1992). Alternatively, loss of
uniqueness is detected as soon as the global second-order work for the considered
bifurcation mode vanishes,

(8.5.15)

as shown in Figure 8.5.11(b) (see section 3.3.5).
The numerical results show that for the smallest wave number, min(m) global

bifurcation is detected in the hardening regime for coarse-grained sand and in the
softening regime for fine-grained sand both close to the peak of the differential cavity
pressure-cavity volume curve as shown in Figures 8.5.12(a,b) from Alsiny (1992)

(8.5.16)

Figure 8.5.11 (a) System determinant. (b) Second-order work versus cavity-volume change
(σ0=200 kPa; Alsiny, 1992).
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with max(m)=50 and min(m)=8 coarse sand, max(m)=25 and min(m)=5 for fine sand. It
seems that small wavelength modes (m large) are not persistent, and are obviously
‘cured’ during continued inflation of the cavity, in the global hardening regime.
Accordingly, shear bands seem to emerge in this test out of the large wavelength
rumpling modes (m small) of the cavity surface, since these rumpling modes occur close
to the peak, and according to the experiment are persistent in the softening regime of
the global system response. These findings are easily understood if one recalls (as
explained also in general terms in section 3.3.5) that failure of a local uniqueness
criterion does not necessarily imply global non-uniqueness (see also Bigoni and
Hueckel, 1990, 1991). However, a definite answer to this question and to the question of
global shear band geometry can only be given by computer-aided post-bifurcation
analysis similar to the one performed by Papanastasiou and Vardoulakis (1992) for the
cavity-closure problem.

8.5.3
Progressive failure

The classical paradigm of progressive failure in soil mechanics is the problem of limiting
‘earth pressure’ on a vertical wall. This problem was first analyzed by Charles-Augustin
Coulomb in his ‘Essai sur une application des règles de maximis & minimis a quelques
problèmes de statique, relatifs a I’architecture’ in 1773. In this section the problem of
‘passive’ earth pressure is considered and the experiments discussed hereafter were part
of a research report by Gudehus et al. (1985).

In this experimental program 1g model experiments were performed as shown in
Figure 8.5.13(a,b). The dimensions of the wall were: height ; width ,
and the material behind the wall was dry, standard Karlsruhe sand with a uniform
density of . Special care was taken such that the load E on the wall is
applied horizontally and that the wall itself undergoes a parallel translation with
minimal tilting.

The experimental results are plotted in terms of non-dimensional quantities: the non-
dimensional (passive) earth-pressure coefficient

(8.5.17)

and the non-dimensional horizontal displacement of the wall

(8.5.18)

At zero displacement the measured ‘at rest’ earth pressure was, ,  resulting
according to equation 8.5.17 in an at rest earth pressure coefficient, . In
Figure 8.5.14 the results from two tests are plotted in a (Kh, δh) diagram and are
smoothed by a hardening-softening rational function:

(8.5.19)
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with: . The limiting value of the earth
pressure is called passive earth pressure, Eph. Here Eph or the corresponding passive
earth pressure coefficient Kph are computed from the fit 8.5.19,

(8.5.20)

which occurred at horizontal wall movement of .
In the considered experiments the evolution of porosity localizations were monitored in

due course of the movement of the wall. For this purpose, X-rays were taken at regular
intervals of the displacement process. It turned out that close to peak load a horizontal
precursor localization formed (Figure 8.5.15a), to be followed by the dominant inclined
one. More importantly, at about 3% wall displacement the horizontal localization had
died out, whereas the inclined one had formed only impartially (i.e. 60% of its full length;
Figure 8.5.15b). At about 4% wall displacement, in the softening regime of the load-
displacement curve, one could observe a fully developed straight localization
(Figure 8.5.15c). This ‘failure plane’ was inclined with respect to the horizontal at an angle

(8.5.21)

Figure 8.5.12 Theoretical predictions of global bifurcation for (a) coarse and (b) fine sand (σ0=200
kPa; Alsiny, 1992).
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On the other hand Coulomb’s earth-pressure theory predicts the following values for the
passive earth-pressure coefficient and the corresponding inclination angle of the failure
plane

(8.5.22)

(8.5.23)

From equations 8.5.20 and 8.5.22 follows that , whereas from equations 8.5.21
and 8.5.23 that . If one considers the fact that at peak load no fully developed
failure plane was observable, this discrepancy in back-computing c really disqualifies
Coulomb’s earth-pressure theory in particular and puts a question mark on limit
analysis computations in general.

Figure 8.5.13 Experimental set-up for model earth pressure tests after Gudehus et al. (1985).

Figure 8.5.14 Passive earth-pressure coefficient versus non-dimensional horizontal wall
displacement (Gudehus et al., 1985).
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The high value of the measured passive earth-pressure coefficient in small, 1g model
tests is typical in soil mechanics literature, where it is well recognized that small model
tests are always ‘stronger’ than large ones (Vesic 1963; de Beer 1965). This phenomenon
can be related to two basic effects:

(a) Stress-level effect. This is the effect of confining pressure on the apparent friction
angle of the material. Usually, this effect is thought to be remedied by resorting to
centrifuge testing (increased g tests), such that the same stresses hold in similar places
in the model and in the prototype.

Reliable element tests at low stresses are difficult to perform and more difficult to
interpret, due to the influence of self-weight and end-platen friction (see for example

Figure 8.5.15 Evolution of porosity localizations in passive earth-pressure experiments. (a)
Precursor ‘horizontal’ shear band at δh=2.5%. (b) Partially developed inclined band at δh=2.75%
(Gudehus et al., 1985).
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Vardoulakis and Drescher, 1985). However, there is little disagreement that at low
pressures the apparent friction coefficient f increases, e.g. in a first approximation,
hyperbolically with intergranular pressure,

(8.5.24)

Then, according to equations 6.3.14 and 6.3.15, we obtain at low intergranular
pressures the following limit condition for the shear stress intensity

(8.5.25)

Thus, it is argued, that sand in this regime of low stresses possesses a small apparent
cohesion c, due to grain interlocking and capillarity;ƒC∞ in equation 8.5.25 is then the
friction coefficient at elevated pressures.

From triaxial compression tests on the same sand by Hettler and Vardoulakis (1984)
it is estimated that  which is in agreement with c from , equation
8.5.23. With this value, and in order to explain the discrepancy between the measured
value Kph and KC from Coulomb’s theory, one has to assume an apparent cohesion

. Such a value is rather high, since it corresponds to an unrealistically large
(perhaps tenfold higher) free standing height of a vertical cut of dry sand:

.
(b) Scale effect. As will be shown in chapters 9 and 10, the scale effect manifests itself

statically in increased strength. Geometrically, the scale effect is seen in the
aforementioned partial development of the shear band at peak load. Accordingly, the
length ℓ of the partially developed shear band at peak load is seen as an internal length
of the problem, i.e. a length determined by a material length rather than by a geometric
length. The only material length of a granular medium is some effective grain diameter.

Figure 8.5.15 (continued) (c) Fully developed inclined band at δh= 4.2% with inclination angle =
25° (Gudehus et al., 1985).
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Thus one may assume that ℓ is a function of the mean grain size d50 of the (considered
here uniform) sand

(8.5.26)

Under these circumstances, and irrespectively of the g value, a family of model tests
with the same sand but different heights h of the failing vertical cut are geometrically
dissimilar since the model law

(8.5.27)

is violated, resulting in a functional dependence (ℓ/h) on h, as indicated
in Figure 8.5.16(b) (Graf, 1984). Accordingly, a complete theory of progressive failure
should result in correction of Kph due to scale effect, e.g. to a formula of the form

(8.5.28)

f(•) in 8.5.28 is seen as a monotonously increasing function, which can be determined
from a family of model tests with the same sand and different geometric scale
(Figure 8.5.16c). We remark that the scale effect will persist in centrifuge testing, and its
consideration constitutes a necessary correction to be accounted for. Moreover, tests
with artificial material of scaled-down grain size are not a solution to the problem, since,
as it is well known from soil mechanics literature, important material properties depend
strongly on grain size and shape; cf. differences between sands (5mm>d50>0.1mm) and
silts (0.1 mm>d50).

In chapters 9 and 10 extensions of plasticity theory will be discussed which allow the
consideration of material length properties and lead naturally to scale effect.

Figure 8.5.16 Progressive failure in the passive earth-pressure experiment: (a) partially developed
localization; (b) geometric scale effect; (c) static scale effect.
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9
Cosserat continuum model for granular materials

9.1
Micromechanical considerations

9.1.1
Motivation

In a zeroth grade approximation step, the shear band is modelled as a stationary
velocity discontinuity line as shown in Figure 9.1.1(a), and has found its use in limit
equilibrium and limit analysis computations for rigid perfectly plastic continuum models
for soils. In first approximation, the shear band is bounded by two stationary
discontinuity surfaces of the velocity gradient. In this case, a linearly varying velocity
field fully describes the kinematics inside the shear band (Figure 9.1.1b). The band has
a thickness tending to zero as compared to any other geometric length scale of the
boundary value problem at hand. Such is the Thomas-Hill-Mandel shear band model
which is discussed in chapter 8.

The real deformation pattern of a shear band in a granular medium on the basis of
microscopic film observations was presented by Dr. G. Mandl in a seminar at the
Institut für Boden- und Felsmechanik, Universität Karlsruhe on the 17th of January
1974. In a DFG (Deutsche Forschungs-gemeinschaft) Report Vardoulakis (1974)
commented: “…There [i.e. in Mandl’s experiment] one could observe, that the shear band
(Scherfuge) consists of three parallel layers with different deformation patterns: A
central domain of simple shear was bound by two essentially thinner layers of very
strong shear deformation. An obvious model of such a shear band (2nd gradient
approximation) is shown in Figure 2.1” (this is reproduced here as Figure 9.1.1c).
Further in this report, the following shear band model was suggested: “…One considers
a structure which consists of two very thin shear zones (Scherzonen, thickness h2),
which are bounding the thin shear band (thickness h1). In the shear zones (h2) the
deformation is in a first approximation non-homogeneous, i.e. if we consider the parallel
(to the shear band axis) velocity (component) v1 of the material points across a shear
zone, then according to the mean value theorem (Figure 2.1):



(1)

From (1) follows that concerning the deformation inside the shear zones one has to
consider in a first approximation the second-velocity gradient. Accordingly (1) reflects
the non-simple material behavior within the shear zones (h2); (1) is an important
kinematic property of the shear band.”

Mandl’s experiment, and other subsequent tests on various granular media have
shown that what really dominates in these very thin shear zones is particle rotation. The
question naturally arose of how to account best for particle rotation. The answer to this
question is to resort to concepts from so-called Cosserat continuum mechanics, i.e.

Figure 9.1.1 Shear-band models of increasing complexity. (a) The limit analysis model of velocity
discontmuity line (b) The Thomas-Hill-Mandel pair of velocity gradient discontinuity lines at
vanishmg distance. (c) The early conceptual shear-band model based on Mandl’s experiment
(Vardoulakis, 1974).
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mechanics of continua with both particle displacement and particle rotation (Becker and
Burger, 1975).

In the following section we derive the basic micromechanical properties of a Cosserat
continuum model of a granular medium by extending the kinematics and statics of the
Schneebelli model material, which has been already discussed in the introduction of
chapter 6.

Remarks on pertinent literature on Cosserat continua. 50 years after the first
publication of the original work of the Cosserat brothers, Eugène and François (1909),
the basic kinematic and static concepts of Cosserat continuum were reworked in a
milestone paper by Günther (1958). Günther’s paper marks the rebirth of
micromechanics in the 1960s. Following this publication, several hundred papers were
published all over the world on the subject of micromechanics. A variety of names have
been invented and given to theories of various degrees of rigor and complexity, e.g.
Cosserat continua or micropolar media, oriented media, continuum theories with
directors, multipolar continua, microstructured or micromorphic continua, non-local
media and others (Hermann, 1972). The state-of-the-art at this time was reflected in the
collection of papers presented at the historical IUTAM Symposium on the ‘Mechanics of
Generalized Continua’, in Freudenstadt and Stuttgart in 1967 (Kröner, 1968). Finally, on
the subject of Cosserat elasticity recommendable for their clarity and didactical value
are the papers by H. Schaefer (1962, 1967) and Kessel (1964) in German, and Koiter
(1964 I & II) in English. For a comprehensive study of Cosserat continuum mechanics
one is referred also to the Lecture of Stojanović (1970).

There is no doubt that Cosserat continuum theory is mostly suitable for describing the
kinematics of granular media; this was clear in the minds of the scientists of this first
period among whom Mindlin (1964) is the most prominent proponent. However, early
applications of Cosserat theory for the description of the mechanics of granular media
were less encouraging. A criticism arose as far as the meaning and significance of couple
stresses in granular media is concerned (Brown and Evans, 1972; Bogdanova-Bontcheva
and Lippmann, 1975), and research in this area was briefly halted. It should be
mentioned that the theoretical difficulties concerning couple stresses are overcome by
adopting Günther’s (1958) and later Germain’s (1973a,b) ‘energy’ approach, i.e. a
continuum modeling approach which is based on the virtual work equation. Indeed, the
kinematics of granular media (particle translation and particle rotation) is easier to
grasp, as it is less intuitive to work with the fabric of intergranular forces. Thus one may
choose kinematics as a starting point and deduce statics from the virtual work
equation. This approach is followed for example in the papers by Mühlhaus and
Vardoulakis (1987), and Chang and Ma (1991).

We believe that the new interest in Cosserat theories in the mid ’80s and following
years is simply because the link was made by Mühlhaus (1986), Mühlhaus and
Vardoulakis (1987) between Cosserat continuum description and localization analysis
(see also Sluys, 1990; Steinmann, 1992). It was observed that in the post-localization
regime structures (shear bands) are formed, whose characteristic dimension (thickness)
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is governed by the grain size. This and other observations concerning particle rotations
have prompted testing the following conceptual model: In the pre-bifurcation regime of a
locally homogeneous deformation the underlying assumption is that the mean grain
rotation coincides with the average spin of a representative grain assembly which
contains this grain. Beyond the bifurcation point this assumption must be relaxed and
the grain must be allowed to rotate differently as its neighborhood. This hypothesis was
validated in Distinct Element computer simulations of shear banding in the biaxial test
performed by Bardet and Proubet (1992). On the other hand, observations by Oda
(1993) suggest that couple stresses are important in the development of the micro-fabric
of shear bands in granular media.

9.1.2
Kinematical considerations

At any material point of a Cosserat continuum we assign both a velocity and a spin
vector, Figure 9.1.2(a):

(9.1.1)

Accordingly we introduce the following kinematic fields: (a) The rate of deformation
tensor which corresponds to the average particle velocity vα and the corresponding
rotation tensor

Figure 9.1.2 (a) The kinematic degrees of freedom of the Cosserat continuum; (b) the kinematics
of two grains in contact.
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(9.1.2)

(b) the deformation due to the average particle rotation 

(9.1.3)

and (c) the gradient of the particle rotation which is also called the curvature of the
deformation,

(9.1.4)

The velocity gradient is identified with a macroscopic measure of deformation, and the
particle rotation as a measure of micro-deformation. The difference between micro- and
macro-deformation is a relative deformation tensor

(9.1.5)

We observe that in the Cosserat continuum, the symmetric part of the relative
deformation coincides with the rate of the macro-deformation and its antisymmetric part
with the difference between the macro- and micro-spin, i.e. with the difference in local
spin due to particle displacement and particle rotation

(9.1.6)

The granular medium is modelled here by a random assembly of rods with the same
radius Rg. By assuming two representative particles (rods) in contact as being embedded
in the Cosserat continuum, the relative velocity of these two rods at their periphery is
(Satake, 1968; Kanatani, 1979; Figure 9.1.2b)

(9.1.7)

where nα is the contact plane unit normal vector. The normal and tangential
components of the relative velocity at the considered contact point are then given by the
following expressions

(9.1.8)

As already discussed in chapter 6, the mean amplitude of the normal component of the
relative velocity vector, taken over all contact directions, defines an average measure of
the change of the distance of two grains in close proximity to each other, and thus a
measure for the dilatancy of the granular medium

(9.1.9)

On the other hand, the mean amplitude of the tangential component of the relative
velocity vector defines an average measure of the relative slip among the grains in
contact
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(9.1.10)

where  is the deviator of the relative deformation tensor

(9.1.11)

From the above kinematical definition of average interparticle slip, equation 9.1.10,
follows that the weights gi have the particular values, . The corresponding
measure for interparticle slip is then denoted as

(9.1.12)

Note that for this derivation, the assumption of uniform contact-normal distribution is
made. Thus together with the identities 6.1.6 use of the following identity was made

We observe that introduction of dimensionless coordinates

(9.1.14)

where ℓ is an arbitrary reference length, does not affect the rate of deformation, the
microrotation and the relative deformation,

(9.1.15)

However, the rescaling 9.1.14 is stretching the curvature

(9.1.16)

Accordingly if we refer the deformation to the grain-radius scale (i.e. if we set  in 9.
1.14) the above definition of volume dilatancy remains unaffected, whereas the definition
of average interparticle slip becomes

(9.1.17)

In order to recover from this definition, the classical definition of average interparticle
slip, we have to make the following two assumptions: (i) The curvature of the
deformation is small even at grain scale, and (ii) the grain rotations coincide with the
spin of the deformation. Indeed, under these conditions the last term in equation 9.1.17
is negligible, and, with an appropriate local rotation of the coordinate system, we finally
obtain

(9.1.18)
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Consequently, the above definitions of dilatancy and interparticle slip coincide with or
include the corresponding classical definitions as special case. This observation allows
us to retain unaltered the fundamental form of internal kinematical constraint, equation
6.1.12

(9.1.19)

It is worth noting that the curvature terms in the definition  introduce through the
constraint 9.1.19 a coupling between dilatancy and the gradient of grain rotation
(curvature).

Remark on restricted Cosserat continuum. A restricted Cosserat continuum is the one
for which the relative spin is vanishing  and thus microrotations coincide with
macrorotations

There is an affinity between restricted Cosserat continuum and the so-called 'gradient'
models, where higher-order gradients of the deformation are accounted for. To
demonstrate this we consider the example of simple shear deformations

For this motion, in a restricted Cosserat continuum

and from the Cosserat-continuum approximation for the average interparticle slip,
equation 9.1.10, we obtain the following expression

This shows that a restricted Cosserat continuum results in a definition of the interparticle
slip which depends on the strain and on its gradient.
Conversely a micromechanical model for granular material could be developed by
disregarding the particle rotations and by emphasizing higher strain gradients at the
grain-radius scale. In this case instead of equation 9.1.7 we have,

Figure 9.1.3 Simple shear of infinite strip.
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From this approximation it follows that the definition of dilatancy remains unchanged,
whereas the definition of average interparticle slip becomes

For the particular example of simple shear above expression yields to

This example demonstrates the similarities between ‘gradient’ models and restricted
Cosserat models.

9.1.3
Static considerations

As shown in chapter 6 the macroscopic Cauchy stress σαβ of a Boltzmann continuum is
related to the intergranular stress ∑αβ of the Schneebelli medium through appropriate
averaging over a distance , where R*>Rg represents the radius of continuum particle.
Accordingly in a Cosserat continuum, a macroscopic non-symmetric true stress σαβ and
true couple stresses µ3α are defined which have the same effect as the intergranular
stress over the extent of the considered macro-element (Figure 9.1.4). We notice that the
stress tensor σαβ in a Cosserat medium, in case of symmetry, coincides with the
transposed Cauchy stress tensor of the corresponding Boltzmann continuum. This
convention in notation has mainly to do with the evolution of these lecture notes. At
present we are forced to keep this notation since we want  to be mainly consistent with
the derivations of chapter 3, where for example the 1.P-K stress increment is defined as

 and not as, ).
Since the stress tensor σαβ is the average of ∑αβ over the considered dimension ,

equation 6.1.14, couple stresses are defined by the first moment of the normal
intergranular stresses,

Figure 9.1.4 Stresses and couple stresses in a Cosserat continuum.
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(9.1.20)

Consequently, the macroscopic stress tensor σαβ will be in general non-symmetric,
provided that the intergranular stress tensor fluctuates over the macroelement in an
asymmetric manner. For example, if x1 denotes the direction of a shear band, the
intergranular stress component ∑22 is expected to fluctuate asymmetrically in a fashion
that the crests of the waves always point in the direction of the applied shear stress σ12
(Figure 9.1.5).

Going back to the interaction among macroelements, intercellular contact tractions
can be defined by postulating a generalized stress tensor as follows

(9.1.21)

With

(9.1.22)

being the normal and tangential components of the intercellular tractions (Figure 9.1.6),
invariant measures of average, normal and shear contact  tractions over the periphery of
a macrocell result in the following definitions of mean stress and shear stress intensity,
respectively

(9.1.23)

(9.1.24)

Figure 9.1.5 On the relation between intergranular stresses and stresses in a statical Cosserat
model for granular material.
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where again sαβ denotes the 2D deviator of σαβ . From the above static definition of
average shear stress, equation 9.1.24, it follows that the weights hi have the particular
values , and thus

(9.1.25)

Accordingly the measure for the intergranular normal forces remains unaltered, whereas
the measure for the intergranular shear forces is generalized, so as to incorporate the
effect of stress asymmetry and that of the couple stresses. The above static definition of
shearing stress intensity, suggests replacing the couple stresses by stresses  which
with an equivalent lever  produce the same couple,

(9.1.26)

leading to

(9.1.27)

We observe again that for vanishing equivalent stresses  and symmetric stresses σαβ,
the above definition collapses to the classical one

(9.1.28)

The above generalization of the stress invariants, allows the direct adoption of
Coulomb’s field condition 6.1.20

(9.1.29)
It should be noted that  and τstat, defined through equations 9.1.12 and 9.1.25,
respectively, are not dual in energy as the corresponding classical measures are.
Therefore we can postulate at least two different theories of plasticity for granular
materials, one based on the kinematical definition of interparticle slip  and one based
on the static definition of average shear contact stress τstat.

Figure 9.1.6 The equivalent-stress vector at the boundary of a (multigrain) particle.

 

BIFURCATION ANALYSIS IN GEOMECHANICS 333



9.2
Basic concepts from Cosserat continuum mechanics

9.2.1
Kinematics of 2D Cosserat continuum

Let xα (α=1,2) be the Cartesian coordinates of a material point in a 2D Cosserat
continuum. To each material point a local, rigid coordinate cross is attached, such that
the center of this rigid cross coincides with the position of the material point. During
deformation the rigid crosses are moving with the velocity by υα and at the same time the
crosses are rotating with the spin  with respect to a fixed-in-space coordinate system
(Figure 9.2.1). The state of deformation is described by the four components of the rate
of the so-called ‘relative’ deformation (Schaefer, 1962)

(9.2.1)

and the two components of the ‘curvature’ of the deformation

(9.2.2)

A better understanding of 2D Cosserat kinematics is achieved if one splits the relative
deformation into a symmetric and an antisymmetric part:

(9.2.3)

where

(9.2.4)

The above definitions can be written also in abbreviated form

(9.2.5)

(9.2.6)

Following Mindlin’s (1964) terminology concerning continuum theories of materials with
microstructure we say that the velocity field υα describes the macroscopic deformation of
the continuum. Accordingly, the symmetric part of the velocity gradient is called
macroscopic strain. The Cosserat rotation plays then the role of micro-deformation, and
its gradient (curvature) plays the role of micro-deformation gradient. From above
equations we observe then that for the considered continuum the symmetric part of the
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relative deformation coincides with the macroscopic strain-rate tensor and that the
difference between macro- and micro-deformation appears only in the antisymmetric
part of the relative deformation, namely in the possibility that the average rotation of
individual grains in a small domain does not coincide with the spin of this domain as
this is reflected by the antisymmetric part of the (macroscopic) velocity gradient. If the
grains rotate with their neighborhood, then the additional kinematic degree of freedom

 disappears, with the consequence that the relative rate of deformation reduces to the
classical, symmetric strain-rate tensor,

(9.2.7)

Relative strains and curvatures in a 2D Cosserat continuum obey the following
compatibility conditions

Figure 9.2.1 Visualization of Cosserat-continuum kinematics. (a) Displacement and rotation of
rigid cross. (b) Relative rotation of two neighboring rigid crosses (curvature).
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(9.2.8)

Thus the compatibility conditions in a Cosserat continuum are less restrictive than the
corresponding compatibility conditions in a classical continuum,

(9.2.9)

9.2.2
Dynamics and statics

In a 2D Cosserat continuum, besides the four components of the stress tensor σαβ, there
are two couple stresses, . The equations of force equilibrium at the
element look formally the same as in classical continuum (Figure 9.2.2a):

(9.2.10)

However moment equilibrium (Figure 9.2.2b) results in:

(9.2.11)

Dynamic effects are included if the volume force and volume couple are identified with
the corresponding inertial forces and couple:

(9.2.12)

(9.2.13)

In these equations the inertia of distributed mass of the macro-medium is given by the
partial density ( )

(9.2.14)

where ρs the density of the grain and n the porosity of the medium.
On the other hand, the inertia per unit volume of the micro-medium due to its micro-

rotation is computed as follows (Figure 9.2.3): Let Lg be the angular momentum of a
spinning grain,

(9.2.15)

and the integration is carried out over the volume Vs of the grain. From equations 9.2.15
we obtain

(9.2.16)
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where Ig is the moment of inertia of the grain,

Figure 9.2.2 The derivation of equilibrium equations. (a) Force equilibrium; (b) moment
equilibrium.
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(9.2.17)

In 2D the grain occupies a volume  and its moment of inertia is distributed over
a volume . Thus the microelement V′ has a radius . Then
the angular momentum of the micro-medium per unit volume of the micro-medium is

(9.2.18)

where

(9.2.19)

and ρ is again the partial density of the granular medium given by equation 9.2.14.
From the dynamic equation 9.2.11 with 9.2.13 we observe that in the dynamic case

only micro-inertial effects suffice to cause asymmetry of the stress tensor. In the static
case the symmetry of the stress tensor follows when the couple stresses are self-
equilibrated. Thus, in a Cosserat continuum the stress tensor will be in general non-
symmetric.

Remark. Schaefer in his GAMM Lecture in 1967 gives credit to Boltzmann concerning
the axiomatic character of the symmetry of the stress tensor (Schaefer, 1967, p. 486 ff):
“…Die klassische Kontinuumsmechanik setzt an dieser Stelle ein Axiom: ‘…Der
Spannungstensor σik ist auch bei der Bewegung des Kontinuums symmetrisch’.
G.Hammel nennt diese Feststellung das Boltzmansche Axiom. Der berühmte Physiker
und Philosoph Ludwig Boltzmann hat in seinen Vorlesungen ‘Über die Grundprinzipien
und Grundgleichungen der Mechanik’, gehalten an der Clark-University im Jahre 1899,
nachdrücklich darauf hingewiesen, daß die Behauptung der Symmetrie des
Spannungstensors axiomatischen Charakter hat. Eine Kontinuumsmechanik mit

Figure 9.2.3 The computation of the micro-inertia.
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nichtsymmetrischen Spannungstensor ist (in Analogie zu einer nichteuk-lidischen
Geometrie) als nichtboltzmannsche Mechanik zu bezeichnen. Eine solche Mechanik ist
die des Cosserat-Kontinuums…”.

In order to appreciate the effect of an asymmetric stress tensor, we first consider the
tractions on an arbitrary plane, with unit normal ni and unit parallel vector mi
(Figure 9.2.4a)

(9.2.20)

The normal and tangential (shear) component of the traction vector can then be
expressed in terms of components of the stress tensor

(9.2.21)

or

(9.2.22)

(9.2.23)

From these expressions we recognize that the expression normal stress is the same as in
the classical continuum, and that the shear stress differs only from the classical by the
antisymmetric stress

(9.2.24)

Accordingly, the geometric locus of all possible 2D-stress states is a circle, which can be
seen as a shifted Mohr (1900) circle. The center of this circle of stresses is shifted
perpendicular to the σn axis by the amount of antisymmetric stress, as shown in
Figure 9.2.4(b). It should be mentioned, however, that in the general 3D case, the
geometric locus of stress states is not, as in classical continuum, a set of three Mohr
circles (see Unterreiner, 1994). 

9.2.3
Principles of virtual work

The stress power in a Cosserat medium is defined such that the symmetric part of the
relative deformation  is dual in energy to the symmetric part of the stress tensor σ(αβ),
the antisymmetric part of the relative deformation  is dual in energy to the
antisymmetric part of the stress tensor σ[αβ], and that curvatures  are dual in energy to
the couple stresses mα,

(9.2.25)

From this expression and equations 9.2.3 we obtain the following expression for the
stress power in a Cosserat continuum
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(9.2.26)

Following again Mindlin’s (1964) terminology, the symmetric part of the stress tensor, σ
(αβ), may be called the Cauchy stress since it works on the macroscopic strain, and σ[αβ]
may be called the relative stress since it works on the relative rotation.

The above expressions for the stress power suggest using instead of mα and ,
equivalent stresses to the couple stresses and dimensionless curvatures, which are
defined through an appropriate characteristic length ℓ, i.e. with

(9.2.27)

Figure 9.2.4 (a) Stresses at an arbitrary plane. (b) The ‘Mohr’ circle in 2D for non-symmetric
stress tensor.
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we obtain from equation 9.2.26

(9.2.28)

Based on the above expression for the stress power one can define the first-order virtual
work of internal forces within a finite volume V with boundary ∂V

(9.2.29)

where  and  are variations of the relative deformation and micro-rotation gradient
respectively.

The boundary ∂V is divided into two complementary parts ∂Vu and ∂Vσ, such that on
∂Vu kinematical conditions and on ∂Vσ static conditions are prescribed. Since υα (
and  are the kinematical degrees of freedom, the essential boundary conditions on ∂Vu
are

(9.2.30)

The natural boundary conditions on ∂Vσ are to prescribe the tractions tα and the couples
m. Then the virtual work of external forces reads

(9.2.31)

for arbitrary kinematically admissible fields (δυα, ). The test functions (δvα, ) are
said to be kinematically admissible, if

(9.2.32)

on ∂Vu on which kinematic constraints are prescribed.
Let also

(9.2.33)

be the virtual work of inertial forces. The virtual work principle states that fields (σαβ, mα)
which are satisfying the virtual work equation

(9.2.34)
they do also satisfy the dynamic equations 9.2.10 and 9.2.11 and appropriate stress and
couple stress boundary conditions. Indeed independent variation of the three degrees of
freedom of the 2D Cosserat continuum in the variational equation 9.2.34 leads to the
local dynamic equations

(9.2.35)
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and to the following boundary conditions on ∂Vσ

(9.2.36)

According to the above derivations we may conclude that the principle of virtual work
provides a natural way to introduce boundary conditions, which are consistent with the
generalized continuum at hand (Germain, 1973a,b). Of course the kinematic and static
boundary conditions 9.2.30 and 9.2.36 are not the only possible ones for such a
medium. The effect of boundary conditions (and especially that of the extra conditions,
required for the well-posedeness of the corresponding boundary-value problem) is
studied in problems where boundaries are playing the important role. Such problems
are interface mechanics problems (cf. Teichmann, 1990; Unterreiner, 1994).

9.2.4
The boundary-layer effect

The stress-strain relationships of a 2D-linear isotropic elastic Cosserat medium are
(Schaefer, 1962)

(9.2.37)

(9.2.38)

(9.2.39)

In these constitutive equations, K is the 2D-compression modulus and G is the
macroscopic shear modulus that links the (symmetric) macroscopic shear strain to the
symmetric part of the shear stress. The Cosserat shear modulus Gc links the
antisymmetric part of the relative deformation to the antisymmetric shear stress. Finally,
stress couples are linked to the corresponding curvatures through a bending modulus M,
which has the dimension of force. Thus in 2D Cosserat elasticity the problem is
governed by four material constants. As such we may select the following: (a) the shear
modulus G, (b) the material length for bending

(9.2.40)

(c) the Poisson ratio, −1≤v≤1/2, with

(9.2.41)

and (d) the coupling number

(9.2.42)

We observe that 0≤α≤1, and that the limiting case of  corresponds to the so-called
‘constrained’ Cosserat continuum. Due to , from equation (9.2.38.2) we obtain
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that in the constrained Cosserat medium the micro-rotation coincides with the macro-
rotation, ω=ωc.

In order to illustrate the effect of Cosserat terms, we consider here the example of small-
strain simple shear of a long layer of thickness H consisting of linear-elastic Cosserat
material (Figure 9.2.5; cf. Vardoulakis and Unterreiner, 1994). The thickness H of the
Cosserat-elastic strip is assumed to be at least one order of magnitude larger than the
elastic bending length ℓ In the case of simple shear of a long layer, all mechanical
properties are assumed to be independent of the x1-coordinate, which runs parallel to
the considered strip of material, i.e. , which results directly in , and
in m1=0. Assuming also that  at one boundary and  at the other boundary,
then the fields σ11, σ22 and ε22 vanish identically everywhere in the considered domain. In
that case the remaining equilibrium conditions

Figure 9.2.5 Simple shear of a strip consisting of linear elastic Cosserat material.
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(9.2.43)

(9.2.44)

At the so-called ‘interface boundary’, , and in accordance to equations 9.2.30, we
assume here that both displacement and Cosserat rotation are prescribed, i.e.

(9.2.45)

At the so-called ‘remote boundary’, x2=H, (H»ℓ) the displacement is set equal to zero and
the Cosserat rotation is constrained to be equal to the rigid body rotation, so that
conditions for classical continuum are enforced at this boundary:

(9.2.46)

From the last condition and equation 9.2.43 follows that the common rotation at the
remote boundary is given by the dimensionless shear stress, which constitutes one of
the four integration constants of the problem,

(9.2.47)

We observe that in simple shear both macroscopic rigid-body rotation and shear strain
are expressed by the macroscopic displacement gradient,

(9.2.48)

The problem is simplified if one introduces the quantity

(9.2.49)

Ωc measures the amount of Cosserat rotation in excess to the macro-continuum rotation,
which is observed at the remote boundary.

With the above notation, the equilibrium conditions 9.2.43 and 9.2.44 result to the
following equations for the unknowns of the problem

(9.2.50)

(9.2.51)

The solution of the above boundary-value problem may be expressed in terms of the
following quantities: (a) The dimensionless rescaled coordinate of a point in the layer,
measured from the interface boundary

(9.2.52)

(b) the scaling factor
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(9.2.53)

and (c) the interface-boundary data, i.e. the non-dimensional displacement

(9.2.54)

and the Cosserat rotation .
With this notation the dimensionless displacement , is given by the

following equation

(9.2.55)

and the Cosserat rotation is expressed as

(9.2.56)

where the common rotation ωH of the macro- and micro-medium at the remote boundary
is expressed in terms of the interface-boundary data and the scaling factor

(9.2.57)

From equations 9.2.54 and 9.2.55 one can see clearly that the Cosserat effect is
localized close to the interface boundary, x=0. Accordingly, a boundary layer is formed,
where the displacement profile is non-linear and micro-rotations differ significantly from
macro-rotations. In this boundary layer, asymmetric shear stresses are equilibrated by
the gradient of the couple stress.

As an example the so-called ‘kinematical’ Cosserat material is discussed here (
) for  ( ) and . We observe, that, in accordance

with equation (9.2.56), the classical continuum solution is retrieved, if the boundary
data are restricted such that, . In this case the condition  is enforced also
at the interface boundary . This solution is compared with a non-degenerate one
with , and the result is shown in Figure 9.2.6, where the displacement-and
micro-rotation fields are depicted. In Figures 9.2.7(a-c), the Cosserat solution is
presented in terms of the variation of strains, spins, shear stresses and couple stresses.
We observe that the Cosserat effect is confined in a boundary layer of about 3ℓ
thickness. More details about interface mechanics in elastic and elastoplastic Cosserat
continua can be found in Unterreiner (1994).  
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9.3
The Mühlhaus Vardoulakis Cosserat plasticity model

The Mühlhaus-Vardoulakis Cosserat plasticity model is conceptually based on the
micromechanically motivated Cosserat continuum generalizations of the second
deviatoric invariants of stress and plastic strain rate as outlined in section 9.1. A
micromechanical generalization of the third invariant is not straightforward as shown in
section 6.3.1. Thus this model is basically a 2D-constitutive model.

Figure 9.2.6 Interface mechanics. Displacement profile for: (a) linear displacement field for = =
−0.01; (b) non-linear field for = −0.1; = 0.01 (Gc/G = 2.0, ℓ/H = 0.1).

Figure 9.2.7 Interface mechanics. (a) Shear strain ε12, macro-rotation ω and micro-rotation ωc =
−0.1; = 0.01; (GC/G=2.0, ℓ/H=0.1).
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9.3.1
Definitions

A 2D flow theory of plasticity for granular media with Cosserat microstructure can be
derived by keeping the same definitions for the yield surface and the plastic potential as

Figure 9.2.7 (continued) (b) Shear stresses σ12 and σ2l ( =−0.1; =0.01; GC/G=2.0, ℓ/H=0.1). (c)
Couple stress m2 ( =−0.1; =0.01; Gc/G=2.0, ℓ/H=0.1).
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in the classical theory and by generalizing appropriately the stress and strain invariants
involved in these definitions. As in classical, small-strain plasticity theory, the
deformation is decomposed into elastic and plastic parts

(9.3.1)

Moreover the stress and the deformation are decomposed into spherical and deviatoric
parts,

(9.3.2)

(9.3.3)

Based on the micromechanical considerations presented in section 9.1, the following
generalized stress and strain invariants are utilized

(9.3.4)

(9.3.5)

We distinguish among a static and a kinematical plasticity model. It can be shown that a
kinematical model which is based on the micromechanical definition of interparticle
slip, equation 9.1.12, results in the following set of weighting factors,

(9.3.6)

A static model is based on the micromechanical definition of interparticle shear,
equation 9.1.25, and is given by

(9.3.7)

We note that in the above definitions the symbols Rs and Rk have been used to denote
the internal length of the statical model and that of the kinematical model, respectively.
From the considerations presented in section 9.1, only the internal length of kinematical
model is identified, namely , the mean grain radius. In view also of the simple
identification of the dynamic internal length , which according to equation 9.2.16
determines the micro-inertia of the spinning grain, the kinematical model seems to be
preferable, as providing a more clear physical picture. In the following derivations we
will not distinguish between the two different internal length scales, and the unique
symbol R will be used.

9.3.2
Elastic strains

In order to define elastic strains we postulate an elastic complementary energy density
function
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(9.3.8)

where K and G are the elastic shear and compression modulus. Elastic deformations
and curvatures can then be computed as follows

(9.3.9)

These definitions result in the following expression for the elastic strain and curvature
rates:

(9.3.10)

where

(9.3.11)

By using the notations

(9.3.12)

equation 9.3.10 can be written as a single matrix equation as follows

(9.3.13)

where the matrix [De] contains the elasticities of a two-dimensional, linear elastic,
isotropic Cosserat continuum 

(9.3.14)

and

(9.3.15)

9.3.3
Plastic strains

By analogy to the classical flow theory of plasticity for frictional materials, plastic strains
are defined by means of a Coulomb yield surface

(9.3.16)
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where as described in the previous section, σ and τ are generalized isotropic, invariants
of the plane Cosserat continuum, equations 9.3.4, and the hardening parameter µ is the
identified with the mobilized friction coefficient.

(9.3.17)

On the other hand, we postulate a plastic potential surface

(9.3.18)

where

(9.3.19)

is the mobilized dilatancy coefficient.
In flow theory of plasticity, the flow rule states that plastic strain increments are

proportional to a given vector {q} which is coaxial with the stress tensor

(9.3.20)

where {q} is the vector normal to the plastic potential surface in generalized stress space

(9.3.21)

resulting in

(9.3.22)

Similarly we define a vector {f} which is normal to the yield surface in generalized stress
space, by replacing in equation 9.3.22 the dilatancy coefficient β with the coefficient of
friction µ. Obviously {q} coincides with the normal {f} to the yield surface whenever the
friction and dilatancy coefficients coincide. In this particular case the material obeys an
associated flow rule, otherwise it obeys a non-associated flow rule. The condition 
is called again the normality condition, because in this case the incremental plastic
strain vector in stress space is normal to the yield surface.

9.3.4
Constitutive equations

The actual value of  is determined from Prager’s consistency condition, F=0 and dF=0,
the latter equation resulting in

350 OSSERAT CONTINUUM MODEL FOR GRANULAR MATERIALS



(9.3.23)

where

(9.3.24)

is the plastic hardening modulus.
In view of equations 9.3.13 and 9.3.20 the generalized stress rate { } can be expressed

in terms of the generalized elastic strain rate { } or the total strain increment { }

(9.3.25)

Combining the last two equations 9.3.23 and 9.3.25,  can be expressed as

(9.3.26)

Loading of the yield surface  takes place whenever . A switch function is now
defined such that

(9.3.27)

Finally the elastic-plastic stiffness matrix [Dep] is derived by combining equations 9.3.25
and 9.3.26

(9.3.28)

where

(9.3 29)

In general, rate-type constitutive equations must be formulated in terms of an objective
stress-rate measurelike the Jaumann derivative of the Cauchy stress,

. This reasoning holds also in the considered case of a Cosserat
continuum, where σαβ is the true non-symmetric stress tensor. According to
section 2.2.3, a similar definition holds also for the Jaumann derivative of the true
couple stress tensor,

(9.3.30)

Accordingly, in the rate constitutive equation 9.3.28, { } should be replaced by the
Jaumann derivative of the generalized stress.

It should be noted that in elasticity or deformation theory of plasticity Jaumann terms
cannot be neglected in general. However, in flow theory of plasticity for granular soils
with constant elastic shear modulus G, the Jaumann correction turns out to be
insignificant; cf. section 8.2.1.
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9.4
Prediction of the shear-band thickness

Vardoulakis (1974) conjectured that spontaneous loss of homogeneity in the form of
shear-band formation is a clear indication for the existence of an internal (material)
length scale. Indeed, there is ample experimental evidence that shear bands in granular
materials engage a significant number of grains. Based on direct experimental
observations, Roscoe (1970) proposed that the width of shear bands is about 10 times
the average grain diameter (see also Vardoulakis, 1977; Scarpelli and Wood, 1982). In
Figure 9.4.1 X-ray radiographs of shear bands are shown that are formed in the biaxial
tests reported by Vardoulakis and Graf (1985) and Vardoulakis et al. (1985).
Figure 9.4.1(a) corresponds to a medium-grained sand from Karlsruhe, and
Figure 9.4.1(b) corresponds to a fine-grained sand from Holland. Table 9.4.1
summarizes the evaluation of these plates. In this table d50% denotes the mean grain
size of the tested sand and 2dE the measured shear-band thickness. Accordingly, these
experiments suggest a shear-band thickness that is about 16 times the mean grain
diameter. Figure 9.4.2 from Hammad (1991) shows the experimentally observed
dependency of shear band thickness for Hostun RF dense and loose sand on the
confining pressure in biaxial tests. The shear band thickness appears again as small
multiple of grain diameter, however decreasing with increasing confinement. 

Figure 9.4.1 Shear band emerging out of a density inhomogeneity. (a) Medium-grained Karlsruhe
sand (Vardoulakis and Graf, 1985); (b) fine-grained Holland sand (Vardoulakis et al., 1985).

 

352 OSSERAT CONTINUUM MODEL FOR GRANULAR MATERIALS



As discussed in chapter 8, the classical Thomas-Hill-Mandel approach to the shear-
band problem involves the consideration of a classical constitutive model and the
examination of the existence of discontinuity planes for the velocity gradient, which in
turn are identified with the shear-band boundaries. Since the formulation of the problem
does not contain a material property with the dimension of length, it is not possible to
produce a statement about the shear-band thickness. In order to be able to predict
theoretically the dimensions of the shear band, the grain size must be introduced into
the constitutive model. This can be done by means of a Cosserat continuum model.

The earlier references in relation to application of Cosserat continuum model for the
description of the behavior of granular media are by Satake (1968), Brown and Evans
(1972), and Bogdanova-Bontcheva and Lippmann (1975). Later, Kanatani (1979) applied
a statistical mechanics approach to describe the kinematics of granular flow. In these
analyses, the importance of couple stresses was weakened, primarily because it was
assumed that couple stresses are exlusively a consequence of stress non-homogeneities
at the grain contact surface. As has been demonstrated, however, by Oda (1993), couple
stresses are the result of bend columnar micro-fabric inside the shear band. Oda's
experiment supports the earlier analysis of Mühlhaus and Vardoulakis (1987)
concerning shear-band thickness. According to the Mühlhaus-Vardoulakis Cosserat
plasticity theory, at the bifurcation point of the classical description the predicted shear-
band thickness is infinite. This finding should be understood as indicating that no
localization is possible at the bifurcation point, i.e. the band at the bifurcation point is
indeed invisible. For all post-bifurcation states the predicted thickness is finite, rapidly
decreasing towards a stationary value. As the overall strain approaches the
experimentally observed upper-bound  (cf. section 8.2.2) the predicted shear-band
thickness approaches the measured value 2dE.

In the next section we present a shear-band bifurcation analysis within the framework
of the 2D flow theory of plasticity with Cosserat structure which was originally presented
by Vardoulakis (1989).

9.4.1
Governing equations

We consider here the equations that govern continued equilibrium from a configuration
C of homogeneous rectilinear deformation. The conditions for continued equilibrium can

Table 9.4.1 Measured shear-band thickness (Vardoulakis et al., 1985a,b)
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be expressed in terms of the Jaumann time derivatives of the true stresses in C as
follows:

(9.4.1)

(9.4.2)

(9.4.3)

In the considered case of deformations that are superimposed to monotonous rectilinear
deformations, relatively simple rate constitutive relations can be derived from the general
equations 9.3.28. In this case, the initial stress tensor is symmetric and initial moment
stresses vanish. Under fully loading conditions we obtain then the following set of
constitutive equations

(9.4.4)

(9.4.5)

whereas in equations 8.2.2, Lu are the components of the stiffness tensor for the
responding upper-bound, linear comparison elastoplastic solid:

(9.4.6)

Figure 9.4.2 Shear-band thickness in biaxial experiments for dense and loose Hostun RF sand as
function of confining pressure (Hammad, 1991). , sable Hostun RF dense; O, sable Hostun RF
lâche.
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and

(9.4.7)

Combining the above equilibrium equations with the above constitutive equations
results finally in the following system of PDEs for the components of the velocity vα, the
Boltzmann spin  and the Cosserat spin .

(9.4.8)

(9.4.9)

(9.4.10)

where

(9.4.11)

is the parameter accounting for the influence of initial stress. 
We recall that equations 9.4.8 and 9.4.9 are derived from the equilibrium conditions

for stress rates whereas equation 9.4.10 is from the equilibrium condition for couple
stress rates. If one is interested in studying bifurcation modes that involve the global
dimensions li of a body then the coordinates xi must be non-dimensionalized by those
dimensions and the highest derivatives of the Cosserat spin in equation 9.4.10 are
multiplied by numbers (R/li)2«1. In this case this equation reduces to , and the
remaining differential equations 9.4.8 and 9.4.9 reduce to those that govern diffuse
bifurcations in a classical continuum. If on the other hand, one is interested in
determining whether or not shear bands exist, then one has to investigate equilibrium of
tractions and couples across two adjacent planes at a distance 2dB that correspond to
shear-band boundaries. With , equation 9.4.10 becomes then essential.

9.4.2
Shear-band solution

The above differential equations 9.4.8 to 9.4.10, can be investigated for the special case
where solutions are sought that correspond to localization of the deformation into
narrow zones of intense shear, the so-called shear bands. According to Figure 9.4.3, the
(x1, x2)-coordinate system is chosen in such a fashion that the x1-axis coincides with the
minor principal stress σ1 in C. Let us assume that in  a shear band is forming which is
inclined with respect to the x1-axis at an angle θ. A new coordinate system (x, y) is
introduced  with its axes parallel and normal to the shear band
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(9.4.12)

Let nα be the unit vector that is normal to the shear-band axis

(9.4.13)

By assuming that all field properties related to the forming shear band do not depend on
the longitudinal x-coordinate and setting  equations 8.4.8 to 8.4.10 reduce to
the following system of ordinary differential equations

(9.4.14)

(9.4.15)

(9.4.16)

where

(9.4.17)

In looking for exponential solutions,

Figure 9.4.3 Specimen with shear band.
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(9.4.18)

the above system of equations 9.4.13 to 9.4.16 yields

(9.4.19)

where

(9.4.20)

and

(9.4.21)

For non-trivial solutions, the matrix equation 9.4.20 results in the following bifurcation
condition

(9.4.22)

where

(9.4.23)

and

(9.4.24)

(9.4.25)

This solution corresponds to periodic functions for the velocities and the Cosserat spin

(9.4.26)

where

(9.4.27)

This solution satisfies identically homogeneous conditions at the shear-band boundary
for the tractions. With

(9.4.28)

we obtain

(9.4.29)
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In view of the equilibrium equations 9.4.14 and 9.4.15 and the above expressions 9.4.29,
it follows that zero traction rates hold along planes parallel to the shear-band
boundaries

(9.4.30)

On the other hand, the couple stress that is acting on planes parallel to the shear-band
boundaries is only a function of the Cosserat spin

(9.4.31)

However, for equilibrium reasons, the couple stress has to be continuous across the
shear-band boundaries

(9.4.32)

The shear-band solution is based on the assumption that, outside the shear-band
couple, stresses are zero,

(9.4.33)
which results in vanishing couple stresses along the shear-band boundaries

(9.4.34)

equations 9.4.31 and 9.4.34 yield , or, in the following expression for the shear-
band thickness

(9.4.35)

The shear-band thickness 2dB is viewed as an internal length of the considered problem.
According to equation 9.4.35 this internal length is proportional to the material length

, and the proportionality factor (π/a) is a function of the plastic hardening
parameter. Equation 9.4.35 is thus an analytical estimate of the internal length of the
problem, which in turn is observable in experiments. This estimate can be used to test
the assumption that the material length D is equal to the mean grain diameter. It should
be finally noticed that the structure of the above analytical estimate for the internal
length is very similar to the thickness estimate for interface layers for rigid-plastic
Cosserat continua (Vardoulakis and Unterreiner, 1994).

9.4.3
Analytical and experimental results

The shear-band thickness estimate 9.4.35 has to be tested here against the experimental
evidence. As an example we select here the biaxial test on fine Dutch dune sand (

; Vardoulakis and Graf, 1985), which was already discussed in
section 8.2.2. One is interested in producing theoretical results in the regime past the
shear-band bifurcation state. Thus the experimental results from biaxial tests concerning
mobilized friction and dilatancy must be extrapolated theoretically into this regime. For
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this purpose, we select here the porosity softening theory, discussed in section 6.4.3.
Direct fit of the experimental results produced the following material functions and
constants:

Figure 9.4.4 shows the mobilized friction and dilatancy coefficients  and 
 for the considered softening model. Shear-band bifurcation (B:  occurred in the
hardening regime, at

Figure 9.4.5 shows the evolution of the predicted shear-band thickness

Figure 9.4.4 Mobilized friction and dilatancy functions of plastic shear strain for fine Dutch dune
sand, according to the two-phase softening presented in section 6.4.3.
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(9.4.36)

in the post-bifurcation regime of the classical description. From this figure, we observe
that at the bifurcation point of the classical description dB is infinite, i.e. no localization
is possible at the bifurcation point of the classical description. However, past the
bifurcation point the deformation rapidly localizes, with dB assuming a minimum value
at about 10% plastic strain. For larger strains the shear-band thickness increases
again.

This stationarity property is important, because we know from the experiment that the
shear-band thickness is almost constant. We will thus identify this minimum with the
observed shear-band thickness. According to Figure 9.4.5 the shear-band thickness for
the kinematical Cosserat model ( ) found as , and for the statical
Cosserat model . X-ray radiographs of the considered
Ostershelde sand specimens revealed a shear-band thickness that is about 18.5 times
the mean grain diameter; cf. Figure 9.4.1 and Table 9.4.1.

These findings are in complete accordance with the physical experiments and Distinct-
Element computations (Cundall, 1989; Bardet and Proubet, 1992). Indeed, in both cases
an initial thinning followed by material growth of the band was observed. On the other
hand, Cundall’s numerical experiments for random assemblies of rods reveal a
thickness of about eight grain diameters. Accordingly, the kinematical model is more
suitable for approximating the behavior of a true 3D granular medium, whereas the
statical model is a better model of a Schneebelli material.

Figure 9.4.5 Computed shear-band thickness for various post-bifurcation states for fine Dutch
dune sand and for the kinematical (hc=2) and statical (hc=1/2) Cosserat continuum model.
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It should be mentioned that this type of behavior of initially decreasing and later
increasing shear-band thickness was first reported by Vardoulakis (1978) and
Vardoulakis and Goldscheider (1981) and is rather typical for the post-failure
measurements in the biaxial apparatus (Vardoulakis and Drescher, 1989). Figure 9.4.6
demonstrates indeed the shear-band thickness evolution as it is seen through an
apparent dilation angle (Drescher et al., 1990). It is interesting to note that although the
tested sand was dense, an initial apparent contractancy is observed, which in view of our
present results speaks for initial shear-band thinning. For larger strains, however, and
although the stress obliquity across the shear-band boundary is approximately
constant, a residual apparent dilation angle of about 10° is measured. This again is in
accordance with our result of a rather prolonged shear-band thickening in the post-
bifurcation regime. It should be noted that shear-band thickening is observed in the
context of large fault displacements and is of importance to the geophysicist (Watterson,
1986). 

Figure 9.4.6 Measured post-failure variation of the stress obliquity

s, and the apparent dilation angle ψs in biaxial tests on Ottawa sand (Drescher et al., 1990).

9.5
Discussion and numerical implications

Failure in geomaterials is often accompanied by the concentration of deformation into
one or more narrow bands of intense shear. During the last two decades numerous
researches described localization phenomena in solids by utilizing the Thomas-Hill-
Mandel theory of equilibrium bifurcation. Analytical expressions for the critical
hardening modulus and the localization band orientation angle at bifurcation have been
derived for the infinite domain problem and for various constitutive models; cf.
section 8.3. Shear-band analyses for more complicated boundary-value problems and,
more importantly, post-localization analyses can only be done numerically.
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In the numerical studies of Prevost (1984), Griffiths (1981), Shuttle and Smith (1988)
and Cundall (1989), localization was triggered through initial imperfections in the form
of strategically placed weak elements. In the studies of Ortiz et al. (1986), the onset of
localization was detected by the failure of Mandel’s material stability criterion (i.e.
existence of zero eigenvalues of acoustic tensor) carried out at the element level. De
Borst (1988) analyzed the formation of shear bands in materials obeying a non-
associated flow rule by implementing eigenvalue analysis of the global stiffness matrix to
determine the load at which bifurcations are possible. It is not clear, however, if one can
really trigger shear banding by non-associativity only, and de Borst’s computations were
never confirmed. As we have seen in the previous section, true localization (i.e. minimum
in dB) is related to material strain softening.

As already shown in section 3.3, within a small strain theory, global equilibrium
bifurcation occurs when global second-order work vanishes

(9.5.1)

which in a Finite Element discretization scheme results in the requirement that the
global stiffness matrix becomes singular

(9.5.2)

It should be noted that unlike the suggestion of Ortiz et al. (1986), in inhomogeneous
problems, failure of the local stability criterion ( ) does not necessarily imply
global loss of uniqueness. On the other hand, material strain softening leads to negative
second-order work.

A major drawback of classical strain-softening models is that they lead to
mathematically ill-posed boundary value problems, whose numerical analysis is
sensitive to mesh refinements (Bažant et al., 1984). Since in classical constitutive
models there is no material (internal) length, the discretization sets the length scale. The
localization region which is associated with strain softening, depends then on the size of
the mesh used for spatial discretization, i.e. the thickness of the shear band is governed
by the mesh spacing.

It was found that computational analyses based on a classical continuum theories
render themselves inadequate for an objective (robust) treatment of the problem of
deformation localization. A typical example of the nonrobustness of classical continuum
modeling was presented by Veeken et al., (1989), where it was made clear, that classical
computations are severely imperfection sensitive in the sense that the imperfection
severely dominates the final failure mechanism. It should be noted that for a classical
continuum, eigenvalues of the global stiffness matrix are spurious in nature and do not
persist on the primary branch past the bifurcation point.

As pointed out by Bažant et al., (1984), a constitutive theory without internal length
leads often to a softening zone of negligible thickness and zero energy dissipation. Many
different methods for regularizing the quasi-static, boundary-value problem with strain
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softening are proposed in the literature. For example, non-local approaches in various
forms which include the use of the concept of imbricated continua (Bažant, 1984), and
higher-order deformation gradients (de Borst and Mühlhaus, 1992). Alternatively, the
problem of mesh dependence can be resolved by resorting to continua with Cosserat
micro-structure like for example the plasticity model of Mühlhaus and Vardoulakis,
presented in this section. There is not yet a clear consensus on which of the above
continuum models is preferable, based on better correlation of computational results
with the experimental evidences and on the convenience with which each method can be
implemented in a numerical code. In order to decide among the various competing models
one has to resort on the physics of the problem. For example, in granular materials and
predominant shear failure forms, the Cosserat continuum approach seems physically
justified (cf. Ord et al., 1991). This was demonstrated in a paper by Papanastasiou and
Vardoulakis (1992) where for the problem of borehole stability in sandstones they
confirmed that micro-rotations play an important role in the computation (Cosserat
effect). Figure 9.5.1(a) shows the plastic state of the elements close to the borehole wall
and at the bifurcation point and the selected warping mode. As can be seen in
Figure 9.5.1(b), in the course of post-bifurcation deformation, most of the elements in
close proximity to the borehole wall unload elastically except for two regions of localized
deformation. Eventually one of these two regions dominates; see Figure 9.5.1(c). Shear
bands are characterized as elastoplastic domains of softening material which are
surrounded by unloading elastic domains (white). Deeper regions remain in the
elastoplastic hardening regime or are deformed elastically below first yield. The next
three figures demonstrate the computed failure mode by means of the γp-isolines
(Figure 9.5.1d) the incremental displacement field (Figure 9.5.1e), and the deformed
finite element mesh (Figure 9.5.1f). In particular it was found that the trivial
(axisymmetric) solution is characterized by vanishingly small micro-rotations whereas
they significant for the secondary solution. The difference between the macro- and
micro-rotation is given by the relative rotation

(9.5.3)
Figure 9.5.2 shows in a 3D-perspective graph the distribution of the incremental relative
rotation vector at the end of the localized branch. Upwards-pointing vectors denote a
clockwise rotation. The relative rotation is localized at the shear-band boundaries, as
expected, and in accordance with the Mandl’s experiment mentioned in the
introduction.

Finally, it should be pointed out that in a Cosserat continuum, the corresponding
incremental boundary-value problem remains always globally elliptic, which results in
numerical stability in the softening regime. The computational result is imperfection
sensitive, however the corresponding failure patterns are persistent. (In the example
studied by Papanastasiou and Vardoulakis (1992) one or two ‘breakouts’ were predicted
depending on whether or not there is a slight stress anisotropy.)
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Other investigators have also used Cosserat continuum theory for post-bifurcation
analyses. For example, Mühlhaus (1990) used a finite-element formulation with the
Cosserat plasticity model to analyze surface instabilities in an elastoplastic, cohesion-
softening half-space under compression and he detected the post-failure evolution of
tensile zones at some distance from the free surface. De Borst (1990) and Mühlhaus et
al. (1991), studied localization phenomena in a series of illustrative simple boundary-
value problems involving Cosserat plasticity, like the tension test, the shear test and the
biaxial compression test, where due to the homogeneity of initial stress field, localization
was triggered through initial imperfections in the form of weak elements. Therefore, the
mathematically ill-posed boundary problem of strain-softening material can be
regularized, successfully, by adopting a Cosserat plasticity theory. 

Figure 9.5.1 Detail of plastic and elastic domains at (a) beginning of localization; (b) past the
bifurcation indicating progressive localization.
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For the formulation of well-posed boundary value problems within a Cosserat
continuum theory extra boundary conditions are necessary. A set of admissible
kinematical and static extra boundary conditions follows directly from the principle of
virtual work. These or other types of boundary conditions must be physically
meaningful, since close to boundaries the Cosserat effect is more pronounced, leading
for example in Cosserat elasticity occasionally to the formation of boundary layers
(section 9.2.4) and in Cosserat plasticity to thin plastic boundary layers (Unterreiner,
1994). It turns out in all these cases the type of assumed extra boundary conditions
influences significantly some of the observable properties of surface localizations.
Figure 9.5.3 from Teichman (1990) illustrates for example the difference in thickness of
interface layers for ‘rough’ and ‘very rough’ steel-plate interfacing with sand in a biaxial
setting. Thus the physical justification and calibration of non-standard boundary

Figure 9.5.1 (continued) (c) end of the secondary branch indicating one-side localization; (d)
isolines of accumulated plastic shear strain (γp).
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conditions can be succeeded by carefully performed interface experiments and
corresponding Finite Element Cosserat-continuum back analyses (cf. Unterreiner,
1994). 
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10
Second-grade plasticity theory for geomaterials

10.1
Mindlin’s formalism of microstructure

Mindlin (1964) formulated a general and powerful theory for micro-structure in linear
isotropic elasticity, whose simplest application is Cowin and Nunziato’s (1983) linear
void elasticity. Such a theory could be used, for example, as a starting point for the
formulation of an advanced poro-elasticity theory of fluid-infiltrated media. In this
chapter, however, the emphasis lies on plasticity theories and Cowin’s work will not be
elaborated further. As shown by Vardoulakis and Frantziskonis (1992), the basic
formalism of Mindlin’s continuum theory can be successfully applied in the formulation
of gradient-dependent plasticity theories for geomaterials, like sands and psammitic
rocks, which are straightforward generalizations of existing 3D constitutive models.

10.1.1
Kinematics

Consider a body B, which at a configuration C(t) occupies the volume V, with boundary
∂V. Let xi and ( ) be the coordinates of a macro-material particle X in C(t) and

, respectively, measured from a fixed-in-space Cartesian coordinate system.
The components of the (infinitesimal) displacement vector of the macro-particle X are
defined as

(10.1.1)

The infinitesimal macro-strain and macro-rotation are defined as usual as the
symmetric and antisymmetric part of the displacement gradient,

(10.1.2)

We assume now that the macro-particle possesses a simple micro-structure defined as
follows: In each macro-material particle X we assume that there is a micro-volume V′
embedded, in which the spatial position vectors of micro-material particle X′ are  and 



in C and , respectively. We assume that the position of the micro-particle is measured
with respect to a single Cartesian coordinate system , parallel to the xi-system, such
that the origin of the coordinates  moves with the macroscopic displacement ∆ui. A
microdisplacement  is defined, with components, 

(10.1.3)

Within the frame of an infinitesimal theory all micro- and macro-displacement gradients
are assumed to be small as compared to unity. Moreover, we assume that the micro-
displacement can be expressed accurately enough as

(10.1.4)

The quantity

(10.1.5)

is called the micro-deformation, and is accordingly taken to be homogeneous in the
micro-medium V′. The symmetric part

(10.1.6)

is called the micro-strain, and the antisymmetric part

(10.1.7)

is called the micro-rotation.
The difference between the macro-displacement gradient and the micro-deformation is

called the relative deformation,

(10.1.8)

Finally the quantity

(10.1.9)

is called the micro-deformation gradient.
All three tensors ∆εij, ∆γij and ∆kijk are independent of the micro-coordinates , typical

components of which are shown in Figures 10.1.1 and 10.1.2.
We may summarize the above definitions as follows: On a macroscopic level one

usually introduces at any point X the vector displacement, ∆ui, and derives from it the
displacement gradient, ∂i ∆uj. If for some reason this description of the deformation is not
sufficiently accurate, then one introduces at any point X in addition to the vector ∆ui the
tensor micro-deformation, ∆ψij, and derives from it the micro-deformation gradient, ∂i∆ψjk
The deviation between macro- and micro-deformation is measured by the relative
deformation tensor ∆γij.

The basic kinematic quantities ∆ui and ∆ψij are assumed to be single-valued functions
of xi, leading to the following compatibility equations,
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(10.1.10)

10.1.2
The principle of virtual work

Germain (1973a,b) suggested a general framework for the foundation of consistent
higher grade continuum theories on the basis of the virtual work principle. This
approach starts with the definition of the virtual work δw(i) of internal forces at any
point, which for a Mindlin-type continuum is defined as follows

(10.1.11)

The expression for the virtual work gives in turn rise to the identification of the
corresponding stress tensors. Here, according to 10,1.11, the stress tensor, τij, which is
dual in energy to the macroscopic strain, is symmetric and is called by Mindlin the
Cauchy stress. The stress tensor, αij, which is dual in energy to the relative deformation
is called the relative stress, and the higher-order stress tensor, µijk, which is dual in

Figure 10.1.1 Total stress σ11, displacement gradient ∂1u1, micro-deformation ψ11 and relative
deformation γ11=∂1u1−ψ11

Figure 10.1.2 Double stress µ111 and gradient of micro-deformation κ111.
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energy to the micro-deformation gradient is called the double stress. By using equations
10.1.2.1 and 10.1.8, the work of internal forces becomes

(10.1.12)

where

(10.1.13)

is called the total stress tensor.
The definition 10.1.11 of the virtual work of internal forces gives rise also to the

definition of the virtual work of corresponding external forces, i.e. body forces and
surface tractions,

(10.1.14)

fi is identified as the body force per unit volume, ti as the surface traction per unit
surface area. Φij  is the double-force per unit volume, and Tij is double-traction per unit
surface area. We notice that double-force systems without movement are stress systems
equivalent to two oppositely directed forces at the same point. Within the realm of linear
elasticity singularities of this type are discussed, for example, by Love (1927, section
132).

Using d’Alembert’s principle, macro- and micro-inertial terms may be included in the
above expression for the virtual work of external forces. In this case, in equation 10.1.14
the body force fi is to be replaced by , and the double-body force

, where Iijkl is an appropriate micro-inertial tensor.
The variations δui and δψij are treated as independent. Then from the virtual work

equation

(10.1.15)

one obtains two integral equations: one concerning the macro-mechanics of the medium

(10.1.16)

and, another concerning the micro-mechanics

(10.1.17)

In order to evaluate these integral equations, the boundary ∂V is divided into
complementary parts {∂Vu, ∂Vσ} and {δVψ, δVγ}, respectively, such that
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(10.1.18)

are prescribed. From equations 10.1.16 to 10.1.18, Gauss’ theorem and d’Alembert’s
principle one finally obtains the following dynamic equations, holding for the macro- and
micro-medium respectively:

(10.1.19)

(10.1.20)

and

(10.1.21)

(10.1.22)

Note that according to equation 10.1.19 the total stress tensor, , is identified
with the common (macroscopic) equilibrium stress tensor.

In case of vanishing relative deformation the micro-deformation coincides with the
macro-deformation

(10.1.23)

and the corresponding medium may be called a restricted Mindlin continuum. In this case
δui and δψij are not independent variations, and the virtual work equations must be
modified accordingly. This will be done in section 10.2.4 in the context of flow theory of
plasticity for geomaterials.

10.1.3
Example: Gradient elasticity theory with surface energy

In order to demonstrate the potential of the considered continuum theories with
microstructure we select here a rather neglected early application of these concepts
done by Casal (1961), which is referenced in the aforementioned papers by Germain
(1973a,b). Casal’s model cannot be directly embedded in Midlin’s linear, isotropic
elasticity theory with micro-structure, because it is an anisotropic elasticity model. For
demonstration purposes we consider first the 1D example of the simple tension bar, as
shown in Figure 10.1.3. In the uniaxial case the strain energy of the tension bar is
defined as follows

(10.1.24)

where

(10.1.25)
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are the various notations for the strain gradient. Casal’s expression for the elastic strain
energy equation 10.1.24 consists of two terms: (a) a ‘volumetric energy’ term which
includes the contribution of the strain gradient, and (b) a ‘surface energy’ term.
Accordingly, ℓv and ℓs are material lengths related to volumetric and surface elastic
strain energy.

Casal’s expression 10.1.24 for the global strain energy of the tension bar is recovered
by introducing an appropriate anisotropic, linear elastic, restricted Mindlin-type
continuum. Since in a restricted continuum the relative deformation vanishes, the
variation of the strain energy density becomes

(10.1.26)

In connection with this variation, Casal’s model is equivalent to the following
constitutive assumptions for the Cauchy and double stress

(10.1.27)

(10.1.28)

From equations 10.1.26 to 10.1.28 the elastic strain energy density is computed,
resulting in the following expression

(10.1.29)

It turns out that for w>0, the material lengths must be restricted, such that

(10.1.30)

This means in particular that if surface energy terms are included then volume strain-
gradient terms must be also included. It is worth noticing that in Griffith’s (1921) theory

Figure 10.1.3 Simple tension bar with a clamped and free end.
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of cracks only surface energy is considered, which is of course inadmissible in the sense
of inequality 10.1.30. Strain-gradient terms could be important since in the crack tip
region strain gradients are very high. On the other hand Altan and Aifantis (1992) in
analysing Mode III cracks have essentially only considered the volumetric strain-
gradient energy term and they have ignored the surface energy term, which is
admissible within the frame of the considered elasticity theory (cf. Vardoulakis et al.,
1995).

Finally we remark that, with

(10.1.31)

from equation 10.1.29, equation 10.1.24 is recovered.
In the uniaxial case equilibrium condition holds for the total stress,

(10.1.32)

where
(10.1.33)

and α is the workless relative stress, which in turn is in equilibrium with the double
stress

(10.1.34)

The gradient-elasticity total stress-strain relation is finally derived from equations 10.1.
28, 10.1.29 and 10.1.33,

(10.1.35)

The tension bar problem is thus defined by (a) the constitutive equations 10.1.35 and
10.1.28 for the total stress σ and the double stress µ; (b) the equilibrium condition 10.1.
32 for the total stress; and (c) appropriate boundary conditions. As such we select the
following:

(10.1.36)

The solution of this problem is inhomogeneous strain under constant stress

(10.1.37)

As indicated in Figure 10.1.4 both strain and strain energy are constant along the bar
except at both ends, where boundary effects are dominant. It should be noted that for
the lower limit , strain gradient effects are least pronounced, while they are
notably accentuated for the upper limit .
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Notice that the 3D generalization of the gradient-dependent elasticity with surface
energy considered here is straightforward. In 3D, the strain energy density becomes

(10.1.38)

where λ and G are the Lamé constants, and,

(10.1.39)

We observe that 10.1.38 leads to a gradient elasticity with constant characteristic
directors, vr. The meaning of the last term as a surface-energy term is obvious, since

(10.1.40)

and nr is the unit normal to the boundary.
Finally we remark that from 10.1.38 follow directly the constitutive relations for the

stresses,

(10.1.41)

Figure 10.1.4 Gradient elasticity with surface tension: strain and strain energy distribution in a
tension bar (L=1; ℓv=0.1; ℓs=0.01).
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10.2
Second-grade plasticity theory for granular rocks

10.2.1
Observational background

Sandstones are psammitic rocks which exhibit elasticity, internal friction, cohesion and
dilatancy. Accordingly, they can be modelled within the frame of elastoplasticity theory.
Starting from their elasticity it should be mentioned that the experiment indicates that
sandstone elasticity is stress-dependent (Santarelli et al., 1986). Stress dependence of
the elastic moduli can account for an initially convex upward stress-strain curve in
uniaxial compression, which is micro-mechanically attributed to closing of cracks
(Figure 10.2.1a).  Mathematically, this effect can be modelled by assuming an

Figure 10.2.1 (a) Typical uniaxial stress-strain curve for sandstone; (b) typical variation of
mobilized friction and dilatancy coefficients for sandstone.
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appropriate complementary elastic energy density function, which plays the role of an
elastic strain potential and leads to a hyperelastic model (see section 6.2.2). In addition,
rock elasticity degrades in due course of the deformation due to micro-crack generation;
this phenomenon is captured mathematically by introducing plastic strain as an
additional internal variable into the appropriate state function (e.g. the free energy; cf.
Lemaître, 1992). For simplicity, both phenomena of stress- and plastic strain-dependent
elasticity will be neglected here. In particular, linear, isotropic elasticity will be
assumed.

The emphasis lies here in modelling plasticity of sandstones. Within the frame of
plasticity theory, the experimental data clearly support a mixed, hardening/softening
model. In particular, one finds very good agreement with the following assumption. The
plastic shearing strain intensity (as already discussed in previous chapters) is a good
macroscopic measure of plastic slip, which occurs at intergranular boundaries and
across micro-cracks. Past the state of initial yield, friction is mobilized as function of
plastic shear strain and reaches saturation at some given peak value. On the other
hand, in the course of deformation, new micro-cracks are activated and new ones are
formed. We therefore can assume that all observed deviatoric stress softening must be
attributed to micro-cracking, which leads to a decrease in tensile strength. This
softening mechanism is active during all stages of the straining process. However, it
becomes more pronounced when the material loses its capacity to mobilize additional
frictional resistance. Thus for simplicity we may assume that during the friction
hardening phase all cohesion softening is negligible, and that it becomes noticeable only
past the peak of mobilized friction.

The above ‘standard’ model is corroborated by acoustic emission (AE) data. AE in
sandstones under triaxial compression usually starts to increase gradually at about 60%
of peak deviator. The maximum rate of AE events is monitored inside the deviator-
softening regime, and is followed by a decrease in the rate of AE events. Such an
observation indicates that past the point of maximum rate of AE the size of the actual
localized softening zone is already a small fraction of the specimen size, with a
decreasing tendency as the global deformation continues. Thus the point of maximum
rate of AE must correspond to the point of observable localized failure.

Concerning plastic volumetric strains, the experimental data show that at low
confining pressures the rock dilates strongly, whereas at higher confining pressures
rock dilatancy diminishes. This pressure sensitivity of the plastic volumetric strains
indicates that they must be generally split into a part due to dilatancy and a part due to
compaction (grain slip and rotation with partial grain crushing). In this section the effect
of compaction will be neglected and thus plastic volume changes are assumed to be
solely linked to plastic-frictional yield. Thus dilatancy is understood as a constitutive
constraint between plastic volumetric and plastic shear strain increments. 

As indicated in Figure 10.2.1(b), the mobilized dilatancy coefficient  is always
bound by the mobilized friction coefficient  . Without significant error d
may be approximated by f, leading to the simple volumetric normality flow rule

380 SECOND-GRADE PLASTICITY THEORY FOR GEOMATERIALS



(10.2.1)

Accordingly, such a constitutive model for rock is termed as a friction-hardening/
cohesion-softening model with dilatancy, associated to friction according to the
‘normality’ rule.

The above basic constitutive assumptions are illustrated graphically in Figure 10.2.2:
Figure 10.2.2(a) shows the trace of a Coulomb-type yield surface in a (p, T)-plane, with
the plastic strain-rate vector { }T acting normal to it. The yield surface is depicted in
this figure by a straight line 

(10.2.2)

which intersects the T-axis at a point where we read the actual value of the mobilized
cohesion,

(10.2.3)

Figure 10.2.2 (a) Coulomb yield surface in the (T, p)-plane with the plastic strain-rate vector
acting normal to it; (b) friction hardening function; (c) cohesion softening function.
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Figures 10.2.2(b,c) show the assumed typical variation of the mobilized friction
coefficient f and of the tensile strength parameter q, respectively as functions of plastic
shear strain gp. Due to the assumed rock behavior, depicted in these figures, and the
above expression for the cohesion, all cohesion hardening is attributed to the
mobilization of internal friction, and all cohesion softening to the degradation of tensile
strength, i.e.

(10.2.4)

It should be noted that in Figure 10.2.2(c), a simple linear softening function is
depicted. This is because material softening is non-observable but it is indirectly
detectable. In these cases it is advisable to start with the simplest function and through
back-analysis of experimental data to match the corresponding material parameters (in
the considered case these are q0 and the slope rc of the descending straight line).
Figure 10.2.3 illustrates the corresponding motion of the yield surface in stress-space in
due course of  plastic deformation. One observes first ‘isotropic’ friction-hardening (0–1),
followed by ‘kinematic’ cohesion softening (1–2).

Figure 10.2.3 Motion of the yield surface in stress-space: (0−1) ‘isotropic’ friction-hardening
phase; (1−2) ‘kinematic’ cohesion-softening phase.
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10.2.2
Constitutive modeling

Following Prager’s (1955, 1956) original ideas, Vardoulakis and Frantziskonis (1992)
noticed that the kinematic character of cohesion-softening can be easily modeled by
assuming that the yield function depends on a reduced stress

(10.2.5)
where σij is the true (equilibrium) stress, and αij is a ‘back’ stress. Accordingly, the yield
function is written as a function of the reduced stress

(10.2.6)

where the explicit reference of the plastic state parameter ψ signifies the isotropic
character of friction hardening. For example, if we adopt a Drucker-Prager type of yield
function, then equation 10.2.6 becomes,

(10.2.7)

where

(10.2.8)

(10.2.9)

Thus isotropic friction hardening is described by the hardening modulus

(10.2.10)

In order to illustrate the effect of back stress, we specialize the representation further for
axisymmetric motions of compression, with

(10.2.11)

In this case we have

(10.2.12)

where

(10.2.13)

and with similar expressions holding for pτ, pα and Tτ, Tα. Accordingly the yield function,
defined by equation 10.2.7, becomes

(10.2.14)
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(10.2.15)

We notice that the model is defined in such a way that the back-stress αij does not
evolve in the hardening regime of f and that it does evolve as soon as f reaches its peak
value, fp, in the cohesion-softening regime.

In the considered model the flow rule is associated, and accordingly F is serving as
plastic strain-rate potential,

(10.2.16)

In the considered case of a D.-P. potential function,  coincides with the plastic shearing
strain-rate intensity,

(10.2.17)

and thus the dilatancy constraint becomes

(10.2.18)

cf. Figure 10.2.2(a).
The physical meaning of the back stress can be appreciated by considering post-peak

states more closely. For 

(10.2.19)

In this case the first-order plastic stress-power becomes,

(10.2.20)

However, due to the normality condition,

(10.2.21)

and with that the plastic stress-power, equation 10.2.20, becomes

(10.2.22)

If one would equate the local dissipation with the plastic stress power, then from
equation 10.2.22 would follow that the local dissipation should decrease in the post-
peak regime. This would be in contradiction to acoustic emission recordings, which
indicate increasing activity (damage) past the peak point of the stress deviator (cf.
Figure 10.2.1). In order to remedy that we assume that the local dissipation consists of
two parts,

(10.2.23)
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where Sd corresponds to the rate of local entropy production due to damage. In order to
specify Sd, we make the following constitutive assumption: In all post-peak states the
local dissipation is constant,

(10.2.24)

This assumption, together with the observation that at peak

(10.2.25)

results finally in the well-known expression of the local dissipation of kinematic
plasticity (Mróz, 1973)

(10.2.26)

This in turn means that

(10.2.27)

The last finding is generalized to provide an expression for the local entropy production
due to damage in the softening regime,

(10.2.28)

The dots on the right-hand side of this equation stand for higher-grade terms. For
example, if the effect of plastic strain-rate gradient is noticeable, then

(10.2.29)

Here µijk  may be termed a double stress, since it is an associate thermodynamic variable
to the plastic strain gradient. It is expected that their effect is entropy reduction, due to
structures formation (localization), which in turn will ameliorate the strong effect of
entropy increase of the back-stress.

These observations and assumptions allow us (in accordance to the definitions for the
kinematics of a Mindlin continuum presented in the previous section) to make the
following identifications: The plastic strain-rate tensor is a micro-deformation measure

(10.2.30)

and the plastic strain-rate gradient is the corresponding micro-deformation gradient,

(10.2.31)

In other words within the frame of plasticity theory,  and  describe irreversible
changes in the micro-structure of the medium. Consequently the elastic strain rate,
which is the difference between the total (macroscopic) and the plastic (microscopic)
strain rate, is identified with the relative deformation of a Mindlin continuum,

(10.2.32)

Having now identified in the sense of continuum mechanics and continuum
thermodynamics the state variables and the associate state variables, we may return to
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the flow rule, here equation 10.2.16, which plays a central role in plasticity theory. We
remark that with the aid of the flow rule the six components of the micro-deformation 
 are reduced to a single one, the plastic multiplier ,

(10.2.33)

Finally, we remark that in ordinary plasticity theory the plastic multiplier  is eliminated
by utilizing Prager’s consistency condition for continuous loading. Namely assuming
that , we obtain that

(10.2.34)

The consistency equation can be resolved, if appropriate evolution equations for the true
stress and the back-stress are postulated. First we remark that within the frame of
small strain theory, and in accordance to classical elastoplasticity, the rate of the true
stress is given in terms of the elastic strain rate

(10.2.35)

where  is the elastic stiffness tensor, which in the simplest case of Hookean isotropic
elasticity, is given by

(10.2.36)

G and v are the elastic shear modulus and Poisson’s ratio, respectively. The meaning of
the constitutive assumption 10.2.35 is the following: If plastic strains are not generated,
then , and the behavior is (linear isotropic) elastic, i.e. elastoplasticity is modeled
as a perturbation of elasticity. In the following section we will demonstrate that gradient
elastoplasticity corresponds again to an analogous perturbation of ordinary
elastoplasticity.

With the identifications 10.2.30 and 10.2.31 made above for the micro-deformation,
consistent models for the rate  of the back stress are obtained if  is made to obey a
complete balance law of the form 10.1.21 (cf. Aifantis,. 1978, 1985; Vardoulakis and
Frantziskonis, 1992). As is common in kinematic plasticity theory, such a balance law is
written in the form of an evolution equation for the back-stress,

(10.2.37)

The first term in this equation is recognized as describing the effect of kinematic
softening. For example, Prager’s (1955) kinematic hardening rule reflects a particular
constitutive assumption for the double-body force,

(10.2.38)

In order to identify the modulus r in the above constitutive equation, we neglect the
higher-grade terms in equation 10.2.37, and apply it for axisymmetric compressions. By
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restricting again ourselves to post-peak states we get r proportional to the cohesion
softening modulus,

(10.2.39)

The second term in the evolution equation 10.2.37 describes the effect of deformation
inhomogeneity. According to Vardoulakis and Frantziskonis (1992) this effect is easily
modeled by assuming that double stress rates are proportional to the gradient of plastic
strain rates. Furthermore, the simplest constitutive model arises if one assumes that
consideration of plastic strain-rate gradients introduces only one additional material
parameter into the material description. Then from dimensional analysis we obtain that
a simple isotropic linear relationship for the double stress rate is the following

(10.2.40)

where ℓc is this new material parameter; ℓc has the dimension of length and is thus
called a material length. With the same argument consideration of micro-inertia will
introduce in the simplest case another material parameter Tc with dimension of time,
i.e. a material time factor.

With these constitutive assumptions the evolution law 10.2.37 for the back-stress
takes the following form

(10.2.41)

This is the complete second-grade evolution equation for the back stress. If the effect of
micro-inertia is negligible, then , and 10.2.41 is a second-gradient evolution
equation for the back-stress. Notice that for modeling cohesionless sand we may neglect
both cohesion and micro-inertia. In this case, Vardoulakis and Aifantis (1991)
emphasized the effect of porosity localizations, which resulted in the following evolution
law for αij,

(10.2.42)

where K is the elastic compression modulus. According to 10.2.42 αij is an isotropic
stress which evolves only then if sufficiently strong (plastic) volumetric strain-rate
gradients occur (i.e. porosity localizations).

Remark on gradient plasticity models. In recent publications on gradient dependent
plasticity theories (cf. Aifantis, 1984; Coleman and Hodgdon, 1985; Schreyer and Chen,
1986; Mühlhaus and Aifantis, 1991) instead of equation 10.2.6 an explicit dependence
of the yield function and of the plastic potential function (Vardoulakis and Aifantis,
1991) on the gradient of the hardening parameter was suggested. In the present case, this
would have led for example to,
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Such a special representation is however unnecessary when gradient terms are
implicitly contained in the expression for the yield- and plastic potential function
through the contribution of the evolving back stress αij.

Finally, it should be noted that an attempt to motivate a strain gradient plasticity theory
from the concept of residual strain (displacement) and with that from dislocation
motions was done following a rather cumbersome formalism in an early paper by Dillon
and Kratochvil (1970).

10.2.3
Constitutive equations

With the constitutive equations 10.2.35 and 10.2.41, for the true- and back-stress
rates, the consistency condition 10.2.34 results in a differential constraint for the plastic
multiplier . We discuss first this differential consistency condition, and, for simplicity,
we neglect here micro-inertial terms (which can be included without affecting the
formalism),

(10.2.43)

where neglecting non-linear and gradient terms of (∂Q/∂τij),

(10.2.44)

(10.2.45)

and  for associative plasticity.
The consistency condition is a differential equation which links the plastic multiplier 

 to the total strain rate . (In Mindlin’s continuum formalism this is a constraint which
links the micro-deformation to the macro-deformation.) Thus, if one can resolve this
constraint, then as is the case in classical flow theory of plasticity,  is eliminated.
Otherwise, if this is not possible, then one has to carry the consistency condition as an
additional field equation together with the balance equations and to treat  as an
additional degree of freedom (Mühlhaus and Aifantis, 1991). Here we suggest an
approximate procedure which indeed allows for elimination of  from the set of
governing equations and simplifies the problem drastically (Vardoulakis and
Frantziskonis, 1992).

For homogeneous ground plastic-strain states, the first term on the left-hand side of
equation 10.2.43 vanishes identically and the consistency condition collapses to that of
the classic flow theory of plasticity, i.e. to a monomial equation for the plastic multiplier

. However, within a good approximation, this is also true for inhomogeneous states as
well. To demonstrate this we set
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(10.2.46)

and assume that ℓc is a micro-structural length scale, like for example a mean grain or
void diameter, and accordingly ℓc is small if compared to any geometric length dimension
of the deforming solid. Then equation 10.2.43 in operational form becomes

or

 whenever loading of the yield surface  is taking place, or else . Thus we set
finally

(10.2.47)

In this equation denote again the McAuley brackets of plasticity theory. With H>0 the
switch function is defined as follows

(10.2.48)

The plastic strain rate can be expressed as

(10.2.49)

(10.2.50)

Furthermore from the evolution equation 10.2.41 for the back-stress, and neglecting
non-linear terms, we obtain 

(10.2.51)

where CP is the plastic stiffness matrix

(10.2.52)

Thus the plastic strain rate is within an ℓ4-approximation eliminated from the set of
constitutive equations. This means that the extended constitutive equations of
elastoplasticity describe a restricted Mindlin-type elastoplastic solid, whose degree of
freedom of micro-deformation is linked to its macro-deformation through to the quasi-
linear constraint 10.2.49 with 10.2.50. Accordingly, the approximate rate stress-strain
relations of the strain-rate-gradient dependent flow theory of plasticity

(10.2.53)
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where Cep is the common elastoplastic stiffness tensor,

(10.2.54)

Equations 10.2.53 can be interpreted in many ways. For example:
(a) The asymptotic character of elastoplastic constitutive equations as successive

approximations of a ‘target’ material behavior becomes clear if equations 10.2.53 are
written in the following form

(10.2.53a)

This form suggests that gradient elastoplasticity is a singular perturbation of ordinary
elastoplasticity, which in turn as already mentioned above, can be seen as a regular
perturbation of (hypo-)elasticity.

(b) The non-local character of gradient elastoplasticity is seen if the constitutive
equations are written as follows

(10.2.53b)

i.e. that the plastic operator CP acts on the mean strain over a characteristic volume V,
which in turn is expressed approximately by value of the strain and its Laplacian at a
collocational point inside V (Bažant, 1984).

(c) The Mindlin continuum character follows if one rewrites equations 10.2.53 in the
following form (Vardoulakis and Aifantis, 1991)

(10.2.53c)

The stress-rate tensor  coincides with the constitutive stress rate of the classical flow
theory of plasticity and is called, by analogy to Mindlin’s nomenclature, the Cauchy
stress tensor. Similarly, the stress-rate tensor  is re-interpreted as a relative stress
tensor of the considered restricted second-gradient elastoplastic solid. One may
introduce a self-equilibrating double stress  such that

(10.2.55)

From equations 10.2.53c and 10.2.55 the relative stress rate of the considered restricted
Mindlin continuum can be eliminated, yielding

(10.2.56)

If finally one assumes that the double stress rate is proportional to the gradient of the
strain rate
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(10.2.57)

where

(10.2.58)

and neglects non-linear gradient terms, then the internal balance equation 10.2.55 is
satisfied.

The above results are summarized in the following statement: The constitutive
equation 10.2.5 3c, of gradient-dependent flow theory with yield surface and plastic
potential surface, describes the behavior of a restricted Mindlin-type continuum, i.e. a
micro-homogeneous material for which the macroscopic strain rate coincides with the
micro-deformation rate. This in turn leads to a vanishing relative deformation rate, and,
according to equation 10.2.58, to a rate of micro-deformation gradient which coincides
with the strain-rate gradient. We observe also that the present Mindlin continuum
extension of flow theory involves only one new material parameter, the material length ℓc.
This is unlike the Cosserat-continuum extension of plasticity theory. As discussed in
chapter 9, elastoplastic solids with the microstructure of a micropolar continuum in
addition to the material length, a shear modulus for the antisymmetric shear stress
rates had to be assumed.

10.2.4
Formulation of the rate-boundary value problem

The weak formulation of the balance law of linear momentum together with the
appropriate set of boundary conditions for the considered second gradient elastoplastic
solid is achieved through the principle of virtual work. First, in accordance with the
above observations, we define the virtual second-order work of internal forces in a finite
volume V

(10.2.59)

The surface δV of the considered volume V is divided into two complementary parts ∂Vv
and ∂Vσ such that on ∂Vv kinematic data are prescribed whereas on ∂Vσ static data are
prescribed. In classical continua these are constraints on velocity and traction rates,
respectively. Since in the considered constitutive description second gradients of strain
rates appear, additional kinematic data must be prescribed on ∂Vv. With the velocity
already given on ∂Vv, according to Hadamard’s lemma (section 2.4.1) only its normal
derivative with respect to that boundary in unrestricted. This means that on ∂Vv the
normal derivative of the velocity should also be given,

(10.2.60)
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where  is the derivative in a direction normal to the boundary with local unit
outward normal nk. The boundary is assumed to be smooth; boundary conditions for
non-smooth boundaries are derived in Mindlin (1964) and Mühlhaus and Aifantis
(1991).

For the computation of the second-order virtual work of external forces δ2 W(e) we have
to consider not only the rate of surface tractions and double forces but also the work of
the usual body and inertial forces. By applying D’Alembert’s principle, inertial forces are
included in the body forces with opposite sign and are computed from the bulk density ρ
and the acceleration ∂ttvi. Following these considerations, the virtual work of external
forces becomes

(10.2.61)

where  are rates of body forces and  are rates of surface tractions and will be
derived below. With the equations 10.2.59 to 10.2.61 the virtual work double forces,
whose relation to the stress rate and double stress-rate tensor equation becomes

or

(10.2.62)

In order to compute the surface integral on the right-hand side of 10.2.62 we require
that the virtual velocity field and its normal derivative vanish on ∂Vv,

(10.2.63)

From the volume integrals one derives the usual dynamic equations for the true stress-
rate tensor in V

(10.2.64)

In order to derive the corresponding boundary conditions from the remaining terms of
the virtual work equation 10.2.62 we have to elaborate on the term

(10.2.65)

First we decompose ∂j∂υk into a component normal to the boundary ∂V and another
tangential to it

(10.2.66)

where
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(10.2.67)

With that we get

(10.2.68)

The first term on the right-hand side of 10.2.68 becomes

(10.2.69)

In order to work out the first term in the right-hand side of 10.2.69 use is made of the
identity

(10.2.70)

where eijk is the alternating tensor. Denoting by

(10.2.71)

we get that over a closed surface

(10.2.72)

We observe also that

(10.2.73)

If we collect the terms appearing in the surface integrals of the work equation we finally
get

These surface integrals contain both δυi and its normal derivative Dδυi which is however
an independent variation. This observation allows the formulation of the following set of
static boundary conditions on ∂Vσ

(10.2.75)

(10.2.76)

The first constraint takes the place of the classical boundary condition for surface
tractions. Due to the constitutive equation 10.2.57 for , the second constraint means
that on some part of the boundary ∂V the second velocity gradient might be given. In
order to illustrate further the set of the above boundary conditions we examine the case
of a plane boundary. The (x2, x3)-plane is chosen parallel and the x1-axis normal to the
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considered boundary, pointing outwards; i.e. . The  boundary
may be seen as a ‘long’ interface boundary. Kinematic constraints are given on a part
∂Vv of it which according to conditions 10.2.60

(10.2.77)

On the complementary part ∂Vσ of the considered boundary conditions 10.2.75 and 10.2.
76

(10.2.78)

The constitutive equations for  and  (together with the definitions for the yield and
plastic potential surface the McAuley brackets and the evolution law for the back stress

) can be combined with the virtual work equation 10.2.62 with constraints 10.2.63 to
provide the integral equation formulation of the rate-boundary value problem for the
considered second gradient elastoplastic solid

(10.2.79)

This formulation is reduced to the finite-element formulation of the rate initial boundary-
value problem of the classical elastoplastic solid

(10.2.80)

with additional entries in the stiffness matrix and the loading vector

(10.2.81)

which could be easily accounted for in an iterative computational scheme.

10.2.5
Well-posedeness of the rate-boundary value problem

As presented in section 3.3.5, the integrand of the integral 10.2.59, has the character of
second-order work, and plays a central role in the formulation of uniqueness theorems,
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(10.2.82)

For example in the simplest 1D configuration

(10.2.83)

where G is an elastic reference modulus and h is a (dimensionless) softening modulus.
Then the second-order work of stresses becomes

(10.2.84)

Inside the localized zone the strain term in expression 10.2.84 is non-positive, due to
material strain softening (h<0), whereas the strain-gradient term is non-negative.
However, in spite of the gradient term, locally the second-order work may negative (e.g.
in the middle of the localized zone), and the local sufficient criterion for uniqueness,
inequality 3.3.74, breaks down. However, under some restrictions global uniqueness is
restored: By an appropriate rescaling of coordinates we observe that the gradient term
may dominate, provided that the rate of material strain softening is not very large. In
order to demonstrate that, let

(10.2.85)

be the dimensionless coordinate perpendicular to the shear band axis, with the origin on
the shear-band axis (Figure 10.2.4). By the same token we observe that with this
proposition the extent of the localized zone must scale with the material length, i.e.

. Its extent is determined, and the original elastoplastic problem of strain
softening material becomes a problem with internal boundaries, which separate the

Figure 10.2.4 Shear-band localization in strain-softening elastoplastic solid.
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elastic unloading from the plastic-softening domain. The integral, , inside the
localized zone becomes

(10.2.86)

with . Let us assume for simplicity that , and that the
fundamental solution has a leading trigonometric term (Vardoulakis and Aifantis, 1991)

(10.2.87)

Then

(10.2.88)

Assuming for example that  (Vardoulakis and Aifantis, 1991), then from 10.2.88
the softening modulus is limited to ‘small’ values; 0<hs<0.05.

Outside the localized zone the behavior is elastic and the second-order work is
positive. All these observations allow the formulation of the following (Vardoulakis,
1994). 

Proposition. Within the frame of elastoplasticity theory, loss of uniqueness in the
incremental, boundary value problem of strain-softening material is restored by
consideration of at least first grade terms in the expression of the second-order work.

Following this proposition the resulting singular governing equations are regularized
through the rescaling (10.2.85) and uniqueness is guaranteed as soon as the rate of strain
softening is sufficiently small, cf. inequality 10.2.88. Figure 10.2.5 shows the boundary-
value problem of interfacial localization in cohesive-frictional rock, which was analyzed
analytically and numerically by Vardoulakis et al. (1992). Figure 10.2.5(a) shows the
geometry of the problem. Figures 10.2.5(b,c) show the basic constitutive assumptions
for the rock (i.e. constant friction, cohesion softening and plastic incompressibility). An
elastoplastic softening ‘interface layer’ (P) of determined extent D forms adjacent to the
frictional contact surface. This softening zone is separated from the elastic zone (E) of
unloading material by the elastoplastic boundary (E/P). Inside the localized zone (P),
gradient plasticity formulation leads to a third-order ordinary differential equation
(o.d.e.) for the velocity, whereas in the adjacent elastic zone (E), a first-order o.d.e. for
the velocity holds. Accordingly, at both ends of the layer different boundary conditions
are specified. Moreover additional compatibility conditions hold at the elastoplastic
boundary (E/P). This means that an elastoplastic softening interface layer has some
similarity with the common boundary layer as far as boundary conditions are concerned.
Its main difference from the boundary layer is that the ‘internal’ and ‘external’ solution
are not matched in an asymptotic sense but they are made compatible in an exact
manner along the (moving) elastoplastic boundary.

Figure 10.2.6 summarizes the computational results concerning the variation of
material cohesion T and apparent cohesion at the top of the shear interface layer. This
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figure demonstrates the following: Even when the material cohesion T is piecewise linear
function of plastic strain, a smooth non-linear cohesion c is observed

(10.2.89)

T represents the true material cohesion whereas ατ is the back-stress, due to strong
plastic strain gradients. The ‘local’ term T(γp) is not directly observable and it must be
determined from c through an inverse procedure. This means that the determination of
the true cohesion of a material, especially in the softening regime, is an inverse problem.

We remark finally that the analysis showed in addition to a constraint of the form of
10.2.88, extra boundary conditions must obey additional constraints. This observation
is strengthening Aifanti’s (1978) conjecture of the constitutive character of boundary
constraints in materials with microstructure. The problem of constitutive boundary
conditions is open and deserves further attention from the theoretical as well as the
experimental point of view.  

10.3
Bifurcation analysis deep boreholes

10.3.1
Problem statement

Borehole breakouts and exfoliations are important phenomena that influence the
engineering design of drilling hardware and can critical for the progress of the drilling
process. Breakouts lead in general to progressive deterioration of the borehole. Wellbore
breakouts are attributed to the existence of significant deviatoric stresses that act in the
horizontal plane at great depth and to the stress concentration around the borehole
(Bell and Gough, 1979; Zoback et al., 1986). It should be noticed, however, that not only
the stress deviator but also the temperature and pore-fluid flow may influence borehole
stability. In this section only stress-induced instabilities will be discussed.

The problem of circular hole bifurcation analysis has been studied first in the context
of large-strain formulations for rigid-hardening plastic cohesive-frictional solids by
Vardoulakis and Papanastasiou (1988) and Vardoulakis et al. (1988). It was found that
for classical cotinuum models the critical diffuse bifurcation mode is surface instability.
This finding was explained by the high stress gradient at the hole wall. Surface
instabilities in converging cavities correspond to the infinitesimally small wavelength limit
with respect to the radius of the cavity. This means that the bifurcation solution is
affecting only an infinitesimally narrow ring of material close to the cavity surface. Since
the short-wavelength limit is an accumulation point of bifurcations, almost all
sufficiently small wavelengths of the corresponding ‘warping’ bifurcation mode are
possible, and consequently there is no influence of the borehole radius. However, this
indeterminacy of the critical wavelength of the surface instability can be rectified by
resorting to continuum theories with material length. For example, for a half-space with
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bending stiffness and uniform initial strain the critical bifurcation mode corresponds to
the infinite wavelength limit with respect to the material length. Thus, the combination
of the stress-gradient effect (stress concentration effect) around the cavity with the
Cosserat effect resulted in the study by Papanastasiou and Vardoulakis (1989) into
wave number selection and to a scale effect.

Figure 10.2.5 (a) Long rock strip interfacing with rough ‘tool’ under constant normal stress and
controlled horizontal displacement; (b) Coulomb yield condition for rock; (c) ‘True’ or material
cohesion of rock consisting of hardening/softening and residual branch (Vardoulakis et al., 1988).
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As already mentioned in section 9.5 Papanastasiou and Vardoulakis (1992) performed
large-scale finite-element computations on the basis of a Cosserat continuum
formulation (for strain-softening cohesive-frictional material), which followed the
evolution of circular hole-wall warping into the post-bifurcation regime. This analysis
showed that cavity ‘failure’ occurs through post-bifurcation, progressive localization of
the deformation into shear bands. Moreover, a numerical study on mesh sensitivity for
different types of failure showed that the Cosserat model is effective as a regularization
method when frictional slip is dominant (Sluys, 1992). In the same study, a gradient-type
model appeared to be effective in the description of tensile as well as shear type of
failure. In a recent comparative study by Papamichos et al. (1994) it was found that the
gradient model predicts a stronger scale effect in comparison with the Cosserat model.
Furthermore, an important result with respect to the interpretation of laboratory hollow
cylinder tests and their extrapolation to large-scale boreholes is the fact that the gradient
model scale effect remains present for cavities of much larger radius in comparison with
the Cosserat model scale effect.

10.3.2
Bifurcation analysis

In this section the second-gradient elastoplasticity model is applied to the problem of
equilibrium bifurcation of a hollow cylinder under external compression. The bifurcation
analysis is restricted here to plain-strain deformations on the plane normal to the axis

Figure 10.2.6  Variation of material cohesion T and of apparent cohesion c at the top of the
interface layer with the plastic strain γp at the top of the layer (Vardoulakis et al., 1992).
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of the cavity of a hollow cylinder, and is meant to simulate the laboratory test commonly
used to assess stability of deep boreholes (Figure 10.3.1). This assumption is justified by
experimental observations of the dominant failure patterns around the cavity (Tronvoll
et al.,1993).

The analysis was performed in the natural cylindrical (r, θ)-coordinate system. The
considered problem was solved by using a one-dimensional discretization along the
radius of the thick-walled hollow cylinder. C1 continuous, two-noded elements with
Hermite basis functions of cubic order were used. This is necessary because of the third-
order constitutive equations in terms of the velocity components. The degrees of freedom
at each node were the velocity and its first derivative (Vardoulakis et al., 1994).

The analysis assumes that the cavity is unstable as soon as, in addition to the trivial
deformation of cylindrical convergency of the cavity, another non-trivial, non-
axisymmetric deformation mode exists that fulfils homogeneous boundary conditions.
This deformation mode corresponds to warping of the cavity surface and its wavelength
is inversely proportional to the wave number (m) of the bifurcation mode.

The trivial solution of cylindrical convergency of the cavity is obtained by solving
incrementally the variational equation 10.2.80 for axisymmetric deformations. Static
boundary conditions are imposed on the internal and external boundary of the hollow
cylinder,

(10.3.1)

where ri and re are the internal and external radius of the hollow cylinder, respectively,
and , the radial stress increment applied at the external boundary.

On the other hand, the bifurcation condition for the non-trivial solution of warping the
cavity is obtained by solving equation 10.2.80 for the non-axisymmetric velocity field

Figure 10.3.1 Geometric layout of the thick-walled hollow cylinder and of the ‘warping’
bifurcation mode.
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(10.3.2)

For this velocity field at the internal boundary (r=ri) homogeneous static boundary
conditions, according to equations 10.2.75 and 10.2.76, were imposed, resulting in the
present case to the following equations

(10.3.3)

At the external boundary ( ) homogeneous kinematic boundary conditions,
according to equations 10.2.77, were imposed,

(10.3.4)

This results in an eigenvalue problem for the critical bifurcation stress .
Within a finite-element discretization scheme the solution to this problem is obtained

again by requiring that the global stiffness matrix [K], becomes singular (cf.
section 3.3.4),

(10.3.5)

The analysis confirmed the fact that in inhomogeneous problems like the present one,
failure of local uniqueness criteria does not necessarily imply global loss of uniqueness.
In fact, the obtained bifurcation points corresponded to loading states where the
elements close to the cavity wall have entered the softening regime. In other words,
although at these elements the local stability criterion is violated, the global stiffness
matrix [K] remained regular.

10.3.3
The scale effect

The second-gradient elastoplastic constitutive model presented above in section 10.2,
was calibrated for the Red Wildmoor sandstone using extensive experimental data from
uniaxial and triaxial tests (Tronvoll et al., 1993). For simplicity the constitutive
equations of a 2D-associative model with linear Mohr-Coulomb yield function were
used,

(10.3.6)

where σ and τ are the 2D first stress and second deviatoric stress invariants, and γp the
corresponding 2D-plastic shearing strain intensity. As already mentioned above for this
type of ‘standard’ rock plasticity model, the hardening character is modeled by a non-
softening mobilized-friction coefficient and a non-hardening parameter q
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with  prior to peak; cf. equations 10.2.34 and 10.2.39. The values of the elastic
and plastic constants of the model used in this analysis are:

(Vardoulakis et al., 1994). The model requires also the specification of the material
length ℓc. In the considered calibration the material length was taken equal to the mean
grain radius of the Red Wildmoor sand stone; i.e.

Due to the existence of the material length ℓc, one can distinguish between small and
large cavities leading to scale effect. Various cavity internal radii ri were thus chosen in
the range of 1.25 cm≤ri≤25 cm, or

In all these cases the ratio between internal and external radii was constant

In order to achieve mesh insensitivity a fine discretization is required close to the cavity
wall by discretizing the domain in 100 elements according to a geometric progression
along the radial direction.

The results of this analysis are summarized in Figures 10.3.2 to 10.3.4. In
Figure 10.3.2 the cavity-closure curve, corresponding to the trivial solution of cylindrical
convergency of the cavity is given, where the externally applied radial stress is plotted as
a function of the cavity deformation. It should be noted that the cavity-closure curve
depends on the size of the cavity itself, due to the scaling of the geometric length
(radius) ri with the material length ℓc. However, the effect of ℓc on the primary solution is
minimal inappreciable, and in fact the closure curves for different size cavities are
almost indistinguishable.

In the cavity-closure curve, the bifurcation points for cylinders with various initial
internal radii are depicted. The corresponding critical bifurcation modes are shown in
Figure 10.3.3, where the dependency of the bifurcation  stress on the considered mode
and internal radius is portrayed. Based on the critical bifurcation stress, a plot showing
the scale effect for the considered rock is shown in Figure 10.3.4. We notice from this
figure that the obtained scale effect compares favorably with the experimental results by
Tronvoll et  al. (1993).
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10.4
A 2D-gradient model for granular media

10.4.1
Constitutive equations

As we saw in chapter 9 in the continuum description of the deformation of a granular
medium one has to consider, in general, the effects of intergranular slip and rotation.

Figure 10.3.2 Cavity closure curve for Red Wildmoore sandstone (Vardoulakis et al., 1994).

Figure 10.3.3 Wave number selection in bifurcation analysis of the thick-walled hollow cylinder
under external pressure (Vardoulakis et al., 1994).
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However, in granular media under shear, intergranular slip and rotation are linked to
porosity changes through the internal (dilatancy) constraint. Thus in order to arrive at a
simple non-classical constitutive model one may want to emphasize the effect of porosity
changes and its gradient, whereas the effect of grain rotation may be suppressed.

In order to justify the identification of the plastic strain rate with the micro-
deformation rate and the elastic strain rate with the relative deformation rate, equations
10.2.30 and 10.2.32, we return to the familiar picture of two-phase granular medium
which consists of deformable grains and of voids. The voids are assumed to be filled with
gaseous substances or fluids whose interaction with the solid skeleton is disregarded
here. Within a small strain theory, and according to equation (5.2.12) mass balance for
the solid constituent results in the following condition

(10.4.1)

The left-hand side term in this equation is identified as the macroscopic volumetric
strain rate. In a first approximation one may neglect: (a) all irreversible volume changes,
due to grain damage (grain cracking or crushing), and (b) all reversible porosity changes.
These assumptions provide a micro-mechanical justification of the strain-rate
decomposition of the theory of elastoplastic materials. The volumetric strain rate is
decomposed into an elastic (recoverable) and a plastic (permanent) part

(10.4.2)
where the elastic strain rate is almost due to the reversible volume changes of the solid
constituent (elastic deformation of the grains)

(10.4.3)

Figure 10.3.4 Theoretical (Vardoulakis et al., 1994) and experimental scale effect (Tronvoll et al.,
1993).
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and the plastic part is almost due to irreversible porosity changes (rearrangement of the
grains)

(10.4.4)

The next issue is to give a geometrical meaning to the choice of the plastic multiplier 
and its gradient representation. For demonstration purposes we restrict our analysis in
two dimensions and suggest identifying the plastic multiplier  with the average
interparticle slip, among the grains contained in a small but finite material volume V
surrounding a material xα (α=1,2)

(10.4.5)

This non-local hypothesis is expressed formally by the relation

(10.4.6)

(cf. Aifantis, 1984; Bažant, 1984; Pijaudier-Cabot et al., 1988; Vardoulakis and Aifantis,
1991). A Taylor’s expansion of the function  around xα  gives

(10.4.7)

where , etc. We assume that the region V is a circle of radius R,
which in turn is a small multiple of the grain radius is small compared to any
geometrical length scale of the considered material body. For performing the integrations
in 10.4.7, the appropriate polar coordinates are r(0≤r≤R) and θ(0≤θ≤2π). If nα denotes the
outward unit normal of the circle , then we have the following relation between the
average and local plastic shear strain rate

(10.4.8)

with , it follows immediatly from this expression that

(10.4.9)

where the kinematical length scale  is unspecified. In passing, we note that
the numerical factor in 10.4.9 depends on the dimensionality of the problem, e.g. R2/8
is replaced by R2/10 if the calculation is carried on in three dimensions.

On the other hand, for the yield surface and the plastic potential we assume the
simplest generalizations of the corresponding mobilized friction and dilatancy laws

(10.4.10)

(10.4.11)
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with .
Furthermore, the following evolution law for the back-stress is postulated (Vardoulakis

and Aifantis, 1991)

(10.4.12)

where K is the 2D-compression modulus and ℓc is a material length.
The physical meaning of equations 10.4.10 to 10.4.12 is straightforward: Inside the

localized zone γp varies rapidly and assumes a maximum value somewhere at the center
of it, if we deal with a shear band, or at a boundary of it, if we deal with an interface
band. Consequently, within a zone of localized deformation we expect that,

(10.4.13)

Since localization is accompanied by rarefaction and material softening, any decrease in
 is counterbalanced by the increase of the gradient term. In other words, in regions of

material softening, a larger than local region contributes to the overall strength. This
means that in the present theory non-local effects lead to strengthening of the material,
since the gradient-dependent relative stress produces effectively an increase of the local
confining pressure. 

In the considered case Prager’s consistency condition becomes

(10.4.14)

where

(10.4.15)

cf. section 6.5.2.
As already shown in section 10.2.3 the differential consistency condition may be

reduced into an ℓ4-algebraic condition for local interparticle slip 

(10.4.16)

and the back-stress rate is given by

(10.4.17)

where denote again the McAuley brackets. Since, , whenever loading of the yield
surface  is taking place and zero otherwise.

Accordingly, the approximate rate stress-strain relations of the strain-rate gradient
dependent flow theory of plasticity are recovered
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(10.4.18)

where  is the elastoplastic stiffness,

(10.4.19)

(10.4.20)

The tensor  is defined, in analogy to , in terms of the mobilized dilatancy
coefficient, . These constitutive equations are a straightforward
singular perturbation of the ones of classical flow theory, equations 6.5.42. Finally we
remark that as far as the weak or strong formulation of the rate boundary value problem
is concerned, the formalism of section 10.2.4 can be directly applied.

10.4.2
Shear-band analysis

We will consider here the differential equations that govern continued equilibrium from
a given configuration C of a soil body; these are the rate-constitutive equations 10.4.18
and the rate-equilibrium equations

(10.4.21)

We assume that at C the fields of initial stress and hardening parameter vary slowly in
space. Accordingly, the components of the stiffness tensors  and  may be
treated as constants. For convenience, the governing equations are written in the
coordinate system of the principal axes of the stress tensor in C. Under fully loading
conditions we obtain the following set of constitutive equations

(10.4.22)

where  are the components of the stiffness tensor of the ‘upper bound’ comparison
solid, given explicitly by equations 8.2.3, and

(10.4.23)

Introducing these expressions into the equilibrium equations results finally in the
following system of partial differential equations for the components of the velocity υi
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(10.4.24)

These partial differential equations constitute a singular perturbation of the classical
ones, i.e. they reduce to the classical ones if the material length ℓ is allowed to go to zero.
If one is interested in studying boundary-value or eigenvalue problems which involve
some geometric dimension L of a structure, then the coordinates xα must be non-
dimensionalized properly (by L) and the highest derivatives in equations 10.4.24 are
then multiplied by the number (ℓ/L)2«1. In this case, the above equations reduce to the
ones that govern deformation in a classical continuum. If, on the other hand, one is
interested in determining whether or not shear bands exist, then one has to investigate
equilibrium across two adjacent planes at a distance 2dB that correspond to shear-band
boundaries. With the assumption that , the higher-order derivatives in
equations 10.4.24 become then essential. The shear-band thickness 2dB is called then
an internal length of the problem, and above consideration means simply that an
internal length scales with the material length per definition.

Accordingly the above differential equations 10.4.24 can be investigated for the special
case where solutions are sought that correspond to the localization of deformation into
narrow zones of intense shear, the so-called shear bands. According to Figure 10.4.1,
the (x1, x2)-coordinate system is chosen in such a fashion that the x1-axis coincides with
the minor minimum principal stress σ1 in C. Let us assume that a shear band is forming
that is inclined with respect to the x1-axis at an angle θ A new coordinate system 

 is introduced with its axes parallel and normal to the shear
band, where  is the unit vector that is normal to the shear-band
axis. By assuming that all field properties related to the forming shear band do not
depend on the longitudinal x-coordinate and setting , above equations reduce
to the following system of ordinary differential equations

(10.4.25)

where Гαβ is the 2D-acoustic tensor

(10.4.26)

In searching for periodic solutions we set

(10.4.27)

and the above system yields
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(10.4.28)

where

(10.4.29)

For non-trivial solutions the matrix equation 10.4.28 results in the following condition
for the shear-band thickness 

(10.4.30)

where

(10.4.31)

(10.4.32)

It should be noted that a1=det (Гαβ) is a quadratic form in the orientation cosines nα and
that the condition det (Γαβ)=0 coincides with the classical bifurcation condition,

(10.4.33)

Prior to classical bifurcation, and for any nα, a1(n1, n2)>0, whereas a1<0 for any state past
the classical critical bifurcation point. On the other hand, a0(n1, n2) is a quadratic form

Figure 10.4.1 Specimen with shear band.
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in the orientation cosines which is characteristic for the type of the governing partial
differential equations. It turns out that always a0>0 which means that the system of
partial differential equations (10.4.24) is always elliptic, as opposed to the classical
system of governing equations which is of changing type, namely turning from elliptic to
hyperbolic at the point of classical bifurcation.

Following these observations we conclude that: (a) prior to classical bifurcation there
is no real solution for the shear band thickness, (b) at the classical bifurcation point the
shear-band thickness is infinite as compared to the material length ℓ, rapidly decreasing
in the post-bifurcation regime. This is a well-established qualitative result that should
hold for any linear analysis that is based on a physically sound constitutive theory; cf.
chapter 9.

In order to provide an estimate of the material length ℓ we will analyze here some
experimental results from a biaxial test on a fine-grained Oestershelde sand which were
also analyzed in sections 8.2.2 and 9.4.3. We recall that classical-type bifurcation
occurs at a critical plastic shear strain  with ; the
corresponding inclination of the shear-band . X-ray radiographs of the
considered Oestershelde sand specimens revealed a shear-band thickness that is about
18.5 times the mean grain diameter d50% (Table 9.4.1). In order to match this finding we
have to assume that the domain of integration for the evaluation of the non-local
interparticle slip, equation 10.4.8, has a diameter

(10.4.34)

Figure 10.4.2 Evolution of shear-band thickness in the post-bifurcation regime of the classical
description: (a) 2R=d50%, (b) 2R=2d50%.
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Figure 10.4.2 shows the corresponding predictions of the admissible shear-band
thickness (2dB/d50%) in the post-bifurcation regime of the classical description. This
figure demonstrates that no localization is possible at the bifurcation point of the
classical description and that the deformation rapidly localizes in the post-bifurcation
regime. According to this figure the material length ℓc, which appears in equation 10.4.9
and the following equations is such that , and thus . 
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11
Stability of undrained deformations

11.1
Monotonic biaxial tests on water-saturated sand

The behavior of water-saturated granular materials subjected to undrained deformations
has been thoroughly investigated by several authors in past years. Typical examples of
this type of work are the papers by Castro (1969), Casagrande (1976) and later by Vaid
and Chern (1983). Most of the published work which concerns us here is based on the
static or cyclic behavior of sands tested in the triaxial (cylindrical) apparatus. Some
papers deal with tests in the torsional (Tatsuoka et al., 1982) or the simple shear
apparatus (Alarcon-Guzman et al., 1988). Professor Ishihara (1993) in his Rankine
Lecture on 'Liquefaction and Flow Failure during Earthquakes' gives a thorough and
exaustive reference to published works in the subject.

The evaluation of experiments and the description of observed phenomena is always
done within the frame of a continuum and constitutive theory. Here, water-saturated
granular soil is modeled as a mixture of a solid and an aqueous phase, which may or
may not share common velocities. For the interpretation of the resulting partial stresses
Terzaghi's effective stress principle is utilized. The behavior of the skeleton is described
in terms of effective stresses by the elastoplasticity theory for cohesionless materials
with internal friction and dilatancy; cf. Peters (1984), Vardoulakis (1985, 1986) and
Nova (1991).

In this section, we discuss results from undrained biaxial experiments published
earlier by Han and Vardoulakis (1991) and Vardoulakis (1995). Table 11.1.1
summarizes some data related to these tests, which were run under axial displacement
control and constant confining pressure. Initially, a well-prepared sand specimen is
deforming homogeneously and its evaluation and interpretation within a constitutive
theory is straightforward. We call this phase of the deformation of the soil specimen, the
constitutive phase of soil behavior. Except for the very loosely packed sand specimens
(e.g. test DC-09) the constitutive phase was terminated by a spontaneous shear-band
formation.

The following sections are mostly based on some recent work of Vardoulakis (1995)
where the issues of uniqueness, stability and well posedeness, in relation to undrained



deformations of sands are discussed. This analysis includes a simple mathematical
model for undrained monotonic biaxial tests under constant confining pressure and the
condition for globally undrained shear banding.

11.1.1
Experimental basis

Let (x1, x2) be the coordinates in the plane of deformation in the directions of principal
stretches, and let x3 be the coordinate perpendicular to it (Figure 11.1.1). During a
homogeneous plane, rectilinear deformation these directions are fixed in space. Let λα
and σα  be the corresponding principal (logarithmic) strains and Cauchy
stresses, with  and . The total stresses σα are decomposed into effective stresses
and pore-water pressure

(11.1.1)

with compressive stresses  being negative and pw>0, if the pore fluid is under
pressure. In the considered plane-strain tests the pore-water pressure  pw was

Table 11.1.1 Monotonic, displacement-controlled, undrained biaxial tests on St. Peter Sandstone
sand (Han and Vardoulakis, 1991)

Figure 11.1.1 Biaxial set-up.

 

414 STABILITY OF UNDRAINED DEFORMATIONS



monitored, whereas the out-of-plane principal stress σ3 was not measured. In order to
resolve the indeterminacy of σ3 the assumption of elastoplastic behavior is adopted.
Thus principal strain increments, , are decomposed into an elastic and a plastic
part

(11.1.2)

Furthermore we make the following assumptions:

(a) Elastic strain increments are associated with the effective stress increments.
(b) The plastic strain rate potential does not depend on the intermediate (effective)

stress.
(c)  is always the intermediate effective stress ( ).

These assumptions result in , which together with the plane-strain condition,
, to , or to

(11.1.3)

where v is the Poisson ratio. Equation 11.1.3 suggests the application of a 2D theory of
plasticity, whose material constants and functions are easily derived from or related to
the ones of a corresponding 3D theory (cf. section 6.5.1). However, here only results from
the aforementioned plane-strain experiments will be used. Accordingly, the results from
the constitutive phase of biaxial experiments are represented in terms of the following
2D invariant stress and strain measures:

(11.1.4)

Figure 11.1.2 shows the deviatoric stress-strain curves for the medium dense sand
specimens (DC-04 and DC-16), which had almost the same initial porosity but were
sheared at different initial effective stresses. The corresponding effective stress paths are
shown in Figure 11.1.3. Figures 11.1.4 and 11.1.5 show the experimental curves for the
group of tests which were sheared at the same initial effective stress (DC-09, DC-16 and
DC-11).

In undrained tests, due to the inevitable membrane penetration error volumetric
strains should be estimated indirectly from the storage equation 5.4.14. The pore fluid
contains, in general, a small amount of air and thus it is more compressible than the de-
aired fluid. Accordingly, the compressibility of the fluid-air system depends on the
degree of saturation S and on the pore-fluid pressure as expressed by equation 5.4.9. In
addition to the storage equation 5.4.14 one should also consider equation 5.4.15, which
accounts for minor corrections in the porosity. However, almost perfect saturation (
) and small solids and water compressibilities result in volumetric strains which are two
and three orders of magnitude smaller than the corresponding shear strains. Thus, in
general, and without significant error, the deformation may be considered isochoric
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(11.1.5)

According to 11.1.2, volumetric and shear strain increments are also decomposed into
an elastic and a plastic part

(11.1.6)
with elastic strains given by a simple incremental elasticity law,

Figure 11.1.2 Deviatoric stress-strain curves for medium dense sand at different initial confining
pressure (DC-04 and DC-16).

Figure 11.1.3 Effective stress paths for medium dense sand at different initial confining pressure
(DC-04 and DC-14).
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(11.1.7)

Due to 11.1.3, the 2D elastic compression modulus  is related to the elastic shear
modulus G according to equation 6.5.15.

As presented in section 6.5, sand is described here by a linear, single strain hardening
Mohr-Coulomb non-associative elastoplastic constitutive model,

Figure 11.1.4 Deviatoric stress-strain curves for loose (DC-09) medium dense (DC-16) and dense
sand (DC-11).

Figure 11.1.5 Effective stress paths for loose (DC-09), medium dense (DC-16) and dense sand
(DC-11).
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(11.1.8)

where the mobilized friction and dilatancy coefficients are functions not only of the
accumulated plastic shear strain but also of the porosity and the effective stress. We
consider first in a (σ′, τ)-plot the effective stress path for a typical undrained test (cf.
Figures 11.1.3 and 11.1.5). The angle between the σ′-axisand the radius, connecting the
origin and a point on this graph, defines the mobilized Mohr-Coulomb friction angle

. Similarly, the mobilized dilatancy angle after Hansen and Lundgren is
defined as . It should be noted that the best way to determine the
dilatancy coefficient was through the deviatoric stress rather than the effective stress
data. Obviously for plastic stress states

(11.1.9)

In order to arrive at a simple mathematical description of the evolution of the mobilized
dilatancy coefficient for the general non-associative case, β<µ, Taylor’s (1948) stress-ratio
dilatancy rule was adopted

(11.1.10)

(cf. sections 6.3.3 and 6.5.3). For the evaluation of  we proceed with the observation
that this constant can be identified with the effective stress ratio at which the soil
behavior turns from contractant to dilatant. It is customary to call the corresponding
state the ‘point of phase transformation’ (Ishihara et al., 1975). We may call this state
also a state of constant plastic volumetric strain, and denote it by the abbreviation (cv)

(11.1.11)

The curve-fitting procedure for the mobilized friction coefficient was based on a four-
parameter function which allows for sufficiently accurate description of strain
hardening/softening behavior

(11.1.12)

The curve-fitting parameters ci (i=1, 2, 3) are taken constant for all tests. The influence of
porosity, initial effective stress enters only through the mobilized friction coefficient at
initial yield µ0. This procedure yielded c1=1.704, c2=0.047, c3=2.947 and the values for
the constants listed in Table 11.1.2. Figure 11.1.6 shows the measured and fitted values
for the mobilized friction and dilatancy coefficients for test DC-04. 

11.1.2
Simulation and discussion

In order to model the biaxial compression experiments, we assume that the deformation
of the soil specimen is homogeneous. In particular, we assume that the deformation of
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the specimen is a plane-strain, undrained rectilinear deformation under constant
confining pressure and controlled axial displacement. As already mentioned such tests
are described in terms of the deviatoric stress τ and effective stress  and the deviatoric
strain γ, since the volumetric strain is practically zero (ε=0). Results are usually plotted
in terms of the deviatoric stress-strain curve

(11.1.13)

and the effective ‘stress path’

(11.1.14)

With the given evolution of the deviatoric and mean effective stress, the pore-water
pressure can be computed from the boundary condition, which here corresponds to
constant lateral stress

(11.1.15)

In the elastic regime (F<0)

(11.1.16)

Table 11.1.2 Curve-fitting parameters, displacement-controlled, undrained biaxial tests on St.
Peter Sandstone sand (Han and Vardoulakis, 1991)

Figure 11.1.6 Mobilized friction and dilatancy functions demonstrating Taylor’s stress-dilatancy
rule, equation 11.1.10.
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In order to remove the indeterminacy of the effective stress, the incompressibility
constraint 11.1.5 must be relaxed. The effective stress path follows then directly from
the storage equation 5.4.14 and equations 11.1.15 and 11.1.16, leading to

(11.1.17)

Accordingly in the elastic regime the slope of the undrained stress path turns out to be
relatively steep and approximately constant. For the considered tests 

In the elastoplastic regime the effect of solids and fluid compressibility may be
neglected without significant error. In this regime the effective stress path can be
represented in parametric form, with the plastic shearing strain intensity γp as the curve
parameter

(11.1.18)

(11.1.19)

where h is the dimensionless hardening modulus

(11.1.20)

and hT is a hardening parameter defined as,

(11.1.21)

We notice that since , one can replace γp by γ and vice versa.
The evolution of the effective stress σ′ and the deviatoric stress τ in the elastoplastic

regime of undrained deformations is determined by the dilatancy coefficient β and
hardening parameter ( ). Figure 11.1.7 shows the evolution of the parameters h and
hT for the set of material parameters corresponding to test DC-04. Equations 11.1.25
and 11.1.26 can be thus integrated to compute the behavior of specimens of water-
saturated sand subjected to monotonic undrained biaxial tests. Figures 11.1.8 and
11.1.9 show the computed and measured deviatoric stress-strain curve and effective
stress path for test DC-04. It should be noted that the computed stress-strain curves
are extended here past the regime that corresponds to the aforementioned ‘constitutive’
phase of the test, since in the considered test DC-04 a shear band was definitely
observed at , i.e. slightly prior to the second peak of the deviatoric stress-strain
curve.

Water-saturated, relatively medium-dense sand specimens of ordinary size show in
displacement-controlled undrained tests a typical ‘hardening-soft-ening-rehardening’
deviatoric behavior (Figure 11.1.8). In the soil mechanics literature this type of soil
behavior is called ‘flow with limited deformation’. This means that, unlike other more
fine-grained materials (e.g. clays) a typically ‘unstable’ behavior is indeed observable in
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undrained sand element experiments. The first peak in the deviatoric stress-strain curve
marks a state, which is called a Tresca’ state, in order to denote a limit point of
maximum principal stress difference. The limit state (T1) is reached at small strains (

) and at an effective stress ratio ( ) which is significantly smaller than the
maximum effective stress ratio ( ). The effective stress ratio at (T1) is sometimes
called the ‘critical stress ratio’ (Vaid and Chern, 1985). The background soil behavior is
definitely contractant ( ), the plastic hardening modulus is positive and it
assumes its critical value ( )

(11.1.22)

Depending on the type of boundary conditions instabilities may or may not occur at (T1).
In the experimental program considered here, instabilities at (T1) were only observed in
the case of load-controlled tests, since at (T1) the axial load assumes a local maximum.

The limit state (T1) of the first maximum of the deviatoric stress is followed by a state
(T2) of minimum deviator, where a second solution of equation 11.1.22.2 exists. The
state (T2) is usually called a ‘quasi-steady state’. It is reached at moderate strains, as
can be seen from Figure 11.1.8. At (T2) the soil is hardening and is sightly contractant (

, ). State (T2) slightly precedes the
aforementioned state of (first) ‘phase transformation’ (cv1), where the dilatancy
coefficient β changes sign from negative to positive. This means that at (cv1)

Figure 11.1.7 Evolution of parameters h and hT for the set of material parameters corresponding
to test DC-04.
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(11.1.23)

In plane-strain experiments, a second maximum (T3) in the axial load (represented here
by the ‘nominal’ principal stress difference τ) is observed, which fairly well corresponds
to a third solution of equation 11.1.22.2. The state (T3) occurs for dilatant behavior (β>0)
inside the softening regime of the background effective stress ratio ( ). It turns
out that in the discussed typical experiment prior to reaching state (T3) a shear band
has formed, and accordingly the corresponding segment of the stress-strain can only be
seen as describing some sort of global (or nominal) behavior. Again, soon after state (T3)
another ‘phase transformation’ state (cv2) is reached which indeed marks a transition
from dilatant to contractant behaviour, occurring inside a narrow band of strain
softening material.

The above described sequence of stress states can be also followed on the effective
stress-path diagram, shown in Figure 11.1.9. In this figure the early maximum in
deviatoric stress (T1) is clearly seen as a local maximum of the corresponding curve. The
state (T2) or ‘quasi-steady-state’ is not clearly seen in this diagram and, as already
mentioned, it should not be confused with the state of ‘phase transformation’ (cv1),
which indeed coincides with the ‘elbow’ of the effective stress path, i.e. the point with
vertical slope ( ). Past this state the effective stress path moves quickly toward
its ultimate slope, or ‘steady state’, which is attained at a state (C) of zero plastic strain
hardening . Accordingly at (C)

Figure 11.1.8 Measured and computed deviatoric stress-strain curve for test DC-04.
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(11.1.24)

This state was termed in section 8.2 a ‘Coulomb’ state, and signifies the limit state of
maximum effective stress ratio

(11.1.25)

Since soils are assumed to obey Coulomb’s ‘failure’ criterion, the corresponding straight
line through the origin with slope (−µC) is sometimes called the ‘failure line’.

Finally the second ‘elbow’ in the effective stress path of Figure 11.1.9 corresponds to
the ultimate ‘phase transformation state’ (cv2). Continued plastic strain softening leads
to a ‘backwards’ tracing of a ‘failure line’ with slightly smaller slope as the ultimate one.

In Figure 11.1.10 the deviatoric response of a ‘loose’ sand specimen (DC-09) is
reproduced. A ‘loose’ or ‘undercritically dense’ specimen reaches at large strains a
steady state, which is usually termed the state of ‘flow with unlimited deformation’. This
is the state of proper soil ‘liquefaction’, because for  continued shearing the soil provides
constant resistance, very much like a viscous fluid. This state can be called accordingly
a ‘critical state’ (cs) in the sense of Casagrande, because both stresses and density are

Figure 11.1.9 Measured and computed effective stress path for test DC-04.
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stationary. However, state (cs) is reached asymptotically, i.e. prior to (cs) the behavior of
the material is always strain hardening (h>0) and contractant (β<0), with diminishing
hardening rate and rate of contractancy. At (cs):

(11.1.26)

Figure 11.1.10 Computed deviatoric stress-strain curve for a typical loose sand specimen
(DC-09).

Figure 11.1.11 Computed effective stress paths for three typical behaviors: relatively loose,
medium dense and dense sand.
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Finally Figure 11.1.11 summarizes the computational results for the simulation of the
three typical behaviors. We observe that the steady state for relatively ‘dense’ specimens
is the Coulomb state, where condition 11.1.24 is satisfied.

11.2
Theoretical implications

Following the above mathematical description of the homogeneous isochoric plane strain
rectilinear deformation, the question of uniqueness of such a deformation mode arises.
In classical plasticity theory uniqueness is guaranteed by resorting to Drucker’s
‘stability postulate’, which requires that for all possible stress probes the second-order
plastic work is non-negative,

(11.2.1)

with the equal sign holding for ; cf. section 6.2.5. We recall that if Drucker’s
postulate is satisfied at a given state of an elastoplastic body and for all points in the
volume that it occupies, then the corresponding incremental boundary value problem
possesses under dead loading a unique solution.

In the case of associative material the assumption of Drucker’s postulate precludes
softening of underlying effective stress ratio, and a material obeying Drucker’s postulate
is sometimes called a ‘stable material’. Indeed, ∆2wp becomes negative in the softening
regime of the effective stress ratio strain curve, since then the plastic increment vector is
normal to the yield surface and pointing outwards to this yield surface, whereas the
stress increment vector is pointing inwards, and the inner product is negative.

In case of non-associative frictional material, Drucker’s stability postulate is violated
even in the hardening regime of the material behavior. For continued plastic loading the
stress increment is pointing into the exterior domain of the yield surface (F>0), and we
distinguish among two sets of possible stress probes (Figure 11.2.1):

Undrained, displacement-controlled tests provide realizations of stress probes which lie
in the above set (II); that is, for states with µ<µcv, plastic  strain contractancy (β<0)
results through the constant-volume constraint to an effective stress drop and
consequently to pore-water pressure increase. The corresponding effective stress paths
turn towards the origin as shown in Figure 11.1.11. The effective stress path can be
seen as the envelope in stress space of these effective stress increments. If we imagine
the stress and the plastic strain increment vectors attached at some given stress point
on the stress path, we can easily visualize the actual value of the second-order plastic
work, as their inner product as shown in Figure 11.2.1. For states during an undrained
test the actual value of the second-order plastic work can be computed analytically
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(11.2.2)

where

(11.2.3)

Notice that in case of normality . In Figure 11.2.2 the hardening
parameter hw is plotted versus γp, together with the hardening  moduli h and hT for test
DC-04. From the sign of the actual second-order plastic work we conclude that the
effective stress path in the considered test follows a track which in the initial and final
part of the test corresponds to ∆2wp<0. The initial part with ∆2wp<0 corresponds to
(effective stress ratio) strain-hardening material, with 0<h<−κµcvβ. ∆2wp becomes positive
at a state slightly after the state (T2) of minimum deviator and before the first ‘elbow’ of
the effective stress path (the state cv1). ∆2wp stays positive even past the state (C) of
maximum effective stress ratio, in the softening regime, and for all h>−kµcvβ. It becomes
negative again at a state close to the second deviator maximum (T3) prior to the second
‘elbow’ (cv2) of the effective stress path.

Accordingly, the analysis of such experiments, within the frame of non-associative
plasticity, provides empirical proof that for large portions of an undrained test the
second-order plastic work is negative (∆2wp<0). Moreover, under the considered
conditions of axial displacement control and constant confining pressure, no visible
instabilities took place in the regime with ∆2wp<0. This observation was discussed and
validated experimentally in the past by Lade (1989) and Lade et al. (1987, 1988). All
these observations mean that under certain boundary conditions a deformation process
may be unique and homogeneous even if the second-order plastic work is negative.

Figure 11.2.1 Yield surface and flow rule for frictional non-associative material and the various
sets of stress probes with positive and negative second-order plastic work.
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11.3
Bifurcation and stability

11.3.1
Undrained shear banding

We consider here a fluid saturated soil body at time t=0, in a given configuration C. Let
this body be subjected to an infinitesimal deformation, and let C be the reference
configuration. It is assumed that during this deformation process the various
mechanical properties of the body change but little, for example the porosity changes
from its value n(xk, 0) in C to  in , with  and |∆n|/n«1 (cf.
section 5.7). The incremental displacement of the solid for the considered transition 
 is ∆ui and the relative specific discharge vector of the fluid in  is . Since
connective terms will be neglected for both the solid phase (superscript 1) and the fluid
phase (superscript 2), material time derivatives coincide with partial time derivatives,
and

(11.3.1)

Figure 11.2.2 Evolution of hardening parameters h, hT and hw, indicating that the second-order
plastic work is negative (approximately) for all contactant states and for states within the
softening regime.
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For incompressible fluid and solids the storage equation becomes

(11.3.2)

In a fluid-saturated medium, local uniqueness (and stability) is studied with the
undrained deformation mode as the ground mode. The ground mode is denoted here by
a (°). Undrained deformations are characterized by remote boundary conditions which
preclude in- or outflow of water. Such a type of boundary conditions implies that, under
homogeneous deformations, the fluid flow is zero everywhere in the considered domain,

(11.3.3)

This condition means that under locally undrained conditions both phases share
common velocity,

(11.3.4)

From this condition and the storage equation 11.3.2 it follows that the ground
deformation mode is isochoric (volume preserving)

(11.3.5)

The uniqueness question is posed as follows: at any given state of an undrained
deformation, small perturbations ,  and  of the displacements of the
skeleton, the pore-water pressure and the relative specific discharge vector are
considered. The total displacement, pore-water pressure and discharge are then the sum
of the ground mode and the perturbation mode,

(11.3.6)

In this section we restrict ourselves to (locally undrained) isochoric deformation modes,
i.e. we assume that

(11.3.7)

Note that for the considered (globally) undrained deformations, , and thus
always .

Linear equilibrium bifurcation analysis is based on the assumption that the
perturbation mode is sufficiently ‘small’ such that nowhere in the domain unloading
takes place. In other words, the analysis is not performed for the true (quasi-linear)
elastoplastic solid but for another linear ‘comparison’ solid, which corresponds to full
loading conditions. For the considered set of isochoric deformation modes the
incremental constitutive equations in the coordinate system of principal axes of initial
stress become,

(11.3.8)

where
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(11.3.9)

is the tangent shear modulus, which reflects the dependence of the stress deviator
 on the strain deviator  (cf. Figure 11.1.8). Accordingly 

becomes zero at the state (T1) of maximum deviator, and is negative in the softening
regimes of the deviatoric stress-strain curve. In the constitutive equations 11.3.8,

(11.3.10)

is the mean stress increment. We observe that the mean effective stress increment is
determined

(11.3.11)

This means that, in general, the pore-water pressure increment ∆pw is kinematically
undetermined to accommodate the incompressibility constraint imposed by equation 11.
3.7.2. Note that for the analysis of the ground mode, ∆pw is determined by a boundary
condition, equation 11.1.15, which of course cannot be invoked here, in a local
bifurcation analysis.

In particular, we examine here the existence of a special type of non-uniqueness in the
form of discontinuities in the strains ∆εij. Let ni be the unit normal vector to the shear-
band axis and let gi be the jump of the normal derivative of the incremental displacement
vector. The geometric jump conditions for the incremental strain are

(11.3.12)

In particular the constant volume condition results in the following restriction

(11.3.13)

The bifurcation condition for shear banding is expressed in terms of jump conditions for
the stress increments, as

(11.3.14)

If we introduce in this equation the constitutive equations 11.3.8 and the geometric
compatibility conditions 11.3.12 with the constraint 11.3.13, we obtain the classical
characteristic equation for the direction cosines nα by asking for non-trivial solutions for
the jump vector gα. First bifurcation is predicted whenever this equation provides for the
first time real characteristics. In the case considered we obtain the following condition
for first bifurcation,

(11.3.15)

The characteristic direction for the shear band is expressed in terms of an angle θ, which
measures the inclination of its axis with respect to the minor principal stress σ2. With

(11.3.16)
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in the present case we have

(11.3.17)

This means that first isochoric shear-band bifurcation is occurring at the state T1 of first
maximum of the deviator, and at critical angles of , which correspond to planes on
which the shear stress is maximum. The corresponding jump in total stress is zero,

(11.3.18)

The above bifurcation solution is slightly modified if the effect of initial stress is included.
In this case ∆σαβ in the statical compatibility condition 11.3.14 is replaced by ∆παβ, the
increment of the nominal (1. P.-K.) stress tensor referred to the current configuration C,
and the stress increments appearing in the constitutive equations 11.3.8 are seen as the
corresponding Cauchy/Jaumann stress increments. At this approximation level the
characteristic equation yields (Hill and Hutchinson, 1975),

(11.3.19)

where  measures the effect of initial stress. First bifurcation is predicted
slightly prior to (T1), at

(11.3.20)

with

(11.3.21)

and the pore-water jump is in general non-zero,

(11.3.22)

These results imply that, even for plastically incompressible poro-elastoplastic material
(β=0), undrained shear banding goes hand in hand with pore-water pressure shocks. In
metal thermo-elastoplasticity the analogous phenomenon is called ‘adiabatic shearing’,
which is physically meaningful under rapid loading conditions. Accordingly, in order to
justify solutions 11.3.18 or 11.3.22 we have to estimate how long such pressure shocks
may be sustained and compare this characteristic time with the ordinary testing time
scale. In order to do this we first consider the complete storage equation

(11.3.23)

Interstitial fluid flow is governed by Darcy’s law

(11.3.24)

For the limiting case of isochoric skeleton deformation then the resulting equation is a
pore-pressure diffusion equation

(11.3.25)
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According to test data reported in Han and Vardoulakis (1991) for the typical test DC-04,
f is estimated as: , and with that the pore-pressure diffusivity
coefficient results in: cp=2m2sec−1 With this estimate we can examine the possibility of
locally undrained shear banding. From X-ray radiographs the thickness of the shear
band is estimated as , with a mean grain size of . Thus the
corresponding characteristic time for pore pressures to diffuse across the shear band is
indeed very small: . This allows us to conclude that in ordinary soil
mechanics testing situations no pore-pressure shocks can develop across shear-band
boundaries.

With the assumption of continuity for the pore-water pressure,

(11.3.26)

equations 11.3.18 or 11.3.22 result in

(11.3.27)

i.e. to the condition that excludes the possibility of locally undrained shear banding. In
other words, the analysis supports the assumption that in the considered tests (locally)
undrained shear banding cannot be sustained, and the herein considered bifurcation
mode at state (T1) is under the given circumstances unrealistic. This finding is
supported by experiment, since no shear bands at an angle of  close to (T1) are
observed.

11.3.2
Linear stability analysis

In the context of a poro-elastoplasticity theory for dilatant hardening/softening frictional
material linear stability analysis was first performed by Rice (1975). Vardoulakis (1985)
showed that Rice’s linear stability analysis at the state of maximum deviator (T1) leads to
a sharp transition from infinitely stable to infintely unstable behavior, which indicates
that the underlying mathematical problem is ill-posed. All these observations force us to
discuss questions of existence, uniqueness and stability in a more detailed manner.

Linear stability is done here if the fluid-saturated medium is treated along the lines of
section 5.7.3. The strict zero drainage condition is relaxed by allowing internal flow to
take place. Flow is governed by the storage equation, where both fluid and solid phase
are assumed to be incompressible. We recall that the storage equation derives from
mass balance and that its consideration introduces the time scale into the problem.
Having done so, one may consider balance of linear momentum for the inertialess limit,

(11.3.28)

where the total stress increment is split according to Terzaghi’s effective stress principle
into effective stress and pore-water pressure, . The effective stress
increment is determined by the deformation of the soil skeleton through the
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elastoplastic stiffness tensor Lep; cf. equation 6.5.42ff. Linear stability analysis is
performed on the basis of the upper-bound, linear comparison solid, described by the
corresponding stiffness tensor .

Elimination of the total stress increment from the set of governing equations leads
finally to the following set of linear partial differential equations for the perturbation
mode

(11.3.29)

The coefficients of Lu are only functions of the plastic strain-hardening parameter γp,
whereas f is treated as a constant. However, through the mass-balance equation for the
solid phase, one could compute changes of the porosity, which in turn would affect the
physical permeability k and with that f. This additional non-linearity is suppressed here
as well.

For the roller bifurcation mode (Figure 5.7.1) linear stability is described by the
dispersion equation for the growth coefficient of the instability

cf. equation 5.7.49. We recall that coefficients ∆ and Г are biquadratic forms in the
direction cosines ni

(11.3.31)

(11.3.32)

where Гαβ is the corresponding acoustic tensor.
As mentioned in section 5.7.3, linear stability analysis becomes questionable, if (for

some values of the plastic hardening parameter γp and) some directions ni, the
coefficient ∆ in equation 5.7.49 becomes zero. In this case the algebraic (dispersion)
equation 11.3.30 is meaningless, and a solution for the corresponding linear stability
problem does not exist. To discuss a little further this tantalizing case, the coefficient ∆
is written explicitly

(11.3.33)

where

(11.3.34)

We observe that 
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and accordingly existence of solution is guaranteed. As already mentioned, the condition
 holds whenever the deviator becomes stationary, i.e. at states (T1), (T2) and (T3);

cf. Figure 11.1.8. For states between the first maximum deviator (T1) and minimum
deviator (T2) and past the second maximum deviator (T3), h<hT and the biquadratic
equation

(11.3.35)

has real solutions in Θ. For all these states the underlying initial boundary value
problem is mathematically ill-posed. We notice that for stationary deviator  the
critical angle from 11.3.32 is again , corresponding to the pattern of
Figure 5.7.1. This means that the initial problem for incremental perturbations of the
isochoric (volume preserving) deformation becomes for the first time ill-posed at
maximum deviator (T1) along characteristic directions which correspond to the planes of
maximum shear stress. Past this state two sets of symmetric solutions of equation 11.3.
35 exist, as depicted in Figure 11.3.1.

Finally we notice that nullity of the determinant of the acoustic tensor,

(11.3.36)

may occur in the regime of mathematical ill-posedeness. For example, in the discussed
test DC-04, , is predicted at  and for a critical angle of , which
coincides with one of the two solutions of ∆=0 at this state. 

Figure 11.3.1 Real solutions for ‘ill-posedeness’ directions.
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11.3.3
Regularization

The ill-posedeness of the underlying initial value problem for states with h<hT cannot be
remedied by considering regularizations of the type which introduce only an additional
material length into the problem. In this category fall for example extensions of either
the constitutive equations of the soil (e.g. Cosserat or second-gradient models; cf.
Vardoulakis, 1989; Vardoulakis and Aifantis, 1989; Vardoulakis and Frantziskonis,
1992) or of the fluid flow (e.g. extensions of Darcy’s law; cf. Brinkman, 1947; Aifantis,
1986; Vardoulakis and Aifantis, 1994). If, however, in addition to the characteristic
length, a characteristic time is introduced into the problem, through for example viscous
or micro-inertial effects, then regularization is achieved. In order to demonstrate this, we
resort to the complete second-grade extension of the classical flow theory of plasticity
discussed here. As explained in chapter 10 the constitutive equations of flow theory of
plasticity can be rigorously extended so as to consider the effect of high-strain gradients
and accelerations,

(11.3.37)

where ℓ and T are material characteristic length and time scales (Vardoulakis and
Aifantis, 1994).

In this case, linear stability considerations result in a third-degree polynomial
‘dispersion’ equation

(11.3.38)

for dimensionless growth coefficient and wavenumber,

(11.3.39)

The coefficients of the above dispersion equation are as follows

(11.3.40)

(11.3.41)

(11.3.42)

The regularization is meaningful if the leading coefficient of the dispersion equation is
different from zero.

Since

(11.3.43)
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for , this results in a requirement for the number M, equation 11.3.40. Indeed, one
can get an estimate of this coefficient as follows: If we want to introduce only one
additional material constant into the second-grade constitutive model 11.3.37, say the
internal length ℓ, then the intrinsic time T=Ts due to micro-inertial effects in the solid
follows from dimensional analysis by assuming that it corresponds to the time necessary
for an elastic body wave to travel the distance ℓ; i.e. if we assume that

(11.3.44)

On the other hand, as in ordinary consolidation theory, the time scale of interstitial fluid
flow is governed by a ‘consolidation’ coefficient cf such that

(11.3.45)

We remark that Ts is linear and that Tf is quadratic in ℓ

(11.3.46)

(Figure 11.3.2) and that the intrinsic time factor

(11.3.47)

If we set ℓ=D50 (D50=0.165mm, mean grain size) then for the above values for test DC-04
of f, G and ρ we obtain, c0=1.63. Accordingly, in the  microscale the two characteristic
times are small but of the same order: , . In this regime the
consideration of strain gradients and accelerations removes the mathematical ill-

Figure 11.3.2 Time scaling factors: (a)  of the micro-inertial effects; (b)  of the
interstitial fluid flow.
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posedeness at state (T1); Figures 11.3.3 and 11.3.4 show the corresponding dispersion
curves:

Figure 11.3.3 The stable mode,

Figure 11.3.3 One mode is stable throughout since it corresponds to a negative root of
the cubic dispersion equation 11.3.38, .

Figure 11.3.4 The unstable mode Re{s}>0, with flutter instabilities Im {s}≠0, at short wavelengths.
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Figure 11.3.4 The other two modes show two regimes: (a) Large wavelength regime (
) with two real solutions , i.e. stable second and

unstable third mode. (b) Short wavelength regime  with
two conjugate complex solutions and positive real part Re{s*}>0, i.e. in
this regime, flutter instabilities are predicted.

With sufficiently small spatial discretization ( ) and a scaling law for the time such that
(Tf≈Ts) instabilities in regime 11.3.4 should be suppressed. Flutter instabilities which are
predicted in this regime seem to be an artifact of linear analysis and that they should
disappear in a fully non-linear elastoplastic consideration.

Summary. The constitutive equations used here to describe the corresponding linear
comparison solid under loading are in reality successive asymptotic approximations of
the ‘true’ behavior:

(11.3.48)

Consequently, in the case of deviator softening poro–elastoplastic soil, we remark that
linear stability for zeroth-order flow theory results in ill-posedeness, whereas second-
grade flow theory results in instability, i.e. consideration of sufficient terms in the
asymptotic constitutive expansion results in regularization of the system of governing
partial differential equations 11.3.30.

11.3.4
Globally undrained shear banding

In order to illustrate the possibility of shear-band formation under globally undrained
conditions we consider here as an example shear banding in a medium dense specimen,
namely in test DC-04. As already mentioned in the previous section, drained shear
banding is governed by the nullity of the determinant of the acoustic tensor, condition
11.3.37, which for the considered test resulted in a bifurcation prediction:

,  in the hardening regime of the underlying effective
stress ratio versus plastic strain curve. In the considered biaxial tests shear band
formation was signaled by appreciable horizontal displacement of the movable bottom
plate of the biaxial apparatus; cf. Figure 11.3.5. Shear banding was found
experimentally for the considered test DC-04 at  with , in the
softening regime of the (µ, γp)-curve. This means that we may say the globally
undrained conditions seem to delay shear banding. In order to explain this we examine
the situation in the test more closely.

The hodograph of the measured rigid-body displacements is inclined at an angle
, which after correction becomes 55.4°. This indicates that in post-failure, the
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shear band is dilating by . However, if we want to investigate the point of
incipient shear-band formation, we must assume that the dilatancy angle

(11.3.49)

and accordingly,

(11.3.50)

Globally undrained shear banding is only then possible, if the amount of water that has
to flow across the shear-band boundaries due to small shear-band dilation or
contraction can be accommodated by elastic deformation of the surrounding band soil
mass. Let dVB be the change in volume of the shear band due to plastic dilatancy, and
let dV be the corresponding volume contraction of the specimen due to increasing
effective mean stress

(11.3.51)

(11.3.52)

Figure 11.3.5 Specimen with shear band and hodograph.
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where  and  are the height and width of the specimen. Globally
undrained shear banding requires that

(11.3.53)

With the duv being the vertical displacement and , we obtain the following
constraint

(11.3.54)

In Figure 11.3.6 the directly measured quantity in the left-hand side of 11.3.54 is
plotted against the vertical displacement uv. The horizontal line corresponds to the
quantity in the right-hand side of equation 11.3.54. This figure demonstrates that
globally undrained shear banding is only possible at a later stage of the deformation,
which in the particular experiment was past the Coulomb state of maximum effective
stress ratio. The analysis of the experimental results seems to indicate that, although
the local condition  for instability may be satisfied, remote boundary conditions
preventing drainage together with displacement control result in global stability. In
other words, the fact that the specimen is relatively ‘small’ results in suppression of the
fully drained shear-band bifurcation mode. However, for very densely packed
specimens, and in the vicinity of the Coulomb state, maximum plastic dilatancy causes
a sharp drop of the pore-water pressure, which occasionally may even become
sufficiently negative to cause cavitation. On this occasion, drained shear banding is
possible and does actually occur.

Figure 11.3.6 Graphical representation of the undrained shear-band condition.
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11.4
Grain size and shape effect

The response of the specimens in the experiments on sand reported above was obviously
dominated by the boundary conditions, since the condition of zero fluid flux across the
boundaries of the specimen seems to prohibit internal fluid flow, and to suppress
accordingly the herein discussed internal instabilities. Assuming that the material
length is determined by the mean grain size , it seems that the
considered specimens with a smallest geometric dimension B=40mm and a scale factor

 are still too ‘small’. This dominance of the boundary conditions and the
resulting stabilizing effect is not observed in (normally, anisotropically consolidated)
clays where the corresponding characteristic material length (particle size) is 100 times
smaller; cf. Vardoulakis, 1982, 1985.

Figure 11.4.1 shows a microscopic view of the shear band in a kaolin specimen
subjected to direct shear as presented by Morgenstern and Tschalenko (1967).
According to this figure the thickness 2dB of the shear band is of the order of few
hundreds of microns; . Accordingly, shear banding cannot be suppressed at
all in clays by external control. Moreover, shear bands occur in clays in rhombic pattern
formation, as shown in Figure 11.4.2, for normally, anisotropically consolidated kaolin
clay in plane strain and axisymmetric, undrained compression experiments after
Kuntsche (1982). Shear-band patterning, on the other hand, illustrates the volume of
material which is sufficient to accommodate shear-band dilation.

These observations prompt the question as to whether in fine-grained materials like
clays, instabilities are indeed observed at the state (T) of maximum deviator, whenever
this state is reached in undrained tests. In undrained triaxial compression tests of
water-saturated specimens under constant confining pressure σc, pore-water pressure
changes are usually expressed by Skempton’s pore-pressure parameter Af,

(11.4.1)

In this definition, σa is the axial stress, and the index f denotes the state of ‘failure’. In
Figure 11.4.3, Af is plotted as a function of the ‘overconsolidation’ ratio (OCR), which in
turn measures the degree of compaction prior to shear (Graham and Li, 1985).

In undrained tests of (highly plastic) structured, normally to lightly overconsolidated
clays, the state (f) coincides with the Tresca state (T), of maximum deviator. Due to the
platelet shape of clay particles, ‘structure’ may be induced by anisotropic
preconsolidation, resulting in preferred particle bedding, normal to the major
preconsolidation stress. This anisotropic structure of the clay fabric seems to lead to the
fact that at state (T) pore-water pressure generation is high, and it becomes unstable for
normally (anisotropically) consolidated clays (Parry and Nadarajah, 1974). This can be
seen also in Figure 11.4.4(a), which shows that a normally, anisotropically consolidated,
highly plastic clay reaches the (T), under definite pore-water pressure  generation,
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indicating in turn that the background drained behavior is contractant at (T).
Figure 11.4.5(a) demonstrates clearly that for a material like this the pore-pressure
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generation at (T) becomes unstable.
In normally, isotropically consolidated or significantly overconsolidated clays the

failure state coincides practically with the Coulomb state (C), of maximum effective
stress ratio. Such specimens reach first the state (C) with the pore-water pressure
decreasing, indicating dilatant behavior; Figures 11.4.4(b) and 11.4.5(b). As already
mentioned above, in this case the failure mode is patterned shear banding
(Figure 11.4.2).
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