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PROLOGUE

Socrates: And now, I said, let me show in a figure how far our nature is
enlightened or unenlightened:—Behold! human beings living in an under-
ground cave, which has a mouth open towards the light and reaching all along
the cave; here they have been from their childhood, and have their legs and
necks chained so that they cannot move, and can only see before them, being
prevented by the chains from turning round their heads. Above and behind
them a fire is blazing at a distance, and between the fire and the prisoners there
is a raised way; and you will see, if you look, a low wall built along the way, like
the screen which marionette players have in front of them, over which they
show the puppets.
Glaucon: I see.
Socrates: And do you see, I said, men passing along the wall carrying all
sorts of vessels, and statues and figures of animals made of wood and stone
and various materials, which appear over the wall? Some of them are talking,
others silent.
Glaucon: You have shown me a strange image, and they are strange
prisoners.
Socrates: Like ourselves, I replied; and they see only their own shadows, or
the shadows of one another, which the fire throws on the opposite wall of the
cave?
Glaucon: True, he said; how could they see anything but the shadows if they
were never allowed to move their heads?
Socrates: And of the objects which are being carried in like manner they
would only see the shadows?
Glaucon: Yes, he said.
Socrates: And if they were able to converse with one another, would they
not suppose that they were naming what was actually before them?
Glaucon: Very true.
Socrates: And suppose further that the prison had an echo which came from
the other side, would they not be sure to fancy when one of the passers-by spoke
that the voice which they heard came from the passing shadow?
Glaucon: No question, he replied.
Socrates: To them, I said, the truth would be literally nothing but the
shadows of the images.
Glaucon: That is certain.
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xiv PROLOGUE

Socrates: And now look again, and see what will naturally follow if the
prisoners are released and disabused of their error. At first, when any of them
is liberated and compelled suddenly to stand up and turn his neck round and
walk and look towards the light, he will suffer sharp pains; the glare will distress
him, and he will be unable to see the realities of which in his former state he had
seen the shadows; and then conceive someone saying to him, that what he saw
before was an illusion, but that now, when he is approaching nearer to being
and his eye is turned towards more real existence, he has a clearer vision,—what
will be his reply? And you may further imagine that his instructor is pointing
to the objects as they pass and requiring him to name them,—will he not be
perplexed? Will he not fancy that the shadows which he formerly saw are truer
than the objects which are now shown to him?

Plato∗

∗ Plato in Rouse W. H. D. (editor), The Republic Book VII, Penguin Group Inc. (1961), pp. 365–401.
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INTRODUCTION

As economists, we want to learn about human behaviour—that is why we
build models, collect data, and care about econometrics. This is a book about
some of the techniques that economists use to create a direct dialogue between
economic theory and econometric estimation. These techniques are designed
to help us think about the incentive structures that agents face and the impli-
cations of those structures for empirical observation—the ‘shadows cast’ by
incentives upon the variables that we observe.

This book is designed as a practical guide for theory-based empirical ana-
lysis in economics. We are concerned with data that has been collected from
individuals: individual households, individual firms, individual workers, and
so on. This is what is sometimes termed ‘microdata’. Specifically, then, this
is a book about fitting microeconomic models to microdata, to improve our
understanding of human behaviour.

Matlab is not the central plot of this story—though it is certainly the lead
character. Our goal in this book is not to provide a comprehensive introduction
to Matlab. There are already plenty of good books available to do that.1
Further, our goal in this book is not to teach you microeconometric theory.
Rather, our goal is to discuss a series of standard problems in applied micro-
econometrics, and show how you can use Matlab to tackle each of them.

It is quite unlikely that any of the specific models that we study here will
fit perfectly any particular empirical problem that you face in your own
work—but that, in a sense, is exactly the point. There are many excellent text-
books that cover standard microeconometric methods, and several excellent
software packages for implementing those methods—often requiring just a
single line of code for any given estimator. Of course, all of these methods
can be implemented in Matlab, but this is not where Matlab’s comparative
advantage lies.

The beauty of Matlab is its extraordinary flexibility. Matlab allows us
easily to build and adapt our own estimators. It thereby opens entire classes of
new models—and, therefore, new ideas—that standard econometrics packages
do not allow. Of course, when it comes to econometric algorithms, there will
always be an important role for pre-bottled varieties off the shelf. But in this
book, we will brew our own.

1 For example, you could see Hahn and Valentine (2013).
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xvi INTRODUCTION

Structure of the Book

We start in Part I, with topics that form the foundation of microeconomet-
rics. After a brief review of basic Matlab syntax in Chapter 1, we show how
Matlab can be used to solve some of the basic optimization problems that we
encounter as economists. In Chapter 2, we use Matlab to model the behaviour
of optimizing agents. Here we will encounter the key functions linprog and
fmincon for the first time—functions that will make repeated appearances
throughout this book. In Chapter 3, we use Matlab’s optimization techniques
for a different purpose: to find model parameters that best fit the data. This
chapter introduces estimation by Maximum Likelihood and by Generalized
Method of Moments.

With these important bases covered, we move to a series of applied topics.
In Part II, we discuss discrete choice. Chapter 4 is about discrete multinomial
choice. Here we introduce the concept of Maximum Simulated Likelihood—
and, with it, the general notion of estimating by simulation. In Chapter 5,
we turn to discrete games—that is, discrete choice problems among multiple
players, in which each player’s payoff depend upon the others’ actions. This is
an important form of discrete choice problem in its own right, but also provides
a useful foundation for thinking generally about the numerical modelling of
strategic interactions.

Part III is about time. In Chapter 6, we introduce decisions on a
finite horizon. This framework is useful for understanding many important
economic choices—such as investment in human capital. However, some eco-
nomic choices—such as a firm’s optimal investment decision—do not have a
known end point. In Chapter 7, we discuss how to solve these models on an
infinite horizon. We close the section by addressing the estimation of dynamic
models.

Often, we have little understanding of the relationship between variables of
interest. At other times, this relationship may be too complicated to model
easily with standard parametric models. Part IV introduces nonparametric and
semiparametric regression. In Chapter 8, we introduce kernel regression and
other local regression estimators. In Chapter 9, we wriggle around the ‘Curse
of Dimensionality’ by combining parametric and nonparametric methods.

Part V is about optimizing Matlab code to run efficiently. For complex
models, small tweaks in your code can result in large gains in efficiency. We will
introduce Matlab’s Parallel Computing Toolbox, which allows you to easily
run jobs across multiple processors.

Why MATLAB?

There is no shortage of advice about which language you should use for techni-
cal computing. Ask around. You will likely end up with a strange list of letters,
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names, and even an animal: C++, Fortran, GAUSS, GNU Octave, OxMetrics,
Java, Julia, Perl, Python, R, S, Scilab, Stata . . . Often these well-meaning sug-
gestions will be accompanied by deeply impassioned arguments about why
this language is absolutely the best language to use for microeconometrics—
and that anyone not using this language is a luddite. We will try not to be so
dogmatic!

This is a book about Matlab—but this does not mean that you should work
only in this language. For example, Stata is an excellent package for a wide
range of standard econometric methods. However, for writing and running
specialized models, Matlab is a great choice. With its extraordinary flexibility,
Matlab allows us easily to build and to adapt our own estimators. In this way
it opens entire classes of new models—and, therefore, new ideas—that many
econometrics packages do not allow.

In particular, here are some of the reasons why we love using Matlab for
our own work:

1. Being based around matrices, Matlab code takes a similar structure to the
textbook formulae with which we are familiar. Converting estimators from
the page to the computer is, therefore, a comfortable step.

2. Many auxiliary routines that could take weeks to set up in other languages
are readily available in Matlab. These include packages for parallel com-
puting, for numerical optimization, and platforms allowing integration with
other languages. In this textbook, we will encourage you to code your own
estimators but there is no reason to code the auxiliary routines yourself!

3. It is very simple to get Matlab up and running. There is no need to install
compilers, special text editors, different operating systems, and so forth.
Indeed, Matlab will already be installed on computers where you work,
and you can get started just by pointing and clicking.

4. There is a large community of Matlab programmers—which means that
many great resources are freely available online, and that many of your
friends and colleagues will use this language. This is a really important
consideration when choosing a language! It is so practical—and fun—to
be able to resolve problems with friends.

So let the journey begin. We hope that the concepts and techniques covered in
this book will open new possibilities for you as an applied researcher.

Abi, Damian, and Simon
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Foundations
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1 Entering the ‘Matrix
Laboratory’

The limits of my language mean the limits of my world.
Wittgenstein∗

Matlab is a computer language for doing maths. Its name is short for ‘matrix
laboratory’, and its purpose is simple: to provide a very powerful and very
flexible way of solving mathematical problems. In this chapter, we will run
a series of exercises to illustrate the simplicity with which Matlab handles
matrices—and to discuss good coding techniques for doing so. This will pro-
vide a foundation for the more complicated concepts and structures that we
will cover later. We recommend that you read this book with Matlab open in
front of you and run the commands yourself as you encounter them in the text.
We have found learning-by-doing to be the best way (and the most enjoyable!)
of getting to grips with a new programming language and new econometric
techniques.

In this book, we assume that you have a working knowledge of the Matlab
interface and can navigate your way between the different components of
the Matlab desktop. If this is your first time using the program, there are a
number of excellent books and online resources to bring you up to speed. For
example, Hahn and Valentine (2013).

The simplest way to interact with Matlab is through the ‘command line’,
and this is where we will begin. The command line operates like a calculator.
We can see this by a none-too-complicated calculation:

>> 1 + 1
ans =

2

We can use the command line to create matrix variables to store our results.
Let’s start with a simple variable, y:

>> y = 1 + 1
y =

2

∗ Tractatus Logico-Philosophicus, Ludwig Wittgenstein, Copyright (1975) Routledge, Reproduced
by Permission of Taylor & Francis Books UK.
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4 MICROECONOMETRICS AND MATLAB

As its name suggests, Matlab is designed to deal with matrices very simply
and effectively; in Matlab, we can enter any variable as a matrix, simply by
using commas to separate columns and semi-colons to separate rows. For
example, let’s create a simple 3 × 2 matrix (which we will call ‘x’), and then
multiply that matrix by two:

>> x = [1, 2; 3, 4; 5, 6]
x =

1 2
3 4
5 6

>> 2*x
ans =

2 4
6 8

10 12

We can check which matrices are stored in memory by using the commands
who (for a short summary) and whos (for a longer summary):

>> who
Your variables are:
ans x y

>> whos
Name Size Bytes Class Attributes
ans 3x2 48 double
x 3x2 48 double
y 1x1 8 double

Matlab reports that we have three matrices in memory: ans, x, and y. You
should not be surprised to see x and y in memory; we just created these
matrices, and we can check their contents simply by entering the matrix names
at the command line:

>> x
x =

1 2
3 4
5 6

>> y
y =

2
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The matrix ans may be more confusing. This matrix stores Matlab’s most
recent answer that has not been stored in any other matrix. If we enter ans
at the command line, we will ask Matlab to recall its response to our earlier
expression ‘2*x’:

>> ans
ans =

2 4
6 8

10 12

Notice that if we enter another expression that is not assigned to any other
matrix, Matab will use ans to store this new expression:

>> 5 * 5
ans =

25

>> ans
ans =

25

Matlab has a very large range of mathematical operators. Our goal here is
not to provide a comprehensive discussion of these. Matlab provides excel-
lent help files and a large range of online resources, and we do not want to
use this book to describe what is available elsewhere. For example, to learn
about Matlab’s arithmetic operators, you can simply search online to find the
relevant help page.1 To learn the syntax of a particular command, we can use
Matlab’s extensive help documentation from the command line:

>> help ones

Instead of discussing an ungainly list of commands and operations at this
point, we will instead explore different techniques as they become relevant for
our analysis of various microeconometric models. And so we begin—with an
illustration of the most popular microeconometric technique of them all . . .

1.1 OLS in MATLAB: ‘Hello, world!’

A simple way to become familiar with the basic workings of an econometric
program is to run an Ordinary Least Squares regression. In some ways, this is
the ‘Hello, world!’ of the applied researcher. ‘Hello, world!’ is the test program

1 In this case: http://www.mathworks.co.uk/help/matlab/ref/arithmeticoperators.html.

http://www.mathworks.co.uk/help/matlab/ref/arithmeticoperators.html
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which many computer programmers run when they first learn a language—
to discover its basic syntax, and to ensure that it is running correctly. Such
programs simply print the words ‘Hello, world!’ and then terminate.2 While
the OLS regression requires a little more work than just printing a simple state-
ment, it provides us with a good opportunity to work with the basic building
blocks of Matlab.

Almost every applied research is familiar with Stata, and almost everyone
who is familiar with Stata has, at some point or another, come across the
auto.dtadataset. This is a dataset included by default when Stata is installed,
and contains data on a series of models of cars in 1978. We ask you to open Stata
briefly and, using the auto dataset, run a regression of mileage per gallon upon
the car’s weight and price.3 We will denote mileage per gallon by the N × 1
vector y, and will use the N × 3 vector X to stack values of (i) price, (ii) weight,
and (iii) the number 1.

Our OLS model is, of course:

y = Xβ + ε, (1.1)

where β is a 3 × 1 vector of parameters. We denote the OLS estimate of β as
β̂ ; we can find β̂ straightforwardly in Stata . . .

. sysuse auto
(1978 Automobile Data)

. reg mpg price weight, noheader

-------------------------------------------------------------------
mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+---------------------------------------------------------
price | -.0000935 .0001627 -0.57 0.567 -.000418 .0002309

weight | -.0058175 .0006175 -9.42 0.000 -.0070489 -.0045862
_cons | 39.43966 1.621563 24.32 0.000 36.20635 42.67296

-------------------------------------------------------------------

Let’s now write these three variables to the file auto.csv:

. outsheet mpg price weight using auto.csv, nonames comma

To run the same regression in Matlab, we first need to import the data in
auto.csv. Before being able to import this data, we must ensure that our
current working directory contains the auto file. In order to move to this file,
we use the commands pwd (print working directory), cd (change directory)
and ls (list the contents of the current directory). After choosing the correct
working directory, we can import using dlmread:4

2 In Matlab, such a program would be quite simple, containing just disp(‘Hello,
world!’).

3 And apologetically, for any readers expecting that this book would be based entirely on Matlab . . .
4 Matlab requires a straight apostrophe (which looks like this: ') around the file name. If you enter

the typical single quote operator (which look like this: ‘’) you will find that Matlab will not allow you
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>> DataIn = dlmread('auto.csv');
>> y = DataIn(:,1);
>> X = DataIn(:, 2:3);
>> size(X)

ans =

74 2

>> X = [X, ones(74,1)];

The above block of code involves various new commands. Check that you
can run each command without problems in your Matlab window now. Try
running each command without the semi-colon at the end of the line; this will
allow you to see the full output each time. The most important command is
dlmread, which reads in the data from auto.csv. The entire dataset is
stored as a matrix named DataIn. If you want to check that auto.dta has
imported correctly, you can use the command whos('DataIn') to see the
details.

You can now see how Matlab is structured around matrices. In the first
line of code, we store the data as a 74 × 3 matrix, which we then manipulate
into a vector of the dependent variable y (mpg) and a matrix of explanatory
variables X (adding a vector of ones for the constant). It is worth noting here
that the notation DataIn(:, 1) implies that we take data from every single
row (‘:’) of column 1 in matrix DataIn.

The previous section of this chapter showed that we can enter matrices by
hand at the command line (parsing with commas and semi-colons), but we
will rarely need to do this. Generally we will either read in data directly as a
matrix (as we have done here), or will use Matlab’s matrix-based operations
to simulate data from economic models.

Now that we have two matrices (X andy) that contain the relevant data from
Stata’s auto dataset, we can run our regression. This requires little more than
introductory econometrics, namely the formula:

β̂ = (X′X)−1(X′y). (1.2)

Matlab’s syntax follows Equation 1.2 closely. The only specialized function
that we require is inv, which allows us to invert the X′X matrix:

>> XX=X'*X;
>> Xy=X'*y;
>> BetaHat=inv(XX)*Xy

to move on to the next line at the command prompt. If this happens, you can break out of a half-written
command using Control-C.
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BetaHat =

-0.0001
-0.0058
39.4397

Here we have calculated our coefficient matrix BetaHat. You will notice that
our result is equal to those coefficients which we calculated earlier in Stata.5

We may also be interested in ensuring thatBetaHat is correct to more than
four decimal places. We can do this by changing Matlab’s output format to
the long format, (» format long) which displays up to fifteen digits for
‘double’ variables.6 Try changing the format and then displaying BetaHat.
To change back to the traditional output format, just enter format once
again.

Now that you have experienced Matlab’s functionality using OLS, you can
practise what you have learned with an extension in Exercise (i) at the end of
this chapter. Here, we ask you to calculate the standard errors of the coefficients
estimated in the previous regression.

1.2 The Beauty of Functions

So far, our analysis has simply involved typing instructions into Matlab’s
command line. This is effective but not very efficient. What we need is a method
of saving commands so that we can run them later—and, if necessary, run them
many times, with different data, different parameters, and different options. In
Matlab, we can do this with an ‘M-file’. We create M-files through Matlab’s
Editor window, which we can access by typing edit at the command line.
M-files are to Matlab what do-files are to Stata.

The most useful application of an M-file is to define a function.7 In Matlab,
a function is a special type of program. There are three main elements to a
function:

(i) Functions accept inputs.
(ii) Functions return outputs.

5 Note that there is nothing (except perhaps a desire for clear exposition) that stops us from calcu-
lating β̂ in a single step. This would look like: BetaHat=inv(X’*X)*X’*y, or alternatively using
the functionality of Matlab’s backslash (mldivide): BetaHat = (X’*X)\(X’*y).

6 We resist the temptation to dive into a tangential discussion about the different levels of precision
with which Matlab can store numbers. You can look this up by searching for concepts like ‘double’
and ‘single’.

7 We can also use an M-file to define a script, but we will not spend much time discussing scripts.
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(iii) Each function is self-contained; this means that each function can access
only those variables that are passed to it as an input, and can store variables
only through returning them as outputs.8

To get to grips with functions, let’s return to the OLS regression that we ran ear-
lier.9 A regression is a perfect candidate for a function; each OLS regression is
computationally equivalent but the inputs and outputs for each regression will
vary depending upon the X and y variables that you are analysing. Therefore,
you might be interested in permanently having a function available that you
can call to calculate regression results. This is useful to save time when typing
in commands at the command line, and to limit careless mistakes from typing
in the calculation of β many times.

Here is an example of a function that we have written, calledOLS. You should
be able to open this file in the Matlab editor by opening the file OLS.m. You
can either open this file by using Matlab’s drop-down menus, or alternatively,
by typing edit OLS.m at the command line.

OLS.m

1 function [Beta, se] = OLS(y,X)
2 %------------------------------------------------
3 % PURPOSE: performs an OLS regression
4 %------------------------------------------------
5 % INPUTS: y: N-by-1 dependent variable
6 % X: N-by-K independent variable
7 %------------------------------------------------
8 % OUTPUT: Beta: OLS coefficient vector
9 % se: standard error of beta

10 %------------------------------------------------
11

12 %----- (1) Calculate the coefficients ------------
13

14 Beta = (X'*X)\(X'*y);
15

16 %----- (2) Calculate the standard errors --------
17 yhat = X*Beta;
18 u = yhat - y;
19 N = length(y);

8 Strictly speaking, a function could save a variable to a file on the disk—but this is an unusual
exception to the rule, and not one that we will often want to use.

9 OLS is a useful illustration of Matlab’s basic concepts and basic functionality. But we will leave
these sorts of standard econometric applications after this chapter. In many respects, it is much easier to
implement standard estimators in Stata—and, if you would prefer to use Matlab, there is an extensive
set of functions already available through the Econometrics Toolbox.
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20 K = size(X, 2);
21 sigma = sum(u.*u)/(N-K);
22 v_mat = sigma * inv(X'*X);
23 se = diag(sqrt(v_mat));
24

25 return

There are a number of things worth highlighting here, either because they are
required for the code to run, or because they are good practice when writing
functions.

(i) The first line of the function tells Matlab (a) the name of the function
(OLS), (b) the inputs to the function (y and X), and (c) the outputs from
the function (Beta and se). The first line shows the correct syntax for
this; we always start a function by some version of:

function [output] = function_name(inputs) (1.3)

Critically, this does not mean that when we call the function OLS we
must use variables named y and X. Instead, it just means that, within the
program, the variables we have introduced will be locally referred to as y
and X. This will become apparent when we run the function shortly.

(ii) There are various lines of text that immediately follow the first line, each of
which is prefaced by the % symbol. Matlab reads the % symbol as saying
‘skip this line’, which allows us to write comments in our code without
interrupting the running of our script. In this way, the lines of comments
can then be thought of as an explanation (either for other users, or for
ourselves in the future—and we recommend being kind to your future
selves!) to help understanding of our code. As an added benefit, the lines
of comments that directly follow the function are used as the help file
to the function. So, when we type help OLS at the command line, the
output will remind us what we need to input, and what we should expect
as output. Performing this for our OLS function returns:

>> help OLS
-----------------------------------------------
PURPOSE: performs an OLS regression

-----------------------------------------------
INPUTS: y: N-by-1 dependent variable

X: N-by-K independent variable
-----------------------------------------------
OUTPUT: Beta : OLS coefficient vector

se : standard error of beta
-----------------------------------------------
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Pretty handy! The precise structure of the help file is not important—you
do not need to lay out your own help file as we have above. However, a
clear statement of the purpose of the function, and of the dimension and
description of the inputs and outputs, will be of huge help when you return
to your code in the days, months, and years after writing it. Believe us—
you will not remember what that X vector refers to by next week so make
sure that your code reminds you of this!

(iii) The function assigns values to the matrices Beta and se. These are the
names of the outputs in the first line. This means that when the function
finishes running, it will return as outputs these assigned values.

(iv) Note that the function generally ‘looks nice’.10 In particular, note that
there are subheadings to show the main parts of the calculation, com-
ments (after the ‘%’ symbol) to explain the operation of several of the lines
of code, and the ‘=’ signs are tabbed to the same alignment.

Let’s use our function to repeat the regression from Section 1.1. Assuming that
the ‘auto’ data from Section 1.1 is still in memory (which, remember, can be
easily checked using the command who), we need simply pass this data to the
function using the syntax of OLS that we have defined. We can do this from
the command line:11

>> OLS(y, X)

ans =

-0.0001
-0.0058
39.4397

As explained earlier, we do not need to refer to our variable names as y and
X; these are the names that Matlab will use within the function OLS, but this
does not constrain the way that we use that function. For example, let’s create
two new variables, taking the values of y and X, and run the regression again:

>> barack = y;
>> hilary = X;
>> OLS(barack, hilary)

10 Even if we say so ourselves . . .
11 If you do not save the function in Matlab’s current working directory (which we can see using

the pwd command), you will need to tell Matlab where the M-file can be found. This can be done
by using the addpath command. For example, if you have saved the function in a folder called
‘C:/MATLABcourse/’, you should enter addpath C:/MATLABcourse. Doing this, you’ll come
across a nice time-saving feature of Matlab: tab completion. If you enter part of the path and press the
tab key, Matlab will complete the path address if only one unique ending exists, or list all available

ways the path could end if multiple endings are possible.
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ans =

-0.0001
-0.0058
39.4397

This is fine if we just want to display our regression results on the screen—
but what if we want to store the results in a variable (say, OLS_Beta)? This is
straightforward: we simply assign the variable as in Section 1.1, but have the
variable refer to a calculation using our function:

>> OLS_Beta = OLS(barack, hilary)

OLS_Beta =

-0.0001
-0.0058
39.4397

As expected, the function OLS returns the same regression results as in
Section 1.1.

Comparing the output of our regression to the definition of the function
OLS, you might ask the question: whatever happened to the variablese? When
we programmed the file OLS.m, we specified the output as ‘[Beta, se]’—
but, so far, OLS has reported only OLS_Beta. The reason is that, when we
ran OLS, we have only asked for OLS_Beta: if we call a function from the
command line, or assign the result of a function to a single variable, Matlab
will only return the first output variable. We can recover OLS_Beta and se
by assigning both of these variables jointly:

>> [OLS_Beta, OLS_se] = OLS(barack, hilary)

OLS_Beta =

-0.0001
-0.0058
39.4397

OLS_se =

0.0002
0.0006
1.6216
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We might also want to ask Matlab to report a horizontal concatenation of
OLS_Beta and OLS_se, just to make things look nice:

>> [OLS_Beta, OLS_se]

ans =

-0.0001 0.0002
-0.0058 0.0006
39.4397 1.6216

Hopefully, we can now start to appreciate the beauty and simplicity of func-
tions. Yes, it is true that functions can save us from repeating a lot of unnec-
essary typing—and, yes, it is true that functions can help to avoid careless
mistakes. But the true beauty of functional programming is that we can replace
a number with the solution to a mathematical expression—and do so with a
syntax that is both simple and intuitive. For this reason, functions will be
fundamental to everything we do in the rest of this book.

If you are ready for a breather from reading and want to write a function
yourself, great! We once again point your attention to the exercises at the end
of the chapter. Exercise (ii) asks you to write a post-estimation command.

1.3 A Simple Utility Function

A particularly important building block of microeconomic theory is the utility
function, which maps the quantity of goods that an agent consumes to their
payoff. Needless to say, this has all the ingredients to be used in a Matlab
function: it accepts inputs (goods consumed), it returns outputs (utility), and
it is self-contained, depending entirely upon the inputs and a number of tech-
nology parameters.

Let’s consider the Cobb-Douglas utility function. In this case, our output will
be utility, u, and our inputs will be good 1, x1, and good 2, x2. For now, we will
take a very simple form of the Cobb-Douglas function:

u(x1, x2) = x1/2
1 · x1/2

2 . (1.4)

Let’s have a look at the function UtilitySimple to see how this would be
set up in Matlab.
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UtilitySimple.m

1 function u = UtilitySimple(x1, x2)
2 %------------------------------------------------
3 % PURPOSE: calculate utility: 2 good Cobb-Douglas
4 % specification
5 %------------------------------------------------
6 % USAGE: u : UtilitySimple(x1, x2)
7 % where: x1 : quantity of q1
8 % x2 : quantity of q2
9 %------------------------------------------------

10 % OUTPUT: u : overall utility
11 %------------------------------------------------
12

13 u = (x1ˆ0.5) * (x2ˆ0.5);
14

15 return

Let’s check that this works. We can check, for example, that the function returns
correct answers for a few different bundles . . .

>> UtilitySimple(1, 4)

ans =

2

>> UtilitySimple(3, 3)

ans =

3.0000

Of course, we rarely want to use Matlab merely to calculate a single number.
We need an elegant way of dealing with multiple possible combinations of x1
and x2. Suppose that, for some reason, we want to find utility for x1 = 5 and
x2 ∈ {1, . . . , 10}. Create a vector x1 and a scalar x2 to represent this:

x1 = [1:10]';
x2 = 5;

We now have ten combinations of (x1, x2) for which we need to find u(x1, x2).
We could have UtilitySimple operate ten separate times—for exam-
ple, using a loop.12 But this is very inefficient. Instead, we should have

12 We will introduce loops in Chapter 2.
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UtilitySimple run once, and operate on the entire matrix x1. This is
known as vectorizing. Having defined x1 and x2, we should be able simply
to enter:

>> UtilitySimple(x1, x2)
Error using ˆ
Inputs must be a scalar and a square matrix.
To compute elementwise POWER, use POWER (.ˆ) instead.

Error in UtilitySimple (line 13)
u = (x1ˆ0.5)*(x2ˆ0.5);

But we have a problem! Look again at the function UtilitySimple. As
it is written now, the function works perfectly well for scalars x1 and x2,
but it does not work for vectors (or, more generally, for matrices). This is
because the operators used there—the power operator and the multiplication
operator—are understood by Matlab to refer to matrices. We managed to get
the correct answers when entering two scalars (for example, when we calcu-
lated UtilitySimple(1, 4)), because the scalar/matrix distinction did
not matter in this simple case. But our function does not work for the more
general case.

Fortunately, Matlab has an elegant solution: we can modify both the power
operator and the multiplication operator so they work ‘element-by-element’.
For both the power operator and the multiplication operator, we can do this
by introducing a leading ‘.’. Let’s go back and fix our function (which we will
now just call Utility) to allow for this . . .

Utility.m

1 function u = Utility(x1, x2)
2 %------------------------------------------------
3 % PURPOSE: calculate utility: 2-good Cobb-Douglas
4 % specification
5 %------------------------------------------------
6 % USAGE: u : Utility(x1, x2)
7 % where: x1 : quantity of q1
8 % x2 : quantity of q2
9 %------------------------------------------------

10 % OUTPUT: u : overall utility
11 %------------------------------------------------
12

13 u = (x1.ˆ0.5) .* (x2.ˆ0.5);
14

15 return
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We now have a utility function that is correctly defined for matrices. This is
very powerful—among other advantages, we can now visualize our function
very efficiently. Let’s suppose that we want to see how our function behaves for
(x1, x2) ∈ [0, 3] × [0, 3]. We can create a meshgrid to cover this two dimen-
sional space (discretized on unit intervals):

>> [x1, x2] = meshgrid([0:3], [0:3])

x1 =

0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

x2 =

0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3

Hopefully, it is clear what is going on here: we have defined a matrix x1 and a
matrix x2 such that x1 and x2 cover the grid {0, 1, 2, 3} × {0, 1, 2, 3}. With a
single operation, we can now calculate utility for this entire grid:

>> u = Utility(x1, x2)

u =

0 0 0 0
0 1.0000 1.4142 1.7321
0 1.4142 2.0000 2.4495
0 1.7321 2.4495 3.0000

We can then visualize this with the surfc command:

>> surfc(x1, x2, u)

Of course, we would really like to visualize this over a finer grid. This is easy
using meshgrid:

[x1, x2] = meshgrid([0:.1:3], [0:.1:3]);
u = Utility(x1, x2);
surfc(x1, x2, u)
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(a) Rough Mesh Grid (b) Fine Mesh Grid
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Figure 1.1 Cobb-Douglas Utility

As you will see in Figures 1.1a and 1.1b, the difference is quite stark, although
the complexity in coding each example is virtually identical once we have
set up our function. We hope that this is something which holds through-
out much of this book: while some things may seem initially quite simple,
the basic methods presented here can be generalized to solve and visualize
functions of arbitrary complexity. We will consider a more complicated func-
tion in the exercises that follow, particularly Exercise (iii).

1.4 Review and Exercises

Table 1.1 Chapter 1 Commands

Command Brief description

whos Describes variables currently in memory
ans Return the last item in memory
help Describes a function along with its syntax
lookfor Searches all M-files (including help files) for a keyword
ones Creates an array of ones
cd Changes current working directory
ls Lists content of current working directory
pwd Prints the location of the current working directory
dlmread Reads in a comma-separated values file
disp Prints text to the output window
inv Inverts a matrix
size Displays the size of an array
format Sets the format of numerical output
mldivide An efficient way to solve matrix division
function Define a function which can be called from the command line
diag Create vector of the diagonal elements of a matrix
addpath Adds a directory to the places MATLAB searches when a command is called
meshgrid Replicates vectors to form a rectangular matrix
surfc Draws a three-dimensional surface plot
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In this chapter, we have introduced Matlab, its syntax, and a few use-
ful examples that we suspect you have come across before (probably many
times). For now, we will hold off from suggesting any microeconometrics
readings. This will come in the chapters ahead! We do, however, suggest that
you experiment with Matlab by writing your own scripts and functions. If
you come across issues that you do not yet know how to resolve, don’t worry—
there will be many chances for further review in the pages ahead.13 If you have
simple examples of problems from economics courses or ongoing research, feel
free to try to write simple codes to do these in Matlab—or alternatively, for
more focused exercises, we provide questions below.

EXERCISES

(i) We have used MATLAB to recreate Stata’s point estimates in a regression function.
Can you now generate the same standard errors? (A useful hint: remember that
̂Var(β̂) = (X ′X)−1σ̂2, where σ̂2 = (N − k)−1 · (y − Xβ̂)′ · (y − Xβ̂), and k is the num-
ber of regressors (including the constant term).)

(ii) The OLS function introduced in this chapter returns point estimates and standard errors
for our regression coefficients. Try to write a function that can be used after OLS to
calculate a 95% confidence interval, and perhaps also t-tests and associated p-values.
(A useful hint: MATLAB’s functions tinv and tcdf may be useful here.)

(iii) Suppose that we want to generalize our utility function slightly, so that we have:

u(x1, x2, α) = xα
1 · x(1−α)

2 .

Create a new function, Utility2.m, to accommodate this. Check that Utility2.m
matches the behaviour of Utility.m for the special case α = 0.5. Repeat the visual-
ization exercise. How does variation in α change the shape of u?

(iv) Suppose that a consumer has a utility function of the form:

u(x) = − exp(−r · x).

Also, suppose that x is drawn from a Normal distribution with mean μ and variance σ2

(that is, μ ∼ N
(

μ, σ2
)

). An insurance company offers the consumer a product with a

guaranteed lower limit, g. In effect, the insurance company says, ‘If you buy our product
and x < g, we will pay the difference, so you will get g. If you buy our product and
x > g, we will do nothing, so you will just keep x.’

(a) Interpret the parameter r.
(b) What is the certainty equivalent if there is no insurance product?

To answer this question, you may rely on the following result (which applies for this
special ‘exponential-normal’ case):

E (u) = − exp
[

1
2

· σ2 · r2 − μ · r
]

.

13 Or even better, feel free to search around on the web! Along with Matlab’s own resources,
websites like stackoverflow.com are also likely to be of great use for you here.
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(c) What is the expected utility with the insurance product? (Assume that the insurance
company provides the product for free.)

To answer this question, you may rely on the following result (which, again, applies
just for this special ‘exponential-normal’ case):

E (u | x > g) = − exp
[

1
2

· σ2 · r2 − μ · r
]

·
[

1 − �(a + σ · r)
1 − �(a)

]

,

where a = g − μ

σ
, and �(·) is the cdf of the Normal.

(d) (For MATLAB . . . ) Assume now that μ = 0 and σ2 = 1. Define s(g, r) as the con-
sumer’s surplus—in utility terms—from having the insurance product. Graph the
function s(g, r) for (g, r) ∈ (−3, 3) × (0, 1.5).
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2 The Agent Optimizes

Nothing can have value without being an object of utility.
Marx∗

Now the fun really begins. Constrained optimization is a fundamental tool in
economics. Essentially, there are two ways that optimization matters:

(i) We treat agents as optimizing—for example, we model consumers as max-
imizing utility, firms as maximizing profits, and so on.

(ii) We need to use optimization ourselves to find the best possible fit
for our model (where ‘best’ is defined by some particular objective
function).

In many respects, these two concepts are fundamentally different. On the one
hand, we treat agents as if they optimize, as a way of specifying a model. On the
other hand, we actually optimize, as a way of estimating the model. We should
always keep these two concepts distinct in our minds. Yet each concept involves
an optimization problem—and the principles and methods that we use for the
two problems are remarkably similar.

In this chapter, we will consider the first of these cases—the optimizing
agent. We will here use Matlab to solve some common problems that we
encounter in microeconomics.

2.1 Profit Maximization

Cast your mind back to your first term studying economics. It is highly likely
that you were asked to solve a question similar to the following: Given output
prices, the cost of inputs and any capacity constraints, what levels of inputs should
the firm select in order to maxmize profit?

Before starting with our example, a brief word is needed on the structure of
the profit maximization problem. Many of the optimization problems that we
encounter in economics are formally called ‘linear programming problems’:
they involve selecting the values of a set of choice variables to optimize some

∗ Marx K., Capital Volume 1, Progress Publishers, Moscow (1867).
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linear objective function subject to a set of linear constraints. The general
formulation of a linear programming problem is:

min
x

f ′x such that =
⎧

⎨

⎩

A · x ≤ b;
Aeq · x = beq;

lb ≤ x ≤ ub,
(2.1)

where x represents the vector of variables to be chosen, f , b, and beq are vectors,
and A and Aeq are matrices of known coefficients. lb and ub denote the lower
and upper bounds on the choice variable.

We will use the Matlab function linprog to solve linear programming
problems of this type. The basic linprog syntax is:

[x, fval, exitflag] = linprog(f, A, b, Aeq, beq,...
lb, ub, x0)

The inputs f, A, b, Aeq, beq, lb, ub are defined as in
Equation 2.1. x0 is an optional starting guess for the solution.

The outputs that we receive are: x (the optimal solution to the linear pro-
gramming problem), fval (the value of the objective function at the optimal
x), and exitflag (a variable that returns information about the optimization
procedure, i.e. whether a minimum was reached, or whether the problem is
infeasible or was not solved adequately).

Let’s get our hands dirty and uselinprog to solve a simple profit maxmiza-
tion example. Suppose a farmer has 75 acres to plant with crops. She must
decide how much to plant of crop a, wheat, and how much to plant of crop
b, corn. The farmer operates in a perfectly competitive market where wheat
commands a higher price than corn. The farmer’s revenue function takes the
form:

R(a, b) = 143a + 60b. (2.2)

If the farmer were unconstrained, she would devote all the space to growing
crop a. However, things are not so simple. Crop a requires more storage space
than crop b and the number of storage units that the farmer has at her disposal
is constrained to 4,000:

110a + 30b ≤ 4000. (2.3)

However, the seeds of crop b are more expensive and the farmer is credit
constrained with only $15, 000 to spend on her initial outlay of crops:

120a + 210b ≤ 15000. (2.4)

Let’s use Matlab to answer the following:

(i) How much crop a should she plant?
(ii) How much crop b should she plant?

(iii) What is her optimal revenue?



OUP CORRECTED PROOF – FINAL, 19/10/2015, SPi

22 MICROECONOMETRICS AND MATLAB

The vector of choice variables, x, is structured as:

x =
[

a
b

]

(2.5)

Turning to the objective function, the farmer wants to maximize R(a, b). How-
ever, linprog works to minimize the objective function. f, therefore, takes
the form:

>> f = [-143; -60];

There are three inequality constraints that must also be respected: Equations
2.2, 2.3, and 2.4. These are captured by the A matrix and b vector:

>> A = [1, 1;110, 30;120, 210]

A =

1 1
110 30
120 210

>> b = [75; 4000; 15000]

b =

75
4000

15000

The final constraint is the lower bound—the farmer cannot plant a negative
acreage of crops. There is no upper bound. Thus,

>> lb = zeros(2,1);

We now have all the elements of the linear program to pass to linprog as
follows . . . .

[crops, obj, exitflag] = linprog(f, A, b, [],...
[], lb)

What we have done here is call linprog with our linear objective function
and inequality constraints, followed finally by the lower bound on the acreage
of each crop. You may be wondering why we have included the two empty
matrices [] in our code. In this problem, we do not have any strict equality
constraints to worry about, but we do want to define a lower bound on the
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choice variables. Therefore, we have to declare the equality constraint arrays as
empty.

Having passed the problem to linprog, it returns the optimal choice of
crop a and b in the result vector crops, the value of the objective function in
obj and the status of the optimization problem in exitflag.

>> [crops, obj, exitflag] = linprog(f, A, b, [],...
[],lb)

Optimization terminated.

crops =

21.8750
53.1250

obj =

-6.3156e+03

exitflag =

1

The value of the objective function (obj) needs relatively little explanation,
beyond pointing out that, as expected, it is the negative of R(a, b). The value
of exitflag should be studied carefully whenever you optimize in Matlab
as it tells us why the optimization routine terminated. The Matlab’s help file
for linprog lists all possible exit flags. An exitflag of 1 is returned when the
function has converged to a solution. Weakly negative values of the exitflag
correspond to infeasible problems or those that have terminated before the
function has converged.

2.2 Utility Maximization

Many of the optimization problems that economists want to solve are not
linear. For example, the utility maximizing consumer that we met in Chapter 1
chose a bundle of goods to maximize her non-linear Cobb Douglas util-
ity function. Let’s return to this example to introduce a central element of
Matlab’s optimization routines: the fmincon command. This is a very
powerful function for minimization subject to constraints, which you will use
frequently in your Matlab programming.
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The fmincon command is used to solve optimization problems with the
structure:

min
x

f (x) such that =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

A · x ≤ b;
Aeq · x = beq;
c(x) ≤ 0;
ceq(x) = 0;
lb ≤ x ≤ ub

(2.6)

This is more general than a linear programming problem: the objective func-
tion f (x) is not necessarily linear and we now allow for the non-linear con-
straints c(x) and ceq(x).

The basic fmincon syntax is:

[x, fval, exitflag] = fmincon(fun, x0, A, b, Aeq,...
beq, lb, ub, nonlcon, options)

Unlike linprog, fmincon requires us to specify an initial guess x0 from
which it attempts to find the vector of choice variables x that minimizes the
objective function fun subject to the user-specified constraints. nonlcon is
a function that returns the value of c(x) and ceq(x).

Let’s put fmincon to work by returning to our utility maximization exam-
ple. As in the previous chapter, we will assume that the consumer’s utility
function is u(x1, x2) = x1/2

1 x1/2
2 , so that her maximization problem is:

max
x1 ,x2

x1/2
1 x1/2

2 subject to I = p1x1 + p2x2. (2.7)

We have already defined this function in Utility.m. Before continuing,
we must make two slight amendments to Utility.m so that it is easy to
use with fmincon. fmincon works by adjusting a single vector of variables
x. However, Utility.m is currently designed to take two arguments, the
quantity of each good consumed. We amend the function to accept a single
vector of quantities that we then simply ‘unpack’ into its individual elements,
as you can see in the first two lines of the new function below. On the last line
of the new function we take the negative of utility—given that, like linprog,
fmincon works to minimize the objective function.

CobbDouglas.m

1 function u = CobbDouglas(X)
2 %------------------------------------------------
3 % PURPOSE: calculate utility: 2 good Cobb-Douglas
4 % specification
5 %------------------------------------------------
6 % USAGE: u : CobbDouglas(X)
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7 % where: X : 2-by-1 quantity vector
8 %------------------------------------------------
9 % OUTPUT: u : overall utility

10 %------------------------------------------------
11

12 x1 = X(1);
13 x2 = X(2);
14 u = -(x1ˆ0.5)*(x2ˆ0.5);
15

16 return

Now that we have the utility function in the correct form, we can go about the
business of building the budget constraint and optimizing! Let’s imagine that
our consumer has a total income of $100, faces goods prices of $4 and $7, and
our initial guess is that she would consume 15 and 5 units respectively.

>> I = 100;
>> P = [4,7];
>> G = [15,5];
>> lb = [0,0];

Here we have introduced the right side of our budget constraint (the prices)
as P, the left side as I, our initial guess as G, and a lower bound for the
consumption of each good as lb.1 This all comes together with the fmincon
command as follows:

>> [consumption, u, exitflag] =...
fmincon(@CobbDouglas,...
G,P,I,[],[],lb)

consumption =

12.5024 7.1415

u =

-9.4491

1 If we were intersted in checking whether our initial values satisfy the constraint we could check if
P′G < I. In Matlab:

» P’*G<I
ans =
1
implying that it does satisfy the constraint.
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exitflag =

5

What we have done here is callfminconwith our constraints and initial guess
as parameters.2 The only thing that might look a bit exotic is the@ symbol—this
tells fmincon that CobbDouglas is a function. fmincon then returns the
optimal consumption bundle: approximately 12.50 units of x1 and 7.14 units
of x2.

So what does it mean to say that exitflag = 5? This message is mysteri-
ous but important. As we are now dealing with a non-linear objective function
(and in other applications, possibly non-linear constraints), fmincon can
only guarantee at best that a local minimum has been found. An exitflag of
5 is returned when the derivative of the objective function with respect to the
choice variables is arbitrarily small. It is important to note that we can never
be entirely sure that this point corresponds to a local minimum. Perhaps if we
were to search over a finer set of points, fmincon would be able to find a
smaller value for the objective function. Similarly, it may help fmincon if we
were to provide an analytical expression for the Jacobian.3

Fortunately, Matlab allows us great control over how we actually
optimize—giving us the opportunity to check the accuracy of the solution. For
example, we can ask Matlab to use a particular algorithm, to set the value that
the gradient must take at the ‘optimum’, to control the step size of the search
path, and so forth. All of this is controlled the optimset command. Typing
optimset at the command line lists many options, and the default values
Matlab assumes when using fmincon.

To illustrate, let’s request that fmincon optimizes using the sequential
quadratic programming (SQP) algorithm, rather than the default interior-
point algorithm. In order to do this we define opts that contains our specific
optimization specifications. This is passed to fmincon as the tenth argument,
leaving another empty matrix in the ninth position because we do not have any
non-linear constraints.

>> opts = optimset('algorithm', 'sqp');
>> [consumption,u,exitflag] =...

fmincon(@CobbDouglas,...
G,P,I,[],[],lb,[],[],opts)

2 Note that here we treat the income constraint as non-binding, although generally it always will.
An individual could choose to spend less than all their income, although the form of the Cobb-Douglas
utility function implies that maximization of utility is achieved by spending all income on consumption.

3 This often requires great cost to the programmer—both in terms of time and, sometimes,
emotion . . . .
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consumption =

12.5000 7.1429

u =

-9.4491

exitflag =

1

This change in optimization algorithm results in a small shift in our con-
sumption values, and fmincon now returns an exitflag of 1, indicating
that a local minimum has successfully been found. Usually, ‘exitflag = 1’
(or ‘exitflag = 2’) is a reasonable sign of success—though, as the previous
discussion indicates, deciding on convergence criteria is often more a matter
of art than science.

2.3 Simulating Economic Models

At its core, microeconometrics is about heterogeneity. If everyone faced the
same set of choices, with the same constraints, and had the same preferences,
then we would all behave in the same way—and there would be little advantage
to collecting any dataset larger than N = 1. In many standard econometric
models, we allow heterogeneity to enter through an additively separable ‘error’
term. Of course, there is nothing inherently wrong with this approach—but
we may want to explore the consequences of introducing random variation in
other parts of a model. We end this chapter with a simple illustration of how
we might do this in Matlab.

Matlab offers us a wide range of tools for drawing random numbers from
the specific distributions which are likely to underlie our Monte Carlo Sim-
ulations. Table 2.1 lists a number of these distributions, and their associated
Matlab commands.

Table 2.1 Random Number Generators

Distribution Command

Uniform rand()

Normal randn()

Lognormal lognrnd()

Multivariate Normal mvnrnd()

and many others . . . random(distbn,)
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It is sometimes argued that different economic actors face different prices,
based on their individual characteristics. (For example, information asymme-
tries may lead different firms to face different factor costs.) Suppose, then,
that we maintain our earlier model of a consumer with Cobb-Douglas utility.
However, now imagine that, across the population, consumers face uniform
variation in the price of good 1:

p1 ∼ U(50, 100). (2.8)

Suppose that we want to simulate the resulting distribution of consumption
bundles. Given the tools that we have discussed, this is easy.

The following script gives a simple illustration of how this can be done—we
simulate the choices of 100 individuals who have identical preferences but face
different prices. In line 9, we generate 100 shocks to p1 by drawing errors from
the random uniform distribution and multiplying by 50. Once these errors are
added to P, we will have p1 ∼ U(50, 100), as required. In part 2 of the code,
the starting value, options, and lower bound on the optimization procedure are
set. We ‘preallocate’ a results vector c that is first made up of elements of ‘not a
number’, NaN. We will use this vector to store optimized consumption for each
individual.

On line 21, we start a for loop. This command allows us to loop over the
integers from 1 to 100 (asreps= 100) settingi to each value in turn. For each
value ofi, the lines of code 20–23 are executed. First, the price for individual i is
calculated and, given this, the upper bound on consumption is set. On line 22,
this is passed to fmincon and CobbDouglas is maximized subject to the
individual-specific budget constraint. Finally, we use the functioncdfplot to
draw the empirical CDF of the consumption of good 1 as shown in Figure 2.1.

ConsumptionSim.m

1 %----(1) Setup, simulation of random variation --
2 clear
3

4 % random variation in prices
5 P = [50, 200];
6 reps = 100;
7 pshock = [rand(reps, 1) * 50, zeros(reps, 1)];
8

9 I = 10000; % income
10

11 %---(2) Determine optimal consumption in
12 % each case ----
13 x0 = [1, 1];
14 lb = [0, 0];



OUP CORRECTED PROOF – FINAL, 19/10/2015, SPi

THE AGENT OPTIMIZES 29

15 opts = optimset('algorithm', 'sqp',...
16 'display', 'off');
17

18 c = NaN(reps, 2);
19 for i = 1:reps
20 TempP = P + pshock(i, :);
21 ub = I./TempP;
22 c(i, :) = fmincon(@CobbDouglas,[1, 1],TempP,...
23 I,[],[],lb,ub, [], opts);
24 end
25

26 %---(3) Visualize results -----------------------
27 subplot(1, 2, 1)
28 scatter(c(:,1), c(:,2))
29 xlabel('Good 1 Consumption')
30 ylabel('Good 2 Consumption')
31

32 subplot(1,2,2)
33 cdfplot(c(:, 1))
34 xlabel('Good 1 Consumption')
35 ylabel('F(p_1)')
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Figure 2.1 Incorporating Heterogeneity in Cobb-Douglas Utility Maximization
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2.4 Review and Exercises

Table 2.2 Chapter 2 Commands

Command Brief description

axis Set minimum and maximum for graph axes
cdfplot Draws the empirical CDF of a vector
disp Print contents of an array
fmincon Routine to minimize an objective function subject to linear or non-linear constraints
for Repeats a command or series of commands a specified number of times
hold on Keep current plot in graph window, and add another plot to the output
if Evalutes an expression and executes a group of statements if it is true
Inf Create an array of infinite values
linprog Routine to minimize a linear objective function subject to linear constraints
num2str Convert number to string
optimset Provides control over the optimization process in MATLAB

plot Draw a two-dimensional graph
rand Allows for a (pseudo-)random draw from a uniform(0,1) distribution
randn Allows for a (pseudo-)random draw from a normal distribution
rng Sets MATLAB’s pseudo random number generator at a replicable point
subplot Allows for multiple graphs on the same plot window
scatter Bivariate scatter plot
title Add a title to the plot window
xlabel Label x-axis in the plot window (allows for LATEX style parsing)

EXERCISES

(i) A fisherwoman must decide how many salmon and how many trout to catch. She can
sell a salmon for $12 but can only sell a trout for $7. However, salmon requires twice
as much storage space as trout and she only has room for 1,000 trout on her boat.
Further, there is a quota limiting the numbers of fish she can catch. She may only catch
1,600 tokens worth of fish, where each salmon is worth 3 tokens and a trout only 2
tokens. Use linear programming to determine how many salmon and how many trout
the fisherwoman should catch. How does the solution vary with the price of trout?

(ii) Using the function CobbDouglas, simulate variation in income. Use the simulated
results to plot Engel curves for x1 and x2.

(iii) Using the function CobbDouglas, suppose that consumers with higher income also
tend to face lower costs for good x1. Show how a simulation method could be used to
think about consumption bundles in this case. (Hint: mvnrnd may be useful . . .)
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3 The Economist Optimizes

We balance probabilities and choose the most likely. It is the scientific use
of the imagination.

Sherlock Holmes, The Hound of the Baskervilles∗

Economists are human beings too. In the previous chapter, we considered
consumers as optimizing their choices to maximize utility. In this chapter, we
discuss ways that we, as economists, can choose parameters to optimize the
fit of our models. Specifically, we will use Matlab’s constrained optimization
techniques to estimate model parameters by Maximum Likelihood and by the
Generalized Method of Moments.

3.1 Maximum Likelihood

In Chapter 1, we ran an OLS regression by inverting a matrix. In this chapter,
we introduce Maximum Likelihood in the same simple setting. Famously, the
log-likelihood associated with the classical regression model (Equation 1.1)
looks like this:

�(β , σ 2; y | x) = −
(

N
2

)

ln 2π −
(

N
2

)

ln σ 2 −
(

1
2σ 2

)

(y − βx)′(y − βx).

(3.1)

The set of Maximum Likelihood parameters is then the
(

β ′, σ 2)′ vector that
maximizes the log-likelihood function. Following Chapter 2, you will remem-
ber that we can combine Matlab’s optimization routines with our own func-
tions. We can use fmincon to maximize � by searching over combinations of
the parameters β and σ 2.

As always, the maximization process begins by converting our objective
function into a Matlab function. As we alluded to earlier, it is necessary to
optimize over a single vector rather than over two separate objects when using
fmincon—so we define θ = (

β ′, σ 2)′, and optimize over θ . The function
NormalML defines the log likelihood in this way (multiplied by −1 to be
suitable for minimization by fmincon).

∗ Conan Doyle, A., The Hound of the Baskervilles, George Newnes (1902).
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NormalML.m

1 function LL = NormalML(theta,y,x)
2 %----------------------------------------------
3 % PURPOSE: calculates the likelihood function
4 % given an unobserved stochastic error term
5 % which is distributed according to a normal
6 % distribution.
7 %----------------------------------------------
8 % USAGE: LL : NormalML(theta,y,x)
9 % where: theta : parameter vector [beta;sigma]

10 % y : N-by-1 dependent variable
11 % x : N-by-K independent variable
12 %----------------------------------------------
13 % OUTPUT: LL = log-likelihood value
14 %----------------------------------------------
15

16 %----- (1) Unpack stats -----------------------
17 N = length(y);
18 K = size(x,2);
19

20 Beta = theta(1:K);
21 sig = theta(K+1);
22

23 u = y - x*Beta';
24

25 %----- (2) Likelihood function ----------------
26 LL = -(N/2)*log(2*pi)-(N/2)*log(sigˆ2)-...
27 (1/(2*sigˆ2))*(u'*u);
28 LL = -LL;
29

30 return

We can again use fmincon to maximize the log likelihood. This is a con-
strained optimization problem: σ 2 > 0. To see this in practice, let’s return to
the trusty auto.csv example of Chapter 1. To do this, we will return to our
parameter estimates from Section 1.1. There we had defined a matrix X and a
vector y which had come from the auto dataset. We will ask you to re-enter or
recall these matrices (perhaps they are still in Matlab’s working memory, in
which case you need do nothing), and we will use this data to see whether our
likelihood function allows us to recover the regression estimates we calculated
in Chapter 1.
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In the case of this problem, there is no clear upper and lower bound that
we necessarily want to impose on our parameters, but we will define some
values to limit the domain over which Matlab searches.1 Here we estimate
four parameters that correspond to the three β̂ ’s, along with σ̂ 2. First, let’s set
up the following lower and upper bounds for each of these parameters:

>> lb = [-1000, -1000, -1000, 0];
>> ub = [1000, 1000, 1000, 100];

We will also define an initial range of values from which Matlab should begin
its search. Although we have quite a good idea of what these parameters should
look like from our regression in Chapter 1, we will pretend this is not the case,
and be reasonably agnostic with our initial choice:

>> theta0 = [0, 0, 0, 1];

Finally, we want to define a number of optimization options. So far we have
only just scratched the surface of the optimset options for fmincon. Pre-
viously we had decided to use the sqp algorithm and then let Matlab decide
on all the other values. Below we define a few of more of these options (as a
reminder, the full list of options can be seen by typing optimset in your
Matlab window).

>> opt = optimset('TolFun',1E-20,'TolX',1E-20,...
'MaxFunEvals',1000, 'Algorithm', 'sqp');

Here we have allowed Matlab to keep running until subsequent changes in
the objective function and the optimands are very tiny (10−20) and at the same
time allowed it to evaluate the objective function a sufficient number of times to
find an answer. Together these options should allow for a very precise solution
for the values θ .

We have all our ingredients: we have defined an objective function, the
constraints, the starting point, and the optimization options. With all of this,
it is now just a matter of letting Matlab get to work . . .

>> fmincon(@(theta)NormalML(theta,y,X), theta0,...
[], [], [], [], lb, ub, [], opt);

In the last chapter, we used the @ symbol to show that CobbDouglas was a
function. Here we use it in a slightly more complicated way—to declare which
of the function inputs is our choice variable. In Matlab parlance, this is known
as the ‘function handle’. The NormalML(theta,y,X) part of the argument
tells fmincon to minimize the function NormalML given the data y and X

1 Matlab also has a function for unconstrained optimization:fminunc. But as we suggested above,
our problem is constrained because we have σ 2 > 0. Further, even if our problem were not constrained
by economic or econometric theory, it may still be useful to use fmincon and to impose some bound
constraints on ‘reasonable’ values of the parameter space.
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(which we defined in Chapter 1), while @(theta) tells fmincon that the
choice variable is theta.

You should play around with this code until you feel comfortable with the
various moving parts. For example, try varying the optimization settings, the
lower and upper bound, and the starting point. Depending upon the settings
you use, the output will look something like the following:

Local minimum possible. Constraints satisfied.

fmincon stopped because the predicted change in the
objective function is less than the selected value
of the function tolerance and constraints are
satisfied to within the default value of the
constraint tolerance.

No active inequalities.

ans =

-0.0001 -0.0058 39.4396 3.3842

Importantly, we see that with these settings our ML estimator correctly finds
the same OLS estimate as in Chapter 1. Of course, it was much easier to obtain
these values by simply inverting a matrix, as we did in Chapter 1. For this
reason, we would never actually use Maximum Likelihood to run OLS—but
OLS is a great way to illustrate the practical challenges of ML in a simple
context.

Before moving on from this section, it is worth pointing out thatoptimset
provides a whole range of useful options. If, for example, we are interested in
producing a graph of convergence of the objective function to its minimum
value then we could take advantage of: 'PlotFcns','optimplotfval',
while if we are interested in seeing a larger range of output including
the procedure and the value of the objective function, we could specify
'Display','iter' as part of our optimset command. In Figure 3.1 we see
the output from the PlotFcns option. We have taken the absolute value of
the likelihood function so it appears to be converging on a positive value from
above, although in reality it will be converging on a negative value from below.

3.2 Generalized Method of Moments

Maximum Likelihood is a workhorse of microeconometrics, but is certainly
not the only nag in the stable. One of the most flexible ways of estimating
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Figure 3.1 Convergence of −�(β , σ 2; y | x)

is by the Generalized Method of Moments (GMM). When using GMM, we
define a number of population moments that are true in our model.2 We then
estimate the parameters of our model using the principle of analogy. This
involves setting the identical sample moments to zero.

Like ML, GMM requires us to optimize an objective function, and again (for
the last time, we promise!) the most simple example comes from estimating
parameters in a linear regression model. You will remember from an early
econometrics class that the basic Gauss-Markov assumptions imply that the
following moments will hold in the population for the linear regression model:

E[ε|X] = 0. (3.2)

From this, it follows that:

E[Xε] = E[X(y − Xβ)] = 0. (3.3)

2 There are many excellent references if you are interested in further details on moment-based
estimation. For example, Hall (2005), Cameron and Trivedi (2005), or for those particularly interested,
the original Hansen (1982) article.



OUP CORRECTED PROOF – FINAL, 19/10/2015, SPi

36 MICROECONOMETRICS AND MATLAB

We can use Equation 3.3 to form the sample moment conditions. These sample
moments are of the following form:

m = 1
N

[ N
∑

i=1

Xi(yi − Xiβ)

]

= 0. (3.4)

This is the moment vector and will be of dimension 1 × K, where K is the
number of explanatory variables in our model.

The fundamental idea in GMM is that our estimates β̂ should be those
values that drive the weighted quadratic distance mWm′ to zero (or as close
to zero as possible if we have more moments than coefficients). For consistent
estimation we simply need to ensure that our weight matrix W is positive semi-
definite (such as an identity matrix). However, for efficiency reasons we may
be interested in using other weight matrices such as those discussed by Hansen
(1982). We return to precisely this point in Exercise (iii) at the end of this
chapter.

Let’s look at the functionGMMObjective, which calculates the value of the
moment equations. This function accepts as arguments our observed y and X
data, and a proposed value for the vector of parameter estimates β̂ .

GMMObjective.m

1 function Q = GMMObjective(Beta,y,X)
2 %-----------------------------------------------
3 % PURPOSE: calculates the moments of a linear
4 % regression model. The true method of moments
5 % estimate of beta occurs when Q=0.
6 %
7 % The series of moments that are being fitted
8 % here are: [E(X_1*u)=0 E(X_2*u)=0...E(X_k*u)=0]
9 %------------------------------------------------

10 % USAGE: Q : GMMObjective(Beta,y,X)
11 % where: Beta : parameter vector
12 % y : N-by-1 dependent variable
13 % X : N-by-K independent variable
14 %------------------------------------------------
15 % OUTPUT: Q : value of moment conditions
16 %------------------------------------------------
17

18 %----- (1) determine sample size N and number of
19 % coefficients K
20 N = length(y);
21 K = size(X,2);



OUP CORRECTED PROOF – FINAL, 19/10/2015, SPi

THE ECONOMIST OPTIMIZES 37

22

23 %----(2) Calculate u and generate the identity
24 % weight matrix
25 u = y - X*Beta;
26 W = eye(K);
27

28 %----- (3) Generate moment vector ----------
29 m = 1/N*u'*X;
30 Q = m*W*m';
31

32 return

To calculate the estimates, all we now need to do is minimize the func-
tion GMMObjective. In this case, we will use fminsearch rather than
fmincon because our optimization problem is unconstrained. Let’s again
return to the auto.csv file we worked with in Chapter 1. In the code below,
we load this into Matlab, and estimate β̂ by GMM:

>> DataIn = dlmread('auto.csv');
>> X = [ones(74,1) DataIn(:,2:3)];
>> y = DataIn(:,1);
>>[Beta,Q] = fminsearch(@(B) GMMObjective(B,y,X),...

[10,0,0]', optimset('TolX',1e-9));

Beta =

39.4397
-0.0001
-0.0058

Q =

6.3475e-20

By minimizing this objective function, Matlab gets very close to Q = 0,
and recovers the identical estimates that we found previously. You will notice
that we have here specified some different optimization settings in our call
to fminsearch. In this example, we have exactly as many moments as
unknowns. This is called ‘just identification’. Whenever GMM is just identified,
we should obtain Q = 0—or something very close to this. In any situation
where your model is just-identified and Q is not extremely close to zero, your
optimization settings likely need fine tuning.
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3.3 Review and Exercises

Table 3.1 Chapter 3 Commands

Command Brief description

length Determines the number of rows in a matrix
pi The mathematical constant π

log Return the natural logarithm of a number of matrix
fminunc Routine to minimize an objective function with no constraints
fminsearch Routine to minimize an objective function with no constraints
optimset Provides control over the optimization process in MATLAB

eye Creates an identifty matrix

In this chapter, our second on optimization, we have gone through some typ-
ical estimation methods that will become the base of integrating our theories
with our data in later chapters. If you would like to read more on the econo-
metric theory behind these estimation methods, we suggest that you turn to
your favourite econometrics or statistics textbook, for example, Cameron and
Trivedi (2005), Wooldridge (2010), or Casella and Berger (2002).

EXERCISES

(i) Write an alternative Maximum Likelihood estimator. Rather than an OLS estimator,
try writing MATLAB code to estimate a probit model. Remember that, in this case,
the log-likelihood function looks like: �(β; y|x) = ∑N

i=1{yi · ln �(βxi) + (1 − yi) · ln[1 −
�(βxi)]}. Try this code using the auto dataset as before. Estimate ‘probit foreign
length weight’ in Stata. Ensure that your code replicates these results in MATLAB.

(ii) Consider again the GMM and ML estimators discussed in this chapter. How could you
calculate the standard errors of the above estimators in MATLAB? Do these agree with
those we calculated in Chapter 1? Econometrically, is this what you would expect?

(iii) When we estimate our linear regression by GMM, we use the identity matrix (eye())
for W in our quadratic loss function. However, for efficiency reasons, we may prefer
alternative weighting matrices. Perhaps the most popular option is two-step GMM,
where the first step is as in our code, and in the second step we use an optimal weight
matrix ̂W that is based on the first stage estimates β̂(1). Can you write your own MATLAB

code for this estimator? As a reminder, the optimal weight matrix can be written as

̂W =
⎡

⎣

1
N

⎛

⎝

N
∑

i=1

Xi(yi − Xiβ̂(1))(yi − Xiβ̂(1))

⎞

⎠

′⎤
⎦

−1

.

(iv) Some code in this chapter has estimated β using just-identified GMM. However, in this
case, we could also consider estimating via traditional Method of Moments, which simply
involves setting each moment exactly equal to zero (rather than minimizing the quadratic
distance). How would you code a Method of Moments estimator for β in MATLAB? (Hint:
The fsolve function may be useful in this case.)
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Discrete Choice
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4 Discrete Multinomial Choice

But you must understand, sir, that a person is either with this court or he
must be counted against it; there be no road between.

Arthur Miller, The Crucible∗

In this chapter, we consider several models of discrete choice. This will be useful
for at least two reasons. First, we often treat decision makers as choosing from
a finite set of options. In some cases, this reflects the underlying economic
reality—will you choose to travel by car, bus, or train? In other cases, it is
because researchers sometimes find it useful to discretize continuous variables.

Second, discrete choice models are a useful way of introducing the idea
of nested optimization. In Chapter 2, we discussed optimization by economic
agents, while in Chapter 3 we discussed optimization for the purposes of
estimation. Applied research often nests the former inside the latter. That is,
we specify a model in which agents optimize, and then choose the structural
parameters that best fit the data.

In this chapter, we will focus on a simple problem: the demand for var-
ious modes of transport. We will assume throughout that we have data on
N = 1,000 individuals (indexed by i), and that, for each individual, we observe
a single covariate, income (which we will denote xi). This is a simple application
of a problem famously studied by Daniel McFadden and others, who developed
new methods in discrete choice theory to estimate consumer demand for the
San Francisco Bay Area Rapid Transit system (‘BART’).

We will consider three different models for this problem, with increasing
degrees of sophistication. First, we present a (binary) logit model. Second,
we consider a multinomial outcome model, making a strong distributional
assumption about the error terms (the multinomial logit). Finally, we discuss a
multinomial model with a more flexible distributional assumption (the multi-
nomial probit). The chapter closely follows the excellent discussion in Train
(2009, Chapters 3 and 4).

∗ Miller, A., The Crucible, Viking Books (1952).
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4.1 Binary Logit

Let’s begin with a simple decision problem: should a commuter (i) drive to
work, or (ii) take other modes of transport?1 We can capture this choice using
a binary outcome variable yi, with yi = 1 if the commuter drives to work.

We can model this problem as a binary logit. Assume that, if individual i
chooses yi = 1, she or he receives utility Ui1, with Ui0 defined analogously. We
specify Uij as the sum of (i) a deterministic function of the data (Vij(xi)) and
(ii) a random noise variable (εij):2

Ui0 = Vi0(xi) + εi0; (4.1)

Ui1 = Vi1(xi) + εi1. (4.2)

The solution to this model is straightforward:

yi =
{

1 if Vi1(xi) + εi1 ≥ Vi0(xi) + εi0
0 otherwise. (4.3)

Vi0(xi) and Vi1(xi) could be specified very flexibly—for example, we might
have a sophisticated structural model that relates income and the representa-
tive utility of driving to work. However, to keep things simple, we will assume
that Vij(xi) is linear in xi: Vij(xi) = α0j + α1j · xi. Having assumed a linear
form for Vij(xi), the solution can be expressed as:

yi =
{

1 if β0 + β1 · xi + μi ≥ 0
0 otherwise, (4.4)

where β0 ≡ α01 − α00, β1 ≡ α11 − α10 and μi ≡ εi1 − εi0.
To close the model, we must make some assumptions about the distribution

of εij. Critically, we assume that εij is independently and identically distributed
according to a Type I Extreme Value distribution:

Pr(εij ≤ z | xi) = exp(− exp(−z)). (4.5)

That is, we assume that εij is independent across individuals (i) and across
options faced by a given individual (j). It follows from this assumption that
μi has a logistic distribution:

Pr(μi ≤ z | xi) = exp(z)
1 + exp(z)

≡ �(z). (4.6)

1 We will treat these as mutually exclusive: if the commuter drives for any part of his or her journey,
we will treat this as driving to work.

2 Train (2009, p.15) calls Vij(xi) the ‘representative utility’.
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This allows us to write the conditional probability of choosing to drive to
work as:

Pr
(

yi = 1 | xi
) = Pr (β0 + β1 · xi + μi ≥ 0) (4.7)

= � (β0 + β1 · xi) . (4.8)

where � is the logistic cdf.

4.1.1 SIMULATING THE MODEL

When coding your own estimator—no matter how simple—you should always
start by simulating your model. That is, you should generate a fake dataset and
check that you can recover reasonable estimates of the true parameters. If you
cannot estimate successfully using this fake data, you will never feel confident
with real data.

Let’s start, then, by simulating our model for the simple case (β0, β1) =
(0.5, 0.5). First, let’s seed the random number generator (using rng), create
a vector Beta, and generate a normally distributed xi . . .

>> rng(1)
>> N = 1000;
>> Beta = [0.5, 0.5]';
>> income = randn(N, 1);
>> x = [ones(N, 1), income];

The function SimulateBinaryLogit generates binary outcomes accord-
ing to the logit specification; it outputs the outcome variable (y), and
the simulated utility (utility). Pay special attention to the command
epsilon=-log(-log(rand(N, J))) on line 17—how does this draw
from a Type 1 Extreme Value distribution?

SimulateBinaryLogit.m

1 function [y,utility]=SimulateBinaryLogit(x,Beta)
2 %------------------------------------------------
3 % PURPOSE: generate binary outcomes according to
4 % the logit specification.
5 %------------------------------------------------
6 % INPUTS: x : NxJ vector of independent variable
7 % Beta : Jx1 parameter vector
8 %------------------------------------------------
9 % OUTPUT: y : N-by-1 binary choice vector

10 %------------------------------------------------
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11

12 N = size(x, 1);
13 J = length(Beta);
14

15 %----- (1) simulate values for epsilon &, based
16 % on this, utility ----
17 epsilon = -log(-log(rand(N, J)));
18 Beta_augmented = [Beta, 0 * Beta];
19 utility = x * Beta_augmented + epsilon;
20

21 %----- (2) simulate the choice for each
22 % individual ------
23 [˜, choice] = max(utility, [], 2);
24 y = (choice == 1);
25

26 return

4.1.2 ESTIMATING THE MODEL

Now that we have some simulated data to play with, we can move on to esti-
mation. The log-likelihood associated with the binary logit model is given as:

�i
(

β0, β1; yi | xi
) = yi · ln � (β0 + β1 · xi)+
(1 − yi) · ln [1 − � (β0 + β1 · xi)] . (4.9)

The functionBinaryLogitLL evaluates −1 × �i
(

β0, β1; yi | xi
)

from Equa-
tion 4.9.

BinaryLogitLL.m.m

1 function [LL, ll_i] = BinaryLogitLL(Beta, y, x)
2

3 %------------------------------------------------
4 % PURPOSE: Calculate the log-likelihood for the
5 % binary logit
6 %------------------------------------------------
7 % INPUTS: Beta : Kx1 parameter vector
8 % y : Nx1 vector of dependent variable
9 % x : NxK matrix of independent variables

10 %------------------------------------------------
11 % OUTPUT: LL : scalar log likelihood
12 % ll_i : log-likelihood contribution of
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13 % observations
14 %------------------------------------------------
15

16 Lambda_xb = exp(x * Beta)./(1 + exp(x * Beta));
17

18 ll_i = y .* log(Lambda_xb) ...
19 + (1 - y) .* log(1 - Lambda_xb);
20

21 LL = -sum(ll_i);
22

23 return

We can use BinaryLogitLL and fmincon to find the Maximum
Likelihood parameters for the binary logit model . . . .

>> options = optimset('Algorithm', 'sqp',...
'Display', 'iter');

>> Beta_init = [0; 0];
>> lb = [-10; -10];
>> ub = [10; 10];
>> [EstBetaML, LL, exitflag] =...

fmincon(@(parameters)...
BinaryLogitLL(parameters, y, x), Beta_init,...
[], [], [], [], lb, ub, [], options)

EstBetaML =

0.6041
0.5739

LL =

601.1168

exitflag =

2

Hopefully, you succeed in recovering reasonably good estimates of (β0, β1) =
(0.5, 0.5). You should flip back and forth between simulation and estimation,
checking the performance of the estimator. How does the estimator perform
for different values of (β0, β1)? How does it perform for different sample
sizes?
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4.1.3 ESTIMATING BY SIMULATION

The binary logit is beautifully straightforward because we can write an ana-
lytical expression for the log-likelihood. From there, we need simply to code
the log-likelihood and optimize. However, now suppose—purely for the sake
of exposition—that for some reason we are unable to write Equation 4.9. That
is, suppose that we cannot find an analytical expression for the log-likelihood.
It would be a pity if this were to prevent us from estimating our model. If it
did, we would be forced to change our model purely for the convenience of
our code, which is never an attractive option.

Fortunately, all would not be lost. So far, we have simulated our model, and
we have estimated. But we can do more—we can combine the two methods,
to estimate by simulation. For now, this is purely a pedagogical exercise—but
this idea is fundamental when we need to estimate more flexible models later
in this chapter.

The idea is simple. We have a model that predicts how observable behaviour
(in this case, the choice of yi) depends upon an observable covariate (income,
xi) and a parameter vector (β = (β0, β1)). We are able to simulate this model
for different values of β . We also have some real data. For some values of β,
our simulated data will look vastly different to our real data—for example, if we
choose β1 = 0, we will simulate data in which yi does not vary with xi, which
is unlikely to be true in our real data. For other values of β , our simulated data
will look quite similar to our real data. We can estimate by choosing β so that
our simulated data ‘looks like’ our real data.

There are many ways of doing this. Our model relies upon an assumption
about the entire distribution of the unobservable (that is, we have a fully
parametric model)—so we can estimate by Maximum Simulated Likelihood
(‘MSL’). The basic idea of MSL is simple: instead of calculating probabilities
using an analytical expression, we should simulate our model multiple times,
and use the sample probabilities that are generated from the simulated data.

Formally, suppose that we have R replications of a simulation algorithm.
Then, for each respondent i, we will have a simulated series of binary outcomes,
{ỹi1, . . . , ỹiR}. For each respondent i, all of their simulated outcomes are gen-
erated using the same value of xi—this is the sense in which we are simulating
conditional on the values of xi in the data. Then, for individual i, the simulated
conditional probability of choosing yi = 1 is simply:

P̃(xi; β0, β1) ≡ 1
R

·
R

∑

r=1
ỹir. (4.10)

For individual i, the simulated log-likelihood is therefore:

�̃i
(

β0, β1; yi | xi
) = yi · ln P̃(xi ; β0, β1) + (1 − yi) · ln

[

1 − P̃(xi; β0, β1)
]

.
(4.11)
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For given parameter values β0, β1,

lim
R→∞ �̃i

(

β0, β1; yi | xi
) = �i

(

β0, β1; yi | xi
)

. (4.12)

This is the basic idea behind Maximum Simulated Likelihood.
The function BinaryLogitSimulatedLL(Beta, y, x, R) cal-

culates −1 × �̃i
(

β0, β1; yi | xi
)

. Notice how this code nests the function
SimulateBinaryLogit —the very same function that we used earlier to
generate our outcome variable.

...

BinaryLogitSimulatedLL.m

1 function [LL, ll_i] =
2 BinaryLogitSimulatedLL(Beta, y, x, R)
3 %------------------------------------------------
4 % PURPOSE: calculate simulated likelihood
5 %------------------------------------------------
6 % INPUTS: Beta : Kx1 parameter vector
7 % y : Nx1 vector of dependent variable
8 % x : NxK matrix of independent variables
9 % R : scalar replications

10 %------------------------------------------------
11 % OUTPUT: LL : scalar log likelihood
12 % ll_i : log-likelihood contribution of
13 % observations
14 %------------------------------------------------
15

16 %----- (1) Seed and set up initial vectors ------
17 rng(1);
18 N = size(y, 1);
19 Simulated_y = NaN(N, R);
20

21 %----- (2) Create R simulated realizations ------
22 for count = 1:R
23 Simulated_y(:, count) =...
24 SimulateBinaryLogit(x, Beta);
25 end
26 SimProb = mean(Simulated_y, 2);
27

28 %----- (3) Calculate log-likelihood -------------
29 ll_i = y .* log(SimProb)+(1-y).* log(1-SimProb);
30 LL = -sum(ll_i);
31

32 return
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We can now use BinaryLogitSimulatedLL(Beta, y, x, R) to
estimate β :

>> R = 1000;
>> opts2 = optimset('Algorithm', 'sqp',...

'DiffMinChange', 1e-2);
>> [EstBetaMSL, LL, exitflag] =...

fmincon(@(parameters) BinaryLogitSimulatedLL...
(parameters, y, x, R), Beta_init, [], [], [],...
[], lb, ub, [], opts2)

EstBetaMSL =

0.5573
0.6822

LL =

601.5364

exitflag =

2

There are several potential mysteries here worth exploring. First, on line 19,
we create a matrix Simulated_y, which is full of elements that are ‘not
a number’ (NaN). We will do this throughout the book whenever we are
about to populate a matrix using a loop. We discuss the justification for doing
so in Chapter 10. Second, notice that we fix the number of replications as
R = 1000. You should play with this parameter: how does the performance
of the estimator change as R varies? Third, notice that we increase the value
of DiffMinChange from its default (zero). This is necessary because—as
we will discuss in more detail soon— the simulated log-likelihood is locally
flat. Finally, note that BinaryLogitSimulatedLL begins by seeding
the random number generator—rng(1). If we were to omit this, the
simulated log-likelihood would generate slightly different values every time
is called—even for the same data and the same parameters. This would be
unnecessarily confusing—and likely to produce convergence problems when
using fmincon.

4.2 Multinomial Logit

The previous discussion is a useful illustration of the principles of discrete
binary choice. But, in many contexts, we want to model decision makers who
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face more than two alternatives. Generically, we can describe this as a model
of ‘multinomial choice’. For example, suppose that we now want to treat the
decision maker as choosing between a set of different transport options. We
now have an outcome variable with three values:

yi =
⎧

⎨

⎩

1 if the ith respondent drives to work;
2 if the ith respondent walks to work;
3 if the ith respondent cycles to work.

(4.13)

There are several ways that we can model this problem. For example, we might
be willing to assume that the choices are somehow ordered—that is, that the
outcome varies monotonically in some latent variable. Alternatively, we may
assume that the decision is nested—for example, we might treat commuters as
deciding whether or not to drive and, if deciding not to drive, then deciding
whether to walk or cycle.

In this chapter, we will eschew both of these assumptions. Instead, we will
treat each outcome as generating utility with its own unobservable random
component. For simplicity, we will maintain the ‘Additive Random Utility
Model’ structure:

Uij(xi) = α0j + α1jxi + εij. (4.14)

For choices j ∈ {1, 2, 3}, the individual obtains the following utilities:

Ui1(xi) = α01 + α11xi + εi1; (4.15)

Ui2(xi) = α01 + α12xi + εi2; (4.16)

Ui3(xi) = α03 + α13xi + εi3. (4.17)

Together, these three utilities determine the choice of an optimizing agent.
Figure 4.1 illustrates preferences between the three options in two-dimensional
space; in each box, the bold outcome represents the agent’s choice.

We can express the conditional probability of the ith individual choosing,
say, option 1 as:

Pr(yi = 1 | xi) = Pr [Ui1(xi) > Ui2(xi) and Ui1(xi) > Ui3(xi) | xi] (4.18)

= Pr [α01 + α11xi + εi1 > α02 + α12xi + εi2 and

α01 + α11xi + εi1 > α03 + α13xi + εi3 | xi] . (4.19)

More generally, if the ith individual were to choose yi = j out of J choices, we
could write:

Pr(yi = j | xi) = Pr
[

Uij(xi) > max
k 	=j

(Uik(xi))

∣

∣

∣

∣

xi

]

(4.20)

= Pr
[

α0j + α1jxi + εij > max
k 	=j

(α0k + α1kxi + εik)

∣

∣

∣

∣

xi

]

.

(4.21)
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U2(x) − U1(x)

U3(x) − U1(x)

U3(x) = U2(x)

3 s 2
2 s 1
3 s 1

3 a 2
2 s 1
3 s 1

3 a 2
2 s 1
3 a 1

3 a 2
2 a 1
3 a 1

3 s 2
2 a 1
3 a 1

3 s 2
2 a 1
3 s 1

Figure 4.1 Multinomial Choice Among Three Options

To estimate using Equation 4.21, we will again assume that εij is i.i.d. with
a Type I Extreme Value distribution, and is independent of xi. With this dis-
tributional assumption, we are able to find an expression for the conditional
probability that the ith individual chooses outcome j from J choices.3 Specifi-
cally, we can write:

Pr(yi = j | xi) = exp
[

α0j + α1jxi
]

∑

k exp [α0k + α1kxi]
. (4.22)

It would be tempting to take this expression and immediately write the log-
likelihood. For our three outcomes, for example, we could try to maximize the
log-likelihood across six unknown parameters: α01, α02, α03, α11, α12, and α13.
However, this would be a mistake. We would be unable to find a unique set of
values that maximize the function. That is, the model would be ‘underidenti-
fied’. The reason for this is, of course, that utility only has meaning in relative
terms. We therefore need to choose a ‘base category’, and estimate relative to
the utility of that category. Let’s choose option 1 as the base category, and define

3 Train (2009, pages 74–5) shows a formal derivation of this result.
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β0j ≡ α0j − α01 and β1j ≡ α1j − α11. (Of course, the choice of base category is
arbitrary: our predicted probabilities would be identical if we were to choose a
different base category.) With this assumption, we now multiply the numerator
and the denominator of our conditional probability by exp(−α01 − α11xi) to
obtain:

Pr(yi = j | xi) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
1 + ∑

k>1 exp [β0k + β1kxi]
for j = 1;

exp
[

β0j + β1jxi
]

1 + ∑

k>1 exp [β0k + β1kxi]
for j > 1.

(4.23)

Stacking the parameters into a single vector β , we can now write the log-
likelihood for the ith individual:

�i
(

β ; yi | xi
) =

J
∑

j=1

1
(

yi = j
) · ln

[

Pr(yi = j | xi)
]

, (4.24)

where we use 1(·) to denote the indicator function. This log-likelihood func-
tion defines the famous ‘Multinomial Logit’ model. Note that, if J = 2, the
Multinomial Logit collapses to the logit model that we considered earlier.

In Exercise (iii), you are asked to extend SimulateBinaryLogit to
simulate the Multinomial Logit. Call this function SimulateMNLogit(x,
Betavec)); like SimulateBinaryLogit, it should output both a vector
of choices (y) and a matrix of simulated utilities (utility).4 (Again, you
can find our attempt on the companion website.) We can illustrate the simu-
lation algorithm by graphing; it accepts as inputs the two matrices generated
as outputs by SimulateMNLogit. Figure 4.2 shows the resulting cloud of
simulated points, and the resulting simulated choices; this graph is drawn in
[U2(x) − U1(x), U3(x) − U1(x)] space, and is directly analogous to Figure 4.1.

GraphSimulatedData.m

1 function GraphSimulatedData(y, utility)
2 %------------------------------------------------
3 % PURPOSE: Graph utility for a 3-good multinomial
4 % choice
5 %------------------------------------------------
6 % INPUTS: utility: Nx3 matrix of utilities
7 % y : Nx1 vector of choices
8 %------------------------------------------------
9

4 InSimulateBinaryLogit,utility is an N × 2 matrix; inSimulateMNLogit, it should
be an N × J matrix.
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10 %-----(1) Clear axis and graph relative utilities
11 cla
12 scatter((utility(y==1,1) - utility(y==1,3)),...
13 (utility(y==1,2) - utility(y==1,3)))
14 hold on
15 scatter((utility(y==2,1) - utility(y==2,3)),...
16 (utility(y==2,2) - utility(y==2,3)))
17 hold on
18 scatter((utility(y==3,1) - utility(y==3,3)),...
19 (utility(y==3,2) - utility(y==3,3)))
20 hold on
21

22 %----- (2) Add boundary lines ------------------
23 plot([min((utility(:,1) - utility(:,3))), 0],...
24 [0, 0], 'LineWidth', 3, 'Color', 'k')
25 hold on
26 plot([0, max(utility(:, 1) - utility(:, 3))],...
27 [0, max(utility(:, 1) - utility(:, 3))],...
28 'LineWidth', 3, 'Color', 'k')
29 hold on
30 plot([0,0], [min(utility(:,1) - utility(:,3)),...
31 0], 'LineWidth', 3, 'Color', 'k')
32

33 return

Exercise (iv) asks you to extend BinaryLogitLL to generate a
function returning −1 × �i

(

β ; yi | xi
)

for the Multinomial Logit; you
are then asked to use fmincon to maximize the log-likelihood and
recover reasonable estimates of the original parameters. Exercise (v)
asks you to do the same for the simulated log-likelihood—extending the
function BinaryLogitSimulatedLL to produce a function called
MNLogitSimulatedLL (and then to maximize).

4.3 Multinomial Probit

The Multinomial Logit is a very tractable model. As we have discussed, it pro-
vides an analytic expression for the log-likelihood; this function can therefore
be evaluated and maximized easily. But this analytical tractability comes at
a cost: the Multinomial Logit requires that the unobservable terms, εij, have
a Type I Extreme Value distribution, and that these terms are distributed
independently of each other. This has serious implications for a structure of
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Figure 4.2 Simulating Choice

individual choice. Using Equation 4.22, we can write the ratio of the condi-
tional probability that yi = A and that yi = B:

Pr
(

yi = A | xi
)

Pr
(

yi = B | xi
) = exp [β0A + β1Axi]

exp [β0B + β1Bxi]
(4.25)

= exp [β0A − β0B + (β1A − β1B) · xi] . (4.26)

Cameron and Trivedi (2005, p. 503) describe why this result is so concerning:

As an extreme example, the conditional probability of commute by car given
commute by car or red bus is assumed in [a Multinomial Logit] or [Conditional
Logit] model to be independent of whether commuting by blue bus is an option.
However, in practice we would expect introduction of a blue bus, which is the
same as a red bus in every aspect except colour, to have little impact on car
use and to halve use of the red bus, leading to an increase in the conditional
probability of car use given commute by car or red bus.

This weakness of MNL is known in the literature as the red bus—blue bus
problem, or more formally as the assumption of independence of irrelevant
alternatives.

This is clearly a serious limitation of the Multinomial Logit. Indeed, in his
Nobel Prize Lecture in 2000, McFadden even went so far as to say (p. 339):

The MNL model has proven to have wide empirical applicability, but as a theo-
retical model of choice behaviour its IIA property is unsatisfactorily restrictive.
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In this section, we therefore consider a more flexible model: the Multinomial
Probit. Let’s rewrite our three-outcome model in terms of differences in utility,
where we once again treat option 1 as the base category:

Di1(xi) ≡ Ui1(xi) − Ui1(xi) = 0; (4.27)

Di2(xi) ≡ Ui2(xi) − Ui1(xi) = β02 + β12xi + μi2; (4.28)

Di3(xi) ≡ Ui3(xi) − Ui1(xi) = β03 + β13xi + μi3. (4.29)

Without loss of generality, we can now treat commuter i as choosing yi as the
maximum of Di1(xi), Di2(xi) and Di3(xi). With this formulation of the model,
we have reduced the dimensionality of our unobservable: we now have two
error terms, rather than three.

In the Multinomial Logit, we made a distributional assumption over a
J-dimensional vector: (εi1, εi2, εi3). In the Multinomial Probit, we will make
a distributional assumption over a (J − 1)-dimensional vector: (μi2, μi3).5
Specifically, we assume that (μi2, μi3) has a Bivariate Normal distribution:

(

μi2
μi3

)

∼ N
[(

0
0

)

,
(

1 ρ

ρ 1

)]

. (4.30)

4.3.1 SIMULATING THE MODEL

The function SimulateMNProbit(x, Betavec, Omega) simulates
the Multinomial Probit. Its operation is directly analogous to our simulation
functions for the binary logit and for the Mulitnomial Logit.

SimulateMNProbit.m

1 function y = SimulateMNProbit(x, Betavec, Omega)
2

3 %------------------------------------------------
4 % PURPOSE: simulates the multinomial probit.
5 %------------------------------------------------
6 % INPUTS: x : NxK vector of independent variable
7 % Betavec : Kx1 parameter vector
8 % Omega : covariance matrix
9 %------------------------------------------------

10 % OUTPUT: choice : multinomial choice
11 %------------------------------------------------
12

5 Train (2009, Chapter 5) shows how, with a multivariate normal error vector, this is equivalent to
making an assumption in the J-dimensional space and then simplifying. But we will keep things simple
and start with the (J − 1)-dimensional space.
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13 %----- (1) Setup initial vectors ----------------
14 N = size(x, 1);
15 K = size(x, 2);
16 J = size(Betavec, 1)/K + 1;
17

18 %----- (2) Calculate relative utility -----------
19 Beta = reshape(Betavec, K, J - 1);
20 xb = x * Beta;
21 diff = [zeros(N, 1), xb +...
22 mvnrnd(zeros(J - 1, 1), Omega, N)];
23

24 %----- (3) Based on relative utility, determine
25 % choice from J -
26 [˜, y] = max(diff, [], 2);
27

28 return

4.3.2 ESTIMATING BY SIMULATION

But wait! Why have we skipped straight to ‘estimating by simulation’? Surely
we have missed a step?! Exactly. We have missed a step—when we considered
the binary logit and the Multinomial Logit, we (i) simulated our model, then
(ii) estimated using Maximum Likelihood, and then (iii) estimated using max-
imum simulated likelihood. Step (iii) was redundant in both of these cases. But
now we see why step (iii) matters—because in the case of Multinomial Probit,
we cannot write the log-likelihood. That is, we can simulate our model, but
we cannot use a closed-form expression to generate the log-likelihood. This is
precisely the kind of problem that requires simulation.

The function MNProbitSimulatedLL(parameters, y, x, R)
returns the simulated log-likelihood for the Multinomial Probit. In Exercise
(vii), we ask you to use MNProbitSimulatedLL to recover the parameters
for a simulated dataset.

MNProbitSimulatedLL.m

1 function LL = MNProbitSimulatedLL(param, y, x, R)
2

3 %------------------------------------------------
4 % PURPOSE: returns the simulated log-likelihood
5 % for the Multinomial Probit.
6 %------------------------------------------------
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7 % INPUTS: x : Nx1 vector of independent variable
8 % y : Nx1 vector of dependent variable
9 % param : [Beta; Rho]

10 % R : scalar replications
11 %------------------------------------------------
12 % OUTPUT: LL : log-likelihood
13 %------------------------------------------------
14

15 %----- (1) Unpack initial parameters, Seed ------
16 BetaV = param(1:end-1);
17 Rho = param(end);
18 Omega = [1, Rho; Rho, 1];
19 rng(1);
20

21 %----- (2) Create initial (prefilled) vectors ---
22 N = size(y, 1);
23 J = max(y);
24 Simulated_y = NaN(N, R);
25 SimulatedProb = NaN(N, J);
26

27 %----- (3) Simulate choices R times based on
28 % current values---
29 for count = 1:R
30 Simulated_y(:, count) = SimulateMNProbit(x,...
31 BetaV, Omega);
32 end
33

34 %----- (4) Create choice index matrix for each
35 % item j in J ----
36 for j = 1:J
37 SimulatedProb(:, j) = mean(Simulated_y == j, 2);
38 MyIndex(:, j) = (y == j);
39 end
40

41 %----- (5) Calculate maximum simulated
42 % likelihood ----
43 ll_i = sum(MyIndex .* log(SimulatedProb), 2);
44 LL = -sum(ll_i);
45

46 return
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4.3.3 A LOGIT-SMOOTHED AR SIMULATOR

So far, we have considered three functions for simulated log-likelihoods.
In each case, we simulated a series of outcomes for each respondent i,
{ỹi1, . . . , ỹiR}, with the simulated Pr(yi = j | xi) calculated as:

P̃j(xi; β0, β1) ≡ 1
R

·
R

∑

r=1
1
(

ỹir = j
)

, (4.31)

where 1(·) is the indicator function. We can describe this as an ‘accept-reject
simulator’—for each replication, we simply decide whether or not the simu-
lated outcome matches the outcome of interest.

This approach works—as our previous examples illustrated. However, it is far
from perfect, for several reasons. First, the simulated log-likelihood is every-
where locally flat: it is a step function in the parameter space. The reason should
be obvious: for a tiny change in the parameters, there is probability zero that
any simulated outcome switches from ‘accept’ to ‘reject’ (or vice versa). For this
reason, we needed to encourage Matlab to take larger steps in its optimization
(by changing the default option of DiffMinChange).

Second, for any finite number of replications R, there is no guarantee that,
for a given individual, any simulated observation will match the observed
choice. For example, in the binary logit case, it is possible that individual i
chooses yi = 1, but that all simulated outcomes for individual i are zero. Of
course, this is more likely to occur when we are trying to evaluate the simulated
log-likelihood far from the true parameter values, or when we are using a
small number of replications. This is a fatal problem: we would conclude that
P̃j(xi; β0, β1) = 0 for some observed outcome j, and will ask Matlab to take
the log of zero.

Third, the accept-reject simulator is throwing away information. When
we simulate, we calculate values for the utility of each choice. However, the
accept-reject simulator uses information only on which of those utility values
is greatest—it discards useful information on whether an option was ‘nearly
chosen’. In this way, the accept-reject simulator is like a sports fan who wants
to know whether his or her team won—but who does not care to hear the score.

These problems all arise because Equation 4.31 is discontinuous in the utility
of option j—a small change in the simulated utilities can cause a discrete
change in ỹir. We can therefore improve our simulator by smoothing over the
simulated utilities. Following Train (2009, p. 121), denote the simulated utility
for individual i for option j on replication r as Ur

ij. Then, instead of Equation
4.31, we can use:

P̃j(xi; β0, β1) ≡ 1
R

·
R

∑

r=1

exp
(

Ur
ij/φ

)

∑

k exp
(

Ur
ik/φ

) . (4.32)
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Equation 4.32 should look familiar: the term inside the summation is a Multi-
nomial Logit transformation of the simulated utilities. For this reason, we
can term this a ‘logit-smoothed’ simulator. The parameter φ is used to ‘tune’
the smoothness of the function. As φ → ∞, each simulated probability is
smoothed to 1/J; as φ → 0, the function approximates the (unsmoothed)
accept-reject simulator. Train (p. 121) explains that there is ‘little guidance on
the appropriate level’ for φ. As applied researchers, we need to experiment with
this parameter in the context of our particular model.

The function MNProbitSimulatedLLSmoothed(parameters,
y, x, R) implements the logit-smoothed Multinomial Probit. Compare the
number of replications you need to those required in the unsmoothed case.

...

MNProbitSimulatedLLSmoothed.m

1 function LL =
2 MNProbitSimulatedLLSmoothed(param, y, x, R)
3 %------------------------------------------------
4 % PURPOSE: implements the logit-smoothed
5 % multinomial probit
6 %------------------------------------------------
7 % INPUTS: parameters : [Beta; Rho]
8 % y : Nx1 vector of dependent variable
9 % x : NxK matrix of independent variables

10 % R : scalar simulate replications
11 %------------------------------------------------
12 % OUTPUT: LL : log-likelihood
13 %------------------------------------------------
14

15 %----- (1) Unpack initial parameters, Seed ------
16 Betavec = param(1:end-1);
17 Rho = param(end);
18 Omega = [1, Rho; Rho, 1];
19 rng(1);
20

21 %----- (2) Create initial (prefilled) vectors ---
22 N = size(y, 1);
23 J = max(y);
24 SimulatedS = NaN(N, J, R);
25 SimulatedProb = NaN(N, J);
26

27 %----- (3) Simulate (logit-smoothed) value
28 % R times -----
29 for count = 1:R
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30 SimulatedS(:, :, count) = ...
31 SimulateMNProbit_Smoothed(x, Betavec, Omega);
32 end
33 SimulatedProb = mean(SimulatedS, 3);
34

35 %----- (4) Create choice index matrix for each
36 % item j in J ----
37 for j = 1:J
38 MyIndex(:, j) = (y == j);
39 end
40

41 %----- (5) Calculate maximum simulated likelihood
42 ll_i = sum(MyIndex .* log(SimulatedProb), 2);
43 LL = -sum(ll_i);
44

45 return

Notice that MNProbitSimulatedLLSmoothed calls a function
SimulateMNProbitSmoothed. As the name implies, this is very similar
to SimulateMNProbit, but incorporates Equation 4.32 where we choose
φ = 0.01, which seems to work well in this particular application.

SimulateMNProbitSmoothed.m

1 function S =
2 SimulateMNProbitSmoothed(x, Betavec, Omega)
3 %------------------------------------------------
4 % PURPOSE: implements the logit-smoothed
5 % multinomial probit
6 %------------------------------------------------
7 % INPUTS: x : NxK matrix of independent variables
8 % Betavec : Kx1 parameter vector
9 % Omega : covariance matrix

10 %------------------------------------------------
11 % OUTPUT: S : smoothed choice
12 %------------------------------------------------
13

14 %----- (1) Setup initial vectors and parameters -
15 phi = 0.01;
16 N = size(x, 1);
17 K = size(x, 2);
18 J = size(Betavec, 1)/K + 1;
19
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20 %----- (2) Calculate relative utility, smooth ---
21 Beta = reshape(Betavec, K, J - 1);
22 xb = x * Beta;
23 diff = [zeros(N, 1),xb +...
24 mvnrnd(zeros(J-1, 1), Omega, N)];
25 expdiff = exp(diff/phi);
26

27 %----- (3) Calculate smoothed choice for
28 % realizations ---------
29 for count = 1:J
30 S(:, count) = expdiff(:, count) ./...
31 sum(expdiff, 2);
32 end
33

34 return

4.4 Review and Exercises

Table 4.1 Chapter 4 Commands

Command Brief description

cla Clears current graph axes
end Closes a for, if, or similar statement

(Also represents the last location in a vector)
mvnrnd Draws random numbers from the multivariate normal distribution
NaN Pre-fills a matrix with ‘empty’ values
reshape Moves elements column-wise from an initial matrix to a new matrix with specified

dimensions
[∼,...] The tilde acts as a placeholder for an item which should not be returned

4.4.1 FURTHER READING

McFadden (2000) provides a fascinating overview of the history of discrete
choice modelling, including a discussion of the famous Bay Area Rapid Transit
analysis (initially reported in McFadden (1974)). Train (2009) provides an
excellent discussion of discrete choice models; this book should be required
reading for anyone with even a passing interest in the subject. Among many
other topics, Train discusses in detail the Geweke-Hajivassiliou-Keane simu-
lator, which is a further improvement on the smoothed accept-reject method.
This simulator lies beyond the scope of our discussions here, but we encourage
you to read Train’s discussion of this method, or further details in Geweke et al.
(1994) if you are interested in estimating Multinomial Probit models.
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Maximum Simulated Likelihood is one very important class of simulation-
based estimation, but certainly not the only one. Gourieroux and Monfort
(1997) discuss simulation-based estimators in detail—including the Method
of Simulated Moments and, more generally, Indirect Inference.

EXERCISES

(i) Go back and look again at the function SimulateBinaryLogit. How do the choice
probabilites behave as the sample size N increases? How does the variance and mean
of simulations change (numerically), as N grows? Are these results in line with what
you would expect from the Central Limit Theorem and Law of Large Numbers?

(ii) In our estimations, β̂ differs from β for two reasons: both our dataset and our simulation
size are finite (ie N < ∞, R < ∞). Which is numerically more important? How does β̂

respond as N → ∞ for a fixed R? And as R → ∞ for a fixed N?

(iii) Extend SimulateBinaryLogit to generate a function to simulate the Multinomial
Logit. Call this function SimulateMNLogit(x, Betavec), where x is a scalar
explanatory variable and betavec is a stacked vector of parameters. The function
should output both a vector of choices (y) and a matrix of simulated utilities (utility).

(iv) Extend BinaryLogitLL to generate a function returning −1 × �i
(

β; yi | xi
)

for the
Multinomial Logit. Use fmincon to maximize the log-likelihood and recover reasonable
estimates of the original parameters (that is, the parameters used as input Betavec
to the function SimulateMNLogit).

(v) Extend BinaryLogitSimulatedLL to produce a function returning the simulated
log-likelihood for the Multinomial Logit (called MNLogitSimulatedLL). Use fmin-
con to maximize the simulated log-likelihood and recover reasonable estimates of the
original parameters (that is, the parameters used as input Betavec to the function
SimulateMNLogit).

(vi) Both BinaryLogitLL and BinaryLogitSimulatedLL return the vector of �i as
their second argument. Use this output to produce a scatterplot of �i under the analyt-
ical expression and under the simulated function. How does this scatterplot change as
R changes?

(vii) Use MNProbitSimulatedLL and fmincon to recover the parameters for a dataset
simulated using SimulateMNProbit.

(viii) Experiment with different values of phi in SimulateMNProbitSmoothed. Can you
find a value of phi that performs better than φ = 0.01?
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It is not a case of choosing those which, to the best of one’s judgment,
are really the prettiest, nor even those which average opinion genuinely
thinks the prettiest. We have reached the third degree where we devote
our intelligences to anticipating what average opinion expects the average
opinion to be. And there are some, I believe, who practise the fourth, fifth
and higher degrees.

Keynes∗

Up to this point, we have considered observations on single agents—whether
individual commuters, individual consumers, and so on. However, much
microeconomic theory focuses upon strategic interactions between multiple
players. It is useful to think about how we can model such interactions in
Matlab—and how we can estimate these models using data on the outcome
of strategic interactions. In this chapter, we will study two-player binary games.
We will first think about how to solve the game, and then about how we can
use the solution for estimation. This will provide an intuitive introduction to
the large literature on the structural estimation of strategic interactions.

5.1 A Simple Cournot Game

To get things started, let’s discuss a familiar structure: a two-player Cournot
game. Of course, this is not a discrete game (quantities are continuous)—
but we will use this simple model to introduce the basic principles of solving
games in Matlab. Having established these principles, we turn to estimation
in Section 5.2.

Suppose that we have two firms, each producing a single good, and that
aggregate inverse demand is given as follows (also illustrated in Figure 5.1):

p(q) =
{

a − b · q for q < a · b−1;
0 for q ≥ a · b−1. (5.1)

We assume that each firm i chooses a quantity to produce, qi ≥ 0. Actions
are taken simultaneously. For a combination of quantities (qi, qj), the payoff
(profit) to firm i is:

∗ Keynes, J. M., The General Theory of Employment Interest and Money, Palgrave Macmillan (1936).
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p

q0
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a
b

slope= −b

Figure 5.1 Inverse Demand Function

πi(qi, qj) = [

a − b · (qi + qj)
] · qi − c · qi (5.2)

= (a − c − b · qj) · qi − b · q2
i . (5.3)

5.1.1 FINDING THE BEST-RESPONSE FUNCTION

We want to find the Nash Equilibrium. To do this, we need the best-response
functions. Trivially, the best-response for firm i is solved as:

∂πi(qi, qj)

∂qi

∣

∣

∣

∣

qi=q∗
i

= a − c − b · qj − 2b · qi = 0 (5.4)

∴ q∗
i (qj) = a − c − b · qj

2b
= a − c

2b
− qj

2
. (5.5)

Often, we are interested in solving games for which there is no analytical
solution—indeed, we will consider one such example later in this chapter. So
that you are equipped with the tools necessary to solve such games, let’s assume
that we cannot find the analytical solution of Equation 5.5. How might we
solve this game numerically in Matlab? Let’s build the problem from its core
parts. First, we need functions for the aggregate inverse demand, p(q; a, b), and
for the profit function of firm i, πi

(

qi, qj; ci, a, b
)

. Exercises (i) and (ii) invite
you to code these functions, which we will call simply Demand and Profit
respectively. These functions are also available on our accompanying website.
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We need to find firm i’s best-response, q∗
i , numerically. Remember the key

idea to the best-response concept: we treat firm i as optimizing subject to firm
j’s decision, qj. That is, we solve:

q∗
i (qj) = arg max

qi≥0
πi(qi, qj). (5.6)

It is straightforward to implement this in Matlab using fmincon. We nest
this optimization in a function called BestResponse:

BestResponse.m

1 function qi = BestResponse(qj, ci, a, b)
2 %------------------------------------------------
3 % PURPOSE: returns the best response for firm i to
4 % output q_j.
5 %------------------------------------------------
6 % INPUTS: qj : quantity produced by firm j
7 % ci : MC for i
8 % a : intercept
9 % b : slope

10 %------------------------------------------------
11 % OUTPUT: qi : best reponse for firm i
12 %------------------------------------------------
13

14 options = optimset('Algorithm', 'sqp',...
15 'Display', 'off');
16 qi = fmincon(@(q) -Profit(q, qj, ci, a, b),...
17 0, [], [], [], [], 0, [], [], options);
18

19 return

The function BestResponse returns a single value for q∗
i , for a single given

value for qj. We can visualize this as a function by looping over a vector of
possible values for qj. The following code shows how this is done, and Figure
5.2 illustrates the result.

GraphBestResponse.m

1 %----(1) Initialize the parameters, generate grid
2 % for qj -----
3 a = 20;
4 c = 2;
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5 b = 1;
6 qj = [0:20]';
7

8 %--- (2) Solve the best response for qi... ------
9 qi_star = NaN(size(qj));

10

11 for count = 1:size(qj, 1)
12 qi_star(count, 1) = BestResponse(qj(count,...
13 1), c, a, b);
14 end
15

16 line(qj, qi_star, 'LineWidth', 2, 'Color',...
17 [1, 0, 0])
18 ylabel('q_i', 'FontSize',12)
19 xlabel('q_j', 'FontSize', 12)
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Figure 5.2 A Numeric Solution for Firm i’s Best Response Function

So far, so good. But, of course, what we really want is to overlay the two best-
response functions: q∗

i (qj) and q∗
j (qi). Having coded the function BestRe-

sponse in such general terms, this is easy: we simply repeat the method we
used to graph q∗

i (qj), switching i and j . . . .
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GraphNashEquilibrium.m

1 %---- (3) Generate a grid for qi...--------------
2 qi = [0:20]';
3

4 %--- (4) Solve the best response for qj...-------
5 qi_star = NaN(size(qj));
6

7 for count = 1:size(qj, 1)
8 qj_star(count, 1) = BestResponse(qi(count,...
9 1), c, a, b);

10 end

We can now overlay this function on our earlier graph (ensuring that, as in the
earlier case, we are graphing qj on the x axis and qi on the y axis). Figure 5.3
illustrates.

1 hold on
2 line(qj_star, qi, 'LineWidth', 2, 'Color',...
3 [0, 0, 1])

From these two functions, it is clear that the Nash Equilibrium is (6, 6)—where
the two best response functions intersect. You should check that you obtain the
same solution analytically by using Equation 5.5.
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Figure 5.3 A Numeric Solution for Both Best Response Functions
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Figure 5.4 A Quadratic Loss Function for the Cournot Game

However, we are not done yet—if we want to use our model for estima-
tion, we need a way for Matlab to calculate this equilibrium automatically,
rather than have us eyeball graphs of the output. We can do this by defining
a simple loss function. Suppose that our model generates best-response func-
tions (q∗

i (j), q∗
j (i)). Then for some pair (qi, qj), we can define the loss as:

L(qi, qj) =
(

qi − q∗
i (qj)

)2 +
(

qj − q∗
j (qi)

)2
. (5.7)

L(qi, qj) is uniquely minimized (at zero) when (qi, qj) is a Nash Equilibrium.
The function CournotLoss returns the value of this loss given the best

response functions in Matlab. Figure 5.4 shows the loss function for the
region around the Nash. You can reproduce this graph using the methods that
we discussed in Chapter 1, including the meshgrid command. The Nash
can be found numerically simply by minimising CournotLoss subject to
the constraint that quantities are non-negative. This is done by the function
SolveCournotNash.

CournotLoss.m

1 function Loss = CournotLoss(q, a, b, ci, cj)
2 %------------------------------------------------
3 % PURPOSE: returns the quadratic loss for a
4 % simple Cournot model.
5 %------------------------------------------------
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6 % INPUTS: q : [q(1); q(2)]
7 % ci : MC for i
8 % cj : MC for j
9 % a : intercept

10 % b : slope
11 %------------------------------------------------
12 % OUTPUT: Loss : deviation from best response
13 %------------------------------------------------
14

15 qi_star = BestResponse(q(2), ci, a, b);
16 qj_star = BestResponse(q(1), cj, a, b);
17

18 Loss = (q(1) - qi_star)ˆ2 + (q(2) - qj_star)ˆ2;
19

20 return

SolveCournotNash.m

1 function Nash = SolveCournotNash(a, b, ci, cj)
2 %------------------------------------------------
3 % PURPOSE: solves the Nash for a simple Cournot
4 % model.
5 %------------------------------------------------
6 % INPUTS: ci : MC for i
7 % cj : MC for j
8 % a : intercept
9 % b : slope

10 %------------------------------------------------
11 % OUTPUT: Nash : quantites at equilibrium
12 %------------------------------------------------
13

14 opts = optimset('Algorithm', 'sqp',...
15 'Display', 'off');
16 Nash = fmincon(@(q) CournotLoss(q, a, b, ci,...
17 cj), [0, 0], [], [], [], [], [0, 0],...
18 [], [], opts);
19

20 return

Let’s use SolveCournotNash to find the Nash Equilibrium, and add it (as
a large black dot) to our earlier graph:
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>> Nash = SolveCournotNash(a, b, cj, ci)

Loss =

1.2986e-14

exitflag =

1

Nash =

6.0000 6.0000

>> hold on
>> scatter(Nash(1), Nash(2), 100, [0, 0, 0],...

'filled')

Notice that each of our functions allows for asymmetric cost, ci and cj. You
should experiment: how does cost asymmetry change the Nash? In Exercises
(iii) and (iv), we ask you to go further—to adapt the code to an N-firm Cournot
game, and then a two-firm Stackelburg game.

5.2 A Discrete Bayesian Game

We just showed how we can use standard optimization methods to find a Nash
Equilibrium. We did this by minimizing over a joint loss function, where loss
is defined as the sum of the profit deviation between each firm’s action and that
firm’s best response. We will now apply these principles for estimation.

When we estimate models of individual decision making, we have multiple
observations, each showing the result of an individual decision. (For example,
when we model the decision of a commuter whether or not to drive to work, we
use data on multiple commuters and their decisions.) When we model games,
we need to observe a game being played multiple times.

We will now consider a stylized Bayesian game. Specifically, we consider a
simple two-firm coordination game. Let’s assume that we have data on markets
m ∈ {1, . . . , M}. In each market, we observe competition between the same
two large firms (which we call ‘Firm 1’ and ‘Firm 2’). In each market, each firm
needs to decide whether to launch a local radio advertising campaign (ai = 1)
or not (ai = 0).1

1 This empirical motivation is inspired in part by Sweeting (2009), who uses a structural approach
to model US radio stations’ strategic decisions on the timing of advertising.
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We assume that profit accrues through two sources: (i) firm i receives a
signal, xi, which records the firm’s net profit from choosing the radio campaign,
and (ii) firm i receives an additional payoff δi if firm i and firm j make the same
choice (i.e. if ai = aj). In this context, we should think of δi and δj as measuring
a relative payoff to a firm for differentiating itself from its competitor. Specifi-
cally, we will assume that (ceteris paribus) a firm weakly prefers its competitor
not to be using the same advertising strategy: δi, δj ≤ 0. We assume that the
firms act simultaneously.

To fix ideas, let’s focus on solving the game in a particular market. In normal
form, we can express the game as follows:

Firm 1 (a1)
0 1

Firm 2 (a2) 0 δ2, δ1 0, x1
1 x2, 0 x2 + δ2, x1 + δ1

Firm i’s payoff is then:

Ui(ai; aj, xi) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

xi + δi if ai = 1, aj = 1;
xi if ai = 1, aj = 0;

0 if ai = 0, aj = 1;
δi if ai = 0, aj = 0.

(5.8)

We assume that the researcher observes (a1, a2), but that x1 and x2 are only
observable to Firm 1 and Firm 2 respectively. That is, each firm forms its own
assessment of the relative profit from using radio advertising, and this is shared
neither with its competitor firm nor with the researcher. We therefore have
a game of incomplete information: only Firm 1 knows x1, and only Firm 2
knows x2. In this model, (x1, x2) acts like an error term: it generates variation
in the outcome that is not explained by the measured covariates. As in the
previous chapter, we need a distributional assumption on this unobservable.
For simplicity, we will use the Bivariate Normal:

(

x1
x2

)

∼ N
((

μ1
μ2

)

,
(

1 ρ

ρ 1

))

. (5.9)

We will use the notation �2(μ1, μ2, ρ) for the cdf of a Bivariate Normal with
this structure.

Given this assumption, we can solve the model. For firm i, the expected profit
of ai = 1—conditional on the firm observing xi—is:

Ui(1; 1, x∗
i ) · Pr

(

aj = 1 | xi
) + Ui(1; 0, x∗

i ) · (

1 − Pr
(

aj = 1 | xi
))

. (5.10)

The expected utility of ai = 0 (again, conditional on observing xi) is:

Ui(0; 1, x∗
i ) · Pr

(

aj = 1 | xi
) + Ui(0; 0, x∗

i ) · (

1 − Pr
(

aj = 1 | xi
))

, (5.11)

where x∗
i as the value of xi that equalizes Equations 5.10 and 5.11.
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It is easy to see that the relative utility from choosing ai = 1 is increasing in xi.
We therefore limit attention to a simple cut-off strategy:2

ai =
{

0 if xi < x∗
i ;

1 if xi ≥ x∗
i . (5.12)

So how, then, should firm i choose its cutoff value x∗
i ? We know that, if xi = x∗

i ,
firm i is indifferent between ai = 0 and ai = 1. We can therefore say:

Ui(1; 1, x∗
i ) · Pr

(

aj = 1 | xi = x∗
i
) + Ui(1; 0, x∗

i ) · (

1 − Pr
(

aj = 1 | xi = x∗
i
))

= Ui(0; 1, x∗
i ) · Pr

(

aj = 1 | xi = x∗
i
) +Ui(0; 0, x∗

i )·
(

1 − Pr
(

aj = 1 | xi = x∗
i
))

(5.13)

∴ x∗
i = δi · (

1 − 2 Pr
(

aj = 1 | xi = x∗
i
))

(5.14)

= δi · (

2 Pr
(

aj = 0 | xi = x∗
i
) − 1

)

(5.15)

Equation 5.15 shows that the signal xi plays two roles: (i) it contributes directly
to firm i’s utility, and (ii) it provides information to firm i on the likely action
of firm j.

From the assumption of Bivariate Normality, we know:

xj | xi ∼ N
(

μj + ρ · (xi − μi), 1 − ρ2) (5.16)

∴
xj − μj − ρ · (xi − μi)

√

1 − ρ2

∣

∣

∣

∣

∣

xi ∼ N (0, 1) . (5.17)

Define x∗
j as the cutoff point for Firm j. From this, Firm i can reason as follows:

Pr(aj = 1 | xi) = Pr(xj ≥ x∗
j | xi) (5.18)

= Pr

(

xj − μj − ρ · (xi − μi)
√

1 − ρ2
≥ x∗

j − μj − ρ · (xi − μi)
√

1 − ρ2

∣

∣

∣

∣

∣

xi

)

(5.19)

= 1 − �

(

x∗
j − μj − ρ · (xi − μi)

√

1 − ρ2

)

(5.20)

∴ Pr(aj = 0 | xi) = �

(

x∗
j − μj − ρ · (xi − μi)

√

1 − ρ2

)

. (5.21)

2 Limiting attention to cutoff strategies in this way is common in the literature on Bayesian games—
see, for example, Morris and Shin (2003). See Xu (2014) for further discussion of the use of cutoff
strategies in a two-player binary choice model with correlated unobservables.
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Therefore, the cut-off value for firm i’s best-response function is defined by:

x∗
i = δi ·

[

2 · �

(

x∗
j − μj − ρ · (x∗

i − μi)
√

1 − ρ2

)

− 1

]

. (5.22)

Equation 5.22 characterizes the equilibrium. Specifically, it describes a
Bayesian Nash Equilibrium. It is sufficient for the equilibrium to be unique
that:3

δi, δj > −
√

π

2
·
√

1 − ρ

1 + ρ
. (5.23)

You should check that you understand that intuition behind these best-
response functions. For example, what should firm i do if it has no preference
for coordination (that is, δi = 0)? What happens if the signals (xi, xj) are inde-
pendent, conditional on (μi, μj) (that is, if ρ = 0)? Given a set of parameters,
what are the maximum and minimum possible values for x∗

i ? Try varying δ:
can you find multiple equilibria by violating Equation 5.23? (Note: Remember
that Equation 5.23 is sufficient for a unique equilibrium, but not necessary—
you should be able to find cases in which Equation 5.23 is violated but where
the equilibrium is still unique.4)

Figure 5.5 shows a numerical solution to this binary game, for the parame-
ter values μi = 1, μj = −1, ρ = 0.75 and δi = δj = −0.5. You now have the
tools to produce this figure; this is directly analogous to the process that we
just followed for the Cournot game—albeit with a more complicated equation
defining the best responses. Exercises (v) to (viii) invite you to walk through
each step of this numerical process.

5.2.1 SIMULATING THE GAME

How can we take this model to data? We will use a simple parameteriza-
tion. We assume that we observe a series of independent markets, indexed
m ∈ {1, . . . , M}. In each market, we will be able to identify one firm as ‘Firm
1’ and the other as ‘Firm 2’. We assume that, for each firm in each market,
we observe a single binary covariate, zim, and that this covariate is common
knowledge between firms. We will also assume that we know the size of each
market (measured in millions of consumers, rounded to the nearest 0.1); we
denote this nm. Our data, therefore, looks something like this…

3 This is adapted from a condition in Morris and Shin (2003). It ensures that, after their intersection,
the best-response functions for Firm 1 and Firm 2 never turn back towards each other. Gole and Quinn
(2014) derive the equivalent condition for the more complicated three-player case, and discuss the
relationship to this two-player setup.

4 That said, Equation 5.23 provides the weakest sufficient condition—in the sense that we can find
multiple equilibria if the condition is violated even by an infinitesimal margin.
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Figure 5.5 A Numerical Solution to a Binary Bayesian Game

Firm 1 Firm 2
m nm z1m a1m z2m a2m

1 0.3 0 0 0 1
2 0.1 1 0 0 0
...

...
...

...
...

...
M 0.9 1 1 0 0

In this example, imagine that variation in the binary covariate zim causes vari-
ation in the preference for coordination:

δ1m = β1 · z1m; (5.24)

δ2m = β2 · z2m. (5.25)

Under this structure, we therefore observe some markets in which
(δ1m, δ2m) = (0, 0) where (z1m, z2m) = (0, 0) This is important for
identification.5 Further, we will assume that the mean payoff to advertising
for an individual firm is a linear function of market population:

μ1m = γ1 · nm ; (5.26)

μ2m = γ2 · nm . (5.27)

5 We say almost nothing about identification in this book, and we do not intend to start now. The
further readings discussed at the end of this chapter involve much discussion of identification of discrete
games.
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ρ here is common across markets. Therefore, we have five parameters to esti-
mate, which we stack in a vector: θ = (γ1, γ2, β1, β2, ρ)′.

First, let’s simulate the model to generate a dataset to use for estimation. The
function SimulateBayesianNash simulates values for nm , z1m, z2m, a1m
and a2m. (The function calls SolveBayesianNash, which you are asked
to code yourself in Exercise (vii). Alternatively, you can download it from our
accompanying website.)

...

SimulateBayesianNash.m

1 function [a,z,nm] =
2 SimulateBayesianNash(M,g_1,g_2,b_1,b_2,rho);
3 %------------------------------------------------
4 % PURPOSE: simulates data from the Bayesian Nash
5 % model.
6 %------------------------------------------------
7 % INPUTS: M : total markets
8 % g_1 : gamma 1 (parameter)
9 % g_2 : gamma 2 (parameter)

10 % b_1 : beta 1 (parameter)
11 % b_2 : beta 2 (parameter)
12 % rho : signal correlation (parameter)
13 %------------------------------------------------
14 % OUTPUT: a : advertising strategy choice
15 % z : binary covariate
16 % nm : market size
17 %------------------------------------------------
18 rng(1)
19

20 %--- First, simulate the covariates (z and p).---
21 z = randi([0, 1], M, 2);
22 nm = randi([0, 10], M, 1)/ 10;
23

24 %---- Second, simulate by solving the game for
25 % each market...----
26 cutoffs = NaN(M, 2);
27 a = NaN(M, 2);
28

29 for count = 1:M
30 count
31 cutoffs(count, :) =...
32 SolveBayesianNash(g_1 * nm(count),...
33 g_2 * nm(count),...
34 b_1 * z(count, 1),...
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35 b_2 * z(count, 2),...
36 rho);
37 a(count, :) = mvnrnd([g_1 * nm(count),...
38 g_2 * nm(count)],...
39 [1, rho; rho, 1], 1) > ...
40 cutoffs(count, :);
41 end
42

43 return

Let’s use this function to simulate a dataset of M = 500 markets . . .

>> gamma_1 = 1;
>> gamma_2 = 0.5;
>> beta_1 = -0.4;
>> beta_2 = -0.7;
>> rho = 0.5;
>> [a, z, nm] = SimulateBayesianNash(500,...

gamma_1, gamma_2,...
beta_1, beta_2, rho);

5.2.2 ESTIMATION

Denote (x∗
1m, x∗

2m) as the solution to the game in market m—that is, the pair
of cutoffs that defines the Bayesian Nash Equilibrium. We have that:

Pr(a1 = 0, a2 = 0) = �2
(

x∗
1 − μ1, x∗

2 − μ2, ρ
)

; (5.28)

Pr(a1 = 1, a2 = 0) = �2
(

μ1 − x∗
1, x∗

2 − μ2, −ρ
)

; (5.29)

Pr(a1 = 0, a2 = 1) = �2
(

x∗
1 − μ1, μ2 − x∗

2, −ρ
)

; (5.30)

Pr(a1 = 1, a2 = 1) = �2
(

μ1 − x∗
1, μ2 − x∗

2, ρ
)

. (5.31)

Therefore, for a market m, the log-likelihood is:

	 (θ ; a1m, a2m | z1m, z2m, nm)

= ln �2
{[

(2a1m − 1) · (

γ1z1m − x∗
1m

)

, (2a2m − 1) · (

γ2z2m − x∗
2m

)

,

(2a1m − 1) · (2a2m − 1) · ρ]} . (5.32)

The function BayesianNashLL implements this. Notice that the function
loops over the elements of a matrix called ‘UniqueData’. Why? What’s the
advantage of this approach?
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BayesianNashLL.m

1 function LL = BayesianNashLL(param, a, z, nm)
2

3 %-----------------------------------------------
4 % PURPOSE: log-likelihood of Bayesian Nash
5 % equilibrium
6 %-----------------------------------------------
7 % INPUTS: a : advertising strategy choice
8 % z : binary covariate
9 % nm : market size

10 % param : [gamma; beta]
11 %-----------------------------------------------
12 % OUTPUT: LL : log-likelihood
13 %-----------------------------------------------
14

15 g_1 = param(1);
16 g_2 = param(2);
17 b_1 = param(3);
18 b_2 = param(4);
19 rho = param(5);
20

21 N = size(a, 1);
22

23 [UniqueData, m, n] = unique([z, nm], 'rows');
24 cutoffs_small = NaN(size(UniqueData, 1),...
25 2);
26

27 for c = 1:size(UniqueData, 1)
28 cutoffs_small(c, :) = SolveBayesianNash(...
29 g_1*UniqueData(c, 3),...
30 g_2*UniqueData(c, 3),...
31 b_1*UniqueData(c, 1),...
32 b_2*UniqueData(c, 2),...
33 rho);
34 end
35

36 cutoffs = cutoffs_small(n, :);
37 ll = NaN(N, 1);
38

39 for c = 1:N
40 q1 = 2 * a(c, 1) - 1;
41 q2 = 2 * a(c, 2) - 1;
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42

43 ll(c) = log(bvnl(q1 * (g_1 * nm(c,1) -...
44 cutoffs(c,1)), q2 * (g_2 * nm(c,2) -...
45 cutoffs(c,2)), q1 * q2 * rho));
46

47 end
48

49 LL = -sum(ll);
50

51 return

We can recover estimates of θ by maximizing this log-likelihood. However,
before we do, we have one more problem to solve. Remember that, if δ1m or δ2m
are sufficiently large negative numbers, our game will have multiple solutions.
This poses a problem for our estimation—because we have not specified any
rule by which firms choose between multiple equilibria. There are certainly
ways that we could deal with this—for example, we could impose an equi-
librium selection rule, or we could even assume that firms somehow jointly
mix across multiple equilibria with some predetermined probability (see, for
example, Sweeting (2009) and de Paula and Tang (2012)). But, to keep things
simple for now, we would like to rule out the possibility of multiple equilibria.

Recall that Equation 5.23 provides a sufficient condition for equilibrium
uniqueness. We can impose this condition as a non-linear constraint on our
maximum likelihood algorithm. (Of course, note that Equation 5.23 is a con-
dition on δ1m and δ2m in a single game. In our empirical implementation, we
have δ1m = β1 · z1m and δ2m = β2 · z2m, with z1m and z2m each being dummy
variables. Therefore, we can impose the constraint in Equation 5.23 as if it
applies to β1 and β2, rather than to δ1 and δ2.)

We do this in the function UniqueEquilibriumConstraint:

UniqueEquilibriumConstraint.m

1 function [c, ceq] =
2 UniqueEquilibriumConstraint(param)
3 %-----------------------------------------------
4 % PURPOSE: non-linear constraint for uniqueness
5 %-----------------------------------------------
6 % INPUTS: param : [gamma; beta; rho]
7 %-----------------------------------------------
8 % OUTPUT: c : non-linear inequality constraint
9 % ceq : non-linear equality constraint

10 %-----------------------------------------------
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11

12 beta_1 = param(3);
13 beta_2 = param(4);
14 rho = param(5);
15

16 c = [-sqrt(pi/2) * sqrt((1 - rho) /...
17 (1 + rho)) - beta_1; -sqrt(pi/2) *...
18 sqrt((1 - rho) / (1 + rho)) - beta_2];
19 ceq = [];
20

21 return

UniqueEquilibriumConstraint returns two outputs:c andceq. This
is necessary for fmincon as it looks for two types of non-linear constraint:

c ≤ 0; (5.33)

ceq = 0. (5.34)

In this case, we have a vector of two values that must be negative (a restriction
on δ1 and on δ2). These restrictions are captured by c. We have no non-linear
equality constraint, so we set ceq to an empty matrix.

We can now maximize, imposing the unique-equilibrium constraint:

>> parameters_init = [gamma_1, gamma_2, beta_1,...
beta_2, rho]';

>> lb = [-2, -2, -2, -2, 0];
>> ub = [2, 2, 0, 0, 0.99];
>> opts = optimset('Algorithm', 'sqp',...

'Display', 'iter', 'DiffMinChange',...
1e-4);

>> [param, LL, exitflag] =...
fmincon(@(par) BayesianNashLL(par, a, z, nm),...

parameters_init, [], [], [], [], lb, ub,...
@(par) UniqueEquilibriumConstraint(par),...
opts);

>> [parameters_init, param]

ans =

1.0000 1.0041
0.5000 0.5405

-0.4000 -0.3808
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-0.7000 -0.6416
0.5000 0.5711

The algorithm performs well: we recover good estimates of all parameters. For
completeness, we should check that, as required, our estimated parameters
obey the single-equilibrium condition:

>> UniqueEquilibriumConstraint(param)

ans =

-0.2740
-0.0132

As required, all elements of the vector c are negative. Of course, the only
way for either element not to be negative would be if we had made a coding
mistake—or if fmincon had not successfully converged. This result tells us
nothing about whether there actually are multiple equilibria in the dataset we
study—it merely tells us that we have estimated while successfully imposing
the constraint in Equation 5.23. In this case, we are using simulated data, so
can check the unique equilibrium condition with the true parameters:

>> UniqueEquilibriumConstraint(parameters_init)

ans =

-0.3236
-0.0236

5.3 Review and Exercises

Table 5.1 Chapter 5 Commands

Command Brief Description

unique Selects only non-repeating values
nonlcon Non-linear contraints to be used in optimizers. Should be passed as a

function, and list both equality and inequalities.

5.3.1 FURTHER READING

The basic structure considered in this chapter is broadly similar to that of
an entry game. The econometrics of entry games were famously studied in
seminal work by Bresnahan and Reiss (1990, 1991a,b) and Berry (1992) (see
also Heckman (1978), Tamer (2003) and Ciliberto and Tamer (2009)). Such
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models typically use a ‘complete information’ structure—as Bresnahan and
Reiss (1991a, p. 59) explain, ‘Players of the game observe [the realisation of
a random variable affecting payoffs] and have complete information about
other players’ actions. The econometrician, however, does not observe players’
payoffs and therefore treats them as random variables.’

A related literature considers cases where—as in this chapter—players have
incomplete information about each other’s payoffs. This literature tends to
assume that players’ idiosyncratic signals are independent of each other (con-
ditional on variables observable to the researcher): see, in particular, Sweeting
(2009), Bajari et al. (2010), and de Paula and Tang (2012). More recently, Grieco
(2014) uses a flexible parametric structure to combine ‘public shocks’ (observ-
able to players but not the researcher) and ‘private shocks’ (each observable
only to its respective player); this can nest a complete information game as
a limiting case. Gole and Quinn (2014) follow this literature in estimating
three-player binary games with correlated signals; the model presented in this
chapter is a two-player simplification of their approach. (See also Xu (2014)
and Wan and Xu (2014), who consider a related model with correlated unob-
servables and continuous covariates.)

EXERCISES

(i) Write a function, Demand, to return the aggregate inverse demand for the simple
Cournot model in Section 5.1, p(q; a, b).

(ii) Write a function, Profit, to return the profit of firm i in the simple Cournot model in
Section 5.1, πi(qi , qj ; ci , a, b).

(iii) Suppose now that there are N firms in the Cournot model of Section 5.1. Extend the
code from that chapter to solve numerically for the Nash equilibrium. Check that, for
N = 2, the code behaves in the same way as SolveCournotNash.

(iv) Consider again the two-player case of Section 5.1. However, assume now that Firm 1
moves first, and that its decision is observed by Firm 2 (that is, assume a Stackelberg
problem). Adapt the code from Section 5.1 to solve this game.

(v) Let’s return to the binary Bayesian game in Section 5.2. Write a function, BestRe-
sponseLoss, to return the difference between the lefthand side and the righthand
side of Equation 5.22. Use this function to create a second function, SolveBestRe-
sponse, to solve the optimal cutoff value for player i (x∗

i ) given the cutoff used by
player j (x∗

j ).

(vi) Write a function, BayesianNashLoss, to do for the model in Section 5.2 what
CournotLoss did for the model in Section 5.1.

(vii) Write a function, SolveBayesianNash, to do for the model in Section 5.2 what
SolveCournotNash did for the model in Section 5.1.

(viii) Combine SolveBestResponse and SolveBayesianNash to generate Figure 5.5.
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6 Dynamic Choice on a Finite
Horizon

The future ain’t want it used to be.
Attributed to Yogi Berra

The steady march of time casts a pall over many economic decisions. The
choice to do something today may preclude, restrict, encourage or necessitate
certain choices in the future. Searching for work, investing in human capital,
installing or removing physical capital, and choosing a partner on the mar-
riage market are all decisions that are often considered from a dynamic point
of view.

6.1 Direct Attack

The mathematics of dynamic optimization is often more complex than in the
static case. However, the basic idea remains intuitive. In a static context, a
consumer acts to equalize the cost-adjusted marginal utility of each unit of
consumption. Similarly, when determining behaviour over a number of peri-
ods, a decision maker should equalize their discounted marginal utility at each
point in time. While in a static sense we expect that a consumer should not
be able to increase utility by rearranging consumption between goods, in a
dynamic sense we would expect that such an improvement cannot be made by
rearranging consumption over time. This kind of ‘no-arbitrage’ type condition
has a special name in dynamic optimization: the Euler equation. We will rely
on this condition repeatedly.

We start by considering deterministic dynamic problems—that is, problems
in which the decision maker faces no shocks. In this context, the dynamic
problem can be treated as a static problem: a decision maker can optimize
perfectly by taking a once-and-for-all decision about their future actions. This
is what Adda and Cooper (2003) refer to as ‘Direct Attack’, and corresponds to
Stokey and Lucas (1989)’s ‘sequence problem’.
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6.1.1 LINEAR FLOW EQUATIONS

Let’s start with a simple dynamic problem. Suppose that a household has an
endowment, and must decide how much to consume in each of T periods. This
is sometimes known as a cake-eating problem on a finite horizon. Assume that
the household wants to maximize its discounted utility over these T periods:1

U =
T

∑

t=1
β t−1u(ct), (6.1)

where β is the household’s discount factor.
Let the initial value of the endowment be k1, which the household appor-

tions over time as it sees fit. In period 1, the household consumes c1, leaving a
maximum consumption of k1 − c1 for period 2. Generically, this relationship
is expressed by the flow equation:

kt+1 = kt − ct . (6.2)

This equation keeps track of capital, our state variable (think state = stock).
The state in any given period depends only upon the state at the beginning of
the period, and the decision the individual makes with respect to the choice
variable, c. The choice variable, c is also known as the control variable.

Equations 6.1 and 6.2, along with the non-negativity constraints ct ≥ 0 and
kt ≥ 0, allow us to completely characterize the household’s problem:

max
{ct}T

1

T
∑

t=1
β t−1u(ct) (6.3)

subject to:
T

∑

t=1
ct + kT+1 = k1

ct > 0 (6.4)

kt > 0.

Here you will notice that we have rearranged the series of flow equations (6.2)
into one equation for ease of presentation (and later ease of computation).

This problem looks remarkably similar to the static optimization problems
that we have already tackled in earlier chapters. Indeed, if we know the form
of u(ct), the discount factor β , the initial endowment k1, and the number of
periods T, we can solve this problem easily using fmincon. Assume for now

1 Note that we assume additively separability of the utility function in consumption. This assumption
is equivalent to assuming that ‘the marginal rate of substitution between lunch and dinner is indepen-
dent of the amount of breakfast’, an analogy that Dixit (1990) attributes to Henry Wan.
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a log utility function u(ct) = ln(ct), T = 10, a discount factor of β = 0.9, and
an initial endowment of k1 = 100. The function FlowUtility returns the
scalar V which is the (negative of the) net present utility associated with a
consumption stream C, given these parameters:2

FlowUtility.m

1 function V = FlowUtility(T,Beta,C)
2 %------------------------------------------------
3 % PURPOSE: calculates the total utility of
4 % consumption assuming an additively separable
5 % utility function and discount rate Beta.
6 %------------------------------------------------
7 % INPUTS: C : Tx1 vector of independent variable
8 % T : scalar time
9 % Beta : scalar discount rate

10 %------------------------------------------------
11 % OUTPUT: V : -utility
12 %------------------------------------------------
13

14 c = C(:,1);
15

16 t = [1:1:T];
17 V = Beta.ˆ(t-1)*log(c);
18 V = -V;
19

20 return

Let’s now usefmincon to solve for the optimal consumption path. We require
strictly positive consumption, c, in each period (as log(0) is undefined). We
achieve this in Matlab by setting a lower bound of eps, which equals 2−52,
for each of the 10 periods.3 An upper-bound is also defined, as consumption
can never exceed 100 (the full amount of the endowment) in any period. We
need an initial starting point (guess). For simplicity, this is defined as equal

2 The final line of the script, converts the (positive) utility V into a negative value, as although we are
interested in maximizing utility, fmincon is a minimization function. Also, on line 14 we ensure that
consumption is a 1 × T row vector, which allows us to recycle the script later in this chapter.

3 Type help eps. You will see that eps is formally defined as ‘the distance from 1.0 to the next
largest double-precision number’. To see intuitively how eps works, try the following two logical tests:

» 1 == (1+ eps)
ans =
0
» 1 == (1+ eps/2)
ans =
1
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consumption in all periods. Finally, we set up the flow constraint that total
consumption must not exceed the full endowment k1. We do this using the
vector A, defining that A · c ≤ k1.

>> Beta = 0.9;
>> T = 10;
>> K1 = 100;
>> lb = eps*ones(10,1);
>> ub = 100*ones(10,1);
>> guess = 10*ones(10,1);
>> A = ones(1,10);
>> opt = optimset('TolFun', 1E-20, 'TolX',...

1E-20, 'algorithm', 'sqp');
>> c = fmincon(@(C) FlowUtility(T,Beta,C),...

guess, A, K1, [], [], lb,...
ub, [], opt)

c =

15.3534
13.8181
12.4363
11.1926
10.0734
9.0660
8.1594
7.3435
6.6091
5.9842

The vector c gives optimal consumption in each period. As expected (given
that β < 1), the consumption profile is downward sloping. Note that the
household optimally consumes the entirety of their endowment k1:

>> sum(c)

ans =

100

In this example, we have made a number of assumptions about the household’s
preferences—namely, the particular value of their discount rate, and the log
functional form for household utility. In Exercises (i)–(ii) at the end of this
chapter, we ask you to explore the consequences of these assumptions for the
profile of optimal consumption.
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6.1.2 NON-LINEAR FLOW EQUATIONS

In Section 6.1, we were able to reduce the ‘dynamism’ of the problem by
rearranging our flow constraints (Equation 6.2) into one simple constraint
(Equation 6.4). This relied on a number of strong assumptions that might be
thought rather artificial. In this section, we will relax these, to consider a more
realistic example in which the flow constraints cannot be rearranged into such
a nice linear format.

Imagine now that our household is both a producer and a consumer.
For example, we could think of a household microenterprise, whose
consumption decisions in one period affect future production. Specifi-
cally, we will assume that the household extracts ct from their capital
stock at the beginning of period t leaving kt − ct as an input to the
(strictly concave) production function, f . The flow equation now takes
the form:

kt+1 = f (kt − ct , θ), (6.5)

where θ is a time-invariant technology parameter.
The household’s maximization problem now becomes:

max
{ct}T

1

T
∑

t=1
β t−1u(ct) (6.6)

subject to:

kt+1 = f (kt − ct , θ) (6.7)

ct > 0 (6.8)

kt > 0. (6.9)

As opposed to the problem in the previous section, we can no longer specify
our maximization problem with one simple linear flow constraint (as was the
case with the condition A · c = k1). This is because Equation 6.8 is non-linear.
This non-linearity implies that high consumption in early periods not only
runs down the stock of k but also affects the household’s ability to produce
more k in the future.

Let’s assume that the production function is Cobb-Douglas:

kt+1 = f (kt − ct , θ) = θ(kt − ct)
α . (6.10)

To solve this dynamic maximization directly, we can form a series of T
non-linear constraints. As we saw in the previous chapter,fmincon allows for
non-linear constraints to be passed as a function. FlowConstraint defines
these for our current problem.
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...

FlowConstraint.m

1 function [d,deq] =
2 FlowConstraint(CK,T,K1,Theta,Alpha)
3 %------------------------------------------------
4 % PURPOSE: sets up the system of constraints
5 % k_{t+1}=\theta (k_t-c_t)ˆ\alpha
6 %------------------------------------------------
7 % INPUTS: CK : Tx2 matrix of C and K values
8 % at each t
9 % T : scalar time

10 % K1 : stock of K at start of t = 1
11 % Theta : Cobb-Douglas parameter
12 % Alpha : Cobb-Douglas parameter
13 %------------------------------------------------
14 % OUTPUT: d : inequality constraint vector
15 % deq : equality constraint vector
16 %------------------------------------------------
17

18 cap = CK(:,2);
19 c = CK(:,1);
20 k = [K1; cap];
21

22 for t = 1:T
23 deq(t) = k(t+1)-Theta* (k(t)-c(t))ˆAlpha;
24 end
25 d = [];
26

27 return

It is important to note that any non-linear constraints function passed to
fmincon must return two outputs; in FlowConstraint we call these
d and deq.4 These correspond to the non-linear equalities and non-linear
inequalities. Given that Equation 6.5 is a system of T equality constraints, we
just define an empty vector for the inequality constraints d. Before moving
on to solve this all using fmincon, we suggest that you experiment with this
function, perhaps starting with Exercise (iii) at the end of this chapter.

Let’s now run our code . . .

>> Beta = 0.9;
>> T = 10;

4 In the previous chapter, we used the standard fmincon terminology and called these non-linear
constraints c and ceq—but, in this context, it is more natural for c to refer to consumption.
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>> K1 = 100;
>> Theta = 1.2;
>> Alpha = 0.98;
>> lb = zeros(10,2);
>> ub = 100*ones(10,2);
>> guess = [10*ones(10,1), [90:-10:0]'];
>> opt = optimset('TolFun', 1E-10, 'TolX', 1E-10,...

'algorithm','sqp',...
'MaxFunEvals', 100000,'MaxIter', 2000);

>> result = fmincon(@(CK) FlowUtility(T,Beta,CK),...
guess,[],[],[],[],lb,ub, @(CK)...
FlowConstraint(CK,T,K1,Theta,Alpha),opt)

result =

16.5011 91.7125
15.9856 83.3386
15.5165 74.8041
15.0944 66.0245
14.7213 56.9014
14.4010 47.3159
14.1408 37.1173
13.9543 26.1024
13.8695 13.9624
13.9624 0.0000

The optimization returns a two-column matrix with T = 10 rows. This is our
result for CK: consumption (ct) and remaining capital (kt − ct) in each period.
Let’s graph these variables as in Figure 6.1. We can see that all capital is con-
sumed and that the household/firm has an approximately downward sloping
consumption profile.

>> plot(1:T, result(:,1), '--r', 1:T, result(:,2),...
'linewidth', 2)

>> xlabel('Time', 'FontSize', 14)
>> ylabel('C_t,k_t', 'FontSize', 14)
>> legend('Consumption', 'Capital Remaining',...

'Location', 'NorthEast')
>> title({'Firm Consumption and Investment',...

'\beta=0.9, \theta=1.2, \alpha=0.98'},...
'FontSize', 16)

>> print -depsc DynamicBehaviour
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Figure 6.1 Dynamic Behaviour of a Household Firm

6.2 Dynamic Programming

Direct Attack is a very useful way of solving deterministic dynamic problems.
Sadly, the real world is rarely so simple—typically, we must plan for the future
without knowing exactly what the future will look like. We need a method
to allow us to model dynamic decision making under uncertainty. This is the
beauty of dynamic programming,

The idea behind dynamic programming is simple: rather than solving a
complex optimization problem that considers all T periods all at once, we can
optimize one period at a time. To do this we must form a single summary
statistic for ‘the future’: the value of all remaining capital, assuming that this
capital is used optimally. For this reason, dynamic problems on a finite horizon
can be solved by backward induction: we first solve for the final period, then
for the penultimate which depends upon the final, and continue this until we
arrive at the first period.

To implement this in practice, we must introduce the concept of the value
function. To illustrate, consider again the household cake-eating problem. In
this context, the value function summarizes the value to the household of a
given amount of capital, assuming that this capital will be used optimally in
future periods. Start with the final period. We know that the value of any capital
which remains beyond the final period is zero, given that it spoils:
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VT+1(kT+1) = 0 (6.11)

This gives us a place to start for our backward induction. When making its
decision in period T, the household solves:

VT(kT) = max
cT∈(0,kT ]

{u(cT) + βVT+1(kT+1)} , (6.12)

where kT+1 = kT − cT . Given that we already have our terminal condition
from Equation 6.11, Equation 6.12 can be solved for any kt .5 This solution gives
the total value to the household of entering period T with some amount kT ,
and then behaving optimally. This in turn allows us to consider the decision in
period T − 1:

VT−1(kT−1) = max
cT−1∈(0,kT−1]

{u(cT−1) + βVT(kT)} , (6.13)

exactly analogous to Equation 6.12. Here we start to see the process of back-
wards induction. Once we solve Equation 6.13, we can then move on to solve
for VT−2(kT−2), and continue until reaching V1(k1).

Time for some Matlab . . .

BackwardsInduc.m

1 %----- (1) Prompt user to input parameters
2 Beta = input('Input Beta:');
3 T = input('Input time:');
4 K1 = input('Input initial capital:');
5 grid = input('Input fineness of grid:');
6

7 K = 0:grid:K1;
8 V = [NaN(length(K),T), zeros(length(K),1)];
9

10 %----- (2) Loop over possible values of k_{t} and
11 % k_{t+1}---
12 aux = NaN(length(K),length(K),T);
13 for t = T:-1:1
14 for inK = 1:length(K)
15 for outK = 1:(inK)
16 c = K(inK)-K(outK);
17 aux(inK,outK,t) = log(c)+Beta*V(outK,t+1);
18 end
19 end
20 V(:,t)=max(aux(:,:,t),[],2);
21 end

5 The solution for any value of k will be kT = cT . Why?



OUP CORRECTED PROOF – FINAL, 19/10/2015, SPi

92 MICROECONOMETRICS AND MATLAB

22

23 %-----(3) Calculate optimal results going forward
24 vf = NaN(T,1);
25 kap = [K1; NaN(T,1)];
26 con = NaN(T,1);
27

28 for t=1:T
29 vf(t) =V(find(K==kap(t)),t);
30 kap(t+1)=K(find(aux(find(K==kap(t)),:,t)==vf(t)));
31 con(t) =kap(t)-kap(t+1);
32 end
33

34 %----- (4) Display results ----------------------
35 [kap([1:T],:),con]
36 subplot(2,1,1)
37 plot([1:1:T],[con, kap([2:T+1],:)],'LineWidth',2)
38 ylabel('Consumption, Capital', 'FontSize', 12)
39 xlabel('Time', 'FontSize', 12)
40 legend('Consumption', 'Capital')
41

42 subplot(2,1,2)
43 plot([1:1:T], vf, 'Color', 'red', 'LineWidth', 2)
44 ylabel('Value Function', 'FontSize', 12)
45 xlabel('Time', 'FontSize', 12)

To understand what BackwardsInduc.m is doing, let’s start with section
2 of the code. Let’s ignore for the time being the outer loop (which starts on
line 13), and focus on the inner two loops. Here we define the matrix aux,
which looks very similar to Equation 6.12 and Equation 6.13. aux tells us,
for each kt , all possible exit values of kt+1. For example, if we enter a given
period with 20 units of kt , the household could choose to consume 20 now
and 0 in the future, 19 now and 1 in the future, 18 now and 2 in the future, and
so forth.

Once we have calculated this matrix for all possible input and output capital
values, we can calculate the optimal decision for each possible input capital.
This is what we do on line 20. The matrix V tells us the best possible behaviour
for any given kt—for example, were we to arrive to a given period with kt = 20,
we may find that the optimal choice is to consume 5 now, and save 15 for the
future (and so can discard the other 20 possible combinations).

You may wonder why we bother doing this for each possible input capital
value. For example, why is it important to know what the household would do
if it were to arrive with 20 units, if in reality it arrives and has 19 units of capital?
The reason is simple: we will not know what decisions the household faces in



OUP CORRECTED PROOF – FINAL, 19/10/2015, SPi

DYNAMIC CHOICE ON A FINITE HORIZON 93

each period until we completely solve the model, and to be able to solve the
model we must know what the value function looks like in future periods. We
call the vectorV the value function because it is a solution for all possible values
of k.

This brings us to the heart of dynamic programming (at least when con-
sidering problems with a finite horizon). When solving, we must first iterate
backward; only then can we iterate forward to obtain the objective function.
This is why you see two loops involving time (those starting at line 13 and at
line 28) in the above code. The first of these loops calculates the value function
starting in period T and counting backwards to the first period. The second
loop determines how much capital to consume in each period, starting from
period 1 and ending in period T. We must start in period 1 because this is
the only period where we know with certainty what the beginning capital
will be.

Let’s now run our code to see what happens. To test how this compares to a
direct attack, we will input the same values as earlier:

>> BackwardsInduc
Input Beta:0.9
Input time:10
Input initial capital:100
Input fineness of grid:0.25

ans =

100.0000 15.5000
84.5000 13.7500
70.7500 12.5000
58.2500 11.2500
47.0000 10.0000
37.0000 9.0000
28.0000 8.2500
19.7500 7.2500
12.5000 6.5000
6.0000 6.0000

Figure 6.2 plots the solution for total remaining capital and consumption in
each period, as well as the value function itself. Compare the consumption
values—the second column of the above output—with those calculated from
the direct attack in Section 6.1.1. Notice that we have lost some precision.
This is because we have had to discretize the possible values of capital, kt and
kt+1. In section 1 of the code, we define the possible values of capital as K
= 0:grid:K1;. This allows the household to choose any possible values
between 0 and the full amountK1, in steps of sizegrid. You should check how
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Figure 6.2 Solving for Dynamic Behaviour Using a Value Function

this solution changes as we define finer and finer grids over which to search.6
Before we move on and discuss how to save time with these sorts of grid search
options, we suggest that you experiment further with this code. Exercise (v) at
the end of the chapter is particularly relevant, and lets you build your own value
function for a problem we have tackled earlier.

6.3 Memoization

We have just seen that the accuracy of our solution depends upon the fineness
of the search grid. Of course, if we want a highly accurate solution, we could
just specify a very fine grid, such as an increment of 0.001. However, this is very
demanding on the processing capacity of most personal computers.

The main bottleneck in this code is the calculation of each possible capital
pair combination—that is the aux matrix in the last example. For example, if
we specify a grid = 0.1, we see that:

6 For general interest, with a grid size of 0.05 we find that Result(:,2)' = 15.3500
13.8000 12.4500 11.2000 10.1000 9.0500 8.1500 7.3500 6.6000 5.9500.
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>> size(aux)

ans =

1001 1001 10

Were we patient (or brave?) enough to try with a grid size of 0.001, we would be
dealing with a matrix with 100 billion individual elements. Perhaps we would
be willing to accept waiting a reasonable time to solve this one problem very
accurately—but it is unlikely that we could afford such a luxury if we were
resolving this for many households (rather than one), or if we were dealing with
more than one state variable. Such a situation is well known in dynamic pro-
gramming, and was labelled the ‘Curse of Dimensionality’ by Bellman (1957).7

Memoization is one response to the Curse of Dimensionality in dynamic
programming. This refers to the process of ‘remembering’, rather than re-
computing, for use in subsequent analysis. As Michie (1968) suggests, ‘It would
be useful if computers could learn from experience and thus automatically
improve the efficiency of their own programs during execution. A simple but
effective rote-learning facility can be provided within the framework of a suit-
able programming language.’

To understand the appeal of memoization, return to step 2 of the earlier
code. Here we entirely solve the dynamic problem for any possible starting and
finishing value of capital in each period. Only once we have completely solved
this problem can we compute what the household does when starting with a
capital value of k1 = 100. Now imagine that we want to solve for the behaviour
of a household with k1 = 50. We already have our memoized solution from
step 2, so do not need to do any further backward induction. Similarly, if our
household unexpectedly receives an additional amount of capital in between
periods 3 and 4, we simply follow our memoized solution, avoiding the main
cost of calculation. We will see the importance and flexibility of such a situation
below, where we consider stochastic dynamic programming.

6.4 Stochastic Dynamic Programming

Time for some shocks! Returning to our household microenterprise, let’s imag-
ine that the evolution of capital is subject to a stochastic shock. The transition
equation now becomes:

kt+1 = f (kt − ct , θ , εt+1) = θ(kt − ct)
α + εt+1. (6.14)

While the decision maker does not know the precise value of εt+1 at time t, we
assume that she does know its distribution.

7 We will meet a similar curse in a different context in Chapter 9.
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Rather than deciding between consumption now and consumption in the
future, the household must now choose between consumption now and
expected future consumption. This requires a rewriting of the dynamic pro-
gramming problem:

Vt(kt) = max
ct∈(0,kt]

{u(ct) + βE[Vt+1(kt+1)]}, (6.15)

where kt+1 is given as in Equation 6.14, and the expectation is taken over the
distribution of εt+1.

To illustrate, let’s assume a very simple distribution for the ε term. Specifi-
cally, we assume that ε takes two possible states: low (ε = −2) and high (ε =
2). Let each state occur with a probability of 0.5.8 The stochastic portion of this
problem is then characterized by two vectors: a vector of shocks (ε = [−2, 2])
and a vector of probabilities (π = [0.5, 0.5]). Vt+1 now depends on future
capital and the realization of future shocks.

The code below computes the value function at each time period, for each
possible (optimal) capital–consumption pair.nextKl refers to the future cap-
ital stock (kt+1) associated with a low realization of the shock (i.e. εt+1 = −2),
and nextKh for a high realization.9 Line 26 is Matlab speak for ‘replace
nextKlwith zero if nextKl is less than zero’. This is a technological require-
ment: in this model, capital can never be negative.

The expected future value is given by EnextV. To calculate this, we find
the value function associated with the low shock and with the high shock; we
then weight by their respective probabilities. To ensure that the predicted kt+1
lies in the discretized state space for capital, nextK is rounded to the closest
value in our capital grid. In dynamic problems with continuous state variables,
discretization steps such as this are necessary for computation.

FiniteStochastic.m

1 clear; clc;
2

3 %----- (1) Setup parameters ---------------------
4 e = [-2 2];
5 PI = [0.5 0.5];
6 Beta = 0.9; Theta = 1.2; Alpha = 0.98;
7 K1 = 100;
8 grid = 0.1;

8 Stachurski (2009) provides an excellent overview of modelling stochastic processes with depen-
dence.

9 Where these are calculated in the code, rather than typing nextKj = theta*(K(inK) -
c)ˆalpha + e(j), we could have just typednextKj = K(outK) + epsilon(j). The logic
is exactly the same: we add the shock that occurs after the current period terminates to the capital
available at the end of this period.
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9 T = 10;
10

11 K = 0:grid:K1+max(e);
12 V = [NaN(length(K),T), zeros(length(K),1)];
13 aux = NaN(length(K),length(K),T);
14

15

16 %----- (2) Loop over possible values of c, k and
17 % epsilon -----
18 for t = T:-1:1
19 fprintf('Currently in period %d\n', t)
20

21 for inK = 1:length(0:grid:K1)
22 for outK = 1:inK
23 c = K(inK) - (K(outK)/Theta)ˆ(1/Alpha);
24 nextKl = Theta*(K(inK) - c)ˆAlpha + e(1);
25 nextKh = Theta*(K(inK) - c)ˆAlpha + e(2);
26 nextKl(nextKl<0) = 0;
27

28 EnextV = PI(1) * V((round(nextKl/grid)+1),...
29 t+1) + PI(2) * V((round(nextKh/grid)+1),t+1);
30 aux(inK,outK,t) = log(c) + Beta*EnextV;
31 end
32 end
33 V(:,t)=max(aux(:,:,t),[],2);
34 end

This script calculates the value function at each of ten time periods, for each
possible (optimal) capital–consumption pair. We can save the results (that
is, ‘memoize’ the function), and examine the optimal consumption paths for
particular realizations of the shock term.

Unlike the deterministic model of Section 6.1, the stochastic model does not
have a single optimal solution—rather, the optimal consumption path depends
upon the particular realization of ε. The code below draws values of ε for 100
different households. This shows how optimal consumption depends on the
stochastic component of the model.

SimulateStochastic.m

1 %----- (1) Set-up parameters, simulate shocks ---
2 people = 100;
3

4 epsilon = randi(2,people,T+1);
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5 epsilon(epsilon==1) = -2;
6

7 vf = NaN(people,T);
8 kap = [K1*ones(people,1) NaN(people,T)];
9 con = NaN(people,T);

10

11 %----- (2) Determine consumption based on
12 % simulated shocks ----
13 for p=1:people
14 for t=1:T
15 position = round(kap(p,t)/grid+1);
16 vf(p,t) = V(position,t);
17 kap(p,t+1) = K(find(aux(position,:,t)...
18 ==vf(p,t)));
19 con(p,t) = kap(p,t)-(kap(p,t+1)/Theta)ˆ...
20 (1/Alpha);
21 kap(p,t+1) = kap(p,t+1)+epsilon(p,t+1);
22 end
23 end
24

25 %----- (3) Output ------------------------------
26 plot([1:1:T], con)
27 ylabel('Consumption', 'FontSize', 12)
28 xlabel('Time', 'FontSize', 12)
29 title('Simulated Consumption Paths',...
30 'FontSize', 16)
31

32 figure(2)
33 hist(sum(con,2))
34 title('Lifetime Consumption', 'FontSize', 16)

The loop starting on line 13 calculates the optimal decision for each household:
consumption (con), capital (kap) and the resulting value function (vf) at
each time period. Notice that we use the memoized matrix V that we calcu-
lated earlier. This illustrates a fundamental aspect of most stochastic dynamic
programming problems on a finite horizon: we iterate backwards to solve the
model, then iterate forwards to simulate it.

Figure 6.3 shows the optimal consumption paths for our 100 simulated
households. In period 1 (where each household has the same capital endow-
ment) everyone acts in precisely the same way. However, in the following
periods, optimal behaviour diverges because of differences in the realizations
of ε (and hence k).
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Figure 6.3 Simulated Consumption in a Stochastic Model

6.5 Estimating Finite Horizon Models

So far, we have been simulating models under the assumption that we know
the relevant underlying structural parameters: β , α, and θ . Let’s refer to this
group of parameters as �:

� = (β , θ , α). (6.16)

These simulations are useful to predict behaviour under a certain parametric
representation of the world—but often our interest is in inverting this problem.
Rather than assume that we know �, suppose that we have data on household
behaviour and are interested in estimating these underlying parameters.

6.5.1 ESTIMATING BY GMM

In Chapter 3, we used GMM to estimate a linear regression. The dynamic
models introduced in this and the previous chapter are entirely amenable to
estimation in a similar way. Perhaps the trickiest part of this process is to
motivate and justify specific moment conditions.

To fix ideas, let’s return to the household microenterprise example of
Section 6.4. Method of Moments estimation starts with an assumption that
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something in the population is, on average, equal to zero. Let’s assume that we
have reason to believe that the expected value of the stochastic error term is
zero in each period:

E[εt] = 0 ∀ t. (6.17)

Notice that this is just an assumption about one moment (the mean of ε); we
do not assume anything else about its distribution.10

Recall that the maximization problem for our household microenterprise is:

max
{ct}T

t=1

T
∑

t=1
β t−1u(ct) subject to kt+1 = f (kt , ct) + εt+1. (6.18)

By combining Equations 6.17 and 6.18, we can write moment conditions. The
first set of conditions come from simply rearranging the capital flow equation,
expressing in terms of ε, and taking expectations of both sides:

E[kt+1 − f (kt , ct)] = 0. (6.19)

The second set of conditions comes from the Euler equations. These require
that the marginal rate of substitution of consumption between periods is equal
to the marginal return on saved capital:

E

[

u′(ct)

βu′(ct+1)
− f ′(kt)

]

= 0. (6.20)

With our assumed functional forms, these moment conditions become:

E[kt+1 − θ(kt − ct)
α] = 0 (6.21)

E

[

ct+1

βct
− αθ(kt − ct)

α−1
]

= 0. (6.22)

With population moment conditions in hand, we can now fit the sam-
ple analogue of these moments using the data we simulated earlier (see
SimulateStochastic.m). In dynamic models, the discount factor β is
typically not identified without placing strong restrictions on other primitives
in the model.11 Therefore, we will assume a plausible value for β , plug this into
our estimation, and estimate the remaining parameters.

10 This is less demanding than assumptions we have used earlier in the book—for example, when
estimating by Maximum Likelihood in Chapter 4, we made an assumption about the full distribution
of ε. This is perhaps one of the most attractive features of moment based estimation. We return to this
point at the end of this section.

11 We will not go into this here—however, an exposition can be found in Rust (1994a,b).
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Let’s write these moment conditions in Matlab:

DynamicMoments.m

1 function Q=DynamicMoments(ct,ctp,kt,ktp,params)
2 %------------------------------------------------
3 % PURPOSE: returns the quadratic distance based
4 % on dynamic model moments and specified values
5 % of alpha and theta
6 %------------------------------------------------
7 % INPUTS: ct : Nx1 vector of C_t
8 % ctp : Nx1 vector of C_{t+1)
9 % kt : Nx1 vector of K_t

10 % ktp : Nx1 vector of K_(t+1)
11 % params : [Alpha; Theta]
12 %------------------------------------------------
13 % OUTPUT: Q : value of moment conditions
14 %------------------------------------------------
15

16 Alpha = params(1);
17 Theta = params(2);
18 Beta = 0.9;
19 k = size(params,2);
20

21 %----- (1) Form moments -------------------------
22 m1 = mean([ktp - Theta*(kt - ct).ˆAlpha]);
23 m2 = mean([(ctp./(Beta*ct))-Alpha*Theta*...
24 (kt-ct).ˆ(Alpha-1)]);
25

26 %----- (2) Create weight matrix and quadratic
27 % distance -------
28 W = eye(k);
29 Q = [m1 m2]*W*[m1 m2]';
30 return

Notice that the moments m1 and m2 are based on the functional form outlined
above and that we have assumed β = 0.9. Notice also that we have only formed
two moments. In Equation 6.17, we have assumed that ε = 0 in each of our
T time periods. This means that we could create an overidentified system of
moments; we invite you to do this in Exercise (vi).

To estimate, we will use data from just one time period. We will start by
simulating our data, and then use fminunc—Matlab’s unconstrained min-
imization routine—to minimize our objective function:
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>> FiniteStochastic;
>> SimulateStochastic;
>> opt = optimset('TolFun', 1E-20, 'TolX', 1E-20);
>> [Param, Q] = fminunc(@(p) DynamicMoments...

(con(:,4),con(:,5),kap(:,4),...
kap(:,5),p),[1, 1], opt)

Param =

0.9832 1.1895

Q =

2.7558e-08

Our estimates of 0.9832 and 1.1895 are close to the true population values of
0.98 and 1.20. In Exercises (vi) and (vii), we encourage you to improve these
estimates by using a larger set of moment conditions. We encourage you also
to experiment with the code to see how it performs under alternative (and less
serendipitous) assumptions regarding functional form, discount rate, and so
forth.

6.6 Review and Exercises

Table 6.1 Chapter 6 Commands

Command Brief Description

subplot Display multiple graphs on one output
input Prompt user input from the keyboard
find Find location(s) of exact coincidence in a matrix
print Print to disk the item currently in graphical memory
clc Clear results screen
figure Output various figures in a MATLAB script

This chapter has introduced time into economic models. This is a major area of
current research and application, as a glance through the Journal of Economic
Dynamics and Control will attest. For those interested in continuing with this
line of research, useful places to start for more extensive (textbook) analyses are
Stokey and Lucas (1989), Adda and Cooper (2003), or chapters of Dixit (1990)
and Acemoglu (2008). We also, of course, encourage you to read Chapter 7 of
this book. Beyond this, the following topics and resources may serve as useful
stepping stones along your path.
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First, in solving for the expected value function, a number of more complex
tools can be called upon. Perhaps most importantly, numerical integration
is often used, integrating over the value of the stochastic proportion of the
model. A useful starting point for numerical integration is Judd’s (1998) text
book. In Matlab try typing help integrate or lookfor integral.
In numerically computing integrals, quadrature methods are typically used.
Gauss-Legendre or Guass-Hermite quadrature are perhaps the most well-
known examples.

Second, we can incorporate more complex stochastic elements. In the
stochastic model we have considered in this chapter, the stochastic elements
have been quite simple: we have assumed that the uncertainty can be char-
acterized by a known distribution, which is invariant over time. More flex-
ible structures can be built using Markov Chain structures, where the value
of the shock can depend upon the value of the shock in previous peri-
ods. Typically, this involves defining a transition probability matrix along
with a set of states between which these transitions occur. There are many
resources which can be consulted for reading. Those particularly related to
dynamic programming include Adda and Cooper (2003), Stachurski (2009),
and Ljungqvist and Sargent (2000).

Third, GMM is not the only way to estimate these types of models. Other
options to consider include Simulated Method of Moments, Maximum Likeli-
hood, and Maximum Simulated Likelihood. We cannot suggest a much bet-
ter place to start than Eisenhauer et al. (2014), who discuss precisely this
issue. Similarly, you should consult Keane et al.’s (2013) handbook chapter—
with its excellent closing remarks on ‘how credible are DCDP models’. For a
more general discussion of inference in economic (often dynamic) models, see
Wolpin (2013).

Finally, after reviewing Eisenhauer et al. (2014), it is worth examining other
empirical papers that estimate dynamic models, to see the modelling and
estimation choices made. Useful examples include Wolpin (1984), Keane and
Wolpin (1997), Adda and Cooper (2000), and Todd and Wolpin (2006).

EXERCISES

(i) In the function FlowUtility.m, we have experimented with optimal consumption
patterns based on a given discount rate Beta. How does the optimal consumption
path vary with β? Write your own script to produce a graph (perhaps like either of the
following), to show optimal consumption over a range of βs.

(ii) How do our results depend upon the utility function we specify? Can you generalize the
function FlowUtility.m to work for various different utility functions? For example,
can you make an additional argument (modifying the help file of course!) so that the
function now also allows for isoelastic utility, and exponential utility?
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(iii) Try experimenting with the FlowConstraint.m function by passing it the entire set
of arguments, to see what it returns in each case. Try situations in which deq equals
zero (perhaps where α = 1 and θ = 1) and where deq �= 0. A useful hint: in order to
see both outputs (d and deq) you must request these explicitly from MATLAB.

(iv) Our models in this chapter, based on the utility function in Equation 6.1, have assumed
a constant discount rate β. What happens, however, if we assume that our agents are
time inconsistent? Specifically, what happens if they exhibit quasi-hyperbolic (or β, δ)
discounting? Experiment with values of β and δ (perhaps start with β = 0.7, δ = 0.96),
and see if this is inline with your intuition (As a reminder, quasi-hyperbolic discounting
implies a discount factor of [1,βδ,βδ2,βδ3,. . .]; for further details on these behaviours,
see Laibson (1997)).

(v) In BackwardsInduc.m we have solved for a flow equation of the form kt+1 = kt − ct .
Modify the code to solve for kt+1 = θ(kt − ct)

α (and confirm that this is correct by
referring to the results from section 6.1.1). A useful hint: this can be incorporated into
BackwardsInduc.m with two fairly minor changes. Concentrate only on the formulas
which define consumption (c and con).

(vi) When estimating our dynamic model using GMM, we calculated α̂ and θ̂ by using two
moment conditions based upon ε5. Generalize this GMM estimation so that rather than
using two conditions you use all the (T-1)*2 moments available from εt .

(vii) In Chapter 3, you may remember that we asked you to generalize the one-step GMM
code provided there, to estimate the more efficient two-step procedure. Do the same
here, generating an optimal weight matrix ̂W based on the first-step estimates. (A useful
hint: You can find the formula for ̂W in the exercises in Chapter 3. Alternatively, this is
identical to using the covariance matrix of the moments in the first step.)
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7 Dynamic Choice on an Infinite
Horizon

Bigger than the biggest thing ever and then some. Much bigger than that in
fact, really amazingly immense, a totally stunning size, real ‘wow, that’s big’,
time. Infinity is just so big that by comparison, bigness itself looks really
titchy. Gigantic multiplied by colossal multiplied by staggeringly huge is
the sort of concept we’re trying to get across here.

Douglas Adams, The Hitchkiker’s Guide to the Galaxy∗

Dynamic programming on a finite horizon relies upon backward induction.
In a sense, the final period acts as an anchor from which we can calculate the
value function—and, as a result, optimal decisions—in all time periods.

In this chapter, we cast that anchor adrift. There are many situations in which
decisions do not necessarily have a known final period. For example, it seems
unlikely that many firms would plan to close at a defined point in the future.
Indeed, even in the case of individuals deciding over their lifetime, the terminal
point is uncertain. Problems of this type require another class of solution.
Fortunately, such a situation can still be motivated by the ideas of Bellman
(1957), which we discussed in Chapter 6.

Let’s return to the household enterprise’s decision, which was discussed in
Chapter 6. In this simple model, the household must decide on how much to
consume now and how much to invest in the future. This problem has a long
history in economics, being described by Ramsey as early as 1928 (although
applied to countries rather than firms; some examples for firms include Bond
and Söderbom (2005) and Fafchamps et al. (2014)). The objective is to maxi-
mize total discounted utility, subject to the flow equation for capital. Here, let’s
assume log utility and Cobb-Douglas production, giving the specific optimiza-
tion problem below:

max
{ct}∞t=1,{kt}∞t=2

∞
∑

t=1
β t−1 ln(ct) (7.1)

∗ Excerpt from The Restaurant at the End of the Universe by Douglas Adams, 1980, by Serious
Productions Ltd. Used by permission of Harmony Books, an imprint of the Crown Publishing Group,
a division of Penguin Random House LLC. All rights reserved. Any third party use of this material,
outside of this publication, is prohibited. Interested parties must apply directly to Penguin Random
House LLC for permission.
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subject to:

kt+1 = θkα
t − ct (7.2)

ct ≥ 0 (7.3)

kt ≥ 0. (7.4)

You will notice that rather than the household enterprise maximizing over T
periods, they now maximize over an infinite horizon. Typically, finding an
analytical solution to dynamic problems of this type is impossible or very
difficult—meaning that we must revert to numerical tools like Matlab. How-
ever, (luckily for us!) our functional form assumptions allow us to solve the
model analytically, providing a useful benchmark against which to compare
our results.

7.1 Value Function Iteration

In Chapter 6, we introduced Bellman’s functional equation (see Equation 6.12).
The basic idea is reasonably simple. We take a dynamic optimization prob-
lem and break it into two periods: now (the current period), and the future
(all future periods). The value of the future is represented by a ‘functional
equation’, V .

In Chapter 6, we gave the Bellman equation in the following form:

Vt(kt) = max
ct∈(0,kt)

{u(ct) + βVt+1(kt+1)} , (7.5)

The subscript t has a central role in the above expression. Of course, this
should not surprise us—the previous chapter was about finite problems, in
which agents may optimally change their behaviour as the terminal period
approaches. For this reason, the decision problem must be indexed by t. We
call this problem non-stationary.

In this chapter, however, we consider problems on an infinite horizon. With-
out a terminal period to anchor us, we must have a value function that does not
depend on time:

V(k) = max
c,k̃

{

u(c) + βV(k̃)
}

. (7.6)

In Equation 7.6, k refers to capital in the current period and k̃ refers to capital
in the following period. Notice that the value function itself does not depend
on time. We can, therefore, describe this problem as stationary. Substituting
from Equation 7.2 to 7.4, we obtain:
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V(k) = max
c,k̃

{

ln(θkα − k̃) + βV(k̃)
}

. (7.7)

We can solve Equation 7.7 by iteration. Essentially, this ‘value function itera-
tion’ is searching for a fixed point, at which point we have numerically solved
the value function. Start with an arbitrary initial function V(k̃) = 0. Use Equa-
tion 7.7 to update to a new value function (i.e. the left-hand side of Equation
7.7). If we then plug this new value function back into the right-hand side
of the equation, we will once again get a new value function, which we, yet
again, substitute into the right-hand side of Equation 7.7. We can continue
this process ad infinitum—or rather until the value function on the left-hand
side is equal to the right-hand side of Equation 7.7. At this point Equation 7.7
is solved, as we have found the best possible way to allocate capital between
consuming now and saving for consumption in the future. In compact form,
we can write this process as:

Γ V(k) = max
k̃

{

ln(θkα − k̃) + βV(k̃)
}

∀ k, (7.8)

where Γ is an operator representing this process of iteration on the value
function until Γ V(k) = V(k). In the Appendix to this chapter, we show how
value function iteration works analytically in this case. If you require further
convincing of the mechanics, this is a worthwhile example to work through. As
derived in this Appendix, we show that the earlier Bellman equation (Equation
7.7) can be satisfied by a value function of the form:

V(k) = α

1 − βα
ln k + F (7.9)

where F just represents a constant, and that this value function implies the
following policy function and resulting optimal capital function:

c(k) = θkα(1 − βα), (7.10)

k̃(k) = θkα(βα). (7.11)

The policy function describes optimal consumption c based on any given cap-
ital stock k, while the analogue for capital, Equation 7.11, describes optimal k̃,
given the current capital stock k.

7.1.1 COMPUTATION

In this very special case, we can solve the dynamic program analytically. We
rarely have this luxury. Instead, we usually have to proceed numerically. Equa-
tion 7.8 gives us a number of hints about how we can do this. We need to
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calculate (θkα − k̃) over a grid of different values of k̃; we then choose the ‘best’
outcome for k̃ (in the sense that it maximizes Γ V(k)); and finally, we do this
for ‘all’ values of k.

Let’s look at some code . . .

IterateVF.m

1 function [TV optK] = IterateVF(V,maxK)
2 %------------------------------------------------
3 % PURPOSE: takes a potential value function V and
4 % performs an iteration, returning the updated
5 % proposed value function TV. When TV=V, we
6 % have found the true value function. The scalar
7 % maxK represents the maximum possible amount of
8 % capital that can be consumed in one period
9 %------------------------------------------------

10 % INPUTS: V : Nx1 vector of potential value
11 % function
12 % maxK : scalar of maximum capital
13 % that can be consumed in a period
14 %------------------------------------------------
15 % OUTPUT: TV : updated value function
16 % optK : vector of optimal capital amounts
17 %------------------------------------------------
18

19 %----- (1) Basic Parameters ---------------------
20 Alpha = 0.65; Beta = 0.9; Theta = 1.2;
21

22 grid = length(V);
23 K = linspace(1e-6,maxK,grid)';
24 TV = zeros(length(V),1);
25

26 %----- (2) Loop through and create new value
27 %----- function for each possible capital value
28 for k = 1:grid
29 c = Theta*K(k)ˆAlpha-K(1:k);
30 c(c<=0) = 0;
31 u = log(c);
32 [TV(k) optK(k)] = max(u + Beta*V(1:k));
33 end
34 return

This code provides one iteration of the value function, after being passed a
proposed value function V, and given an upper bound for capital (maxK). The
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first section of the code simply inputs our necessary parameters. The second
section is the important part of this function. First, we loop over all possible
values of k. This ensures that when we find our final solution, it will hold for
all k. In this loop we calculate utility based on all possible values for k̃. In line 30,
we maximize the current iteration of the value function; this returns TV(k)
(the maximized value function) and optK(k) (the capital value associated
with this maximum).

We can now use IterateVF to iterate! In the following code, we run
through 10 value function iterations.

IterateGraph.m

1 %-----(1) Set parameters, plot analytical
2 % solution -----
3 Beta = 0.9; Alpha = 0.65; Theta = 1.2;
4 aB = Alpha*Beta;
5 K = linspace(1e-6,100,1000);
6

7 E = Alpha/(1-aB);
8 F = 1/(1-Beta)*(log(Theta*(1-aB))...
9 + aB*log(aB*Theta)/(1-aB));

10 soln = E*log(K)+F;
11

12 plot(K,soln, '-k', 'LineWidth', 3)
13 axis([0 100 -15 10])
14 hold on
15

16 %----- (2) Plot 10 value function iterations ----
17 TV = [zeros(1000,1) NaN(1000,9)];
18 for iter = 1:10
19 fprintf('Iteration number %d\n', iter)
20 TV(:,iter+1)=IterateVF(TV(:,iter),100);
21 end
22

23 plot(K,TV)
24 xlabel('Amount of Capital', 'FontSize', 12)
25 ylabel('Value Function', 'FontSize', 12)
26 title('Value Function Iteration', 'FontSize', 14)

This script stores our 10 value function iterations in the matrix TV, along with
the initial value function (which is just a vector of zeros).

Figure 7.1 shows these 10 value functions (the thin coloured lines), alongside
the analytical solution (the thick black line). There is clearly more work to do—
our final iteration is not that close to the target result.
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Figure 7.1 Convergence After 10 Iterations

Let’s improve our script—by explicitly requiring the value function to con-
verge. We will treat our function as having ‘converged’ when Vj+1(k) ≈
Vj(k) ∀ k, where j just indicates the iteration number of the value function.1
To operationalize this in Matlab, we use a while loop. We ask Matlab to
keep iterating on the value function until the following convergence criterion
is met:

||Vj+1(k) − Vj(k)|| ≤ δ ∀ k (7.12)

In the code that follows, δ is labelled crit (which we define as 0.01). At the
end of each iteration, we calculate ||Vj+1(k) − Vj(k)||, which we call conv.

ConvergeVF.m

1 %----- Convergence to the Value Function --------
2 conv = 100;
3 crit = 1e-2;
4

5 K = linspace(1e-6,100,1000);

1 We write converged in inverted commas here to imply that it is a slight abuse of nomenclature. In
numerical iterations we will never have true convergence of the value function. Rather, contiguous value
functions will move closer and closer to one another as we iterate towards infinity until the distance
between them is extremely small.
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6 V = zeros(1000,1);
7 axis([0 100 -15 10])
8 hold on
9

10 cc = hot(70);
11 Iter = 0;
12

13 while conv>crit
14 Iter = Iter+1
15 [TV optK] = IterateVF(V,100);
16 conv = max(abs(TV-V))
17 plot(K,TV, 'color', cc(Iter,:))
18 V = TV;
19 end

The output from this code is presented in Figure 7.2; our value function does
indeed converge.2 What happens to the following if you start with an alterna-
tive V0(k)? What if you use a more finely spaced capital grid?
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Figure 7.2 Convergence to the True Value Function

2 In this graph we have used Matlab’s inbuilt ‘colormap’ hot, which results in higher iterations on
the value function being ‘hotter’ colours.
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7.1.2 THE POLICY FUNCTION

We have solved the value function—but what does this imply about optimal
firm behaviour? More specifically, how much should the firm consume at a
given point in time, and how much should it save? Fortunately, finding this
policy function—that is c(k), or the mapping from capital to consumption—is
reasonably straightforward.

You may remember that in the functionIterateVF, we solved both for the
value function at each point on our capital grid, as well as the corresponding
optimal capital at this point. We return this optimal capital vector when we
define the function IterateVF.m which returns the optimal capital vector
as the output optK. Finally, when we run our optimal convergence code, we
save two vectors for each iteration: TV, the value function, and optK, the
optimal amount of capital.

Below we include code that uses this optimal capital vector to determine how
future capital, k̃, should look given any specific value of k. While this is not the
policy function per se, it is very close.3 Figure 7.3b shows both the analytical
(blue line) and numerically calculated (red line) optimal capital functions. This
is exactly as defined in Equation 7.11. Exercise (i) asks you to generate the
equivalent figures based on the policy function, Equation 7.10.

>> aB = 0.65*0.9; Theta = 1.2; Alpha = 0.65;
>> plot(K,K(optK),K,aB*Theta*K.ˆAlpha, '--r',...

'LineWidth', 3)
>> xlabel('Amount of Capital', 'FontSize', 12)
>> ylabel('Optimal k_{t+1}', 'FontSize', 12)
>> title('Policy Function: K Consumption',...

'FontSize', 14)
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Figure 7.3a Calculated Best Path Figure 7.3b True Best Path

3 Remember, the policy function is c(k). These figures, on the other hand, are k̃(k).
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7.2 Policy Function Iteration

In Section 7.1, we found numerical solutions to infinite horizon problems
by iterating on the value function. However, this value function iteration is
not necessarily computationally cheap. In some cases, this may not concern
you—the ‘traditional’ value function iteration might work well for your
particular problem. However, if you want to work with a very large state space,
you may find that each additional iteration on the value function takes a long
time to complete.

One very useful alternative to value function iteration is ‘Howard’s Improve-
ment Algorithm’—also known as policy function iteration. As we will see, this
algorithm typically converges to the true policy function in many fewer steps
than the value function iteration considered earlier.

As we saw with the code ConvergeVF.m, we required 66 iterations before
Vj+1 was close enough to Vj for us to consider that the function had ‘converged’.
What’s more, in line 3 of this code, we defined ‘convergence’ as a situation where
||Vj+1 − Vj|| < 0.01. Were we to set a more rigorous convergence criterion, we
would require (perhaps many) more iterations to solve the problem.4

In broad terms, a policy function iteration looks like the following, where the
process is initialized by setting some initial arbitrary value function Vj = V0,
and defining some stopping criterion δ:

(i) Based upon Vj, determine optimal consumption for each k, giving a pro-
posed ‘policy function’, cj(k);

(ii) Calculate the payoff associated with this policy function, u(cj(k));
(iii) Calculate the value of following this policy function forever, Vj+1;
(iv) If ||Vj+1 − Vj|| < δ, then stop, or else return to step (i) for another

iteration.

The efficiency of this routine derives from step (iii)—in which we calculate
the value function associated with following the policy function forever. In
a traditional value function iteration, the calculated policy function is only
followed for one period before again iterating to calculate Vj+1.

Policy function iteration generally takes many fewer steps than value func-
tion iteration, but there is one computationally heavy step: calculating the
value function from the policy function. To see this, consider solving for the
unknown Vj in the following:5

Vj = u(cj(k)) + βQjVj

⇒ Vj = (I − βQj)
−1u(cj(k)), (7.13)

4 For example, setting a convergence criterion of 1e-6 means that our problem now takes 153
iterations to converge.

5 Here we borrow the notation of Judd (1998), and direct you to his discussion on pp. 411–17 should
you be interested in further details.
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where I is the identity matrix and Q is a matrix which keeps track of the capital
stock associated with a given Vj.6 At each step of Equation 7.13, which corre-
sponds to item (iii) on the above list, Vj is calculated by matrix left division;
this can be a computationally demanding process.

The functionIteratePolicy implements the enumerated list above. The
code makes use of Matlab’s sparse function, given that the matrix Q in
Equation 7.13 is largely comprised of zeros; we discuss sparsity and the use of
this function with more detail in Chapter 10.

IteratePolicy.m

1 function [V,opt] = IteratePolicy(V, maxK)
2 %------------------------------------------------
3 % PURPOSE: takes an aribitrary value function
4 % V and iterates over the policy function c(k).
5 % At each step it calculates an updated policy
6 % function c_j(k), and a corresponding value
7 % function V_j(k), which is the value of.
8 % following c_j(k) forever.
9 %------------------------------------------------

10 % INPUTS: V : Nx1 vector of potential value
11 % function
12 % maxK : scalar of maximum capital
13 % that can be consumed in a period
14 %------------------------------------------------
15 % OUTPUT: V : updated value function at each
16 % point
17 % opt : optimal k for V
18 %------------------------------------------------
19

20 %----- (1) Parameters ---------------------------
21 Alpha = 0.65; Beta = 0.9; Theta = 1.2;
22 grid = length(V);
23 K = linspace(1e-6,maxK,grid)';
24 opt = NaN(grid,1);
25

26 %----- (2) Calculate optimal k for V ------------
27 for k = 1:grid
28 c = Theta*K(k)ˆAlpha-K(1:k);
29 c(c<=0) = 0;

6 In the case of a stochastic infinite horizon model, Q acts as a transition matrix describing the
probability of each realization in the stochastic portion of the model. We do not go into that here, and
refer you once again to resources such as Judd (1998) if you are interested in extending your code to
include these types of details.
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30 u = log(c);
31 [V1,opt(k)] = max(u+Beta*V(1:k));
32 end
33

34 kopt = K(opt);
35 c = Theta*K.ˆAlpha-kopt;
36 u = log(c);
37

38 %----- (3) Invert k, u to find V_{j+1} ----------
39 Q = sparse(grid,grid);
40

41 for k = 1:grid
42 Q(k,opt(k)) = 1;
43 end
44 TV = (speye(grid)-Beta*Q)\u;
45 V = TV;
46 return

We can now loop over IteratePolicy until the numerical policy function
has converged. We provide a brief script below to do this. The first eight lines
set graphing parameters and graph the analytical solution, while the for loop
iterates over the policy function 7 times, starting with the defined V0 = 0.
Figure 7.4 presents output, and it appears as if after only 7 iterations we are
already very close to the true policy function.

GraphPolicy.m

1 %----- (1) Setup parameters, pre-fill matrices ---
2 cmap = cool(7);
3 V = zeros(1000,1);
4 K = linspace(1e-6,100,1000);
5 aB = 0.65*0.9; Theta = 1.2; Alpha = 0.65;
6

7 %----- (2) Plot analytical solution to determine
8 % performance ----
9 plot(K, aB*Theta*K.ˆAlpha, '-k','LineWidth',3)

10 hold all
11

12 %----- (3) Iterate using the Howard Algorithm,
13 % plot each step ----
14 for l = 1:7
15 [V,k] = IteratePolicy(V,100);
16 plot(K,K(k), 'color', cmap(l,:))
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17 end
18

19 legend('Analytical', 'Iter 1', 'Iter 2', ...
20 'Iter 3', 'Iter 4', 'Iter 5', 'Iter 6', ...
21 'Iter 7', 'Location', 'NorthWest')
22 xlabel('Amount of Capital')
23 ylabel('Optimal k_{t+1}')
24 title('Policy Function Iteration & Consumption')
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Figure 7.4 Faster Convergence to the Policy Function

7.3 Estimating Infinite Horizon Models

In Chapter 6, we spent considerable time discussing how to incorporate
stochastic elements into our dynamic models, and, based on this, how to esti-
mate structural parameters from data. We refrain from reproducing similar
code in this chapter. However, we absolutely do not mean to suggest with
this that simulation and estimation are not important processes in infinite
horizon modelling. Quite the contrary! In any microeconometric application,
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estimation is a fundamental step, and certainly something that we as
researchers will want to undertake. In a deeper sense, there is nothing really
different between the two estimation processes (finite or infinite horizon), so
we refer you back to Sections 6.4 and 6.5 for examples on how to do this.7 We
then refer you forward to Exercises (ii) and (iii) at the end of this chapter, which
provides you some practice with writing your own simulation and estimation
code.

7.4 Review and Exercises

Table 7.1 Chapter 7 Commands

Command Brief description

linspace A linearly spaced vector based on (user-defined) values
hot A colourmap of black, red, and yellow for use in visual outputs
fsolve Solves a system of equations
sparse Store sparse matrix in a computationally more efficient way
speye A sparse identity matrix, with only the diagonal stored in memory
legend Add a legend to a plot

In this chapter we extend our dynamic analysis from Chapter 6, based on
Bellman’s Principle of Optimality, and value function iteration more generally,
to an infinite horizon case. This means that we no longer have a final period
from which to begin backwards iteration. However, as we have seen, this does
not preclude us from solving these models. Reading this and the previous
chapter and understanding and tweaking the code provided is a good start to
writing and estimating these types of models. For those interested in learning
more, we are happy to suggest a number of paths forward . . . .

(i) Much work on dynamic programming with an infinite horizon has been
done in macroeconomics, for example considering country growth rates
and investment decisions (starting with Ramsey). There is a large liter-
ature in this area, including resources on the application of these prob-
lems in computer languages (see for example the excellent references of
Stachurski (2009) and Sargent and Stachurski (2013) in Python, or Col-
lard (2013)’s online lecture notes on value function iteration in Matlab
with a macroeconomic focus).

7 It is worth noting one important point about estimating infinite-horizon models: fortunately, we
do not need an infinite number of periods of data. We can write our infinite-horizon model and, from
this model, write moment conditions or a log-likelihood function. We can then use this to formulate
an objective function, which we can use for estimation even on the finite data we have available.
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(ii) So far in our models this chapter, we discretized our state space in such
a way as to make it possible to tackle the problem in Matlab. However,
what if we face a problem whose state space is so large that it is not feasible
to solve over a sufficiently fine grid? In this case, a very good solution
is to solve the value function at only a reduced number of grid points,
and interpolate in between these points. Typically, interpolation can be
done using linear methods, least squares (where state variables are the
explanatory variables), or splines. To see how this works with dynamic
models, Keane and Wolpin (1994), who simulate and interpolate, is the
place to start. More recent references include Rust (2000), who proposes
the so called ‘Parametric Policy Iteration’.

(iii) The points from Section 6.6 also hold for this chapter. Further numer-
ical tools, ways to effectively grid and interpolate state space, and more
complex stochastic elements may help in building and estimating more
realistic and efficient models. We refer you to the references contained in
Section 6.6.

EXERCISES

(i) In this chapter, we have used ConvergeVF to produce optimal capital graphs as Figures
7.3a and 7.3b. Write your own code which does the same thing, but generating optimal
consumption graphs, in line with Equation 7.10.

(ii) In Chapter 6 we introduced a stochastic shock into the finite horizon model. Based on
this example, write code to simulate the following model:

max
{ct}∞t=1

∞
∑

t=1

βt−1u(ct) subject to kt+1 = θkα
t − ct + εt+1.

(a) Assume that ε is structured as per the example in the previous chapter (a 50% chance
of +2 and a 50% chance of −2). Simulate behaviour (capital and consumption) for
1,000 people over 10 time periods where the initial capital of each person is 100
units. Graph total consumption and remaining capital over time.

(b) Now, instead of assuming that each person starts with 100 units of capital, assume
that each person starts with a uniform draw of between 50 and 100 capital units.
How does this change optimal behaviour? Do you need to re-estimate the value
function from part (a)?

(iii) Finally, imagine that the resulting capital and consumption paths from Exercise (ii) were
provided to you as a dataset. Estimate the parameters θ and α (setting β = 0.9) from
this data, assuming that the data generating process is that described in (ii). (A useful
hint: The GMM code from the previous chapter—and the moments therein—are likely
to be useful here.)
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Appendix: Analytically Iterating the Value Function

In what follows, we use Vj to signify the value function, where the subscript
j ∈ [0, ∞) represents the iteration on the value function. Importantly, this
number does not have any link to time periods, simply telling us how many
times we have iterated over V , and hence how close we are to our solution.
From Stokey and Lucas (1989), we know that under a relatively innocuous
set of assumptions the contraction mapping theorem implies that as j → ∞,
Γ V → V (that is our value function will converge). To start the iterations, we
define an initial value function:8

V0(k) = 0 ∀ k.

We treat V0 as a proposed solution, where a proposed solution is only verified
as the true solution if it is determined that Vj+1 = Vj; otherwise, Vj+1 becomes
the new proposed solution, and iteration continues. So, starting from V0, the
first iteration is defined by maximizing the functional equation:

V1(k) = max
k̃

{ln(c) + βV0(k̃)} s.t. c = θkα − k̃. (7.14)

Here we use k and k̃ to denote capital in the current and subsequent periods
respectively. In this case given that for all k the value of V0 will be 0, it is
optimal to consume all capital, giving a utility maximizing consumption of
c∗ = θkα . Substituting this optimal solution into our value function (Equation
7.14) gives:

V1(k) = ln(c∗) + βV(k̃∗)

= ln(θkα) + β0

= ln θ + α ln k, (7.15)

and, given that V1(k) �= V0(k), we know that our proposed V0 is not the
solution to the Bellman equation.

Now, having the result from the first iteration, we are able to iterate again,
and continue the process of iteration until Vj = Vj+1, in which case we have
arrived at our solution. For our second iteration, we continue as above:

V2(k) = max
k̃

{ln(c) + βV1(k̃)} s.t. c = θkα − k̃. (7.16)

Maximizing Equation 7.16 gives us a first order condition of the following
form:

1
θkα − k̃

= βα

k̃
,

8 This is arbitrary in the sense that starting the iteration from any resolvable value function will still
lead us to the true solution.



OUP CORRECTED PROOF – FINAL, 19/10/2015, SPi

120 MICROECONOMETRICS AND MATLAB

which, by rearranging, implies that k̃∗ = βα
1+βα

θkα , and substituting into the

flow equation that c = θkα − k̃ gives c∗ =
(

1
1+βα

)

θkα . Substituting these
optimal values back into our value function gives that:

V2(k) = ln c∗ + βV1(k̃∗)

= ln
[(

1
1 + βα

)

θkα

]

+ β

[

ln θ + α ln
(

βα

1 + βα
θkα

)]

= α(1 + βα) ln k + ln
(

θ

1 + βα

)

+ β ln θ + βα

(

βα

1 + βα
θ

)

= E1 ln k + F1

where in the second line the functional form for V1 comes from Equation 7.15.
E1 and F1 just denote constants and, once again, we can verify that V1(k) �=
V2(k).

Similarly, we can iterate again to calculate V3(k):

V3(k) = max
k̃

{ln(c) + βV2(k̃)} s.t. c = θkα − k̃,

= max
k̃

{ln(θkα − k̃) + β[α(1 + βα) ln k̃ + F1]}

and here the relevant first order condition for the above equations is:

1
θkα − k̃

= βα(1 + βα)

k̃
.

Rearranging this gives k̃ = βα+β2α2

1+βα+β2α2 θkα and c = θkα − k̃ =
(

1
1+βα+β2α2

)

θkα . We can then substitute these into our value function,
giving:

V3(k) = ln c∗ + βV2(k̃∗)

= ln
[(

1
1 + βα + β2α2

)

θkα

]

+β

[

α(1 + βα) ln
βα + β2α2

1 + βα + β2α2 θkα + F2

]

= α(1 + βα + β2α2) ln k + F2

= E2 ln k + F2

where once again E2 and F2 denote constants.9

9 If you wish to do the algebra for F2, feel free! If your algebra is correct (and we have not
made any mistakes) you will find something like: F2 = ln

(

θ
1+βα+β2α2

)

+ β ln
(

θ
1+βα

)

+ β2 ln θ +
β2α

(

βα
1+βα θ

)

+ βα ln
(

βα+β2α2

1+βα+β2α2 θ

)

.
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Here, yet again, we see that V3(k) �= V2(k)—however, we do start to see a
pattern emerging. Indeed, were we to keep iterating ad infinitum, we would
find that for each iteration j, the solution would look like Vj(k) = Ej ln k + Fj.
To resolve this fully, we could keep iterating, forming V4(k), V5(k), . . . In the
limit, we can take advantage of the algebra of geometric series. For the first
constant Ej, the limit is as follows:

lim
j→∞ Ej = α[1 + βα(1 + βα + β2α2 + . . . + β j−1αj−1] = α

1 − αβ
, (7.17)

while for F we can break this down into a number of steps. From F1 and F2 we
begin to see that the general form of Fj is:

Fj = ln
(

θ

1 + βα + . . . + β j−1αj−1

)

+ β ln
(

θ

1 + βα + . . . + β j−2αj−2

)

+ . . . + β j−1 ln θ + βα(1 + βα + . . . + β j−2αj−2)+

ln
(

βα + . . . β j−2αj−2

1 + βα + . . . β j−2αj−2 αβθ

)

+ β(βα)(1 + βα + . . . + β j−3αj−3)+

ln
(

βα + . . . β j−3αj−3

1 + βα + . . . β j−2αj−2 αβθ

)

+ . . . + β j−2(βα) ln
(

1
1 + βα

αβθ

)

.

This can be simplified into the sum of two geometric series. The first part of
the above equation simplifies as:

lim
j→∞

j−1
∑

t=0
β t ln

(

1
1 + βα + . . . + β j−1αj−1 θ

)

= lim
j→∞

j−1
∑

t=0
β t ln [θ(1 − βα)]

= 1
1 − β

ln [θ(1 − βα)]

while the latter part of the equation simplifies to:

lim
j→∞

j−2
∑

t=0
β tβα(1 + βα + . . . + β j−2αj−2) ln

(

βα + . . . β j−2αj−2

1 + βα + . . . β j−2αj−2 αβθ

)

= lim
j→∞

j−2
∑

t=0
β t βα

1 − βα
ln(βαθ)

= 1
1 − β

[

βα

1 − βα
ln(βαθ)

]

,

in which case we have that

lim
j→∞ Fj = ln[θ(1 − αβ)]

1 − β
+ βα ln(βαθ)

(1 − βα)(1 − β)
.
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Of course, this has been an awful lot of algebra, and we might be concerned
that we have not actually found the closed form solution to this value function.
Thankfully we have already come across a way we can check this solution: all
we need to do is show that iterating once again on the above value function
gives us an identical value function (a fixed point). Let’s give it a try10. . .

V∞+1(k) = max
k̃

{ln(c) + βV∞(k̃)} s.t. c = θkα − k̃. (7.18)

As we have done above, we can form the first order condition for Equation
7.18, which gives:

1
θkα − k̃

= βα

(1 − βα)k̃
.

From here we can rearrange for k̃∗ = βαθkα , and c∗ = θkα(1 − βα). If we
substitute these optimal values into the value function we have:

V∞+1(k) = ln c∗ + βV∞(k̃∗)

= ln
[

θkα(1 − βα)
] + β

[

α

1 − αβ
ln(βαθkα)

+ ln[θ(1 − αβ)]
1 − β

+ βα ln(βαθ)

1 − β

]

= α

1 − αβ
ln k + ln[θ(1 − αβ)]

1 − β
+ βα ln(βαθ)

(1 − βα)(1 − β)

and indeed, we find that V∞+1(k) = V∞(k), indicating that we have iterated
onto the true solution.

10 And please excuse our abuse of notation in Equation 7.18.
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8 Nonparametric Regression

There are no straight lines in Nature.
Gaudí∗

There are many straight lines in econometrics. Standard empirical techniques
rely on strong assumptions about the economic problem under study. These
assumptions simplify estimation and inference, but are rarely justified by
economic theory or by other a priori considerations. Conclusions based on
convenient but incorrect functional form assumptions can be misleading—
estimated parametric models are often unable to capture the complex and
highly non-linear patterns that we observe in microdata.

As the size of available datasets has grown, and as computing power has
increased, so-called nonparametric methods have become increasingly pop-
ular. These methods make minimal assumptions about the process generating
the data. They allow you to fit regression curves in a very flexible way—and,
therefore, remain agnostic about the relationship between the dependent and
explanatory variables.

There are a number of different methods available for nonparametric regres-
sion estimation—many more than we can cover here. In this chapter, we will
introduce you to nonparametric smoothing regression in Matlab. To do
so, we will build, and fine-tune, our own Nadaraya-Watson kernel estimator.
Kernel methods are simple to implement, are very flexible, and fundamental
to a wide range of other nonparametric techniques.1 At the end of the chapter,
and in the exercises, we will briefly discuss how you can extend the approach to
implement local linear regression, and point you in the direction of resources
that deal with series estimation techniques.

8.1 Parametric Versus Nonparametric Approaches

At the risk of stating the obvious, the goal of a regression analysis is to produce a
reasonable approximation of the relationship between some explanatory vari-

∗ Albert, Stuart, When: The Art of Perfect Timing, Jossey Bass (2013).
1 Härdle (1991) argues that ‘all smoothing methods are in an asymptotic sense essentially equivalent

to kernel smoothing’.
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ables X and a response variable y, given the data {Xi, yi}i=1,...,N . The relation-
ship between yi and Xi is often modelled as:

yi = m(Xi) + εi, (8.1)

with the common assumption that E(ε | X) = 0, and where m(X) is referred
to as the ‘response function’.

There are three broad approaches that can be taken to model m(X), which
differ according to the degree of structure that is imposed on the response
function.

(i) The parametric approach: We assume omniscience! Well, at least
with regard to functional form. When taking a parametric approach,
researchers assume that m(X) takes a pre-specified functional form and
is fully described by a small set of parameters that are to be estimated. For
example, the linear model that we all know and love is a prime example
of a parametric model:

yi = Xiβ + εi. (8.2)

(ii) The nonparametric approach: We assume nothing! Well, we assume very
little.2 When taking a nonparametric approach, the structure of m(X) is
assumed to be unknown and we let the data determine its form:

yi = m(Xi) + εi. (8.3)

(iii) The semiparametric approach: Semiparametric models sit in between the
two extremes. A mixed model is assumed, which imposes some structure
upon m(X) and lets the data determine other parts of the function. For
example, in some cases, we might be happy to model certain parts of the
response function linearly. We could then partition the set of explanatory
variables as X = (W, Z), and assume that the regression relationship is
linear in W and potentially non-linear in Z. This would lead to the speci-
fication that is called (imaginatively) the partially linear model:

yi = Wiβ + mz(Zi) + εi . (8.4)

We will tackle this approach in Chapter 9.

Different approaches will be suitable in different contexts, and there are
many circumstances in which a fully parametric model seems to work well,
or indeed is necessary—for example, the applications discussed throughout
most of this book. However, when little is assumed about the underlying shape
of the regression curve, a more flexible approach is needed. It is in these cir-
cumstances that the techniques discussed in this chapter become particularly
useful.

2 Assumptions are still made about the separability of, and distribution of, ε.
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To illustrate the need for nonparametric estimation approaches, let’s put
Matlab to use. Simulate a dataset {yi, Xi}i=1,...,N , where the data generating
process producing yi takes the form:

yi = sin(Xi) + εi, (8.5)

with ε ∼ N(0, 1).
This is done at the command line as follows:

>> X = [0.1:0.1:10]';
>> y = sin(X) + randn(length(X),1);

The first line of code creates a 100-by-1 vector of the explanatory variable X.
The second line of code generates the dependent variable y as the sine function
of X plus a random normal error term.

Although OLS provides the best linear approximation to m(X), it is way off
the true response function in this example. Using basic matrix operations to
calculate the OLS coefficients (see Chapter 1) and plotting the output shows
this clearly.

>> X_ = [ones(length(X), 1) X];
>> betaOLS = (X_'*X_)\(X_'*y)

betaOLS =

0.7572
-0.0897

>> figure;
>> plot(X, X_*betaOLS, X, sin(X));
>> legend('OLS', 'm(X)')
>> hold on
>> scatter(X,y)

This recovers the OLS estimate, betaOLS, and then plots the fitted and true
response functions. A scatter plot of the simulated data is added to the figure.
Our OLS model is hopelessly misspecified (Figure 8.1). Surely we can do better
than this?!

In this chapter, we will use nonparametric regression methods to achieve a
more accurate approximation of the underlying regression function. However,
it is worth noting that there are trade-offs involved when opting for non-
parametric methods. Parametric estimation is a finite-dimensional problem—
the aim is to recover the finite set of parameters that index the (assumed)
parametric functional form. Nonparametric estimation problems, on the other
hand, are infinite-dimensional—no restrictions are placed on the structure of
m(X) and so we could require an infinite number of parameters to specify the
function correctly. This can create problems for the interpretation of regression
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Figure 8.1 OLS Misspecification

output (it can be pretty difficult to get your head around an infinite dimensional
object!) and also for the convergence of estimates to the truth. Parametric esti-
mates typically converge at rate

√
N but nonparametric estimates will converge

at a slower rate than this, especially when the dimension of X is large.3
Nonparametric methods will not provide the right approach in every cir-

cumstance. However, they are very useful in a wide variety of empirical con-
texts. They should, therefore, be a part of every applied researcher’s toolkit.

8.2 Kernel Regression

In this chapter, we focus on nonparametric univariate regression. The chal-
lenges that arise in the context of multivariate kernel regression are addressed
in Chapter 9.

Imagine that we want to estimate the response function at a particular point
x0, m(x0). One basic estimator of m(x0) is simply the average of the yi for
respondents with Xi close to x0. This is the central intuition behind kernel
regression. Under the kernel approach, the estimator of m(x0) is constructed

3 The famous statisticians Ronald Fisher and Karl Pearson had many a disagreement over (among
many other things) which approach, parametric or nonparametric, was superior. Fisher objected to
nonparametric methods because of their relative lack of efficiency, whilst Pearson was much more
concerned with questions of specification.
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as a weighted average of the response variable, y. Formally, the estimate m̂(x0)
is constructed as:

m̂(x0) =
∑N

i=1 Wi(x0)yi
∑N

i=1 Wi(x0)
(8.6)

where {Wi(x0)}i=1,...,N is the sequence of weights.
Most specifications for Wi embody the idea that one wants to give less weight

to respondents whose Xi are further from x0. This is where the kernel function,
K(·), enters the story. A kernel function attaches greatest weight to observa-
tions that are close to x0 and then gradually less weight to observations that
are further away. All kernel functions are continuous, bounded, and symmetric
real functions that integrate to one, and they imply weights of the form:

Wi(x0) = K
(

Xi − x0

h

)

= Kh(Xi − x0) (8.7)

where the scaling factor, h, is referred to as the ‘bandwidth’.
The use of a kernel weighting function leads to the Nadaraya-Watson (NW)

estimator. This estimator was proposed by (suprise, suprise!) Nadaraya (1964)
and Watson (1964), and takes the form:

m̂h(x0) =
∑N

i=1 Kh(Xi − x0)yi
∑N

i=1 Kh(Xi − x0)
. (8.8)

A number of different kernel functions are used in applied work. Table 8.1
gives the most common kernel functions, their formulae, and the integral of
its square, bK (which is needed to calculate the pointwise standard error—
see Exercise (i)). Researchers must also choose the value of the bandwidth,
with the only restriction being that h > 0. The choice of bandwidth is very
important.

Let’s revisit the regression problem of Section 8.1. Here we will construct
an estimator using the Gaussian kernel function and a sensible guess for the
bandwidth. (We will tackle methods for optimally choosing K and h in due
course.)

Table 8.1 Common Kernel Functions

Kernel function Mathematical formula bK

Epanechnikov Kh(u) = 3
4
√

5
(1 − 1

5 u2)1 (|u| ≤ 1) 3/5

Gaussian Kh(u) = 1√
2π

e−
1
2 u2

1/(2π1/2)

Quartic Kh(u) = 15
16 (1 − u2)2 1 (|u| ≤ 1) 5/7

Triangular Kh(u) = (1 − |u|)1 (|u| ≤ 1) 2/3

Uniform Kh(u) = 1
2 1 (|u| ≤ 1) 1/2
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First, we must construct the kernel function. We could (as per usual)
define the kernel function in a separate program file. However, here we will
use Matlab’s anonymous function capabilities to create Kh(u) without having
to define it outside of the main body of code. Just like a ‘normal’ function,
anonymous functions accept inputs and return outputs. However, anonymous
functions can only contain a single executable statement. The anonymous func-
tion for the Gaussian kernel is:

>> GaussKernel = @(u) exp(-(u.*u)/2)/sqrt(2*pi);

The variable GaussKernel is the function handle, the callable association to
the kernel function. The @ operator creates the function handle. The function
inputs, here just u, are enclosed by the parentheses. The Gaussian kernel func-
tion accepts the vector u and returns a vector of the normal density values at
each element of u. In the regression exercise, u = (X − x0)/h.

Now, to the bandwidth! Bowman and Azzalini (1997) and Silverman (1986),
among many others, provide ‘plug-in’ choices (that is, sensible guesses) for
the bandwidth. Here we will use the formula given by Bowman and Azzalini
(1997), which can be implemented in Matlab as:

>> N = length(X);
>> hx=median(abs(X-median(X)))/0.6745*(4/3/N)ˆ0.2;
>> hy=median(abs(y-median(y)))/0.6745*(4/3/N)ˆ0.2;
>> h=sqrt(hy*hx);

Armed with the Gaussian kernel function and a choice for the bandwidth, we
can now use the NW estimator to recover the response function that generated
the data we used at the beginning of the chapter.

Kernel regression proceeds pointwise. You must choose each value of x at
which you want to evaluate the regression function. The snippet of code below
evaluates m̂h(x) at {Xi}i=1,...,N , the values of x in the dataset. For each Xi, u (on
line 3) records its distance from every other observation in the dataset, scaled
by h. Line 4 uses the anonymous function GaussKernel (created above) to
evaluate the kernel weights associated with each observation. Finally, we use
the NW estimator to bring together a weighted sum of the observed y to form
the nonparametric estimate, m̂h(Xi).

1 yhat = NaN(N,1);
2 for i = 1:N
3 u = (X - X(i))/h;
4 Ku = GaussKernel(u);
5 yhat(i) = sum(Ku.*y)/sum(Ku);
6 end

We can compare the output of the OLS and NW regressions by plotting the
true response function (sin(x)), our nonparametric estimate (yhat), and the
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Figure 8.2 Basic Kernel Regression

OLS predicted values. This is shown in Figure 8.2. It is clear that, although
there are still some wiggles, the nonparametric estimate provides a much better
approximation of the true response curve.

figure;
plot(X, sin(X), X, yhat, X, X_*betaOLS);
legend('m(X)', 'NW estimator', 'OLS');

There remains some discrepancy between the true curve and the nonpara-
metric estimate. Some of this inaccuracy derives from our arbitrary choices
for the bandwidth and the kernel function. We have not yet optimized these
choices, but we will do so shortly.

8.2.1 CELL ARRAYS AND STRUCTURE ARRAYS

In section 8.2.2, we will need to store the regression output associated with
different kernels and bandwidths. That is, we will need to store a family of
related objects. Matlab provides two convenient ways to handle this: structure
arrays and cell arrays. These are alternative data structures that allow you to
store multiple data types, and data of different sizes, in the same variable. Let’s
take a quick detour to introduce these now.
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Let’s first introduce structure arrays. To see how structures work, let’s store
the nonparametric regression output from the exercise earlier in this chapter.
Of course, we can store the output, kernel, and bandwidth used as different
variables. However, it may be useful to store these together. Like a paper clip
holding together related documents, a structure holds together different data
pieces that relate to each other.

The following code creates a structure called Kresults, which stores our
kernel output. As you can see, the syntax is very simple.

>> Kresults.kernel = 'Gaussian';
>> Kresults.h = h;
>> Kresults.yhat = yhat;

To examine a structure’s contents, just type its name at the command line.

>> Kresults

Kresults =

kernel: 'Gaussian'
h: 1

yhat: [100x1 double]

The structure Kresults has three components: kernel, h, and yhat.
These are called ‘fields’. We can list all the field names of a structure using the
function fieldnames:

>> fieldnames(Kresults)

ans =

'kernel'
'h'
'yhat'

You can add new fields to the structure at any time. For example, let’s add a
new field to record the date that the regression was performed:

>> Kresults.date=date;
>> Kresults

Kresults =

kernel: 'Gaussian'
h: 1

yhat: [100x1 double]
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date: '03-Jul-2014'

>> fieldnames(Kresults)

ans =

'kernel'
'h'
'yhat'
'date'

This adds an additional field Kresults.date in dd-mm-yyyy format.
Inspecting the structure and its field names shows that this has resulted in the
additional date field being added.

The elements of a structure can be operated on just like any other Matlab
object. For example:

>> Kresults.h*10

ans =

10

An array of structures can be created to represent multiple objects. Let’s create
an array of structures to hold the estimates associated with different choices
for the bandwidth and kernel function. For example, imagine that we are
interested in also storing the results associated with a bandwidth of 6 and a
uniform kernel function:

>> Kresults(2).kernel = 'Uniform';
>> Kresults(2).h = 6;
>> Kresults

Kresults =

1x2 struct array with fields:
kernel
h
yhat
date

All structures in the array have the same number of fields, with the same
field names. Any unspecified fields in new structures within the array simply
contain empty arrays. For example, the fieldsyhat anddate are left empty for
the second record until they are specified (as we shall do later in the chapter).
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>> Kresults(2).yhat

ans =

[]

Cell arrays also allow us to store together data of different types and sizes. To see
how they work, imagine that you want to store the names of the various estima-
tion approaches: parametric, nonparametric, semiparametric. You might think
that you could create an array of strings in Matlab as follows:

>> approaches = ['parametric', 'nonparametric',...
'semiparametric'];

Sadly, this does not work.

>> disp(approaches)
parametricnonparametricsemiparametric

Oh dear—this is not what we were expecting! Why did this happen? In Mat-
lab, a string is stored as an array of characters. Therefore, if you try to create an
array of strings as above, Matlab simply concatenates the separate character
arrays together to form one character array—that is, one long string. Matlab’s
cell arrays allow us to avoid this problem. They allow you to store an array of
character arrays—that is, they let you store an array of strings!

The main difference between creating a normal array and creating a cell array
is the use of brackets—you switch from square to curly brackets to make a cell
array. Not so difficult, really!

>> approaches = {'parametric', 'nonparametric',...
'semiparametric'}

approaches =
'parametric' 'nonparametric' 'semiparametric'

There is a also a difference in how data is accessed from a cell array. To see this,
try changing the second string in our cell array to ‘excellent!’ You might think
that you would do so as follows . . .

>> approaches(2) = 'excellent';
??? Conversion to cell from char is not possible.

When you index a cell array with round parentheses, you are referring to sets
of cells not to the contents within those cells. You can think of a cell array as
a series of boxes (the cells). To pull out a specific box, you use round brackets.
To access what is inside the box, you need to use curly brackets. You can
see this by examining the data classes of the objects approaches(2) and
approaches{2}.
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>> class(approaches(2))

ans =

cell

>> class(approaches{2})

ans =

char

To access and change the contents of a cell, you need to index using curly
brackets.

>> approaches{2} = 'excellent!'

approaches =
'parametric' 'excellent!' 'semiparametric'

In the section, we use cell arrays to change the kernel function that we use for
our nonparametric regressions.

8.2.2 KERNEL AND BANDWIDTH CHOICE

Let’s now record the kernel estimates as the bandwidth and choice of kernel
function are varied. This will highlight the impact of these choices on the
quality of the regression output.

Let’s consider three choices for the kernel function: the Gaussian kernel,
the Epanechnikov kernel, and the Uniform kernel. The Matlab anonymous
function equivalents of these kernels are given in Table 8.2.

Table 8.2 Kernel Functions in MATLAB

Kernel function Matlab code

Gaussian GaussKernel = @(u) exp(-(u.*u)/2)/sqrt(2*pi)
Epanechnikov EpanKernel = @(u) 0.75*(1 - (u.*u)).*(abs(u)<=1)
Uniform UniKernel = @(u) 0.5.*(abs(u) <= 1)

The differences between the kernel weighting functions are easily seen once
plotted over some range (Figure 8.3). This is done at the command line with
the following code.
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>> u = [-5:0.01:5]';
>> plot(u, GaussKernel(u), u, EpanKernel(u), u,...

UniKernel(u));
>> legend('Gaussian', 'Epanechnikov', 'Uniform');
>> xlabel('u');
>> ylabel('K(u)');

The uniform kernel function is discontinuous, which might not be desirable if
you believe that the underlying response function of interest is continuous—it
is necessary for the kernel function to be continuous to obtain a continuous
estimate. The Gaussian and Epanechnikov kernel functions are both popular
choices for applied work—both are continuous, although the Gaussian func-
tion places positive weight on the full support of X and the Epanechnikov
kernel does not have a derivative where |u| = 1, which can be a disadvantage.
(The Epanechnikov does have some further desirable efficiency properties that
are discussed further below.)

For each of these three kernel functions, we will consider four potential
choices for the bandwidth, h = [0.001; 3; 6; 40].

The functionKreg takes in the data, the points at which we want to evaluate
our kernel regression and, if we so desire, choices for the bandwidth and
kernel function. It then outputs the estimated regression values, yhat, and
the bandwidth used, h.
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Figure 8.3 Alternative Kernel Weighting Functions
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Kreg.m

1 function [yhat,h] = Kreg(X,y,x,h0,func)
2 %------------------------------------------------
3 % PURPOSE: performs the kernel regression of y on
4 % (univar) X
5 %------------------------------------------------
6 % USAGE: yhat = Kreg(X,y,x,h0,func)
7 % where: y : n-by-1 dependent variable
8 % X : n-by-1 independent variable
9 % x : N-by-1 points of evaluation

10 % h0 : scalar bandwidth
11 % func : kernel function
12 %------------------------------------------------
13 % OUTPUT: h : bandwidth used
14 % yhat : regression evaluated at each
15 % element of x
16 %------------------------------------------------
17 n = length(y);
18 N = length(x);
19

20 %--- (1) Set bandwidth if not supplied ----------
21 if nargin < 4
22 % suggested by Bowman and Azzalini (1997)
23 hx=median(abs(X-median(X)))/0.6745*(4/3/n)ˆ0.2;
24 hy=median(abs(y-median(y)))/0.6745*(4/3/n)ˆ0.2;
25 h=sqrt(hy*hx);
26 else
27 h = h0;
28 end
29

30 %--- (2) Set Kernel function if so desired ------
31 if nargin < 5
32 % Gaussian as default
33 krnl = @(u) exp(-(u.*u)/2)/sqrt(2*pi);
34 else
35 K = {'Gaussian', 'Uniform', 'Epanechnikov'};
36

37 if strcmpi(func, K{1})
38 % Gaussian
39 krnl = @(u) exp(-(u.*u)/2)/sqrt(2*pi);
40 elseif strcmpi(func, K{2})
41 % Uniform
42 krnl = @(u) 0.75*(1 - (u.*u)).*(abs(u) <= 1);
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43 elseif strcmpi(func, K{3})
44 % Epanechnikov
45 krnl = @(u) 0.5.*(abs(u) <= 1);
46 else
47 % --> if there's been a mistake- Gaussian
48 krnl = @(u) exp(-(u.*u)/2)/sqrt(2*pi);
49 end
50 end
51

52 %--- (3) Perform kernel regression! -------------
53 yhat = NaN(N,1);
54 for i = 1:N
55 u = (X - x(i))/h;
56 Ku = krnl(u);
57 yhat(i) = sum(Ku.*y)/sum(Ku);
58 end
59

60 return

It is optional for the user to specify the bandwidth and kernel when using
Kreg. This is made possible by the Matlab function nargin. This is found
on line 21 of Kreg. nargin returns the number of arguments passed in the
call to the function. If the number of arguments passed to the function is
fewer than four, then Kreg uses the default plug-in bandwidth that was used
previously. If, however, nargin < 4 evaluates as false, Kreg uses h0.

A similar sequence of actions occurs with the choice of kernel function—if
the number of arguments passed to the function is fewer than five, the Gaussian
kernel is used. If not, Matlab’s string compare function, strcmpi, is used
to compare the user-supplied string with the strings contained in the cell array
K.4 Keep an eye out for the use of a cell array in line 35.

Having specified the bandwidth and kernel, the final part of the function
implements the NW estimator (which we walked through earlier in the chap-
ter) at each of the points in the user-supplied vector x.

8.2.3 INFLUENCE OF KERNEL AND BANDWIDTH

The script below creates a structure, Kresults, to record the output associ-
ated with different combinations of the kernel function. It calls on the function
Kreg to perform the regressions.

4 strcmpi is case insensitive. You can use strcmp to compare strings with case sensitivity.
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The code begins using the struc syntax to create an empty structure,
Kresults, with three fields (name, h, and yhat). We populate this structure
using a double loop to cycle through our three choices of kernel function and
four choices for the bandwidth. The names of the kernel function and the value
of the bandwidth are recorded, before the kernel regression is performed using
Kreg.

KregStruc.m

1 % Script: Kernel Regression with Structures
2 clear; clc;
3

4 %----- (1) Simulate data ------------------------
5 X = [1:100]';
6 y = sin(0.1*X) + randn(length(X),1);
7

8 %----- (2) Prepare structure array --------------
9 K = {'Gaussian', 'Uniform', 'Epanechnikov'};

10 % K is a 'cell array'
11 K_ = length(K);
12 h = [1e-3; 3; 6; 40];
13 h_ = length(h);
14 Kresults = struct('name',[],'h',[],'yhat',[]);
15

16 %----- (3) Perform kernel regression! -----------
17 for k =1 : K_ % cycle over kernel choices
18

19 kernel = K{k};
20

21 for hh = 1 : h_ % cycle over bandwidth choices
22

23 bandwidth = h(hh);
24

25 % record name and bandwidth
26 Kresults((k-1)*h_ + hh).name = kernel;
27 Kresults((k-1)*h_ + hh).h = bandwidth;
28

29 % perform kernel regression
30 Kresults((k-1)*h_ + hh).yhat = ...
31 Kreg(X, y, X, bandwidth, kernel);
32

33 end
34 end
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35

36 %----- (4) Plot output --------------------------
37 % Bandwidth
38 figure;
39 for hh = 1 : h_
40 subplot(2, 2, hh);
41 scatter(X,y);
42 hold on
43 plot(X, Kresults(hh).yhat,'Color','r',...
44 'LineWidth', 1.5);
45 hold off
46 end
47

48 % Kernel function
49 figure;
50 for k = 1 : K_
51 subplot(3, 1, k);
52 scatter(X,y);
53 hold on
54 plot(X, Kresults((k-1)*h_+3).yhat,'Color','r');
55 hold off
56 end

Figures 8.4 and 8.5 show the output of the nonparametric regressions and a
scatter plot of the data for the different choices of the kernel function (using
a bandwidth of 6), and of the different choices of the bandwidth (with the
Gaussian kernel).

It is clear that the choice of bandwidth has a huge influence on the regression
output, while the choice of kernel function does not influence the general shape
of the curve too significantly. In fact, in large samples, the choice of kernel has
negligible impact, although it can be shown that the optimal kernel (in the
sense of minimizing mean squared error (MSE)) is the Epanechnikov, although
the advantage is minimal (Hodges and Lehmann (1956)).

8.3 Cross Validation

The choice of bandwidth has caused much head scratching. The bandwidth is
clearly very important for the overall quality of our regression output, but it is
hard to work out how exactly to choose its value optimally. There is a trade-off
between setting h small to reduce bias (there would be no bias if we simply
interpolated between data points) and setting h large to increase smoothness.
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Figure 8.4 Influence of Kernel Choice (with h = 6)

This trade-off is clear mathematically in the derivation of the mean squared
error of the kernel estimator. (See the references at the end of this chapter for
a further discussion of this point.)

A popular and practical approach to bandwidth selection is cross validation.
This method makes the choice of bandwidth directly dependent on the data.
We want the choice of h to minimize the sum of squared errors:

∑

(yi − ŷi)
2 =

∑

ε̂2
i . (8.9)
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Figure 8.5 Influence of Bandwidth Choice (with Gaussian Kernel)

However, choosing h to minimize this sum is not a sensible thing to do! As h
shrinks, the within-sample fit of the model improves and

∑

ε̂2
i decreases. In

fact, as h approaches zero, m̂h(Xi) collapses to yi to obtain a perfect fit. So, sim-
ply picking h to minimize

∑

ε̂2
i , would result in h∗ = 0 and an interpolation

of observed data points—which is certainly not what we are aiming for.
Rather than pick h to minimize the sum of squared residuals, we can choose

h to minimize the sum of squared ‘leave-one-out’ residuals:

CV =
N

∑

i=1

(yi − m̂¬i(Xi))
2, (8.10)

where m̂¬i(Xi) is the kernel estimate at Xi obtained by omitting the ith obser-
vation.

Formally, we obtain the cross validation bandwidth by solving the following
optimization problem:

min
h

N
∑

i=1

(yi − m̂h,¬i(Xi))
2 (8.11)

subject to the constraint that h ≥ 0.
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From Equation 8.11, it looks like we might have to run N nonparametric
regressions to select h. However, luckily, cross validation is not as computa-
tionally intensive as it might first appear. It can be shown that:

yi − m̂¬i(Xi) = yi − m̂(xi)

1 − Kh(Xi−Xi)
∑

i Kh(Xi−Xj)

. (8.12)

Therefore, the value of the objective function, for a given choice of h, only
requires a single computation of the regression function. Phew!

We can easily perform cross validation in Matlab with the help of, you
guessed it, our favourite friend fmincon. This is, of course, just another
constrained optimization problem. To proceed, we create first a function that
returns the sum of squared errors associated with the leave-one-out kernel
regression, given a particular value for the bandwidth h. We can then use
fmincon to minimize the value of this function.

The function MSE accepts the data and a particular bandwidth as inputs and
outputs the sum of squared ‘leave-one-out residuals’. We begin by declaring the
Gaussian kernel function (feel free to change this to your favourite one). In
thefor loop, Matlab cycles over each of the N observations and estimates the
regression function using the supplied bandwidth h. The kernel weight on the
ith observation and the sum of the kernel weights at each point are saved so we
can calculate the leave-one-out MSE as in Equation 8.12.

MSE.m

1 function value = MSE(X,y,h)
2 %------------------------------------------------
3 % PURPOSE: calculate the MSE for the leave-one-
4 % out kernel reg
5 %------------------------------------------------
6 % INPUTS: X : Nx1 vector of independent variable
7 % y : Nx1 vector of dependent variable
8 % h : candidate bandwidth
9 %------------------------------------------------

10 % OUTPUT: value : mean squared error of
11 % leave-one-out
12 %------------------------------------------------
13

14 %----- (1) Declare kernel function --------------
15 krnl = @(u) exp(-(u.*u)/2)/sqrt(2*pi);
16

17 %----- (2) Summary vectors ----------------------
18 N = length(X);
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19 yhat = NaN(N,1);
20 weight_i = NaN(N,1);
21 weight_sum = NaN(N,1);
22

23 %-----(3) Perform kernel regression & save
24 % weights ------
25 for i = 1:N
26 u = (X - X(i))/h;
27 Ku = krnl(u);
28 weight_i(i) = Ku(i);
29 weight_sum(i) = sum(Ku);
30 yhat(i) = sum(Ku.*y)/sum(Ku);
31 end
32

33 %----- (4) Calculate leave-1-out MSE ------------
34 residual = (y-yhat)./(1-(weight_i./weight_sum));
35 value = sum(residual.ˆ2);
36

37 return

With the MSE function to hand, we have all the ingredients to calculate the
optimal cross validation bandwidth. Given some starting value h0, we pick the
bandwidth to minimize the objective function MSE using fmincon subject
to the constraint that h is weakly positive. This is done in the lines of code
below. We supply fminconwith the plug in starting value, h0, and minimize
the function MSE by varying h only. The placeholders for the equality and
inequality constraints are simply made up of empty braces, although we place
a lower bound of 0 on the choice of h.

>> N = length(y);
>> hx=median(abs(X-median(X)))/0.6745*(4/3/N)ˆ0.2;
>> hy=median(abs(y-median(y)))/0.6745*(4/3/N)ˆ0.2;
>> h0=sqrt(hy*hx);
>> options = optimset('Display', 'off', ...

'Algorithm', 'sqp');
>> [opth,˜,exitflag] = fmincon(@(h)MSE(X,y,h), h0,...

[],[],[],[], 0, [],[],...
options)

opth =
6.5241

exitflag =
1
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8.3.1 TRIMMING

We have, so far, treated every observation symmetrically. However, there are
times when it might be sensible to downweight the influence of certain obser-
vations.

To remind you, the NW estimator takes the form:

m̂h(x0) =
∑N

i=1 Kh(Xi − x0)yi
∑N

i=1 Kh(Xi − x0)
. (8.13)

The denominator of this expression is f̂ (x0)—the kernel estimate of the density
of the regressor at x0. There might be some places, especially in the tails, where
f̂ (x0) is very small, causing erratic estimates of m̂h(x0).

With trimming, one downweights or excludes observations at which
f̂ (Xi) < δ, with δ → 0 as N → ∞. The cross validation criterion with trim-
ming takes the form:

CV =
N

∑

i=1

(yi − m̂¬i(Xi))
2 · π(Xi), (8.14)

where π(Xi) is the trimming function. For example, one might choose not to
place any weight on observations outside the 5th and 95th percentiles, in which
case π(Xi) = 0 for these observations and π(Xi) = 1 otherwise. We invite you
to add a trimming function in Exercise (vi).

8.4 Local Linear Regression

The kernel estimator is a ‘local constant’ estimator: m(x) is assumed to be
constant in the local neighbourhood of x. This approach can be generalized
to let m(x) be linear in the close neighbourhood of x. We will cover this topic
very briefly as, having mastered the standard kernel approach, implementing
this estimator in Matlab is straightforward.

The local linear estimator has better properties at the boundary than the
standard NW estimator and has zero bias if the true regression is linear. How-
ever, before doing away with the NW estimator, it is important to note that the
local linear estimator does not always dominate. When the regression function
is rather flat, the standard kernel estimator tends to do better in simulations.
Yet, when the underlying function is more curvy, the local linear might be a
better bet.

To fix ideas, note that the standard kernel estimator can be expressed as:

m̂(x0) = argmin
m0

Kh(x0 − Xi)(yi − m0)
2. (8.15)
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Rather than just picking a constant, the local linear estimator fits a linear
regression in the close neighbourhood of x0:

m̂LL(x0) = argmin
a0 ,b0

Kh(x0 − Xi)(yi − a0 − b0(Xi − x0))
2. (8.16)

We use the regressor (Xi − x0), rather than just Xi , to ensure that m(x) =
E(yi|Xi = x). Conveniently, once we have recovered the estimates â0(x) and
b̂0(x), we can set m̂(x) = â0(x) and ∂m̂(x)

∂x = b̂0(x).
Solving this optimization problem yields an explicit expression for the local

linear estimator (see Fan and Gijbels, 1996):

β̂ = (X̃′WX̃)−1X̃′Wy (8.17)

where

X̃ =
⎡

⎢

⎣

1 x0 − X1
...

...
1 x0 − XN

⎤

⎥

⎦ (8.18)

and Wii = Kh(x0 − Xi). This expression makes clear the connection to
Weighted Least Squares. It is simple really! Exercise (v) asks you to extend the
local linear estimator to a local polynomial estimator of degree p.

8.4.1 IMPLEMENTING IN MATLAB

Now that you have the NW estimator under your belt, coding the LL estimator
is easy. The basic machinery is the same as that of Kreg. The only parts of
the function that need to change are the declaration of the function outputs
and the implementation of the local linear estimator in part 3 of the code. The
function output and inputs should be changed as follows:5

function [a0,b0,h] = LLreg(X,y,x,h0,func)

The snippet of code below should be substituted for part 3 of Kreg. We first
define the results matrices a0 and b0, defined as in Equation 8.16. Then,
looping over each point at which we wish to evaluate the function, the design
matrix Xtilde and the weight matrix W are created, and manipulated as in
Equation 8.17. The only function that you might not have seen before is diag.
If you passdiag a vector, as we do below, it will create a square diagonal matrix
with the elements of the vector on the main diagonal. If, however, you pass
diag a matrix, the function will return a column vector of the main diagonal
elements of the matrix.

5 Remember also to update the function help file!
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1 %----- (3) Perform local linear regression! -----
2 a0 = NaN(n, 1);
3 b0 = NaN(n, 1);
4 for i=1:N
5 Xtilde = [ones(N, 1) (X-x(i))];
6 u = (X - x(i))/h;
7 Ku = krnl(u);
8 W = diag(Ku);
9 bhat = (Xtilde'*W*Xtilde)\(Xtilde'*W*y);

10 a0(i) = bhat(1);
11 b0(i) = bhat(2);
12 end

8.5 Review and Exercises

Table 8.3 Chapter 8 Commands

Command Brief Description

class Returns the name of the class of the object passed to it
date Returns a string containing the date in dd-mmm-yyyy format
diag Create diagonal matrix or get diagonal elements of a matrix
fmincon Routine to minimize an objective function subject to linear or non-linear constraints
fieldnames Returns structure field names
nargin Returns the number of input arguments that were used to call the function
strcmpi Compare strings and cell strings in a case insensitive manner
struct Creates a structure array with the specified fields and values

This chapter has given you an introduction to kernel based smoothing methods
in Matlab. Good textbook treatment covering the theory and statistical infer-
ence of kernel regression estimators include Pagan and Ullah (1999), Yatchew
(2003), and Li and Racine (2006). Useful survey articles include Ichimura and
Todd (2007), Delgado and Robinson (1992), and Härdle and Linton (1994).

Key early references for kernel density estimation are Rosenblatt (1956) and
Parzen (1962), and nonparametric kernel regression was first suggested in
Nadaraya (1964) and Watson (1964). In this chapter, we have not discussed
statistical inference, although we do ask you to construct pointwise confidence
intervals in Exercise (i). In Section 8.4, the local linear estimator was intro-
duced. An alternative standard local regression estimator is the Lowess estima-
tor (locally weighted scatterplot smoothing), which uses a variable bandwidth
and downweights outlier observations. The approach is attractive given its
better behaviour at the boundary and robustness to outliers. It is covered in
Exercise (vii).
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For simplicity, we have focused on the use of, and methods to select, a single
global value for the bandwidth. Some methods allow for variable bandwidth
choices: for example, k-nearest neighbour estimation (kNN) and the super-
smoother. kNN estimates differ from kernel estimates as they define the size of
the neighbourhood according to the observations whose x observations are
among the k-nearest neighbours of x0 in Euclidean distance. The idea was
introduced by Loftsgaarden and Queenberry (1965). The question under this
approach becomes one of setting the number of neighbours, rather than of the
bandwidth. See Exercise (iii) for implementation of the approach in Matlab.
Friedman (1984) supersmoother uses a local cross validation method applied
to kNN estimates and is covered in Härdle (1991). Rather than use a fixed k, a
variable k is allowed for, determined by local cross validation that entails nine
passes over the data.

Series estimators are the other main class of nonparametric estimators not
covered in this text. Rather than smoothing over observations, series methods
approximate an unknown function with a flexible parametric function, i.e.
by a weighted sum of functions. The method thus aims to provide a global
approximation to the regression function, as opposed to the local approach
of kernel methods. In the series context, the number of parameters to be
estimated plays a similar role to the bandwidth in a kernel regression. For real
valued x, a common series approximation is the pth order polynomial, i.e. one
approximates an unknown function by a sum of polynomials of x, including
all powers and cross products where x is vector valued. Another common
series approximation is a continuous, piecewise polynomial function known
as a spline.

Many estimators have been put forward to estimate the average treatment
effect on the treated, including so-called matching estimators. Such estimators
impute non-treatment outcomes for treated individuals by matching
each treated individual to observationally similar untreated individuals.
Heckman et al. (1998) develop local polynomial estimators to construct
matched outcomes.

EXERCISES

(i) Edit Kreg to return also the pointwise 95% confidence interval. Hint: The pointwise
standard error (ignoring the presence of bias and assuming a homoskedastic error) is
constructed as:

se(x0) =
√

√

√

√

(

bK σ̂2

hp̂(x0)N

)

,

where bK = ∫

K2(u)du (see Table 8.1) and

σ̂2 = 1
N

N
∑

i=1

(yi − ŷi)
2.
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(ii) Create a function to return kernel estimates of the density of a univariate random
variable. Hint: the kernel density estimator takes the form:

f̂ (x0) = 1
hN

N
∑

i=1

Kh(Xi − x0).

(iii) The k-Nearest neighbour estimator is the weighted average of the y values for the k
observations closest to x0. Define Nk(x0) as the set of k observations closest to x0.
Then,

m̂kNN(x0) = 1
k

N
∑

i=1

1(Xi ∈ Nk(x0))yi .

(a) Create a function kNN to compute a k-Nearest neighbour estimator, computing the
distance between observations as the Euclidean distance.

(b) How does the regression output change as you vary k?

(iv) Check that Equations 8.10 and 8.12 calculate the same value for the sum of squared
leave-one-out residuals. Do this by altering parts 3 and 4 of MSE to compute a literal
leave-one-out estimate of the regression function.

(v) Create a function generalizing the local linear estimator to an n-degree local polynomial
estimator. The function should accept inputs and return outputs as:
function yhat = LPoly(X, y, x, degree)
where degree is an integer in the set [0, 1, 2, 3].

(vi) Repeat the cross validation example of Section 8.3 but with X drawn from a Pareto
distribution. Add a trimming function to MSE. How do your estimates change as α (the
parameter of the Pareto) increases? How does the cross validation bandwidth change
with α and your specification of the trimming function?

(vii) Create a script to implement the LOWESS algorithm, with I iterations.

(a) Fit a weighted local polynomial regression, using a k-nearest neighbour fitting (see
Exercise 8.3).

β0 = arg min
β

1
N

N
∑

i=1

Wki(x0)

⎛

⎝yi −
3

∑

j=0

βjX
j
i

⎞

⎠

2

where Wki(x0) is the k-NN weight.
(b) Compute the residuals, ε̂i and σ̂ = median(ε̂i).
(c) Calculate robustness weights δi = K

(

ε̂i/6hatσ
)

, where K(u) is the Quartic kernel.
(d) Re-run regression with weights δiWki(x0).
(e) Repeat steps 2 and 3 a further I − 1 times.
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9 Semiparametric Methods

Variatio semper delectat.
Phaedrus Augusti Libertus∗

Variation always delights—well, at least in the arena of semiparametric regres-
sion! In practice, nonparametric regression is rarely used in economics for
anything more than data description and univariate estimation. This stems
from the economist’s desire to model multivariate relationships. The statistical
precision of nonparametric estimators decreases a lot when modelling multiple
explanatory variables. Intuitively, for high-dimensional settings, there are often
too few observations in the local neighbourhood of a particular point. This
causes nonparametric methods to break down and is often referred to as the
‘Curse of Dimensionality’.

As a further limitation, the output of high-dimensional nonparametric
regression is too much for most people to get their heads around—output
visualization gets difficult as soon as the dimensionality of X exceeds two.
An infinite-dimensional object that you cannot visualize is typically a rather
useless beast.

Given these problems, models have been developed that reduce the com-
plexity of high dimensional regression problems, making them better suited
to nonparametric estimation. This often involves an allowance for partly para-
metric modelling. These so-called ‘semiparametric’ models are useful as they
can provide a better balance of efficiency and flexibility, and yield output that
is easier to interpret. The estimation of semiparametric models often requires
the use of nonparametric techniques—so, your efforts in Chapter 8 were not
in vain!

Given the myriad ways in which you might combine parametric and non-
parametric components, it should not be surprising that there are a large num-
ber of semiparametric estimators available. In this chapter, we will guide you
through the estimation of two popular models: the Partially Linear Model and
the Single Index Model. Before doing so, we will return briefly to the case of
pure nonparametric regression to introduce multivariate kernel regression and
to highlight its difficulties.

∗ Phaedrus. (1745). The fables of Phaedrus: translated into English prose, as near the original as the
different idioms of the Latin and English languages will allow. London: Joseph Davidson.
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9.1 Multivariate Kernel Regression

There are no fundamental methodological differences between kernel regres-
sion in the univariate and multivariate settings. In both, we attempt to approx-
imate the value of the response curve at x by the local average of response
variables in the close neighbourhood of x. In the multidimensional setting,
the local neighbourhood of x is a multidimensional ball. Rather than a single
dimension and a single bandwidth, there are now multiple dimensions and,
potentially, multiple bandwidths.

The multivariate generalization of the NW estimator takes the following
form, where KH(Xi − x) is a multivariate kernel function:

m̂H(x) =
∑N

i=1 KH(Xi − x0)yi
∑N

i=1 KH(Xi − x0)
(9.1)

=
∑N

i=1 K
(

X1
i −x1

0
h1 , · · · , XK

i −xK
0

hK

)

yi

∑N
i=1 K

(

X1
i −x1

0
h1 , · · · , XK

i −xK
0

hK

)

.
(9.2)

The multivariate kernel function KH is typically chosen as the product of uni-
variate kernels:

KH(u) =
K

∏

j=1

Kh−j(uj) (9.3)

If a product kernel is used, it is thought to be good practice to transform the
regressors to a common scale by dividing by the standard deviation, or to use
multiple bandwidths.

The function BiKreg performs the regression of y on a bivariate X. While
similar to the function Kreg (which was introduced in Chapter 8), there are
a few differences that make it suitable for the bivariate case. The function is
designed to accept the data and an n × 2 matrix, x, that is used to create
the grid on which the function is evaluated. On line 20, we unpack the two
columns of x and create an n × n grid of evaluation points using meshgrid.
Parts 2 and 3 of the function follow similarly to the univariate case, except for
some minor changes when creating the bandwidth (to ensure conformability
of the matrices). In the interests of space, only the Gaussian kernel is used in
BiKreg; if you wish, you can easily editBiKreg to allow for different kernels
as we did in Kreg.

For ease of understanding, in the final part of the function, the product
kernels associated with each variable are generated separately, before being
bought together in the final loop of the code. This is not the neatest way of
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coding the estimator because of all the loops (see Chapter 10), but we present
it in this way to provide an intuitive introduction to the concept. How could
you refine the code?

BiKreg.m

1 function [yhat,h,w,z] = BiKreg(X,y,x,h0)
2 %-----------------------------------------------
3 % PURPOSE: performs the kernel regression of y
4 % on (bivar) X
5 %-----------------------------------------------
6 % USAGE: [yhat,h,w,z] = BiKreg(X,y,x,h0)
7 % where: y : N-by-1 dependent variable
8 % X : N-by-2 independent variable
9 % x : n-by-2 points of evaluation

10 % h0 : 2-by-1 bandwidth
11 %-----------------------------------------------
12 % OUTPUT: h : bandwidths used
13 % yhat : regression evaluated at the
14 % n-by-n grid from columns of x
15 %-----------------------------------------------
16

17 %--- (1) Create grid of points ------------------
18 N = length(y);
19 n = size(x, 1);
20 [w,z] = meshgrid(x(:,1), x(:,2));
21

22

23 %--- (2) Set bandwidth if not supplied & kernel--
24 if nargin < 4
25 hx = median(abs(X-repmat(median(X),...
26 N,1)))/0.6745*(4/3/N)ˆ0.2;
27 hy = median(abs(y-repmat(median(y),...
28 N,1)))/0.6745*(4/3/N)ˆ0.2;
29 h = sqrt(hy.*hx);
30 else
31 h = h0;
32 end
33 hw = h(1);
34 hz = h(2);
35 krnl = @(u) exp(-(u.*u)/2)/sqrt(2*pi);
36

37
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38 %--- (3) Perform bivariate kernel regression!---
39 % Product kernel X(:,1)
40 KW = NaN(length(y),size(w,1));
41 W = X(:,1);
42 for w_ = 1 : size(w,1)
43 wi = w(1,w_);
44 uw = (W - wi)/hw;
45 Kuw = krnl(uw);
46 KW(:,w_) = Kuw;
47 end
48

49 % Product kernel X(:,2)
50 KZ = NaN(length(y),size(z,1));
51 Z = X(:,2);
52 for z_ = 1 : size(z,1)
53 zi = z(z_, 1);
54 uz = (Z - zi)/hz;
55 Kuz = krnl(uz);
56 KZ(:,z_) = Kuz;
57 end
58

59 % NW estimator
60 yhat = NaN(size(w,1), size(w,2));
61 for i = 1 : n
62 for j = 1 : n
63 Ku = KW(:,i).*KZ(:,j);
64 yhat(j,i) = sum(Ku.*y)/sum(Ku);
65 end
66 end
67

68 return

To see how this works in practice, let’s simulate the following data generating
process and plot the output.

Wi ∼ U(0, 2) (9.4)

Zi ∼ U(0, 5) (9.5)

εi ∼ N (0, 1) (9.6)

yi = sin(πWi) · cos(Zi) + �(XiZi) + εi (9.7)
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This is done in Matlab as:

BiKregScript.m

1 % create data
2 W = 2*rand(1000,1);
3 Z = 5*rand(1000,1);
4 X = [W Z];
5 y = sin(pi*W).*cos(Z) + normcdf(W.*Z) +...
6 rand(length(W),1);
7 x = [linspace(0, 2, 100)' linspace(0, 5, 100)'];
8

9 % bivariate kreg
10 [yhat,h,w,z] = BiKreg(X,y,x);
11

12 surf(w,z,yhat)
13 xlabel('W', 'FontSize', 14);
14 ylabel('Z', 'FontSize', 14);
15 zlabel('y', 'FontSize', 14);
16 hold on
17 scatter3(W,Z,y)
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Figure 9.1 Multivariate Kernel Regression
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Nonparametric regression techniques can just about manage in the bivariate
case (given sufficient data). However, in higher dimensions, nonparametric
regression faces some rather serious practical problems. Most importantly,
it is afflicted by the ‘Curse of Dimensionality’; the rate of convergence of
nonparametric estimates to the truth falls in the number of dimensions of
the problem. Further, for the applied researcher, plotting high dimensional
outputs is rarely possible, making the interpretation of results very difficult.
(It is not clear how we could easily add another dimension to Figure 9.1 . . .)
For this reason, we now move on to explore some key semiparametric
methods.

9.2 Dimension Reduction

Models have been developed that reduce the complexity of high dimensional
regression problems. This often involves an allowance for partly parametric
modelling, enabling us to reduce the dimension of the regression problem,
while still allowing for some nonparametric relationships. There are three main
approaches that you might choose to follow:

(i) Variable selection;
(ii) Use of semiparametric or nonparametric indices;

(iii) Use of nonparametric link functions.

VARIABLE SELECTION

To reduce the dimension of the regression problem, you can always just
include fewer variables! There is no rule of thumb for selecting a subset
of variables, although looking to economic theory often provides useful
modelling insights. However, when selecting variables, you must keep in mind
the impact that this has on the explanatory power of the model—although
fewer variables might help to alleviate the Curse of Dimensionality, you might
end up omitting key data.

NONPARAMETRIC INDICES

Rather than drop a subset of variables, it is sometimes possible to parti-
tion the explanatory variables into one set to be modelled nonparametrically
and another set to be modelled parametrically. It is common, for instance, to
model certain relationships linearly, while allowing other relationships to be
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determined by the data. For example, when modelling the relationship between
income and the budget share devoted to alcohol, you might want to control
for household composition, education, and other demographic variables, while
allowing for a flexible relationship between income and alcohol expenditure.
In this context, you might want to estimate the model:

wi = g(mi, Xi) + εi (9.8)

= h(mi) + βXi + εi, (9.9)

where m gives income, and X is a matrix of household composition, education,
and other demographic variables. This is called a Partially Linear Model. In
Section 9.3, we will code up the estimator proposed by Robinson (1988) for
this model.

NONPARAMETRIC LINK FUNCTIONS

An index summarizes the values of many different variables into a single num-
ber. For example, the inflation rate is a price index; it combines information
on the price changes occurring for different goods in different places into a
single number. The dimensionality of a problem is greatly reduced (to one!) if
the information contained by multiple variables is reduced to a single index.
In Section 9.4, we will code the Semiparametric Least Squares estimator, pro-
posed by Ichimura (1993), for this model.

9.3 Partially Linear Models

Partially Linear Models are popular for applied work. They provide a simple
way of incorporating a nonparametric component into an otherwise linear
model. The model has two parts: a parametric component (Xβ) and a non-
parametric component (m(Z)):

yi = Xiβ + m(Zi) + εi (9.10)

The goal is to estimate β and m(·). We will restrict attention to the case where Zi
is unidimensional. The extension to a multivariate nonparametric component
is straightforward now that you are familiar with multivariate kernels.

It is worth noting that simply regressing y on X will return inconsistent esti-
mates for β, except in the unlikely case where Cov(X, m(Z)) = 0—so do not do
this! Further, since m(·) is unconstrained, Xi cannot be perfectly collinear with
any smooth function of Zi . This means that an intercept and any deterministic
function of Zi must be excluded from Xi, as the function m(·) will embody
these components.
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9.3.1 ROBINSON’S APPROACH

We will estimate the model following the seminal approach of Robinson
(1988). Robinson’s estimator involves ‘concentrating out’ the unknown func-
tion using a double residual regression to first estimate β . The resulting estima-
tor for β is consistent, asympotically normal, and converges at the parametric
rate. We will then use the estimated β̂ to recover m̂(·).

To see the essential intuition behind the Robinson estimator, take expecta-
tions of the Partially Linear Model with respect to Zi:

E(yi|Zi) = E(Xiβ|Zi) + E(m(Zi)|Zi) + E(εi|Zi) (9.11)

= E(Xi|Zi)β + m(Zi). (9.12)

Subtracting this from the full model removes the unknown function m(·):

yi − E(yi|Zi) = [Xi − E(Xi|Zi)] · β + εi. (9.13)

This expression can be given as a relationship between residuals as:

εyi = εxiβ + εi. (9.14)

β can therefore be recovered using a regression of conditional errors.
Robinson (1988) suggested estimating E(yi|Zi) and E(Xi|Zi) by standard

kernel regressions and then using the residuals ε̂yi and ε̂xi to estimate β̂ .
Formally, let

yi = my(Zi) + εyi (9.15)

Xi = mx(Zi) + εxi, (9.16)

with the estimators

m̂y(z) =
∑N

i=1 Kh(z − Zi)yi
∑N

i=1 Kh(z − Zi)
(9.17)

m̂k
x(z) =

∑N
i=1 Kh(z − Zi)Xk

i
∑N

i=1 Kh(z − Zi)
, (9.18)

where m̂k
x(z) gives the estimator of the conditional mean of the kth dimen-

sion of X given Z. (It might be appropriate to also trim the data, such that
certain observations are downweighted, in the standard way discussed in Sec-
tion 8.3.1.)

The estimator of β is then obtained as:

β̂ =
[ N
∑

i=1

(Xi − X̂i)
′(Xi − X̂i)

]−1 N
∑

i=1

(Xi − X̂i)
′(yi − ŷi) (9.19)

where ŷi = m̂y(z) and X̂i = m̂x(Zi).
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Implementation of the Robinson estimator requires the regression of yi and
each of the separate dimensions of Xi on Zi. These should be viewed as separate
kernel regressions, with different bandwidths if required. This is easily done
using the techniques introduced in Chapter 8. As an example, consider the
data generating process:

yi = Xi,1β1 + Xi,2β2 + sin(8Zi) + εi (9.20)

where X1 ∼ N (1, 4), X2 ∼ N (1, 0.25), Z ∼ U(0, 1), and ε ∼ N (0, 1).
The code below generates 1,000 observations from the data generating pro-

cess with a coefficient vector β = [2, −3]. We then proceed, in parts 2 and 3
of the code, to concentrate out the nonparametric component of the model.
First using a nonparametric regression of y on Z (saved as ehatY) and then
regressing each separate dimension of X on Z (saved asehatX). We here make
use of the function Kreg that was introduced in Chapter 8.

PLMScript.m

1 %----- (1) Simulate data -----------------------
2 X1 = 1 + 2*randn(1000,1);
3 X2 = 1 + 0.5*randn(1000,1);
4 X = [X1 X2];
5 Z = rand(1000, 1);
6

7 beta = [2;-3]; % make up a beta
8 y = sin(8*Z) + X*beta + randn(length(X),1);
9

10 %----- (2) NW regression of y on Z -------------
11 ghat_y = Kreg(Z,y,Z);
12 ehatY = y - ghat_y;
13

14 %----- (3) NW regression of X on Z -------------
15 ehatX = NaN(size(X,1),size(X,2));
16 for i = 1:size(X,2)
17 ghat_X = Kreg(Z,X(:,i),Z);
18 ehatX(:,i) = X(:,i) - ghat_X;
19 end

Finally, the estimated coefficient vector bhat is returned by regressing the
residuals on each other.

>> bhat = (ehatX'*ehatX)\(ehatX'*ehatY)

bhat =
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The estimator has performed well. The nonparametric component of the
model, m(Z), is recovered easily using the estimated coefficient vector. Since
mz(Zi) = E(yi − Xiβ|Zi), a consistent estimator of mz(Zi) is given by:

m̂y(z) =
∑N

i=1 Kh(z − Zi)(yi − Xiβ̂)
∑N

i=1 Kh(z − Zi)
. (9.21)

The following code uses the estimated coefficient vector to recover the non-
parametric component of the model and plots the output. We can see that the
shape of the nonparametric function is well approximated by the nonparamet-
ric estimate in Figure 9.2.

1 %----- (4) NW regression of (y - X*beta) on Z ---
2 y_bhat = y - X*bhat;
3 [y_bhat, order] = sort(y_bhat, 'ascend');
4 Z_ = Z(order);
5 z_ = min(Z_):(max(Z_) - min(Z_))/100:max(Z_);
6 [mhat,h] = Kreg(Z_,y_bhat,z_, 0.08);
7

8 plot(z_,mhat,'k',z_,sin(8*z_),'b','LineWidth',2)



OUP CORRECTED PROOF – FINAL, 19/10/2015, SPi

160 MICROECONOMETRICS AND MATLAB

9.4 Single Index Models

Single index models (SIMs) are another important and popular class of semi-
parametric methods. In these models, E(y|X) = g(Xβ), where g(·) is often
referred to as the link function. These models are only nonparametric in one
dimension—which is very useful for alleviating the Curse!

You will have come across SIMs many times before—even in the course
of this book! Most parametric models are single index—Normal regression,
Logit, Probit, Tobit . . . . These models are based on strong functional form
and distributional assumptions, which you might want to relax—or at least
examine the robustness of your results to relaxing these restrictions.

Semiparametric SIMs keep a linear form for the index (Xβ) but allow the
link function (g(·)) to be any smooth function. The challenge is to find an esti-
mator for β that attains the

√
N-rate of convergence. Two different approaches

are typically taken to estimate β and g(·):

(i) Iterative approximation of β using Semiparametric Least Squares (SLS) or
pseudo Maximum Likelihood estimation (PMLE).

(ii) Direct estimation of β using the average derivative of the regression
function.

Although the nitty-gritty varies across the different methods, the basic
approach to estimation can be summarized as follows:

(i) Estimate β by β̂ .
(ii) Compute index values v̂ = Xβ̂ .

(iii) Estimate the link function g(·) using nonparametric regression of y on v̂.

In the rest of this chapter, we will guide you through the implementation of
Ichimura’s (1993) Semiparametric Least Squares estimator, which falls under
the first approach. In Exercises (iii) and (iv), you are walked through a Pseudo
Maximum Likelihood Estimator and an Average Derivative Estimator.

Before getting started, note that X cannot include an intercept—the function
g(·) will include any location and level shift. Further, the level of β is not iden-
tified and thus a normalization criterion is required. This is typically achieved
by setting one element of β equal to 1. In this case, you must be careful that
this variable correctly has a non-zero coefficient. Identification also requires
X to include a continuously distributed variable that is informative for y—you
cannot identify the continuous function m on a discrete support.

9.4.1 SEMIPARAMETRIC LEAST SQUARES

Semiparametric Least Squares was introduced by Ichimura (1993). The
approach is motivated by the insight that, if g(·) were known, we could estimate
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β using non-linear least squares. This would involve picking β to minimize the
criterion function:

S(β , g) =
N

∑

i=1

(yi − g(Xiβ))2 (9.22)

Sadly for us, this estimator is infeasible—we do not know the structure of the
nonparametric link function (this is what we are trying to find out!).

Ichimura proposed replacing the unknown function g(·) with the ‘leave-
one-out estimator’, resulting in a technique with a similar flavour to the cross
validation method (which was covered in Chapter 8). In fact, Härdle, Hall, and
Ichimura (1993) suggest picking β and h to jointly minimize S(β). Under the
approach, the parameter vector β is chosen to minimize:

S(β) =
N

∑

i=1

πi(yi − ĝ¬i(Xiβ))2 (9.23)

where

ĝ¬i(Xiβ) =
∑

i �=j K
(

(Xi−Xj)β
h

)

yi

∑

i �=j K
(

(Xi−Xj)β
h

)

yi
(9.24)

and πi is a trimming function, which downweights or drops observations if
Xiβ is too small (see Section 8.3.1). For heteroskedastic data, one can also easily
incorporate a weight function.

Casting your mind back to Chapter 8, you will remember that, luckily, the
leave-one-out method is not as computationally intensive as it might first
appear. It can be shown that:

yi − ĝ¬i(Xiβ) = yi − ĝ(Xiβ)

1 − Kh ((Xi − Xi)β) /
∑

i Kh ((Xi − Xi)β)
(9.25)

Therefore, the value of the leave-one-out objective function S(β), for given
choices of h and g, requires only a single computation of the regression
function.

Implementation of the Ichimura estimator brings us back (yet again!) to our
old friend fmincon. Inspecting Equations 9.23 and 9.24 highlights that there
are two elements to the estimation process for β :

(i) For a given β and h, evaluate S(β);
(ii) Jointly select the β and h that minimize S(β).

To conduct the first part of the procedure, we code the function MSEg that
returns the mean squared error associated with any supplied bandwidth and
parameter vector. To optimize our choice over these parameters, this function
is then passed to fmincon.
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To begin, simulate a data generating process, which we will then try to
recover using the Ichimura estimator. As the example here, we’ll simulate the
process below. However, feel free to experiment!

yi = (Xβ)2(1 + sin(Xβ))εi (9.26)

where X1, X2 ∼ U(−1, 1) and ε ∼ N (0, 1),
Specifying β = [1, 3]′, generate 1,000 observations drawn from the data

generating process:

1 %----- Set Parameters & DGP ----------------
2 N = 1000;
3 X = -1 + 2*rand(N,2);
4 beta = [1;3];
5 Xbeta = X*beta;
6 y = Xbeta.ˆ2.*(1 + sin(Xbeta)) + randn(N,1);

Our task is to recover β and the link function from the simulated data. Below,
we define the function MSEg that calculates the value of the objective function
for any choice of the bandwidth and β . The first two inputs are simply the
data vectors, the final input is a candidate parameter vector. The first element
of param is the bandwidth for the nonparametric regression, the remaining
elements give the coefficient vector β . The function starts by defining new
variables h and beta as the relevant elements of param. An anonymous
Gaussian kernel function is then defined on line 20 for use in the estimation of
the nonparametric link function.

The action happens in part 3 of the code. Using the supplied values for
h and β , the function evaluates the kernel weights and regression function
for the values of the independent variable at each observation, storing the
important bits of the output in the summary variables ghat, weighti and
weightall. Lines 37 and 38 calculate the value of Equation 9.25 to evaluate
S(β), given the supplied parameter vector.

MSEg.m

1 function Sbeta = MSEg(X, y, param)
2 %-----------------------------------------------
3 % PURPOSE: implements Ichimura's SIM estimator
4 % imposing beta(1) = 1 as the normalization
5 % condition
6 %-----------------------------------------------
7 % INPUTS: y : n-by-1 dependent variable
8 % X : n-by-K independent variable
9 % param : (1+K)-by-1 vector of
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10 % parameters (bandwidth and beta)
11 %-----------------------------------------------
12 % OUTPUT: Sbeta : MSE of leave one out estimator
13 %-----------------------------------------------
14 h=param(1) ;
15 beta=param(2:end) ;
16 N = length(y);
17 Xbeta = X*beta;
18

19 %----- (1) Declare kernel ----------------------
20 krnl = @(u) exp(-(u.*u)/2)/sqrt(2*pi);
21

22 %----- (2) Declare summary vectors -------------
23 yhat = NaN(N,1);
24 weight_i = NaN(N,1);
25 weight_sum = NaN(N,1);
26

27 %----- (3) NW regression & save weights --------
28 for i = 1:N
29 u = (Xbeta - Xbeta(i))/h;
30 Ku = krnl(u);
31 weight_i(i) = Ku(i);
32 weight_sum(i) = sum(Ku);
33 yhat(i) = sum(Ku.*y)/sum(Ku);
34 end
35

36 %----- (4) Calculate leave-1-out MSE -----------
37 residual=(y - yhat)./(1-(weight_i./weight_sum));
38 Sbeta = sum(residual.ˆ2);
39

40 return

With MSEg defined, all we need now are the starting values and constraints for
the optimization procedure. The following section of code begins by estimating
starting values for β and h to pass to fmincon using OLS and the plug-in
bandwidth. We then build the constraint equality matrices, Aeq and beq, to
enforce the identification condition on β—namely, β1 = 1. The elements of
the constrained optimization problem are then passed to fminconwhere the
parameter vector is selected to minimize the leave-one-out mean squared error
using the function MSEg.

The final step of the estimation procedure is the recovery of the link function.
Using the estimated parameter vector, the explanatory variables are trans-
formed to Xbeta, which, alongside the optimal bandwidth opth, is passed
to the kernel regression function Kreg that was constructed in Chapter 8.
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SIMScript.m

1 %----- (1) Starting values ----------------------
2 y_ = y - X(:,1);
3 X_ = X(:,2:end);
4 beta0 = (X_'*X_)\X_'*y_;
5 beta0 = [1; beta0];
6

7 % starting values for the h's (Bowman and
8 % Azzalini (1997))
9 x_ = X*beta0;

10 hx=median(abs(x_-median(x_)))/0.6745*(4/3/N)ˆ0.2;
11 hy=median(abs(y-median(y)))/0.6745*(4/3/N)ˆ0.2;
12 h=sqrt(hy*hx);
13

14 % param starting value
15 param0 = [h;beta0];
16

17 %----- (2) Optimal constraints ------------------
18 Aeq = zeros(1, length(param0));
19 Aeq(2) = 1;
20 beq = 1;
21

22 % lower boound on h
23 lb = [0;-Inf(length(beta0),1)];
24

25 %----- (3) Optimize beta and h ------------------
26 options = optimset('Display', 'off',...
27 'Algorithm', 'sqp', 'MaxFunEvals', 1e5,...
28 'MaxIter', 1e5,'TolX',1e-10, 'TolFun',1e-10);
29 Param = fmincon(@(p) MSEg(X, y, p), param0,...
30 [], [], Aeq,beq,lb, [], [] ,options);
31

32 opth = Param(1);
33 optbeta = Param(2:end);
34

35 %----- (4) Recover link function ----------------
36 Xbeta = X*optbeta;
37 xbeta = [-4:0.1:4]';
38 ghat = Kreg(Xbeta, y, xbeta, opth);
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Figure 9.3 Recovered Link Function

Eye-balling the output, we can see that the procedure does a good job!
Figure 9.3 shows the nonparametric link function recovered from the data—
the wiggles in the index function are picked up by the procedure. The returned
coefficient vector is accurately recovered.

>> optbeta = Param(2:end)

optbeta =

1.0000
3.0874

How would you assess the accuracy of the output if β1 �= 1?
When implementing this estimator in your own work, we recommend that

you check the sensitivity of your estimates to the choice of starting value
and the tolerance values passed to fmincon. S(β) may be non-convex and
multimodal, making the results potentially sensitive to the settings used by the
Matlab optimization routines.
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9.5 Review and Exercises

Table 9.1 Chapter 9 Commands

Command Brief description

scatter3 3D scatter plot
setdiff Set difference between first and second inputs
surf Plot 3D coloured surface

9.5.1 FURTHER READING

For a comprehensive introduction to semiparametric regression, see the text-
books of Härdle et al. (2004), Pagan and Ullah (1999), and Yatchew (2003).
Useful surveys for semiparametric methods are given by Delgado and Robin-
son (1992), Ichimura and Todd (2007), and Powell (1994).

Single Index Models (SIMs) were partially covered in this chapter. There are
two main approaches taken to estimate SIMs: iterative approximation and aver-
age derivative estimation. We introduced you to Semiparametric Least Squares
estimator as an example of the iterative approximation approach. When the
dependent variable is discrete, Pseudo Maximum Likelihood estimation is an
alternative to this approach. In Exercise (iii), we ask you to code the Klein
and Spady (1993) PML estimator. Manski (1975) and Horowitz (1992) provide
Maximum Score and Smoothed Maximum Score estimator for semiparametric
binary choice models.

An alternative, direct approach to SIM estimation is the Average Deriva-
tive Estimator that was first proposed by Stoker (1986) and extended to the
weighted case by Powell et al. (1989). The basic intuition comes from the
fact that, if the conditional mean is a single index, then the vector of average
derivatives of the conditional mean determines β up to a scale. Exercise 9 (iv)
walks you through the implementation of the Stoker (1986) estimator.

Additive Models are another important class of semiparametric estimators.
They assume separability of the regressors but are otherwise nonparametric:
y = g1(x1) + g2(x2) + . . . + gK(xK). These models can be solved by backfit-
ting algorithms (see Hastie and Tibshirani (1990)). Plots of the estimated sub-
functions give the marginal effect of the variable of interest. Exercise (v) walks
you through backfitting for additive models. Additive models have been gener-
alized to allow for a nonparametric link function. Hastie and Tibshirani (1990)
describe how to modify backfitting procedures to allow for binary response and
survival data. For unknown link functions, see the Alternating Conditional
Expectation procedure of Linton et al. (1997).
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The label ‘semiparametric’ is also applied to models that are, for example,
linear in parameters but have a flexible model of the conditional variance—
that is, Var(y|X) = σ 2(X). Indeed, it is in context that the development of
semiparametric methods can be traced back to, and also for the identification
and estimation of censored regression and sample selection models. See Powell
(1994) for an overview.

EXERCISES

(i) Simulate a Gaussian mixture model, with four Gaussian distributions. Estimate the
density and use the MATLAB function contour to plot the contours of the pdf. Hint:
You have not yet got a bivariate kernel density estimator coded up—see Exercise 8.1 for
insights for the univariate case.

(ii) Using a Quartic kernel, adapt the code for the Ichimura (1993) SLS estimator to also
return the marginal effects.

(iii) Construct a function for the Klein and Spady estimator (1993)—a PML method for binary
response data. Note that, if the distribution of the error term was known, the classical,
MLE would maximize:

LN(β) =
N

∑

i=1

yi log
(

F(Xiβ)
) + (1 − yi) log

(

F(Xiβ)
)

.

(a) Obtain starting values for β using a logit regression (see Chapter 4).

(b) Construct the constraint matrices A and b to impose the condition β̂
1 = 1.

(c) Create a function that calculates F̂(Xiβ) for any given β, and then constructs the
negative of L̂N(β). This is your loss function.

(d) Minimize the loss function subject to the constraint function using fmincon.
(e) Amend your function to also calculate marginal effects.

(iv) For a SIM, it can be shown that the vector of average derivatives of the conditional mean
determines β up to a scale:

δ = E
[

g′(Xβ)
]

β

where g′(Xβ) is a scalar. This motivates the Weighted Average Derivative (WAD) Esti-
mator. Choosing to weight observations by their density, the density weighted average
derivative estimator is given as:

δ̂ = − 1
N

N
∑

i=1

yif
′(X) (9.27)

Create a function that returns the WAD estimate, using a Quartic kernel.

(v) Build a function to estimate

yi = β0 + cos(X1i) + X3
2i ,

where X1, X2 ∼ U(0, 20), by backfitting. Note that the general model is given as:
yi = β0 + ∑K

k=1 fk(Xki) + εi , and so:

E

⎛

⎝yi = β0 +
∑

k �=j

fk(Xki)|Xji

⎞

⎠ = fj(Xji).

Using backfitting, we can estimate the additive functions iteratively.



OUP CORRECTED PROOF – FINAL, 19/10/2015, SPi

168 MICROECONOMETRICS AND MATLAB

(a) Run an OLS regression of y on X and a constant to generate starting values.
(b) For each j = 1, . . . , K, set:

fk = β̂0 +
∑

k �=j

fk.

Estimate fk by kernel regression.
(c) Iterate. Repeat until the differences in fk between iterations are sufficiently small

(using the while command).
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10 Speeding Things Up . . .

I have made this longer than usual because I have not had time to make it
shorter.

Blaise Pascal∗

10.1 Introduction

So far, we have concentrated on writing intuitive code, rather than fast code.
One of the beauties of the Matlab language is that there are many ‘low hanging
fruits’ waiting to be picked in terms of writing code which runs quickly on
our machines. In this final chapter, we discuss a number of tricks to speed
things up.

Of course, there is a trade-off involved in these sorts of coding decisions.
We could spend a lot of time trying to save time, or we may be happy to
write somewhat less optimal code, save our own time, and accept that our
computational resources will be tied up for longer.1 For this reason, this chapter
will focus on the quick and easy ways to speed up code in Matlab. We will
also point you in the direction of further resources in case you are interested
in spending more time writing very quick code . . . .

10.2 Clever Coding

The simplest way to speed up code is to follow a number of basic rules. These
rules are almost costless to implement; you should follow them wherever
possible.

∗ Pascal, B., Provincial Letters: Letter XVI (1656).
1 Of course, the amount we decide to optimize our code should depend on how frequently we will

run a particular program. If we are writing a program to run once or a small number of times it seems
unlikely that we would want to spend a long time thinking about speeding up code, whereas if it is
a program we will use many times, or repeat many times in a given project, we may be interested in
thinking about speeding things up!
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10.2.1 VECTORIZING AND PREALLOCATING

Rule 1: Thou shalt vectorize. Matlab has been written to operate very effi-
ciently on matrices, with the incorporation of a number of clever linear algebra
routines to speed up computation. For this reason, you should avoid loops in
Matlab wherever possible. Never operate on a matrix element-by-element if
you can operate on the entire matrix at once.
Rule 2: If thou must loop, thou shalt preallocate. You will have noticed through-
out this book that we often initialize our matrices before we populate them
in a loop. Typically, we have done this by creating matrices of the required
dimension with each element being NaN. This may seem very strange; after
all, why not just have Matlab add a new row to a matrix for each iteration
of a loop? The answer is simple: it wastes time. First, it wastes time to change
the dimensions of a matrix—if possible, we should choose the dimensions of
a matrix and then leave them fixed. Second, a matrix created in a piecemeal
fashion is likely to be stored in non-contiguous memory. That is, it is likely
to be stored in many different places in memory. This will slow subsequent
operations on the matrix.

To illustrate the benefits of these two rules, the function TimeTests cre-
ates a matrix in four different ways. The function makes use of Matlab’s
tic and toc commands to time the various operations—try them out at the
command line if you are interested in seeing how they behave.

TimeTests.m

1 function[ratio1, ratio2, ratio3] = TimeTests(n)
2 %------------------------------------------------
3 % PURPOSE: Test performance of loops vs
4 % vectorized code
5 %------------------------------------------------
6 % INPUTS: n : The size of the vector that should
7 % be filled
8 %------------------------------------------------
9 % OUTPUT: ratio1 : ratio of using a row loop vs

10 % vectorizing
11 % ratio2 : ratio of using a column loop
12 % vs vectorizing
13 % ratio3 : ratio of a preallocated loop
14 % vs vectorizing
15 %------------------------------------------------
16

17 %----- (1) Generate n x 1 vector of ones in 4
18 % different ways --
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19 tic; vectones = ones(n,1); vect=toc;
20

21 tic; for i=1:n
22 rowloopones(1,i) = 1;
23 end; rowloop=toc;
24

25 tic; for i=1:n
26 loopones(i) = 1;
27 end; loop=toc;
28

29 preloop = NaN(n,1);
30 tic; for i=1:n
31 preloop(i) = 1;
32 end; prealloc = toc;
33

34 %----- (2) Calculate ratio of slow methods to
35 % fast method -----
36 ratio1 = rowloop/vect;
37 ratio2 = loop/vect;
38 ratio3 = prealloc/vect;
39 return

TimeTests builds an N-dimensional vector of ones in four different ways:
by directly creating an N × 1 vector (the vectorized way), by looping through a
row vector, by looping through a column vector, and by looping once we have
first preallocated in two different ways, and finally by looping through a vector
where we have.

Let’s run this function for a large value of N, say N = 1, 000, 000:

>> [r1,r2,r3]=TimeTests(1000000);
>> [r1,r2,r3]

ans =

90.9239 80.0123 22.9465

Of course, this is a relatively contrived example. However, TimeTests still
demonstrates an important point. We can speed up our code by a factor of
80–90 if we use vectorization rather than naive loops or by a factor of ∼20
times when compared to looping over preallocated vectors.2

2 You may wonder why dealing with column vectors is more efficient than dealing with row vectors.
This has to do with the way that Matlab stores arrays in memory. It is a useful general principle that
you should prefer columns to rows when working in this language.
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10.2.2 SPARSE MATRICES

In this book, we have already taken advantage of Matlab’s sparse com-
mands. This group of commands allows us to work efficiently with matrices
that contain a large number of zeros.sparsedoes this by instructing Matlab
to store only the non-zero elements of the matrix.

Sparsity can come in handy in many microeconometric calculations. Among
others: when working with matrices containing observations on individual
choice along a range of goods (which are mostly not chosen), transition matri-
ces in dynamic choice (where individuals only transition between a relatively
small number of the total states), and when working with identity matrices and
their many off-diagonal zeros.

Fortunately, incorporating these matrices into your code is relatively simple,
and can offer important speed-ups and memory savings. The following script
demonstrates the benefits of these matrices in terms of memory space and time.

SparseTests.m

1 %-----(1) Set up test size, prefill results vector
2 N = 1000;
3 Factor = NaN(N,2);
4

5 %-----(2) Test memory improvement of sparse v
6 % non-sparse -----
7 for i = 1:N
8 naive = eye(i);
9 cool = speye(i);

10

11 mem_n = whos('naive');
12 mem_n = mem_n.bytes;
13 mem_c = whos('cool');
14 mem_c = mem_c.bytes;
15

16 Factor(i,1) = mem_n/mem_c;
17 clear naive cool
18 end
19

20 %----- (3) Test speed improvement of sparse v
21 % non-sparse ------
22 for i = 1:N
23 naive = eye(i);
24 cool = speye(i);
25

26 tic; inv(naive); n=toc;
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27 tic; inv(cool); c=toc;
28

29 Factor(i,2) = n/c;
30 clear naive cool
31 end
32

33 %----- (4) Graphical output ---------------------
34 subplot(2,1,1)
35 plot(1:N,Factor(:,1), 'LineWidth', 2)
36 xlabel('Size of Matrix (N\times N)',...
37 'FontSize', 10)
38 ylabel('Proportional Saving in Memory',...
39 'FontSize', 10)
40

41 subplot(2,1,2)
42 scatter(1:N, Factor(:,2), 'LineWidth',2)
43 xlabel('Size of Matrix (N\times N)',...
44 'FontSize', 10)
45 ylabel('Proportional Saving in Time',...
46 'FontSize', 10)

Figure 10.1 shows that the sparse commands can be very worthwhile. As
the size of the initial (sparse) matrix grows, the storage size of sparse matrices
is linearly more efficient compared to their non-sparse counterparts, while
the relative efficiency in terms of operation time also increases approximately
linearly.

Although sparse matrices must be created using the sparse command,
Matlab will operate on them as if they were a normal array, while respecting
their sparse nature. For example, were we to call sum with a sparse matrix,
this will return a sparse vector, with only as many entries as there are non-zero
columns in the original matrix.

10.2.3 PROFILING CODE

In the function TimeTests, we introduced tic and toc to tell us how long
the code takes run at various points. It is often useful to do this for an entire
function to find the bottlenecks in our code. Fortunately, rather than having
to introduce a series of counters at various points in our code, we can use
the profiler. This essentially works as an ongoing series of tics and tocs.
It allows us to see at each point of our code how long the code takes to run,
and highlights for us those few places where bottlenecks exist, and where we
may want to focus our attention.
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Figure 10.1 Why Bother with Sparsity?

We can run the profiler, for the sparse tests we ran in the previous section,
and see what it tells us . . .

>> profile on
>> SparseTests
>> profile off
>> profile viewer

The output of the profiler is shown in Figure 10.2.3 It returns the run time
at each step of the process, and highlights in red the few parts that hold up
the script. Unsurprisingly, we see that most of the time is spent on inverting
non-sparse matrices. If this were a real application, we could then consider
optimizing this line (perhaps replacing it with sparse matrix operations).

10.2.4 WAITING . . .

In the previous sections, we have worked under the assumption that our code
can and should be further optimized. However, you will often find that even

3 It also returns to us a line-by-line list of functions, but here we will just focus on the graphical
output, and let you look through other output further if this is useful for you.
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time

0.27
<0.01

<0.01

<0.01

<0.01

1.06

<0.01
0.38

0.06

0.02

26.04
0.39

calls
1 6 N

Fxactor NaN(N,2);

(2) Test memory improvement of sparse matrix versus non-sparse as N increases

(3) Test time improvement for sparse versus non-sparse

for i = 1:N
naive = eye(i);
cool = speye(i);

for i = 1:N
naive = eye(i);
cool = speye(i);

tic; inv(naive); n=toc;
tic; inv(cool); c=toc;

Factor(i,2) = n/c;
clear naive cool

end

mem_n = whos('naive');
mem_n = mem_n.bytes;

mem_c = mem_c.bytes;

Factor(i,1)= mem_n/mem_c;
clear naive cool

end

mem_c = whos('cool');
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Figure 10.2 MATLAB’s Profiler Window

after writing your code as cleverly as possible, you are still forced to wait for
a significant period of time while the code runs. If so, perhaps you would like
to be updated in some way when Matlab has completed its task. Fortunately,
the inbuilt command sendmail can help. This allows you to send an email
directly to your inbox from Matlab, and even to include your Matlab results
as attachments.

The sendmail command is simple to use: it merely requires a recipient
email address and, optionally, a subject, message, and attachments. However,
there are a number of bugbears that must be ironed out if you wish to use
password protected email. The function MailResults is a wrapper for
sendmail that can be used to set your email preferences, and which you can
use to notify yourself when your program finishes running.

MailResults.m

1 function MailResults(ResultsLabel, MatrixOut,...
2 YourEmail);
3 %------------------------------------------------
4 % PURPOSE: Sends an email once containing
5 % MATLAB's results
6 %------------------------------------------------
7 % INPUTS: ResultsLabel : The name of the results
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8 % matrix
9 % MatrixOut : A results matrix to send

10 % YourEmail : Your email address (in
11 % single quotes)
12 %------------------------------------------------
13 % OUTPUT: none
14 %------------------------------------------------
15

16 %----- (1) Basic Email Preferences --------------
17 mail = 'MyEmailAddress@MyMailProvider.com';
18 password = 'MyPassword';
19

20 %----- (2) Advanced settings --------------------
21 setpref('Internet','SMTP_Server',...
22 'smtp.MyMailProvider.com');
23 setpref('Internet','E_mail',mail);
24 setpref('Internet','SMTP_Username',mail);
25 setpref('Internet','SMTP_Password',password);
26 props = java.lang.System.getProperties;
27 props.setProperty('mail.smtp.auth','true');
28 props.setProperty('mail.smtp.socketFactory.class',
29 'javax.net.ssl.SSLSocketFactory');
30 props.setProperty('mail.smtp.socketFactory.port',
31 '465');
32

33 %----- (3) Send email along with time spent
34 % running program -------
35 MyToc = toc;
36 dlmwrite('MatlabResults.csv', MatrixOut,...
37 'precision','%10.10f')
38 sendmail(YourEmail,ResultsLabel,...
39 strcat('toc = ', num2str(MyToc)),...
40 'MatlabResults.csv')
41

42 return

You can try this out by running the following at the Matlab command line.

>> tic;
>> matrix = magic(10);
>> MailResults('magicmatrix', matrix,...

'MyEmailAddress@MyMailProvider.com')

You will now have a magic square in your inbox!
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10.3 Parallel Computing

In a nutshell, parallel computing allows for computationally intensive proce-
dures to be separated and run in individual blocks rather than as one large job.
This is particularly useful in applications such as Monte Carlo simulation, or
other situations that rely on many processes that are independent from one
another.

Modern computers generally comprise a number of integrated processors.
These processors, called CPUs, can be thought of as the workhorse of the
computer when running calculations and simulations in Matlab. You can
check how many cores your computer is using:

>> feature('numCores')

ans =
12

We can explicitly ask Matlab to run our jobs using multiple CPUs—in many
situations this will substantially accelerate our code. What’s more, program-
ming this in Matlab is remarkably easy, provided that you have the Parallel
Computing Toolbox installed in Matlab. It is almost as simple as saying
parfor rather than for! The following code provides a brief example of this
and demonstrates some of the common pitfalls.

ParforBasics.m

1 %----- (1) Basic illustration of parfor ---------
2 matlabpool open
3 tic
4 parfor count = 1:12
5 count
6 pause(1)
7 end
8 toc
9

10 %----- (2) consider a problem that is not
11 % parallelizable -----
12 fibonacci = zeros(15, 1);
13 fibonacci(1) = 1;
14 fibonacci(2) = 1;
15

16 for c = 3:size(fibonacci, 1)
17 c
18 fibonacci(c) = fibonacci(c - 1) +...
19 fibonacci(c - 2);
20 end
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21

22 %--- (3) this IS parallelizable, but needs
23 % careful construction -----
24 MyObviousMatrix = NaN(10, 2);
25 %MyObviousMatrix1 = NaN(10, 1);
26 %MyObviousMatrix2 = NaN(10, 1);
27

28 parfor count = 1:10
29 count
30 MyObviousMatrix(count, 1) = 1;
31 MyObviousMatrix(count, 2) = 2;
32

33 %MyObviousMatrix1(count) = 1;
34 %MyObviousMatrix2(count) = 2;
35 end
36 %MyObviousMatrix = [MyObviousMatrix1,
37 %MyObviousMatrix2];
38

39 return

The command matlabpool open tells Matlab to operate across multiple
cores. On our computer, we are using 12 cores. In block 1 of the code, we use a
parfor loop, asking each loop to pause for one second. Were we to run this
in a non-parallel fashion, it would, of course, take around twelve seconds. With
a parfor loop, however, this took a mere one second: each pause is sent to
a separate CPU.

In blocks (2) and (3), we illustrate some situations that will not work with
parallel programming. parfor splits a loop between multiple cores so we
cannot ask for information to be shared across iterations of the loop. In short,
we require the problem to be ‘parallelizable’—in the sense that it can be broken
down into small blocks and then aggregated only once each block has finished.
At each point in Fibonnaci sequence, we need to know the previous two real-
izations. For this reason the calculation is sequential rather than parallelizable.

There are trivially parallelizable problems in microeconometrics. Consider,
for example, a bootstrap algorithm. This is perfect for a parfor loop. In
each loop, we can calculate a subset of the bootstrap draws, and then once
terminating all loops, pool these and calculate our final standard errors. Let’s
try this out with our familiar auto.csv data. BootstrapOLS.m is a script
that estimates standard errors by bootstrapping a linear model. This illustrates
the speed-up that can reasonably be achieved in parallel computations with
some overhead.4

4 If we wanted to compare this to Stata, we could type: bootstrap, reps(10000): reg
mpg price weight
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BootstrapOLS.m

1 clear
2 rng(1)
3

4 if matlabpool('size') == 0
5 matlabpool(12)
6 end
7

8 %--(1) Open regression data --------------------
9 DataIn = dlmread('auto.csv');

10 X = DataIn(:, 2:3);
11 X = [X, ones(74, 1)];
12 y = DataIn(:, 1);
13 N = size(X, 1);
14

15 [Beta, se] = regress(y, X);
16 [Beta, se]
17

18 %--(2) Bootstrap standard errors (100,000
19 % draws) ----
20 reps = 100000;
21 BootstrapBeta = NaN(reps, 3);
22

23 tic
24 parfor count = 1:reps
25 MyIndex = randi(N, N, 1);
26 BootX = X(MyIndex, :);
27 BootY = y(MyIndex, :);
28

29 BootstrapBeta(count, :) = [regress(BootY,...
30 BootX)]';
31 end
32 toc
33

34 [Beta, se, mean(BootstrapBeta)',...
35 std(BootstrapBeta)']

10.4 Parallel Computing with the GPU

We have just seen how Matlab will let us take one big job, split it into a
number of smaller jobs, and run these in parallel. This is a great way to save
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time—but you may want to push things further. In the previous section, we
used 12 cores. Wouldn’t it be cool if we could increase this to 20, 100, or even
1,000 cores?

It would not be feasible to put 1,000 CPUs in a personal computer. However,
the Graphics Processing Unit comprises many mini-processors, each designed
to render pixels in parallel. Luckily for people like us, these mini-processors
can be tricked into working with numbers, rather than pixels, and can be used
to parallelize microeconometric analysis. Parallel calculations on the GPU are
now used in a large range of fields, including economics. See, for example,
Aldrich et al. (2011) for an example of this type of computation.

Matlab has built a large number of functions that take advantage of the
GPU. To use these GPU functions, we require two things: (1) a GPU that
works with these kinds of computations, and (2) Matlab’s Parallel Computing
Toolbox. At the time of writing, this means that you must have access to an
NVIDIA brand CUDA-enabled GPU. This is a very common type of GPU that
you are likely to have in your computer—this can be checked at the Matlab
command line by typing gpuDevice. If your computer has both the toolbox
and an NVIDIA GPU installed you should see something like the following
excerpt:5

>> gpuDevice

ans =

CUDADevice with properties:

Name: 'GeForce GT 630M'
Index: 1

ComputeCapability: '2.1'
SupportsDouble: 1
DriverVersion: 5.5000

ToolkitVersion: 5

If you have access to a computer with this hardware and software, the remain-
der is relatively easy. Much like Matlab’s sparse commands, its GPU com-
mands are used by defining a different type of matrix, and then using normal
Matlab commands that recognize that we are dealing with GPU calculations.
Essentially, we tell Matlab to send a matrix to the GPU, run calculations on it
there (in a parallel way), and then bring the processed information back from

5 If you have the Parallel Computing Toolbox but do not have an NVIDIA GPU (or the appropriate
software is not installed), you will see a message like: ‘Error using gpuDevice (line 26).
There is a problem with the CUDA driver associated with this GPU device.’ If,
however, you do not have the Parallel Computing Toolbox, you will see ‘Undefined function or
variable ’gpuDevice’’.
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the GPU to the CPU. The following code passes a vector of random draws
to the GPU, takes the mean of each row, and brings it back:

>> N = 10000;
>> GM = gpuArray(rand(N));
>> tic; Gmean = mean(GM); G=toc
G =

9.500e-04

>> Gback = gather(Gmean);

Now, let’s try the same thing without using the GPU. . .

>> CM = rand(N);
>> tic; Cmean = mean(CM); C=toc
C =

0.0439

>> ratio = C/G
ratio =

46.4349

This very simple calculation suggests that we have managed to speed things up
around 45 times by using the GPU (although this will vary a lot with the type of
GPU used and the number of cores available). Finally, if we look at the types of
these variables, we will see how our GPU arrays differ from normal variables:

>> whos
Name Size Bytes Class Attributes

C 1x1 8 double
CM 10000x10000 800000000 double
G 1x1 8 double
GM 10000x10000 108 gpuArray
Gback 1x10000 80000 double
Gmean 1x10000 108 gpuArray
N 1x1 8 double
Cmean 1x10000 80000 double
ratio 1x1 8 double

We now have a new class, gpuArray, for those matrices we passed to the
GPU, whereas the values we brought back with the gather command are
seen as normal vectors of double-precision numbers.

Before leaving GPU parallel programming, we feel it important to note that
the suitability of the tool depends entirely upon the task assigned to it. The
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function GPUExample runs a relatively simple task: calculating (X′X)−1X′y
on the GPU and on the CPU.

GPUExample.m

1 function Betas = GPUExample(N,k,method)
2 %------------------------------------------------
3 % PURPOSE: Creates and inverts matrices using GPU
4 % computing
5 %------------------------------------------------
6 % INPUTS: N : The number of rows in the X
7 % and y matrices
8 % k : The number of columns in the
9 % X matrix

10 % method : calculation method. Must be
11 % 'GPU' or 'CPU'
12 %------------------------------------------------
13 % OUTPUT: Betas : result of inv(X'X)*(X'y)
14 %------------------------------------------------
15

16 if method=='GPU'
17 X = gpuArray(rand(N,k));
18 y = gpuArray(rand(N,1));
19 elseif method=='CPU'
20 X = rand(N,k);
21 y = rand(N,1);
22 end
23 tic
24 Betas = mldivide((X'*X),(X'*y));
25 toc
26 return

This function takes longer to run on the GPU than on the CPU.

>> GPUExample(1000,3,'GPU')
Elapsed time is 0.000845 seconds.

ans =

0.3274
0.2976
0.3014
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>> GPUExample(1000,3,'CPU')
Elapsed time is 0.000155 seconds.

ans =

0.3274
0.2976
0.3014

10.5 Other Tricks

This chapter has, so far, been a tour through some ‘low-cost’ ways to speed
up our Matlab code. Before closing, we will point out a number of alternative
tricks. However, due to their complex nature, we will leave you to explore these
in your own time should you be interested.

First, you can use Matlab’s MEX-files. These files allow Matlab to run
code that has been written in Fortran or C/C++. These essentially act as ‘plug-
ins’ to the Matlab language. While the code is called fluidly from the Matlab
window, it retains the speed of the language in which it was originally written.
However, as a word of caution, this requires learning the syntax of either
Fortran or C/C++. While it is true that you will probably see performance
enhancements in your code, this should be weighed against the cost of learning
and implementing a new language.

Finally, you could consider online cloud computing. In this chapter, we
have mentioned parallel coding using parfor and using your computer’s
GPU. However, both of these are inherently limited by the technology of your
personal computer. Should you decide that you want to work on an extremely
large number of cores, the recent advances in cloud computing offer a solution.
Rather than running on the cores of your local machine, you can log in to a
website that provides you with access to ‘virtual cores’ on which to run your
code. The beauty of this infrastructure is that it places few limits on the number
of cores which you can access—you simply use cores which live ‘on the cloud’,
and then log off when you are finished. This is particularly useful if you will be
doing large one-off jobs that require high computational resources for a short
period of time. Two options are the Amazon EC2,6 and PiCloud. Both of these
are available for use with Matlab and, at least for the case of Amazon’s EC2,
come with documentation on the Matlab website.

6 Amazon EC2, or Amazon Elastic Compute Cloud is a leader in cloud computing and provides
computational resources which can be rented by the hour.
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Now this is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.

Winston Churchill∗

Time to say goodbye. In this book, we have introduced the basics of Matlab—
not as an end in itself but as a means to discuss interesting ideas, models,
and methods in theory-based empirical analysis. Time, then, for you to apply
these ideas to your own research. Here—in general terms—is how we suggest
doing so.

(i) Find a real research question. Hypotheticals are great for learning—as is
simulated data—which is why we have used them so extensively in this
text. Now it is time to apply what you have learned to a real research
question and a real dataset. This, ultimately, is where lies the real challenge
of theory-based empirical analysis: in modelling the messiness of the real
world, where the lurks and perks of specific empirical contexts often do
not align perfectly with textbook models.

(ii) Write a model, and code it using Matlab functions. Keep it simple; you
can always complicate matters later.

(iii) Decide how you want to estimate your model (Maximum Likelihood, Max-
imum Simulated Likelihood, GMM, Linear Programming, etc.). Write an
objective function, and code it using Matlab functions.

(iv) Simulate, simulate, simulate. Simulate to check your code; simulate to
understand the behaviour of your model; simulate large datasets and esti-
mate on that simulated data, to confirm that you can recover your model
parameters.

(v) Estimate—on real data, at last. This should feel like a cautious, halting
approach—at least initially. You should avoid grandiose temptations—the
temptation to run your estimator once and then start reporting results.
Rather, you might want to check that your estimator returns sensible
results in some constrained region of the parameter space, then gradually
allow for a wider search. You may want to return to your simulated code—
to confirm that your model can be simulated and estimated with the
parameters that your estimator is returning from the real data.

(vi) Rethink. Refine. Revise. Repeat.

∗ Churchill, W., The End of the Beginning, The Lord Mayor’s Luncheon, Mansion House (1942).
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If you’re not having fun, you’re doing something wrong.
Marx
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bandwidth 129, 130, 140
Bayesian Games 69
Bellman equation 106
best response functions 64, 72
bootstrap 180

cell arrays 131, 134
Cobb-Douglas utility function

13–15, 105
code profiling see profiler
column-major order 173
commenting 10, 11
control variables 84
convergence (algorithms) 110–11, 113
convergence (estimators) 128, 160
Cournot game 62
CPU 182
cross validation 140–4
Curse of Dimensionality (dynamics) 95
Curse of Dimensionality (nonparametric

estimation) 150, 155

decimal places 8
dynamic programming (deterministic)

83, 90
dynamic programming (stochastic) 90, 95

estimating by simulation 46, 54, 55
Estimation xiii–xiv, 99
estimation (approaches) 126
estimation (optimization) 20, 49
Euler equation 83, 100
exit flags 21, 23, 26

for loops 28
function handles 26, 33, 130
functions 8, 13

Gauss-Markov assumptions 35
Generalized Method of Moments (GMM) 31,

34, 99
GMM see Generalize Method of Moments
GPU programming 182
grid search 94

help 5, 10
Howard’s improvement algorithm see policy

function iteration

if-else 137
independence of irrelevant alternative

(IIA) 53
indirect inference 61
infinity 105
inverse (matrix) 7

just-identifiction 37

kernel estimation 125
kernel function 129, 135–6, 140
kernel regression (multivariate) 151–5
kernel regression (univariate) 128

Least Squares (Ordinary) 5–6, 9, 11–12,
31, 127

Least Squares (Semiparametric) 160–1
linear programming 20–2
local linear regression 145
log-likelihood function 31, 46, 51
logistic distribution 43
logit (binary) 41, 42
logit (multinomial) 41, 48–9, 51
logit-smoothed simulator 58
lowess 147

M-files 8
machine epsilon 85
Markov chain 103
matrix operators 15
maximization see optimization
Maximum Likelihood 31
Maximum Simulated Likelihood

(MSL) 46, 57
mean squared error (MSE) 139, 141,

144, 161
memoization 94
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Method of Moments (MM) 38, 100
MEX files 185
microdata xv
minimization see optimization
mixed models 126
MSL see Maximum Simulated Likelihood

Nadaraya-Watson estimator 129
Nash Equilibrium 66
non-linear constraints 78, 88
not a number (NaN) 28, 48

optimization (constrained) 20, 23, 32
optimization (dynamic) 83
optimization (nested) 41
optimization (options) 26, 33
optimization (unconstrained) 37, 101
ordered choice 49
Ordinary Least Squares (OLS) see Least

Squares
over-identification 37

parallel programming 179–83
partially linear model 156
policy function 107, 112
policy function iteration 113
preallocation 28, 172
probit (multinomial) 41, 52
profiler 175
Pseudo Maximum Likelihood 166, 167
pseudo-random number (seed)

43, 48
psuedo-random numbers 27, 43

Ramsey model 105, 117
random numbers see pseudo-random

numbers
read data 6–7
Red Bus-Blue Bus problem 53
Robinson’s estimator 157

Semiparametric Least Squares (SLS) see Least
Squares

sequential quadratic programming 26
simulation (Monte Carlo) 27–8, 43, 98
simulation based estimation see estimating by

simulation
single index model 160
sparse matrices 114, 174
Stackelburg game 69
state variables 84
stationarity 106
structure arrays 131–4

tic-toc 173

under-identification 50
utility (functions) 13
utility (maximization) 23
utility (relative) 50

value function (finite) 90, 93
value function (infinite) 107
value function iteration 91, 98, 107
variable types 8
vector repetition 14, 16
vectorization 15, 172
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